1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 /* 29 * DVA-based Adjustable Relpacement Cache 30 * 31 * While much of the theory of operation used here is 32 * based on the self-tuning, low overhead replacement cache 33 * presented by Megiddo and Modha at FAST 2003, there are some 34 * significant differences: 35 * 36 * 1. The Megiddo and Modha model assumes any page is evictable. 37 * Pages in its cache cannot be "locked" into memory. This makes 38 * the eviction algorithm simple: evict the last page in the list. 39 * This also make the performance characteristics easy to reason 40 * about. Our cache is not so simple. At any given moment, some 41 * subset of the blocks in the cache are un-evictable because we 42 * have handed out a reference to them. Blocks are only evictable 43 * when there are no external references active. This makes 44 * eviction far more problematic: we choose to evict the evictable 45 * blocks that are the "lowest" in the list. 46 * 47 * There are times when it is not possible to evict the requested 48 * space. In these circumstances we are unable to adjust the cache 49 * size. To prevent the cache growing unbounded at these times we 50 * implement a "cache throttle" that slowes the flow of new data 51 * into the cache until we can make space avaiable. 52 * 53 * 2. The Megiddo and Modha model assumes a fixed cache size. 54 * Pages are evicted when the cache is full and there is a cache 55 * miss. Our model has a variable sized cache. It grows with 56 * high use, but also tries to react to memory preasure from the 57 * operating system: decreasing its size when system memory is 58 * tight. 59 * 60 * 3. The Megiddo and Modha model assumes a fixed page size. All 61 * elements of the cache are therefor exactly the same size. So 62 * when adjusting the cache size following a cache miss, its simply 63 * a matter of choosing a single page to evict. In our model, we 64 * have variable sized cache blocks (rangeing from 512 bytes to 65 * 128K bytes). We therefor choose a set of blocks to evict to make 66 * space for a cache miss that approximates as closely as possible 67 * the space used by the new block. 68 * 69 * See also: "ARC: A Self-Tuning, Low Overhead Replacement Cache" 70 * by N. Megiddo & D. Modha, FAST 2003 71 */ 72 73 /* 74 * The locking model: 75 * 76 * A new reference to a cache buffer can be obtained in two 77 * ways: 1) via a hash table lookup using the DVA as a key, 78 * or 2) via one of the ARC lists. The arc_read() inerface 79 * uses method 1, while the internal arc algorithms for 80 * adjusting the cache use method 2. We therefor provide two 81 * types of locks: 1) the hash table lock array, and 2) the 82 * arc list locks. 83 * 84 * Buffers do not have their own mutexs, rather they rely on the 85 * hash table mutexs for the bulk of their protection (i.e. most 86 * fields in the arc_buf_hdr_t are protected by these mutexs). 87 * 88 * buf_hash_find() returns the appropriate mutex (held) when it 89 * locates the requested buffer in the hash table. It returns 90 * NULL for the mutex if the buffer was not in the table. 91 * 92 * buf_hash_remove() expects the appropriate hash mutex to be 93 * already held before it is invoked. 94 * 95 * Each arc state also has a mutex which is used to protect the 96 * buffer list associated with the state. When attempting to 97 * obtain a hash table lock while holding an arc list lock you 98 * must use: mutex_tryenter() to avoid deadlock. Also note that 99 * the active state mutex must be held before the ghost state mutex. 100 * 101 * Arc buffers may have an associated eviction callback function. 102 * This function will be invoked prior to removing the buffer (e.g. 103 * in arc_do_user_evicts()). Note however that the data associated 104 * with the buffer may be evicted prior to the callback. The callback 105 * must be made with *no locks held* (to prevent deadlock). Additionally, 106 * the users of callbacks must ensure that their private data is 107 * protected from simultaneous callbacks from arc_buf_evict() 108 * and arc_do_user_evicts(). 109 * 110 * Note that the majority of the performance stats are manipulated 111 * with atomic operations. 112 */ 113 114 #include <sys/spa.h> 115 #include <sys/zio.h> 116 #include <sys/zio_checksum.h> 117 #include <sys/zfs_context.h> 118 #include <sys/arc.h> 119 #include <sys/refcount.h> 120 #ifdef _KERNEL 121 #include <sys/vmsystm.h> 122 #include <vm/anon.h> 123 #include <sys/fs/swapnode.h> 124 #include <sys/dnlc.h> 125 #endif 126 #include <sys/callb.h> 127 128 static kmutex_t arc_reclaim_thr_lock; 129 static kcondvar_t arc_reclaim_thr_cv; /* used to signal reclaim thr */ 130 static uint8_t arc_thread_exit; 131 132 #define ARC_REDUCE_DNLC_PERCENT 3 133 uint_t arc_reduce_dnlc_percent = ARC_REDUCE_DNLC_PERCENT; 134 135 typedef enum arc_reclaim_strategy { 136 ARC_RECLAIM_AGGR, /* Aggressive reclaim strategy */ 137 ARC_RECLAIM_CONS /* Conservative reclaim strategy */ 138 } arc_reclaim_strategy_t; 139 140 /* number of seconds before growing cache again */ 141 static int arc_grow_retry = 60; 142 143 /* 144 * minimum lifespan of a prefetch block in clock ticks 145 * (initialized in arc_init()) 146 */ 147 static int arc_min_prefetch_lifespan; 148 149 static int arc_dead; 150 151 /* 152 * These tunables are for performance analysis. 153 */ 154 uint64_t zfs_arc_max; 155 uint64_t zfs_arc_min; 156 157 /* 158 * Note that buffers can be on one of 5 states: 159 * ARC_anon - anonymous (discussed below) 160 * ARC_mru - recently used, currently cached 161 * ARC_mru_ghost - recentely used, no longer in cache 162 * ARC_mfu - frequently used, currently cached 163 * ARC_mfu_ghost - frequently used, no longer in cache 164 * When there are no active references to the buffer, they 165 * are linked onto one of the lists in arc. These are the 166 * only buffers that can be evicted or deleted. 167 * 168 * Anonymous buffers are buffers that are not associated with 169 * a DVA. These are buffers that hold dirty block copies 170 * before they are written to stable storage. By definition, 171 * they are "ref'd" and are considered part of arc_mru 172 * that cannot be freed. Generally, they will aquire a DVA 173 * as they are written and migrate onto the arc_mru list. 174 */ 175 176 typedef struct arc_state { 177 list_t list; /* linked list of evictable buffer in state */ 178 uint64_t lsize; /* total size of buffers in the linked list */ 179 uint64_t size; /* total size of all buffers in this state */ 180 uint64_t hits; 181 kmutex_t mtx; 182 } arc_state_t; 183 184 /* The 5 states: */ 185 static arc_state_t ARC_anon; 186 static arc_state_t ARC_mru; 187 static arc_state_t ARC_mru_ghost; 188 static arc_state_t ARC_mfu; 189 static arc_state_t ARC_mfu_ghost; 190 191 static struct arc { 192 arc_state_t *anon; 193 arc_state_t *mru; 194 arc_state_t *mru_ghost; 195 arc_state_t *mfu; 196 arc_state_t *mfu_ghost; 197 uint64_t size; /* Actual total arc size */ 198 uint64_t p; /* Target size (in bytes) of mru */ 199 uint64_t c; /* Target size of cache (in bytes) */ 200 uint64_t c_min; /* Minimum target cache size */ 201 uint64_t c_max; /* Maximum target cache size */ 202 203 /* performance stats */ 204 uint64_t hits; 205 uint64_t misses; 206 uint64_t deleted; 207 uint64_t recycle_miss; 208 uint64_t mutex_miss; 209 uint64_t evict_skip; 210 uint64_t hash_elements; 211 uint64_t hash_elements_max; 212 uint64_t hash_collisions; 213 uint64_t hash_chains; 214 uint32_t hash_chain_max; 215 216 int no_grow; /* Don't try to grow cache size */ 217 } arc; 218 219 static uint64_t arc_tempreserve; 220 221 typedef struct arc_callback arc_callback_t; 222 223 struct arc_callback { 224 arc_done_func_t *acb_done; 225 void *acb_private; 226 arc_byteswap_func_t *acb_byteswap; 227 arc_buf_t *acb_buf; 228 zio_t *acb_zio_dummy; 229 arc_callback_t *acb_next; 230 }; 231 232 struct arc_buf_hdr { 233 /* protected by hash lock */ 234 dva_t b_dva; 235 uint64_t b_birth; 236 uint64_t b_cksum0; 237 238 kmutex_t b_freeze_lock; 239 zio_cksum_t *b_freeze_cksum; 240 241 arc_buf_hdr_t *b_hash_next; 242 arc_buf_t *b_buf; 243 uint32_t b_flags; 244 uint32_t b_datacnt; 245 246 arc_callback_t *b_acb; 247 kcondvar_t b_cv; 248 249 /* immutable */ 250 arc_buf_contents_t b_type; 251 uint64_t b_size; 252 spa_t *b_spa; 253 254 /* protected by arc state mutex */ 255 arc_state_t *b_state; 256 list_node_t b_arc_node; 257 258 /* updated atomically */ 259 clock_t b_arc_access; 260 261 /* self protecting */ 262 refcount_t b_refcnt; 263 }; 264 265 static arc_buf_t *arc_eviction_list; 266 static kmutex_t arc_eviction_mtx; 267 static arc_buf_hdr_t arc_eviction_hdr; 268 static void arc_get_data_buf(arc_buf_t *buf); 269 static void arc_access(arc_buf_hdr_t *buf, kmutex_t *hash_lock); 270 271 #define GHOST_STATE(state) \ 272 ((state) == arc.mru_ghost || (state) == arc.mfu_ghost) 273 274 /* 275 * Private ARC flags. These flags are private ARC only flags that will show up 276 * in b_flags in the arc_hdr_buf_t. Some flags are publicly declared, and can 277 * be passed in as arc_flags in things like arc_read. However, these flags 278 * should never be passed and should only be set by ARC code. When adding new 279 * public flags, make sure not to smash the private ones. 280 */ 281 282 #define ARC_IN_HASH_TABLE (1 << 9) /* this buffer is hashed */ 283 #define ARC_IO_IN_PROGRESS (1 << 10) /* I/O in progress for buf */ 284 #define ARC_IO_ERROR (1 << 11) /* I/O failed for buf */ 285 #define ARC_FREED_IN_READ (1 << 12) /* buf freed while in read */ 286 #define ARC_BUF_AVAILABLE (1 << 13) /* block not in active use */ 287 #define ARC_INDIRECT (1 << 14) /* this is an indirect block */ 288 289 #define HDR_IN_HASH_TABLE(hdr) ((hdr)->b_flags & ARC_IN_HASH_TABLE) 290 #define HDR_IO_IN_PROGRESS(hdr) ((hdr)->b_flags & ARC_IO_IN_PROGRESS) 291 #define HDR_IO_ERROR(hdr) ((hdr)->b_flags & ARC_IO_ERROR) 292 #define HDR_FREED_IN_READ(hdr) ((hdr)->b_flags & ARC_FREED_IN_READ) 293 #define HDR_BUF_AVAILABLE(hdr) ((hdr)->b_flags & ARC_BUF_AVAILABLE) 294 295 /* 296 * Hash table routines 297 */ 298 299 #define HT_LOCK_PAD 64 300 301 struct ht_lock { 302 kmutex_t ht_lock; 303 #ifdef _KERNEL 304 unsigned char pad[(HT_LOCK_PAD - sizeof (kmutex_t))]; 305 #endif 306 }; 307 308 #define BUF_LOCKS 256 309 typedef struct buf_hash_table { 310 uint64_t ht_mask; 311 arc_buf_hdr_t **ht_table; 312 struct ht_lock ht_locks[BUF_LOCKS]; 313 } buf_hash_table_t; 314 315 static buf_hash_table_t buf_hash_table; 316 317 #define BUF_HASH_INDEX(spa, dva, birth) \ 318 (buf_hash(spa, dva, birth) & buf_hash_table.ht_mask) 319 #define BUF_HASH_LOCK_NTRY(idx) (buf_hash_table.ht_locks[idx & (BUF_LOCKS-1)]) 320 #define BUF_HASH_LOCK(idx) (&(BUF_HASH_LOCK_NTRY(idx).ht_lock)) 321 #define HDR_LOCK(buf) \ 322 (BUF_HASH_LOCK(BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth))) 323 324 uint64_t zfs_crc64_table[256]; 325 326 static uint64_t 327 buf_hash(spa_t *spa, dva_t *dva, uint64_t birth) 328 { 329 uintptr_t spav = (uintptr_t)spa; 330 uint8_t *vdva = (uint8_t *)dva; 331 uint64_t crc = -1ULL; 332 int i; 333 334 ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY); 335 336 for (i = 0; i < sizeof (dva_t); i++) 337 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ vdva[i]) & 0xFF]; 338 339 crc ^= (spav>>8) ^ birth; 340 341 return (crc); 342 } 343 344 #define BUF_EMPTY(buf) \ 345 ((buf)->b_dva.dva_word[0] == 0 && \ 346 (buf)->b_dva.dva_word[1] == 0 && \ 347 (buf)->b_birth == 0) 348 349 #define BUF_EQUAL(spa, dva, birth, buf) \ 350 ((buf)->b_dva.dva_word[0] == (dva)->dva_word[0]) && \ 351 ((buf)->b_dva.dva_word[1] == (dva)->dva_word[1]) && \ 352 ((buf)->b_birth == birth) && ((buf)->b_spa == spa) 353 354 static arc_buf_hdr_t * 355 buf_hash_find(spa_t *spa, dva_t *dva, uint64_t birth, kmutex_t **lockp) 356 { 357 uint64_t idx = BUF_HASH_INDEX(spa, dva, birth); 358 kmutex_t *hash_lock = BUF_HASH_LOCK(idx); 359 arc_buf_hdr_t *buf; 360 361 mutex_enter(hash_lock); 362 for (buf = buf_hash_table.ht_table[idx]; buf != NULL; 363 buf = buf->b_hash_next) { 364 if (BUF_EQUAL(spa, dva, birth, buf)) { 365 *lockp = hash_lock; 366 return (buf); 367 } 368 } 369 mutex_exit(hash_lock); 370 *lockp = NULL; 371 return (NULL); 372 } 373 374 /* 375 * Insert an entry into the hash table. If there is already an element 376 * equal to elem in the hash table, then the already existing element 377 * will be returned and the new element will not be inserted. 378 * Otherwise returns NULL. 379 */ 380 static arc_buf_hdr_t * 381 buf_hash_insert(arc_buf_hdr_t *buf, kmutex_t **lockp) 382 { 383 uint64_t idx = BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth); 384 kmutex_t *hash_lock = BUF_HASH_LOCK(idx); 385 arc_buf_hdr_t *fbuf; 386 uint32_t max, i; 387 388 ASSERT(!HDR_IN_HASH_TABLE(buf)); 389 *lockp = hash_lock; 390 mutex_enter(hash_lock); 391 for (fbuf = buf_hash_table.ht_table[idx], i = 0; fbuf != NULL; 392 fbuf = fbuf->b_hash_next, i++) { 393 if (BUF_EQUAL(buf->b_spa, &buf->b_dva, buf->b_birth, fbuf)) 394 return (fbuf); 395 } 396 397 buf->b_hash_next = buf_hash_table.ht_table[idx]; 398 buf_hash_table.ht_table[idx] = buf; 399 buf->b_flags |= ARC_IN_HASH_TABLE; 400 401 /* collect some hash table performance data */ 402 if (i > 0) { 403 atomic_add_64(&arc.hash_collisions, 1); 404 if (i == 1) 405 atomic_add_64(&arc.hash_chains, 1); 406 } 407 while (i > (max = arc.hash_chain_max) && 408 max != atomic_cas_32(&arc.hash_chain_max, max, i)) { 409 continue; 410 } 411 atomic_add_64(&arc.hash_elements, 1); 412 if (arc.hash_elements > arc.hash_elements_max) 413 atomic_add_64(&arc.hash_elements_max, 1); 414 415 return (NULL); 416 } 417 418 static void 419 buf_hash_remove(arc_buf_hdr_t *buf) 420 { 421 arc_buf_hdr_t *fbuf, **bufp; 422 uint64_t idx = BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth); 423 424 ASSERT(MUTEX_HELD(BUF_HASH_LOCK(idx))); 425 ASSERT(HDR_IN_HASH_TABLE(buf)); 426 427 bufp = &buf_hash_table.ht_table[idx]; 428 while ((fbuf = *bufp) != buf) { 429 ASSERT(fbuf != NULL); 430 bufp = &fbuf->b_hash_next; 431 } 432 *bufp = buf->b_hash_next; 433 buf->b_hash_next = NULL; 434 buf->b_flags &= ~ARC_IN_HASH_TABLE; 435 436 /* collect some hash table performance data */ 437 atomic_add_64(&arc.hash_elements, -1); 438 if (buf_hash_table.ht_table[idx] && 439 buf_hash_table.ht_table[idx]->b_hash_next == NULL) 440 atomic_add_64(&arc.hash_chains, -1); 441 } 442 443 /* 444 * Global data structures and functions for the buf kmem cache. 445 */ 446 static kmem_cache_t *hdr_cache; 447 static kmem_cache_t *buf_cache; 448 449 static void 450 buf_fini(void) 451 { 452 int i; 453 454 kmem_free(buf_hash_table.ht_table, 455 (buf_hash_table.ht_mask + 1) * sizeof (void *)); 456 for (i = 0; i < BUF_LOCKS; i++) 457 mutex_destroy(&buf_hash_table.ht_locks[i].ht_lock); 458 kmem_cache_destroy(hdr_cache); 459 kmem_cache_destroy(buf_cache); 460 } 461 462 /* 463 * Constructor callback - called when the cache is empty 464 * and a new buf is requested. 465 */ 466 /* ARGSUSED */ 467 static int 468 hdr_cons(void *vbuf, void *unused, int kmflag) 469 { 470 arc_buf_hdr_t *buf = vbuf; 471 472 bzero(buf, sizeof (arc_buf_hdr_t)); 473 refcount_create(&buf->b_refcnt); 474 cv_init(&buf->b_cv, NULL, CV_DEFAULT, NULL); 475 return (0); 476 } 477 478 /* 479 * Destructor callback - called when a cached buf is 480 * no longer required. 481 */ 482 /* ARGSUSED */ 483 static void 484 hdr_dest(void *vbuf, void *unused) 485 { 486 arc_buf_hdr_t *buf = vbuf; 487 488 refcount_destroy(&buf->b_refcnt); 489 cv_destroy(&buf->b_cv); 490 } 491 492 /* 493 * Reclaim callback -- invoked when memory is low. 494 */ 495 /* ARGSUSED */ 496 static void 497 hdr_recl(void *unused) 498 { 499 dprintf("hdr_recl called\n"); 500 /* 501 * umem calls the reclaim func when we destroy the buf cache, 502 * which is after we do arc_fini(). 503 */ 504 if (!arc_dead) 505 cv_signal(&arc_reclaim_thr_cv); 506 } 507 508 static void 509 buf_init(void) 510 { 511 uint64_t *ct; 512 uint64_t hsize = 1ULL << 12; 513 int i, j; 514 515 /* 516 * The hash table is big enough to fill all of physical memory 517 * with an average 64K block size. The table will take up 518 * totalmem*sizeof(void*)/64K (eg. 128KB/GB with 8-byte pointers). 519 */ 520 while (hsize * 65536 < physmem * PAGESIZE) 521 hsize <<= 1; 522 retry: 523 buf_hash_table.ht_mask = hsize - 1; 524 buf_hash_table.ht_table = 525 kmem_zalloc(hsize * sizeof (void*), KM_NOSLEEP); 526 if (buf_hash_table.ht_table == NULL) { 527 ASSERT(hsize > (1ULL << 8)); 528 hsize >>= 1; 529 goto retry; 530 } 531 532 hdr_cache = kmem_cache_create("arc_buf_hdr_t", sizeof (arc_buf_hdr_t), 533 0, hdr_cons, hdr_dest, hdr_recl, NULL, NULL, 0); 534 buf_cache = kmem_cache_create("arc_buf_t", sizeof (arc_buf_t), 535 0, NULL, NULL, NULL, NULL, NULL, 0); 536 537 for (i = 0; i < 256; i++) 538 for (ct = zfs_crc64_table + i, *ct = i, j = 8; j > 0; j--) 539 *ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY); 540 541 for (i = 0; i < BUF_LOCKS; i++) { 542 mutex_init(&buf_hash_table.ht_locks[i].ht_lock, 543 NULL, MUTEX_DEFAULT, NULL); 544 } 545 } 546 547 #define ARC_MINTIME (hz>>4) /* 62 ms */ 548 549 static void 550 arc_cksum_verify(arc_buf_t *buf) 551 { 552 zio_cksum_t zc; 553 554 if (!(zfs_flags & ZFS_DEBUG_MODIFY)) 555 return; 556 557 mutex_enter(&buf->b_hdr->b_freeze_lock); 558 if (buf->b_hdr->b_freeze_cksum == NULL || 559 (buf->b_hdr->b_flags & ARC_IO_ERROR)) { 560 mutex_exit(&buf->b_hdr->b_freeze_lock); 561 return; 562 } 563 fletcher_2_native(buf->b_data, buf->b_hdr->b_size, &zc); 564 if (!ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc)) 565 panic("buffer modified while frozen!"); 566 mutex_exit(&buf->b_hdr->b_freeze_lock); 567 } 568 569 static void 570 arc_cksum_compute(arc_buf_t *buf) 571 { 572 if (!(zfs_flags & ZFS_DEBUG_MODIFY)) 573 return; 574 575 mutex_enter(&buf->b_hdr->b_freeze_lock); 576 if (buf->b_hdr->b_freeze_cksum != NULL) { 577 mutex_exit(&buf->b_hdr->b_freeze_lock); 578 return; 579 } 580 buf->b_hdr->b_freeze_cksum = kmem_alloc(sizeof (zio_cksum_t), KM_SLEEP); 581 fletcher_2_native(buf->b_data, buf->b_hdr->b_size, 582 buf->b_hdr->b_freeze_cksum); 583 mutex_exit(&buf->b_hdr->b_freeze_lock); 584 } 585 586 void 587 arc_buf_thaw(arc_buf_t *buf) 588 { 589 if (!(zfs_flags & ZFS_DEBUG_MODIFY)) 590 return; 591 592 if (buf->b_hdr->b_state != arc.anon) 593 panic("modifying non-anon buffer!"); 594 if (buf->b_hdr->b_flags & ARC_IO_IN_PROGRESS) 595 panic("modifying buffer while i/o in progress!"); 596 arc_cksum_verify(buf); 597 mutex_enter(&buf->b_hdr->b_freeze_lock); 598 if (buf->b_hdr->b_freeze_cksum != NULL) { 599 kmem_free(buf->b_hdr->b_freeze_cksum, sizeof (zio_cksum_t)); 600 buf->b_hdr->b_freeze_cksum = NULL; 601 } 602 mutex_exit(&buf->b_hdr->b_freeze_lock); 603 } 604 605 void 606 arc_buf_freeze(arc_buf_t *buf) 607 { 608 if (!(zfs_flags & ZFS_DEBUG_MODIFY)) 609 return; 610 611 ASSERT(buf->b_hdr->b_freeze_cksum != NULL || 612 buf->b_hdr->b_state == arc.anon); 613 arc_cksum_compute(buf); 614 } 615 616 static void 617 add_reference(arc_buf_hdr_t *ab, kmutex_t *hash_lock, void *tag) 618 { 619 ASSERT(MUTEX_HELD(hash_lock)); 620 621 if ((refcount_add(&ab->b_refcnt, tag) == 1) && 622 (ab->b_state != arc.anon)) { 623 int delta = ab->b_size * ab->b_datacnt; 624 625 ASSERT(!MUTEX_HELD(&ab->b_state->mtx)); 626 mutex_enter(&ab->b_state->mtx); 627 ASSERT(list_link_active(&ab->b_arc_node)); 628 list_remove(&ab->b_state->list, ab); 629 if (GHOST_STATE(ab->b_state)) { 630 ASSERT3U(ab->b_datacnt, ==, 0); 631 ASSERT3P(ab->b_buf, ==, NULL); 632 delta = ab->b_size; 633 } 634 ASSERT(delta > 0); 635 ASSERT3U(ab->b_state->lsize, >=, delta); 636 atomic_add_64(&ab->b_state->lsize, -delta); 637 mutex_exit(&ab->b_state->mtx); 638 /* remove the prefetch flag is we get a reference */ 639 if (ab->b_flags & ARC_PREFETCH) 640 ab->b_flags &= ~ARC_PREFETCH; 641 } 642 } 643 644 static int 645 remove_reference(arc_buf_hdr_t *ab, kmutex_t *hash_lock, void *tag) 646 { 647 int cnt; 648 649 ASSERT(ab->b_state == arc.anon || MUTEX_HELD(hash_lock)); 650 ASSERT(!GHOST_STATE(ab->b_state)); 651 652 if (((cnt = refcount_remove(&ab->b_refcnt, tag)) == 0) && 653 (ab->b_state != arc.anon)) { 654 655 ASSERT(!MUTEX_HELD(&ab->b_state->mtx)); 656 mutex_enter(&ab->b_state->mtx); 657 ASSERT(!list_link_active(&ab->b_arc_node)); 658 list_insert_head(&ab->b_state->list, ab); 659 ASSERT(ab->b_datacnt > 0); 660 atomic_add_64(&ab->b_state->lsize, ab->b_size * ab->b_datacnt); 661 ASSERT3U(ab->b_state->size, >=, ab->b_state->lsize); 662 mutex_exit(&ab->b_state->mtx); 663 } 664 return (cnt); 665 } 666 667 /* 668 * Move the supplied buffer to the indicated state. The mutex 669 * for the buffer must be held by the caller. 670 */ 671 static void 672 arc_change_state(arc_state_t *new_state, arc_buf_hdr_t *ab, kmutex_t *hash_lock) 673 { 674 arc_state_t *old_state = ab->b_state; 675 int refcnt = refcount_count(&ab->b_refcnt); 676 int from_delta, to_delta; 677 678 ASSERT(MUTEX_HELD(hash_lock)); 679 ASSERT(new_state != old_state); 680 ASSERT(refcnt == 0 || ab->b_datacnt > 0); 681 ASSERT(ab->b_datacnt == 0 || !GHOST_STATE(new_state)); 682 683 from_delta = to_delta = ab->b_datacnt * ab->b_size; 684 685 /* 686 * If this buffer is evictable, transfer it from the 687 * old state list to the new state list. 688 */ 689 if (refcnt == 0) { 690 if (old_state != arc.anon) { 691 int use_mutex = !MUTEX_HELD(&old_state->mtx); 692 693 if (use_mutex) 694 mutex_enter(&old_state->mtx); 695 696 ASSERT(list_link_active(&ab->b_arc_node)); 697 list_remove(&old_state->list, ab); 698 699 /* 700 * If prefetching out of the ghost cache, 701 * we will have a non-null datacnt. 702 */ 703 if (GHOST_STATE(old_state) && ab->b_datacnt == 0) { 704 /* ghost elements have a ghost size */ 705 ASSERT(ab->b_buf == NULL); 706 from_delta = ab->b_size; 707 } 708 ASSERT3U(old_state->lsize, >=, from_delta); 709 atomic_add_64(&old_state->lsize, -from_delta); 710 711 if (use_mutex) 712 mutex_exit(&old_state->mtx); 713 } 714 if (new_state != arc.anon) { 715 int use_mutex = !MUTEX_HELD(&new_state->mtx); 716 717 if (use_mutex) 718 mutex_enter(&new_state->mtx); 719 720 list_insert_head(&new_state->list, ab); 721 722 /* ghost elements have a ghost size */ 723 if (GHOST_STATE(new_state)) { 724 ASSERT(ab->b_datacnt == 0); 725 ASSERT(ab->b_buf == NULL); 726 to_delta = ab->b_size; 727 } 728 atomic_add_64(&new_state->lsize, to_delta); 729 ASSERT3U(new_state->size + to_delta, >=, 730 new_state->lsize); 731 732 if (use_mutex) 733 mutex_exit(&new_state->mtx); 734 } 735 } 736 737 ASSERT(!BUF_EMPTY(ab)); 738 if (new_state == arc.anon && old_state != arc.anon) { 739 buf_hash_remove(ab); 740 } 741 742 /* adjust state sizes */ 743 if (to_delta) 744 atomic_add_64(&new_state->size, to_delta); 745 if (from_delta) { 746 ASSERT3U(old_state->size, >=, from_delta); 747 atomic_add_64(&old_state->size, -from_delta); 748 } 749 ab->b_state = new_state; 750 } 751 752 arc_buf_t * 753 arc_buf_alloc(spa_t *spa, int size, void *tag, arc_buf_contents_t type) 754 { 755 arc_buf_hdr_t *hdr; 756 arc_buf_t *buf; 757 758 ASSERT3U(size, >, 0); 759 hdr = kmem_cache_alloc(hdr_cache, KM_SLEEP); 760 ASSERT(BUF_EMPTY(hdr)); 761 hdr->b_size = size; 762 hdr->b_type = type; 763 hdr->b_spa = spa; 764 hdr->b_state = arc.anon; 765 hdr->b_arc_access = 0; 766 buf = kmem_cache_alloc(buf_cache, KM_SLEEP); 767 buf->b_hdr = hdr; 768 buf->b_data = NULL; 769 buf->b_efunc = NULL; 770 buf->b_private = NULL; 771 buf->b_next = NULL; 772 hdr->b_buf = buf; 773 arc_get_data_buf(buf); 774 hdr->b_datacnt = 1; 775 hdr->b_flags = 0; 776 ASSERT(refcount_is_zero(&hdr->b_refcnt)); 777 (void) refcount_add(&hdr->b_refcnt, tag); 778 779 return (buf); 780 } 781 782 static arc_buf_t * 783 arc_buf_clone(arc_buf_t *from) 784 { 785 arc_buf_t *buf; 786 arc_buf_hdr_t *hdr = from->b_hdr; 787 uint64_t size = hdr->b_size; 788 789 buf = kmem_cache_alloc(buf_cache, KM_SLEEP); 790 buf->b_hdr = hdr; 791 buf->b_data = NULL; 792 buf->b_efunc = NULL; 793 buf->b_private = NULL; 794 buf->b_next = hdr->b_buf; 795 hdr->b_buf = buf; 796 arc_get_data_buf(buf); 797 bcopy(from->b_data, buf->b_data, size); 798 hdr->b_datacnt += 1; 799 return (buf); 800 } 801 802 void 803 arc_buf_add_ref(arc_buf_t *buf, void* tag) 804 { 805 arc_buf_hdr_t *hdr; 806 kmutex_t *hash_lock; 807 808 /* 809 * Check to see if this buffer is currently being evicted via 810 * arc_do_user_evicts(). 811 */ 812 mutex_enter(&arc_eviction_mtx); 813 hdr = buf->b_hdr; 814 if (hdr == NULL) { 815 mutex_exit(&arc_eviction_mtx); 816 return; 817 } 818 hash_lock = HDR_LOCK(hdr); 819 mutex_exit(&arc_eviction_mtx); 820 821 mutex_enter(hash_lock); 822 if (buf->b_data == NULL) { 823 /* 824 * This buffer is evicted. 825 */ 826 mutex_exit(hash_lock); 827 return; 828 } 829 830 ASSERT(buf->b_hdr == hdr); 831 ASSERT(hdr->b_state == arc.mru || hdr->b_state == arc.mfu); 832 add_reference(hdr, hash_lock, tag); 833 arc_access(hdr, hash_lock); 834 mutex_exit(hash_lock); 835 atomic_add_64(&arc.hits, 1); 836 } 837 838 static void 839 arc_buf_destroy(arc_buf_t *buf, boolean_t recycle, boolean_t all) 840 { 841 arc_buf_t **bufp; 842 843 /* free up data associated with the buf */ 844 if (buf->b_data) { 845 arc_state_t *state = buf->b_hdr->b_state; 846 uint64_t size = buf->b_hdr->b_size; 847 arc_buf_contents_t type = buf->b_hdr->b_type; 848 849 arc_cksum_verify(buf); 850 if (!recycle) { 851 if (type == ARC_BUFC_METADATA) { 852 zio_buf_free(buf->b_data, size); 853 } else { 854 ASSERT(type == ARC_BUFC_DATA); 855 zio_data_buf_free(buf->b_data, size); 856 } 857 atomic_add_64(&arc.size, -size); 858 } 859 if (list_link_active(&buf->b_hdr->b_arc_node)) { 860 ASSERT(refcount_is_zero(&buf->b_hdr->b_refcnt)); 861 ASSERT(state != arc.anon); 862 ASSERT3U(state->lsize, >=, size); 863 atomic_add_64(&state->lsize, -size); 864 } 865 ASSERT3U(state->size, >=, size); 866 atomic_add_64(&state->size, -size); 867 buf->b_data = NULL; 868 ASSERT(buf->b_hdr->b_datacnt > 0); 869 buf->b_hdr->b_datacnt -= 1; 870 } 871 872 /* only remove the buf if requested */ 873 if (!all) 874 return; 875 876 /* remove the buf from the hdr list */ 877 for (bufp = &buf->b_hdr->b_buf; *bufp != buf; bufp = &(*bufp)->b_next) 878 continue; 879 *bufp = buf->b_next; 880 881 ASSERT(buf->b_efunc == NULL); 882 883 /* clean up the buf */ 884 buf->b_hdr = NULL; 885 kmem_cache_free(buf_cache, buf); 886 } 887 888 static void 889 arc_hdr_destroy(arc_buf_hdr_t *hdr) 890 { 891 ASSERT(refcount_is_zero(&hdr->b_refcnt)); 892 ASSERT3P(hdr->b_state, ==, arc.anon); 893 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 894 895 if (!BUF_EMPTY(hdr)) { 896 ASSERT(!HDR_IN_HASH_TABLE(hdr)); 897 bzero(&hdr->b_dva, sizeof (dva_t)); 898 hdr->b_birth = 0; 899 hdr->b_cksum0 = 0; 900 } 901 while (hdr->b_buf) { 902 arc_buf_t *buf = hdr->b_buf; 903 904 if (buf->b_efunc) { 905 mutex_enter(&arc_eviction_mtx); 906 ASSERT(buf->b_hdr != NULL); 907 arc_buf_destroy(hdr->b_buf, FALSE, FALSE); 908 hdr->b_buf = buf->b_next; 909 buf->b_hdr = &arc_eviction_hdr; 910 buf->b_next = arc_eviction_list; 911 arc_eviction_list = buf; 912 mutex_exit(&arc_eviction_mtx); 913 } else { 914 arc_buf_destroy(hdr->b_buf, FALSE, TRUE); 915 } 916 } 917 if (hdr->b_freeze_cksum != NULL) { 918 kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t)); 919 hdr->b_freeze_cksum = NULL; 920 } 921 922 ASSERT(!list_link_active(&hdr->b_arc_node)); 923 ASSERT3P(hdr->b_hash_next, ==, NULL); 924 ASSERT3P(hdr->b_acb, ==, NULL); 925 kmem_cache_free(hdr_cache, hdr); 926 } 927 928 void 929 arc_buf_free(arc_buf_t *buf, void *tag) 930 { 931 arc_buf_hdr_t *hdr = buf->b_hdr; 932 int hashed = hdr->b_state != arc.anon; 933 934 ASSERT(buf->b_efunc == NULL); 935 ASSERT(buf->b_data != NULL); 936 937 if (hashed) { 938 kmutex_t *hash_lock = HDR_LOCK(hdr); 939 940 mutex_enter(hash_lock); 941 (void) remove_reference(hdr, hash_lock, tag); 942 if (hdr->b_datacnt > 1) 943 arc_buf_destroy(buf, FALSE, TRUE); 944 else 945 hdr->b_flags |= ARC_BUF_AVAILABLE; 946 mutex_exit(hash_lock); 947 } else if (HDR_IO_IN_PROGRESS(hdr)) { 948 int destroy_hdr; 949 /* 950 * We are in the middle of an async write. Don't destroy 951 * this buffer unless the write completes before we finish 952 * decrementing the reference count. 953 */ 954 mutex_enter(&arc_eviction_mtx); 955 (void) remove_reference(hdr, NULL, tag); 956 ASSERT(refcount_is_zero(&hdr->b_refcnt)); 957 destroy_hdr = !HDR_IO_IN_PROGRESS(hdr); 958 mutex_exit(&arc_eviction_mtx); 959 if (destroy_hdr) 960 arc_hdr_destroy(hdr); 961 } else { 962 if (remove_reference(hdr, NULL, tag) > 0) { 963 ASSERT(HDR_IO_ERROR(hdr)); 964 arc_buf_destroy(buf, FALSE, TRUE); 965 } else { 966 arc_hdr_destroy(hdr); 967 } 968 } 969 } 970 971 int 972 arc_buf_remove_ref(arc_buf_t *buf, void* tag) 973 { 974 arc_buf_hdr_t *hdr = buf->b_hdr; 975 kmutex_t *hash_lock = HDR_LOCK(hdr); 976 int no_callback = (buf->b_efunc == NULL); 977 978 if (hdr->b_state == arc.anon) { 979 arc_buf_free(buf, tag); 980 return (no_callback); 981 } 982 983 mutex_enter(hash_lock); 984 ASSERT(hdr->b_state != arc.anon); 985 ASSERT(buf->b_data != NULL); 986 987 (void) remove_reference(hdr, hash_lock, tag); 988 if (hdr->b_datacnt > 1) { 989 if (no_callback) 990 arc_buf_destroy(buf, FALSE, TRUE); 991 } else if (no_callback) { 992 ASSERT(hdr->b_buf == buf && buf->b_next == NULL); 993 hdr->b_flags |= ARC_BUF_AVAILABLE; 994 } 995 ASSERT(no_callback || hdr->b_datacnt > 1 || 996 refcount_is_zero(&hdr->b_refcnt)); 997 mutex_exit(hash_lock); 998 return (no_callback); 999 } 1000 1001 int 1002 arc_buf_size(arc_buf_t *buf) 1003 { 1004 return (buf->b_hdr->b_size); 1005 } 1006 1007 /* 1008 * Evict buffers from list until we've removed the specified number of 1009 * bytes. Move the removed buffers to the appropriate evict state. 1010 * If the recycle flag is set, then attempt to "recycle" a buffer: 1011 * - look for a buffer to evict that is `bytes' long. 1012 * - return the data block from this buffer rather than freeing it. 1013 * This flag is used by callers that are trying to make space for a 1014 * new buffer in a full arc cache. 1015 */ 1016 static void * 1017 arc_evict(arc_state_t *state, int64_t bytes, boolean_t recycle, 1018 arc_buf_contents_t type) 1019 { 1020 arc_state_t *evicted_state; 1021 uint64_t bytes_evicted = 0, skipped = 0, missed = 0; 1022 arc_buf_hdr_t *ab, *ab_prev = NULL; 1023 kmutex_t *hash_lock; 1024 boolean_t have_lock; 1025 void *stolen = NULL; 1026 1027 ASSERT(state == arc.mru || state == arc.mfu); 1028 1029 evicted_state = (state == arc.mru) ? arc.mru_ghost : arc.mfu_ghost; 1030 1031 mutex_enter(&state->mtx); 1032 mutex_enter(&evicted_state->mtx); 1033 1034 for (ab = list_tail(&state->list); ab; ab = ab_prev) { 1035 ab_prev = list_prev(&state->list, ab); 1036 /* prefetch buffers have a minimum lifespan */ 1037 if (HDR_IO_IN_PROGRESS(ab) || 1038 (ab->b_flags & (ARC_PREFETCH|ARC_INDIRECT) && 1039 lbolt - ab->b_arc_access < arc_min_prefetch_lifespan)) { 1040 skipped++; 1041 continue; 1042 } 1043 /* "lookahead" for better eviction candidate */ 1044 if (recycle && ab->b_size != bytes && 1045 ab_prev && ab_prev->b_size == bytes) 1046 continue; 1047 hash_lock = HDR_LOCK(ab); 1048 have_lock = MUTEX_HELD(hash_lock); 1049 if (have_lock || mutex_tryenter(hash_lock)) { 1050 ASSERT3U(refcount_count(&ab->b_refcnt), ==, 0); 1051 ASSERT(ab->b_datacnt > 0); 1052 while (ab->b_buf) { 1053 arc_buf_t *buf = ab->b_buf; 1054 if (buf->b_data) { 1055 bytes_evicted += ab->b_size; 1056 if (recycle && ab->b_type == type && 1057 ab->b_size == bytes) { 1058 stolen = buf->b_data; 1059 recycle = FALSE; 1060 } 1061 } 1062 if (buf->b_efunc) { 1063 mutex_enter(&arc_eviction_mtx); 1064 arc_buf_destroy(buf, 1065 buf->b_data == stolen, FALSE); 1066 ab->b_buf = buf->b_next; 1067 buf->b_hdr = &arc_eviction_hdr; 1068 buf->b_next = arc_eviction_list; 1069 arc_eviction_list = buf; 1070 mutex_exit(&arc_eviction_mtx); 1071 } else { 1072 arc_buf_destroy(buf, 1073 buf->b_data == stolen, TRUE); 1074 } 1075 } 1076 ASSERT(ab->b_datacnt == 0); 1077 arc_change_state(evicted_state, ab, hash_lock); 1078 ASSERT(HDR_IN_HASH_TABLE(ab)); 1079 ab->b_flags = ARC_IN_HASH_TABLE; 1080 DTRACE_PROBE1(arc__evict, arc_buf_hdr_t *, ab); 1081 if (!have_lock) 1082 mutex_exit(hash_lock); 1083 if (bytes >= 0 && bytes_evicted >= bytes) 1084 break; 1085 } else { 1086 missed += 1; 1087 } 1088 } 1089 mutex_exit(&evicted_state->mtx); 1090 mutex_exit(&state->mtx); 1091 1092 if (bytes_evicted < bytes) 1093 dprintf("only evicted %lld bytes from %x", 1094 (longlong_t)bytes_evicted, state); 1095 1096 if (skipped) 1097 atomic_add_64(&arc.evict_skip, skipped); 1098 if (missed) 1099 atomic_add_64(&arc.mutex_miss, missed); 1100 return (stolen); 1101 } 1102 1103 /* 1104 * Remove buffers from list until we've removed the specified number of 1105 * bytes. Destroy the buffers that are removed. 1106 */ 1107 static void 1108 arc_evict_ghost(arc_state_t *state, int64_t bytes) 1109 { 1110 arc_buf_hdr_t *ab, *ab_prev; 1111 kmutex_t *hash_lock; 1112 uint64_t bytes_deleted = 0; 1113 uint_t bufs_skipped = 0; 1114 1115 ASSERT(GHOST_STATE(state)); 1116 top: 1117 mutex_enter(&state->mtx); 1118 for (ab = list_tail(&state->list); ab; ab = ab_prev) { 1119 ab_prev = list_prev(&state->list, ab); 1120 hash_lock = HDR_LOCK(ab); 1121 if (mutex_tryenter(hash_lock)) { 1122 ASSERT(!HDR_IO_IN_PROGRESS(ab)); 1123 ASSERT(ab->b_buf == NULL); 1124 arc_change_state(arc.anon, ab, hash_lock); 1125 mutex_exit(hash_lock); 1126 atomic_add_64(&arc.deleted, 1); 1127 bytes_deleted += ab->b_size; 1128 arc_hdr_destroy(ab); 1129 DTRACE_PROBE1(arc__delete, arc_buf_hdr_t *, ab); 1130 if (bytes >= 0 && bytes_deleted >= bytes) 1131 break; 1132 } else { 1133 if (bytes < 0) { 1134 mutex_exit(&state->mtx); 1135 mutex_enter(hash_lock); 1136 mutex_exit(hash_lock); 1137 goto top; 1138 } 1139 bufs_skipped += 1; 1140 } 1141 } 1142 mutex_exit(&state->mtx); 1143 1144 if (bufs_skipped) { 1145 atomic_add_64(&arc.mutex_miss, bufs_skipped); 1146 ASSERT(bytes >= 0); 1147 } 1148 1149 if (bytes_deleted < bytes) 1150 dprintf("only deleted %lld bytes from %p", 1151 (longlong_t)bytes_deleted, state); 1152 } 1153 1154 static void 1155 arc_adjust(void) 1156 { 1157 int64_t top_sz, mru_over, arc_over; 1158 1159 top_sz = arc.anon->size + arc.mru->size; 1160 1161 if (top_sz > arc.p && arc.mru->lsize > 0) { 1162 int64_t toevict = MIN(arc.mru->lsize, top_sz-arc.p); 1163 (void) arc_evict(arc.mru, toevict, FALSE, ARC_BUFC_UNDEF); 1164 top_sz = arc.anon->size + arc.mru->size; 1165 } 1166 1167 mru_over = top_sz + arc.mru_ghost->size - arc.c; 1168 1169 if (mru_over > 0) { 1170 if (arc.mru_ghost->lsize > 0) { 1171 int64_t todelete = MIN(arc.mru_ghost->lsize, mru_over); 1172 arc_evict_ghost(arc.mru_ghost, todelete); 1173 } 1174 } 1175 1176 if ((arc_over = arc.size - arc.c) > 0) { 1177 int64_t tbl_over; 1178 1179 if (arc.mfu->lsize > 0) { 1180 int64_t toevict = MIN(arc.mfu->lsize, arc_over); 1181 (void) arc_evict(arc.mfu, toevict, FALSE, 1182 ARC_BUFC_UNDEF); 1183 } 1184 1185 tbl_over = arc.size + arc.mru_ghost->lsize + 1186 arc.mfu_ghost->lsize - arc.c*2; 1187 1188 if (tbl_over > 0 && arc.mfu_ghost->lsize > 0) { 1189 int64_t todelete = MIN(arc.mfu_ghost->lsize, tbl_over); 1190 arc_evict_ghost(arc.mfu_ghost, todelete); 1191 } 1192 } 1193 } 1194 1195 static void 1196 arc_do_user_evicts(void) 1197 { 1198 mutex_enter(&arc_eviction_mtx); 1199 while (arc_eviction_list != NULL) { 1200 arc_buf_t *buf = arc_eviction_list; 1201 arc_eviction_list = buf->b_next; 1202 buf->b_hdr = NULL; 1203 mutex_exit(&arc_eviction_mtx); 1204 1205 if (buf->b_efunc != NULL) 1206 VERIFY(buf->b_efunc(buf) == 0); 1207 1208 buf->b_efunc = NULL; 1209 buf->b_private = NULL; 1210 kmem_cache_free(buf_cache, buf); 1211 mutex_enter(&arc_eviction_mtx); 1212 } 1213 mutex_exit(&arc_eviction_mtx); 1214 } 1215 1216 /* 1217 * Flush all *evictable* data from the cache. 1218 * NOTE: this will not touch "active" (i.e. referenced) data. 1219 */ 1220 void 1221 arc_flush(void) 1222 { 1223 while (list_head(&arc.mru->list)) 1224 (void) arc_evict(arc.mru, -1, FALSE, ARC_BUFC_UNDEF); 1225 while (list_head(&arc.mfu->list)) 1226 (void) arc_evict(arc.mfu, -1, FALSE, ARC_BUFC_UNDEF); 1227 1228 arc_evict_ghost(arc.mru_ghost, -1); 1229 arc_evict_ghost(arc.mfu_ghost, -1); 1230 1231 mutex_enter(&arc_reclaim_thr_lock); 1232 arc_do_user_evicts(); 1233 mutex_exit(&arc_reclaim_thr_lock); 1234 ASSERT(arc_eviction_list == NULL); 1235 } 1236 1237 int arc_shrink_shift = 5; /* log2(fraction of arc to reclaim) */ 1238 1239 void 1240 arc_shrink(void) 1241 { 1242 if (arc.c > arc.c_min) { 1243 uint64_t to_free; 1244 1245 #ifdef _KERNEL 1246 to_free = MAX(arc.c >> arc_shrink_shift, ptob(needfree)); 1247 #else 1248 to_free = arc.c >> arc_shrink_shift; 1249 #endif 1250 if (arc.c > arc.c_min + to_free) 1251 atomic_add_64(&arc.c, -to_free); 1252 else 1253 arc.c = arc.c_min; 1254 1255 atomic_add_64(&arc.p, -(arc.p >> arc_shrink_shift)); 1256 if (arc.c > arc.size) 1257 arc.c = MAX(arc.size, arc.c_min); 1258 if (arc.p > arc.c) 1259 arc.p = (arc.c >> 1); 1260 ASSERT(arc.c >= arc.c_min); 1261 ASSERT((int64_t)arc.p >= 0); 1262 } 1263 1264 if (arc.size > arc.c) 1265 arc_adjust(); 1266 } 1267 1268 static int 1269 arc_reclaim_needed(void) 1270 { 1271 uint64_t extra; 1272 1273 #ifdef _KERNEL 1274 1275 if (needfree) 1276 return (1); 1277 1278 /* 1279 * take 'desfree' extra pages, so we reclaim sooner, rather than later 1280 */ 1281 extra = desfree; 1282 1283 /* 1284 * check that we're out of range of the pageout scanner. It starts to 1285 * schedule paging if freemem is less than lotsfree and needfree. 1286 * lotsfree is the high-water mark for pageout, and needfree is the 1287 * number of needed free pages. We add extra pages here to make sure 1288 * the scanner doesn't start up while we're freeing memory. 1289 */ 1290 if (freemem < lotsfree + needfree + extra) 1291 return (1); 1292 1293 /* 1294 * check to make sure that swapfs has enough space so that anon 1295 * reservations can still succeeed. anon_resvmem() checks that the 1296 * availrmem is greater than swapfs_minfree, and the number of reserved 1297 * swap pages. We also add a bit of extra here just to prevent 1298 * circumstances from getting really dire. 1299 */ 1300 if (availrmem < swapfs_minfree + swapfs_reserve + extra) 1301 return (1); 1302 1303 /* 1304 * If zio data pages are being allocated out of a separate heap segment, 1305 * then check that the size of available vmem for this area remains 1306 * above 1/4th free. This needs to be done since the size of the 1307 * non-default segment is smaller than physical memory, so we could 1308 * conceivably run out of VA in that segment before running out of 1309 * physical memory. 1310 */ 1311 if ((zio_arena != NULL) && (btop(vmem_size(zio_arena, VMEM_FREE)) < 1312 (btop(vmem_size(zio_arena, VMEM_FREE | VMEM_ALLOC)) >> 2))) 1313 return (1); 1314 1315 #if defined(__i386) 1316 /* 1317 * If we're on an i386 platform, it's possible that we'll exhaust the 1318 * kernel heap space before we ever run out of available physical 1319 * memory. Most checks of the size of the heap_area compare against 1320 * tune.t_minarmem, which is the minimum available real memory that we 1321 * can have in the system. However, this is generally fixed at 25 pages 1322 * which is so low that it's useless. In this comparison, we seek to 1323 * calculate the total heap-size, and reclaim if more than 3/4ths of the 1324 * heap is allocated. (Or, in the caclulation, if less than 1/4th is 1325 * free) 1326 */ 1327 if (btop(vmem_size(heap_arena, VMEM_FREE)) < 1328 (btop(vmem_size(heap_arena, VMEM_FREE | VMEM_ALLOC)) >> 2)) 1329 return (1); 1330 #endif 1331 1332 #else 1333 if (spa_get_random(100) == 0) 1334 return (1); 1335 #endif 1336 return (0); 1337 } 1338 1339 static void 1340 arc_kmem_reap_now(arc_reclaim_strategy_t strat) 1341 { 1342 size_t i; 1343 kmem_cache_t *prev_cache = NULL; 1344 kmem_cache_t *prev_data_cache = NULL; 1345 extern kmem_cache_t *zio_buf_cache[]; 1346 extern kmem_cache_t *zio_data_buf_cache[]; 1347 1348 #ifdef _KERNEL 1349 /* 1350 * First purge some DNLC entries, in case the DNLC is using 1351 * up too much memory. 1352 */ 1353 dnlc_reduce_cache((void *)(uintptr_t)arc_reduce_dnlc_percent); 1354 1355 #if defined(__i386) 1356 /* 1357 * Reclaim unused memory from all kmem caches. 1358 */ 1359 kmem_reap(); 1360 #endif 1361 #endif 1362 1363 /* 1364 * An agressive reclamation will shrink the cache size as well as 1365 * reap free buffers from the arc kmem caches. 1366 */ 1367 if (strat == ARC_RECLAIM_AGGR) 1368 arc_shrink(); 1369 1370 for (i = 0; i < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; i++) { 1371 if (zio_buf_cache[i] != prev_cache) { 1372 prev_cache = zio_buf_cache[i]; 1373 kmem_cache_reap_now(zio_buf_cache[i]); 1374 } 1375 if (zio_data_buf_cache[i] != prev_data_cache) { 1376 prev_data_cache = zio_data_buf_cache[i]; 1377 kmem_cache_reap_now(zio_data_buf_cache[i]); 1378 } 1379 } 1380 kmem_cache_reap_now(buf_cache); 1381 kmem_cache_reap_now(hdr_cache); 1382 } 1383 1384 static void 1385 arc_reclaim_thread(void) 1386 { 1387 clock_t growtime = 0; 1388 arc_reclaim_strategy_t last_reclaim = ARC_RECLAIM_CONS; 1389 callb_cpr_t cpr; 1390 1391 CALLB_CPR_INIT(&cpr, &arc_reclaim_thr_lock, callb_generic_cpr, FTAG); 1392 1393 mutex_enter(&arc_reclaim_thr_lock); 1394 while (arc_thread_exit == 0) { 1395 if (arc_reclaim_needed()) { 1396 1397 if (arc.no_grow) { 1398 if (last_reclaim == ARC_RECLAIM_CONS) { 1399 last_reclaim = ARC_RECLAIM_AGGR; 1400 } else { 1401 last_reclaim = ARC_RECLAIM_CONS; 1402 } 1403 } else { 1404 arc.no_grow = TRUE; 1405 last_reclaim = ARC_RECLAIM_AGGR; 1406 membar_producer(); 1407 } 1408 1409 /* reset the growth delay for every reclaim */ 1410 growtime = lbolt + (arc_grow_retry * hz); 1411 ASSERT(growtime > 0); 1412 1413 arc_kmem_reap_now(last_reclaim); 1414 1415 } else if ((growtime > 0) && ((growtime - lbolt) <= 0)) { 1416 arc.no_grow = FALSE; 1417 } 1418 1419 if (2 * arc.c < 1420 arc.size + arc.mru_ghost->size + arc.mfu_ghost->size) 1421 arc_adjust(); 1422 1423 if (arc_eviction_list != NULL) 1424 arc_do_user_evicts(); 1425 1426 /* block until needed, or one second, whichever is shorter */ 1427 CALLB_CPR_SAFE_BEGIN(&cpr); 1428 (void) cv_timedwait(&arc_reclaim_thr_cv, 1429 &arc_reclaim_thr_lock, (lbolt + hz)); 1430 CALLB_CPR_SAFE_END(&cpr, &arc_reclaim_thr_lock); 1431 } 1432 1433 arc_thread_exit = 0; 1434 cv_broadcast(&arc_reclaim_thr_cv); 1435 CALLB_CPR_EXIT(&cpr); /* drops arc_reclaim_thr_lock */ 1436 thread_exit(); 1437 } 1438 1439 /* 1440 * Adapt arc info given the number of bytes we are trying to add and 1441 * the state that we are comming from. This function is only called 1442 * when we are adding new content to the cache. 1443 */ 1444 static void 1445 arc_adapt(int bytes, arc_state_t *state) 1446 { 1447 int mult; 1448 1449 ASSERT(bytes > 0); 1450 /* 1451 * Adapt the target size of the MRU list: 1452 * - if we just hit in the MRU ghost list, then increase 1453 * the target size of the MRU list. 1454 * - if we just hit in the MFU ghost list, then increase 1455 * the target size of the MFU list by decreasing the 1456 * target size of the MRU list. 1457 */ 1458 if (state == arc.mru_ghost) { 1459 mult = ((arc.mru_ghost->size >= arc.mfu_ghost->size) ? 1460 1 : (arc.mfu_ghost->size/arc.mru_ghost->size)); 1461 1462 arc.p = MIN(arc.c, arc.p + bytes * mult); 1463 } else if (state == arc.mfu_ghost) { 1464 mult = ((arc.mfu_ghost->size >= arc.mru_ghost->size) ? 1465 1 : (arc.mru_ghost->size/arc.mfu_ghost->size)); 1466 1467 arc.p = MAX(0, (int64_t)arc.p - bytes * mult); 1468 } 1469 ASSERT((int64_t)arc.p >= 0); 1470 1471 if (arc_reclaim_needed()) { 1472 cv_signal(&arc_reclaim_thr_cv); 1473 return; 1474 } 1475 1476 if (arc.no_grow) 1477 return; 1478 1479 if (arc.c >= arc.c_max) 1480 return; 1481 1482 /* 1483 * If we're within (2 * maxblocksize) bytes of the target 1484 * cache size, increment the target cache size 1485 */ 1486 if (arc.size > arc.c - (2ULL << SPA_MAXBLOCKSHIFT)) { 1487 atomic_add_64(&arc.c, (int64_t)bytes); 1488 if (arc.c > arc.c_max) 1489 arc.c = arc.c_max; 1490 else if (state == arc.anon) 1491 atomic_add_64(&arc.p, (int64_t)bytes); 1492 if (arc.p > arc.c) 1493 arc.p = arc.c; 1494 } 1495 ASSERT((int64_t)arc.p >= 0); 1496 } 1497 1498 /* 1499 * Check if the cache has reached its limits and eviction is required 1500 * prior to insert. 1501 */ 1502 static int 1503 arc_evict_needed() 1504 { 1505 if (arc_reclaim_needed()) 1506 return (1); 1507 1508 return (arc.size > arc.c); 1509 } 1510 1511 /* 1512 * The buffer, supplied as the first argument, needs a data block. 1513 * So, if we are at cache max, determine which cache should be victimized. 1514 * We have the following cases: 1515 * 1516 * 1. Insert for MRU, p > sizeof(arc.anon + arc.mru) -> 1517 * In this situation if we're out of space, but the resident size of the MFU is 1518 * under the limit, victimize the MFU cache to satisfy this insertion request. 1519 * 1520 * 2. Insert for MRU, p <= sizeof(arc.anon + arc.mru) -> 1521 * Here, we've used up all of the available space for the MRU, so we need to 1522 * evict from our own cache instead. Evict from the set of resident MRU 1523 * entries. 1524 * 1525 * 3. Insert for MFU (c - p) > sizeof(arc.mfu) -> 1526 * c minus p represents the MFU space in the cache, since p is the size of the 1527 * cache that is dedicated to the MRU. In this situation there's still space on 1528 * the MFU side, so the MRU side needs to be victimized. 1529 * 1530 * 4. Insert for MFU (c - p) < sizeof(arc.mfu) -> 1531 * MFU's resident set is consuming more space than it has been allotted. In 1532 * this situation, we must victimize our own cache, the MFU, for this insertion. 1533 */ 1534 static void 1535 arc_get_data_buf(arc_buf_t *buf) 1536 { 1537 arc_state_t *state = buf->b_hdr->b_state; 1538 uint64_t size = buf->b_hdr->b_size; 1539 arc_buf_contents_t type = buf->b_hdr->b_type; 1540 1541 arc_adapt(size, state); 1542 1543 /* 1544 * We have not yet reached cache maximum size, 1545 * just allocate a new buffer. 1546 */ 1547 if (!arc_evict_needed()) { 1548 if (type == ARC_BUFC_METADATA) { 1549 buf->b_data = zio_buf_alloc(size); 1550 } else { 1551 ASSERT(type == ARC_BUFC_DATA); 1552 buf->b_data = zio_data_buf_alloc(size); 1553 } 1554 atomic_add_64(&arc.size, size); 1555 goto out; 1556 } 1557 1558 /* 1559 * If we are prefetching from the mfu ghost list, this buffer 1560 * will end up on the mru list; so steal space from there. 1561 */ 1562 if (state == arc.mfu_ghost) 1563 state = buf->b_hdr->b_flags & ARC_PREFETCH ? arc.mru : arc.mfu; 1564 else if (state == arc.mru_ghost) 1565 state = arc.mru; 1566 1567 if (state == arc.mru || state == arc.anon) { 1568 uint64_t mru_used = arc.anon->size + arc.mru->size; 1569 state = (arc.p > mru_used) ? arc.mfu : arc.mru; 1570 } else { 1571 /* MFU cases */ 1572 uint64_t mfu_space = arc.c - arc.p; 1573 state = (mfu_space > arc.mfu->size) ? arc.mru : arc.mfu; 1574 } 1575 if ((buf->b_data = arc_evict(state, size, TRUE, type)) == NULL) { 1576 if (type == ARC_BUFC_METADATA) { 1577 buf->b_data = zio_buf_alloc(size); 1578 } else { 1579 ASSERT(type == ARC_BUFC_DATA); 1580 buf->b_data = zio_data_buf_alloc(size); 1581 } 1582 atomic_add_64(&arc.size, size); 1583 atomic_add_64(&arc.recycle_miss, 1); 1584 } 1585 ASSERT(buf->b_data != NULL); 1586 out: 1587 /* 1588 * Update the state size. Note that ghost states have a 1589 * "ghost size" and so don't need to be updated. 1590 */ 1591 if (!GHOST_STATE(buf->b_hdr->b_state)) { 1592 arc_buf_hdr_t *hdr = buf->b_hdr; 1593 1594 atomic_add_64(&hdr->b_state->size, size); 1595 if (list_link_active(&hdr->b_arc_node)) { 1596 ASSERT(refcount_is_zero(&hdr->b_refcnt)); 1597 atomic_add_64(&hdr->b_state->lsize, size); 1598 } 1599 /* 1600 * If we are growing the cache, and we are adding anonymous 1601 * data, and we have outgrown arc.p, update arc.p 1602 */ 1603 if (arc.size < arc.c && hdr->b_state == arc.anon && 1604 arc.anon->size + arc.mru->size > arc.p) 1605 arc.p = MIN(arc.c, arc.p + size); 1606 } 1607 } 1608 1609 /* 1610 * This routine is called whenever a buffer is accessed. 1611 * NOTE: the hash lock is dropped in this function. 1612 */ 1613 static void 1614 arc_access(arc_buf_hdr_t *buf, kmutex_t *hash_lock) 1615 { 1616 ASSERT(MUTEX_HELD(hash_lock)); 1617 1618 if (buf->b_state == arc.anon) { 1619 /* 1620 * This buffer is not in the cache, and does not 1621 * appear in our "ghost" list. Add the new buffer 1622 * to the MRU state. 1623 */ 1624 1625 ASSERT(buf->b_arc_access == 0); 1626 buf->b_arc_access = lbolt; 1627 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, buf); 1628 arc_change_state(arc.mru, buf, hash_lock); 1629 1630 } else if (buf->b_state == arc.mru) { 1631 /* 1632 * If this buffer is here because of a prefetch, then either: 1633 * - clear the flag if this is a "referencing" read 1634 * (any subsequent access will bump this into the MFU state). 1635 * or 1636 * - move the buffer to the head of the list if this is 1637 * another prefetch (to make it less likely to be evicted). 1638 */ 1639 if ((buf->b_flags & ARC_PREFETCH) != 0) { 1640 if (refcount_count(&buf->b_refcnt) == 0) { 1641 ASSERT(list_link_active(&buf->b_arc_node)); 1642 mutex_enter(&arc.mru->mtx); 1643 list_remove(&arc.mru->list, buf); 1644 list_insert_head(&arc.mru->list, buf); 1645 mutex_exit(&arc.mru->mtx); 1646 } else { 1647 buf->b_flags &= ~ARC_PREFETCH; 1648 atomic_add_64(&arc.mru->hits, 1); 1649 } 1650 buf->b_arc_access = lbolt; 1651 return; 1652 } 1653 1654 /* 1655 * This buffer has been "accessed" only once so far, 1656 * but it is still in the cache. Move it to the MFU 1657 * state. 1658 */ 1659 if (lbolt > buf->b_arc_access + ARC_MINTIME) { 1660 /* 1661 * More than 125ms have passed since we 1662 * instantiated this buffer. Move it to the 1663 * most frequently used state. 1664 */ 1665 buf->b_arc_access = lbolt; 1666 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf); 1667 arc_change_state(arc.mfu, buf, hash_lock); 1668 } 1669 atomic_add_64(&arc.mru->hits, 1); 1670 } else if (buf->b_state == arc.mru_ghost) { 1671 arc_state_t *new_state; 1672 /* 1673 * This buffer has been "accessed" recently, but 1674 * was evicted from the cache. Move it to the 1675 * MFU state. 1676 */ 1677 1678 if (buf->b_flags & ARC_PREFETCH) { 1679 new_state = arc.mru; 1680 if (refcount_count(&buf->b_refcnt) > 0) 1681 buf->b_flags &= ~ARC_PREFETCH; 1682 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, buf); 1683 } else { 1684 new_state = arc.mfu; 1685 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf); 1686 } 1687 1688 buf->b_arc_access = lbolt; 1689 arc_change_state(new_state, buf, hash_lock); 1690 1691 atomic_add_64(&arc.mru_ghost->hits, 1); 1692 } else if (buf->b_state == arc.mfu) { 1693 /* 1694 * This buffer has been accessed more than once and is 1695 * still in the cache. Keep it in the MFU state. 1696 * 1697 * NOTE: an add_reference() that occurred when we did 1698 * the arc_read() will have kicked this off the list. 1699 * If it was a prefetch, we will explicitly move it to 1700 * the head of the list now. 1701 */ 1702 if ((buf->b_flags & ARC_PREFETCH) != 0) { 1703 ASSERT(refcount_count(&buf->b_refcnt) == 0); 1704 ASSERT(list_link_active(&buf->b_arc_node)); 1705 mutex_enter(&arc.mfu->mtx); 1706 list_remove(&arc.mfu->list, buf); 1707 list_insert_head(&arc.mfu->list, buf); 1708 mutex_exit(&arc.mfu->mtx); 1709 } 1710 atomic_add_64(&arc.mfu->hits, 1); 1711 buf->b_arc_access = lbolt; 1712 } else if (buf->b_state == arc.mfu_ghost) { 1713 arc_state_t *new_state = arc.mfu; 1714 /* 1715 * This buffer has been accessed more than once but has 1716 * been evicted from the cache. Move it back to the 1717 * MFU state. 1718 */ 1719 1720 if (buf->b_flags & ARC_PREFETCH) { 1721 /* 1722 * This is a prefetch access... 1723 * move this block back to the MRU state. 1724 */ 1725 ASSERT3U(refcount_count(&buf->b_refcnt), ==, 0); 1726 new_state = arc.mru; 1727 } 1728 1729 buf->b_arc_access = lbolt; 1730 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf); 1731 arc_change_state(new_state, buf, hash_lock); 1732 1733 atomic_add_64(&arc.mfu_ghost->hits, 1); 1734 } else { 1735 ASSERT(!"invalid arc state"); 1736 } 1737 } 1738 1739 /* a generic arc_done_func_t which you can use */ 1740 /* ARGSUSED */ 1741 void 1742 arc_bcopy_func(zio_t *zio, arc_buf_t *buf, void *arg) 1743 { 1744 bcopy(buf->b_data, arg, buf->b_hdr->b_size); 1745 VERIFY(arc_buf_remove_ref(buf, arg) == 1); 1746 } 1747 1748 /* a generic arc_done_func_t which you can use */ 1749 void 1750 arc_getbuf_func(zio_t *zio, arc_buf_t *buf, void *arg) 1751 { 1752 arc_buf_t **bufp = arg; 1753 if (zio && zio->io_error) { 1754 VERIFY(arc_buf_remove_ref(buf, arg) == 1); 1755 *bufp = NULL; 1756 } else { 1757 *bufp = buf; 1758 } 1759 } 1760 1761 static void 1762 arc_read_done(zio_t *zio) 1763 { 1764 arc_buf_hdr_t *hdr, *found; 1765 arc_buf_t *buf; 1766 arc_buf_t *abuf; /* buffer we're assigning to callback */ 1767 kmutex_t *hash_lock; 1768 arc_callback_t *callback_list, *acb; 1769 int freeable = FALSE; 1770 1771 buf = zio->io_private; 1772 hdr = buf->b_hdr; 1773 1774 /* 1775 * The hdr was inserted into hash-table and removed from lists 1776 * prior to starting I/O. We should find this header, since 1777 * it's in the hash table, and it should be legit since it's 1778 * not possible to evict it during the I/O. The only possible 1779 * reason for it not to be found is if we were freed during the 1780 * read. 1781 */ 1782 found = buf_hash_find(zio->io_spa, &hdr->b_dva, hdr->b_birth, 1783 &hash_lock); 1784 1785 ASSERT((found == NULL && HDR_FREED_IN_READ(hdr) && hash_lock == NULL) || 1786 (found == hdr && DVA_EQUAL(&hdr->b_dva, BP_IDENTITY(zio->io_bp)))); 1787 1788 /* byteswap if necessary */ 1789 callback_list = hdr->b_acb; 1790 ASSERT(callback_list != NULL); 1791 if (BP_SHOULD_BYTESWAP(zio->io_bp) && callback_list->acb_byteswap) 1792 callback_list->acb_byteswap(buf->b_data, hdr->b_size); 1793 1794 arc_cksum_compute(buf); 1795 1796 /* create copies of the data buffer for the callers */ 1797 abuf = buf; 1798 for (acb = callback_list; acb; acb = acb->acb_next) { 1799 if (acb->acb_done) { 1800 if (abuf == NULL) 1801 abuf = arc_buf_clone(buf); 1802 acb->acb_buf = abuf; 1803 abuf = NULL; 1804 } 1805 } 1806 hdr->b_acb = NULL; 1807 hdr->b_flags &= ~ARC_IO_IN_PROGRESS; 1808 ASSERT(!HDR_BUF_AVAILABLE(hdr)); 1809 if (abuf == buf) 1810 hdr->b_flags |= ARC_BUF_AVAILABLE; 1811 1812 ASSERT(refcount_is_zero(&hdr->b_refcnt) || callback_list != NULL); 1813 1814 if (zio->io_error != 0) { 1815 hdr->b_flags |= ARC_IO_ERROR; 1816 if (hdr->b_state != arc.anon) 1817 arc_change_state(arc.anon, hdr, hash_lock); 1818 if (HDR_IN_HASH_TABLE(hdr)) 1819 buf_hash_remove(hdr); 1820 freeable = refcount_is_zero(&hdr->b_refcnt); 1821 /* convert checksum errors into IO errors */ 1822 if (zio->io_error == ECKSUM) 1823 zio->io_error = EIO; 1824 } 1825 1826 /* 1827 * Broadcast before we drop the hash_lock to avoid the possibility 1828 * that the hdr (and hence the cv) might be freed before we get to 1829 * the cv_broadcast(). 1830 */ 1831 cv_broadcast(&hdr->b_cv); 1832 1833 if (hash_lock) { 1834 /* 1835 * Only call arc_access on anonymous buffers. This is because 1836 * if we've issued an I/O for an evicted buffer, we've already 1837 * called arc_access (to prevent any simultaneous readers from 1838 * getting confused). 1839 */ 1840 if (zio->io_error == 0 && hdr->b_state == arc.anon) 1841 arc_access(hdr, hash_lock); 1842 mutex_exit(hash_lock); 1843 } else { 1844 /* 1845 * This block was freed while we waited for the read to 1846 * complete. It has been removed from the hash table and 1847 * moved to the anonymous state (so that it won't show up 1848 * in the cache). 1849 */ 1850 ASSERT3P(hdr->b_state, ==, arc.anon); 1851 freeable = refcount_is_zero(&hdr->b_refcnt); 1852 } 1853 1854 /* execute each callback and free its structure */ 1855 while ((acb = callback_list) != NULL) { 1856 if (acb->acb_done) 1857 acb->acb_done(zio, acb->acb_buf, acb->acb_private); 1858 1859 if (acb->acb_zio_dummy != NULL) { 1860 acb->acb_zio_dummy->io_error = zio->io_error; 1861 zio_nowait(acb->acb_zio_dummy); 1862 } 1863 1864 callback_list = acb->acb_next; 1865 kmem_free(acb, sizeof (arc_callback_t)); 1866 } 1867 1868 if (freeable) 1869 arc_hdr_destroy(hdr); 1870 } 1871 1872 /* 1873 * "Read" the block block at the specified DVA (in bp) via the 1874 * cache. If the block is found in the cache, invoke the provided 1875 * callback immediately and return. Note that the `zio' parameter 1876 * in the callback will be NULL in this case, since no IO was 1877 * required. If the block is not in the cache pass the read request 1878 * on to the spa with a substitute callback function, so that the 1879 * requested block will be added to the cache. 1880 * 1881 * If a read request arrives for a block that has a read in-progress, 1882 * either wait for the in-progress read to complete (and return the 1883 * results); or, if this is a read with a "done" func, add a record 1884 * to the read to invoke the "done" func when the read completes, 1885 * and return; or just return. 1886 * 1887 * arc_read_done() will invoke all the requested "done" functions 1888 * for readers of this block. 1889 */ 1890 int 1891 arc_read(zio_t *pio, spa_t *spa, blkptr_t *bp, arc_byteswap_func_t *swap, 1892 arc_done_func_t *done, void *private, int priority, int flags, 1893 uint32_t *arc_flags, zbookmark_t *zb) 1894 { 1895 arc_buf_hdr_t *hdr; 1896 arc_buf_t *buf; 1897 kmutex_t *hash_lock; 1898 zio_t *rzio; 1899 1900 top: 1901 hdr = buf_hash_find(spa, BP_IDENTITY(bp), bp->blk_birth, &hash_lock); 1902 if (hdr && hdr->b_datacnt > 0) { 1903 1904 *arc_flags |= ARC_CACHED; 1905 1906 if (HDR_IO_IN_PROGRESS(hdr)) { 1907 1908 if (*arc_flags & ARC_WAIT) { 1909 cv_wait(&hdr->b_cv, hash_lock); 1910 mutex_exit(hash_lock); 1911 goto top; 1912 } 1913 ASSERT(*arc_flags & ARC_NOWAIT); 1914 1915 if (done) { 1916 arc_callback_t *acb = NULL; 1917 1918 acb = kmem_zalloc(sizeof (arc_callback_t), 1919 KM_SLEEP); 1920 acb->acb_done = done; 1921 acb->acb_private = private; 1922 acb->acb_byteswap = swap; 1923 if (pio != NULL) 1924 acb->acb_zio_dummy = zio_null(pio, 1925 spa, NULL, NULL, flags); 1926 1927 ASSERT(acb->acb_done != NULL); 1928 acb->acb_next = hdr->b_acb; 1929 hdr->b_acb = acb; 1930 add_reference(hdr, hash_lock, private); 1931 mutex_exit(hash_lock); 1932 return (0); 1933 } 1934 mutex_exit(hash_lock); 1935 return (0); 1936 } 1937 1938 ASSERT(hdr->b_state == arc.mru || hdr->b_state == arc.mfu); 1939 1940 if (done) { 1941 add_reference(hdr, hash_lock, private); 1942 /* 1943 * If this block is already in use, create a new 1944 * copy of the data so that we will be guaranteed 1945 * that arc_release() will always succeed. 1946 */ 1947 buf = hdr->b_buf; 1948 ASSERT(buf); 1949 ASSERT(buf->b_data); 1950 if (HDR_BUF_AVAILABLE(hdr)) { 1951 ASSERT(buf->b_efunc == NULL); 1952 hdr->b_flags &= ~ARC_BUF_AVAILABLE; 1953 } else { 1954 buf = arc_buf_clone(buf); 1955 } 1956 } else if (*arc_flags & ARC_PREFETCH && 1957 refcount_count(&hdr->b_refcnt) == 0) { 1958 hdr->b_flags |= ARC_PREFETCH; 1959 } 1960 DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr); 1961 arc_access(hdr, hash_lock); 1962 mutex_exit(hash_lock); 1963 atomic_add_64(&arc.hits, 1); 1964 if (done) 1965 done(NULL, buf, private); 1966 } else { 1967 uint64_t size = BP_GET_LSIZE(bp); 1968 arc_callback_t *acb; 1969 1970 if (hdr == NULL) { 1971 /* this block is not in the cache */ 1972 arc_buf_hdr_t *exists; 1973 arc_buf_contents_t type = BP_GET_BUFC_TYPE(bp); 1974 buf = arc_buf_alloc(spa, size, private, type); 1975 hdr = buf->b_hdr; 1976 hdr->b_dva = *BP_IDENTITY(bp); 1977 hdr->b_birth = bp->blk_birth; 1978 hdr->b_cksum0 = bp->blk_cksum.zc_word[0]; 1979 exists = buf_hash_insert(hdr, &hash_lock); 1980 if (exists) { 1981 /* somebody beat us to the hash insert */ 1982 mutex_exit(hash_lock); 1983 bzero(&hdr->b_dva, sizeof (dva_t)); 1984 hdr->b_birth = 0; 1985 hdr->b_cksum0 = 0; 1986 (void) arc_buf_remove_ref(buf, private); 1987 goto top; /* restart the IO request */ 1988 } 1989 /* if this is a prefetch, we don't have a reference */ 1990 if (*arc_flags & ARC_PREFETCH) { 1991 (void) remove_reference(hdr, hash_lock, 1992 private); 1993 hdr->b_flags |= ARC_PREFETCH; 1994 } 1995 if (BP_GET_LEVEL(bp) > 0) 1996 hdr->b_flags |= ARC_INDIRECT; 1997 } else { 1998 /* this block is in the ghost cache */ 1999 ASSERT(GHOST_STATE(hdr->b_state)); 2000 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 2001 ASSERT3U(refcount_count(&hdr->b_refcnt), ==, 0); 2002 ASSERT(hdr->b_buf == NULL); 2003 2004 /* if this is a prefetch, we don't have a reference */ 2005 if (*arc_flags & ARC_PREFETCH) 2006 hdr->b_flags |= ARC_PREFETCH; 2007 else 2008 add_reference(hdr, hash_lock, private); 2009 buf = kmem_cache_alloc(buf_cache, KM_SLEEP); 2010 buf->b_hdr = hdr; 2011 buf->b_data = NULL; 2012 buf->b_efunc = NULL; 2013 buf->b_private = NULL; 2014 buf->b_next = NULL; 2015 hdr->b_buf = buf; 2016 arc_get_data_buf(buf); 2017 ASSERT(hdr->b_datacnt == 0); 2018 hdr->b_datacnt = 1; 2019 2020 } 2021 2022 acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP); 2023 acb->acb_done = done; 2024 acb->acb_private = private; 2025 acb->acb_byteswap = swap; 2026 2027 ASSERT(hdr->b_acb == NULL); 2028 hdr->b_acb = acb; 2029 hdr->b_flags |= ARC_IO_IN_PROGRESS; 2030 2031 /* 2032 * If the buffer has been evicted, migrate it to a present state 2033 * before issuing the I/O. Once we drop the hash-table lock, 2034 * the header will be marked as I/O in progress and have an 2035 * attached buffer. At this point, anybody who finds this 2036 * buffer ought to notice that it's legit but has a pending I/O. 2037 */ 2038 2039 if (GHOST_STATE(hdr->b_state)) 2040 arc_access(hdr, hash_lock); 2041 mutex_exit(hash_lock); 2042 2043 ASSERT3U(hdr->b_size, ==, size); 2044 DTRACE_PROBE3(arc__miss, blkptr_t *, bp, uint64_t, size, 2045 zbookmark_t *, zb); 2046 atomic_add_64(&arc.misses, 1); 2047 2048 rzio = zio_read(pio, spa, bp, buf->b_data, size, 2049 arc_read_done, buf, priority, flags, zb); 2050 2051 if (*arc_flags & ARC_WAIT) 2052 return (zio_wait(rzio)); 2053 2054 ASSERT(*arc_flags & ARC_NOWAIT); 2055 zio_nowait(rzio); 2056 } 2057 return (0); 2058 } 2059 2060 /* 2061 * arc_read() variant to support pool traversal. If the block is already 2062 * in the ARC, make a copy of it; otherwise, the caller will do the I/O. 2063 * The idea is that we don't want pool traversal filling up memory, but 2064 * if the ARC already has the data anyway, we shouldn't pay for the I/O. 2065 */ 2066 int 2067 arc_tryread(spa_t *spa, blkptr_t *bp, void *data) 2068 { 2069 arc_buf_hdr_t *hdr; 2070 kmutex_t *hash_mtx; 2071 int rc = 0; 2072 2073 hdr = buf_hash_find(spa, BP_IDENTITY(bp), bp->blk_birth, &hash_mtx); 2074 2075 if (hdr && hdr->b_datacnt > 0 && !HDR_IO_IN_PROGRESS(hdr)) { 2076 arc_buf_t *buf = hdr->b_buf; 2077 2078 ASSERT(buf); 2079 while (buf->b_data == NULL) { 2080 buf = buf->b_next; 2081 ASSERT(buf); 2082 } 2083 bcopy(buf->b_data, data, hdr->b_size); 2084 } else { 2085 rc = ENOENT; 2086 } 2087 2088 if (hash_mtx) 2089 mutex_exit(hash_mtx); 2090 2091 return (rc); 2092 } 2093 2094 void 2095 arc_set_callback(arc_buf_t *buf, arc_evict_func_t *func, void *private) 2096 { 2097 ASSERT(buf->b_hdr != NULL); 2098 ASSERT(buf->b_hdr->b_state != arc.anon); 2099 ASSERT(!refcount_is_zero(&buf->b_hdr->b_refcnt) || func == NULL); 2100 buf->b_efunc = func; 2101 buf->b_private = private; 2102 } 2103 2104 /* 2105 * This is used by the DMU to let the ARC know that a buffer is 2106 * being evicted, so the ARC should clean up. If this arc buf 2107 * is not yet in the evicted state, it will be put there. 2108 */ 2109 int 2110 arc_buf_evict(arc_buf_t *buf) 2111 { 2112 arc_buf_hdr_t *hdr; 2113 kmutex_t *hash_lock; 2114 arc_buf_t **bufp; 2115 2116 mutex_enter(&arc_eviction_mtx); 2117 hdr = buf->b_hdr; 2118 if (hdr == NULL) { 2119 /* 2120 * We are in arc_do_user_evicts(). 2121 */ 2122 ASSERT(buf->b_data == NULL); 2123 mutex_exit(&arc_eviction_mtx); 2124 return (0); 2125 } 2126 hash_lock = HDR_LOCK(hdr); 2127 mutex_exit(&arc_eviction_mtx); 2128 2129 mutex_enter(hash_lock); 2130 2131 if (buf->b_data == NULL) { 2132 /* 2133 * We are on the eviction list. 2134 */ 2135 mutex_exit(hash_lock); 2136 mutex_enter(&arc_eviction_mtx); 2137 if (buf->b_hdr == NULL) { 2138 /* 2139 * We are already in arc_do_user_evicts(). 2140 */ 2141 mutex_exit(&arc_eviction_mtx); 2142 return (0); 2143 } else { 2144 arc_buf_t copy = *buf; /* structure assignment */ 2145 /* 2146 * Process this buffer now 2147 * but let arc_do_user_evicts() do the reaping. 2148 */ 2149 buf->b_efunc = NULL; 2150 mutex_exit(&arc_eviction_mtx); 2151 VERIFY(copy.b_efunc(©) == 0); 2152 return (1); 2153 } 2154 } 2155 2156 ASSERT(buf->b_hdr == hdr); 2157 ASSERT3U(refcount_count(&hdr->b_refcnt), <, hdr->b_datacnt); 2158 ASSERT(hdr->b_state == arc.mru || hdr->b_state == arc.mfu); 2159 2160 /* 2161 * Pull this buffer off of the hdr 2162 */ 2163 bufp = &hdr->b_buf; 2164 while (*bufp != buf) 2165 bufp = &(*bufp)->b_next; 2166 *bufp = buf->b_next; 2167 2168 ASSERT(buf->b_data != NULL); 2169 arc_buf_destroy(buf, FALSE, FALSE); 2170 2171 if (hdr->b_datacnt == 0) { 2172 arc_state_t *old_state = hdr->b_state; 2173 arc_state_t *evicted_state; 2174 2175 ASSERT(refcount_is_zero(&hdr->b_refcnt)); 2176 2177 evicted_state = 2178 (old_state == arc.mru) ? arc.mru_ghost : arc.mfu_ghost; 2179 2180 mutex_enter(&old_state->mtx); 2181 mutex_enter(&evicted_state->mtx); 2182 2183 arc_change_state(evicted_state, hdr, hash_lock); 2184 ASSERT(HDR_IN_HASH_TABLE(hdr)); 2185 hdr->b_flags = ARC_IN_HASH_TABLE; 2186 2187 mutex_exit(&evicted_state->mtx); 2188 mutex_exit(&old_state->mtx); 2189 } 2190 mutex_exit(hash_lock); 2191 2192 VERIFY(buf->b_efunc(buf) == 0); 2193 buf->b_efunc = NULL; 2194 buf->b_private = NULL; 2195 buf->b_hdr = NULL; 2196 kmem_cache_free(buf_cache, buf); 2197 return (1); 2198 } 2199 2200 /* 2201 * Release this buffer from the cache. This must be done 2202 * after a read and prior to modifying the buffer contents. 2203 * If the buffer has more than one reference, we must make 2204 * make a new hdr for the buffer. 2205 */ 2206 void 2207 arc_release(arc_buf_t *buf, void *tag) 2208 { 2209 arc_buf_hdr_t *hdr = buf->b_hdr; 2210 kmutex_t *hash_lock = HDR_LOCK(hdr); 2211 2212 /* this buffer is not on any list */ 2213 ASSERT(refcount_count(&hdr->b_refcnt) > 0); 2214 2215 if (hdr->b_state == arc.anon) { 2216 /* this buffer is already released */ 2217 ASSERT3U(refcount_count(&hdr->b_refcnt), ==, 1); 2218 ASSERT(BUF_EMPTY(hdr)); 2219 ASSERT(buf->b_efunc == NULL); 2220 arc_buf_thaw(buf); 2221 return; 2222 } 2223 2224 mutex_enter(hash_lock); 2225 2226 /* 2227 * Do we have more than one buf? 2228 */ 2229 if (hdr->b_buf != buf || buf->b_next != NULL) { 2230 arc_buf_hdr_t *nhdr; 2231 arc_buf_t **bufp; 2232 uint64_t blksz = hdr->b_size; 2233 spa_t *spa = hdr->b_spa; 2234 arc_buf_contents_t type = hdr->b_type; 2235 2236 ASSERT(hdr->b_datacnt > 1); 2237 /* 2238 * Pull the data off of this buf and attach it to 2239 * a new anonymous buf. 2240 */ 2241 (void) remove_reference(hdr, hash_lock, tag); 2242 bufp = &hdr->b_buf; 2243 while (*bufp != buf) 2244 bufp = &(*bufp)->b_next; 2245 *bufp = (*bufp)->b_next; 2246 2247 ASSERT3U(hdr->b_state->size, >=, hdr->b_size); 2248 atomic_add_64(&hdr->b_state->size, -hdr->b_size); 2249 if (refcount_is_zero(&hdr->b_refcnt)) { 2250 ASSERT3U(hdr->b_state->lsize, >=, hdr->b_size); 2251 atomic_add_64(&hdr->b_state->lsize, -hdr->b_size); 2252 } 2253 hdr->b_datacnt -= 1; 2254 2255 mutex_exit(hash_lock); 2256 2257 nhdr = kmem_cache_alloc(hdr_cache, KM_SLEEP); 2258 nhdr->b_size = blksz; 2259 nhdr->b_spa = spa; 2260 nhdr->b_type = type; 2261 nhdr->b_buf = buf; 2262 nhdr->b_state = arc.anon; 2263 nhdr->b_arc_access = 0; 2264 nhdr->b_flags = 0; 2265 nhdr->b_datacnt = 1; 2266 if (hdr->b_freeze_cksum != NULL) { 2267 nhdr->b_freeze_cksum = 2268 kmem_alloc(sizeof (zio_cksum_t), KM_SLEEP); 2269 *nhdr->b_freeze_cksum = *hdr->b_freeze_cksum; 2270 } 2271 buf->b_hdr = nhdr; 2272 buf->b_next = NULL; 2273 (void) refcount_add(&nhdr->b_refcnt, tag); 2274 atomic_add_64(&arc.anon->size, blksz); 2275 2276 hdr = nhdr; 2277 } else { 2278 ASSERT(refcount_count(&hdr->b_refcnt) == 1); 2279 ASSERT(!list_link_active(&hdr->b_arc_node)); 2280 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 2281 arc_change_state(arc.anon, hdr, hash_lock); 2282 hdr->b_arc_access = 0; 2283 mutex_exit(hash_lock); 2284 bzero(&hdr->b_dva, sizeof (dva_t)); 2285 hdr->b_birth = 0; 2286 hdr->b_cksum0 = 0; 2287 } 2288 buf->b_efunc = NULL; 2289 buf->b_private = NULL; 2290 arc_buf_thaw(buf); 2291 } 2292 2293 int 2294 arc_released(arc_buf_t *buf) 2295 { 2296 return (buf->b_data != NULL && buf->b_hdr->b_state == arc.anon); 2297 } 2298 2299 int 2300 arc_has_callback(arc_buf_t *buf) 2301 { 2302 return (buf->b_efunc != NULL); 2303 } 2304 2305 #ifdef ZFS_DEBUG 2306 int 2307 arc_referenced(arc_buf_t *buf) 2308 { 2309 return (refcount_count(&buf->b_hdr->b_refcnt)); 2310 } 2311 #endif 2312 2313 static void 2314 arc_write_done(zio_t *zio) 2315 { 2316 arc_buf_t *buf; 2317 arc_buf_hdr_t *hdr; 2318 arc_callback_t *acb; 2319 2320 buf = zio->io_private; 2321 hdr = buf->b_hdr; 2322 acb = hdr->b_acb; 2323 hdr->b_acb = NULL; 2324 ASSERT(acb != NULL); 2325 2326 /* this buffer is on no lists and is not in the hash table */ 2327 ASSERT3P(hdr->b_state, ==, arc.anon); 2328 2329 hdr->b_dva = *BP_IDENTITY(zio->io_bp); 2330 hdr->b_birth = zio->io_bp->blk_birth; 2331 hdr->b_cksum0 = zio->io_bp->blk_cksum.zc_word[0]; 2332 /* 2333 * If the block to be written was all-zero, we may have 2334 * compressed it away. In this case no write was performed 2335 * so there will be no dva/birth-date/checksum. The buffer 2336 * must therefor remain anonymous (and uncached). 2337 */ 2338 if (!BUF_EMPTY(hdr)) { 2339 arc_buf_hdr_t *exists; 2340 kmutex_t *hash_lock; 2341 2342 arc_cksum_verify(buf); 2343 2344 exists = buf_hash_insert(hdr, &hash_lock); 2345 if (exists) { 2346 /* 2347 * This can only happen if we overwrite for 2348 * sync-to-convergence, because we remove 2349 * buffers from the hash table when we arc_free(). 2350 */ 2351 ASSERT(DVA_EQUAL(BP_IDENTITY(&zio->io_bp_orig), 2352 BP_IDENTITY(zio->io_bp))); 2353 ASSERT3U(zio->io_bp_orig.blk_birth, ==, 2354 zio->io_bp->blk_birth); 2355 2356 ASSERT(refcount_is_zero(&exists->b_refcnt)); 2357 arc_change_state(arc.anon, exists, hash_lock); 2358 mutex_exit(hash_lock); 2359 arc_hdr_destroy(exists); 2360 exists = buf_hash_insert(hdr, &hash_lock); 2361 ASSERT3P(exists, ==, NULL); 2362 } 2363 hdr->b_flags &= ~ARC_IO_IN_PROGRESS; 2364 arc_access(hdr, hash_lock); 2365 mutex_exit(hash_lock); 2366 } else if (acb->acb_done == NULL) { 2367 int destroy_hdr; 2368 /* 2369 * This is an anonymous buffer with no user callback, 2370 * destroy it if there are no active references. 2371 */ 2372 mutex_enter(&arc_eviction_mtx); 2373 destroy_hdr = refcount_is_zero(&hdr->b_refcnt); 2374 hdr->b_flags &= ~ARC_IO_IN_PROGRESS; 2375 mutex_exit(&arc_eviction_mtx); 2376 if (destroy_hdr) 2377 arc_hdr_destroy(hdr); 2378 } else { 2379 hdr->b_flags &= ~ARC_IO_IN_PROGRESS; 2380 } 2381 2382 if (acb->acb_done) { 2383 ASSERT(!refcount_is_zero(&hdr->b_refcnt)); 2384 acb->acb_done(zio, buf, acb->acb_private); 2385 } 2386 2387 kmem_free(acb, sizeof (arc_callback_t)); 2388 } 2389 2390 int 2391 arc_write(zio_t *pio, spa_t *spa, int checksum, int compress, int ncopies, 2392 uint64_t txg, blkptr_t *bp, arc_buf_t *buf, 2393 arc_done_func_t *done, void *private, int priority, int flags, 2394 uint32_t arc_flags, zbookmark_t *zb) 2395 { 2396 arc_buf_hdr_t *hdr = buf->b_hdr; 2397 arc_callback_t *acb; 2398 zio_t *rzio; 2399 2400 /* this is a private buffer - no locking required */ 2401 ASSERT3P(hdr->b_state, ==, arc.anon); 2402 ASSERT(BUF_EMPTY(hdr)); 2403 ASSERT(!HDR_IO_ERROR(hdr)); 2404 ASSERT((hdr->b_flags & ARC_IO_IN_PROGRESS) == 0); 2405 ASSERT(hdr->b_acb == 0); 2406 acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP); 2407 acb->acb_done = done; 2408 acb->acb_private = private; 2409 acb->acb_byteswap = (arc_byteswap_func_t *)-1; 2410 hdr->b_acb = acb; 2411 hdr->b_flags |= ARC_IO_IN_PROGRESS; 2412 arc_cksum_compute(buf); 2413 rzio = zio_write(pio, spa, checksum, compress, ncopies, txg, bp, 2414 buf->b_data, hdr->b_size, arc_write_done, buf, priority, flags, zb); 2415 2416 if (arc_flags & ARC_WAIT) 2417 return (zio_wait(rzio)); 2418 2419 ASSERT(arc_flags & ARC_NOWAIT); 2420 zio_nowait(rzio); 2421 2422 return (0); 2423 } 2424 2425 int 2426 arc_free(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, 2427 zio_done_func_t *done, void *private, uint32_t arc_flags) 2428 { 2429 arc_buf_hdr_t *ab; 2430 kmutex_t *hash_lock; 2431 zio_t *zio; 2432 2433 /* 2434 * If this buffer is in the cache, release it, so it 2435 * can be re-used. 2436 */ 2437 ab = buf_hash_find(spa, BP_IDENTITY(bp), bp->blk_birth, &hash_lock); 2438 if (ab != NULL) { 2439 /* 2440 * The checksum of blocks to free is not always 2441 * preserved (eg. on the deadlist). However, if it is 2442 * nonzero, it should match what we have in the cache. 2443 */ 2444 ASSERT(bp->blk_cksum.zc_word[0] == 0 || 2445 ab->b_cksum0 == bp->blk_cksum.zc_word[0]); 2446 if (ab->b_state != arc.anon) 2447 arc_change_state(arc.anon, ab, hash_lock); 2448 if (HDR_IO_IN_PROGRESS(ab)) { 2449 /* 2450 * This should only happen when we prefetch. 2451 */ 2452 ASSERT(ab->b_flags & ARC_PREFETCH); 2453 ASSERT3U(ab->b_datacnt, ==, 1); 2454 ab->b_flags |= ARC_FREED_IN_READ; 2455 if (HDR_IN_HASH_TABLE(ab)) 2456 buf_hash_remove(ab); 2457 ab->b_arc_access = 0; 2458 bzero(&ab->b_dva, sizeof (dva_t)); 2459 ab->b_birth = 0; 2460 ab->b_cksum0 = 0; 2461 ab->b_buf->b_efunc = NULL; 2462 ab->b_buf->b_private = NULL; 2463 mutex_exit(hash_lock); 2464 } else if (refcount_is_zero(&ab->b_refcnt)) { 2465 mutex_exit(hash_lock); 2466 arc_hdr_destroy(ab); 2467 atomic_add_64(&arc.deleted, 1); 2468 } else { 2469 /* 2470 * We still have an active reference on this 2471 * buffer. This can happen, e.g., from 2472 * dbuf_unoverride(). 2473 */ 2474 ASSERT(!HDR_IN_HASH_TABLE(ab)); 2475 ab->b_arc_access = 0; 2476 bzero(&ab->b_dva, sizeof (dva_t)); 2477 ab->b_birth = 0; 2478 ab->b_cksum0 = 0; 2479 ab->b_buf->b_efunc = NULL; 2480 ab->b_buf->b_private = NULL; 2481 mutex_exit(hash_lock); 2482 } 2483 } 2484 2485 zio = zio_free(pio, spa, txg, bp, done, private); 2486 2487 if (arc_flags & ARC_WAIT) 2488 return (zio_wait(zio)); 2489 2490 ASSERT(arc_flags & ARC_NOWAIT); 2491 zio_nowait(zio); 2492 2493 return (0); 2494 } 2495 2496 void 2497 arc_tempreserve_clear(uint64_t tempreserve) 2498 { 2499 atomic_add_64(&arc_tempreserve, -tempreserve); 2500 ASSERT((int64_t)arc_tempreserve >= 0); 2501 } 2502 2503 int 2504 arc_tempreserve_space(uint64_t tempreserve) 2505 { 2506 #ifdef ZFS_DEBUG 2507 /* 2508 * Once in a while, fail for no reason. Everything should cope. 2509 */ 2510 if (spa_get_random(10000) == 0) { 2511 dprintf("forcing random failure\n"); 2512 return (ERESTART); 2513 } 2514 #endif 2515 if (tempreserve > arc.c/4 && !arc.no_grow) 2516 arc.c = MIN(arc.c_max, tempreserve * 4); 2517 if (tempreserve > arc.c) 2518 return (ENOMEM); 2519 2520 /* 2521 * Throttle writes when the amount of dirty data in the cache 2522 * gets too large. We try to keep the cache less than half full 2523 * of dirty blocks so that our sync times don't grow too large. 2524 * Note: if two requests come in concurrently, we might let them 2525 * both succeed, when one of them should fail. Not a huge deal. 2526 * 2527 * XXX The limit should be adjusted dynamically to keep the time 2528 * to sync a dataset fixed (around 1-5 seconds?). 2529 */ 2530 2531 if (tempreserve + arc_tempreserve + arc.anon->size > arc.c / 2 && 2532 arc_tempreserve + arc.anon->size > arc.c / 4) { 2533 dprintf("failing, arc_tempreserve=%lluK anon=%lluK " 2534 "tempreserve=%lluK arc.c=%lluK\n", 2535 arc_tempreserve>>10, arc.anon->lsize>>10, 2536 tempreserve>>10, arc.c>>10); 2537 return (ERESTART); 2538 } 2539 atomic_add_64(&arc_tempreserve, tempreserve); 2540 return (0); 2541 } 2542 2543 void 2544 arc_init(void) 2545 { 2546 mutex_init(&arc_reclaim_thr_lock, NULL, MUTEX_DEFAULT, NULL); 2547 cv_init(&arc_reclaim_thr_cv, NULL, CV_DEFAULT, NULL); 2548 2549 /* Convert seconds to clock ticks */ 2550 arc_min_prefetch_lifespan = 1 * hz; 2551 2552 /* Start out with 1/8 of all memory */ 2553 arc.c = physmem * PAGESIZE / 8; 2554 2555 #ifdef _KERNEL 2556 /* 2557 * On architectures where the physical memory can be larger 2558 * than the addressable space (intel in 32-bit mode), we may 2559 * need to limit the cache to 1/8 of VM size. 2560 */ 2561 arc.c = MIN(arc.c, vmem_size(heap_arena, VMEM_ALLOC | VMEM_FREE) / 8); 2562 #endif 2563 2564 /* set min cache to 1/32 of all memory, or 64MB, whichever is more */ 2565 arc.c_min = MAX(arc.c / 4, 64<<20); 2566 /* set max to 3/4 of all memory, or all but 1GB, whichever is more */ 2567 if (arc.c * 8 >= 1<<30) 2568 arc.c_max = (arc.c * 8) - (1<<30); 2569 else 2570 arc.c_max = arc.c_min; 2571 arc.c_max = MAX(arc.c * 6, arc.c_max); 2572 2573 /* 2574 * Allow the tunables to override our calculations if they are 2575 * reasonable (ie. over 64MB) 2576 */ 2577 if (zfs_arc_max > 64<<20 && zfs_arc_max < physmem * PAGESIZE) 2578 arc.c_max = zfs_arc_max; 2579 if (zfs_arc_min > 64<<20 && zfs_arc_min <= arc.c_max) 2580 arc.c_min = zfs_arc_min; 2581 2582 arc.c = arc.c_max; 2583 arc.p = (arc.c >> 1); 2584 2585 /* if kmem_flags are set, lets try to use less memory */ 2586 if (kmem_debugging()) 2587 arc.c = arc.c / 2; 2588 if (arc.c < arc.c_min) 2589 arc.c = arc.c_min; 2590 2591 arc.anon = &ARC_anon; 2592 arc.mru = &ARC_mru; 2593 arc.mru_ghost = &ARC_mru_ghost; 2594 arc.mfu = &ARC_mfu; 2595 arc.mfu_ghost = &ARC_mfu_ghost; 2596 arc.size = 0; 2597 2598 arc.hits = 0; 2599 arc.recycle_miss = 0; 2600 arc.evict_skip = 0; 2601 arc.mutex_miss = 0; 2602 2603 mutex_init(&arc.anon->mtx, NULL, MUTEX_DEFAULT, NULL); 2604 mutex_init(&arc.mru->mtx, NULL, MUTEX_DEFAULT, NULL); 2605 mutex_init(&arc.mru_ghost->mtx, NULL, MUTEX_DEFAULT, NULL); 2606 mutex_init(&arc.mfu->mtx, NULL, MUTEX_DEFAULT, NULL); 2607 mutex_init(&arc.mfu_ghost->mtx, NULL, MUTEX_DEFAULT, NULL); 2608 2609 list_create(&arc.mru->list, sizeof (arc_buf_hdr_t), 2610 offsetof(arc_buf_hdr_t, b_arc_node)); 2611 list_create(&arc.mru_ghost->list, sizeof (arc_buf_hdr_t), 2612 offsetof(arc_buf_hdr_t, b_arc_node)); 2613 list_create(&arc.mfu->list, sizeof (arc_buf_hdr_t), 2614 offsetof(arc_buf_hdr_t, b_arc_node)); 2615 list_create(&arc.mfu_ghost->list, sizeof (arc_buf_hdr_t), 2616 offsetof(arc_buf_hdr_t, b_arc_node)); 2617 2618 buf_init(); 2619 2620 arc_thread_exit = 0; 2621 arc_eviction_list = NULL; 2622 mutex_init(&arc_eviction_mtx, NULL, MUTEX_DEFAULT, NULL); 2623 bzero(&arc_eviction_hdr, sizeof (arc_buf_hdr_t)); 2624 2625 (void) thread_create(NULL, 0, arc_reclaim_thread, NULL, 0, &p0, 2626 TS_RUN, minclsyspri); 2627 2628 arc_dead = FALSE; 2629 } 2630 2631 void 2632 arc_fini(void) 2633 { 2634 mutex_enter(&arc_reclaim_thr_lock); 2635 arc_thread_exit = 1; 2636 while (arc_thread_exit != 0) 2637 cv_wait(&arc_reclaim_thr_cv, &arc_reclaim_thr_lock); 2638 mutex_exit(&arc_reclaim_thr_lock); 2639 2640 arc_flush(); 2641 2642 arc_dead = TRUE; 2643 2644 mutex_destroy(&arc_eviction_mtx); 2645 mutex_destroy(&arc_reclaim_thr_lock); 2646 cv_destroy(&arc_reclaim_thr_cv); 2647 2648 list_destroy(&arc.mru->list); 2649 list_destroy(&arc.mru_ghost->list); 2650 list_destroy(&arc.mfu->list); 2651 list_destroy(&arc.mfu_ghost->list); 2652 2653 mutex_destroy(&arc.anon->mtx); 2654 mutex_destroy(&arc.mru->mtx); 2655 mutex_destroy(&arc.mru_ghost->mtx); 2656 mutex_destroy(&arc.mfu->mtx); 2657 mutex_destroy(&arc.mfu_ghost->mtx); 2658 2659 buf_fini(); 2660 } 2661