xref: /titanic_52/usr/src/uts/common/fs/vfs.c (revision 121d13daefbeb0546d0d9c6ef16c753aa6890290)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 /*	Copyright (c) 1983, 1984, 1985, 1986, 1987, 1988, 1989 AT&T	*/
27 /*	  All Rights Reserved  	*/
28 
29 /*
30  * University Copyright- Copyright (c) 1982, 1986, 1988
31  * The Regents of the University of California
32  * All Rights Reserved
33  *
34  * University Acknowledgment- Portions of this document are derived from
35  * software developed by the University of California, Berkeley, and its
36  * contributors.
37  */
38 
39 #include <sys/types.h>
40 #include <sys/t_lock.h>
41 #include <sys/param.h>
42 #include <sys/errno.h>
43 #include <sys/user.h>
44 #include <sys/fstyp.h>
45 #include <sys/kmem.h>
46 #include <sys/systm.h>
47 #include <sys/proc.h>
48 #include <sys/mount.h>
49 #include <sys/vfs.h>
50 #include <sys/vfs_opreg.h>
51 #include <sys/fem.h>
52 #include <sys/mntent.h>
53 #include <sys/stat.h>
54 #include <sys/statvfs.h>
55 #include <sys/statfs.h>
56 #include <sys/cred.h>
57 #include <sys/vnode.h>
58 #include <sys/rwstlock.h>
59 #include <sys/dnlc.h>
60 #include <sys/file.h>
61 #include <sys/time.h>
62 #include <sys/atomic.h>
63 #include <sys/cmn_err.h>
64 #include <sys/buf.h>
65 #include <sys/swap.h>
66 #include <sys/debug.h>
67 #include <sys/vnode.h>
68 #include <sys/modctl.h>
69 #include <sys/ddi.h>
70 #include <sys/pathname.h>
71 #include <sys/bootconf.h>
72 #include <sys/dumphdr.h>
73 #include <sys/dc_ki.h>
74 #include <sys/poll.h>
75 #include <sys/sunddi.h>
76 #include <sys/sysmacros.h>
77 #include <sys/zone.h>
78 #include <sys/policy.h>
79 #include <sys/ctfs.h>
80 #include <sys/objfs.h>
81 #include <sys/console.h>
82 #include <sys/reboot.h>
83 #include <sys/attr.h>
84 #include <sys/zio.h>
85 #include <sys/spa.h>
86 #include <sys/lofi.h>
87 #include <sys/bootprops.h>
88 
89 #include <vm/page.h>
90 
91 #include <fs/fs_subr.h>
92 /* Private interfaces to create vopstats-related data structures */
93 extern void		initialize_vopstats(vopstats_t *);
94 extern vopstats_t	*get_fstype_vopstats(struct vfs *, struct vfssw *);
95 extern vsk_anchor_t	*get_vskstat_anchor(struct vfs *);
96 
97 static void vfs_clearmntopt_nolock(mntopts_t *, const char *, int);
98 static void vfs_setmntopt_nolock(mntopts_t *, const char *,
99     const char *, int, int);
100 static int  vfs_optionisset_nolock(const mntopts_t *, const char *, char **);
101 static void vfs_freemnttab(struct vfs *);
102 static void vfs_freeopt(mntopt_t *);
103 static void vfs_swapopttbl_nolock(mntopts_t *, mntopts_t *);
104 static void vfs_swapopttbl(mntopts_t *, mntopts_t *);
105 static void vfs_copyopttbl_extend(const mntopts_t *, mntopts_t *, int);
106 static void vfs_createopttbl_extend(mntopts_t *, const char *,
107     const mntopts_t *);
108 static char **vfs_copycancelopt_extend(char **const, int);
109 static void vfs_freecancelopt(char **);
110 static void getrootfs(char **, char **);
111 static int getmacpath(dev_info_t *, void *);
112 static void vfs_mnttabvp_setup(void);
113 
114 struct ipmnt {
115 	struct ipmnt	*mip_next;
116 	dev_t		mip_dev;
117 	struct vfs	*mip_vfsp;
118 };
119 
120 static kmutex_t		vfs_miplist_mutex;
121 static struct ipmnt	*vfs_miplist = NULL;
122 static struct ipmnt	*vfs_miplist_end = NULL;
123 
124 static kmem_cache_t *vfs_cache;	/* Pointer to VFS kmem cache */
125 
126 /*
127  * VFS global data.
128  */
129 vnode_t *rootdir;		/* pointer to root inode vnode. */
130 vnode_t *devicesdir;		/* pointer to inode of devices root */
131 vnode_t	*devdir;		/* pointer to inode of dev root */
132 
133 char *server_rootpath;		/* root path for diskless clients */
134 char *server_hostname;		/* hostname of diskless server */
135 
136 static struct vfs root;
137 static struct vfs devices;
138 static struct vfs dev;
139 struct vfs *rootvfs = &root;	/* pointer to root vfs; head of VFS list. */
140 rvfs_t *rvfs_list;		/* array of vfs ptrs for vfs hash list */
141 int vfshsz = 512;		/* # of heads/locks in vfs hash arrays */
142 				/* must be power of 2!	*/
143 timespec_t vfs_mnttab_ctime;	/* mnttab created time */
144 timespec_t vfs_mnttab_mtime;	/* mnttab last modified time */
145 char *vfs_dummyfstype = "\0";
146 struct pollhead vfs_pollhd;	/* for mnttab pollers */
147 struct vnode *vfs_mntdummyvp;	/* to fake mnttab read/write for file events */
148 int	mntfstype;		/* will be set once mnt fs is mounted */
149 
150 /*
151  * Table for generic options recognized in the VFS layer and acted
152  * on at this level before parsing file system specific options.
153  * The nosuid option is stronger than any of the devices and setuid
154  * options, so those are canceled when nosuid is seen.
155  *
156  * All options which are added here need to be added to the
157  * list of standard options in usr/src/cmd/fs.d/fslib.c as well.
158  */
159 /*
160  * VFS Mount options table
161  */
162 static char *ro_cancel[] = { MNTOPT_RW, NULL };
163 static char *rw_cancel[] = { MNTOPT_RO, NULL };
164 static char *suid_cancel[] = { MNTOPT_NOSUID, NULL };
165 static char *nosuid_cancel[] = { MNTOPT_SUID, MNTOPT_DEVICES, MNTOPT_NODEVICES,
166     MNTOPT_NOSETUID, MNTOPT_SETUID, NULL };
167 static char *devices_cancel[] = { MNTOPT_NODEVICES, NULL };
168 static char *nodevices_cancel[] = { MNTOPT_DEVICES, NULL };
169 static char *setuid_cancel[] = { MNTOPT_NOSETUID, NULL };
170 static char *nosetuid_cancel[] = { MNTOPT_SETUID, NULL };
171 static char *nbmand_cancel[] = { MNTOPT_NONBMAND, NULL };
172 static char *nonbmand_cancel[] = { MNTOPT_NBMAND, NULL };
173 static char *exec_cancel[] = { MNTOPT_NOEXEC, NULL };
174 static char *noexec_cancel[] = { MNTOPT_EXEC, NULL };
175 
176 static const mntopt_t mntopts[] = {
177 /*
178  *	option name		cancel options		default arg	flags
179  */
180 	{ MNTOPT_REMOUNT,	NULL,			NULL,
181 		MO_NODISPLAY, (void *)0 },
182 	{ MNTOPT_RO,		ro_cancel,		NULL,		0,
183 		(void *)0 },
184 	{ MNTOPT_RW,		rw_cancel,		NULL,		0,
185 		(void *)0 },
186 	{ MNTOPT_SUID,		suid_cancel,		NULL,		0,
187 		(void *)0 },
188 	{ MNTOPT_NOSUID,	nosuid_cancel,		NULL,		0,
189 		(void *)0 },
190 	{ MNTOPT_DEVICES,	devices_cancel,		NULL,		0,
191 		(void *)0 },
192 	{ MNTOPT_NODEVICES,	nodevices_cancel,	NULL,		0,
193 		(void *)0 },
194 	{ MNTOPT_SETUID,	setuid_cancel,		NULL,		0,
195 		(void *)0 },
196 	{ MNTOPT_NOSETUID,	nosetuid_cancel,	NULL,		0,
197 		(void *)0 },
198 	{ MNTOPT_NBMAND,	nbmand_cancel,		NULL,		0,
199 		(void *)0 },
200 	{ MNTOPT_NONBMAND,	nonbmand_cancel,	NULL,		0,
201 		(void *)0 },
202 	{ MNTOPT_EXEC,		exec_cancel,		NULL,		0,
203 		(void *)0 },
204 	{ MNTOPT_NOEXEC,	noexec_cancel,		NULL,		0,
205 		(void *)0 },
206 };
207 
208 const mntopts_t vfs_mntopts = {
209 	sizeof (mntopts) / sizeof (mntopt_t),
210 	(mntopt_t *)&mntopts[0]
211 };
212 
213 /*
214  * File system operation dispatch functions.
215  */
216 
217 int
218 fsop_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr)
219 {
220 	return (*(vfsp)->vfs_op->vfs_mount)(vfsp, mvp, uap, cr);
221 }
222 
223 int
224 fsop_unmount(vfs_t *vfsp, int flag, cred_t *cr)
225 {
226 	return (*(vfsp)->vfs_op->vfs_unmount)(vfsp, flag, cr);
227 }
228 
229 int
230 fsop_root(vfs_t *vfsp, vnode_t **vpp)
231 {
232 	refstr_t *mntpt;
233 	int ret = (*(vfsp)->vfs_op->vfs_root)(vfsp, vpp);
234 	/*
235 	 * Make sure this root has a path.  With lofs, it is possible to have
236 	 * a NULL mountpoint.
237 	 */
238 	if (ret == 0 && vfsp->vfs_mntpt != NULL && (*vpp)->v_path == NULL) {
239 		mntpt = vfs_getmntpoint(vfsp);
240 		vn_setpath_str(*vpp, refstr_value(mntpt),
241 		    strlen(refstr_value(mntpt)));
242 		refstr_rele(mntpt);
243 	}
244 
245 	return (ret);
246 }
247 
248 int
249 fsop_statfs(vfs_t *vfsp, statvfs64_t *sp)
250 {
251 	return (*(vfsp)->vfs_op->vfs_statvfs)(vfsp, sp);
252 }
253 
254 int
255 fsop_sync(vfs_t *vfsp, short flag, cred_t *cr)
256 {
257 	return (*(vfsp)->vfs_op->vfs_sync)(vfsp, flag, cr);
258 }
259 
260 int
261 fsop_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp)
262 {
263 	/*
264 	 * In order to handle system attribute fids in a manner
265 	 * transparent to the underlying fs, we embed the fid for
266 	 * the sysattr parent object in the sysattr fid and tack on
267 	 * some extra bytes that only the sysattr layer knows about.
268 	 *
269 	 * This guarantees that sysattr fids are larger than other fids
270 	 * for this vfs. If the vfs supports the sysattr view interface
271 	 * (as indicated by VFSFT_SYSATTR_VIEWS), we cannot have a size
272 	 * collision with XATTR_FIDSZ.
273 	 */
274 	if (vfs_has_feature(vfsp, VFSFT_SYSATTR_VIEWS) &&
275 	    fidp->fid_len == XATTR_FIDSZ)
276 		return (xattr_dir_vget(vfsp, vpp, fidp));
277 
278 	return (*(vfsp)->vfs_op->vfs_vget)(vfsp, vpp, fidp);
279 }
280 
281 int
282 fsop_mountroot(vfs_t *vfsp, enum whymountroot reason)
283 {
284 	return (*(vfsp)->vfs_op->vfs_mountroot)(vfsp, reason);
285 }
286 
287 void
288 fsop_freefs(vfs_t *vfsp)
289 {
290 	(*(vfsp)->vfs_op->vfs_freevfs)(vfsp);
291 }
292 
293 int
294 fsop_vnstate(vfs_t *vfsp, vnode_t *vp, vntrans_t nstate)
295 {
296 	return ((*(vfsp)->vfs_op->vfs_vnstate)(vfsp, vp, nstate));
297 }
298 
299 int
300 fsop_sync_by_kind(int fstype, short flag, cred_t *cr)
301 {
302 	ASSERT((fstype >= 0) && (fstype < nfstype));
303 
304 	if (ALLOCATED_VFSSW(&vfssw[fstype]) && VFS_INSTALLED(&vfssw[fstype]))
305 		return (*vfssw[fstype].vsw_vfsops.vfs_sync) (NULL, flag, cr);
306 	else
307 		return (ENOTSUP);
308 }
309 
310 /*
311  * File system initialization.  vfs_setfsops() must be called from a file
312  * system's init routine.
313  */
314 
315 static int
316 fs_copyfsops(const fs_operation_def_t *template, vfsops_t *actual,
317     int *unused_ops)
318 {
319 	static const fs_operation_trans_def_t vfs_ops_table[] = {
320 		VFSNAME_MOUNT, offsetof(vfsops_t, vfs_mount),
321 			fs_nosys, fs_nosys,
322 
323 		VFSNAME_UNMOUNT, offsetof(vfsops_t, vfs_unmount),
324 			fs_nosys, fs_nosys,
325 
326 		VFSNAME_ROOT, offsetof(vfsops_t, vfs_root),
327 			fs_nosys, fs_nosys,
328 
329 		VFSNAME_STATVFS, offsetof(vfsops_t, vfs_statvfs),
330 			fs_nosys, fs_nosys,
331 
332 		VFSNAME_SYNC, offsetof(vfsops_t, vfs_sync),
333 			(fs_generic_func_p) fs_sync,
334 			(fs_generic_func_p) fs_sync,	/* No errors allowed */
335 
336 		VFSNAME_VGET, offsetof(vfsops_t, vfs_vget),
337 			fs_nosys, fs_nosys,
338 
339 		VFSNAME_MOUNTROOT, offsetof(vfsops_t, vfs_mountroot),
340 			fs_nosys, fs_nosys,
341 
342 		VFSNAME_FREEVFS, offsetof(vfsops_t, vfs_freevfs),
343 			(fs_generic_func_p)fs_freevfs,
344 			(fs_generic_func_p)fs_freevfs,	/* Shouldn't fail */
345 
346 		VFSNAME_VNSTATE, offsetof(vfsops_t, vfs_vnstate),
347 			(fs_generic_func_p)fs_nosys,
348 			(fs_generic_func_p)fs_nosys,
349 
350 		NULL, 0, NULL, NULL
351 	};
352 
353 	return (fs_build_vector(actual, unused_ops, vfs_ops_table, template));
354 }
355 
356 void
357 zfs_boot_init() {
358 
359 	if (strcmp(rootfs.bo_fstype, MNTTYPE_ZFS) == 0)
360 		spa_boot_init();
361 }
362 
363 int
364 vfs_setfsops(int fstype, const fs_operation_def_t *template, vfsops_t **actual)
365 {
366 	int error;
367 	int unused_ops;
368 
369 	/*
370 	 * Verify that fstype refers to a valid fs.  Note that
371 	 * 0 is valid since it's used to set "stray" ops.
372 	 */
373 	if ((fstype < 0) || (fstype >= nfstype))
374 		return (EINVAL);
375 
376 	if (!ALLOCATED_VFSSW(&vfssw[fstype]))
377 		return (EINVAL);
378 
379 	/* Set up the operations vector. */
380 
381 	error = fs_copyfsops(template, &vfssw[fstype].vsw_vfsops, &unused_ops);
382 
383 	if (error != 0)
384 		return (error);
385 
386 	vfssw[fstype].vsw_flag |= VSW_INSTALLED;
387 
388 	if (actual != NULL)
389 		*actual = &vfssw[fstype].vsw_vfsops;
390 
391 #if DEBUG
392 	if (unused_ops != 0)
393 		cmn_err(CE_WARN, "vfs_setfsops: %s: %d operations supplied "
394 		    "but not used", vfssw[fstype].vsw_name, unused_ops);
395 #endif
396 
397 	return (0);
398 }
399 
400 int
401 vfs_makefsops(const fs_operation_def_t *template, vfsops_t **actual)
402 {
403 	int error;
404 	int unused_ops;
405 
406 	*actual = (vfsops_t *)kmem_alloc(sizeof (vfsops_t), KM_SLEEP);
407 
408 	error = fs_copyfsops(template, *actual, &unused_ops);
409 	if (error != 0) {
410 		kmem_free(*actual, sizeof (vfsops_t));
411 		*actual = NULL;
412 		return (error);
413 	}
414 
415 	return (0);
416 }
417 
418 /*
419  * Free a vfsops structure created as a result of vfs_makefsops().
420  * NOTE: For a vfsops structure initialized by vfs_setfsops(), use
421  * vfs_freevfsops_by_type().
422  */
423 void
424 vfs_freevfsops(vfsops_t *vfsops)
425 {
426 	kmem_free(vfsops, sizeof (vfsops_t));
427 }
428 
429 /*
430  * Since the vfsops structure is part of the vfssw table and wasn't
431  * really allocated, we're not really freeing anything.  We keep
432  * the name for consistency with vfs_freevfsops().  We do, however,
433  * need to take care of a little bookkeeping.
434  * NOTE: For a vfsops structure created by vfs_setfsops(), use
435  * vfs_freevfsops_by_type().
436  */
437 int
438 vfs_freevfsops_by_type(int fstype)
439 {
440 
441 	/* Verify that fstype refers to a loaded fs (and not fsid 0). */
442 	if ((fstype <= 0) || (fstype >= nfstype))
443 		return (EINVAL);
444 
445 	WLOCK_VFSSW();
446 	if ((vfssw[fstype].vsw_flag & VSW_INSTALLED) == 0) {
447 		WUNLOCK_VFSSW();
448 		return (EINVAL);
449 	}
450 
451 	vfssw[fstype].vsw_flag &= ~VSW_INSTALLED;
452 	WUNLOCK_VFSSW();
453 
454 	return (0);
455 }
456 
457 /* Support routines used to reference vfs_op */
458 
459 /* Set the operations vector for a vfs */
460 void
461 vfs_setops(vfs_t *vfsp, vfsops_t *vfsops)
462 {
463 	vfsops_t	*op;
464 
465 	ASSERT(vfsp != NULL);
466 	ASSERT(vfsops != NULL);
467 
468 	op = vfsp->vfs_op;
469 	membar_consumer();
470 	if (vfsp->vfs_femhead == NULL &&
471 	    casptr(&vfsp->vfs_op, op, vfsops) == op) {
472 		return;
473 	}
474 	fsem_setvfsops(vfsp, vfsops);
475 }
476 
477 /* Retrieve the operations vector for a vfs */
478 vfsops_t *
479 vfs_getops(vfs_t *vfsp)
480 {
481 	vfsops_t	*op;
482 
483 	ASSERT(vfsp != NULL);
484 
485 	op = vfsp->vfs_op;
486 	membar_consumer();
487 	if (vfsp->vfs_femhead == NULL && op == vfsp->vfs_op) {
488 		return (op);
489 	} else {
490 		return (fsem_getvfsops(vfsp));
491 	}
492 }
493 
494 /*
495  * Returns non-zero (1) if the vfsops matches that of the vfs.
496  * Returns zero (0) if not.
497  */
498 int
499 vfs_matchops(vfs_t *vfsp, vfsops_t *vfsops)
500 {
501 	return (vfs_getops(vfsp) == vfsops);
502 }
503 
504 /*
505  * Returns non-zero (1) if the file system has installed a non-default,
506  * non-error vfs_sync routine.  Returns zero (0) otherwise.
507  */
508 int
509 vfs_can_sync(vfs_t *vfsp)
510 {
511 	/* vfs_sync() routine is not the default/error function */
512 	return (vfs_getops(vfsp)->vfs_sync != fs_sync);
513 }
514 
515 /*
516  * Initialize a vfs structure.
517  */
518 void
519 vfs_init(vfs_t *vfsp, vfsops_t *op, void *data)
520 {
521 	/* Other initialization has been moved to vfs_alloc() */
522 	vfsp->vfs_count = 0;
523 	vfsp->vfs_next = vfsp;
524 	vfsp->vfs_prev = vfsp;
525 	vfsp->vfs_zone_next = vfsp;
526 	vfsp->vfs_zone_prev = vfsp;
527 	vfsp->vfs_lofi_minor = 0;
528 	sema_init(&vfsp->vfs_reflock, 1, NULL, SEMA_DEFAULT, NULL);
529 	vfsimpl_setup(vfsp);
530 	vfsp->vfs_data = (data);
531 	vfs_setops((vfsp), (op));
532 }
533 
534 /*
535  * Allocate and initialize the vfs implementation private data
536  * structure, vfs_impl_t.
537  */
538 void
539 vfsimpl_setup(vfs_t *vfsp)
540 {
541 	int i;
542 
543 	if (vfsp->vfs_implp != NULL) {
544 		return;
545 	}
546 
547 	vfsp->vfs_implp = kmem_alloc(sizeof (vfs_impl_t), KM_SLEEP);
548 	/* Note that these are #define'd in vfs.h */
549 	vfsp->vfs_vskap = NULL;
550 	vfsp->vfs_fstypevsp = NULL;
551 
552 	/* Set size of counted array, then zero the array */
553 	vfsp->vfs_featureset[0] = VFS_FEATURE_MAXSZ - 1;
554 	for (i = 1; i <  VFS_FEATURE_MAXSZ; i++) {
555 		vfsp->vfs_featureset[i] = 0;
556 	}
557 }
558 
559 /*
560  * Release the vfs_impl_t structure, if it exists. Some unbundled
561  * filesystems may not use the newer version of vfs and thus
562  * would not contain this implementation private data structure.
563  */
564 void
565 vfsimpl_teardown(vfs_t *vfsp)
566 {
567 	vfs_impl_t	*vip = vfsp->vfs_implp;
568 
569 	if (vip == NULL)
570 		return;
571 
572 	kmem_free(vfsp->vfs_implp, sizeof (vfs_impl_t));
573 	vfsp->vfs_implp = NULL;
574 }
575 
576 /*
577  * VFS system calls: mount, umount, syssync, statfs, fstatfs, statvfs,
578  * fstatvfs, and sysfs moved to common/syscall.
579  */
580 
581 /*
582  * Update every mounted file system.  We call the vfs_sync operation of
583  * each file system type, passing it a NULL vfsp to indicate that all
584  * mounted file systems of that type should be updated.
585  */
586 void
587 vfs_sync(int flag)
588 {
589 	struct vfssw *vswp;
590 	RLOCK_VFSSW();
591 	for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) {
592 		if (ALLOCATED_VFSSW(vswp) && VFS_INSTALLED(vswp)) {
593 			vfs_refvfssw(vswp);
594 			RUNLOCK_VFSSW();
595 			(void) (*vswp->vsw_vfsops.vfs_sync)(NULL, flag,
596 			    CRED());
597 			vfs_unrefvfssw(vswp);
598 			RLOCK_VFSSW();
599 		}
600 	}
601 	RUNLOCK_VFSSW();
602 }
603 
604 void
605 sync(void)
606 {
607 	vfs_sync(0);
608 }
609 
610 /*
611  * External routines.
612  */
613 
614 krwlock_t vfssw_lock;	/* lock accesses to vfssw */
615 
616 /*
617  * Lock for accessing the vfs linked list.  Initialized in vfs_mountroot(),
618  * but otherwise should be accessed only via vfs_list_lock() and
619  * vfs_list_unlock().  Also used to protect the timestamp for mods to the list.
620  */
621 static krwlock_t vfslist;
622 
623 /*
624  * Mount devfs on /devices. This is done right after root is mounted
625  * to provide device access support for the system
626  */
627 static void
628 vfs_mountdevices(void)
629 {
630 	struct vfssw *vsw;
631 	struct vnode *mvp;
632 	struct mounta mounta = {	/* fake mounta for devfs_mount() */
633 		NULL,
634 		NULL,
635 		MS_SYSSPACE,
636 		NULL,
637 		NULL,
638 		0,
639 		NULL,
640 		0
641 	};
642 
643 	/*
644 	 * _init devfs module to fill in the vfssw
645 	 */
646 	if (modload("fs", "devfs") == -1)
647 		panic("Cannot _init devfs module");
648 
649 	/*
650 	 * Hold vfs
651 	 */
652 	RLOCK_VFSSW();
653 	vsw = vfs_getvfsswbyname("devfs");
654 	VFS_INIT(&devices, &vsw->vsw_vfsops, NULL);
655 	VFS_HOLD(&devices);
656 
657 	/*
658 	 * Locate mount point
659 	 */
660 	if (lookupname("/devices", UIO_SYSSPACE, FOLLOW, NULLVPP, &mvp))
661 		panic("Cannot find /devices");
662 
663 	/*
664 	 * Perform the mount of /devices
665 	 */
666 	if (VFS_MOUNT(&devices, mvp, &mounta, CRED()))
667 		panic("Cannot mount /devices");
668 
669 	RUNLOCK_VFSSW();
670 
671 	/*
672 	 * Set appropriate members and add to vfs list for mnttab display
673 	 */
674 	vfs_setresource(&devices, "/devices");
675 	vfs_setmntpoint(&devices, "/devices");
676 
677 	/*
678 	 * Hold the root of /devices so it won't go away
679 	 */
680 	if (VFS_ROOT(&devices, &devicesdir))
681 		panic("vfs_mountdevices: not devices root");
682 
683 	if (vfs_lock(&devices) != 0) {
684 		VN_RELE(devicesdir);
685 		cmn_err(CE_NOTE, "Cannot acquire vfs_lock of /devices");
686 		return;
687 	}
688 
689 	if (vn_vfswlock(mvp) != 0) {
690 		vfs_unlock(&devices);
691 		VN_RELE(devicesdir);
692 		cmn_err(CE_NOTE, "Cannot acquire vfswlock of /devices");
693 		return;
694 	}
695 
696 	vfs_add(mvp, &devices, 0);
697 	vn_vfsunlock(mvp);
698 	vfs_unlock(&devices);
699 	VN_RELE(devicesdir);
700 }
701 
702 /*
703  * mount the first instance of /dev  to root and remain mounted
704  */
705 static void
706 vfs_mountdev1(void)
707 {
708 	struct vfssw *vsw;
709 	struct vnode *mvp;
710 	struct mounta mounta = {	/* fake mounta for sdev_mount() */
711 		NULL,
712 		NULL,
713 		MS_SYSSPACE | MS_OVERLAY,
714 		NULL,
715 		NULL,
716 		0,
717 		NULL,
718 		0
719 	};
720 
721 	/*
722 	 * _init dev module to fill in the vfssw
723 	 */
724 	if (modload("fs", "dev") == -1)
725 		cmn_err(CE_PANIC, "Cannot _init dev module\n");
726 
727 	/*
728 	 * Hold vfs
729 	 */
730 	RLOCK_VFSSW();
731 	vsw = vfs_getvfsswbyname("dev");
732 	VFS_INIT(&dev, &vsw->vsw_vfsops, NULL);
733 	VFS_HOLD(&dev);
734 
735 	/*
736 	 * Locate mount point
737 	 */
738 	if (lookupname("/dev", UIO_SYSSPACE, FOLLOW, NULLVPP, &mvp))
739 		cmn_err(CE_PANIC, "Cannot find /dev\n");
740 
741 	/*
742 	 * Perform the mount of /dev
743 	 */
744 	if (VFS_MOUNT(&dev, mvp, &mounta, CRED()))
745 		cmn_err(CE_PANIC, "Cannot mount /dev 1\n");
746 
747 	RUNLOCK_VFSSW();
748 
749 	/*
750 	 * Set appropriate members and add to vfs list for mnttab display
751 	 */
752 	vfs_setresource(&dev, "/dev");
753 	vfs_setmntpoint(&dev, "/dev");
754 
755 	/*
756 	 * Hold the root of /dev so it won't go away
757 	 */
758 	if (VFS_ROOT(&dev, &devdir))
759 		cmn_err(CE_PANIC, "vfs_mountdev1: not dev root");
760 
761 	if (vfs_lock(&dev) != 0) {
762 		VN_RELE(devdir);
763 		cmn_err(CE_NOTE, "Cannot acquire vfs_lock of /dev");
764 		return;
765 	}
766 
767 	if (vn_vfswlock(mvp) != 0) {
768 		vfs_unlock(&dev);
769 		VN_RELE(devdir);
770 		cmn_err(CE_NOTE, "Cannot acquire vfswlock of /dev");
771 		return;
772 	}
773 
774 	vfs_add(mvp, &dev, 0);
775 	vn_vfsunlock(mvp);
776 	vfs_unlock(&dev);
777 	VN_RELE(devdir);
778 }
779 
780 /*
781  * Mount required filesystem. This is done right after root is mounted.
782  */
783 static void
784 vfs_mountfs(char *module, char *spec, char *path)
785 {
786 	struct vnode *mvp;
787 	struct mounta mounta;
788 	vfs_t *vfsp;
789 
790 	mounta.flags = MS_SYSSPACE | MS_DATA;
791 	mounta.fstype = module;
792 	mounta.spec = spec;
793 	mounta.dir = path;
794 	if (lookupname(path, UIO_SYSSPACE, FOLLOW, NULLVPP, &mvp)) {
795 		cmn_err(CE_WARN, "Cannot find %s", path);
796 		return;
797 	}
798 	if (domount(NULL, &mounta, mvp, CRED(), &vfsp))
799 		cmn_err(CE_WARN, "Cannot mount %s", path);
800 	else
801 		VFS_RELE(vfsp);
802 	VN_RELE(mvp);
803 }
804 
805 /*
806  * vfs_mountroot is called by main() to mount the root filesystem.
807  */
808 void
809 vfs_mountroot(void)
810 {
811 	struct vnode	*rvp = NULL;
812 	char		*path;
813 	size_t		plen;
814 	struct vfssw	*vswp;
815 	proc_t		*p;
816 
817 	rw_init(&vfssw_lock, NULL, RW_DEFAULT, NULL);
818 	rw_init(&vfslist, NULL, RW_DEFAULT, NULL);
819 
820 	/*
821 	 * Alloc the vfs hash bucket array and locks
822 	 */
823 	rvfs_list = kmem_zalloc(vfshsz * sizeof (rvfs_t), KM_SLEEP);
824 
825 	/*
826 	 * Call machine-dependent routine "rootconf" to choose a root
827 	 * file system type.
828 	 */
829 	if (rootconf())
830 		panic("vfs_mountroot: cannot mount root");
831 	/*
832 	 * Get vnode for '/'.  Set up rootdir, u.u_rdir and u.u_cdir
833 	 * to point to it.  These are used by lookuppn() so that it
834 	 * knows where to start from ('/' or '.').
835 	 */
836 	vfs_setmntpoint(rootvfs, "/");
837 	if (VFS_ROOT(rootvfs, &rootdir))
838 		panic("vfs_mountroot: no root vnode");
839 
840 	/*
841 	 * At this point, the process tree consists of p0 and possibly some
842 	 * direct children of p0.  (i.e. there are no grandchildren)
843 	 *
844 	 * Walk through them all, setting their current directory.
845 	 */
846 	mutex_enter(&pidlock);
847 	for (p = practive; p != NULL; p = p->p_next) {
848 		ASSERT(p == &p0 || p->p_parent == &p0);
849 
850 		PTOU(p)->u_cdir = rootdir;
851 		VN_HOLD(PTOU(p)->u_cdir);
852 		PTOU(p)->u_rdir = NULL;
853 	}
854 	mutex_exit(&pidlock);
855 
856 	/*
857 	 * Setup the global zone's rootvp, now that it exists.
858 	 */
859 	global_zone->zone_rootvp = rootdir;
860 	VN_HOLD(global_zone->zone_rootvp);
861 
862 	/*
863 	 * Notify the module code that it can begin using the
864 	 * root filesystem instead of the boot program's services.
865 	 */
866 	modrootloaded = 1;
867 
868 	/*
869 	 * Special handling for a ZFS root file system.
870 	 */
871 	zfs_boot_init();
872 
873 	/*
874 	 * Set up mnttab information for root
875 	 */
876 	vfs_setresource(rootvfs, rootfs.bo_name);
877 
878 	/*
879 	 * Notify cluster software that the root filesystem is available.
880 	 */
881 	clboot_mountroot();
882 
883 	/* Now that we're all done with the root FS, set up its vopstats */
884 	if ((vswp = vfs_getvfsswbyvfsops(vfs_getops(rootvfs))) != NULL) {
885 		/* Set flag for statistics collection */
886 		if (vswp->vsw_flag & VSW_STATS) {
887 			initialize_vopstats(&rootvfs->vfs_vopstats);
888 			rootvfs->vfs_flag |= VFS_STATS;
889 			rootvfs->vfs_fstypevsp =
890 			    get_fstype_vopstats(rootvfs, vswp);
891 			rootvfs->vfs_vskap = get_vskstat_anchor(rootvfs);
892 		}
893 		vfs_unrefvfssw(vswp);
894 	}
895 
896 	/*
897 	 * Mount /devices, /dev instance 1, /system/contract, /etc/mnttab,
898 	 * /etc/svc/volatile, /etc/dfs/sharetab, /system/object, and /proc.
899 	 */
900 	vfs_mountdevices();
901 	vfs_mountdev1();
902 
903 	vfs_mountfs("ctfs", "ctfs", CTFS_ROOT);
904 	vfs_mountfs("proc", "/proc", "/proc");
905 	vfs_mountfs("mntfs", "/etc/mnttab", "/etc/mnttab");
906 	vfs_mountfs("tmpfs", "/etc/svc/volatile", "/etc/svc/volatile");
907 	vfs_mountfs("objfs", "objfs", OBJFS_ROOT);
908 
909 	if (getzoneid() == GLOBAL_ZONEID) {
910 		vfs_mountfs("sharefs", "sharefs", "/etc/dfs/sharetab");
911 	}
912 
913 #ifdef __sparc
914 	/*
915 	 * This bit of magic can go away when we convert sparc to
916 	 * the new boot architecture based on ramdisk.
917 	 *
918 	 * Booting off a mirrored root volume:
919 	 * At this point, we have booted and mounted root on a
920 	 * single component of the mirror.  Complete the boot
921 	 * by configuring SVM and converting the root to the
922 	 * dev_t of the mirrored root device.  This dev_t conversion
923 	 * only works because the underlying device doesn't change.
924 	 */
925 	if (root_is_svm) {
926 		if (svm_rootconf()) {
927 			panic("vfs_mountroot: cannot remount root");
928 		}
929 
930 		/*
931 		 * mnttab should reflect the new root device
932 		 */
933 		vfs_lock_wait(rootvfs);
934 		vfs_setresource(rootvfs, rootfs.bo_name);
935 		vfs_unlock(rootvfs);
936 	}
937 #endif /* __sparc */
938 
939 	/*
940 	 * Look up the root device via devfs so that a dv_node is
941 	 * created for it. The vnode is never VN_RELE()ed.
942 	 * We allocate more than MAXPATHLEN so that the
943 	 * buffer passed to i_ddi_prompath_to_devfspath() is
944 	 * exactly MAXPATHLEN (the function expects a buffer
945 	 * of that length).
946 	 */
947 	plen = strlen("/devices");
948 	path = kmem_alloc(plen + MAXPATHLEN, KM_SLEEP);
949 	(void) strcpy(path, "/devices");
950 
951 	if (i_ddi_prompath_to_devfspath(rootfs.bo_name, path + plen)
952 	    != DDI_SUCCESS ||
953 	    lookupname(path, UIO_SYSSPACE, FOLLOW, NULLVPP, &rvp)) {
954 
955 		/* NUL terminate in case "path" has garbage */
956 		path[plen + MAXPATHLEN - 1] = '\0';
957 #ifdef	DEBUG
958 		cmn_err(CE_WARN, "!Cannot lookup root device: %s", path);
959 #endif
960 	}
961 	kmem_free(path, plen + MAXPATHLEN);
962 	vfs_mnttabvp_setup();
963 }
964 
965 /*
966  * If remount failed and we're in a zone we need to check for the zone
967  * root path and strip it before the call to vfs_setpath().
968  *
969  * If strpath doesn't begin with the zone_rootpath the original
970  * strpath is returned unchanged.
971  */
972 static const char *
973 stripzonepath(const char *strpath)
974 {
975 	char *str1, *str2;
976 	int i;
977 	zone_t *zonep = curproc->p_zone;
978 
979 	if (zonep->zone_rootpath == NULL || strpath == NULL) {
980 		return (NULL);
981 	}
982 
983 	/*
984 	 * we check for the end of the string at one past the
985 	 * current position because the zone_rootpath always
986 	 * ends with "/" but we don't want to strip that off.
987 	 */
988 	str1 = zonep->zone_rootpath;
989 	str2 = (char *)strpath;
990 	ASSERT(str1[0] != '\0');
991 	for (i = 0; str1[i + 1] != '\0'; i++) {
992 		if (str1[i] != str2[i])
993 			return ((char *)strpath);
994 	}
995 	return (&str2[i]);
996 }
997 
998 /*
999  * Check to see if our "block device" is actually a file.  If so,
1000  * automatically add a lofi device, and keep track of this fact.
1001  */
1002 static int
1003 lofi_add(const char *fsname, struct vfs *vfsp,
1004     mntopts_t *mntopts, struct mounta *uap)
1005 {
1006 	int fromspace = (uap->flags & MS_SYSSPACE) ?
1007 	    UIO_SYSSPACE : UIO_USERSPACE;
1008 	struct lofi_ioctl *li = NULL;
1009 	struct vnode *vp = NULL;
1010 	struct pathname	pn = { NULL };
1011 	ldi_ident_t ldi_id;
1012 	ldi_handle_t ldi_hdl;
1013 	vfssw_t *vfssw;
1014 	int minor;
1015 	int err = 0;
1016 
1017 	if (fsname == NULL ||
1018 	    (vfssw = vfs_getvfssw(fsname)) == NULL)
1019 		return (0);
1020 
1021 	if (!(vfssw->vsw_flag & VSW_CANLOFI)) {
1022 		vfs_unrefvfssw(vfssw);
1023 		return (0);
1024 	}
1025 
1026 	vfs_unrefvfssw(vfssw);
1027 	vfssw = NULL;
1028 
1029 	if (pn_get(uap->spec, fromspace, &pn) != 0)
1030 		return (0);
1031 
1032 	if (lookupname(uap->spec, fromspace, FOLLOW, NULL, &vp) != 0)
1033 		goto out;
1034 
1035 	if (vp->v_type != VREG)
1036 		goto out;
1037 
1038 	/* OK, this is a lofi mount. */
1039 
1040 	if ((uap->flags & (MS_REMOUNT|MS_GLOBAL)) ||
1041 	    vfs_optionisset_nolock(mntopts, MNTOPT_SUID, NULL) ||
1042 	    vfs_optionisset_nolock(mntopts, MNTOPT_SETUID, NULL) ||
1043 	    vfs_optionisset_nolock(mntopts, MNTOPT_DEVICES, NULL)) {
1044 		err = EINVAL;
1045 		goto out;
1046 	}
1047 
1048 	ldi_id = ldi_ident_from_anon();
1049 	li = kmem_zalloc(sizeof (*li), KM_SLEEP);
1050 	(void) strlcpy(li->li_filename, pn.pn_path, MAXPATHLEN);
1051 
1052 	/*
1053 	 * The lofi control node is currently exclusive-open.  We'd like
1054 	 * to improve this, but in the meantime, we'll loop waiting for
1055 	 * access.
1056 	 */
1057 	for (;;) {
1058 		err = ldi_open_by_name("/dev/lofictl", FREAD | FWRITE | FEXCL,
1059 		    kcred, &ldi_hdl, ldi_id);
1060 
1061 		if (err != EBUSY)
1062 			break;
1063 
1064 		if ((err = delay_sig(hz / 8)) == EINTR)
1065 			break;
1066 	}
1067 
1068 	if (err)
1069 		goto out2;
1070 
1071 	err = ldi_ioctl(ldi_hdl, LOFI_MAP_FILE, (intptr_t)li,
1072 	    FREAD | FWRITE | FEXCL | FKIOCTL, kcred, &minor);
1073 
1074 	(void) ldi_close(ldi_hdl, FREAD | FWRITE | FEXCL, kcred);
1075 
1076 	if (!err)
1077 		vfsp->vfs_lofi_minor = minor;
1078 
1079 out2:
1080 	ldi_ident_release(ldi_id);
1081 out:
1082 	if (li != NULL)
1083 		kmem_free(li, sizeof (*li));
1084 	if (vp != NULL)
1085 		VN_RELE(vp);
1086 	pn_free(&pn);
1087 	return (err);
1088 }
1089 
1090 static void
1091 lofi_remove(struct vfs *vfsp)
1092 {
1093 	struct lofi_ioctl *li = NULL;
1094 	ldi_ident_t ldi_id;
1095 	ldi_handle_t ldi_hdl;
1096 	int err;
1097 
1098 	if (vfsp->vfs_lofi_minor == 0)
1099 		return;
1100 
1101 	ldi_id = ldi_ident_from_anon();
1102 
1103 	li = kmem_zalloc(sizeof (*li), KM_SLEEP);
1104 	li->li_minor = vfsp->vfs_lofi_minor;
1105 	li->li_cleanup = B_TRUE;
1106 
1107 	do {
1108 		err = ldi_open_by_name("/dev/lofictl", FREAD | FWRITE | FEXCL,
1109 		    kcred, &ldi_hdl, ldi_id);
1110 	} while (err == EBUSY);
1111 
1112 	if (err)
1113 		goto out;
1114 
1115 	err = ldi_ioctl(ldi_hdl, LOFI_UNMAP_FILE_MINOR, (intptr_t)li,
1116 	    FREAD | FWRITE | FEXCL | FKIOCTL, kcred, NULL);
1117 
1118 	(void) ldi_close(ldi_hdl, FREAD | FWRITE | FEXCL, kcred);
1119 
1120 	if (!err)
1121 		vfsp->vfs_lofi_minor = 0;
1122 
1123 out:
1124 	ldi_ident_release(ldi_id);
1125 	if (li != NULL)
1126 		kmem_free(li, sizeof (*li));
1127 }
1128 
1129 /*
1130  * Common mount code.  Called from the system call entry point, from autofs,
1131  * nfsv4 trigger mounts, and from pxfs.
1132  *
1133  * Takes the effective file system type, mount arguments, the mount point
1134  * vnode, flags specifying whether the mount is a remount and whether it
1135  * should be entered into the vfs list, and credentials.  Fills in its vfspp
1136  * parameter with the mounted file system instance's vfs.
1137  *
1138  * Note that the effective file system type is specified as a string.  It may
1139  * be null, in which case it's determined from the mount arguments, and may
1140  * differ from the type specified in the mount arguments; this is a hook to
1141  * allow interposition when instantiating file system instances.
1142  *
1143  * The caller is responsible for releasing its own hold on the mount point
1144  * vp (this routine does its own hold when necessary).
1145  * Also note that for remounts, the mount point vp should be the vnode for
1146  * the root of the file system rather than the vnode that the file system
1147  * is mounted on top of.
1148  */
1149 int
1150 domount(char *fsname, struct mounta *uap, vnode_t *vp, struct cred *credp,
1151 	struct vfs **vfspp)
1152 {
1153 	struct vfssw	*vswp;
1154 	vfsops_t	*vfsops;
1155 	struct vfs	*vfsp;
1156 	struct vnode	*bvp;
1157 	dev_t		bdev = 0;
1158 	mntopts_t	mnt_mntopts;
1159 	int		error = 0;
1160 	int		copyout_error = 0;
1161 	int		ovflags;
1162 	char		*opts = uap->optptr;
1163 	char		*inargs = opts;
1164 	int		optlen = uap->optlen;
1165 	int		remount;
1166 	int		rdonly;
1167 	int		nbmand = 0;
1168 	int		delmip = 0;
1169 	int		addmip = 0;
1170 	int		splice = ((uap->flags & MS_NOSPLICE) == 0);
1171 	int		fromspace = (uap->flags & MS_SYSSPACE) ?
1172 	    UIO_SYSSPACE : UIO_USERSPACE;
1173 	char		*resource = NULL, *mountpt = NULL;
1174 	refstr_t	*oldresource, *oldmntpt;
1175 	struct pathname	pn, rpn;
1176 	vsk_anchor_t	*vskap;
1177 	char fstname[FSTYPSZ];
1178 
1179 	/*
1180 	 * The v_flag value for the mount point vp is permanently set
1181 	 * to VVFSLOCK so that no one bypasses the vn_vfs*locks routine
1182 	 * for mount point locking.
1183 	 */
1184 	mutex_enter(&vp->v_lock);
1185 	vp->v_flag |= VVFSLOCK;
1186 	mutex_exit(&vp->v_lock);
1187 
1188 	mnt_mntopts.mo_count = 0;
1189 	/*
1190 	 * Find the ops vector to use to invoke the file system-specific mount
1191 	 * method.  If the fsname argument is non-NULL, use it directly.
1192 	 * Otherwise, dig the file system type information out of the mount
1193 	 * arguments.
1194 	 *
1195 	 * A side effect is to hold the vfssw entry.
1196 	 *
1197 	 * Mount arguments can be specified in several ways, which are
1198 	 * distinguished by flag bit settings.  The preferred way is to set
1199 	 * MS_OPTIONSTR, indicating an 8 argument mount with the file system
1200 	 * type supplied as a character string and the last two arguments
1201 	 * being a pointer to a character buffer and the size of the buffer.
1202 	 * On entry, the buffer holds a null terminated list of options; on
1203 	 * return, the string is the list of options the file system
1204 	 * recognized. If MS_DATA is set arguments five and six point to a
1205 	 * block of binary data which the file system interprets.
1206 	 * A further wrinkle is that some callers don't set MS_FSS and MS_DATA
1207 	 * consistently with these conventions.  To handle them, we check to
1208 	 * see whether the pointer to the file system name has a numeric value
1209 	 * less than 256.  If so, we treat it as an index.
1210 	 */
1211 	if (fsname != NULL) {
1212 		if ((vswp = vfs_getvfssw(fsname)) == NULL) {
1213 			return (EINVAL);
1214 		}
1215 	} else if (uap->flags & (MS_OPTIONSTR | MS_DATA | MS_FSS)) {
1216 		size_t n;
1217 		uint_t fstype;
1218 
1219 		fsname = fstname;
1220 
1221 		if ((fstype = (uintptr_t)uap->fstype) < 256) {
1222 			RLOCK_VFSSW();
1223 			if (fstype == 0 || fstype >= nfstype ||
1224 			    !ALLOCATED_VFSSW(&vfssw[fstype])) {
1225 				RUNLOCK_VFSSW();
1226 				return (EINVAL);
1227 			}
1228 			(void) strcpy(fsname, vfssw[fstype].vsw_name);
1229 			RUNLOCK_VFSSW();
1230 			if ((vswp = vfs_getvfssw(fsname)) == NULL)
1231 				return (EINVAL);
1232 		} else {
1233 			/*
1234 			 * Handle either kernel or user address space.
1235 			 */
1236 			if (uap->flags & MS_SYSSPACE) {
1237 				error = copystr(uap->fstype, fsname,
1238 				    FSTYPSZ, &n);
1239 			} else {
1240 				error = copyinstr(uap->fstype, fsname,
1241 				    FSTYPSZ, &n);
1242 			}
1243 			if (error) {
1244 				if (error == ENAMETOOLONG)
1245 					return (EINVAL);
1246 				return (error);
1247 			}
1248 			if ((vswp = vfs_getvfssw(fsname)) == NULL)
1249 				return (EINVAL);
1250 		}
1251 	} else {
1252 		if ((vswp = vfs_getvfsswbyvfsops(vfs_getops(rootvfs))) == NULL)
1253 			return (EINVAL);
1254 	}
1255 	if (!VFS_INSTALLED(vswp))
1256 		return (EINVAL);
1257 	vfsops = &vswp->vsw_vfsops;
1258 
1259 	vfs_copyopttbl(&vswp->vsw_optproto, &mnt_mntopts);
1260 	/*
1261 	 * Fetch mount options and parse them for generic vfs options
1262 	 */
1263 	if (uap->flags & MS_OPTIONSTR) {
1264 		/*
1265 		 * Limit the buffer size
1266 		 */
1267 		if (optlen < 0 || optlen > MAX_MNTOPT_STR) {
1268 			error = EINVAL;
1269 			goto errout;
1270 		}
1271 		if ((uap->flags & MS_SYSSPACE) == 0) {
1272 			inargs = kmem_alloc(MAX_MNTOPT_STR, KM_SLEEP);
1273 			inargs[0] = '\0';
1274 			if (optlen) {
1275 				error = copyinstr(opts, inargs, (size_t)optlen,
1276 				    NULL);
1277 				if (error) {
1278 					goto errout;
1279 				}
1280 			}
1281 		}
1282 		vfs_parsemntopts(&mnt_mntopts, inargs, 0);
1283 	}
1284 	/*
1285 	 * Flag bits override the options string.
1286 	 */
1287 	if (uap->flags & MS_REMOUNT)
1288 		vfs_setmntopt_nolock(&mnt_mntopts, MNTOPT_REMOUNT, NULL, 0, 0);
1289 	if (uap->flags & MS_RDONLY)
1290 		vfs_setmntopt_nolock(&mnt_mntopts, MNTOPT_RO, NULL, 0, 0);
1291 	if (uap->flags & MS_NOSUID)
1292 		vfs_setmntopt_nolock(&mnt_mntopts, MNTOPT_NOSUID, NULL, 0, 0);
1293 
1294 	/*
1295 	 * Check if this is a remount; must be set in the option string and
1296 	 * the file system must support a remount option.
1297 	 */
1298 	if (remount = vfs_optionisset_nolock(&mnt_mntopts,
1299 	    MNTOPT_REMOUNT, NULL)) {
1300 		if (!(vswp->vsw_flag & VSW_CANREMOUNT)) {
1301 			error = ENOTSUP;
1302 			goto errout;
1303 		}
1304 		uap->flags |= MS_REMOUNT;
1305 	}
1306 
1307 	/*
1308 	 * uap->flags and vfs_optionisset() should agree.
1309 	 */
1310 	if (rdonly = vfs_optionisset_nolock(&mnt_mntopts, MNTOPT_RO, NULL)) {
1311 		uap->flags |= MS_RDONLY;
1312 	}
1313 	if (vfs_optionisset_nolock(&mnt_mntopts, MNTOPT_NOSUID, NULL)) {
1314 		uap->flags |= MS_NOSUID;
1315 	}
1316 	nbmand = vfs_optionisset_nolock(&mnt_mntopts, MNTOPT_NBMAND, NULL);
1317 	ASSERT(splice || !remount);
1318 	/*
1319 	 * If we are splicing the fs into the namespace,
1320 	 * perform mount point checks.
1321 	 *
1322 	 * We want to resolve the path for the mount point to eliminate
1323 	 * '.' and ".." and symlinks in mount points; we can't do the
1324 	 * same for the resource string, since it would turn
1325 	 * "/dev/dsk/c0t0d0s0" into "/devices/pci@...".  We need to do
1326 	 * this before grabbing vn_vfswlock(), because otherwise we
1327 	 * would deadlock with lookuppn().
1328 	 */
1329 	if (splice) {
1330 		ASSERT(vp->v_count > 0);
1331 
1332 		/*
1333 		 * Pick up mount point and device from appropriate space.
1334 		 */
1335 		if (pn_get(uap->spec, fromspace, &pn) == 0) {
1336 			resource = kmem_alloc(pn.pn_pathlen + 1,
1337 			    KM_SLEEP);
1338 			(void) strcpy(resource, pn.pn_path);
1339 			pn_free(&pn);
1340 		}
1341 		/*
1342 		 * Do a lookupname prior to taking the
1343 		 * writelock. Mark this as completed if
1344 		 * successful for later cleanup and addition to
1345 		 * the mount in progress table.
1346 		 */
1347 		if ((uap->flags & MS_GLOBAL) == 0 &&
1348 		    lookupname(uap->spec, fromspace,
1349 		    FOLLOW, NULL, &bvp) == 0) {
1350 			addmip = 1;
1351 		}
1352 
1353 		if ((error = pn_get(uap->dir, fromspace, &pn)) == 0) {
1354 			pathname_t *pnp;
1355 
1356 			if (*pn.pn_path != '/') {
1357 				error = EINVAL;
1358 				pn_free(&pn);
1359 				goto errout;
1360 			}
1361 			pn_alloc(&rpn);
1362 			/*
1363 			 * Kludge to prevent autofs from deadlocking with
1364 			 * itself when it calls domount().
1365 			 *
1366 			 * If autofs is calling, it is because it is doing
1367 			 * (autofs) mounts in the process of an NFS mount.  A
1368 			 * lookuppn() here would cause us to block waiting for
1369 			 * said NFS mount to complete, which can't since this
1370 			 * is the thread that was supposed to doing it.
1371 			 */
1372 			if (fromspace == UIO_USERSPACE) {
1373 				if ((error = lookuppn(&pn, &rpn, FOLLOW, NULL,
1374 				    NULL)) == 0) {
1375 					pnp = &rpn;
1376 				} else {
1377 					/*
1378 					 * The file disappeared or otherwise
1379 					 * became inaccessible since we opened
1380 					 * it; might as well fail the mount
1381 					 * since the mount point is no longer
1382 					 * accessible.
1383 					 */
1384 					pn_free(&rpn);
1385 					pn_free(&pn);
1386 					goto errout;
1387 				}
1388 			} else {
1389 				pnp = &pn;
1390 			}
1391 			mountpt = kmem_alloc(pnp->pn_pathlen + 1, KM_SLEEP);
1392 			(void) strcpy(mountpt, pnp->pn_path);
1393 
1394 			/*
1395 			 * If the addition of the zone's rootpath
1396 			 * would push us over a total path length
1397 			 * of MAXPATHLEN, we fail the mount with
1398 			 * ENAMETOOLONG, which is what we would have
1399 			 * gotten if we were trying to perform the same
1400 			 * mount in the global zone.
1401 			 *
1402 			 * strlen() doesn't count the trailing
1403 			 * '\0', but zone_rootpathlen counts both a
1404 			 * trailing '/' and the terminating '\0'.
1405 			 */
1406 			if ((curproc->p_zone->zone_rootpathlen - 1 +
1407 			    strlen(mountpt)) > MAXPATHLEN ||
1408 			    (resource != NULL &&
1409 			    (curproc->p_zone->zone_rootpathlen - 1 +
1410 			    strlen(resource)) > MAXPATHLEN)) {
1411 				error = ENAMETOOLONG;
1412 			}
1413 
1414 			pn_free(&rpn);
1415 			pn_free(&pn);
1416 		}
1417 
1418 		if (error)
1419 			goto errout;
1420 
1421 		/*
1422 		 * Prevent path name resolution from proceeding past
1423 		 * the mount point.
1424 		 */
1425 		if (vn_vfswlock(vp) != 0) {
1426 			error = EBUSY;
1427 			goto errout;
1428 		}
1429 
1430 		/*
1431 		 * Verify that it's legitimate to establish a mount on
1432 		 * the prospective mount point.
1433 		 */
1434 		if (vn_mountedvfs(vp) != NULL) {
1435 			/*
1436 			 * The mount point lock was obtained after some
1437 			 * other thread raced through and established a mount.
1438 			 */
1439 			vn_vfsunlock(vp);
1440 			error = EBUSY;
1441 			goto errout;
1442 		}
1443 		if (vp->v_flag & VNOMOUNT) {
1444 			vn_vfsunlock(vp);
1445 			error = EINVAL;
1446 			goto errout;
1447 		}
1448 	}
1449 	if ((uap->flags & (MS_DATA | MS_OPTIONSTR)) == 0) {
1450 		uap->dataptr = NULL;
1451 		uap->datalen = 0;
1452 	}
1453 
1454 	/*
1455 	 * If this is a remount, we don't want to create a new VFS.
1456 	 * Instead, we pass the existing one with a remount flag.
1457 	 */
1458 	if (remount) {
1459 		/*
1460 		 * Confirm that the mount point is the root vnode of the
1461 		 * file system that is being remounted.
1462 		 * This can happen if the user specifies a different
1463 		 * mount point directory pathname in the (re)mount command.
1464 		 *
1465 		 * Code below can only be reached if splice is true, so it's
1466 		 * safe to do vn_vfsunlock() here.
1467 		 */
1468 		if ((vp->v_flag & VROOT) == 0) {
1469 			vn_vfsunlock(vp);
1470 			error = ENOENT;
1471 			goto errout;
1472 		}
1473 		/*
1474 		 * Disallow making file systems read-only unless file system
1475 		 * explicitly allows it in its vfssw.  Ignore other flags.
1476 		 */
1477 		if (rdonly && vn_is_readonly(vp) == 0 &&
1478 		    (vswp->vsw_flag & VSW_CANRWRO) == 0) {
1479 			vn_vfsunlock(vp);
1480 			error = EINVAL;
1481 			goto errout;
1482 		}
1483 		/*
1484 		 * Disallow changing the NBMAND disposition of the file
1485 		 * system on remounts.
1486 		 */
1487 		if ((nbmand && ((vp->v_vfsp->vfs_flag & VFS_NBMAND) == 0)) ||
1488 		    (!nbmand && (vp->v_vfsp->vfs_flag & VFS_NBMAND))) {
1489 			vn_vfsunlock(vp);
1490 			error = EINVAL;
1491 			goto errout;
1492 		}
1493 		vfsp = vp->v_vfsp;
1494 		ovflags = vfsp->vfs_flag;
1495 		vfsp->vfs_flag |= VFS_REMOUNT;
1496 		vfsp->vfs_flag &= ~VFS_RDONLY;
1497 	} else {
1498 		vfsp = vfs_alloc(KM_SLEEP);
1499 		VFS_INIT(vfsp, vfsops, NULL);
1500 	}
1501 
1502 	VFS_HOLD(vfsp);
1503 
1504 	if ((error = lofi_add(fsname, vfsp, &mnt_mntopts, uap)) != 0) {
1505 		if (!remount) {
1506 			if (splice)
1507 				vn_vfsunlock(vp);
1508 			vfs_free(vfsp);
1509 		} else {
1510 			vn_vfsunlock(vp);
1511 			VFS_RELE(vfsp);
1512 		}
1513 		goto errout;
1514 	}
1515 
1516 	/*
1517 	 * PRIV_SYS_MOUNT doesn't mean you can become root.
1518 	 */
1519 	if (vfsp->vfs_lofi_minor != 0) {
1520 		uap->flags |= MS_NOSUID;
1521 		vfs_setmntopt_nolock(&mnt_mntopts, MNTOPT_NOSUID, NULL, 0, 0);
1522 	}
1523 
1524 	/*
1525 	 * The vfs_reflock is not used anymore the code below explicitly
1526 	 * holds it preventing others accesing it directly.
1527 	 */
1528 	if ((sema_tryp(&vfsp->vfs_reflock) == 0) &&
1529 	    !(vfsp->vfs_flag & VFS_REMOUNT))
1530 		cmn_err(CE_WARN,
1531 		    "mount type %s couldn't get vfs_reflock", vswp->vsw_name);
1532 
1533 	/*
1534 	 * Lock the vfs. If this is a remount we want to avoid spurious umount
1535 	 * failures that happen as a side-effect of fsflush() and other mount
1536 	 * and unmount operations that might be going on simultaneously and
1537 	 * may have locked the vfs currently. To not return EBUSY immediately
1538 	 * here we use vfs_lock_wait() instead vfs_lock() for the remount case.
1539 	 */
1540 	if (!remount) {
1541 		if (error = vfs_lock(vfsp)) {
1542 			vfsp->vfs_flag = ovflags;
1543 
1544 			lofi_remove(vfsp);
1545 
1546 			if (splice)
1547 				vn_vfsunlock(vp);
1548 			vfs_free(vfsp);
1549 			goto errout;
1550 		}
1551 	} else {
1552 		vfs_lock_wait(vfsp);
1553 	}
1554 
1555 	/*
1556 	 * Add device to mount in progress table, global mounts require special
1557 	 * handling. It is possible that we have already done the lookupname
1558 	 * on a spliced, non-global fs. If so, we don't want to do it again
1559 	 * since we cannot do a lookupname after taking the
1560 	 * wlock above. This case is for a non-spliced, non-global filesystem.
1561 	 */
1562 	if (!addmip) {
1563 		if ((uap->flags & MS_GLOBAL) == 0 &&
1564 		    lookupname(uap->spec, fromspace, FOLLOW, NULL, &bvp) == 0) {
1565 			addmip = 1;
1566 		}
1567 	}
1568 
1569 	if (addmip) {
1570 		vnode_t *lvp = NULL;
1571 
1572 		error = vfs_get_lofi(vfsp, &lvp);
1573 		if (error > 0) {
1574 			lofi_remove(vfsp);
1575 
1576 			if (splice)
1577 				vn_vfsunlock(vp);
1578 			vfs_unlock(vfsp);
1579 
1580 			if (remount) {
1581 				VFS_RELE(vfsp);
1582 			} else {
1583 				vfs_free(vfsp);
1584 			}
1585 
1586 			goto errout;
1587 		} else if (error == -1) {
1588 			bdev = bvp->v_rdev;
1589 			VN_RELE(bvp);
1590 		} else {
1591 			bdev = lvp->v_rdev;
1592 			VN_RELE(lvp);
1593 			VN_RELE(bvp);
1594 		}
1595 
1596 		vfs_addmip(bdev, vfsp);
1597 		addmip = 0;
1598 		delmip = 1;
1599 	}
1600 	/*
1601 	 * Invalidate cached entry for the mount point.
1602 	 */
1603 	if (splice)
1604 		dnlc_purge_vp(vp);
1605 
1606 	/*
1607 	 * If have an option string but the filesystem doesn't supply a
1608 	 * prototype options table, create a table with the global
1609 	 * options and sufficient room to accept all the options in the
1610 	 * string.  Then parse the passed in option string
1611 	 * accepting all the options in the string.  This gives us an
1612 	 * option table with all the proper cancel properties for the
1613 	 * global options.
1614 	 *
1615 	 * Filesystems that supply a prototype options table are handled
1616 	 * earlier in this function.
1617 	 */
1618 	if (uap->flags & MS_OPTIONSTR) {
1619 		if (!(vswp->vsw_flag & VSW_HASPROTO)) {
1620 			mntopts_t tmp_mntopts;
1621 
1622 			tmp_mntopts.mo_count = 0;
1623 			vfs_createopttbl_extend(&tmp_mntopts, inargs,
1624 			    &mnt_mntopts);
1625 			vfs_parsemntopts(&tmp_mntopts, inargs, 1);
1626 			vfs_swapopttbl_nolock(&mnt_mntopts, &tmp_mntopts);
1627 			vfs_freeopttbl(&tmp_mntopts);
1628 		}
1629 	}
1630 
1631 	/*
1632 	 * Serialize with zone creations.
1633 	 */
1634 	mount_in_progress();
1635 	/*
1636 	 * Instantiate (or reinstantiate) the file system.  If appropriate,
1637 	 * splice it into the file system name space.
1638 	 *
1639 	 * We want VFS_MOUNT() to be able to override the vfs_resource
1640 	 * string if necessary (ie, mntfs), and also for a remount to
1641 	 * change the same (necessary when remounting '/' during boot).
1642 	 * So we set up vfs_mntpt and vfs_resource to what we think they
1643 	 * should be, then hand off control to VFS_MOUNT() which can
1644 	 * override this.
1645 	 *
1646 	 * For safety's sake, when changing vfs_resource or vfs_mntpt of
1647 	 * a vfs which is on the vfs list (i.e. during a remount), we must
1648 	 * never set those fields to NULL. Several bits of code make
1649 	 * assumptions that the fields are always valid.
1650 	 */
1651 	vfs_swapopttbl(&mnt_mntopts, &vfsp->vfs_mntopts);
1652 	if (remount) {
1653 		if ((oldresource = vfsp->vfs_resource) != NULL)
1654 			refstr_hold(oldresource);
1655 		if ((oldmntpt = vfsp->vfs_mntpt) != NULL)
1656 			refstr_hold(oldmntpt);
1657 	}
1658 	vfs_setresource(vfsp, resource);
1659 	vfs_setmntpoint(vfsp, mountpt);
1660 
1661 	/*
1662 	 * going to mount on this vnode, so notify.
1663 	 */
1664 	vnevent_mountedover(vp, NULL);
1665 	error = VFS_MOUNT(vfsp, vp, uap, credp);
1666 
1667 	if (uap->flags & MS_RDONLY)
1668 		vfs_setmntopt(vfsp, MNTOPT_RO, NULL, 0);
1669 	if (uap->flags & MS_NOSUID)
1670 		vfs_setmntopt(vfsp, MNTOPT_NOSUID, NULL, 0);
1671 	if (uap->flags & MS_GLOBAL)
1672 		vfs_setmntopt(vfsp, MNTOPT_GLOBAL, NULL, 0);
1673 
1674 	if (error) {
1675 		lofi_remove(vfsp);
1676 
1677 		if (remount) {
1678 			/* put back pre-remount options */
1679 			vfs_swapopttbl(&mnt_mntopts, &vfsp->vfs_mntopts);
1680 			vfs_setmntpoint(vfsp, (stripzonepath(
1681 			    refstr_value(oldmntpt))));
1682 			if (oldmntpt)
1683 				refstr_rele(oldmntpt);
1684 			vfs_setresource(vfsp, (stripzonepath(
1685 			    refstr_value(oldresource))));
1686 			if (oldresource)
1687 				refstr_rele(oldresource);
1688 			vfsp->vfs_flag = ovflags;
1689 			vfs_unlock(vfsp);
1690 			VFS_RELE(vfsp);
1691 		} else {
1692 			vfs_unlock(vfsp);
1693 			vfs_freemnttab(vfsp);
1694 			vfs_free(vfsp);
1695 		}
1696 	} else {
1697 		/*
1698 		 * Set the mount time to now
1699 		 */
1700 		vfsp->vfs_mtime = ddi_get_time();
1701 		if (remount) {
1702 			vfsp->vfs_flag &= ~VFS_REMOUNT;
1703 			if (oldresource)
1704 				refstr_rele(oldresource);
1705 			if (oldmntpt)
1706 				refstr_rele(oldmntpt);
1707 		} else if (splice) {
1708 			/*
1709 			 * Link vfsp into the name space at the mount
1710 			 * point. Vfs_add() is responsible for
1711 			 * holding the mount point which will be
1712 			 * released when vfs_remove() is called.
1713 			 */
1714 			vfs_add(vp, vfsp, uap->flags);
1715 		} else {
1716 			/*
1717 			 * Hold the reference to file system which is
1718 			 * not linked into the name space.
1719 			 */
1720 			vfsp->vfs_zone = NULL;
1721 			VFS_HOLD(vfsp);
1722 			vfsp->vfs_vnodecovered = NULL;
1723 		}
1724 		/*
1725 		 * Set flags for global options encountered
1726 		 */
1727 		if (vfs_optionisset(vfsp, MNTOPT_RO, NULL))
1728 			vfsp->vfs_flag |= VFS_RDONLY;
1729 		else
1730 			vfsp->vfs_flag &= ~VFS_RDONLY;
1731 		if (vfs_optionisset(vfsp, MNTOPT_NOSUID, NULL)) {
1732 			vfsp->vfs_flag |= (VFS_NOSETUID|VFS_NODEVICES);
1733 		} else {
1734 			if (vfs_optionisset(vfsp, MNTOPT_NODEVICES, NULL))
1735 				vfsp->vfs_flag |= VFS_NODEVICES;
1736 			else
1737 				vfsp->vfs_flag &= ~VFS_NODEVICES;
1738 			if (vfs_optionisset(vfsp, MNTOPT_NOSETUID, NULL))
1739 				vfsp->vfs_flag |= VFS_NOSETUID;
1740 			else
1741 				vfsp->vfs_flag &= ~VFS_NOSETUID;
1742 		}
1743 		if (vfs_optionisset(vfsp, MNTOPT_NBMAND, NULL))
1744 			vfsp->vfs_flag |= VFS_NBMAND;
1745 		else
1746 			vfsp->vfs_flag &= ~VFS_NBMAND;
1747 
1748 		if (vfs_optionisset(vfsp, MNTOPT_XATTR, NULL))
1749 			vfsp->vfs_flag |= VFS_XATTR;
1750 		else
1751 			vfsp->vfs_flag &= ~VFS_XATTR;
1752 
1753 		if (vfs_optionisset(vfsp, MNTOPT_NOEXEC, NULL))
1754 			vfsp->vfs_flag |= VFS_NOEXEC;
1755 		else
1756 			vfsp->vfs_flag &= ~VFS_NOEXEC;
1757 
1758 		/*
1759 		 * Now construct the output option string of options
1760 		 * we recognized.
1761 		 */
1762 		if (uap->flags & MS_OPTIONSTR) {
1763 			vfs_list_read_lock();
1764 			copyout_error = vfs_buildoptionstr(
1765 			    &vfsp->vfs_mntopts, inargs, optlen);
1766 			vfs_list_unlock();
1767 			if (copyout_error == 0 &&
1768 			    (uap->flags & MS_SYSSPACE) == 0) {
1769 				copyout_error = copyoutstr(inargs, opts,
1770 				    optlen, NULL);
1771 			}
1772 		}
1773 
1774 		/*
1775 		 * If this isn't a remount, set up the vopstats before
1776 		 * anyone can touch this. We only allow spliced file
1777 		 * systems (file systems which are in the namespace) to
1778 		 * have the VFS_STATS flag set.
1779 		 * NOTE: PxFS mounts the underlying file system with
1780 		 * MS_NOSPLICE set and copies those vfs_flags to its private
1781 		 * vfs structure. As a result, PxFS should never have
1782 		 * the VFS_STATS flag or else we might access the vfs
1783 		 * statistics-related fields prior to them being
1784 		 * properly initialized.
1785 		 */
1786 		if (!remount && (vswp->vsw_flag & VSW_STATS) && splice) {
1787 			initialize_vopstats(&vfsp->vfs_vopstats);
1788 			/*
1789 			 * We need to set vfs_vskap to NULL because there's
1790 			 * a chance it won't be set below.  This is checked
1791 			 * in teardown_vopstats() so we can't have garbage.
1792 			 */
1793 			vfsp->vfs_vskap = NULL;
1794 			vfsp->vfs_flag |= VFS_STATS;
1795 			vfsp->vfs_fstypevsp = get_fstype_vopstats(vfsp, vswp);
1796 		}
1797 
1798 		if (vswp->vsw_flag & VSW_XID)
1799 			vfsp->vfs_flag |= VFS_XID;
1800 
1801 		vfs_unlock(vfsp);
1802 	}
1803 	mount_completed();
1804 	if (splice)
1805 		vn_vfsunlock(vp);
1806 
1807 	if ((error == 0) && (copyout_error == 0)) {
1808 		if (!remount) {
1809 			/*
1810 			 * Don't call get_vskstat_anchor() while holding
1811 			 * locks since it allocates memory and calls
1812 			 * VFS_STATVFS().  For NFS, the latter can generate
1813 			 * an over-the-wire call.
1814 			 */
1815 			vskap = get_vskstat_anchor(vfsp);
1816 			/* Only take the lock if we have something to do */
1817 			if (vskap != NULL) {
1818 				vfs_lock_wait(vfsp);
1819 				if (vfsp->vfs_flag & VFS_STATS) {
1820 					vfsp->vfs_vskap = vskap;
1821 				}
1822 				vfs_unlock(vfsp);
1823 			}
1824 		}
1825 		/* Return vfsp to caller. */
1826 		*vfspp = vfsp;
1827 	}
1828 errout:
1829 	vfs_freeopttbl(&mnt_mntopts);
1830 	if (resource != NULL)
1831 		kmem_free(resource, strlen(resource) + 1);
1832 	if (mountpt != NULL)
1833 		kmem_free(mountpt, strlen(mountpt) + 1);
1834 	/*
1835 	 * It is possible we errored prior to adding to mount in progress
1836 	 * table. Must free vnode we acquired with successful lookupname.
1837 	 */
1838 	if (addmip)
1839 		VN_RELE(bvp);
1840 	if (delmip)
1841 		vfs_delmip(vfsp);
1842 	ASSERT(vswp != NULL);
1843 	vfs_unrefvfssw(vswp);
1844 	if (inargs != opts)
1845 		kmem_free(inargs, MAX_MNTOPT_STR);
1846 	if (copyout_error) {
1847 		lofi_remove(vfsp);
1848 		VFS_RELE(vfsp);
1849 		error = copyout_error;
1850 	}
1851 	return (error);
1852 }
1853 
1854 static void
1855 vfs_setpath(struct vfs *vfsp, refstr_t **refp, const char *newpath)
1856 {
1857 	size_t len;
1858 	refstr_t *ref;
1859 	zone_t *zone = curproc->p_zone;
1860 	char *sp;
1861 	int have_list_lock = 0;
1862 
1863 	ASSERT(!VFS_ON_LIST(vfsp) || vfs_lock_held(vfsp));
1864 
1865 	/*
1866 	 * New path must be less than MAXPATHLEN because mntfs
1867 	 * will only display up to MAXPATHLEN bytes. This is currently
1868 	 * safe, because domount() uses pn_get(), and other callers
1869 	 * similarly cap the size to fewer than MAXPATHLEN bytes.
1870 	 */
1871 
1872 	ASSERT(strlen(newpath) < MAXPATHLEN);
1873 
1874 	/* mntfs requires consistency while vfs list lock is held */
1875 
1876 	if (VFS_ON_LIST(vfsp)) {
1877 		have_list_lock = 1;
1878 		vfs_list_lock();
1879 	}
1880 
1881 	if (*refp != NULL)
1882 		refstr_rele(*refp);
1883 
1884 	/* Do we need to modify the path? */
1885 
1886 	if (zone == global_zone || *newpath != '/') {
1887 		ref = refstr_alloc(newpath);
1888 		goto out;
1889 	}
1890 
1891 	/*
1892 	 * Truncate the trailing '/' in the zoneroot, and merge
1893 	 * in the zone's rootpath with the "newpath" (resource
1894 	 * or mountpoint) passed in.
1895 	 *
1896 	 * The size of the required buffer is thus the size of
1897 	 * the buffer required for the passed-in newpath
1898 	 * (strlen(newpath) + 1), plus the size of the buffer
1899 	 * required to hold zone_rootpath (zone_rootpathlen)
1900 	 * minus one for one of the now-superfluous NUL
1901 	 * terminations, minus one for the trailing '/'.
1902 	 *
1903 	 * That gives us:
1904 	 *
1905 	 * (strlen(newpath) + 1) + zone_rootpathlen - 1 - 1
1906 	 *
1907 	 * Which is what we have below.
1908 	 */
1909 
1910 	len = strlen(newpath) + zone->zone_rootpathlen - 1;
1911 	sp = kmem_alloc(len, KM_SLEEP);
1912 
1913 	/*
1914 	 * Copy everything including the trailing slash, which
1915 	 * we then overwrite with the NUL character.
1916 	 */
1917 
1918 	(void) strcpy(sp, zone->zone_rootpath);
1919 	sp[zone->zone_rootpathlen - 2] = '\0';
1920 	(void) strcat(sp, newpath);
1921 
1922 	ref = refstr_alloc(sp);
1923 	kmem_free(sp, len);
1924 out:
1925 	*refp = ref;
1926 
1927 	if (have_list_lock) {
1928 		vfs_mnttab_modtimeupd();
1929 		vfs_list_unlock();
1930 	}
1931 }
1932 
1933 /*
1934  * Record a mounted resource name in a vfs structure.
1935  * If vfsp is already mounted, caller must hold the vfs lock.
1936  */
1937 void
1938 vfs_setresource(struct vfs *vfsp, const char *resource)
1939 {
1940 	if (resource == NULL || resource[0] == '\0')
1941 		resource = VFS_NORESOURCE;
1942 	vfs_setpath(vfsp, &vfsp->vfs_resource, resource);
1943 }
1944 
1945 /*
1946  * Record a mount point name in a vfs structure.
1947  * If vfsp is already mounted, caller must hold the vfs lock.
1948  */
1949 void
1950 vfs_setmntpoint(struct vfs *vfsp, const char *mntpt)
1951 {
1952 	if (mntpt == NULL || mntpt[0] == '\0')
1953 		mntpt = VFS_NOMNTPT;
1954 	vfs_setpath(vfsp, &vfsp->vfs_mntpt, mntpt);
1955 }
1956 
1957 /* Returns the vfs_resource. Caller must call refstr_rele() when finished. */
1958 
1959 refstr_t *
1960 vfs_getresource(const struct vfs *vfsp)
1961 {
1962 	refstr_t *resource;
1963 
1964 	vfs_list_read_lock();
1965 	resource = vfsp->vfs_resource;
1966 	refstr_hold(resource);
1967 	vfs_list_unlock();
1968 
1969 	return (resource);
1970 }
1971 
1972 /* Returns the vfs_mntpt. Caller must call refstr_rele() when finished. */
1973 
1974 refstr_t *
1975 vfs_getmntpoint(const struct vfs *vfsp)
1976 {
1977 	refstr_t *mntpt;
1978 
1979 	vfs_list_read_lock();
1980 	mntpt = vfsp->vfs_mntpt;
1981 	refstr_hold(mntpt);
1982 	vfs_list_unlock();
1983 
1984 	return (mntpt);
1985 }
1986 
1987 /*
1988  * Create an empty options table with enough empty slots to hold all
1989  * The options in the options string passed as an argument.
1990  * Potentially prepend another options table.
1991  *
1992  * Note: caller is responsible for locking the vfs list, if needed,
1993  *       to protect mops.
1994  */
1995 static void
1996 vfs_createopttbl_extend(mntopts_t *mops, const char *opts,
1997     const mntopts_t *mtmpl)
1998 {
1999 	const char *s = opts;
2000 	uint_t count;
2001 
2002 	if (opts == NULL || *opts == '\0') {
2003 		count = 0;
2004 	} else {
2005 		count = 1;
2006 
2007 		/*
2008 		 * Count number of options in the string
2009 		 */
2010 		for (s = strchr(s, ','); s != NULL; s = strchr(s, ',')) {
2011 			count++;
2012 			s++;
2013 		}
2014 	}
2015 	vfs_copyopttbl_extend(mtmpl, mops, count);
2016 }
2017 
2018 /*
2019  * Create an empty options table with enough empty slots to hold all
2020  * The options in the options string passed as an argument.
2021  *
2022  * This function is *not* for general use by filesystems.
2023  *
2024  * Note: caller is responsible for locking the vfs list, if needed,
2025  *       to protect mops.
2026  */
2027 void
2028 vfs_createopttbl(mntopts_t *mops, const char *opts)
2029 {
2030 	vfs_createopttbl_extend(mops, opts, NULL);
2031 }
2032 
2033 
2034 /*
2035  * Swap two mount options tables
2036  */
2037 static void
2038 vfs_swapopttbl_nolock(mntopts_t *optbl1, mntopts_t *optbl2)
2039 {
2040 	uint_t tmpcnt;
2041 	mntopt_t *tmplist;
2042 
2043 	tmpcnt = optbl2->mo_count;
2044 	tmplist = optbl2->mo_list;
2045 	optbl2->mo_count = optbl1->mo_count;
2046 	optbl2->mo_list = optbl1->mo_list;
2047 	optbl1->mo_count = tmpcnt;
2048 	optbl1->mo_list = tmplist;
2049 }
2050 
2051 static void
2052 vfs_swapopttbl(mntopts_t *optbl1, mntopts_t *optbl2)
2053 {
2054 	vfs_list_lock();
2055 	vfs_swapopttbl_nolock(optbl1, optbl2);
2056 	vfs_mnttab_modtimeupd();
2057 	vfs_list_unlock();
2058 }
2059 
2060 static char **
2061 vfs_copycancelopt_extend(char **const moc, int extend)
2062 {
2063 	int i = 0;
2064 	int j;
2065 	char **result;
2066 
2067 	if (moc != NULL) {
2068 		for (; moc[i] != NULL; i++)
2069 			/* count number of options to cancel */;
2070 	}
2071 
2072 	if (i + extend == 0)
2073 		return (NULL);
2074 
2075 	result = kmem_alloc((i + extend + 1) * sizeof (char *), KM_SLEEP);
2076 
2077 	for (j = 0; j < i; j++) {
2078 		result[j] = kmem_alloc(strlen(moc[j]) + 1, KM_SLEEP);
2079 		(void) strcpy(result[j], moc[j]);
2080 	}
2081 	for (; j <= i + extend; j++)
2082 		result[j] = NULL;
2083 
2084 	return (result);
2085 }
2086 
2087 static void
2088 vfs_copyopt(const mntopt_t *s, mntopt_t *d)
2089 {
2090 	char *sp, *dp;
2091 
2092 	d->mo_flags = s->mo_flags;
2093 	d->mo_data = s->mo_data;
2094 	sp = s->mo_name;
2095 	if (sp != NULL) {
2096 		dp = kmem_alloc(strlen(sp) + 1, KM_SLEEP);
2097 		(void) strcpy(dp, sp);
2098 		d->mo_name = dp;
2099 	} else {
2100 		d->mo_name = NULL; /* should never happen */
2101 	}
2102 
2103 	d->mo_cancel = vfs_copycancelopt_extend(s->mo_cancel, 0);
2104 
2105 	sp = s->mo_arg;
2106 	if (sp != NULL) {
2107 		dp = kmem_alloc(strlen(sp) + 1, KM_SLEEP);
2108 		(void) strcpy(dp, sp);
2109 		d->mo_arg = dp;
2110 	} else {
2111 		d->mo_arg = NULL;
2112 	}
2113 }
2114 
2115 /*
2116  * Copy a mount options table, possibly allocating some spare
2117  * slots at the end.  It is permissible to copy_extend the NULL table.
2118  */
2119 static void
2120 vfs_copyopttbl_extend(const mntopts_t *smo, mntopts_t *dmo, int extra)
2121 {
2122 	uint_t i, count;
2123 	mntopt_t *motbl;
2124 
2125 	/*
2126 	 * Clear out any existing stuff in the options table being initialized
2127 	 */
2128 	vfs_freeopttbl(dmo);
2129 	count = (smo == NULL) ? 0 : smo->mo_count;
2130 	if ((count + extra) == 0)	/* nothing to do */
2131 		return;
2132 	dmo->mo_count = count + extra;
2133 	motbl = kmem_zalloc((count + extra) * sizeof (mntopt_t), KM_SLEEP);
2134 	dmo->mo_list = motbl;
2135 	for (i = 0; i < count; i++) {
2136 		vfs_copyopt(&smo->mo_list[i], &motbl[i]);
2137 	}
2138 	for (i = count; i < count + extra; i++) {
2139 		motbl[i].mo_flags = MO_EMPTY;
2140 	}
2141 }
2142 
2143 /*
2144  * Copy a mount options table.
2145  *
2146  * This function is *not* for general use by filesystems.
2147  *
2148  * Note: caller is responsible for locking the vfs list, if needed,
2149  *       to protect smo and dmo.
2150  */
2151 void
2152 vfs_copyopttbl(const mntopts_t *smo, mntopts_t *dmo)
2153 {
2154 	vfs_copyopttbl_extend(smo, dmo, 0);
2155 }
2156 
2157 static char **
2158 vfs_mergecancelopts(const mntopt_t *mop1, const mntopt_t *mop2)
2159 {
2160 	int c1 = 0;
2161 	int c2 = 0;
2162 	char **result;
2163 	char **sp1, **sp2, **dp;
2164 
2165 	/*
2166 	 * First we count both lists of cancel options.
2167 	 * If either is NULL or has no elements, we return a copy of
2168 	 * the other.
2169 	 */
2170 	if (mop1->mo_cancel != NULL) {
2171 		for (; mop1->mo_cancel[c1] != NULL; c1++)
2172 			/* count cancel options in mop1 */;
2173 	}
2174 
2175 	if (c1 == 0)
2176 		return (vfs_copycancelopt_extend(mop2->mo_cancel, 0));
2177 
2178 	if (mop2->mo_cancel != NULL) {
2179 		for (; mop2->mo_cancel[c2] != NULL; c2++)
2180 			/* count cancel options in mop2 */;
2181 	}
2182 
2183 	result = vfs_copycancelopt_extend(mop1->mo_cancel, c2);
2184 
2185 	if (c2 == 0)
2186 		return (result);
2187 
2188 	/*
2189 	 * When we get here, we've got two sets of cancel options;
2190 	 * we need to merge the two sets.  We know that the result
2191 	 * array has "c1+c2+1" entries and in the end we might shrink
2192 	 * it.
2193 	 * Result now has a copy of the c1 entries from mop1; we'll
2194 	 * now lookup all the entries of mop2 in mop1 and copy it if
2195 	 * it is unique.
2196 	 * This operation is O(n^2) but it's only called once per
2197 	 * filesystem per duplicate option.  This is a situation
2198 	 * which doesn't arise with the filesystems in ON and
2199 	 * n is generally 1.
2200 	 */
2201 
2202 	dp = &result[c1];
2203 	for (sp2 = mop2->mo_cancel; *sp2 != NULL; sp2++) {
2204 		for (sp1 = mop1->mo_cancel; *sp1 != NULL; sp1++) {
2205 			if (strcmp(*sp1, *sp2) == 0)
2206 				break;
2207 		}
2208 		if (*sp1 == NULL) {
2209 			/*
2210 			 * Option *sp2 not found in mop1, so copy it.
2211 			 * The calls to vfs_copycancelopt_extend()
2212 			 * guarantee that there's enough room.
2213 			 */
2214 			*dp = kmem_alloc(strlen(*sp2) + 1, KM_SLEEP);
2215 			(void) strcpy(*dp++, *sp2);
2216 		}
2217 	}
2218 	if (dp != &result[c1+c2]) {
2219 		size_t bytes = (dp - result + 1) * sizeof (char *);
2220 		char **nres = kmem_alloc(bytes, KM_SLEEP);
2221 
2222 		bcopy(result, nres, bytes);
2223 		kmem_free(result, (c1 + c2 + 1) * sizeof (char *));
2224 		result = nres;
2225 	}
2226 	return (result);
2227 }
2228 
2229 /*
2230  * Merge two mount option tables (outer and inner) into one.  This is very
2231  * similar to "merging" global variables and automatic variables in C.
2232  *
2233  * This isn't (and doesn't have to be) fast.
2234  *
2235  * This function is *not* for general use by filesystems.
2236  *
2237  * Note: caller is responsible for locking the vfs list, if needed,
2238  *       to protect omo, imo & dmo.
2239  */
2240 void
2241 vfs_mergeopttbl(const mntopts_t *omo, const mntopts_t *imo, mntopts_t *dmo)
2242 {
2243 	uint_t i, count;
2244 	mntopt_t *mop, *motbl;
2245 	uint_t freeidx;
2246 
2247 	/*
2248 	 * First determine how much space we need to allocate.
2249 	 */
2250 	count = omo->mo_count;
2251 	for (i = 0; i < imo->mo_count; i++) {
2252 		if (imo->mo_list[i].mo_flags & MO_EMPTY)
2253 			continue;
2254 		if (vfs_hasopt(omo, imo->mo_list[i].mo_name) == NULL)
2255 			count++;
2256 	}
2257 	ASSERT(count >= omo->mo_count &&
2258 	    count <= omo->mo_count + imo->mo_count);
2259 	motbl = kmem_alloc(count * sizeof (mntopt_t), KM_SLEEP);
2260 	for (i = 0; i < omo->mo_count; i++)
2261 		vfs_copyopt(&omo->mo_list[i], &motbl[i]);
2262 	freeidx = omo->mo_count;
2263 	for (i = 0; i < imo->mo_count; i++) {
2264 		if (imo->mo_list[i].mo_flags & MO_EMPTY)
2265 			continue;
2266 		if ((mop = vfs_hasopt(omo, imo->mo_list[i].mo_name)) != NULL) {
2267 			char **newcanp;
2268 			uint_t index = mop - omo->mo_list;
2269 
2270 			newcanp = vfs_mergecancelopts(mop, &motbl[index]);
2271 
2272 			vfs_freeopt(&motbl[index]);
2273 			vfs_copyopt(&imo->mo_list[i], &motbl[index]);
2274 
2275 			vfs_freecancelopt(motbl[index].mo_cancel);
2276 			motbl[index].mo_cancel = newcanp;
2277 		} else {
2278 			/*
2279 			 * If it's a new option, just copy it over to the first
2280 			 * free location.
2281 			 */
2282 			vfs_copyopt(&imo->mo_list[i], &motbl[freeidx++]);
2283 		}
2284 	}
2285 	dmo->mo_count = count;
2286 	dmo->mo_list = motbl;
2287 }
2288 
2289 /*
2290  * Functions to set and clear mount options in a mount options table.
2291  */
2292 
2293 /*
2294  * Clear a mount option, if it exists.
2295  *
2296  * The update_mnttab arg indicates whether mops is part of a vfs that is on
2297  * the vfs list.
2298  */
2299 static void
2300 vfs_clearmntopt_nolock(mntopts_t *mops, const char *opt, int update_mnttab)
2301 {
2302 	struct mntopt *mop;
2303 	uint_t i, count;
2304 
2305 	ASSERT(!update_mnttab || RW_WRITE_HELD(&vfslist));
2306 
2307 	count = mops->mo_count;
2308 	for (i = 0; i < count; i++) {
2309 		mop = &mops->mo_list[i];
2310 
2311 		if (mop->mo_flags & MO_EMPTY)
2312 			continue;
2313 		if (strcmp(opt, mop->mo_name))
2314 			continue;
2315 		mop->mo_flags &= ~MO_SET;
2316 		if (mop->mo_arg != NULL) {
2317 			kmem_free(mop->mo_arg, strlen(mop->mo_arg) + 1);
2318 		}
2319 		mop->mo_arg = NULL;
2320 		if (update_mnttab)
2321 			vfs_mnttab_modtimeupd();
2322 		break;
2323 	}
2324 }
2325 
2326 void
2327 vfs_clearmntopt(struct vfs *vfsp, const char *opt)
2328 {
2329 	int gotlock = 0;
2330 
2331 	if (VFS_ON_LIST(vfsp)) {
2332 		gotlock = 1;
2333 		vfs_list_lock();
2334 	}
2335 	vfs_clearmntopt_nolock(&vfsp->vfs_mntopts, opt, gotlock);
2336 	if (gotlock)
2337 		vfs_list_unlock();
2338 }
2339 
2340 
2341 /*
2342  * Set a mount option on.  If it's not found in the table, it's silently
2343  * ignored.  If the option has MO_IGNORE set, it is still set unless the
2344  * VFS_NOFORCEOPT bit is set in the flags.  Also, VFS_DISPLAY/VFS_NODISPLAY flag
2345  * bits can be used to toggle the MO_NODISPLAY bit for the option.
2346  * If the VFS_CREATEOPT flag bit is set then the first option slot with
2347  * MO_EMPTY set is created as the option passed in.
2348  *
2349  * The update_mnttab arg indicates whether mops is part of a vfs that is on
2350  * the vfs list.
2351  */
2352 static void
2353 vfs_setmntopt_nolock(mntopts_t *mops, const char *opt,
2354     const char *arg, int flags, int update_mnttab)
2355 {
2356 	mntopt_t *mop;
2357 	uint_t i, count;
2358 	char *sp;
2359 
2360 	ASSERT(!update_mnttab || RW_WRITE_HELD(&vfslist));
2361 
2362 	if (flags & VFS_CREATEOPT) {
2363 		if (vfs_hasopt(mops, opt) != NULL) {
2364 			flags &= ~VFS_CREATEOPT;
2365 		}
2366 	}
2367 	count = mops->mo_count;
2368 	for (i = 0; i < count; i++) {
2369 		mop = &mops->mo_list[i];
2370 
2371 		if (mop->mo_flags & MO_EMPTY) {
2372 			if ((flags & VFS_CREATEOPT) == 0)
2373 				continue;
2374 			sp = kmem_alloc(strlen(opt) + 1, KM_SLEEP);
2375 			(void) strcpy(sp, opt);
2376 			mop->mo_name = sp;
2377 			if (arg != NULL)
2378 				mop->mo_flags = MO_HASVALUE;
2379 			else
2380 				mop->mo_flags = 0;
2381 		} else if (strcmp(opt, mop->mo_name)) {
2382 			continue;
2383 		}
2384 		if ((mop->mo_flags & MO_IGNORE) && (flags & VFS_NOFORCEOPT))
2385 			break;
2386 		if (arg != NULL && (mop->mo_flags & MO_HASVALUE) != 0) {
2387 			sp = kmem_alloc(strlen(arg) + 1, KM_SLEEP);
2388 			(void) strcpy(sp, arg);
2389 		} else {
2390 			sp = NULL;
2391 		}
2392 		if (mop->mo_arg != NULL)
2393 			kmem_free(mop->mo_arg, strlen(mop->mo_arg) + 1);
2394 		mop->mo_arg = sp;
2395 		if (flags & VFS_DISPLAY)
2396 			mop->mo_flags &= ~MO_NODISPLAY;
2397 		if (flags & VFS_NODISPLAY)
2398 			mop->mo_flags |= MO_NODISPLAY;
2399 		mop->mo_flags |= MO_SET;
2400 		if (mop->mo_cancel != NULL) {
2401 			char **cp;
2402 
2403 			for (cp = mop->mo_cancel; *cp != NULL; cp++)
2404 				vfs_clearmntopt_nolock(mops, *cp, 0);
2405 		}
2406 		if (update_mnttab)
2407 			vfs_mnttab_modtimeupd();
2408 		break;
2409 	}
2410 }
2411 
2412 void
2413 vfs_setmntopt(struct vfs *vfsp, const char *opt, const char *arg, int flags)
2414 {
2415 	int gotlock = 0;
2416 
2417 	if (VFS_ON_LIST(vfsp)) {
2418 		gotlock = 1;
2419 		vfs_list_lock();
2420 	}
2421 	vfs_setmntopt_nolock(&vfsp->vfs_mntopts, opt, arg, flags, gotlock);
2422 	if (gotlock)
2423 		vfs_list_unlock();
2424 }
2425 
2426 
2427 /*
2428  * Add a "tag" option to a mounted file system's options list.
2429  *
2430  * Note: caller is responsible for locking the vfs list, if needed,
2431  *       to protect mops.
2432  */
2433 static mntopt_t *
2434 vfs_addtag(mntopts_t *mops, const char *tag)
2435 {
2436 	uint_t count;
2437 	mntopt_t *mop, *motbl;
2438 
2439 	count = mops->mo_count + 1;
2440 	motbl = kmem_zalloc(count * sizeof (mntopt_t), KM_SLEEP);
2441 	if (mops->mo_count) {
2442 		size_t len = (count - 1) * sizeof (mntopt_t);
2443 
2444 		bcopy(mops->mo_list, motbl, len);
2445 		kmem_free(mops->mo_list, len);
2446 	}
2447 	mops->mo_count = count;
2448 	mops->mo_list = motbl;
2449 	mop = &motbl[count - 1];
2450 	mop->mo_flags = MO_TAG;
2451 	mop->mo_name = kmem_alloc(strlen(tag) + 1, KM_SLEEP);
2452 	(void) strcpy(mop->mo_name, tag);
2453 	return (mop);
2454 }
2455 
2456 /*
2457  * Allow users to set arbitrary "tags" in a vfs's mount options.
2458  * Broader use within the kernel is discouraged.
2459  */
2460 int
2461 vfs_settag(uint_t major, uint_t minor, const char *mntpt, const char *tag,
2462     cred_t *cr)
2463 {
2464 	vfs_t *vfsp;
2465 	mntopts_t *mops;
2466 	mntopt_t *mop;
2467 	int found = 0;
2468 	dev_t dev = makedevice(major, minor);
2469 	int err = 0;
2470 	char *buf = kmem_alloc(MAX_MNTOPT_STR, KM_SLEEP);
2471 
2472 	/*
2473 	 * Find the desired mounted file system
2474 	 */
2475 	vfs_list_lock();
2476 	vfsp = rootvfs;
2477 	do {
2478 		if (vfsp->vfs_dev == dev &&
2479 		    strcmp(mntpt, refstr_value(vfsp->vfs_mntpt)) == 0) {
2480 			found = 1;
2481 			break;
2482 		}
2483 		vfsp = vfsp->vfs_next;
2484 	} while (vfsp != rootvfs);
2485 
2486 	if (!found) {
2487 		err = EINVAL;
2488 		goto out;
2489 	}
2490 	err = secpolicy_fs_config(cr, vfsp);
2491 	if (err != 0)
2492 		goto out;
2493 
2494 	mops = &vfsp->vfs_mntopts;
2495 	/*
2496 	 * Add tag if it doesn't already exist
2497 	 */
2498 	if ((mop = vfs_hasopt(mops, tag)) == NULL) {
2499 		int len;
2500 
2501 		(void) vfs_buildoptionstr(mops, buf, MAX_MNTOPT_STR);
2502 		len = strlen(buf);
2503 		if (len + strlen(tag) + 2 > MAX_MNTOPT_STR) {
2504 			err = ENAMETOOLONG;
2505 			goto out;
2506 		}
2507 		mop = vfs_addtag(mops, tag);
2508 	}
2509 	if ((mop->mo_flags & MO_TAG) == 0) {
2510 		err = EINVAL;
2511 		goto out;
2512 	}
2513 	vfs_setmntopt_nolock(mops, tag, NULL, 0, 1);
2514 out:
2515 	vfs_list_unlock();
2516 	kmem_free(buf, MAX_MNTOPT_STR);
2517 	return (err);
2518 }
2519 
2520 /*
2521  * Allow users to remove arbitrary "tags" in a vfs's mount options.
2522  * Broader use within the kernel is discouraged.
2523  */
2524 int
2525 vfs_clrtag(uint_t major, uint_t minor, const char *mntpt, const char *tag,
2526     cred_t *cr)
2527 {
2528 	vfs_t *vfsp;
2529 	mntopt_t *mop;
2530 	int found = 0;
2531 	dev_t dev = makedevice(major, minor);
2532 	int err = 0;
2533 
2534 	/*
2535 	 * Find the desired mounted file system
2536 	 */
2537 	vfs_list_lock();
2538 	vfsp = rootvfs;
2539 	do {
2540 		if (vfsp->vfs_dev == dev &&
2541 		    strcmp(mntpt, refstr_value(vfsp->vfs_mntpt)) == 0) {
2542 			found = 1;
2543 			break;
2544 		}
2545 		vfsp = vfsp->vfs_next;
2546 	} while (vfsp != rootvfs);
2547 
2548 	if (!found) {
2549 		err = EINVAL;
2550 		goto out;
2551 	}
2552 	err = secpolicy_fs_config(cr, vfsp);
2553 	if (err != 0)
2554 		goto out;
2555 
2556 	if ((mop = vfs_hasopt(&vfsp->vfs_mntopts, tag)) == NULL) {
2557 		err = EINVAL;
2558 		goto out;
2559 	}
2560 	if ((mop->mo_flags & MO_TAG) == 0) {
2561 		err = EINVAL;
2562 		goto out;
2563 	}
2564 	vfs_clearmntopt_nolock(&vfsp->vfs_mntopts, tag, 1);
2565 out:
2566 	vfs_list_unlock();
2567 	return (err);
2568 }
2569 
2570 /*
2571  * Function to parse an option string and fill in a mount options table.
2572  * Unknown options are silently ignored.  The input option string is modified
2573  * by replacing separators with nulls.  If the create flag is set, options
2574  * not found in the table are just added on the fly.  The table must have
2575  * an option slot marked MO_EMPTY to add an option on the fly.
2576  *
2577  * This function is *not* for general use by filesystems.
2578  *
2579  * Note: caller is responsible for locking the vfs list, if needed,
2580  *       to protect mops..
2581  */
2582 void
2583 vfs_parsemntopts(mntopts_t *mops, char *osp, int create)
2584 {
2585 	char *s = osp, *p, *nextop, *valp, *cp, *ep;
2586 	int setflg = VFS_NOFORCEOPT;
2587 
2588 	if (osp == NULL)
2589 		return;
2590 	while (*s != '\0') {
2591 		p = strchr(s, ',');	/* find next option */
2592 		if (p == NULL) {
2593 			cp = NULL;
2594 			p = s + strlen(s);
2595 		} else {
2596 			cp = p;		/* save location of comma */
2597 			*p++ = '\0';	/* mark end and point to next option */
2598 		}
2599 		nextop = p;
2600 		p = strchr(s, '=');	/* look for value */
2601 		if (p == NULL) {
2602 			valp = NULL;	/* no value supplied */
2603 		} else {
2604 			ep = p;		/* save location of equals */
2605 			*p++ = '\0';	/* end option and point to value */
2606 			valp = p;
2607 		}
2608 		/*
2609 		 * set option into options table
2610 		 */
2611 		if (create)
2612 			setflg |= VFS_CREATEOPT;
2613 		vfs_setmntopt_nolock(mops, s, valp, setflg, 0);
2614 		if (cp != NULL)
2615 			*cp = ',';	/* restore the comma */
2616 		if (valp != NULL)
2617 			*ep = '=';	/* restore the equals */
2618 		s = nextop;
2619 	}
2620 }
2621 
2622 /*
2623  * Function to inquire if an option exists in a mount options table.
2624  * Returns a pointer to the option if it exists, else NULL.
2625  *
2626  * This function is *not* for general use by filesystems.
2627  *
2628  * Note: caller is responsible for locking the vfs list, if needed,
2629  *       to protect mops.
2630  */
2631 struct mntopt *
2632 vfs_hasopt(const mntopts_t *mops, const char *opt)
2633 {
2634 	struct mntopt *mop;
2635 	uint_t i, count;
2636 
2637 	count = mops->mo_count;
2638 	for (i = 0; i < count; i++) {
2639 		mop = &mops->mo_list[i];
2640 
2641 		if (mop->mo_flags & MO_EMPTY)
2642 			continue;
2643 		if (strcmp(opt, mop->mo_name) == 0)
2644 			return (mop);
2645 	}
2646 	return (NULL);
2647 }
2648 
2649 /*
2650  * Function to inquire if an option is set in a mount options table.
2651  * Returns non-zero if set and fills in the arg pointer with a pointer to
2652  * the argument string or NULL if there is no argument string.
2653  */
2654 static int
2655 vfs_optionisset_nolock(const mntopts_t *mops, const char *opt, char **argp)
2656 {
2657 	struct mntopt *mop;
2658 	uint_t i, count;
2659 
2660 	count = mops->mo_count;
2661 	for (i = 0; i < count; i++) {
2662 		mop = &mops->mo_list[i];
2663 
2664 		if (mop->mo_flags & MO_EMPTY)
2665 			continue;
2666 		if (strcmp(opt, mop->mo_name))
2667 			continue;
2668 		if ((mop->mo_flags & MO_SET) == 0)
2669 			return (0);
2670 		if (argp != NULL && (mop->mo_flags & MO_HASVALUE) != 0)
2671 			*argp = mop->mo_arg;
2672 		return (1);
2673 	}
2674 	return (0);
2675 }
2676 
2677 
2678 int
2679 vfs_optionisset(const struct vfs *vfsp, const char *opt, char **argp)
2680 {
2681 	int ret;
2682 
2683 	vfs_list_read_lock();
2684 	ret = vfs_optionisset_nolock(&vfsp->vfs_mntopts, opt, argp);
2685 	vfs_list_unlock();
2686 	return (ret);
2687 }
2688 
2689 
2690 /*
2691  * Construct a comma separated string of the options set in the given
2692  * mount table, return the string in the given buffer.  Return non-zero if
2693  * the buffer would overflow.
2694  *
2695  * This function is *not* for general use by filesystems.
2696  *
2697  * Note: caller is responsible for locking the vfs list, if needed,
2698  *       to protect mp.
2699  */
2700 int
2701 vfs_buildoptionstr(const mntopts_t *mp, char *buf, int len)
2702 {
2703 	char *cp;
2704 	uint_t i;
2705 
2706 	buf[0] = '\0';
2707 	cp = buf;
2708 	for (i = 0; i < mp->mo_count; i++) {
2709 		struct mntopt *mop;
2710 
2711 		mop = &mp->mo_list[i];
2712 		if (mop->mo_flags & MO_SET) {
2713 			int optlen, comma = 0;
2714 
2715 			if (buf[0] != '\0')
2716 				comma = 1;
2717 			optlen = strlen(mop->mo_name);
2718 			if (strlen(buf) + comma + optlen + 1 > len)
2719 				goto err;
2720 			if (comma)
2721 				*cp++ = ',';
2722 			(void) strcpy(cp, mop->mo_name);
2723 			cp += optlen;
2724 			/*
2725 			 * Append option value if there is one
2726 			 */
2727 			if (mop->mo_arg != NULL) {
2728 				int arglen;
2729 
2730 				arglen = strlen(mop->mo_arg);
2731 				if (strlen(buf) + arglen + 2 > len)
2732 					goto err;
2733 				*cp++ = '=';
2734 				(void) strcpy(cp, mop->mo_arg);
2735 				cp += arglen;
2736 			}
2737 		}
2738 	}
2739 	return (0);
2740 err:
2741 	return (EOVERFLOW);
2742 }
2743 
2744 static void
2745 vfs_freecancelopt(char **moc)
2746 {
2747 	if (moc != NULL) {
2748 		int ccnt = 0;
2749 		char **cp;
2750 
2751 		for (cp = moc; *cp != NULL; cp++) {
2752 			kmem_free(*cp, strlen(*cp) + 1);
2753 			ccnt++;
2754 		}
2755 		kmem_free(moc, (ccnt + 1) * sizeof (char *));
2756 	}
2757 }
2758 
2759 static void
2760 vfs_freeopt(mntopt_t *mop)
2761 {
2762 	if (mop->mo_name != NULL)
2763 		kmem_free(mop->mo_name, strlen(mop->mo_name) + 1);
2764 
2765 	vfs_freecancelopt(mop->mo_cancel);
2766 
2767 	if (mop->mo_arg != NULL)
2768 		kmem_free(mop->mo_arg, strlen(mop->mo_arg) + 1);
2769 }
2770 
2771 /*
2772  * Free a mount options table
2773  *
2774  * This function is *not* for general use by filesystems.
2775  *
2776  * Note: caller is responsible for locking the vfs list, if needed,
2777  *       to protect mp.
2778  */
2779 void
2780 vfs_freeopttbl(mntopts_t *mp)
2781 {
2782 	uint_t i, count;
2783 
2784 	count = mp->mo_count;
2785 	for (i = 0; i < count; i++) {
2786 		vfs_freeopt(&mp->mo_list[i]);
2787 	}
2788 	if (count) {
2789 		kmem_free(mp->mo_list, sizeof (mntopt_t) * count);
2790 		mp->mo_count = 0;
2791 		mp->mo_list = NULL;
2792 	}
2793 }
2794 
2795 
2796 /* ARGSUSED */
2797 static int
2798 vfs_mntdummyread(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cred,
2799 	caller_context_t *ct)
2800 {
2801 	return (0);
2802 }
2803 
2804 /* ARGSUSED */
2805 static int
2806 vfs_mntdummywrite(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cred,
2807 	caller_context_t *ct)
2808 {
2809 	return (0);
2810 }
2811 
2812 /*
2813  * The dummy vnode is currently used only by file events notification
2814  * module which is just interested in the timestamps.
2815  */
2816 /* ARGSUSED */
2817 static int
2818 vfs_mntdummygetattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr,
2819     caller_context_t *ct)
2820 {
2821 	bzero(vap, sizeof (vattr_t));
2822 	vap->va_type = VREG;
2823 	vap->va_nlink = 1;
2824 	vap->va_ctime = vfs_mnttab_ctime;
2825 	/*
2826 	 * it is ok to just copy mtime as the time will be monotonically
2827 	 * increasing.
2828 	 */
2829 	vap->va_mtime = vfs_mnttab_mtime;
2830 	vap->va_atime = vap->va_mtime;
2831 	return (0);
2832 }
2833 
2834 static void
2835 vfs_mnttabvp_setup(void)
2836 {
2837 	vnode_t *tvp;
2838 	vnodeops_t *vfs_mntdummyvnops;
2839 	const fs_operation_def_t mnt_dummyvnodeops_template[] = {
2840 		VOPNAME_READ, 		{ .vop_read = vfs_mntdummyread },
2841 		VOPNAME_WRITE, 		{ .vop_write = vfs_mntdummywrite },
2842 		VOPNAME_GETATTR,	{ .vop_getattr = vfs_mntdummygetattr },
2843 		VOPNAME_VNEVENT,	{ .vop_vnevent = fs_vnevent_support },
2844 		NULL,			NULL
2845 	};
2846 
2847 	if (vn_make_ops("mnttab", mnt_dummyvnodeops_template,
2848 	    &vfs_mntdummyvnops) != 0) {
2849 		cmn_err(CE_WARN, "vfs_mnttabvp_setup: vn_make_ops failed");
2850 		/* Shouldn't happen, but not bad enough to panic */
2851 		return;
2852 	}
2853 
2854 	/*
2855 	 * A global dummy vnode is allocated to represent mntfs files.
2856 	 * The mntfs file (/etc/mnttab) can be monitored for file events
2857 	 * and receive an event when mnttab changes. Dummy VOP calls
2858 	 * will be made on this vnode. The file events notification module
2859 	 * intercepts this vnode and delivers relevant events.
2860 	 */
2861 	tvp = vn_alloc(KM_SLEEP);
2862 	tvp->v_flag = VNOMOUNT|VNOMAP|VNOSWAP|VNOCACHE;
2863 	vn_setops(tvp, vfs_mntdummyvnops);
2864 	tvp->v_type = VREG;
2865 	/*
2866 	 * The mnt dummy ops do not reference v_data.
2867 	 * No other module intercepting this vnode should either.
2868 	 * Just set it to point to itself.
2869 	 */
2870 	tvp->v_data = (caddr_t)tvp;
2871 	tvp->v_vfsp = rootvfs;
2872 	vfs_mntdummyvp = tvp;
2873 }
2874 
2875 /*
2876  * performs fake read/write ops
2877  */
2878 static void
2879 vfs_mnttab_rwop(int rw)
2880 {
2881 	struct uio	uio;
2882 	struct iovec	iov;
2883 	char	buf[1];
2884 
2885 	if (vfs_mntdummyvp == NULL)
2886 		return;
2887 
2888 	bzero(&uio, sizeof (uio));
2889 	bzero(&iov, sizeof (iov));
2890 	iov.iov_base = buf;
2891 	iov.iov_len = 0;
2892 	uio.uio_iov = &iov;
2893 	uio.uio_iovcnt = 1;
2894 	uio.uio_loffset = 0;
2895 	uio.uio_segflg = UIO_SYSSPACE;
2896 	uio.uio_resid = 0;
2897 	if (rw) {
2898 		(void) VOP_WRITE(vfs_mntdummyvp, &uio, 0, kcred, NULL);
2899 	} else {
2900 		(void) VOP_READ(vfs_mntdummyvp, &uio, 0, kcred, NULL);
2901 	}
2902 }
2903 
2904 /*
2905  * Generate a write operation.
2906  */
2907 void
2908 vfs_mnttab_writeop(void)
2909 {
2910 	vfs_mnttab_rwop(1);
2911 }
2912 
2913 /*
2914  * Generate a read operation.
2915  */
2916 void
2917 vfs_mnttab_readop(void)
2918 {
2919 	vfs_mnttab_rwop(0);
2920 }
2921 
2922 /*
2923  * Free any mnttab information recorded in the vfs struct.
2924  * The vfs must not be on the vfs list.
2925  */
2926 static void
2927 vfs_freemnttab(struct vfs *vfsp)
2928 {
2929 	ASSERT(!VFS_ON_LIST(vfsp));
2930 
2931 	/*
2932 	 * Free device and mount point information
2933 	 */
2934 	if (vfsp->vfs_mntpt != NULL) {
2935 		refstr_rele(vfsp->vfs_mntpt);
2936 		vfsp->vfs_mntpt = NULL;
2937 	}
2938 	if (vfsp->vfs_resource != NULL) {
2939 		refstr_rele(vfsp->vfs_resource);
2940 		vfsp->vfs_resource = NULL;
2941 	}
2942 	/*
2943 	 * Now free mount options information
2944 	 */
2945 	vfs_freeopttbl(&vfsp->vfs_mntopts);
2946 }
2947 
2948 /*
2949  * Return the last mnttab modification time
2950  */
2951 void
2952 vfs_mnttab_modtime(timespec_t *ts)
2953 {
2954 	ASSERT(RW_LOCK_HELD(&vfslist));
2955 	*ts = vfs_mnttab_mtime;
2956 }
2957 
2958 /*
2959  * See if mnttab is changed
2960  */
2961 void
2962 vfs_mnttab_poll(timespec_t *old, struct pollhead **phpp)
2963 {
2964 	int changed;
2965 
2966 	*phpp = (struct pollhead *)NULL;
2967 
2968 	/*
2969 	 * Note: don't grab vfs list lock before accessing vfs_mnttab_mtime.
2970 	 * Can lead to deadlock against vfs_mnttab_modtimeupd(). It is safe
2971 	 * to not grab the vfs list lock because tv_sec is monotonically
2972 	 * increasing.
2973 	 */
2974 
2975 	changed = (old->tv_nsec != vfs_mnttab_mtime.tv_nsec) ||
2976 	    (old->tv_sec != vfs_mnttab_mtime.tv_sec);
2977 	if (!changed) {
2978 		*phpp = &vfs_pollhd;
2979 	}
2980 }
2981 
2982 /* Provide a unique and monotonically-increasing timestamp. */
2983 void
2984 vfs_mono_time(timespec_t *ts)
2985 {
2986 	static volatile hrtime_t hrt;		/* The saved time. */
2987 	hrtime_t	newhrt, oldhrt;		/* For effecting the CAS. */
2988 	timespec_t	newts;
2989 
2990 	/*
2991 	 * Try gethrestime() first, but be prepared to fabricate a sensible
2992 	 * answer at the first sign of any trouble.
2993 	 */
2994 	gethrestime(&newts);
2995 	newhrt = ts2hrt(&newts);
2996 	for (;;) {
2997 		oldhrt = hrt;
2998 		if (newhrt <= hrt)
2999 			newhrt = hrt + 1;
3000 		if (cas64((uint64_t *)&hrt, oldhrt, newhrt) == oldhrt)
3001 			break;
3002 	}
3003 	hrt2ts(newhrt, ts);
3004 }
3005 
3006 /*
3007  * Update the mnttab modification time and wake up any waiters for
3008  * mnttab changes
3009  */
3010 void
3011 vfs_mnttab_modtimeupd()
3012 {
3013 	hrtime_t oldhrt, newhrt;
3014 
3015 	ASSERT(RW_WRITE_HELD(&vfslist));
3016 	oldhrt = ts2hrt(&vfs_mnttab_mtime);
3017 	gethrestime(&vfs_mnttab_mtime);
3018 	newhrt = ts2hrt(&vfs_mnttab_mtime);
3019 	if (oldhrt == (hrtime_t)0)
3020 		vfs_mnttab_ctime = vfs_mnttab_mtime;
3021 	/*
3022 	 * Attempt to provide unique mtime (like uniqtime but not).
3023 	 */
3024 	if (newhrt == oldhrt) {
3025 		newhrt++;
3026 		hrt2ts(newhrt, &vfs_mnttab_mtime);
3027 	}
3028 	pollwakeup(&vfs_pollhd, (short)POLLRDBAND);
3029 	vfs_mnttab_writeop();
3030 }
3031 
3032 int
3033 dounmount(struct vfs *vfsp, int flag, cred_t *cr)
3034 {
3035 	vnode_t *coveredvp;
3036 	int error;
3037 	extern void teardown_vopstats(vfs_t *);
3038 
3039 	/*
3040 	 * Get covered vnode. This will be NULL if the vfs is not linked
3041 	 * into the file system name space (i.e., domount() with MNT_NOSPICE).
3042 	 */
3043 	coveredvp = vfsp->vfs_vnodecovered;
3044 	ASSERT(coveredvp == NULL || vn_vfswlock_held(coveredvp));
3045 
3046 	/*
3047 	 * Purge all dnlc entries for this vfs.
3048 	 */
3049 	(void) dnlc_purge_vfsp(vfsp, 0);
3050 
3051 	/* For forcible umount, skip VFS_SYNC() since it may hang */
3052 	if ((flag & MS_FORCE) == 0)
3053 		(void) VFS_SYNC(vfsp, 0, cr);
3054 
3055 	/*
3056 	 * Lock the vfs to maintain fs status quo during unmount.  This
3057 	 * has to be done after the sync because ufs_update tries to acquire
3058 	 * the vfs_reflock.
3059 	 */
3060 	vfs_lock_wait(vfsp);
3061 
3062 	if (error = VFS_UNMOUNT(vfsp, flag, cr)) {
3063 		vfs_unlock(vfsp);
3064 		if (coveredvp != NULL)
3065 			vn_vfsunlock(coveredvp);
3066 	} else if (coveredvp != NULL) {
3067 		teardown_vopstats(vfsp);
3068 		/*
3069 		 * vfs_remove() will do a VN_RELE(vfsp->vfs_vnodecovered)
3070 		 * when it frees vfsp so we do a VN_HOLD() so we can
3071 		 * continue to use coveredvp afterwards.
3072 		 */
3073 		VN_HOLD(coveredvp);
3074 		vfs_remove(vfsp);
3075 		vn_vfsunlock(coveredvp);
3076 		VN_RELE(coveredvp);
3077 	} else {
3078 		teardown_vopstats(vfsp);
3079 		/*
3080 		 * Release the reference to vfs that is not linked
3081 		 * into the name space.
3082 		 */
3083 		vfs_unlock(vfsp);
3084 		VFS_RELE(vfsp);
3085 	}
3086 	return (error);
3087 }
3088 
3089 
3090 /*
3091  * Vfs_unmountall() is called by uadmin() to unmount all
3092  * mounted file systems (except the root file system) during shutdown.
3093  * It follows the existing locking protocol when traversing the vfs list
3094  * to sync and unmount vfses. Even though there should be no
3095  * other thread running while the system is shutting down, it is prudent
3096  * to still follow the locking protocol.
3097  */
3098 void
3099 vfs_unmountall(void)
3100 {
3101 	struct vfs *vfsp;
3102 	struct vfs *prev_vfsp = NULL;
3103 	int error;
3104 
3105 	/*
3106 	 * Toss all dnlc entries now so that the per-vfs sync
3107 	 * and unmount operations don't have to slog through
3108 	 * a bunch of uninteresting vnodes over and over again.
3109 	 */
3110 	dnlc_purge();
3111 
3112 	vfs_list_lock();
3113 	for (vfsp = rootvfs->vfs_prev; vfsp != rootvfs; vfsp = prev_vfsp) {
3114 		prev_vfsp = vfsp->vfs_prev;
3115 
3116 		if (vfs_lock(vfsp) != 0)
3117 			continue;
3118 		error = vn_vfswlock(vfsp->vfs_vnodecovered);
3119 		vfs_unlock(vfsp);
3120 		if (error)
3121 			continue;
3122 
3123 		vfs_list_unlock();
3124 
3125 		(void) VFS_SYNC(vfsp, SYNC_CLOSE, CRED());
3126 		(void) dounmount(vfsp, 0, CRED());
3127 
3128 		/*
3129 		 * Since we dropped the vfslist lock above we must
3130 		 * verify that next_vfsp still exists, else start over.
3131 		 */
3132 		vfs_list_lock();
3133 		for (vfsp = rootvfs->vfs_prev;
3134 		    vfsp != rootvfs; vfsp = vfsp->vfs_prev)
3135 			if (vfsp == prev_vfsp)
3136 				break;
3137 		if (vfsp == rootvfs && prev_vfsp != rootvfs)
3138 			prev_vfsp = rootvfs->vfs_prev;
3139 	}
3140 	vfs_list_unlock();
3141 }
3142 
3143 /*
3144  * Called to add an entry to the end of the vfs mount in progress list
3145  */
3146 void
3147 vfs_addmip(dev_t dev, struct vfs *vfsp)
3148 {
3149 	struct ipmnt *mipp;
3150 
3151 	mipp = (struct ipmnt *)kmem_alloc(sizeof (struct ipmnt), KM_SLEEP);
3152 	mipp->mip_next = NULL;
3153 	mipp->mip_dev = dev;
3154 	mipp->mip_vfsp = vfsp;
3155 	mutex_enter(&vfs_miplist_mutex);
3156 	if (vfs_miplist_end != NULL)
3157 		vfs_miplist_end->mip_next = mipp;
3158 	else
3159 		vfs_miplist = mipp;
3160 	vfs_miplist_end = mipp;
3161 	mutex_exit(&vfs_miplist_mutex);
3162 }
3163 
3164 /*
3165  * Called to remove an entry from the mount in progress list
3166  * Either because the mount completed or it failed.
3167  */
3168 void
3169 vfs_delmip(struct vfs *vfsp)
3170 {
3171 	struct ipmnt *mipp, *mipprev;
3172 
3173 	mutex_enter(&vfs_miplist_mutex);
3174 	mipprev = NULL;
3175 	for (mipp = vfs_miplist;
3176 	    mipp && mipp->mip_vfsp != vfsp; mipp = mipp->mip_next) {
3177 		mipprev = mipp;
3178 	}
3179 	if (mipp == NULL)
3180 		return; /* shouldn't happen */
3181 	if (mipp == vfs_miplist_end)
3182 		vfs_miplist_end = mipprev;
3183 	if (mipprev == NULL)
3184 		vfs_miplist = mipp->mip_next;
3185 	else
3186 		mipprev->mip_next = mipp->mip_next;
3187 	mutex_exit(&vfs_miplist_mutex);
3188 	kmem_free(mipp, sizeof (struct ipmnt));
3189 }
3190 
3191 /*
3192  * vfs_add is called by a specific filesystem's mount routine to add
3193  * the new vfs into the vfs list/hash and to cover the mounted-on vnode.
3194  * The vfs should already have been locked by the caller.
3195  *
3196  * coveredvp is NULL if this is the root.
3197  */
3198 void
3199 vfs_add(vnode_t *coveredvp, struct vfs *vfsp, int mflag)
3200 {
3201 	int newflag;
3202 
3203 	ASSERT(vfs_lock_held(vfsp));
3204 	VFS_HOLD(vfsp);
3205 	newflag = vfsp->vfs_flag;
3206 	if (mflag & MS_RDONLY)
3207 		newflag |= VFS_RDONLY;
3208 	else
3209 		newflag &= ~VFS_RDONLY;
3210 	if (mflag & MS_NOSUID)
3211 		newflag |= (VFS_NOSETUID|VFS_NODEVICES);
3212 	else
3213 		newflag &= ~(VFS_NOSETUID|VFS_NODEVICES);
3214 	if (mflag & MS_NOMNTTAB)
3215 		newflag |= VFS_NOMNTTAB;
3216 	else
3217 		newflag &= ~VFS_NOMNTTAB;
3218 
3219 	if (coveredvp != NULL) {
3220 		ASSERT(vn_vfswlock_held(coveredvp));
3221 		coveredvp->v_vfsmountedhere = vfsp;
3222 		VN_HOLD(coveredvp);
3223 	}
3224 	vfsp->vfs_vnodecovered = coveredvp;
3225 	vfsp->vfs_flag = newflag;
3226 
3227 	vfs_list_add(vfsp);
3228 }
3229 
3230 /*
3231  * Remove a vfs from the vfs list, null out the pointer from the
3232  * covered vnode to the vfs (v_vfsmountedhere), and null out the pointer
3233  * from the vfs to the covered vnode (vfs_vnodecovered). Release the
3234  * reference to the vfs and to the covered vnode.
3235  *
3236  * Called from dounmount after it's confirmed with the file system
3237  * that the unmount is legal.
3238  */
3239 void
3240 vfs_remove(struct vfs *vfsp)
3241 {
3242 	vnode_t *vp;
3243 
3244 	ASSERT(vfs_lock_held(vfsp));
3245 
3246 	/*
3247 	 * Can't unmount root.  Should never happen because fs will
3248 	 * be busy.
3249 	 */
3250 	if (vfsp == rootvfs)
3251 		panic("vfs_remove: unmounting root");
3252 
3253 	vfs_list_remove(vfsp);
3254 
3255 	/*
3256 	 * Unhook from the file system name space.
3257 	 */
3258 	vp = vfsp->vfs_vnodecovered;
3259 	ASSERT(vn_vfswlock_held(vp));
3260 	vp->v_vfsmountedhere = NULL;
3261 	vfsp->vfs_vnodecovered = NULL;
3262 	VN_RELE(vp);
3263 
3264 	/*
3265 	 * Release lock and wakeup anybody waiting.
3266 	 */
3267 	vfs_unlock(vfsp);
3268 	VFS_RELE(vfsp);
3269 }
3270 
3271 /*
3272  * Lock a filesystem to prevent access to it while mounting,
3273  * unmounting and syncing.  Return EBUSY immediately if lock
3274  * can't be acquired.
3275  */
3276 int
3277 vfs_lock(vfs_t *vfsp)
3278 {
3279 	vn_vfslocks_entry_t *vpvfsentry;
3280 
3281 	vpvfsentry = vn_vfslocks_getlock(vfsp);
3282 	if (rwst_tryenter(&vpvfsentry->ve_lock, RW_WRITER))
3283 		return (0);
3284 
3285 	vn_vfslocks_rele(vpvfsentry);
3286 	return (EBUSY);
3287 }
3288 
3289 int
3290 vfs_rlock(vfs_t *vfsp)
3291 {
3292 	vn_vfslocks_entry_t *vpvfsentry;
3293 
3294 	vpvfsentry = vn_vfslocks_getlock(vfsp);
3295 
3296 	if (rwst_tryenter(&vpvfsentry->ve_lock, RW_READER))
3297 		return (0);
3298 
3299 	vn_vfslocks_rele(vpvfsentry);
3300 	return (EBUSY);
3301 }
3302 
3303 void
3304 vfs_lock_wait(vfs_t *vfsp)
3305 {
3306 	vn_vfslocks_entry_t *vpvfsentry;
3307 
3308 	vpvfsentry = vn_vfslocks_getlock(vfsp);
3309 	rwst_enter(&vpvfsentry->ve_lock, RW_WRITER);
3310 }
3311 
3312 void
3313 vfs_rlock_wait(vfs_t *vfsp)
3314 {
3315 	vn_vfslocks_entry_t *vpvfsentry;
3316 
3317 	vpvfsentry = vn_vfslocks_getlock(vfsp);
3318 	rwst_enter(&vpvfsentry->ve_lock, RW_READER);
3319 }
3320 
3321 /*
3322  * Unlock a locked filesystem.
3323  */
3324 void
3325 vfs_unlock(vfs_t *vfsp)
3326 {
3327 	vn_vfslocks_entry_t *vpvfsentry;
3328 
3329 	/*
3330 	 * vfs_unlock will mimic sema_v behaviour to fix 4748018.
3331 	 * And these changes should remain for the patch changes as it is.
3332 	 */
3333 	if (panicstr)
3334 		return;
3335 
3336 	/*
3337 	 * ve_refcount needs to be dropped twice here.
3338 	 * 1. To release refernce after a call to vfs_locks_getlock()
3339 	 * 2. To release the reference from the locking routines like
3340 	 *    vfs_rlock_wait/vfs_wlock_wait/vfs_wlock etc,.
3341 	 */
3342 
3343 	vpvfsentry = vn_vfslocks_getlock(vfsp);
3344 	vn_vfslocks_rele(vpvfsentry);
3345 
3346 	rwst_exit(&vpvfsentry->ve_lock);
3347 	vn_vfslocks_rele(vpvfsentry);
3348 }
3349 
3350 /*
3351  * Utility routine that allows a filesystem to construct its
3352  * fsid in "the usual way" - by munging some underlying dev_t and
3353  * the filesystem type number into the 64-bit fsid.  Note that
3354  * this implicitly relies on dev_t persistence to make filesystem
3355  * id's persistent.
3356  *
3357  * There's nothing to prevent an individual fs from constructing its
3358  * fsid in a different way, and indeed they should.
3359  *
3360  * Since we want fsids to be 32-bit quantities (so that they can be
3361  * exported identically by either 32-bit or 64-bit APIs, as well as
3362  * the fact that fsid's are "known" to NFS), we compress the device
3363  * number given down to 32-bits, and panic if that isn't possible.
3364  */
3365 void
3366 vfs_make_fsid(fsid_t *fsi, dev_t dev, int val)
3367 {
3368 	if (!cmpldev((dev32_t *)&fsi->val[0], dev))
3369 		panic("device number too big for fsid!");
3370 	fsi->val[1] = val;
3371 }
3372 
3373 int
3374 vfs_lock_held(vfs_t *vfsp)
3375 {
3376 	int held;
3377 	vn_vfslocks_entry_t *vpvfsentry;
3378 
3379 	/*
3380 	 * vfs_lock_held will mimic sema_held behaviour
3381 	 * if panicstr is set. And these changes should remain
3382 	 * for the patch changes as it is.
3383 	 */
3384 	if (panicstr)
3385 		return (1);
3386 
3387 	vpvfsentry = vn_vfslocks_getlock(vfsp);
3388 	held = rwst_lock_held(&vpvfsentry->ve_lock, RW_WRITER);
3389 
3390 	vn_vfslocks_rele(vpvfsentry);
3391 	return (held);
3392 }
3393 
3394 struct _kthread *
3395 vfs_lock_owner(vfs_t *vfsp)
3396 {
3397 	struct _kthread *owner;
3398 	vn_vfslocks_entry_t *vpvfsentry;
3399 
3400 	/*
3401 	 * vfs_wlock_held will mimic sema_held behaviour
3402 	 * if panicstr is set. And these changes should remain
3403 	 * for the patch changes as it is.
3404 	 */
3405 	if (panicstr)
3406 		return (NULL);
3407 
3408 	vpvfsentry = vn_vfslocks_getlock(vfsp);
3409 	owner = rwst_owner(&vpvfsentry->ve_lock);
3410 
3411 	vn_vfslocks_rele(vpvfsentry);
3412 	return (owner);
3413 }
3414 
3415 /*
3416  * vfs list locking.
3417  *
3418  * Rather than manipulate the vfslist lock directly, we abstract into lock
3419  * and unlock routines to allow the locking implementation to be changed for
3420  * clustering.
3421  *
3422  * Whenever the vfs list is modified through its hash links, the overall list
3423  * lock must be obtained before locking the relevant hash bucket.  But to see
3424  * whether a given vfs is on the list, it suffices to obtain the lock for the
3425  * hash bucket without getting the overall list lock.  (See getvfs() below.)
3426  */
3427 
3428 void
3429 vfs_list_lock()
3430 {
3431 	rw_enter(&vfslist, RW_WRITER);
3432 }
3433 
3434 void
3435 vfs_list_read_lock()
3436 {
3437 	rw_enter(&vfslist, RW_READER);
3438 }
3439 
3440 void
3441 vfs_list_unlock()
3442 {
3443 	rw_exit(&vfslist);
3444 }
3445 
3446 /*
3447  * Low level worker routines for adding entries to and removing entries from
3448  * the vfs list.
3449  */
3450 
3451 static void
3452 vfs_hash_add(struct vfs *vfsp, int insert_at_head)
3453 {
3454 	int vhno;
3455 	struct vfs **hp;
3456 	dev_t dev;
3457 
3458 	ASSERT(RW_WRITE_HELD(&vfslist));
3459 
3460 	dev = expldev(vfsp->vfs_fsid.val[0]);
3461 	vhno = VFSHASH(getmajor(dev), getminor(dev));
3462 
3463 	mutex_enter(&rvfs_list[vhno].rvfs_lock);
3464 
3465 	/*
3466 	 * Link into the hash table, inserting it at the end, so that LOFS
3467 	 * with the same fsid as UFS (or other) file systems will not hide the
3468 	 * UFS.
3469 	 */
3470 	if (insert_at_head) {
3471 		vfsp->vfs_hash = rvfs_list[vhno].rvfs_head;
3472 		rvfs_list[vhno].rvfs_head = vfsp;
3473 	} else {
3474 		for (hp = &rvfs_list[vhno].rvfs_head; *hp != NULL;
3475 		    hp = &(*hp)->vfs_hash)
3476 			continue;
3477 		/*
3478 		 * hp now contains the address of the pointer to update
3479 		 * to effect the insertion.
3480 		 */
3481 		vfsp->vfs_hash = NULL;
3482 		*hp = vfsp;
3483 	}
3484 
3485 	rvfs_list[vhno].rvfs_len++;
3486 	mutex_exit(&rvfs_list[vhno].rvfs_lock);
3487 }
3488 
3489 
3490 static void
3491 vfs_hash_remove(struct vfs *vfsp)
3492 {
3493 	int vhno;
3494 	struct vfs *tvfsp;
3495 	dev_t dev;
3496 
3497 	ASSERT(RW_WRITE_HELD(&vfslist));
3498 
3499 	dev = expldev(vfsp->vfs_fsid.val[0]);
3500 	vhno = VFSHASH(getmajor(dev), getminor(dev));
3501 
3502 	mutex_enter(&rvfs_list[vhno].rvfs_lock);
3503 
3504 	/*
3505 	 * Remove from hash.
3506 	 */
3507 	if (rvfs_list[vhno].rvfs_head == vfsp) {
3508 		rvfs_list[vhno].rvfs_head = vfsp->vfs_hash;
3509 		rvfs_list[vhno].rvfs_len--;
3510 		goto foundit;
3511 	}
3512 	for (tvfsp = rvfs_list[vhno].rvfs_head; tvfsp != NULL;
3513 	    tvfsp = tvfsp->vfs_hash) {
3514 		if (tvfsp->vfs_hash == vfsp) {
3515 			tvfsp->vfs_hash = vfsp->vfs_hash;
3516 			rvfs_list[vhno].rvfs_len--;
3517 			goto foundit;
3518 		}
3519 	}
3520 	cmn_err(CE_WARN, "vfs_list_remove: vfs not found in hash");
3521 
3522 foundit:
3523 
3524 	mutex_exit(&rvfs_list[vhno].rvfs_lock);
3525 }
3526 
3527 
3528 void
3529 vfs_list_add(struct vfs *vfsp)
3530 {
3531 	zone_t *zone;
3532 
3533 	/*
3534 	 * Typically, the vfs_t will have been created on behalf of the file
3535 	 * system in vfs_init, where it will have been provided with a
3536 	 * vfs_impl_t. This, however, might be lacking if the vfs_t was created
3537 	 * by an unbundled file system. We therefore check for such an example
3538 	 * before stamping the vfs_t with its creation time for the benefit of
3539 	 * mntfs.
3540 	 */
3541 	if (vfsp->vfs_implp == NULL)
3542 		vfsimpl_setup(vfsp);
3543 	vfs_mono_time(&vfsp->vfs_hrctime);
3544 
3545 	/*
3546 	 * The zone that owns the mount is the one that performed the mount.
3547 	 * Note that this isn't necessarily the same as the zone mounted into.
3548 	 * The corresponding zone_rele() will be done when the vfs_t is
3549 	 * being free'd.
3550 	 */
3551 	vfsp->vfs_zone = curproc->p_zone;
3552 	zone_hold(vfsp->vfs_zone);
3553 
3554 	/*
3555 	 * Find the zone mounted into, and put this mount on its vfs list.
3556 	 */
3557 	zone = zone_find_by_path(refstr_value(vfsp->vfs_mntpt));
3558 	ASSERT(zone != NULL);
3559 	/*
3560 	 * Special casing for the root vfs.  This structure is allocated
3561 	 * statically and hooked onto rootvfs at link time.  During the
3562 	 * vfs_mountroot call at system startup time, the root file system's
3563 	 * VFS_MOUNTROOT routine will call vfs_add with this root vfs struct
3564 	 * as argument.  The code below must detect and handle this special
3565 	 * case.  The only apparent justification for this special casing is
3566 	 * to ensure that the root file system appears at the head of the
3567 	 * list.
3568 	 *
3569 	 * XXX:	I'm assuming that it's ok to do normal list locking when
3570 	 *	adding the entry for the root file system (this used to be
3571 	 *	done with no locks held).
3572 	 */
3573 	vfs_list_lock();
3574 	/*
3575 	 * Link into the vfs list proper.
3576 	 */
3577 	if (vfsp == &root) {
3578 		/*
3579 		 * Assert: This vfs is already on the list as its first entry.
3580 		 * Thus, there's nothing to do.
3581 		 */
3582 		ASSERT(rootvfs == vfsp);
3583 		/*
3584 		 * Add it to the head of the global zone's vfslist.
3585 		 */
3586 		ASSERT(zone == global_zone);
3587 		ASSERT(zone->zone_vfslist == NULL);
3588 		zone->zone_vfslist = vfsp;
3589 	} else {
3590 		/*
3591 		 * Link to end of list using vfs_prev (as rootvfs is now a
3592 		 * doubly linked circular list) so list is in mount order for
3593 		 * mnttab use.
3594 		 */
3595 		rootvfs->vfs_prev->vfs_next = vfsp;
3596 		vfsp->vfs_prev = rootvfs->vfs_prev;
3597 		rootvfs->vfs_prev = vfsp;
3598 		vfsp->vfs_next = rootvfs;
3599 
3600 		/*
3601 		 * Do it again for the zone-private list (which may be NULL).
3602 		 */
3603 		if (zone->zone_vfslist == NULL) {
3604 			ASSERT(zone != global_zone);
3605 			zone->zone_vfslist = vfsp;
3606 		} else {
3607 			zone->zone_vfslist->vfs_zone_prev->vfs_zone_next = vfsp;
3608 			vfsp->vfs_zone_prev = zone->zone_vfslist->vfs_zone_prev;
3609 			zone->zone_vfslist->vfs_zone_prev = vfsp;
3610 			vfsp->vfs_zone_next = zone->zone_vfslist;
3611 		}
3612 	}
3613 
3614 	/*
3615 	 * Link into the hash table, inserting it at the end, so that LOFS
3616 	 * with the same fsid as UFS (or other) file systems will not hide
3617 	 * the UFS.
3618 	 */
3619 	vfs_hash_add(vfsp, 0);
3620 
3621 	/*
3622 	 * update the mnttab modification time
3623 	 */
3624 	vfs_mnttab_modtimeupd();
3625 	vfs_list_unlock();
3626 	zone_rele(zone);
3627 }
3628 
3629 void
3630 vfs_list_remove(struct vfs *vfsp)
3631 {
3632 	zone_t *zone;
3633 
3634 	zone = zone_find_by_path(refstr_value(vfsp->vfs_mntpt));
3635 	ASSERT(zone != NULL);
3636 	/*
3637 	 * Callers are responsible for preventing attempts to unmount the
3638 	 * root.
3639 	 */
3640 	ASSERT(vfsp != rootvfs);
3641 
3642 	vfs_list_lock();
3643 
3644 	/*
3645 	 * Remove from hash.
3646 	 */
3647 	vfs_hash_remove(vfsp);
3648 
3649 	/*
3650 	 * Remove from vfs list.
3651 	 */
3652 	vfsp->vfs_prev->vfs_next = vfsp->vfs_next;
3653 	vfsp->vfs_next->vfs_prev = vfsp->vfs_prev;
3654 	vfsp->vfs_next = vfsp->vfs_prev = NULL;
3655 
3656 	/*
3657 	 * Remove from zone-specific vfs list.
3658 	 */
3659 	if (zone->zone_vfslist == vfsp)
3660 		zone->zone_vfslist = vfsp->vfs_zone_next;
3661 
3662 	if (vfsp->vfs_zone_next == vfsp) {
3663 		ASSERT(vfsp->vfs_zone_prev == vfsp);
3664 		ASSERT(zone->zone_vfslist == vfsp);
3665 		zone->zone_vfslist = NULL;
3666 	}
3667 
3668 	vfsp->vfs_zone_prev->vfs_zone_next = vfsp->vfs_zone_next;
3669 	vfsp->vfs_zone_next->vfs_zone_prev = vfsp->vfs_zone_prev;
3670 	vfsp->vfs_zone_next = vfsp->vfs_zone_prev = NULL;
3671 
3672 	/*
3673 	 * update the mnttab modification time
3674 	 */
3675 	vfs_mnttab_modtimeupd();
3676 	vfs_list_unlock();
3677 	zone_rele(zone);
3678 }
3679 
3680 struct vfs *
3681 getvfs(fsid_t *fsid)
3682 {
3683 	struct vfs *vfsp;
3684 	int val0 = fsid->val[0];
3685 	int val1 = fsid->val[1];
3686 	dev_t dev = expldev(val0);
3687 	int vhno = VFSHASH(getmajor(dev), getminor(dev));
3688 	kmutex_t *hmp = &rvfs_list[vhno].rvfs_lock;
3689 
3690 	mutex_enter(hmp);
3691 	for (vfsp = rvfs_list[vhno].rvfs_head; vfsp; vfsp = vfsp->vfs_hash) {
3692 		if (vfsp->vfs_fsid.val[0] == val0 &&
3693 		    vfsp->vfs_fsid.val[1] == val1) {
3694 			VFS_HOLD(vfsp);
3695 			mutex_exit(hmp);
3696 			return (vfsp);
3697 		}
3698 	}
3699 	mutex_exit(hmp);
3700 	return (NULL);
3701 }
3702 
3703 /*
3704  * Search the vfs mount in progress list for a specified device/vfs entry.
3705  * Returns 0 if the first entry in the list that the device matches has the
3706  * given vfs pointer as well.  If the device matches but a different vfs
3707  * pointer is encountered in the list before the given vfs pointer then
3708  * a 1 is returned.
3709  */
3710 
3711 int
3712 vfs_devmounting(dev_t dev, struct vfs *vfsp)
3713 {
3714 	int retval = 0;
3715 	struct ipmnt *mipp;
3716 
3717 	mutex_enter(&vfs_miplist_mutex);
3718 	for (mipp = vfs_miplist; mipp != NULL; mipp = mipp->mip_next) {
3719 		if (mipp->mip_dev == dev) {
3720 			if (mipp->mip_vfsp != vfsp)
3721 				retval = 1;
3722 			break;
3723 		}
3724 	}
3725 	mutex_exit(&vfs_miplist_mutex);
3726 	return (retval);
3727 }
3728 
3729 /*
3730  * Search the vfs list for a specified device.  Returns 1, if entry is found
3731  * or 0 if no suitable entry is found.
3732  */
3733 
3734 int
3735 vfs_devismounted(dev_t dev)
3736 {
3737 	struct vfs *vfsp;
3738 	int found;
3739 
3740 	vfs_list_read_lock();
3741 	vfsp = rootvfs;
3742 	found = 0;
3743 	do {
3744 		if (vfsp->vfs_dev == dev) {
3745 			found = 1;
3746 			break;
3747 		}
3748 		vfsp = vfsp->vfs_next;
3749 	} while (vfsp != rootvfs);
3750 
3751 	vfs_list_unlock();
3752 	return (found);
3753 }
3754 
3755 /*
3756  * Search the vfs list for a specified device.  Returns a pointer to it
3757  * or NULL if no suitable entry is found. The caller of this routine
3758  * is responsible for releasing the returned vfs pointer.
3759  */
3760 struct vfs *
3761 vfs_dev2vfsp(dev_t dev)
3762 {
3763 	struct vfs *vfsp;
3764 	int found;
3765 
3766 	vfs_list_read_lock();
3767 	vfsp = rootvfs;
3768 	found = 0;
3769 	do {
3770 		/*
3771 		 * The following could be made more efficient by making
3772 		 * the entire loop use vfs_zone_next if the call is from
3773 		 * a zone.  The only callers, however, ustat(2) and
3774 		 * umount2(2), don't seem to justify the added
3775 		 * complexity at present.
3776 		 */
3777 		if (vfsp->vfs_dev == dev &&
3778 		    ZONE_PATH_VISIBLE(refstr_value(vfsp->vfs_mntpt),
3779 		    curproc->p_zone)) {
3780 			VFS_HOLD(vfsp);
3781 			found = 1;
3782 			break;
3783 		}
3784 		vfsp = vfsp->vfs_next;
3785 	} while (vfsp != rootvfs);
3786 	vfs_list_unlock();
3787 	return (found ? vfsp: NULL);
3788 }
3789 
3790 /*
3791  * Search the vfs list for a specified mntpoint.  Returns a pointer to it
3792  * or NULL if no suitable entry is found. The caller of this routine
3793  * is responsible for releasing the returned vfs pointer.
3794  *
3795  * Note that if multiple mntpoints match, the last one matching is
3796  * returned in an attempt to return the "top" mount when overlay
3797  * mounts are covering the same mount point.  This is accomplished by starting
3798  * at the end of the list and working our way backwards, stopping at the first
3799  * matching mount.
3800  */
3801 struct vfs *
3802 vfs_mntpoint2vfsp(const char *mp)
3803 {
3804 	struct vfs *vfsp;
3805 	struct vfs *retvfsp = NULL;
3806 	zone_t *zone = curproc->p_zone;
3807 	struct vfs *list;
3808 
3809 	vfs_list_read_lock();
3810 	if (getzoneid() == GLOBAL_ZONEID) {
3811 		/*
3812 		 * The global zone may see filesystems in any zone.
3813 		 */
3814 		vfsp = rootvfs->vfs_prev;
3815 		do {
3816 			if (strcmp(refstr_value(vfsp->vfs_mntpt), mp) == 0) {
3817 				retvfsp = vfsp;
3818 				break;
3819 			}
3820 			vfsp = vfsp->vfs_prev;
3821 		} while (vfsp != rootvfs->vfs_prev);
3822 	} else if ((list = zone->zone_vfslist) != NULL) {
3823 		const char *mntpt;
3824 
3825 		vfsp = list->vfs_zone_prev;
3826 		do {
3827 			mntpt = refstr_value(vfsp->vfs_mntpt);
3828 			mntpt = ZONE_PATH_TRANSLATE(mntpt, zone);
3829 			if (strcmp(mntpt, mp) == 0) {
3830 				retvfsp = vfsp;
3831 				break;
3832 			}
3833 			vfsp = vfsp->vfs_zone_prev;
3834 		} while (vfsp != list->vfs_zone_prev);
3835 	}
3836 	if (retvfsp)
3837 		VFS_HOLD(retvfsp);
3838 	vfs_list_unlock();
3839 	return (retvfsp);
3840 }
3841 
3842 /*
3843  * Search the vfs list for a specified vfsops.
3844  * if vfs entry is found then return 1, else 0.
3845  */
3846 int
3847 vfs_opsinuse(vfsops_t *ops)
3848 {
3849 	struct vfs *vfsp;
3850 	int found;
3851 
3852 	vfs_list_read_lock();
3853 	vfsp = rootvfs;
3854 	found = 0;
3855 	do {
3856 		if (vfs_getops(vfsp) == ops) {
3857 			found = 1;
3858 			break;
3859 		}
3860 		vfsp = vfsp->vfs_next;
3861 	} while (vfsp != rootvfs);
3862 	vfs_list_unlock();
3863 	return (found);
3864 }
3865 
3866 /*
3867  * Allocate an entry in vfssw for a file system type
3868  */
3869 struct vfssw *
3870 allocate_vfssw(const char *type)
3871 {
3872 	struct vfssw *vswp;
3873 
3874 	if (type[0] == '\0' || strlen(type) + 1 > _ST_FSTYPSZ) {
3875 		/*
3876 		 * The vfssw table uses the empty string to identify an
3877 		 * available entry; we cannot add any type which has
3878 		 * a leading NUL. The string length is limited to
3879 		 * the size of the st_fstype array in struct stat.
3880 		 */
3881 		return (NULL);
3882 	}
3883 
3884 	ASSERT(VFSSW_WRITE_LOCKED());
3885 	for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++)
3886 		if (!ALLOCATED_VFSSW(vswp)) {
3887 			vswp->vsw_name = kmem_alloc(strlen(type) + 1, KM_SLEEP);
3888 			(void) strcpy(vswp->vsw_name, type);
3889 			ASSERT(vswp->vsw_count == 0);
3890 			vswp->vsw_count = 1;
3891 			mutex_init(&vswp->vsw_lock, NULL, MUTEX_DEFAULT, NULL);
3892 			return (vswp);
3893 		}
3894 	return (NULL);
3895 }
3896 
3897 /*
3898  * Impose additional layer of translation between vfstype names
3899  * and module names in the filesystem.
3900  */
3901 static const char *
3902 vfs_to_modname(const char *vfstype)
3903 {
3904 	if (strcmp(vfstype, "proc") == 0) {
3905 		vfstype = "procfs";
3906 	} else if (strcmp(vfstype, "fd") == 0) {
3907 		vfstype = "fdfs";
3908 	} else if (strncmp(vfstype, "nfs", 3) == 0) {
3909 		vfstype = "nfs";
3910 	}
3911 
3912 	return (vfstype);
3913 }
3914 
3915 /*
3916  * Find a vfssw entry given a file system type name.
3917  * Try to autoload the filesystem if it's not found.
3918  * If it's installed, return the vfssw locked to prevent unloading.
3919  */
3920 struct vfssw *
3921 vfs_getvfssw(const char *type)
3922 {
3923 	struct vfssw *vswp;
3924 	const char *modname;
3925 
3926 	RLOCK_VFSSW();
3927 	vswp = vfs_getvfsswbyname(type);
3928 	modname = vfs_to_modname(type);
3929 
3930 	if (rootdir == NULL) {
3931 		/*
3932 		 * If we haven't yet loaded the root file system, then our
3933 		 * _init won't be called until later. Allocate vfssw entry,
3934 		 * because mod_installfs won't be called.
3935 		 */
3936 		if (vswp == NULL) {
3937 			RUNLOCK_VFSSW();
3938 			WLOCK_VFSSW();
3939 			if ((vswp = vfs_getvfsswbyname(type)) == NULL) {
3940 				if ((vswp = allocate_vfssw(type)) == NULL) {
3941 					WUNLOCK_VFSSW();
3942 					return (NULL);
3943 				}
3944 			}
3945 			WUNLOCK_VFSSW();
3946 			RLOCK_VFSSW();
3947 		}
3948 		if (!VFS_INSTALLED(vswp)) {
3949 			RUNLOCK_VFSSW();
3950 			(void) modloadonly("fs", modname);
3951 		} else
3952 			RUNLOCK_VFSSW();
3953 		return (vswp);
3954 	}
3955 
3956 	/*
3957 	 * Try to load the filesystem.  Before calling modload(), we drop
3958 	 * our lock on the VFS switch table, and pick it up after the
3959 	 * module is loaded.  However, there is a potential race:  the
3960 	 * module could be unloaded after the call to modload() completes
3961 	 * but before we pick up the lock and drive on.  Therefore,
3962 	 * we keep reloading the module until we've loaded the module
3963 	 * _and_ we have the lock on the VFS switch table.
3964 	 */
3965 	while (vswp == NULL || !VFS_INSTALLED(vswp)) {
3966 		RUNLOCK_VFSSW();
3967 		if (modload("fs", modname) == -1)
3968 			return (NULL);
3969 		RLOCK_VFSSW();
3970 		if (vswp == NULL)
3971 			if ((vswp = vfs_getvfsswbyname(type)) == NULL)
3972 				break;
3973 	}
3974 	RUNLOCK_VFSSW();
3975 
3976 	return (vswp);
3977 }
3978 
3979 /*
3980  * Find a vfssw entry given a file system type name.
3981  */
3982 struct vfssw *
3983 vfs_getvfsswbyname(const char *type)
3984 {
3985 	struct vfssw *vswp;
3986 
3987 	ASSERT(VFSSW_LOCKED());
3988 	if (type == NULL || *type == '\0')
3989 		return (NULL);
3990 
3991 	for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) {
3992 		if (strcmp(type, vswp->vsw_name) == 0) {
3993 			vfs_refvfssw(vswp);
3994 			return (vswp);
3995 		}
3996 	}
3997 
3998 	return (NULL);
3999 }
4000 
4001 /*
4002  * Find a vfssw entry given a set of vfsops.
4003  */
4004 struct vfssw *
4005 vfs_getvfsswbyvfsops(vfsops_t *vfsops)
4006 {
4007 	struct vfssw *vswp;
4008 
4009 	RLOCK_VFSSW();
4010 	for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) {
4011 		if (ALLOCATED_VFSSW(vswp) && &vswp->vsw_vfsops == vfsops) {
4012 			vfs_refvfssw(vswp);
4013 			RUNLOCK_VFSSW();
4014 			return (vswp);
4015 		}
4016 	}
4017 	RUNLOCK_VFSSW();
4018 
4019 	return (NULL);
4020 }
4021 
4022 /*
4023  * Reference a vfssw entry.
4024  */
4025 void
4026 vfs_refvfssw(struct vfssw *vswp)
4027 {
4028 
4029 	mutex_enter(&vswp->vsw_lock);
4030 	vswp->vsw_count++;
4031 	mutex_exit(&vswp->vsw_lock);
4032 }
4033 
4034 /*
4035  * Unreference a vfssw entry.
4036  */
4037 void
4038 vfs_unrefvfssw(struct vfssw *vswp)
4039 {
4040 
4041 	mutex_enter(&vswp->vsw_lock);
4042 	vswp->vsw_count--;
4043 	mutex_exit(&vswp->vsw_lock);
4044 }
4045 
4046 int sync_timeout = 30;		/* timeout for syncing a page during panic */
4047 int sync_timeleft;		/* portion of sync_timeout remaining */
4048 
4049 static int sync_retries = 20;	/* number of retries when not making progress */
4050 static int sync_triesleft;	/* portion of sync_retries remaining */
4051 
4052 static pgcnt_t old_pgcnt, new_pgcnt;
4053 static int new_bufcnt, old_bufcnt;
4054 
4055 /*
4056  * Sync all of the mounted filesystems, and then wait for the actual i/o to
4057  * complete.  We wait by counting the number of dirty pages and buffers,
4058  * pushing them out using bio_busy() and page_busy(), and then counting again.
4059  * This routine is used during both the uadmin A_SHUTDOWN code as well as
4060  * the SYNC phase of the panic code (see comments in panic.c).  It should only
4061  * be used after some higher-level mechanism has quiesced the system so that
4062  * new writes are not being initiated while we are waiting for completion.
4063  *
4064  * To ensure finite running time, our algorithm uses two timeout mechanisms:
4065  * sync_timeleft (a timer implemented by the omnipresent deadman() cyclic), and
4066  * sync_triesleft (a progress counter used by the vfs_syncall() loop below).
4067  * Together these ensure that syncing completes if our i/o paths are stuck.
4068  * The counters are declared above so they can be found easily in the debugger.
4069  *
4070  * The sync_timeleft counter is reset by bio_busy() and page_busy() using the
4071  * vfs_syncprogress() subroutine whenever we make progress through the lists of
4072  * pages and buffers.  It is decremented and expired by the deadman() cyclic.
4073  * When vfs_syncall() decides it is done, we disable the deadman() counter by
4074  * setting sync_timeleft to zero.  This timer guards against vfs_syncall()
4075  * deadlocking or hanging inside of a broken filesystem or driver routine.
4076  *
4077  * The sync_triesleft counter is updated by vfs_syncall() itself.  If we make
4078  * sync_retries consecutive calls to bio_busy() and page_busy() without
4079  * decreasing either the number of dirty buffers or dirty pages below the
4080  * lowest count we have seen so far, we give up and return from vfs_syncall().
4081  *
4082  * Each loop iteration ends with a call to delay() one second to allow time for
4083  * i/o completion and to permit the user time to read our progress messages.
4084  */
4085 void
4086 vfs_syncall(void)
4087 {
4088 	if (rootdir == NULL && !modrootloaded)
4089 		return; /* panic during boot - no filesystems yet */
4090 
4091 	printf("syncing file systems...");
4092 	vfs_syncprogress();
4093 	sync();
4094 
4095 	vfs_syncprogress();
4096 	sync_triesleft = sync_retries;
4097 
4098 	old_bufcnt = new_bufcnt = INT_MAX;
4099 	old_pgcnt = new_pgcnt = ULONG_MAX;
4100 
4101 	while (sync_triesleft > 0) {
4102 		old_bufcnt = MIN(old_bufcnt, new_bufcnt);
4103 		old_pgcnt = MIN(old_pgcnt, new_pgcnt);
4104 
4105 		new_bufcnt = bio_busy(B_TRUE);
4106 		new_pgcnt = page_busy(B_TRUE);
4107 		vfs_syncprogress();
4108 
4109 		if (new_bufcnt == 0 && new_pgcnt == 0)
4110 			break;
4111 
4112 		if (new_bufcnt < old_bufcnt || new_pgcnt < old_pgcnt)
4113 			sync_triesleft = sync_retries;
4114 		else
4115 			sync_triesleft--;
4116 
4117 		if (new_bufcnt)
4118 			printf(" [%d]", new_bufcnt);
4119 		if (new_pgcnt)
4120 			printf(" %lu", new_pgcnt);
4121 
4122 		delay(hz);
4123 	}
4124 
4125 	if (new_bufcnt != 0 || new_pgcnt != 0)
4126 		printf(" done (not all i/o completed)\n");
4127 	else
4128 		printf(" done\n");
4129 
4130 	sync_timeleft = 0;
4131 	delay(hz);
4132 }
4133 
4134 /*
4135  * If we are in the middle of the sync phase of panic, reset sync_timeleft to
4136  * sync_timeout to indicate that we are making progress and the deadman()
4137  * omnipresent cyclic should not yet time us out.  Note that it is safe to
4138  * store to sync_timeleft here since the deadman() is firing at high-level
4139  * on top of us.  If we are racing with the deadman(), either the deadman()
4140  * will decrement the old value and then we will reset it, or we will
4141  * reset it and then the deadman() will immediately decrement it.  In either
4142  * case, correct behavior results.
4143  */
4144 void
4145 vfs_syncprogress(void)
4146 {
4147 	if (panicstr)
4148 		sync_timeleft = sync_timeout;
4149 }
4150 
4151 /*
4152  * Map VFS flags to statvfs flags.  These shouldn't really be separate
4153  * flags at all.
4154  */
4155 uint_t
4156 vf_to_stf(uint_t vf)
4157 {
4158 	uint_t stf = 0;
4159 
4160 	if (vf & VFS_RDONLY)
4161 		stf |= ST_RDONLY;
4162 	if (vf & VFS_NOSETUID)
4163 		stf |= ST_NOSUID;
4164 	if (vf & VFS_NOTRUNC)
4165 		stf |= ST_NOTRUNC;
4166 
4167 	return (stf);
4168 }
4169 
4170 /*
4171  * Entries for (illegal) fstype 0.
4172  */
4173 /* ARGSUSED */
4174 int
4175 vfsstray_sync(struct vfs *vfsp, short arg, struct cred *cr)
4176 {
4177 	cmn_err(CE_PANIC, "stray vfs operation");
4178 	return (0);
4179 }
4180 
4181 /*
4182  * Entries for (illegal) fstype 0.
4183  */
4184 int
4185 vfsstray(void)
4186 {
4187 	cmn_err(CE_PANIC, "stray vfs operation");
4188 	return (0);
4189 }
4190 
4191 /*
4192  * Support for dealing with forced UFS unmount and its interaction with
4193  * LOFS. Could be used by any filesystem.
4194  * See bug 1203132.
4195  */
4196 int
4197 vfs_EIO(void)
4198 {
4199 	return (EIO);
4200 }
4201 
4202 /*
4203  * We've gotta define the op for sync separately, since the compiler gets
4204  * confused if we mix and match ANSI and normal style prototypes when
4205  * a "short" argument is present and spits out a warning.
4206  */
4207 /*ARGSUSED*/
4208 int
4209 vfs_EIO_sync(struct vfs *vfsp, short arg, struct cred *cr)
4210 {
4211 	return (EIO);
4212 }
4213 
4214 vfs_t EIO_vfs;
4215 vfsops_t *EIO_vfsops;
4216 
4217 /*
4218  * Called from startup() to initialize all loaded vfs's
4219  */
4220 void
4221 vfsinit(void)
4222 {
4223 	struct vfssw *vswp;
4224 	int error;
4225 	extern int vopstats_enabled;
4226 	extern void vopstats_startup();
4227 
4228 	static const fs_operation_def_t EIO_vfsops_template[] = {
4229 		VFSNAME_MOUNT,		{ .error = vfs_EIO },
4230 		VFSNAME_UNMOUNT,	{ .error = vfs_EIO },
4231 		VFSNAME_ROOT,		{ .error = vfs_EIO },
4232 		VFSNAME_STATVFS,	{ .error = vfs_EIO },
4233 		VFSNAME_SYNC, 		{ .vfs_sync = vfs_EIO_sync },
4234 		VFSNAME_VGET,		{ .error = vfs_EIO },
4235 		VFSNAME_MOUNTROOT,	{ .error = vfs_EIO },
4236 		VFSNAME_FREEVFS,	{ .error = vfs_EIO },
4237 		VFSNAME_VNSTATE,	{ .error = vfs_EIO },
4238 		NULL, NULL
4239 	};
4240 
4241 	static const fs_operation_def_t stray_vfsops_template[] = {
4242 		VFSNAME_MOUNT,		{ .error = vfsstray },
4243 		VFSNAME_UNMOUNT,	{ .error = vfsstray },
4244 		VFSNAME_ROOT,		{ .error = vfsstray },
4245 		VFSNAME_STATVFS,	{ .error = vfsstray },
4246 		VFSNAME_SYNC, 		{ .vfs_sync = vfsstray_sync },
4247 		VFSNAME_VGET,		{ .error = vfsstray },
4248 		VFSNAME_MOUNTROOT,	{ .error = vfsstray },
4249 		VFSNAME_FREEVFS,	{ .error = vfsstray },
4250 		VFSNAME_VNSTATE,	{ .error = vfsstray },
4251 		NULL, NULL
4252 	};
4253 
4254 	/* Create vfs cache */
4255 	vfs_cache = kmem_cache_create("vfs_cache", sizeof (struct vfs),
4256 	    sizeof (uintptr_t), NULL, NULL, NULL, NULL, NULL, 0);
4257 
4258 	/* Initialize the vnode cache (file systems may use it during init). */
4259 	vn_create_cache();
4260 
4261 	/* Setup event monitor framework */
4262 	fem_init();
4263 
4264 	/* Initialize the dummy stray file system type. */
4265 	error = vfs_setfsops(0, stray_vfsops_template, NULL);
4266 
4267 	/* Initialize the dummy EIO file system. */
4268 	error = vfs_makefsops(EIO_vfsops_template, &EIO_vfsops);
4269 	if (error != 0) {
4270 		cmn_err(CE_WARN, "vfsinit: bad EIO vfs ops template");
4271 		/* Shouldn't happen, but not bad enough to panic */
4272 	}
4273 
4274 	VFS_INIT(&EIO_vfs, EIO_vfsops, (caddr_t)NULL);
4275 
4276 	/*
4277 	 * Default EIO_vfs.vfs_flag to VFS_UNMOUNTED so a lookup
4278 	 * on this vfs can immediately notice it's invalid.
4279 	 */
4280 	EIO_vfs.vfs_flag |= VFS_UNMOUNTED;
4281 
4282 	/*
4283 	 * Call the init routines of non-loadable filesystems only.
4284 	 * Filesystems which are loaded as separate modules will be
4285 	 * initialized by the module loading code instead.
4286 	 */
4287 
4288 	for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) {
4289 		RLOCK_VFSSW();
4290 		if (vswp->vsw_init != NULL)
4291 			(*vswp->vsw_init)(vswp - vfssw, vswp->vsw_name);
4292 		RUNLOCK_VFSSW();
4293 	}
4294 
4295 	vopstats_startup();
4296 
4297 	if (vopstats_enabled) {
4298 		/* EIO_vfs can collect stats, but we don't retrieve them */
4299 		initialize_vopstats(&EIO_vfs.vfs_vopstats);
4300 		EIO_vfs.vfs_fstypevsp = NULL;
4301 		EIO_vfs.vfs_vskap = NULL;
4302 		EIO_vfs.vfs_flag |= VFS_STATS;
4303 	}
4304 
4305 	xattr_init();
4306 
4307 	reparse_point_init();
4308 }
4309 
4310 vfs_t *
4311 vfs_alloc(int kmflag)
4312 {
4313 	vfs_t *vfsp;
4314 
4315 	vfsp = kmem_cache_alloc(vfs_cache, kmflag);
4316 
4317 	/*
4318 	 * Do the simplest initialization here.
4319 	 * Everything else gets done in vfs_init()
4320 	 */
4321 	bzero(vfsp, sizeof (vfs_t));
4322 	return (vfsp);
4323 }
4324 
4325 void
4326 vfs_free(vfs_t *vfsp)
4327 {
4328 	/*
4329 	 * One would be tempted to assert that "vfsp->vfs_count == 0".
4330 	 * The problem is that this gets called out of domount() with
4331 	 * a partially initialized vfs and a vfs_count of 1.  This is
4332 	 * also called from vfs_rele() with a vfs_count of 0.  We can't
4333 	 * call VFS_RELE() from domount() if VFS_MOUNT() hasn't successfully
4334 	 * returned.  This is because VFS_MOUNT() fully initializes the
4335 	 * vfs structure and its associated data.  VFS_RELE() will call
4336 	 * VFS_FREEVFS() which may panic the system if the data structures
4337 	 * aren't fully initialized from a successful VFS_MOUNT()).
4338 	 */
4339 
4340 	/* If FEM was in use, make sure everything gets cleaned up */
4341 	if (vfsp->vfs_femhead) {
4342 		ASSERT(vfsp->vfs_femhead->femh_list == NULL);
4343 		mutex_destroy(&vfsp->vfs_femhead->femh_lock);
4344 		kmem_free(vfsp->vfs_femhead, sizeof (*(vfsp->vfs_femhead)));
4345 		vfsp->vfs_femhead = NULL;
4346 	}
4347 
4348 	if (vfsp->vfs_implp)
4349 		vfsimpl_teardown(vfsp);
4350 	sema_destroy(&vfsp->vfs_reflock);
4351 	kmem_cache_free(vfs_cache, vfsp);
4352 }
4353 
4354 /*
4355  * Increments the vfs reference count by one atomically.
4356  */
4357 void
4358 vfs_hold(vfs_t *vfsp)
4359 {
4360 	atomic_add_32(&vfsp->vfs_count, 1);
4361 	ASSERT(vfsp->vfs_count != 0);
4362 }
4363 
4364 /*
4365  * Decrements the vfs reference count by one atomically. When
4366  * vfs reference count becomes zero, it calls the file system
4367  * specific vfs_freevfs() to free up the resources.
4368  */
4369 void
4370 vfs_rele(vfs_t *vfsp)
4371 {
4372 	ASSERT(vfsp->vfs_count != 0);
4373 	if (atomic_add_32_nv(&vfsp->vfs_count, -1) == 0) {
4374 		VFS_FREEVFS(vfsp);
4375 		lofi_remove(vfsp);
4376 		if (vfsp->vfs_zone)
4377 			zone_rele(vfsp->vfs_zone);
4378 		vfs_freemnttab(vfsp);
4379 		vfs_free(vfsp);
4380 	}
4381 }
4382 
4383 /*
4384  * Generic operations vector support.
4385  *
4386  * This is used to build operations vectors for both the vfs and vnode.
4387  * It's normally called only when a file system is loaded.
4388  *
4389  * There are many possible algorithms for this, including the following:
4390  *
4391  *   (1) scan the list of known operations; for each, see if the file system
4392  *       includes an entry for it, and fill it in as appropriate.
4393  *
4394  *   (2) set up defaults for all known operations.  scan the list of ops
4395  *       supplied by the file system; for each which is both supplied and
4396  *       known, fill it in.
4397  *
4398  *   (3) sort the lists of known ops & supplied ops; scan the list, filling
4399  *       in entries as we go.
4400  *
4401  * we choose (1) for simplicity, and because performance isn't critical here.
4402  * note that (2) could be sped up using a precomputed hash table on known ops.
4403  * (3) could be faster than either, but only if the lists were very large or
4404  * supplied in sorted order.
4405  *
4406  */
4407 
4408 int
4409 fs_build_vector(void *vector, int *unused_ops,
4410     const fs_operation_trans_def_t *translation,
4411     const fs_operation_def_t *operations)
4412 {
4413 	int i, num_trans, num_ops, used;
4414 
4415 	/*
4416 	 * Count the number of translations and the number of supplied
4417 	 * operations.
4418 	 */
4419 
4420 	{
4421 		const fs_operation_trans_def_t *p;
4422 
4423 		for (num_trans = 0, p = translation;
4424 		    p->name != NULL;
4425 		    num_trans++, p++)
4426 			;
4427 	}
4428 
4429 	{
4430 		const fs_operation_def_t *p;
4431 
4432 		for (num_ops = 0, p = operations;
4433 		    p->name != NULL;
4434 		    num_ops++, p++)
4435 			;
4436 	}
4437 
4438 	/* Walk through each operation known to our caller.  There will be */
4439 	/* one entry in the supplied "translation table" for each. */
4440 
4441 	used = 0;
4442 
4443 	for (i = 0; i < num_trans; i++) {
4444 		int j, found;
4445 		char *curname;
4446 		fs_generic_func_p result;
4447 		fs_generic_func_p *location;
4448 
4449 		curname = translation[i].name;
4450 
4451 		/* Look for a matching operation in the list supplied by the */
4452 		/* file system. */
4453 
4454 		found = 0;
4455 
4456 		for (j = 0; j < num_ops; j++) {
4457 			if (strcmp(operations[j].name, curname) == 0) {
4458 				used++;
4459 				found = 1;
4460 				break;
4461 			}
4462 		}
4463 
4464 		/*
4465 		 * If the file system is using a "placeholder" for default
4466 		 * or error functions, grab the appropriate function out of
4467 		 * the translation table.  If the file system didn't supply
4468 		 * this operation at all, use the default function.
4469 		 */
4470 
4471 		if (found) {
4472 			result = operations[j].func.fs_generic;
4473 			if (result == fs_default) {
4474 				result = translation[i].defaultFunc;
4475 			} else if (result == fs_error) {
4476 				result = translation[i].errorFunc;
4477 			} else if (result == NULL) {
4478 				/* Null values are PROHIBITED */
4479 				return (EINVAL);
4480 			}
4481 		} else {
4482 			result = translation[i].defaultFunc;
4483 		}
4484 
4485 		/* Now store the function into the operations vector. */
4486 
4487 		location = (fs_generic_func_p *)
4488 		    (((char *)vector) + translation[i].offset);
4489 
4490 		*location = result;
4491 	}
4492 
4493 	*unused_ops = num_ops - used;
4494 
4495 	return (0);
4496 }
4497 
4498 /* Placeholder functions, should never be called. */
4499 
4500 int
4501 fs_error(void)
4502 {
4503 	cmn_err(CE_PANIC, "fs_error called");
4504 	return (0);
4505 }
4506 
4507 int
4508 fs_default(void)
4509 {
4510 	cmn_err(CE_PANIC, "fs_default called");
4511 	return (0);
4512 }
4513 
4514 #ifdef __sparc
4515 
4516 /*
4517  * Part of the implementation of booting off a mirrored root
4518  * involves a change of dev_t for the root device.  To
4519  * accomplish this, first remove the existing hash table
4520  * entry for the root device, convert to the new dev_t,
4521  * then re-insert in the hash table at the head of the list.
4522  */
4523 void
4524 vfs_root_redev(vfs_t *vfsp, dev_t ndev, int fstype)
4525 {
4526 	vfs_list_lock();
4527 
4528 	vfs_hash_remove(vfsp);
4529 
4530 	vfsp->vfs_dev = ndev;
4531 	vfs_make_fsid(&vfsp->vfs_fsid, ndev, fstype);
4532 
4533 	vfs_hash_add(vfsp, 1);
4534 
4535 	vfs_list_unlock();
4536 }
4537 
4538 #else /* x86 NEWBOOT */
4539 
4540 #if defined(__x86)
4541 extern int hvmboot_rootconf();
4542 #endif /* __x86 */
4543 
4544 extern ib_boot_prop_t *iscsiboot_prop;
4545 
4546 int
4547 rootconf()
4548 {
4549 	int error;
4550 	struct vfssw *vsw;
4551 	extern void pm_init();
4552 	char *fstyp, *fsmod;
4553 	int ret = -1;
4554 
4555 	getrootfs(&fstyp, &fsmod);
4556 
4557 #if defined(__x86)
4558 	/*
4559 	 * hvmboot_rootconf() is defined in the hvm_bootstrap misc module,
4560 	 * which lives in /platform/i86hvm, and hence is only available when
4561 	 * booted in an x86 hvm environment.  If the hvm_bootstrap misc module
4562 	 * is not available then the modstub for this function will return 0.
4563 	 * If the hvm_bootstrap misc module is available it will be loaded
4564 	 * and hvmboot_rootconf() will be invoked.
4565 	 */
4566 	if (error = hvmboot_rootconf())
4567 		return (error);
4568 #endif /* __x86 */
4569 
4570 	if (error = clboot_rootconf())
4571 		return (error);
4572 
4573 	if (modload("fs", fsmod) == -1)
4574 		panic("Cannot _init %s module", fsmod);
4575 
4576 	RLOCK_VFSSW();
4577 	vsw = vfs_getvfsswbyname(fstyp);
4578 	RUNLOCK_VFSSW();
4579 	if (vsw == NULL) {
4580 		cmn_err(CE_CONT, "Cannot find %s filesystem\n", fstyp);
4581 		return (ENXIO);
4582 	}
4583 	VFS_INIT(rootvfs, &vsw->vsw_vfsops, 0);
4584 	VFS_HOLD(rootvfs);
4585 
4586 	/* always mount readonly first */
4587 	rootvfs->vfs_flag |= VFS_RDONLY;
4588 
4589 	pm_init();
4590 
4591 	if (netboot && iscsiboot_prop) {
4592 		cmn_err(CE_WARN, "NFS boot and iSCSI boot"
4593 		    " shouldn't happen in the same time");
4594 		return (EINVAL);
4595 	}
4596 
4597 	if (netboot || iscsiboot_prop) {
4598 		ret = strplumb();
4599 		if (ret != 0) {
4600 			cmn_err(CE_WARN, "Cannot plumb network device %d", ret);
4601 			return (EFAULT);
4602 		}
4603 	}
4604 
4605 	if ((ret == 0) && iscsiboot_prop) {
4606 		ret = modload("drv", "iscsi");
4607 		/* -1 indicates fail */
4608 		if (ret == -1) {
4609 			cmn_err(CE_WARN, "Failed to load iscsi module");
4610 			iscsi_boot_prop_free();
4611 			return (EINVAL);
4612 		} else {
4613 			if (!i_ddi_attach_pseudo_node("iscsi")) {
4614 				cmn_err(CE_WARN,
4615 				    "Failed to attach iscsi driver");
4616 				iscsi_boot_prop_free();
4617 				return (ENODEV);
4618 			}
4619 		}
4620 	}
4621 
4622 	error = VFS_MOUNTROOT(rootvfs, ROOT_INIT);
4623 	vfs_unrefvfssw(vsw);
4624 	rootdev = rootvfs->vfs_dev;
4625 
4626 	if (error)
4627 		cmn_err(CE_CONT, "Cannot mount root on %s fstype %s\n",
4628 		    rootfs.bo_name, fstyp);
4629 	else
4630 		cmn_err(CE_CONT, "?root on %s fstype %s\n",
4631 		    rootfs.bo_name, fstyp);
4632 	return (error);
4633 }
4634 
4635 /*
4636  * XXX this is called by nfs only and should probably be removed
4637  * If booted with ASKNAME, prompt on the console for a filesystem
4638  * name and return it.
4639  */
4640 void
4641 getfsname(char *askfor, char *name, size_t namelen)
4642 {
4643 	if (boothowto & RB_ASKNAME) {
4644 		printf("%s name: ", askfor);
4645 		console_gets(name, namelen);
4646 	}
4647 }
4648 
4649 /*
4650  * Init the root filesystem type (rootfs.bo_fstype) from the "fstype"
4651  * property.
4652  *
4653  * Filesystem types starting with the prefix "nfs" are diskless clients;
4654  * init the root filename name (rootfs.bo_name), too.
4655  *
4656  * If we are booting via NFS we currently have these options:
4657  *	nfs -	dynamically choose NFS V2, V3, or V4 (default)
4658  *	nfs2 -	force NFS V2
4659  *	nfs3 -	force NFS V3
4660  *	nfs4 -	force NFS V4
4661  * Because we need to maintain backward compatibility with the naming
4662  * convention that the NFS V2 filesystem name is "nfs" (see vfs_conf.c)
4663  * we need to map "nfs" => "nfsdyn" and "nfs2" => "nfs".  The dynamic
4664  * nfs module will map the type back to either "nfs", "nfs3", or "nfs4".
4665  * This is only for root filesystems, all other uses such as cachefs
4666  * will expect that "nfs" == NFS V2.
4667  */
4668 static void
4669 getrootfs(char **fstypp, char **fsmodp)
4670 {
4671 	extern char *strplumb_get_netdev_path(void);
4672 	char *propstr = NULL;
4673 
4674 	/*
4675 	 * Check fstype property; for diskless it should be one of "nfs",
4676 	 * "nfs2", "nfs3" or "nfs4".
4677 	 */
4678 	if (ddi_prop_lookup_string(DDI_DEV_T_ANY, ddi_root_node(),
4679 	    DDI_PROP_DONTPASS, "fstype", &propstr)
4680 	    == DDI_SUCCESS) {
4681 		(void) strncpy(rootfs.bo_fstype, propstr, BO_MAXFSNAME);
4682 		ddi_prop_free(propstr);
4683 
4684 	/*
4685 	 * if the boot property 'fstype' is not set, but 'zfs-bootfs' is set,
4686 	 * assume the type of this root filesystem is 'zfs'.
4687 	 */
4688 	} else if (ddi_prop_lookup_string(DDI_DEV_T_ANY, ddi_root_node(),
4689 	    DDI_PROP_DONTPASS, "zfs-bootfs", &propstr)
4690 	    == DDI_SUCCESS) {
4691 		(void) strncpy(rootfs.bo_fstype, "zfs", BO_MAXFSNAME);
4692 		ddi_prop_free(propstr);
4693 	}
4694 
4695 	if (strncmp(rootfs.bo_fstype, "nfs", 3) != 0) {
4696 		*fstypp = *fsmodp = rootfs.bo_fstype;
4697 		return;
4698 	}
4699 
4700 	++netboot;
4701 
4702 	if (strcmp(rootfs.bo_fstype, "nfs2") == 0)
4703 		(void) strcpy(rootfs.bo_fstype, "nfs");
4704 	else if (strcmp(rootfs.bo_fstype, "nfs") == 0)
4705 		(void) strcpy(rootfs.bo_fstype, "nfsdyn");
4706 
4707 	/*
4708 	 * check if path to network interface is specified in bootpath
4709 	 * or by a hypervisor domain configuration file.
4710 	 * XXPV - enable strlumb_get_netdev_path()
4711 	 */
4712 	if (ddi_prop_exists(DDI_DEV_T_ANY, ddi_root_node(), DDI_PROP_DONTPASS,
4713 	    "xpv-nfsroot")) {
4714 		(void) strcpy(rootfs.bo_name, "/xpvd/xnf@0");
4715 	} else if (ddi_prop_lookup_string(DDI_DEV_T_ANY, ddi_root_node(),
4716 	    DDI_PROP_DONTPASS, "bootpath", &propstr)
4717 	    == DDI_SUCCESS) {
4718 		(void) strncpy(rootfs.bo_name, propstr, BO_MAXOBJNAME);
4719 		ddi_prop_free(propstr);
4720 	} else {
4721 		/* attempt to determine netdev_path via boot_mac address */
4722 		netdev_path = strplumb_get_netdev_path();
4723 		if (netdev_path == NULL)
4724 			panic("cannot find boot network interface");
4725 		(void) strncpy(rootfs.bo_name, netdev_path, BO_MAXOBJNAME);
4726 	}
4727 	*fstypp = rootfs.bo_fstype;
4728 	*fsmodp = "nfs";
4729 }
4730 #endif
4731 
4732 /*
4733  * VFS feature routines
4734  */
4735 
4736 #define	VFTINDEX(feature)	(((feature) >> 32) & 0xFFFFFFFF)
4737 #define	VFTBITS(feature)	((feature) & 0xFFFFFFFFLL)
4738 
4739 /* Register a feature in the vfs */
4740 void
4741 vfs_set_feature(vfs_t *vfsp, vfs_feature_t feature)
4742 {
4743 	/* Note that vfs_featureset[] is found in *vfsp->vfs_implp */
4744 	if (vfsp->vfs_implp == NULL)
4745 		return;
4746 
4747 	vfsp->vfs_featureset[VFTINDEX(feature)] |= VFTBITS(feature);
4748 }
4749 
4750 /*
4751  * Query a vfs for a feature.
4752  * Returns 1 if feature is present, 0 if not
4753  */
4754 int
4755 vfs_has_feature(vfs_t *vfsp, vfs_feature_t feature)
4756 {
4757 	int	ret = 0;
4758 
4759 	/* Note that vfs_featureset[] is found in *vfsp->vfs_implp */
4760 	if (vfsp->vfs_implp == NULL)
4761 		return (ret);
4762 
4763 	if (vfsp->vfs_featureset[VFTINDEX(feature)] & VFTBITS(feature))
4764 		ret = 1;
4765 
4766 	return (ret);
4767 }
4768 
4769 /*
4770  * Propagate feature set from one vfs to another
4771  */
4772 void
4773 vfs_propagate_features(vfs_t *from, vfs_t *to)
4774 {
4775 	int i;
4776 
4777 	if (to->vfs_implp == NULL || from->vfs_implp == NULL)
4778 		return;
4779 
4780 	for (i = 1; i <= to->vfs_featureset[0]; i++) {
4781 		to->vfs_featureset[i] = from->vfs_featureset[i];
4782 	}
4783 }
4784 
4785 #define	LOFICTL_PATH "/devices/pseudo/lofi@0:%d"
4786 
4787 /*
4788  * Return the vnode for the lofi node if there's a lofi mount in place.
4789  * Returns -1 when there's no lofi node, 0 on success, and > 0 on
4790  * failure.
4791  */
4792 int
4793 vfs_get_lofi(vfs_t *vfsp, vnode_t **vpp)
4794 {
4795 	char *path = NULL;
4796 	int strsize;
4797 	int err;
4798 
4799 	if (vfsp->vfs_lofi_minor == 0) {
4800 		*vpp = NULL;
4801 		return (-1);
4802 	}
4803 
4804 	strsize = snprintf(NULL, 0, LOFICTL_PATH, vfsp->vfs_lofi_minor);
4805 	path = kmem_alloc(strsize + 1, KM_SLEEP);
4806 	(void) snprintf(path, strsize + 1, LOFICTL_PATH, vfsp->vfs_lofi_minor);
4807 
4808 	err = lookupname(path, UIO_SYSSPACE, FOLLOW, NULLVPP, vpp);
4809 
4810 	if (err)
4811 		*vpp = NULL;
4812 
4813 	kmem_free(path, strsize + 1);
4814 	return (err);
4815 }
4816