1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2011, 2015 by Delphix. All rights reserved. 24 */ 25 /* Copyright (c) 2013 by Saso Kiselkov. All rights reserved. */ 26 /* Copyright (c) 2013, Joyent, Inc. All rights reserved. */ 27 /* Copyright (c) 2014, Nexenta Systems, Inc. All rights reserved. */ 28 29 #include <sys/dmu.h> 30 #include <sys/dmu_impl.h> 31 #include <sys/dmu_tx.h> 32 #include <sys/dbuf.h> 33 #include <sys/dnode.h> 34 #include <sys/zfs_context.h> 35 #include <sys/dmu_objset.h> 36 #include <sys/dmu_traverse.h> 37 #include <sys/dsl_dataset.h> 38 #include <sys/dsl_dir.h> 39 #include <sys/dsl_pool.h> 40 #include <sys/dsl_synctask.h> 41 #include <sys/dsl_prop.h> 42 #include <sys/dmu_zfetch.h> 43 #include <sys/zfs_ioctl.h> 44 #include <sys/zap.h> 45 #include <sys/zio_checksum.h> 46 #include <sys/zio_compress.h> 47 #include <sys/sa.h> 48 #include <sys/zfeature.h> 49 #ifdef _KERNEL 50 #include <sys/vmsystm.h> 51 #include <sys/zfs_znode.h> 52 #endif 53 54 /* 55 * Enable/disable nopwrite feature. 56 */ 57 int zfs_nopwrite_enabled = 1; 58 59 const dmu_object_type_info_t dmu_ot[DMU_OT_NUMTYPES] = { 60 { DMU_BSWAP_UINT8, TRUE, "unallocated" }, 61 { DMU_BSWAP_ZAP, TRUE, "object directory" }, 62 { DMU_BSWAP_UINT64, TRUE, "object array" }, 63 { DMU_BSWAP_UINT8, TRUE, "packed nvlist" }, 64 { DMU_BSWAP_UINT64, TRUE, "packed nvlist size" }, 65 { DMU_BSWAP_UINT64, TRUE, "bpobj" }, 66 { DMU_BSWAP_UINT64, TRUE, "bpobj header" }, 67 { DMU_BSWAP_UINT64, TRUE, "SPA space map header" }, 68 { DMU_BSWAP_UINT64, TRUE, "SPA space map" }, 69 { DMU_BSWAP_UINT64, TRUE, "ZIL intent log" }, 70 { DMU_BSWAP_DNODE, TRUE, "DMU dnode" }, 71 { DMU_BSWAP_OBJSET, TRUE, "DMU objset" }, 72 { DMU_BSWAP_UINT64, TRUE, "DSL directory" }, 73 { DMU_BSWAP_ZAP, TRUE, "DSL directory child map"}, 74 { DMU_BSWAP_ZAP, TRUE, "DSL dataset snap map" }, 75 { DMU_BSWAP_ZAP, TRUE, "DSL props" }, 76 { DMU_BSWAP_UINT64, TRUE, "DSL dataset" }, 77 { DMU_BSWAP_ZNODE, TRUE, "ZFS znode" }, 78 { DMU_BSWAP_OLDACL, TRUE, "ZFS V0 ACL" }, 79 { DMU_BSWAP_UINT8, FALSE, "ZFS plain file" }, 80 { DMU_BSWAP_ZAP, TRUE, "ZFS directory" }, 81 { DMU_BSWAP_ZAP, TRUE, "ZFS master node" }, 82 { DMU_BSWAP_ZAP, TRUE, "ZFS delete queue" }, 83 { DMU_BSWAP_UINT8, FALSE, "zvol object" }, 84 { DMU_BSWAP_ZAP, TRUE, "zvol prop" }, 85 { DMU_BSWAP_UINT8, FALSE, "other uint8[]" }, 86 { DMU_BSWAP_UINT64, FALSE, "other uint64[]" }, 87 { DMU_BSWAP_ZAP, TRUE, "other ZAP" }, 88 { DMU_BSWAP_ZAP, TRUE, "persistent error log" }, 89 { DMU_BSWAP_UINT8, TRUE, "SPA history" }, 90 { DMU_BSWAP_UINT64, TRUE, "SPA history offsets" }, 91 { DMU_BSWAP_ZAP, TRUE, "Pool properties" }, 92 { DMU_BSWAP_ZAP, TRUE, "DSL permissions" }, 93 { DMU_BSWAP_ACL, TRUE, "ZFS ACL" }, 94 { DMU_BSWAP_UINT8, TRUE, "ZFS SYSACL" }, 95 { DMU_BSWAP_UINT8, TRUE, "FUID table" }, 96 { DMU_BSWAP_UINT64, TRUE, "FUID table size" }, 97 { DMU_BSWAP_ZAP, TRUE, "DSL dataset next clones"}, 98 { DMU_BSWAP_ZAP, TRUE, "scan work queue" }, 99 { DMU_BSWAP_ZAP, TRUE, "ZFS user/group used" }, 100 { DMU_BSWAP_ZAP, TRUE, "ZFS user/group quota" }, 101 { DMU_BSWAP_ZAP, TRUE, "snapshot refcount tags"}, 102 { DMU_BSWAP_ZAP, TRUE, "DDT ZAP algorithm" }, 103 { DMU_BSWAP_ZAP, TRUE, "DDT statistics" }, 104 { DMU_BSWAP_UINT8, TRUE, "System attributes" }, 105 { DMU_BSWAP_ZAP, TRUE, "SA master node" }, 106 { DMU_BSWAP_ZAP, TRUE, "SA attr registration" }, 107 { DMU_BSWAP_ZAP, TRUE, "SA attr layouts" }, 108 { DMU_BSWAP_ZAP, TRUE, "scan translations" }, 109 { DMU_BSWAP_UINT8, FALSE, "deduplicated block" }, 110 { DMU_BSWAP_ZAP, TRUE, "DSL deadlist map" }, 111 { DMU_BSWAP_UINT64, TRUE, "DSL deadlist map hdr" }, 112 { DMU_BSWAP_ZAP, TRUE, "DSL dir clones" }, 113 { DMU_BSWAP_UINT64, TRUE, "bpobj subobj" } 114 }; 115 116 const dmu_object_byteswap_info_t dmu_ot_byteswap[DMU_BSWAP_NUMFUNCS] = { 117 { byteswap_uint8_array, "uint8" }, 118 { byteswap_uint16_array, "uint16" }, 119 { byteswap_uint32_array, "uint32" }, 120 { byteswap_uint64_array, "uint64" }, 121 { zap_byteswap, "zap" }, 122 { dnode_buf_byteswap, "dnode" }, 123 { dmu_objset_byteswap, "objset" }, 124 { zfs_znode_byteswap, "znode" }, 125 { zfs_oldacl_byteswap, "oldacl" }, 126 { zfs_acl_byteswap, "acl" } 127 }; 128 129 int 130 dmu_buf_hold_noread(objset_t *os, uint64_t object, uint64_t offset, 131 void *tag, dmu_buf_t **dbp) 132 { 133 dnode_t *dn; 134 uint64_t blkid; 135 dmu_buf_impl_t *db; 136 int err; 137 138 err = dnode_hold(os, object, FTAG, &dn); 139 if (err) 140 return (err); 141 blkid = dbuf_whichblock(dn, 0, offset); 142 rw_enter(&dn->dn_struct_rwlock, RW_READER); 143 db = dbuf_hold(dn, blkid, tag); 144 rw_exit(&dn->dn_struct_rwlock); 145 dnode_rele(dn, FTAG); 146 147 if (db == NULL) { 148 *dbp = NULL; 149 return (SET_ERROR(EIO)); 150 } 151 152 *dbp = &db->db; 153 return (err); 154 } 155 156 int 157 dmu_buf_hold(objset_t *os, uint64_t object, uint64_t offset, 158 void *tag, dmu_buf_t **dbp, int flags) 159 { 160 int err; 161 int db_flags = DB_RF_CANFAIL; 162 163 if (flags & DMU_READ_NO_PREFETCH) 164 db_flags |= DB_RF_NOPREFETCH; 165 166 err = dmu_buf_hold_noread(os, object, offset, tag, dbp); 167 if (err == 0) { 168 dmu_buf_impl_t *db = (dmu_buf_impl_t *)(*dbp); 169 err = dbuf_read(db, NULL, db_flags); 170 if (err != 0) { 171 dbuf_rele(db, tag); 172 *dbp = NULL; 173 } 174 } 175 176 return (err); 177 } 178 179 int 180 dmu_bonus_max(void) 181 { 182 return (DN_MAX_BONUSLEN); 183 } 184 185 int 186 dmu_set_bonus(dmu_buf_t *db_fake, int newsize, dmu_tx_t *tx) 187 { 188 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 189 dnode_t *dn; 190 int error; 191 192 DB_DNODE_ENTER(db); 193 dn = DB_DNODE(db); 194 195 if (dn->dn_bonus != db) { 196 error = SET_ERROR(EINVAL); 197 } else if (newsize < 0 || newsize > db_fake->db_size) { 198 error = SET_ERROR(EINVAL); 199 } else { 200 dnode_setbonuslen(dn, newsize, tx); 201 error = 0; 202 } 203 204 DB_DNODE_EXIT(db); 205 return (error); 206 } 207 208 int 209 dmu_set_bonustype(dmu_buf_t *db_fake, dmu_object_type_t type, dmu_tx_t *tx) 210 { 211 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 212 dnode_t *dn; 213 int error; 214 215 DB_DNODE_ENTER(db); 216 dn = DB_DNODE(db); 217 218 if (!DMU_OT_IS_VALID(type)) { 219 error = SET_ERROR(EINVAL); 220 } else if (dn->dn_bonus != db) { 221 error = SET_ERROR(EINVAL); 222 } else { 223 dnode_setbonus_type(dn, type, tx); 224 error = 0; 225 } 226 227 DB_DNODE_EXIT(db); 228 return (error); 229 } 230 231 dmu_object_type_t 232 dmu_get_bonustype(dmu_buf_t *db_fake) 233 { 234 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 235 dnode_t *dn; 236 dmu_object_type_t type; 237 238 DB_DNODE_ENTER(db); 239 dn = DB_DNODE(db); 240 type = dn->dn_bonustype; 241 DB_DNODE_EXIT(db); 242 243 return (type); 244 } 245 246 int 247 dmu_rm_spill(objset_t *os, uint64_t object, dmu_tx_t *tx) 248 { 249 dnode_t *dn; 250 int error; 251 252 error = dnode_hold(os, object, FTAG, &dn); 253 dbuf_rm_spill(dn, tx); 254 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 255 dnode_rm_spill(dn, tx); 256 rw_exit(&dn->dn_struct_rwlock); 257 dnode_rele(dn, FTAG); 258 return (error); 259 } 260 261 /* 262 * returns ENOENT, EIO, or 0. 263 */ 264 int 265 dmu_bonus_hold(objset_t *os, uint64_t object, void *tag, dmu_buf_t **dbp) 266 { 267 dnode_t *dn; 268 dmu_buf_impl_t *db; 269 int error; 270 271 error = dnode_hold(os, object, FTAG, &dn); 272 if (error) 273 return (error); 274 275 rw_enter(&dn->dn_struct_rwlock, RW_READER); 276 if (dn->dn_bonus == NULL) { 277 rw_exit(&dn->dn_struct_rwlock); 278 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 279 if (dn->dn_bonus == NULL) 280 dbuf_create_bonus(dn); 281 } 282 db = dn->dn_bonus; 283 284 /* as long as the bonus buf is held, the dnode will be held */ 285 if (refcount_add(&db->db_holds, tag) == 1) { 286 VERIFY(dnode_add_ref(dn, db)); 287 atomic_inc_32(&dn->dn_dbufs_count); 288 } 289 290 /* 291 * Wait to drop dn_struct_rwlock until after adding the bonus dbuf's 292 * hold and incrementing the dbuf count to ensure that dnode_move() sees 293 * a dnode hold for every dbuf. 294 */ 295 rw_exit(&dn->dn_struct_rwlock); 296 297 dnode_rele(dn, FTAG); 298 299 VERIFY(0 == dbuf_read(db, NULL, DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH)); 300 301 *dbp = &db->db; 302 return (0); 303 } 304 305 /* 306 * returns ENOENT, EIO, or 0. 307 * 308 * This interface will allocate a blank spill dbuf when a spill blk 309 * doesn't already exist on the dnode. 310 * 311 * if you only want to find an already existing spill db, then 312 * dmu_spill_hold_existing() should be used. 313 */ 314 int 315 dmu_spill_hold_by_dnode(dnode_t *dn, uint32_t flags, void *tag, dmu_buf_t **dbp) 316 { 317 dmu_buf_impl_t *db = NULL; 318 int err; 319 320 if ((flags & DB_RF_HAVESTRUCT) == 0) 321 rw_enter(&dn->dn_struct_rwlock, RW_READER); 322 323 db = dbuf_hold(dn, DMU_SPILL_BLKID, tag); 324 325 if ((flags & DB_RF_HAVESTRUCT) == 0) 326 rw_exit(&dn->dn_struct_rwlock); 327 328 ASSERT(db != NULL); 329 err = dbuf_read(db, NULL, flags); 330 if (err == 0) 331 *dbp = &db->db; 332 else 333 dbuf_rele(db, tag); 334 return (err); 335 } 336 337 int 338 dmu_spill_hold_existing(dmu_buf_t *bonus, void *tag, dmu_buf_t **dbp) 339 { 340 dmu_buf_impl_t *db = (dmu_buf_impl_t *)bonus; 341 dnode_t *dn; 342 int err; 343 344 DB_DNODE_ENTER(db); 345 dn = DB_DNODE(db); 346 347 if (spa_version(dn->dn_objset->os_spa) < SPA_VERSION_SA) { 348 err = SET_ERROR(EINVAL); 349 } else { 350 rw_enter(&dn->dn_struct_rwlock, RW_READER); 351 352 if (!dn->dn_have_spill) { 353 err = SET_ERROR(ENOENT); 354 } else { 355 err = dmu_spill_hold_by_dnode(dn, 356 DB_RF_HAVESTRUCT | DB_RF_CANFAIL, tag, dbp); 357 } 358 359 rw_exit(&dn->dn_struct_rwlock); 360 } 361 362 DB_DNODE_EXIT(db); 363 return (err); 364 } 365 366 int 367 dmu_spill_hold_by_bonus(dmu_buf_t *bonus, void *tag, dmu_buf_t **dbp) 368 { 369 dmu_buf_impl_t *db = (dmu_buf_impl_t *)bonus; 370 dnode_t *dn; 371 int err; 372 373 DB_DNODE_ENTER(db); 374 dn = DB_DNODE(db); 375 err = dmu_spill_hold_by_dnode(dn, DB_RF_CANFAIL, tag, dbp); 376 DB_DNODE_EXIT(db); 377 378 return (err); 379 } 380 381 /* 382 * Note: longer-term, we should modify all of the dmu_buf_*() interfaces 383 * to take a held dnode rather than <os, object> -- the lookup is wasteful, 384 * and can induce severe lock contention when writing to several files 385 * whose dnodes are in the same block. 386 */ 387 static int 388 dmu_buf_hold_array_by_dnode(dnode_t *dn, uint64_t offset, uint64_t length, 389 boolean_t read, void *tag, int *numbufsp, dmu_buf_t ***dbpp, uint32_t flags) 390 { 391 dmu_buf_t **dbp; 392 uint64_t blkid, nblks, i; 393 uint32_t dbuf_flags; 394 int err; 395 zio_t *zio; 396 397 ASSERT(length <= DMU_MAX_ACCESS); 398 399 /* 400 * Note: We directly notify the prefetch code of this read, so that 401 * we can tell it about the multi-block read. dbuf_read() only knows 402 * about the one block it is accessing. 403 */ 404 dbuf_flags = DB_RF_CANFAIL | DB_RF_NEVERWAIT | DB_RF_HAVESTRUCT | 405 DB_RF_NOPREFETCH; 406 407 rw_enter(&dn->dn_struct_rwlock, RW_READER); 408 if (dn->dn_datablkshift) { 409 int blkshift = dn->dn_datablkshift; 410 nblks = (P2ROUNDUP(offset + length, 1ULL << blkshift) - 411 P2ALIGN(offset, 1ULL << blkshift)) >> blkshift; 412 } else { 413 if (offset + length > dn->dn_datablksz) { 414 zfs_panic_recover("zfs: accessing past end of object " 415 "%llx/%llx (size=%u access=%llu+%llu)", 416 (longlong_t)dn->dn_objset-> 417 os_dsl_dataset->ds_object, 418 (longlong_t)dn->dn_object, dn->dn_datablksz, 419 (longlong_t)offset, (longlong_t)length); 420 rw_exit(&dn->dn_struct_rwlock); 421 return (SET_ERROR(EIO)); 422 } 423 nblks = 1; 424 } 425 dbp = kmem_zalloc(sizeof (dmu_buf_t *) * nblks, KM_SLEEP); 426 427 zio = zio_root(dn->dn_objset->os_spa, NULL, NULL, ZIO_FLAG_CANFAIL); 428 blkid = dbuf_whichblock(dn, 0, offset); 429 for (i = 0; i < nblks; i++) { 430 dmu_buf_impl_t *db = dbuf_hold(dn, blkid + i, tag); 431 if (db == NULL) { 432 rw_exit(&dn->dn_struct_rwlock); 433 dmu_buf_rele_array(dbp, nblks, tag); 434 zio_nowait(zio); 435 return (SET_ERROR(EIO)); 436 } 437 438 /* initiate async i/o */ 439 if (read) 440 (void) dbuf_read(db, zio, dbuf_flags); 441 dbp[i] = &db->db; 442 } 443 444 if ((flags & DMU_READ_NO_PREFETCH) == 0 && read && 445 length < zfetch_array_rd_sz) { 446 dmu_zfetch(&dn->dn_zfetch, blkid, nblks); 447 } 448 rw_exit(&dn->dn_struct_rwlock); 449 450 /* wait for async i/o */ 451 err = zio_wait(zio); 452 if (err) { 453 dmu_buf_rele_array(dbp, nblks, tag); 454 return (err); 455 } 456 457 /* wait for other io to complete */ 458 if (read) { 459 for (i = 0; i < nblks; i++) { 460 dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbp[i]; 461 mutex_enter(&db->db_mtx); 462 while (db->db_state == DB_READ || 463 db->db_state == DB_FILL) 464 cv_wait(&db->db_changed, &db->db_mtx); 465 if (db->db_state == DB_UNCACHED) 466 err = SET_ERROR(EIO); 467 mutex_exit(&db->db_mtx); 468 if (err) { 469 dmu_buf_rele_array(dbp, nblks, tag); 470 return (err); 471 } 472 } 473 } 474 475 *numbufsp = nblks; 476 *dbpp = dbp; 477 return (0); 478 } 479 480 static int 481 dmu_buf_hold_array(objset_t *os, uint64_t object, uint64_t offset, 482 uint64_t length, int read, void *tag, int *numbufsp, dmu_buf_t ***dbpp) 483 { 484 dnode_t *dn; 485 int err; 486 487 err = dnode_hold(os, object, FTAG, &dn); 488 if (err) 489 return (err); 490 491 err = dmu_buf_hold_array_by_dnode(dn, offset, length, read, tag, 492 numbufsp, dbpp, DMU_READ_PREFETCH); 493 494 dnode_rele(dn, FTAG); 495 496 return (err); 497 } 498 499 int 500 dmu_buf_hold_array_by_bonus(dmu_buf_t *db_fake, uint64_t offset, 501 uint64_t length, boolean_t read, void *tag, int *numbufsp, 502 dmu_buf_t ***dbpp) 503 { 504 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 505 dnode_t *dn; 506 int err; 507 508 DB_DNODE_ENTER(db); 509 dn = DB_DNODE(db); 510 err = dmu_buf_hold_array_by_dnode(dn, offset, length, read, tag, 511 numbufsp, dbpp, DMU_READ_PREFETCH); 512 DB_DNODE_EXIT(db); 513 514 return (err); 515 } 516 517 void 518 dmu_buf_rele_array(dmu_buf_t **dbp_fake, int numbufs, void *tag) 519 { 520 int i; 521 dmu_buf_impl_t **dbp = (dmu_buf_impl_t **)dbp_fake; 522 523 if (numbufs == 0) 524 return; 525 526 for (i = 0; i < numbufs; i++) { 527 if (dbp[i]) 528 dbuf_rele(dbp[i], tag); 529 } 530 531 kmem_free(dbp, sizeof (dmu_buf_t *) * numbufs); 532 } 533 534 /* 535 * Issue prefetch i/os for the given blocks. If level is greater than 0, the 536 * indirect blocks prefeteched will be those that point to the blocks containing 537 * the data starting at offset, and continuing to offset + len. 538 * 539 * Note that if the indirect blocks above the blocks being prefetched are not in 540 * cache, they will be asychronously read in. 541 */ 542 void 543 dmu_prefetch(objset_t *os, uint64_t object, int64_t level, uint64_t offset, 544 uint64_t len, zio_priority_t pri) 545 { 546 dnode_t *dn; 547 uint64_t blkid; 548 int nblks, err; 549 550 if (len == 0) { /* they're interested in the bonus buffer */ 551 dn = DMU_META_DNODE(os); 552 553 if (object == 0 || object >= DN_MAX_OBJECT) 554 return; 555 556 rw_enter(&dn->dn_struct_rwlock, RW_READER); 557 blkid = dbuf_whichblock(dn, level, 558 object * sizeof (dnode_phys_t)); 559 dbuf_prefetch(dn, level, blkid, pri, 0); 560 rw_exit(&dn->dn_struct_rwlock); 561 return; 562 } 563 564 /* 565 * XXX - Note, if the dnode for the requested object is not 566 * already cached, we will do a *synchronous* read in the 567 * dnode_hold() call. The same is true for any indirects. 568 */ 569 err = dnode_hold(os, object, FTAG, &dn); 570 if (err != 0) 571 return; 572 573 rw_enter(&dn->dn_struct_rwlock, RW_READER); 574 /* 575 * offset + len - 1 is the last byte we want to prefetch for, and offset 576 * is the first. Then dbuf_whichblk(dn, level, off + len - 1) is the 577 * last block we want to prefetch, and dbuf_whichblock(dn, level, 578 * offset) is the first. Then the number we need to prefetch is the 579 * last - first + 1. 580 */ 581 if (level > 0 || dn->dn_datablkshift != 0) { 582 nblks = dbuf_whichblock(dn, level, offset + len - 1) - 583 dbuf_whichblock(dn, level, offset) + 1; 584 } else { 585 nblks = (offset < dn->dn_datablksz); 586 } 587 588 if (nblks != 0) { 589 blkid = dbuf_whichblock(dn, level, offset); 590 for (int i = 0; i < nblks; i++) 591 dbuf_prefetch(dn, level, blkid + i, pri, 0); 592 } 593 594 rw_exit(&dn->dn_struct_rwlock); 595 596 dnode_rele(dn, FTAG); 597 } 598 599 /* 600 * Get the next "chunk" of file data to free. We traverse the file from 601 * the end so that the file gets shorter over time (if we crashes in the 602 * middle, this will leave us in a better state). We find allocated file 603 * data by simply searching the allocated level 1 indirects. 604 * 605 * On input, *start should be the first offset that does not need to be 606 * freed (e.g. "offset + length"). On return, *start will be the first 607 * offset that should be freed. 608 */ 609 static int 610 get_next_chunk(dnode_t *dn, uint64_t *start, uint64_t minimum) 611 { 612 uint64_t maxblks = DMU_MAX_ACCESS >> (dn->dn_indblkshift + 1); 613 /* bytes of data covered by a level-1 indirect block */ 614 uint64_t iblkrange = 615 dn->dn_datablksz * EPB(dn->dn_indblkshift, SPA_BLKPTRSHIFT); 616 617 ASSERT3U(minimum, <=, *start); 618 619 if (*start - minimum <= iblkrange * maxblks) { 620 *start = minimum; 621 return (0); 622 } 623 ASSERT(ISP2(iblkrange)); 624 625 for (uint64_t blks = 0; *start > minimum && blks < maxblks; blks++) { 626 int err; 627 628 /* 629 * dnode_next_offset(BACKWARDS) will find an allocated L1 630 * indirect block at or before the input offset. We must 631 * decrement *start so that it is at the end of the region 632 * to search. 633 */ 634 (*start)--; 635 err = dnode_next_offset(dn, 636 DNODE_FIND_BACKWARDS, start, 2, 1, 0); 637 638 /* if there are no indirect blocks before start, we are done */ 639 if (err == ESRCH) { 640 *start = minimum; 641 break; 642 } else if (err != 0) { 643 return (err); 644 } 645 646 /* set start to the beginning of this L1 indirect */ 647 *start = P2ALIGN(*start, iblkrange); 648 } 649 if (*start < minimum) 650 *start = minimum; 651 return (0); 652 } 653 654 static int 655 dmu_free_long_range_impl(objset_t *os, dnode_t *dn, uint64_t offset, 656 uint64_t length) 657 { 658 uint64_t object_size = (dn->dn_maxblkid + 1) * dn->dn_datablksz; 659 int err; 660 661 if (offset >= object_size) 662 return (0); 663 664 if (length == DMU_OBJECT_END || offset + length > object_size) 665 length = object_size - offset; 666 667 while (length != 0) { 668 uint64_t chunk_end, chunk_begin; 669 670 chunk_end = chunk_begin = offset + length; 671 672 /* move chunk_begin backwards to the beginning of this chunk */ 673 err = get_next_chunk(dn, &chunk_begin, offset); 674 if (err) 675 return (err); 676 ASSERT3U(chunk_begin, >=, offset); 677 ASSERT3U(chunk_begin, <=, chunk_end); 678 679 dmu_tx_t *tx = dmu_tx_create(os); 680 dmu_tx_hold_free(tx, dn->dn_object, 681 chunk_begin, chunk_end - chunk_begin); 682 683 /* 684 * Mark this transaction as typically resulting in a net 685 * reduction in space used. 686 */ 687 dmu_tx_mark_netfree(tx); 688 err = dmu_tx_assign(tx, TXG_WAIT); 689 if (err) { 690 dmu_tx_abort(tx); 691 return (err); 692 } 693 dnode_free_range(dn, chunk_begin, chunk_end - chunk_begin, tx); 694 dmu_tx_commit(tx); 695 696 length -= chunk_end - chunk_begin; 697 } 698 return (0); 699 } 700 701 int 702 dmu_free_long_range(objset_t *os, uint64_t object, 703 uint64_t offset, uint64_t length) 704 { 705 dnode_t *dn; 706 int err; 707 708 err = dnode_hold(os, object, FTAG, &dn); 709 if (err != 0) 710 return (err); 711 err = dmu_free_long_range_impl(os, dn, offset, length); 712 713 /* 714 * It is important to zero out the maxblkid when freeing the entire 715 * file, so that (a) subsequent calls to dmu_free_long_range_impl() 716 * will take the fast path, and (b) dnode_reallocate() can verify 717 * that the entire file has been freed. 718 */ 719 if (err == 0 && offset == 0 && length == DMU_OBJECT_END) 720 dn->dn_maxblkid = 0; 721 722 dnode_rele(dn, FTAG); 723 return (err); 724 } 725 726 int 727 dmu_free_long_object(objset_t *os, uint64_t object) 728 { 729 dmu_tx_t *tx; 730 int err; 731 732 err = dmu_free_long_range(os, object, 0, DMU_OBJECT_END); 733 if (err != 0) 734 return (err); 735 736 tx = dmu_tx_create(os); 737 dmu_tx_hold_bonus(tx, object); 738 dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END); 739 dmu_tx_mark_netfree(tx); 740 err = dmu_tx_assign(tx, TXG_WAIT); 741 if (err == 0) { 742 err = dmu_object_free(os, object, tx); 743 dmu_tx_commit(tx); 744 } else { 745 dmu_tx_abort(tx); 746 } 747 748 return (err); 749 } 750 751 int 752 dmu_free_range(objset_t *os, uint64_t object, uint64_t offset, 753 uint64_t size, dmu_tx_t *tx) 754 { 755 dnode_t *dn; 756 int err = dnode_hold(os, object, FTAG, &dn); 757 if (err) 758 return (err); 759 ASSERT(offset < UINT64_MAX); 760 ASSERT(size == -1ULL || size <= UINT64_MAX - offset); 761 dnode_free_range(dn, offset, size, tx); 762 dnode_rele(dn, FTAG); 763 return (0); 764 } 765 766 int 767 dmu_read(objset_t *os, uint64_t object, uint64_t offset, uint64_t size, 768 void *buf, uint32_t flags) 769 { 770 dnode_t *dn; 771 dmu_buf_t **dbp; 772 int numbufs, err; 773 774 err = dnode_hold(os, object, FTAG, &dn); 775 if (err) 776 return (err); 777 778 /* 779 * Deal with odd block sizes, where there can't be data past the first 780 * block. If we ever do the tail block optimization, we will need to 781 * handle that here as well. 782 */ 783 if (dn->dn_maxblkid == 0) { 784 int newsz = offset > dn->dn_datablksz ? 0 : 785 MIN(size, dn->dn_datablksz - offset); 786 bzero((char *)buf + newsz, size - newsz); 787 size = newsz; 788 } 789 790 while (size > 0) { 791 uint64_t mylen = MIN(size, DMU_MAX_ACCESS / 2); 792 int i; 793 794 /* 795 * NB: we could do this block-at-a-time, but it's nice 796 * to be reading in parallel. 797 */ 798 err = dmu_buf_hold_array_by_dnode(dn, offset, mylen, 799 TRUE, FTAG, &numbufs, &dbp, flags); 800 if (err) 801 break; 802 803 for (i = 0; i < numbufs; i++) { 804 int tocpy; 805 int bufoff; 806 dmu_buf_t *db = dbp[i]; 807 808 ASSERT(size > 0); 809 810 bufoff = offset - db->db_offset; 811 tocpy = (int)MIN(db->db_size - bufoff, size); 812 813 bcopy((char *)db->db_data + bufoff, buf, tocpy); 814 815 offset += tocpy; 816 size -= tocpy; 817 buf = (char *)buf + tocpy; 818 } 819 dmu_buf_rele_array(dbp, numbufs, FTAG); 820 } 821 dnode_rele(dn, FTAG); 822 return (err); 823 } 824 825 void 826 dmu_write(objset_t *os, uint64_t object, uint64_t offset, uint64_t size, 827 const void *buf, dmu_tx_t *tx) 828 { 829 dmu_buf_t **dbp; 830 int numbufs, i; 831 832 if (size == 0) 833 return; 834 835 VERIFY(0 == dmu_buf_hold_array(os, object, offset, size, 836 FALSE, FTAG, &numbufs, &dbp)); 837 838 for (i = 0; i < numbufs; i++) { 839 int tocpy; 840 int bufoff; 841 dmu_buf_t *db = dbp[i]; 842 843 ASSERT(size > 0); 844 845 bufoff = offset - db->db_offset; 846 tocpy = (int)MIN(db->db_size - bufoff, size); 847 848 ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size); 849 850 if (tocpy == db->db_size) 851 dmu_buf_will_fill(db, tx); 852 else 853 dmu_buf_will_dirty(db, tx); 854 855 bcopy(buf, (char *)db->db_data + bufoff, tocpy); 856 857 if (tocpy == db->db_size) 858 dmu_buf_fill_done(db, tx); 859 860 offset += tocpy; 861 size -= tocpy; 862 buf = (char *)buf + tocpy; 863 } 864 dmu_buf_rele_array(dbp, numbufs, FTAG); 865 } 866 867 void 868 dmu_prealloc(objset_t *os, uint64_t object, uint64_t offset, uint64_t size, 869 dmu_tx_t *tx) 870 { 871 dmu_buf_t **dbp; 872 int numbufs, i; 873 874 if (size == 0) 875 return; 876 877 VERIFY(0 == dmu_buf_hold_array(os, object, offset, size, 878 FALSE, FTAG, &numbufs, &dbp)); 879 880 for (i = 0; i < numbufs; i++) { 881 dmu_buf_t *db = dbp[i]; 882 883 dmu_buf_will_not_fill(db, tx); 884 } 885 dmu_buf_rele_array(dbp, numbufs, FTAG); 886 } 887 888 void 889 dmu_write_embedded(objset_t *os, uint64_t object, uint64_t offset, 890 void *data, uint8_t etype, uint8_t comp, int uncompressed_size, 891 int compressed_size, int byteorder, dmu_tx_t *tx) 892 { 893 dmu_buf_t *db; 894 895 ASSERT3U(etype, <, NUM_BP_EMBEDDED_TYPES); 896 ASSERT3U(comp, <, ZIO_COMPRESS_FUNCTIONS); 897 VERIFY0(dmu_buf_hold_noread(os, object, offset, 898 FTAG, &db)); 899 900 dmu_buf_write_embedded(db, 901 data, (bp_embedded_type_t)etype, (enum zio_compress)comp, 902 uncompressed_size, compressed_size, byteorder, tx); 903 904 dmu_buf_rele(db, FTAG); 905 } 906 907 /* 908 * DMU support for xuio 909 */ 910 kstat_t *xuio_ksp = NULL; 911 912 int 913 dmu_xuio_init(xuio_t *xuio, int nblk) 914 { 915 dmu_xuio_t *priv; 916 uio_t *uio = &xuio->xu_uio; 917 918 uio->uio_iovcnt = nblk; 919 uio->uio_iov = kmem_zalloc(nblk * sizeof (iovec_t), KM_SLEEP); 920 921 priv = kmem_zalloc(sizeof (dmu_xuio_t), KM_SLEEP); 922 priv->cnt = nblk; 923 priv->bufs = kmem_zalloc(nblk * sizeof (arc_buf_t *), KM_SLEEP); 924 priv->iovp = uio->uio_iov; 925 XUIO_XUZC_PRIV(xuio) = priv; 926 927 if (XUIO_XUZC_RW(xuio) == UIO_READ) 928 XUIOSTAT_INCR(xuiostat_onloan_rbuf, nblk); 929 else 930 XUIOSTAT_INCR(xuiostat_onloan_wbuf, nblk); 931 932 return (0); 933 } 934 935 void 936 dmu_xuio_fini(xuio_t *xuio) 937 { 938 dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio); 939 int nblk = priv->cnt; 940 941 kmem_free(priv->iovp, nblk * sizeof (iovec_t)); 942 kmem_free(priv->bufs, nblk * sizeof (arc_buf_t *)); 943 kmem_free(priv, sizeof (dmu_xuio_t)); 944 945 if (XUIO_XUZC_RW(xuio) == UIO_READ) 946 XUIOSTAT_INCR(xuiostat_onloan_rbuf, -nblk); 947 else 948 XUIOSTAT_INCR(xuiostat_onloan_wbuf, -nblk); 949 } 950 951 /* 952 * Initialize iov[priv->next] and priv->bufs[priv->next] with { off, n, abuf } 953 * and increase priv->next by 1. 954 */ 955 int 956 dmu_xuio_add(xuio_t *xuio, arc_buf_t *abuf, offset_t off, size_t n) 957 { 958 struct iovec *iov; 959 uio_t *uio = &xuio->xu_uio; 960 dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio); 961 int i = priv->next++; 962 963 ASSERT(i < priv->cnt); 964 ASSERT(off + n <= arc_buf_size(abuf)); 965 iov = uio->uio_iov + i; 966 iov->iov_base = (char *)abuf->b_data + off; 967 iov->iov_len = n; 968 priv->bufs[i] = abuf; 969 return (0); 970 } 971 972 int 973 dmu_xuio_cnt(xuio_t *xuio) 974 { 975 dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio); 976 return (priv->cnt); 977 } 978 979 arc_buf_t * 980 dmu_xuio_arcbuf(xuio_t *xuio, int i) 981 { 982 dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio); 983 984 ASSERT(i < priv->cnt); 985 return (priv->bufs[i]); 986 } 987 988 void 989 dmu_xuio_clear(xuio_t *xuio, int i) 990 { 991 dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio); 992 993 ASSERT(i < priv->cnt); 994 priv->bufs[i] = NULL; 995 } 996 997 static void 998 xuio_stat_init(void) 999 { 1000 xuio_ksp = kstat_create("zfs", 0, "xuio_stats", "misc", 1001 KSTAT_TYPE_NAMED, sizeof (xuio_stats) / sizeof (kstat_named_t), 1002 KSTAT_FLAG_VIRTUAL); 1003 if (xuio_ksp != NULL) { 1004 xuio_ksp->ks_data = &xuio_stats; 1005 kstat_install(xuio_ksp); 1006 } 1007 } 1008 1009 static void 1010 xuio_stat_fini(void) 1011 { 1012 if (xuio_ksp != NULL) { 1013 kstat_delete(xuio_ksp); 1014 xuio_ksp = NULL; 1015 } 1016 } 1017 1018 void 1019 xuio_stat_wbuf_copied() 1020 { 1021 XUIOSTAT_BUMP(xuiostat_wbuf_copied); 1022 } 1023 1024 void 1025 xuio_stat_wbuf_nocopy() 1026 { 1027 XUIOSTAT_BUMP(xuiostat_wbuf_nocopy); 1028 } 1029 1030 #ifdef _KERNEL 1031 static int 1032 dmu_read_uio_dnode(dnode_t *dn, uio_t *uio, uint64_t size) 1033 { 1034 dmu_buf_t **dbp; 1035 int numbufs, i, err; 1036 xuio_t *xuio = NULL; 1037 1038 /* 1039 * NB: we could do this block-at-a-time, but it's nice 1040 * to be reading in parallel. 1041 */ 1042 err = dmu_buf_hold_array_by_dnode(dn, uio->uio_loffset, size, 1043 TRUE, FTAG, &numbufs, &dbp, 0); 1044 if (err) 1045 return (err); 1046 1047 if (uio->uio_extflg == UIO_XUIO) 1048 xuio = (xuio_t *)uio; 1049 1050 for (i = 0; i < numbufs; i++) { 1051 int tocpy; 1052 int bufoff; 1053 dmu_buf_t *db = dbp[i]; 1054 1055 ASSERT(size > 0); 1056 1057 bufoff = uio->uio_loffset - db->db_offset; 1058 tocpy = (int)MIN(db->db_size - bufoff, size); 1059 1060 if (xuio) { 1061 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db; 1062 arc_buf_t *dbuf_abuf = dbi->db_buf; 1063 arc_buf_t *abuf = dbuf_loan_arcbuf(dbi); 1064 err = dmu_xuio_add(xuio, abuf, bufoff, tocpy); 1065 if (!err) { 1066 uio->uio_resid -= tocpy; 1067 uio->uio_loffset += tocpy; 1068 } 1069 1070 if (abuf == dbuf_abuf) 1071 XUIOSTAT_BUMP(xuiostat_rbuf_nocopy); 1072 else 1073 XUIOSTAT_BUMP(xuiostat_rbuf_copied); 1074 } else { 1075 err = uiomove((char *)db->db_data + bufoff, tocpy, 1076 UIO_READ, uio); 1077 } 1078 if (err) 1079 break; 1080 1081 size -= tocpy; 1082 } 1083 dmu_buf_rele_array(dbp, numbufs, FTAG); 1084 1085 return (err); 1086 } 1087 1088 /* 1089 * Read 'size' bytes into the uio buffer. 1090 * From object zdb->db_object. 1091 * Starting at offset uio->uio_loffset. 1092 * 1093 * If the caller already has a dbuf in the target object 1094 * (e.g. its bonus buffer), this routine is faster than dmu_read_uio(), 1095 * because we don't have to find the dnode_t for the object. 1096 */ 1097 int 1098 dmu_read_uio_dbuf(dmu_buf_t *zdb, uio_t *uio, uint64_t size) 1099 { 1100 dmu_buf_impl_t *db = (dmu_buf_impl_t *)zdb; 1101 dnode_t *dn; 1102 int err; 1103 1104 if (size == 0) 1105 return (0); 1106 1107 DB_DNODE_ENTER(db); 1108 dn = DB_DNODE(db); 1109 err = dmu_read_uio_dnode(dn, uio, size); 1110 DB_DNODE_EXIT(db); 1111 1112 return (err); 1113 } 1114 1115 /* 1116 * Read 'size' bytes into the uio buffer. 1117 * From the specified object 1118 * Starting at offset uio->uio_loffset. 1119 */ 1120 int 1121 dmu_read_uio(objset_t *os, uint64_t object, uio_t *uio, uint64_t size) 1122 { 1123 dnode_t *dn; 1124 int err; 1125 1126 if (size == 0) 1127 return (0); 1128 1129 err = dnode_hold(os, object, FTAG, &dn); 1130 if (err) 1131 return (err); 1132 1133 err = dmu_read_uio_dnode(dn, uio, size); 1134 1135 dnode_rele(dn, FTAG); 1136 1137 return (err); 1138 } 1139 1140 static int 1141 dmu_write_uio_dnode(dnode_t *dn, uio_t *uio, uint64_t size, dmu_tx_t *tx) 1142 { 1143 dmu_buf_t **dbp; 1144 int numbufs; 1145 int err = 0; 1146 int i; 1147 1148 err = dmu_buf_hold_array_by_dnode(dn, uio->uio_loffset, size, 1149 FALSE, FTAG, &numbufs, &dbp, DMU_READ_PREFETCH); 1150 if (err) 1151 return (err); 1152 1153 for (i = 0; i < numbufs; i++) { 1154 int tocpy; 1155 int bufoff; 1156 dmu_buf_t *db = dbp[i]; 1157 1158 ASSERT(size > 0); 1159 1160 bufoff = uio->uio_loffset - db->db_offset; 1161 tocpy = (int)MIN(db->db_size - bufoff, size); 1162 1163 ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size); 1164 1165 if (tocpy == db->db_size) 1166 dmu_buf_will_fill(db, tx); 1167 else 1168 dmu_buf_will_dirty(db, tx); 1169 1170 /* 1171 * XXX uiomove could block forever (eg. nfs-backed 1172 * pages). There needs to be a uiolockdown() function 1173 * to lock the pages in memory, so that uiomove won't 1174 * block. 1175 */ 1176 err = uiomove((char *)db->db_data + bufoff, tocpy, 1177 UIO_WRITE, uio); 1178 1179 if (tocpy == db->db_size) 1180 dmu_buf_fill_done(db, tx); 1181 1182 if (err) 1183 break; 1184 1185 size -= tocpy; 1186 } 1187 1188 dmu_buf_rele_array(dbp, numbufs, FTAG); 1189 return (err); 1190 } 1191 1192 /* 1193 * Write 'size' bytes from the uio buffer. 1194 * To object zdb->db_object. 1195 * Starting at offset uio->uio_loffset. 1196 * 1197 * If the caller already has a dbuf in the target object 1198 * (e.g. its bonus buffer), this routine is faster than dmu_write_uio(), 1199 * because we don't have to find the dnode_t for the object. 1200 */ 1201 int 1202 dmu_write_uio_dbuf(dmu_buf_t *zdb, uio_t *uio, uint64_t size, 1203 dmu_tx_t *tx) 1204 { 1205 dmu_buf_impl_t *db = (dmu_buf_impl_t *)zdb; 1206 dnode_t *dn; 1207 int err; 1208 1209 if (size == 0) 1210 return (0); 1211 1212 DB_DNODE_ENTER(db); 1213 dn = DB_DNODE(db); 1214 err = dmu_write_uio_dnode(dn, uio, size, tx); 1215 DB_DNODE_EXIT(db); 1216 1217 return (err); 1218 } 1219 1220 /* 1221 * Write 'size' bytes from the uio buffer. 1222 * To the specified object. 1223 * Starting at offset uio->uio_loffset. 1224 */ 1225 int 1226 dmu_write_uio(objset_t *os, uint64_t object, uio_t *uio, uint64_t size, 1227 dmu_tx_t *tx) 1228 { 1229 dnode_t *dn; 1230 int err; 1231 1232 if (size == 0) 1233 return (0); 1234 1235 err = dnode_hold(os, object, FTAG, &dn); 1236 if (err) 1237 return (err); 1238 1239 err = dmu_write_uio_dnode(dn, uio, size, tx); 1240 1241 dnode_rele(dn, FTAG); 1242 1243 return (err); 1244 } 1245 1246 int 1247 dmu_write_pages(objset_t *os, uint64_t object, uint64_t offset, uint64_t size, 1248 page_t *pp, dmu_tx_t *tx) 1249 { 1250 dmu_buf_t **dbp; 1251 int numbufs, i; 1252 int err; 1253 1254 if (size == 0) 1255 return (0); 1256 1257 err = dmu_buf_hold_array(os, object, offset, size, 1258 FALSE, FTAG, &numbufs, &dbp); 1259 if (err) 1260 return (err); 1261 1262 for (i = 0; i < numbufs; i++) { 1263 int tocpy, copied, thiscpy; 1264 int bufoff; 1265 dmu_buf_t *db = dbp[i]; 1266 caddr_t va; 1267 1268 ASSERT(size > 0); 1269 ASSERT3U(db->db_size, >=, PAGESIZE); 1270 1271 bufoff = offset - db->db_offset; 1272 tocpy = (int)MIN(db->db_size - bufoff, size); 1273 1274 ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size); 1275 1276 if (tocpy == db->db_size) 1277 dmu_buf_will_fill(db, tx); 1278 else 1279 dmu_buf_will_dirty(db, tx); 1280 1281 for (copied = 0; copied < tocpy; copied += PAGESIZE) { 1282 ASSERT3U(pp->p_offset, ==, db->db_offset + bufoff); 1283 thiscpy = MIN(PAGESIZE, tocpy - copied); 1284 va = zfs_map_page(pp, S_READ); 1285 bcopy(va, (char *)db->db_data + bufoff, thiscpy); 1286 zfs_unmap_page(pp, va); 1287 pp = pp->p_next; 1288 bufoff += PAGESIZE; 1289 } 1290 1291 if (tocpy == db->db_size) 1292 dmu_buf_fill_done(db, tx); 1293 1294 offset += tocpy; 1295 size -= tocpy; 1296 } 1297 dmu_buf_rele_array(dbp, numbufs, FTAG); 1298 return (err); 1299 } 1300 #endif 1301 1302 /* 1303 * Allocate a loaned anonymous arc buffer. 1304 */ 1305 arc_buf_t * 1306 dmu_request_arcbuf(dmu_buf_t *handle, int size) 1307 { 1308 dmu_buf_impl_t *db = (dmu_buf_impl_t *)handle; 1309 1310 return (arc_loan_buf(db->db_objset->os_spa, size)); 1311 } 1312 1313 /* 1314 * Free a loaned arc buffer. 1315 */ 1316 void 1317 dmu_return_arcbuf(arc_buf_t *buf) 1318 { 1319 arc_return_buf(buf, FTAG); 1320 VERIFY(arc_buf_remove_ref(buf, FTAG)); 1321 } 1322 1323 /* 1324 * When possible directly assign passed loaned arc buffer to a dbuf. 1325 * If this is not possible copy the contents of passed arc buf via 1326 * dmu_write(). 1327 */ 1328 void 1329 dmu_assign_arcbuf(dmu_buf_t *handle, uint64_t offset, arc_buf_t *buf, 1330 dmu_tx_t *tx) 1331 { 1332 dmu_buf_impl_t *dbuf = (dmu_buf_impl_t *)handle; 1333 dnode_t *dn; 1334 dmu_buf_impl_t *db; 1335 uint32_t blksz = (uint32_t)arc_buf_size(buf); 1336 uint64_t blkid; 1337 1338 DB_DNODE_ENTER(dbuf); 1339 dn = DB_DNODE(dbuf); 1340 rw_enter(&dn->dn_struct_rwlock, RW_READER); 1341 blkid = dbuf_whichblock(dn, 0, offset); 1342 VERIFY((db = dbuf_hold(dn, blkid, FTAG)) != NULL); 1343 rw_exit(&dn->dn_struct_rwlock); 1344 DB_DNODE_EXIT(dbuf); 1345 1346 /* 1347 * We can only assign if the offset is aligned, the arc buf is the 1348 * same size as the dbuf, and the dbuf is not metadata. It 1349 * can't be metadata because the loaned arc buf comes from the 1350 * user-data kmem arena. 1351 */ 1352 if (offset == db->db.db_offset && blksz == db->db.db_size && 1353 DBUF_GET_BUFC_TYPE(db) == ARC_BUFC_DATA) { 1354 dbuf_assign_arcbuf(db, buf, tx); 1355 dbuf_rele(db, FTAG); 1356 } else { 1357 objset_t *os; 1358 uint64_t object; 1359 1360 DB_DNODE_ENTER(dbuf); 1361 dn = DB_DNODE(dbuf); 1362 os = dn->dn_objset; 1363 object = dn->dn_object; 1364 DB_DNODE_EXIT(dbuf); 1365 1366 dbuf_rele(db, FTAG); 1367 dmu_write(os, object, offset, blksz, buf->b_data, tx); 1368 dmu_return_arcbuf(buf); 1369 XUIOSTAT_BUMP(xuiostat_wbuf_copied); 1370 } 1371 } 1372 1373 typedef struct { 1374 dbuf_dirty_record_t *dsa_dr; 1375 dmu_sync_cb_t *dsa_done; 1376 zgd_t *dsa_zgd; 1377 dmu_tx_t *dsa_tx; 1378 } dmu_sync_arg_t; 1379 1380 /* ARGSUSED */ 1381 static void 1382 dmu_sync_ready(zio_t *zio, arc_buf_t *buf, void *varg) 1383 { 1384 dmu_sync_arg_t *dsa = varg; 1385 dmu_buf_t *db = dsa->dsa_zgd->zgd_db; 1386 blkptr_t *bp = zio->io_bp; 1387 1388 if (zio->io_error == 0) { 1389 if (BP_IS_HOLE(bp)) { 1390 /* 1391 * A block of zeros may compress to a hole, but the 1392 * block size still needs to be known for replay. 1393 */ 1394 BP_SET_LSIZE(bp, db->db_size); 1395 } else if (!BP_IS_EMBEDDED(bp)) { 1396 ASSERT(BP_GET_LEVEL(bp) == 0); 1397 bp->blk_fill = 1; 1398 } 1399 } 1400 } 1401 1402 static void 1403 dmu_sync_late_arrival_ready(zio_t *zio) 1404 { 1405 dmu_sync_ready(zio, NULL, zio->io_private); 1406 } 1407 1408 /* ARGSUSED */ 1409 static void 1410 dmu_sync_done(zio_t *zio, arc_buf_t *buf, void *varg) 1411 { 1412 dmu_sync_arg_t *dsa = varg; 1413 dbuf_dirty_record_t *dr = dsa->dsa_dr; 1414 dmu_buf_impl_t *db = dr->dr_dbuf; 1415 1416 mutex_enter(&db->db_mtx); 1417 ASSERT(dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC); 1418 if (zio->io_error == 0) { 1419 dr->dt.dl.dr_nopwrite = !!(zio->io_flags & ZIO_FLAG_NOPWRITE); 1420 if (dr->dt.dl.dr_nopwrite) { 1421 blkptr_t *bp = zio->io_bp; 1422 blkptr_t *bp_orig = &zio->io_bp_orig; 1423 uint8_t chksum = BP_GET_CHECKSUM(bp_orig); 1424 1425 ASSERT(BP_EQUAL(bp, bp_orig)); 1426 ASSERT(zio->io_prop.zp_compress != ZIO_COMPRESS_OFF); 1427 ASSERT(zio_checksum_table[chksum].ci_dedup); 1428 } 1429 dr->dt.dl.dr_overridden_by = *zio->io_bp; 1430 dr->dt.dl.dr_override_state = DR_OVERRIDDEN; 1431 dr->dt.dl.dr_copies = zio->io_prop.zp_copies; 1432 1433 /* 1434 * Old style holes are filled with all zeros, whereas 1435 * new-style holes maintain their lsize, type, level, 1436 * and birth time (see zio_write_compress). While we 1437 * need to reset the BP_SET_LSIZE() call that happened 1438 * in dmu_sync_ready for old style holes, we do *not* 1439 * want to wipe out the information contained in new 1440 * style holes. Thus, only zero out the block pointer if 1441 * it's an old style hole. 1442 */ 1443 if (BP_IS_HOLE(&dr->dt.dl.dr_overridden_by) && 1444 dr->dt.dl.dr_overridden_by.blk_birth == 0) 1445 BP_ZERO(&dr->dt.dl.dr_overridden_by); 1446 } else { 1447 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN; 1448 } 1449 cv_broadcast(&db->db_changed); 1450 mutex_exit(&db->db_mtx); 1451 1452 dsa->dsa_done(dsa->dsa_zgd, zio->io_error); 1453 1454 kmem_free(dsa, sizeof (*dsa)); 1455 } 1456 1457 static void 1458 dmu_sync_late_arrival_done(zio_t *zio) 1459 { 1460 blkptr_t *bp = zio->io_bp; 1461 dmu_sync_arg_t *dsa = zio->io_private; 1462 blkptr_t *bp_orig = &zio->io_bp_orig; 1463 1464 if (zio->io_error == 0 && !BP_IS_HOLE(bp)) { 1465 /* 1466 * If we didn't allocate a new block (i.e. ZIO_FLAG_NOPWRITE) 1467 * then there is nothing to do here. Otherwise, free the 1468 * newly allocated block in this txg. 1469 */ 1470 if (zio->io_flags & ZIO_FLAG_NOPWRITE) { 1471 ASSERT(BP_EQUAL(bp, bp_orig)); 1472 } else { 1473 ASSERT(BP_IS_HOLE(bp_orig) || !BP_EQUAL(bp, bp_orig)); 1474 ASSERT(zio->io_bp->blk_birth == zio->io_txg); 1475 ASSERT(zio->io_txg > spa_syncing_txg(zio->io_spa)); 1476 zio_free(zio->io_spa, zio->io_txg, zio->io_bp); 1477 } 1478 } 1479 1480 dmu_tx_commit(dsa->dsa_tx); 1481 1482 dsa->dsa_done(dsa->dsa_zgd, zio->io_error); 1483 1484 kmem_free(dsa, sizeof (*dsa)); 1485 } 1486 1487 static int 1488 dmu_sync_late_arrival(zio_t *pio, objset_t *os, dmu_sync_cb_t *done, zgd_t *zgd, 1489 zio_prop_t *zp, zbookmark_phys_t *zb) 1490 { 1491 dmu_sync_arg_t *dsa; 1492 dmu_tx_t *tx; 1493 1494 tx = dmu_tx_create(os); 1495 dmu_tx_hold_space(tx, zgd->zgd_db->db_size); 1496 if (dmu_tx_assign(tx, TXG_WAIT) != 0) { 1497 dmu_tx_abort(tx); 1498 /* Make zl_get_data do txg_waited_synced() */ 1499 return (SET_ERROR(EIO)); 1500 } 1501 1502 dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_SLEEP); 1503 dsa->dsa_dr = NULL; 1504 dsa->dsa_done = done; 1505 dsa->dsa_zgd = zgd; 1506 dsa->dsa_tx = tx; 1507 1508 zio_nowait(zio_write(pio, os->os_spa, dmu_tx_get_txg(tx), zgd->zgd_bp, 1509 zgd->zgd_db->db_data, zgd->zgd_db->db_size, zp, 1510 dmu_sync_late_arrival_ready, NULL, dmu_sync_late_arrival_done, dsa, 1511 ZIO_PRIORITY_SYNC_WRITE, ZIO_FLAG_CANFAIL, zb)); 1512 1513 return (0); 1514 } 1515 1516 /* 1517 * Intent log support: sync the block associated with db to disk. 1518 * N.B. and XXX: the caller is responsible for making sure that the 1519 * data isn't changing while dmu_sync() is writing it. 1520 * 1521 * Return values: 1522 * 1523 * EEXIST: this txg has already been synced, so there's nothing to do. 1524 * The caller should not log the write. 1525 * 1526 * ENOENT: the block was dbuf_free_range()'d, so there's nothing to do. 1527 * The caller should not log the write. 1528 * 1529 * EALREADY: this block is already in the process of being synced. 1530 * The caller should track its progress (somehow). 1531 * 1532 * EIO: could not do the I/O. 1533 * The caller should do a txg_wait_synced(). 1534 * 1535 * 0: the I/O has been initiated. 1536 * The caller should log this blkptr in the done callback. 1537 * It is possible that the I/O will fail, in which case 1538 * the error will be reported to the done callback and 1539 * propagated to pio from zio_done(). 1540 */ 1541 int 1542 dmu_sync(zio_t *pio, uint64_t txg, dmu_sync_cb_t *done, zgd_t *zgd) 1543 { 1544 blkptr_t *bp = zgd->zgd_bp; 1545 dmu_buf_impl_t *db = (dmu_buf_impl_t *)zgd->zgd_db; 1546 objset_t *os = db->db_objset; 1547 dsl_dataset_t *ds = os->os_dsl_dataset; 1548 dbuf_dirty_record_t *dr; 1549 dmu_sync_arg_t *dsa; 1550 zbookmark_phys_t zb; 1551 zio_prop_t zp; 1552 dnode_t *dn; 1553 1554 ASSERT(pio != NULL); 1555 ASSERT(txg != 0); 1556 1557 SET_BOOKMARK(&zb, ds->ds_object, 1558 db->db.db_object, db->db_level, db->db_blkid); 1559 1560 DB_DNODE_ENTER(db); 1561 dn = DB_DNODE(db); 1562 dmu_write_policy(os, dn, db->db_level, WP_DMU_SYNC, &zp); 1563 DB_DNODE_EXIT(db); 1564 1565 /* 1566 * If we're frozen (running ziltest), we always need to generate a bp. 1567 */ 1568 if (txg > spa_freeze_txg(os->os_spa)) 1569 return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb)); 1570 1571 /* 1572 * Grabbing db_mtx now provides a barrier between dbuf_sync_leaf() 1573 * and us. If we determine that this txg is not yet syncing, 1574 * but it begins to sync a moment later, that's OK because the 1575 * sync thread will block in dbuf_sync_leaf() until we drop db_mtx. 1576 */ 1577 mutex_enter(&db->db_mtx); 1578 1579 if (txg <= spa_last_synced_txg(os->os_spa)) { 1580 /* 1581 * This txg has already synced. There's nothing to do. 1582 */ 1583 mutex_exit(&db->db_mtx); 1584 return (SET_ERROR(EEXIST)); 1585 } 1586 1587 if (txg <= spa_syncing_txg(os->os_spa)) { 1588 /* 1589 * This txg is currently syncing, so we can't mess with 1590 * the dirty record anymore; just write a new log block. 1591 */ 1592 mutex_exit(&db->db_mtx); 1593 return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb)); 1594 } 1595 1596 dr = db->db_last_dirty; 1597 while (dr && dr->dr_txg != txg) 1598 dr = dr->dr_next; 1599 1600 if (dr == NULL) { 1601 /* 1602 * There's no dr for this dbuf, so it must have been freed. 1603 * There's no need to log writes to freed blocks, so we're done. 1604 */ 1605 mutex_exit(&db->db_mtx); 1606 return (SET_ERROR(ENOENT)); 1607 } 1608 1609 ASSERT(dr->dr_next == NULL || dr->dr_next->dr_txg < txg); 1610 1611 /* 1612 * Assume the on-disk data is X, the current syncing data (in 1613 * txg - 1) is Y, and the current in-memory data is Z (currently 1614 * in dmu_sync). 1615 * 1616 * We usually want to perform a nopwrite if X and Z are the 1617 * same. However, if Y is different (i.e. the BP is going to 1618 * change before this write takes effect), then a nopwrite will 1619 * be incorrect - we would override with X, which could have 1620 * been freed when Y was written. 1621 * 1622 * (Note that this is not a concern when we are nop-writing from 1623 * syncing context, because X and Y must be identical, because 1624 * all previous txgs have been synced.) 1625 * 1626 * Therefore, we disable nopwrite if the current BP could change 1627 * before this TXG. There are two ways it could change: by 1628 * being dirty (dr_next is non-NULL), or by being freed 1629 * (dnode_block_freed()). This behavior is verified by 1630 * zio_done(), which VERIFYs that the override BP is identical 1631 * to the on-disk BP. 1632 */ 1633 DB_DNODE_ENTER(db); 1634 dn = DB_DNODE(db); 1635 if (dr->dr_next != NULL || dnode_block_freed(dn, db->db_blkid)) 1636 zp.zp_nopwrite = B_FALSE; 1637 DB_DNODE_EXIT(db); 1638 1639 ASSERT(dr->dr_txg == txg); 1640 if (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC || 1641 dr->dt.dl.dr_override_state == DR_OVERRIDDEN) { 1642 /* 1643 * We have already issued a sync write for this buffer, 1644 * or this buffer has already been synced. It could not 1645 * have been dirtied since, or we would have cleared the state. 1646 */ 1647 mutex_exit(&db->db_mtx); 1648 return (SET_ERROR(EALREADY)); 1649 } 1650 1651 ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN); 1652 dr->dt.dl.dr_override_state = DR_IN_DMU_SYNC; 1653 mutex_exit(&db->db_mtx); 1654 1655 dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_SLEEP); 1656 dsa->dsa_dr = dr; 1657 dsa->dsa_done = done; 1658 dsa->dsa_zgd = zgd; 1659 dsa->dsa_tx = NULL; 1660 1661 zio_nowait(arc_write(pio, os->os_spa, txg, 1662 bp, dr->dt.dl.dr_data, DBUF_IS_L2CACHEABLE(db), 1663 DBUF_IS_L2COMPRESSIBLE(db), &zp, dmu_sync_ready, 1664 NULL, dmu_sync_done, dsa, ZIO_PRIORITY_SYNC_WRITE, 1665 ZIO_FLAG_CANFAIL, &zb)); 1666 1667 return (0); 1668 } 1669 1670 int 1671 dmu_object_set_blocksize(objset_t *os, uint64_t object, uint64_t size, int ibs, 1672 dmu_tx_t *tx) 1673 { 1674 dnode_t *dn; 1675 int err; 1676 1677 err = dnode_hold(os, object, FTAG, &dn); 1678 if (err) 1679 return (err); 1680 err = dnode_set_blksz(dn, size, ibs, tx); 1681 dnode_rele(dn, FTAG); 1682 return (err); 1683 } 1684 1685 void 1686 dmu_object_set_checksum(objset_t *os, uint64_t object, uint8_t checksum, 1687 dmu_tx_t *tx) 1688 { 1689 dnode_t *dn; 1690 1691 /* 1692 * Send streams include each object's checksum function. This 1693 * check ensures that the receiving system can understand the 1694 * checksum function transmitted. 1695 */ 1696 ASSERT3U(checksum, <, ZIO_CHECKSUM_LEGACY_FUNCTIONS); 1697 1698 VERIFY0(dnode_hold(os, object, FTAG, &dn)); 1699 ASSERT3U(checksum, <, ZIO_CHECKSUM_FUNCTIONS); 1700 dn->dn_checksum = checksum; 1701 dnode_setdirty(dn, tx); 1702 dnode_rele(dn, FTAG); 1703 } 1704 1705 void 1706 dmu_object_set_compress(objset_t *os, uint64_t object, uint8_t compress, 1707 dmu_tx_t *tx) 1708 { 1709 dnode_t *dn; 1710 1711 /* 1712 * Send streams include each object's compression function. This 1713 * check ensures that the receiving system can understand the 1714 * compression function transmitted. 1715 */ 1716 ASSERT3U(compress, <, ZIO_COMPRESS_LEGACY_FUNCTIONS); 1717 1718 VERIFY0(dnode_hold(os, object, FTAG, &dn)); 1719 dn->dn_compress = compress; 1720 dnode_setdirty(dn, tx); 1721 dnode_rele(dn, FTAG); 1722 } 1723 1724 int zfs_mdcomp_disable = 0; 1725 1726 /* 1727 * When the "redundant_metadata" property is set to "most", only indirect 1728 * blocks of this level and higher will have an additional ditto block. 1729 */ 1730 int zfs_redundant_metadata_most_ditto_level = 2; 1731 1732 void 1733 dmu_write_policy(objset_t *os, dnode_t *dn, int level, int wp, zio_prop_t *zp) 1734 { 1735 dmu_object_type_t type = dn ? dn->dn_type : DMU_OT_OBJSET; 1736 boolean_t ismd = (level > 0 || DMU_OT_IS_METADATA(type) || 1737 (wp & WP_SPILL)); 1738 enum zio_checksum checksum = os->os_checksum; 1739 enum zio_compress compress = os->os_compress; 1740 enum zio_checksum dedup_checksum = os->os_dedup_checksum; 1741 boolean_t dedup = B_FALSE; 1742 boolean_t nopwrite = B_FALSE; 1743 boolean_t dedup_verify = os->os_dedup_verify; 1744 int copies = os->os_copies; 1745 1746 /* 1747 * We maintain different write policies for each of the following 1748 * types of data: 1749 * 1. metadata 1750 * 2. preallocated blocks (i.e. level-0 blocks of a dump device) 1751 * 3. all other level 0 blocks 1752 */ 1753 if (ismd) { 1754 if (zfs_mdcomp_disable) { 1755 compress = ZIO_COMPRESS_EMPTY; 1756 } else { 1757 /* 1758 * XXX -- we should design a compression algorithm 1759 * that specializes in arrays of bps. 1760 */ 1761 compress = zio_compress_select(os->os_spa, 1762 ZIO_COMPRESS_ON, ZIO_COMPRESS_ON); 1763 } 1764 1765 /* 1766 * Metadata always gets checksummed. If the data 1767 * checksum is multi-bit correctable, and it's not a 1768 * ZBT-style checksum, then it's suitable for metadata 1769 * as well. Otherwise, the metadata checksum defaults 1770 * to fletcher4. 1771 */ 1772 if (zio_checksum_table[checksum].ci_correctable < 1 || 1773 zio_checksum_table[checksum].ci_eck) 1774 checksum = ZIO_CHECKSUM_FLETCHER_4; 1775 1776 if (os->os_redundant_metadata == ZFS_REDUNDANT_METADATA_ALL || 1777 (os->os_redundant_metadata == 1778 ZFS_REDUNDANT_METADATA_MOST && 1779 (level >= zfs_redundant_metadata_most_ditto_level || 1780 DMU_OT_IS_METADATA(type) || (wp & WP_SPILL)))) 1781 copies++; 1782 } else if (wp & WP_NOFILL) { 1783 ASSERT(level == 0); 1784 1785 /* 1786 * If we're writing preallocated blocks, we aren't actually 1787 * writing them so don't set any policy properties. These 1788 * blocks are currently only used by an external subsystem 1789 * outside of zfs (i.e. dump) and not written by the zio 1790 * pipeline. 1791 */ 1792 compress = ZIO_COMPRESS_OFF; 1793 checksum = ZIO_CHECKSUM_NOPARITY; 1794 } else { 1795 compress = zio_compress_select(os->os_spa, dn->dn_compress, 1796 compress); 1797 1798 checksum = (dedup_checksum == ZIO_CHECKSUM_OFF) ? 1799 zio_checksum_select(dn->dn_checksum, checksum) : 1800 dedup_checksum; 1801 1802 /* 1803 * Determine dedup setting. If we are in dmu_sync(), 1804 * we won't actually dedup now because that's all 1805 * done in syncing context; but we do want to use the 1806 * dedup checkum. If the checksum is not strong 1807 * enough to ensure unique signatures, force 1808 * dedup_verify. 1809 */ 1810 if (dedup_checksum != ZIO_CHECKSUM_OFF) { 1811 dedup = (wp & WP_DMU_SYNC) ? B_FALSE : B_TRUE; 1812 if (!zio_checksum_table[checksum].ci_dedup) 1813 dedup_verify = B_TRUE; 1814 } 1815 1816 /* 1817 * Enable nopwrite if we have a cryptographically secure 1818 * checksum that has no known collisions (i.e. SHA-256) 1819 * and compression is enabled. We don't enable nopwrite if 1820 * dedup is enabled as the two features are mutually exclusive. 1821 */ 1822 nopwrite = (!dedup && zio_checksum_table[checksum].ci_dedup && 1823 compress != ZIO_COMPRESS_OFF && zfs_nopwrite_enabled); 1824 } 1825 1826 zp->zp_checksum = checksum; 1827 zp->zp_compress = compress; 1828 zp->zp_type = (wp & WP_SPILL) ? dn->dn_bonustype : type; 1829 zp->zp_level = level; 1830 zp->zp_copies = MIN(copies, spa_max_replication(os->os_spa)); 1831 zp->zp_dedup = dedup; 1832 zp->zp_dedup_verify = dedup && dedup_verify; 1833 zp->zp_nopwrite = nopwrite; 1834 } 1835 1836 int 1837 dmu_offset_next(objset_t *os, uint64_t object, boolean_t hole, uint64_t *off) 1838 { 1839 dnode_t *dn; 1840 int err; 1841 1842 /* 1843 * Sync any current changes before 1844 * we go trundling through the block pointers. 1845 */ 1846 err = dmu_object_wait_synced(os, object); 1847 if (err) { 1848 return (err); 1849 } 1850 1851 err = dnode_hold(os, object, FTAG, &dn); 1852 if (err) { 1853 return (err); 1854 } 1855 1856 err = dnode_next_offset(dn, (hole ? DNODE_FIND_HOLE : 0), off, 1, 1, 0); 1857 dnode_rele(dn, FTAG); 1858 1859 return (err); 1860 } 1861 1862 /* 1863 * Given the ZFS object, if it contains any dirty nodes 1864 * this function flushes all dirty blocks to disk. This 1865 * ensures the DMU object info is updated. A more efficient 1866 * future version might just find the TXG with the maximum 1867 * ID and wait for that to be synced. 1868 */ 1869 int 1870 dmu_object_wait_synced(objset_t *os, uint64_t object) { 1871 dnode_t *dn; 1872 int error, i; 1873 1874 error = dnode_hold(os, object, FTAG, &dn); 1875 if (error) { 1876 return (error); 1877 } 1878 1879 for (i = 0; i < TXG_SIZE; i++) { 1880 if (list_link_active(&dn->dn_dirty_link[i])) { 1881 break; 1882 } 1883 } 1884 dnode_rele(dn, FTAG); 1885 if (i != TXG_SIZE) { 1886 txg_wait_synced(dmu_objset_pool(os), 0); 1887 } 1888 1889 return (0); 1890 } 1891 1892 void 1893 dmu_object_info_from_dnode(dnode_t *dn, dmu_object_info_t *doi) 1894 { 1895 dnode_phys_t *dnp; 1896 1897 rw_enter(&dn->dn_struct_rwlock, RW_READER); 1898 mutex_enter(&dn->dn_mtx); 1899 1900 dnp = dn->dn_phys; 1901 1902 doi->doi_data_block_size = dn->dn_datablksz; 1903 doi->doi_metadata_block_size = dn->dn_indblkshift ? 1904 1ULL << dn->dn_indblkshift : 0; 1905 doi->doi_type = dn->dn_type; 1906 doi->doi_bonus_type = dn->dn_bonustype; 1907 doi->doi_bonus_size = dn->dn_bonuslen; 1908 doi->doi_indirection = dn->dn_nlevels; 1909 doi->doi_checksum = dn->dn_checksum; 1910 doi->doi_compress = dn->dn_compress; 1911 doi->doi_nblkptr = dn->dn_nblkptr; 1912 doi->doi_physical_blocks_512 = (DN_USED_BYTES(dnp) + 256) >> 9; 1913 doi->doi_max_offset = (dn->dn_maxblkid + 1) * dn->dn_datablksz; 1914 doi->doi_fill_count = 0; 1915 for (int i = 0; i < dnp->dn_nblkptr; i++) 1916 doi->doi_fill_count += BP_GET_FILL(&dnp->dn_blkptr[i]); 1917 1918 mutex_exit(&dn->dn_mtx); 1919 rw_exit(&dn->dn_struct_rwlock); 1920 } 1921 1922 /* 1923 * Get information on a DMU object. 1924 * If doi is NULL, just indicates whether the object exists. 1925 */ 1926 int 1927 dmu_object_info(objset_t *os, uint64_t object, dmu_object_info_t *doi) 1928 { 1929 dnode_t *dn; 1930 int err = dnode_hold(os, object, FTAG, &dn); 1931 1932 if (err) 1933 return (err); 1934 1935 if (doi != NULL) 1936 dmu_object_info_from_dnode(dn, doi); 1937 1938 dnode_rele(dn, FTAG); 1939 return (0); 1940 } 1941 1942 /* 1943 * As above, but faster; can be used when you have a held dbuf in hand. 1944 */ 1945 void 1946 dmu_object_info_from_db(dmu_buf_t *db_fake, dmu_object_info_t *doi) 1947 { 1948 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 1949 1950 DB_DNODE_ENTER(db); 1951 dmu_object_info_from_dnode(DB_DNODE(db), doi); 1952 DB_DNODE_EXIT(db); 1953 } 1954 1955 /* 1956 * Faster still when you only care about the size. 1957 * This is specifically optimized for zfs_getattr(). 1958 */ 1959 void 1960 dmu_object_size_from_db(dmu_buf_t *db_fake, uint32_t *blksize, 1961 u_longlong_t *nblk512) 1962 { 1963 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 1964 dnode_t *dn; 1965 1966 DB_DNODE_ENTER(db); 1967 dn = DB_DNODE(db); 1968 1969 *blksize = dn->dn_datablksz; 1970 /* add 1 for dnode space */ 1971 *nblk512 = ((DN_USED_BYTES(dn->dn_phys) + SPA_MINBLOCKSIZE/2) >> 1972 SPA_MINBLOCKSHIFT) + 1; 1973 DB_DNODE_EXIT(db); 1974 } 1975 1976 void 1977 byteswap_uint64_array(void *vbuf, size_t size) 1978 { 1979 uint64_t *buf = vbuf; 1980 size_t count = size >> 3; 1981 int i; 1982 1983 ASSERT((size & 7) == 0); 1984 1985 for (i = 0; i < count; i++) 1986 buf[i] = BSWAP_64(buf[i]); 1987 } 1988 1989 void 1990 byteswap_uint32_array(void *vbuf, size_t size) 1991 { 1992 uint32_t *buf = vbuf; 1993 size_t count = size >> 2; 1994 int i; 1995 1996 ASSERT((size & 3) == 0); 1997 1998 for (i = 0; i < count; i++) 1999 buf[i] = BSWAP_32(buf[i]); 2000 } 2001 2002 void 2003 byteswap_uint16_array(void *vbuf, size_t size) 2004 { 2005 uint16_t *buf = vbuf; 2006 size_t count = size >> 1; 2007 int i; 2008 2009 ASSERT((size & 1) == 0); 2010 2011 for (i = 0; i < count; i++) 2012 buf[i] = BSWAP_16(buf[i]); 2013 } 2014 2015 /* ARGSUSED */ 2016 void 2017 byteswap_uint8_array(void *vbuf, size_t size) 2018 { 2019 } 2020 2021 void 2022 dmu_init(void) 2023 { 2024 zfs_dbgmsg_init(); 2025 sa_cache_init(); 2026 xuio_stat_init(); 2027 dmu_objset_init(); 2028 dnode_init(); 2029 dbuf_init(); 2030 zfetch_init(); 2031 l2arc_init(); 2032 arc_init(); 2033 } 2034 2035 void 2036 dmu_fini(void) 2037 { 2038 arc_fini(); /* arc depends on l2arc, so arc must go first */ 2039 l2arc_fini(); 2040 zfetch_fini(); 2041 dbuf_fini(); 2042 dnode_fini(); 2043 dmu_objset_fini(); 2044 xuio_stat_fini(); 2045 sa_cache_fini(); 2046 zfs_dbgmsg_fini(); 2047 } 2048