xref: /titanic_52/usr/src/uts/common/fs/vnode.c (revision bd783bf8c4b70f9d71f64a8ddadcb99b9ef71332)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 1988, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2013, Joyent, Inc. All rights reserved.
25  */
26 
27 /*	Copyright (c) 1983, 1984, 1985, 1986, 1987, 1988, 1989 AT&T	*/
28 /*	  All Rights Reserved  	*/
29 
30 /*
31  * University Copyright- Copyright (c) 1982, 1986, 1988
32  * The Regents of the University of California
33  * All Rights Reserved
34  *
35  * University Acknowledgment- Portions of this document are derived from
36  * software developed by the University of California, Berkeley, and its
37  * contributors.
38  */
39 
40 #include <sys/types.h>
41 #include <sys/param.h>
42 #include <sys/t_lock.h>
43 #include <sys/errno.h>
44 #include <sys/cred.h>
45 #include <sys/user.h>
46 #include <sys/uio.h>
47 #include <sys/file.h>
48 #include <sys/pathname.h>
49 #include <sys/vfs.h>
50 #include <sys/vfs_opreg.h>
51 #include <sys/vnode.h>
52 #include <sys/rwstlock.h>
53 #include <sys/fem.h>
54 #include <sys/stat.h>
55 #include <sys/mode.h>
56 #include <sys/conf.h>
57 #include <sys/sysmacros.h>
58 #include <sys/cmn_err.h>
59 #include <sys/systm.h>
60 #include <sys/kmem.h>
61 #include <sys/debug.h>
62 #include <c2/audit.h>
63 #include <sys/acl.h>
64 #include <sys/nbmlock.h>
65 #include <sys/fcntl.h>
66 #include <fs/fs_subr.h>
67 #include <sys/taskq.h>
68 #include <fs/fs_reparse.h>
69 
70 /* Determine if this vnode is a file that is read-only */
71 #define	ISROFILE(vp)	\
72 	((vp)->v_type != VCHR && (vp)->v_type != VBLK && \
73 	    (vp)->v_type != VFIFO && vn_is_readonly(vp))
74 
75 /* Tunable via /etc/system; used only by admin/install */
76 int nfs_global_client_only;
77 
78 /*
79  * Array of vopstats_t for per-FS-type vopstats.  This array has the same
80  * number of entries as and parallel to the vfssw table.  (Arguably, it could
81  * be part of the vfssw table.)  Once it's initialized, it's accessed using
82  * the same fstype index that is used to index into the vfssw table.
83  */
84 vopstats_t **vopstats_fstype;
85 
86 /* vopstats initialization template used for fast initialization via bcopy() */
87 static vopstats_t *vs_templatep;
88 
89 /* Kmem cache handle for vsk_anchor_t allocations */
90 kmem_cache_t *vsk_anchor_cache;
91 
92 /* file events cleanup routine */
93 extern void free_fopdata(vnode_t *);
94 
95 /*
96  * Root of AVL tree for the kstats associated with vopstats.  Lock protects
97  * updates to vsktat_tree.
98  */
99 avl_tree_t	vskstat_tree;
100 kmutex_t	vskstat_tree_lock;
101 
102 /* Global variable which enables/disables the vopstats collection */
103 int vopstats_enabled = 1;
104 
105 /*
106  * forward declarations for internal vnode specific data (vsd)
107  */
108 static void *vsd_realloc(void *, size_t, size_t);
109 
110 /*
111  * forward declarations for reparse point functions
112  */
113 static int fs_reparse_mark(char *target, vattr_t *vap, xvattr_t *xvattr);
114 
115 /*
116  * VSD -- VNODE SPECIFIC DATA
117  * The v_data pointer is typically used by a file system to store a
118  * pointer to the file system's private node (e.g. ufs inode, nfs rnode).
119  * However, there are times when additional project private data needs
120  * to be stored separately from the data (node) pointed to by v_data.
121  * This additional data could be stored by the file system itself or
122  * by a completely different kernel entity.  VSD provides a way for
123  * callers to obtain a key and store a pointer to private data associated
124  * with a vnode.
125  *
126  * Callers are responsible for protecting the vsd by holding v_vsd_lock
127  * for calls to vsd_set() and vsd_get().
128  */
129 
130 /*
131  * vsd_lock protects:
132  *   vsd_nkeys - creation and deletion of vsd keys
133  *   vsd_list - insertion and deletion of vsd_node in the vsd_list
134  *   vsd_destructor - adding and removing destructors to the list
135  */
136 static kmutex_t		vsd_lock;
137 static uint_t		vsd_nkeys;	 /* size of destructor array */
138 /* list of vsd_node's */
139 static list_t *vsd_list = NULL;
140 /* per-key destructor funcs */
141 static void 		(**vsd_destructor)(void *);
142 
143 /*
144  * The following is the common set of actions needed to update the
145  * vopstats structure from a vnode op.  Both VOPSTATS_UPDATE() and
146  * VOPSTATS_UPDATE_IO() do almost the same thing, except for the
147  * recording of the bytes transferred.  Since the code is similar
148  * but small, it is nearly a duplicate.  Consequently any changes
149  * to one may need to be reflected in the other.
150  * Rundown of the variables:
151  * vp - Pointer to the vnode
152  * counter - Partial name structure member to update in vopstats for counts
153  * bytecounter - Partial name structure member to update in vopstats for bytes
154  * bytesval - Value to update in vopstats for bytes
155  * fstype - Index into vsanchor_fstype[], same as index into vfssw[]
156  * vsp - Pointer to vopstats structure (either in vfs or vsanchor_fstype[i])
157  */
158 
159 #define	VOPSTATS_UPDATE(vp, counter) {					\
160 	vfs_t *vfsp = (vp)->v_vfsp;					\
161 	if (vfsp && vfsp->vfs_implp &&					\
162 	    (vfsp->vfs_flag & VFS_STATS) && (vp)->v_type != VBAD) {	\
163 		vopstats_t *vsp = &vfsp->vfs_vopstats;			\
164 		uint64_t *stataddr = &(vsp->n##counter.value.ui64);	\
165 		extern void __dtrace_probe___fsinfo_##counter(vnode_t *, \
166 		    size_t, uint64_t *);				\
167 		__dtrace_probe___fsinfo_##counter(vp, 0, stataddr);	\
168 		(*stataddr)++;						\
169 		if ((vsp = vfsp->vfs_fstypevsp) != NULL) {		\
170 			vsp->n##counter.value.ui64++;			\
171 		}							\
172 	}								\
173 }
174 
175 #define	VOPSTATS_UPDATE_IO(vp, counter, bytecounter, bytesval) {	\
176 	vfs_t *vfsp = (vp)->v_vfsp;					\
177 	if (vfsp && vfsp->vfs_implp &&					\
178 	    (vfsp->vfs_flag & VFS_STATS) && (vp)->v_type != VBAD) {	\
179 		vopstats_t *vsp = &vfsp->vfs_vopstats;			\
180 		uint64_t *stataddr = &(vsp->n##counter.value.ui64);	\
181 		extern void __dtrace_probe___fsinfo_##counter(vnode_t *, \
182 		    size_t, uint64_t *);				\
183 		__dtrace_probe___fsinfo_##counter(vp, bytesval, stataddr); \
184 		(*stataddr)++;						\
185 		vsp->bytecounter.value.ui64 += bytesval;		\
186 		if ((vsp = vfsp->vfs_fstypevsp) != NULL) {		\
187 			vsp->n##counter.value.ui64++;			\
188 			vsp->bytecounter.value.ui64 += bytesval;	\
189 		}							\
190 	}								\
191 }
192 
193 /*
194  * If the filesystem does not support XIDs map credential
195  * If the vfsp is NULL, perhaps we should also map?
196  */
197 #define	VOPXID_MAP_CR(vp, cr)	{					\
198 	vfs_t *vfsp = (vp)->v_vfsp;					\
199 	if (vfsp != NULL && (vfsp->vfs_flag & VFS_XID) == 0)		\
200 		cr = crgetmapped(cr);					\
201 	}
202 
203 /*
204  * Convert stat(2) formats to vnode types and vice versa.  (Knows about
205  * numerical order of S_IFMT and vnode types.)
206  */
207 enum vtype iftovt_tab[] = {
208 	VNON, VFIFO, VCHR, VNON, VDIR, VNON, VBLK, VNON,
209 	VREG, VNON, VLNK, VNON, VSOCK, VNON, VNON, VNON
210 };
211 
212 ushort_t vttoif_tab[] = {
213 	0, S_IFREG, S_IFDIR, S_IFBLK, S_IFCHR, S_IFLNK, S_IFIFO,
214 	S_IFDOOR, 0, S_IFSOCK, S_IFPORT, 0
215 };
216 
217 /*
218  * The system vnode cache.
219  */
220 
221 kmem_cache_t *vn_cache;
222 
223 
224 /*
225  * Vnode operations vector.
226  */
227 
228 static const fs_operation_trans_def_t vn_ops_table[] = {
229 	VOPNAME_OPEN, offsetof(struct vnodeops, vop_open),
230 	    fs_nosys, fs_nosys,
231 
232 	VOPNAME_CLOSE, offsetof(struct vnodeops, vop_close),
233 	    fs_nosys, fs_nosys,
234 
235 	VOPNAME_READ, offsetof(struct vnodeops, vop_read),
236 	    fs_nosys, fs_nosys,
237 
238 	VOPNAME_WRITE, offsetof(struct vnodeops, vop_write),
239 	    fs_nosys, fs_nosys,
240 
241 	VOPNAME_IOCTL, offsetof(struct vnodeops, vop_ioctl),
242 	    fs_nosys, fs_nosys,
243 
244 	VOPNAME_SETFL, offsetof(struct vnodeops, vop_setfl),
245 	    fs_setfl, fs_nosys,
246 
247 	VOPNAME_GETATTR, offsetof(struct vnodeops, vop_getattr),
248 	    fs_nosys, fs_nosys,
249 
250 	VOPNAME_SETATTR, offsetof(struct vnodeops, vop_setattr),
251 	    fs_nosys, fs_nosys,
252 
253 	VOPNAME_ACCESS, offsetof(struct vnodeops, vop_access),
254 	    fs_nosys, fs_nosys,
255 
256 	VOPNAME_LOOKUP, offsetof(struct vnodeops, vop_lookup),
257 	    fs_nosys, fs_nosys,
258 
259 	VOPNAME_CREATE, offsetof(struct vnodeops, vop_create),
260 	    fs_nosys, fs_nosys,
261 
262 	VOPNAME_REMOVE, offsetof(struct vnodeops, vop_remove),
263 	    fs_nosys, fs_nosys,
264 
265 	VOPNAME_LINK, offsetof(struct vnodeops, vop_link),
266 	    fs_nosys, fs_nosys,
267 
268 	VOPNAME_RENAME, offsetof(struct vnodeops, vop_rename),
269 	    fs_nosys, fs_nosys,
270 
271 	VOPNAME_MKDIR, offsetof(struct vnodeops, vop_mkdir),
272 	    fs_nosys, fs_nosys,
273 
274 	VOPNAME_RMDIR, offsetof(struct vnodeops, vop_rmdir),
275 	    fs_nosys, fs_nosys,
276 
277 	VOPNAME_READDIR, offsetof(struct vnodeops, vop_readdir),
278 	    fs_nosys, fs_nosys,
279 
280 	VOPNAME_SYMLINK, offsetof(struct vnodeops, vop_symlink),
281 	    fs_nosys, fs_nosys,
282 
283 	VOPNAME_READLINK, offsetof(struct vnodeops, vop_readlink),
284 	    fs_nosys, fs_nosys,
285 
286 	VOPNAME_FSYNC, offsetof(struct vnodeops, vop_fsync),
287 	    fs_nosys, fs_nosys,
288 
289 	VOPNAME_INACTIVE, offsetof(struct vnodeops, vop_inactive),
290 	    fs_nosys, fs_nosys,
291 
292 	VOPNAME_FID, offsetof(struct vnodeops, vop_fid),
293 	    fs_nosys, fs_nosys,
294 
295 	VOPNAME_RWLOCK, offsetof(struct vnodeops, vop_rwlock),
296 	    fs_rwlock, fs_rwlock,
297 
298 	VOPNAME_RWUNLOCK, offsetof(struct vnodeops, vop_rwunlock),
299 	    (fs_generic_func_p) fs_rwunlock,
300 	    (fs_generic_func_p) fs_rwunlock,	/* no errors allowed */
301 
302 	VOPNAME_SEEK, offsetof(struct vnodeops, vop_seek),
303 	    fs_nosys, fs_nosys,
304 
305 	VOPNAME_CMP, offsetof(struct vnodeops, vop_cmp),
306 	    fs_cmp, fs_cmp,		/* no errors allowed */
307 
308 	VOPNAME_FRLOCK, offsetof(struct vnodeops, vop_frlock),
309 	    fs_frlock, fs_nosys,
310 
311 	VOPNAME_SPACE, offsetof(struct vnodeops, vop_space),
312 	    fs_nosys, fs_nosys,
313 
314 	VOPNAME_REALVP, offsetof(struct vnodeops, vop_realvp),
315 	    fs_nosys, fs_nosys,
316 
317 	VOPNAME_GETPAGE, offsetof(struct vnodeops, vop_getpage),
318 	    fs_nosys, fs_nosys,
319 
320 	VOPNAME_PUTPAGE, offsetof(struct vnodeops, vop_putpage),
321 	    fs_nosys, fs_nosys,
322 
323 	VOPNAME_MAP, offsetof(struct vnodeops, vop_map),
324 	    (fs_generic_func_p) fs_nosys_map,
325 	    (fs_generic_func_p) fs_nosys_map,
326 
327 	VOPNAME_ADDMAP, offsetof(struct vnodeops, vop_addmap),
328 	    (fs_generic_func_p) fs_nosys_addmap,
329 	    (fs_generic_func_p) fs_nosys_addmap,
330 
331 	VOPNAME_DELMAP, offsetof(struct vnodeops, vop_delmap),
332 	    fs_nosys, fs_nosys,
333 
334 	VOPNAME_POLL, offsetof(struct vnodeops, vop_poll),
335 	    (fs_generic_func_p) fs_poll, (fs_generic_func_p) fs_nosys_poll,
336 
337 	VOPNAME_DUMP, offsetof(struct vnodeops, vop_dump),
338 	    fs_nosys, fs_nosys,
339 
340 	VOPNAME_PATHCONF, offsetof(struct vnodeops, vop_pathconf),
341 	    fs_pathconf, fs_nosys,
342 
343 	VOPNAME_PAGEIO, offsetof(struct vnodeops, vop_pageio),
344 	    fs_nosys, fs_nosys,
345 
346 	VOPNAME_DUMPCTL, offsetof(struct vnodeops, vop_dumpctl),
347 	    fs_nosys, fs_nosys,
348 
349 	VOPNAME_DISPOSE, offsetof(struct vnodeops, vop_dispose),
350 	    (fs_generic_func_p) fs_dispose,
351 	    (fs_generic_func_p) fs_nodispose,
352 
353 	VOPNAME_SETSECATTR, offsetof(struct vnodeops, vop_setsecattr),
354 	    fs_nosys, fs_nosys,
355 
356 	VOPNAME_GETSECATTR, offsetof(struct vnodeops, vop_getsecattr),
357 	    fs_fab_acl, fs_nosys,
358 
359 	VOPNAME_SHRLOCK, offsetof(struct vnodeops, vop_shrlock),
360 	    fs_shrlock, fs_nosys,
361 
362 	VOPNAME_VNEVENT, offsetof(struct vnodeops, vop_vnevent),
363 	    (fs_generic_func_p) fs_vnevent_nosupport,
364 	    (fs_generic_func_p) fs_vnevent_nosupport,
365 
366 	VOPNAME_REQZCBUF, offsetof(struct vnodeops, vop_reqzcbuf),
367 	    fs_nosys, fs_nosys,
368 
369 	VOPNAME_RETZCBUF, offsetof(struct vnodeops, vop_retzcbuf),
370 	    fs_nosys, fs_nosys,
371 
372 	NULL, 0, NULL, NULL
373 };
374 
375 /* Extensible attribute (xva) routines. */
376 
377 /*
378  * Zero out the structure, set the size of the requested/returned bitmaps,
379  * set AT_XVATTR in the embedded vattr_t's va_mask, and set up the pointer
380  * to the returned attributes array.
381  */
382 void
383 xva_init(xvattr_t *xvap)
384 {
385 	bzero(xvap, sizeof (xvattr_t));
386 	xvap->xva_mapsize = XVA_MAPSIZE;
387 	xvap->xva_magic = XVA_MAGIC;
388 	xvap->xva_vattr.va_mask = AT_XVATTR;
389 	xvap->xva_rtnattrmapp = &(xvap->xva_rtnattrmap)[0];
390 }
391 
392 /*
393  * If AT_XVATTR is set, returns a pointer to the embedded xoptattr_t
394  * structure.  Otherwise, returns NULL.
395  */
396 xoptattr_t *
397 xva_getxoptattr(xvattr_t *xvap)
398 {
399 	xoptattr_t *xoap = NULL;
400 	if (xvap->xva_vattr.va_mask & AT_XVATTR)
401 		xoap = &xvap->xva_xoptattrs;
402 	return (xoap);
403 }
404 
405 /*
406  * Used by the AVL routines to compare two vsk_anchor_t structures in the tree.
407  * We use the f_fsid reported by VFS_STATVFS() since we use that for the
408  * kstat name.
409  */
410 static int
411 vska_compar(const void *n1, const void *n2)
412 {
413 	int ret;
414 	ulong_t p1 = ((vsk_anchor_t *)n1)->vsk_fsid;
415 	ulong_t p2 = ((vsk_anchor_t *)n2)->vsk_fsid;
416 
417 	if (p1 < p2) {
418 		ret = -1;
419 	} else if (p1 > p2) {
420 		ret = 1;
421 	} else {
422 		ret = 0;
423 	}
424 
425 	return (ret);
426 }
427 
428 /*
429  * Used to create a single template which will be bcopy()ed to a newly
430  * allocated vsanchor_combo_t structure in new_vsanchor(), below.
431  */
432 static vopstats_t *
433 create_vopstats_template()
434 {
435 	vopstats_t		*vsp;
436 
437 	vsp = kmem_alloc(sizeof (vopstats_t), KM_SLEEP);
438 	bzero(vsp, sizeof (*vsp));	/* Start fresh */
439 
440 	/* VOP_OPEN */
441 	kstat_named_init(&vsp->nopen, "nopen", KSTAT_DATA_UINT64);
442 	/* VOP_CLOSE */
443 	kstat_named_init(&vsp->nclose, "nclose", KSTAT_DATA_UINT64);
444 	/* VOP_READ I/O */
445 	kstat_named_init(&vsp->nread, "nread", KSTAT_DATA_UINT64);
446 	kstat_named_init(&vsp->read_bytes, "read_bytes", KSTAT_DATA_UINT64);
447 	/* VOP_WRITE I/O */
448 	kstat_named_init(&vsp->nwrite, "nwrite", KSTAT_DATA_UINT64);
449 	kstat_named_init(&vsp->write_bytes, "write_bytes", KSTAT_DATA_UINT64);
450 	/* VOP_IOCTL */
451 	kstat_named_init(&vsp->nioctl, "nioctl", KSTAT_DATA_UINT64);
452 	/* VOP_SETFL */
453 	kstat_named_init(&vsp->nsetfl, "nsetfl", KSTAT_DATA_UINT64);
454 	/* VOP_GETATTR */
455 	kstat_named_init(&vsp->ngetattr, "ngetattr", KSTAT_DATA_UINT64);
456 	/* VOP_SETATTR */
457 	kstat_named_init(&vsp->nsetattr, "nsetattr", KSTAT_DATA_UINT64);
458 	/* VOP_ACCESS */
459 	kstat_named_init(&vsp->naccess, "naccess", KSTAT_DATA_UINT64);
460 	/* VOP_LOOKUP */
461 	kstat_named_init(&vsp->nlookup, "nlookup", KSTAT_DATA_UINT64);
462 	/* VOP_CREATE */
463 	kstat_named_init(&vsp->ncreate, "ncreate", KSTAT_DATA_UINT64);
464 	/* VOP_REMOVE */
465 	kstat_named_init(&vsp->nremove, "nremove", KSTAT_DATA_UINT64);
466 	/* VOP_LINK */
467 	kstat_named_init(&vsp->nlink, "nlink", KSTAT_DATA_UINT64);
468 	/* VOP_RENAME */
469 	kstat_named_init(&vsp->nrename, "nrename", KSTAT_DATA_UINT64);
470 	/* VOP_MKDIR */
471 	kstat_named_init(&vsp->nmkdir, "nmkdir", KSTAT_DATA_UINT64);
472 	/* VOP_RMDIR */
473 	kstat_named_init(&vsp->nrmdir, "nrmdir", KSTAT_DATA_UINT64);
474 	/* VOP_READDIR I/O */
475 	kstat_named_init(&vsp->nreaddir, "nreaddir", KSTAT_DATA_UINT64);
476 	kstat_named_init(&vsp->readdir_bytes, "readdir_bytes",
477 	    KSTAT_DATA_UINT64);
478 	/* VOP_SYMLINK */
479 	kstat_named_init(&vsp->nsymlink, "nsymlink", KSTAT_DATA_UINT64);
480 	/* VOP_READLINK */
481 	kstat_named_init(&vsp->nreadlink, "nreadlink", KSTAT_DATA_UINT64);
482 	/* VOP_FSYNC */
483 	kstat_named_init(&vsp->nfsync, "nfsync", KSTAT_DATA_UINT64);
484 	/* VOP_INACTIVE */
485 	kstat_named_init(&vsp->ninactive, "ninactive", KSTAT_DATA_UINT64);
486 	/* VOP_FID */
487 	kstat_named_init(&vsp->nfid, "nfid", KSTAT_DATA_UINT64);
488 	/* VOP_RWLOCK */
489 	kstat_named_init(&vsp->nrwlock, "nrwlock", KSTAT_DATA_UINT64);
490 	/* VOP_RWUNLOCK */
491 	kstat_named_init(&vsp->nrwunlock, "nrwunlock", KSTAT_DATA_UINT64);
492 	/* VOP_SEEK */
493 	kstat_named_init(&vsp->nseek, "nseek", KSTAT_DATA_UINT64);
494 	/* VOP_CMP */
495 	kstat_named_init(&vsp->ncmp, "ncmp", KSTAT_DATA_UINT64);
496 	/* VOP_FRLOCK */
497 	kstat_named_init(&vsp->nfrlock, "nfrlock", KSTAT_DATA_UINT64);
498 	/* VOP_SPACE */
499 	kstat_named_init(&vsp->nspace, "nspace", KSTAT_DATA_UINT64);
500 	/* VOP_REALVP */
501 	kstat_named_init(&vsp->nrealvp, "nrealvp", KSTAT_DATA_UINT64);
502 	/* VOP_GETPAGE */
503 	kstat_named_init(&vsp->ngetpage, "ngetpage", KSTAT_DATA_UINT64);
504 	/* VOP_PUTPAGE */
505 	kstat_named_init(&vsp->nputpage, "nputpage", KSTAT_DATA_UINT64);
506 	/* VOP_MAP */
507 	kstat_named_init(&vsp->nmap, "nmap", KSTAT_DATA_UINT64);
508 	/* VOP_ADDMAP */
509 	kstat_named_init(&vsp->naddmap, "naddmap", KSTAT_DATA_UINT64);
510 	/* VOP_DELMAP */
511 	kstat_named_init(&vsp->ndelmap, "ndelmap", KSTAT_DATA_UINT64);
512 	/* VOP_POLL */
513 	kstat_named_init(&vsp->npoll, "npoll", KSTAT_DATA_UINT64);
514 	/* VOP_DUMP */
515 	kstat_named_init(&vsp->ndump, "ndump", KSTAT_DATA_UINT64);
516 	/* VOP_PATHCONF */
517 	kstat_named_init(&vsp->npathconf, "npathconf", KSTAT_DATA_UINT64);
518 	/* VOP_PAGEIO */
519 	kstat_named_init(&vsp->npageio, "npageio", KSTAT_DATA_UINT64);
520 	/* VOP_DUMPCTL */
521 	kstat_named_init(&vsp->ndumpctl, "ndumpctl", KSTAT_DATA_UINT64);
522 	/* VOP_DISPOSE */
523 	kstat_named_init(&vsp->ndispose, "ndispose", KSTAT_DATA_UINT64);
524 	/* VOP_SETSECATTR */
525 	kstat_named_init(&vsp->nsetsecattr, "nsetsecattr", KSTAT_DATA_UINT64);
526 	/* VOP_GETSECATTR */
527 	kstat_named_init(&vsp->ngetsecattr, "ngetsecattr", KSTAT_DATA_UINT64);
528 	/* VOP_SHRLOCK */
529 	kstat_named_init(&vsp->nshrlock, "nshrlock", KSTAT_DATA_UINT64);
530 	/* VOP_VNEVENT */
531 	kstat_named_init(&vsp->nvnevent, "nvnevent", KSTAT_DATA_UINT64);
532 	/* VOP_REQZCBUF */
533 	kstat_named_init(&vsp->nreqzcbuf, "nreqzcbuf", KSTAT_DATA_UINT64);
534 	/* VOP_RETZCBUF */
535 	kstat_named_init(&vsp->nretzcbuf, "nretzcbuf", KSTAT_DATA_UINT64);
536 
537 	return (vsp);
538 }
539 
540 /*
541  * Creates a kstat structure associated with a vopstats structure.
542  */
543 kstat_t *
544 new_vskstat(char *ksname, vopstats_t *vsp)
545 {
546 	kstat_t		*ksp;
547 
548 	if (!vopstats_enabled) {
549 		return (NULL);
550 	}
551 
552 	ksp = kstat_create("unix", 0, ksname, "misc", KSTAT_TYPE_NAMED,
553 	    sizeof (vopstats_t)/sizeof (kstat_named_t),
554 	    KSTAT_FLAG_VIRTUAL|KSTAT_FLAG_WRITABLE);
555 	if (ksp) {
556 		ksp->ks_data = vsp;
557 		kstat_install(ksp);
558 	}
559 
560 	return (ksp);
561 }
562 
563 /*
564  * Called from vfsinit() to initialize the support mechanisms for vopstats
565  */
566 void
567 vopstats_startup()
568 {
569 	if (!vopstats_enabled)
570 		return;
571 
572 	/*
573 	 * Creates the AVL tree which holds per-vfs vopstat anchors.  This
574 	 * is necessary since we need to check if a kstat exists before we
575 	 * attempt to create it.  Also, initialize its lock.
576 	 */
577 	avl_create(&vskstat_tree, vska_compar, sizeof (vsk_anchor_t),
578 	    offsetof(vsk_anchor_t, vsk_node));
579 	mutex_init(&vskstat_tree_lock, NULL, MUTEX_DEFAULT, NULL);
580 
581 	vsk_anchor_cache = kmem_cache_create("vsk_anchor_cache",
582 	    sizeof (vsk_anchor_t), sizeof (uintptr_t), NULL, NULL, NULL,
583 	    NULL, NULL, 0);
584 
585 	/*
586 	 * Set up the array of pointers for the vopstats-by-FS-type.
587 	 * The entries will be allocated/initialized as each file system
588 	 * goes through modload/mod_installfs.
589 	 */
590 	vopstats_fstype = (vopstats_t **)kmem_zalloc(
591 	    (sizeof (vopstats_t *) * nfstype), KM_SLEEP);
592 
593 	/* Set up the global vopstats initialization template */
594 	vs_templatep = create_vopstats_template();
595 }
596 
597 /*
598  * We need to have the all of the counters zeroed.
599  * The initialization of the vopstats_t includes on the order of
600  * 50 calls to kstat_named_init().  Rather that do that on every call,
601  * we do it once in a template (vs_templatep) then bcopy it over.
602  */
603 void
604 initialize_vopstats(vopstats_t *vsp)
605 {
606 	if (vsp == NULL)
607 		return;
608 
609 	bcopy(vs_templatep, vsp, sizeof (vopstats_t));
610 }
611 
612 /*
613  * If possible, determine which vopstats by fstype to use and
614  * return a pointer to the caller.
615  */
616 vopstats_t *
617 get_fstype_vopstats(vfs_t *vfsp, struct vfssw *vswp)
618 {
619 	int		fstype = 0;	/* Index into vfssw[] */
620 	vopstats_t	*vsp = NULL;
621 
622 	if (vfsp == NULL || (vfsp->vfs_flag & VFS_STATS) == 0 ||
623 	    !vopstats_enabled)
624 		return (NULL);
625 	/*
626 	 * Set up the fstype.  We go to so much trouble because all versions
627 	 * of NFS use the same fstype in their vfs even though they have
628 	 * distinct entries in the vfssw[] table.
629 	 * NOTE: A special vfs (e.g., EIO_vfs) may not have an entry.
630 	 */
631 	if (vswp) {
632 		fstype = vswp - vfssw;	/* Gets us the index */
633 	} else {
634 		fstype = vfsp->vfs_fstype;
635 	}
636 
637 	/*
638 	 * Point to the per-fstype vopstats. The only valid values are
639 	 * non-zero positive values less than the number of vfssw[] table
640 	 * entries.
641 	 */
642 	if (fstype > 0 && fstype < nfstype) {
643 		vsp = vopstats_fstype[fstype];
644 	}
645 
646 	return (vsp);
647 }
648 
649 /*
650  * Generate a kstat name, create the kstat structure, and allocate a
651  * vsk_anchor_t to hold it together.  Return the pointer to the vsk_anchor_t
652  * to the caller.  This must only be called from a mount.
653  */
654 vsk_anchor_t *
655 get_vskstat_anchor(vfs_t *vfsp)
656 {
657 	char		kstatstr[KSTAT_STRLEN]; /* kstat name for vopstats */
658 	statvfs64_t	statvfsbuf;		/* Needed to find f_fsid */
659 	vsk_anchor_t	*vskp = NULL;		/* vfs <--> kstat anchor */
660 	kstat_t		*ksp;			/* Ptr to new kstat */
661 	avl_index_t	where;			/* Location in the AVL tree */
662 
663 	if (vfsp == NULL || vfsp->vfs_implp == NULL ||
664 	    (vfsp->vfs_flag & VFS_STATS) == 0 || !vopstats_enabled)
665 		return (NULL);
666 
667 	/* Need to get the fsid to build a kstat name */
668 	if (VFS_STATVFS(vfsp, &statvfsbuf) == 0) {
669 		/* Create a name for our kstats based on fsid */
670 		(void) snprintf(kstatstr, KSTAT_STRLEN, "%s%lx",
671 		    VOPSTATS_STR, statvfsbuf.f_fsid);
672 
673 		/* Allocate and initialize the vsk_anchor_t */
674 		vskp = kmem_cache_alloc(vsk_anchor_cache, KM_SLEEP);
675 		bzero(vskp, sizeof (*vskp));
676 		vskp->vsk_fsid = statvfsbuf.f_fsid;
677 
678 		mutex_enter(&vskstat_tree_lock);
679 		if (avl_find(&vskstat_tree, vskp, &where) == NULL) {
680 			avl_insert(&vskstat_tree, vskp, where);
681 			mutex_exit(&vskstat_tree_lock);
682 
683 			/*
684 			 * Now that we've got the anchor in the AVL
685 			 * tree, we can create the kstat.
686 			 */
687 			ksp = new_vskstat(kstatstr, &vfsp->vfs_vopstats);
688 			if (ksp) {
689 				vskp->vsk_ksp = ksp;
690 			}
691 		} else {
692 			/* Oops, found one! Release memory and lock. */
693 			mutex_exit(&vskstat_tree_lock);
694 			kmem_cache_free(vsk_anchor_cache, vskp);
695 			vskp = NULL;
696 		}
697 	}
698 	return (vskp);
699 }
700 
701 /*
702  * We're in the process of tearing down the vfs and need to cleanup
703  * the data structures associated with the vopstats. Must only be called
704  * from dounmount().
705  */
706 void
707 teardown_vopstats(vfs_t *vfsp)
708 {
709 	vsk_anchor_t	*vskap;
710 	avl_index_t	where;
711 
712 	if (vfsp == NULL || vfsp->vfs_implp == NULL ||
713 	    (vfsp->vfs_flag & VFS_STATS) == 0 || !vopstats_enabled)
714 		return;
715 
716 	/* This is a safe check since VFS_STATS must be set (see above) */
717 	if ((vskap = vfsp->vfs_vskap) == NULL)
718 		return;
719 
720 	/* Whack the pointer right away */
721 	vfsp->vfs_vskap = NULL;
722 
723 	/* Lock the tree, remove the node, and delete the kstat */
724 	mutex_enter(&vskstat_tree_lock);
725 	if (avl_find(&vskstat_tree, vskap, &where)) {
726 		avl_remove(&vskstat_tree, vskap);
727 	}
728 
729 	if (vskap->vsk_ksp) {
730 		kstat_delete(vskap->vsk_ksp);
731 	}
732 	mutex_exit(&vskstat_tree_lock);
733 
734 	kmem_cache_free(vsk_anchor_cache, vskap);
735 }
736 
737 /*
738  * Read or write a vnode.  Called from kernel code.
739  */
740 int
741 vn_rdwr(
742 	enum uio_rw rw,
743 	struct vnode *vp,
744 	caddr_t base,
745 	ssize_t len,
746 	offset_t offset,
747 	enum uio_seg seg,
748 	int ioflag,
749 	rlim64_t ulimit,	/* meaningful only if rw is UIO_WRITE */
750 	cred_t *cr,
751 	ssize_t *residp)
752 {
753 	struct uio uio;
754 	struct iovec iov;
755 	int error;
756 	int in_crit = 0;
757 
758 	if (rw == UIO_WRITE && ISROFILE(vp))
759 		return (EROFS);
760 
761 	if (len < 0)
762 		return (EIO);
763 
764 	VOPXID_MAP_CR(vp, cr);
765 
766 	iov.iov_base = base;
767 	iov.iov_len = len;
768 	uio.uio_iov = &iov;
769 	uio.uio_iovcnt = 1;
770 	uio.uio_loffset = offset;
771 	uio.uio_segflg = (short)seg;
772 	uio.uio_resid = len;
773 	uio.uio_llimit = ulimit;
774 
775 	/*
776 	 * We have to enter the critical region before calling VOP_RWLOCK
777 	 * to avoid a deadlock with ufs.
778 	 */
779 	if (nbl_need_check(vp)) {
780 		int svmand;
781 
782 		nbl_start_crit(vp, RW_READER);
783 		in_crit = 1;
784 		error = nbl_svmand(vp, cr, &svmand);
785 		if (error != 0)
786 			goto done;
787 		if (nbl_conflict(vp, rw == UIO_WRITE ? NBL_WRITE : NBL_READ,
788 		    uio.uio_offset, uio.uio_resid, svmand, NULL)) {
789 			error = EACCES;
790 			goto done;
791 		}
792 	}
793 
794 	(void) VOP_RWLOCK(vp,
795 	    rw == UIO_WRITE ? V_WRITELOCK_TRUE : V_WRITELOCK_FALSE, NULL);
796 	if (rw == UIO_WRITE) {
797 		uio.uio_fmode = FWRITE;
798 		uio.uio_extflg = UIO_COPY_DEFAULT;
799 		error = VOP_WRITE(vp, &uio, ioflag, cr, NULL);
800 	} else {
801 		uio.uio_fmode = FREAD;
802 		uio.uio_extflg = UIO_COPY_CACHED;
803 		error = VOP_READ(vp, &uio, ioflag, cr, NULL);
804 	}
805 	VOP_RWUNLOCK(vp,
806 	    rw == UIO_WRITE ? V_WRITELOCK_TRUE : V_WRITELOCK_FALSE, NULL);
807 	if (residp)
808 		*residp = uio.uio_resid;
809 	else if (uio.uio_resid)
810 		error = EIO;
811 
812 done:
813 	if (in_crit)
814 		nbl_end_crit(vp);
815 	return (error);
816 }
817 
818 /*
819  * Release a vnode.  Call VOP_INACTIVE on last reference or
820  * decrement reference count.
821  *
822  * To avoid race conditions, the v_count is left at 1 for
823  * the call to VOP_INACTIVE. This prevents another thread
824  * from reclaiming and releasing the vnode *before* the
825  * VOP_INACTIVE routine has a chance to destroy the vnode.
826  * We can't have more than 1 thread calling VOP_INACTIVE
827  * on a vnode.
828  */
829 void
830 vn_rele(vnode_t *vp)
831 {
832 	VERIFY(vp->v_count > 0);
833 	mutex_enter(&vp->v_lock);
834 	if (vp->v_count == 1) {
835 		mutex_exit(&vp->v_lock);
836 		VOP_INACTIVE(vp, CRED(), NULL);
837 		return;
838 	}
839 	vp->v_count--;
840 	mutex_exit(&vp->v_lock);
841 }
842 
843 /*
844  * Release a vnode referenced by the DNLC. Multiple DNLC references are treated
845  * as a single reference, so v_count is not decremented until the last DNLC hold
846  * is released. This makes it possible to distinguish vnodes that are referenced
847  * only by the DNLC.
848  */
849 void
850 vn_rele_dnlc(vnode_t *vp)
851 {
852 	VERIFY((vp->v_count > 0) && (vp->v_count_dnlc > 0));
853 	mutex_enter(&vp->v_lock);
854 	if (--vp->v_count_dnlc == 0) {
855 		if (vp->v_count == 1) {
856 			mutex_exit(&vp->v_lock);
857 			VOP_INACTIVE(vp, CRED(), NULL);
858 			return;
859 		}
860 		vp->v_count--;
861 	}
862 	mutex_exit(&vp->v_lock);
863 }
864 
865 /*
866  * Like vn_rele() except that it clears v_stream under v_lock.
867  * This is used by sockfs when it dismantels the association between
868  * the sockfs node and the vnode in the underlaying file system.
869  * v_lock has to be held to prevent a thread coming through the lookupname
870  * path from accessing a stream head that is going away.
871  */
872 void
873 vn_rele_stream(vnode_t *vp)
874 {
875 	VERIFY(vp->v_count > 0);
876 	mutex_enter(&vp->v_lock);
877 	vp->v_stream = NULL;
878 	if (vp->v_count == 1) {
879 		mutex_exit(&vp->v_lock);
880 		VOP_INACTIVE(vp, CRED(), NULL);
881 		return;
882 	}
883 	vp->v_count--;
884 	mutex_exit(&vp->v_lock);
885 }
886 
887 static void
888 vn_rele_inactive(vnode_t *vp)
889 {
890 	VOP_INACTIVE(vp, CRED(), NULL);
891 }
892 
893 /*
894  * Like vn_rele() except if we are going to call VOP_INACTIVE() then do it
895  * asynchronously using a taskq. This can avoid deadlocks caused by re-entering
896  * the file system as a result of releasing the vnode. Note, file systems
897  * already have to handle the race where the vnode is incremented before the
898  * inactive routine is called and does its locking.
899  *
900  * Warning: Excessive use of this routine can lead to performance problems.
901  * This is because taskqs throttle back allocation if too many are created.
902  */
903 void
904 vn_rele_async(vnode_t *vp, taskq_t *taskq)
905 {
906 	VERIFY(vp->v_count > 0);
907 	mutex_enter(&vp->v_lock);
908 	if (vp->v_count == 1) {
909 		mutex_exit(&vp->v_lock);
910 		VERIFY(taskq_dispatch(taskq, (task_func_t *)vn_rele_inactive,
911 		    vp, TQ_SLEEP) != NULL);
912 		return;
913 	}
914 	vp->v_count--;
915 	mutex_exit(&vp->v_lock);
916 }
917 
918 int
919 vn_open(
920 	char *pnamep,
921 	enum uio_seg seg,
922 	int filemode,
923 	int createmode,
924 	struct vnode **vpp,
925 	enum create crwhy,
926 	mode_t umask)
927 {
928 	return (vn_openat(pnamep, seg, filemode, createmode, vpp, crwhy,
929 	    umask, NULL, -1));
930 }
931 
932 
933 /*
934  * Open/create a vnode.
935  * This may be callable by the kernel, the only known use
936  * of user context being that the current user credentials
937  * are used for permissions.  crwhy is defined iff filemode & FCREAT.
938  */
939 int
940 vn_openat(
941 	char *pnamep,
942 	enum uio_seg seg,
943 	int filemode,
944 	int createmode,
945 	struct vnode **vpp,
946 	enum create crwhy,
947 	mode_t umask,
948 	struct vnode *startvp,
949 	int fd)
950 {
951 	struct vnode *vp;
952 	int mode;
953 	int accessflags;
954 	int error;
955 	int in_crit = 0;
956 	int open_done = 0;
957 	int shrlock_done = 0;
958 	struct vattr vattr;
959 	enum symfollow follow;
960 	int estale_retry = 0;
961 	struct shrlock shr;
962 	struct shr_locowner shr_own;
963 	boolean_t create;
964 
965 	mode = 0;
966 	accessflags = 0;
967 	if (filemode & FREAD)
968 		mode |= VREAD;
969 	if (filemode & (FWRITE|FTRUNC))
970 		mode |= VWRITE;
971 	if (filemode & (FSEARCH|FEXEC|FXATTRDIROPEN))
972 		mode |= VEXEC;
973 
974 	/* symlink interpretation */
975 	if (filemode & FNOFOLLOW)
976 		follow = NO_FOLLOW;
977 	else
978 		follow = FOLLOW;
979 
980 	if (filemode & FAPPEND)
981 		accessflags |= V_APPEND;
982 
983 	/*
984 	 * We need to handle the case of FCREAT | FDIRECTORY and the case of
985 	 * FEXCL. If all three are specified, then we always fail because we
986 	 * cannot create a directory through this interface and FEXCL says we
987 	 * need to fail the request if we can't create it. If, however, only
988 	 * FCREAT | FDIRECTORY are specified, then we can treat this as the case
989 	 * of opening a file that already exists. If it exists, we can do
990 	 * something and if not, we fail. Effectively FCREAT | FDIRECTORY is
991 	 * treated as FDIRECTORY.
992 	 */
993 	if ((filemode & (FCREAT | FDIRECTORY | FEXCL)) ==
994 	    (FCREAT | FDIRECTORY | FEXCL)) {
995 		return (EINVAL);
996 	}
997 
998 	if ((filemode & (FCREAT | FDIRECTORY)) == (FCREAT | FDIRECTORY)) {
999 		create = B_FALSE;
1000 	} else if ((filemode & FCREAT) != 0) {
1001 		create = B_TRUE;
1002 	} else {
1003 		create = B_FALSE;
1004 	}
1005 
1006 top:
1007 	if (create) {
1008 		enum vcexcl excl;
1009 
1010 		/*
1011 		 * Wish to create a file.
1012 		 */
1013 		vattr.va_type = VREG;
1014 		vattr.va_mode = createmode;
1015 		vattr.va_mask = AT_TYPE|AT_MODE;
1016 		if (filemode & FTRUNC) {
1017 			vattr.va_size = 0;
1018 			vattr.va_mask |= AT_SIZE;
1019 		}
1020 		if (filemode & FEXCL)
1021 			excl = EXCL;
1022 		else
1023 			excl = NONEXCL;
1024 
1025 		if (error =
1026 		    vn_createat(pnamep, seg, &vattr, excl, mode, &vp, crwhy,
1027 		    (filemode & ~(FTRUNC|FEXCL)), umask, startvp))
1028 			return (error);
1029 	} else {
1030 		/*
1031 		 * Wish to open a file.  Just look it up.
1032 		 */
1033 		if (error = lookupnameat(pnamep, seg, follow,
1034 		    NULLVPP, &vp, startvp)) {
1035 			if ((error == ESTALE) &&
1036 			    fs_need_estale_retry(estale_retry++))
1037 				goto top;
1038 			return (error);
1039 		}
1040 
1041 		/*
1042 		 * Get the attributes to check whether file is large.
1043 		 * We do this only if the FOFFMAX flag is not set and
1044 		 * only for regular files.
1045 		 */
1046 
1047 		if (!(filemode & FOFFMAX) && (vp->v_type == VREG)) {
1048 			vattr.va_mask = AT_SIZE;
1049 			if ((error = VOP_GETATTR(vp, &vattr, 0,
1050 			    CRED(), NULL))) {
1051 				goto out;
1052 			}
1053 			if (vattr.va_size > (u_offset_t)MAXOFF32_T) {
1054 				/*
1055 				 * Large File API - regular open fails
1056 				 * if FOFFMAX flag is set in file mode
1057 				 */
1058 				error = EOVERFLOW;
1059 				goto out;
1060 			}
1061 		}
1062 		/*
1063 		 * Can't write directories, active texts, or
1064 		 * read-only filesystems.  Can't truncate files
1065 		 * on which mandatory locking is in effect.
1066 		 */
1067 		if (filemode & (FWRITE|FTRUNC)) {
1068 			/*
1069 			 * Allow writable directory if VDIROPEN flag is set.
1070 			 */
1071 			if (vp->v_type == VDIR && !(vp->v_flag & VDIROPEN)) {
1072 				error = EISDIR;
1073 				goto out;
1074 			}
1075 			if (ISROFILE(vp)) {
1076 				error = EROFS;
1077 				goto out;
1078 			}
1079 			/*
1080 			 * Can't truncate files on which
1081 			 * sysv mandatory locking is in effect.
1082 			 */
1083 			if (filemode & FTRUNC) {
1084 				vnode_t *rvp;
1085 
1086 				if (VOP_REALVP(vp, &rvp, NULL) != 0)
1087 					rvp = vp;
1088 				if (rvp->v_filocks != NULL) {
1089 					vattr.va_mask = AT_MODE;
1090 					if ((error = VOP_GETATTR(vp,
1091 					    &vattr, 0, CRED(), NULL)) == 0 &&
1092 					    MANDLOCK(vp, vattr.va_mode))
1093 						error = EAGAIN;
1094 				}
1095 			}
1096 			if (error)
1097 				goto out;
1098 		}
1099 		/*
1100 		 * Check permissions.
1101 		 */
1102 		if (error = VOP_ACCESS(vp, mode, accessflags, CRED(), NULL))
1103 			goto out;
1104 
1105 		/*
1106 		 * Require FSEARCH and FDIRECTORY to return a directory. Require
1107 		 * FEXEC to return a regular file.
1108 		 */
1109 		if ((filemode & (FSEARCH|FDIRECTORY)) != 0 &&
1110 		    vp->v_type != VDIR) {
1111 			error = ENOTDIR;
1112 			goto out;
1113 		}
1114 		if ((filemode & FEXEC) && vp->v_type != VREG) {
1115 			error = ENOEXEC;	/* XXX: error code? */
1116 			goto out;
1117 		}
1118 	}
1119 
1120 	/*
1121 	 * Do remaining checks for FNOFOLLOW and FNOLINKS.
1122 	 */
1123 	if ((filemode & FNOFOLLOW) && vp->v_type == VLNK) {
1124 		error = ELOOP;
1125 		goto out;
1126 	}
1127 	if (filemode & FNOLINKS) {
1128 		vattr.va_mask = AT_NLINK;
1129 		if ((error = VOP_GETATTR(vp, &vattr, 0, CRED(), NULL))) {
1130 			goto out;
1131 		}
1132 		if (vattr.va_nlink != 1) {
1133 			error = EMLINK;
1134 			goto out;
1135 		}
1136 	}
1137 
1138 	/*
1139 	 * Opening a socket corresponding to the AF_UNIX pathname
1140 	 * in the filesystem name space is not supported.
1141 	 * However, VSOCK nodes in namefs are supported in order
1142 	 * to make fattach work for sockets.
1143 	 *
1144 	 * XXX This uses VOP_REALVP to distinguish between
1145 	 * an unopened namefs node (where VOP_REALVP returns a
1146 	 * different VSOCK vnode) and a VSOCK created by vn_create
1147 	 * in some file system (where VOP_REALVP would never return
1148 	 * a different vnode).
1149 	 */
1150 	if (vp->v_type == VSOCK) {
1151 		struct vnode *nvp;
1152 
1153 		error = VOP_REALVP(vp, &nvp, NULL);
1154 		if (error != 0 || nvp == NULL || nvp == vp ||
1155 		    nvp->v_type != VSOCK) {
1156 			error = EOPNOTSUPP;
1157 			goto out;
1158 		}
1159 	}
1160 
1161 	if ((vp->v_type == VREG) && nbl_need_check(vp)) {
1162 		/* get share reservation */
1163 		shr.s_access = 0;
1164 		if (filemode & FWRITE)
1165 			shr.s_access |= F_WRACC;
1166 		if (filemode & FREAD)
1167 			shr.s_access |= F_RDACC;
1168 		shr.s_deny = 0;
1169 		shr.s_sysid = 0;
1170 		shr.s_pid = ttoproc(curthread)->p_pid;
1171 		shr_own.sl_pid = shr.s_pid;
1172 		shr_own.sl_id = fd;
1173 		shr.s_own_len = sizeof (shr_own);
1174 		shr.s_owner = (caddr_t)&shr_own;
1175 		error = VOP_SHRLOCK(vp, F_SHARE_NBMAND, &shr, filemode, CRED(),
1176 		    NULL);
1177 		if (error)
1178 			goto out;
1179 		shrlock_done = 1;
1180 
1181 		/* nbmand conflict check if truncating file */
1182 		if ((filemode & FTRUNC) && !(filemode & FCREAT)) {
1183 			nbl_start_crit(vp, RW_READER);
1184 			in_crit = 1;
1185 
1186 			vattr.va_mask = AT_SIZE;
1187 			if (error = VOP_GETATTR(vp, &vattr, 0, CRED(), NULL))
1188 				goto out;
1189 			if (nbl_conflict(vp, NBL_WRITE, 0, vattr.va_size, 0,
1190 			    NULL)) {
1191 				error = EACCES;
1192 				goto out;
1193 			}
1194 		}
1195 	}
1196 
1197 	/*
1198 	 * Do opening protocol.
1199 	 */
1200 	error = VOP_OPEN(&vp, filemode, CRED(), NULL);
1201 	if (error)
1202 		goto out;
1203 	open_done = 1;
1204 
1205 	/*
1206 	 * Truncate if required.
1207 	 */
1208 	if ((filemode & FTRUNC) && !(filemode & FCREAT)) {
1209 		vattr.va_size = 0;
1210 		vattr.va_mask = AT_SIZE;
1211 		if ((error = VOP_SETATTR(vp, &vattr, 0, CRED(), NULL)) != 0)
1212 			goto out;
1213 	}
1214 out:
1215 	ASSERT(vp->v_count > 0);
1216 
1217 	if (in_crit) {
1218 		nbl_end_crit(vp);
1219 		in_crit = 0;
1220 	}
1221 	if (error) {
1222 		if (open_done) {
1223 			(void) VOP_CLOSE(vp, filemode, 1, (offset_t)0, CRED(),
1224 			    NULL);
1225 			open_done = 0;
1226 			shrlock_done = 0;
1227 		}
1228 		if (shrlock_done) {
1229 			(void) VOP_SHRLOCK(vp, F_UNSHARE, &shr, 0, CRED(),
1230 			    NULL);
1231 			shrlock_done = 0;
1232 		}
1233 
1234 		/*
1235 		 * The following clause was added to handle a problem
1236 		 * with NFS consistency.  It is possible that a lookup
1237 		 * of the file to be opened succeeded, but the file
1238 		 * itself doesn't actually exist on the server.  This
1239 		 * is chiefly due to the DNLC containing an entry for
1240 		 * the file which has been removed on the server.  In
1241 		 * this case, we just start over.  If there was some
1242 		 * other cause for the ESTALE error, then the lookup
1243 		 * of the file will fail and the error will be returned
1244 		 * above instead of looping around from here.
1245 		 */
1246 		VN_RELE(vp);
1247 		if ((error == ESTALE) && fs_need_estale_retry(estale_retry++))
1248 			goto top;
1249 	} else
1250 		*vpp = vp;
1251 	return (error);
1252 }
1253 
1254 /*
1255  * The following two accessor functions are for the NFSv4 server.  Since there
1256  * is no VOP_OPEN_UP/DOWNGRADE we need a way for the NFS server to keep the
1257  * vnode open counts correct when a client "upgrades" an open or does an
1258  * open_downgrade.  In NFS, an upgrade or downgrade can not only change the
1259  * open mode (add or subtract read or write), but also change the share/deny
1260  * modes.  However, share reservations are not integrated with OPEN, yet, so
1261  * we need to handle each separately.  These functions are cleaner than having
1262  * the NFS server manipulate the counts directly, however, nobody else should
1263  * use these functions.
1264  */
1265 void
1266 vn_open_upgrade(
1267 	vnode_t *vp,
1268 	int filemode)
1269 {
1270 	ASSERT(vp->v_type == VREG);
1271 
1272 	if (filemode & FREAD)
1273 		atomic_inc_32(&vp->v_rdcnt);
1274 	if (filemode & FWRITE)
1275 		atomic_inc_32(&vp->v_wrcnt);
1276 
1277 }
1278 
1279 void
1280 vn_open_downgrade(
1281 	vnode_t *vp,
1282 	int filemode)
1283 {
1284 	ASSERT(vp->v_type == VREG);
1285 
1286 	if (filemode & FREAD) {
1287 		ASSERT(vp->v_rdcnt > 0);
1288 		atomic_dec_32(&vp->v_rdcnt);
1289 	}
1290 	if (filemode & FWRITE) {
1291 		ASSERT(vp->v_wrcnt > 0);
1292 		atomic_dec_32(&vp->v_wrcnt);
1293 	}
1294 
1295 }
1296 
1297 int
1298 vn_create(
1299 	char *pnamep,
1300 	enum uio_seg seg,
1301 	struct vattr *vap,
1302 	enum vcexcl excl,
1303 	int mode,
1304 	struct vnode **vpp,
1305 	enum create why,
1306 	int flag,
1307 	mode_t umask)
1308 {
1309 	return (vn_createat(pnamep, seg, vap, excl, mode, vpp, why, flag,
1310 	    umask, NULL));
1311 }
1312 
1313 /*
1314  * Create a vnode (makenode).
1315  */
1316 int
1317 vn_createat(
1318 	char *pnamep,
1319 	enum uio_seg seg,
1320 	struct vattr *vap,
1321 	enum vcexcl excl,
1322 	int mode,
1323 	struct vnode **vpp,
1324 	enum create why,
1325 	int flag,
1326 	mode_t umask,
1327 	struct vnode *startvp)
1328 {
1329 	struct vnode *dvp;	/* ptr to parent dir vnode */
1330 	struct vnode *vp = NULL;
1331 	struct pathname pn;
1332 	int error;
1333 	int in_crit = 0;
1334 	struct vattr vattr;
1335 	enum symfollow follow;
1336 	int estale_retry = 0;
1337 	uint32_t auditing = AU_AUDITING();
1338 
1339 	ASSERT((vap->va_mask & (AT_TYPE|AT_MODE)) == (AT_TYPE|AT_MODE));
1340 
1341 	/* symlink interpretation */
1342 	if ((flag & FNOFOLLOW) || excl == EXCL)
1343 		follow = NO_FOLLOW;
1344 	else
1345 		follow = FOLLOW;
1346 	flag &= ~(FNOFOLLOW|FNOLINKS);
1347 
1348 top:
1349 	/*
1350 	 * Lookup directory.
1351 	 * If new object is a file, call lower level to create it.
1352 	 * Note that it is up to the lower level to enforce exclusive
1353 	 * creation, if the file is already there.
1354 	 * This allows the lower level to do whatever
1355 	 * locking or protocol that is needed to prevent races.
1356 	 * If the new object is directory call lower level to make
1357 	 * the new directory, with "." and "..".
1358 	 */
1359 	if (error = pn_get(pnamep, seg, &pn))
1360 		return (error);
1361 	if (auditing)
1362 		audit_vncreate_start();
1363 	dvp = NULL;
1364 	*vpp = NULL;
1365 	/*
1366 	 * lookup will find the parent directory for the vnode.
1367 	 * When it is done the pn holds the name of the entry
1368 	 * in the directory.
1369 	 * If this is a non-exclusive create we also find the node itself.
1370 	 */
1371 	error = lookuppnat(&pn, NULL, follow, &dvp,
1372 	    (excl == EXCL) ? NULLVPP : vpp, startvp);
1373 	if (error) {
1374 		pn_free(&pn);
1375 		if ((error == ESTALE) && fs_need_estale_retry(estale_retry++))
1376 			goto top;
1377 		if (why == CRMKDIR && error == EINVAL)
1378 			error = EEXIST;		/* SVID */
1379 		return (error);
1380 	}
1381 
1382 	if (why != CRMKNOD)
1383 		vap->va_mode &= ~VSVTX;
1384 
1385 	/*
1386 	 * If default ACLs are defined for the directory don't apply the
1387 	 * umask if umask is passed.
1388 	 */
1389 
1390 	if (umask) {
1391 
1392 		vsecattr_t vsec;
1393 
1394 		vsec.vsa_aclcnt = 0;
1395 		vsec.vsa_aclentp = NULL;
1396 		vsec.vsa_dfaclcnt = 0;
1397 		vsec.vsa_dfaclentp = NULL;
1398 		vsec.vsa_mask = VSA_DFACLCNT;
1399 		error = VOP_GETSECATTR(dvp, &vsec, 0, CRED(), NULL);
1400 		/*
1401 		 * If error is ENOSYS then treat it as no error
1402 		 * Don't want to force all file systems to support
1403 		 * aclent_t style of ACL's.
1404 		 */
1405 		if (error == ENOSYS)
1406 			error = 0;
1407 		if (error) {
1408 			if (*vpp != NULL)
1409 				VN_RELE(*vpp);
1410 			goto out;
1411 		} else {
1412 			/*
1413 			 * Apply the umask if no default ACLs.
1414 			 */
1415 			if (vsec.vsa_dfaclcnt == 0)
1416 				vap->va_mode &= ~umask;
1417 
1418 			/*
1419 			 * VOP_GETSECATTR() may have allocated memory for
1420 			 * ACLs we didn't request, so double-check and
1421 			 * free it if necessary.
1422 			 */
1423 			if (vsec.vsa_aclcnt && vsec.vsa_aclentp != NULL)
1424 				kmem_free((caddr_t)vsec.vsa_aclentp,
1425 				    vsec.vsa_aclcnt * sizeof (aclent_t));
1426 			if (vsec.vsa_dfaclcnt && vsec.vsa_dfaclentp != NULL)
1427 				kmem_free((caddr_t)vsec.vsa_dfaclentp,
1428 				    vsec.vsa_dfaclcnt * sizeof (aclent_t));
1429 		}
1430 	}
1431 
1432 	/*
1433 	 * In general we want to generate EROFS if the file system is
1434 	 * readonly.  However, POSIX (IEEE Std. 1003.1) section 5.3.1
1435 	 * documents the open system call, and it says that O_CREAT has no
1436 	 * effect if the file already exists.  Bug 1119649 states
1437 	 * that open(path, O_CREAT, ...) fails when attempting to open an
1438 	 * existing file on a read only file system.  Thus, the first part
1439 	 * of the following if statement has 3 checks:
1440 	 *	if the file exists &&
1441 	 *		it is being open with write access &&
1442 	 *		the file system is read only
1443 	 *	then generate EROFS
1444 	 */
1445 	if ((*vpp != NULL && (mode & VWRITE) && ISROFILE(*vpp)) ||
1446 	    (*vpp == NULL && dvp->v_vfsp->vfs_flag & VFS_RDONLY)) {
1447 		if (*vpp)
1448 			VN_RELE(*vpp);
1449 		error = EROFS;
1450 	} else if (excl == NONEXCL && *vpp != NULL) {
1451 		vnode_t *rvp;
1452 
1453 		/*
1454 		 * File already exists.  If a mandatory lock has been
1455 		 * applied, return error.
1456 		 */
1457 		vp = *vpp;
1458 		if (VOP_REALVP(vp, &rvp, NULL) != 0)
1459 			rvp = vp;
1460 		if ((vap->va_mask & AT_SIZE) && nbl_need_check(vp)) {
1461 			nbl_start_crit(vp, RW_READER);
1462 			in_crit = 1;
1463 		}
1464 		if (rvp->v_filocks != NULL || rvp->v_shrlocks != NULL) {
1465 			vattr.va_mask = AT_MODE|AT_SIZE;
1466 			if (error = VOP_GETATTR(vp, &vattr, 0, CRED(), NULL)) {
1467 				goto out;
1468 			}
1469 			if (MANDLOCK(vp, vattr.va_mode)) {
1470 				error = EAGAIN;
1471 				goto out;
1472 			}
1473 			/*
1474 			 * File cannot be truncated if non-blocking mandatory
1475 			 * locks are currently on the file.
1476 			 */
1477 			if ((vap->va_mask & AT_SIZE) && in_crit) {
1478 				u_offset_t offset;
1479 				ssize_t length;
1480 
1481 				offset = vap->va_size > vattr.va_size ?
1482 				    vattr.va_size : vap->va_size;
1483 				length = vap->va_size > vattr.va_size ?
1484 				    vap->va_size - vattr.va_size :
1485 				    vattr.va_size - vap->va_size;
1486 				if (nbl_conflict(vp, NBL_WRITE, offset,
1487 				    length, 0, NULL)) {
1488 					error = EACCES;
1489 					goto out;
1490 				}
1491 			}
1492 		}
1493 
1494 		/*
1495 		 * If the file is the root of a VFS, we've crossed a
1496 		 * mount point and the "containing" directory that we
1497 		 * acquired above (dvp) is irrelevant because it's in
1498 		 * a different file system.  We apply VOP_CREATE to the
1499 		 * target itself instead of to the containing directory
1500 		 * and supply a null path name to indicate (conventionally)
1501 		 * the node itself as the "component" of interest.
1502 		 *
1503 		 * The intercession of the file system is necessary to
1504 		 * ensure that the appropriate permission checks are
1505 		 * done.
1506 		 */
1507 		if (vp->v_flag & VROOT) {
1508 			ASSERT(why != CRMKDIR);
1509 			error = VOP_CREATE(vp, "", vap, excl, mode, vpp,
1510 			    CRED(), flag, NULL, NULL);
1511 			/*
1512 			 * If the create succeeded, it will have created
1513 			 * a new reference to the vnode.  Give up the
1514 			 * original reference.  The assertion should not
1515 			 * get triggered because NBMAND locks only apply to
1516 			 * VREG files.  And if in_crit is non-zero for some
1517 			 * reason, detect that here, rather than when we
1518 			 * deference a null vp.
1519 			 */
1520 			ASSERT(in_crit == 0);
1521 			VN_RELE(vp);
1522 			vp = NULL;
1523 			goto out;
1524 		}
1525 
1526 		/*
1527 		 * Large File API - non-large open (FOFFMAX flag not set)
1528 		 * of regular file fails if the file size exceeds MAXOFF32_T.
1529 		 */
1530 		if (why != CRMKDIR &&
1531 		    !(flag & FOFFMAX) &&
1532 		    (vp->v_type == VREG)) {
1533 			vattr.va_mask = AT_SIZE;
1534 			if ((error = VOP_GETATTR(vp, &vattr, 0,
1535 			    CRED(), NULL))) {
1536 				goto out;
1537 			}
1538 			if ((vattr.va_size > (u_offset_t)MAXOFF32_T)) {
1539 				error = EOVERFLOW;
1540 				goto out;
1541 			}
1542 		}
1543 	}
1544 
1545 	if (error == 0) {
1546 		/*
1547 		 * Call mkdir() if specified, otherwise create().
1548 		 */
1549 		int must_be_dir = pn_fixslash(&pn);	/* trailing '/'? */
1550 
1551 		if (why == CRMKDIR)
1552 			/*
1553 			 * N.B., if vn_createat() ever requests
1554 			 * case-insensitive behavior then it will need
1555 			 * to be passed to VOP_MKDIR().  VOP_CREATE()
1556 			 * will already get it via "flag"
1557 			 */
1558 			error = VOP_MKDIR(dvp, pn.pn_path, vap, vpp, CRED(),
1559 			    NULL, 0, NULL);
1560 		else if (!must_be_dir)
1561 			error = VOP_CREATE(dvp, pn.pn_path, vap,
1562 			    excl, mode, vpp, CRED(), flag, NULL, NULL);
1563 		else
1564 			error = ENOTDIR;
1565 	}
1566 
1567 out:
1568 
1569 	if (auditing)
1570 		audit_vncreate_finish(*vpp, error);
1571 	if (in_crit) {
1572 		nbl_end_crit(vp);
1573 		in_crit = 0;
1574 	}
1575 	if (vp != NULL) {
1576 		VN_RELE(vp);
1577 		vp = NULL;
1578 	}
1579 	pn_free(&pn);
1580 	VN_RELE(dvp);
1581 	/*
1582 	 * The following clause was added to handle a problem
1583 	 * with NFS consistency.  It is possible that a lookup
1584 	 * of the file to be created succeeded, but the file
1585 	 * itself doesn't actually exist on the server.  This
1586 	 * is chiefly due to the DNLC containing an entry for
1587 	 * the file which has been removed on the server.  In
1588 	 * this case, we just start over.  If there was some
1589 	 * other cause for the ESTALE error, then the lookup
1590 	 * of the file will fail and the error will be returned
1591 	 * above instead of looping around from here.
1592 	 */
1593 	if ((error == ESTALE) && fs_need_estale_retry(estale_retry++))
1594 		goto top;
1595 	return (error);
1596 }
1597 
1598 int
1599 vn_link(char *from, char *to, enum uio_seg seg)
1600 {
1601 	return (vn_linkat(NULL, from, NO_FOLLOW, NULL, to, seg));
1602 }
1603 
1604 int
1605 vn_linkat(vnode_t *fstartvp, char *from, enum symfollow follow,
1606     vnode_t *tstartvp, char *to, enum uio_seg seg)
1607 {
1608 	struct vnode *fvp;		/* from vnode ptr */
1609 	struct vnode *tdvp;		/* to directory vnode ptr */
1610 	struct pathname pn;
1611 	int error;
1612 	struct vattr vattr;
1613 	dev_t fsid;
1614 	int estale_retry = 0;
1615 	uint32_t auditing = AU_AUDITING();
1616 
1617 top:
1618 	fvp = tdvp = NULL;
1619 	if (error = pn_get(to, seg, &pn))
1620 		return (error);
1621 	if (auditing && fstartvp != NULL)
1622 		audit_setfsat_path(1);
1623 	if (error = lookupnameat(from, seg, follow, NULLVPP, &fvp, fstartvp))
1624 		goto out;
1625 	if (auditing && tstartvp != NULL)
1626 		audit_setfsat_path(3);
1627 	if (error = lookuppnat(&pn, NULL, NO_FOLLOW, &tdvp, NULLVPP, tstartvp))
1628 		goto out;
1629 	/*
1630 	 * Make sure both source vnode and target directory vnode are
1631 	 * in the same vfs and that it is writeable.
1632 	 */
1633 	vattr.va_mask = AT_FSID;
1634 	if (error = VOP_GETATTR(fvp, &vattr, 0, CRED(), NULL))
1635 		goto out;
1636 	fsid = vattr.va_fsid;
1637 	vattr.va_mask = AT_FSID;
1638 	if (error = VOP_GETATTR(tdvp, &vattr, 0, CRED(), NULL))
1639 		goto out;
1640 	if (fsid != vattr.va_fsid) {
1641 		error = EXDEV;
1642 		goto out;
1643 	}
1644 	if (tdvp->v_vfsp->vfs_flag & VFS_RDONLY) {
1645 		error = EROFS;
1646 		goto out;
1647 	}
1648 	/*
1649 	 * Do the link.
1650 	 */
1651 	(void) pn_fixslash(&pn);
1652 	error = VOP_LINK(tdvp, fvp, pn.pn_path, CRED(), NULL, 0);
1653 out:
1654 	pn_free(&pn);
1655 	if (fvp)
1656 		VN_RELE(fvp);
1657 	if (tdvp)
1658 		VN_RELE(tdvp);
1659 	if ((error == ESTALE) && fs_need_estale_retry(estale_retry++))
1660 		goto top;
1661 	return (error);
1662 }
1663 
1664 int
1665 vn_rename(char *from, char *to, enum uio_seg seg)
1666 {
1667 	return (vn_renameat(NULL, from, NULL, to, seg));
1668 }
1669 
1670 int
1671 vn_renameat(vnode_t *fdvp, char *fname, vnode_t *tdvp,
1672 		char *tname, enum uio_seg seg)
1673 {
1674 	int error;
1675 	struct vattr vattr;
1676 	struct pathname fpn;		/* from pathname */
1677 	struct pathname tpn;		/* to pathname */
1678 	dev_t fsid;
1679 	int in_crit_src, in_crit_targ;
1680 	vnode_t *fromvp, *fvp;
1681 	vnode_t *tovp, *targvp;
1682 	int estale_retry = 0;
1683 	uint32_t auditing = AU_AUDITING();
1684 
1685 top:
1686 	fvp = fromvp = tovp = targvp = NULL;
1687 	in_crit_src = in_crit_targ = 0;
1688 	/*
1689 	 * Get to and from pathnames.
1690 	 */
1691 	if (error = pn_get(fname, seg, &fpn))
1692 		return (error);
1693 	if (error = pn_get(tname, seg, &tpn)) {
1694 		pn_free(&fpn);
1695 		return (error);
1696 	}
1697 
1698 	/*
1699 	 * First we need to resolve the correct directories
1700 	 * The passed in directories may only be a starting point,
1701 	 * but we need the real directories the file(s) live in.
1702 	 * For example the fname may be something like usr/lib/sparc
1703 	 * and we were passed in the / directory, but we need to
1704 	 * use the lib directory for the rename.
1705 	 */
1706 
1707 	if (auditing && fdvp != NULL)
1708 		audit_setfsat_path(1);
1709 	/*
1710 	 * Lookup to and from directories.
1711 	 */
1712 	if (error = lookuppnat(&fpn, NULL, NO_FOLLOW, &fromvp, &fvp, fdvp)) {
1713 		goto out;
1714 	}
1715 
1716 	/*
1717 	 * Make sure there is an entry.
1718 	 */
1719 	if (fvp == NULL) {
1720 		error = ENOENT;
1721 		goto out;
1722 	}
1723 
1724 	if (auditing && tdvp != NULL)
1725 		audit_setfsat_path(3);
1726 	if (error = lookuppnat(&tpn, NULL, NO_FOLLOW, &tovp, &targvp, tdvp)) {
1727 		goto out;
1728 	}
1729 
1730 	/*
1731 	 * Make sure both the from vnode directory and the to directory
1732 	 * are in the same vfs and the to directory is writable.
1733 	 * We check fsid's, not vfs pointers, so loopback fs works.
1734 	 */
1735 	if (fromvp != tovp) {
1736 		vattr.va_mask = AT_FSID;
1737 		if (error = VOP_GETATTR(fromvp, &vattr, 0, CRED(), NULL))
1738 			goto out;
1739 		fsid = vattr.va_fsid;
1740 		vattr.va_mask = AT_FSID;
1741 		if (error = VOP_GETATTR(tovp, &vattr, 0, CRED(), NULL))
1742 			goto out;
1743 		if (fsid != vattr.va_fsid) {
1744 			error = EXDEV;
1745 			goto out;
1746 		}
1747 	}
1748 
1749 	if (tovp->v_vfsp->vfs_flag & VFS_RDONLY) {
1750 		error = EROFS;
1751 		goto out;
1752 	}
1753 
1754 	if (targvp && (fvp != targvp)) {
1755 		nbl_start_crit(targvp, RW_READER);
1756 		in_crit_targ = 1;
1757 		if (nbl_conflict(targvp, NBL_REMOVE, 0, 0, 0, NULL)) {
1758 			error = EACCES;
1759 			goto out;
1760 		}
1761 	}
1762 
1763 	if (nbl_need_check(fvp)) {
1764 		nbl_start_crit(fvp, RW_READER);
1765 		in_crit_src = 1;
1766 		if (nbl_conflict(fvp, NBL_RENAME, 0, 0, 0, NULL)) {
1767 			error = EACCES;
1768 			goto out;
1769 		}
1770 	}
1771 
1772 	/*
1773 	 * Do the rename.
1774 	 */
1775 	(void) pn_fixslash(&tpn);
1776 	error = VOP_RENAME(fromvp, fpn.pn_path, tovp, tpn.pn_path, CRED(),
1777 	    NULL, 0);
1778 
1779 out:
1780 	pn_free(&fpn);
1781 	pn_free(&tpn);
1782 	if (in_crit_src)
1783 		nbl_end_crit(fvp);
1784 	if (in_crit_targ)
1785 		nbl_end_crit(targvp);
1786 	if (fromvp)
1787 		VN_RELE(fromvp);
1788 	if (tovp)
1789 		VN_RELE(tovp);
1790 	if (targvp)
1791 		VN_RELE(targvp);
1792 	if (fvp)
1793 		VN_RELE(fvp);
1794 	if ((error == ESTALE) && fs_need_estale_retry(estale_retry++))
1795 		goto top;
1796 	return (error);
1797 }
1798 
1799 /*
1800  * Remove a file or directory.
1801  */
1802 int
1803 vn_remove(char *fnamep, enum uio_seg seg, enum rm dirflag)
1804 {
1805 	return (vn_removeat(NULL, fnamep, seg, dirflag));
1806 }
1807 
1808 int
1809 vn_removeat(vnode_t *startvp, char *fnamep, enum uio_seg seg, enum rm dirflag)
1810 {
1811 	struct vnode *vp;		/* entry vnode */
1812 	struct vnode *dvp;		/* ptr to parent dir vnode */
1813 	struct vnode *coveredvp;
1814 	struct pathname pn;		/* name of entry */
1815 	enum vtype vtype;
1816 	int error;
1817 	struct vfs *vfsp;
1818 	struct vfs *dvfsp;	/* ptr to parent dir vfs */
1819 	int in_crit = 0;
1820 	int estale_retry = 0;
1821 
1822 top:
1823 	if (error = pn_get(fnamep, seg, &pn))
1824 		return (error);
1825 	dvp = vp = NULL;
1826 	if (error = lookuppnat(&pn, NULL, NO_FOLLOW, &dvp, &vp, startvp)) {
1827 		pn_free(&pn);
1828 		if ((error == ESTALE) && fs_need_estale_retry(estale_retry++))
1829 			goto top;
1830 		return (error);
1831 	}
1832 
1833 	/*
1834 	 * Make sure there is an entry.
1835 	 */
1836 	if (vp == NULL) {
1837 		error = ENOENT;
1838 		goto out;
1839 	}
1840 
1841 	vfsp = vp->v_vfsp;
1842 	dvfsp = dvp->v_vfsp;
1843 
1844 	/*
1845 	 * If the named file is the root of a mounted filesystem, fail,
1846 	 * unless it's marked unlinkable.  In that case, unmount the
1847 	 * filesystem and proceed to unlink the covered vnode.  (If the
1848 	 * covered vnode is a directory, use rmdir instead of unlink,
1849 	 * to avoid file system corruption.)
1850 	 */
1851 	if (vp->v_flag & VROOT) {
1852 		if ((vfsp->vfs_flag & VFS_UNLINKABLE) == 0) {
1853 			error = EBUSY;
1854 			goto out;
1855 		}
1856 
1857 		/*
1858 		 * Namefs specific code starts here.
1859 		 */
1860 
1861 		if (dirflag == RMDIRECTORY) {
1862 			/*
1863 			 * User called rmdir(2) on a file that has
1864 			 * been namefs mounted on top of.  Since
1865 			 * namefs doesn't allow directories to
1866 			 * be mounted on other files we know
1867 			 * vp is not of type VDIR so fail to operation.
1868 			 */
1869 			error = ENOTDIR;
1870 			goto out;
1871 		}
1872 
1873 		/*
1874 		 * If VROOT is still set after grabbing vp->v_lock,
1875 		 * noone has finished nm_unmount so far and coveredvp
1876 		 * is valid.
1877 		 * If we manage to grab vn_vfswlock(coveredvp) before releasing
1878 		 * vp->v_lock, any race window is eliminated.
1879 		 */
1880 
1881 		mutex_enter(&vp->v_lock);
1882 		if ((vp->v_flag & VROOT) == 0) {
1883 			/* Someone beat us to the unmount */
1884 			mutex_exit(&vp->v_lock);
1885 			error = EBUSY;
1886 			goto out;
1887 		}
1888 		vfsp = vp->v_vfsp;
1889 		coveredvp = vfsp->vfs_vnodecovered;
1890 		ASSERT(coveredvp);
1891 		/*
1892 		 * Note: Implementation of vn_vfswlock shows that ordering of
1893 		 * v_lock / vn_vfswlock is not an issue here.
1894 		 */
1895 		error = vn_vfswlock(coveredvp);
1896 		mutex_exit(&vp->v_lock);
1897 
1898 		if (error)
1899 			goto out;
1900 
1901 		VN_HOLD(coveredvp);
1902 		VN_RELE(vp);
1903 		error = dounmount(vfsp, 0, CRED());
1904 
1905 		/*
1906 		 * Unmounted the namefs file system; now get
1907 		 * the object it was mounted over.
1908 		 */
1909 		vp = coveredvp;
1910 		/*
1911 		 * If namefs was mounted over a directory, then
1912 		 * we want to use rmdir() instead of unlink().
1913 		 */
1914 		if (vp->v_type == VDIR)
1915 			dirflag = RMDIRECTORY;
1916 
1917 		if (error)
1918 			goto out;
1919 	}
1920 
1921 	/*
1922 	 * Make sure filesystem is writeable.
1923 	 * We check the parent directory's vfs in case this is an lofs vnode.
1924 	 */
1925 	if (dvfsp && dvfsp->vfs_flag & VFS_RDONLY) {
1926 		error = EROFS;
1927 		goto out;
1928 	}
1929 
1930 	vtype = vp->v_type;
1931 
1932 	/*
1933 	 * If there is the possibility of an nbmand share reservation, make
1934 	 * sure it's okay to remove the file.  Keep a reference to the
1935 	 * vnode, so that we can exit the nbl critical region after
1936 	 * calling VOP_REMOVE.
1937 	 * If there is no possibility of an nbmand share reservation,
1938 	 * release the vnode reference now.  Filesystems like NFS may
1939 	 * behave differently if there is an extra reference, so get rid of
1940 	 * this one.  Fortunately, we can't have nbmand mounts on NFS
1941 	 * filesystems.
1942 	 */
1943 	if (nbl_need_check(vp)) {
1944 		nbl_start_crit(vp, RW_READER);
1945 		in_crit = 1;
1946 		if (nbl_conflict(vp, NBL_REMOVE, 0, 0, 0, NULL)) {
1947 			error = EACCES;
1948 			goto out;
1949 		}
1950 	} else {
1951 		VN_RELE(vp);
1952 		vp = NULL;
1953 	}
1954 
1955 	if (dirflag == RMDIRECTORY) {
1956 		/*
1957 		 * Caller is using rmdir(2), which can only be applied to
1958 		 * directories.
1959 		 */
1960 		if (vtype != VDIR) {
1961 			error = ENOTDIR;
1962 		} else {
1963 			vnode_t *cwd;
1964 			proc_t *pp = curproc;
1965 
1966 			mutex_enter(&pp->p_lock);
1967 			cwd = PTOU(pp)->u_cdir;
1968 			VN_HOLD(cwd);
1969 			mutex_exit(&pp->p_lock);
1970 			error = VOP_RMDIR(dvp, pn.pn_path, cwd, CRED(),
1971 			    NULL, 0);
1972 			VN_RELE(cwd);
1973 		}
1974 	} else {
1975 		/*
1976 		 * Unlink(2) can be applied to anything.
1977 		 */
1978 		error = VOP_REMOVE(dvp, pn.pn_path, CRED(), NULL, 0);
1979 	}
1980 
1981 out:
1982 	pn_free(&pn);
1983 	if (in_crit) {
1984 		nbl_end_crit(vp);
1985 		in_crit = 0;
1986 	}
1987 	if (vp != NULL)
1988 		VN_RELE(vp);
1989 	if (dvp != NULL)
1990 		VN_RELE(dvp);
1991 	if ((error == ESTALE) && fs_need_estale_retry(estale_retry++))
1992 		goto top;
1993 	return (error);
1994 }
1995 
1996 /*
1997  * Utility function to compare equality of vnodes.
1998  * Compare the underlying real vnodes, if there are underlying vnodes.
1999  * This is a more thorough comparison than the VN_CMP() macro provides.
2000  */
2001 int
2002 vn_compare(vnode_t *vp1, vnode_t *vp2)
2003 {
2004 	vnode_t *realvp;
2005 
2006 	if (vp1 != NULL && VOP_REALVP(vp1, &realvp, NULL) == 0)
2007 		vp1 = realvp;
2008 	if (vp2 != NULL && VOP_REALVP(vp2, &realvp, NULL) == 0)
2009 		vp2 = realvp;
2010 	return (VN_CMP(vp1, vp2));
2011 }
2012 
2013 /*
2014  * The number of locks to hash into.  This value must be a power
2015  * of 2 minus 1 and should probably also be prime.
2016  */
2017 #define	NUM_BUCKETS	1023
2018 
2019 struct  vn_vfslocks_bucket {
2020 	kmutex_t vb_lock;
2021 	vn_vfslocks_entry_t *vb_list;
2022 	char pad[64 - sizeof (kmutex_t) - sizeof (void *)];
2023 };
2024 
2025 /*
2026  * Total number of buckets will be NUM_BUCKETS + 1 .
2027  */
2028 
2029 #pragma	align	64(vn_vfslocks_buckets)
2030 static	struct vn_vfslocks_bucket	vn_vfslocks_buckets[NUM_BUCKETS + 1];
2031 
2032 #define	VN_VFSLOCKS_SHIFT	9
2033 
2034 #define	VN_VFSLOCKS_HASH(vfsvpptr)	\
2035 	((((intptr_t)(vfsvpptr)) >> VN_VFSLOCKS_SHIFT) & NUM_BUCKETS)
2036 
2037 /*
2038  * vn_vfslocks_getlock() uses an HASH scheme to generate
2039  * rwstlock using vfs/vnode pointer passed to it.
2040  *
2041  * vn_vfslocks_rele() releases a reference in the
2042  * HASH table which allows the entry allocated by
2043  * vn_vfslocks_getlock() to be freed at a later
2044  * stage when the refcount drops to zero.
2045  */
2046 
2047 vn_vfslocks_entry_t *
2048 vn_vfslocks_getlock(void *vfsvpptr)
2049 {
2050 	struct vn_vfslocks_bucket *bp;
2051 	vn_vfslocks_entry_t *vep;
2052 	vn_vfslocks_entry_t *tvep;
2053 
2054 	ASSERT(vfsvpptr != NULL);
2055 	bp = &vn_vfslocks_buckets[VN_VFSLOCKS_HASH(vfsvpptr)];
2056 
2057 	mutex_enter(&bp->vb_lock);
2058 	for (vep = bp->vb_list; vep != NULL; vep = vep->ve_next) {
2059 		if (vep->ve_vpvfs == vfsvpptr) {
2060 			vep->ve_refcnt++;
2061 			mutex_exit(&bp->vb_lock);
2062 			return (vep);
2063 		}
2064 	}
2065 	mutex_exit(&bp->vb_lock);
2066 	vep = kmem_alloc(sizeof (*vep), KM_SLEEP);
2067 	rwst_init(&vep->ve_lock, NULL, RW_DEFAULT, NULL);
2068 	vep->ve_vpvfs = (char *)vfsvpptr;
2069 	vep->ve_refcnt = 1;
2070 	mutex_enter(&bp->vb_lock);
2071 	for (tvep = bp->vb_list; tvep != NULL; tvep = tvep->ve_next) {
2072 		if (tvep->ve_vpvfs == vfsvpptr) {
2073 			tvep->ve_refcnt++;
2074 			mutex_exit(&bp->vb_lock);
2075 
2076 			/*
2077 			 * There is already an entry in the hash
2078 			 * destroy what we just allocated.
2079 			 */
2080 			rwst_destroy(&vep->ve_lock);
2081 			kmem_free(vep, sizeof (*vep));
2082 			return (tvep);
2083 		}
2084 	}
2085 	vep->ve_next = bp->vb_list;
2086 	bp->vb_list = vep;
2087 	mutex_exit(&bp->vb_lock);
2088 	return (vep);
2089 }
2090 
2091 void
2092 vn_vfslocks_rele(vn_vfslocks_entry_t *vepent)
2093 {
2094 	struct vn_vfslocks_bucket *bp;
2095 	vn_vfslocks_entry_t *vep;
2096 	vn_vfslocks_entry_t *pvep;
2097 
2098 	ASSERT(vepent != NULL);
2099 	ASSERT(vepent->ve_vpvfs != NULL);
2100 
2101 	bp = &vn_vfslocks_buckets[VN_VFSLOCKS_HASH(vepent->ve_vpvfs)];
2102 
2103 	mutex_enter(&bp->vb_lock);
2104 	vepent->ve_refcnt--;
2105 
2106 	if ((int32_t)vepent->ve_refcnt < 0)
2107 		cmn_err(CE_PANIC, "vn_vfslocks_rele: refcount negative");
2108 
2109 	if (vepent->ve_refcnt == 0) {
2110 		for (vep = bp->vb_list; vep != NULL; vep = vep->ve_next) {
2111 			if (vep->ve_vpvfs == vepent->ve_vpvfs) {
2112 				if (bp->vb_list == vep)
2113 					bp->vb_list = vep->ve_next;
2114 				else {
2115 					/* LINTED */
2116 					pvep->ve_next = vep->ve_next;
2117 				}
2118 				mutex_exit(&bp->vb_lock);
2119 				rwst_destroy(&vep->ve_lock);
2120 				kmem_free(vep, sizeof (*vep));
2121 				return;
2122 			}
2123 			pvep = vep;
2124 		}
2125 		cmn_err(CE_PANIC, "vn_vfslocks_rele: vp/vfs not found");
2126 	}
2127 	mutex_exit(&bp->vb_lock);
2128 }
2129 
2130 /*
2131  * vn_vfswlock_wait is used to implement a lock which is logically a writers
2132  * lock protecting the v_vfsmountedhere field.
2133  * vn_vfswlock_wait has been modified to be similar to vn_vfswlock,
2134  * except that it blocks to acquire the lock VVFSLOCK.
2135  *
2136  * traverse() and routines re-implementing part of traverse (e.g. autofs)
2137  * need to hold this lock. mount(), vn_rename(), vn_remove() and so on
2138  * need the non-blocking version of the writers lock i.e. vn_vfswlock
2139  */
2140 int
2141 vn_vfswlock_wait(vnode_t *vp)
2142 {
2143 	int retval;
2144 	vn_vfslocks_entry_t *vpvfsentry;
2145 	ASSERT(vp != NULL);
2146 
2147 	vpvfsentry = vn_vfslocks_getlock(vp);
2148 	retval = rwst_enter_sig(&vpvfsentry->ve_lock, RW_WRITER);
2149 
2150 	if (retval == EINTR) {
2151 		vn_vfslocks_rele(vpvfsentry);
2152 		return (EINTR);
2153 	}
2154 	return (retval);
2155 }
2156 
2157 int
2158 vn_vfsrlock_wait(vnode_t *vp)
2159 {
2160 	int retval;
2161 	vn_vfslocks_entry_t *vpvfsentry;
2162 	ASSERT(vp != NULL);
2163 
2164 	vpvfsentry = vn_vfslocks_getlock(vp);
2165 	retval = rwst_enter_sig(&vpvfsentry->ve_lock, RW_READER);
2166 
2167 	if (retval == EINTR) {
2168 		vn_vfslocks_rele(vpvfsentry);
2169 		return (EINTR);
2170 	}
2171 
2172 	return (retval);
2173 }
2174 
2175 
2176 /*
2177  * vn_vfswlock is used to implement a lock which is logically a writers lock
2178  * protecting the v_vfsmountedhere field.
2179  */
2180 int
2181 vn_vfswlock(vnode_t *vp)
2182 {
2183 	vn_vfslocks_entry_t *vpvfsentry;
2184 
2185 	/*
2186 	 * If vp is NULL then somebody is trying to lock the covered vnode
2187 	 * of /.  (vfs_vnodecovered is NULL for /).  This situation will
2188 	 * only happen when unmounting /.  Since that operation will fail
2189 	 * anyway, return EBUSY here instead of in VFS_UNMOUNT.
2190 	 */
2191 	if (vp == NULL)
2192 		return (EBUSY);
2193 
2194 	vpvfsentry = vn_vfslocks_getlock(vp);
2195 
2196 	if (rwst_tryenter(&vpvfsentry->ve_lock, RW_WRITER))
2197 		return (0);
2198 
2199 	vn_vfslocks_rele(vpvfsentry);
2200 	return (EBUSY);
2201 }
2202 
2203 int
2204 vn_vfsrlock(vnode_t *vp)
2205 {
2206 	vn_vfslocks_entry_t *vpvfsentry;
2207 
2208 	/*
2209 	 * If vp is NULL then somebody is trying to lock the covered vnode
2210 	 * of /.  (vfs_vnodecovered is NULL for /).  This situation will
2211 	 * only happen when unmounting /.  Since that operation will fail
2212 	 * anyway, return EBUSY here instead of in VFS_UNMOUNT.
2213 	 */
2214 	if (vp == NULL)
2215 		return (EBUSY);
2216 
2217 	vpvfsentry = vn_vfslocks_getlock(vp);
2218 
2219 	if (rwst_tryenter(&vpvfsentry->ve_lock, RW_READER))
2220 		return (0);
2221 
2222 	vn_vfslocks_rele(vpvfsentry);
2223 	return (EBUSY);
2224 }
2225 
2226 void
2227 vn_vfsunlock(vnode_t *vp)
2228 {
2229 	vn_vfslocks_entry_t *vpvfsentry;
2230 
2231 	/*
2232 	 * ve_refcnt needs to be decremented twice.
2233 	 * 1. To release refernce after a call to vn_vfslocks_getlock()
2234 	 * 2. To release the reference from the locking routines like
2235 	 *    vn_vfsrlock/vn_vfswlock etc,.
2236 	 */
2237 	vpvfsentry = vn_vfslocks_getlock(vp);
2238 	vn_vfslocks_rele(vpvfsentry);
2239 
2240 	rwst_exit(&vpvfsentry->ve_lock);
2241 	vn_vfslocks_rele(vpvfsentry);
2242 }
2243 
2244 int
2245 vn_vfswlock_held(vnode_t *vp)
2246 {
2247 	int held;
2248 	vn_vfslocks_entry_t *vpvfsentry;
2249 
2250 	ASSERT(vp != NULL);
2251 
2252 	vpvfsentry = vn_vfslocks_getlock(vp);
2253 	held = rwst_lock_held(&vpvfsentry->ve_lock, RW_WRITER);
2254 
2255 	vn_vfslocks_rele(vpvfsentry);
2256 	return (held);
2257 }
2258 
2259 
2260 int
2261 vn_make_ops(
2262 	const char *name,			/* Name of file system */
2263 	const fs_operation_def_t *templ,	/* Operation specification */
2264 	vnodeops_t **actual)			/* Return the vnodeops */
2265 {
2266 	int unused_ops;
2267 	int error;
2268 
2269 	*actual = (vnodeops_t *)kmem_alloc(sizeof (vnodeops_t), KM_SLEEP);
2270 
2271 	(*actual)->vnop_name = name;
2272 
2273 	error = fs_build_vector(*actual, &unused_ops, vn_ops_table, templ);
2274 	if (error) {
2275 		kmem_free(*actual, sizeof (vnodeops_t));
2276 	}
2277 
2278 #if DEBUG
2279 	if (unused_ops != 0)
2280 		cmn_err(CE_WARN, "vn_make_ops: %s: %d operations supplied "
2281 		    "but not used", name, unused_ops);
2282 #endif
2283 
2284 	return (error);
2285 }
2286 
2287 /*
2288  * Free the vnodeops created as a result of vn_make_ops()
2289  */
2290 void
2291 vn_freevnodeops(vnodeops_t *vnops)
2292 {
2293 	kmem_free(vnops, sizeof (vnodeops_t));
2294 }
2295 
2296 /*
2297  * Vnode cache.
2298  */
2299 
2300 /* ARGSUSED */
2301 static int
2302 vn_cache_constructor(void *buf, void *cdrarg, int kmflags)
2303 {
2304 	struct vnode *vp;
2305 
2306 	vp = buf;
2307 
2308 	mutex_init(&vp->v_lock, NULL, MUTEX_DEFAULT, NULL);
2309 	mutex_init(&vp->v_vsd_lock, NULL, MUTEX_DEFAULT, NULL);
2310 	cv_init(&vp->v_cv, NULL, CV_DEFAULT, NULL);
2311 	rw_init(&vp->v_nbllock, NULL, RW_DEFAULT, NULL);
2312 	vp->v_femhead = NULL;	/* Must be done before vn_reinit() */
2313 	vp->v_path = NULL;
2314 	vp->v_mpssdata = NULL;
2315 	vp->v_vsd = NULL;
2316 	vp->v_fopdata = NULL;
2317 
2318 	return (0);
2319 }
2320 
2321 /* ARGSUSED */
2322 static void
2323 vn_cache_destructor(void *buf, void *cdrarg)
2324 {
2325 	struct vnode *vp;
2326 
2327 	vp = buf;
2328 
2329 	rw_destroy(&vp->v_nbllock);
2330 	cv_destroy(&vp->v_cv);
2331 	mutex_destroy(&vp->v_vsd_lock);
2332 	mutex_destroy(&vp->v_lock);
2333 }
2334 
2335 void
2336 vn_create_cache(void)
2337 {
2338 	/* LINTED */
2339 	ASSERT((1 << VNODE_ALIGN_LOG2) ==
2340 	    P2ROUNDUP(sizeof (struct vnode), VNODE_ALIGN));
2341 	vn_cache = kmem_cache_create("vn_cache", sizeof (struct vnode),
2342 	    VNODE_ALIGN, vn_cache_constructor, vn_cache_destructor, NULL, NULL,
2343 	    NULL, 0);
2344 }
2345 
2346 void
2347 vn_destroy_cache(void)
2348 {
2349 	kmem_cache_destroy(vn_cache);
2350 }
2351 
2352 /*
2353  * Used by file systems when fs-specific nodes (e.g., ufs inodes) are
2354  * cached by the file system and vnodes remain associated.
2355  */
2356 void
2357 vn_recycle(vnode_t *vp)
2358 {
2359 	ASSERT(vp->v_pages == NULL);
2360 
2361 	/*
2362 	 * XXX - This really belongs in vn_reinit(), but we have some issues
2363 	 * with the counts.  Best to have it here for clean initialization.
2364 	 */
2365 	vp->v_rdcnt = 0;
2366 	vp->v_wrcnt = 0;
2367 	vp->v_mmap_read = 0;
2368 	vp->v_mmap_write = 0;
2369 
2370 	/*
2371 	 * If FEM was in use, make sure everything gets cleaned up
2372 	 * NOTE: vp->v_femhead is initialized to NULL in the vnode
2373 	 * constructor.
2374 	 */
2375 	if (vp->v_femhead) {
2376 		/* XXX - There should be a free_femhead() that does all this */
2377 		ASSERT(vp->v_femhead->femh_list == NULL);
2378 		mutex_destroy(&vp->v_femhead->femh_lock);
2379 		kmem_free(vp->v_femhead, sizeof (*(vp->v_femhead)));
2380 		vp->v_femhead = NULL;
2381 	}
2382 	if (vp->v_path) {
2383 		kmem_free(vp->v_path, strlen(vp->v_path) + 1);
2384 		vp->v_path = NULL;
2385 	}
2386 
2387 	if (vp->v_fopdata != NULL) {
2388 		free_fopdata(vp);
2389 	}
2390 	vp->v_mpssdata = NULL;
2391 	vsd_free(vp);
2392 }
2393 
2394 /*
2395  * Used to reset the vnode fields including those that are directly accessible
2396  * as well as those which require an accessor function.
2397  *
2398  * Does not initialize:
2399  *	synchronization objects: v_lock, v_vsd_lock, v_nbllock, v_cv
2400  *	v_data (since FS-nodes and vnodes point to each other and should
2401  *		be updated simultaneously)
2402  *	v_op (in case someone needs to make a VOP call on this object)
2403  */
2404 void
2405 vn_reinit(vnode_t *vp)
2406 {
2407 	vp->v_count = 1;
2408 	vp->v_count_dnlc = 0;
2409 	vp->v_vfsp = NULL;
2410 	vp->v_stream = NULL;
2411 	vp->v_vfsmountedhere = NULL;
2412 	vp->v_flag = 0;
2413 	vp->v_type = VNON;
2414 	vp->v_rdev = NODEV;
2415 
2416 	vp->v_filocks = NULL;
2417 	vp->v_shrlocks = NULL;
2418 	vp->v_pages = NULL;
2419 
2420 	vp->v_locality = NULL;
2421 	vp->v_xattrdir = NULL;
2422 
2423 	/* Handles v_femhead, v_path, and the r/w/map counts */
2424 	vn_recycle(vp);
2425 }
2426 
2427 vnode_t *
2428 vn_alloc(int kmflag)
2429 {
2430 	vnode_t *vp;
2431 
2432 	vp = kmem_cache_alloc(vn_cache, kmflag);
2433 
2434 	if (vp != NULL) {
2435 		vp->v_femhead = NULL;	/* Must be done before vn_reinit() */
2436 		vp->v_fopdata = NULL;
2437 		vn_reinit(vp);
2438 	}
2439 
2440 	return (vp);
2441 }
2442 
2443 void
2444 vn_free(vnode_t *vp)
2445 {
2446 	ASSERT(vp->v_shrlocks == NULL);
2447 	ASSERT(vp->v_filocks == NULL);
2448 
2449 	/*
2450 	 * Some file systems call vn_free() with v_count of zero,
2451 	 * some with v_count of 1.  In any case, the value should
2452 	 * never be anything else.
2453 	 */
2454 	ASSERT((vp->v_count == 0) || (vp->v_count == 1));
2455 	ASSERT(vp->v_count_dnlc == 0);
2456 	if (vp->v_path != NULL) {
2457 		kmem_free(vp->v_path, strlen(vp->v_path) + 1);
2458 		vp->v_path = NULL;
2459 	}
2460 
2461 	/* If FEM was in use, make sure everything gets cleaned up */
2462 	if (vp->v_femhead) {
2463 		/* XXX - There should be a free_femhead() that does all this */
2464 		ASSERT(vp->v_femhead->femh_list == NULL);
2465 		mutex_destroy(&vp->v_femhead->femh_lock);
2466 		kmem_free(vp->v_femhead, sizeof (*(vp->v_femhead)));
2467 		vp->v_femhead = NULL;
2468 	}
2469 
2470 	if (vp->v_fopdata != NULL) {
2471 		free_fopdata(vp);
2472 	}
2473 	vp->v_mpssdata = NULL;
2474 	vsd_free(vp);
2475 	kmem_cache_free(vn_cache, vp);
2476 }
2477 
2478 /*
2479  * vnode status changes, should define better states than 1, 0.
2480  */
2481 void
2482 vn_reclaim(vnode_t *vp)
2483 {
2484 	vfs_t   *vfsp = vp->v_vfsp;
2485 
2486 	if (vfsp == NULL ||
2487 	    vfsp->vfs_implp == NULL || vfsp->vfs_femhead == NULL) {
2488 		return;
2489 	}
2490 	(void) VFS_VNSTATE(vfsp, vp, VNTRANS_RECLAIMED);
2491 }
2492 
2493 void
2494 vn_idle(vnode_t *vp)
2495 {
2496 	vfs_t   *vfsp = vp->v_vfsp;
2497 
2498 	if (vfsp == NULL ||
2499 	    vfsp->vfs_implp == NULL || vfsp->vfs_femhead == NULL) {
2500 		return;
2501 	}
2502 	(void) VFS_VNSTATE(vfsp, vp, VNTRANS_IDLED);
2503 }
2504 void
2505 vn_exists(vnode_t *vp)
2506 {
2507 	vfs_t   *vfsp = vp->v_vfsp;
2508 
2509 	if (vfsp == NULL ||
2510 	    vfsp->vfs_implp == NULL || vfsp->vfs_femhead == NULL) {
2511 		return;
2512 	}
2513 	(void) VFS_VNSTATE(vfsp, vp, VNTRANS_EXISTS);
2514 }
2515 
2516 void
2517 vn_invalid(vnode_t *vp)
2518 {
2519 	vfs_t   *vfsp = vp->v_vfsp;
2520 
2521 	if (vfsp == NULL ||
2522 	    vfsp->vfs_implp == NULL || vfsp->vfs_femhead == NULL) {
2523 		return;
2524 	}
2525 	(void) VFS_VNSTATE(vfsp, vp, VNTRANS_DESTROYED);
2526 }
2527 
2528 /* Vnode event notification */
2529 
2530 int
2531 vnevent_support(vnode_t *vp, caller_context_t *ct)
2532 {
2533 	if (vp == NULL)
2534 		return (EINVAL);
2535 
2536 	return (VOP_VNEVENT(vp, VE_SUPPORT, NULL, NULL, ct));
2537 }
2538 
2539 void
2540 vnevent_rename_src(vnode_t *vp, vnode_t *dvp, char *name, caller_context_t *ct)
2541 {
2542 	if (vp == NULL || vp->v_femhead == NULL) {
2543 		return;
2544 	}
2545 	(void) VOP_VNEVENT(vp, VE_RENAME_SRC, dvp, name, ct);
2546 }
2547 
2548 void
2549 vnevent_rename_dest(vnode_t *vp, vnode_t *dvp, char *name,
2550     caller_context_t *ct)
2551 {
2552 	if (vp == NULL || vp->v_femhead == NULL) {
2553 		return;
2554 	}
2555 	(void) VOP_VNEVENT(vp, VE_RENAME_DEST, dvp, name, ct);
2556 }
2557 
2558 void
2559 vnevent_rename_dest_dir(vnode_t *vp, caller_context_t *ct)
2560 {
2561 	if (vp == NULL || vp->v_femhead == NULL) {
2562 		return;
2563 	}
2564 	(void) VOP_VNEVENT(vp, VE_RENAME_DEST_DIR, NULL, NULL, ct);
2565 }
2566 
2567 void
2568 vnevent_remove(vnode_t *vp, vnode_t *dvp, char *name, caller_context_t *ct)
2569 {
2570 	if (vp == NULL || vp->v_femhead == NULL) {
2571 		return;
2572 	}
2573 	(void) VOP_VNEVENT(vp, VE_REMOVE, dvp, name, ct);
2574 }
2575 
2576 void
2577 vnevent_rmdir(vnode_t *vp, vnode_t *dvp, char *name, caller_context_t *ct)
2578 {
2579 	if (vp == NULL || vp->v_femhead == NULL) {
2580 		return;
2581 	}
2582 	(void) VOP_VNEVENT(vp, VE_RMDIR, dvp, name, ct);
2583 }
2584 
2585 void
2586 vnevent_create(vnode_t *vp, caller_context_t *ct)
2587 {
2588 	if (vp == NULL || vp->v_femhead == NULL) {
2589 		return;
2590 	}
2591 	(void) VOP_VNEVENT(vp, VE_CREATE, NULL, NULL, ct);
2592 }
2593 
2594 void
2595 vnevent_link(vnode_t *vp, caller_context_t *ct)
2596 {
2597 	if (vp == NULL || vp->v_femhead == NULL) {
2598 		return;
2599 	}
2600 	(void) VOP_VNEVENT(vp, VE_LINK, NULL, NULL, ct);
2601 }
2602 
2603 void
2604 vnevent_mountedover(vnode_t *vp, caller_context_t *ct)
2605 {
2606 	if (vp == NULL || vp->v_femhead == NULL) {
2607 		return;
2608 	}
2609 	(void) VOP_VNEVENT(vp, VE_MOUNTEDOVER, NULL, NULL, ct);
2610 }
2611 
2612 void
2613 vnevent_truncate(vnode_t *vp, caller_context_t *ct)
2614 {
2615 	if (vp == NULL || vp->v_femhead == NULL) {
2616 		return;
2617 	}
2618 	(void) VOP_VNEVENT(vp, VE_TRUNCATE, NULL, NULL, ct);
2619 }
2620 
2621 /*
2622  * Vnode accessors.
2623  */
2624 
2625 int
2626 vn_is_readonly(vnode_t *vp)
2627 {
2628 	return (vp->v_vfsp->vfs_flag & VFS_RDONLY);
2629 }
2630 
2631 int
2632 vn_has_flocks(vnode_t *vp)
2633 {
2634 	return (vp->v_filocks != NULL);
2635 }
2636 
2637 int
2638 vn_has_mandatory_locks(vnode_t *vp, int mode)
2639 {
2640 	return ((vp->v_filocks != NULL) && (MANDLOCK(vp, mode)));
2641 }
2642 
2643 int
2644 vn_has_cached_data(vnode_t *vp)
2645 {
2646 	return (vp->v_pages != NULL);
2647 }
2648 
2649 /*
2650  * Return 0 if the vnode in question shouldn't be permitted into a zone via
2651  * zone_enter(2).
2652  */
2653 int
2654 vn_can_change_zones(vnode_t *vp)
2655 {
2656 	struct vfssw *vswp;
2657 	int allow = 1;
2658 	vnode_t *rvp;
2659 
2660 	if (nfs_global_client_only != 0)
2661 		return (1);
2662 
2663 	/*
2664 	 * We always want to look at the underlying vnode if there is one.
2665 	 */
2666 	if (VOP_REALVP(vp, &rvp, NULL) != 0)
2667 		rvp = vp;
2668 	/*
2669 	 * Some pseudo filesystems (including doorfs) don't actually register
2670 	 * their vfsops_t, so the following may return NULL; we happily let
2671 	 * such vnodes switch zones.
2672 	 */
2673 	vswp = vfs_getvfsswbyvfsops(vfs_getops(rvp->v_vfsp));
2674 	if (vswp != NULL) {
2675 		if (vswp->vsw_flag & VSW_NOTZONESAFE)
2676 			allow = 0;
2677 		vfs_unrefvfssw(vswp);
2678 	}
2679 	return (allow);
2680 }
2681 
2682 /*
2683  * Return nonzero if the vnode is a mount point, zero if not.
2684  */
2685 int
2686 vn_ismntpt(vnode_t *vp)
2687 {
2688 	return (vp->v_vfsmountedhere != NULL);
2689 }
2690 
2691 /* Retrieve the vfs (if any) mounted on this vnode */
2692 vfs_t *
2693 vn_mountedvfs(vnode_t *vp)
2694 {
2695 	return (vp->v_vfsmountedhere);
2696 }
2697 
2698 /*
2699  * Return nonzero if the vnode is referenced by the dnlc, zero if not.
2700  */
2701 int
2702 vn_in_dnlc(vnode_t *vp)
2703 {
2704 	return (vp->v_count_dnlc > 0);
2705 }
2706 
2707 /*
2708  * vn_has_other_opens() checks whether a particular file is opened by more than
2709  * just the caller and whether the open is for read and/or write.
2710  * This routine is for calling after the caller has already called VOP_OPEN()
2711  * and the caller wishes to know if they are the only one with it open for
2712  * the mode(s) specified.
2713  *
2714  * Vnode counts are only kept on regular files (v_type=VREG).
2715  */
2716 int
2717 vn_has_other_opens(
2718 	vnode_t *vp,
2719 	v_mode_t mode)
2720 {
2721 
2722 	ASSERT(vp != NULL);
2723 
2724 	switch (mode) {
2725 	case V_WRITE:
2726 		if (vp->v_wrcnt > 1)
2727 			return (V_TRUE);
2728 		break;
2729 	case V_RDORWR:
2730 		if ((vp->v_rdcnt > 1) || (vp->v_wrcnt > 1))
2731 			return (V_TRUE);
2732 		break;
2733 	case V_RDANDWR:
2734 		if ((vp->v_rdcnt > 1) && (vp->v_wrcnt > 1))
2735 			return (V_TRUE);
2736 		break;
2737 	case V_READ:
2738 		if (vp->v_rdcnt > 1)
2739 			return (V_TRUE);
2740 		break;
2741 	}
2742 
2743 	return (V_FALSE);
2744 }
2745 
2746 /*
2747  * vn_is_opened() checks whether a particular file is opened and
2748  * whether the open is for read and/or write.
2749  *
2750  * Vnode counts are only kept on regular files (v_type=VREG).
2751  */
2752 int
2753 vn_is_opened(
2754 	vnode_t *vp,
2755 	v_mode_t mode)
2756 {
2757 
2758 	ASSERT(vp != NULL);
2759 
2760 	switch (mode) {
2761 	case V_WRITE:
2762 		if (vp->v_wrcnt)
2763 			return (V_TRUE);
2764 		break;
2765 	case V_RDANDWR:
2766 		if (vp->v_rdcnt && vp->v_wrcnt)
2767 			return (V_TRUE);
2768 		break;
2769 	case V_RDORWR:
2770 		if (vp->v_rdcnt || vp->v_wrcnt)
2771 			return (V_TRUE);
2772 		break;
2773 	case V_READ:
2774 		if (vp->v_rdcnt)
2775 			return (V_TRUE);
2776 		break;
2777 	}
2778 
2779 	return (V_FALSE);
2780 }
2781 
2782 /*
2783  * vn_is_mapped() checks whether a particular file is mapped and whether
2784  * the file is mapped read and/or write.
2785  */
2786 int
2787 vn_is_mapped(
2788 	vnode_t *vp,
2789 	v_mode_t mode)
2790 {
2791 
2792 	ASSERT(vp != NULL);
2793 
2794 #if !defined(_LP64)
2795 	switch (mode) {
2796 	/*
2797 	 * The atomic_add_64_nv functions force atomicity in the
2798 	 * case of 32 bit architectures. Otherwise the 64 bit values
2799 	 * require two fetches. The value of the fields may be
2800 	 * (potentially) changed between the first fetch and the
2801 	 * second
2802 	 */
2803 	case V_WRITE:
2804 		if (atomic_add_64_nv((&(vp->v_mmap_write)), 0))
2805 			return (V_TRUE);
2806 		break;
2807 	case V_RDANDWR:
2808 		if ((atomic_add_64_nv((&(vp->v_mmap_read)), 0)) &&
2809 		    (atomic_add_64_nv((&(vp->v_mmap_write)), 0)))
2810 			return (V_TRUE);
2811 		break;
2812 	case V_RDORWR:
2813 		if ((atomic_add_64_nv((&(vp->v_mmap_read)), 0)) ||
2814 		    (atomic_add_64_nv((&(vp->v_mmap_write)), 0)))
2815 			return (V_TRUE);
2816 		break;
2817 	case V_READ:
2818 		if (atomic_add_64_nv((&(vp->v_mmap_read)), 0))
2819 			return (V_TRUE);
2820 		break;
2821 	}
2822 #else
2823 	switch (mode) {
2824 	case V_WRITE:
2825 		if (vp->v_mmap_write)
2826 			return (V_TRUE);
2827 		break;
2828 	case V_RDANDWR:
2829 		if (vp->v_mmap_read && vp->v_mmap_write)
2830 			return (V_TRUE);
2831 		break;
2832 	case V_RDORWR:
2833 		if (vp->v_mmap_read || vp->v_mmap_write)
2834 			return (V_TRUE);
2835 		break;
2836 	case V_READ:
2837 		if (vp->v_mmap_read)
2838 			return (V_TRUE);
2839 		break;
2840 	}
2841 #endif
2842 
2843 	return (V_FALSE);
2844 }
2845 
2846 /*
2847  * Set the operations vector for a vnode.
2848  *
2849  * FEM ensures that the v_femhead pointer is filled in before the
2850  * v_op pointer is changed.  This means that if the v_femhead pointer
2851  * is NULL, and the v_op field hasn't changed since before which checked
2852  * the v_femhead pointer; then our update is ok - we are not racing with
2853  * FEM.
2854  */
2855 void
2856 vn_setops(vnode_t *vp, vnodeops_t *vnodeops)
2857 {
2858 	vnodeops_t	*op;
2859 
2860 	ASSERT(vp != NULL);
2861 	ASSERT(vnodeops != NULL);
2862 
2863 	op = vp->v_op;
2864 	membar_consumer();
2865 	/*
2866 	 * If vp->v_femhead == NULL, then we'll call atomic_cas_ptr() to do
2867 	 * the compare-and-swap on vp->v_op.  If either fails, then FEM is
2868 	 * in effect on the vnode and we need to have FEM deal with it.
2869 	 */
2870 	if (vp->v_femhead != NULL || atomic_cas_ptr(&vp->v_op, op, vnodeops) !=
2871 	    op) {
2872 		fem_setvnops(vp, vnodeops);
2873 	}
2874 }
2875 
2876 /*
2877  * Retrieve the operations vector for a vnode
2878  * As with vn_setops(above); make sure we aren't racing with FEM.
2879  * FEM sets the v_op to a special, internal, vnodeops that wouldn't
2880  * make sense to the callers of this routine.
2881  */
2882 vnodeops_t *
2883 vn_getops(vnode_t *vp)
2884 {
2885 	vnodeops_t	*op;
2886 
2887 	ASSERT(vp != NULL);
2888 
2889 	op = vp->v_op;
2890 	membar_consumer();
2891 	if (vp->v_femhead == NULL && op == vp->v_op) {
2892 		return (op);
2893 	} else {
2894 		return (fem_getvnops(vp));
2895 	}
2896 }
2897 
2898 /*
2899  * Returns non-zero (1) if the vnodeops matches that of the vnode.
2900  * Returns zero (0) if not.
2901  */
2902 int
2903 vn_matchops(vnode_t *vp, vnodeops_t *vnodeops)
2904 {
2905 	return (vn_getops(vp) == vnodeops);
2906 }
2907 
2908 /*
2909  * Returns non-zero (1) if the specified operation matches the
2910  * corresponding operation for that the vnode.
2911  * Returns zero (0) if not.
2912  */
2913 
2914 #define	MATCHNAME(n1, n2) (((n1)[0] == (n2)[0]) && (strcmp((n1), (n2)) == 0))
2915 
2916 int
2917 vn_matchopval(vnode_t *vp, char *vopname, fs_generic_func_p funcp)
2918 {
2919 	const fs_operation_trans_def_t *otdp;
2920 	fs_generic_func_p *loc = NULL;
2921 	vnodeops_t	*vop = vn_getops(vp);
2922 
2923 	ASSERT(vopname != NULL);
2924 
2925 	for (otdp = vn_ops_table; otdp->name != NULL; otdp++) {
2926 		if (MATCHNAME(otdp->name, vopname)) {
2927 			loc = (fs_generic_func_p *)
2928 			    ((char *)(vop) + otdp->offset);
2929 			break;
2930 		}
2931 	}
2932 
2933 	return ((loc != NULL) && (*loc == funcp));
2934 }
2935 
2936 /*
2937  * fs_new_caller_id() needs to return a unique ID on a given local system.
2938  * The IDs do not need to survive across reboots.  These are primarily
2939  * used so that (FEM) monitors can detect particular callers (such as
2940  * the NFS server) to a given vnode/vfs operation.
2941  */
2942 u_longlong_t
2943 fs_new_caller_id()
2944 {
2945 	static uint64_t next_caller_id = 0LL; /* First call returns 1 */
2946 
2947 	return ((u_longlong_t)atomic_inc_64_nv(&next_caller_id));
2948 }
2949 
2950 /*
2951  * Given a starting vnode and a path, updates the path in the target vnode in
2952  * a safe manner.  If the vnode already has path information embedded, then the
2953  * cached path is left untouched.
2954  */
2955 
2956 size_t max_vnode_path = 4 * MAXPATHLEN;
2957 
2958 void
2959 vn_setpath(vnode_t *rootvp, struct vnode *startvp, struct vnode *vp,
2960     const char *path, size_t plen)
2961 {
2962 	char	*rpath;
2963 	vnode_t	*base;
2964 	size_t	rpathlen, rpathalloc;
2965 	int	doslash = 1;
2966 
2967 	if (*path == '/') {
2968 		base = rootvp;
2969 		path++;
2970 		plen--;
2971 	} else {
2972 		base = startvp;
2973 	}
2974 
2975 	/*
2976 	 * We cannot grab base->v_lock while we hold vp->v_lock because of
2977 	 * the potential for deadlock.
2978 	 */
2979 	mutex_enter(&base->v_lock);
2980 	if (base->v_path == NULL) {
2981 		mutex_exit(&base->v_lock);
2982 		return;
2983 	}
2984 
2985 	rpathlen = strlen(base->v_path);
2986 	rpathalloc = rpathlen + plen + 1;
2987 	/* Avoid adding a slash if there's already one there */
2988 	if (base->v_path[rpathlen-1] == '/')
2989 		doslash = 0;
2990 	else
2991 		rpathalloc++;
2992 
2993 	/*
2994 	 * We don't want to call kmem_alloc(KM_SLEEP) with kernel locks held,
2995 	 * so we must do this dance.  If, by chance, something changes the path,
2996 	 * just give up since there is no real harm.
2997 	 */
2998 	mutex_exit(&base->v_lock);
2999 
3000 	/* Paths should stay within reason */
3001 	if (rpathalloc > max_vnode_path)
3002 		return;
3003 
3004 	rpath = kmem_alloc(rpathalloc, KM_SLEEP);
3005 
3006 	mutex_enter(&base->v_lock);
3007 	if (base->v_path == NULL || strlen(base->v_path) != rpathlen) {
3008 		mutex_exit(&base->v_lock);
3009 		kmem_free(rpath, rpathalloc);
3010 		return;
3011 	}
3012 	bcopy(base->v_path, rpath, rpathlen);
3013 	mutex_exit(&base->v_lock);
3014 
3015 	if (doslash)
3016 		rpath[rpathlen++] = '/';
3017 	bcopy(path, rpath + rpathlen, plen);
3018 	rpath[rpathlen + plen] = '\0';
3019 
3020 	mutex_enter(&vp->v_lock);
3021 	if (vp->v_path != NULL) {
3022 		mutex_exit(&vp->v_lock);
3023 		kmem_free(rpath, rpathalloc);
3024 	} else {
3025 		vp->v_path = rpath;
3026 		mutex_exit(&vp->v_lock);
3027 	}
3028 }
3029 
3030 /*
3031  * Sets the path to the vnode to be the given string, regardless of current
3032  * context.  The string must be a complete path from rootdir.  This is only used
3033  * by fsop_root() for setting the path based on the mountpoint.
3034  */
3035 void
3036 vn_setpath_str(struct vnode *vp, const char *str, size_t len)
3037 {
3038 	char *buf = kmem_alloc(len + 1, KM_SLEEP);
3039 
3040 	mutex_enter(&vp->v_lock);
3041 	if (vp->v_path != NULL) {
3042 		mutex_exit(&vp->v_lock);
3043 		kmem_free(buf, len + 1);
3044 		return;
3045 	}
3046 
3047 	vp->v_path = buf;
3048 	bcopy(str, vp->v_path, len);
3049 	vp->v_path[len] = '\0';
3050 
3051 	mutex_exit(&vp->v_lock);
3052 }
3053 
3054 /*
3055  * Called from within filesystem's vop_rename() to handle renames once the
3056  * target vnode is available.
3057  */
3058 void
3059 vn_renamepath(vnode_t *dvp, vnode_t *vp, const char *nm, size_t len)
3060 {
3061 	char *tmp;
3062 
3063 	mutex_enter(&vp->v_lock);
3064 	tmp = vp->v_path;
3065 	vp->v_path = NULL;
3066 	mutex_exit(&vp->v_lock);
3067 	vn_setpath(rootdir, dvp, vp, nm, len);
3068 	if (tmp != NULL)
3069 		kmem_free(tmp, strlen(tmp) + 1);
3070 }
3071 
3072 /*
3073  * Similar to vn_setpath_str(), this function sets the path of the destination
3074  * vnode to the be the same as the source vnode.
3075  */
3076 void
3077 vn_copypath(struct vnode *src, struct vnode *dst)
3078 {
3079 	char *buf;
3080 	int alloc;
3081 
3082 	mutex_enter(&src->v_lock);
3083 	if (src->v_path == NULL) {
3084 		mutex_exit(&src->v_lock);
3085 		return;
3086 	}
3087 	alloc = strlen(src->v_path) + 1;
3088 
3089 	/* avoid kmem_alloc() with lock held */
3090 	mutex_exit(&src->v_lock);
3091 	buf = kmem_alloc(alloc, KM_SLEEP);
3092 	mutex_enter(&src->v_lock);
3093 	if (src->v_path == NULL || strlen(src->v_path) + 1 != alloc) {
3094 		mutex_exit(&src->v_lock);
3095 		kmem_free(buf, alloc);
3096 		return;
3097 	}
3098 	bcopy(src->v_path, buf, alloc);
3099 	mutex_exit(&src->v_lock);
3100 
3101 	mutex_enter(&dst->v_lock);
3102 	if (dst->v_path != NULL) {
3103 		mutex_exit(&dst->v_lock);
3104 		kmem_free(buf, alloc);
3105 		return;
3106 	}
3107 	dst->v_path = buf;
3108 	mutex_exit(&dst->v_lock);
3109 }
3110 
3111 /*
3112  * XXX Private interface for segvn routines that handle vnode
3113  * large page segments.
3114  *
3115  * return 1 if vp's file system VOP_PAGEIO() implementation
3116  * can be safely used instead of VOP_GETPAGE() for handling
3117  * pagefaults against regular non swap files. VOP_PAGEIO()
3118  * interface is considered safe here if its implementation
3119  * is very close to VOP_GETPAGE() implementation.
3120  * e.g. It zero's out the part of the page beyond EOF. Doesn't
3121  * panic if there're file holes but instead returns an error.
3122  * Doesn't assume file won't be changed by user writes, etc.
3123  *
3124  * return 0 otherwise.
3125  *
3126  * For now allow segvn to only use VOP_PAGEIO() with ufs and nfs.
3127  */
3128 int
3129 vn_vmpss_usepageio(vnode_t *vp)
3130 {
3131 	vfs_t   *vfsp = vp->v_vfsp;
3132 	char *fsname = vfssw[vfsp->vfs_fstype].vsw_name;
3133 	char *pageio_ok_fss[] = {"ufs", "nfs", NULL};
3134 	char **fsok = pageio_ok_fss;
3135 
3136 	if (fsname == NULL) {
3137 		return (0);
3138 	}
3139 
3140 	for (; *fsok; fsok++) {
3141 		if (strcmp(*fsok, fsname) == 0) {
3142 			return (1);
3143 		}
3144 	}
3145 	return (0);
3146 }
3147 
3148 /* VOP_XXX() macros call the corresponding fop_xxx() function */
3149 
3150 int
3151 fop_open(
3152 	vnode_t **vpp,
3153 	int mode,
3154 	cred_t *cr,
3155 	caller_context_t *ct)
3156 {
3157 	int ret;
3158 	vnode_t *vp = *vpp;
3159 
3160 	VN_HOLD(vp);
3161 	/*
3162 	 * Adding to the vnode counts before calling open
3163 	 * avoids the need for a mutex. It circumvents a race
3164 	 * condition where a query made on the vnode counts results in a
3165 	 * false negative. The inquirer goes away believing the file is
3166 	 * not open when there is an open on the file already under way.
3167 	 *
3168 	 * The counts are meant to prevent NFS from granting a delegation
3169 	 * when it would be dangerous to do so.
3170 	 *
3171 	 * The vnode counts are only kept on regular files
3172 	 */
3173 	if ((*vpp)->v_type == VREG) {
3174 		if (mode & FREAD)
3175 			atomic_inc_32(&(*vpp)->v_rdcnt);
3176 		if (mode & FWRITE)
3177 			atomic_inc_32(&(*vpp)->v_wrcnt);
3178 	}
3179 
3180 	VOPXID_MAP_CR(vp, cr);
3181 
3182 	ret = (*(*(vpp))->v_op->vop_open)(vpp, mode, cr, ct);
3183 
3184 	if (ret) {
3185 		/*
3186 		 * Use the saved vp just in case the vnode ptr got trashed
3187 		 * by the error.
3188 		 */
3189 		VOPSTATS_UPDATE(vp, open);
3190 		if ((vp->v_type == VREG) && (mode & FREAD))
3191 			atomic_dec_32(&vp->v_rdcnt);
3192 		if ((vp->v_type == VREG) && (mode & FWRITE))
3193 			atomic_dec_32(&vp->v_wrcnt);
3194 	} else {
3195 		/*
3196 		 * Some filesystems will return a different vnode,
3197 		 * but the same path was still used to open it.
3198 		 * So if we do change the vnode and need to
3199 		 * copy over the path, do so here, rather than special
3200 		 * casing each filesystem. Adjust the vnode counts to
3201 		 * reflect the vnode switch.
3202 		 */
3203 		VOPSTATS_UPDATE(*vpp, open);
3204 		if (*vpp != vp && *vpp != NULL) {
3205 			vn_copypath(vp, *vpp);
3206 			if (((*vpp)->v_type == VREG) && (mode & FREAD))
3207 				atomic_inc_32(&(*vpp)->v_rdcnt);
3208 			if ((vp->v_type == VREG) && (mode & FREAD))
3209 				atomic_dec_32(&vp->v_rdcnt);
3210 			if (((*vpp)->v_type == VREG) && (mode & FWRITE))
3211 				atomic_inc_32(&(*vpp)->v_wrcnt);
3212 			if ((vp->v_type == VREG) && (mode & FWRITE))
3213 				atomic_dec_32(&vp->v_wrcnt);
3214 		}
3215 	}
3216 	VN_RELE(vp);
3217 	return (ret);
3218 }
3219 
3220 int
3221 fop_close(
3222 	vnode_t *vp,
3223 	int flag,
3224 	int count,
3225 	offset_t offset,
3226 	cred_t *cr,
3227 	caller_context_t *ct)
3228 {
3229 	int err;
3230 
3231 	VOPXID_MAP_CR(vp, cr);
3232 
3233 	err = (*(vp)->v_op->vop_close)(vp, flag, count, offset, cr, ct);
3234 	VOPSTATS_UPDATE(vp, close);
3235 	/*
3236 	 * Check passed in count to handle possible dups. Vnode counts are only
3237 	 * kept on regular files
3238 	 */
3239 	if ((vp->v_type == VREG) && (count == 1))  {
3240 		if (flag & FREAD) {
3241 			ASSERT(vp->v_rdcnt > 0);
3242 			atomic_dec_32(&vp->v_rdcnt);
3243 		}
3244 		if (flag & FWRITE) {
3245 			ASSERT(vp->v_wrcnt > 0);
3246 			atomic_dec_32(&vp->v_wrcnt);
3247 		}
3248 	}
3249 	return (err);
3250 }
3251 
3252 int
3253 fop_read(
3254 	vnode_t *vp,
3255 	uio_t *uiop,
3256 	int ioflag,
3257 	cred_t *cr,
3258 	caller_context_t *ct)
3259 {
3260 	int	err;
3261 	ssize_t	resid_start = uiop->uio_resid;
3262 
3263 	VOPXID_MAP_CR(vp, cr);
3264 
3265 	err = (*(vp)->v_op->vop_read)(vp, uiop, ioflag, cr, ct);
3266 	VOPSTATS_UPDATE_IO(vp, read,
3267 	    read_bytes, (resid_start - uiop->uio_resid));
3268 	return (err);
3269 }
3270 
3271 int
3272 fop_write(
3273 	vnode_t *vp,
3274 	uio_t *uiop,
3275 	int ioflag,
3276 	cred_t *cr,
3277 	caller_context_t *ct)
3278 {
3279 	int	err;
3280 	ssize_t	resid_start = uiop->uio_resid;
3281 
3282 	VOPXID_MAP_CR(vp, cr);
3283 
3284 	err = (*(vp)->v_op->vop_write)(vp, uiop, ioflag, cr, ct);
3285 	VOPSTATS_UPDATE_IO(vp, write,
3286 	    write_bytes, (resid_start - uiop->uio_resid));
3287 	return (err);
3288 }
3289 
3290 int
3291 fop_ioctl(
3292 	vnode_t *vp,
3293 	int cmd,
3294 	intptr_t arg,
3295 	int flag,
3296 	cred_t *cr,
3297 	int *rvalp,
3298 	caller_context_t *ct)
3299 {
3300 	int	err;
3301 
3302 	VOPXID_MAP_CR(vp, cr);
3303 
3304 	err = (*(vp)->v_op->vop_ioctl)(vp, cmd, arg, flag, cr, rvalp, ct);
3305 	VOPSTATS_UPDATE(vp, ioctl);
3306 	return (err);
3307 }
3308 
3309 int
3310 fop_setfl(
3311 	vnode_t *vp,
3312 	int oflags,
3313 	int nflags,
3314 	cred_t *cr,
3315 	caller_context_t *ct)
3316 {
3317 	int	err;
3318 
3319 	VOPXID_MAP_CR(vp, cr);
3320 
3321 	err = (*(vp)->v_op->vop_setfl)(vp, oflags, nflags, cr, ct);
3322 	VOPSTATS_UPDATE(vp, setfl);
3323 	return (err);
3324 }
3325 
3326 int
3327 fop_getattr(
3328 	vnode_t *vp,
3329 	vattr_t *vap,
3330 	int flags,
3331 	cred_t *cr,
3332 	caller_context_t *ct)
3333 {
3334 	int	err;
3335 
3336 	VOPXID_MAP_CR(vp, cr);
3337 
3338 	/*
3339 	 * If this file system doesn't understand the xvattr extensions
3340 	 * then turn off the xvattr bit.
3341 	 */
3342 	if (vfs_has_feature(vp->v_vfsp, VFSFT_XVATTR) == 0) {
3343 		vap->va_mask &= ~AT_XVATTR;
3344 	}
3345 
3346 	/*
3347 	 * We're only allowed to skip the ACL check iff we used a 32 bit
3348 	 * ACE mask with VOP_ACCESS() to determine permissions.
3349 	 */
3350 	if ((flags & ATTR_NOACLCHECK) &&
3351 	    vfs_has_feature(vp->v_vfsp, VFSFT_ACEMASKONACCESS) == 0) {
3352 		return (EINVAL);
3353 	}
3354 	err = (*(vp)->v_op->vop_getattr)(vp, vap, flags, cr, ct);
3355 	VOPSTATS_UPDATE(vp, getattr);
3356 	return (err);
3357 }
3358 
3359 int
3360 fop_setattr(
3361 	vnode_t *vp,
3362 	vattr_t *vap,
3363 	int flags,
3364 	cred_t *cr,
3365 	caller_context_t *ct)
3366 {
3367 	int	err;
3368 
3369 	VOPXID_MAP_CR(vp, cr);
3370 
3371 	/*
3372 	 * If this file system doesn't understand the xvattr extensions
3373 	 * then turn off the xvattr bit.
3374 	 */
3375 	if (vfs_has_feature(vp->v_vfsp, VFSFT_XVATTR) == 0) {
3376 		vap->va_mask &= ~AT_XVATTR;
3377 	}
3378 
3379 	/*
3380 	 * We're only allowed to skip the ACL check iff we used a 32 bit
3381 	 * ACE mask with VOP_ACCESS() to determine permissions.
3382 	 */
3383 	if ((flags & ATTR_NOACLCHECK) &&
3384 	    vfs_has_feature(vp->v_vfsp, VFSFT_ACEMASKONACCESS) == 0) {
3385 		return (EINVAL);
3386 	}
3387 	err = (*(vp)->v_op->vop_setattr)(vp, vap, flags, cr, ct);
3388 	VOPSTATS_UPDATE(vp, setattr);
3389 	return (err);
3390 }
3391 
3392 int
3393 fop_access(
3394 	vnode_t *vp,
3395 	int mode,
3396 	int flags,
3397 	cred_t *cr,
3398 	caller_context_t *ct)
3399 {
3400 	int	err;
3401 
3402 	if ((flags & V_ACE_MASK) &&
3403 	    vfs_has_feature(vp->v_vfsp, VFSFT_ACEMASKONACCESS) == 0) {
3404 		return (EINVAL);
3405 	}
3406 
3407 	VOPXID_MAP_CR(vp, cr);
3408 
3409 	err = (*(vp)->v_op->vop_access)(vp, mode, flags, cr, ct);
3410 	VOPSTATS_UPDATE(vp, access);
3411 	return (err);
3412 }
3413 
3414 int
3415 fop_lookup(
3416 	vnode_t *dvp,
3417 	char *nm,
3418 	vnode_t **vpp,
3419 	pathname_t *pnp,
3420 	int flags,
3421 	vnode_t *rdir,
3422 	cred_t *cr,
3423 	caller_context_t *ct,
3424 	int *deflags,		/* Returned per-dirent flags */
3425 	pathname_t *ppnp)	/* Returned case-preserved name in directory */
3426 {
3427 	int ret;
3428 
3429 	/*
3430 	 * If this file system doesn't support case-insensitive access
3431 	 * and said access is requested, fail quickly.  It is required
3432 	 * that if the vfs supports case-insensitive lookup, it also
3433 	 * supports extended dirent flags.
3434 	 */
3435 	if (flags & FIGNORECASE &&
3436 	    (vfs_has_feature(dvp->v_vfsp, VFSFT_CASEINSENSITIVE) == 0 &&
3437 	    vfs_has_feature(dvp->v_vfsp, VFSFT_NOCASESENSITIVE) == 0))
3438 		return (EINVAL);
3439 
3440 	VOPXID_MAP_CR(dvp, cr);
3441 
3442 	if ((flags & LOOKUP_XATTR) && (flags & LOOKUP_HAVE_SYSATTR_DIR) == 0) {
3443 		ret = xattr_dir_lookup(dvp, vpp, flags, cr);
3444 	} else {
3445 		ret = (*(dvp)->v_op->vop_lookup)
3446 		    (dvp, nm, vpp, pnp, flags, rdir, cr, ct, deflags, ppnp);
3447 	}
3448 	if (ret == 0 && *vpp) {
3449 		VOPSTATS_UPDATE(*vpp, lookup);
3450 		if ((*vpp)->v_path == NULL) {
3451 			vn_setpath(rootdir, dvp, *vpp, nm, strlen(nm));
3452 		}
3453 	}
3454 
3455 	return (ret);
3456 }
3457 
3458 int
3459 fop_create(
3460 	vnode_t *dvp,
3461 	char *name,
3462 	vattr_t *vap,
3463 	vcexcl_t excl,
3464 	int mode,
3465 	vnode_t **vpp,
3466 	cred_t *cr,
3467 	int flags,
3468 	caller_context_t *ct,
3469 	vsecattr_t *vsecp)	/* ACL to set during create */
3470 {
3471 	int ret;
3472 
3473 	if (vsecp != NULL &&
3474 	    vfs_has_feature(dvp->v_vfsp, VFSFT_ACLONCREATE) == 0) {
3475 		return (EINVAL);
3476 	}
3477 	/*
3478 	 * If this file system doesn't support case-insensitive access
3479 	 * and said access is requested, fail quickly.
3480 	 */
3481 	if (flags & FIGNORECASE &&
3482 	    (vfs_has_feature(dvp->v_vfsp, VFSFT_CASEINSENSITIVE) == 0 &&
3483 	    vfs_has_feature(dvp->v_vfsp, VFSFT_NOCASESENSITIVE) == 0))
3484 		return (EINVAL);
3485 
3486 	VOPXID_MAP_CR(dvp, cr);
3487 
3488 	ret = (*(dvp)->v_op->vop_create)
3489 	    (dvp, name, vap, excl, mode, vpp, cr, flags, ct, vsecp);
3490 	if (ret == 0 && *vpp) {
3491 		VOPSTATS_UPDATE(*vpp, create);
3492 		if ((*vpp)->v_path == NULL) {
3493 			vn_setpath(rootdir, dvp, *vpp, name, strlen(name));
3494 		}
3495 	}
3496 
3497 	return (ret);
3498 }
3499 
3500 int
3501 fop_remove(
3502 	vnode_t *dvp,
3503 	char *nm,
3504 	cred_t *cr,
3505 	caller_context_t *ct,
3506 	int flags)
3507 {
3508 	int	err;
3509 
3510 	/*
3511 	 * If this file system doesn't support case-insensitive access
3512 	 * and said access is requested, fail quickly.
3513 	 */
3514 	if (flags & FIGNORECASE &&
3515 	    (vfs_has_feature(dvp->v_vfsp, VFSFT_CASEINSENSITIVE) == 0 &&
3516 	    vfs_has_feature(dvp->v_vfsp, VFSFT_NOCASESENSITIVE) == 0))
3517 		return (EINVAL);
3518 
3519 	VOPXID_MAP_CR(dvp, cr);
3520 
3521 	err = (*(dvp)->v_op->vop_remove)(dvp, nm, cr, ct, flags);
3522 	VOPSTATS_UPDATE(dvp, remove);
3523 	return (err);
3524 }
3525 
3526 int
3527 fop_link(
3528 	vnode_t *tdvp,
3529 	vnode_t *svp,
3530 	char *tnm,
3531 	cred_t *cr,
3532 	caller_context_t *ct,
3533 	int flags)
3534 {
3535 	int	err;
3536 
3537 	/*
3538 	 * If the target file system doesn't support case-insensitive access
3539 	 * and said access is requested, fail quickly.
3540 	 */
3541 	if (flags & FIGNORECASE &&
3542 	    (vfs_has_feature(tdvp->v_vfsp, VFSFT_CASEINSENSITIVE) == 0 &&
3543 	    vfs_has_feature(tdvp->v_vfsp, VFSFT_NOCASESENSITIVE) == 0))
3544 		return (EINVAL);
3545 
3546 	VOPXID_MAP_CR(tdvp, cr);
3547 
3548 	err = (*(tdvp)->v_op->vop_link)(tdvp, svp, tnm, cr, ct, flags);
3549 	VOPSTATS_UPDATE(tdvp, link);
3550 	return (err);
3551 }
3552 
3553 int
3554 fop_rename(
3555 	vnode_t *sdvp,
3556 	char *snm,
3557 	vnode_t *tdvp,
3558 	char *tnm,
3559 	cred_t *cr,
3560 	caller_context_t *ct,
3561 	int flags)
3562 {
3563 	int	err;
3564 
3565 	/*
3566 	 * If the file system involved does not support
3567 	 * case-insensitive access and said access is requested, fail
3568 	 * quickly.
3569 	 */
3570 	if (flags & FIGNORECASE &&
3571 	    ((vfs_has_feature(sdvp->v_vfsp, VFSFT_CASEINSENSITIVE) == 0 &&
3572 	    vfs_has_feature(sdvp->v_vfsp, VFSFT_NOCASESENSITIVE) == 0)))
3573 		return (EINVAL);
3574 
3575 	VOPXID_MAP_CR(tdvp, cr);
3576 
3577 	err = (*(sdvp)->v_op->vop_rename)(sdvp, snm, tdvp, tnm, cr, ct, flags);
3578 	VOPSTATS_UPDATE(sdvp, rename);
3579 	return (err);
3580 }
3581 
3582 int
3583 fop_mkdir(
3584 	vnode_t *dvp,
3585 	char *dirname,
3586 	vattr_t *vap,
3587 	vnode_t **vpp,
3588 	cred_t *cr,
3589 	caller_context_t *ct,
3590 	int flags,
3591 	vsecattr_t *vsecp)	/* ACL to set during create */
3592 {
3593 	int ret;
3594 
3595 	if (vsecp != NULL &&
3596 	    vfs_has_feature(dvp->v_vfsp, VFSFT_ACLONCREATE) == 0) {
3597 		return (EINVAL);
3598 	}
3599 	/*
3600 	 * If this file system doesn't support case-insensitive access
3601 	 * and said access is requested, fail quickly.
3602 	 */
3603 	if (flags & FIGNORECASE &&
3604 	    (vfs_has_feature(dvp->v_vfsp, VFSFT_CASEINSENSITIVE) == 0 &&
3605 	    vfs_has_feature(dvp->v_vfsp, VFSFT_NOCASESENSITIVE) == 0))
3606 		return (EINVAL);
3607 
3608 	VOPXID_MAP_CR(dvp, cr);
3609 
3610 	ret = (*(dvp)->v_op->vop_mkdir)
3611 	    (dvp, dirname, vap, vpp, cr, ct, flags, vsecp);
3612 	if (ret == 0 && *vpp) {
3613 		VOPSTATS_UPDATE(*vpp, mkdir);
3614 		if ((*vpp)->v_path == NULL) {
3615 			vn_setpath(rootdir, dvp, *vpp, dirname,
3616 			    strlen(dirname));
3617 		}
3618 	}
3619 
3620 	return (ret);
3621 }
3622 
3623 int
3624 fop_rmdir(
3625 	vnode_t *dvp,
3626 	char *nm,
3627 	vnode_t *cdir,
3628 	cred_t *cr,
3629 	caller_context_t *ct,
3630 	int flags)
3631 {
3632 	int	err;
3633 
3634 	/*
3635 	 * If this file system doesn't support case-insensitive access
3636 	 * and said access is requested, fail quickly.
3637 	 */
3638 	if (flags & FIGNORECASE &&
3639 	    (vfs_has_feature(dvp->v_vfsp, VFSFT_CASEINSENSITIVE) == 0 &&
3640 	    vfs_has_feature(dvp->v_vfsp, VFSFT_NOCASESENSITIVE) == 0))
3641 		return (EINVAL);
3642 
3643 	VOPXID_MAP_CR(dvp, cr);
3644 
3645 	err = (*(dvp)->v_op->vop_rmdir)(dvp, nm, cdir, cr, ct, flags);
3646 	VOPSTATS_UPDATE(dvp, rmdir);
3647 	return (err);
3648 }
3649 
3650 int
3651 fop_readdir(
3652 	vnode_t *vp,
3653 	uio_t *uiop,
3654 	cred_t *cr,
3655 	int *eofp,
3656 	caller_context_t *ct,
3657 	int flags)
3658 {
3659 	int	err;
3660 	ssize_t	resid_start = uiop->uio_resid;
3661 
3662 	/*
3663 	 * If this file system doesn't support retrieving directory
3664 	 * entry flags and said access is requested, fail quickly.
3665 	 */
3666 	if (flags & V_RDDIR_ENTFLAGS &&
3667 	    vfs_has_feature(vp->v_vfsp, VFSFT_DIRENTFLAGS) == 0)
3668 		return (EINVAL);
3669 
3670 	VOPXID_MAP_CR(vp, cr);
3671 
3672 	err = (*(vp)->v_op->vop_readdir)(vp, uiop, cr, eofp, ct, flags);
3673 	VOPSTATS_UPDATE_IO(vp, readdir,
3674 	    readdir_bytes, (resid_start - uiop->uio_resid));
3675 	return (err);
3676 }
3677 
3678 int
3679 fop_symlink(
3680 	vnode_t *dvp,
3681 	char *linkname,
3682 	vattr_t *vap,
3683 	char *target,
3684 	cred_t *cr,
3685 	caller_context_t *ct,
3686 	int flags)
3687 {
3688 	int	err;
3689 	xvattr_t xvattr;
3690 
3691 	/*
3692 	 * If this file system doesn't support case-insensitive access
3693 	 * and said access is requested, fail quickly.
3694 	 */
3695 	if (flags & FIGNORECASE &&
3696 	    (vfs_has_feature(dvp->v_vfsp, VFSFT_CASEINSENSITIVE) == 0 &&
3697 	    vfs_has_feature(dvp->v_vfsp, VFSFT_NOCASESENSITIVE) == 0))
3698 		return (EINVAL);
3699 
3700 	VOPXID_MAP_CR(dvp, cr);
3701 
3702 	/* check for reparse point */
3703 	if ((vfs_has_feature(dvp->v_vfsp, VFSFT_REPARSE)) &&
3704 	    (strncmp(target, FS_REPARSE_TAG_STR,
3705 	    strlen(FS_REPARSE_TAG_STR)) == 0)) {
3706 		if (!fs_reparse_mark(target, vap, &xvattr))
3707 			vap = (vattr_t *)&xvattr;
3708 	}
3709 
3710 	err = (*(dvp)->v_op->vop_symlink)
3711 	    (dvp, linkname, vap, target, cr, ct, flags);
3712 	VOPSTATS_UPDATE(dvp, symlink);
3713 	return (err);
3714 }
3715 
3716 int
3717 fop_readlink(
3718 	vnode_t *vp,
3719 	uio_t *uiop,
3720 	cred_t *cr,
3721 	caller_context_t *ct)
3722 {
3723 	int	err;
3724 
3725 	VOPXID_MAP_CR(vp, cr);
3726 
3727 	err = (*(vp)->v_op->vop_readlink)(vp, uiop, cr, ct);
3728 	VOPSTATS_UPDATE(vp, readlink);
3729 	return (err);
3730 }
3731 
3732 int
3733 fop_fsync(
3734 	vnode_t *vp,
3735 	int syncflag,
3736 	cred_t *cr,
3737 	caller_context_t *ct)
3738 {
3739 	int	err;
3740 
3741 	VOPXID_MAP_CR(vp, cr);
3742 
3743 	err = (*(vp)->v_op->vop_fsync)(vp, syncflag, cr, ct);
3744 	VOPSTATS_UPDATE(vp, fsync);
3745 	return (err);
3746 }
3747 
3748 void
3749 fop_inactive(
3750 	vnode_t *vp,
3751 	cred_t *cr,
3752 	caller_context_t *ct)
3753 {
3754 	/* Need to update stats before vop call since we may lose the vnode */
3755 	VOPSTATS_UPDATE(vp, inactive);
3756 
3757 	VOPXID_MAP_CR(vp, cr);
3758 
3759 	(*(vp)->v_op->vop_inactive)(vp, cr, ct);
3760 }
3761 
3762 int
3763 fop_fid(
3764 	vnode_t *vp,
3765 	fid_t *fidp,
3766 	caller_context_t *ct)
3767 {
3768 	int	err;
3769 
3770 	err = (*(vp)->v_op->vop_fid)(vp, fidp, ct);
3771 	VOPSTATS_UPDATE(vp, fid);
3772 	return (err);
3773 }
3774 
3775 int
3776 fop_rwlock(
3777 	vnode_t *vp,
3778 	int write_lock,
3779 	caller_context_t *ct)
3780 {
3781 	int	ret;
3782 
3783 	ret = ((*(vp)->v_op->vop_rwlock)(vp, write_lock, ct));
3784 	VOPSTATS_UPDATE(vp, rwlock);
3785 	return (ret);
3786 }
3787 
3788 void
3789 fop_rwunlock(
3790 	vnode_t *vp,
3791 	int write_lock,
3792 	caller_context_t *ct)
3793 {
3794 	(*(vp)->v_op->vop_rwunlock)(vp, write_lock, ct);
3795 	VOPSTATS_UPDATE(vp, rwunlock);
3796 }
3797 
3798 int
3799 fop_seek(
3800 	vnode_t *vp,
3801 	offset_t ooff,
3802 	offset_t *noffp,
3803 	caller_context_t *ct)
3804 {
3805 	int	err;
3806 
3807 	err = (*(vp)->v_op->vop_seek)(vp, ooff, noffp, ct);
3808 	VOPSTATS_UPDATE(vp, seek);
3809 	return (err);
3810 }
3811 
3812 int
3813 fop_cmp(
3814 	vnode_t *vp1,
3815 	vnode_t *vp2,
3816 	caller_context_t *ct)
3817 {
3818 	int	err;
3819 
3820 	err = (*(vp1)->v_op->vop_cmp)(vp1, vp2, ct);
3821 	VOPSTATS_UPDATE(vp1, cmp);
3822 	return (err);
3823 }
3824 
3825 int
3826 fop_frlock(
3827 	vnode_t *vp,
3828 	int cmd,
3829 	flock64_t *bfp,
3830 	int flag,
3831 	offset_t offset,
3832 	struct flk_callback *flk_cbp,
3833 	cred_t *cr,
3834 	caller_context_t *ct)
3835 {
3836 	int	err;
3837 
3838 	VOPXID_MAP_CR(vp, cr);
3839 
3840 	err = (*(vp)->v_op->vop_frlock)
3841 	    (vp, cmd, bfp, flag, offset, flk_cbp, cr, ct);
3842 	VOPSTATS_UPDATE(vp, frlock);
3843 	return (err);
3844 }
3845 
3846 int
3847 fop_space(
3848 	vnode_t *vp,
3849 	int cmd,
3850 	flock64_t *bfp,
3851 	int flag,
3852 	offset_t offset,
3853 	cred_t *cr,
3854 	caller_context_t *ct)
3855 {
3856 	int	err;
3857 
3858 	VOPXID_MAP_CR(vp, cr);
3859 
3860 	err = (*(vp)->v_op->vop_space)(vp, cmd, bfp, flag, offset, cr, ct);
3861 	VOPSTATS_UPDATE(vp, space);
3862 	return (err);
3863 }
3864 
3865 int
3866 fop_realvp(
3867 	vnode_t *vp,
3868 	vnode_t **vpp,
3869 	caller_context_t *ct)
3870 {
3871 	int	err;
3872 
3873 	err = (*(vp)->v_op->vop_realvp)(vp, vpp, ct);
3874 	VOPSTATS_UPDATE(vp, realvp);
3875 	return (err);
3876 }
3877 
3878 int
3879 fop_getpage(
3880 	vnode_t *vp,
3881 	offset_t off,
3882 	size_t len,
3883 	uint_t *protp,
3884 	page_t **plarr,
3885 	size_t plsz,
3886 	struct seg *seg,
3887 	caddr_t addr,
3888 	enum seg_rw rw,
3889 	cred_t *cr,
3890 	caller_context_t *ct)
3891 {
3892 	int	err;
3893 
3894 	VOPXID_MAP_CR(vp, cr);
3895 
3896 	err = (*(vp)->v_op->vop_getpage)
3897 	    (vp, off, len, protp, plarr, plsz, seg, addr, rw, cr, ct);
3898 	VOPSTATS_UPDATE(vp, getpage);
3899 	return (err);
3900 }
3901 
3902 int
3903 fop_putpage(
3904 	vnode_t *vp,
3905 	offset_t off,
3906 	size_t len,
3907 	int flags,
3908 	cred_t *cr,
3909 	caller_context_t *ct)
3910 {
3911 	int	err;
3912 
3913 	VOPXID_MAP_CR(vp, cr);
3914 
3915 	err = (*(vp)->v_op->vop_putpage)(vp, off, len, flags, cr, ct);
3916 	VOPSTATS_UPDATE(vp, putpage);
3917 	return (err);
3918 }
3919 
3920 int
3921 fop_map(
3922 	vnode_t *vp,
3923 	offset_t off,
3924 	struct as *as,
3925 	caddr_t *addrp,
3926 	size_t len,
3927 	uchar_t prot,
3928 	uchar_t maxprot,
3929 	uint_t flags,
3930 	cred_t *cr,
3931 	caller_context_t *ct)
3932 {
3933 	int	err;
3934 
3935 	VOPXID_MAP_CR(vp, cr);
3936 
3937 	err = (*(vp)->v_op->vop_map)
3938 	    (vp, off, as, addrp, len, prot, maxprot, flags, cr, ct);
3939 	VOPSTATS_UPDATE(vp, map);
3940 	return (err);
3941 }
3942 
3943 int
3944 fop_addmap(
3945 	vnode_t *vp,
3946 	offset_t off,
3947 	struct as *as,
3948 	caddr_t addr,
3949 	size_t len,
3950 	uchar_t prot,
3951 	uchar_t maxprot,
3952 	uint_t flags,
3953 	cred_t *cr,
3954 	caller_context_t *ct)
3955 {
3956 	int error;
3957 	u_longlong_t delta;
3958 
3959 	VOPXID_MAP_CR(vp, cr);
3960 
3961 	error = (*(vp)->v_op->vop_addmap)
3962 	    (vp, off, as, addr, len, prot, maxprot, flags, cr, ct);
3963 
3964 	if ((!error) && (vp->v_type == VREG)) {
3965 		delta = (u_longlong_t)btopr(len);
3966 		/*
3967 		 * If file is declared MAP_PRIVATE, it can't be written back
3968 		 * even if open for write. Handle as read.
3969 		 */
3970 		if (flags & MAP_PRIVATE) {
3971 			atomic_add_64((uint64_t *)(&(vp->v_mmap_read)),
3972 			    (int64_t)delta);
3973 		} else {
3974 			/*
3975 			 * atomic_add_64 forces the fetch of a 64 bit value to
3976 			 * be atomic on 32 bit machines
3977 			 */
3978 			if (maxprot & PROT_WRITE)
3979 				atomic_add_64((uint64_t *)(&(vp->v_mmap_write)),
3980 				    (int64_t)delta);
3981 			if (maxprot & PROT_READ)
3982 				atomic_add_64((uint64_t *)(&(vp->v_mmap_read)),
3983 				    (int64_t)delta);
3984 			if (maxprot & PROT_EXEC)
3985 				atomic_add_64((uint64_t *)(&(vp->v_mmap_read)),
3986 				    (int64_t)delta);
3987 		}
3988 	}
3989 	VOPSTATS_UPDATE(vp, addmap);
3990 	return (error);
3991 }
3992 
3993 int
3994 fop_delmap(
3995 	vnode_t *vp,
3996 	offset_t off,
3997 	struct as *as,
3998 	caddr_t addr,
3999 	size_t len,
4000 	uint_t prot,
4001 	uint_t maxprot,
4002 	uint_t flags,
4003 	cred_t *cr,
4004 	caller_context_t *ct)
4005 {
4006 	int error;
4007 	u_longlong_t delta;
4008 
4009 	VOPXID_MAP_CR(vp, cr);
4010 
4011 	error = (*(vp)->v_op->vop_delmap)
4012 	    (vp, off, as, addr, len, prot, maxprot, flags, cr, ct);
4013 
4014 	/*
4015 	 * NFS calls into delmap twice, the first time
4016 	 * it simply establishes a callback mechanism and returns EAGAIN
4017 	 * while the real work is being done upon the second invocation.
4018 	 * We have to detect this here and only decrement the counts upon
4019 	 * the second delmap request.
4020 	 */
4021 	if ((error != EAGAIN) && (vp->v_type == VREG)) {
4022 
4023 		delta = (u_longlong_t)btopr(len);
4024 
4025 		if (flags & MAP_PRIVATE) {
4026 			atomic_add_64((uint64_t *)(&(vp->v_mmap_read)),
4027 			    (int64_t)(-delta));
4028 		} else {
4029 			/*
4030 			 * atomic_add_64 forces the fetch of a 64 bit value
4031 			 * to be atomic on 32 bit machines
4032 			 */
4033 			if (maxprot & PROT_WRITE)
4034 				atomic_add_64((uint64_t *)(&(vp->v_mmap_write)),
4035 				    (int64_t)(-delta));
4036 			if (maxprot & PROT_READ)
4037 				atomic_add_64((uint64_t *)(&(vp->v_mmap_read)),
4038 				    (int64_t)(-delta));
4039 			if (maxprot & PROT_EXEC)
4040 				atomic_add_64((uint64_t *)(&(vp->v_mmap_read)),
4041 				    (int64_t)(-delta));
4042 		}
4043 	}
4044 	VOPSTATS_UPDATE(vp, delmap);
4045 	return (error);
4046 }
4047 
4048 
4049 int
4050 fop_poll(
4051 	vnode_t *vp,
4052 	short events,
4053 	int anyyet,
4054 	short *reventsp,
4055 	struct pollhead **phpp,
4056 	caller_context_t *ct)
4057 {
4058 	int	err;
4059 
4060 	err = (*(vp)->v_op->vop_poll)(vp, events, anyyet, reventsp, phpp, ct);
4061 	VOPSTATS_UPDATE(vp, poll);
4062 	return (err);
4063 }
4064 
4065 int
4066 fop_dump(
4067 	vnode_t *vp,
4068 	caddr_t addr,
4069 	offset_t lbdn,
4070 	offset_t dblks,
4071 	caller_context_t *ct)
4072 {
4073 	int	err;
4074 
4075 	/* ensure lbdn and dblks can be passed safely to bdev_dump */
4076 	if ((lbdn != (daddr_t)lbdn) || (dblks != (int)dblks))
4077 		return (EIO);
4078 
4079 	err = (*(vp)->v_op->vop_dump)(vp, addr, lbdn, dblks, ct);
4080 	VOPSTATS_UPDATE(vp, dump);
4081 	return (err);
4082 }
4083 
4084 int
4085 fop_pathconf(
4086 	vnode_t *vp,
4087 	int cmd,
4088 	ulong_t *valp,
4089 	cred_t *cr,
4090 	caller_context_t *ct)
4091 {
4092 	int	err;
4093 
4094 	VOPXID_MAP_CR(vp, cr);
4095 
4096 	err = (*(vp)->v_op->vop_pathconf)(vp, cmd, valp, cr, ct);
4097 	VOPSTATS_UPDATE(vp, pathconf);
4098 	return (err);
4099 }
4100 
4101 int
4102 fop_pageio(
4103 	vnode_t *vp,
4104 	struct page *pp,
4105 	u_offset_t io_off,
4106 	size_t io_len,
4107 	int flags,
4108 	cred_t *cr,
4109 	caller_context_t *ct)
4110 {
4111 	int	err;
4112 
4113 	VOPXID_MAP_CR(vp, cr);
4114 
4115 	err = (*(vp)->v_op->vop_pageio)(vp, pp, io_off, io_len, flags, cr, ct);
4116 	VOPSTATS_UPDATE(vp, pageio);
4117 	return (err);
4118 }
4119 
4120 int
4121 fop_dumpctl(
4122 	vnode_t *vp,
4123 	int action,
4124 	offset_t *blkp,
4125 	caller_context_t *ct)
4126 {
4127 	int	err;
4128 	err = (*(vp)->v_op->vop_dumpctl)(vp, action, blkp, ct);
4129 	VOPSTATS_UPDATE(vp, dumpctl);
4130 	return (err);
4131 }
4132 
4133 void
4134 fop_dispose(
4135 	vnode_t *vp,
4136 	page_t *pp,
4137 	int flag,
4138 	int dn,
4139 	cred_t *cr,
4140 	caller_context_t *ct)
4141 {
4142 	/* Must do stats first since it's possible to lose the vnode */
4143 	VOPSTATS_UPDATE(vp, dispose);
4144 
4145 	VOPXID_MAP_CR(vp, cr);
4146 
4147 	(*(vp)->v_op->vop_dispose)(vp, pp, flag, dn, cr, ct);
4148 }
4149 
4150 int
4151 fop_setsecattr(
4152 	vnode_t *vp,
4153 	vsecattr_t *vsap,
4154 	int flag,
4155 	cred_t *cr,
4156 	caller_context_t *ct)
4157 {
4158 	int	err;
4159 
4160 	VOPXID_MAP_CR(vp, cr);
4161 
4162 	/*
4163 	 * We're only allowed to skip the ACL check iff we used a 32 bit
4164 	 * ACE mask with VOP_ACCESS() to determine permissions.
4165 	 */
4166 	if ((flag & ATTR_NOACLCHECK) &&
4167 	    vfs_has_feature(vp->v_vfsp, VFSFT_ACEMASKONACCESS) == 0) {
4168 		return (EINVAL);
4169 	}
4170 	err = (*(vp)->v_op->vop_setsecattr) (vp, vsap, flag, cr, ct);
4171 	VOPSTATS_UPDATE(vp, setsecattr);
4172 	return (err);
4173 }
4174 
4175 int
4176 fop_getsecattr(
4177 	vnode_t *vp,
4178 	vsecattr_t *vsap,
4179 	int flag,
4180 	cred_t *cr,
4181 	caller_context_t *ct)
4182 {
4183 	int	err;
4184 
4185 	/*
4186 	 * We're only allowed to skip the ACL check iff we used a 32 bit
4187 	 * ACE mask with VOP_ACCESS() to determine permissions.
4188 	 */
4189 	if ((flag & ATTR_NOACLCHECK) &&
4190 	    vfs_has_feature(vp->v_vfsp, VFSFT_ACEMASKONACCESS) == 0) {
4191 		return (EINVAL);
4192 	}
4193 
4194 	VOPXID_MAP_CR(vp, cr);
4195 
4196 	err = (*(vp)->v_op->vop_getsecattr) (vp, vsap, flag, cr, ct);
4197 	VOPSTATS_UPDATE(vp, getsecattr);
4198 	return (err);
4199 }
4200 
4201 int
4202 fop_shrlock(
4203 	vnode_t *vp,
4204 	int cmd,
4205 	struct shrlock *shr,
4206 	int flag,
4207 	cred_t *cr,
4208 	caller_context_t *ct)
4209 {
4210 	int	err;
4211 
4212 	VOPXID_MAP_CR(vp, cr);
4213 
4214 	err = (*(vp)->v_op->vop_shrlock)(vp, cmd, shr, flag, cr, ct);
4215 	VOPSTATS_UPDATE(vp, shrlock);
4216 	return (err);
4217 }
4218 
4219 int
4220 fop_vnevent(vnode_t *vp, vnevent_t vnevent, vnode_t *dvp, char *fnm,
4221     caller_context_t *ct)
4222 {
4223 	int	err;
4224 
4225 	err = (*(vp)->v_op->vop_vnevent)(vp, vnevent, dvp, fnm, ct);
4226 	VOPSTATS_UPDATE(vp, vnevent);
4227 	return (err);
4228 }
4229 
4230 int
4231 fop_reqzcbuf(vnode_t *vp, enum uio_rw ioflag, xuio_t *uiop, cred_t *cr,
4232     caller_context_t *ct)
4233 {
4234 	int err;
4235 
4236 	if (vfs_has_feature(vp->v_vfsp, VFSFT_ZEROCOPY_SUPPORTED) == 0)
4237 		return (ENOTSUP);
4238 	err = (*(vp)->v_op->vop_reqzcbuf)(vp, ioflag, uiop, cr, ct);
4239 	VOPSTATS_UPDATE(vp, reqzcbuf);
4240 	return (err);
4241 }
4242 
4243 int
4244 fop_retzcbuf(vnode_t *vp, xuio_t *uiop, cred_t *cr, caller_context_t *ct)
4245 {
4246 	int err;
4247 
4248 	if (vfs_has_feature(vp->v_vfsp, VFSFT_ZEROCOPY_SUPPORTED) == 0)
4249 		return (ENOTSUP);
4250 	err = (*(vp)->v_op->vop_retzcbuf)(vp, uiop, cr, ct);
4251 	VOPSTATS_UPDATE(vp, retzcbuf);
4252 	return (err);
4253 }
4254 
4255 /*
4256  * Default destructor
4257  *	Needed because NULL destructor means that the key is unused
4258  */
4259 /* ARGSUSED */
4260 void
4261 vsd_defaultdestructor(void *value)
4262 {}
4263 
4264 /*
4265  * Create a key (index into per vnode array)
4266  *	Locks out vsd_create, vsd_destroy, and vsd_free
4267  *	May allocate memory with lock held
4268  */
4269 void
4270 vsd_create(uint_t *keyp, void (*destructor)(void *))
4271 {
4272 	int	i;
4273 	uint_t	nkeys;
4274 
4275 	/*
4276 	 * if key is allocated, do nothing
4277 	 */
4278 	mutex_enter(&vsd_lock);
4279 	if (*keyp) {
4280 		mutex_exit(&vsd_lock);
4281 		return;
4282 	}
4283 	/*
4284 	 * find an unused key
4285 	 */
4286 	if (destructor == NULL)
4287 		destructor = vsd_defaultdestructor;
4288 
4289 	for (i = 0; i < vsd_nkeys; ++i)
4290 		if (vsd_destructor[i] == NULL)
4291 			break;
4292 
4293 	/*
4294 	 * if no unused keys, increase the size of the destructor array
4295 	 */
4296 	if (i == vsd_nkeys) {
4297 		if ((nkeys = (vsd_nkeys << 1)) == 0)
4298 			nkeys = 1;
4299 		vsd_destructor =
4300 		    (void (**)(void *))vsd_realloc((void *)vsd_destructor,
4301 		    (size_t)(vsd_nkeys * sizeof (void (*)(void *))),
4302 		    (size_t)(nkeys * sizeof (void (*)(void *))));
4303 		vsd_nkeys = nkeys;
4304 	}
4305 
4306 	/*
4307 	 * allocate the next available unused key
4308 	 */
4309 	vsd_destructor[i] = destructor;
4310 	*keyp = i + 1;
4311 
4312 	/* create vsd_list, if it doesn't exist */
4313 	if (vsd_list == NULL) {
4314 		vsd_list = kmem_alloc(sizeof (list_t), KM_SLEEP);
4315 		list_create(vsd_list, sizeof (struct vsd_node),
4316 		    offsetof(struct vsd_node, vs_nodes));
4317 	}
4318 
4319 	mutex_exit(&vsd_lock);
4320 }
4321 
4322 /*
4323  * Destroy a key
4324  *
4325  * Assumes that the caller is preventing vsd_set and vsd_get
4326  * Locks out vsd_create, vsd_destroy, and vsd_free
4327  * May free memory with lock held
4328  */
4329 void
4330 vsd_destroy(uint_t *keyp)
4331 {
4332 	uint_t key;
4333 	struct vsd_node *vsd;
4334 
4335 	/*
4336 	 * protect the key namespace and our destructor lists
4337 	 */
4338 	mutex_enter(&vsd_lock);
4339 	key = *keyp;
4340 	*keyp = 0;
4341 
4342 	ASSERT(key <= vsd_nkeys);
4343 
4344 	/*
4345 	 * if the key is valid
4346 	 */
4347 	if (key != 0) {
4348 		uint_t k = key - 1;
4349 		/*
4350 		 * for every vnode with VSD, call key's destructor
4351 		 */
4352 		for (vsd = list_head(vsd_list); vsd != NULL;
4353 		    vsd = list_next(vsd_list, vsd)) {
4354 			/*
4355 			 * no VSD for key in this vnode
4356 			 */
4357 			if (key > vsd->vs_nkeys)
4358 				continue;
4359 			/*
4360 			 * call destructor for key
4361 			 */
4362 			if (vsd->vs_value[k] && vsd_destructor[k])
4363 				(*vsd_destructor[k])(vsd->vs_value[k]);
4364 			/*
4365 			 * reset value for key
4366 			 */
4367 			vsd->vs_value[k] = NULL;
4368 		}
4369 		/*
4370 		 * actually free the key (NULL destructor == unused)
4371 		 */
4372 		vsd_destructor[k] = NULL;
4373 	}
4374 
4375 	mutex_exit(&vsd_lock);
4376 }
4377 
4378 /*
4379  * Quickly return the per vnode value that was stored with the specified key
4380  * Assumes the caller is protecting key from vsd_create and vsd_destroy
4381  * Assumes the caller is holding v_vsd_lock to protect the vsd.
4382  */
4383 void *
4384 vsd_get(vnode_t *vp, uint_t key)
4385 {
4386 	struct vsd_node *vsd;
4387 
4388 	ASSERT(vp != NULL);
4389 	ASSERT(mutex_owned(&vp->v_vsd_lock));
4390 
4391 	vsd = vp->v_vsd;
4392 
4393 	if (key && vsd != NULL && key <= vsd->vs_nkeys)
4394 		return (vsd->vs_value[key - 1]);
4395 	return (NULL);
4396 }
4397 
4398 /*
4399  * Set a per vnode value indexed with the specified key
4400  * Assumes the caller is holding v_vsd_lock to protect the vsd.
4401  */
4402 int
4403 vsd_set(vnode_t *vp, uint_t key, void *value)
4404 {
4405 	struct vsd_node *vsd;
4406 
4407 	ASSERT(vp != NULL);
4408 	ASSERT(mutex_owned(&vp->v_vsd_lock));
4409 
4410 	if (key == 0)
4411 		return (EINVAL);
4412 
4413 	vsd = vp->v_vsd;
4414 	if (vsd == NULL)
4415 		vsd = vp->v_vsd = kmem_zalloc(sizeof (*vsd), KM_SLEEP);
4416 
4417 	/*
4418 	 * If the vsd was just allocated, vs_nkeys will be 0, so the following
4419 	 * code won't happen and we will continue down and allocate space for
4420 	 * the vs_value array.
4421 	 * If the caller is replacing one value with another, then it is up
4422 	 * to the caller to free/rele/destroy the previous value (if needed).
4423 	 */
4424 	if (key <= vsd->vs_nkeys) {
4425 		vsd->vs_value[key - 1] = value;
4426 		return (0);
4427 	}
4428 
4429 	ASSERT(key <= vsd_nkeys);
4430 
4431 	if (vsd->vs_nkeys == 0) {
4432 		mutex_enter(&vsd_lock);	/* lock out vsd_destroy() */
4433 		/*
4434 		 * Link onto list of all VSD nodes.
4435 		 */
4436 		list_insert_head(vsd_list, vsd);
4437 		mutex_exit(&vsd_lock);
4438 	}
4439 
4440 	/*
4441 	 * Allocate vnode local storage and set the value for key
4442 	 */
4443 	vsd->vs_value = vsd_realloc(vsd->vs_value,
4444 	    vsd->vs_nkeys * sizeof (void *),
4445 	    key * sizeof (void *));
4446 	vsd->vs_nkeys = key;
4447 	vsd->vs_value[key - 1] = value;
4448 
4449 	return (0);
4450 }
4451 
4452 /*
4453  * Called from vn_free() to run the destructor function for each vsd
4454  *	Locks out vsd_create and vsd_destroy
4455  *	Assumes that the destructor *DOES NOT* use vsd
4456  */
4457 void
4458 vsd_free(vnode_t *vp)
4459 {
4460 	int i;
4461 	struct vsd_node *vsd = vp->v_vsd;
4462 
4463 	if (vsd == NULL)
4464 		return;
4465 
4466 	if (vsd->vs_nkeys == 0) {
4467 		kmem_free(vsd, sizeof (*vsd));
4468 		vp->v_vsd = NULL;
4469 		return;
4470 	}
4471 
4472 	/*
4473 	 * lock out vsd_create and vsd_destroy, call
4474 	 * the destructor, and mark the value as destroyed.
4475 	 */
4476 	mutex_enter(&vsd_lock);
4477 
4478 	for (i = 0; i < vsd->vs_nkeys; i++) {
4479 		if (vsd->vs_value[i] && vsd_destructor[i])
4480 			(*vsd_destructor[i])(vsd->vs_value[i]);
4481 		vsd->vs_value[i] = NULL;
4482 	}
4483 
4484 	/*
4485 	 * remove from linked list of VSD nodes
4486 	 */
4487 	list_remove(vsd_list, vsd);
4488 
4489 	mutex_exit(&vsd_lock);
4490 
4491 	/*
4492 	 * free up the VSD
4493 	 */
4494 	kmem_free(vsd->vs_value, vsd->vs_nkeys * sizeof (void *));
4495 	kmem_free(vsd, sizeof (struct vsd_node));
4496 	vp->v_vsd = NULL;
4497 }
4498 
4499 /*
4500  * realloc
4501  */
4502 static void *
4503 vsd_realloc(void *old, size_t osize, size_t nsize)
4504 {
4505 	void *new;
4506 
4507 	new = kmem_zalloc(nsize, KM_SLEEP);
4508 	if (old) {
4509 		bcopy(old, new, osize);
4510 		kmem_free(old, osize);
4511 	}
4512 	return (new);
4513 }
4514 
4515 /*
4516  * Setup the extensible system attribute for creating a reparse point.
4517  * The symlink data 'target' is validated for proper format of a reparse
4518  * string and a check also made to make sure the symlink data does not
4519  * point to an existing file.
4520  *
4521  * return 0 if ok else -1.
4522  */
4523 static int
4524 fs_reparse_mark(char *target, vattr_t *vap, xvattr_t *xvattr)
4525 {
4526 	xoptattr_t *xoap;
4527 
4528 	if ((!target) || (!vap) || (!xvattr))
4529 		return (-1);
4530 
4531 	/* validate reparse string */
4532 	if (reparse_validate((const char *)target))
4533 		return (-1);
4534 
4535 	xva_init(xvattr);
4536 	xvattr->xva_vattr = *vap;
4537 	xvattr->xva_vattr.va_mask |= AT_XVATTR;
4538 	xoap = xva_getxoptattr(xvattr);
4539 	ASSERT(xoap);
4540 	XVA_SET_REQ(xvattr, XAT_REPARSE);
4541 	xoap->xoa_reparse = 1;
4542 
4543 	return (0);
4544 }
4545 
4546 /*
4547  * Function to check whether a symlink is a reparse point.
4548  * Return B_TRUE if it is a reparse point, else return B_FALSE
4549  */
4550 boolean_t
4551 vn_is_reparse(vnode_t *vp, cred_t *cr, caller_context_t *ct)
4552 {
4553 	xvattr_t xvattr;
4554 	xoptattr_t *xoap;
4555 
4556 	if ((vp->v_type != VLNK) ||
4557 	    !(vfs_has_feature(vp->v_vfsp, VFSFT_XVATTR)))
4558 		return (B_FALSE);
4559 
4560 	xva_init(&xvattr);
4561 	xoap = xva_getxoptattr(&xvattr);
4562 	ASSERT(xoap);
4563 	XVA_SET_REQ(&xvattr, XAT_REPARSE);
4564 
4565 	if (VOP_GETATTR(vp, &xvattr.xva_vattr, 0, cr, ct))
4566 		return (B_FALSE);
4567 
4568 	if ((!(xvattr.xva_vattr.va_mask & AT_XVATTR)) ||
4569 	    (!(XVA_ISSET_RTN(&xvattr, XAT_REPARSE))))
4570 		return (B_FALSE);
4571 
4572 	return (xoap->xoa_reparse ? B_TRUE : B_FALSE);
4573 }
4574