xref: /titanic_52/usr/src/uts/common/fs/zfs/dmu.c (revision 1b3b16f35bee1ffc210591d82bca6adf247954b0)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2013 by Delphix. All rights reserved.
24  */
25 
26 /* Copyright (c) 2013 by Saso Kiselkov. All rights reserved. */
27 
28 #include <sys/dmu.h>
29 #include <sys/dmu_impl.h>
30 #include <sys/dmu_tx.h>
31 #include <sys/dbuf.h>
32 #include <sys/dnode.h>
33 #include <sys/zfs_context.h>
34 #include <sys/dmu_objset.h>
35 #include <sys/dmu_traverse.h>
36 #include <sys/dsl_dataset.h>
37 #include <sys/dsl_dir.h>
38 #include <sys/dsl_pool.h>
39 #include <sys/dsl_synctask.h>
40 #include <sys/dsl_prop.h>
41 #include <sys/dmu_zfetch.h>
42 #include <sys/zfs_ioctl.h>
43 #include <sys/zap.h>
44 #include <sys/zio_checksum.h>
45 #include <sys/zio_compress.h>
46 #include <sys/sa.h>
47 #ifdef _KERNEL
48 #include <sys/vmsystm.h>
49 #include <sys/zfs_znode.h>
50 #endif
51 
52 /*
53  * Enable/disable nopwrite feature.
54  */
55 int zfs_nopwrite_enabled = 1;
56 
57 const dmu_object_type_info_t dmu_ot[DMU_OT_NUMTYPES] = {
58 	{	DMU_BSWAP_UINT8,	TRUE,	"unallocated"		},
59 	{	DMU_BSWAP_ZAP,		TRUE,	"object directory"	},
60 	{	DMU_BSWAP_UINT64,	TRUE,	"object array"		},
61 	{	DMU_BSWAP_UINT8,	TRUE,	"packed nvlist"		},
62 	{	DMU_BSWAP_UINT64,	TRUE,	"packed nvlist size"	},
63 	{	DMU_BSWAP_UINT64,	TRUE,	"bpobj"			},
64 	{	DMU_BSWAP_UINT64,	TRUE,	"bpobj header"		},
65 	{	DMU_BSWAP_UINT64,	TRUE,	"SPA space map header"	},
66 	{	DMU_BSWAP_UINT64,	TRUE,	"SPA space map"		},
67 	{	DMU_BSWAP_UINT64,	TRUE,	"ZIL intent log"	},
68 	{	DMU_BSWAP_DNODE,	TRUE,	"DMU dnode"		},
69 	{	DMU_BSWAP_OBJSET,	TRUE,	"DMU objset"		},
70 	{	DMU_BSWAP_UINT64,	TRUE,	"DSL directory"		},
71 	{	DMU_BSWAP_ZAP,		TRUE,	"DSL directory child map"},
72 	{	DMU_BSWAP_ZAP,		TRUE,	"DSL dataset snap map"	},
73 	{	DMU_BSWAP_ZAP,		TRUE,	"DSL props"		},
74 	{	DMU_BSWAP_UINT64,	TRUE,	"DSL dataset"		},
75 	{	DMU_BSWAP_ZNODE,	TRUE,	"ZFS znode"		},
76 	{	DMU_BSWAP_OLDACL,	TRUE,	"ZFS V0 ACL"		},
77 	{	DMU_BSWAP_UINT8,	FALSE,	"ZFS plain file"	},
78 	{	DMU_BSWAP_ZAP,		TRUE,	"ZFS directory"		},
79 	{	DMU_BSWAP_ZAP,		TRUE,	"ZFS master node"	},
80 	{	DMU_BSWAP_ZAP,		TRUE,	"ZFS delete queue"	},
81 	{	DMU_BSWAP_UINT8,	FALSE,	"zvol object"		},
82 	{	DMU_BSWAP_ZAP,		TRUE,	"zvol prop"		},
83 	{	DMU_BSWAP_UINT8,	FALSE,	"other uint8[]"		},
84 	{	DMU_BSWAP_UINT64,	FALSE,	"other uint64[]"	},
85 	{	DMU_BSWAP_ZAP,		TRUE,	"other ZAP"		},
86 	{	DMU_BSWAP_ZAP,		TRUE,	"persistent error log"	},
87 	{	DMU_BSWAP_UINT8,	TRUE,	"SPA history"		},
88 	{	DMU_BSWAP_UINT64,	TRUE,	"SPA history offsets"	},
89 	{	DMU_BSWAP_ZAP,		TRUE,	"Pool properties"	},
90 	{	DMU_BSWAP_ZAP,		TRUE,	"DSL permissions"	},
91 	{	DMU_BSWAP_ACL,		TRUE,	"ZFS ACL"		},
92 	{	DMU_BSWAP_UINT8,	TRUE,	"ZFS SYSACL"		},
93 	{	DMU_BSWAP_UINT8,	TRUE,	"FUID table"		},
94 	{	DMU_BSWAP_UINT64,	TRUE,	"FUID table size"	},
95 	{	DMU_BSWAP_ZAP,		TRUE,	"DSL dataset next clones"},
96 	{	DMU_BSWAP_ZAP,		TRUE,	"scan work queue"	},
97 	{	DMU_BSWAP_ZAP,		TRUE,	"ZFS user/group used"	},
98 	{	DMU_BSWAP_ZAP,		TRUE,	"ZFS user/group quota"	},
99 	{	DMU_BSWAP_ZAP,		TRUE,	"snapshot refcount tags"},
100 	{	DMU_BSWAP_ZAP,		TRUE,	"DDT ZAP algorithm"	},
101 	{	DMU_BSWAP_ZAP,		TRUE,	"DDT statistics"	},
102 	{	DMU_BSWAP_UINT8,	TRUE,	"System attributes"	},
103 	{	DMU_BSWAP_ZAP,		TRUE,	"SA master node"	},
104 	{	DMU_BSWAP_ZAP,		TRUE,	"SA attr registration"	},
105 	{	DMU_BSWAP_ZAP,		TRUE,	"SA attr layouts"	},
106 	{	DMU_BSWAP_ZAP,		TRUE,	"scan translations"	},
107 	{	DMU_BSWAP_UINT8,	FALSE,	"deduplicated block"	},
108 	{	DMU_BSWAP_ZAP,		TRUE,	"DSL deadlist map"	},
109 	{	DMU_BSWAP_UINT64,	TRUE,	"DSL deadlist map hdr"	},
110 	{	DMU_BSWAP_ZAP,		TRUE,	"DSL dir clones"	},
111 	{	DMU_BSWAP_UINT64,	TRUE,	"bpobj subobj"		}
112 };
113 
114 const dmu_object_byteswap_info_t dmu_ot_byteswap[DMU_BSWAP_NUMFUNCS] = {
115 	{	byteswap_uint8_array,	"uint8"		},
116 	{	byteswap_uint16_array,	"uint16"	},
117 	{	byteswap_uint32_array,	"uint32"	},
118 	{	byteswap_uint64_array,	"uint64"	},
119 	{	zap_byteswap,		"zap"		},
120 	{	dnode_buf_byteswap,	"dnode"		},
121 	{	dmu_objset_byteswap,	"objset"	},
122 	{	zfs_znode_byteswap,	"znode"		},
123 	{	zfs_oldacl_byteswap,	"oldacl"	},
124 	{	zfs_acl_byteswap,	"acl"		}
125 };
126 
127 int
128 dmu_buf_hold(objset_t *os, uint64_t object, uint64_t offset,
129     void *tag, dmu_buf_t **dbp, int flags)
130 {
131 	dnode_t *dn;
132 	uint64_t blkid;
133 	dmu_buf_impl_t *db;
134 	int err;
135 	int db_flags = DB_RF_CANFAIL;
136 
137 	if (flags & DMU_READ_NO_PREFETCH)
138 		db_flags |= DB_RF_NOPREFETCH;
139 
140 	err = dnode_hold(os, object, FTAG, &dn);
141 	if (err)
142 		return (err);
143 	blkid = dbuf_whichblock(dn, offset);
144 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
145 	db = dbuf_hold(dn, blkid, tag);
146 	rw_exit(&dn->dn_struct_rwlock);
147 	if (db == NULL) {
148 		err = SET_ERROR(EIO);
149 	} else {
150 		err = dbuf_read(db, NULL, db_flags);
151 		if (err) {
152 			dbuf_rele(db, tag);
153 			db = NULL;
154 		}
155 	}
156 
157 	dnode_rele(dn, FTAG);
158 	*dbp = &db->db; /* NULL db plus first field offset is NULL */
159 	return (err);
160 }
161 
162 int
163 dmu_bonus_max(void)
164 {
165 	return (DN_MAX_BONUSLEN);
166 }
167 
168 int
169 dmu_set_bonus(dmu_buf_t *db_fake, int newsize, dmu_tx_t *tx)
170 {
171 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
172 	dnode_t *dn;
173 	int error;
174 
175 	DB_DNODE_ENTER(db);
176 	dn = DB_DNODE(db);
177 
178 	if (dn->dn_bonus != db) {
179 		error = SET_ERROR(EINVAL);
180 	} else if (newsize < 0 || newsize > db_fake->db_size) {
181 		error = SET_ERROR(EINVAL);
182 	} else {
183 		dnode_setbonuslen(dn, newsize, tx);
184 		error = 0;
185 	}
186 
187 	DB_DNODE_EXIT(db);
188 	return (error);
189 }
190 
191 int
192 dmu_set_bonustype(dmu_buf_t *db_fake, dmu_object_type_t type, dmu_tx_t *tx)
193 {
194 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
195 	dnode_t *dn;
196 	int error;
197 
198 	DB_DNODE_ENTER(db);
199 	dn = DB_DNODE(db);
200 
201 	if (!DMU_OT_IS_VALID(type)) {
202 		error = SET_ERROR(EINVAL);
203 	} else if (dn->dn_bonus != db) {
204 		error = SET_ERROR(EINVAL);
205 	} else {
206 		dnode_setbonus_type(dn, type, tx);
207 		error = 0;
208 	}
209 
210 	DB_DNODE_EXIT(db);
211 	return (error);
212 }
213 
214 dmu_object_type_t
215 dmu_get_bonustype(dmu_buf_t *db_fake)
216 {
217 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
218 	dnode_t *dn;
219 	dmu_object_type_t type;
220 
221 	DB_DNODE_ENTER(db);
222 	dn = DB_DNODE(db);
223 	type = dn->dn_bonustype;
224 	DB_DNODE_EXIT(db);
225 
226 	return (type);
227 }
228 
229 int
230 dmu_rm_spill(objset_t *os, uint64_t object, dmu_tx_t *tx)
231 {
232 	dnode_t *dn;
233 	int error;
234 
235 	error = dnode_hold(os, object, FTAG, &dn);
236 	dbuf_rm_spill(dn, tx);
237 	rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
238 	dnode_rm_spill(dn, tx);
239 	rw_exit(&dn->dn_struct_rwlock);
240 	dnode_rele(dn, FTAG);
241 	return (error);
242 }
243 
244 /*
245  * returns ENOENT, EIO, or 0.
246  */
247 int
248 dmu_bonus_hold(objset_t *os, uint64_t object, void *tag, dmu_buf_t **dbp)
249 {
250 	dnode_t *dn;
251 	dmu_buf_impl_t *db;
252 	int error;
253 
254 	error = dnode_hold(os, object, FTAG, &dn);
255 	if (error)
256 		return (error);
257 
258 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
259 	if (dn->dn_bonus == NULL) {
260 		rw_exit(&dn->dn_struct_rwlock);
261 		rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
262 		if (dn->dn_bonus == NULL)
263 			dbuf_create_bonus(dn);
264 	}
265 	db = dn->dn_bonus;
266 
267 	/* as long as the bonus buf is held, the dnode will be held */
268 	if (refcount_add(&db->db_holds, tag) == 1) {
269 		VERIFY(dnode_add_ref(dn, db));
270 		(void) atomic_inc_32_nv(&dn->dn_dbufs_count);
271 	}
272 
273 	/*
274 	 * Wait to drop dn_struct_rwlock until after adding the bonus dbuf's
275 	 * hold and incrementing the dbuf count to ensure that dnode_move() sees
276 	 * a dnode hold for every dbuf.
277 	 */
278 	rw_exit(&dn->dn_struct_rwlock);
279 
280 	dnode_rele(dn, FTAG);
281 
282 	VERIFY(0 == dbuf_read(db, NULL, DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH));
283 
284 	*dbp = &db->db;
285 	return (0);
286 }
287 
288 /*
289  * returns ENOENT, EIO, or 0.
290  *
291  * This interface will allocate a blank spill dbuf when a spill blk
292  * doesn't already exist on the dnode.
293  *
294  * if you only want to find an already existing spill db, then
295  * dmu_spill_hold_existing() should be used.
296  */
297 int
298 dmu_spill_hold_by_dnode(dnode_t *dn, uint32_t flags, void *tag, dmu_buf_t **dbp)
299 {
300 	dmu_buf_impl_t *db = NULL;
301 	int err;
302 
303 	if ((flags & DB_RF_HAVESTRUCT) == 0)
304 		rw_enter(&dn->dn_struct_rwlock, RW_READER);
305 
306 	db = dbuf_hold(dn, DMU_SPILL_BLKID, tag);
307 
308 	if ((flags & DB_RF_HAVESTRUCT) == 0)
309 		rw_exit(&dn->dn_struct_rwlock);
310 
311 	ASSERT(db != NULL);
312 	err = dbuf_read(db, NULL, flags);
313 	if (err == 0)
314 		*dbp = &db->db;
315 	else
316 		dbuf_rele(db, tag);
317 	return (err);
318 }
319 
320 int
321 dmu_spill_hold_existing(dmu_buf_t *bonus, void *tag, dmu_buf_t **dbp)
322 {
323 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)bonus;
324 	dnode_t *dn;
325 	int err;
326 
327 	DB_DNODE_ENTER(db);
328 	dn = DB_DNODE(db);
329 
330 	if (spa_version(dn->dn_objset->os_spa) < SPA_VERSION_SA) {
331 		err = SET_ERROR(EINVAL);
332 	} else {
333 		rw_enter(&dn->dn_struct_rwlock, RW_READER);
334 
335 		if (!dn->dn_have_spill) {
336 			err = SET_ERROR(ENOENT);
337 		} else {
338 			err = dmu_spill_hold_by_dnode(dn,
339 			    DB_RF_HAVESTRUCT | DB_RF_CANFAIL, tag, dbp);
340 		}
341 
342 		rw_exit(&dn->dn_struct_rwlock);
343 	}
344 
345 	DB_DNODE_EXIT(db);
346 	return (err);
347 }
348 
349 int
350 dmu_spill_hold_by_bonus(dmu_buf_t *bonus, void *tag, dmu_buf_t **dbp)
351 {
352 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)bonus;
353 	dnode_t *dn;
354 	int err;
355 
356 	DB_DNODE_ENTER(db);
357 	dn = DB_DNODE(db);
358 	err = dmu_spill_hold_by_dnode(dn, DB_RF_CANFAIL, tag, dbp);
359 	DB_DNODE_EXIT(db);
360 
361 	return (err);
362 }
363 
364 /*
365  * Note: longer-term, we should modify all of the dmu_buf_*() interfaces
366  * to take a held dnode rather than <os, object> -- the lookup is wasteful,
367  * and can induce severe lock contention when writing to several files
368  * whose dnodes are in the same block.
369  */
370 static int
371 dmu_buf_hold_array_by_dnode(dnode_t *dn, uint64_t offset, uint64_t length,
372     int read, void *tag, int *numbufsp, dmu_buf_t ***dbpp, uint32_t flags)
373 {
374 	dsl_pool_t *dp = NULL;
375 	dmu_buf_t **dbp;
376 	uint64_t blkid, nblks, i;
377 	uint32_t dbuf_flags;
378 	int err;
379 	zio_t *zio;
380 	hrtime_t start;
381 
382 	ASSERT(length <= DMU_MAX_ACCESS);
383 
384 	dbuf_flags = DB_RF_CANFAIL | DB_RF_NEVERWAIT | DB_RF_HAVESTRUCT;
385 	if (flags & DMU_READ_NO_PREFETCH || length > zfetch_array_rd_sz)
386 		dbuf_flags |= DB_RF_NOPREFETCH;
387 
388 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
389 	if (dn->dn_datablkshift) {
390 		int blkshift = dn->dn_datablkshift;
391 		nblks = (P2ROUNDUP(offset+length, 1ULL<<blkshift) -
392 		    P2ALIGN(offset, 1ULL<<blkshift)) >> blkshift;
393 	} else {
394 		if (offset + length > dn->dn_datablksz) {
395 			zfs_panic_recover("zfs: accessing past end of object "
396 			    "%llx/%llx (size=%u access=%llu+%llu)",
397 			    (longlong_t)dn->dn_objset->
398 			    os_dsl_dataset->ds_object,
399 			    (longlong_t)dn->dn_object, dn->dn_datablksz,
400 			    (longlong_t)offset, (longlong_t)length);
401 			rw_exit(&dn->dn_struct_rwlock);
402 			return (SET_ERROR(EIO));
403 		}
404 		nblks = 1;
405 	}
406 	dbp = kmem_zalloc(sizeof (dmu_buf_t *) * nblks, KM_SLEEP);
407 
408 	if (dn->dn_objset->os_dsl_dataset)
409 		dp = dn->dn_objset->os_dsl_dataset->ds_dir->dd_pool;
410 	start = gethrtime();
411 	zio = zio_root(dn->dn_objset->os_spa, NULL, NULL, ZIO_FLAG_CANFAIL);
412 	blkid = dbuf_whichblock(dn, offset);
413 	for (i = 0; i < nblks; i++) {
414 		dmu_buf_impl_t *db = dbuf_hold(dn, blkid+i, tag);
415 		if (db == NULL) {
416 			rw_exit(&dn->dn_struct_rwlock);
417 			dmu_buf_rele_array(dbp, nblks, tag);
418 			zio_nowait(zio);
419 			return (SET_ERROR(EIO));
420 		}
421 		/* initiate async i/o */
422 		if (read) {
423 			(void) dbuf_read(db, zio, dbuf_flags);
424 		}
425 		dbp[i] = &db->db;
426 	}
427 	rw_exit(&dn->dn_struct_rwlock);
428 
429 	/* wait for async i/o */
430 	err = zio_wait(zio);
431 	/* track read overhead when we are in sync context */
432 	if (dp && dsl_pool_sync_context(dp))
433 		dp->dp_read_overhead += gethrtime() - start;
434 	if (err) {
435 		dmu_buf_rele_array(dbp, nblks, tag);
436 		return (err);
437 	}
438 
439 	/* wait for other io to complete */
440 	if (read) {
441 		for (i = 0; i < nblks; i++) {
442 			dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbp[i];
443 			mutex_enter(&db->db_mtx);
444 			while (db->db_state == DB_READ ||
445 			    db->db_state == DB_FILL)
446 				cv_wait(&db->db_changed, &db->db_mtx);
447 			if (db->db_state == DB_UNCACHED)
448 				err = SET_ERROR(EIO);
449 			mutex_exit(&db->db_mtx);
450 			if (err) {
451 				dmu_buf_rele_array(dbp, nblks, tag);
452 				return (err);
453 			}
454 		}
455 	}
456 
457 	*numbufsp = nblks;
458 	*dbpp = dbp;
459 	return (0);
460 }
461 
462 static int
463 dmu_buf_hold_array(objset_t *os, uint64_t object, uint64_t offset,
464     uint64_t length, int read, void *tag, int *numbufsp, dmu_buf_t ***dbpp)
465 {
466 	dnode_t *dn;
467 	int err;
468 
469 	err = dnode_hold(os, object, FTAG, &dn);
470 	if (err)
471 		return (err);
472 
473 	err = dmu_buf_hold_array_by_dnode(dn, offset, length, read, tag,
474 	    numbufsp, dbpp, DMU_READ_PREFETCH);
475 
476 	dnode_rele(dn, FTAG);
477 
478 	return (err);
479 }
480 
481 int
482 dmu_buf_hold_array_by_bonus(dmu_buf_t *db_fake, uint64_t offset,
483     uint64_t length, int read, void *tag, int *numbufsp, dmu_buf_t ***dbpp)
484 {
485 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
486 	dnode_t *dn;
487 	int err;
488 
489 	DB_DNODE_ENTER(db);
490 	dn = DB_DNODE(db);
491 	err = dmu_buf_hold_array_by_dnode(dn, offset, length, read, tag,
492 	    numbufsp, dbpp, DMU_READ_PREFETCH);
493 	DB_DNODE_EXIT(db);
494 
495 	return (err);
496 }
497 
498 void
499 dmu_buf_rele_array(dmu_buf_t **dbp_fake, int numbufs, void *tag)
500 {
501 	int i;
502 	dmu_buf_impl_t **dbp = (dmu_buf_impl_t **)dbp_fake;
503 
504 	if (numbufs == 0)
505 		return;
506 
507 	for (i = 0; i < numbufs; i++) {
508 		if (dbp[i])
509 			dbuf_rele(dbp[i], tag);
510 	}
511 
512 	kmem_free(dbp, sizeof (dmu_buf_t *) * numbufs);
513 }
514 
515 void
516 dmu_prefetch(objset_t *os, uint64_t object, uint64_t offset, uint64_t len)
517 {
518 	dnode_t *dn;
519 	uint64_t blkid;
520 	int nblks, i, err;
521 
522 	if (zfs_prefetch_disable)
523 		return;
524 
525 	if (len == 0) {  /* they're interested in the bonus buffer */
526 		dn = DMU_META_DNODE(os);
527 
528 		if (object == 0 || object >= DN_MAX_OBJECT)
529 			return;
530 
531 		rw_enter(&dn->dn_struct_rwlock, RW_READER);
532 		blkid = dbuf_whichblock(dn, object * sizeof (dnode_phys_t));
533 		dbuf_prefetch(dn, blkid);
534 		rw_exit(&dn->dn_struct_rwlock);
535 		return;
536 	}
537 
538 	/*
539 	 * XXX - Note, if the dnode for the requested object is not
540 	 * already cached, we will do a *synchronous* read in the
541 	 * dnode_hold() call.  The same is true for any indirects.
542 	 */
543 	err = dnode_hold(os, object, FTAG, &dn);
544 	if (err != 0)
545 		return;
546 
547 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
548 	if (dn->dn_datablkshift) {
549 		int blkshift = dn->dn_datablkshift;
550 		nblks = (P2ROUNDUP(offset+len, 1<<blkshift) -
551 		    P2ALIGN(offset, 1<<blkshift)) >> blkshift;
552 	} else {
553 		nblks = (offset < dn->dn_datablksz);
554 	}
555 
556 	if (nblks != 0) {
557 		blkid = dbuf_whichblock(dn, offset);
558 		for (i = 0; i < nblks; i++)
559 			dbuf_prefetch(dn, blkid+i);
560 	}
561 
562 	rw_exit(&dn->dn_struct_rwlock);
563 
564 	dnode_rele(dn, FTAG);
565 }
566 
567 /*
568  * Get the next "chunk" of file data to free.  We traverse the file from
569  * the end so that the file gets shorter over time (if we crashes in the
570  * middle, this will leave us in a better state).  We find allocated file
571  * data by simply searching the allocated level 1 indirects.
572  *
573  * On input, *start should be the first offset that does not need to be
574  * freed (e.g. "offset + length").  On return, *start will be the first
575  * offset that should be freed.
576  */
577 static int
578 get_next_chunk(dnode_t *dn, uint64_t *start, uint64_t minimum)
579 {
580 	uint64_t maxblks = DMU_MAX_ACCESS >> (dn->dn_indblkshift + 1);
581 	/* bytes of data covered by a level-1 indirect block */
582 	uint64_t iblkrange =
583 	    dn->dn_datablksz * EPB(dn->dn_indblkshift, SPA_BLKPTRSHIFT);
584 
585 	ASSERT3U(minimum, <=, *start);
586 
587 	if (*start - minimum <= iblkrange * maxblks) {
588 		*start = minimum;
589 		return (0);
590 	}
591 	ASSERT(ISP2(iblkrange));
592 
593 	for (uint64_t blks = 0; *start > minimum && blks < maxblks; blks++) {
594 		int err;
595 
596 		/*
597 		 * dnode_next_offset(BACKWARDS) will find an allocated L1
598 		 * indirect block at or before the input offset.  We must
599 		 * decrement *start so that it is at the end of the region
600 		 * to search.
601 		 */
602 		(*start)--;
603 		err = dnode_next_offset(dn,
604 		    DNODE_FIND_BACKWARDS, start, 2, 1, 0);
605 
606 		/* if there are no indirect blocks before start, we are done */
607 		if (err == ESRCH) {
608 			*start = minimum;
609 			break;
610 		} else if (err != 0) {
611 			return (err);
612 		}
613 
614 		/* set start to the beginning of this L1 indirect */
615 		*start = P2ALIGN(*start, iblkrange);
616 	}
617 	if (*start < minimum)
618 		*start = minimum;
619 	return (0);
620 }
621 
622 static int
623 dmu_free_long_range_impl(objset_t *os, dnode_t *dn, uint64_t offset,
624     uint64_t length)
625 {
626 	uint64_t object_size = (dn->dn_maxblkid + 1) * dn->dn_datablksz;
627 	int err;
628 
629 	if (offset >= object_size)
630 		return (0);
631 
632 	if (length == DMU_OBJECT_END || offset + length > object_size)
633 		length = object_size - offset;
634 
635 	while (length != 0) {
636 		uint64_t chunk_end, chunk_begin;
637 
638 		chunk_end = chunk_begin = offset + length;
639 
640 		/* move chunk_begin backwards to the beginning of this chunk */
641 		err = get_next_chunk(dn, &chunk_begin, offset);
642 		if (err)
643 			return (err);
644 		ASSERT3U(chunk_begin, >=, offset);
645 		ASSERT3U(chunk_begin, <=, chunk_end);
646 
647 		dmu_tx_t *tx = dmu_tx_create(os);
648 		dmu_tx_hold_free(tx, dn->dn_object,
649 		    chunk_begin, chunk_end - chunk_begin);
650 		err = dmu_tx_assign(tx, TXG_WAIT);
651 		if (err) {
652 			dmu_tx_abort(tx);
653 			return (err);
654 		}
655 		dnode_free_range(dn, chunk_begin, chunk_end - chunk_begin, tx);
656 		dmu_tx_commit(tx);
657 
658 		length -= chunk_end - chunk_begin;
659 	}
660 	return (0);
661 }
662 
663 int
664 dmu_free_long_range(objset_t *os, uint64_t object,
665     uint64_t offset, uint64_t length)
666 {
667 	dnode_t *dn;
668 	int err;
669 
670 	err = dnode_hold(os, object, FTAG, &dn);
671 	if (err != 0)
672 		return (err);
673 	err = dmu_free_long_range_impl(os, dn, offset, length);
674 	dnode_rele(dn, FTAG);
675 	return (err);
676 }
677 
678 int
679 dmu_free_long_object(objset_t *os, uint64_t object)
680 {
681 	dmu_tx_t *tx;
682 	int err;
683 
684 	err = dmu_free_long_range(os, object, 0, DMU_OBJECT_END);
685 	if (err != 0)
686 		return (err);
687 
688 	tx = dmu_tx_create(os);
689 	dmu_tx_hold_bonus(tx, object);
690 	dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END);
691 	err = dmu_tx_assign(tx, TXG_WAIT);
692 	if (err == 0) {
693 		err = dmu_object_free(os, object, tx);
694 		dmu_tx_commit(tx);
695 	} else {
696 		dmu_tx_abort(tx);
697 	}
698 
699 	return (err);
700 }
701 
702 int
703 dmu_free_range(objset_t *os, uint64_t object, uint64_t offset,
704     uint64_t size, dmu_tx_t *tx)
705 {
706 	dnode_t *dn;
707 	int err = dnode_hold(os, object, FTAG, &dn);
708 	if (err)
709 		return (err);
710 	ASSERT(offset < UINT64_MAX);
711 	ASSERT(size == -1ULL || size <= UINT64_MAX - offset);
712 	dnode_free_range(dn, offset, size, tx);
713 	dnode_rele(dn, FTAG);
714 	return (0);
715 }
716 
717 int
718 dmu_read(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
719     void *buf, uint32_t flags)
720 {
721 	dnode_t *dn;
722 	dmu_buf_t **dbp;
723 	int numbufs, err;
724 
725 	err = dnode_hold(os, object, FTAG, &dn);
726 	if (err)
727 		return (err);
728 
729 	/*
730 	 * Deal with odd block sizes, where there can't be data past the first
731 	 * block.  If we ever do the tail block optimization, we will need to
732 	 * handle that here as well.
733 	 */
734 	if (dn->dn_maxblkid == 0) {
735 		int newsz = offset > dn->dn_datablksz ? 0 :
736 		    MIN(size, dn->dn_datablksz - offset);
737 		bzero((char *)buf + newsz, size - newsz);
738 		size = newsz;
739 	}
740 
741 	while (size > 0) {
742 		uint64_t mylen = MIN(size, DMU_MAX_ACCESS / 2);
743 		int i;
744 
745 		/*
746 		 * NB: we could do this block-at-a-time, but it's nice
747 		 * to be reading in parallel.
748 		 */
749 		err = dmu_buf_hold_array_by_dnode(dn, offset, mylen,
750 		    TRUE, FTAG, &numbufs, &dbp, flags);
751 		if (err)
752 			break;
753 
754 		for (i = 0; i < numbufs; i++) {
755 			int tocpy;
756 			int bufoff;
757 			dmu_buf_t *db = dbp[i];
758 
759 			ASSERT(size > 0);
760 
761 			bufoff = offset - db->db_offset;
762 			tocpy = (int)MIN(db->db_size - bufoff, size);
763 
764 			bcopy((char *)db->db_data + bufoff, buf, tocpy);
765 
766 			offset += tocpy;
767 			size -= tocpy;
768 			buf = (char *)buf + tocpy;
769 		}
770 		dmu_buf_rele_array(dbp, numbufs, FTAG);
771 	}
772 	dnode_rele(dn, FTAG);
773 	return (err);
774 }
775 
776 void
777 dmu_write(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
778     const void *buf, dmu_tx_t *tx)
779 {
780 	dmu_buf_t **dbp;
781 	int numbufs, i;
782 
783 	if (size == 0)
784 		return;
785 
786 	VERIFY(0 == dmu_buf_hold_array(os, object, offset, size,
787 	    FALSE, FTAG, &numbufs, &dbp));
788 
789 	for (i = 0; i < numbufs; i++) {
790 		int tocpy;
791 		int bufoff;
792 		dmu_buf_t *db = dbp[i];
793 
794 		ASSERT(size > 0);
795 
796 		bufoff = offset - db->db_offset;
797 		tocpy = (int)MIN(db->db_size - bufoff, size);
798 
799 		ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size);
800 
801 		if (tocpy == db->db_size)
802 			dmu_buf_will_fill(db, tx);
803 		else
804 			dmu_buf_will_dirty(db, tx);
805 
806 		bcopy(buf, (char *)db->db_data + bufoff, tocpy);
807 
808 		if (tocpy == db->db_size)
809 			dmu_buf_fill_done(db, tx);
810 
811 		offset += tocpy;
812 		size -= tocpy;
813 		buf = (char *)buf + tocpy;
814 	}
815 	dmu_buf_rele_array(dbp, numbufs, FTAG);
816 }
817 
818 void
819 dmu_prealloc(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
820     dmu_tx_t *tx)
821 {
822 	dmu_buf_t **dbp;
823 	int numbufs, i;
824 
825 	if (size == 0)
826 		return;
827 
828 	VERIFY(0 == dmu_buf_hold_array(os, object, offset, size,
829 	    FALSE, FTAG, &numbufs, &dbp));
830 
831 	for (i = 0; i < numbufs; i++) {
832 		dmu_buf_t *db = dbp[i];
833 
834 		dmu_buf_will_not_fill(db, tx);
835 	}
836 	dmu_buf_rele_array(dbp, numbufs, FTAG);
837 }
838 
839 /*
840  * DMU support for xuio
841  */
842 kstat_t *xuio_ksp = NULL;
843 
844 int
845 dmu_xuio_init(xuio_t *xuio, int nblk)
846 {
847 	dmu_xuio_t *priv;
848 	uio_t *uio = &xuio->xu_uio;
849 
850 	uio->uio_iovcnt = nblk;
851 	uio->uio_iov = kmem_zalloc(nblk * sizeof (iovec_t), KM_SLEEP);
852 
853 	priv = kmem_zalloc(sizeof (dmu_xuio_t), KM_SLEEP);
854 	priv->cnt = nblk;
855 	priv->bufs = kmem_zalloc(nblk * sizeof (arc_buf_t *), KM_SLEEP);
856 	priv->iovp = uio->uio_iov;
857 	XUIO_XUZC_PRIV(xuio) = priv;
858 
859 	if (XUIO_XUZC_RW(xuio) == UIO_READ)
860 		XUIOSTAT_INCR(xuiostat_onloan_rbuf, nblk);
861 	else
862 		XUIOSTAT_INCR(xuiostat_onloan_wbuf, nblk);
863 
864 	return (0);
865 }
866 
867 void
868 dmu_xuio_fini(xuio_t *xuio)
869 {
870 	dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
871 	int nblk = priv->cnt;
872 
873 	kmem_free(priv->iovp, nblk * sizeof (iovec_t));
874 	kmem_free(priv->bufs, nblk * sizeof (arc_buf_t *));
875 	kmem_free(priv, sizeof (dmu_xuio_t));
876 
877 	if (XUIO_XUZC_RW(xuio) == UIO_READ)
878 		XUIOSTAT_INCR(xuiostat_onloan_rbuf, -nblk);
879 	else
880 		XUIOSTAT_INCR(xuiostat_onloan_wbuf, -nblk);
881 }
882 
883 /*
884  * Initialize iov[priv->next] and priv->bufs[priv->next] with { off, n, abuf }
885  * and increase priv->next by 1.
886  */
887 int
888 dmu_xuio_add(xuio_t *xuio, arc_buf_t *abuf, offset_t off, size_t n)
889 {
890 	struct iovec *iov;
891 	uio_t *uio = &xuio->xu_uio;
892 	dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
893 	int i = priv->next++;
894 
895 	ASSERT(i < priv->cnt);
896 	ASSERT(off + n <= arc_buf_size(abuf));
897 	iov = uio->uio_iov + i;
898 	iov->iov_base = (char *)abuf->b_data + off;
899 	iov->iov_len = n;
900 	priv->bufs[i] = abuf;
901 	return (0);
902 }
903 
904 int
905 dmu_xuio_cnt(xuio_t *xuio)
906 {
907 	dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
908 	return (priv->cnt);
909 }
910 
911 arc_buf_t *
912 dmu_xuio_arcbuf(xuio_t *xuio, int i)
913 {
914 	dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
915 
916 	ASSERT(i < priv->cnt);
917 	return (priv->bufs[i]);
918 }
919 
920 void
921 dmu_xuio_clear(xuio_t *xuio, int i)
922 {
923 	dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
924 
925 	ASSERT(i < priv->cnt);
926 	priv->bufs[i] = NULL;
927 }
928 
929 static void
930 xuio_stat_init(void)
931 {
932 	xuio_ksp = kstat_create("zfs", 0, "xuio_stats", "misc",
933 	    KSTAT_TYPE_NAMED, sizeof (xuio_stats) / sizeof (kstat_named_t),
934 	    KSTAT_FLAG_VIRTUAL);
935 	if (xuio_ksp != NULL) {
936 		xuio_ksp->ks_data = &xuio_stats;
937 		kstat_install(xuio_ksp);
938 	}
939 }
940 
941 static void
942 xuio_stat_fini(void)
943 {
944 	if (xuio_ksp != NULL) {
945 		kstat_delete(xuio_ksp);
946 		xuio_ksp = NULL;
947 	}
948 }
949 
950 void
951 xuio_stat_wbuf_copied()
952 {
953 	XUIOSTAT_BUMP(xuiostat_wbuf_copied);
954 }
955 
956 void
957 xuio_stat_wbuf_nocopy()
958 {
959 	XUIOSTAT_BUMP(xuiostat_wbuf_nocopy);
960 }
961 
962 #ifdef _KERNEL
963 int
964 dmu_read_uio(objset_t *os, uint64_t object, uio_t *uio, uint64_t size)
965 {
966 	dmu_buf_t **dbp;
967 	int numbufs, i, err;
968 	xuio_t *xuio = NULL;
969 
970 	/*
971 	 * NB: we could do this block-at-a-time, but it's nice
972 	 * to be reading in parallel.
973 	 */
974 	err = dmu_buf_hold_array(os, object, uio->uio_loffset, size, TRUE, FTAG,
975 	    &numbufs, &dbp);
976 	if (err)
977 		return (err);
978 
979 	if (uio->uio_extflg == UIO_XUIO)
980 		xuio = (xuio_t *)uio;
981 
982 	for (i = 0; i < numbufs; i++) {
983 		int tocpy;
984 		int bufoff;
985 		dmu_buf_t *db = dbp[i];
986 
987 		ASSERT(size > 0);
988 
989 		bufoff = uio->uio_loffset - db->db_offset;
990 		tocpy = (int)MIN(db->db_size - bufoff, size);
991 
992 		if (xuio) {
993 			dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
994 			arc_buf_t *dbuf_abuf = dbi->db_buf;
995 			arc_buf_t *abuf = dbuf_loan_arcbuf(dbi);
996 			err = dmu_xuio_add(xuio, abuf, bufoff, tocpy);
997 			if (!err) {
998 				uio->uio_resid -= tocpy;
999 				uio->uio_loffset += tocpy;
1000 			}
1001 
1002 			if (abuf == dbuf_abuf)
1003 				XUIOSTAT_BUMP(xuiostat_rbuf_nocopy);
1004 			else
1005 				XUIOSTAT_BUMP(xuiostat_rbuf_copied);
1006 		} else {
1007 			err = uiomove((char *)db->db_data + bufoff, tocpy,
1008 			    UIO_READ, uio);
1009 		}
1010 		if (err)
1011 			break;
1012 
1013 		size -= tocpy;
1014 	}
1015 	dmu_buf_rele_array(dbp, numbufs, FTAG);
1016 
1017 	return (err);
1018 }
1019 
1020 static int
1021 dmu_write_uio_dnode(dnode_t *dn, uio_t *uio, uint64_t size, dmu_tx_t *tx)
1022 {
1023 	dmu_buf_t **dbp;
1024 	int numbufs;
1025 	int err = 0;
1026 	int i;
1027 
1028 	err = dmu_buf_hold_array_by_dnode(dn, uio->uio_loffset, size,
1029 	    FALSE, FTAG, &numbufs, &dbp, DMU_READ_PREFETCH);
1030 	if (err)
1031 		return (err);
1032 
1033 	for (i = 0; i < numbufs; i++) {
1034 		int tocpy;
1035 		int bufoff;
1036 		dmu_buf_t *db = dbp[i];
1037 
1038 		ASSERT(size > 0);
1039 
1040 		bufoff = uio->uio_loffset - db->db_offset;
1041 		tocpy = (int)MIN(db->db_size - bufoff, size);
1042 
1043 		ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size);
1044 
1045 		if (tocpy == db->db_size)
1046 			dmu_buf_will_fill(db, tx);
1047 		else
1048 			dmu_buf_will_dirty(db, tx);
1049 
1050 		/*
1051 		 * XXX uiomove could block forever (eg. nfs-backed
1052 		 * pages).  There needs to be a uiolockdown() function
1053 		 * to lock the pages in memory, so that uiomove won't
1054 		 * block.
1055 		 */
1056 		err = uiomove((char *)db->db_data + bufoff, tocpy,
1057 		    UIO_WRITE, uio);
1058 
1059 		if (tocpy == db->db_size)
1060 			dmu_buf_fill_done(db, tx);
1061 
1062 		if (err)
1063 			break;
1064 
1065 		size -= tocpy;
1066 	}
1067 
1068 	dmu_buf_rele_array(dbp, numbufs, FTAG);
1069 	return (err);
1070 }
1071 
1072 int
1073 dmu_write_uio_dbuf(dmu_buf_t *zdb, uio_t *uio, uint64_t size,
1074     dmu_tx_t *tx)
1075 {
1076 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)zdb;
1077 	dnode_t *dn;
1078 	int err;
1079 
1080 	if (size == 0)
1081 		return (0);
1082 
1083 	DB_DNODE_ENTER(db);
1084 	dn = DB_DNODE(db);
1085 	err = dmu_write_uio_dnode(dn, uio, size, tx);
1086 	DB_DNODE_EXIT(db);
1087 
1088 	return (err);
1089 }
1090 
1091 int
1092 dmu_write_uio(objset_t *os, uint64_t object, uio_t *uio, uint64_t size,
1093     dmu_tx_t *tx)
1094 {
1095 	dnode_t *dn;
1096 	int err;
1097 
1098 	if (size == 0)
1099 		return (0);
1100 
1101 	err = dnode_hold(os, object, FTAG, &dn);
1102 	if (err)
1103 		return (err);
1104 
1105 	err = dmu_write_uio_dnode(dn, uio, size, tx);
1106 
1107 	dnode_rele(dn, FTAG);
1108 
1109 	return (err);
1110 }
1111 
1112 int
1113 dmu_write_pages(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
1114     page_t *pp, dmu_tx_t *tx)
1115 {
1116 	dmu_buf_t **dbp;
1117 	int numbufs, i;
1118 	int err;
1119 
1120 	if (size == 0)
1121 		return (0);
1122 
1123 	err = dmu_buf_hold_array(os, object, offset, size,
1124 	    FALSE, FTAG, &numbufs, &dbp);
1125 	if (err)
1126 		return (err);
1127 
1128 	for (i = 0; i < numbufs; i++) {
1129 		int tocpy, copied, thiscpy;
1130 		int bufoff;
1131 		dmu_buf_t *db = dbp[i];
1132 		caddr_t va;
1133 
1134 		ASSERT(size > 0);
1135 		ASSERT3U(db->db_size, >=, PAGESIZE);
1136 
1137 		bufoff = offset - db->db_offset;
1138 		tocpy = (int)MIN(db->db_size - bufoff, size);
1139 
1140 		ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size);
1141 
1142 		if (tocpy == db->db_size)
1143 			dmu_buf_will_fill(db, tx);
1144 		else
1145 			dmu_buf_will_dirty(db, tx);
1146 
1147 		for (copied = 0; copied < tocpy; copied += PAGESIZE) {
1148 			ASSERT3U(pp->p_offset, ==, db->db_offset + bufoff);
1149 			thiscpy = MIN(PAGESIZE, tocpy - copied);
1150 			va = zfs_map_page(pp, S_READ);
1151 			bcopy(va, (char *)db->db_data + bufoff, thiscpy);
1152 			zfs_unmap_page(pp, va);
1153 			pp = pp->p_next;
1154 			bufoff += PAGESIZE;
1155 		}
1156 
1157 		if (tocpy == db->db_size)
1158 			dmu_buf_fill_done(db, tx);
1159 
1160 		offset += tocpy;
1161 		size -= tocpy;
1162 	}
1163 	dmu_buf_rele_array(dbp, numbufs, FTAG);
1164 	return (err);
1165 }
1166 #endif
1167 
1168 /*
1169  * Allocate a loaned anonymous arc buffer.
1170  */
1171 arc_buf_t *
1172 dmu_request_arcbuf(dmu_buf_t *handle, int size)
1173 {
1174 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)handle;
1175 	spa_t *spa;
1176 
1177 	DB_GET_SPA(&spa, db);
1178 	return (arc_loan_buf(spa, size));
1179 }
1180 
1181 /*
1182  * Free a loaned arc buffer.
1183  */
1184 void
1185 dmu_return_arcbuf(arc_buf_t *buf)
1186 {
1187 	arc_return_buf(buf, FTAG);
1188 	VERIFY(arc_buf_remove_ref(buf, FTAG));
1189 }
1190 
1191 /*
1192  * When possible directly assign passed loaned arc buffer to a dbuf.
1193  * If this is not possible copy the contents of passed arc buf via
1194  * dmu_write().
1195  */
1196 void
1197 dmu_assign_arcbuf(dmu_buf_t *handle, uint64_t offset, arc_buf_t *buf,
1198     dmu_tx_t *tx)
1199 {
1200 	dmu_buf_impl_t *dbuf = (dmu_buf_impl_t *)handle;
1201 	dnode_t *dn;
1202 	dmu_buf_impl_t *db;
1203 	uint32_t blksz = (uint32_t)arc_buf_size(buf);
1204 	uint64_t blkid;
1205 
1206 	DB_DNODE_ENTER(dbuf);
1207 	dn = DB_DNODE(dbuf);
1208 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
1209 	blkid = dbuf_whichblock(dn, offset);
1210 	VERIFY((db = dbuf_hold(dn, blkid, FTAG)) != NULL);
1211 	rw_exit(&dn->dn_struct_rwlock);
1212 	DB_DNODE_EXIT(dbuf);
1213 
1214 	if (offset == db->db.db_offset && blksz == db->db.db_size) {
1215 		dbuf_assign_arcbuf(db, buf, tx);
1216 		dbuf_rele(db, FTAG);
1217 	} else {
1218 		objset_t *os;
1219 		uint64_t object;
1220 
1221 		DB_DNODE_ENTER(dbuf);
1222 		dn = DB_DNODE(dbuf);
1223 		os = dn->dn_objset;
1224 		object = dn->dn_object;
1225 		DB_DNODE_EXIT(dbuf);
1226 
1227 		dbuf_rele(db, FTAG);
1228 		dmu_write(os, object, offset, blksz, buf->b_data, tx);
1229 		dmu_return_arcbuf(buf);
1230 		XUIOSTAT_BUMP(xuiostat_wbuf_copied);
1231 	}
1232 }
1233 
1234 typedef struct {
1235 	dbuf_dirty_record_t	*dsa_dr;
1236 	dmu_sync_cb_t		*dsa_done;
1237 	zgd_t			*dsa_zgd;
1238 	dmu_tx_t		*dsa_tx;
1239 } dmu_sync_arg_t;
1240 
1241 /* ARGSUSED */
1242 static void
1243 dmu_sync_ready(zio_t *zio, arc_buf_t *buf, void *varg)
1244 {
1245 	dmu_sync_arg_t *dsa = varg;
1246 	dmu_buf_t *db = dsa->dsa_zgd->zgd_db;
1247 	blkptr_t *bp = zio->io_bp;
1248 
1249 	if (zio->io_error == 0) {
1250 		if (BP_IS_HOLE(bp)) {
1251 			/*
1252 			 * A block of zeros may compress to a hole, but the
1253 			 * block size still needs to be known for replay.
1254 			 */
1255 			BP_SET_LSIZE(bp, db->db_size);
1256 		} else {
1257 			ASSERT(BP_GET_LEVEL(bp) == 0);
1258 			bp->blk_fill = 1;
1259 		}
1260 	}
1261 }
1262 
1263 static void
1264 dmu_sync_late_arrival_ready(zio_t *zio)
1265 {
1266 	dmu_sync_ready(zio, NULL, zio->io_private);
1267 }
1268 
1269 /* ARGSUSED */
1270 static void
1271 dmu_sync_done(zio_t *zio, arc_buf_t *buf, void *varg)
1272 {
1273 	dmu_sync_arg_t *dsa = varg;
1274 	dbuf_dirty_record_t *dr = dsa->dsa_dr;
1275 	dmu_buf_impl_t *db = dr->dr_dbuf;
1276 
1277 	mutex_enter(&db->db_mtx);
1278 	ASSERT(dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC);
1279 	if (zio->io_error == 0) {
1280 		dr->dt.dl.dr_nopwrite = !!(zio->io_flags & ZIO_FLAG_NOPWRITE);
1281 		if (dr->dt.dl.dr_nopwrite) {
1282 			blkptr_t *bp = zio->io_bp;
1283 			blkptr_t *bp_orig = &zio->io_bp_orig;
1284 			uint8_t chksum = BP_GET_CHECKSUM(bp_orig);
1285 
1286 			ASSERT(BP_EQUAL(bp, bp_orig));
1287 			ASSERT(zio->io_prop.zp_compress != ZIO_COMPRESS_OFF);
1288 			ASSERT(zio_checksum_table[chksum].ci_dedup);
1289 		}
1290 		dr->dt.dl.dr_overridden_by = *zio->io_bp;
1291 		dr->dt.dl.dr_override_state = DR_OVERRIDDEN;
1292 		dr->dt.dl.dr_copies = zio->io_prop.zp_copies;
1293 		if (BP_IS_HOLE(&dr->dt.dl.dr_overridden_by))
1294 			BP_ZERO(&dr->dt.dl.dr_overridden_by);
1295 	} else {
1296 		dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
1297 	}
1298 	cv_broadcast(&db->db_changed);
1299 	mutex_exit(&db->db_mtx);
1300 
1301 	dsa->dsa_done(dsa->dsa_zgd, zio->io_error);
1302 
1303 	kmem_free(dsa, sizeof (*dsa));
1304 }
1305 
1306 static void
1307 dmu_sync_late_arrival_done(zio_t *zio)
1308 {
1309 	blkptr_t *bp = zio->io_bp;
1310 	dmu_sync_arg_t *dsa = zio->io_private;
1311 	blkptr_t *bp_orig = &zio->io_bp_orig;
1312 
1313 	if (zio->io_error == 0 && !BP_IS_HOLE(bp)) {
1314 		/*
1315 		 * If we didn't allocate a new block (i.e. ZIO_FLAG_NOPWRITE)
1316 		 * then there is nothing to do here. Otherwise, free the
1317 		 * newly allocated block in this txg.
1318 		 */
1319 		if (zio->io_flags & ZIO_FLAG_NOPWRITE) {
1320 			ASSERT(BP_EQUAL(bp, bp_orig));
1321 		} else {
1322 			ASSERT(BP_IS_HOLE(bp_orig) || !BP_EQUAL(bp, bp_orig));
1323 			ASSERT(zio->io_bp->blk_birth == zio->io_txg);
1324 			ASSERT(zio->io_txg > spa_syncing_txg(zio->io_spa));
1325 			zio_free(zio->io_spa, zio->io_txg, zio->io_bp);
1326 		}
1327 	}
1328 
1329 	dmu_tx_commit(dsa->dsa_tx);
1330 
1331 	dsa->dsa_done(dsa->dsa_zgd, zio->io_error);
1332 
1333 	kmem_free(dsa, sizeof (*dsa));
1334 }
1335 
1336 static int
1337 dmu_sync_late_arrival(zio_t *pio, objset_t *os, dmu_sync_cb_t *done, zgd_t *zgd,
1338     zio_prop_t *zp, zbookmark_t *zb)
1339 {
1340 	dmu_sync_arg_t *dsa;
1341 	dmu_tx_t *tx;
1342 
1343 	tx = dmu_tx_create(os);
1344 	dmu_tx_hold_space(tx, zgd->zgd_db->db_size);
1345 	if (dmu_tx_assign(tx, TXG_WAIT) != 0) {
1346 		dmu_tx_abort(tx);
1347 		/* Make zl_get_data do txg_waited_synced() */
1348 		return (SET_ERROR(EIO));
1349 	}
1350 
1351 	dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_SLEEP);
1352 	dsa->dsa_dr = NULL;
1353 	dsa->dsa_done = done;
1354 	dsa->dsa_zgd = zgd;
1355 	dsa->dsa_tx = tx;
1356 
1357 	zio_nowait(zio_write(pio, os->os_spa, dmu_tx_get_txg(tx), zgd->zgd_bp,
1358 	    zgd->zgd_db->db_data, zgd->zgd_db->db_size, zp,
1359 	    dmu_sync_late_arrival_ready, dmu_sync_late_arrival_done, dsa,
1360 	    ZIO_PRIORITY_SYNC_WRITE, ZIO_FLAG_CANFAIL, zb));
1361 
1362 	return (0);
1363 }
1364 
1365 /*
1366  * Intent log support: sync the block associated with db to disk.
1367  * N.B. and XXX: the caller is responsible for making sure that the
1368  * data isn't changing while dmu_sync() is writing it.
1369  *
1370  * Return values:
1371  *
1372  *	EEXIST: this txg has already been synced, so there's nothing to do.
1373  *		The caller should not log the write.
1374  *
1375  *	ENOENT: the block was dbuf_free_range()'d, so there's nothing to do.
1376  *		The caller should not log the write.
1377  *
1378  *	EALREADY: this block is already in the process of being synced.
1379  *		The caller should track its progress (somehow).
1380  *
1381  *	EIO: could not do the I/O.
1382  *		The caller should do a txg_wait_synced().
1383  *
1384  *	0: the I/O has been initiated.
1385  *		The caller should log this blkptr in the done callback.
1386  *		It is possible that the I/O will fail, in which case
1387  *		the error will be reported to the done callback and
1388  *		propagated to pio from zio_done().
1389  */
1390 int
1391 dmu_sync(zio_t *pio, uint64_t txg, dmu_sync_cb_t *done, zgd_t *zgd)
1392 {
1393 	blkptr_t *bp = zgd->zgd_bp;
1394 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)zgd->zgd_db;
1395 	objset_t *os = db->db_objset;
1396 	dsl_dataset_t *ds = os->os_dsl_dataset;
1397 	dbuf_dirty_record_t *dr;
1398 	dmu_sync_arg_t *dsa;
1399 	zbookmark_t zb;
1400 	zio_prop_t zp;
1401 	dnode_t *dn;
1402 
1403 	ASSERT(pio != NULL);
1404 	ASSERT(txg != 0);
1405 
1406 	SET_BOOKMARK(&zb, ds->ds_object,
1407 	    db->db.db_object, db->db_level, db->db_blkid);
1408 
1409 	DB_DNODE_ENTER(db);
1410 	dn = DB_DNODE(db);
1411 	dmu_write_policy(os, dn, db->db_level, WP_DMU_SYNC, &zp);
1412 	DB_DNODE_EXIT(db);
1413 
1414 	/*
1415 	 * If we're frozen (running ziltest), we always need to generate a bp.
1416 	 */
1417 	if (txg > spa_freeze_txg(os->os_spa))
1418 		return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb));
1419 
1420 	/*
1421 	 * Grabbing db_mtx now provides a barrier between dbuf_sync_leaf()
1422 	 * and us.  If we determine that this txg is not yet syncing,
1423 	 * but it begins to sync a moment later, that's OK because the
1424 	 * sync thread will block in dbuf_sync_leaf() until we drop db_mtx.
1425 	 */
1426 	mutex_enter(&db->db_mtx);
1427 
1428 	if (txg <= spa_last_synced_txg(os->os_spa)) {
1429 		/*
1430 		 * This txg has already synced.  There's nothing to do.
1431 		 */
1432 		mutex_exit(&db->db_mtx);
1433 		return (SET_ERROR(EEXIST));
1434 	}
1435 
1436 	if (txg <= spa_syncing_txg(os->os_spa)) {
1437 		/*
1438 		 * This txg is currently syncing, so we can't mess with
1439 		 * the dirty record anymore; just write a new log block.
1440 		 */
1441 		mutex_exit(&db->db_mtx);
1442 		return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb));
1443 	}
1444 
1445 	dr = db->db_last_dirty;
1446 	while (dr && dr->dr_txg != txg)
1447 		dr = dr->dr_next;
1448 
1449 	if (dr == NULL) {
1450 		/*
1451 		 * There's no dr for this dbuf, so it must have been freed.
1452 		 * There's no need to log writes to freed blocks, so we're done.
1453 		 */
1454 		mutex_exit(&db->db_mtx);
1455 		return (SET_ERROR(ENOENT));
1456 	}
1457 
1458 	ASSERT(dr->dr_next == NULL || dr->dr_next->dr_txg < txg);
1459 
1460 	/*
1461 	 * Assume the on-disk data is X, the current syncing data is Y,
1462 	 * and the current in-memory data is Z (currently in dmu_sync).
1463 	 * X and Z are identical but Y is has been modified. Normally,
1464 	 * when X and Z are the same we will perform a nopwrite but if Y
1465 	 * is different we must disable nopwrite since the resulting write
1466 	 * of Y to disk can free the block containing X. If we allowed a
1467 	 * nopwrite to occur the block pointing to Z would reference a freed
1468 	 * block. Since this is a rare case we simplify this by disabling
1469 	 * nopwrite if the current dmu_sync-ing dbuf has been modified in
1470 	 * a previous transaction.
1471 	 */
1472 	if (dr->dr_next)
1473 		zp.zp_nopwrite = B_FALSE;
1474 
1475 	ASSERT(dr->dr_txg == txg);
1476 	if (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC ||
1477 	    dr->dt.dl.dr_override_state == DR_OVERRIDDEN) {
1478 		/*
1479 		 * We have already issued a sync write for this buffer,
1480 		 * or this buffer has already been synced.  It could not
1481 		 * have been dirtied since, or we would have cleared the state.
1482 		 */
1483 		mutex_exit(&db->db_mtx);
1484 		return (SET_ERROR(EALREADY));
1485 	}
1486 
1487 	ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN);
1488 	dr->dt.dl.dr_override_state = DR_IN_DMU_SYNC;
1489 	mutex_exit(&db->db_mtx);
1490 
1491 	dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_SLEEP);
1492 	dsa->dsa_dr = dr;
1493 	dsa->dsa_done = done;
1494 	dsa->dsa_zgd = zgd;
1495 	dsa->dsa_tx = NULL;
1496 
1497 	zio_nowait(arc_write(pio, os->os_spa, txg,
1498 	    bp, dr->dt.dl.dr_data, DBUF_IS_L2CACHEABLE(db),
1499 	    DBUF_IS_L2COMPRESSIBLE(db), &zp, dmu_sync_ready, dmu_sync_done,
1500 	    dsa, ZIO_PRIORITY_SYNC_WRITE, ZIO_FLAG_CANFAIL, &zb));
1501 
1502 	return (0);
1503 }
1504 
1505 int
1506 dmu_object_set_blocksize(objset_t *os, uint64_t object, uint64_t size, int ibs,
1507 	dmu_tx_t *tx)
1508 {
1509 	dnode_t *dn;
1510 	int err;
1511 
1512 	err = dnode_hold(os, object, FTAG, &dn);
1513 	if (err)
1514 		return (err);
1515 	err = dnode_set_blksz(dn, size, ibs, tx);
1516 	dnode_rele(dn, FTAG);
1517 	return (err);
1518 }
1519 
1520 void
1521 dmu_object_set_checksum(objset_t *os, uint64_t object, uint8_t checksum,
1522 	dmu_tx_t *tx)
1523 {
1524 	dnode_t *dn;
1525 
1526 	/* XXX assumes dnode_hold will not get an i/o error */
1527 	(void) dnode_hold(os, object, FTAG, &dn);
1528 	ASSERT(checksum < ZIO_CHECKSUM_FUNCTIONS);
1529 	dn->dn_checksum = checksum;
1530 	dnode_setdirty(dn, tx);
1531 	dnode_rele(dn, FTAG);
1532 }
1533 
1534 void
1535 dmu_object_set_compress(objset_t *os, uint64_t object, uint8_t compress,
1536 	dmu_tx_t *tx)
1537 {
1538 	dnode_t *dn;
1539 
1540 	/* XXX assumes dnode_hold will not get an i/o error */
1541 	(void) dnode_hold(os, object, FTAG, &dn);
1542 	ASSERT(compress < ZIO_COMPRESS_FUNCTIONS);
1543 	dn->dn_compress = compress;
1544 	dnode_setdirty(dn, tx);
1545 	dnode_rele(dn, FTAG);
1546 }
1547 
1548 int zfs_mdcomp_disable = 0;
1549 
1550 void
1551 dmu_write_policy(objset_t *os, dnode_t *dn, int level, int wp, zio_prop_t *zp)
1552 {
1553 	dmu_object_type_t type = dn ? dn->dn_type : DMU_OT_OBJSET;
1554 	boolean_t ismd = (level > 0 || DMU_OT_IS_METADATA(type) ||
1555 	    (wp & WP_SPILL));
1556 	enum zio_checksum checksum = os->os_checksum;
1557 	enum zio_compress compress = os->os_compress;
1558 	enum zio_checksum dedup_checksum = os->os_dedup_checksum;
1559 	boolean_t dedup = B_FALSE;
1560 	boolean_t nopwrite = B_FALSE;
1561 	boolean_t dedup_verify = os->os_dedup_verify;
1562 	int copies = os->os_copies;
1563 
1564 	/*
1565 	 * We maintain different write policies for each of the following
1566 	 * types of data:
1567 	 *	 1. metadata
1568 	 *	 2. preallocated blocks (i.e. level-0 blocks of a dump device)
1569 	 *	 3. all other level 0 blocks
1570 	 */
1571 	if (ismd) {
1572 		/*
1573 		 * XXX -- we should design a compression algorithm
1574 		 * that specializes in arrays of bps.
1575 		 */
1576 		compress = zfs_mdcomp_disable ? ZIO_COMPRESS_EMPTY :
1577 		    ZIO_COMPRESS_LZJB;
1578 
1579 		/*
1580 		 * Metadata always gets checksummed.  If the data
1581 		 * checksum is multi-bit correctable, and it's not a
1582 		 * ZBT-style checksum, then it's suitable for metadata
1583 		 * as well.  Otherwise, the metadata checksum defaults
1584 		 * to fletcher4.
1585 		 */
1586 		if (zio_checksum_table[checksum].ci_correctable < 1 ||
1587 		    zio_checksum_table[checksum].ci_eck)
1588 			checksum = ZIO_CHECKSUM_FLETCHER_4;
1589 	} else if (wp & WP_NOFILL) {
1590 		ASSERT(level == 0);
1591 
1592 		/*
1593 		 * If we're writing preallocated blocks, we aren't actually
1594 		 * writing them so don't set any policy properties.  These
1595 		 * blocks are currently only used by an external subsystem
1596 		 * outside of zfs (i.e. dump) and not written by the zio
1597 		 * pipeline.
1598 		 */
1599 		compress = ZIO_COMPRESS_OFF;
1600 		checksum = ZIO_CHECKSUM_OFF;
1601 	} else {
1602 		compress = zio_compress_select(dn->dn_compress, compress);
1603 
1604 		checksum = (dedup_checksum == ZIO_CHECKSUM_OFF) ?
1605 		    zio_checksum_select(dn->dn_checksum, checksum) :
1606 		    dedup_checksum;
1607 
1608 		/*
1609 		 * Determine dedup setting.  If we are in dmu_sync(),
1610 		 * we won't actually dedup now because that's all
1611 		 * done in syncing context; but we do want to use the
1612 		 * dedup checkum.  If the checksum is not strong
1613 		 * enough to ensure unique signatures, force
1614 		 * dedup_verify.
1615 		 */
1616 		if (dedup_checksum != ZIO_CHECKSUM_OFF) {
1617 			dedup = (wp & WP_DMU_SYNC) ? B_FALSE : B_TRUE;
1618 			if (!zio_checksum_table[checksum].ci_dedup)
1619 				dedup_verify = B_TRUE;
1620 		}
1621 
1622 		/*
1623 		 * Enable nopwrite if we have a cryptographically secure
1624 		 * checksum that has no known collisions (i.e. SHA-256)
1625 		 * and compression is enabled.  We don't enable nopwrite if
1626 		 * dedup is enabled as the two features are mutually exclusive.
1627 		 */
1628 		nopwrite = (!dedup && zio_checksum_table[checksum].ci_dedup &&
1629 		    compress != ZIO_COMPRESS_OFF && zfs_nopwrite_enabled);
1630 	}
1631 
1632 	zp->zp_checksum = checksum;
1633 	zp->zp_compress = compress;
1634 	zp->zp_type = (wp & WP_SPILL) ? dn->dn_bonustype : type;
1635 	zp->zp_level = level;
1636 	zp->zp_copies = MIN(copies + ismd, spa_max_replication(os->os_spa));
1637 	zp->zp_dedup = dedup;
1638 	zp->zp_dedup_verify = dedup && dedup_verify;
1639 	zp->zp_nopwrite = nopwrite;
1640 }
1641 
1642 int
1643 dmu_offset_next(objset_t *os, uint64_t object, boolean_t hole, uint64_t *off)
1644 {
1645 	dnode_t *dn;
1646 	int i, err;
1647 
1648 	err = dnode_hold(os, object, FTAG, &dn);
1649 	if (err)
1650 		return (err);
1651 	/*
1652 	 * Sync any current changes before
1653 	 * we go trundling through the block pointers.
1654 	 */
1655 	for (i = 0; i < TXG_SIZE; i++) {
1656 		if (list_link_active(&dn->dn_dirty_link[i]))
1657 			break;
1658 	}
1659 	if (i != TXG_SIZE) {
1660 		dnode_rele(dn, FTAG);
1661 		txg_wait_synced(dmu_objset_pool(os), 0);
1662 		err = dnode_hold(os, object, FTAG, &dn);
1663 		if (err)
1664 			return (err);
1665 	}
1666 
1667 	err = dnode_next_offset(dn, (hole ? DNODE_FIND_HOLE : 0), off, 1, 1, 0);
1668 	dnode_rele(dn, FTAG);
1669 
1670 	return (err);
1671 }
1672 
1673 void
1674 dmu_object_info_from_dnode(dnode_t *dn, dmu_object_info_t *doi)
1675 {
1676 	dnode_phys_t *dnp;
1677 
1678 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
1679 	mutex_enter(&dn->dn_mtx);
1680 
1681 	dnp = dn->dn_phys;
1682 
1683 	doi->doi_data_block_size = dn->dn_datablksz;
1684 	doi->doi_metadata_block_size = dn->dn_indblkshift ?
1685 	    1ULL << dn->dn_indblkshift : 0;
1686 	doi->doi_type = dn->dn_type;
1687 	doi->doi_bonus_type = dn->dn_bonustype;
1688 	doi->doi_bonus_size = dn->dn_bonuslen;
1689 	doi->doi_indirection = dn->dn_nlevels;
1690 	doi->doi_checksum = dn->dn_checksum;
1691 	doi->doi_compress = dn->dn_compress;
1692 	doi->doi_physical_blocks_512 = (DN_USED_BYTES(dnp) + 256) >> 9;
1693 	doi->doi_max_offset = (dn->dn_maxblkid + 1) * dn->dn_datablksz;
1694 	doi->doi_fill_count = 0;
1695 	for (int i = 0; i < dnp->dn_nblkptr; i++)
1696 		doi->doi_fill_count += dnp->dn_blkptr[i].blk_fill;
1697 
1698 	mutex_exit(&dn->dn_mtx);
1699 	rw_exit(&dn->dn_struct_rwlock);
1700 }
1701 
1702 /*
1703  * Get information on a DMU object.
1704  * If doi is NULL, just indicates whether the object exists.
1705  */
1706 int
1707 dmu_object_info(objset_t *os, uint64_t object, dmu_object_info_t *doi)
1708 {
1709 	dnode_t *dn;
1710 	int err = dnode_hold(os, object, FTAG, &dn);
1711 
1712 	if (err)
1713 		return (err);
1714 
1715 	if (doi != NULL)
1716 		dmu_object_info_from_dnode(dn, doi);
1717 
1718 	dnode_rele(dn, FTAG);
1719 	return (0);
1720 }
1721 
1722 /*
1723  * As above, but faster; can be used when you have a held dbuf in hand.
1724  */
1725 void
1726 dmu_object_info_from_db(dmu_buf_t *db_fake, dmu_object_info_t *doi)
1727 {
1728 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
1729 
1730 	DB_DNODE_ENTER(db);
1731 	dmu_object_info_from_dnode(DB_DNODE(db), doi);
1732 	DB_DNODE_EXIT(db);
1733 }
1734 
1735 /*
1736  * Faster still when you only care about the size.
1737  * This is specifically optimized for zfs_getattr().
1738  */
1739 void
1740 dmu_object_size_from_db(dmu_buf_t *db_fake, uint32_t *blksize,
1741     u_longlong_t *nblk512)
1742 {
1743 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
1744 	dnode_t *dn;
1745 
1746 	DB_DNODE_ENTER(db);
1747 	dn = DB_DNODE(db);
1748 
1749 	*blksize = dn->dn_datablksz;
1750 	/* add 1 for dnode space */
1751 	*nblk512 = ((DN_USED_BYTES(dn->dn_phys) + SPA_MINBLOCKSIZE/2) >>
1752 	    SPA_MINBLOCKSHIFT) + 1;
1753 	DB_DNODE_EXIT(db);
1754 }
1755 
1756 void
1757 byteswap_uint64_array(void *vbuf, size_t size)
1758 {
1759 	uint64_t *buf = vbuf;
1760 	size_t count = size >> 3;
1761 	int i;
1762 
1763 	ASSERT((size & 7) == 0);
1764 
1765 	for (i = 0; i < count; i++)
1766 		buf[i] = BSWAP_64(buf[i]);
1767 }
1768 
1769 void
1770 byteswap_uint32_array(void *vbuf, size_t size)
1771 {
1772 	uint32_t *buf = vbuf;
1773 	size_t count = size >> 2;
1774 	int i;
1775 
1776 	ASSERT((size & 3) == 0);
1777 
1778 	for (i = 0; i < count; i++)
1779 		buf[i] = BSWAP_32(buf[i]);
1780 }
1781 
1782 void
1783 byteswap_uint16_array(void *vbuf, size_t size)
1784 {
1785 	uint16_t *buf = vbuf;
1786 	size_t count = size >> 1;
1787 	int i;
1788 
1789 	ASSERT((size & 1) == 0);
1790 
1791 	for (i = 0; i < count; i++)
1792 		buf[i] = BSWAP_16(buf[i]);
1793 }
1794 
1795 /* ARGSUSED */
1796 void
1797 byteswap_uint8_array(void *vbuf, size_t size)
1798 {
1799 }
1800 
1801 void
1802 dmu_init(void)
1803 {
1804 	zfs_dbgmsg_init();
1805 	sa_cache_init();
1806 	xuio_stat_init();
1807 	dmu_objset_init();
1808 	dnode_init();
1809 	dbuf_init();
1810 	zfetch_init();
1811 	l2arc_init();
1812 	arc_init();
1813 }
1814 
1815 void
1816 dmu_fini(void)
1817 {
1818 	arc_fini(); /* arc depends on l2arc, so arc must go first */
1819 	l2arc_fini();
1820 	zfetch_fini();
1821 	dbuf_fini();
1822 	dnode_fini();
1823 	dmu_objset_fini();
1824 	xuio_stat_fini();
1825 	sa_cache_fini();
1826 	zfs_dbgmsg_fini();
1827 }
1828