1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* Copyright (c) 1983, 1984, 1985, 1986, 1987, 1988, 1989 AT&T */ 27 /* All Rights Reserved */ 28 29 /* 30 * University Copyright- Copyright (c) 1982, 1986, 1988 31 * The Regents of the University of California 32 * All Rights Reserved 33 * 34 * University Acknowledgment- Portions of this document are derived from 35 * software developed by the University of California, Berkeley, and its 36 * contributors. 37 */ 38 39 40 #pragma ident "%Z%%M% %I% %E% SMI" 41 42 #include <sys/types.h> 43 #include <sys/t_lock.h> 44 #include <sys/param.h> 45 #include <sys/errno.h> 46 #include <sys/user.h> 47 #include <sys/fstyp.h> 48 #include <sys/kmem.h> 49 #include <sys/systm.h> 50 #include <sys/proc.h> 51 #include <sys/mount.h> 52 #include <sys/vfs.h> 53 #include <sys/vfs_opreg.h> 54 #include <sys/fem.h> 55 #include <sys/mntent.h> 56 #include <sys/stat.h> 57 #include <sys/statvfs.h> 58 #include <sys/statfs.h> 59 #include <sys/cred.h> 60 #include <sys/vnode.h> 61 #include <sys/rwstlock.h> 62 #include <sys/dnlc.h> 63 #include <sys/file.h> 64 #include <sys/time.h> 65 #include <sys/atomic.h> 66 #include <sys/cmn_err.h> 67 #include <sys/buf.h> 68 #include <sys/swap.h> 69 #include <sys/debug.h> 70 #include <sys/vnode.h> 71 #include <sys/modctl.h> 72 #include <sys/ddi.h> 73 #include <sys/pathname.h> 74 #include <sys/bootconf.h> 75 #include <sys/dumphdr.h> 76 #include <sys/dc_ki.h> 77 #include <sys/poll.h> 78 #include <sys/sunddi.h> 79 #include <sys/sysmacros.h> 80 #include <sys/zone.h> 81 #include <sys/policy.h> 82 #include <sys/ctfs.h> 83 #include <sys/objfs.h> 84 #include <sys/console.h> 85 #include <sys/reboot.h> 86 87 #include <vm/page.h> 88 89 #include <fs/fs_subr.h> 90 91 /* Private interfaces to create vopstats-related data structures */ 92 extern void initialize_vopstats(vopstats_t *); 93 extern vopstats_t *get_fstype_vopstats(struct vfs *, struct vfssw *); 94 extern vsk_anchor_t *get_vskstat_anchor(struct vfs *); 95 96 static void vfs_clearmntopt_nolock(mntopts_t *, const char *, int); 97 static void vfs_setmntopt_nolock(mntopts_t *, const char *, 98 const char *, int, int); 99 static int vfs_optionisset_nolock(const mntopts_t *, const char *, char **); 100 static void vfs_freemnttab(struct vfs *); 101 static void vfs_freeopt(mntopt_t *); 102 static void vfs_swapopttbl_nolock(mntopts_t *, mntopts_t *); 103 static void vfs_swapopttbl(mntopts_t *, mntopts_t *); 104 static void vfs_copyopttbl_extend(const mntopts_t *, mntopts_t *, int); 105 static void vfs_createopttbl_extend(mntopts_t *, const char *, 106 const mntopts_t *); 107 static char **vfs_copycancelopt_extend(char **const, int); 108 static void vfs_freecancelopt(char **); 109 static char *getrootfs(void); 110 static int getmacpath(dev_info_t *, void *); 111 112 struct ipmnt { 113 struct ipmnt *mip_next; 114 dev_t mip_dev; 115 struct vfs *mip_vfsp; 116 }; 117 118 static kmutex_t vfs_miplist_mutex; 119 static struct ipmnt *vfs_miplist = NULL; 120 static struct ipmnt *vfs_miplist_end = NULL; 121 122 /* 123 * VFS global data. 124 */ 125 vnode_t *rootdir; /* pointer to root inode vnode. */ 126 vnode_t *devicesdir; /* pointer to inode of devices root */ 127 vnode_t *devdir; /* pointer to inode of dev root */ 128 129 char *server_rootpath; /* root path for diskless clients */ 130 char *server_hostname; /* hostname of diskless server */ 131 132 static struct vfs root; 133 static struct vfs devices; 134 static struct vfs dev; 135 struct vfs *rootvfs = &root; /* pointer to root vfs; head of VFS list. */ 136 rvfs_t *rvfs_list; /* array of vfs ptrs for vfs hash list */ 137 int vfshsz = 512; /* # of heads/locks in vfs hash arrays */ 138 /* must be power of 2! */ 139 timespec_t vfs_mnttab_ctime; /* mnttab created time */ 140 timespec_t vfs_mnttab_mtime; /* mnttab last modified time */ 141 char *vfs_dummyfstype = "\0"; 142 struct pollhead vfs_pollhd; /* for mnttab pollers */ 143 144 /* 145 * Table for generic options recognized in the VFS layer and acted 146 * on at this level before parsing file system specific options. 147 * The nosuid option is stronger than any of the devices and setuid 148 * options, so those are canceled when nosuid is seen. 149 * 150 * All options which are added here need to be added to the 151 * list of standard options in usr/src/cmd/fs.d/fslib.c as well. 152 */ 153 /* 154 * VFS Mount options table 155 */ 156 static char *ro_cancel[] = { MNTOPT_RW, NULL }; 157 static char *rw_cancel[] = { MNTOPT_RO, NULL }; 158 static char *suid_cancel[] = { MNTOPT_NOSUID, NULL }; 159 static char *nosuid_cancel[] = { MNTOPT_SUID, MNTOPT_DEVICES, MNTOPT_NODEVICES, 160 MNTOPT_NOSETUID, MNTOPT_SETUID, NULL }; 161 static char *devices_cancel[] = { MNTOPT_NODEVICES, NULL }; 162 static char *nodevices_cancel[] = { MNTOPT_DEVICES, NULL }; 163 static char *setuid_cancel[] = { MNTOPT_NOSETUID, NULL }; 164 static char *nosetuid_cancel[] = { MNTOPT_SETUID, NULL }; 165 static char *nbmand_cancel[] = { MNTOPT_NONBMAND, NULL }; 166 static char *nonbmand_cancel[] = { MNTOPT_NBMAND, NULL }; 167 static char *exec_cancel[] = { MNTOPT_NOEXEC, NULL }; 168 static char *noexec_cancel[] = { MNTOPT_EXEC, NULL }; 169 170 static const mntopt_t mntopts[] = { 171 /* 172 * option name cancel options default arg flags 173 */ 174 { MNTOPT_REMOUNT, NULL, NULL, 175 MO_NODISPLAY, (void *)0 }, 176 { MNTOPT_RO, ro_cancel, NULL, 0, 177 (void *)0 }, 178 { MNTOPT_RW, rw_cancel, NULL, 0, 179 (void *)0 }, 180 { MNTOPT_SUID, suid_cancel, NULL, 0, 181 (void *)0 }, 182 { MNTOPT_NOSUID, nosuid_cancel, NULL, 0, 183 (void *)0 }, 184 { MNTOPT_DEVICES, devices_cancel, NULL, 0, 185 (void *)0 }, 186 { MNTOPT_NODEVICES, nodevices_cancel, NULL, 0, 187 (void *)0 }, 188 { MNTOPT_SETUID, setuid_cancel, NULL, 0, 189 (void *)0 }, 190 { MNTOPT_NOSETUID, nosetuid_cancel, NULL, 0, 191 (void *)0 }, 192 { MNTOPT_NBMAND, nbmand_cancel, NULL, 0, 193 (void *)0 }, 194 { MNTOPT_NONBMAND, nonbmand_cancel, NULL, 0, 195 (void *)0 }, 196 { MNTOPT_EXEC, exec_cancel, NULL, 0, 197 (void *)0 }, 198 { MNTOPT_NOEXEC, noexec_cancel, NULL, 0, 199 (void *)0 }, 200 }; 201 202 const mntopts_t vfs_mntopts = { 203 sizeof (mntopts) / sizeof (mntopt_t), 204 (mntopt_t *)&mntopts[0] 205 }; 206 207 /* 208 * File system operation dispatch functions. 209 */ 210 211 int 212 fsop_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr) 213 { 214 return (*(vfsp)->vfs_op->vfs_mount)(vfsp, mvp, uap, cr); 215 } 216 217 int 218 fsop_unmount(vfs_t *vfsp, int flag, cred_t *cr) 219 { 220 return (*(vfsp)->vfs_op->vfs_unmount)(vfsp, flag, cr); 221 } 222 223 int 224 fsop_root(vfs_t *vfsp, vnode_t **vpp) 225 { 226 refstr_t *mntpt; 227 int ret = (*(vfsp)->vfs_op->vfs_root)(vfsp, vpp); 228 /* 229 * Make sure this root has a path. With lofs, it is possible to have 230 * a NULL mountpoint. 231 */ 232 if (ret == 0 && vfsp->vfs_mntpt != NULL && (*vpp)->v_path == NULL) { 233 mntpt = vfs_getmntpoint(vfsp); 234 vn_setpath_str(*vpp, refstr_value(mntpt), 235 strlen(refstr_value(mntpt))); 236 refstr_rele(mntpt); 237 } 238 239 return (ret); 240 } 241 242 int 243 fsop_statfs(vfs_t *vfsp, statvfs64_t *sp) 244 { 245 return (*(vfsp)->vfs_op->vfs_statvfs)(vfsp, sp); 246 } 247 248 int 249 fsop_sync(vfs_t *vfsp, short flag, cred_t *cr) 250 { 251 return (*(vfsp)->vfs_op->vfs_sync)(vfsp, flag, cr); 252 } 253 254 int 255 fsop_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp) 256 { 257 return (*(vfsp)->vfs_op->vfs_vget)(vfsp, vpp, fidp); 258 } 259 260 int 261 fsop_mountroot(vfs_t *vfsp, enum whymountroot reason) 262 { 263 return (*(vfsp)->vfs_op->vfs_mountroot)(vfsp, reason); 264 } 265 266 void 267 fsop_freefs(vfs_t *vfsp) 268 { 269 (*(vfsp)->vfs_op->vfs_freevfs)(vfsp); 270 } 271 272 int 273 fsop_vnstate(vfs_t *vfsp, vnode_t *vp, vntrans_t nstate) 274 { 275 return ((*(vfsp)->vfs_op->vfs_vnstate)(vfsp, vp, nstate)); 276 } 277 278 int 279 fsop_sync_by_kind(int fstype, short flag, cred_t *cr) 280 { 281 ASSERT((fstype >= 0) && (fstype < nfstype)); 282 283 if (ALLOCATED_VFSSW(&vfssw[fstype]) && VFS_INSTALLED(&vfssw[fstype])) 284 return (*vfssw[fstype].vsw_vfsops.vfs_sync) (NULL, flag, cr); 285 else 286 return (ENOTSUP); 287 } 288 289 /* 290 * File system initialization. vfs_setfsops() must be called from a file 291 * system's init routine. 292 */ 293 294 static int 295 fs_copyfsops(const fs_operation_def_t *template, vfsops_t *actual, 296 int *unused_ops) 297 { 298 static const fs_operation_trans_def_t vfs_ops_table[] = { 299 VFSNAME_MOUNT, offsetof(vfsops_t, vfs_mount), 300 fs_nosys, fs_nosys, 301 302 VFSNAME_UNMOUNT, offsetof(vfsops_t, vfs_unmount), 303 fs_nosys, fs_nosys, 304 305 VFSNAME_ROOT, offsetof(vfsops_t, vfs_root), 306 fs_nosys, fs_nosys, 307 308 VFSNAME_STATVFS, offsetof(vfsops_t, vfs_statvfs), 309 fs_nosys, fs_nosys, 310 311 VFSNAME_SYNC, offsetof(vfsops_t, vfs_sync), 312 (fs_generic_func_p) fs_sync, 313 (fs_generic_func_p) fs_sync, /* No errors allowed */ 314 315 VFSNAME_VGET, offsetof(vfsops_t, vfs_vget), 316 fs_nosys, fs_nosys, 317 318 VFSNAME_MOUNTROOT, offsetof(vfsops_t, vfs_mountroot), 319 fs_nosys, fs_nosys, 320 321 VFSNAME_FREEVFS, offsetof(vfsops_t, vfs_freevfs), 322 (fs_generic_func_p)fs_freevfs, 323 (fs_generic_func_p)fs_freevfs, /* Shouldn't fail */ 324 325 VFSNAME_VNSTATE, offsetof(vfsops_t, vfs_vnstate), 326 (fs_generic_func_p)fs_nosys, 327 (fs_generic_func_p)fs_nosys, 328 329 NULL, 0, NULL, NULL 330 }; 331 332 return (fs_build_vector(actual, unused_ops, vfs_ops_table, template)); 333 } 334 335 int 336 vfs_setfsops(int fstype, const fs_operation_def_t *template, vfsops_t **actual) 337 { 338 int error; 339 int unused_ops; 340 341 /* Verify that fstype refers to a loaded fs (and not fsid 0). */ 342 343 if ((fstype <= 0) || (fstype >= nfstype)) 344 return (EINVAL); 345 346 if (!ALLOCATED_VFSSW(&vfssw[fstype])) 347 return (EINVAL); 348 349 /* Set up the operations vector. */ 350 351 error = fs_copyfsops(template, &vfssw[fstype].vsw_vfsops, &unused_ops); 352 353 if (error != 0) 354 return (error); 355 356 vfssw[fstype].vsw_flag |= VSW_INSTALLED; 357 358 if (actual != NULL) 359 *actual = &vfssw[fstype].vsw_vfsops; 360 361 #if DEBUG 362 if (unused_ops != 0) 363 cmn_err(CE_WARN, "vfs_setfsops: %s: %d operations supplied " 364 "but not used", vfssw[fstype].vsw_name, unused_ops); 365 #endif 366 367 return (0); 368 } 369 370 int 371 vfs_makefsops(const fs_operation_def_t *template, vfsops_t **actual) 372 { 373 int error; 374 int unused_ops; 375 376 *actual = (vfsops_t *)kmem_alloc(sizeof (vfsops_t), KM_SLEEP); 377 378 error = fs_copyfsops(template, *actual, &unused_ops); 379 if (error != 0) { 380 kmem_free(*actual, sizeof (vfsops_t)); 381 *actual = NULL; 382 return (error); 383 } 384 385 return (0); 386 } 387 388 /* 389 * Free a vfsops structure created as a result of vfs_makefsops(). 390 * NOTE: For a vfsops structure initialized by vfs_setfsops(), use 391 * vfs_freevfsops_by_type(). 392 */ 393 void 394 vfs_freevfsops(vfsops_t *vfsops) 395 { 396 kmem_free(vfsops, sizeof (vfsops_t)); 397 } 398 399 /* 400 * Since the vfsops structure is part of the vfssw table and wasn't 401 * really allocated, we're not really freeing anything. We keep 402 * the name for consistency with vfs_freevfsops(). We do, however, 403 * need to take care of a little bookkeeping. 404 * NOTE: For a vfsops structure created by vfs_setfsops(), use 405 * vfs_freevfsops_by_type(). 406 */ 407 int 408 vfs_freevfsops_by_type(int fstype) 409 { 410 411 /* Verify that fstype refers to a loaded fs (and not fsid 0). */ 412 if ((fstype <= 0) || (fstype >= nfstype)) 413 return (EINVAL); 414 415 WLOCK_VFSSW(); 416 if ((vfssw[fstype].vsw_flag & VSW_INSTALLED) == 0) { 417 WUNLOCK_VFSSW(); 418 return (EINVAL); 419 } 420 421 vfssw[fstype].vsw_flag &= ~VSW_INSTALLED; 422 WUNLOCK_VFSSW(); 423 424 return (0); 425 } 426 427 /* Support routines used to reference vfs_op */ 428 429 /* Set the operations vector for a vfs */ 430 void 431 vfs_setops(vfs_t *vfsp, vfsops_t *vfsops) 432 { 433 vfsops_t *op; 434 435 ASSERT(vfsp != NULL); 436 ASSERT(vfsops != NULL); 437 438 op = vfsp->vfs_op; 439 membar_consumer(); 440 if ((vfsp->vfs_implp == NULL || vfsp->vfs_femhead == NULL) && 441 casptr(&vfsp->vfs_op, op, vfsops) == op) { 442 return; 443 } 444 fsem_setvfsops(vfsp, vfsops); 445 } 446 447 /* Retrieve the operations vector for a vfs */ 448 vfsops_t * 449 vfs_getops(vfs_t *vfsp) 450 { 451 vfsops_t *op; 452 453 ASSERT(vfsp != NULL); 454 455 op = vfsp->vfs_op; 456 membar_consumer(); 457 if ((vfsp->vfs_implp == NULL || vfsp->vfs_femhead == NULL) && 458 op == vfsp->vfs_op) { 459 return (op); 460 } else { 461 return (fsem_getvfsops(vfsp)); 462 } 463 } 464 465 /* 466 * Returns non-zero (1) if the vfsops matches that of the vfs. 467 * Returns zero (0) if not. 468 */ 469 int 470 vfs_matchops(vfs_t *vfsp, vfsops_t *vfsops) 471 { 472 return (vfs_getops(vfsp) == vfsops); 473 } 474 475 /* 476 * Returns non-zero (1) if the file system has installed a non-default, 477 * non-error vfs_sync routine. Returns zero (0) otherwise. 478 */ 479 int 480 vfs_can_sync(vfs_t *vfsp) 481 { 482 /* vfs_sync() routine is not the default/error function */ 483 return (vfs_getops(vfsp)->vfs_sync != fs_sync); 484 } 485 486 /* 487 * Initialize a vfs structure. 488 */ 489 void 490 vfs_init(vfs_t *vfsp, vfsops_t *op, void *data) 491 { 492 vfsp->vfs_count = 0; 493 vfsp->vfs_next = vfsp; 494 vfsp->vfs_prev = vfsp; 495 vfsp->vfs_zone_next = vfsp; 496 vfsp->vfs_zone_prev = vfsp; 497 vfsp->vfs_flag = 0; 498 vfsp->vfs_data = (data); 499 vfsp->vfs_resource = NULL; 500 vfsp->vfs_mntpt = NULL; 501 vfsp->vfs_mntopts.mo_count = 0; 502 vfsp->vfs_mntopts.mo_list = NULL; 503 vfsp->vfs_implp = NULL; 504 vfsp->vfs_zone = NULL; 505 /* 506 * Note: Don't initialize any member of the vfs_impl_t structure 507 * here as it could be a problem for unbundled file systems. 508 */ 509 vfs_setops((vfsp), (op)); 510 sema_init(&vfsp->vfs_reflock, 1, NULL, SEMA_DEFAULT, NULL); 511 } 512 513 /* 514 * Allocate and initialize the vfs implementation private data 515 * structure, vfs_impl_t. 516 */ 517 void 518 vfsimpl_setup(vfs_t *vfsp) 519 { 520 vfsp->vfs_implp = kmem_alloc(sizeof (vfs_impl_t), KM_SLEEP); 521 /* Note that this are #define'd in vfs.h */ 522 vfsp->vfs_femhead = NULL; 523 vfsp->vfs_vskap = NULL; 524 vfsp->vfs_fstypevsp = NULL; 525 } 526 527 /* 528 * Release the vfs_impl_t structure, if it exists. Some unbundled 529 * filesystems may not use the newer version of vfs and thus 530 * would not contain this implementation private data structure. 531 */ 532 void 533 vfsimpl_teardown(vfs_t *vfsp) 534 { 535 vfs_impl_t *vip = vfsp->vfs_implp; 536 537 if (vip == NULL) 538 return; 539 540 if (vip->vi_femhead) { 541 ASSERT(vip->vi_femhead->femh_list == NULL); 542 mutex_destroy(&vip->vi_femhead->femh_lock); 543 kmem_free(vip->vi_femhead, sizeof (*(vip->vi_femhead))); 544 vip->vi_femhead = NULL; 545 } 546 547 kmem_free(vfsp->vfs_implp, sizeof (vfs_impl_t)); 548 vfsp->vfs_implp = NULL; 549 } 550 551 /* 552 * VFS system calls: mount, umount, syssync, statfs, fstatfs, statvfs, 553 * fstatvfs, and sysfs moved to common/syscall. 554 */ 555 556 /* 557 * Update every mounted file system. We call the vfs_sync operation of 558 * each file system type, passing it a NULL vfsp to indicate that all 559 * mounted file systems of that type should be updated. 560 */ 561 void 562 vfs_sync(int flag) 563 { 564 struct vfssw *vswp; 565 RLOCK_VFSSW(); 566 for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) { 567 if (ALLOCATED_VFSSW(vswp) && VFS_INSTALLED(vswp)) { 568 vfs_refvfssw(vswp); 569 RUNLOCK_VFSSW(); 570 (void) (*vswp->vsw_vfsops.vfs_sync)(NULL, flag, 571 CRED()); 572 vfs_unrefvfssw(vswp); 573 RLOCK_VFSSW(); 574 } 575 } 576 RUNLOCK_VFSSW(); 577 } 578 579 void 580 sync(void) 581 { 582 vfs_sync(0); 583 } 584 585 /* 586 * External routines. 587 */ 588 589 krwlock_t vfssw_lock; /* lock accesses to vfssw */ 590 591 /* 592 * Lock for accessing the vfs linked list. Initialized in vfs_mountroot(), 593 * but otherwise should be accessed only via vfs_list_lock() and 594 * vfs_list_unlock(). Also used to protect the timestamp for mods to the list. 595 */ 596 static krwlock_t vfslist; 597 598 /* 599 * Mount devfs on /devices. This is done right after root is mounted 600 * to provide device access support for the system 601 */ 602 static void 603 vfs_mountdevices(void) 604 { 605 struct vfssw *vsw; 606 struct vnode *mvp; 607 struct mounta mounta = { /* fake mounta for devfs_mount() */ 608 NULL, 609 NULL, 610 MS_SYSSPACE, 611 NULL, 612 NULL, 613 0, 614 NULL, 615 0 616 }; 617 618 /* 619 * _init devfs module to fill in the vfssw 620 */ 621 if (modload("fs", "devfs") == -1) 622 panic("Cannot _init devfs module"); 623 624 /* 625 * Hold vfs 626 */ 627 RLOCK_VFSSW(); 628 vsw = vfs_getvfsswbyname("devfs"); 629 VFS_INIT(&devices, &vsw->vsw_vfsops, NULL); 630 VFS_HOLD(&devices); 631 632 /* 633 * Locate mount point 634 */ 635 if (lookupname("/devices", UIO_SYSSPACE, FOLLOW, NULLVPP, &mvp)) 636 panic("Cannot find /devices"); 637 638 /* 639 * Perform the mount of /devices 640 */ 641 if (VFS_MOUNT(&devices, mvp, &mounta, CRED())) 642 panic("Cannot mount /devices"); 643 644 RUNLOCK_VFSSW(); 645 646 /* 647 * Set appropriate members and add to vfs list for mnttab display 648 */ 649 vfs_setresource(&devices, "/devices"); 650 vfs_setmntpoint(&devices, "/devices"); 651 652 /* 653 * Hold the root of /devices so it won't go away 654 */ 655 if (VFS_ROOT(&devices, &devicesdir)) 656 panic("vfs_mountdevices: not devices root"); 657 658 if (vfs_lock(&devices) != 0) { 659 VN_RELE(devicesdir); 660 cmn_err(CE_NOTE, "Cannot acquire vfs_lock of /devices"); 661 return; 662 } 663 664 if (vn_vfswlock(mvp) != 0) { 665 vfs_unlock(&devices); 666 VN_RELE(devicesdir); 667 cmn_err(CE_NOTE, "Cannot acquire vfswlock of /devices"); 668 return; 669 } 670 671 vfs_add(mvp, &devices, 0); 672 vn_vfsunlock(mvp); 673 vfs_unlock(&devices); 674 VN_RELE(devicesdir); 675 } 676 677 /* 678 * mount the first instance of /dev to root and remain mounted 679 */ 680 static void 681 vfs_mountdev1(void) 682 { 683 struct vfssw *vsw; 684 struct vnode *mvp; 685 struct mounta mounta = { /* fake mounta for sdev_mount() */ 686 NULL, 687 NULL, 688 MS_SYSSPACE | MS_OVERLAY, 689 NULL, 690 NULL, 691 0, 692 NULL, 693 0 694 }; 695 696 /* 697 * _init dev module to fill in the vfssw 698 */ 699 if (modload("fs", "dev") == -1) 700 cmn_err(CE_PANIC, "Cannot _init dev module\n"); 701 702 /* 703 * Hold vfs 704 */ 705 RLOCK_VFSSW(); 706 vsw = vfs_getvfsswbyname("dev"); 707 VFS_INIT(&dev, &vsw->vsw_vfsops, NULL); 708 VFS_HOLD(&dev); 709 710 /* 711 * Locate mount point 712 */ 713 if (lookupname("/dev", UIO_SYSSPACE, FOLLOW, NULLVPP, &mvp)) 714 cmn_err(CE_PANIC, "Cannot find /dev\n"); 715 716 /* 717 * Perform the mount of /dev 718 */ 719 if (VFS_MOUNT(&dev, mvp, &mounta, CRED())) 720 cmn_err(CE_PANIC, "Cannot mount /dev 1\n"); 721 722 RUNLOCK_VFSSW(); 723 724 /* 725 * Set appropriate members and add to vfs list for mnttab display 726 */ 727 vfs_setresource(&dev, "/dev"); 728 vfs_setmntpoint(&dev, "/dev"); 729 730 /* 731 * Hold the root of /dev so it won't go away 732 */ 733 if (VFS_ROOT(&dev, &devdir)) 734 cmn_err(CE_PANIC, "vfs_mountdev1: not dev root"); 735 736 if (vfs_lock(&dev) != 0) { 737 VN_RELE(devdir); 738 cmn_err(CE_NOTE, "Cannot acquire vfs_lock of /dev"); 739 return; 740 } 741 742 if (vn_vfswlock(mvp) != 0) { 743 vfs_unlock(&dev); 744 VN_RELE(devdir); 745 cmn_err(CE_NOTE, "Cannot acquire vfswlock of /dev"); 746 return; 747 } 748 749 vfs_add(mvp, &dev, 0); 750 vn_vfsunlock(mvp); 751 vfs_unlock(&dev); 752 VN_RELE(devdir); 753 } 754 755 /* 756 * Mount required filesystem. This is done right after root is mounted. 757 */ 758 static void 759 vfs_mountfs(char *module, char *spec, char *path) 760 { 761 struct vnode *mvp; 762 struct mounta mounta; 763 vfs_t *vfsp; 764 765 mounta.flags = MS_SYSSPACE | MS_DATA; 766 mounta.fstype = module; 767 mounta.spec = spec; 768 mounta.dir = path; 769 if (lookupname(path, UIO_SYSSPACE, FOLLOW, NULLVPP, &mvp)) { 770 cmn_err(CE_WARN, "Cannot find %s", path); 771 return; 772 } 773 if (domount(NULL, &mounta, mvp, CRED(), &vfsp)) 774 cmn_err(CE_WARN, "Cannot mount %s", path); 775 else 776 VFS_RELE(vfsp); 777 VN_RELE(mvp); 778 } 779 780 /* 781 * vfs_mountroot is called by main() to mount the root filesystem. 782 */ 783 void 784 vfs_mountroot(void) 785 { 786 struct vnode *rvp = NULL; 787 char *path; 788 size_t plen; 789 struct vfssw *vswp; 790 791 rw_init(&vfssw_lock, NULL, RW_DEFAULT, NULL); 792 rw_init(&vfslist, NULL, RW_DEFAULT, NULL); 793 794 /* 795 * Alloc the vfs hash bucket array and locks 796 */ 797 rvfs_list = kmem_zalloc(vfshsz * sizeof (rvfs_t), KM_SLEEP); 798 799 /* 800 * Call machine-dependent routine "rootconf" to choose a root 801 * file system type. 802 */ 803 if (rootconf()) 804 panic("vfs_mountroot: cannot mount root"); 805 /* 806 * Get vnode for '/'. Set up rootdir, u.u_rdir and u.u_cdir 807 * to point to it. These are used by lookuppn() so that it 808 * knows where to start from ('/' or '.'). 809 */ 810 vfs_setmntpoint(rootvfs, "/"); 811 if (VFS_ROOT(rootvfs, &rootdir)) 812 panic("vfs_mountroot: no root vnode"); 813 PTOU(curproc)->u_cdir = rootdir; 814 VN_HOLD(PTOU(curproc)->u_cdir); 815 PTOU(curproc)->u_rdir = NULL; 816 817 /* 818 * Setup the global zone's rootvp, now that it exists. 819 */ 820 global_zone->zone_rootvp = rootdir; 821 VN_HOLD(global_zone->zone_rootvp); 822 823 /* 824 * Notify the module code that it can begin using the 825 * root filesystem instead of the boot program's services. 826 */ 827 modrootloaded = 1; 828 /* 829 * Set up mnttab information for root 830 */ 831 vfs_setresource(rootvfs, rootfs.bo_name); 832 833 /* 834 * Notify cluster software that the root filesystem is available. 835 */ 836 clboot_mountroot(); 837 838 /* Now that we're all done with the root FS, set up its vopstats */ 839 if ((vswp = vfs_getvfsswbyvfsops(vfs_getops(rootvfs))) != NULL) { 840 /* Set flag for statistics collection */ 841 if (vswp->vsw_flag & VSW_STATS) { 842 initialize_vopstats(&rootvfs->vfs_vopstats); 843 rootvfs->vfs_flag |= VFS_STATS; 844 rootvfs->vfs_fstypevsp = 845 get_fstype_vopstats(rootvfs, vswp); 846 rootvfs->vfs_vskap = get_vskstat_anchor(rootvfs); 847 } 848 vfs_unrefvfssw(vswp); 849 } 850 851 /* 852 * Mount /devices, /dev instance 1, /system/contract, /etc/mnttab, 853 * /etc/svc/volatile, /system/object, and /proc. 854 */ 855 vfs_mountdevices(); 856 vfs_mountdev1(); 857 858 vfs_mountfs("ctfs", "ctfs", CTFS_ROOT); 859 vfs_mountfs("proc", "/proc", "/proc"); 860 vfs_mountfs("mntfs", "/etc/mnttab", "/etc/mnttab"); 861 vfs_mountfs("tmpfs", "/etc/svc/volatile", "/etc/svc/volatile"); 862 vfs_mountfs("objfs", "objfs", OBJFS_ROOT); 863 864 #ifdef __sparc 865 /* 866 * This bit of magic can go away when we convert sparc to 867 * the new boot architecture based on ramdisk. 868 * 869 * Booting off a mirrored root volume: 870 * At this point, we have booted and mounted root on a 871 * single component of the mirror. Complete the boot 872 * by configuring SVM and converting the root to the 873 * dev_t of the mirrored root device. This dev_t conversion 874 * only works because the underlying device doesn't change. 875 */ 876 if (root_is_svm) { 877 if (svm_rootconf()) { 878 panic("vfs_mountroot: cannot remount root"); 879 } 880 881 /* 882 * mnttab should reflect the new root device 883 */ 884 vfs_lock_wait(rootvfs); 885 vfs_setresource(rootvfs, rootfs.bo_name); 886 vfs_unlock(rootvfs); 887 } 888 #endif /* __sparc */ 889 890 /* 891 * Look up the root device via devfs so that a dv_node is 892 * created for it. The vnode is never VN_RELE()ed. 893 * We allocate more than MAXPATHLEN so that the 894 * buffer passed to i_ddi_prompath_to_devfspath() is 895 * exactly MAXPATHLEN (the function expects a buffer 896 * of that length). 897 */ 898 plen = strlen("/devices"); 899 path = kmem_alloc(plen + MAXPATHLEN, KM_SLEEP); 900 (void) strcpy(path, "/devices"); 901 902 if (i_ddi_prompath_to_devfspath(rootfs.bo_name, path + plen) 903 != DDI_SUCCESS || 904 lookupname(path, UIO_SYSSPACE, FOLLOW, NULLVPP, &rvp)) { 905 906 /* NUL terminate in case "path" has garbage */ 907 path[plen + MAXPATHLEN - 1] = '\0'; 908 #ifdef DEBUG 909 cmn_err(CE_WARN, "!Cannot lookup root device: %s", path); 910 #endif 911 } 912 kmem_free(path, plen + MAXPATHLEN); 913 } 914 915 /* 916 * If remount failed and we're in a zone we need to check for the zone 917 * root path and strip it before the call to vfs_setpath(). 918 * 919 * If strpath doesn't begin with the zone_rootpath the original 920 * strpath is returned unchanged. 921 */ 922 static const char * 923 stripzonepath(const char *strpath) 924 { 925 char *str1, *str2; 926 int i; 927 zone_t *zonep = curproc->p_zone; 928 929 if (zonep->zone_rootpath == NULL || strpath == NULL) { 930 return (NULL); 931 } 932 933 /* 934 * we check for the end of the string at one past the 935 * current position because the zone_rootpath always 936 * ends with "/" but we don't want to strip that off. 937 */ 938 str1 = zonep->zone_rootpath; 939 str2 = (char *)strpath; 940 ASSERT(str1[0] != '\0'); 941 for (i = 0; str1[i + 1] != '\0'; i++) { 942 if (str1[i] != str2[i]) 943 return ((char *)strpath); 944 } 945 return (&str2[i]); 946 } 947 948 /* 949 * Common mount code. Called from the system call entry point, from autofs, 950 * and from pxfs. 951 * 952 * Takes the effective file system type, mount arguments, the mount point 953 * vnode, flags specifying whether the mount is a remount and whether it 954 * should be entered into the vfs list, and credentials. Fills in its vfspp 955 * parameter with the mounted file system instance's vfs. 956 * 957 * Note that the effective file system type is specified as a string. It may 958 * be null, in which case it's determined from the mount arguments, and may 959 * differ from the type specified in the mount arguments; this is a hook to 960 * allow interposition when instantiating file system instances. 961 * 962 * The caller is responsible for releasing its own hold on the mount point 963 * vp (this routine does its own hold when necessary). 964 * Also note that for remounts, the mount point vp should be the vnode for 965 * the root of the file system rather than the vnode that the file system 966 * is mounted on top of. 967 */ 968 int 969 domount(char *fsname, struct mounta *uap, vnode_t *vp, struct cred *credp, 970 struct vfs **vfspp) 971 { 972 struct vfssw *vswp; 973 vfsops_t *vfsops; 974 struct vfs *vfsp; 975 struct vnode *bvp; 976 dev_t bdev = 0; 977 mntopts_t mnt_mntopts; 978 int error = 0; 979 int copyout_error = 0; 980 int ovflags; 981 char *opts = uap->optptr; 982 char *inargs = opts; 983 int optlen = uap->optlen; 984 int remount; 985 int rdonly; 986 int nbmand = 0; 987 int delmip = 0; 988 int addmip = 0; 989 int splice = ((uap->flags & MS_NOSPLICE) == 0); 990 int fromspace = (uap->flags & MS_SYSSPACE) ? 991 UIO_SYSSPACE : UIO_USERSPACE; 992 char *resource = NULL, *mountpt = NULL; 993 refstr_t *oldresource, *oldmntpt; 994 struct pathname pn, rpn; 995 vsk_anchor_t *vskap; 996 997 /* 998 * The v_flag value for the mount point vp is permanently set 999 * to VVFSLOCK so that no one bypasses the vn_vfs*locks routine 1000 * for mount point locking. 1001 */ 1002 mutex_enter(&vp->v_lock); 1003 vp->v_flag |= VVFSLOCK; 1004 mutex_exit(&vp->v_lock); 1005 1006 mnt_mntopts.mo_count = 0; 1007 /* 1008 * Find the ops vector to use to invoke the file system-specific mount 1009 * method. If the fsname argument is non-NULL, use it directly. 1010 * Otherwise, dig the file system type information out of the mount 1011 * arguments. 1012 * 1013 * A side effect is to hold the vfssw entry. 1014 * 1015 * Mount arguments can be specified in several ways, which are 1016 * distinguished by flag bit settings. The preferred way is to set 1017 * MS_OPTIONSTR, indicating an 8 argument mount with the file system 1018 * type supplied as a character string and the last two arguments 1019 * being a pointer to a character buffer and the size of the buffer. 1020 * On entry, the buffer holds a null terminated list of options; on 1021 * return, the string is the list of options the file system 1022 * recognized. If MS_DATA is set arguments five and six point to a 1023 * block of binary data which the file system interprets. 1024 * A further wrinkle is that some callers don't set MS_FSS and MS_DATA 1025 * consistently with these conventions. To handle them, we check to 1026 * see whether the pointer to the file system name has a numeric value 1027 * less than 256. If so, we treat it as an index. 1028 */ 1029 if (fsname != NULL) { 1030 if ((vswp = vfs_getvfssw(fsname)) == NULL) { 1031 return (EINVAL); 1032 } 1033 } else if (uap->flags & (MS_OPTIONSTR | MS_DATA | MS_FSS)) { 1034 size_t n; 1035 uint_t fstype; 1036 char name[FSTYPSZ]; 1037 1038 if ((fstype = (uintptr_t)uap->fstype) < 256) { 1039 RLOCK_VFSSW(); 1040 if (fstype == 0 || fstype >= nfstype || 1041 !ALLOCATED_VFSSW(&vfssw[fstype])) { 1042 RUNLOCK_VFSSW(); 1043 return (EINVAL); 1044 } 1045 (void) strcpy(name, vfssw[fstype].vsw_name); 1046 RUNLOCK_VFSSW(); 1047 if ((vswp = vfs_getvfssw(name)) == NULL) 1048 return (EINVAL); 1049 } else { 1050 /* 1051 * Handle either kernel or user address space. 1052 */ 1053 if (uap->flags & MS_SYSSPACE) { 1054 error = copystr(uap->fstype, name, 1055 FSTYPSZ, &n); 1056 } else { 1057 error = copyinstr(uap->fstype, name, 1058 FSTYPSZ, &n); 1059 } 1060 if (error) { 1061 if (error == ENAMETOOLONG) 1062 return (EINVAL); 1063 return (error); 1064 } 1065 if ((vswp = vfs_getvfssw(name)) == NULL) 1066 return (EINVAL); 1067 } 1068 } else { 1069 if ((vswp = vfs_getvfsswbyvfsops(vfs_getops(rootvfs))) == NULL) 1070 return (EINVAL); 1071 } 1072 if (!VFS_INSTALLED(vswp)) 1073 return (EINVAL); 1074 vfsops = &vswp->vsw_vfsops; 1075 1076 vfs_copyopttbl(&vswp->vsw_optproto, &mnt_mntopts); 1077 /* 1078 * Fetch mount options and parse them for generic vfs options 1079 */ 1080 if (uap->flags & MS_OPTIONSTR) { 1081 /* 1082 * Limit the buffer size 1083 */ 1084 if (optlen < 0 || optlen > MAX_MNTOPT_STR) { 1085 error = EINVAL; 1086 goto errout; 1087 } 1088 if ((uap->flags & MS_SYSSPACE) == 0) { 1089 inargs = kmem_alloc(MAX_MNTOPT_STR, KM_SLEEP); 1090 inargs[0] = '\0'; 1091 if (optlen) { 1092 error = copyinstr(opts, inargs, (size_t)optlen, 1093 NULL); 1094 if (error) { 1095 goto errout; 1096 } 1097 } 1098 } 1099 vfs_parsemntopts(&mnt_mntopts, inargs, 0); 1100 } 1101 /* 1102 * Flag bits override the options string. 1103 */ 1104 if (uap->flags & MS_REMOUNT) 1105 vfs_setmntopt_nolock(&mnt_mntopts, MNTOPT_REMOUNT, NULL, 0, 0); 1106 if (uap->flags & MS_RDONLY) 1107 vfs_setmntopt_nolock(&mnt_mntopts, MNTOPT_RO, NULL, 0, 0); 1108 if (uap->flags & MS_NOSUID) 1109 vfs_setmntopt_nolock(&mnt_mntopts, MNTOPT_NOSUID, NULL, 0, 0); 1110 1111 /* 1112 * Check if this is a remount; must be set in the option string and 1113 * the file system must support a remount option. 1114 */ 1115 if (remount = vfs_optionisset_nolock(&mnt_mntopts, 1116 MNTOPT_REMOUNT, NULL)) { 1117 if (!(vswp->vsw_flag & VSW_CANREMOUNT)) { 1118 error = ENOTSUP; 1119 goto errout; 1120 } 1121 uap->flags |= MS_REMOUNT; 1122 } 1123 1124 /* 1125 * uap->flags and vfs_optionisset() should agree. 1126 */ 1127 if (rdonly = vfs_optionisset_nolock(&mnt_mntopts, MNTOPT_RO, NULL)) { 1128 uap->flags |= MS_RDONLY; 1129 } 1130 if (vfs_optionisset_nolock(&mnt_mntopts, MNTOPT_NOSUID, NULL)) { 1131 uap->flags |= MS_NOSUID; 1132 } 1133 nbmand = vfs_optionisset_nolock(&mnt_mntopts, MNTOPT_NBMAND, NULL); 1134 ASSERT(splice || !remount); 1135 /* 1136 * If we are splicing the fs into the namespace, 1137 * perform mount point checks. 1138 * 1139 * We want to resolve the path for the mount point to eliminate 1140 * '.' and ".." and symlinks in mount points; we can't do the 1141 * same for the resource string, since it would turn 1142 * "/dev/dsk/c0t0d0s0" into "/devices/pci@...". We need to do 1143 * this before grabbing vn_vfswlock(), because otherwise we 1144 * would deadlock with lookuppn(). 1145 */ 1146 if (splice) { 1147 ASSERT(vp->v_count > 0); 1148 1149 /* 1150 * Pick up mount point and device from appropriate space. 1151 */ 1152 if (pn_get(uap->spec, fromspace, &pn) == 0) { 1153 resource = kmem_alloc(pn.pn_pathlen + 1, 1154 KM_SLEEP); 1155 (void) strcpy(resource, pn.pn_path); 1156 pn_free(&pn); 1157 } 1158 /* 1159 * Do a lookupname prior to taking the 1160 * writelock. Mark this as completed if 1161 * successful for later cleanup and addition to 1162 * the mount in progress table. 1163 */ 1164 if ((uap->flags & MS_GLOBAL) == 0 && 1165 lookupname(uap->spec, fromspace, 1166 FOLLOW, NULL, &bvp) == 0) { 1167 addmip = 1; 1168 } 1169 1170 if ((error = pn_get(uap->dir, fromspace, &pn)) == 0) { 1171 pathname_t *pnp; 1172 1173 if (*pn.pn_path != '/') { 1174 error = EINVAL; 1175 pn_free(&pn); 1176 goto errout; 1177 } 1178 pn_alloc(&rpn); 1179 /* 1180 * Kludge to prevent autofs from deadlocking with 1181 * itself when it calls domount(). 1182 * 1183 * If autofs is calling, it is because it is doing 1184 * (autofs) mounts in the process of an NFS mount. A 1185 * lookuppn() here would cause us to block waiting for 1186 * said NFS mount to complete, which can't since this 1187 * is the thread that was supposed to doing it. 1188 */ 1189 if (fromspace == UIO_USERSPACE) { 1190 if ((error = lookuppn(&pn, &rpn, FOLLOW, NULL, 1191 NULL)) == 0) { 1192 pnp = &rpn; 1193 } else { 1194 /* 1195 * The file disappeared or otherwise 1196 * became inaccessible since we opened 1197 * it; might as well fail the mount 1198 * since the mount point is no longer 1199 * accessible. 1200 */ 1201 pn_free(&rpn); 1202 pn_free(&pn); 1203 goto errout; 1204 } 1205 } else { 1206 pnp = &pn; 1207 } 1208 mountpt = kmem_alloc(pnp->pn_pathlen + 1, KM_SLEEP); 1209 (void) strcpy(mountpt, pnp->pn_path); 1210 1211 /* 1212 * If the addition of the zone's rootpath 1213 * would push us over a total path length 1214 * of MAXPATHLEN, we fail the mount with 1215 * ENAMETOOLONG, which is what we would have 1216 * gotten if we were trying to perform the same 1217 * mount in the global zone. 1218 * 1219 * strlen() doesn't count the trailing 1220 * '\0', but zone_rootpathlen counts both a 1221 * trailing '/' and the terminating '\0'. 1222 */ 1223 if ((curproc->p_zone->zone_rootpathlen - 1 + 1224 strlen(mountpt)) > MAXPATHLEN || 1225 (resource != NULL && 1226 (curproc->p_zone->zone_rootpathlen - 1 + 1227 strlen(resource)) > MAXPATHLEN)) { 1228 error = ENAMETOOLONG; 1229 } 1230 1231 pn_free(&rpn); 1232 pn_free(&pn); 1233 } 1234 1235 if (error) 1236 goto errout; 1237 1238 /* 1239 * Prevent path name resolution from proceeding past 1240 * the mount point. 1241 */ 1242 if (vn_vfswlock(vp) != 0) { 1243 error = EBUSY; 1244 goto errout; 1245 } 1246 1247 /* 1248 * Verify that it's legitimate to establish a mount on 1249 * the prospective mount point. 1250 */ 1251 if (vn_mountedvfs(vp) != NULL) { 1252 /* 1253 * The mount point lock was obtained after some 1254 * other thread raced through and established a mount. 1255 */ 1256 vn_vfsunlock(vp); 1257 error = EBUSY; 1258 goto errout; 1259 } 1260 if (vp->v_flag & VNOMOUNT) { 1261 vn_vfsunlock(vp); 1262 error = EINVAL; 1263 goto errout; 1264 } 1265 } 1266 if ((uap->flags & (MS_DATA | MS_OPTIONSTR)) == 0) { 1267 uap->dataptr = NULL; 1268 uap->datalen = 0; 1269 } 1270 1271 /* 1272 * If this is a remount, we don't want to create a new VFS. 1273 * Instead, we pass the existing one with a remount flag. 1274 */ 1275 if (remount) { 1276 /* 1277 * Confirm that the mount point is the root vnode of the 1278 * file system that is being remounted. 1279 * This can happen if the user specifies a different 1280 * mount point directory pathname in the (re)mount command. 1281 * 1282 * Code below can only be reached if splice is true, so it's 1283 * safe to do vn_vfsunlock() here. 1284 */ 1285 if ((vp->v_flag & VROOT) == 0) { 1286 vn_vfsunlock(vp); 1287 error = ENOENT; 1288 goto errout; 1289 } 1290 /* 1291 * Disallow making file systems read-only unless file system 1292 * explicitly allows it in its vfssw. Ignore other flags. 1293 */ 1294 if (rdonly && vn_is_readonly(vp) == 0 && 1295 (vswp->vsw_flag & VSW_CANRWRO) == 0) { 1296 vn_vfsunlock(vp); 1297 error = EINVAL; 1298 goto errout; 1299 } 1300 /* 1301 * Changing the NBMAND setting on remounts is permitted 1302 * but logged since it can lead to unexpected behavior. 1303 * We also counsel against using it for / and /usr. 1304 */ 1305 if ((nbmand && ((vp->v_vfsp->vfs_flag & VFS_NBMAND) == 0)) || 1306 (!nbmand && (vp->v_vfsp->vfs_flag & VFS_NBMAND))) { 1307 cmn_err(CE_WARN, "domount: nbmand turned %s via " 1308 "remounting %s", nbmand ? "on" : "off", 1309 refstr_value(vp->v_vfsp->vfs_mntpt)); 1310 } 1311 vfsp = vp->v_vfsp; 1312 ovflags = vfsp->vfs_flag; 1313 vfsp->vfs_flag |= VFS_REMOUNT; 1314 vfsp->vfs_flag &= ~VFS_RDONLY; 1315 } else { 1316 vfsp = kmem_alloc(sizeof (vfs_t), KM_SLEEP); 1317 VFS_INIT(vfsp, vfsops, NULL); 1318 } 1319 1320 VFS_HOLD(vfsp); 1321 1322 /* 1323 * The vfs_reflock is not used anymore the code below explicitly 1324 * holds it preventing others accesing it directly. 1325 */ 1326 if ((sema_tryp(&vfsp->vfs_reflock) == 0) && 1327 !(vfsp->vfs_flag & VFS_REMOUNT)) 1328 cmn_err(CE_WARN, 1329 "mount type %s couldn't get vfs_reflock", vswp->vsw_name); 1330 1331 /* 1332 * Lock the vfs. If this is a remount we want to avoid spurious umount 1333 * failures that happen as a side-effect of fsflush() and other mount 1334 * and unmount operations that might be going on simultaneously and 1335 * may have locked the vfs currently. To not return EBUSY immediately 1336 * here we use vfs_lock_wait() instead vfs_lock() for the remount case. 1337 */ 1338 if (!remount) { 1339 if (error = vfs_lock(vfsp)) { 1340 vfsp->vfs_flag = ovflags; 1341 if (splice) 1342 vn_vfsunlock(vp); 1343 if (vfsp->vfs_implp) 1344 vfsimpl_teardown(vfsp); 1345 kmem_free(vfsp, sizeof (struct vfs)); 1346 goto errout; 1347 } 1348 } else { 1349 vfs_lock_wait(vfsp); 1350 } 1351 1352 /* 1353 * Add device to mount in progress table, global mounts require special 1354 * handling. It is possible that we have already done the lookupname 1355 * on a spliced, non-global fs. If so, we don't want to do it again 1356 * since we cannot do a lookupname after taking the 1357 * wlock above. This case is for a non-spliced, non-global filesystem. 1358 */ 1359 if (!addmip) { 1360 if ((uap->flags & MS_GLOBAL) == 0 && 1361 lookupname(uap->spec, fromspace, FOLLOW, NULL, &bvp) == 0) { 1362 addmip = 1; 1363 } 1364 } 1365 1366 if (addmip) { 1367 bdev = bvp->v_rdev; 1368 VN_RELE(bvp); 1369 vfs_addmip(bdev, vfsp); 1370 addmip = 0; 1371 delmip = 1; 1372 } 1373 /* 1374 * Invalidate cached entry for the mount point. 1375 */ 1376 if (splice) 1377 dnlc_purge_vp(vp); 1378 1379 /* 1380 * If have an option string but the filesystem doesn't supply a 1381 * prototype options table, create a table with the global 1382 * options and sufficient room to accept all the options in the 1383 * string. Then parse the passed in option string 1384 * accepting all the options in the string. This gives us an 1385 * option table with all the proper cancel properties for the 1386 * global options. 1387 * 1388 * Filesystems that supply a prototype options table are handled 1389 * earlier in this function. 1390 */ 1391 if (uap->flags & MS_OPTIONSTR) { 1392 if (!(vswp->vsw_flag & VSW_HASPROTO)) { 1393 mntopts_t tmp_mntopts; 1394 1395 tmp_mntopts.mo_count = 0; 1396 vfs_createopttbl_extend(&tmp_mntopts, inargs, 1397 &mnt_mntopts); 1398 vfs_parsemntopts(&tmp_mntopts, inargs, 1); 1399 vfs_swapopttbl_nolock(&mnt_mntopts, &tmp_mntopts); 1400 vfs_freeopttbl(&tmp_mntopts); 1401 } 1402 } 1403 1404 /* 1405 * Serialize with zone creations. 1406 */ 1407 mount_in_progress(); 1408 /* 1409 * Instantiate (or reinstantiate) the file system. If appropriate, 1410 * splice it into the file system name space. 1411 * 1412 * We want VFS_MOUNT() to be able to override the vfs_resource 1413 * string if necessary (ie, mntfs), and also for a remount to 1414 * change the same (necessary when remounting '/' during boot). 1415 * So we set up vfs_mntpt and vfs_resource to what we think they 1416 * should be, then hand off control to VFS_MOUNT() which can 1417 * override this. 1418 * 1419 * For safety's sake, when changing vfs_resource or vfs_mntpt of 1420 * a vfs which is on the vfs list (i.e. during a remount), we must 1421 * never set those fields to NULL. Several bits of code make 1422 * assumptions that the fields are always valid. 1423 */ 1424 vfs_swapopttbl(&mnt_mntopts, &vfsp->vfs_mntopts); 1425 if (remount) { 1426 if ((oldresource = vfsp->vfs_resource) != NULL) 1427 refstr_hold(oldresource); 1428 if ((oldmntpt = vfsp->vfs_mntpt) != NULL) 1429 refstr_hold(oldmntpt); 1430 } 1431 vfs_setresource(vfsp, resource); 1432 vfs_setmntpoint(vfsp, mountpt); 1433 1434 error = VFS_MOUNT(vfsp, vp, uap, credp); 1435 1436 if (uap->flags & MS_RDONLY) 1437 vfs_setmntopt(vfsp, MNTOPT_RO, NULL, 0); 1438 if (uap->flags & MS_NOSUID) 1439 vfs_setmntopt(vfsp, MNTOPT_NOSUID, NULL, 0); 1440 if (uap->flags & MS_GLOBAL) 1441 vfs_setmntopt(vfsp, MNTOPT_GLOBAL, NULL, 0); 1442 1443 if (error) { 1444 if (remount) { 1445 /* put back pre-remount options */ 1446 vfs_swapopttbl(&mnt_mntopts, &vfsp->vfs_mntopts); 1447 vfs_setmntpoint(vfsp, (stripzonepath( 1448 refstr_value(oldmntpt)))); 1449 if (oldmntpt) 1450 refstr_rele(oldmntpt); 1451 vfs_setresource(vfsp, (stripzonepath( 1452 refstr_value(oldresource)))); 1453 if (oldresource) 1454 refstr_rele(oldresource); 1455 vfsp->vfs_flag = ovflags; 1456 vfs_unlock(vfsp); 1457 VFS_RELE(vfsp); 1458 } else { 1459 vfs_unlock(vfsp); 1460 vfs_freemnttab(vfsp); 1461 if (vfsp->vfs_implp) 1462 vfsimpl_teardown(vfsp); 1463 kmem_free(vfsp, sizeof (struct vfs)); 1464 } 1465 } else { 1466 /* 1467 * Set the mount time to now 1468 */ 1469 vfsp->vfs_mtime = ddi_get_time(); 1470 if (remount) { 1471 vfsp->vfs_flag &= ~VFS_REMOUNT; 1472 if (oldresource) 1473 refstr_rele(oldresource); 1474 if (oldmntpt) 1475 refstr_rele(oldmntpt); 1476 } else if (splice) { 1477 /* 1478 * Link vfsp into the name space at the mount 1479 * point. Vfs_add() is responsible for 1480 * holding the mount point which will be 1481 * released when vfs_remove() is called. 1482 */ 1483 vfs_add(vp, vfsp, uap->flags); 1484 } else { 1485 /* 1486 * Hold the reference to file system which is 1487 * not linked into the name space. 1488 */ 1489 vfsp->vfs_zone = NULL; 1490 VFS_HOLD(vfsp); 1491 vfsp->vfs_vnodecovered = NULL; 1492 } 1493 /* 1494 * Set flags for global options encountered 1495 */ 1496 if (vfs_optionisset(vfsp, MNTOPT_RO, NULL)) 1497 vfsp->vfs_flag |= VFS_RDONLY; 1498 else 1499 vfsp->vfs_flag &= ~VFS_RDONLY; 1500 if (vfs_optionisset(vfsp, MNTOPT_NOSUID, NULL)) { 1501 vfsp->vfs_flag |= (VFS_NOSETUID|VFS_NODEVICES); 1502 } else { 1503 if (vfs_optionisset(vfsp, MNTOPT_NODEVICES, NULL)) 1504 vfsp->vfs_flag |= VFS_NODEVICES; 1505 else 1506 vfsp->vfs_flag &= ~VFS_NODEVICES; 1507 if (vfs_optionisset(vfsp, MNTOPT_NOSETUID, NULL)) 1508 vfsp->vfs_flag |= VFS_NOSETUID; 1509 else 1510 vfsp->vfs_flag &= ~VFS_NOSETUID; 1511 } 1512 if (vfs_optionisset(vfsp, MNTOPT_NBMAND, NULL)) 1513 vfsp->vfs_flag |= VFS_NBMAND; 1514 else 1515 vfsp->vfs_flag &= ~VFS_NBMAND; 1516 1517 if (vfs_optionisset(vfsp, MNTOPT_XATTR, NULL)) 1518 vfsp->vfs_flag |= VFS_XATTR; 1519 else 1520 vfsp->vfs_flag &= ~VFS_XATTR; 1521 1522 if (vfs_optionisset(vfsp, MNTOPT_NOEXEC, NULL)) 1523 vfsp->vfs_flag |= VFS_NOEXEC; 1524 else 1525 vfsp->vfs_flag &= ~VFS_NOEXEC; 1526 1527 /* 1528 * Now construct the output option string of options 1529 * we recognized. 1530 */ 1531 if (uap->flags & MS_OPTIONSTR) { 1532 vfs_list_read_lock(); 1533 copyout_error = vfs_buildoptionstr( 1534 &vfsp->vfs_mntopts, inargs, optlen); 1535 vfs_list_unlock(); 1536 if (copyout_error == 0 && 1537 (uap->flags & MS_SYSSPACE) == 0) { 1538 copyout_error = copyoutstr(inargs, opts, 1539 optlen, NULL); 1540 } 1541 } 1542 1543 /* 1544 * If this isn't a remount, set up the vopstats before 1545 * anyone can touch this. We only allow spliced file 1546 * systems (file systems which are in the namespace) to 1547 * have the VFS_STATS flag set. 1548 * NOTE: PxFS mounts the underlying file system with 1549 * MS_NOSPLICE set and copies those vfs_flags to its private 1550 * vfs structure. As a result, PxFS should never have 1551 * the VFS_STATS flag or else we might access the vfs 1552 * statistics-related fields prior to them being 1553 * properly initialized. 1554 */ 1555 if (!remount && (vswp->vsw_flag & VSW_STATS) && splice) { 1556 initialize_vopstats(&vfsp->vfs_vopstats); 1557 /* 1558 * We need to set vfs_vskap to NULL because there's 1559 * a chance it won't be set below. This is checked 1560 * in teardown_vopstats() so we can't have garbage. 1561 */ 1562 vfsp->vfs_vskap = NULL; 1563 vfsp->vfs_flag |= VFS_STATS; 1564 vfsp->vfs_fstypevsp = get_fstype_vopstats(vfsp, vswp); 1565 } 1566 1567 vfs_unlock(vfsp); 1568 } 1569 mount_completed(); 1570 if (splice) 1571 vn_vfsunlock(vp); 1572 1573 if ((error == 0) && (copyout_error == 0)) { 1574 if (!remount) { 1575 /* 1576 * Don't call get_vskstat_anchor() while holding 1577 * locks since it allocates memory and calls 1578 * VFS_STATVFS(). For NFS, the latter can generate 1579 * an over-the-wire call. 1580 */ 1581 vskap = get_vskstat_anchor(vfsp); 1582 /* Only take the lock if we have something to do */ 1583 if (vskap != NULL) { 1584 vfs_lock_wait(vfsp); 1585 if (vfsp->vfs_flag & VFS_STATS) { 1586 vfsp->vfs_vskap = vskap; 1587 } 1588 vfs_unlock(vfsp); 1589 } 1590 } 1591 /* Return vfsp to caller. */ 1592 *vfspp = vfsp; 1593 } 1594 errout: 1595 vfs_freeopttbl(&mnt_mntopts); 1596 if (resource != NULL) 1597 kmem_free(resource, strlen(resource) + 1); 1598 if (mountpt != NULL) 1599 kmem_free(mountpt, strlen(mountpt) + 1); 1600 /* 1601 * It is possible we errored prior to adding to mount in progress 1602 * table. Must free vnode we acquired with successful lookupname. 1603 */ 1604 if (addmip) 1605 VN_RELE(bvp); 1606 if (delmip) 1607 vfs_delmip(vfsp); 1608 ASSERT(vswp != NULL); 1609 vfs_unrefvfssw(vswp); 1610 if (inargs != opts) 1611 kmem_free(inargs, MAX_MNTOPT_STR); 1612 if (copyout_error) { 1613 VFS_RELE(vfsp); 1614 error = copyout_error; 1615 } 1616 return (error); 1617 } 1618 1619 static void 1620 vfs_setpath(struct vfs *vfsp, refstr_t **refp, const char *newpath) 1621 { 1622 size_t len; 1623 refstr_t *ref; 1624 zone_t *zone = curproc->p_zone; 1625 char *sp; 1626 int have_list_lock = 0; 1627 1628 ASSERT(!VFS_ON_LIST(vfsp) || vfs_lock_held(vfsp)); 1629 1630 /* 1631 * New path must be less than MAXPATHLEN because mntfs 1632 * will only display up to MAXPATHLEN bytes. This is currently 1633 * safe, because domount() uses pn_get(), and other callers 1634 * similarly cap the size to fewer than MAXPATHLEN bytes. 1635 */ 1636 1637 ASSERT(strlen(newpath) < MAXPATHLEN); 1638 1639 /* mntfs requires consistency while vfs list lock is held */ 1640 1641 if (VFS_ON_LIST(vfsp)) { 1642 have_list_lock = 1; 1643 vfs_list_lock(); 1644 } 1645 1646 if (*refp != NULL) 1647 refstr_rele(*refp); 1648 1649 /* Do we need to modify the path? */ 1650 1651 if (zone == global_zone || *newpath != '/') { 1652 ref = refstr_alloc(newpath); 1653 goto out; 1654 } 1655 1656 /* 1657 * Truncate the trailing '/' in the zoneroot, and merge 1658 * in the zone's rootpath with the "newpath" (resource 1659 * or mountpoint) passed in. 1660 * 1661 * The size of the required buffer is thus the size of 1662 * the buffer required for the passed-in newpath 1663 * (strlen(newpath) + 1), plus the size of the buffer 1664 * required to hold zone_rootpath (zone_rootpathlen) 1665 * minus one for one of the now-superfluous NUL 1666 * terminations, minus one for the trailing '/'. 1667 * 1668 * That gives us: 1669 * 1670 * (strlen(newpath) + 1) + zone_rootpathlen - 1 - 1 1671 * 1672 * Which is what we have below. 1673 */ 1674 1675 len = strlen(newpath) + zone->zone_rootpathlen - 1; 1676 sp = kmem_alloc(len, KM_SLEEP); 1677 1678 /* 1679 * Copy everything including the trailing slash, which 1680 * we then overwrite with the NUL character. 1681 */ 1682 1683 (void) strcpy(sp, zone->zone_rootpath); 1684 sp[zone->zone_rootpathlen - 2] = '\0'; 1685 (void) strcat(sp, newpath); 1686 1687 ref = refstr_alloc(sp); 1688 kmem_free(sp, len); 1689 out: 1690 *refp = ref; 1691 1692 if (have_list_lock) { 1693 vfs_mnttab_modtimeupd(); 1694 vfs_list_unlock(); 1695 } 1696 } 1697 1698 /* 1699 * Record a mounted resource name in a vfs structure. 1700 * If vfsp is already mounted, caller must hold the vfs lock. 1701 */ 1702 void 1703 vfs_setresource(struct vfs *vfsp, const char *resource) 1704 { 1705 if (resource == NULL || resource[0] == '\0') 1706 resource = VFS_NORESOURCE; 1707 vfs_setpath(vfsp, &vfsp->vfs_resource, resource); 1708 } 1709 1710 /* 1711 * Record a mount point name in a vfs structure. 1712 * If vfsp is already mounted, caller must hold the vfs lock. 1713 */ 1714 void 1715 vfs_setmntpoint(struct vfs *vfsp, const char *mntpt) 1716 { 1717 if (mntpt == NULL || mntpt[0] == '\0') 1718 mntpt = VFS_NOMNTPT; 1719 vfs_setpath(vfsp, &vfsp->vfs_mntpt, mntpt); 1720 } 1721 1722 /* Returns the vfs_resource. Caller must call refstr_rele() when finished. */ 1723 1724 refstr_t * 1725 vfs_getresource(const struct vfs *vfsp) 1726 { 1727 refstr_t *resource; 1728 1729 vfs_list_read_lock(); 1730 resource = vfsp->vfs_resource; 1731 refstr_hold(resource); 1732 vfs_list_unlock(); 1733 1734 return (resource); 1735 } 1736 1737 /* Returns the vfs_mntpt. Caller must call refstr_rele() when finished. */ 1738 1739 refstr_t * 1740 vfs_getmntpoint(const struct vfs *vfsp) 1741 { 1742 refstr_t *mntpt; 1743 1744 vfs_list_read_lock(); 1745 mntpt = vfsp->vfs_mntpt; 1746 refstr_hold(mntpt); 1747 vfs_list_unlock(); 1748 1749 return (mntpt); 1750 } 1751 1752 /* 1753 * Create an empty options table with enough empty slots to hold all 1754 * The options in the options string passed as an argument. 1755 * Potentially prepend another options table. 1756 * 1757 * Note: caller is responsible for locking the vfs list, if needed, 1758 * to protect mops. 1759 */ 1760 static void 1761 vfs_createopttbl_extend(mntopts_t *mops, const char *opts, 1762 const mntopts_t *mtmpl) 1763 { 1764 const char *s = opts; 1765 uint_t count; 1766 1767 if (opts == NULL || *opts == '\0') { 1768 count = 0; 1769 } else { 1770 count = 1; 1771 1772 /* 1773 * Count number of options in the string 1774 */ 1775 for (s = strchr(s, ','); s != NULL; s = strchr(s, ',')) { 1776 count++; 1777 s++; 1778 } 1779 } 1780 vfs_copyopttbl_extend(mtmpl, mops, count); 1781 } 1782 1783 /* 1784 * Create an empty options table with enough empty slots to hold all 1785 * The options in the options string passed as an argument. 1786 * 1787 * This function is *not* for general use by filesystems. 1788 * 1789 * Note: caller is responsible for locking the vfs list, if needed, 1790 * to protect mops. 1791 */ 1792 void 1793 vfs_createopttbl(mntopts_t *mops, const char *opts) 1794 { 1795 vfs_createopttbl_extend(mops, opts, NULL); 1796 } 1797 1798 1799 /* 1800 * Swap two mount options tables 1801 */ 1802 static void 1803 vfs_swapopttbl_nolock(mntopts_t *optbl1, mntopts_t *optbl2) 1804 { 1805 uint_t tmpcnt; 1806 mntopt_t *tmplist; 1807 1808 tmpcnt = optbl2->mo_count; 1809 tmplist = optbl2->mo_list; 1810 optbl2->mo_count = optbl1->mo_count; 1811 optbl2->mo_list = optbl1->mo_list; 1812 optbl1->mo_count = tmpcnt; 1813 optbl1->mo_list = tmplist; 1814 } 1815 1816 static void 1817 vfs_swapopttbl(mntopts_t *optbl1, mntopts_t *optbl2) 1818 { 1819 vfs_list_lock(); 1820 vfs_swapopttbl_nolock(optbl1, optbl2); 1821 vfs_mnttab_modtimeupd(); 1822 vfs_list_unlock(); 1823 } 1824 1825 static char ** 1826 vfs_copycancelopt_extend(char **const moc, int extend) 1827 { 1828 int i = 0; 1829 int j; 1830 char **result; 1831 1832 if (moc != NULL) { 1833 for (; moc[i] != NULL; i++) 1834 /* count number of options to cancel */; 1835 } 1836 1837 if (i + extend == 0) 1838 return (NULL); 1839 1840 result = kmem_alloc((i + extend + 1) * sizeof (char *), KM_SLEEP); 1841 1842 for (j = 0; j < i; j++) { 1843 result[j] = kmem_alloc(strlen(moc[j]) + 1, KM_SLEEP); 1844 (void) strcpy(result[j], moc[j]); 1845 } 1846 for (; j <= i + extend; j++) 1847 result[j] = NULL; 1848 1849 return (result); 1850 } 1851 1852 static void 1853 vfs_copyopt(const mntopt_t *s, mntopt_t *d) 1854 { 1855 char *sp, *dp; 1856 1857 d->mo_flags = s->mo_flags; 1858 d->mo_data = s->mo_data; 1859 sp = s->mo_name; 1860 if (sp != NULL) { 1861 dp = kmem_alloc(strlen(sp) + 1, KM_SLEEP); 1862 (void) strcpy(dp, sp); 1863 d->mo_name = dp; 1864 } else { 1865 d->mo_name = NULL; /* should never happen */ 1866 } 1867 1868 d->mo_cancel = vfs_copycancelopt_extend(s->mo_cancel, 0); 1869 1870 sp = s->mo_arg; 1871 if (sp != NULL) { 1872 dp = kmem_alloc(strlen(sp) + 1, KM_SLEEP); 1873 (void) strcpy(dp, sp); 1874 d->mo_arg = dp; 1875 } else { 1876 d->mo_arg = NULL; 1877 } 1878 } 1879 1880 /* 1881 * Copy a mount options table, possibly allocating some spare 1882 * slots at the end. It is permissible to copy_extend the NULL table. 1883 */ 1884 static void 1885 vfs_copyopttbl_extend(const mntopts_t *smo, mntopts_t *dmo, int extra) 1886 { 1887 uint_t i, count; 1888 mntopt_t *motbl; 1889 1890 /* 1891 * Clear out any existing stuff in the options table being initialized 1892 */ 1893 vfs_freeopttbl(dmo); 1894 count = (smo == NULL) ? 0 : smo->mo_count; 1895 if ((count + extra) == 0) /* nothing to do */ 1896 return; 1897 dmo->mo_count = count + extra; 1898 motbl = kmem_zalloc((count + extra) * sizeof (mntopt_t), KM_SLEEP); 1899 dmo->mo_list = motbl; 1900 for (i = 0; i < count; i++) { 1901 vfs_copyopt(&smo->mo_list[i], &motbl[i]); 1902 } 1903 for (i = count; i < count + extra; i++) { 1904 motbl[i].mo_flags = MO_EMPTY; 1905 } 1906 } 1907 1908 /* 1909 * Copy a mount options table. 1910 * 1911 * This function is *not* for general use by filesystems. 1912 * 1913 * Note: caller is responsible for locking the vfs list, if needed, 1914 * to protect smo and dmo. 1915 */ 1916 void 1917 vfs_copyopttbl(const mntopts_t *smo, mntopts_t *dmo) 1918 { 1919 vfs_copyopttbl_extend(smo, dmo, 0); 1920 } 1921 1922 static char ** 1923 vfs_mergecancelopts(const mntopt_t *mop1, const mntopt_t *mop2) 1924 { 1925 int c1 = 0; 1926 int c2 = 0; 1927 char **result; 1928 char **sp1, **sp2, **dp; 1929 1930 /* 1931 * First we count both lists of cancel options. 1932 * If either is NULL or has no elements, we return a copy of 1933 * the other. 1934 */ 1935 if (mop1->mo_cancel != NULL) { 1936 for (; mop1->mo_cancel[c1] != NULL; c1++) 1937 /* count cancel options in mop1 */; 1938 } 1939 1940 if (c1 == 0) 1941 return (vfs_copycancelopt_extend(mop2->mo_cancel, 0)); 1942 1943 if (mop2->mo_cancel != NULL) { 1944 for (; mop2->mo_cancel[c2] != NULL; c2++) 1945 /* count cancel options in mop2 */; 1946 } 1947 1948 result = vfs_copycancelopt_extend(mop1->mo_cancel, c2); 1949 1950 if (c2 == 0) 1951 return (result); 1952 1953 /* 1954 * When we get here, we've got two sets of cancel options; 1955 * we need to merge the two sets. We know that the result 1956 * array has "c1+c2+1" entries and in the end we might shrink 1957 * it. 1958 * Result now has a copy of the c1 entries from mop1; we'll 1959 * now lookup all the entries of mop2 in mop1 and copy it if 1960 * it is unique. 1961 * This operation is O(n^2) but it's only called once per 1962 * filesystem per duplicate option. This is a situation 1963 * which doesn't arise with the filesystems in ON and 1964 * n is generally 1. 1965 */ 1966 1967 dp = &result[c1]; 1968 for (sp2 = mop2->mo_cancel; *sp2 != NULL; sp2++) { 1969 for (sp1 = mop1->mo_cancel; *sp1 != NULL; sp1++) { 1970 if (strcmp(*sp1, *sp2) == 0) 1971 break; 1972 } 1973 if (*sp1 == NULL) { 1974 /* 1975 * Option *sp2 not found in mop1, so copy it. 1976 * The calls to vfs_copycancelopt_extend() 1977 * guarantee that there's enough room. 1978 */ 1979 *dp = kmem_alloc(strlen(*sp2) + 1, KM_SLEEP); 1980 (void) strcpy(*dp++, *sp2); 1981 } 1982 } 1983 if (dp != &result[c1+c2]) { 1984 size_t bytes = (dp - result + 1) * sizeof (char *); 1985 char **nres = kmem_alloc(bytes, KM_SLEEP); 1986 1987 bcopy(result, nres, bytes); 1988 kmem_free(result, (c1 + c2 + 1) * sizeof (char *)); 1989 result = nres; 1990 } 1991 return (result); 1992 } 1993 1994 /* 1995 * Merge two mount option tables (outer and inner) into one. This is very 1996 * similar to "merging" global variables and automatic variables in C. 1997 * 1998 * This isn't (and doesn't have to be) fast. 1999 * 2000 * This function is *not* for general use by filesystems. 2001 * 2002 * Note: caller is responsible for locking the vfs list, if needed, 2003 * to protect omo, imo & dmo. 2004 */ 2005 void 2006 vfs_mergeopttbl(const mntopts_t *omo, const mntopts_t *imo, mntopts_t *dmo) 2007 { 2008 uint_t i, count; 2009 mntopt_t *mop, *motbl; 2010 uint_t freeidx; 2011 2012 /* 2013 * First determine how much space we need to allocate. 2014 */ 2015 count = omo->mo_count; 2016 for (i = 0; i < imo->mo_count; i++) { 2017 if (imo->mo_list[i].mo_flags & MO_EMPTY) 2018 continue; 2019 if (vfs_hasopt(omo, imo->mo_list[i].mo_name) == NULL) 2020 count++; 2021 } 2022 ASSERT(count >= omo->mo_count && 2023 count <= omo->mo_count + imo->mo_count); 2024 motbl = kmem_alloc(count * sizeof (mntopt_t), KM_SLEEP); 2025 for (i = 0; i < omo->mo_count; i++) 2026 vfs_copyopt(&omo->mo_list[i], &motbl[i]); 2027 freeidx = omo->mo_count; 2028 for (i = 0; i < imo->mo_count; i++) { 2029 if (imo->mo_list[i].mo_flags & MO_EMPTY) 2030 continue; 2031 if ((mop = vfs_hasopt(omo, imo->mo_list[i].mo_name)) != NULL) { 2032 char **newcanp; 2033 uint_t index = mop - omo->mo_list; 2034 2035 newcanp = vfs_mergecancelopts(mop, &motbl[index]); 2036 2037 vfs_freeopt(&motbl[index]); 2038 vfs_copyopt(&imo->mo_list[i], &motbl[index]); 2039 2040 vfs_freecancelopt(motbl[index].mo_cancel); 2041 motbl[index].mo_cancel = newcanp; 2042 } else { 2043 /* 2044 * If it's a new option, just copy it over to the first 2045 * free location. 2046 */ 2047 vfs_copyopt(&imo->mo_list[i], &motbl[freeidx++]); 2048 } 2049 } 2050 dmo->mo_count = count; 2051 dmo->mo_list = motbl; 2052 } 2053 2054 /* 2055 * Functions to set and clear mount options in a mount options table. 2056 */ 2057 2058 /* 2059 * Clear a mount option, if it exists. 2060 * 2061 * The update_mnttab arg indicates whether mops is part of a vfs that is on 2062 * the vfs list. 2063 */ 2064 static void 2065 vfs_clearmntopt_nolock(mntopts_t *mops, const char *opt, int update_mnttab) 2066 { 2067 struct mntopt *mop; 2068 uint_t i, count; 2069 2070 ASSERT(!update_mnttab || RW_WRITE_HELD(&vfslist)); 2071 2072 count = mops->mo_count; 2073 for (i = 0; i < count; i++) { 2074 mop = &mops->mo_list[i]; 2075 2076 if (mop->mo_flags & MO_EMPTY) 2077 continue; 2078 if (strcmp(opt, mop->mo_name)) 2079 continue; 2080 mop->mo_flags &= ~MO_SET; 2081 if (mop->mo_arg != NULL) { 2082 kmem_free(mop->mo_arg, strlen(mop->mo_arg) + 1); 2083 } 2084 mop->mo_arg = NULL; 2085 if (update_mnttab) 2086 vfs_mnttab_modtimeupd(); 2087 break; 2088 } 2089 } 2090 2091 void 2092 vfs_clearmntopt(struct vfs *vfsp, const char *opt) 2093 { 2094 int gotlock = 0; 2095 2096 if (VFS_ON_LIST(vfsp)) { 2097 gotlock = 1; 2098 vfs_list_lock(); 2099 } 2100 vfs_clearmntopt_nolock(&vfsp->vfs_mntopts, opt, gotlock); 2101 if (gotlock) 2102 vfs_list_unlock(); 2103 } 2104 2105 2106 /* 2107 * Set a mount option on. If it's not found in the table, it's silently 2108 * ignored. If the option has MO_IGNORE set, it is still set unless the 2109 * VFS_NOFORCEOPT bit is set in the flags. Also, VFS_DISPLAY/VFS_NODISPLAY flag 2110 * bits can be used to toggle the MO_NODISPLAY bit for the option. 2111 * If the VFS_CREATEOPT flag bit is set then the first option slot with 2112 * MO_EMPTY set is created as the option passed in. 2113 * 2114 * The update_mnttab arg indicates whether mops is part of a vfs that is on 2115 * the vfs list. 2116 */ 2117 static void 2118 vfs_setmntopt_nolock(mntopts_t *mops, const char *opt, 2119 const char *arg, int flags, int update_mnttab) 2120 { 2121 mntopt_t *mop; 2122 uint_t i, count; 2123 char *sp; 2124 2125 ASSERT(!update_mnttab || RW_WRITE_HELD(&vfslist)); 2126 2127 if (flags & VFS_CREATEOPT) { 2128 if (vfs_hasopt(mops, opt) != NULL) { 2129 flags &= ~VFS_CREATEOPT; 2130 } 2131 } 2132 count = mops->mo_count; 2133 for (i = 0; i < count; i++) { 2134 mop = &mops->mo_list[i]; 2135 2136 if (mop->mo_flags & MO_EMPTY) { 2137 if ((flags & VFS_CREATEOPT) == 0) 2138 continue; 2139 sp = kmem_alloc(strlen(opt) + 1, KM_SLEEP); 2140 (void) strcpy(sp, opt); 2141 mop->mo_name = sp; 2142 if (arg != NULL) 2143 mop->mo_flags = MO_HASVALUE; 2144 else 2145 mop->mo_flags = 0; 2146 } else if (strcmp(opt, mop->mo_name)) { 2147 continue; 2148 } 2149 if ((mop->mo_flags & MO_IGNORE) && (flags & VFS_NOFORCEOPT)) 2150 break; 2151 if (arg != NULL && (mop->mo_flags & MO_HASVALUE) != 0) { 2152 sp = kmem_alloc(strlen(arg) + 1, KM_SLEEP); 2153 (void) strcpy(sp, arg); 2154 } else { 2155 sp = NULL; 2156 } 2157 if (mop->mo_arg != NULL) 2158 kmem_free(mop->mo_arg, strlen(mop->mo_arg) + 1); 2159 mop->mo_arg = sp; 2160 if (flags & VFS_DISPLAY) 2161 mop->mo_flags &= ~MO_NODISPLAY; 2162 if (flags & VFS_NODISPLAY) 2163 mop->mo_flags |= MO_NODISPLAY; 2164 mop->mo_flags |= MO_SET; 2165 if (mop->mo_cancel != NULL) { 2166 char **cp; 2167 2168 for (cp = mop->mo_cancel; *cp != NULL; cp++) 2169 vfs_clearmntopt_nolock(mops, *cp, 0); 2170 } 2171 if (update_mnttab) 2172 vfs_mnttab_modtimeupd(); 2173 break; 2174 } 2175 } 2176 2177 void 2178 vfs_setmntopt(struct vfs *vfsp, const char *opt, const char *arg, int flags) 2179 { 2180 int gotlock = 0; 2181 2182 if (VFS_ON_LIST(vfsp)) { 2183 gotlock = 1; 2184 vfs_list_lock(); 2185 } 2186 vfs_setmntopt_nolock(&vfsp->vfs_mntopts, opt, arg, flags, gotlock); 2187 if (gotlock) 2188 vfs_list_unlock(); 2189 } 2190 2191 2192 /* 2193 * Add a "tag" option to a mounted file system's options list. 2194 * 2195 * Note: caller is responsible for locking the vfs list, if needed, 2196 * to protect mops. 2197 */ 2198 static mntopt_t * 2199 vfs_addtag(mntopts_t *mops, const char *tag) 2200 { 2201 uint_t count; 2202 mntopt_t *mop, *motbl; 2203 2204 count = mops->mo_count + 1; 2205 motbl = kmem_zalloc(count * sizeof (mntopt_t), KM_SLEEP); 2206 if (mops->mo_count) { 2207 size_t len = (count - 1) * sizeof (mntopt_t); 2208 2209 bcopy(mops->mo_list, motbl, len); 2210 kmem_free(mops->mo_list, len); 2211 } 2212 mops->mo_count = count; 2213 mops->mo_list = motbl; 2214 mop = &motbl[count - 1]; 2215 mop->mo_flags = MO_TAG; 2216 mop->mo_name = kmem_alloc(strlen(tag) + 1, KM_SLEEP); 2217 (void) strcpy(mop->mo_name, tag); 2218 return (mop); 2219 } 2220 2221 /* 2222 * Allow users to set arbitrary "tags" in a vfs's mount options. 2223 * Broader use within the kernel is discouraged. 2224 */ 2225 int 2226 vfs_settag(uint_t major, uint_t minor, const char *mntpt, const char *tag, 2227 cred_t *cr) 2228 { 2229 vfs_t *vfsp; 2230 mntopts_t *mops; 2231 mntopt_t *mop; 2232 int found = 0; 2233 dev_t dev = makedevice(major, minor); 2234 int err = 0; 2235 char *buf = kmem_alloc(MAX_MNTOPT_STR, KM_SLEEP); 2236 2237 /* 2238 * Find the desired mounted file system 2239 */ 2240 vfs_list_lock(); 2241 vfsp = rootvfs; 2242 do { 2243 if (vfsp->vfs_dev == dev && 2244 strcmp(mntpt, refstr_value(vfsp->vfs_mntpt)) == 0) { 2245 found = 1; 2246 break; 2247 } 2248 vfsp = vfsp->vfs_next; 2249 } while (vfsp != rootvfs); 2250 2251 if (!found) { 2252 err = EINVAL; 2253 goto out; 2254 } 2255 err = secpolicy_fs_config(cr, vfsp); 2256 if (err != 0) 2257 goto out; 2258 2259 mops = &vfsp->vfs_mntopts; 2260 /* 2261 * Add tag if it doesn't already exist 2262 */ 2263 if ((mop = vfs_hasopt(mops, tag)) == NULL) { 2264 int len; 2265 2266 (void) vfs_buildoptionstr(mops, buf, MAX_MNTOPT_STR); 2267 len = strlen(buf); 2268 if (len + strlen(tag) + 2 > MAX_MNTOPT_STR) { 2269 err = ENAMETOOLONG; 2270 goto out; 2271 } 2272 mop = vfs_addtag(mops, tag); 2273 } 2274 if ((mop->mo_flags & MO_TAG) == 0) { 2275 err = EINVAL; 2276 goto out; 2277 } 2278 vfs_setmntopt_nolock(mops, tag, NULL, 0, 1); 2279 out: 2280 vfs_list_unlock(); 2281 kmem_free(buf, MAX_MNTOPT_STR); 2282 return (err); 2283 } 2284 2285 /* 2286 * Allow users to remove arbitrary "tags" in a vfs's mount options. 2287 * Broader use within the kernel is discouraged. 2288 */ 2289 int 2290 vfs_clrtag(uint_t major, uint_t minor, const char *mntpt, const char *tag, 2291 cred_t *cr) 2292 { 2293 vfs_t *vfsp; 2294 mntopt_t *mop; 2295 int found = 0; 2296 dev_t dev = makedevice(major, minor); 2297 int err = 0; 2298 2299 /* 2300 * Find the desired mounted file system 2301 */ 2302 vfs_list_lock(); 2303 vfsp = rootvfs; 2304 do { 2305 if (vfsp->vfs_dev == dev && 2306 strcmp(mntpt, refstr_value(vfsp->vfs_mntpt)) == 0) { 2307 found = 1; 2308 break; 2309 } 2310 vfsp = vfsp->vfs_next; 2311 } while (vfsp != rootvfs); 2312 2313 if (!found) { 2314 err = EINVAL; 2315 goto out; 2316 } 2317 err = secpolicy_fs_config(cr, vfsp); 2318 if (err != 0) 2319 goto out; 2320 2321 if ((mop = vfs_hasopt(&vfsp->vfs_mntopts, tag)) == NULL) { 2322 err = EINVAL; 2323 goto out; 2324 } 2325 if ((mop->mo_flags & MO_TAG) == 0) { 2326 err = EINVAL; 2327 goto out; 2328 } 2329 vfs_clearmntopt_nolock(&vfsp->vfs_mntopts, tag, 1); 2330 out: 2331 vfs_list_unlock(); 2332 return (err); 2333 } 2334 2335 /* 2336 * Function to parse an option string and fill in a mount options table. 2337 * Unknown options are silently ignored. The input option string is modified 2338 * by replacing separators with nulls. If the create flag is set, options 2339 * not found in the table are just added on the fly. The table must have 2340 * an option slot marked MO_EMPTY to add an option on the fly. 2341 * 2342 * This function is *not* for general use by filesystems. 2343 * 2344 * Note: caller is responsible for locking the vfs list, if needed, 2345 * to protect mops.. 2346 */ 2347 void 2348 vfs_parsemntopts(mntopts_t *mops, char *osp, int create) 2349 { 2350 char *s = osp, *p, *nextop, *valp, *cp, *ep; 2351 int setflg = VFS_NOFORCEOPT; 2352 2353 if (osp == NULL) 2354 return; 2355 while (*s != '\0') { 2356 p = strchr(s, ','); /* find next option */ 2357 if (p == NULL) { 2358 cp = NULL; 2359 p = s + strlen(s); 2360 } else { 2361 cp = p; /* save location of comma */ 2362 *p++ = '\0'; /* mark end and point to next option */ 2363 } 2364 nextop = p; 2365 p = strchr(s, '='); /* look for value */ 2366 if (p == NULL) { 2367 valp = NULL; /* no value supplied */ 2368 } else { 2369 ep = p; /* save location of equals */ 2370 *p++ = '\0'; /* end option and point to value */ 2371 valp = p; 2372 } 2373 /* 2374 * set option into options table 2375 */ 2376 if (create) 2377 setflg |= VFS_CREATEOPT; 2378 vfs_setmntopt_nolock(mops, s, valp, setflg, 0); 2379 if (cp != NULL) 2380 *cp = ','; /* restore the comma */ 2381 if (valp != NULL) 2382 *ep = '='; /* restore the equals */ 2383 s = nextop; 2384 } 2385 } 2386 2387 /* 2388 * Function to inquire if an option exists in a mount options table. 2389 * Returns a pointer to the option if it exists, else NULL. 2390 * 2391 * This function is *not* for general use by filesystems. 2392 * 2393 * Note: caller is responsible for locking the vfs list, if needed, 2394 * to protect mops. 2395 */ 2396 struct mntopt * 2397 vfs_hasopt(const mntopts_t *mops, const char *opt) 2398 { 2399 struct mntopt *mop; 2400 uint_t i, count; 2401 2402 count = mops->mo_count; 2403 for (i = 0; i < count; i++) { 2404 mop = &mops->mo_list[i]; 2405 2406 if (mop->mo_flags & MO_EMPTY) 2407 continue; 2408 if (strcmp(opt, mop->mo_name) == 0) 2409 return (mop); 2410 } 2411 return (NULL); 2412 } 2413 2414 /* 2415 * Function to inquire if an option is set in a mount options table. 2416 * Returns non-zero if set and fills in the arg pointer with a pointer to 2417 * the argument string or NULL if there is no argument string. 2418 */ 2419 static int 2420 vfs_optionisset_nolock(const mntopts_t *mops, const char *opt, char **argp) 2421 { 2422 struct mntopt *mop; 2423 uint_t i, count; 2424 2425 count = mops->mo_count; 2426 for (i = 0; i < count; i++) { 2427 mop = &mops->mo_list[i]; 2428 2429 if (mop->mo_flags & MO_EMPTY) 2430 continue; 2431 if (strcmp(opt, mop->mo_name)) 2432 continue; 2433 if ((mop->mo_flags & MO_SET) == 0) 2434 return (0); 2435 if (argp != NULL && (mop->mo_flags & MO_HASVALUE) != 0) 2436 *argp = mop->mo_arg; 2437 return (1); 2438 } 2439 return (0); 2440 } 2441 2442 2443 int 2444 vfs_optionisset(const struct vfs *vfsp, const char *opt, char **argp) 2445 { 2446 int ret; 2447 2448 vfs_list_read_lock(); 2449 ret = vfs_optionisset_nolock(&vfsp->vfs_mntopts, opt, argp); 2450 vfs_list_unlock(); 2451 return (ret); 2452 } 2453 2454 2455 /* 2456 * Construct a comma separated string of the options set in the given 2457 * mount table, return the string in the given buffer. Return non-zero if 2458 * the buffer would overflow. 2459 * 2460 * This function is *not* for general use by filesystems. 2461 * 2462 * Note: caller is responsible for locking the vfs list, if needed, 2463 * to protect mp. 2464 */ 2465 int 2466 vfs_buildoptionstr(const mntopts_t *mp, char *buf, int len) 2467 { 2468 char *cp; 2469 uint_t i; 2470 2471 buf[0] = '\0'; 2472 cp = buf; 2473 for (i = 0; i < mp->mo_count; i++) { 2474 struct mntopt *mop; 2475 2476 mop = &mp->mo_list[i]; 2477 if (mop->mo_flags & MO_SET) { 2478 int optlen, comma = 0; 2479 2480 if (buf[0] != '\0') 2481 comma = 1; 2482 optlen = strlen(mop->mo_name); 2483 if (strlen(buf) + comma + optlen + 1 > len) 2484 goto err; 2485 if (comma) 2486 *cp++ = ','; 2487 (void) strcpy(cp, mop->mo_name); 2488 cp += optlen; 2489 /* 2490 * Append option value if there is one 2491 */ 2492 if (mop->mo_arg != NULL) { 2493 int arglen; 2494 2495 arglen = strlen(mop->mo_arg); 2496 if (strlen(buf) + arglen + 2 > len) 2497 goto err; 2498 *cp++ = '='; 2499 (void) strcpy(cp, mop->mo_arg); 2500 cp += arglen; 2501 } 2502 } 2503 } 2504 return (0); 2505 err: 2506 return (EOVERFLOW); 2507 } 2508 2509 static void 2510 vfs_freecancelopt(char **moc) 2511 { 2512 if (moc != NULL) { 2513 int ccnt = 0; 2514 char **cp; 2515 2516 for (cp = moc; *cp != NULL; cp++) { 2517 kmem_free(*cp, strlen(*cp) + 1); 2518 ccnt++; 2519 } 2520 kmem_free(moc, (ccnt + 1) * sizeof (char *)); 2521 } 2522 } 2523 2524 static void 2525 vfs_freeopt(mntopt_t *mop) 2526 { 2527 if (mop->mo_name != NULL) 2528 kmem_free(mop->mo_name, strlen(mop->mo_name) + 1); 2529 2530 vfs_freecancelopt(mop->mo_cancel); 2531 2532 if (mop->mo_arg != NULL) 2533 kmem_free(mop->mo_arg, strlen(mop->mo_arg) + 1); 2534 } 2535 2536 /* 2537 * Free a mount options table 2538 * 2539 * This function is *not* for general use by filesystems. 2540 * 2541 * Note: caller is responsible for locking the vfs list, if needed, 2542 * to protect mp. 2543 */ 2544 void 2545 vfs_freeopttbl(mntopts_t *mp) 2546 { 2547 uint_t i, count; 2548 2549 count = mp->mo_count; 2550 for (i = 0; i < count; i++) { 2551 vfs_freeopt(&mp->mo_list[i]); 2552 } 2553 if (count) { 2554 kmem_free(mp->mo_list, sizeof (mntopt_t) * count); 2555 mp->mo_count = 0; 2556 mp->mo_list = NULL; 2557 } 2558 } 2559 2560 /* 2561 * Free any mnttab information recorded in the vfs struct. 2562 * The vfs must not be on the vfs list. 2563 */ 2564 static void 2565 vfs_freemnttab(struct vfs *vfsp) 2566 { 2567 ASSERT(!VFS_ON_LIST(vfsp)); 2568 2569 /* 2570 * Free device and mount point information 2571 */ 2572 if (vfsp->vfs_mntpt != NULL) { 2573 refstr_rele(vfsp->vfs_mntpt); 2574 vfsp->vfs_mntpt = NULL; 2575 } 2576 if (vfsp->vfs_resource != NULL) { 2577 refstr_rele(vfsp->vfs_resource); 2578 vfsp->vfs_resource = NULL; 2579 } 2580 /* 2581 * Now free mount options information 2582 */ 2583 vfs_freeopttbl(&vfsp->vfs_mntopts); 2584 } 2585 2586 /* 2587 * Return the last mnttab modification time 2588 */ 2589 void 2590 vfs_mnttab_modtime(timespec_t *ts) 2591 { 2592 ASSERT(RW_LOCK_HELD(&vfslist)); 2593 *ts = vfs_mnttab_mtime; 2594 } 2595 2596 /* 2597 * See if mnttab is changed 2598 */ 2599 void 2600 vfs_mnttab_poll(timespec_t *old, struct pollhead **phpp) 2601 { 2602 int changed; 2603 2604 *phpp = (struct pollhead *)NULL; 2605 2606 /* 2607 * Note: don't grab vfs list lock before accessing vfs_mnttab_mtime. 2608 * Can lead to deadlock against vfs_mnttab_modtimeupd(). It is safe 2609 * to not grab the vfs list lock because tv_sec is monotonically 2610 * increasing. 2611 */ 2612 2613 changed = (old->tv_nsec != vfs_mnttab_mtime.tv_nsec) || 2614 (old->tv_sec != vfs_mnttab_mtime.tv_sec); 2615 if (!changed) { 2616 *phpp = &vfs_pollhd; 2617 } 2618 } 2619 2620 /* 2621 * Update the mnttab modification time and wake up any waiters for 2622 * mnttab changes 2623 */ 2624 void 2625 vfs_mnttab_modtimeupd() 2626 { 2627 hrtime_t oldhrt, newhrt; 2628 2629 ASSERT(RW_WRITE_HELD(&vfslist)); 2630 oldhrt = ts2hrt(&vfs_mnttab_mtime); 2631 gethrestime(&vfs_mnttab_mtime); 2632 newhrt = ts2hrt(&vfs_mnttab_mtime); 2633 if (oldhrt == (hrtime_t)0) 2634 vfs_mnttab_ctime = vfs_mnttab_mtime; 2635 /* 2636 * Attempt to provide unique mtime (like uniqtime but not). 2637 */ 2638 if (newhrt == oldhrt) { 2639 newhrt++; 2640 hrt2ts(newhrt, &vfs_mnttab_mtime); 2641 } 2642 pollwakeup(&vfs_pollhd, (short)POLLRDBAND); 2643 } 2644 2645 int 2646 dounmount(struct vfs *vfsp, int flag, cred_t *cr) 2647 { 2648 vnode_t *coveredvp; 2649 int error; 2650 extern void teardown_vopstats(vfs_t *); 2651 2652 /* 2653 * Get covered vnode. This will be NULL if the vfs is not linked 2654 * into the file system name space (i.e., domount() with MNT_NOSPICE). 2655 */ 2656 coveredvp = vfsp->vfs_vnodecovered; 2657 ASSERT(coveredvp == NULL || vn_vfswlock_held(coveredvp)); 2658 2659 /* 2660 * Purge all dnlc entries for this vfs. 2661 */ 2662 (void) dnlc_purge_vfsp(vfsp, 0); 2663 2664 /* For forcible umount, skip VFS_SYNC() since it may hang */ 2665 if ((flag & MS_FORCE) == 0) 2666 (void) VFS_SYNC(vfsp, 0, cr); 2667 2668 /* 2669 * Lock the vfs to maintain fs status quo during unmount. This 2670 * has to be done after the sync because ufs_update tries to acquire 2671 * the vfs_reflock. 2672 */ 2673 vfs_lock_wait(vfsp); 2674 2675 if (error = VFS_UNMOUNT(vfsp, flag, cr)) { 2676 vfs_unlock(vfsp); 2677 if (coveredvp != NULL) 2678 vn_vfsunlock(coveredvp); 2679 } else if (coveredvp != NULL) { 2680 teardown_vopstats(vfsp); 2681 /* 2682 * vfs_remove() will do a VN_RELE(vfsp->vfs_vnodecovered) 2683 * when it frees vfsp so we do a VN_HOLD() so we can 2684 * continue to use coveredvp afterwards. 2685 */ 2686 VN_HOLD(coveredvp); 2687 vfs_remove(vfsp); 2688 vn_vfsunlock(coveredvp); 2689 VN_RELE(coveredvp); 2690 } else { 2691 teardown_vopstats(vfsp); 2692 /* 2693 * Release the reference to vfs that is not linked 2694 * into the name space. 2695 */ 2696 vfs_unlock(vfsp); 2697 VFS_RELE(vfsp); 2698 } 2699 return (error); 2700 } 2701 2702 2703 /* 2704 * Vfs_unmountall() is called by uadmin() to unmount all 2705 * mounted file systems (except the root file system) during shutdown. 2706 * It follows the existing locking protocol when traversing the vfs list 2707 * to sync and unmount vfses. Even though there should be no 2708 * other thread running while the system is shutting down, it is prudent 2709 * to still follow the locking protocol. 2710 */ 2711 void 2712 vfs_unmountall(void) 2713 { 2714 struct vfs *vfsp; 2715 struct vfs *prev_vfsp = NULL; 2716 int error; 2717 2718 /* 2719 * Toss all dnlc entries now so that the per-vfs sync 2720 * and unmount operations don't have to slog through 2721 * a bunch of uninteresting vnodes over and over again. 2722 */ 2723 dnlc_purge(); 2724 2725 vfs_list_lock(); 2726 for (vfsp = rootvfs->vfs_prev; vfsp != rootvfs; vfsp = prev_vfsp) { 2727 prev_vfsp = vfsp->vfs_prev; 2728 2729 if (vfs_lock(vfsp) != 0) 2730 continue; 2731 error = vn_vfswlock(vfsp->vfs_vnodecovered); 2732 vfs_unlock(vfsp); 2733 if (error) 2734 continue; 2735 2736 vfs_list_unlock(); 2737 2738 (void) VFS_SYNC(vfsp, SYNC_CLOSE, CRED()); 2739 (void) dounmount(vfsp, 0, CRED()); 2740 2741 /* 2742 * Since we dropped the vfslist lock above we must 2743 * verify that next_vfsp still exists, else start over. 2744 */ 2745 vfs_list_lock(); 2746 for (vfsp = rootvfs->vfs_prev; 2747 vfsp != rootvfs; vfsp = vfsp->vfs_prev) 2748 if (vfsp == prev_vfsp) 2749 break; 2750 if (vfsp == rootvfs && prev_vfsp != rootvfs) 2751 prev_vfsp = rootvfs->vfs_prev; 2752 } 2753 vfs_list_unlock(); 2754 } 2755 2756 /* 2757 * Called to add an entry to the end of the vfs mount in progress list 2758 */ 2759 void 2760 vfs_addmip(dev_t dev, struct vfs *vfsp) 2761 { 2762 struct ipmnt *mipp; 2763 2764 mipp = (struct ipmnt *)kmem_alloc(sizeof (struct ipmnt), KM_SLEEP); 2765 mipp->mip_next = NULL; 2766 mipp->mip_dev = dev; 2767 mipp->mip_vfsp = vfsp; 2768 mutex_enter(&vfs_miplist_mutex); 2769 if (vfs_miplist_end != NULL) 2770 vfs_miplist_end->mip_next = mipp; 2771 else 2772 vfs_miplist = mipp; 2773 vfs_miplist_end = mipp; 2774 mutex_exit(&vfs_miplist_mutex); 2775 } 2776 2777 /* 2778 * Called to remove an entry from the mount in progress list 2779 * Either because the mount completed or it failed. 2780 */ 2781 void 2782 vfs_delmip(struct vfs *vfsp) 2783 { 2784 struct ipmnt *mipp, *mipprev; 2785 2786 mutex_enter(&vfs_miplist_mutex); 2787 mipprev = NULL; 2788 for (mipp = vfs_miplist; 2789 mipp && mipp->mip_vfsp != vfsp; mipp = mipp->mip_next) { 2790 mipprev = mipp; 2791 } 2792 if (mipp == NULL) 2793 return; /* shouldn't happen */ 2794 if (mipp == vfs_miplist_end) 2795 vfs_miplist_end = mipprev; 2796 if (mipprev == NULL) 2797 vfs_miplist = mipp->mip_next; 2798 else 2799 mipprev->mip_next = mipp->mip_next; 2800 mutex_exit(&vfs_miplist_mutex); 2801 kmem_free(mipp, sizeof (struct ipmnt)); 2802 } 2803 2804 /* 2805 * vfs_add is called by a specific filesystem's mount routine to add 2806 * the new vfs into the vfs list/hash and to cover the mounted-on vnode. 2807 * The vfs should already have been locked by the caller. 2808 * 2809 * coveredvp is NULL if this is the root. 2810 */ 2811 void 2812 vfs_add(vnode_t *coveredvp, struct vfs *vfsp, int mflag) 2813 { 2814 int newflag; 2815 2816 ASSERT(vfs_lock_held(vfsp)); 2817 VFS_HOLD(vfsp); 2818 newflag = vfsp->vfs_flag; 2819 if (mflag & MS_RDONLY) 2820 newflag |= VFS_RDONLY; 2821 else 2822 newflag &= ~VFS_RDONLY; 2823 if (mflag & MS_NOSUID) 2824 newflag |= (VFS_NOSETUID|VFS_NODEVICES); 2825 else 2826 newflag &= ~(VFS_NOSETUID|VFS_NODEVICES); 2827 if (mflag & MS_NOMNTTAB) 2828 newflag |= VFS_NOMNTTAB; 2829 else 2830 newflag &= ~VFS_NOMNTTAB; 2831 2832 if (coveredvp != NULL) { 2833 ASSERT(vn_vfswlock_held(coveredvp)); 2834 coveredvp->v_vfsmountedhere = vfsp; 2835 VN_HOLD(coveredvp); 2836 } 2837 vfsp->vfs_vnodecovered = coveredvp; 2838 vfsp->vfs_flag = newflag; 2839 2840 vfs_list_add(vfsp); 2841 } 2842 2843 /* 2844 * Remove a vfs from the vfs list, null out the pointer from the 2845 * covered vnode to the vfs (v_vfsmountedhere), and null out the pointer 2846 * from the vfs to the covered vnode (vfs_vnodecovered). Release the 2847 * reference to the vfs and to the covered vnode. 2848 * 2849 * Called from dounmount after it's confirmed with the file system 2850 * that the unmount is legal. 2851 */ 2852 void 2853 vfs_remove(struct vfs *vfsp) 2854 { 2855 vnode_t *vp; 2856 2857 ASSERT(vfs_lock_held(vfsp)); 2858 2859 /* 2860 * Can't unmount root. Should never happen because fs will 2861 * be busy. 2862 */ 2863 if (vfsp == rootvfs) 2864 panic("vfs_remove: unmounting root"); 2865 2866 vfs_list_remove(vfsp); 2867 2868 /* 2869 * Unhook from the file system name space. 2870 */ 2871 vp = vfsp->vfs_vnodecovered; 2872 ASSERT(vn_vfswlock_held(vp)); 2873 vp->v_vfsmountedhere = NULL; 2874 vfsp->vfs_vnodecovered = NULL; 2875 VN_RELE(vp); 2876 2877 /* 2878 * Release lock and wakeup anybody waiting. 2879 */ 2880 vfs_unlock(vfsp); 2881 VFS_RELE(vfsp); 2882 } 2883 2884 /* 2885 * Lock a filesystem to prevent access to it while mounting, 2886 * unmounting and syncing. Return EBUSY immediately if lock 2887 * can't be acquired. 2888 */ 2889 int 2890 vfs_lock(vfs_t *vfsp) 2891 { 2892 vn_vfslocks_entry_t *vpvfsentry; 2893 2894 vpvfsentry = vn_vfslocks_getlock(vfsp); 2895 if (rwst_tryenter(&vpvfsentry->ve_lock, RW_WRITER)) 2896 return (0); 2897 2898 vn_vfslocks_rele(vpvfsentry); 2899 return (EBUSY); 2900 } 2901 2902 int 2903 vfs_rlock(vfs_t *vfsp) 2904 { 2905 vn_vfslocks_entry_t *vpvfsentry; 2906 2907 vpvfsentry = vn_vfslocks_getlock(vfsp); 2908 2909 if (rwst_tryenter(&vpvfsentry->ve_lock, RW_READER)) 2910 return (0); 2911 2912 vn_vfslocks_rele(vpvfsentry); 2913 return (EBUSY); 2914 } 2915 2916 void 2917 vfs_lock_wait(vfs_t *vfsp) 2918 { 2919 vn_vfslocks_entry_t *vpvfsentry; 2920 2921 vpvfsentry = vn_vfslocks_getlock(vfsp); 2922 rwst_enter(&vpvfsentry->ve_lock, RW_WRITER); 2923 } 2924 2925 void 2926 vfs_rlock_wait(vfs_t *vfsp) 2927 { 2928 vn_vfslocks_entry_t *vpvfsentry; 2929 2930 vpvfsentry = vn_vfslocks_getlock(vfsp); 2931 rwst_enter(&vpvfsentry->ve_lock, RW_READER); 2932 } 2933 2934 /* 2935 * Unlock a locked filesystem. 2936 */ 2937 void 2938 vfs_unlock(vfs_t *vfsp) 2939 { 2940 vn_vfslocks_entry_t *vpvfsentry; 2941 2942 /* 2943 * vfs_unlock will mimic sema_v behaviour to fix 4748018. 2944 * And these changes should remain for the patch changes as it is. 2945 */ 2946 if (panicstr) 2947 return; 2948 2949 /* 2950 * ve_refcount needs to be dropped twice here. 2951 * 1. To release refernce after a call to vfs_locks_getlock() 2952 * 2. To release the reference from the locking routines like 2953 * vfs_rlock_wait/vfs_wlock_wait/vfs_wlock etc,. 2954 */ 2955 2956 vpvfsentry = vn_vfslocks_getlock(vfsp); 2957 vn_vfslocks_rele(vpvfsentry); 2958 2959 rwst_exit(&vpvfsentry->ve_lock); 2960 vn_vfslocks_rele(vpvfsentry); 2961 } 2962 2963 /* 2964 * Utility routine that allows a filesystem to construct its 2965 * fsid in "the usual way" - by munging some underlying dev_t and 2966 * the filesystem type number into the 64-bit fsid. Note that 2967 * this implicitly relies on dev_t persistence to make filesystem 2968 * id's persistent. 2969 * 2970 * There's nothing to prevent an individual fs from constructing its 2971 * fsid in a different way, and indeed they should. 2972 * 2973 * Since we want fsids to be 32-bit quantities (so that they can be 2974 * exported identically by either 32-bit or 64-bit APIs, as well as 2975 * the fact that fsid's are "known" to NFS), we compress the device 2976 * number given down to 32-bits, and panic if that isn't possible. 2977 */ 2978 void 2979 vfs_make_fsid(fsid_t *fsi, dev_t dev, int val) 2980 { 2981 if (!cmpldev((dev32_t *)&fsi->val[0], dev)) 2982 panic("device number too big for fsid!"); 2983 fsi->val[1] = val; 2984 } 2985 2986 int 2987 vfs_lock_held(vfs_t *vfsp) 2988 { 2989 int held; 2990 vn_vfslocks_entry_t *vpvfsentry; 2991 2992 /* 2993 * vfs_lock_held will mimic sema_held behaviour 2994 * if panicstr is set. And these changes should remain 2995 * for the patch changes as it is. 2996 */ 2997 if (panicstr) 2998 return (1); 2999 3000 vpvfsentry = vn_vfslocks_getlock(vfsp); 3001 held = rwst_lock_held(&vpvfsentry->ve_lock, RW_WRITER); 3002 3003 vn_vfslocks_rele(vpvfsentry); 3004 return (held); 3005 } 3006 3007 struct _kthread * 3008 vfs_lock_owner(vfs_t *vfsp) 3009 { 3010 struct _kthread *owner; 3011 vn_vfslocks_entry_t *vpvfsentry; 3012 3013 /* 3014 * vfs_wlock_held will mimic sema_held behaviour 3015 * if panicstr is set. And these changes should remain 3016 * for the patch changes as it is. 3017 */ 3018 if (panicstr) 3019 return (NULL); 3020 3021 vpvfsentry = vn_vfslocks_getlock(vfsp); 3022 owner = rwst_owner(&vpvfsentry->ve_lock); 3023 3024 vn_vfslocks_rele(vpvfsentry); 3025 return (owner); 3026 } 3027 3028 /* 3029 * vfs list locking. 3030 * 3031 * Rather than manipulate the vfslist lock directly, we abstract into lock 3032 * and unlock routines to allow the locking implementation to be changed for 3033 * clustering. 3034 * 3035 * Whenever the vfs list is modified through its hash links, the overall list 3036 * lock must be obtained before locking the relevant hash bucket. But to see 3037 * whether a given vfs is on the list, it suffices to obtain the lock for the 3038 * hash bucket without getting the overall list lock. (See getvfs() below.) 3039 */ 3040 3041 void 3042 vfs_list_lock() 3043 { 3044 rw_enter(&vfslist, RW_WRITER); 3045 } 3046 3047 void 3048 vfs_list_read_lock() 3049 { 3050 rw_enter(&vfslist, RW_READER); 3051 } 3052 3053 void 3054 vfs_list_unlock() 3055 { 3056 rw_exit(&vfslist); 3057 } 3058 3059 /* 3060 * Low level worker routines for adding entries to and removing entries from 3061 * the vfs list. 3062 */ 3063 3064 static void 3065 vfs_hash_add(struct vfs *vfsp, int insert_at_head) 3066 { 3067 int vhno; 3068 struct vfs **hp; 3069 dev_t dev; 3070 3071 ASSERT(RW_WRITE_HELD(&vfslist)); 3072 3073 dev = expldev(vfsp->vfs_fsid.val[0]); 3074 vhno = VFSHASH(getmajor(dev), getminor(dev)); 3075 3076 mutex_enter(&rvfs_list[vhno].rvfs_lock); 3077 3078 /* 3079 * Link into the hash table, inserting it at the end, so that LOFS 3080 * with the same fsid as UFS (or other) file systems will not hide the 3081 * UFS. 3082 */ 3083 if (insert_at_head) { 3084 vfsp->vfs_hash = rvfs_list[vhno].rvfs_head; 3085 rvfs_list[vhno].rvfs_head = vfsp; 3086 } else { 3087 for (hp = &rvfs_list[vhno].rvfs_head; *hp != NULL; 3088 hp = &(*hp)->vfs_hash) 3089 continue; 3090 /* 3091 * hp now contains the address of the pointer to update 3092 * to effect the insertion. 3093 */ 3094 vfsp->vfs_hash = NULL; 3095 *hp = vfsp; 3096 } 3097 3098 rvfs_list[vhno].rvfs_len++; 3099 mutex_exit(&rvfs_list[vhno].rvfs_lock); 3100 } 3101 3102 3103 static void 3104 vfs_hash_remove(struct vfs *vfsp) 3105 { 3106 int vhno; 3107 struct vfs *tvfsp; 3108 dev_t dev; 3109 3110 ASSERT(RW_WRITE_HELD(&vfslist)); 3111 3112 dev = expldev(vfsp->vfs_fsid.val[0]); 3113 vhno = VFSHASH(getmajor(dev), getminor(dev)); 3114 3115 mutex_enter(&rvfs_list[vhno].rvfs_lock); 3116 3117 /* 3118 * Remove from hash. 3119 */ 3120 if (rvfs_list[vhno].rvfs_head == vfsp) { 3121 rvfs_list[vhno].rvfs_head = vfsp->vfs_hash; 3122 rvfs_list[vhno].rvfs_len--; 3123 goto foundit; 3124 } 3125 for (tvfsp = rvfs_list[vhno].rvfs_head; tvfsp != NULL; 3126 tvfsp = tvfsp->vfs_hash) { 3127 if (tvfsp->vfs_hash == vfsp) { 3128 tvfsp->vfs_hash = vfsp->vfs_hash; 3129 rvfs_list[vhno].rvfs_len--; 3130 goto foundit; 3131 } 3132 } 3133 cmn_err(CE_WARN, "vfs_list_remove: vfs not found in hash"); 3134 3135 foundit: 3136 3137 mutex_exit(&rvfs_list[vhno].rvfs_lock); 3138 } 3139 3140 3141 void 3142 vfs_list_add(struct vfs *vfsp) 3143 { 3144 zone_t *zone; 3145 3146 /* 3147 * The zone that owns the mount is the one that performed the mount. 3148 * Note that this isn't necessarily the same as the zone mounted into. 3149 * The corresponding zone_rele() will be done when the vfs_t is 3150 * being free'd. 3151 */ 3152 vfsp->vfs_zone = curproc->p_zone; 3153 zone_hold(vfsp->vfs_zone); 3154 3155 /* 3156 * Find the zone mounted into, and put this mount on its vfs list. 3157 */ 3158 zone = zone_find_by_path(refstr_value(vfsp->vfs_mntpt)); 3159 ASSERT(zone != NULL); 3160 /* 3161 * Special casing for the root vfs. This structure is allocated 3162 * statically and hooked onto rootvfs at link time. During the 3163 * vfs_mountroot call at system startup time, the root file system's 3164 * VFS_MOUNTROOT routine will call vfs_add with this root vfs struct 3165 * as argument. The code below must detect and handle this special 3166 * case. The only apparent justification for this special casing is 3167 * to ensure that the root file system appears at the head of the 3168 * list. 3169 * 3170 * XXX: I'm assuming that it's ok to do normal list locking when 3171 * adding the entry for the root file system (this used to be 3172 * done with no locks held). 3173 */ 3174 vfs_list_lock(); 3175 /* 3176 * Link into the vfs list proper. 3177 */ 3178 if (vfsp == &root) { 3179 /* 3180 * Assert: This vfs is already on the list as its first entry. 3181 * Thus, there's nothing to do. 3182 */ 3183 ASSERT(rootvfs == vfsp); 3184 /* 3185 * Add it to the head of the global zone's vfslist. 3186 */ 3187 ASSERT(zone == global_zone); 3188 ASSERT(zone->zone_vfslist == NULL); 3189 zone->zone_vfslist = vfsp; 3190 } else { 3191 /* 3192 * Link to end of list using vfs_prev (as rootvfs is now a 3193 * doubly linked circular list) so list is in mount order for 3194 * mnttab use. 3195 */ 3196 rootvfs->vfs_prev->vfs_next = vfsp; 3197 vfsp->vfs_prev = rootvfs->vfs_prev; 3198 rootvfs->vfs_prev = vfsp; 3199 vfsp->vfs_next = rootvfs; 3200 3201 /* 3202 * Do it again for the zone-private list (which may be NULL). 3203 */ 3204 if (zone->zone_vfslist == NULL) { 3205 ASSERT(zone != global_zone); 3206 zone->zone_vfslist = vfsp; 3207 } else { 3208 zone->zone_vfslist->vfs_zone_prev->vfs_zone_next = vfsp; 3209 vfsp->vfs_zone_prev = zone->zone_vfslist->vfs_zone_prev; 3210 zone->zone_vfslist->vfs_zone_prev = vfsp; 3211 vfsp->vfs_zone_next = zone->zone_vfslist; 3212 } 3213 } 3214 3215 /* 3216 * Link into the hash table, inserting it at the end, so that LOFS 3217 * with the same fsid as UFS (or other) file systems will not hide 3218 * the UFS. 3219 */ 3220 vfs_hash_add(vfsp, 0); 3221 3222 /* 3223 * update the mnttab modification time 3224 */ 3225 vfs_mnttab_modtimeupd(); 3226 vfs_list_unlock(); 3227 zone_rele(zone); 3228 } 3229 3230 void 3231 vfs_list_remove(struct vfs *vfsp) 3232 { 3233 zone_t *zone; 3234 3235 zone = zone_find_by_path(refstr_value(vfsp->vfs_mntpt)); 3236 ASSERT(zone != NULL); 3237 /* 3238 * Callers are responsible for preventing attempts to unmount the 3239 * root. 3240 */ 3241 ASSERT(vfsp != rootvfs); 3242 3243 vfs_list_lock(); 3244 3245 /* 3246 * Remove from hash. 3247 */ 3248 vfs_hash_remove(vfsp); 3249 3250 /* 3251 * Remove from vfs list. 3252 */ 3253 vfsp->vfs_prev->vfs_next = vfsp->vfs_next; 3254 vfsp->vfs_next->vfs_prev = vfsp->vfs_prev; 3255 vfsp->vfs_next = vfsp->vfs_prev = NULL; 3256 3257 /* 3258 * Remove from zone-specific vfs list. 3259 */ 3260 if (zone->zone_vfslist == vfsp) 3261 zone->zone_vfslist = vfsp->vfs_zone_next; 3262 3263 if (vfsp->vfs_zone_next == vfsp) { 3264 ASSERT(vfsp->vfs_zone_prev == vfsp); 3265 ASSERT(zone->zone_vfslist == vfsp); 3266 zone->zone_vfslist = NULL; 3267 } 3268 3269 vfsp->vfs_zone_prev->vfs_zone_next = vfsp->vfs_zone_next; 3270 vfsp->vfs_zone_next->vfs_zone_prev = vfsp->vfs_zone_prev; 3271 vfsp->vfs_zone_next = vfsp->vfs_zone_prev = NULL; 3272 3273 /* 3274 * update the mnttab modification time 3275 */ 3276 vfs_mnttab_modtimeupd(); 3277 vfs_list_unlock(); 3278 zone_rele(zone); 3279 } 3280 3281 struct vfs * 3282 getvfs(fsid_t *fsid) 3283 { 3284 struct vfs *vfsp; 3285 int val0 = fsid->val[0]; 3286 int val1 = fsid->val[1]; 3287 dev_t dev = expldev(val0); 3288 int vhno = VFSHASH(getmajor(dev), getminor(dev)); 3289 kmutex_t *hmp = &rvfs_list[vhno].rvfs_lock; 3290 3291 mutex_enter(hmp); 3292 for (vfsp = rvfs_list[vhno].rvfs_head; vfsp; vfsp = vfsp->vfs_hash) { 3293 if (vfsp->vfs_fsid.val[0] == val0 && 3294 vfsp->vfs_fsid.val[1] == val1) { 3295 VFS_HOLD(vfsp); 3296 mutex_exit(hmp); 3297 return (vfsp); 3298 } 3299 } 3300 mutex_exit(hmp); 3301 return (NULL); 3302 } 3303 3304 /* 3305 * Search the vfs mount in progress list for a specified device/vfs entry. 3306 * Returns 0 if the first entry in the list that the device matches has the 3307 * given vfs pointer as well. If the device matches but a different vfs 3308 * pointer is encountered in the list before the given vfs pointer then 3309 * a 1 is returned. 3310 */ 3311 3312 int 3313 vfs_devmounting(dev_t dev, struct vfs *vfsp) 3314 { 3315 int retval = 0; 3316 struct ipmnt *mipp; 3317 3318 mutex_enter(&vfs_miplist_mutex); 3319 for (mipp = vfs_miplist; mipp != NULL; mipp = mipp->mip_next) { 3320 if (mipp->mip_dev == dev) { 3321 if (mipp->mip_vfsp != vfsp) 3322 retval = 1; 3323 break; 3324 } 3325 } 3326 mutex_exit(&vfs_miplist_mutex); 3327 return (retval); 3328 } 3329 3330 /* 3331 * Search the vfs list for a specified device. Returns 1, if entry is found 3332 * or 0 if no suitable entry is found. 3333 */ 3334 3335 int 3336 vfs_devismounted(dev_t dev) 3337 { 3338 struct vfs *vfsp; 3339 int found; 3340 3341 vfs_list_read_lock(); 3342 vfsp = rootvfs; 3343 found = 0; 3344 do { 3345 if (vfsp->vfs_dev == dev) { 3346 found = 1; 3347 break; 3348 } 3349 vfsp = vfsp->vfs_next; 3350 } while (vfsp != rootvfs); 3351 3352 vfs_list_unlock(); 3353 return (found); 3354 } 3355 3356 /* 3357 * Search the vfs list for a specified device. Returns a pointer to it 3358 * or NULL if no suitable entry is found. The caller of this routine 3359 * is responsible for releasing the returned vfs pointer. 3360 */ 3361 struct vfs * 3362 vfs_dev2vfsp(dev_t dev) 3363 { 3364 struct vfs *vfsp; 3365 int found; 3366 3367 vfs_list_read_lock(); 3368 vfsp = rootvfs; 3369 found = 0; 3370 do { 3371 /* 3372 * The following could be made more efficient by making 3373 * the entire loop use vfs_zone_next if the call is from 3374 * a zone. The only callers, however, ustat(2) and 3375 * umount2(2), don't seem to justify the added 3376 * complexity at present. 3377 */ 3378 if (vfsp->vfs_dev == dev && 3379 ZONE_PATH_VISIBLE(refstr_value(vfsp->vfs_mntpt), 3380 curproc->p_zone)) { 3381 VFS_HOLD(vfsp); 3382 found = 1; 3383 break; 3384 } 3385 vfsp = vfsp->vfs_next; 3386 } while (vfsp != rootvfs); 3387 vfs_list_unlock(); 3388 return (found ? vfsp: NULL); 3389 } 3390 3391 /* 3392 * Search the vfs list for a specified mntpoint. Returns a pointer to it 3393 * or NULL if no suitable entry is found. The caller of this routine 3394 * is responsible for releasing the returned vfs pointer. 3395 * 3396 * Note that if multiple mntpoints match, the last one matching is 3397 * returned in an attempt to return the "top" mount when overlay 3398 * mounts are covering the same mount point. This is accomplished by starting 3399 * at the end of the list and working our way backwards, stopping at the first 3400 * matching mount. 3401 */ 3402 struct vfs * 3403 vfs_mntpoint2vfsp(const char *mp) 3404 { 3405 struct vfs *vfsp; 3406 struct vfs *retvfsp = NULL; 3407 zone_t *zone = curproc->p_zone; 3408 struct vfs *list; 3409 3410 vfs_list_read_lock(); 3411 if (getzoneid() == GLOBAL_ZONEID) { 3412 /* 3413 * The global zone may see filesystems in any zone. 3414 */ 3415 vfsp = rootvfs->vfs_prev; 3416 do { 3417 if (strcmp(refstr_value(vfsp->vfs_mntpt), mp) == 0) { 3418 retvfsp = vfsp; 3419 break; 3420 } 3421 vfsp = vfsp->vfs_prev; 3422 } while (vfsp != rootvfs->vfs_prev); 3423 } else if ((list = zone->zone_vfslist) != NULL) { 3424 const char *mntpt; 3425 3426 vfsp = list->vfs_zone_prev; 3427 do { 3428 mntpt = refstr_value(vfsp->vfs_mntpt); 3429 mntpt = ZONE_PATH_TRANSLATE(mntpt, zone); 3430 if (strcmp(mntpt, mp) == 0) { 3431 retvfsp = vfsp; 3432 break; 3433 } 3434 vfsp = vfsp->vfs_zone_prev; 3435 } while (vfsp != list->vfs_zone_prev); 3436 } 3437 if (retvfsp) 3438 VFS_HOLD(retvfsp); 3439 vfs_list_unlock(); 3440 return (retvfsp); 3441 } 3442 3443 /* 3444 * Search the vfs list for a specified vfsops. 3445 * if vfs entry is found then return 1, else 0. 3446 */ 3447 int 3448 vfs_opsinuse(vfsops_t *ops) 3449 { 3450 struct vfs *vfsp; 3451 int found; 3452 3453 vfs_list_read_lock(); 3454 vfsp = rootvfs; 3455 found = 0; 3456 do { 3457 if (vfs_getops(vfsp) == ops) { 3458 found = 1; 3459 break; 3460 } 3461 vfsp = vfsp->vfs_next; 3462 } while (vfsp != rootvfs); 3463 vfs_list_unlock(); 3464 return (found); 3465 } 3466 3467 /* 3468 * Allocate an entry in vfssw for a file system type 3469 */ 3470 struct vfssw * 3471 allocate_vfssw(char *type) 3472 { 3473 struct vfssw *vswp; 3474 3475 if (type[0] == '\0' || strlen(type) + 1 > _ST_FSTYPSZ) { 3476 /* 3477 * The vfssw table uses the empty string to identify an 3478 * available entry; we cannot add any type which has 3479 * a leading NUL. The string length is limited to 3480 * the size of the st_fstype array in struct stat. 3481 */ 3482 return (NULL); 3483 } 3484 3485 ASSERT(VFSSW_WRITE_LOCKED()); 3486 for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) 3487 if (!ALLOCATED_VFSSW(vswp)) { 3488 vswp->vsw_name = kmem_alloc(strlen(type) + 1, KM_SLEEP); 3489 (void) strcpy(vswp->vsw_name, type); 3490 ASSERT(vswp->vsw_count == 0); 3491 vswp->vsw_count = 1; 3492 mutex_init(&vswp->vsw_lock, NULL, MUTEX_DEFAULT, NULL); 3493 return (vswp); 3494 } 3495 return (NULL); 3496 } 3497 3498 /* 3499 * Impose additional layer of translation between vfstype names 3500 * and module names in the filesystem. 3501 */ 3502 static char * 3503 vfs_to_modname(char *vfstype) 3504 { 3505 if (strcmp(vfstype, "proc") == 0) { 3506 vfstype = "procfs"; 3507 } else if (strcmp(vfstype, "fd") == 0) { 3508 vfstype = "fdfs"; 3509 } else if (strncmp(vfstype, "nfs", 3) == 0) { 3510 vfstype = "nfs"; 3511 } 3512 3513 return (vfstype); 3514 } 3515 3516 /* 3517 * Find a vfssw entry given a file system type name. 3518 * Try to autoload the filesystem if it's not found. 3519 * If it's installed, return the vfssw locked to prevent unloading. 3520 */ 3521 struct vfssw * 3522 vfs_getvfssw(char *type) 3523 { 3524 struct vfssw *vswp; 3525 char *modname; 3526 3527 RLOCK_VFSSW(); 3528 vswp = vfs_getvfsswbyname(type); 3529 modname = vfs_to_modname(type); 3530 3531 if (rootdir == NULL) { 3532 /* 3533 * If we haven't yet loaded the root file system, then our 3534 * _init won't be called until later. Allocate vfssw entry, 3535 * because mod_installfs won't be called. 3536 */ 3537 if (vswp == NULL) { 3538 RUNLOCK_VFSSW(); 3539 WLOCK_VFSSW(); 3540 if ((vswp = vfs_getvfsswbyname(type)) == NULL) { 3541 if ((vswp = allocate_vfssw(type)) == NULL) { 3542 WUNLOCK_VFSSW(); 3543 return (NULL); 3544 } 3545 } 3546 WUNLOCK_VFSSW(); 3547 RLOCK_VFSSW(); 3548 } 3549 if (!VFS_INSTALLED(vswp)) { 3550 RUNLOCK_VFSSW(); 3551 (void) modloadonly("fs", modname); 3552 } else 3553 RUNLOCK_VFSSW(); 3554 return (vswp); 3555 } 3556 3557 /* 3558 * Try to load the filesystem. Before calling modload(), we drop 3559 * our lock on the VFS switch table, and pick it up after the 3560 * module is loaded. However, there is a potential race: the 3561 * module could be unloaded after the call to modload() completes 3562 * but before we pick up the lock and drive on. Therefore, 3563 * we keep reloading the module until we've loaded the module 3564 * _and_ we have the lock on the VFS switch table. 3565 */ 3566 while (vswp == NULL || !VFS_INSTALLED(vswp)) { 3567 RUNLOCK_VFSSW(); 3568 if (modload("fs", modname) == -1) 3569 return (NULL); 3570 RLOCK_VFSSW(); 3571 if (vswp == NULL) 3572 if ((vswp = vfs_getvfsswbyname(type)) == NULL) 3573 break; 3574 } 3575 RUNLOCK_VFSSW(); 3576 3577 return (vswp); 3578 } 3579 3580 /* 3581 * Find a vfssw entry given a file system type name. 3582 */ 3583 struct vfssw * 3584 vfs_getvfsswbyname(char *type) 3585 { 3586 struct vfssw *vswp; 3587 3588 ASSERT(VFSSW_LOCKED()); 3589 if (type == NULL || *type == '\0') 3590 return (NULL); 3591 3592 for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) { 3593 if (strcmp(type, vswp->vsw_name) == 0) { 3594 vfs_refvfssw(vswp); 3595 return (vswp); 3596 } 3597 } 3598 3599 return (NULL); 3600 } 3601 3602 /* 3603 * Find a vfssw entry given a set of vfsops. 3604 */ 3605 struct vfssw * 3606 vfs_getvfsswbyvfsops(vfsops_t *vfsops) 3607 { 3608 struct vfssw *vswp; 3609 3610 RLOCK_VFSSW(); 3611 for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) { 3612 if (ALLOCATED_VFSSW(vswp) && &vswp->vsw_vfsops == vfsops) { 3613 vfs_refvfssw(vswp); 3614 RUNLOCK_VFSSW(); 3615 return (vswp); 3616 } 3617 } 3618 RUNLOCK_VFSSW(); 3619 3620 return (NULL); 3621 } 3622 3623 /* 3624 * Reference a vfssw entry. 3625 */ 3626 void 3627 vfs_refvfssw(struct vfssw *vswp) 3628 { 3629 3630 mutex_enter(&vswp->vsw_lock); 3631 vswp->vsw_count++; 3632 mutex_exit(&vswp->vsw_lock); 3633 } 3634 3635 /* 3636 * Unreference a vfssw entry. 3637 */ 3638 void 3639 vfs_unrefvfssw(struct vfssw *vswp) 3640 { 3641 3642 mutex_enter(&vswp->vsw_lock); 3643 vswp->vsw_count--; 3644 mutex_exit(&vswp->vsw_lock); 3645 } 3646 3647 int sync_timeout = 30; /* timeout for syncing a page during panic */ 3648 int sync_timeleft; /* portion of sync_timeout remaining */ 3649 3650 static int sync_retries = 20; /* number of retries when not making progress */ 3651 static int sync_triesleft; /* portion of sync_retries remaining */ 3652 3653 static pgcnt_t old_pgcnt, new_pgcnt; 3654 static int new_bufcnt, old_bufcnt; 3655 3656 /* 3657 * Sync all of the mounted filesystems, and then wait for the actual i/o to 3658 * complete. We wait by counting the number of dirty pages and buffers, 3659 * pushing them out using bio_busy() and page_busy(), and then counting again. 3660 * This routine is used during both the uadmin A_SHUTDOWN code as well as 3661 * the SYNC phase of the panic code (see comments in panic.c). It should only 3662 * be used after some higher-level mechanism has quiesced the system so that 3663 * new writes are not being initiated while we are waiting for completion. 3664 * 3665 * To ensure finite running time, our algorithm uses two timeout mechanisms: 3666 * sync_timeleft (a timer implemented by the omnipresent deadman() cyclic), and 3667 * sync_triesleft (a progress counter used by the vfs_syncall() loop below). 3668 * Together these ensure that syncing completes if our i/o paths are stuck. 3669 * The counters are declared above so they can be found easily in the debugger. 3670 * 3671 * The sync_timeleft counter is reset by bio_busy() and page_busy() using the 3672 * vfs_syncprogress() subroutine whenever we make progress through the lists of 3673 * pages and buffers. It is decremented and expired by the deadman() cyclic. 3674 * When vfs_syncall() decides it is done, we disable the deadman() counter by 3675 * setting sync_timeleft to zero. This timer guards against vfs_syncall() 3676 * deadlocking or hanging inside of a broken filesystem or driver routine. 3677 * 3678 * The sync_triesleft counter is updated by vfs_syncall() itself. If we make 3679 * sync_retries consecutive calls to bio_busy() and page_busy() without 3680 * decreasing either the number of dirty buffers or dirty pages below the 3681 * lowest count we have seen so far, we give up and return from vfs_syncall(). 3682 * 3683 * Each loop iteration ends with a call to delay() one second to allow time for 3684 * i/o completion and to permit the user time to read our progress messages. 3685 */ 3686 void 3687 vfs_syncall(void) 3688 { 3689 if (rootdir == NULL && !modrootloaded) 3690 return; /* panic during boot - no filesystems yet */ 3691 3692 printf("syncing file systems..."); 3693 vfs_syncprogress(); 3694 sync(); 3695 3696 vfs_syncprogress(); 3697 sync_triesleft = sync_retries; 3698 3699 old_bufcnt = new_bufcnt = INT_MAX; 3700 old_pgcnt = new_pgcnt = ULONG_MAX; 3701 3702 while (sync_triesleft > 0) { 3703 old_bufcnt = MIN(old_bufcnt, new_bufcnt); 3704 old_pgcnt = MIN(old_pgcnt, new_pgcnt); 3705 3706 new_bufcnt = bio_busy(B_TRUE); 3707 new_pgcnt = page_busy(B_TRUE); 3708 vfs_syncprogress(); 3709 3710 if (new_bufcnt == 0 && new_pgcnt == 0) 3711 break; 3712 3713 if (new_bufcnt < old_bufcnt || new_pgcnt < old_pgcnt) 3714 sync_triesleft = sync_retries; 3715 else 3716 sync_triesleft--; 3717 3718 if (new_bufcnt) 3719 printf(" [%d]", new_bufcnt); 3720 if (new_pgcnt) 3721 printf(" %lu", new_pgcnt); 3722 3723 delay(hz); 3724 } 3725 3726 if (new_bufcnt != 0 || new_pgcnt != 0) 3727 printf(" done (not all i/o completed)\n"); 3728 else 3729 printf(" done\n"); 3730 3731 sync_timeleft = 0; 3732 delay(hz); 3733 } 3734 3735 /* 3736 * If we are in the middle of the sync phase of panic, reset sync_timeleft to 3737 * sync_timeout to indicate that we are making progress and the deadman() 3738 * omnipresent cyclic should not yet time us out. Note that it is safe to 3739 * store to sync_timeleft here since the deadman() is firing at high-level 3740 * on top of us. If we are racing with the deadman(), either the deadman() 3741 * will decrement the old value and then we will reset it, or we will 3742 * reset it and then the deadman() will immediately decrement it. In either 3743 * case, correct behavior results. 3744 */ 3745 void 3746 vfs_syncprogress(void) 3747 { 3748 if (panicstr) 3749 sync_timeleft = sync_timeout; 3750 } 3751 3752 /* 3753 * Map VFS flags to statvfs flags. These shouldn't really be separate 3754 * flags at all. 3755 */ 3756 uint_t 3757 vf_to_stf(uint_t vf) 3758 { 3759 uint_t stf = 0; 3760 3761 if (vf & VFS_RDONLY) 3762 stf |= ST_RDONLY; 3763 if (vf & VFS_NOSETUID) 3764 stf |= ST_NOSUID; 3765 if (vf & VFS_NOTRUNC) 3766 stf |= ST_NOTRUNC; 3767 3768 return (stf); 3769 } 3770 3771 /* 3772 * Entries for (illegal) fstype 0. 3773 */ 3774 /* ARGSUSED */ 3775 int 3776 vfsstray_sync(struct vfs *vfsp, short arg, struct cred *cr) 3777 { 3778 cmn_err(CE_PANIC, "stray vfs operation"); 3779 return (0); 3780 } 3781 3782 /* 3783 * Entries for (illegal) fstype 0. 3784 */ 3785 int 3786 vfsstray(void) 3787 { 3788 cmn_err(CE_PANIC, "stray vfs operation"); 3789 return (0); 3790 } 3791 3792 /* 3793 * Support for dealing with forced UFS unmount and its interaction with 3794 * LOFS. Could be used by any filesystem. 3795 * See bug 1203132. 3796 */ 3797 int 3798 vfs_EIO(void) 3799 { 3800 return (EIO); 3801 } 3802 3803 /* 3804 * We've gotta define the op for sync separately, since the compiler gets 3805 * confused if we mix and match ANSI and normal style prototypes when 3806 * a "short" argument is present and spits out a warning. 3807 */ 3808 /*ARGSUSED*/ 3809 int 3810 vfs_EIO_sync(struct vfs *vfsp, short arg, struct cred *cr) 3811 { 3812 return (EIO); 3813 } 3814 3815 vfs_t EIO_vfs; 3816 vfsops_t *EIO_vfsops; 3817 3818 /* 3819 * Called from startup() to initialize all loaded vfs's 3820 */ 3821 void 3822 vfsinit(void) 3823 { 3824 struct vfssw *vswp; 3825 vfsops_t *stray_vfsops; 3826 int error; 3827 extern int vopstats_enabled; 3828 extern void vopstats_startup(); 3829 3830 static const fs_operation_def_t EIO_vfsops_template[] = { 3831 VFSNAME_MOUNT, { .error = vfs_EIO }, 3832 VFSNAME_UNMOUNT, { .error = vfs_EIO }, 3833 VFSNAME_ROOT, { .error = vfs_EIO }, 3834 VFSNAME_STATVFS, { .error = vfs_EIO }, 3835 VFSNAME_SYNC, { .vfs_sync = vfs_EIO_sync }, 3836 VFSNAME_VGET, { .error = vfs_EIO }, 3837 VFSNAME_MOUNTROOT, { .error = vfs_EIO }, 3838 VFSNAME_FREEVFS, { .error = vfs_EIO }, 3839 VFSNAME_VNSTATE, { .error = vfs_EIO }, 3840 NULL, NULL 3841 }; 3842 3843 static const fs_operation_def_t stray_vfsops_template[] = { 3844 VFSNAME_MOUNT, { .error = vfsstray }, 3845 VFSNAME_UNMOUNT, { .error = vfsstray }, 3846 VFSNAME_ROOT, { .error = vfsstray }, 3847 VFSNAME_STATVFS, { .error = vfsstray }, 3848 VFSNAME_SYNC, { .vfs_sync = vfsstray_sync }, 3849 VFSNAME_VGET, { .error = vfsstray }, 3850 VFSNAME_MOUNTROOT, { .error = vfsstray }, 3851 VFSNAME_FREEVFS, { .error = vfsstray }, 3852 VFSNAME_VNSTATE, { .error = vfsstray }, 3853 NULL, NULL 3854 }; 3855 3856 /* Initialize the vnode cache (file systems may use it during init). */ 3857 3858 vn_create_cache(); 3859 3860 /* Setup event monitor framework */ 3861 3862 fem_init(); 3863 3864 /* Initialize the dummy stray file system type. */ 3865 error = vfs_makefsops(stray_vfsops_template, &stray_vfsops); 3866 vfssw[0].vsw_vfsops = *stray_vfsops; /* structure copy */ 3867 3868 /* Initialize the dummy EIO file system. */ 3869 error = vfs_makefsops(EIO_vfsops_template, &EIO_vfsops); 3870 if (error != 0) { 3871 cmn_err(CE_WARN, "vfsinit: bad EIO vfs ops template"); 3872 /* Shouldn't happen, but not bad enough to panic */ 3873 } 3874 3875 VFS_INIT(&EIO_vfs, EIO_vfsops, (caddr_t)NULL); 3876 3877 /* 3878 * Default EIO_vfs.vfs_flag to VFS_UNMOUNTED so a lookup 3879 * on this vfs can immediately notice it's invalid. 3880 */ 3881 EIO_vfs.vfs_flag |= VFS_UNMOUNTED; 3882 3883 /* 3884 * Call the init routines of non-loadable filesystems only. 3885 * Filesystems which are loaded as separate modules will be 3886 * initialized by the module loading code instead. 3887 */ 3888 3889 for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) { 3890 RLOCK_VFSSW(); 3891 if (vswp->vsw_init != NULL) 3892 (*vswp->vsw_init)(vswp - vfssw, vswp->vsw_name); 3893 RUNLOCK_VFSSW(); 3894 } 3895 3896 vopstats_startup(); 3897 3898 if (vopstats_enabled) { 3899 /* EIO_vfs can collect stats, but we don't retrieve them */ 3900 initialize_vopstats(&EIO_vfs.vfs_vopstats); 3901 EIO_vfs.vfs_fstypevsp = NULL; 3902 EIO_vfs.vfs_vskap = NULL; 3903 EIO_vfs.vfs_flag |= VFS_STATS; 3904 } 3905 } 3906 3907 /* 3908 * Increments the vfs reference count by one atomically. 3909 */ 3910 void 3911 vfs_hold(vfs_t *vfsp) 3912 { 3913 atomic_add_32(&vfsp->vfs_count, 1); 3914 ASSERT(vfsp->vfs_count != 0); 3915 } 3916 3917 /* 3918 * Decrements the vfs reference count by one atomically. When 3919 * vfs reference count becomes zero, it calls the file system 3920 * specific vfs_freevfs() to free up the resources. 3921 */ 3922 void 3923 vfs_rele(vfs_t *vfsp) 3924 { 3925 ASSERT(vfsp->vfs_count != 0); 3926 if (atomic_add_32_nv(&vfsp->vfs_count, -1) == 0) { 3927 VFS_FREEVFS(vfsp); 3928 if (vfsp->vfs_zone) 3929 zone_rele(vfsp->vfs_zone); 3930 vfs_freemnttab(vfsp); 3931 if (vfsp->vfs_implp) 3932 vfsimpl_teardown(vfsp); 3933 sema_destroy(&vfsp->vfs_reflock); 3934 kmem_free(vfsp, sizeof (*vfsp)); 3935 } 3936 } 3937 3938 /* 3939 * Generic operations vector support. 3940 * 3941 * This is used to build operations vectors for both the vfs and vnode. 3942 * It's normally called only when a file system is loaded. 3943 * 3944 * There are many possible algorithms for this, including the following: 3945 * 3946 * (1) scan the list of known operations; for each, see if the file system 3947 * includes an entry for it, and fill it in as appropriate. 3948 * 3949 * (2) set up defaults for all known operations. scan the list of ops 3950 * supplied by the file system; for each which is both supplied and 3951 * known, fill it in. 3952 * 3953 * (3) sort the lists of known ops & supplied ops; scan the list, filling 3954 * in entries as we go. 3955 * 3956 * we choose (1) for simplicity, and because performance isn't critical here. 3957 * note that (2) could be sped up using a precomputed hash table on known ops. 3958 * (3) could be faster than either, but only if the lists were very large or 3959 * supplied in sorted order. 3960 * 3961 */ 3962 3963 int 3964 fs_build_vector(void *vector, int *unused_ops, 3965 const fs_operation_trans_def_t *translation, 3966 const fs_operation_def_t *operations) 3967 { 3968 int i, num_trans, num_ops, used; 3969 3970 /* 3971 * Count the number of translations and the number of supplied 3972 * operations. 3973 */ 3974 3975 { 3976 const fs_operation_trans_def_t *p; 3977 3978 for (num_trans = 0, p = translation; 3979 p->name != NULL; 3980 num_trans++, p++) 3981 ; 3982 } 3983 3984 { 3985 const fs_operation_def_t *p; 3986 3987 for (num_ops = 0, p = operations; 3988 p->name != NULL; 3989 num_ops++, p++) 3990 ; 3991 } 3992 3993 /* Walk through each operation known to our caller. There will be */ 3994 /* one entry in the supplied "translation table" for each. */ 3995 3996 used = 0; 3997 3998 for (i = 0; i < num_trans; i++) { 3999 int j, found; 4000 char *curname; 4001 fs_generic_func_p result; 4002 fs_generic_func_p *location; 4003 4004 curname = translation[i].name; 4005 4006 /* Look for a matching operation in the list supplied by the */ 4007 /* file system. */ 4008 4009 found = 0; 4010 4011 for (j = 0; j < num_ops; j++) { 4012 if (strcmp(operations[j].name, curname) == 0) { 4013 used++; 4014 found = 1; 4015 break; 4016 } 4017 } 4018 4019 /* 4020 * If the file system is using a "placeholder" for default 4021 * or error functions, grab the appropriate function out of 4022 * the translation table. If the file system didn't supply 4023 * this operation at all, use the default function. 4024 */ 4025 4026 if (found) { 4027 result = operations[j].func.fs_generic; 4028 if (result == fs_default) { 4029 result = translation[i].defaultFunc; 4030 } else if (result == fs_error) { 4031 result = translation[i].errorFunc; 4032 } else if (result == NULL) { 4033 /* Null values are PROHIBITED */ 4034 return (EINVAL); 4035 } 4036 } else { 4037 result = translation[i].defaultFunc; 4038 } 4039 4040 /* Now store the function into the operations vector. */ 4041 4042 location = (fs_generic_func_p *) 4043 (((char *)vector) + translation[i].offset); 4044 4045 *location = result; 4046 } 4047 4048 *unused_ops = num_ops - used; 4049 4050 return (0); 4051 } 4052 4053 /* Placeholder functions, should never be called. */ 4054 4055 int 4056 fs_error(void) 4057 { 4058 cmn_err(CE_PANIC, "fs_error called"); 4059 return (0); 4060 } 4061 4062 int 4063 fs_default(void) 4064 { 4065 cmn_err(CE_PANIC, "fs_default called"); 4066 return (0); 4067 } 4068 4069 #ifdef __sparc 4070 4071 /* 4072 * Part of the implementation of booting off a mirrored root 4073 * involves a change of dev_t for the root device. To 4074 * accomplish this, first remove the existing hash table 4075 * entry for the root device, convert to the new dev_t, 4076 * then re-insert in the hash table at the head of the list. 4077 */ 4078 void 4079 vfs_root_redev(vfs_t *vfsp, dev_t ndev, int fstype) 4080 { 4081 vfs_list_lock(); 4082 4083 vfs_hash_remove(vfsp); 4084 4085 vfsp->vfs_dev = ndev; 4086 vfs_make_fsid(&vfsp->vfs_fsid, ndev, fstype); 4087 4088 vfs_hash_add(vfsp, 1); 4089 4090 vfs_list_unlock(); 4091 } 4092 4093 #else /* x86 NEWBOOT */ 4094 4095 int 4096 rootconf() 4097 { 4098 int error; 4099 struct vfssw *vsw; 4100 extern void pm_init(); 4101 char *fstyp; 4102 4103 fstyp = getrootfs(); 4104 4105 if (error = clboot_rootconf()) 4106 return (error); 4107 4108 if (modload("fs", fstyp) == -1) 4109 panic("Cannot _init %s module", fstyp); 4110 4111 RLOCK_VFSSW(); 4112 vsw = vfs_getvfsswbyname(fstyp); 4113 RUNLOCK_VFSSW(); 4114 VFS_INIT(rootvfs, &vsw->vsw_vfsops, 0); 4115 VFS_HOLD(rootvfs); 4116 4117 /* always mount readonly first */ 4118 rootvfs->vfs_flag |= VFS_RDONLY; 4119 4120 pm_init(); 4121 4122 if (netboot) 4123 (void) strplumb(); 4124 4125 error = VFS_MOUNTROOT(rootvfs, ROOT_INIT); 4126 vfs_unrefvfssw(vsw); 4127 rootdev = rootvfs->vfs_dev; 4128 4129 if (error) 4130 panic("cannot mount root path %s", rootfs.bo_name); 4131 return (error); 4132 } 4133 4134 /* 4135 * XXX this is called by nfs only and should probably be removed 4136 * If booted with ASKNAME, prompt on the console for a filesystem 4137 * name and return it. 4138 */ 4139 void 4140 getfsname(char *askfor, char *name, size_t namelen) 4141 { 4142 if (boothowto & RB_ASKNAME) { 4143 printf("%s name: ", askfor); 4144 console_gets(name, namelen); 4145 } 4146 } 4147 4148 /* 4149 * If server_path exists, then we are booting a diskless 4150 * client. Otherwise, we default to ufs. Zfs should perhaps be 4151 * another property. 4152 */ 4153 static char * 4154 getrootfs(void) 4155 { 4156 extern char *strplumb_get_netdev_path(void); 4157 char *propstr = NULL; 4158 4159 /* check fstype property; it should be nfsdyn for diskless */ 4160 if (ddi_prop_lookup_string(DDI_DEV_T_ANY, ddi_root_node(), 4161 DDI_PROP_DONTPASS, "fstype", &propstr) 4162 == DDI_SUCCESS) { 4163 (void) strncpy(rootfs.bo_fstype, propstr, BO_MAXFSNAME); 4164 ddi_prop_free(propstr); 4165 } 4166 4167 if (strncmp(rootfs.bo_fstype, "nfs", 3) != 0) 4168 return (rootfs.bo_fstype); 4169 4170 ++netboot; 4171 /* check if path to network interface is specified in bootpath */ 4172 if (ddi_prop_lookup_string(DDI_DEV_T_ANY, ddi_root_node(), 4173 DDI_PROP_DONTPASS, "bootpath", &propstr) 4174 == DDI_SUCCESS) { 4175 (void) strncpy(rootfs.bo_name, propstr, BO_MAXOBJNAME); 4176 ddi_prop_free(propstr); 4177 } else { 4178 /* attempt to determine netdev_path via boot_mac address */ 4179 netdev_path = strplumb_get_netdev_path(); 4180 if (netdev_path == NULL) 4181 panic("cannot find boot network interface"); 4182 (void) strncpy(rootfs.bo_name, netdev_path, BO_MAXOBJNAME); 4183 } 4184 return ("nfs"); 4185 } 4186 #endif 4187