1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 /* 29 * DVA-based Adjustable Relpacement Cache 30 * 31 * While much of the theory of operation used here is 32 * based on the self-tuning, low overhead replacement cache 33 * presented by Megiddo and Modha at FAST 2003, there are some 34 * significant differences: 35 * 36 * 1. The Megiddo and Modha model assumes any page is evictable. 37 * Pages in its cache cannot be "locked" into memory. This makes 38 * the eviction algorithm simple: evict the last page in the list. 39 * This also make the performance characteristics easy to reason 40 * about. Our cache is not so simple. At any given moment, some 41 * subset of the blocks in the cache are un-evictable because we 42 * have handed out a reference to them. Blocks are only evictable 43 * when there are no external references active. This makes 44 * eviction far more problematic: we choose to evict the evictable 45 * blocks that are the "lowest" in the list. 46 * 47 * There are times when it is not possible to evict the requested 48 * space. In these circumstances we are unable to adjust the cache 49 * size. To prevent the cache growing unbounded at these times we 50 * implement a "cache throttle" that slowes the flow of new data 51 * into the cache until we can make space avaiable. 52 * 53 * 2. The Megiddo and Modha model assumes a fixed cache size. 54 * Pages are evicted when the cache is full and there is a cache 55 * miss. Our model has a variable sized cache. It grows with 56 * high use, but also tries to react to memory preasure from the 57 * operating system: decreasing its size when system memory is 58 * tight. 59 * 60 * 3. The Megiddo and Modha model assumes a fixed page size. All 61 * elements of the cache are therefor exactly the same size. So 62 * when adjusting the cache size following a cache miss, its simply 63 * a matter of choosing a single page to evict. In our model, we 64 * have variable sized cache blocks (rangeing from 512 bytes to 65 * 128K bytes). We therefor choose a set of blocks to evict to make 66 * space for a cache miss that approximates as closely as possible 67 * the space used by the new block. 68 * 69 * See also: "ARC: A Self-Tuning, Low Overhead Replacement Cache" 70 * by N. Megiddo & D. Modha, FAST 2003 71 */ 72 73 /* 74 * The locking model: 75 * 76 * A new reference to a cache buffer can be obtained in two 77 * ways: 1) via a hash table lookup using the DVA as a key, 78 * or 2) via one of the ARC lists. The arc_read() inerface 79 * uses method 1, while the internal arc algorithms for 80 * adjusting the cache use method 2. We therefor provide two 81 * types of locks: 1) the hash table lock array, and 2) the 82 * arc list locks. 83 * 84 * Buffers do not have their own mutexs, rather they rely on the 85 * hash table mutexs for the bulk of their protection (i.e. most 86 * fields in the arc_buf_hdr_t are protected by these mutexs). 87 * 88 * buf_hash_find() returns the appropriate mutex (held) when it 89 * locates the requested buffer in the hash table. It returns 90 * NULL for the mutex if the buffer was not in the table. 91 * 92 * buf_hash_remove() expects the appropriate hash mutex to be 93 * already held before it is invoked. 94 * 95 * Each arc state also has a mutex which is used to protect the 96 * buffer list associated with the state. When attempting to 97 * obtain a hash table lock while holding an arc list lock you 98 * must use: mutex_tryenter() to avoid deadlock. Also note that 99 * the active state mutex must be held before the ghost state mutex. 100 * 101 * Arc buffers may have an associated eviction callback function. 102 * This function will be invoked prior to removing the buffer (e.g. 103 * in arc_do_user_evicts()). Note however that the data associated 104 * with the buffer may be evicted prior to the callback. The callback 105 * must be made with *no locks held* (to prevent deadlock). Additionally, 106 * the users of callbacks must ensure that their private data is 107 * protected from simultaneous callbacks from arc_buf_evict() 108 * and arc_do_user_evicts(). 109 * 110 * Note that the majority of the performance stats are manipulated 111 * with atomic operations. 112 */ 113 114 #include <sys/spa.h> 115 #include <sys/zio.h> 116 #include <sys/zfs_context.h> 117 #include <sys/arc.h> 118 #include <sys/refcount.h> 119 #ifdef _KERNEL 120 #include <sys/vmsystm.h> 121 #include <vm/anon.h> 122 #include <sys/fs/swapnode.h> 123 #include <sys/dnlc.h> 124 #endif 125 #include <sys/callb.h> 126 127 static kmutex_t arc_reclaim_thr_lock; 128 static kcondvar_t arc_reclaim_thr_cv; /* used to signal reclaim thr */ 129 static uint8_t arc_thread_exit; 130 131 #define ARC_REDUCE_DNLC_PERCENT 3 132 uint_t arc_reduce_dnlc_percent = ARC_REDUCE_DNLC_PERCENT; 133 134 typedef enum arc_reclaim_strategy { 135 ARC_RECLAIM_AGGR, /* Aggressive reclaim strategy */ 136 ARC_RECLAIM_CONS /* Conservative reclaim strategy */ 137 } arc_reclaim_strategy_t; 138 139 /* number of seconds before growing cache again */ 140 static int arc_grow_retry = 60; 141 142 /* 143 * minimum lifespan of a prefetch block in clock ticks 144 * (initialized in arc_init()) 145 */ 146 static int arc_min_prefetch_lifespan; 147 148 static kmutex_t arc_reclaim_lock; 149 static int arc_dead; 150 151 /* 152 * These tunables are for performance analysis. 153 */ 154 uint64_t zfs_arc_max; 155 uint64_t zfs_arc_min; 156 157 /* 158 * Note that buffers can be on one of 5 states: 159 * ARC_anon - anonymous (discussed below) 160 * ARC_mru - recently used, currently cached 161 * ARC_mru_ghost - recentely used, no longer in cache 162 * ARC_mfu - frequently used, currently cached 163 * ARC_mfu_ghost - frequently used, no longer in cache 164 * When there are no active references to the buffer, they 165 * are linked onto one of the lists in arc. These are the 166 * only buffers that can be evicted or deleted. 167 * 168 * Anonymous buffers are buffers that are not associated with 169 * a DVA. These are buffers that hold dirty block copies 170 * before they are written to stable storage. By definition, 171 * they are "ref'd" and are considered part of arc_mru 172 * that cannot be freed. Generally, they will aquire a DVA 173 * as they are written and migrate onto the arc_mru list. 174 */ 175 176 typedef struct arc_state { 177 list_t list; /* linked list of evictable buffer in state */ 178 uint64_t lsize; /* total size of buffers in the linked list */ 179 uint64_t size; /* total size of all buffers in this state */ 180 uint64_t hits; 181 kmutex_t mtx; 182 } arc_state_t; 183 184 /* The 5 states: */ 185 static arc_state_t ARC_anon; 186 static arc_state_t ARC_mru; 187 static arc_state_t ARC_mru_ghost; 188 static arc_state_t ARC_mfu; 189 static arc_state_t ARC_mfu_ghost; 190 191 static struct arc { 192 arc_state_t *anon; 193 arc_state_t *mru; 194 arc_state_t *mru_ghost; 195 arc_state_t *mfu; 196 arc_state_t *mfu_ghost; 197 uint64_t size; /* Actual total arc size */ 198 uint64_t p; /* Target size (in bytes) of mru */ 199 uint64_t c; /* Target size of cache (in bytes) */ 200 uint64_t c_min; /* Minimum target cache size */ 201 uint64_t c_max; /* Maximum target cache size */ 202 203 /* performance stats */ 204 uint64_t hits; 205 uint64_t misses; 206 uint64_t deleted; 207 uint64_t recycle_miss; 208 uint64_t mutex_miss; 209 uint64_t evict_skip; 210 uint64_t hash_elements; 211 uint64_t hash_elements_max; 212 uint64_t hash_collisions; 213 uint64_t hash_chains; 214 uint32_t hash_chain_max; 215 216 int no_grow; /* Don't try to grow cache size */ 217 } arc; 218 219 static uint64_t arc_tempreserve; 220 221 typedef struct arc_callback arc_callback_t; 222 223 struct arc_callback { 224 arc_done_func_t *acb_done; 225 void *acb_private; 226 arc_byteswap_func_t *acb_byteswap; 227 arc_buf_t *acb_buf; 228 zio_t *acb_zio_dummy; 229 arc_callback_t *acb_next; 230 }; 231 232 struct arc_buf_hdr { 233 /* immutable */ 234 uint64_t b_size; 235 spa_t *b_spa; 236 237 /* protected by hash lock */ 238 dva_t b_dva; 239 uint64_t b_birth; 240 uint64_t b_cksum0; 241 242 arc_buf_hdr_t *b_hash_next; 243 arc_buf_t *b_buf; 244 uint32_t b_flags; 245 uint32_t b_datacnt; 246 247 kcondvar_t b_cv; 248 arc_callback_t *b_acb; 249 250 /* protected by arc state mutex */ 251 arc_state_t *b_state; 252 list_node_t b_arc_node; 253 254 /* updated atomically */ 255 clock_t b_arc_access; 256 257 /* self protecting */ 258 refcount_t b_refcnt; 259 }; 260 261 static arc_buf_t *arc_eviction_list; 262 static kmutex_t arc_eviction_mtx; 263 static arc_buf_hdr_t arc_eviction_hdr; 264 static void arc_get_data_buf(arc_buf_t *buf); 265 static void arc_access(arc_buf_hdr_t *buf, kmutex_t *hash_lock); 266 267 #define GHOST_STATE(state) \ 268 ((state) == arc.mru_ghost || (state) == arc.mfu_ghost) 269 270 /* 271 * Private ARC flags. These flags are private ARC only flags that will show up 272 * in b_flags in the arc_hdr_buf_t. Some flags are publicly declared, and can 273 * be passed in as arc_flags in things like arc_read. However, these flags 274 * should never be passed and should only be set by ARC code. When adding new 275 * public flags, make sure not to smash the private ones. 276 */ 277 278 #define ARC_IN_HASH_TABLE (1 << 9) /* this buffer is hashed */ 279 #define ARC_IO_IN_PROGRESS (1 << 10) /* I/O in progress for buf */ 280 #define ARC_IO_ERROR (1 << 11) /* I/O failed for buf */ 281 #define ARC_FREED_IN_READ (1 << 12) /* buf freed while in read */ 282 #define ARC_BUF_AVAILABLE (1 << 13) /* block not in active use */ 283 #define ARC_INDIRECT (1 << 14) /* this is an indirect block */ 284 285 #define HDR_IN_HASH_TABLE(hdr) ((hdr)->b_flags & ARC_IN_HASH_TABLE) 286 #define HDR_IO_IN_PROGRESS(hdr) ((hdr)->b_flags & ARC_IO_IN_PROGRESS) 287 #define HDR_IO_ERROR(hdr) ((hdr)->b_flags & ARC_IO_ERROR) 288 #define HDR_FREED_IN_READ(hdr) ((hdr)->b_flags & ARC_FREED_IN_READ) 289 #define HDR_BUF_AVAILABLE(hdr) ((hdr)->b_flags & ARC_BUF_AVAILABLE) 290 291 /* 292 * Hash table routines 293 */ 294 295 #define HT_LOCK_PAD 64 296 297 struct ht_lock { 298 kmutex_t ht_lock; 299 #ifdef _KERNEL 300 unsigned char pad[(HT_LOCK_PAD - sizeof (kmutex_t))]; 301 #endif 302 }; 303 304 #define BUF_LOCKS 256 305 typedef struct buf_hash_table { 306 uint64_t ht_mask; 307 arc_buf_hdr_t **ht_table; 308 struct ht_lock ht_locks[BUF_LOCKS]; 309 } buf_hash_table_t; 310 311 static buf_hash_table_t buf_hash_table; 312 313 #define BUF_HASH_INDEX(spa, dva, birth) \ 314 (buf_hash(spa, dva, birth) & buf_hash_table.ht_mask) 315 #define BUF_HASH_LOCK_NTRY(idx) (buf_hash_table.ht_locks[idx & (BUF_LOCKS-1)]) 316 #define BUF_HASH_LOCK(idx) (&(BUF_HASH_LOCK_NTRY(idx).ht_lock)) 317 #define HDR_LOCK(buf) \ 318 (BUF_HASH_LOCK(BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth))) 319 320 uint64_t zfs_crc64_table[256]; 321 322 static uint64_t 323 buf_hash(spa_t *spa, dva_t *dva, uint64_t birth) 324 { 325 uintptr_t spav = (uintptr_t)spa; 326 uint8_t *vdva = (uint8_t *)dva; 327 uint64_t crc = -1ULL; 328 int i; 329 330 ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY); 331 332 for (i = 0; i < sizeof (dva_t); i++) 333 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ vdva[i]) & 0xFF]; 334 335 crc ^= (spav>>8) ^ birth; 336 337 return (crc); 338 } 339 340 #define BUF_EMPTY(buf) \ 341 ((buf)->b_dva.dva_word[0] == 0 && \ 342 (buf)->b_dva.dva_word[1] == 0 && \ 343 (buf)->b_birth == 0) 344 345 #define BUF_EQUAL(spa, dva, birth, buf) \ 346 ((buf)->b_dva.dva_word[0] == (dva)->dva_word[0]) && \ 347 ((buf)->b_dva.dva_word[1] == (dva)->dva_word[1]) && \ 348 ((buf)->b_birth == birth) && ((buf)->b_spa == spa) 349 350 static arc_buf_hdr_t * 351 buf_hash_find(spa_t *spa, dva_t *dva, uint64_t birth, kmutex_t **lockp) 352 { 353 uint64_t idx = BUF_HASH_INDEX(spa, dva, birth); 354 kmutex_t *hash_lock = BUF_HASH_LOCK(idx); 355 arc_buf_hdr_t *buf; 356 357 mutex_enter(hash_lock); 358 for (buf = buf_hash_table.ht_table[idx]; buf != NULL; 359 buf = buf->b_hash_next) { 360 if (BUF_EQUAL(spa, dva, birth, buf)) { 361 *lockp = hash_lock; 362 return (buf); 363 } 364 } 365 mutex_exit(hash_lock); 366 *lockp = NULL; 367 return (NULL); 368 } 369 370 /* 371 * Insert an entry into the hash table. If there is already an element 372 * equal to elem in the hash table, then the already existing element 373 * will be returned and the new element will not be inserted. 374 * Otherwise returns NULL. 375 */ 376 static arc_buf_hdr_t * 377 buf_hash_insert(arc_buf_hdr_t *buf, kmutex_t **lockp) 378 { 379 uint64_t idx = BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth); 380 kmutex_t *hash_lock = BUF_HASH_LOCK(idx); 381 arc_buf_hdr_t *fbuf; 382 uint32_t max, i; 383 384 ASSERT(!HDR_IN_HASH_TABLE(buf)); 385 *lockp = hash_lock; 386 mutex_enter(hash_lock); 387 for (fbuf = buf_hash_table.ht_table[idx], i = 0; fbuf != NULL; 388 fbuf = fbuf->b_hash_next, i++) { 389 if (BUF_EQUAL(buf->b_spa, &buf->b_dva, buf->b_birth, fbuf)) 390 return (fbuf); 391 } 392 393 buf->b_hash_next = buf_hash_table.ht_table[idx]; 394 buf_hash_table.ht_table[idx] = buf; 395 buf->b_flags |= ARC_IN_HASH_TABLE; 396 397 /* collect some hash table performance data */ 398 if (i > 0) { 399 atomic_add_64(&arc.hash_collisions, 1); 400 if (i == 1) 401 atomic_add_64(&arc.hash_chains, 1); 402 } 403 while (i > (max = arc.hash_chain_max) && 404 max != atomic_cas_32(&arc.hash_chain_max, max, i)) { 405 continue; 406 } 407 atomic_add_64(&arc.hash_elements, 1); 408 if (arc.hash_elements > arc.hash_elements_max) 409 atomic_add_64(&arc.hash_elements_max, 1); 410 411 return (NULL); 412 } 413 414 static void 415 buf_hash_remove(arc_buf_hdr_t *buf) 416 { 417 arc_buf_hdr_t *fbuf, **bufp; 418 uint64_t idx = BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth); 419 420 ASSERT(MUTEX_HELD(BUF_HASH_LOCK(idx))); 421 ASSERT(HDR_IN_HASH_TABLE(buf)); 422 423 bufp = &buf_hash_table.ht_table[idx]; 424 while ((fbuf = *bufp) != buf) { 425 ASSERT(fbuf != NULL); 426 bufp = &fbuf->b_hash_next; 427 } 428 *bufp = buf->b_hash_next; 429 buf->b_hash_next = NULL; 430 buf->b_flags &= ~ARC_IN_HASH_TABLE; 431 432 /* collect some hash table performance data */ 433 atomic_add_64(&arc.hash_elements, -1); 434 if (buf_hash_table.ht_table[idx] && 435 buf_hash_table.ht_table[idx]->b_hash_next == NULL) 436 atomic_add_64(&arc.hash_chains, -1); 437 } 438 439 /* 440 * Global data structures and functions for the buf kmem cache. 441 */ 442 static kmem_cache_t *hdr_cache; 443 static kmem_cache_t *buf_cache; 444 445 static void 446 buf_fini(void) 447 { 448 int i; 449 450 kmem_free(buf_hash_table.ht_table, 451 (buf_hash_table.ht_mask + 1) * sizeof (void *)); 452 for (i = 0; i < BUF_LOCKS; i++) 453 mutex_destroy(&buf_hash_table.ht_locks[i].ht_lock); 454 kmem_cache_destroy(hdr_cache); 455 kmem_cache_destroy(buf_cache); 456 } 457 458 /* 459 * Constructor callback - called when the cache is empty 460 * and a new buf is requested. 461 */ 462 /* ARGSUSED */ 463 static int 464 hdr_cons(void *vbuf, void *unused, int kmflag) 465 { 466 arc_buf_hdr_t *buf = vbuf; 467 468 bzero(buf, sizeof (arc_buf_hdr_t)); 469 refcount_create(&buf->b_refcnt); 470 cv_init(&buf->b_cv, NULL, CV_DEFAULT, NULL); 471 return (0); 472 } 473 474 /* 475 * Destructor callback - called when a cached buf is 476 * no longer required. 477 */ 478 /* ARGSUSED */ 479 static void 480 hdr_dest(void *vbuf, void *unused) 481 { 482 arc_buf_hdr_t *buf = vbuf; 483 484 refcount_destroy(&buf->b_refcnt); 485 cv_destroy(&buf->b_cv); 486 } 487 488 static int arc_reclaim_needed(void); 489 void arc_kmem_reclaim(void); 490 491 /* 492 * Reclaim callback -- invoked when memory is low. 493 */ 494 /* ARGSUSED */ 495 static void 496 hdr_recl(void *unused) 497 { 498 dprintf("hdr_recl called\n"); 499 if (arc_reclaim_needed()) 500 arc_kmem_reclaim(); 501 } 502 503 static void 504 buf_init(void) 505 { 506 uint64_t *ct; 507 uint64_t hsize = 1ULL << 12; 508 int i, j; 509 510 /* 511 * The hash table is big enough to fill all of physical memory 512 * with an average 64K block size. The table will take up 513 * totalmem*sizeof(void*)/64K (eg. 128KB/GB with 8-byte pointers). 514 */ 515 while (hsize * 65536 < physmem * PAGESIZE) 516 hsize <<= 1; 517 retry: 518 buf_hash_table.ht_mask = hsize - 1; 519 buf_hash_table.ht_table = 520 kmem_zalloc(hsize * sizeof (void*), KM_NOSLEEP); 521 if (buf_hash_table.ht_table == NULL) { 522 ASSERT(hsize > (1ULL << 8)); 523 hsize >>= 1; 524 goto retry; 525 } 526 527 hdr_cache = kmem_cache_create("arc_buf_hdr_t", sizeof (arc_buf_hdr_t), 528 0, hdr_cons, hdr_dest, hdr_recl, NULL, NULL, 0); 529 buf_cache = kmem_cache_create("arc_buf_t", sizeof (arc_buf_t), 530 0, NULL, NULL, NULL, NULL, NULL, 0); 531 532 for (i = 0; i < 256; i++) 533 for (ct = zfs_crc64_table + i, *ct = i, j = 8; j > 0; j--) 534 *ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY); 535 536 for (i = 0; i < BUF_LOCKS; i++) { 537 mutex_init(&buf_hash_table.ht_locks[i].ht_lock, 538 NULL, MUTEX_DEFAULT, NULL); 539 } 540 } 541 542 #define ARC_MINTIME (hz>>4) /* 62 ms */ 543 544 static void 545 add_reference(arc_buf_hdr_t *ab, kmutex_t *hash_lock, void *tag) 546 { 547 ASSERT(MUTEX_HELD(hash_lock)); 548 549 if ((refcount_add(&ab->b_refcnt, tag) == 1) && 550 (ab->b_state != arc.anon)) { 551 int delta = ab->b_size * ab->b_datacnt; 552 553 ASSERT(!MUTEX_HELD(&ab->b_state->mtx)); 554 mutex_enter(&ab->b_state->mtx); 555 ASSERT(list_link_active(&ab->b_arc_node)); 556 list_remove(&ab->b_state->list, ab); 557 if (GHOST_STATE(ab->b_state)) { 558 ASSERT3U(ab->b_datacnt, ==, 0); 559 ASSERT3P(ab->b_buf, ==, NULL); 560 delta = ab->b_size; 561 } 562 ASSERT(delta > 0); 563 ASSERT3U(ab->b_state->lsize, >=, delta); 564 atomic_add_64(&ab->b_state->lsize, -delta); 565 mutex_exit(&ab->b_state->mtx); 566 /* remove the prefetch flag is we get a reference */ 567 if (ab->b_flags & ARC_PREFETCH) 568 ab->b_flags &= ~ARC_PREFETCH; 569 } 570 } 571 572 static int 573 remove_reference(arc_buf_hdr_t *ab, kmutex_t *hash_lock, void *tag) 574 { 575 int cnt; 576 577 ASSERT(ab->b_state == arc.anon || MUTEX_HELD(hash_lock)); 578 ASSERT(!GHOST_STATE(ab->b_state)); 579 580 if (((cnt = refcount_remove(&ab->b_refcnt, tag)) == 0) && 581 (ab->b_state != arc.anon)) { 582 583 ASSERT(!MUTEX_HELD(&ab->b_state->mtx)); 584 mutex_enter(&ab->b_state->mtx); 585 ASSERT(!list_link_active(&ab->b_arc_node)); 586 list_insert_head(&ab->b_state->list, ab); 587 ASSERT(ab->b_datacnt > 0); 588 atomic_add_64(&ab->b_state->lsize, ab->b_size * ab->b_datacnt); 589 ASSERT3U(ab->b_state->size, >=, ab->b_state->lsize); 590 mutex_exit(&ab->b_state->mtx); 591 } 592 return (cnt); 593 } 594 595 /* 596 * Move the supplied buffer to the indicated state. The mutex 597 * for the buffer must be held by the caller. 598 */ 599 static void 600 arc_change_state(arc_state_t *new_state, arc_buf_hdr_t *ab, kmutex_t *hash_lock) 601 { 602 arc_state_t *old_state = ab->b_state; 603 int refcnt = refcount_count(&ab->b_refcnt); 604 int from_delta, to_delta; 605 606 ASSERT(MUTEX_HELD(hash_lock)); 607 ASSERT(new_state != old_state); 608 ASSERT(refcnt == 0 || ab->b_datacnt > 0); 609 ASSERT(ab->b_datacnt == 0 || !GHOST_STATE(new_state)); 610 611 from_delta = to_delta = ab->b_datacnt * ab->b_size; 612 613 /* 614 * If this buffer is evictable, transfer it from the 615 * old state list to the new state list. 616 */ 617 if (refcnt == 0) { 618 if (old_state != arc.anon) { 619 int use_mutex = !MUTEX_HELD(&old_state->mtx); 620 621 if (use_mutex) 622 mutex_enter(&old_state->mtx); 623 624 ASSERT(list_link_active(&ab->b_arc_node)); 625 list_remove(&old_state->list, ab); 626 627 /* 628 * If prefetching out of the ghost cache, 629 * we will have a non-null datacnt. 630 */ 631 if (GHOST_STATE(old_state) && ab->b_datacnt == 0) { 632 /* ghost elements have a ghost size */ 633 ASSERT(ab->b_buf == NULL); 634 from_delta = ab->b_size; 635 } 636 ASSERT3U(old_state->lsize, >=, from_delta); 637 atomic_add_64(&old_state->lsize, -from_delta); 638 639 if (use_mutex) 640 mutex_exit(&old_state->mtx); 641 } 642 if (new_state != arc.anon) { 643 int use_mutex = !MUTEX_HELD(&new_state->mtx); 644 645 if (use_mutex) 646 mutex_enter(&new_state->mtx); 647 648 list_insert_head(&new_state->list, ab); 649 650 /* ghost elements have a ghost size */ 651 if (GHOST_STATE(new_state)) { 652 ASSERT(ab->b_datacnt == 0); 653 ASSERT(ab->b_buf == NULL); 654 to_delta = ab->b_size; 655 } 656 atomic_add_64(&new_state->lsize, to_delta); 657 ASSERT3U(new_state->size + to_delta, >=, 658 new_state->lsize); 659 660 if (use_mutex) 661 mutex_exit(&new_state->mtx); 662 } 663 } 664 665 ASSERT(!BUF_EMPTY(ab)); 666 if (new_state == arc.anon && old_state != arc.anon) { 667 buf_hash_remove(ab); 668 } 669 670 /* adjust state sizes */ 671 if (to_delta) 672 atomic_add_64(&new_state->size, to_delta); 673 if (from_delta) { 674 ASSERT3U(old_state->size, >=, from_delta); 675 atomic_add_64(&old_state->size, -from_delta); 676 } 677 ab->b_state = new_state; 678 } 679 680 arc_buf_t * 681 arc_buf_alloc(spa_t *spa, int size, void *tag) 682 { 683 arc_buf_hdr_t *hdr; 684 arc_buf_t *buf; 685 686 ASSERT3U(size, >, 0); 687 hdr = kmem_cache_alloc(hdr_cache, KM_SLEEP); 688 ASSERT(BUF_EMPTY(hdr)); 689 hdr->b_size = size; 690 hdr->b_spa = spa; 691 hdr->b_state = arc.anon; 692 hdr->b_arc_access = 0; 693 buf = kmem_cache_alloc(buf_cache, KM_SLEEP); 694 buf->b_hdr = hdr; 695 buf->b_data = NULL; 696 buf->b_efunc = NULL; 697 buf->b_private = NULL; 698 buf->b_next = NULL; 699 hdr->b_buf = buf; 700 arc_get_data_buf(buf); 701 hdr->b_datacnt = 1; 702 hdr->b_flags = 0; 703 ASSERT(refcount_is_zero(&hdr->b_refcnt)); 704 (void) refcount_add(&hdr->b_refcnt, tag); 705 706 return (buf); 707 } 708 709 static arc_buf_t * 710 arc_buf_clone(arc_buf_t *from) 711 { 712 arc_buf_t *buf; 713 arc_buf_hdr_t *hdr = from->b_hdr; 714 uint64_t size = hdr->b_size; 715 716 buf = kmem_cache_alloc(buf_cache, KM_SLEEP); 717 buf->b_hdr = hdr; 718 buf->b_data = NULL; 719 buf->b_efunc = NULL; 720 buf->b_private = NULL; 721 buf->b_next = hdr->b_buf; 722 hdr->b_buf = buf; 723 arc_get_data_buf(buf); 724 bcopy(from->b_data, buf->b_data, size); 725 hdr->b_datacnt += 1; 726 return (buf); 727 } 728 729 void 730 arc_buf_add_ref(arc_buf_t *buf, void* tag) 731 { 732 arc_buf_hdr_t *hdr; 733 kmutex_t *hash_lock; 734 735 /* 736 * Check to see if this buffer is currently being evicted via 737 * arc_do_user_evicts(). 738 */ 739 mutex_enter(&arc_eviction_mtx); 740 hdr = buf->b_hdr; 741 if (hdr == NULL) { 742 mutex_exit(&arc_eviction_mtx); 743 return; 744 } 745 hash_lock = HDR_LOCK(hdr); 746 mutex_exit(&arc_eviction_mtx); 747 748 mutex_enter(hash_lock); 749 if (buf->b_data == NULL) { 750 /* 751 * This buffer is evicted. 752 */ 753 mutex_exit(hash_lock); 754 return; 755 } 756 757 ASSERT(buf->b_hdr == hdr); 758 ASSERT(hdr->b_state == arc.mru || hdr->b_state == arc.mfu); 759 add_reference(hdr, hash_lock, tag); 760 arc_access(hdr, hash_lock); 761 mutex_exit(hash_lock); 762 atomic_add_64(&arc.hits, 1); 763 } 764 765 static void 766 arc_buf_destroy(arc_buf_t *buf, boolean_t recycle, boolean_t all) 767 { 768 arc_buf_t **bufp; 769 770 /* free up data associated with the buf */ 771 if (buf->b_data) { 772 arc_state_t *state = buf->b_hdr->b_state; 773 uint64_t size = buf->b_hdr->b_size; 774 775 if (!recycle) { 776 zio_buf_free(buf->b_data, size); 777 atomic_add_64(&arc.size, -size); 778 } 779 if (list_link_active(&buf->b_hdr->b_arc_node)) { 780 ASSERT(refcount_is_zero(&buf->b_hdr->b_refcnt)); 781 ASSERT(state != arc.anon); 782 ASSERT3U(state->lsize, >=, size); 783 atomic_add_64(&state->lsize, -size); 784 } 785 ASSERT3U(state->size, >=, size); 786 atomic_add_64(&state->size, -size); 787 buf->b_data = NULL; 788 ASSERT(buf->b_hdr->b_datacnt > 0); 789 buf->b_hdr->b_datacnt -= 1; 790 } 791 792 /* only remove the buf if requested */ 793 if (!all) 794 return; 795 796 /* remove the buf from the hdr list */ 797 for (bufp = &buf->b_hdr->b_buf; *bufp != buf; bufp = &(*bufp)->b_next) 798 continue; 799 *bufp = buf->b_next; 800 801 ASSERT(buf->b_efunc == NULL); 802 803 /* clean up the buf */ 804 buf->b_hdr = NULL; 805 kmem_cache_free(buf_cache, buf); 806 } 807 808 static void 809 arc_hdr_destroy(arc_buf_hdr_t *hdr) 810 { 811 ASSERT(refcount_is_zero(&hdr->b_refcnt)); 812 ASSERT3P(hdr->b_state, ==, arc.anon); 813 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 814 815 if (!BUF_EMPTY(hdr)) { 816 ASSERT(!HDR_IN_HASH_TABLE(hdr)); 817 bzero(&hdr->b_dva, sizeof (dva_t)); 818 hdr->b_birth = 0; 819 hdr->b_cksum0 = 0; 820 } 821 while (hdr->b_buf) { 822 arc_buf_t *buf = hdr->b_buf; 823 824 if (buf->b_efunc) { 825 mutex_enter(&arc_eviction_mtx); 826 ASSERT(buf->b_hdr != NULL); 827 arc_buf_destroy(hdr->b_buf, FALSE, FALSE); 828 hdr->b_buf = buf->b_next; 829 buf->b_hdr = &arc_eviction_hdr; 830 buf->b_next = arc_eviction_list; 831 arc_eviction_list = buf; 832 mutex_exit(&arc_eviction_mtx); 833 } else { 834 arc_buf_destroy(hdr->b_buf, FALSE, TRUE); 835 } 836 } 837 838 ASSERT(!list_link_active(&hdr->b_arc_node)); 839 ASSERT3P(hdr->b_hash_next, ==, NULL); 840 ASSERT3P(hdr->b_acb, ==, NULL); 841 kmem_cache_free(hdr_cache, hdr); 842 } 843 844 void 845 arc_buf_free(arc_buf_t *buf, void *tag) 846 { 847 arc_buf_hdr_t *hdr = buf->b_hdr; 848 int hashed = hdr->b_state != arc.anon; 849 850 ASSERT(buf->b_efunc == NULL); 851 ASSERT(buf->b_data != NULL); 852 853 if (hashed) { 854 kmutex_t *hash_lock = HDR_LOCK(hdr); 855 856 mutex_enter(hash_lock); 857 (void) remove_reference(hdr, hash_lock, tag); 858 if (hdr->b_datacnt > 1) 859 arc_buf_destroy(buf, FALSE, TRUE); 860 else 861 hdr->b_flags |= ARC_BUF_AVAILABLE; 862 mutex_exit(hash_lock); 863 } else if (HDR_IO_IN_PROGRESS(hdr)) { 864 int destroy_hdr; 865 /* 866 * We are in the middle of an async write. Don't destroy 867 * this buffer unless the write completes before we finish 868 * decrementing the reference count. 869 */ 870 mutex_enter(&arc_eviction_mtx); 871 (void) remove_reference(hdr, NULL, tag); 872 ASSERT(refcount_is_zero(&hdr->b_refcnt)); 873 destroy_hdr = !HDR_IO_IN_PROGRESS(hdr); 874 mutex_exit(&arc_eviction_mtx); 875 if (destroy_hdr) 876 arc_hdr_destroy(hdr); 877 } else { 878 if (remove_reference(hdr, NULL, tag) > 0) { 879 ASSERT(HDR_IO_ERROR(hdr)); 880 arc_buf_destroy(buf, FALSE, TRUE); 881 } else { 882 arc_hdr_destroy(hdr); 883 } 884 } 885 } 886 887 int 888 arc_buf_remove_ref(arc_buf_t *buf, void* tag) 889 { 890 arc_buf_hdr_t *hdr = buf->b_hdr; 891 kmutex_t *hash_lock = HDR_LOCK(hdr); 892 int no_callback = (buf->b_efunc == NULL); 893 894 if (hdr->b_state == arc.anon) { 895 arc_buf_free(buf, tag); 896 return (no_callback); 897 } 898 899 mutex_enter(hash_lock); 900 ASSERT(hdr->b_state != arc.anon); 901 ASSERT(buf->b_data != NULL); 902 903 (void) remove_reference(hdr, hash_lock, tag); 904 if (hdr->b_datacnt > 1) { 905 if (no_callback) 906 arc_buf_destroy(buf, FALSE, TRUE); 907 } else if (no_callback) { 908 ASSERT(hdr->b_buf == buf && buf->b_next == NULL); 909 hdr->b_flags |= ARC_BUF_AVAILABLE; 910 } 911 ASSERT(no_callback || hdr->b_datacnt > 1 || 912 refcount_is_zero(&hdr->b_refcnt)); 913 mutex_exit(hash_lock); 914 return (no_callback); 915 } 916 917 int 918 arc_buf_size(arc_buf_t *buf) 919 { 920 return (buf->b_hdr->b_size); 921 } 922 923 /* 924 * Evict buffers from list until we've removed the specified number of 925 * bytes. Move the removed buffers to the appropriate evict state. 926 * If the recycle flag is set, then attempt to "recycle" a buffer: 927 * - look for a buffer to evict that is `bytes' long. 928 * - return the data block from this buffer rather than freeing it. 929 * This flag is used by callers that are trying to make space for a 930 * new buffer in a full arc cache. 931 */ 932 static void * 933 arc_evict(arc_state_t *state, int64_t bytes, boolean_t recycle) 934 { 935 arc_state_t *evicted_state; 936 uint64_t bytes_evicted = 0, skipped = 0, missed = 0; 937 arc_buf_hdr_t *ab, *ab_prev; 938 kmutex_t *hash_lock; 939 boolean_t have_lock; 940 void *steal = NULL; 941 942 ASSERT(state == arc.mru || state == arc.mfu); 943 944 evicted_state = (state == arc.mru) ? arc.mru_ghost : arc.mfu_ghost; 945 946 mutex_enter(&state->mtx); 947 mutex_enter(&evicted_state->mtx); 948 949 for (ab = list_tail(&state->list); ab; ab = ab_prev) { 950 ab_prev = list_prev(&state->list, ab); 951 /* prefetch buffers have a minimum lifespan */ 952 if (HDR_IO_IN_PROGRESS(ab) || 953 (ab->b_flags & (ARC_PREFETCH|ARC_INDIRECT) && 954 lbolt - ab->b_arc_access < arc_min_prefetch_lifespan)) { 955 skipped++; 956 continue; 957 } 958 if (recycle && (ab->b_size != bytes || ab->b_datacnt > 1)) 959 continue; 960 hash_lock = HDR_LOCK(ab); 961 have_lock = MUTEX_HELD(hash_lock); 962 if (have_lock || mutex_tryenter(hash_lock)) { 963 ASSERT3U(refcount_count(&ab->b_refcnt), ==, 0); 964 ASSERT(ab->b_datacnt > 0); 965 while (ab->b_buf) { 966 arc_buf_t *buf = ab->b_buf; 967 if (buf->b_data) { 968 bytes_evicted += ab->b_size; 969 if (recycle) 970 steal = buf->b_data; 971 } 972 if (buf->b_efunc) { 973 mutex_enter(&arc_eviction_mtx); 974 arc_buf_destroy(buf, recycle, FALSE); 975 ab->b_buf = buf->b_next; 976 buf->b_hdr = &arc_eviction_hdr; 977 buf->b_next = arc_eviction_list; 978 arc_eviction_list = buf; 979 mutex_exit(&arc_eviction_mtx); 980 } else { 981 arc_buf_destroy(buf, recycle, TRUE); 982 } 983 } 984 ASSERT(ab->b_datacnt == 0); 985 arc_change_state(evicted_state, ab, hash_lock); 986 ASSERT(HDR_IN_HASH_TABLE(ab)); 987 ab->b_flags = ARC_IN_HASH_TABLE; 988 DTRACE_PROBE1(arc__evict, arc_buf_hdr_t *, ab); 989 if (!have_lock) 990 mutex_exit(hash_lock); 991 if (bytes >= 0 && bytes_evicted >= bytes) 992 break; 993 } else { 994 missed += 1; 995 } 996 } 997 mutex_exit(&evicted_state->mtx); 998 mutex_exit(&state->mtx); 999 1000 if (bytes_evicted < bytes) 1001 dprintf("only evicted %lld bytes from %x", 1002 (longlong_t)bytes_evicted, state); 1003 1004 if (skipped) 1005 atomic_add_64(&arc.evict_skip, skipped); 1006 if (missed) 1007 atomic_add_64(&arc.mutex_miss, missed); 1008 return (steal); 1009 } 1010 1011 /* 1012 * Remove buffers from list until we've removed the specified number of 1013 * bytes. Destroy the buffers that are removed. 1014 */ 1015 static void 1016 arc_evict_ghost(arc_state_t *state, int64_t bytes) 1017 { 1018 arc_buf_hdr_t *ab, *ab_prev; 1019 kmutex_t *hash_lock; 1020 uint64_t bytes_deleted = 0; 1021 uint_t bufs_skipped = 0; 1022 1023 ASSERT(GHOST_STATE(state)); 1024 top: 1025 mutex_enter(&state->mtx); 1026 for (ab = list_tail(&state->list); ab; ab = ab_prev) { 1027 ab_prev = list_prev(&state->list, ab); 1028 hash_lock = HDR_LOCK(ab); 1029 if (mutex_tryenter(hash_lock)) { 1030 ASSERT(!HDR_IO_IN_PROGRESS(ab)); 1031 ASSERT(ab->b_buf == NULL); 1032 arc_change_state(arc.anon, ab, hash_lock); 1033 mutex_exit(hash_lock); 1034 atomic_add_64(&arc.deleted, 1); 1035 bytes_deleted += ab->b_size; 1036 arc_hdr_destroy(ab); 1037 DTRACE_PROBE1(arc__delete, arc_buf_hdr_t *, ab); 1038 if (bytes >= 0 && bytes_deleted >= bytes) 1039 break; 1040 } else { 1041 if (bytes < 0) { 1042 mutex_exit(&state->mtx); 1043 mutex_enter(hash_lock); 1044 mutex_exit(hash_lock); 1045 goto top; 1046 } 1047 bufs_skipped += 1; 1048 } 1049 } 1050 mutex_exit(&state->mtx); 1051 1052 if (bufs_skipped) { 1053 atomic_add_64(&arc.mutex_miss, bufs_skipped); 1054 ASSERT(bytes >= 0); 1055 } 1056 1057 if (bytes_deleted < bytes) 1058 dprintf("only deleted %lld bytes from %p", 1059 (longlong_t)bytes_deleted, state); 1060 } 1061 1062 static void 1063 arc_adjust(void) 1064 { 1065 int64_t top_sz, mru_over, arc_over; 1066 1067 top_sz = arc.anon->size + arc.mru->size; 1068 1069 if (top_sz > arc.p && arc.mru->lsize > 0) { 1070 int64_t toevict = MIN(arc.mru->lsize, top_sz-arc.p); 1071 (void) arc_evict(arc.mru, toevict, FALSE); 1072 top_sz = arc.anon->size + arc.mru->size; 1073 } 1074 1075 mru_over = top_sz + arc.mru_ghost->size - arc.c; 1076 1077 if (mru_over > 0) { 1078 if (arc.mru_ghost->lsize > 0) { 1079 int64_t todelete = MIN(arc.mru_ghost->lsize, mru_over); 1080 arc_evict_ghost(arc.mru_ghost, todelete); 1081 } 1082 } 1083 1084 if ((arc_over = arc.size - arc.c) > 0) { 1085 int64_t tbl_over; 1086 1087 if (arc.mfu->lsize > 0) { 1088 int64_t toevict = MIN(arc.mfu->lsize, arc_over); 1089 (void) arc_evict(arc.mfu, toevict, FALSE); 1090 } 1091 1092 tbl_over = arc.size + arc.mru_ghost->lsize + 1093 arc.mfu_ghost->lsize - arc.c*2; 1094 1095 if (tbl_over > 0 && arc.mfu_ghost->lsize > 0) { 1096 int64_t todelete = MIN(arc.mfu_ghost->lsize, tbl_over); 1097 arc_evict_ghost(arc.mfu_ghost, todelete); 1098 } 1099 } 1100 } 1101 1102 static void 1103 arc_do_user_evicts(void) 1104 { 1105 mutex_enter(&arc_eviction_mtx); 1106 while (arc_eviction_list != NULL) { 1107 arc_buf_t *buf = arc_eviction_list; 1108 arc_eviction_list = buf->b_next; 1109 buf->b_hdr = NULL; 1110 mutex_exit(&arc_eviction_mtx); 1111 1112 if (buf->b_efunc != NULL) 1113 VERIFY(buf->b_efunc(buf) == 0); 1114 1115 buf->b_efunc = NULL; 1116 buf->b_private = NULL; 1117 kmem_cache_free(buf_cache, buf); 1118 mutex_enter(&arc_eviction_mtx); 1119 } 1120 mutex_exit(&arc_eviction_mtx); 1121 } 1122 1123 /* 1124 * Flush all *evictable* data from the cache. 1125 * NOTE: this will not touch "active" (i.e. referenced) data. 1126 */ 1127 void 1128 arc_flush(void) 1129 { 1130 while (list_head(&arc.mru->list)) 1131 (void) arc_evict(arc.mru, -1, FALSE); 1132 while (list_head(&arc.mfu->list)) 1133 (void) arc_evict(arc.mfu, -1, FALSE); 1134 1135 arc_evict_ghost(arc.mru_ghost, -1); 1136 arc_evict_ghost(arc.mfu_ghost, -1); 1137 1138 mutex_enter(&arc_reclaim_thr_lock); 1139 arc_do_user_evicts(); 1140 mutex_exit(&arc_reclaim_thr_lock); 1141 ASSERT(arc_eviction_list == NULL); 1142 } 1143 1144 int arc_kmem_reclaim_shift = 5; /* log2(fraction of arc to reclaim) */ 1145 1146 void 1147 arc_kmem_reclaim(void) 1148 { 1149 uint64_t to_free; 1150 1151 /* 1152 * We need arc_reclaim_lock because we don't want multiple 1153 * threads trying to reclaim concurrently. 1154 */ 1155 1156 /* 1157 * umem calls the reclaim func when we destroy the buf cache, 1158 * which is after we do arc_fini(). So we set a flag to prevent 1159 * accessing the destroyed mutexes and lists. 1160 */ 1161 if (arc_dead) 1162 return; 1163 1164 if (arc.c <= arc.c_min) 1165 return; 1166 1167 mutex_enter(&arc_reclaim_lock); 1168 1169 #ifdef _KERNEL 1170 to_free = MAX(arc.c >> arc_kmem_reclaim_shift, ptob(needfree)); 1171 #else 1172 to_free = arc.c >> arc_kmem_reclaim_shift; 1173 #endif 1174 if (arc.c > to_free) 1175 atomic_add_64(&arc.c, -to_free); 1176 else 1177 arc.c = arc.c_min; 1178 1179 atomic_add_64(&arc.p, -(arc.p >> arc_kmem_reclaim_shift)); 1180 if (arc.c > arc.size) 1181 arc.c = arc.size; 1182 if (arc.c < arc.c_min) 1183 arc.c = arc.c_min; 1184 if (arc.p > arc.c) 1185 arc.p = (arc.c >> 1); 1186 ASSERT((int64_t)arc.p >= 0); 1187 1188 arc_adjust(); 1189 1190 mutex_exit(&arc_reclaim_lock); 1191 } 1192 1193 static int 1194 arc_reclaim_needed(void) 1195 { 1196 uint64_t extra; 1197 1198 #ifdef _KERNEL 1199 1200 if (needfree) 1201 return (1); 1202 1203 /* 1204 * take 'desfree' extra pages, so we reclaim sooner, rather than later 1205 */ 1206 extra = desfree; 1207 1208 /* 1209 * check that we're out of range of the pageout scanner. It starts to 1210 * schedule paging if freemem is less than lotsfree and needfree. 1211 * lotsfree is the high-water mark for pageout, and needfree is the 1212 * number of needed free pages. We add extra pages here to make sure 1213 * the scanner doesn't start up while we're freeing memory. 1214 */ 1215 if (freemem < lotsfree + needfree + extra) 1216 return (1); 1217 1218 /* 1219 * check to make sure that swapfs has enough space so that anon 1220 * reservations can still succeeed. anon_resvmem() checks that the 1221 * availrmem is greater than swapfs_minfree, and the number of reserved 1222 * swap pages. We also add a bit of extra here just to prevent 1223 * circumstances from getting really dire. 1224 */ 1225 if (availrmem < swapfs_minfree + swapfs_reserve + extra) 1226 return (1); 1227 1228 #if defined(__i386) 1229 /* 1230 * If we're on an i386 platform, it's possible that we'll exhaust the 1231 * kernel heap space before we ever run out of available physical 1232 * memory. Most checks of the size of the heap_area compare against 1233 * tune.t_minarmem, which is the minimum available real memory that we 1234 * can have in the system. However, this is generally fixed at 25 pages 1235 * which is so low that it's useless. In this comparison, we seek to 1236 * calculate the total heap-size, and reclaim if more than 3/4ths of the 1237 * heap is allocated. (Or, in the caclulation, if less than 1/4th is 1238 * free) 1239 */ 1240 if (btop(vmem_size(heap_arena, VMEM_FREE)) < 1241 (btop(vmem_size(heap_arena, VMEM_FREE | VMEM_ALLOC)) >> 2)) 1242 return (1); 1243 #endif 1244 1245 #else 1246 if (spa_get_random(100) == 0) 1247 return (1); 1248 #endif 1249 return (0); 1250 } 1251 1252 static void 1253 arc_kmem_reap_now(arc_reclaim_strategy_t strat) 1254 { 1255 size_t i; 1256 kmem_cache_t *prev_cache = NULL; 1257 extern kmem_cache_t *zio_buf_cache[]; 1258 1259 #ifdef _KERNEL 1260 /* 1261 * First purge some DNLC entries, in case the DNLC is using 1262 * up too much memory. 1263 */ 1264 dnlc_reduce_cache((void *)(uintptr_t)arc_reduce_dnlc_percent); 1265 1266 #if defined(__i386) 1267 /* 1268 * Reclaim unused memory from all kmem caches. 1269 */ 1270 kmem_reap(); 1271 #endif 1272 #endif 1273 1274 /* 1275 * An agressive reclamation will shrink the cache size as well as 1276 * reap free buffers from the arc kmem caches. 1277 */ 1278 if (strat == ARC_RECLAIM_AGGR) 1279 arc_kmem_reclaim(); 1280 1281 for (i = 0; i < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; i++) { 1282 if (zio_buf_cache[i] != prev_cache) { 1283 prev_cache = zio_buf_cache[i]; 1284 kmem_cache_reap_now(zio_buf_cache[i]); 1285 } 1286 } 1287 kmem_cache_reap_now(buf_cache); 1288 kmem_cache_reap_now(hdr_cache); 1289 } 1290 1291 static void 1292 arc_reclaim_thread(void) 1293 { 1294 clock_t growtime = 0; 1295 arc_reclaim_strategy_t last_reclaim = ARC_RECLAIM_CONS; 1296 callb_cpr_t cpr; 1297 1298 CALLB_CPR_INIT(&cpr, &arc_reclaim_thr_lock, callb_generic_cpr, FTAG); 1299 1300 mutex_enter(&arc_reclaim_thr_lock); 1301 while (arc_thread_exit == 0) { 1302 if (arc_reclaim_needed()) { 1303 1304 if (arc.no_grow) { 1305 if (last_reclaim == ARC_RECLAIM_CONS) { 1306 last_reclaim = ARC_RECLAIM_AGGR; 1307 } else { 1308 last_reclaim = ARC_RECLAIM_CONS; 1309 } 1310 } else { 1311 arc.no_grow = TRUE; 1312 last_reclaim = ARC_RECLAIM_AGGR; 1313 membar_producer(); 1314 } 1315 1316 /* reset the growth delay for every reclaim */ 1317 growtime = lbolt + (arc_grow_retry * hz); 1318 ASSERT(growtime > 0); 1319 1320 arc_kmem_reap_now(last_reclaim); 1321 1322 } else if ((growtime > 0) && ((growtime - lbolt) <= 0)) { 1323 arc.no_grow = FALSE; 1324 } 1325 1326 if (arc_eviction_list != NULL) 1327 arc_do_user_evicts(); 1328 1329 /* block until needed, or one second, whichever is shorter */ 1330 CALLB_CPR_SAFE_BEGIN(&cpr); 1331 (void) cv_timedwait(&arc_reclaim_thr_cv, 1332 &arc_reclaim_thr_lock, (lbolt + hz)); 1333 CALLB_CPR_SAFE_END(&cpr, &arc_reclaim_thr_lock); 1334 } 1335 1336 arc_thread_exit = 0; 1337 cv_broadcast(&arc_reclaim_thr_cv); 1338 CALLB_CPR_EXIT(&cpr); /* drops arc_reclaim_thr_lock */ 1339 thread_exit(); 1340 } 1341 1342 /* 1343 * Adapt arc info given the number of bytes we are trying to add and 1344 * the state that we are comming from. This function is only called 1345 * when we are adding new content to the cache. 1346 */ 1347 static void 1348 arc_adapt(int bytes, arc_state_t *state) 1349 { 1350 int mult; 1351 1352 ASSERT(bytes > 0); 1353 /* 1354 * Adapt the target size of the MRU list: 1355 * - if we just hit in the MRU ghost list, then increase 1356 * the target size of the MRU list. 1357 * - if we just hit in the MFU ghost list, then increase 1358 * the target size of the MFU list by decreasing the 1359 * target size of the MRU list. 1360 */ 1361 if (state == arc.mru_ghost) { 1362 mult = ((arc.mru_ghost->size >= arc.mfu_ghost->size) ? 1363 1 : (arc.mfu_ghost->size/arc.mru_ghost->size)); 1364 1365 arc.p = MIN(arc.c, arc.p + bytes * mult); 1366 } else if (state == arc.mfu_ghost) { 1367 mult = ((arc.mfu_ghost->size >= arc.mru_ghost->size) ? 1368 1 : (arc.mru_ghost->size/arc.mfu_ghost->size)); 1369 1370 arc.p = MAX(0, (int64_t)arc.p - bytes * mult); 1371 } 1372 ASSERT((int64_t)arc.p >= 0); 1373 1374 if (arc_reclaim_needed()) { 1375 cv_signal(&arc_reclaim_thr_cv); 1376 return; 1377 } 1378 1379 if (arc.no_grow) 1380 return; 1381 1382 if (arc.c >= arc.c_max) 1383 return; 1384 1385 /* 1386 * If we're within (2 * maxblocksize) bytes of the target 1387 * cache size, increment the target cache size 1388 */ 1389 if (arc.size > arc.c - (2ULL << SPA_MAXBLOCKSHIFT)) { 1390 atomic_add_64(&arc.c, (int64_t)bytes); 1391 if (arc.c > arc.c_max) 1392 arc.c = arc.c_max; 1393 else if (state == arc.anon) 1394 atomic_add_64(&arc.p, (int64_t)bytes); 1395 if (arc.p > arc.c) 1396 arc.p = arc.c; 1397 } 1398 ASSERT((int64_t)arc.p >= 0); 1399 } 1400 1401 /* 1402 * Check if the cache has reached its limits and eviction is required 1403 * prior to insert. 1404 */ 1405 static int 1406 arc_evict_needed() 1407 { 1408 if (arc_reclaim_needed()) 1409 return (1); 1410 1411 return (arc.size > arc.c); 1412 } 1413 1414 /* 1415 * The buffer, supplied as the first argument, needs a data block. 1416 * So, if we are at cache max, determine which cache should be victimized. 1417 * We have the following cases: 1418 * 1419 * 1. Insert for MRU, p > sizeof(arc.anon + arc.mru) -> 1420 * In this situation if we're out of space, but the resident size of the MFU is 1421 * under the limit, victimize the MFU cache to satisfy this insertion request. 1422 * 1423 * 2. Insert for MRU, p <= sizeof(arc.anon + arc.mru) -> 1424 * Here, we've used up all of the available space for the MRU, so we need to 1425 * evict from our own cache instead. Evict from the set of resident MRU 1426 * entries. 1427 * 1428 * 3. Insert for MFU (c - p) > sizeof(arc.mfu) -> 1429 * c minus p represents the MFU space in the cache, since p is the size of the 1430 * cache that is dedicated to the MRU. In this situation there's still space on 1431 * the MFU side, so the MRU side needs to be victimized. 1432 * 1433 * 4. Insert for MFU (c - p) < sizeof(arc.mfu) -> 1434 * MFU's resident set is consuming more space than it has been allotted. In 1435 * this situation, we must victimize our own cache, the MFU, for this insertion. 1436 */ 1437 static void 1438 arc_get_data_buf(arc_buf_t *buf) 1439 { 1440 arc_state_t *state = buf->b_hdr->b_state; 1441 uint64_t size = buf->b_hdr->b_size; 1442 1443 arc_adapt(size, state); 1444 1445 /* 1446 * We have not yet reached cache maximum size, 1447 * just allocate a new buffer. 1448 */ 1449 if (!arc_evict_needed()) { 1450 buf->b_data = zio_buf_alloc(size); 1451 atomic_add_64(&arc.size, size); 1452 goto out; 1453 } 1454 1455 /* 1456 * If we are prefetching from the mfu ghost list, this buffer 1457 * will end up on the mru list; so steal space from there. 1458 */ 1459 if (state == arc.mfu_ghost) 1460 state = buf->b_hdr->b_flags & ARC_PREFETCH ? arc.mru : arc.mfu; 1461 else if (state == arc.mru_ghost) 1462 state = arc.mru; 1463 1464 if (state == arc.mru || state == arc.anon) { 1465 uint64_t mru_used = arc.anon->size + arc.mru->size; 1466 state = (arc.p > mru_used) ? arc.mfu : arc.mru; 1467 } else { 1468 /* MFU cases */ 1469 uint64_t mfu_space = arc.c - arc.p; 1470 state = (mfu_space > arc.mfu->size) ? arc.mru : arc.mfu; 1471 } 1472 if ((buf->b_data = arc_evict(state, size, TRUE)) == NULL) { 1473 (void) arc_evict(state, size, FALSE); 1474 buf->b_data = zio_buf_alloc(size); 1475 atomic_add_64(&arc.size, size); 1476 atomic_add_64(&arc.recycle_miss, 1); 1477 if (arc.size > arc.c) 1478 arc_adjust(); 1479 } 1480 ASSERT(buf->b_data != NULL); 1481 out: 1482 /* 1483 * Update the state size. Note that ghost states have a 1484 * "ghost size" and so don't need to be updated. 1485 */ 1486 if (!GHOST_STATE(buf->b_hdr->b_state)) { 1487 arc_buf_hdr_t *hdr = buf->b_hdr; 1488 1489 atomic_add_64(&hdr->b_state->size, size); 1490 if (list_link_active(&hdr->b_arc_node)) { 1491 ASSERT(refcount_is_zero(&hdr->b_refcnt)); 1492 atomic_add_64(&hdr->b_state->lsize, size); 1493 } 1494 } 1495 } 1496 1497 /* 1498 * This routine is called whenever a buffer is accessed. 1499 * NOTE: the hash lock is dropped in this function. 1500 */ 1501 static void 1502 arc_access(arc_buf_hdr_t *buf, kmutex_t *hash_lock) 1503 { 1504 ASSERT(MUTEX_HELD(hash_lock)); 1505 1506 if (buf->b_state == arc.anon) { 1507 /* 1508 * This buffer is not in the cache, and does not 1509 * appear in our "ghost" list. Add the new buffer 1510 * to the MRU state. 1511 */ 1512 1513 ASSERT(buf->b_arc_access == 0); 1514 buf->b_arc_access = lbolt; 1515 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, buf); 1516 arc_change_state(arc.mru, buf, hash_lock); 1517 1518 } else if (buf->b_state == arc.mru) { 1519 /* 1520 * If this buffer is here because of a prefetch, then either: 1521 * - clear the flag if this is a "referencing" read 1522 * (any subsequent access will bump this into the MFU state). 1523 * or 1524 * - move the buffer to the head of the list if this is 1525 * another prefetch (to make it less likely to be evicted). 1526 */ 1527 if ((buf->b_flags & ARC_PREFETCH) != 0) { 1528 if (refcount_count(&buf->b_refcnt) == 0) { 1529 ASSERT(list_link_active(&buf->b_arc_node)); 1530 mutex_enter(&arc.mru->mtx); 1531 list_remove(&arc.mru->list, buf); 1532 list_insert_head(&arc.mru->list, buf); 1533 mutex_exit(&arc.mru->mtx); 1534 } else { 1535 buf->b_flags &= ~ARC_PREFETCH; 1536 atomic_add_64(&arc.mru->hits, 1); 1537 } 1538 buf->b_arc_access = lbolt; 1539 return; 1540 } 1541 1542 /* 1543 * This buffer has been "accessed" only once so far, 1544 * but it is still in the cache. Move it to the MFU 1545 * state. 1546 */ 1547 if (lbolt > buf->b_arc_access + ARC_MINTIME) { 1548 /* 1549 * More than 125ms have passed since we 1550 * instantiated this buffer. Move it to the 1551 * most frequently used state. 1552 */ 1553 buf->b_arc_access = lbolt; 1554 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf); 1555 arc_change_state(arc.mfu, buf, hash_lock); 1556 } 1557 atomic_add_64(&arc.mru->hits, 1); 1558 } else if (buf->b_state == arc.mru_ghost) { 1559 arc_state_t *new_state; 1560 /* 1561 * This buffer has been "accessed" recently, but 1562 * was evicted from the cache. Move it to the 1563 * MFU state. 1564 */ 1565 1566 if (buf->b_flags & ARC_PREFETCH) { 1567 new_state = arc.mru; 1568 if (refcount_count(&buf->b_refcnt) > 0) 1569 buf->b_flags &= ~ARC_PREFETCH; 1570 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, buf); 1571 } else { 1572 new_state = arc.mfu; 1573 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf); 1574 } 1575 1576 buf->b_arc_access = lbolt; 1577 arc_change_state(new_state, buf, hash_lock); 1578 1579 atomic_add_64(&arc.mru_ghost->hits, 1); 1580 } else if (buf->b_state == arc.mfu) { 1581 /* 1582 * This buffer has been accessed more than once and is 1583 * still in the cache. Keep it in the MFU state. 1584 * 1585 * NOTE: an add_reference() that occurred when we did 1586 * the arc_read() will have kicked this off the list. 1587 * If it was a prefetch, we will explicitly move it to 1588 * the head of the list now. 1589 */ 1590 if ((buf->b_flags & ARC_PREFETCH) != 0) { 1591 ASSERT(refcount_count(&buf->b_refcnt) == 0); 1592 ASSERT(list_link_active(&buf->b_arc_node)); 1593 mutex_enter(&arc.mfu->mtx); 1594 list_remove(&arc.mfu->list, buf); 1595 list_insert_head(&arc.mfu->list, buf); 1596 mutex_exit(&arc.mfu->mtx); 1597 } 1598 atomic_add_64(&arc.mfu->hits, 1); 1599 buf->b_arc_access = lbolt; 1600 } else if (buf->b_state == arc.mfu_ghost) { 1601 arc_state_t *new_state = arc.mfu; 1602 /* 1603 * This buffer has been accessed more than once but has 1604 * been evicted from the cache. Move it back to the 1605 * MFU state. 1606 */ 1607 1608 if (buf->b_flags & ARC_PREFETCH) { 1609 /* 1610 * This is a prefetch access... 1611 * move this block back to the MRU state. 1612 */ 1613 ASSERT3U(refcount_count(&buf->b_refcnt), ==, 0); 1614 new_state = arc.mru; 1615 } 1616 1617 buf->b_arc_access = lbolt; 1618 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf); 1619 arc_change_state(new_state, buf, hash_lock); 1620 1621 atomic_add_64(&arc.mfu_ghost->hits, 1); 1622 } else { 1623 ASSERT(!"invalid arc state"); 1624 } 1625 } 1626 1627 /* a generic arc_done_func_t which you can use */ 1628 /* ARGSUSED */ 1629 void 1630 arc_bcopy_func(zio_t *zio, arc_buf_t *buf, void *arg) 1631 { 1632 bcopy(buf->b_data, arg, buf->b_hdr->b_size); 1633 VERIFY(arc_buf_remove_ref(buf, arg) == 1); 1634 } 1635 1636 /* a generic arc_done_func_t which you can use */ 1637 void 1638 arc_getbuf_func(zio_t *zio, arc_buf_t *buf, void *arg) 1639 { 1640 arc_buf_t **bufp = arg; 1641 if (zio && zio->io_error) { 1642 VERIFY(arc_buf_remove_ref(buf, arg) == 1); 1643 *bufp = NULL; 1644 } else { 1645 *bufp = buf; 1646 } 1647 } 1648 1649 static void 1650 arc_read_done(zio_t *zio) 1651 { 1652 arc_buf_hdr_t *hdr, *found; 1653 arc_buf_t *buf; 1654 arc_buf_t *abuf; /* buffer we're assigning to callback */ 1655 kmutex_t *hash_lock; 1656 arc_callback_t *callback_list, *acb; 1657 int freeable = FALSE; 1658 1659 buf = zio->io_private; 1660 hdr = buf->b_hdr; 1661 1662 /* 1663 * The hdr was inserted into hash-table and removed from lists 1664 * prior to starting I/O. We should find this header, since 1665 * it's in the hash table, and it should be legit since it's 1666 * not possible to evict it during the I/O. The only possible 1667 * reason for it not to be found is if we were freed during the 1668 * read. 1669 */ 1670 found = buf_hash_find(zio->io_spa, &hdr->b_dva, hdr->b_birth, 1671 &hash_lock); 1672 1673 ASSERT((found == NULL && HDR_FREED_IN_READ(hdr) && hash_lock == NULL) || 1674 (found == hdr && DVA_EQUAL(&hdr->b_dva, BP_IDENTITY(zio->io_bp)))); 1675 1676 /* byteswap if necessary */ 1677 callback_list = hdr->b_acb; 1678 ASSERT(callback_list != NULL); 1679 if (BP_SHOULD_BYTESWAP(zio->io_bp) && callback_list->acb_byteswap) 1680 callback_list->acb_byteswap(buf->b_data, hdr->b_size); 1681 1682 /* create copies of the data buffer for the callers */ 1683 abuf = buf; 1684 for (acb = callback_list; acb; acb = acb->acb_next) { 1685 if (acb->acb_done) { 1686 if (abuf == NULL) 1687 abuf = arc_buf_clone(buf); 1688 acb->acb_buf = abuf; 1689 abuf = NULL; 1690 } 1691 } 1692 hdr->b_acb = NULL; 1693 hdr->b_flags &= ~ARC_IO_IN_PROGRESS; 1694 ASSERT(!HDR_BUF_AVAILABLE(hdr)); 1695 if (abuf == buf) 1696 hdr->b_flags |= ARC_BUF_AVAILABLE; 1697 1698 ASSERT(refcount_is_zero(&hdr->b_refcnt) || callback_list != NULL); 1699 1700 if (zio->io_error != 0) { 1701 hdr->b_flags |= ARC_IO_ERROR; 1702 if (hdr->b_state != arc.anon) 1703 arc_change_state(arc.anon, hdr, hash_lock); 1704 if (HDR_IN_HASH_TABLE(hdr)) 1705 buf_hash_remove(hdr); 1706 freeable = refcount_is_zero(&hdr->b_refcnt); 1707 /* convert checksum errors into IO errors */ 1708 if (zio->io_error == ECKSUM) 1709 zio->io_error = EIO; 1710 } 1711 1712 /* 1713 * Broadcast before we drop the hash_lock to avoid the possibility 1714 * that the hdr (and hence the cv) might be freed before we get to 1715 * the cv_broadcast(). 1716 */ 1717 cv_broadcast(&hdr->b_cv); 1718 1719 if (hash_lock) { 1720 /* 1721 * Only call arc_access on anonymous buffers. This is because 1722 * if we've issued an I/O for an evicted buffer, we've already 1723 * called arc_access (to prevent any simultaneous readers from 1724 * getting confused). 1725 */ 1726 if (zio->io_error == 0 && hdr->b_state == arc.anon) 1727 arc_access(hdr, hash_lock); 1728 mutex_exit(hash_lock); 1729 } else { 1730 /* 1731 * This block was freed while we waited for the read to 1732 * complete. It has been removed from the hash table and 1733 * moved to the anonymous state (so that it won't show up 1734 * in the cache). 1735 */ 1736 ASSERT3P(hdr->b_state, ==, arc.anon); 1737 freeable = refcount_is_zero(&hdr->b_refcnt); 1738 } 1739 1740 /* execute each callback and free its structure */ 1741 while ((acb = callback_list) != NULL) { 1742 if (acb->acb_done) 1743 acb->acb_done(zio, acb->acb_buf, acb->acb_private); 1744 1745 if (acb->acb_zio_dummy != NULL) { 1746 acb->acb_zio_dummy->io_error = zio->io_error; 1747 zio_nowait(acb->acb_zio_dummy); 1748 } 1749 1750 callback_list = acb->acb_next; 1751 kmem_free(acb, sizeof (arc_callback_t)); 1752 } 1753 1754 if (freeable) 1755 arc_hdr_destroy(hdr); 1756 } 1757 1758 /* 1759 * "Read" the block block at the specified DVA (in bp) via the 1760 * cache. If the block is found in the cache, invoke the provided 1761 * callback immediately and return. Note that the `zio' parameter 1762 * in the callback will be NULL in this case, since no IO was 1763 * required. If the block is not in the cache pass the read request 1764 * on to the spa with a substitute callback function, so that the 1765 * requested block will be added to the cache. 1766 * 1767 * If a read request arrives for a block that has a read in-progress, 1768 * either wait for the in-progress read to complete (and return the 1769 * results); or, if this is a read with a "done" func, add a record 1770 * to the read to invoke the "done" func when the read completes, 1771 * and return; or just return. 1772 * 1773 * arc_read_done() will invoke all the requested "done" functions 1774 * for readers of this block. 1775 */ 1776 int 1777 arc_read(zio_t *pio, spa_t *spa, blkptr_t *bp, arc_byteswap_func_t *swap, 1778 arc_done_func_t *done, void *private, int priority, int flags, 1779 uint32_t *arc_flags, zbookmark_t *zb) 1780 { 1781 arc_buf_hdr_t *hdr; 1782 arc_buf_t *buf; 1783 kmutex_t *hash_lock; 1784 zio_t *rzio; 1785 1786 top: 1787 hdr = buf_hash_find(spa, BP_IDENTITY(bp), bp->blk_birth, &hash_lock); 1788 if (hdr && hdr->b_datacnt > 0) { 1789 1790 *arc_flags |= ARC_CACHED; 1791 1792 if (HDR_IO_IN_PROGRESS(hdr)) { 1793 1794 if (*arc_flags & ARC_WAIT) { 1795 cv_wait(&hdr->b_cv, hash_lock); 1796 mutex_exit(hash_lock); 1797 goto top; 1798 } 1799 ASSERT(*arc_flags & ARC_NOWAIT); 1800 1801 if (done) { 1802 arc_callback_t *acb = NULL; 1803 1804 acb = kmem_zalloc(sizeof (arc_callback_t), 1805 KM_SLEEP); 1806 acb->acb_done = done; 1807 acb->acb_private = private; 1808 acb->acb_byteswap = swap; 1809 if (pio != NULL) 1810 acb->acb_zio_dummy = zio_null(pio, 1811 spa, NULL, NULL, flags); 1812 1813 ASSERT(acb->acb_done != NULL); 1814 acb->acb_next = hdr->b_acb; 1815 hdr->b_acb = acb; 1816 add_reference(hdr, hash_lock, private); 1817 mutex_exit(hash_lock); 1818 return (0); 1819 } 1820 mutex_exit(hash_lock); 1821 return (0); 1822 } 1823 1824 ASSERT(hdr->b_state == arc.mru || hdr->b_state == arc.mfu); 1825 1826 if (done) { 1827 add_reference(hdr, hash_lock, private); 1828 /* 1829 * If this block is already in use, create a new 1830 * copy of the data so that we will be guaranteed 1831 * that arc_release() will always succeed. 1832 */ 1833 buf = hdr->b_buf; 1834 ASSERT(buf); 1835 ASSERT(buf->b_data); 1836 if (HDR_BUF_AVAILABLE(hdr)) { 1837 ASSERT(buf->b_efunc == NULL); 1838 hdr->b_flags &= ~ARC_BUF_AVAILABLE; 1839 } else { 1840 buf = arc_buf_clone(buf); 1841 } 1842 } else if (*arc_flags & ARC_PREFETCH && 1843 refcount_count(&hdr->b_refcnt) == 0) { 1844 hdr->b_flags |= ARC_PREFETCH; 1845 } 1846 DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr); 1847 arc_access(hdr, hash_lock); 1848 mutex_exit(hash_lock); 1849 atomic_add_64(&arc.hits, 1); 1850 if (done) 1851 done(NULL, buf, private); 1852 } else { 1853 uint64_t size = BP_GET_LSIZE(bp); 1854 arc_callback_t *acb; 1855 1856 if (hdr == NULL) { 1857 /* this block is not in the cache */ 1858 arc_buf_hdr_t *exists; 1859 1860 buf = arc_buf_alloc(spa, size, private); 1861 hdr = buf->b_hdr; 1862 hdr->b_dva = *BP_IDENTITY(bp); 1863 hdr->b_birth = bp->blk_birth; 1864 hdr->b_cksum0 = bp->blk_cksum.zc_word[0]; 1865 exists = buf_hash_insert(hdr, &hash_lock); 1866 if (exists) { 1867 /* somebody beat us to the hash insert */ 1868 mutex_exit(hash_lock); 1869 bzero(&hdr->b_dva, sizeof (dva_t)); 1870 hdr->b_birth = 0; 1871 hdr->b_cksum0 = 0; 1872 (void) arc_buf_remove_ref(buf, private); 1873 goto top; /* restart the IO request */ 1874 } 1875 /* if this is a prefetch, we don't have a reference */ 1876 if (*arc_flags & ARC_PREFETCH) { 1877 (void) remove_reference(hdr, hash_lock, 1878 private); 1879 hdr->b_flags |= ARC_PREFETCH; 1880 } 1881 if (BP_GET_LEVEL(bp) > 0) 1882 hdr->b_flags |= ARC_INDIRECT; 1883 } else { 1884 /* this block is in the ghost cache */ 1885 ASSERT(GHOST_STATE(hdr->b_state)); 1886 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 1887 ASSERT3U(refcount_count(&hdr->b_refcnt), ==, 0); 1888 ASSERT(hdr->b_buf == NULL); 1889 1890 /* if this is a prefetch, we don't have a reference */ 1891 if (*arc_flags & ARC_PREFETCH) 1892 hdr->b_flags |= ARC_PREFETCH; 1893 else 1894 add_reference(hdr, hash_lock, private); 1895 buf = kmem_cache_alloc(buf_cache, KM_SLEEP); 1896 buf->b_hdr = hdr; 1897 buf->b_data = NULL; 1898 buf->b_efunc = NULL; 1899 buf->b_private = NULL; 1900 buf->b_next = NULL; 1901 hdr->b_buf = buf; 1902 arc_get_data_buf(buf); 1903 ASSERT(hdr->b_datacnt == 0); 1904 hdr->b_datacnt = 1; 1905 1906 } 1907 1908 acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP); 1909 acb->acb_done = done; 1910 acb->acb_private = private; 1911 acb->acb_byteswap = swap; 1912 1913 ASSERT(hdr->b_acb == NULL); 1914 hdr->b_acb = acb; 1915 hdr->b_flags |= ARC_IO_IN_PROGRESS; 1916 1917 /* 1918 * If the buffer has been evicted, migrate it to a present state 1919 * before issuing the I/O. Once we drop the hash-table lock, 1920 * the header will be marked as I/O in progress and have an 1921 * attached buffer. At this point, anybody who finds this 1922 * buffer ought to notice that it's legit but has a pending I/O. 1923 */ 1924 1925 if (GHOST_STATE(hdr->b_state)) 1926 arc_access(hdr, hash_lock); 1927 mutex_exit(hash_lock); 1928 1929 ASSERT3U(hdr->b_size, ==, size); 1930 DTRACE_PROBE3(arc__miss, blkptr_t *, bp, uint64_t, size, 1931 zbookmark_t *, zb); 1932 atomic_add_64(&arc.misses, 1); 1933 1934 rzio = zio_read(pio, spa, bp, buf->b_data, size, 1935 arc_read_done, buf, priority, flags, zb); 1936 1937 if (*arc_flags & ARC_WAIT) 1938 return (zio_wait(rzio)); 1939 1940 ASSERT(*arc_flags & ARC_NOWAIT); 1941 zio_nowait(rzio); 1942 } 1943 return (0); 1944 } 1945 1946 /* 1947 * arc_read() variant to support pool traversal. If the block is already 1948 * in the ARC, make a copy of it; otherwise, the caller will do the I/O. 1949 * The idea is that we don't want pool traversal filling up memory, but 1950 * if the ARC already has the data anyway, we shouldn't pay for the I/O. 1951 */ 1952 int 1953 arc_tryread(spa_t *spa, blkptr_t *bp, void *data) 1954 { 1955 arc_buf_hdr_t *hdr; 1956 kmutex_t *hash_mtx; 1957 int rc = 0; 1958 1959 hdr = buf_hash_find(spa, BP_IDENTITY(bp), bp->blk_birth, &hash_mtx); 1960 1961 if (hdr && hdr->b_datacnt > 0 && !HDR_IO_IN_PROGRESS(hdr)) { 1962 arc_buf_t *buf = hdr->b_buf; 1963 1964 ASSERT(buf); 1965 while (buf->b_data == NULL) { 1966 buf = buf->b_next; 1967 ASSERT(buf); 1968 } 1969 bcopy(buf->b_data, data, hdr->b_size); 1970 } else { 1971 rc = ENOENT; 1972 } 1973 1974 if (hash_mtx) 1975 mutex_exit(hash_mtx); 1976 1977 return (rc); 1978 } 1979 1980 void 1981 arc_set_callback(arc_buf_t *buf, arc_evict_func_t *func, void *private) 1982 { 1983 ASSERT(buf->b_hdr != NULL); 1984 ASSERT(buf->b_hdr->b_state != arc.anon); 1985 ASSERT(!refcount_is_zero(&buf->b_hdr->b_refcnt) || func == NULL); 1986 buf->b_efunc = func; 1987 buf->b_private = private; 1988 } 1989 1990 /* 1991 * This is used by the DMU to let the ARC know that a buffer is 1992 * being evicted, so the ARC should clean up. If this arc buf 1993 * is not yet in the evicted state, it will be put there. 1994 */ 1995 int 1996 arc_buf_evict(arc_buf_t *buf) 1997 { 1998 arc_buf_hdr_t *hdr; 1999 kmutex_t *hash_lock; 2000 arc_buf_t **bufp; 2001 2002 mutex_enter(&arc_eviction_mtx); 2003 hdr = buf->b_hdr; 2004 if (hdr == NULL) { 2005 /* 2006 * We are in arc_do_user_evicts(). 2007 */ 2008 ASSERT(buf->b_data == NULL); 2009 mutex_exit(&arc_eviction_mtx); 2010 return (0); 2011 } 2012 hash_lock = HDR_LOCK(hdr); 2013 mutex_exit(&arc_eviction_mtx); 2014 2015 mutex_enter(hash_lock); 2016 2017 if (buf->b_data == NULL) { 2018 /* 2019 * We are on the eviction list. 2020 */ 2021 mutex_exit(hash_lock); 2022 mutex_enter(&arc_eviction_mtx); 2023 if (buf->b_hdr == NULL) { 2024 /* 2025 * We are already in arc_do_user_evicts(). 2026 */ 2027 mutex_exit(&arc_eviction_mtx); 2028 return (0); 2029 } else { 2030 arc_buf_t copy = *buf; /* structure assignment */ 2031 /* 2032 * Process this buffer now 2033 * but let arc_do_user_evicts() do the reaping. 2034 */ 2035 buf->b_efunc = NULL; 2036 mutex_exit(&arc_eviction_mtx); 2037 VERIFY(copy.b_efunc(©) == 0); 2038 return (1); 2039 } 2040 } 2041 2042 ASSERT(buf->b_hdr == hdr); 2043 ASSERT3U(refcount_count(&hdr->b_refcnt), <, hdr->b_datacnt); 2044 ASSERT(hdr->b_state == arc.mru || hdr->b_state == arc.mfu); 2045 2046 /* 2047 * Pull this buffer off of the hdr 2048 */ 2049 bufp = &hdr->b_buf; 2050 while (*bufp != buf) 2051 bufp = &(*bufp)->b_next; 2052 *bufp = buf->b_next; 2053 2054 ASSERT(buf->b_data != NULL); 2055 arc_buf_destroy(buf, FALSE, FALSE); 2056 2057 if (hdr->b_datacnt == 0) { 2058 arc_state_t *old_state = hdr->b_state; 2059 arc_state_t *evicted_state; 2060 2061 ASSERT(refcount_is_zero(&hdr->b_refcnt)); 2062 2063 evicted_state = 2064 (old_state == arc.mru) ? arc.mru_ghost : arc.mfu_ghost; 2065 2066 mutex_enter(&old_state->mtx); 2067 mutex_enter(&evicted_state->mtx); 2068 2069 arc_change_state(evicted_state, hdr, hash_lock); 2070 ASSERT(HDR_IN_HASH_TABLE(hdr)); 2071 hdr->b_flags = ARC_IN_HASH_TABLE; 2072 2073 mutex_exit(&evicted_state->mtx); 2074 mutex_exit(&old_state->mtx); 2075 } 2076 mutex_exit(hash_lock); 2077 2078 VERIFY(buf->b_efunc(buf) == 0); 2079 buf->b_efunc = NULL; 2080 buf->b_private = NULL; 2081 buf->b_hdr = NULL; 2082 kmem_cache_free(buf_cache, buf); 2083 return (1); 2084 } 2085 2086 /* 2087 * Release this buffer from the cache. This must be done 2088 * after a read and prior to modifying the buffer contents. 2089 * If the buffer has more than one reference, we must make 2090 * make a new hdr for the buffer. 2091 */ 2092 void 2093 arc_release(arc_buf_t *buf, void *tag) 2094 { 2095 arc_buf_hdr_t *hdr = buf->b_hdr; 2096 kmutex_t *hash_lock = HDR_LOCK(hdr); 2097 2098 /* this buffer is not on any list */ 2099 ASSERT(refcount_count(&hdr->b_refcnt) > 0); 2100 2101 if (hdr->b_state == arc.anon) { 2102 /* this buffer is already released */ 2103 ASSERT3U(refcount_count(&hdr->b_refcnt), ==, 1); 2104 ASSERT(BUF_EMPTY(hdr)); 2105 ASSERT(buf->b_efunc == NULL); 2106 return; 2107 } 2108 2109 mutex_enter(hash_lock); 2110 2111 /* 2112 * Do we have more than one buf? 2113 */ 2114 if (hdr->b_buf != buf || buf->b_next != NULL) { 2115 arc_buf_hdr_t *nhdr; 2116 arc_buf_t **bufp; 2117 uint64_t blksz = hdr->b_size; 2118 spa_t *spa = hdr->b_spa; 2119 2120 ASSERT(hdr->b_datacnt > 1); 2121 /* 2122 * Pull the data off of this buf and attach it to 2123 * a new anonymous buf. 2124 */ 2125 (void) remove_reference(hdr, hash_lock, tag); 2126 bufp = &hdr->b_buf; 2127 while (*bufp != buf) 2128 bufp = &(*bufp)->b_next; 2129 *bufp = (*bufp)->b_next; 2130 2131 ASSERT3U(hdr->b_state->size, >=, hdr->b_size); 2132 atomic_add_64(&hdr->b_state->size, -hdr->b_size); 2133 if (refcount_is_zero(&hdr->b_refcnt)) { 2134 ASSERT3U(hdr->b_state->lsize, >=, hdr->b_size); 2135 atomic_add_64(&hdr->b_state->lsize, -hdr->b_size); 2136 } 2137 hdr->b_datacnt -= 1; 2138 2139 mutex_exit(hash_lock); 2140 2141 nhdr = kmem_cache_alloc(hdr_cache, KM_SLEEP); 2142 nhdr->b_size = blksz; 2143 nhdr->b_spa = spa; 2144 nhdr->b_buf = buf; 2145 nhdr->b_state = arc.anon; 2146 nhdr->b_arc_access = 0; 2147 nhdr->b_flags = 0; 2148 nhdr->b_datacnt = 1; 2149 buf->b_hdr = nhdr; 2150 buf->b_next = NULL; 2151 (void) refcount_add(&nhdr->b_refcnt, tag); 2152 atomic_add_64(&arc.anon->size, blksz); 2153 2154 hdr = nhdr; 2155 } else { 2156 ASSERT(refcount_count(&hdr->b_refcnt) == 1); 2157 ASSERT(!list_link_active(&hdr->b_arc_node)); 2158 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 2159 arc_change_state(arc.anon, hdr, hash_lock); 2160 hdr->b_arc_access = 0; 2161 mutex_exit(hash_lock); 2162 bzero(&hdr->b_dva, sizeof (dva_t)); 2163 hdr->b_birth = 0; 2164 hdr->b_cksum0 = 0; 2165 } 2166 buf->b_efunc = NULL; 2167 buf->b_private = NULL; 2168 } 2169 2170 int 2171 arc_released(arc_buf_t *buf) 2172 { 2173 return (buf->b_data != NULL && buf->b_hdr->b_state == arc.anon); 2174 } 2175 2176 int 2177 arc_has_callback(arc_buf_t *buf) 2178 { 2179 return (buf->b_efunc != NULL); 2180 } 2181 2182 #ifdef ZFS_DEBUG 2183 int 2184 arc_referenced(arc_buf_t *buf) 2185 { 2186 return (refcount_count(&buf->b_hdr->b_refcnt)); 2187 } 2188 #endif 2189 2190 static void 2191 arc_write_done(zio_t *zio) 2192 { 2193 arc_buf_t *buf; 2194 arc_buf_hdr_t *hdr; 2195 arc_callback_t *acb; 2196 2197 buf = zio->io_private; 2198 hdr = buf->b_hdr; 2199 acb = hdr->b_acb; 2200 hdr->b_acb = NULL; 2201 ASSERT(acb != NULL); 2202 2203 /* this buffer is on no lists and is not in the hash table */ 2204 ASSERT3P(hdr->b_state, ==, arc.anon); 2205 2206 hdr->b_dva = *BP_IDENTITY(zio->io_bp); 2207 hdr->b_birth = zio->io_bp->blk_birth; 2208 hdr->b_cksum0 = zio->io_bp->blk_cksum.zc_word[0]; 2209 /* 2210 * If the block to be written was all-zero, we may have 2211 * compressed it away. In this case no write was performed 2212 * so there will be no dva/birth-date/checksum. The buffer 2213 * must therefor remain anonymous (and uncached). 2214 */ 2215 if (!BUF_EMPTY(hdr)) { 2216 arc_buf_hdr_t *exists; 2217 kmutex_t *hash_lock; 2218 2219 exists = buf_hash_insert(hdr, &hash_lock); 2220 if (exists) { 2221 /* 2222 * This can only happen if we overwrite for 2223 * sync-to-convergence, because we remove 2224 * buffers from the hash table when we arc_free(). 2225 */ 2226 ASSERT(DVA_EQUAL(BP_IDENTITY(&zio->io_bp_orig), 2227 BP_IDENTITY(zio->io_bp))); 2228 ASSERT3U(zio->io_bp_orig.blk_birth, ==, 2229 zio->io_bp->blk_birth); 2230 2231 ASSERT(refcount_is_zero(&exists->b_refcnt)); 2232 arc_change_state(arc.anon, exists, hash_lock); 2233 mutex_exit(hash_lock); 2234 arc_hdr_destroy(exists); 2235 exists = buf_hash_insert(hdr, &hash_lock); 2236 ASSERT3P(exists, ==, NULL); 2237 } 2238 hdr->b_flags &= ~ARC_IO_IN_PROGRESS; 2239 arc_access(hdr, hash_lock); 2240 mutex_exit(hash_lock); 2241 } else if (acb->acb_done == NULL) { 2242 int destroy_hdr; 2243 /* 2244 * This is an anonymous buffer with no user callback, 2245 * destroy it if there are no active references. 2246 */ 2247 mutex_enter(&arc_eviction_mtx); 2248 destroy_hdr = refcount_is_zero(&hdr->b_refcnt); 2249 hdr->b_flags &= ~ARC_IO_IN_PROGRESS; 2250 mutex_exit(&arc_eviction_mtx); 2251 if (destroy_hdr) 2252 arc_hdr_destroy(hdr); 2253 } else { 2254 hdr->b_flags &= ~ARC_IO_IN_PROGRESS; 2255 } 2256 2257 if (acb->acb_done) { 2258 ASSERT(!refcount_is_zero(&hdr->b_refcnt)); 2259 acb->acb_done(zio, buf, acb->acb_private); 2260 } 2261 2262 kmem_free(acb, sizeof (arc_callback_t)); 2263 } 2264 2265 int 2266 arc_write(zio_t *pio, spa_t *spa, int checksum, int compress, int ncopies, 2267 uint64_t txg, blkptr_t *bp, arc_buf_t *buf, 2268 arc_done_func_t *done, void *private, int priority, int flags, 2269 uint32_t arc_flags, zbookmark_t *zb) 2270 { 2271 arc_buf_hdr_t *hdr = buf->b_hdr; 2272 arc_callback_t *acb; 2273 zio_t *rzio; 2274 2275 /* this is a private buffer - no locking required */ 2276 ASSERT3P(hdr->b_state, ==, arc.anon); 2277 ASSERT(BUF_EMPTY(hdr)); 2278 ASSERT(!HDR_IO_ERROR(hdr)); 2279 ASSERT((hdr->b_flags & ARC_IO_IN_PROGRESS) == 0); 2280 ASSERT(hdr->b_acb == 0); 2281 acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP); 2282 acb->acb_done = done; 2283 acb->acb_private = private; 2284 acb->acb_byteswap = (arc_byteswap_func_t *)-1; 2285 hdr->b_acb = acb; 2286 hdr->b_flags |= ARC_IO_IN_PROGRESS; 2287 rzio = zio_write(pio, spa, checksum, compress, ncopies, txg, bp, 2288 buf->b_data, hdr->b_size, arc_write_done, buf, priority, flags, zb); 2289 2290 if (arc_flags & ARC_WAIT) 2291 return (zio_wait(rzio)); 2292 2293 ASSERT(arc_flags & ARC_NOWAIT); 2294 zio_nowait(rzio); 2295 2296 return (0); 2297 } 2298 2299 int 2300 arc_free(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, 2301 zio_done_func_t *done, void *private, uint32_t arc_flags) 2302 { 2303 arc_buf_hdr_t *ab; 2304 kmutex_t *hash_lock; 2305 zio_t *zio; 2306 2307 /* 2308 * If this buffer is in the cache, release it, so it 2309 * can be re-used. 2310 */ 2311 ab = buf_hash_find(spa, BP_IDENTITY(bp), bp->blk_birth, &hash_lock); 2312 if (ab != NULL) { 2313 /* 2314 * The checksum of blocks to free is not always 2315 * preserved (eg. on the deadlist). However, if it is 2316 * nonzero, it should match what we have in the cache. 2317 */ 2318 ASSERT(bp->blk_cksum.zc_word[0] == 0 || 2319 ab->b_cksum0 == bp->blk_cksum.zc_word[0]); 2320 if (ab->b_state != arc.anon) 2321 arc_change_state(arc.anon, ab, hash_lock); 2322 if (HDR_IO_IN_PROGRESS(ab)) { 2323 /* 2324 * This should only happen when we prefetch. 2325 */ 2326 ASSERT(ab->b_flags & ARC_PREFETCH); 2327 ASSERT3U(ab->b_datacnt, ==, 1); 2328 ab->b_flags |= ARC_FREED_IN_READ; 2329 if (HDR_IN_HASH_TABLE(ab)) 2330 buf_hash_remove(ab); 2331 ab->b_arc_access = 0; 2332 bzero(&ab->b_dva, sizeof (dva_t)); 2333 ab->b_birth = 0; 2334 ab->b_cksum0 = 0; 2335 ab->b_buf->b_efunc = NULL; 2336 ab->b_buf->b_private = NULL; 2337 mutex_exit(hash_lock); 2338 } else if (refcount_is_zero(&ab->b_refcnt)) { 2339 mutex_exit(hash_lock); 2340 arc_hdr_destroy(ab); 2341 atomic_add_64(&arc.deleted, 1); 2342 } else { 2343 /* 2344 * We still have an active reference on this 2345 * buffer. This can happen, e.g., from 2346 * dbuf_unoverride(). 2347 */ 2348 ASSERT(!HDR_IN_HASH_TABLE(ab)); 2349 ab->b_arc_access = 0; 2350 bzero(&ab->b_dva, sizeof (dva_t)); 2351 ab->b_birth = 0; 2352 ab->b_cksum0 = 0; 2353 ab->b_buf->b_efunc = NULL; 2354 ab->b_buf->b_private = NULL; 2355 mutex_exit(hash_lock); 2356 } 2357 } 2358 2359 zio = zio_free(pio, spa, txg, bp, done, private); 2360 2361 if (arc_flags & ARC_WAIT) 2362 return (zio_wait(zio)); 2363 2364 ASSERT(arc_flags & ARC_NOWAIT); 2365 zio_nowait(zio); 2366 2367 return (0); 2368 } 2369 2370 void 2371 arc_tempreserve_clear(uint64_t tempreserve) 2372 { 2373 atomic_add_64(&arc_tempreserve, -tempreserve); 2374 ASSERT((int64_t)arc_tempreserve >= 0); 2375 } 2376 2377 int 2378 arc_tempreserve_space(uint64_t tempreserve) 2379 { 2380 #ifdef ZFS_DEBUG 2381 /* 2382 * Once in a while, fail for no reason. Everything should cope. 2383 */ 2384 if (spa_get_random(10000) == 0) { 2385 dprintf("forcing random failure\n"); 2386 return (ERESTART); 2387 } 2388 #endif 2389 if (tempreserve > arc.c/4 && !arc.no_grow) 2390 arc.c = MIN(arc.c_max, tempreserve * 4); 2391 if (tempreserve > arc.c) 2392 return (ENOMEM); 2393 2394 /* 2395 * Throttle writes when the amount of dirty data in the cache 2396 * gets too large. We try to keep the cache less than half full 2397 * of dirty blocks so that our sync times don't grow too large. 2398 * Note: if two requests come in concurrently, we might let them 2399 * both succeed, when one of them should fail. Not a huge deal. 2400 * 2401 * XXX The limit should be adjusted dynamically to keep the time 2402 * to sync a dataset fixed (around 1-5 seconds?). 2403 */ 2404 2405 if (tempreserve + arc_tempreserve + arc.anon->size > arc.c / 2 && 2406 arc_tempreserve + arc.anon->size > arc.c / 4) { 2407 dprintf("failing, arc_tempreserve=%lluK anon=%lluK " 2408 "tempreserve=%lluK arc.c=%lluK\n", 2409 arc_tempreserve>>10, arc.anon->lsize>>10, 2410 tempreserve>>10, arc.c>>10); 2411 return (ERESTART); 2412 } 2413 atomic_add_64(&arc_tempreserve, tempreserve); 2414 return (0); 2415 } 2416 2417 void 2418 arc_init(void) 2419 { 2420 mutex_init(&arc_reclaim_lock, NULL, MUTEX_DEFAULT, NULL); 2421 mutex_init(&arc_reclaim_thr_lock, NULL, MUTEX_DEFAULT, NULL); 2422 cv_init(&arc_reclaim_thr_cv, NULL, CV_DEFAULT, NULL); 2423 2424 /* Convert seconds to clock ticks */ 2425 arc_min_prefetch_lifespan = 1 * hz; 2426 2427 /* Start out with 1/8 of all memory */ 2428 arc.c = physmem * PAGESIZE / 8; 2429 2430 #ifdef _KERNEL 2431 /* 2432 * On architectures where the physical memory can be larger 2433 * than the addressable space (intel in 32-bit mode), we may 2434 * need to limit the cache to 1/8 of VM size. 2435 */ 2436 arc.c = MIN(arc.c, vmem_size(heap_arena, VMEM_ALLOC | VMEM_FREE) / 8); 2437 #endif 2438 2439 /* set min cache to 1/32 of all memory, or 64MB, whichever is more */ 2440 arc.c_min = MAX(arc.c / 4, 64<<20); 2441 /* set max to 3/4 of all memory, or all but 1GB, whichever is more */ 2442 if (arc.c * 8 >= 1<<30) 2443 arc.c_max = (arc.c * 8) - (1<<30); 2444 else 2445 arc.c_max = arc.c_min; 2446 arc.c_max = MAX(arc.c * 6, arc.c_max); 2447 2448 /* 2449 * Allow the tunables to override our calculations if they are 2450 * reasonable (ie. over 64MB) 2451 */ 2452 if (zfs_arc_max > 64<<20 && zfs_arc_max < physmem * PAGESIZE) 2453 arc.c_max = zfs_arc_max; 2454 if (zfs_arc_min > 64<<20 && zfs_arc_min <= arc.c_max) 2455 arc.c_min = zfs_arc_min; 2456 2457 arc.c = arc.c_max; 2458 arc.p = (arc.c >> 1); 2459 2460 /* if kmem_flags are set, lets try to use less memory */ 2461 if (kmem_debugging()) 2462 arc.c = arc.c / 2; 2463 if (arc.c < arc.c_min) 2464 arc.c = arc.c_min; 2465 2466 arc.anon = &ARC_anon; 2467 arc.mru = &ARC_mru; 2468 arc.mru_ghost = &ARC_mru_ghost; 2469 arc.mfu = &ARC_mfu; 2470 arc.mfu_ghost = &ARC_mfu_ghost; 2471 arc.size = 0; 2472 2473 arc.hits = 0; 2474 arc.recycle_miss = 0; 2475 arc.evict_skip = 0; 2476 arc.mutex_miss = 0; 2477 2478 mutex_init(&arc.anon->mtx, NULL, MUTEX_DEFAULT, NULL); 2479 mutex_init(&arc.mru->mtx, NULL, MUTEX_DEFAULT, NULL); 2480 mutex_init(&arc.mru_ghost->mtx, NULL, MUTEX_DEFAULT, NULL); 2481 mutex_init(&arc.mfu->mtx, NULL, MUTEX_DEFAULT, NULL); 2482 mutex_init(&arc.mfu_ghost->mtx, NULL, MUTEX_DEFAULT, NULL); 2483 2484 list_create(&arc.mru->list, sizeof (arc_buf_hdr_t), 2485 offsetof(arc_buf_hdr_t, b_arc_node)); 2486 list_create(&arc.mru_ghost->list, sizeof (arc_buf_hdr_t), 2487 offsetof(arc_buf_hdr_t, b_arc_node)); 2488 list_create(&arc.mfu->list, sizeof (arc_buf_hdr_t), 2489 offsetof(arc_buf_hdr_t, b_arc_node)); 2490 list_create(&arc.mfu_ghost->list, sizeof (arc_buf_hdr_t), 2491 offsetof(arc_buf_hdr_t, b_arc_node)); 2492 2493 buf_init(); 2494 2495 arc_thread_exit = 0; 2496 arc_eviction_list = NULL; 2497 mutex_init(&arc_eviction_mtx, NULL, MUTEX_DEFAULT, NULL); 2498 bzero(&arc_eviction_hdr, sizeof (arc_buf_hdr_t)); 2499 2500 (void) thread_create(NULL, 0, arc_reclaim_thread, NULL, 0, &p0, 2501 TS_RUN, minclsyspri); 2502 } 2503 2504 void 2505 arc_fini(void) 2506 { 2507 mutex_enter(&arc_reclaim_thr_lock); 2508 arc_thread_exit = 1; 2509 while (arc_thread_exit != 0) 2510 cv_wait(&arc_reclaim_thr_cv, &arc_reclaim_thr_lock); 2511 mutex_exit(&arc_reclaim_thr_lock); 2512 2513 arc_flush(); 2514 2515 arc_dead = TRUE; 2516 2517 mutex_destroy(&arc_eviction_mtx); 2518 mutex_destroy(&arc_reclaim_lock); 2519 mutex_destroy(&arc_reclaim_thr_lock); 2520 cv_destroy(&arc_reclaim_thr_cv); 2521 2522 list_destroy(&arc.mru->list); 2523 list_destroy(&arc.mru_ghost->list); 2524 list_destroy(&arc.mfu->list); 2525 list_destroy(&arc.mfu_ghost->list); 2526 2527 mutex_destroy(&arc.anon->mtx); 2528 mutex_destroy(&arc.mru->mtx); 2529 mutex_destroy(&arc.mru_ghost->mtx); 2530 mutex_destroy(&arc.mfu->mtx); 2531 mutex_destroy(&arc.mfu_ghost->mtx); 2532 2533 buf_fini(); 2534 } 2535