1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 /* Copyright (c) 1983, 1984, 1985, 1986, 1987, 1988, 1989 AT&T */ 28 /* All Rights Reserved */ 29 30 /* 31 * Portions of this source code were derived from Berkeley 4.3 BSD 32 * under license from the Regents of the University of California. 33 */ 34 35 #include <sys/types.h> 36 #include <sys/t_lock.h> 37 #include <sys/ksynch.h> 38 #include <sys/param.h> 39 #include <sys/time.h> 40 #include <sys/systm.h> 41 #include <sys/sysmacros.h> 42 #include <sys/resource.h> 43 #include <sys/signal.h> 44 #include <sys/cred.h> 45 #include <sys/user.h> 46 #include <sys/buf.h> 47 #include <sys/vfs.h> 48 #include <sys/vfs_opreg.h> 49 #include <sys/vnode.h> 50 #include <sys/proc.h> 51 #include <sys/disp.h> 52 #include <sys/file.h> 53 #include <sys/fcntl.h> 54 #include <sys/flock.h> 55 #include <sys/atomic.h> 56 #include <sys/kmem.h> 57 #include <sys/uio.h> 58 #include <sys/dnlc.h> 59 #include <sys/conf.h> 60 #include <sys/mman.h> 61 #include <sys/pathname.h> 62 #include <sys/debug.h> 63 #include <sys/vmsystm.h> 64 #include <sys/cmn_err.h> 65 #include <sys/filio.h> 66 #include <sys/policy.h> 67 68 #include <sys/fs/ufs_fs.h> 69 #include <sys/fs/ufs_lockfs.h> 70 #include <sys/fs/ufs_filio.h> 71 #include <sys/fs/ufs_inode.h> 72 #include <sys/fs/ufs_fsdir.h> 73 #include <sys/fs/ufs_quota.h> 74 #include <sys/fs/ufs_log.h> 75 #include <sys/fs/ufs_snap.h> 76 #include <sys/fs/ufs_trans.h> 77 #include <sys/fs/ufs_panic.h> 78 #include <sys/fs/ufs_bio.h> 79 #include <sys/dirent.h> /* must be AFTER <sys/fs/fsdir.h>! */ 80 #include <sys/errno.h> 81 #include <sys/fssnap_if.h> 82 #include <sys/unistd.h> 83 #include <sys/sunddi.h> 84 85 #include <sys/filio.h> /* _FIOIO */ 86 87 #include <vm/hat.h> 88 #include <vm/page.h> 89 #include <vm/pvn.h> 90 #include <vm/as.h> 91 #include <vm/seg.h> 92 #include <vm/seg_map.h> 93 #include <vm/seg_vn.h> 94 #include <vm/seg_kmem.h> 95 #include <vm/rm.h> 96 #include <sys/swap.h> 97 98 #include <fs/fs_subr.h> 99 100 #include <sys/fs/decomp.h> 101 102 static struct instats ins; 103 104 static int ufs_getpage_ra(struct vnode *, u_offset_t, struct seg *, caddr_t); 105 static int ufs_getpage_miss(struct vnode *, u_offset_t, size_t, struct seg *, 106 caddr_t, struct page **, size_t, enum seg_rw, int); 107 static int ufs_open(struct vnode **, int, struct cred *, caller_context_t *); 108 static int ufs_close(struct vnode *, int, int, offset_t, struct cred *, 109 caller_context_t *); 110 static int ufs_read(struct vnode *, struct uio *, int, struct cred *, 111 struct caller_context *); 112 static int ufs_write(struct vnode *, struct uio *, int, struct cred *, 113 struct caller_context *); 114 static int ufs_ioctl(struct vnode *, int, intptr_t, int, struct cred *, 115 int *, caller_context_t *); 116 static int ufs_getattr(struct vnode *, struct vattr *, int, struct cred *, 117 caller_context_t *); 118 static int ufs_setattr(struct vnode *, struct vattr *, int, struct cred *, 119 caller_context_t *); 120 static int ufs_access(struct vnode *, int, int, struct cred *, 121 caller_context_t *); 122 static int ufs_lookup(struct vnode *, char *, struct vnode **, 123 struct pathname *, int, struct vnode *, struct cred *, 124 caller_context_t *, int *, pathname_t *); 125 static int ufs_create(struct vnode *, char *, struct vattr *, enum vcexcl, 126 int, struct vnode **, struct cred *, int, 127 caller_context_t *, vsecattr_t *); 128 static int ufs_remove(struct vnode *, char *, struct cred *, 129 caller_context_t *, int); 130 static int ufs_link(struct vnode *, struct vnode *, char *, struct cred *, 131 caller_context_t *, int); 132 static int ufs_rename(struct vnode *, char *, struct vnode *, char *, 133 struct cred *, caller_context_t *, int); 134 static int ufs_mkdir(struct vnode *, char *, struct vattr *, struct vnode **, 135 struct cred *, caller_context_t *, int, vsecattr_t *); 136 static int ufs_rmdir(struct vnode *, char *, struct vnode *, struct cred *, 137 caller_context_t *, int); 138 static int ufs_readdir(struct vnode *, struct uio *, struct cred *, int *, 139 caller_context_t *, int); 140 static int ufs_symlink(struct vnode *, char *, struct vattr *, char *, 141 struct cred *, caller_context_t *, int); 142 static int ufs_readlink(struct vnode *, struct uio *, struct cred *, 143 caller_context_t *); 144 static int ufs_fsync(struct vnode *, int, struct cred *, caller_context_t *); 145 static void ufs_inactive(struct vnode *, struct cred *, caller_context_t *); 146 static int ufs_fid(struct vnode *, struct fid *, caller_context_t *); 147 static int ufs_rwlock(struct vnode *, int, caller_context_t *); 148 static void ufs_rwunlock(struct vnode *, int, caller_context_t *); 149 static int ufs_seek(struct vnode *, offset_t, offset_t *, caller_context_t *); 150 static int ufs_frlock(struct vnode *, int, struct flock64 *, int, offset_t, 151 struct flk_callback *, struct cred *, 152 caller_context_t *); 153 static int ufs_space(struct vnode *, int, struct flock64 *, int, offset_t, 154 cred_t *, caller_context_t *); 155 static int ufs_getpage(struct vnode *, offset_t, size_t, uint_t *, 156 struct page **, size_t, struct seg *, caddr_t, 157 enum seg_rw, struct cred *, caller_context_t *); 158 static int ufs_putpage(struct vnode *, offset_t, size_t, int, struct cred *, 159 caller_context_t *); 160 static int ufs_putpages(struct vnode *, offset_t, size_t, int, struct cred *); 161 static int ufs_map(struct vnode *, offset_t, struct as *, caddr_t *, size_t, 162 uchar_t, uchar_t, uint_t, struct cred *, caller_context_t *); 163 static int ufs_addmap(struct vnode *, offset_t, struct as *, caddr_t, size_t, 164 uchar_t, uchar_t, uint_t, struct cred *, caller_context_t *); 165 static int ufs_delmap(struct vnode *, offset_t, struct as *, caddr_t, size_t, 166 uint_t, uint_t, uint_t, struct cred *, caller_context_t *); 167 static int ufs_poll(vnode_t *, short, int, short *, struct pollhead **, 168 caller_context_t *); 169 static int ufs_dump(vnode_t *, caddr_t, offset_t, offset_t, 170 caller_context_t *); 171 static int ufs_l_pathconf(struct vnode *, int, ulong_t *, struct cred *, 172 caller_context_t *); 173 static int ufs_pageio(struct vnode *, struct page *, u_offset_t, size_t, int, 174 struct cred *, caller_context_t *); 175 static int ufs_dumpctl(vnode_t *, int, offset_t *, caller_context_t *); 176 static daddr32_t *save_dblks(struct inode *, struct ufsvfs *, daddr32_t *, 177 daddr32_t *, int, int); 178 static int ufs_getsecattr(struct vnode *, vsecattr_t *, int, struct cred *, 179 caller_context_t *); 180 static int ufs_setsecattr(struct vnode *, vsecattr_t *, int, struct cred *, 181 caller_context_t *); 182 static int ufs_priv_access(void *, int, struct cred *); 183 extern int as_map_locked(struct as *, caddr_t, size_t, int ((*)()), void *); 184 185 /* 186 * For lockfs: ulockfs begin/end is now inlined in the ufs_xxx functions. 187 * 188 * XXX - ULOCKFS in fs_pathconf and ufs_ioctl is not inlined yet. 189 */ 190 struct vnodeops *ufs_vnodeops; 191 192 /* NOTE: "not blkd" below means that the operation isn't blocked by lockfs */ 193 const fs_operation_def_t ufs_vnodeops_template[] = { 194 VOPNAME_OPEN, { .vop_open = ufs_open }, /* not blkd */ 195 VOPNAME_CLOSE, { .vop_close = ufs_close }, /* not blkd */ 196 VOPNAME_READ, { .vop_read = ufs_read }, 197 VOPNAME_WRITE, { .vop_write = ufs_write }, 198 VOPNAME_IOCTL, { .vop_ioctl = ufs_ioctl }, 199 VOPNAME_GETATTR, { .vop_getattr = ufs_getattr }, 200 VOPNAME_SETATTR, { .vop_setattr = ufs_setattr }, 201 VOPNAME_ACCESS, { .vop_access = ufs_access }, 202 VOPNAME_LOOKUP, { .vop_lookup = ufs_lookup }, 203 VOPNAME_CREATE, { .vop_create = ufs_create }, 204 VOPNAME_REMOVE, { .vop_remove = ufs_remove }, 205 VOPNAME_LINK, { .vop_link = ufs_link }, 206 VOPNAME_RENAME, { .vop_rename = ufs_rename }, 207 VOPNAME_MKDIR, { .vop_mkdir = ufs_mkdir }, 208 VOPNAME_RMDIR, { .vop_rmdir = ufs_rmdir }, 209 VOPNAME_READDIR, { .vop_readdir = ufs_readdir }, 210 VOPNAME_SYMLINK, { .vop_symlink = ufs_symlink }, 211 VOPNAME_READLINK, { .vop_readlink = ufs_readlink }, 212 VOPNAME_FSYNC, { .vop_fsync = ufs_fsync }, 213 VOPNAME_INACTIVE, { .vop_inactive = ufs_inactive }, /* not blkd */ 214 VOPNAME_FID, { .vop_fid = ufs_fid }, 215 VOPNAME_RWLOCK, { .vop_rwlock = ufs_rwlock }, /* not blkd */ 216 VOPNAME_RWUNLOCK, { .vop_rwunlock = ufs_rwunlock }, /* not blkd */ 217 VOPNAME_SEEK, { .vop_seek = ufs_seek }, 218 VOPNAME_FRLOCK, { .vop_frlock = ufs_frlock }, 219 VOPNAME_SPACE, { .vop_space = ufs_space }, 220 VOPNAME_GETPAGE, { .vop_getpage = ufs_getpage }, 221 VOPNAME_PUTPAGE, { .vop_putpage = ufs_putpage }, 222 VOPNAME_MAP, { .vop_map = ufs_map }, 223 VOPNAME_ADDMAP, { .vop_addmap = ufs_addmap }, /* not blkd */ 224 VOPNAME_DELMAP, { .vop_delmap = ufs_delmap }, /* not blkd */ 225 VOPNAME_POLL, { .vop_poll = ufs_poll }, /* not blkd */ 226 VOPNAME_DUMP, { .vop_dump = ufs_dump }, 227 VOPNAME_PATHCONF, { .vop_pathconf = ufs_l_pathconf }, 228 VOPNAME_PAGEIO, { .vop_pageio = ufs_pageio }, 229 VOPNAME_DUMPCTL, { .vop_dumpctl = ufs_dumpctl }, 230 VOPNAME_GETSECATTR, { .vop_getsecattr = ufs_getsecattr }, 231 VOPNAME_SETSECATTR, { .vop_setsecattr = ufs_setsecattr }, 232 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 233 NULL, NULL 234 }; 235 236 #define MAX_BACKFILE_COUNT 9999 237 238 /* 239 * Created by ufs_dumpctl() to store a file's disk block info into memory. 240 * Used by ufs_dump() to dump data to disk directly. 241 */ 242 struct dump { 243 struct inode *ip; /* the file we contain */ 244 daddr_t fsbs; /* number of blocks stored */ 245 struct timeval32 time; /* time stamp for the struct */ 246 daddr32_t dblk[1]; /* place holder for block info */ 247 }; 248 249 static struct dump *dump_info = NULL; 250 251 /* 252 * Previously there was no special action required for ordinary files. 253 * (Devices are handled through the device file system.) 254 * Now we support Large Files and Large File API requires open to 255 * fail if file is large. 256 * We could take care to prevent data corruption 257 * by doing an atomic check of size and truncate if file is opened with 258 * FTRUNC flag set but traditionally this is being done by the vfs/vnode 259 * layers. So taking care of truncation here is a change in the existing 260 * semantics of VOP_OPEN and therefore we chose not to implement any thing 261 * here. The check for the size of the file > 2GB is being done at the 262 * vfs layer in routine vn_open(). 263 */ 264 265 /* ARGSUSED */ 266 static int 267 ufs_open(struct vnode **vpp, int flag, struct cred *cr, caller_context_t *ct) 268 { 269 return (0); 270 } 271 272 /*ARGSUSED*/ 273 static int 274 ufs_close(struct vnode *vp, int flag, int count, offset_t offset, 275 struct cred *cr, caller_context_t *ct) 276 { 277 cleanlocks(vp, ttoproc(curthread)->p_pid, 0); 278 cleanshares(vp, ttoproc(curthread)->p_pid); 279 280 /* 281 * Push partially filled cluster at last close. 282 * ``last close'' is approximated because the dnlc 283 * may have a hold on the vnode. 284 * Checking for VBAD here will also act as a forced umount check. 285 */ 286 if (vp->v_count <= 2 && vp->v_type != VBAD) { 287 struct inode *ip = VTOI(vp); 288 if (ip->i_delaylen) { 289 ins.in_poc.value.ul++; 290 (void) ufs_putpages(vp, ip->i_delayoff, ip->i_delaylen, 291 B_ASYNC | B_FREE, cr); 292 ip->i_delaylen = 0; 293 } 294 } 295 296 return (0); 297 } 298 299 /*ARGSUSED*/ 300 static int 301 ufs_read(struct vnode *vp, struct uio *uiop, int ioflag, struct cred *cr, 302 struct caller_context *ct) 303 { 304 struct inode *ip = VTOI(vp); 305 struct ufsvfs *ufsvfsp; 306 struct ulockfs *ulp = NULL; 307 int error = 0; 308 int intrans = 0; 309 310 ASSERT(RW_READ_HELD(&ip->i_rwlock)); 311 312 /* 313 * Mandatory locking needs to be done before ufs_lockfs_begin() 314 * and TRANS_BEGIN_SYNC() calls since mandatory locks can sleep. 315 */ 316 if (MANDLOCK(vp, ip->i_mode)) { 317 /* 318 * ufs_getattr ends up being called by chklock 319 */ 320 error = chklock(vp, FREAD, uiop->uio_loffset, 321 uiop->uio_resid, uiop->uio_fmode, ct); 322 if (error) 323 goto out; 324 } 325 326 ufsvfsp = ip->i_ufsvfs; 327 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_READ_MASK); 328 if (error) 329 goto out; 330 331 /* 332 * In the case that a directory is opened for reading as a file 333 * (eg "cat .") with the O_RSYNC, O_SYNC and O_DSYNC flags set. 334 * The locking order had to be changed to avoid a deadlock with 335 * an update taking place on that directory at the same time. 336 */ 337 if ((ip->i_mode & IFMT) == IFDIR) { 338 339 rw_enter(&ip->i_contents, RW_READER); 340 error = rdip(ip, uiop, ioflag, cr); 341 rw_exit(&ip->i_contents); 342 343 if (error) { 344 if (ulp) 345 ufs_lockfs_end(ulp); 346 goto out; 347 } 348 349 if (ulp && (ioflag & FRSYNC) && (ioflag & (FSYNC | FDSYNC)) && 350 TRANS_ISTRANS(ufsvfsp)) { 351 rw_exit(&ip->i_rwlock); 352 TRANS_BEGIN_SYNC(ufsvfsp, TOP_READ_SYNC, TOP_READ_SIZE, 353 error); 354 ASSERT(!error); 355 TRANS_END_SYNC(ufsvfsp, error, TOP_READ_SYNC, 356 TOP_READ_SIZE); 357 rw_enter(&ip->i_rwlock, RW_READER); 358 } 359 } else { 360 /* 361 * Only transact reads to files opened for sync-read and 362 * sync-write on a file system that is not write locked. 363 * 364 * The ``not write locked'' check prevents problems with 365 * enabling/disabling logging on a busy file system. E.g., 366 * logging exists at the beginning of the read but does not 367 * at the end. 368 * 369 */ 370 if (ulp && (ioflag & FRSYNC) && (ioflag & (FSYNC | FDSYNC)) && 371 TRANS_ISTRANS(ufsvfsp)) { 372 TRANS_BEGIN_SYNC(ufsvfsp, TOP_READ_SYNC, TOP_READ_SIZE, 373 error); 374 ASSERT(!error); 375 intrans = 1; 376 } 377 378 rw_enter(&ip->i_contents, RW_READER); 379 error = rdip(ip, uiop, ioflag, cr); 380 rw_exit(&ip->i_contents); 381 382 if (intrans) { 383 TRANS_END_SYNC(ufsvfsp, error, TOP_READ_SYNC, 384 TOP_READ_SIZE); 385 } 386 } 387 388 if (ulp) { 389 ufs_lockfs_end(ulp); 390 } 391 out: 392 393 return (error); 394 } 395 396 extern int ufs_HW; /* high water mark */ 397 extern int ufs_LW; /* low water mark */ 398 int ufs_WRITES = 1; /* XXX - enable/disable */ 399 int ufs_throttles = 0; /* throttling count */ 400 int ufs_allow_shared_writes = 1; /* directio shared writes */ 401 402 static int 403 ufs_check_rewrite(struct inode *ip, struct uio *uiop, int ioflag) 404 { 405 int shared_write; 406 407 /* 408 * If the FDSYNC flag is set then ignore the global 409 * ufs_allow_shared_writes in this case. 410 */ 411 shared_write = (ioflag & FDSYNC) | ufs_allow_shared_writes; 412 413 /* 414 * Filter to determine if this request is suitable as a 415 * concurrent rewrite. This write must not allocate blocks 416 * by extending the file or filling in holes. No use trying 417 * through FSYNC descriptors as the inode will be synchronously 418 * updated after the write. The uio structure has not yet been 419 * checked for sanity, so assume nothing. 420 */ 421 return (((ip->i_mode & IFMT) == IFREG) && !(ioflag & FAPPEND) && 422 (uiop->uio_loffset >= (offset_t)0) && 423 (uiop->uio_loffset < ip->i_size) && (uiop->uio_resid > 0) && 424 ((ip->i_size - uiop->uio_loffset) >= uiop->uio_resid) && 425 !(ioflag & FSYNC) && !bmap_has_holes(ip) && 426 shared_write); 427 } 428 429 /*ARGSUSED*/ 430 static int 431 ufs_write(struct vnode *vp, struct uio *uiop, int ioflag, cred_t *cr, 432 caller_context_t *ct) 433 { 434 struct inode *ip = VTOI(vp); 435 struct ufsvfs *ufsvfsp; 436 struct ulockfs *ulp; 437 int retry = 1; 438 int error, resv, resid = 0; 439 int directio_status; 440 int exclusive; 441 int rewriteflg; 442 long start_resid = uiop->uio_resid; 443 444 ASSERT(RW_LOCK_HELD(&ip->i_rwlock)); 445 446 retry_mandlock: 447 /* 448 * Mandatory locking needs to be done before ufs_lockfs_begin() 449 * and TRANS_BEGIN_[A]SYNC() calls since mandatory locks can sleep. 450 * Check for forced unmounts normally done in ufs_lockfs_begin(). 451 */ 452 if ((ufsvfsp = ip->i_ufsvfs) == NULL) { 453 error = EIO; 454 goto out; 455 } 456 if (MANDLOCK(vp, ip->i_mode)) { 457 458 ASSERT(RW_WRITE_HELD(&ip->i_rwlock)); 459 460 /* 461 * ufs_getattr ends up being called by chklock 462 */ 463 error = chklock(vp, FWRITE, uiop->uio_loffset, 464 uiop->uio_resid, uiop->uio_fmode, ct); 465 if (error) 466 goto out; 467 } 468 469 /* i_rwlock can change in chklock */ 470 exclusive = rw_write_held(&ip->i_rwlock); 471 rewriteflg = ufs_check_rewrite(ip, uiop, ioflag); 472 473 /* 474 * Check for fast-path special case of directio re-writes. 475 */ 476 if ((ip->i_flag & IDIRECTIO || ufsvfsp->vfs_forcedirectio) && 477 !exclusive && rewriteflg) { 478 479 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_WRITE_MASK); 480 if (error) 481 goto out; 482 483 rw_enter(&ip->i_contents, RW_READER); 484 error = ufs_directio_write(ip, uiop, ioflag, 1, cr, 485 &directio_status); 486 if (directio_status == DIRECTIO_SUCCESS) { 487 uint_t i_flag_save; 488 489 if (start_resid != uiop->uio_resid) 490 error = 0; 491 /* 492 * Special treatment of access times for re-writes. 493 * If IMOD is not already set, then convert it 494 * to IMODACC for this operation. This defers 495 * entering a delta into the log until the inode 496 * is flushed. This mimics what is done for read 497 * operations and inode access time. 498 */ 499 mutex_enter(&ip->i_tlock); 500 i_flag_save = ip->i_flag; 501 ip->i_flag |= IUPD | ICHG; 502 ip->i_seq++; 503 ITIMES_NOLOCK(ip); 504 if ((i_flag_save & IMOD) == 0) { 505 ip->i_flag &= ~IMOD; 506 ip->i_flag |= IMODACC; 507 } 508 mutex_exit(&ip->i_tlock); 509 rw_exit(&ip->i_contents); 510 if (ulp) 511 ufs_lockfs_end(ulp); 512 goto out; 513 } 514 rw_exit(&ip->i_contents); 515 if (ulp) 516 ufs_lockfs_end(ulp); 517 } 518 519 if (!exclusive && !rw_tryupgrade(&ip->i_rwlock)) { 520 rw_exit(&ip->i_rwlock); 521 rw_enter(&ip->i_rwlock, RW_WRITER); 522 /* 523 * Mandatory locking could have been enabled 524 * after dropping the i_rwlock. 525 */ 526 if (MANDLOCK(vp, ip->i_mode)) 527 goto retry_mandlock; 528 } 529 530 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_WRITE_MASK); 531 if (error) 532 goto out; 533 534 /* 535 * Amount of log space needed for this write 536 */ 537 if (!rewriteflg || !(ioflag & FDSYNC)) 538 TRANS_WRITE_RESV(ip, uiop, ulp, &resv, &resid); 539 540 /* 541 * Throttle writes. 542 */ 543 if (ufs_WRITES && (ip->i_writes > ufs_HW)) { 544 mutex_enter(&ip->i_tlock); 545 while (ip->i_writes > ufs_HW) { 546 ufs_throttles++; 547 cv_wait(&ip->i_wrcv, &ip->i_tlock); 548 } 549 mutex_exit(&ip->i_tlock); 550 } 551 552 /* 553 * Enter Transaction 554 * 555 * If the write is a rewrite there is no need to open a transaction 556 * if the FDSYNC flag is set and not the FSYNC. In this case just 557 * set the IMODACC flag to modify do the update at a later time 558 * thus avoiding the overhead of the logging transaction that is 559 * not required. 560 */ 561 if (ioflag & (FSYNC|FDSYNC)) { 562 if (ulp) { 563 if (rewriteflg) { 564 uint_t i_flag_save; 565 566 rw_enter(&ip->i_contents, RW_READER); 567 mutex_enter(&ip->i_tlock); 568 i_flag_save = ip->i_flag; 569 ip->i_flag |= IUPD | ICHG; 570 ip->i_seq++; 571 ITIMES_NOLOCK(ip); 572 if ((i_flag_save & IMOD) == 0) { 573 ip->i_flag &= ~IMOD; 574 ip->i_flag |= IMODACC; 575 } 576 mutex_exit(&ip->i_tlock); 577 rw_exit(&ip->i_contents); 578 } else { 579 int terr = 0; 580 TRANS_BEGIN_SYNC(ufsvfsp, TOP_WRITE_SYNC, resv, 581 terr); 582 ASSERT(!terr); 583 } 584 } 585 } else { 586 if (ulp) 587 TRANS_BEGIN_ASYNC(ufsvfsp, TOP_WRITE, resv); 588 } 589 590 /* 591 * Write the file 592 */ 593 rw_enter(&ufsvfsp->vfs_dqrwlock, RW_READER); 594 rw_enter(&ip->i_contents, RW_WRITER); 595 if ((ioflag & FAPPEND) != 0 && (ip->i_mode & IFMT) == IFREG) { 596 /* 597 * In append mode start at end of file. 598 */ 599 uiop->uio_loffset = ip->i_size; 600 } 601 602 /* 603 * Mild optimisation, don't call ufs_trans_write() unless we have to 604 * Also, suppress file system full messages if we will retry. 605 */ 606 if (retry) 607 ip->i_flag |= IQUIET; 608 if (resid) { 609 TRANS_WRITE(ip, uiop, ioflag, error, ulp, cr, resv, resid); 610 } else { 611 error = wrip(ip, uiop, ioflag, cr); 612 } 613 ip->i_flag &= ~IQUIET; 614 615 rw_exit(&ip->i_contents); 616 rw_exit(&ufsvfsp->vfs_dqrwlock); 617 618 /* 619 * Leave Transaction 620 */ 621 if (ulp) { 622 if (ioflag & (FSYNC|FDSYNC)) { 623 if (!rewriteflg) { 624 int terr = 0; 625 626 TRANS_END_SYNC(ufsvfsp, terr, TOP_WRITE_SYNC, 627 resv); 628 if (error == 0) 629 error = terr; 630 } 631 } else { 632 TRANS_END_ASYNC(ufsvfsp, TOP_WRITE, resv); 633 } 634 ufs_lockfs_end(ulp); 635 } 636 out: 637 if ((error == ENOSPC) && retry && TRANS_ISTRANS(ufsvfsp)) { 638 /* 639 * Any blocks tied up in pending deletes? 640 */ 641 ufs_delete_drain_wait(ufsvfsp, 1); 642 retry = 0; 643 goto retry_mandlock; 644 } 645 646 if (error == ENOSPC && (start_resid != uiop->uio_resid)) 647 error = 0; 648 649 return (error); 650 } 651 652 /* 653 * Don't cache write blocks to files with the sticky bit set. 654 * Used to keep swap files from blowing the page cache on a server. 655 */ 656 int stickyhack = 1; 657 658 /* 659 * Free behind hacks. The pager is busted. 660 * XXX - need to pass the information down to writedone() in a flag like B_SEQ 661 * or B_FREE_IF_TIGHT_ON_MEMORY. 662 */ 663 int freebehind = 1; 664 int smallfile = 0; 665 u_offset_t smallfile64 = 32 * 1024; 666 667 /* 668 * While we should, in most cases, cache the pages for write, we 669 * may also want to cache the pages for read as long as they are 670 * frequently re-usable. 671 * 672 * If cache_read_ahead = 1, the pages for read will go to the tail 673 * of the cache list when they are released, otherwise go to the head. 674 */ 675 int cache_read_ahead = 0; 676 677 /* 678 * Freebehind exists so that as we read large files sequentially we 679 * don't consume most of memory with pages from a few files. It takes 680 * longer to re-read from disk multiple small files as it does reading 681 * one large one sequentially. As system memory grows customers need 682 * to retain bigger chunks of files in memory. The advent of the 683 * cachelist opens up of the possibility freeing pages to the head or 684 * tail of the list. 685 * 686 * Not freeing a page is a bet that the page will be read again before 687 * it's segmap slot is needed for something else. If we loose the bet, 688 * it means some other thread is burdened with the page free we did 689 * not do. If we win we save a free and reclaim. 690 * 691 * Freeing it at the tail vs the head of cachelist is a bet that the 692 * page will survive until the next read. It's also saying that this 693 * page is more likely to be re-used than a page freed some time ago 694 * and never reclaimed. 695 * 696 * Freebehind maintains a range of file offset [smallfile1; smallfile2] 697 * 698 * 0 < offset < smallfile1 : pages are not freed. 699 * smallfile1 < offset < smallfile2 : pages freed to tail of cachelist. 700 * smallfile2 < offset : pages freed to head of cachelist. 701 * 702 * The range is computed at most once per second and depends on 703 * freemem and ncpus_online. Both parameters are bounded to be 704 * >= smallfile && >= smallfile64. 705 * 706 * smallfile1 = (free memory / ncpu) / 1000 707 * smallfile2 = (free memory / ncpu) / 10 708 * 709 * A few examples values: 710 * 711 * Free Mem (in Bytes) [smallfile1; smallfile2] [smallfile1; smallfile2] 712 * ncpus_online = 4 ncpus_online = 64 713 * ------------------ ----------------------- ----------------------- 714 * 1G [256K; 25M] [32K; 1.5M] 715 * 10G [2.5M; 250M] [156K; 15M] 716 * 100G [25M; 2.5G] [1.5M; 150M] 717 * 718 */ 719 720 #define SMALLFILE1_D 1000 721 #define SMALLFILE2_D 10 722 static u_offset_t smallfile1 = 32 * 1024; 723 static u_offset_t smallfile2 = 32 * 1024; 724 static clock_t smallfile_update = 0; /* lbolt value of when to recompute */ 725 uint_t smallfile1_d = SMALLFILE1_D; 726 uint_t smallfile2_d = SMALLFILE2_D; 727 728 /* 729 * wrip does the real work of write requests for ufs. 730 */ 731 int 732 wrip(struct inode *ip, struct uio *uio, int ioflag, struct cred *cr) 733 { 734 rlim64_t limit = uio->uio_llimit; 735 u_offset_t off; 736 u_offset_t old_i_size; 737 struct fs *fs; 738 struct vnode *vp; 739 struct ufsvfs *ufsvfsp; 740 caddr_t base; 741 long start_resid = uio->uio_resid; /* save starting resid */ 742 long premove_resid; /* resid before uiomove() */ 743 uint_t flags; 744 int newpage; 745 int iupdat_flag, directio_status; 746 int n, on, mapon; 747 int error, pagecreate; 748 int do_dqrwlock; /* drop/reacquire vfs_dqrwlock */ 749 int32_t iblocks; 750 int new_iblocks; 751 752 /* 753 * ip->i_size is incremented before the uiomove 754 * is done on a write. If the move fails (bad user 755 * address) reset ip->i_size. 756 * The better way would be to increment ip->i_size 757 * only if the uiomove succeeds. 758 */ 759 int i_size_changed = 0; 760 o_mode_t type; 761 int i_seq_needed = 0; 762 763 vp = ITOV(ip); 764 765 /* 766 * check for forced unmount - should not happen as 767 * the request passed the lockfs checks. 768 */ 769 if ((ufsvfsp = ip->i_ufsvfs) == NULL) 770 return (EIO); 771 772 fs = ip->i_fs; 773 774 ASSERT(RW_WRITE_HELD(&ip->i_contents)); 775 776 /* check for valid filetype */ 777 type = ip->i_mode & IFMT; 778 if ((type != IFREG) && (type != IFDIR) && (type != IFATTRDIR) && 779 (type != IFLNK) && (type != IFSHAD)) { 780 return (EIO); 781 } 782 783 /* 784 * the actual limit of UFS file size 785 * is UFS_MAXOFFSET_T 786 */ 787 if (limit == RLIM64_INFINITY || limit > MAXOFFSET_T) 788 limit = MAXOFFSET_T; 789 790 if (uio->uio_loffset >= limit) { 791 proc_t *p = ttoproc(curthread); 792 793 mutex_enter(&p->p_lock); 794 (void) rctl_action(rctlproc_legacy[RLIMIT_FSIZE], p->p_rctls, 795 p, RCA_UNSAFE_SIGINFO); 796 mutex_exit(&p->p_lock); 797 return (EFBIG); 798 } 799 800 /* 801 * if largefiles are disallowed, the limit is 802 * the pre-largefiles value of 2GB 803 */ 804 if (ufsvfsp->vfs_lfflags & UFS_LARGEFILES) 805 limit = MIN(UFS_MAXOFFSET_T, limit); 806 else 807 limit = MIN(MAXOFF32_T, limit); 808 809 if (uio->uio_loffset < (offset_t)0) { 810 return (EINVAL); 811 } 812 if (uio->uio_resid == 0) { 813 return (0); 814 } 815 816 if (uio->uio_loffset >= limit) 817 return (EFBIG); 818 819 ip->i_flag |= INOACC; /* don't update ref time in getpage */ 820 821 if (ioflag & (FSYNC|FDSYNC)) { 822 ip->i_flag |= ISYNC; 823 iupdat_flag = 1; 824 } 825 /* 826 * Try to go direct 827 */ 828 if (ip->i_flag & IDIRECTIO || ufsvfsp->vfs_forcedirectio) { 829 uio->uio_llimit = limit; 830 error = ufs_directio_write(ip, uio, ioflag, 0, cr, 831 &directio_status); 832 /* 833 * If ufs_directio wrote to the file or set the flags, 834 * we need to update i_seq, but it may be deferred. 835 */ 836 if (start_resid != uio->uio_resid || 837 (ip->i_flag & (ICHG|IUPD))) { 838 i_seq_needed = 1; 839 ip->i_flag |= ISEQ; 840 } 841 if (directio_status == DIRECTIO_SUCCESS) 842 goto out; 843 } 844 845 /* 846 * Behavior with respect to dropping/reacquiring vfs_dqrwlock: 847 * 848 * o shadow inodes: vfs_dqrwlock is not held at all 849 * o quota updates: vfs_dqrwlock is read or write held 850 * o other updates: vfs_dqrwlock is read held 851 * 852 * The first case is the only one where we do not hold 853 * vfs_dqrwlock at all while entering wrip(). 854 * We must make sure not to downgrade/drop vfs_dqrwlock if we 855 * have it as writer, i.e. if we are updating the quota inode. 856 * There is no potential deadlock scenario in this case as 857 * ufs_getpage() takes care of this and avoids reacquiring 858 * vfs_dqrwlock in that case. 859 * 860 * This check is done here since the above conditions do not change 861 * and we possibly loop below, so save a few cycles. 862 */ 863 if ((type == IFSHAD) || 864 (rw_owner(&ufsvfsp->vfs_dqrwlock) == curthread)) { 865 do_dqrwlock = 0; 866 } else { 867 do_dqrwlock = 1; 868 } 869 870 /* 871 * Large Files: We cast MAXBMASK to offset_t 872 * inorder to mask out the higher bits. Since offset_t 873 * is a signed value, the high order bit set in MAXBMASK 874 * value makes it do the right thing by having all bits 1 875 * in the higher word. May be removed for _SOLARIS64_. 876 */ 877 878 fs = ip->i_fs; 879 do { 880 u_offset_t uoff = uio->uio_loffset; 881 off = uoff & (offset_t)MAXBMASK; 882 mapon = (int)(uoff & (offset_t)MAXBOFFSET); 883 on = (int)blkoff(fs, uoff); 884 n = (int)MIN(fs->fs_bsize - on, uio->uio_resid); 885 new_iblocks = 1; 886 887 if (type == IFREG && uoff + n >= limit) { 888 if (uoff >= limit) { 889 error = EFBIG; 890 goto out; 891 } 892 /* 893 * since uoff + n >= limit, 894 * therefore n >= limit - uoff, and n is an int 895 * so it is safe to cast it to an int 896 */ 897 n = (int)(limit - (rlim64_t)uoff); 898 } 899 if (uoff + n > ip->i_size) { 900 /* 901 * We are extending the length of the file. 902 * bmap is used so that we are sure that 903 * if we need to allocate new blocks, that it 904 * is done here before we up the file size. 905 */ 906 error = bmap_write(ip, uoff, (int)(on + n), 907 mapon == 0, NULL, cr); 908 /* 909 * bmap_write never drops i_contents so if 910 * the flags are set it changed the file. 911 */ 912 if (ip->i_flag & (ICHG|IUPD)) { 913 i_seq_needed = 1; 914 ip->i_flag |= ISEQ; 915 } 916 if (error) 917 break; 918 /* 919 * There is a window of vulnerability here. 920 * The sequence of operations: allocate file 921 * system blocks, uiomove the data into pages, 922 * and then update the size of the file in the 923 * inode, must happen atomically. However, due 924 * to current locking constraints, this can not 925 * be done. 926 */ 927 ASSERT(ip->i_writer == NULL); 928 ip->i_writer = curthread; 929 i_size_changed = 1; 930 /* 931 * If we are writing from the beginning of 932 * the mapping, we can just create the 933 * pages without having to read them. 934 */ 935 pagecreate = (mapon == 0); 936 } else if (n == MAXBSIZE) { 937 /* 938 * Going to do a whole mappings worth, 939 * so we can just create the pages w/o 940 * having to read them in. But before 941 * we do that, we need to make sure any 942 * needed blocks are allocated first. 943 */ 944 iblocks = ip->i_blocks; 945 error = bmap_write(ip, uoff, (int)(on + n), 946 BI_ALLOC_ONLY, NULL, cr); 947 /* 948 * bmap_write never drops i_contents so if 949 * the flags are set it changed the file. 950 */ 951 if (ip->i_flag & (ICHG|IUPD)) { 952 i_seq_needed = 1; 953 ip->i_flag |= ISEQ; 954 } 955 if (error) 956 break; 957 pagecreate = 1; 958 /* 959 * check if the new created page needed the 960 * allocation of new disk blocks. 961 */ 962 if (iblocks == ip->i_blocks) 963 new_iblocks = 0; /* no new blocks allocated */ 964 } else { 965 pagecreate = 0; 966 /* 967 * In sync mode flush the indirect blocks which 968 * may have been allocated and not written on 969 * disk. In above cases bmap_write will allocate 970 * in sync mode. 971 */ 972 if (ioflag & (FSYNC|FDSYNC)) { 973 error = ufs_indirblk_sync(ip, uoff); 974 if (error) 975 break; 976 } 977 } 978 979 /* 980 * At this point we can enter ufs_getpage() in one 981 * of two ways: 982 * 1) segmap_getmapflt() calls ufs_getpage() when the 983 * forcefault parameter is true (pagecreate == 0) 984 * 2) uiomove() causes a page fault. 985 * 986 * We have to drop the contents lock to prevent the VM 987 * system from trying to reacquire it in ufs_getpage() 988 * should the uiomove cause a pagefault. 989 * 990 * We have to drop the reader vfs_dqrwlock here as well. 991 */ 992 rw_exit(&ip->i_contents); 993 if (do_dqrwlock) { 994 ASSERT(RW_LOCK_HELD(&ufsvfsp->vfs_dqrwlock)); 995 ASSERT(!(RW_WRITE_HELD(&ufsvfsp->vfs_dqrwlock))); 996 rw_exit(&ufsvfsp->vfs_dqrwlock); 997 } 998 999 newpage = 0; 1000 premove_resid = uio->uio_resid; 1001 if (vpm_enable) { 1002 /* 1003 * Copy data. If new pages are created, part of 1004 * the page that is not written will be initizliazed 1005 * with zeros. 1006 */ 1007 error = vpm_data_copy(vp, (off + mapon), (uint_t)n, 1008 uio, !pagecreate, &newpage, 0, S_WRITE); 1009 } else { 1010 1011 base = segmap_getmapflt(segkmap, vp, (off + mapon), 1012 (uint_t)n, !pagecreate, S_WRITE); 1013 1014 /* 1015 * segmap_pagecreate() returns 1 if it calls 1016 * page_create_va() to allocate any pages. 1017 */ 1018 1019 if (pagecreate) 1020 newpage = segmap_pagecreate(segkmap, base, 1021 (size_t)n, 0); 1022 1023 error = uiomove(base + mapon, (long)n, UIO_WRITE, uio); 1024 } 1025 1026 /* 1027 * If "newpage" is set, then a new page was created and it 1028 * does not contain valid data, so it needs to be initialized 1029 * at this point. 1030 * Otherwise the page contains old data, which was overwritten 1031 * partially or as a whole in uiomove. 1032 * If there is only one iovec structure within uio, then 1033 * on error uiomove will not be able to update uio->uio_loffset 1034 * and we would zero the whole page here! 1035 * 1036 * If uiomove fails because of an error, the old valid data 1037 * is kept instead of filling the rest of the page with zero's. 1038 */ 1039 if (!vpm_enable && newpage && 1040 uio->uio_loffset < roundup(off + mapon + n, PAGESIZE)) { 1041 /* 1042 * We created pages w/o initializing them completely, 1043 * thus we need to zero the part that wasn't set up. 1044 * This happens on most EOF write cases and if 1045 * we had some sort of error during the uiomove. 1046 */ 1047 int nzero, nmoved; 1048 1049 nmoved = (int)(uio->uio_loffset - (off + mapon)); 1050 ASSERT(nmoved >= 0 && nmoved <= n); 1051 nzero = roundup(on + n, PAGESIZE) - nmoved; 1052 ASSERT(nzero > 0 && mapon + nmoved + nzero <= MAXBSIZE); 1053 (void) kzero(base + mapon + nmoved, (uint_t)nzero); 1054 } 1055 1056 /* 1057 * Unlock the pages allocated by page_create_va() 1058 * in segmap_pagecreate() 1059 */ 1060 if (!vpm_enable && newpage) 1061 segmap_pageunlock(segkmap, base, (size_t)n, S_WRITE); 1062 1063 /* 1064 * If the size of the file changed, then update the 1065 * size field in the inode now. This can't be done 1066 * before the call to segmap_pageunlock or there is 1067 * a potential deadlock with callers to ufs_putpage(). 1068 * They will be holding i_contents and trying to lock 1069 * a page, while this thread is holding a page locked 1070 * and trying to acquire i_contents. 1071 */ 1072 if (i_size_changed) { 1073 rw_enter(&ip->i_contents, RW_WRITER); 1074 old_i_size = ip->i_size; 1075 UFS_SET_ISIZE(uoff + n, ip); 1076 TRANS_INODE(ufsvfsp, ip); 1077 /* 1078 * file has grown larger than 2GB. Set flag 1079 * in superblock to indicate this, if it 1080 * is not already set. 1081 */ 1082 if ((ip->i_size > MAXOFF32_T) && 1083 !(fs->fs_flags & FSLARGEFILES)) { 1084 ASSERT(ufsvfsp->vfs_lfflags & UFS_LARGEFILES); 1085 mutex_enter(&ufsvfsp->vfs_lock); 1086 fs->fs_flags |= FSLARGEFILES; 1087 ufs_sbwrite(ufsvfsp); 1088 mutex_exit(&ufsvfsp->vfs_lock); 1089 } 1090 mutex_enter(&ip->i_tlock); 1091 ip->i_writer = NULL; 1092 cv_broadcast(&ip->i_wrcv); 1093 mutex_exit(&ip->i_tlock); 1094 rw_exit(&ip->i_contents); 1095 } 1096 1097 if (error) { 1098 /* 1099 * If we failed on a write, we may have already 1100 * allocated file blocks as well as pages. It's 1101 * hard to undo the block allocation, but we must 1102 * be sure to invalidate any pages that may have 1103 * been allocated. 1104 * 1105 * If the page was created without initialization 1106 * then we must check if it should be possible 1107 * to destroy the new page and to keep the old data 1108 * on the disk. 1109 * 1110 * It is possible to destroy the page without 1111 * having to write back its contents only when 1112 * - the size of the file keeps unchanged 1113 * - bmap_write() did not allocate new disk blocks 1114 * it is possible to create big files using "seek" and 1115 * write to the end of the file. A "write" to a 1116 * position before the end of the file would not 1117 * change the size of the file but it would allocate 1118 * new disk blocks. 1119 * - uiomove intended to overwrite the whole page. 1120 * - a new page was created (newpage == 1). 1121 */ 1122 1123 if (i_size_changed == 0 && new_iblocks == 0 && 1124 newpage) { 1125 1126 /* unwind what uiomove eventually last did */ 1127 uio->uio_resid = premove_resid; 1128 1129 /* 1130 * destroy the page, do not write ambiguous 1131 * data to the disk. 1132 */ 1133 flags = SM_DESTROY; 1134 } else { 1135 /* 1136 * write the page back to the disk, if dirty, 1137 * and remove the page from the cache. 1138 */ 1139 flags = SM_INVAL; 1140 } 1141 1142 if (vpm_enable) { 1143 /* 1144 * Flush pages. 1145 */ 1146 (void) vpm_sync_pages(vp, off, n, flags); 1147 } else { 1148 (void) segmap_release(segkmap, base, flags); 1149 } 1150 } else { 1151 flags = 0; 1152 /* 1153 * Force write back for synchronous write cases. 1154 */ 1155 if ((ioflag & (FSYNC|FDSYNC)) || type == IFDIR) { 1156 /* 1157 * If the sticky bit is set but the 1158 * execute bit is not set, we do a 1159 * synchronous write back and free 1160 * the page when done. We set up swap 1161 * files to be handled this way to 1162 * prevent servers from keeping around 1163 * the client's swap pages too long. 1164 * XXX - there ought to be a better way. 1165 */ 1166 if (IS_SWAPVP(vp)) { 1167 flags = SM_WRITE | SM_FREE | 1168 SM_DONTNEED; 1169 iupdat_flag = 0; 1170 } else { 1171 flags = SM_WRITE; 1172 } 1173 } else if (n + on == MAXBSIZE || IS_SWAPVP(vp)) { 1174 /* 1175 * Have written a whole block. 1176 * Start an asynchronous write and 1177 * mark the buffer to indicate that 1178 * it won't be needed again soon. 1179 */ 1180 flags = SM_WRITE | SM_ASYNC | SM_DONTNEED; 1181 } 1182 if (vpm_enable) { 1183 /* 1184 * Flush pages. 1185 */ 1186 error = vpm_sync_pages(vp, off, n, flags); 1187 } else { 1188 error = segmap_release(segkmap, base, flags); 1189 } 1190 /* 1191 * If the operation failed and is synchronous, 1192 * then we need to unwind what uiomove() last 1193 * did so we can potentially return an error to 1194 * the caller. If this write operation was 1195 * done in two pieces and the first succeeded, 1196 * then we won't return an error for the second 1197 * piece that failed. However, we only want to 1198 * return a resid value that reflects what was 1199 * really done. 1200 * 1201 * Failures for non-synchronous operations can 1202 * be ignored since the page subsystem will 1203 * retry the operation until it succeeds or the 1204 * file system is unmounted. 1205 */ 1206 if (error) { 1207 if ((ioflag & (FSYNC | FDSYNC)) || 1208 type == IFDIR) { 1209 uio->uio_resid = premove_resid; 1210 } else { 1211 error = 0; 1212 } 1213 } 1214 } 1215 1216 /* 1217 * Re-acquire contents lock. 1218 * If it was dropped, reacquire reader vfs_dqrwlock as well. 1219 */ 1220 if (do_dqrwlock) 1221 rw_enter(&ufsvfsp->vfs_dqrwlock, RW_READER); 1222 rw_enter(&ip->i_contents, RW_WRITER); 1223 1224 /* 1225 * If the uiomove() failed or if a synchronous 1226 * page push failed, fix up i_size. 1227 */ 1228 if (error) { 1229 if (i_size_changed) { 1230 /* 1231 * The uiomove failed, and we 1232 * allocated blocks,so get rid 1233 * of them. 1234 */ 1235 (void) ufs_itrunc(ip, old_i_size, 0, cr); 1236 } 1237 } else { 1238 /* 1239 * XXX - Can this be out of the loop? 1240 */ 1241 ip->i_flag |= IUPD | ICHG; 1242 /* 1243 * Only do one increase of i_seq for multiple 1244 * pieces. Because we drop locks, record 1245 * the fact that we changed the timestamp and 1246 * are deferring the increase in case another thread 1247 * pushes our timestamp update. 1248 */ 1249 i_seq_needed = 1; 1250 ip->i_flag |= ISEQ; 1251 if (i_size_changed) 1252 ip->i_flag |= IATTCHG; 1253 if ((ip->i_mode & (IEXEC | (IEXEC >> 3) | 1254 (IEXEC >> 6))) != 0 && 1255 (ip->i_mode & (ISUID | ISGID)) != 0 && 1256 secpolicy_vnode_setid_retain(cr, 1257 (ip->i_mode & ISUID) != 0 && ip->i_uid == 0) != 0) { 1258 /* 1259 * Clear Set-UID & Set-GID bits on 1260 * successful write if not privileged 1261 * and at least one of the execute bits 1262 * is set. If we always clear Set-GID, 1263 * mandatory file and record locking is 1264 * unuseable. 1265 */ 1266 ip->i_mode &= ~(ISUID | ISGID); 1267 } 1268 } 1269 /* 1270 * In the case the FDSYNC flag is set and this is a 1271 * "rewrite" we won't log a delta. 1272 * The FSYNC flag overrides all cases. 1273 */ 1274 if (!ufs_check_rewrite(ip, uio, ioflag) || !(ioflag & FDSYNC)) { 1275 TRANS_INODE(ufsvfsp, ip); 1276 } 1277 } while (error == 0 && uio->uio_resid > 0 && n != 0); 1278 1279 out: 1280 /* 1281 * Make sure i_seq is increased at least once per write 1282 */ 1283 if (i_seq_needed) { 1284 ip->i_seq++; 1285 ip->i_flag &= ~ISEQ; /* no longer deferred */ 1286 } 1287 1288 /* 1289 * Inode is updated according to this table - 1290 * 1291 * FSYNC FDSYNC(posix.4) 1292 * -------------------------- 1293 * always@ IATTCHG|IBDWRITE 1294 * 1295 * @ - If we are doing synchronous write the only time we should 1296 * not be sync'ing the ip here is if we have the stickyhack 1297 * activated, the file is marked with the sticky bit and 1298 * no exec bit, the file length has not been changed and 1299 * no new blocks have been allocated during this write. 1300 */ 1301 1302 if ((ip->i_flag & ISYNC) != 0) { 1303 /* 1304 * we have eliminated nosync 1305 */ 1306 if ((ip->i_flag & (IATTCHG|IBDWRITE)) || 1307 ((ioflag & FSYNC) && iupdat_flag)) { 1308 ufs_iupdat(ip, 1); 1309 } 1310 } 1311 1312 /* 1313 * If we've already done a partial-write, terminate 1314 * the write but return no error unless the error is ENOSPC 1315 * because the caller can detect this and free resources and 1316 * try again. 1317 */ 1318 if ((start_resid != uio->uio_resid) && (error != ENOSPC)) 1319 error = 0; 1320 1321 ip->i_flag &= ~(INOACC | ISYNC); 1322 ITIMES_NOLOCK(ip); 1323 return (error); 1324 } 1325 1326 /* 1327 * rdip does the real work of read requests for ufs. 1328 */ 1329 int 1330 rdip(struct inode *ip, struct uio *uio, int ioflag, cred_t *cr) 1331 { 1332 u_offset_t off; 1333 caddr_t base; 1334 struct fs *fs; 1335 struct ufsvfs *ufsvfsp; 1336 struct vnode *vp; 1337 long oresid = uio->uio_resid; 1338 u_offset_t n, on, mapon; 1339 int error = 0; 1340 int doupdate = 1; 1341 uint_t flags; 1342 int dofree, directio_status; 1343 krw_t rwtype; 1344 o_mode_t type; 1345 1346 vp = ITOV(ip); 1347 1348 ASSERT(RW_LOCK_HELD(&ip->i_contents)); 1349 1350 ufsvfsp = ip->i_ufsvfs; 1351 1352 if (ufsvfsp == NULL) 1353 return (EIO); 1354 1355 fs = ufsvfsp->vfs_fs; 1356 1357 /* check for valid filetype */ 1358 type = ip->i_mode & IFMT; 1359 if ((type != IFREG) && (type != IFDIR) && (type != IFATTRDIR) && 1360 (type != IFLNK) && (type != IFSHAD)) { 1361 return (EIO); 1362 } 1363 1364 if (uio->uio_loffset > UFS_MAXOFFSET_T) { 1365 error = 0; 1366 goto out; 1367 } 1368 if (uio->uio_loffset < (offset_t)0) { 1369 return (EINVAL); 1370 } 1371 if (uio->uio_resid == 0) { 1372 return (0); 1373 } 1374 1375 if (!ULOCKFS_IS_NOIACC(ITOUL(ip)) && (fs->fs_ronly == 0) && 1376 (!ufsvfsp->vfs_noatime)) { 1377 mutex_enter(&ip->i_tlock); 1378 ip->i_flag |= IACC; 1379 mutex_exit(&ip->i_tlock); 1380 } 1381 /* 1382 * Try to go direct 1383 */ 1384 if (ip->i_flag & IDIRECTIO || ufsvfsp->vfs_forcedirectio) { 1385 error = ufs_directio_read(ip, uio, cr, &directio_status); 1386 if (directio_status == DIRECTIO_SUCCESS) 1387 goto out; 1388 } 1389 1390 rwtype = (rw_write_held(&ip->i_contents)?RW_WRITER:RW_READER); 1391 1392 do { 1393 offset_t diff; 1394 u_offset_t uoff = uio->uio_loffset; 1395 off = uoff & (offset_t)MAXBMASK; 1396 mapon = (u_offset_t)(uoff & (offset_t)MAXBOFFSET); 1397 on = (u_offset_t)blkoff(fs, uoff); 1398 n = MIN((u_offset_t)fs->fs_bsize - on, 1399 (u_offset_t)uio->uio_resid); 1400 1401 diff = ip->i_size - uoff; 1402 1403 if (diff <= (offset_t)0) { 1404 error = 0; 1405 goto out; 1406 } 1407 if (diff < (offset_t)n) 1408 n = (int)diff; 1409 1410 /* 1411 * We update smallfile2 and smallfile1 at most every second. 1412 */ 1413 if (lbolt >= smallfile_update) { 1414 uint64_t percpufreeb; 1415 if (smallfile1_d == 0) smallfile1_d = SMALLFILE1_D; 1416 if (smallfile2_d == 0) smallfile2_d = SMALLFILE2_D; 1417 percpufreeb = ptob((uint64_t)freemem) / ncpus_online; 1418 smallfile1 = percpufreeb / smallfile1_d; 1419 smallfile2 = percpufreeb / smallfile2_d; 1420 smallfile1 = MAX(smallfile1, smallfile); 1421 smallfile1 = MAX(smallfile1, smallfile64); 1422 smallfile2 = MAX(smallfile1, smallfile2); 1423 smallfile_update = lbolt + hz; 1424 } 1425 1426 dofree = freebehind && 1427 ip->i_nextr == (off & PAGEMASK) && off > smallfile1; 1428 1429 /* 1430 * At this point we can enter ufs_getpage() in one of two 1431 * ways: 1432 * 1) segmap_getmapflt() calls ufs_getpage() when the 1433 * forcefault parameter is true (value of 1 is passed) 1434 * 2) uiomove() causes a page fault. 1435 * 1436 * We cannot hold onto an i_contents reader lock without 1437 * risking deadlock in ufs_getpage() so drop a reader lock. 1438 * The ufs_getpage() dolock logic already allows for a 1439 * thread holding i_contents as writer to work properly 1440 * so we keep a writer lock. 1441 */ 1442 if (rwtype == RW_READER) 1443 rw_exit(&ip->i_contents); 1444 1445 if (vpm_enable) { 1446 /* 1447 * Copy data. 1448 */ 1449 error = vpm_data_copy(vp, (off + mapon), (uint_t)n, 1450 uio, 1, NULL, 0, S_READ); 1451 } else { 1452 base = segmap_getmapflt(segkmap, vp, (off + mapon), 1453 (uint_t)n, 1, S_READ); 1454 error = uiomove(base + mapon, (long)n, UIO_READ, uio); 1455 } 1456 1457 flags = 0; 1458 if (!error) { 1459 /* 1460 * If reading sequential we won't need this 1461 * buffer again soon. For offsets in range 1462 * [smallfile1, smallfile2] release the pages 1463 * at the tail of the cache list, larger 1464 * offsets are released at the head. 1465 */ 1466 if (dofree) { 1467 flags = SM_FREE | SM_ASYNC; 1468 if ((cache_read_ahead == 0) && 1469 (off > smallfile2)) 1470 flags |= SM_DONTNEED; 1471 } 1472 /* 1473 * In POSIX SYNC (FSYNC and FDSYNC) read mode, 1474 * we want to make sure that the page which has 1475 * been read, is written on disk if it is dirty. 1476 * And corresponding indirect blocks should also 1477 * be flushed out. 1478 */ 1479 if ((ioflag & FRSYNC) && (ioflag & (FSYNC|FDSYNC))) { 1480 flags &= ~SM_ASYNC; 1481 flags |= SM_WRITE; 1482 } 1483 if (vpm_enable) { 1484 error = vpm_sync_pages(vp, off, n, flags); 1485 } else { 1486 error = segmap_release(segkmap, base, flags); 1487 } 1488 } else { 1489 if (vpm_enable) { 1490 (void) vpm_sync_pages(vp, off, n, flags); 1491 } else { 1492 (void) segmap_release(segkmap, base, flags); 1493 } 1494 } 1495 1496 if (rwtype == RW_READER) 1497 rw_enter(&ip->i_contents, rwtype); 1498 } while (error == 0 && uio->uio_resid > 0 && n != 0); 1499 out: 1500 /* 1501 * Inode is updated according to this table if FRSYNC is set. 1502 * 1503 * FSYNC FDSYNC(posix.4) 1504 * -------------------------- 1505 * always IATTCHG|IBDWRITE 1506 */ 1507 /* 1508 * The inode is not updated if we're logging and the inode is a 1509 * directory with FRSYNC, FSYNC and FDSYNC flags set. 1510 */ 1511 if (ioflag & FRSYNC) { 1512 if (TRANS_ISTRANS(ufsvfsp) && ((ip->i_mode & IFMT) == IFDIR)) { 1513 doupdate = 0; 1514 } 1515 if (doupdate) { 1516 if ((ioflag & FSYNC) || 1517 ((ioflag & FDSYNC) && 1518 (ip->i_flag & (IATTCHG|IBDWRITE)))) { 1519 ufs_iupdat(ip, 1); 1520 } 1521 } 1522 } 1523 /* 1524 * If we've already done a partial read, terminate 1525 * the read but return no error. 1526 */ 1527 if (oresid != uio->uio_resid) 1528 error = 0; 1529 ITIMES(ip); 1530 1531 return (error); 1532 } 1533 1534 /* ARGSUSED */ 1535 static int 1536 ufs_ioctl( 1537 struct vnode *vp, 1538 int cmd, 1539 intptr_t arg, 1540 int flag, 1541 struct cred *cr, 1542 int *rvalp, 1543 caller_context_t *ct) 1544 { 1545 struct lockfs lockfs, lockfs_out; 1546 struct ufsvfs *ufsvfsp = VTOI(vp)->i_ufsvfs; 1547 char *comment, *original_comment; 1548 struct fs *fs; 1549 struct ulockfs *ulp; 1550 offset_t off; 1551 extern int maxphys; 1552 int error; 1553 int issync; 1554 int trans_size; 1555 1556 1557 /* 1558 * forcibly unmounted 1559 */ 1560 if (ufsvfsp == NULL || vp->v_vfsp == NULL || 1561 vp->v_vfsp->vfs_flag & VFS_UNMOUNTED) 1562 return (EIO); 1563 fs = ufsvfsp->vfs_fs; 1564 1565 if (cmd == Q_QUOTACTL) { 1566 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_QUOTA_MASK); 1567 if (error) 1568 return (error); 1569 1570 if (ulp) { 1571 TRANS_BEGIN_ASYNC(ufsvfsp, TOP_QUOTA, 1572 TOP_SETQUOTA_SIZE(fs)); 1573 } 1574 1575 error = quotactl(vp, arg, flag, cr); 1576 1577 if (ulp) { 1578 TRANS_END_ASYNC(ufsvfsp, TOP_QUOTA, 1579 TOP_SETQUOTA_SIZE(fs)); 1580 ufs_lockfs_end(ulp); 1581 } 1582 return (error); 1583 } 1584 1585 switch (cmd) { 1586 case _FIOLFS: 1587 /* 1588 * file system locking 1589 */ 1590 if (secpolicy_fs_config(cr, ufsvfsp->vfs_vfs) != 0) 1591 return (EPERM); 1592 1593 if ((flag & DATAMODEL_MASK) == DATAMODEL_NATIVE) { 1594 if (copyin((caddr_t)arg, &lockfs, 1595 sizeof (struct lockfs))) 1596 return (EFAULT); 1597 } 1598 #ifdef _SYSCALL32_IMPL 1599 else { 1600 struct lockfs32 lockfs32; 1601 /* Translate ILP32 lockfs to LP64 lockfs */ 1602 if (copyin((caddr_t)arg, &lockfs32, 1603 sizeof (struct lockfs32))) 1604 return (EFAULT); 1605 lockfs.lf_lock = (ulong_t)lockfs32.lf_lock; 1606 lockfs.lf_flags = (ulong_t)lockfs32.lf_flags; 1607 lockfs.lf_key = (ulong_t)lockfs32.lf_key; 1608 lockfs.lf_comlen = (ulong_t)lockfs32.lf_comlen; 1609 lockfs.lf_comment = 1610 (caddr_t)(uintptr_t)lockfs32.lf_comment; 1611 } 1612 #endif /* _SYSCALL32_IMPL */ 1613 1614 if (lockfs.lf_comlen) { 1615 if (lockfs.lf_comlen > LOCKFS_MAXCOMMENTLEN) 1616 return (ENAMETOOLONG); 1617 comment = 1618 kmem_alloc(lockfs.lf_comlen, KM_SLEEP); 1619 if (copyin(lockfs.lf_comment, comment, 1620 lockfs.lf_comlen)) { 1621 kmem_free(comment, lockfs.lf_comlen); 1622 return (EFAULT); 1623 } 1624 original_comment = lockfs.lf_comment; 1625 lockfs.lf_comment = comment; 1626 } 1627 if ((error = ufs_fiolfs(vp, &lockfs, 0)) == 0) { 1628 lockfs.lf_comment = original_comment; 1629 1630 if ((flag & DATAMODEL_MASK) == 1631 DATAMODEL_NATIVE) { 1632 (void) copyout(&lockfs, (caddr_t)arg, 1633 sizeof (struct lockfs)); 1634 } 1635 #ifdef _SYSCALL32_IMPL 1636 else { 1637 struct lockfs32 lockfs32; 1638 /* Translate LP64 to ILP32 lockfs */ 1639 lockfs32.lf_lock = 1640 (uint32_t)lockfs.lf_lock; 1641 lockfs32.lf_flags = 1642 (uint32_t)lockfs.lf_flags; 1643 lockfs32.lf_key = 1644 (uint32_t)lockfs.lf_key; 1645 lockfs32.lf_comlen = 1646 (uint32_t)lockfs.lf_comlen; 1647 lockfs32.lf_comment = 1648 (uint32_t)(uintptr_t) 1649 lockfs.lf_comment; 1650 (void) copyout(&lockfs32, (caddr_t)arg, 1651 sizeof (struct lockfs32)); 1652 } 1653 #endif /* _SYSCALL32_IMPL */ 1654 1655 } else { 1656 if (lockfs.lf_comlen) 1657 kmem_free(comment, lockfs.lf_comlen); 1658 } 1659 return (error); 1660 1661 case _FIOLFSS: 1662 /* 1663 * get file system locking status 1664 */ 1665 1666 if ((flag & DATAMODEL_MASK) == DATAMODEL_NATIVE) { 1667 if (copyin((caddr_t)arg, &lockfs, 1668 sizeof (struct lockfs))) 1669 return (EFAULT); 1670 } 1671 #ifdef _SYSCALL32_IMPL 1672 else { 1673 struct lockfs32 lockfs32; 1674 /* Translate ILP32 lockfs to LP64 lockfs */ 1675 if (copyin((caddr_t)arg, &lockfs32, 1676 sizeof (struct lockfs32))) 1677 return (EFAULT); 1678 lockfs.lf_lock = (ulong_t)lockfs32.lf_lock; 1679 lockfs.lf_flags = (ulong_t)lockfs32.lf_flags; 1680 lockfs.lf_key = (ulong_t)lockfs32.lf_key; 1681 lockfs.lf_comlen = (ulong_t)lockfs32.lf_comlen; 1682 lockfs.lf_comment = 1683 (caddr_t)(uintptr_t)lockfs32.lf_comment; 1684 } 1685 #endif /* _SYSCALL32_IMPL */ 1686 1687 if (error = ufs_fiolfss(vp, &lockfs_out)) 1688 return (error); 1689 lockfs.lf_lock = lockfs_out.lf_lock; 1690 lockfs.lf_key = lockfs_out.lf_key; 1691 lockfs.lf_flags = lockfs_out.lf_flags; 1692 lockfs.lf_comlen = MIN(lockfs.lf_comlen, 1693 lockfs_out.lf_comlen); 1694 1695 if ((flag & DATAMODEL_MASK) == DATAMODEL_NATIVE) { 1696 if (copyout(&lockfs, (caddr_t)arg, 1697 sizeof (struct lockfs))) 1698 return (EFAULT); 1699 } 1700 #ifdef _SYSCALL32_IMPL 1701 else { 1702 /* Translate LP64 to ILP32 lockfs */ 1703 struct lockfs32 lockfs32; 1704 lockfs32.lf_lock = (uint32_t)lockfs.lf_lock; 1705 lockfs32.lf_flags = (uint32_t)lockfs.lf_flags; 1706 lockfs32.lf_key = (uint32_t)lockfs.lf_key; 1707 lockfs32.lf_comlen = (uint32_t)lockfs.lf_comlen; 1708 lockfs32.lf_comment = 1709 (uint32_t)(uintptr_t)lockfs.lf_comment; 1710 if (copyout(&lockfs32, (caddr_t)arg, 1711 sizeof (struct lockfs32))) 1712 return (EFAULT); 1713 } 1714 #endif /* _SYSCALL32_IMPL */ 1715 1716 if (lockfs.lf_comlen && 1717 lockfs.lf_comment && lockfs_out.lf_comment) 1718 if (copyout(lockfs_out.lf_comment, 1719 lockfs.lf_comment, lockfs.lf_comlen)) 1720 return (EFAULT); 1721 return (0); 1722 1723 case _FIOSATIME: 1724 /* 1725 * set access time 1726 */ 1727 1728 /* 1729 * if mounted w/o atime, return quietly. 1730 * I briefly thought about returning ENOSYS, but 1731 * figured that most apps would consider this fatal 1732 * but the idea is to make this as seamless as poss. 1733 */ 1734 if (ufsvfsp->vfs_noatime) 1735 return (0); 1736 1737 error = ufs_lockfs_begin(ufsvfsp, &ulp, 1738 ULOCKFS_SETATTR_MASK); 1739 if (error) 1740 return (error); 1741 1742 if (ulp) { 1743 trans_size = (int)TOP_SETATTR_SIZE(VTOI(vp)); 1744 TRANS_BEGIN_CSYNC(ufsvfsp, issync, 1745 TOP_SETATTR, trans_size); 1746 } 1747 1748 error = ufs_fiosatime(vp, (struct timeval *)arg, 1749 flag, cr); 1750 1751 if (ulp) { 1752 TRANS_END_CSYNC(ufsvfsp, error, issync, 1753 TOP_SETATTR, trans_size); 1754 ufs_lockfs_end(ulp); 1755 } 1756 return (error); 1757 1758 case _FIOSDIO: 1759 /* 1760 * set delayed-io 1761 */ 1762 return (ufs_fiosdio(vp, (uint_t *)arg, flag, cr)); 1763 1764 case _FIOGDIO: 1765 /* 1766 * get delayed-io 1767 */ 1768 return (ufs_fiogdio(vp, (uint_t *)arg, flag, cr)); 1769 1770 case _FIOIO: 1771 /* 1772 * inode open 1773 */ 1774 error = ufs_lockfs_begin(ufsvfsp, &ulp, 1775 ULOCKFS_VGET_MASK); 1776 if (error) 1777 return (error); 1778 1779 error = ufs_fioio(vp, (struct fioio *)arg, flag, cr); 1780 1781 if (ulp) { 1782 ufs_lockfs_end(ulp); 1783 } 1784 return (error); 1785 1786 case _FIOFFS: 1787 /* 1788 * file system flush (push w/invalidate) 1789 */ 1790 if ((caddr_t)arg != NULL) 1791 return (EINVAL); 1792 return (ufs_fioffs(vp, NULL, cr)); 1793 1794 case _FIOISBUSY: 1795 /* 1796 * Contract-private interface for Legato 1797 * Purge this vnode from the DNLC and decide 1798 * if this vnode is busy (*arg == 1) or not 1799 * (*arg == 0) 1800 */ 1801 if (secpolicy_fs_config(cr, ufsvfsp->vfs_vfs) != 0) 1802 return (EPERM); 1803 error = ufs_fioisbusy(vp, (int *)arg, cr); 1804 return (error); 1805 1806 case _FIODIRECTIO: 1807 return (ufs_fiodirectio(vp, (int)arg, cr)); 1808 1809 case _FIOTUNE: 1810 /* 1811 * Tune the file system (aka setting fs attributes) 1812 */ 1813 error = ufs_lockfs_begin(ufsvfsp, &ulp, 1814 ULOCKFS_SETATTR_MASK); 1815 if (error) 1816 return (error); 1817 1818 error = ufs_fiotune(vp, (struct fiotune *)arg, cr); 1819 1820 if (ulp) 1821 ufs_lockfs_end(ulp); 1822 return (error); 1823 1824 case _FIOLOGENABLE: 1825 if (secpolicy_fs_config(cr, ufsvfsp->vfs_vfs) != 0) 1826 return (EPERM); 1827 return (ufs_fiologenable(vp, (void *)arg, cr, flag)); 1828 1829 case _FIOLOGDISABLE: 1830 if (secpolicy_fs_config(cr, ufsvfsp->vfs_vfs) != 0) 1831 return (EPERM); 1832 return (ufs_fiologdisable(vp, (void *)arg, cr, flag)); 1833 1834 case _FIOISLOG: 1835 return (ufs_fioislog(vp, (void *)arg, cr, flag)); 1836 1837 case _FIOSNAPSHOTCREATE_MULTI: 1838 { 1839 struct fiosnapcreate_multi fc, *fcp; 1840 size_t fcm_size; 1841 1842 if (copyin((void *)arg, &fc, sizeof (fc))) 1843 return (EFAULT); 1844 if (fc.backfilecount > MAX_BACKFILE_COUNT) 1845 return (EINVAL); 1846 fcm_size = sizeof (struct fiosnapcreate_multi) + 1847 (fc.backfilecount - 1) * sizeof (int); 1848 fcp = (struct fiosnapcreate_multi *) 1849 kmem_alloc(fcm_size, KM_SLEEP); 1850 if (copyin((void *)arg, fcp, fcm_size)) { 1851 kmem_free(fcp, fcm_size); 1852 return (EFAULT); 1853 } 1854 error = ufs_snap_create(vp, fcp, cr); 1855 /* 1856 * Do copyout even if there is an error because 1857 * the details of error is stored in fcp. 1858 */ 1859 if (copyout(fcp, (void *)arg, fcm_size)) 1860 error = EFAULT; 1861 kmem_free(fcp, fcm_size); 1862 return (error); 1863 } 1864 1865 case _FIOSNAPSHOTDELETE: 1866 { 1867 struct fiosnapdelete fc; 1868 1869 if (copyin((void *)arg, &fc, sizeof (fc))) 1870 return (EFAULT); 1871 error = ufs_snap_delete(vp, &fc, cr); 1872 if (!error && copyout(&fc, (void *)arg, sizeof (fc))) 1873 error = EFAULT; 1874 return (error); 1875 } 1876 1877 case _FIOGETSUPERBLOCK: 1878 if (copyout(fs, (void *)arg, SBSIZE)) 1879 return (EFAULT); 1880 return (0); 1881 1882 case _FIOGETMAXPHYS: 1883 if (copyout(&maxphys, (void *)arg, sizeof (maxphys))) 1884 return (EFAULT); 1885 return (0); 1886 1887 /* 1888 * The following 3 ioctls are for TSufs support 1889 * although could potentially be used elsewhere 1890 */ 1891 case _FIO_SET_LUFS_DEBUG: 1892 if (secpolicy_fs_config(cr, ufsvfsp->vfs_vfs) != 0) 1893 return (EPERM); 1894 lufs_debug = (uint32_t)arg; 1895 return (0); 1896 1897 case _FIO_SET_LUFS_ERROR: 1898 if (secpolicy_fs_config(cr, ufsvfsp->vfs_vfs) != 0) 1899 return (EPERM); 1900 TRANS_SETERROR(ufsvfsp); 1901 return (0); 1902 1903 case _FIO_GET_TOP_STATS: 1904 { 1905 fio_lufs_stats_t *ls; 1906 ml_unit_t *ul = ufsvfsp->vfs_log; 1907 1908 ls = kmem_zalloc(sizeof (*ls), KM_SLEEP); 1909 ls->ls_debug = ul->un_debug; /* return debug value */ 1910 /* Copy stucture if statistics are being kept */ 1911 if (ul->un_logmap->mtm_tops) { 1912 ls->ls_topstats = *(ul->un_logmap->mtm_tops); 1913 } 1914 error = 0; 1915 if (copyout(ls, (void *)arg, sizeof (*ls))) 1916 error = EFAULT; 1917 kmem_free(ls, sizeof (*ls)); 1918 return (error); 1919 } 1920 1921 case _FIO_SEEK_DATA: 1922 case _FIO_SEEK_HOLE: 1923 if (ddi_copyin((void *)arg, &off, sizeof (off), flag)) 1924 return (EFAULT); 1925 /* offset paramater is in/out */ 1926 error = ufs_fio_holey(vp, cmd, &off); 1927 if (error) 1928 return (error); 1929 if (ddi_copyout(&off, (void *)arg, sizeof (off), flag)) 1930 return (EFAULT); 1931 return (0); 1932 1933 case _FIO_COMPRESSED: 1934 { 1935 /* 1936 * This is a project private ufs ioctl() to mark 1937 * the inode as that belonging to a compressed 1938 * file. This is used to mark individual 1939 * compressed files in a miniroot archive. 1940 * The files compressed in this manner are 1941 * automatically decompressed by the dcfs filesystem 1942 * (via an interception in ufs_lookup - see decompvp()) 1943 * which is layered on top of ufs on a system running 1944 * from the archive. See uts/common/fs/dcfs for details. 1945 * This ioctl only marks the file as compressed - the 1946 * actual compression is done by fiocompress (a 1947 * userland utility) which invokes this ioctl(). 1948 */ 1949 struct inode *ip = VTOI(vp); 1950 1951 error = ufs_lockfs_begin(ufsvfsp, &ulp, 1952 ULOCKFS_SETATTR_MASK); 1953 if (error) 1954 return (error); 1955 1956 if (ulp) { 1957 TRANS_BEGIN_ASYNC(ufsvfsp, TOP_IUPDAT, 1958 TOP_IUPDAT_SIZE(ip)); 1959 } 1960 1961 error = ufs_mark_compressed(vp); 1962 1963 if (ulp) { 1964 TRANS_END_ASYNC(ufsvfsp, TOP_IUPDAT, 1965 TOP_IUPDAT_SIZE(ip)); 1966 ufs_lockfs_end(ulp); 1967 } 1968 1969 return (error); 1970 1971 } 1972 1973 default: 1974 return (ENOTTY); 1975 } 1976 } 1977 1978 1979 /* ARGSUSED */ 1980 static int 1981 ufs_getattr(struct vnode *vp, struct vattr *vap, int flags, 1982 struct cred *cr, caller_context_t *ct) 1983 { 1984 struct inode *ip = VTOI(vp); 1985 struct ufsvfs *ufsvfsp; 1986 int err; 1987 1988 if (vap->va_mask == AT_SIZE) { 1989 /* 1990 * for performance, if only the size is requested don't bother 1991 * with anything else. 1992 */ 1993 UFS_GET_ISIZE(&vap->va_size, ip); 1994 return (0); 1995 } 1996 1997 /* 1998 * inlined lockfs checks 1999 */ 2000 ufsvfsp = ip->i_ufsvfs; 2001 if ((ufsvfsp == NULL) || ULOCKFS_IS_HLOCK(&ufsvfsp->vfs_ulockfs)) { 2002 err = EIO; 2003 goto out; 2004 } 2005 2006 rw_enter(&ip->i_contents, RW_READER); 2007 /* 2008 * Return all the attributes. This should be refined so 2009 * that it only returns what's asked for. 2010 */ 2011 2012 /* 2013 * Copy from inode table. 2014 */ 2015 vap->va_type = vp->v_type; 2016 vap->va_mode = ip->i_mode & MODEMASK; 2017 /* 2018 * If there is an ACL and there is a mask entry, then do the 2019 * extra work that completes the equivalent of an acltomode(3) 2020 * call. According to POSIX P1003.1e, the acl mask should be 2021 * returned in the group permissions field. 2022 * 2023 * - start with the original permission and mode bits (from above) 2024 * - clear the group owner bits 2025 * - add in the mask bits. 2026 */ 2027 if (ip->i_ufs_acl && ip->i_ufs_acl->aclass.acl_ismask) { 2028 vap->va_mode &= ~((VREAD | VWRITE | VEXEC) >> 3); 2029 vap->va_mode |= 2030 (ip->i_ufs_acl->aclass.acl_maskbits & PERMMASK) << 3; 2031 } 2032 vap->va_uid = ip->i_uid; 2033 vap->va_gid = ip->i_gid; 2034 vap->va_fsid = ip->i_dev; 2035 vap->va_nodeid = (ino64_t)ip->i_number; 2036 vap->va_nlink = ip->i_nlink; 2037 vap->va_size = ip->i_size; 2038 if (vp->v_type == VCHR || vp->v_type == VBLK) 2039 vap->va_rdev = ip->i_rdev; 2040 else 2041 vap->va_rdev = 0; /* not a b/c spec. */ 2042 mutex_enter(&ip->i_tlock); 2043 ITIMES_NOLOCK(ip); /* mark correct time in inode */ 2044 vap->va_seq = ip->i_seq; 2045 vap->va_atime.tv_sec = (time_t)ip->i_atime.tv_sec; 2046 vap->va_atime.tv_nsec = ip->i_atime.tv_usec*1000; 2047 vap->va_mtime.tv_sec = (time_t)ip->i_mtime.tv_sec; 2048 vap->va_mtime.tv_nsec = ip->i_mtime.tv_usec*1000; 2049 vap->va_ctime.tv_sec = (time_t)ip->i_ctime.tv_sec; 2050 vap->va_ctime.tv_nsec = ip->i_ctime.tv_usec*1000; 2051 mutex_exit(&ip->i_tlock); 2052 2053 switch (ip->i_mode & IFMT) { 2054 2055 case IFBLK: 2056 vap->va_blksize = MAXBSIZE; /* was BLKDEV_IOSIZE */ 2057 break; 2058 2059 case IFCHR: 2060 vap->va_blksize = MAXBSIZE; 2061 break; 2062 2063 default: 2064 vap->va_blksize = ip->i_fs->fs_bsize; 2065 break; 2066 } 2067 vap->va_nblocks = (fsblkcnt64_t)ip->i_blocks; 2068 rw_exit(&ip->i_contents); 2069 err = 0; 2070 2071 out: 2072 return (err); 2073 } 2074 2075 /* 2076 * Special wrapper to provide a callback for secpolicy_vnode_setattr(). 2077 * The i_contents lock is already held by the caller and we need to 2078 * declare the inode as 'void *' argument. 2079 */ 2080 static int 2081 ufs_priv_access(void *vip, int mode, struct cred *cr) 2082 { 2083 struct inode *ip = vip; 2084 2085 return (ufs_iaccess(ip, mode, cr, 0)); 2086 } 2087 2088 /*ARGSUSED4*/ 2089 static int 2090 ufs_setattr( 2091 struct vnode *vp, 2092 struct vattr *vap, 2093 int flags, 2094 struct cred *cr, 2095 caller_context_t *ct) 2096 { 2097 struct inode *ip = VTOI(vp); 2098 struct ufsvfs *ufsvfsp = ip->i_ufsvfs; 2099 struct fs *fs; 2100 struct ulockfs *ulp; 2101 char *errmsg1; 2102 char *errmsg2; 2103 long blocks; 2104 long int mask = vap->va_mask; 2105 size_t len1, len2; 2106 int issync; 2107 int trans_size; 2108 int dotrans; 2109 int dorwlock; 2110 int error; 2111 int owner_change; 2112 int dodqlock; 2113 timestruc_t now; 2114 vattr_t oldva; 2115 int retry = 1; 2116 int indeadlock; 2117 2118 /* 2119 * Cannot set these attributes. 2120 */ 2121 if ((mask & AT_NOSET) || (mask & AT_XVATTR)) 2122 return (EINVAL); 2123 2124 /* 2125 * check for forced unmount 2126 */ 2127 if (ufsvfsp == NULL) 2128 return (EIO); 2129 2130 fs = ufsvfsp->vfs_fs; 2131 if (fs->fs_ronly != 0) 2132 return (EROFS); 2133 2134 again: 2135 errmsg1 = NULL; 2136 errmsg2 = NULL; 2137 dotrans = 0; 2138 dorwlock = 0; 2139 dodqlock = 0; 2140 2141 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_SETATTR_MASK); 2142 if (error) 2143 goto out; 2144 2145 /* 2146 * Acquire i_rwlock before TRANS_BEGIN_CSYNC() if this is a file. 2147 * This follows the protocol for read()/write(). 2148 */ 2149 if (vp->v_type != VDIR) { 2150 /* 2151 * ufs_tryirwlock uses rw_tryenter and checks for SLOCK to 2152 * avoid i_rwlock, ufs_lockfs_begin deadlock. If deadlock 2153 * possible, retries the operation. 2154 */ 2155 ufs_tryirwlock(&ip->i_rwlock, RW_WRITER, retry_file); 2156 if (indeadlock) { 2157 if (ulp) 2158 ufs_lockfs_end(ulp); 2159 goto again; 2160 } 2161 dorwlock = 1; 2162 } 2163 2164 /* 2165 * Truncate file. Must have write permission and not be a directory. 2166 */ 2167 if (mask & AT_SIZE) { 2168 rw_enter(&ip->i_contents, RW_WRITER); 2169 if (vp->v_type == VDIR) { 2170 error = EISDIR; 2171 goto update_inode; 2172 } 2173 if (error = ufs_iaccess(ip, IWRITE, cr, 0)) 2174 goto update_inode; 2175 2176 rw_exit(&ip->i_contents); 2177 error = TRANS_ITRUNC(ip, vap->va_size, 0, cr); 2178 if (error) { 2179 rw_enter(&ip->i_contents, RW_WRITER); 2180 goto update_inode; 2181 } 2182 } 2183 2184 if (ulp) { 2185 trans_size = (int)TOP_SETATTR_SIZE(ip); 2186 TRANS_BEGIN_CSYNC(ufsvfsp, issync, TOP_SETATTR, trans_size); 2187 ++dotrans; 2188 } 2189 2190 /* 2191 * Acquire i_rwlock after TRANS_BEGIN_CSYNC() if this is a directory. 2192 * This follows the protocol established by 2193 * ufs_link/create/remove/rename/mkdir/rmdir/symlink. 2194 */ 2195 if (vp->v_type == VDIR) { 2196 ufs_tryirwlock_trans(&ip->i_rwlock, RW_WRITER, TOP_SETATTR, 2197 retry_dir); 2198 if (indeadlock) 2199 goto again; 2200 dorwlock = 1; 2201 } 2202 2203 /* 2204 * Grab quota lock if we are changing the file's owner. 2205 */ 2206 if (mask & AT_UID) { 2207 rw_enter(&ufsvfsp->vfs_dqrwlock, RW_READER); 2208 dodqlock = 1; 2209 } 2210 rw_enter(&ip->i_contents, RW_WRITER); 2211 2212 oldva.va_mode = ip->i_mode; 2213 oldva.va_uid = ip->i_uid; 2214 oldva.va_gid = ip->i_gid; 2215 2216 vap->va_mask &= ~AT_SIZE; 2217 2218 error = secpolicy_vnode_setattr(cr, vp, vap, &oldva, flags, 2219 ufs_priv_access, ip); 2220 if (error) 2221 goto update_inode; 2222 2223 mask = vap->va_mask; 2224 2225 /* 2226 * Change file access modes. 2227 */ 2228 if (mask & AT_MODE) { 2229 ip->i_mode = (ip->i_mode & IFMT) | (vap->va_mode & ~IFMT); 2230 TRANS_INODE(ufsvfsp, ip); 2231 ip->i_flag |= ICHG; 2232 if (stickyhack) { 2233 mutex_enter(&vp->v_lock); 2234 if ((ip->i_mode & (ISVTX | IEXEC | IFDIR)) == ISVTX) 2235 vp->v_flag |= VSWAPLIKE; 2236 else 2237 vp->v_flag &= ~VSWAPLIKE; 2238 mutex_exit(&vp->v_lock); 2239 } 2240 } 2241 if (mask & (AT_UID|AT_GID)) { 2242 if (mask & AT_UID) { 2243 /* 2244 * Don't change ownership of the quota inode. 2245 */ 2246 if (ufsvfsp->vfs_qinod == ip) { 2247 ASSERT(ufsvfsp->vfs_qflags & MQ_ENABLED); 2248 error = EINVAL; 2249 goto update_inode; 2250 } 2251 2252 /* 2253 * No real ownership change. 2254 */ 2255 if (ip->i_uid == vap->va_uid) { 2256 blocks = 0; 2257 owner_change = 0; 2258 } 2259 /* 2260 * Remove the blocks and the file, from the old user's 2261 * quota. 2262 */ 2263 else { 2264 blocks = ip->i_blocks; 2265 owner_change = 1; 2266 2267 (void) chkdq(ip, -blocks, /* force */ 1, cr, 2268 (char **)NULL, (size_t *)NULL); 2269 (void) chkiq(ufsvfsp, /* change */ -1, ip, 2270 (uid_t)ip->i_uid, /* force */ 1, cr, 2271 (char **)NULL, (size_t *)NULL); 2272 dqrele(ip->i_dquot); 2273 } 2274 2275 ip->i_uid = vap->va_uid; 2276 2277 /* 2278 * There is a real ownership change. 2279 */ 2280 if (owner_change) { 2281 /* 2282 * Add the blocks and the file to the new 2283 * user's quota. 2284 */ 2285 ip->i_dquot = getinoquota(ip); 2286 (void) chkdq(ip, blocks, /* force */ 1, cr, 2287 &errmsg1, &len1); 2288 (void) chkiq(ufsvfsp, /* change */ 1, 2289 (struct inode *)NULL, (uid_t)ip->i_uid, 2290 /* force */ 1, cr, &errmsg2, &len2); 2291 } 2292 } 2293 if (mask & AT_GID) { 2294 ip->i_gid = vap->va_gid; 2295 } 2296 TRANS_INODE(ufsvfsp, ip); 2297 ip->i_flag |= ICHG; 2298 } 2299 /* 2300 * Change file access or modified times. 2301 */ 2302 if (mask & (AT_ATIME|AT_MTIME)) { 2303 /* Check that the time value is within ufs range */ 2304 if (((mask & AT_ATIME) && TIMESPEC_OVERFLOW(&vap->va_atime)) || 2305 ((mask & AT_MTIME) && TIMESPEC_OVERFLOW(&vap->va_mtime))) { 2306 error = EOVERFLOW; 2307 goto update_inode; 2308 } 2309 2310 /* 2311 * if the "noaccess" mount option is set and only atime 2312 * update is requested, do nothing. No error is returned. 2313 */ 2314 if ((ufsvfsp->vfs_noatime) && 2315 ((mask & (AT_ATIME|AT_MTIME)) == AT_ATIME)) 2316 goto skip_atime; 2317 2318 if (mask & AT_ATIME) { 2319 ip->i_atime.tv_sec = vap->va_atime.tv_sec; 2320 ip->i_atime.tv_usec = vap->va_atime.tv_nsec / 1000; 2321 ip->i_flag &= ~IACC; 2322 } 2323 if (mask & AT_MTIME) { 2324 ip->i_mtime.tv_sec = vap->va_mtime.tv_sec; 2325 ip->i_mtime.tv_usec = vap->va_mtime.tv_nsec / 1000; 2326 gethrestime(&now); 2327 if (now.tv_sec > TIME32_MAX) { 2328 /* 2329 * In 2038, ctime sticks forever.. 2330 */ 2331 ip->i_ctime.tv_sec = TIME32_MAX; 2332 ip->i_ctime.tv_usec = 0; 2333 } else { 2334 ip->i_ctime.tv_sec = now.tv_sec; 2335 ip->i_ctime.tv_usec = now.tv_nsec / 1000; 2336 } 2337 ip->i_flag &= ~(IUPD|ICHG); 2338 ip->i_flag |= IMODTIME; 2339 } 2340 TRANS_INODE(ufsvfsp, ip); 2341 ip->i_flag |= IMOD; 2342 } 2343 2344 skip_atime: 2345 /* 2346 * The presence of a shadow inode may indicate an ACL, but does 2347 * not imply an ACL. Future FSD types should be handled here too 2348 * and check for the presence of the attribute-specific data 2349 * before referencing it. 2350 */ 2351 if (ip->i_shadow) { 2352 /* 2353 * XXX if ufs_iupdat is changed to sandbagged write fix 2354 * ufs_acl_setattr to push ip to keep acls consistent 2355 * 2356 * Suppress out of inodes messages if we will retry. 2357 */ 2358 if (retry) 2359 ip->i_flag |= IQUIET; 2360 error = ufs_acl_setattr(ip, vap, cr); 2361 ip->i_flag &= ~IQUIET; 2362 } 2363 2364 update_inode: 2365 /* 2366 * Setattr always increases the sequence number 2367 */ 2368 ip->i_seq++; 2369 2370 /* 2371 * if nfsd and not logging; push synchronously 2372 */ 2373 if ((curthread->t_flag & T_DONTPEND) && !TRANS_ISTRANS(ufsvfsp)) { 2374 ufs_iupdat(ip, 1); 2375 } else { 2376 ITIMES_NOLOCK(ip); 2377 } 2378 2379 rw_exit(&ip->i_contents); 2380 if (dodqlock) { 2381 rw_exit(&ufsvfsp->vfs_dqrwlock); 2382 } 2383 if (dorwlock) 2384 rw_exit(&ip->i_rwlock); 2385 2386 if (ulp) { 2387 if (dotrans) { 2388 int terr = 0; 2389 TRANS_END_CSYNC(ufsvfsp, terr, issync, TOP_SETATTR, 2390 trans_size); 2391 if (error == 0) 2392 error = terr; 2393 } 2394 ufs_lockfs_end(ulp); 2395 } 2396 out: 2397 /* 2398 * If out of inodes or blocks, see if we can free something 2399 * up from the delete queue. 2400 */ 2401 if ((error == ENOSPC) && retry && TRANS_ISTRANS(ufsvfsp)) { 2402 ufs_delete_drain_wait(ufsvfsp, 1); 2403 retry = 0; 2404 if (errmsg1 != NULL) 2405 kmem_free(errmsg1, len1); 2406 if (errmsg2 != NULL) 2407 kmem_free(errmsg2, len2); 2408 goto again; 2409 } 2410 if (errmsg1 != NULL) { 2411 uprintf(errmsg1); 2412 kmem_free(errmsg1, len1); 2413 } 2414 if (errmsg2 != NULL) { 2415 uprintf(errmsg2); 2416 kmem_free(errmsg2, len2); 2417 } 2418 return (error); 2419 } 2420 2421 /*ARGSUSED*/ 2422 static int 2423 ufs_access(struct vnode *vp, int mode, int flags, struct cred *cr, 2424 caller_context_t *ct) 2425 { 2426 struct inode *ip = VTOI(vp); 2427 2428 if (ip->i_ufsvfs == NULL) 2429 return (EIO); 2430 2431 /* 2432 * The ufs_iaccess function wants to be called with 2433 * mode bits expressed as "ufs specific" bits. 2434 * I.e., VWRITE|VREAD|VEXEC do not make sense to 2435 * ufs_iaccess() but IWRITE|IREAD|IEXEC do. 2436 * But since they're the same we just pass the vnode mode 2437 * bit but just verify that assumption at compile time. 2438 */ 2439 #if IWRITE != VWRITE || IREAD != VREAD || IEXEC != VEXEC 2440 #error "ufs_access needs to map Vmodes to Imodes" 2441 #endif 2442 return (ufs_iaccess(ip, mode, cr, 1)); 2443 } 2444 2445 /* ARGSUSED */ 2446 static int 2447 ufs_readlink(struct vnode *vp, struct uio *uiop, struct cred *cr, 2448 caller_context_t *ct) 2449 { 2450 struct inode *ip = VTOI(vp); 2451 struct ufsvfs *ufsvfsp; 2452 struct ulockfs *ulp; 2453 int error; 2454 int fastsymlink; 2455 2456 if (vp->v_type != VLNK) { 2457 error = EINVAL; 2458 goto nolockout; 2459 } 2460 2461 /* 2462 * If the symbolic link is empty there is nothing to read. 2463 * Fast-track these empty symbolic links 2464 */ 2465 if (ip->i_size == 0) { 2466 error = 0; 2467 goto nolockout; 2468 } 2469 2470 ufsvfsp = ip->i_ufsvfs; 2471 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_READLINK_MASK); 2472 if (error) 2473 goto nolockout; 2474 /* 2475 * The ip->i_rwlock protects the data blocks used for FASTSYMLINK 2476 */ 2477 again: 2478 fastsymlink = 0; 2479 if (ip->i_flag & IFASTSYMLNK) { 2480 rw_enter(&ip->i_rwlock, RW_READER); 2481 rw_enter(&ip->i_contents, RW_READER); 2482 if (ip->i_flag & IFASTSYMLNK) { 2483 if (!ULOCKFS_IS_NOIACC(ITOUL(ip)) && 2484 (ip->i_fs->fs_ronly == 0) && 2485 (!ufsvfsp->vfs_noatime)) { 2486 mutex_enter(&ip->i_tlock); 2487 ip->i_flag |= IACC; 2488 mutex_exit(&ip->i_tlock); 2489 } 2490 error = uiomove((caddr_t)&ip->i_db[1], 2491 MIN(ip->i_size, uiop->uio_resid), 2492 UIO_READ, uiop); 2493 ITIMES(ip); 2494 ++fastsymlink; 2495 } 2496 rw_exit(&ip->i_contents); 2497 rw_exit(&ip->i_rwlock); 2498 } 2499 if (!fastsymlink) { 2500 ssize_t size; /* number of bytes read */ 2501 caddr_t basep; /* pointer to input data */ 2502 ino_t ino; 2503 long igen; 2504 struct uio tuio; /* temp uio struct */ 2505 struct uio *tuiop; 2506 iovec_t tiov; /* temp iovec struct */ 2507 char kbuf[FSL_SIZE]; /* buffer to hold fast symlink */ 2508 int tflag = 0; /* flag to indicate temp vars used */ 2509 2510 ino = ip->i_number; 2511 igen = ip->i_gen; 2512 size = uiop->uio_resid; 2513 basep = uiop->uio_iov->iov_base; 2514 tuiop = uiop; 2515 2516 rw_enter(&ip->i_rwlock, RW_WRITER); 2517 rw_enter(&ip->i_contents, RW_WRITER); 2518 if (ip->i_flag & IFASTSYMLNK) { 2519 rw_exit(&ip->i_contents); 2520 rw_exit(&ip->i_rwlock); 2521 goto again; 2522 } 2523 2524 /* can this be a fast symlink and is it a user buffer? */ 2525 if (ip->i_size <= FSL_SIZE && 2526 (uiop->uio_segflg == UIO_USERSPACE || 2527 uiop->uio_segflg == UIO_USERISPACE)) { 2528 2529 bzero(&tuio, sizeof (struct uio)); 2530 /* 2531 * setup a kernel buffer to read link into. this 2532 * is to fix a race condition where the user buffer 2533 * got corrupted before copying it into the inode. 2534 */ 2535 size = ip->i_size; 2536 tiov.iov_len = size; 2537 tiov.iov_base = kbuf; 2538 tuio.uio_iov = &tiov; 2539 tuio.uio_iovcnt = 1; 2540 tuio.uio_offset = uiop->uio_offset; 2541 tuio.uio_segflg = UIO_SYSSPACE; 2542 tuio.uio_fmode = uiop->uio_fmode; 2543 tuio.uio_extflg = uiop->uio_extflg; 2544 tuio.uio_limit = uiop->uio_limit; 2545 tuio.uio_resid = size; 2546 2547 basep = tuio.uio_iov->iov_base; 2548 tuiop = &tuio; 2549 tflag = 1; 2550 } 2551 2552 error = rdip(ip, tuiop, 0, cr); 2553 if (!(error == 0 && ip->i_number == ino && ip->i_gen == igen)) { 2554 rw_exit(&ip->i_contents); 2555 rw_exit(&ip->i_rwlock); 2556 goto out; 2557 } 2558 2559 if (tflag == 0) 2560 size -= uiop->uio_resid; 2561 2562 if ((tflag == 0 && ip->i_size <= FSL_SIZE && 2563 ip->i_size == size) || (tflag == 1 && 2564 tuio.uio_resid == 0)) { 2565 error = kcopy(basep, &ip->i_db[1], ip->i_size); 2566 if (error == 0) { 2567 ip->i_flag |= IFASTSYMLNK; 2568 /* 2569 * free page 2570 */ 2571 (void) VOP_PUTPAGE(ITOV(ip), 2572 (offset_t)0, PAGESIZE, 2573 (B_DONTNEED | B_FREE | B_FORCE | B_ASYNC), 2574 cr, ct); 2575 } else { 2576 int i; 2577 /* error, clear garbage left behind */ 2578 for (i = 1; i < NDADDR; i++) 2579 ip->i_db[i] = 0; 2580 for (i = 0; i < NIADDR; i++) 2581 ip->i_ib[i] = 0; 2582 } 2583 } 2584 if (tflag == 1) { 2585 /* now, copy it into the user buffer */ 2586 error = uiomove((caddr_t)kbuf, 2587 MIN(size, uiop->uio_resid), 2588 UIO_READ, uiop); 2589 } 2590 rw_exit(&ip->i_contents); 2591 rw_exit(&ip->i_rwlock); 2592 } 2593 out: 2594 if (ulp) { 2595 ufs_lockfs_end(ulp); 2596 } 2597 nolockout: 2598 return (error); 2599 } 2600 2601 /* ARGSUSED */ 2602 static int 2603 ufs_fsync(struct vnode *vp, int syncflag, struct cred *cr, 2604 caller_context_t *ct) 2605 { 2606 struct inode *ip = VTOI(vp); 2607 struct ufsvfs *ufsvfsp = ip->i_ufsvfs; 2608 struct ulockfs *ulp; 2609 int error; 2610 2611 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_FSYNC_MASK); 2612 if (error) 2613 return (error); 2614 2615 if (TRANS_ISTRANS(ufsvfsp)) { 2616 /* 2617 * First push out any data pages 2618 */ 2619 if (vn_has_cached_data(vp) && !(syncflag & FNODSYNC) && 2620 (vp->v_type != VCHR) && !(IS_SWAPVP(vp))) { 2621 error = VOP_PUTPAGE(vp, (offset_t)0, (size_t)0, 2622 0, CRED(), ct); 2623 if (error) 2624 goto out; 2625 } 2626 2627 /* 2628 * Delta any delayed inode times updates 2629 * and push inode to log. 2630 * All other inode deltas will have already been delta'd 2631 * and will be pushed during the commit. 2632 */ 2633 if (!(syncflag & FDSYNC) && 2634 ((ip->i_flag & (IMOD|IMODACC)) == IMODACC)) { 2635 if (ulp) { 2636 TRANS_BEGIN_ASYNC(ufsvfsp, TOP_FSYNC, 2637 TOP_SYNCIP_SIZE); 2638 } 2639 rw_enter(&ip->i_contents, RW_READER); 2640 mutex_enter(&ip->i_tlock); 2641 ip->i_flag &= ~IMODTIME; 2642 mutex_exit(&ip->i_tlock); 2643 ufs_iupdat(ip, I_SYNC); 2644 rw_exit(&ip->i_contents); 2645 if (ulp) { 2646 TRANS_END_ASYNC(ufsvfsp, TOP_FSYNC, 2647 TOP_SYNCIP_SIZE); 2648 } 2649 } 2650 2651 /* 2652 * Commit the Moby transaction 2653 * 2654 * Deltas have already been made so we just need to 2655 * commit them with a synchronous transaction. 2656 * TRANS_BEGIN_SYNC() will return an error 2657 * if there are no deltas to commit, for an 2658 * empty transaction. 2659 */ 2660 if (ulp) { 2661 TRANS_BEGIN_SYNC(ufsvfsp, TOP_FSYNC, TOP_COMMIT_SIZE, 2662 error); 2663 if (error) { 2664 error = 0; /* commit wasn't needed */ 2665 goto out; 2666 } 2667 TRANS_END_SYNC(ufsvfsp, error, TOP_FSYNC, 2668 TOP_COMMIT_SIZE); 2669 } 2670 } else { /* not logging */ 2671 if (!(IS_SWAPVP(vp))) 2672 if (syncflag & FNODSYNC) { 2673 /* Just update the inode only */ 2674 TRANS_IUPDAT(ip, 1); 2675 error = 0; 2676 } else if (syncflag & FDSYNC) 2677 /* Do data-synchronous writes */ 2678 error = TRANS_SYNCIP(ip, 0, I_DSYNC, TOP_FSYNC); 2679 else 2680 /* Do synchronous writes */ 2681 error = TRANS_SYNCIP(ip, 0, I_SYNC, TOP_FSYNC); 2682 2683 rw_enter(&ip->i_contents, RW_WRITER); 2684 if (!error) 2685 error = ufs_sync_indir(ip); 2686 rw_exit(&ip->i_contents); 2687 } 2688 out: 2689 if (ulp) { 2690 ufs_lockfs_end(ulp); 2691 } 2692 return (error); 2693 } 2694 2695 /*ARGSUSED*/ 2696 static void 2697 ufs_inactive(struct vnode *vp, struct cred *cr, caller_context_t *ct) 2698 { 2699 ufs_iinactive(VTOI(vp)); 2700 } 2701 2702 /* 2703 * Unix file system operations having to do with directory manipulation. 2704 */ 2705 int ufs_lookup_idle_count = 2; /* Number of inodes to idle each time */ 2706 /* ARGSUSED */ 2707 static int 2708 ufs_lookup(struct vnode *dvp, char *nm, struct vnode **vpp, 2709 struct pathname *pnp, int flags, struct vnode *rdir, struct cred *cr, 2710 caller_context_t *ct, int *direntflags, pathname_t *realpnp) 2711 { 2712 struct inode *ip; 2713 struct inode *sip; 2714 struct inode *xip; 2715 struct ufsvfs *ufsvfsp; 2716 struct ulockfs *ulp; 2717 struct vnode *vp; 2718 int error; 2719 2720 /* 2721 * Check flags for type of lookup (regular file or attribute file) 2722 */ 2723 2724 ip = VTOI(dvp); 2725 2726 if (flags & LOOKUP_XATTR) { 2727 2728 /* 2729 * If not mounted with XATTR support then return EINVAL 2730 */ 2731 2732 if (!(ip->i_ufsvfs->vfs_vfs->vfs_flag & VFS_XATTR)) 2733 return (EINVAL); 2734 /* 2735 * We don't allow recursive attributes... 2736 * Maybe someday we will. 2737 */ 2738 if ((ip->i_cflags & IXATTR)) { 2739 return (EINVAL); 2740 } 2741 2742 if ((vp = dnlc_lookup(dvp, XATTR_DIR_NAME)) == NULL) { 2743 error = ufs_xattr_getattrdir(dvp, &sip, flags, cr); 2744 if (error) { 2745 *vpp = NULL; 2746 goto out; 2747 } 2748 2749 vp = ITOV(sip); 2750 dnlc_update(dvp, XATTR_DIR_NAME, vp); 2751 } 2752 2753 /* 2754 * Check accessibility of directory. 2755 */ 2756 if (vp == DNLC_NO_VNODE) { 2757 VN_RELE(vp); 2758 error = ENOENT; 2759 goto out; 2760 } 2761 if ((error = ufs_iaccess(VTOI(vp), IEXEC, cr, 1)) != 0) { 2762 VN_RELE(vp); 2763 goto out; 2764 } 2765 2766 *vpp = vp; 2767 return (0); 2768 } 2769 2770 /* 2771 * Check for a null component, which we should treat as 2772 * looking at dvp from within it's parent, so we don't 2773 * need a call to ufs_iaccess(), as it has already been 2774 * done. 2775 */ 2776 if (nm[0] == 0) { 2777 VN_HOLD(dvp); 2778 error = 0; 2779 *vpp = dvp; 2780 goto out; 2781 } 2782 2783 /* 2784 * Check for "." ie itself. this is a quick check and 2785 * avoids adding "." into the dnlc (which have been seen 2786 * to occupy >10% of the cache). 2787 */ 2788 if ((nm[0] == '.') && (nm[1] == 0)) { 2789 /* 2790 * Don't return without checking accessibility 2791 * of the directory. We only need the lock if 2792 * we are going to return it. 2793 */ 2794 if ((error = ufs_iaccess(ip, IEXEC, cr, 1)) == 0) { 2795 VN_HOLD(dvp); 2796 *vpp = dvp; 2797 } 2798 goto out; 2799 } 2800 2801 /* 2802 * Fast path: Check the directory name lookup cache. 2803 */ 2804 if (vp = dnlc_lookup(dvp, nm)) { 2805 /* 2806 * Check accessibility of directory. 2807 */ 2808 if ((error = ufs_iaccess(ip, IEXEC, cr, 1)) != 0) { 2809 VN_RELE(vp); 2810 goto out; 2811 } 2812 if (vp == DNLC_NO_VNODE) { 2813 VN_RELE(vp); 2814 error = ENOENT; 2815 goto out; 2816 } 2817 xip = VTOI(vp); 2818 ulp = NULL; 2819 goto fastpath; 2820 } 2821 2822 /* 2823 * Keep the idle queue from getting too long by 2824 * idling two inodes before attempting to allocate another. 2825 * This operation must be performed before entering 2826 * lockfs or a transaction. 2827 */ 2828 if (ufs_idle_q.uq_ne > ufs_idle_q.uq_hiwat) 2829 if ((curthread->t_flag & T_DONTBLOCK) == 0) { 2830 ins.in_lidles.value.ul += ufs_lookup_idle_count; 2831 ufs_idle_some(ufs_lookup_idle_count); 2832 } 2833 2834 retry_lookup: 2835 /* 2836 * Check accessibility of directory. 2837 */ 2838 if (error = ufs_diraccess(ip, IEXEC, cr)) 2839 goto out; 2840 2841 ufsvfsp = ip->i_ufsvfs; 2842 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_LOOKUP_MASK); 2843 if (error) 2844 goto out; 2845 2846 error = ufs_dirlook(ip, nm, &xip, cr, 1); 2847 2848 fastpath: 2849 if (error == 0) { 2850 ip = xip; 2851 *vpp = ITOV(ip); 2852 2853 /* 2854 * If vnode is a device return special vnode instead. 2855 */ 2856 if (IS_DEVVP(*vpp)) { 2857 struct vnode *newvp; 2858 2859 newvp = specvp(*vpp, (*vpp)->v_rdev, (*vpp)->v_type, 2860 cr); 2861 VN_RELE(*vpp); 2862 if (newvp == NULL) 2863 error = ENOSYS; 2864 else 2865 *vpp = newvp; 2866 } else if (ip->i_cflags & ICOMPRESS) { 2867 struct vnode *newvp; 2868 2869 /* 2870 * Compressed file, substitute dcfs vnode 2871 */ 2872 newvp = decompvp(*vpp, cr, ct); 2873 VN_RELE(*vpp); 2874 if (newvp == NULL) 2875 error = ENOSYS; 2876 else 2877 *vpp = newvp; 2878 } 2879 } 2880 if (ulp) { 2881 ufs_lockfs_end(ulp); 2882 } 2883 2884 if (error == EAGAIN) 2885 goto retry_lookup; 2886 2887 out: 2888 return (error); 2889 } 2890 2891 /*ARGSUSED*/ 2892 static int 2893 ufs_create(struct vnode *dvp, char *name, struct vattr *vap, enum vcexcl excl, 2894 int mode, struct vnode **vpp, struct cred *cr, int flag, 2895 caller_context_t *ct, vsecattr_t *vsecp) 2896 { 2897 struct inode *ip; 2898 struct inode *xip; 2899 struct inode *dip; 2900 struct vnode *xvp; 2901 struct ufsvfs *ufsvfsp; 2902 struct ulockfs *ulp; 2903 int error; 2904 int issync; 2905 int truncflag; 2906 int trans_size; 2907 int noentry; 2908 int defer_dip_seq_update = 0; /* need to defer update of dip->i_seq */ 2909 int retry = 1; 2910 int indeadlock; 2911 2912 again: 2913 ip = VTOI(dvp); 2914 ufsvfsp = ip->i_ufsvfs; 2915 truncflag = 0; 2916 2917 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_CREATE_MASK); 2918 if (error) 2919 goto out; 2920 2921 if (ulp) { 2922 trans_size = (int)TOP_CREATE_SIZE(ip); 2923 TRANS_BEGIN_CSYNC(ufsvfsp, issync, TOP_CREATE, trans_size); 2924 } 2925 2926 if ((vap->va_mode & VSVTX) && secpolicy_vnode_stky_modify(cr) != 0) 2927 vap->va_mode &= ~VSVTX; 2928 2929 if (*name == '\0') { 2930 /* 2931 * Null component name refers to the directory itself. 2932 */ 2933 VN_HOLD(dvp); 2934 /* 2935 * Even though this is an error case, we need to grab the 2936 * quota lock since the error handling code below is common. 2937 */ 2938 rw_enter(&ufsvfsp->vfs_dqrwlock, RW_READER); 2939 rw_enter(&ip->i_contents, RW_WRITER); 2940 error = EEXIST; 2941 } else { 2942 xip = NULL; 2943 noentry = 0; 2944 /* 2945 * ufs_tryirwlock_trans uses rw_tryenter and checks for SLOCK 2946 * to avoid i_rwlock, ufs_lockfs_begin deadlock. If deadlock 2947 * possible, retries the operation. 2948 */ 2949 ufs_tryirwlock_trans(&ip->i_rwlock, RW_WRITER, TOP_CREATE, 2950 retry_dir); 2951 if (indeadlock) 2952 goto again; 2953 2954 xvp = dnlc_lookup(dvp, name); 2955 if (xvp == DNLC_NO_VNODE) { 2956 noentry = 1; 2957 VN_RELE(xvp); 2958 xvp = NULL; 2959 } 2960 if (xvp) { 2961 rw_exit(&ip->i_rwlock); 2962 if (error = ufs_iaccess(ip, IEXEC, cr, 1)) { 2963 VN_RELE(xvp); 2964 } else { 2965 error = EEXIST; 2966 xip = VTOI(xvp); 2967 } 2968 } else { 2969 /* 2970 * Suppress file system full message if we will retry 2971 */ 2972 error = ufs_direnter_cm(ip, name, DE_CREATE, 2973 vap, &xip, cr, (noentry | (retry ? IQUIET : 0))); 2974 if (error == EAGAIN) { 2975 if (ulp) { 2976 TRANS_END_CSYNC(ufsvfsp, error, issync, 2977 TOP_CREATE, trans_size); 2978 ufs_lockfs_end(ulp); 2979 } 2980 goto again; 2981 } 2982 rw_exit(&ip->i_rwlock); 2983 } 2984 ip = xip; 2985 if (ip != NULL) { 2986 rw_enter(&ufsvfsp->vfs_dqrwlock, RW_READER); 2987 rw_enter(&ip->i_contents, RW_WRITER); 2988 } 2989 } 2990 2991 /* 2992 * If the file already exists and this is a non-exclusive create, 2993 * check permissions and allow access for non-directories. 2994 * Read-only create of an existing directory is also allowed. 2995 * We fail an exclusive create of anything which already exists. 2996 */ 2997 if (error == EEXIST) { 2998 dip = VTOI(dvp); 2999 if (excl == NONEXCL) { 3000 if ((((ip->i_mode & IFMT) == IFDIR) || 3001 ((ip->i_mode & IFMT) == IFATTRDIR)) && 3002 (mode & IWRITE)) 3003 error = EISDIR; 3004 else if (mode) 3005 error = ufs_iaccess(ip, mode, cr, 0); 3006 else 3007 error = 0; 3008 } 3009 if (error) { 3010 rw_exit(&ip->i_contents); 3011 rw_exit(&ufsvfsp->vfs_dqrwlock); 3012 VN_RELE(ITOV(ip)); 3013 goto unlock; 3014 } 3015 /* 3016 * If the error EEXIST was set, then i_seq can not 3017 * have been updated. The sequence number interface 3018 * is defined such that a non-error VOP_CREATE must 3019 * increase the dir va_seq it by at least one. If we 3020 * have cleared the error, increase i_seq. Note that 3021 * we are increasing the dir i_seq and in rare cases 3022 * ip may actually be from the dvp, so we already have 3023 * the locks and it will not be subject to truncation. 3024 * In case we have to update i_seq of the parent 3025 * directory dip, we have to defer it till we have 3026 * released our locks on ip due to lock ordering requirements. 3027 */ 3028 if (ip != dip) 3029 defer_dip_seq_update = 1; 3030 else 3031 ip->i_seq++; 3032 3033 if (((ip->i_mode & IFMT) == IFREG) && 3034 (vap->va_mask & AT_SIZE) && vap->va_size == 0) { 3035 /* 3036 * Truncate regular files, if requested by caller. 3037 * Grab i_rwlock to make sure no one else is 3038 * currently writing to the file (we promised 3039 * bmap we would do this). 3040 * Must get the locks in the correct order. 3041 */ 3042 if (ip->i_size == 0) { 3043 ip->i_flag |= ICHG | IUPD; 3044 ip->i_seq++; 3045 TRANS_INODE(ufsvfsp, ip); 3046 } else { 3047 /* 3048 * Large Files: Why this check here? 3049 * Though we do it in vn_create() we really 3050 * want to guarantee that we do not destroy 3051 * Large file data by atomically checking 3052 * the size while holding the contents 3053 * lock. 3054 */ 3055 if (flag && !(flag & FOFFMAX) && 3056 ((ip->i_mode & IFMT) == IFREG) && 3057 (ip->i_size > (offset_t)MAXOFF32_T)) { 3058 rw_exit(&ip->i_contents); 3059 rw_exit(&ufsvfsp->vfs_dqrwlock); 3060 error = EOVERFLOW; 3061 goto unlock; 3062 } 3063 if (TRANS_ISTRANS(ufsvfsp)) 3064 truncflag++; 3065 else { 3066 rw_exit(&ip->i_contents); 3067 rw_exit(&ufsvfsp->vfs_dqrwlock); 3068 ufs_tryirwlock_trans(&ip->i_rwlock, 3069 RW_WRITER, TOP_CREATE, 3070 retry_file); 3071 if (indeadlock) { 3072 VN_RELE(ITOV(ip)); 3073 goto again; 3074 } 3075 rw_enter(&ufsvfsp->vfs_dqrwlock, 3076 RW_READER); 3077 rw_enter(&ip->i_contents, RW_WRITER); 3078 (void) ufs_itrunc(ip, (u_offset_t)0, 0, 3079 cr); 3080 rw_exit(&ip->i_rwlock); 3081 } 3082 3083 } 3084 if (error == 0) { 3085 vnevent_create(ITOV(ip), ct); 3086 } 3087 } 3088 } 3089 3090 if (error) { 3091 if (ip != NULL) { 3092 rw_exit(&ufsvfsp->vfs_dqrwlock); 3093 rw_exit(&ip->i_contents); 3094 } 3095 goto unlock; 3096 } 3097 3098 *vpp = ITOV(ip); 3099 ITIMES(ip); 3100 rw_exit(&ip->i_contents); 3101 rw_exit(&ufsvfsp->vfs_dqrwlock); 3102 3103 /* 3104 * If vnode is a device return special vnode instead. 3105 */ 3106 if (!error && IS_DEVVP(*vpp)) { 3107 struct vnode *newvp; 3108 3109 newvp = specvp(*vpp, (*vpp)->v_rdev, (*vpp)->v_type, cr); 3110 VN_RELE(*vpp); 3111 if (newvp == NULL) { 3112 error = ENOSYS; 3113 goto unlock; 3114 } 3115 truncflag = 0; 3116 *vpp = newvp; 3117 } 3118 unlock: 3119 3120 /* 3121 * Do the deferred update of the parent directory's sequence 3122 * number now. 3123 */ 3124 if (defer_dip_seq_update == 1) { 3125 rw_enter(&dip->i_contents, RW_READER); 3126 mutex_enter(&dip->i_tlock); 3127 dip->i_seq++; 3128 mutex_exit(&dip->i_tlock); 3129 rw_exit(&dip->i_contents); 3130 } 3131 3132 if (ulp) { 3133 int terr = 0; 3134 3135 TRANS_END_CSYNC(ufsvfsp, terr, issync, TOP_CREATE, 3136 trans_size); 3137 3138 /* 3139 * If we haven't had a more interesting failure 3140 * already, then anything that might've happened 3141 * here should be reported. 3142 */ 3143 if (error == 0) 3144 error = terr; 3145 } 3146 3147 if (!error && truncflag) { 3148 ufs_tryirwlock(&ip->i_rwlock, RW_WRITER, retry_trunc); 3149 if (indeadlock) { 3150 if (ulp) 3151 ufs_lockfs_end(ulp); 3152 VN_RELE(ITOV(ip)); 3153 goto again; 3154 } 3155 (void) TRANS_ITRUNC(ip, (u_offset_t)0, 0, cr); 3156 rw_exit(&ip->i_rwlock); 3157 } 3158 3159 if (ulp) 3160 ufs_lockfs_end(ulp); 3161 3162 /* 3163 * If no inodes available, try to free one up out of the 3164 * pending delete queue. 3165 */ 3166 if ((error == ENOSPC) && retry && TRANS_ISTRANS(ufsvfsp)) { 3167 ufs_delete_drain_wait(ufsvfsp, 1); 3168 retry = 0; 3169 goto again; 3170 } 3171 3172 out: 3173 return (error); 3174 } 3175 3176 extern int ufs_idle_max; 3177 /*ARGSUSED*/ 3178 static int 3179 ufs_remove(struct vnode *vp, char *nm, struct cred *cr, 3180 caller_context_t *ct, int flags) 3181 { 3182 struct inode *ip = VTOI(vp); 3183 struct ufsvfs *ufsvfsp = ip->i_ufsvfs; 3184 struct ulockfs *ulp; 3185 vnode_t *rmvp = NULL; /* Vnode corresponding to name being removed */ 3186 int indeadlock; 3187 int error; 3188 int issync; 3189 int trans_size; 3190 3191 /* 3192 * don't let the delete queue get too long 3193 */ 3194 if (ufsvfsp == NULL) { 3195 error = EIO; 3196 goto out; 3197 } 3198 if (ufsvfsp->vfs_delete.uq_ne > ufs_idle_max) 3199 ufs_delete_drain(vp->v_vfsp, 1, 1); 3200 3201 retry_remove: 3202 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_REMOVE_MASK); 3203 if (error) 3204 goto out; 3205 3206 if (ulp) 3207 TRANS_BEGIN_CSYNC(ufsvfsp, issync, TOP_REMOVE, 3208 trans_size = (int)TOP_REMOVE_SIZE(VTOI(vp))); 3209 3210 /* 3211 * ufs_tryirwlock_trans uses rw_tryenter and checks for SLOCK 3212 * to avoid i_rwlock, ufs_lockfs_begin deadlock. If deadlock 3213 * possible, retries the operation. 3214 */ 3215 ufs_tryirwlock_trans(&ip->i_rwlock, RW_WRITER, TOP_REMOVE, retry); 3216 if (indeadlock) 3217 goto retry_remove; 3218 error = ufs_dirremove(ip, nm, (struct inode *)0, (struct vnode *)0, 3219 DR_REMOVE, cr, &rmvp); 3220 rw_exit(&ip->i_rwlock); 3221 3222 if (ulp) { 3223 TRANS_END_CSYNC(ufsvfsp, error, issync, TOP_REMOVE, trans_size); 3224 ufs_lockfs_end(ulp); 3225 } 3226 3227 /* 3228 * This must be called after the remove transaction is closed. 3229 */ 3230 if (rmvp != NULL) { 3231 /* Only send the event if there were no errors */ 3232 if (error == 0) 3233 vnevent_remove(rmvp, vp, nm, ct); 3234 VN_RELE(rmvp); 3235 } 3236 out: 3237 return (error); 3238 } 3239 3240 /* 3241 * Link a file or a directory. Only privileged processes are allowed to 3242 * make links to directories. 3243 */ 3244 /*ARGSUSED*/ 3245 static int 3246 ufs_link(struct vnode *tdvp, struct vnode *svp, char *tnm, struct cred *cr, 3247 caller_context_t *ct, int flags) 3248 { 3249 struct inode *sip; 3250 struct inode *tdp = VTOI(tdvp); 3251 struct ufsvfs *ufsvfsp = tdp->i_ufsvfs; 3252 struct ulockfs *ulp; 3253 struct vnode *realvp; 3254 int error; 3255 int issync; 3256 int trans_size; 3257 int isdev; 3258 int indeadlock; 3259 3260 retry_link: 3261 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_LINK_MASK); 3262 if (error) 3263 goto out; 3264 3265 if (ulp) 3266 TRANS_BEGIN_CSYNC(ufsvfsp, issync, TOP_LINK, 3267 trans_size = (int)TOP_LINK_SIZE(VTOI(tdvp))); 3268 3269 if (VOP_REALVP(svp, &realvp, ct) == 0) 3270 svp = realvp; 3271 3272 /* 3273 * Make sure link for extended attributes is valid 3274 * We only support hard linking of attr in ATTRDIR to ATTRDIR 3275 * 3276 * Make certain we don't attempt to look at a device node as 3277 * a ufs inode. 3278 */ 3279 3280 isdev = IS_DEVVP(svp); 3281 if (((isdev == 0) && ((VTOI(svp)->i_cflags & IXATTR) == 0) && 3282 ((tdp->i_mode & IFMT) == IFATTRDIR)) || 3283 ((isdev == 0) && (VTOI(svp)->i_cflags & IXATTR) && 3284 ((tdp->i_mode & IFMT) == IFDIR))) { 3285 error = EINVAL; 3286 goto unlock; 3287 } 3288 3289 sip = VTOI(svp); 3290 if ((svp->v_type == VDIR && 3291 secpolicy_fs_linkdir(cr, ufsvfsp->vfs_vfs) != 0) || 3292 (sip->i_uid != crgetuid(cr) && secpolicy_basic_link(cr) != 0)) { 3293 error = EPERM; 3294 goto unlock; 3295 } 3296 3297 /* 3298 * ufs_tryirwlock_trans uses rw_tryenter and checks for SLOCK 3299 * to avoid i_rwlock, ufs_lockfs_begin deadlock. If deadlock 3300 * possible, retries the operation. 3301 */ 3302 ufs_tryirwlock_trans(&tdp->i_rwlock, RW_WRITER, TOP_LINK, retry); 3303 if (indeadlock) 3304 goto retry_link; 3305 error = ufs_direnter_lr(tdp, tnm, DE_LINK, (struct inode *)0, 3306 sip, cr, NULL); 3307 rw_exit(&tdp->i_rwlock); 3308 3309 unlock: 3310 if (ulp) { 3311 TRANS_END_CSYNC(ufsvfsp, error, issync, TOP_LINK, trans_size); 3312 ufs_lockfs_end(ulp); 3313 } 3314 3315 if (!error) { 3316 vnevent_link(svp, ct); 3317 } 3318 out: 3319 return (error); 3320 } 3321 3322 uint64_t ufs_rename_retry_cnt; 3323 uint64_t ufs_rename_upgrade_retry_cnt; 3324 uint64_t ufs_rename_dircheck_retry_cnt; 3325 clock_t ufs_rename_backoff_delay = 1; 3326 3327 /* 3328 * Rename a file or directory. 3329 * We are given the vnode and entry string of the source and the 3330 * vnode and entry string of the place we want to move the source 3331 * to (the target). The essential operation is: 3332 * unlink(target); 3333 * link(source, target); 3334 * unlink(source); 3335 * but "atomically". Can't do full commit without saving state in 3336 * the inode on disk, which isn't feasible at this time. Best we 3337 * can do is always guarantee that the TARGET exists. 3338 */ 3339 3340 /*ARGSUSED*/ 3341 static int 3342 ufs_rename( 3343 struct vnode *sdvp, /* old (source) parent vnode */ 3344 char *snm, /* old (source) entry name */ 3345 struct vnode *tdvp, /* new (target) parent vnode */ 3346 char *tnm, /* new (target) entry name */ 3347 struct cred *cr, 3348 caller_context_t *ct, 3349 int flags) 3350 { 3351 struct inode *sip = NULL; /* source inode */ 3352 struct inode *ip = NULL; /* check inode */ 3353 struct inode *sdp; /* old (source) parent inode */ 3354 struct inode *tdp; /* new (target) parent inode */ 3355 struct vnode *tvp = NULL; /* target vnode, if it exists */ 3356 struct vnode *realvp; 3357 struct ufsvfs *ufsvfsp; 3358 struct ulockfs *ulp; 3359 struct ufs_slot slot; 3360 timestruc_t now; 3361 int error; 3362 int issync; 3363 int trans_size; 3364 krwlock_t *first_lock; 3365 krwlock_t *second_lock; 3366 krwlock_t *reverse_lock; 3367 3368 sdp = VTOI(sdvp); 3369 slot.fbp = NULL; 3370 ufsvfsp = sdp->i_ufsvfs; 3371 retry_rename: 3372 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_RENAME_MASK); 3373 if (error) 3374 goto out; 3375 3376 if (ulp) 3377 TRANS_BEGIN_CSYNC(ufsvfsp, issync, TOP_RENAME, 3378 trans_size = (int)TOP_RENAME_SIZE(sdp)); 3379 3380 if (VOP_REALVP(tdvp, &realvp, ct) == 0) 3381 tdvp = realvp; 3382 3383 tdp = VTOI(tdvp); 3384 3385 /* 3386 * We only allow renaming of attributes from ATTRDIR to ATTRDIR. 3387 */ 3388 if ((tdp->i_mode & IFMT) != (sdp->i_mode & IFMT)) { 3389 error = EINVAL; 3390 goto unlock; 3391 } 3392 3393 /* 3394 * Check accessibility of directory. 3395 */ 3396 if (error = ufs_diraccess(sdp, IEXEC, cr)) 3397 goto unlock; 3398 3399 /* 3400 * Look up inode of file we're supposed to rename. 3401 */ 3402 gethrestime(&now); 3403 if (error = ufs_dirlook(sdp, snm, &sip, cr, 0)) { 3404 if (error == EAGAIN) { 3405 if (ulp) { 3406 TRANS_END_CSYNC(ufsvfsp, error, issync, 3407 TOP_RENAME, trans_size); 3408 ufs_lockfs_end(ulp); 3409 } 3410 goto retry_rename; 3411 } 3412 3413 goto unlock; 3414 } 3415 3416 /* 3417 * Lock both the source and target directories (they may be 3418 * the same) to provide the atomicity semantics that was 3419 * previously provided by the per file system vfs_rename_lock 3420 * 3421 * with vfs_rename_lock removed to allow simultaneous renames 3422 * within a file system, ufs_dircheckpath can deadlock while 3423 * traversing back to ensure that source is not a parent directory 3424 * of target parent directory. This is because we get into 3425 * ufs_dircheckpath with the sdp and tdp locks held as RW_WRITER. 3426 * If the tdp and sdp of the simultaneous renames happen to be 3427 * in the path of each other, it can lead to a deadlock. This 3428 * can be avoided by getting the locks as RW_READER here and then 3429 * upgrading to RW_WRITER after completing the ufs_dircheckpath. 3430 * 3431 * We hold the target directory's i_rwlock after calling 3432 * ufs_lockfs_begin but in many other operations (like ufs_readdir) 3433 * VOP_RWLOCK is explicitly called by the filesystem independent code 3434 * before calling the file system operation. In these cases the order 3435 * is reversed (i.e i_rwlock is taken first and then ufs_lockfs_begin 3436 * is called). This is fine as long as ufs_lockfs_begin acts as a VOP 3437 * counter but with ufs_quiesce setting the SLOCK bit this becomes a 3438 * synchronizing object which might lead to a deadlock. So we use 3439 * rw_tryenter instead of rw_enter. If we fail to get this lock and 3440 * find that SLOCK bit is set, we call ufs_lockfs_end and restart the 3441 * operation. 3442 */ 3443 retry: 3444 first_lock = &tdp->i_rwlock; 3445 second_lock = &sdp->i_rwlock; 3446 retry_firstlock: 3447 if (!rw_tryenter(first_lock, RW_READER)) { 3448 /* 3449 * We didn't get the lock. Check if the SLOCK is set in the 3450 * ufsvfs. If yes, we might be in a deadlock. Safer to give up 3451 * and wait for SLOCK to be cleared. 3452 */ 3453 3454 if (ulp && ULOCKFS_IS_SLOCK(ulp)) { 3455 TRANS_END_CSYNC(ufsvfsp, error, issync, TOP_RENAME, 3456 trans_size); 3457 ufs_lockfs_end(ulp); 3458 goto retry_rename; 3459 3460 } else { 3461 /* 3462 * SLOCK isn't set so this is a genuine synchronization 3463 * case. Let's try again after giving them a breather. 3464 */ 3465 delay(RETRY_LOCK_DELAY); 3466 goto retry_firstlock; 3467 } 3468 } 3469 /* 3470 * Need to check if the tdp and sdp are same !!! 3471 */ 3472 if ((tdp != sdp) && (!rw_tryenter(second_lock, RW_READER))) { 3473 /* 3474 * We didn't get the lock. Check if the SLOCK is set in the 3475 * ufsvfs. If yes, we might be in a deadlock. Safer to give up 3476 * and wait for SLOCK to be cleared. 3477 */ 3478 3479 rw_exit(first_lock); 3480 if (ulp && ULOCKFS_IS_SLOCK(ulp)) { 3481 TRANS_END_CSYNC(ufsvfsp, error, issync, TOP_RENAME, 3482 trans_size); 3483 ufs_lockfs_end(ulp); 3484 goto retry_rename; 3485 3486 } else { 3487 /* 3488 * So we couldn't get the second level peer lock *and* 3489 * the SLOCK bit isn't set. Too bad we can be 3490 * contentding with someone wanting these locks otherway 3491 * round. Reverse the locks in case there is a heavy 3492 * contention for the second level lock. 3493 */ 3494 reverse_lock = first_lock; 3495 first_lock = second_lock; 3496 second_lock = reverse_lock; 3497 ufs_rename_retry_cnt++; 3498 goto retry_firstlock; 3499 } 3500 } 3501 3502 if (sip == tdp) { 3503 error = EINVAL; 3504 goto errout; 3505 } 3506 /* 3507 * Make sure we can delete the source entry. This requires 3508 * write permission on the containing directory. 3509 * Check for sticky directories. 3510 */ 3511 rw_enter(&sdp->i_contents, RW_READER); 3512 rw_enter(&sip->i_contents, RW_READER); 3513 if ((error = ufs_iaccess(sdp, IWRITE, cr, 0)) != 0 || 3514 (error = ufs_sticky_remove_access(sdp, sip, cr)) != 0) { 3515 rw_exit(&sip->i_contents); 3516 rw_exit(&sdp->i_contents); 3517 goto errout; 3518 } 3519 3520 /* 3521 * If this is a rename of a directory and the parent is 3522 * different (".." must be changed), then the source 3523 * directory must not be in the directory hierarchy 3524 * above the target, as this would orphan everything 3525 * below the source directory. Also the user must have 3526 * write permission in the source so as to be able to 3527 * change "..". 3528 */ 3529 if ((((sip->i_mode & IFMT) == IFDIR) || 3530 ((sip->i_mode & IFMT) == IFATTRDIR)) && sdp != tdp) { 3531 ino_t inum; 3532 3533 if (error = ufs_iaccess(sip, IWRITE, cr, 0)) { 3534 rw_exit(&sip->i_contents); 3535 rw_exit(&sdp->i_contents); 3536 goto errout; 3537 } 3538 inum = sip->i_number; 3539 rw_exit(&sip->i_contents); 3540 rw_exit(&sdp->i_contents); 3541 if ((error = ufs_dircheckpath(inum, tdp, sdp, cr))) { 3542 /* 3543 * If we got EAGAIN ufs_dircheckpath detected a 3544 * potential deadlock and backed out. We need 3545 * to retry the operation since sdp and tdp have 3546 * to be released to avoid the deadlock. 3547 */ 3548 if (error == EAGAIN) { 3549 rw_exit(&tdp->i_rwlock); 3550 if (tdp != sdp) 3551 rw_exit(&sdp->i_rwlock); 3552 delay(ufs_rename_backoff_delay); 3553 ufs_rename_dircheck_retry_cnt++; 3554 goto retry; 3555 } 3556 goto errout; 3557 } 3558 } else { 3559 rw_exit(&sip->i_contents); 3560 rw_exit(&sdp->i_contents); 3561 } 3562 3563 3564 /* 3565 * Check for renaming '.' or '..' or alias of '.' 3566 */ 3567 if (strcmp(snm, ".") == 0 || strcmp(snm, "..") == 0 || sdp == sip) { 3568 error = EINVAL; 3569 goto errout; 3570 } 3571 3572 /* 3573 * Simultaneous renames can deadlock in ufs_dircheckpath since it 3574 * tries to traverse back the file tree with both tdp and sdp held 3575 * as RW_WRITER. To avoid that we have to hold the tdp and sdp locks 3576 * as RW_READERS till ufs_dircheckpath is done. 3577 * Now that ufs_dircheckpath is done with, we can upgrade the locks 3578 * to RW_WRITER. 3579 */ 3580 if (!rw_tryupgrade(&tdp->i_rwlock)) { 3581 /* 3582 * The upgrade failed. We got to give away the lock 3583 * as to avoid deadlocking with someone else who is 3584 * waiting for writer lock. With the lock gone, we 3585 * cannot be sure the checks done above will hold 3586 * good when we eventually get them back as writer. 3587 * So if we can't upgrade we drop the locks and retry 3588 * everything again. 3589 */ 3590 rw_exit(&tdp->i_rwlock); 3591 if (tdp != sdp) 3592 rw_exit(&sdp->i_rwlock); 3593 delay(ufs_rename_backoff_delay); 3594 ufs_rename_upgrade_retry_cnt++; 3595 goto retry; 3596 } 3597 if (tdp != sdp) { 3598 if (!rw_tryupgrade(&sdp->i_rwlock)) { 3599 /* 3600 * The upgrade failed. We got to give away the lock 3601 * as to avoid deadlocking with someone else who is 3602 * waiting for writer lock. With the lock gone, we 3603 * cannot be sure the checks done above will hold 3604 * good when we eventually get them back as writer. 3605 * So if we can't upgrade we drop the locks and retry 3606 * everything again. 3607 */ 3608 rw_exit(&tdp->i_rwlock); 3609 rw_exit(&sdp->i_rwlock); 3610 delay(ufs_rename_backoff_delay); 3611 ufs_rename_upgrade_retry_cnt++; 3612 goto retry; 3613 } 3614 } 3615 3616 /* 3617 * Now that all the locks are held check to make sure another thread 3618 * didn't slip in and take out the sip. 3619 */ 3620 slot.status = NONE; 3621 if ((sip->i_ctime.tv_usec * 1000) > now.tv_nsec || 3622 sip->i_ctime.tv_sec > now.tv_sec) { 3623 rw_enter(&sdp->i_ufsvfs->vfs_dqrwlock, RW_READER); 3624 rw_enter(&sdp->i_contents, RW_WRITER); 3625 error = ufs_dircheckforname(sdp, snm, strlen(snm), &slot, 3626 &ip, cr, 0); 3627 rw_exit(&sdp->i_contents); 3628 rw_exit(&sdp->i_ufsvfs->vfs_dqrwlock); 3629 if (error) { 3630 goto errout; 3631 } 3632 if (ip == NULL) { 3633 error = ENOENT; 3634 goto errout; 3635 } else { 3636 /* 3637 * If the inode was found need to drop the v_count 3638 * so as not to keep the filesystem from being 3639 * unmounted at a later time. 3640 */ 3641 VN_RELE(ITOV(ip)); 3642 } 3643 3644 /* 3645 * Release the slot.fbp that has the page mapped and 3646 * locked SE_SHARED, and could be used in in 3647 * ufs_direnter_lr() which needs to get the SE_EXCL lock 3648 * on said page. 3649 */ 3650 if (slot.fbp) { 3651 fbrelse(slot.fbp, S_OTHER); 3652 slot.fbp = NULL; 3653 } 3654 } 3655 3656 /* 3657 * Link source to the target. If a target exists, return its 3658 * vnode pointer in tvp. We'll release it after sending the 3659 * vnevent. 3660 */ 3661 if (error = ufs_direnter_lr(tdp, tnm, DE_RENAME, sdp, sip, cr, &tvp)) { 3662 /* 3663 * ESAME isn't really an error; it indicates that the 3664 * operation should not be done because the source and target 3665 * are the same file, but that no error should be reported. 3666 */ 3667 if (error == ESAME) 3668 error = 0; 3669 goto errout; 3670 } 3671 3672 /* 3673 * Unlink the source. 3674 * Remove the source entry. ufs_dirremove() checks that the entry 3675 * still reflects sip, and returns an error if it doesn't. 3676 * If the entry has changed just forget about it. Release 3677 * the source inode. 3678 */ 3679 if ((error = ufs_dirremove(sdp, snm, sip, (struct vnode *)0, 3680 DR_RENAME, cr, NULL)) == ENOENT) 3681 error = 0; 3682 3683 errout: 3684 if (slot.fbp) 3685 fbrelse(slot.fbp, S_OTHER); 3686 3687 rw_exit(&tdp->i_rwlock); 3688 if (sdp != tdp) { 3689 rw_exit(&sdp->i_rwlock); 3690 } 3691 3692 unlock: 3693 if (ulp) { 3694 TRANS_END_CSYNC(ufsvfsp, error, issync, TOP_RENAME, trans_size); 3695 ufs_lockfs_end(ulp); 3696 } 3697 3698 /* 3699 * If no errors, send the appropriate events on the source 3700 * and destination (a.k.a, target) vnodes, if they exist. 3701 * This has to be done after the rename transaction has closed. 3702 */ 3703 if (error == 0) { 3704 if (tvp != NULL) 3705 vnevent_rename_dest(tvp, tdvp, tnm, ct); 3706 3707 /* 3708 * Notify the target directory of the rename event 3709 * if source and target directories are not same. 3710 */ 3711 if (sdvp != tdvp) 3712 vnevent_rename_dest_dir(tdvp, ct); 3713 3714 /* 3715 * Note that if ufs_direnter_lr() returned ESAME then 3716 * this event will still be sent. This isn't expected 3717 * to be a problem for anticipated usage by consumers. 3718 */ 3719 if (sip != NULL) 3720 vnevent_rename_src(ITOV(sip), sdvp, snm, ct); 3721 } 3722 3723 if (tvp != NULL) 3724 VN_RELE(tvp); 3725 3726 if (sip != NULL) 3727 VN_RELE(ITOV(sip)); 3728 3729 out: 3730 return (error); 3731 } 3732 3733 /*ARGSUSED*/ 3734 static int 3735 ufs_mkdir(struct vnode *dvp, char *dirname, struct vattr *vap, 3736 struct vnode **vpp, struct cred *cr, caller_context_t *ct, int flags, 3737 vsecattr_t *vsecp) 3738 { 3739 struct inode *ip; 3740 struct inode *xip; 3741 struct ufsvfs *ufsvfsp; 3742 struct ulockfs *ulp; 3743 int error; 3744 int issync; 3745 int trans_size; 3746 int indeadlock; 3747 int retry = 1; 3748 3749 ASSERT((vap->va_mask & (AT_TYPE|AT_MODE)) == (AT_TYPE|AT_MODE)); 3750 3751 /* 3752 * Can't make directory in attr hidden dir 3753 */ 3754 if ((VTOI(dvp)->i_mode & IFMT) == IFATTRDIR) 3755 return (EINVAL); 3756 3757 again: 3758 ip = VTOI(dvp); 3759 ufsvfsp = ip->i_ufsvfs; 3760 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_MKDIR_MASK); 3761 if (error) 3762 goto out; 3763 if (ulp) 3764 TRANS_BEGIN_CSYNC(ufsvfsp, issync, TOP_MKDIR, 3765 trans_size = (int)TOP_MKDIR_SIZE(ip)); 3766 3767 /* 3768 * ufs_tryirwlock_trans uses rw_tryenter and checks for SLOCK 3769 * to avoid i_rwlock, ufs_lockfs_begin deadlock. If deadlock 3770 * possible, retries the operation. 3771 */ 3772 ufs_tryirwlock_trans(&ip->i_rwlock, RW_WRITER, TOP_MKDIR, retry); 3773 if (indeadlock) 3774 goto again; 3775 3776 error = ufs_direnter_cm(ip, dirname, DE_MKDIR, vap, &xip, cr, 3777 (retry ? IQUIET : 0)); 3778 if (error == EAGAIN) { 3779 if (ulp) { 3780 TRANS_END_CSYNC(ufsvfsp, error, issync, TOP_MKDIR, 3781 trans_size); 3782 ufs_lockfs_end(ulp); 3783 } 3784 goto again; 3785 } 3786 3787 rw_exit(&ip->i_rwlock); 3788 if (error == 0) { 3789 ip = xip; 3790 *vpp = ITOV(ip); 3791 } else if (error == EEXIST) 3792 VN_RELE(ITOV(xip)); 3793 3794 if (ulp) { 3795 int terr = 0; 3796 TRANS_END_CSYNC(ufsvfsp, terr, issync, TOP_MKDIR, trans_size); 3797 ufs_lockfs_end(ulp); 3798 if (error == 0) 3799 error = terr; 3800 } 3801 out: 3802 if ((error == ENOSPC) && retry && TRANS_ISTRANS(ufsvfsp)) { 3803 ufs_delete_drain_wait(ufsvfsp, 1); 3804 retry = 0; 3805 goto again; 3806 } 3807 3808 return (error); 3809 } 3810 3811 /*ARGSUSED*/ 3812 static int 3813 ufs_rmdir(struct vnode *vp, char *nm, struct vnode *cdir, struct cred *cr, 3814 caller_context_t *ct, int flags) 3815 { 3816 struct inode *ip = VTOI(vp); 3817 struct ufsvfs *ufsvfsp = ip->i_ufsvfs; 3818 struct ulockfs *ulp; 3819 vnode_t *rmvp = NULL; /* Vnode of removed directory */ 3820 int error; 3821 int issync; 3822 int trans_size; 3823 int indeadlock; 3824 3825 /* 3826 * don't let the delete queue get too long 3827 */ 3828 if (ufsvfsp == NULL) { 3829 error = EIO; 3830 goto out; 3831 } 3832 if (ufsvfsp->vfs_delete.uq_ne > ufs_idle_max) 3833 ufs_delete_drain(vp->v_vfsp, 1, 1); 3834 3835 retry_rmdir: 3836 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_RMDIR_MASK); 3837 if (error) 3838 goto out; 3839 3840 if (ulp) 3841 TRANS_BEGIN_CSYNC(ufsvfsp, issync, TOP_RMDIR, 3842 trans_size = TOP_RMDIR_SIZE); 3843 3844 /* 3845 * ufs_tryirwlock_trans uses rw_tryenter and checks for SLOCK 3846 * to avoid i_rwlock, ufs_lockfs_begin deadlock. If deadlock 3847 * possible, retries the operation. 3848 */ 3849 ufs_tryirwlock_trans(&ip->i_rwlock, RW_WRITER, TOP_RMDIR, retry); 3850 if (indeadlock) 3851 goto retry_rmdir; 3852 error = ufs_dirremove(ip, nm, (struct inode *)0, cdir, DR_RMDIR, cr, 3853 &rmvp); 3854 rw_exit(&ip->i_rwlock); 3855 3856 if (ulp) { 3857 TRANS_END_CSYNC(ufsvfsp, error, issync, TOP_RMDIR, 3858 trans_size); 3859 ufs_lockfs_end(ulp); 3860 } 3861 3862 /* 3863 * This must be done AFTER the rmdir transaction has closed. 3864 */ 3865 if (rmvp != NULL) { 3866 /* Only send the event if there were no errors */ 3867 if (error == 0) 3868 vnevent_rmdir(rmvp, vp, nm, ct); 3869 VN_RELE(rmvp); 3870 } 3871 out: 3872 return (error); 3873 } 3874 3875 /* ARGSUSED */ 3876 static int 3877 ufs_readdir( 3878 struct vnode *vp, 3879 struct uio *uiop, 3880 struct cred *cr, 3881 int *eofp, 3882 caller_context_t *ct, 3883 int flags) 3884 { 3885 struct iovec *iovp; 3886 struct inode *ip; 3887 struct direct *idp; 3888 struct dirent64 *odp; 3889 struct fbuf *fbp; 3890 struct ufsvfs *ufsvfsp; 3891 struct ulockfs *ulp; 3892 caddr_t outbuf; 3893 size_t bufsize; 3894 uint_t offset; 3895 uint_t bytes_wanted, total_bytes_wanted; 3896 int incount = 0; 3897 int outcount = 0; 3898 int error; 3899 3900 ip = VTOI(vp); 3901 ASSERT(RW_READ_HELD(&ip->i_rwlock)); 3902 3903 if (uiop->uio_loffset >= MAXOFF32_T) { 3904 if (eofp) 3905 *eofp = 1; 3906 return (0); 3907 } 3908 3909 /* 3910 * Check if we have been called with a valid iov_len 3911 * and bail out if not, otherwise we may potentially loop 3912 * forever further down. 3913 */ 3914 if (uiop->uio_iov->iov_len <= 0) { 3915 error = EINVAL; 3916 goto out; 3917 } 3918 3919 /* 3920 * Large Files: When we come here we are guaranteed that 3921 * uio_offset can be used safely. The high word is zero. 3922 */ 3923 3924 ufsvfsp = ip->i_ufsvfs; 3925 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_READDIR_MASK); 3926 if (error) 3927 goto out; 3928 3929 iovp = uiop->uio_iov; 3930 total_bytes_wanted = iovp->iov_len; 3931 3932 /* Large Files: directory files should not be "large" */ 3933 3934 ASSERT(ip->i_size <= MAXOFF32_T); 3935 3936 /* Force offset to be valid (to guard against bogus lseek() values) */ 3937 offset = (uint_t)uiop->uio_offset & ~(DIRBLKSIZ - 1); 3938 3939 /* Quit if at end of file or link count of zero (posix) */ 3940 if (offset >= (uint_t)ip->i_size || ip->i_nlink <= 0) { 3941 if (eofp) 3942 *eofp = 1; 3943 error = 0; 3944 goto unlock; 3945 } 3946 3947 /* 3948 * Get space to change directory entries into fs independent format. 3949 * Do fast alloc for the most commonly used-request size (filesystem 3950 * block size). 3951 */ 3952 if (uiop->uio_segflg != UIO_SYSSPACE || uiop->uio_iovcnt != 1) { 3953 bufsize = total_bytes_wanted; 3954 outbuf = kmem_alloc(bufsize, KM_SLEEP); 3955 odp = (struct dirent64 *)outbuf; 3956 } else { 3957 bufsize = total_bytes_wanted; 3958 odp = (struct dirent64 *)iovp->iov_base; 3959 } 3960 3961 nextblk: 3962 bytes_wanted = total_bytes_wanted; 3963 3964 /* Truncate request to file size */ 3965 if (offset + bytes_wanted > (int)ip->i_size) 3966 bytes_wanted = (int)(ip->i_size - offset); 3967 3968 /* Comply with MAXBSIZE boundary restrictions of fbread() */ 3969 if ((offset & MAXBOFFSET) + bytes_wanted > MAXBSIZE) 3970 bytes_wanted = MAXBSIZE - (offset & MAXBOFFSET); 3971 3972 /* 3973 * Read in the next chunk. 3974 * We are still holding the i_rwlock. 3975 */ 3976 error = fbread(vp, (offset_t)offset, bytes_wanted, S_OTHER, &fbp); 3977 3978 if (error) 3979 goto update_inode; 3980 if (!ULOCKFS_IS_NOIACC(ITOUL(ip)) && (ip->i_fs->fs_ronly == 0) && 3981 (!ufsvfsp->vfs_noatime)) { 3982 ip->i_flag |= IACC; 3983 } 3984 incount = 0; 3985 idp = (struct direct *)fbp->fb_addr; 3986 if (idp->d_ino == 0 && idp->d_reclen == 0 && idp->d_namlen == 0) { 3987 cmn_err(CE_WARN, "ufs_readdir: bad dir, inumber = %llu, " 3988 "fs = %s\n", 3989 (u_longlong_t)ip->i_number, ufsvfsp->vfs_fs->fs_fsmnt); 3990 fbrelse(fbp, S_OTHER); 3991 error = ENXIO; 3992 goto update_inode; 3993 } 3994 /* Transform to file-system independent format */ 3995 while (incount < bytes_wanted) { 3996 /* 3997 * If the current directory entry is mangled, then skip 3998 * to the next block. It would be nice to set the FSBAD 3999 * flag in the super-block so that a fsck is forced on 4000 * next reboot, but locking is a problem. 4001 */ 4002 if (idp->d_reclen & 0x3) { 4003 offset = (offset + DIRBLKSIZ) & ~(DIRBLKSIZ-1); 4004 break; 4005 } 4006 4007 /* Skip to requested offset and skip empty entries */ 4008 if (idp->d_ino != 0 && offset >= (uint_t)uiop->uio_offset) { 4009 ushort_t this_reclen = 4010 DIRENT64_RECLEN(idp->d_namlen); 4011 /* Buffer too small for any entries */ 4012 if (!outcount && this_reclen > bufsize) { 4013 fbrelse(fbp, S_OTHER); 4014 error = EINVAL; 4015 goto update_inode; 4016 } 4017 /* If would overrun the buffer, quit */ 4018 if (outcount + this_reclen > bufsize) { 4019 break; 4020 } 4021 /* Take this entry */ 4022 odp->d_ino = (ino64_t)idp->d_ino; 4023 odp->d_reclen = (ushort_t)this_reclen; 4024 odp->d_off = (offset_t)(offset + idp->d_reclen); 4025 4026 /* use strncpy(9f) to zero out uninitialized bytes */ 4027 4028 ASSERT(strlen(idp->d_name) + 1 <= 4029 DIRENT64_NAMELEN(this_reclen)); 4030 (void) strncpy(odp->d_name, idp->d_name, 4031 DIRENT64_NAMELEN(this_reclen)); 4032 outcount += odp->d_reclen; 4033 odp = (struct dirent64 *) 4034 ((intptr_t)odp + odp->d_reclen); 4035 ASSERT(outcount <= bufsize); 4036 } 4037 if (idp->d_reclen) { 4038 incount += idp->d_reclen; 4039 offset += idp->d_reclen; 4040 idp = (struct direct *)((intptr_t)idp + idp->d_reclen); 4041 } else { 4042 offset = (offset + DIRBLKSIZ) & ~(DIRBLKSIZ-1); 4043 break; 4044 } 4045 } 4046 /* Release the chunk */ 4047 fbrelse(fbp, S_OTHER); 4048 4049 /* Read whole block, but got no entries, read another if not eof */ 4050 4051 /* 4052 * Large Files: casting i_size to int here is not a problem 4053 * because directory sizes are always less than MAXOFF32_T. 4054 * See assertion above. 4055 */ 4056 4057 if (offset < (int)ip->i_size && !outcount) 4058 goto nextblk; 4059 4060 /* Copy out the entry data */ 4061 if (uiop->uio_segflg == UIO_SYSSPACE && uiop->uio_iovcnt == 1) { 4062 iovp->iov_base += outcount; 4063 iovp->iov_len -= outcount; 4064 uiop->uio_resid -= outcount; 4065 uiop->uio_offset = offset; 4066 } else if ((error = uiomove(outbuf, (long)outcount, UIO_READ, 4067 uiop)) == 0) 4068 uiop->uio_offset = offset; 4069 update_inode: 4070 ITIMES(ip); 4071 if (uiop->uio_segflg != UIO_SYSSPACE || uiop->uio_iovcnt != 1) 4072 kmem_free(outbuf, bufsize); 4073 4074 if (eofp && error == 0) 4075 *eofp = (uiop->uio_offset >= (int)ip->i_size); 4076 unlock: 4077 if (ulp) { 4078 ufs_lockfs_end(ulp); 4079 } 4080 out: 4081 return (error); 4082 } 4083 4084 /*ARGSUSED*/ 4085 static int 4086 ufs_symlink( 4087 struct vnode *dvp, /* ptr to parent dir vnode */ 4088 char *linkname, /* name of symbolic link */ 4089 struct vattr *vap, /* attributes */ 4090 char *target, /* target path */ 4091 struct cred *cr, /* user credentials */ 4092 caller_context_t *ct, 4093 int flags) 4094 { 4095 struct inode *ip, *dip = VTOI(dvp); 4096 struct ufsvfs *ufsvfsp = dip->i_ufsvfs; 4097 struct ulockfs *ulp; 4098 int error; 4099 int issync; 4100 int trans_size; 4101 int residual; 4102 int ioflag; 4103 int retry = 1; 4104 4105 /* 4106 * No symlinks in attrdirs at this time 4107 */ 4108 if ((VTOI(dvp)->i_mode & IFMT) == IFATTRDIR) 4109 return (EINVAL); 4110 4111 again: 4112 ip = (struct inode *)NULL; 4113 vap->va_type = VLNK; 4114 vap->va_rdev = 0; 4115 4116 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_SYMLINK_MASK); 4117 if (error) 4118 goto out; 4119 4120 if (ulp) 4121 TRANS_BEGIN_CSYNC(ufsvfsp, issync, TOP_SYMLINK, 4122 trans_size = (int)TOP_SYMLINK_SIZE(dip)); 4123 4124 /* 4125 * We must create the inode before the directory entry, to avoid 4126 * racing with readlink(). ufs_dirmakeinode requires that we 4127 * hold the quota lock as reader, and directory locks as writer. 4128 */ 4129 4130 rw_enter(&dip->i_rwlock, RW_WRITER); 4131 rw_enter(&ufsvfsp->vfs_dqrwlock, RW_READER); 4132 rw_enter(&dip->i_contents, RW_WRITER); 4133 4134 /* 4135 * Suppress any out of inodes messages if we will retry on 4136 * ENOSP 4137 */ 4138 if (retry) 4139 dip->i_flag |= IQUIET; 4140 4141 error = ufs_dirmakeinode(dip, &ip, vap, DE_SYMLINK, cr); 4142 4143 dip->i_flag &= ~IQUIET; 4144 4145 rw_exit(&dip->i_contents); 4146 rw_exit(&ufsvfsp->vfs_dqrwlock); 4147 rw_exit(&dip->i_rwlock); 4148 4149 if (error) 4150 goto unlock; 4151 4152 /* 4153 * OK. The inode has been created. Write out the data of the 4154 * symbolic link. Since symbolic links are metadata, and should 4155 * remain consistent across a system crash, we need to force the 4156 * data out synchronously. 4157 * 4158 * (This is a change from the semantics in earlier releases, which 4159 * only created symbolic links synchronously if the semi-documented 4160 * 'syncdir' option was set, or if we were being invoked by the NFS 4161 * server, which requires symbolic links to be created synchronously.) 4162 * 4163 * We need to pass in a pointer for the residual length; otherwise 4164 * ufs_rdwri() will always return EIO if it can't write the data, 4165 * even if the error was really ENOSPC or EDQUOT. 4166 */ 4167 4168 ioflag = FWRITE | FDSYNC; 4169 residual = 0; 4170 4171 rw_enter(&ufsvfsp->vfs_dqrwlock, RW_READER); 4172 rw_enter(&ip->i_contents, RW_WRITER); 4173 4174 /* 4175 * Suppress file system full messages if we will retry 4176 */ 4177 if (retry) 4178 ip->i_flag |= IQUIET; 4179 4180 error = ufs_rdwri(UIO_WRITE, ioflag, ip, target, strlen(target), 4181 (offset_t)0, UIO_SYSSPACE, &residual, cr); 4182 4183 ip->i_flag &= ~IQUIET; 4184 4185 if (error) { 4186 rw_exit(&ip->i_contents); 4187 rw_exit(&ufsvfsp->vfs_dqrwlock); 4188 goto remove; 4189 } 4190 4191 /* 4192 * If the link's data is small enough, we can cache it in the inode. 4193 * This is a "fast symbolic link". We don't use the first direct 4194 * block because that's actually used to point at the symbolic link's 4195 * contents on disk; but we know that none of the other direct or 4196 * indirect blocks can be used because symbolic links are restricted 4197 * to be smaller than a file system block. 4198 */ 4199 4200 ASSERT(MAXPATHLEN <= VBSIZE(ITOV(ip))); 4201 4202 if (ip->i_size > 0 && ip->i_size <= FSL_SIZE) { 4203 if (kcopy(target, &ip->i_db[1], ip->i_size) == 0) { 4204 ip->i_flag |= IFASTSYMLNK; 4205 } else { 4206 int i; 4207 /* error, clear garbage left behind */ 4208 for (i = 1; i < NDADDR; i++) 4209 ip->i_db[i] = 0; 4210 for (i = 0; i < NIADDR; i++) 4211 ip->i_ib[i] = 0; 4212 } 4213 } 4214 4215 rw_exit(&ip->i_contents); 4216 rw_exit(&ufsvfsp->vfs_dqrwlock); 4217 4218 /* 4219 * OK. We've successfully created the symbolic link. All that 4220 * remains is to insert it into the appropriate directory. 4221 */ 4222 4223 rw_enter(&dip->i_rwlock, RW_WRITER); 4224 error = ufs_direnter_lr(dip, linkname, DE_SYMLINK, NULL, ip, cr, NULL); 4225 rw_exit(&dip->i_rwlock); 4226 4227 /* 4228 * Fall through into remove-on-error code. We're either done, or we 4229 * need to remove the inode (if we couldn't insert it). 4230 */ 4231 4232 remove: 4233 if (error && (ip != NULL)) { 4234 rw_enter(&ip->i_contents, RW_WRITER); 4235 ip->i_nlink--; 4236 ip->i_flag |= ICHG; 4237 ip->i_seq++; 4238 ufs_setreclaim(ip); 4239 rw_exit(&ip->i_contents); 4240 } 4241 4242 unlock: 4243 if (ip != NULL) 4244 VN_RELE(ITOV(ip)); 4245 4246 if (ulp) { 4247 int terr = 0; 4248 4249 TRANS_END_CSYNC(ufsvfsp, terr, issync, TOP_SYMLINK, 4250 trans_size); 4251 ufs_lockfs_end(ulp); 4252 if (error == 0) 4253 error = terr; 4254 } 4255 4256 /* 4257 * We may have failed due to lack of an inode or of a block to 4258 * store the target in. Try flushing the delete queue to free 4259 * logically-available things up and try again. 4260 */ 4261 if ((error == ENOSPC) && retry && TRANS_ISTRANS(ufsvfsp)) { 4262 ufs_delete_drain_wait(ufsvfsp, 1); 4263 retry = 0; 4264 goto again; 4265 } 4266 4267 out: 4268 return (error); 4269 } 4270 4271 /* 4272 * Ufs specific routine used to do ufs io. 4273 */ 4274 int 4275 ufs_rdwri(enum uio_rw rw, int ioflag, struct inode *ip, caddr_t base, 4276 ssize_t len, offset_t offset, enum uio_seg seg, int *aresid, 4277 struct cred *cr) 4278 { 4279 struct uio auio; 4280 struct iovec aiov; 4281 int error; 4282 4283 ASSERT(RW_LOCK_HELD(&ip->i_contents)); 4284 4285 bzero((caddr_t)&auio, sizeof (uio_t)); 4286 bzero((caddr_t)&aiov, sizeof (iovec_t)); 4287 4288 aiov.iov_base = base; 4289 aiov.iov_len = len; 4290 auio.uio_iov = &aiov; 4291 auio.uio_iovcnt = 1; 4292 auio.uio_loffset = offset; 4293 auio.uio_segflg = (short)seg; 4294 auio.uio_resid = len; 4295 4296 if (rw == UIO_WRITE) { 4297 auio.uio_fmode = FWRITE; 4298 auio.uio_extflg = UIO_COPY_DEFAULT; 4299 auio.uio_llimit = curproc->p_fsz_ctl; 4300 error = wrip(ip, &auio, ioflag, cr); 4301 } else { 4302 auio.uio_fmode = FREAD; 4303 auio.uio_extflg = UIO_COPY_CACHED; 4304 auio.uio_llimit = MAXOFFSET_T; 4305 error = rdip(ip, &auio, ioflag, cr); 4306 } 4307 4308 if (aresid) { 4309 *aresid = auio.uio_resid; 4310 } else if (auio.uio_resid) { 4311 error = EIO; 4312 } 4313 return (error); 4314 } 4315 4316 /*ARGSUSED*/ 4317 static int 4318 ufs_fid(struct vnode *vp, struct fid *fidp, caller_context_t *ct) 4319 { 4320 struct ufid *ufid; 4321 struct inode *ip = VTOI(vp); 4322 4323 if (ip->i_ufsvfs == NULL) 4324 return (EIO); 4325 4326 if (fidp->fid_len < (sizeof (struct ufid) - sizeof (ushort_t))) { 4327 fidp->fid_len = sizeof (struct ufid) - sizeof (ushort_t); 4328 return (ENOSPC); 4329 } 4330 4331 ufid = (struct ufid *)fidp; 4332 bzero((char *)ufid, sizeof (struct ufid)); 4333 ufid->ufid_len = sizeof (struct ufid) - sizeof (ushort_t); 4334 ufid->ufid_ino = ip->i_number; 4335 ufid->ufid_gen = ip->i_gen; 4336 4337 return (0); 4338 } 4339 4340 /* ARGSUSED2 */ 4341 static int 4342 ufs_rwlock(struct vnode *vp, int write_lock, caller_context_t *ctp) 4343 { 4344 struct inode *ip = VTOI(vp); 4345 struct ufsvfs *ufsvfsp; 4346 int forcedirectio; 4347 4348 /* 4349 * Read case is easy. 4350 */ 4351 if (!write_lock) { 4352 rw_enter(&ip->i_rwlock, RW_READER); 4353 return (V_WRITELOCK_FALSE); 4354 } 4355 4356 /* 4357 * Caller has requested a writer lock, but that inhibits any 4358 * concurrency in the VOPs that follow. Acquire the lock shared 4359 * and defer exclusive access until it is known to be needed in 4360 * other VOP handlers. Some cases can be determined here. 4361 */ 4362 4363 /* 4364 * If directio is not set, there is no chance of concurrency, 4365 * so just acquire the lock exclusive. Beware of a forced 4366 * unmount before looking at the mount option. 4367 */ 4368 ufsvfsp = ip->i_ufsvfs; 4369 forcedirectio = ufsvfsp ? ufsvfsp->vfs_forcedirectio : 0; 4370 if (!(ip->i_flag & IDIRECTIO || forcedirectio) || 4371 !ufs_allow_shared_writes) { 4372 rw_enter(&ip->i_rwlock, RW_WRITER); 4373 return (V_WRITELOCK_TRUE); 4374 } 4375 4376 /* 4377 * Mandatory locking forces acquiring i_rwlock exclusive. 4378 */ 4379 if (MANDLOCK(vp, ip->i_mode)) { 4380 rw_enter(&ip->i_rwlock, RW_WRITER); 4381 return (V_WRITELOCK_TRUE); 4382 } 4383 4384 /* 4385 * Acquire the lock shared in case a concurrent write follows. 4386 * Mandatory locking could have become enabled before the lock 4387 * was acquired. Re-check and upgrade if needed. 4388 */ 4389 rw_enter(&ip->i_rwlock, RW_READER); 4390 if (MANDLOCK(vp, ip->i_mode)) { 4391 rw_exit(&ip->i_rwlock); 4392 rw_enter(&ip->i_rwlock, RW_WRITER); 4393 return (V_WRITELOCK_TRUE); 4394 } 4395 return (V_WRITELOCK_FALSE); 4396 } 4397 4398 /*ARGSUSED*/ 4399 static void 4400 ufs_rwunlock(struct vnode *vp, int write_lock, caller_context_t *ctp) 4401 { 4402 struct inode *ip = VTOI(vp); 4403 4404 rw_exit(&ip->i_rwlock); 4405 } 4406 4407 /* ARGSUSED */ 4408 static int 4409 ufs_seek(struct vnode *vp, offset_t ooff, offset_t *noffp, 4410 caller_context_t *ct) 4411 { 4412 return ((*noffp < 0 || *noffp > MAXOFFSET_T) ? EINVAL : 0); 4413 } 4414 4415 /* ARGSUSED */ 4416 static int 4417 ufs_frlock(struct vnode *vp, int cmd, struct flock64 *bfp, int flag, 4418 offset_t offset, struct flk_callback *flk_cbp, struct cred *cr, 4419 caller_context_t *ct) 4420 { 4421 struct inode *ip = VTOI(vp); 4422 4423 if (ip->i_ufsvfs == NULL) 4424 return (EIO); 4425 4426 /* 4427 * If file is being mapped, disallow frlock. 4428 * XXX I am not holding tlock while checking i_mapcnt because the 4429 * current locking strategy drops all locks before calling fs_frlock. 4430 * So, mapcnt could change before we enter fs_frlock making is 4431 * meaningless to have held tlock in the first place. 4432 */ 4433 if (ip->i_mapcnt > 0 && MANDLOCK(vp, ip->i_mode)) 4434 return (EAGAIN); 4435 return (fs_frlock(vp, cmd, bfp, flag, offset, flk_cbp, cr, ct)); 4436 } 4437 4438 /* ARGSUSED */ 4439 static int 4440 ufs_space(struct vnode *vp, int cmd, struct flock64 *bfp, int flag, 4441 offset_t offset, cred_t *cr, caller_context_t *ct) 4442 { 4443 struct ufsvfs *ufsvfsp = VTOI(vp)->i_ufsvfs; 4444 struct ulockfs *ulp; 4445 int error; 4446 4447 if ((error = convoff(vp, bfp, 0, offset)) == 0) { 4448 if (cmd == F_FREESP) { 4449 error = ufs_lockfs_begin(ufsvfsp, &ulp, 4450 ULOCKFS_SPACE_MASK); 4451 if (error) 4452 return (error); 4453 error = ufs_freesp(vp, bfp, flag, cr); 4454 } else if (cmd == F_ALLOCSP) { 4455 error = ufs_lockfs_begin(ufsvfsp, &ulp, 4456 ULOCKFS_FALLOCATE_MASK); 4457 if (error) 4458 return (error); 4459 error = ufs_allocsp(vp, bfp, cr); 4460 } else 4461 return (EINVAL); /* Command not handled here */ 4462 4463 if (ulp) 4464 ufs_lockfs_end(ulp); 4465 4466 } 4467 return (error); 4468 } 4469 4470 /* 4471 * Used to determine if read ahead should be done. Also used to 4472 * to determine when write back occurs. 4473 */ 4474 #define CLUSTSZ(ip) ((ip)->i_ufsvfs->vfs_ioclustsz) 4475 4476 /* 4477 * A faster version of ufs_getpage. 4478 * 4479 * We optimize by inlining the pvn_getpages iterator, eliminating 4480 * calls to bmap_read if file doesn't have UFS holes, and avoiding 4481 * the overhead of page_exists(). 4482 * 4483 * When files has UFS_HOLES and ufs_getpage is called with S_READ, 4484 * we set *protp to PROT_READ to avoid calling bmap_read. This approach 4485 * victimizes performance when a file with UFS holes is faulted 4486 * first in the S_READ mode, and then in the S_WRITE mode. We will get 4487 * two MMU faults in this case. 4488 * 4489 * XXX - the inode fields which control the sequential mode are not 4490 * protected by any mutex. The read ahead will act wild if 4491 * multiple processes will access the file concurrently and 4492 * some of them in sequential mode. One particulary bad case 4493 * is if another thread will change the value of i_nextrio between 4494 * the time this thread tests the i_nextrio value and then reads it 4495 * again to use it as the offset for the read ahead. 4496 */ 4497 /*ARGSUSED*/ 4498 static int 4499 ufs_getpage(struct vnode *vp, offset_t off, size_t len, uint_t *protp, 4500 page_t *plarr[], size_t plsz, struct seg *seg, caddr_t addr, 4501 enum seg_rw rw, struct cred *cr, caller_context_t *ct) 4502 { 4503 u_offset_t uoff = (u_offset_t)off; /* type conversion */ 4504 u_offset_t pgoff; 4505 u_offset_t eoff; 4506 struct inode *ip = VTOI(vp); 4507 struct ufsvfs *ufsvfsp = ip->i_ufsvfs; 4508 struct fs *fs; 4509 struct ulockfs *ulp; 4510 page_t **pl; 4511 caddr_t pgaddr; 4512 krw_t rwtype; 4513 int err; 4514 int has_holes; 4515 int beyond_eof; 4516 int seqmode; 4517 int pgsize = PAGESIZE; 4518 int dolock; 4519 int do_qlock; 4520 int trans_size; 4521 4522 ASSERT((uoff & PAGEOFFSET) == 0); 4523 4524 if (protp) 4525 *protp = PROT_ALL; 4526 4527 /* 4528 * Obey the lockfs protocol 4529 */ 4530 err = ufs_lockfs_begin_getpage(ufsvfsp, &ulp, seg, 4531 rw == S_READ || rw == S_EXEC, protp); 4532 if (err) 4533 goto out; 4534 4535 fs = ufsvfsp->vfs_fs; 4536 4537 if (ulp && (rw == S_CREATE || rw == S_WRITE) && 4538 !(vp->v_flag & VISSWAP)) { 4539 /* 4540 * Try to start a transaction, will return if blocking is 4541 * expected to occur and the address space is not the 4542 * kernel address space. 4543 */ 4544 trans_size = TOP_GETPAGE_SIZE(ip); 4545 if (seg->s_as != &kas) { 4546 TRANS_TRY_BEGIN_ASYNC(ufsvfsp, TOP_GETPAGE, 4547 trans_size, err) 4548 if (err == EWOULDBLOCK) { 4549 /* 4550 * Use EDEADLK here because the VM code 4551 * can normally never see this error. 4552 */ 4553 err = EDEADLK; 4554 ufs_lockfs_end(ulp); 4555 goto out; 4556 } 4557 } else { 4558 TRANS_BEGIN_ASYNC(ufsvfsp, TOP_GETPAGE, trans_size); 4559 } 4560 } 4561 4562 if (vp->v_flag & VNOMAP) { 4563 err = ENOSYS; 4564 goto unlock; 4565 } 4566 4567 seqmode = ip->i_nextr == uoff && rw != S_CREATE; 4568 4569 rwtype = RW_READER; /* start as a reader */ 4570 dolock = (rw_owner(&ip->i_contents) != curthread); 4571 /* 4572 * If this thread owns the lock, i.e., this thread grabbed it 4573 * as writer somewhere above, then we don't need to grab the 4574 * lock as reader in this routine. 4575 */ 4576 do_qlock = (rw_owner(&ufsvfsp->vfs_dqrwlock) != curthread); 4577 4578 retrylock: 4579 if (dolock) { 4580 /* 4581 * Grab the quota lock if we need to call 4582 * bmap_write() below (with i_contents as writer). 4583 */ 4584 if (do_qlock && rwtype == RW_WRITER) 4585 rw_enter(&ufsvfsp->vfs_dqrwlock, RW_READER); 4586 rw_enter(&ip->i_contents, rwtype); 4587 } 4588 4589 /* 4590 * We may be getting called as a side effect of a bmap using 4591 * fbread() when the blocks might be being allocated and the 4592 * size has not yet been up'ed. In this case we want to be 4593 * able to return zero pages if we get back UFS_HOLE from 4594 * calling bmap for a non write case here. We also might have 4595 * to read some frags from the disk into a page if we are 4596 * extending the number of frags for a given lbn in bmap(). 4597 * Large Files: The read of i_size here is atomic because 4598 * i_contents is held here. If dolock is zero, the lock 4599 * is held in bmap routines. 4600 */ 4601 beyond_eof = uoff + len > 4602 P2ROUNDUP_TYPED(ip->i_size, PAGESIZE, u_offset_t); 4603 if (beyond_eof && seg != segkmap) { 4604 if (dolock) { 4605 rw_exit(&ip->i_contents); 4606 if (do_qlock && rwtype == RW_WRITER) 4607 rw_exit(&ufsvfsp->vfs_dqrwlock); 4608 } 4609 err = EFAULT; 4610 goto unlock; 4611 } 4612 4613 /* 4614 * Must hold i_contents lock throughout the call to pvn_getpages 4615 * since locked pages are returned from each call to ufs_getapage. 4616 * Must *not* return locked pages and then try for contents lock 4617 * due to lock ordering requirements (inode > page) 4618 */ 4619 4620 has_holes = bmap_has_holes(ip); 4621 4622 if ((rw == S_WRITE || rw == S_CREATE) && has_holes && !beyond_eof) { 4623 int blk_size; 4624 u_offset_t offset; 4625 4626 /* 4627 * We must acquire the RW_WRITER lock in order to 4628 * call bmap_write(). 4629 */ 4630 if (dolock && rwtype == RW_READER) { 4631 rwtype = RW_WRITER; 4632 4633 /* 4634 * Grab the quota lock before 4635 * upgrading i_contents, but if we can't grab it 4636 * don't wait here due to lock order: 4637 * vfs_dqrwlock > i_contents. 4638 */ 4639 if (do_qlock && 4640 rw_tryenter(&ufsvfsp->vfs_dqrwlock, RW_READER) 4641 == 0) { 4642 rw_exit(&ip->i_contents); 4643 goto retrylock; 4644 } 4645 if (!rw_tryupgrade(&ip->i_contents)) { 4646 rw_exit(&ip->i_contents); 4647 if (do_qlock) 4648 rw_exit(&ufsvfsp->vfs_dqrwlock); 4649 goto retrylock; 4650 } 4651 } 4652 4653 /* 4654 * May be allocating disk blocks for holes here as 4655 * a result of mmap faults. write(2) does the bmap_write 4656 * in rdip/wrip, not here. We are not dealing with frags 4657 * in this case. 4658 */ 4659 /* 4660 * Large Files: We cast fs_bmask field to offset_t 4661 * just as we do for MAXBMASK because uoff is a 64-bit 4662 * data type. fs_bmask will still be a 32-bit type 4663 * as we cannot change any ondisk data structures. 4664 */ 4665 4666 offset = uoff & (offset_t)fs->fs_bmask; 4667 while (offset < uoff + len) { 4668 blk_size = (int)blksize(fs, ip, lblkno(fs, offset)); 4669 err = bmap_write(ip, offset, blk_size, 4670 BI_NORMAL, NULL, cr); 4671 if (ip->i_flag & (ICHG|IUPD)) 4672 ip->i_seq++; 4673 if (err) 4674 goto update_inode; 4675 offset += blk_size; /* XXX - make this contig */ 4676 } 4677 } 4678 4679 /* 4680 * Can be a reader from now on. 4681 */ 4682 if (dolock && rwtype == RW_WRITER) { 4683 rw_downgrade(&ip->i_contents); 4684 /* 4685 * We can release vfs_dqrwlock early so do it, but make 4686 * sure we don't try to release it again at the bottom. 4687 */ 4688 if (do_qlock) { 4689 rw_exit(&ufsvfsp->vfs_dqrwlock); 4690 do_qlock = 0; 4691 } 4692 } 4693 4694 /* 4695 * We remove PROT_WRITE in cases when the file has UFS holes 4696 * because we don't want to call bmap_read() to check each 4697 * page if it is backed with a disk block. 4698 */ 4699 if (protp && has_holes && rw != S_WRITE && rw != S_CREATE) 4700 *protp &= ~PROT_WRITE; 4701 4702 err = 0; 4703 4704 /* 4705 * The loop looks up pages in the range [off, off + len). 4706 * For each page, we first check if we should initiate an asynchronous 4707 * read ahead before we call page_lookup (we may sleep in page_lookup 4708 * for a previously initiated disk read). 4709 */ 4710 eoff = (uoff + len); 4711 for (pgoff = uoff, pgaddr = addr, pl = plarr; 4712 pgoff < eoff; /* empty */) { 4713 page_t *pp; 4714 u_offset_t nextrio; 4715 se_t se; 4716 int retval; 4717 4718 se = ((rw == S_CREATE || rw == S_OTHER) ? SE_EXCL : SE_SHARED); 4719 4720 /* Handle async getpage (faultahead) */ 4721 if (plarr == NULL) { 4722 ip->i_nextrio = pgoff; 4723 (void) ufs_getpage_ra(vp, pgoff, seg, pgaddr); 4724 pgoff += pgsize; 4725 pgaddr += pgsize; 4726 continue; 4727 } 4728 /* 4729 * Check if we should initiate read ahead of next cluster. 4730 * We call page_exists only when we need to confirm that 4731 * we have the current page before we initiate the read ahead. 4732 */ 4733 nextrio = ip->i_nextrio; 4734 if (seqmode && 4735 pgoff + CLUSTSZ(ip) >= nextrio && pgoff <= nextrio && 4736 nextrio < ip->i_size && page_exists(vp, pgoff)) { 4737 retval = ufs_getpage_ra(vp, pgoff, seg, pgaddr); 4738 /* 4739 * We always read ahead the next cluster of data 4740 * starting from i_nextrio. If the page (vp,nextrio) 4741 * is actually in core at this point, the routine 4742 * ufs_getpage_ra() will stop pre-fetching data 4743 * until we read that page in a synchronized manner 4744 * through ufs_getpage_miss(). So, we should increase 4745 * i_nextrio if the page (vp, nextrio) exists. 4746 */ 4747 if ((retval == 0) && page_exists(vp, nextrio)) { 4748 ip->i_nextrio = nextrio + pgsize; 4749 } 4750 } 4751 4752 if ((pp = page_lookup(vp, pgoff, se)) != NULL) { 4753 /* 4754 * We found the page in the page cache. 4755 */ 4756 *pl++ = pp; 4757 pgoff += pgsize; 4758 pgaddr += pgsize; 4759 len -= pgsize; 4760 plsz -= pgsize; 4761 } else { 4762 /* 4763 * We have to create the page, or read it from disk. 4764 */ 4765 if (err = ufs_getpage_miss(vp, pgoff, len, seg, pgaddr, 4766 pl, plsz, rw, seqmode)) 4767 goto error; 4768 4769 while (*pl != NULL) { 4770 pl++; 4771 pgoff += pgsize; 4772 pgaddr += pgsize; 4773 len -= pgsize; 4774 plsz -= pgsize; 4775 } 4776 } 4777 } 4778 4779 /* 4780 * Return pages up to plsz if they are in the page cache. 4781 * We cannot return pages if there is a chance that they are 4782 * backed with a UFS hole and rw is S_WRITE or S_CREATE. 4783 */ 4784 if (plarr && !(has_holes && (rw == S_WRITE || rw == S_CREATE))) { 4785 4786 ASSERT((protp == NULL) || 4787 !(has_holes && (*protp & PROT_WRITE))); 4788 4789 eoff = pgoff + plsz; 4790 while (pgoff < eoff) { 4791 page_t *pp; 4792 4793 if ((pp = page_lookup_nowait(vp, pgoff, 4794 SE_SHARED)) == NULL) 4795 break; 4796 4797 *pl++ = pp; 4798 pgoff += pgsize; 4799 plsz -= pgsize; 4800 } 4801 } 4802 4803 if (plarr) 4804 *pl = NULL; /* Terminate page list */ 4805 ip->i_nextr = pgoff; 4806 4807 error: 4808 if (err && plarr) { 4809 /* 4810 * Release any pages we have locked. 4811 */ 4812 while (pl > &plarr[0]) 4813 page_unlock(*--pl); 4814 4815 plarr[0] = NULL; 4816 } 4817 4818 update_inode: 4819 /* 4820 * If the inode is not already marked for IACC (in rdip() for read) 4821 * and the inode is not marked for no access time update (in wrip() 4822 * for write) then update the inode access time and mod time now. 4823 */ 4824 if ((ip->i_flag & (IACC | INOACC)) == 0) { 4825 if ((rw != S_OTHER) && (ip->i_mode & IFMT) != IFDIR) { 4826 if (!ULOCKFS_IS_NOIACC(ITOUL(ip)) && 4827 (fs->fs_ronly == 0) && 4828 (!ufsvfsp->vfs_noatime)) { 4829 mutex_enter(&ip->i_tlock); 4830 ip->i_flag |= IACC; 4831 ITIMES_NOLOCK(ip); 4832 mutex_exit(&ip->i_tlock); 4833 } 4834 } 4835 } 4836 4837 if (dolock) { 4838 rw_exit(&ip->i_contents); 4839 if (do_qlock && rwtype == RW_WRITER) 4840 rw_exit(&ufsvfsp->vfs_dqrwlock); 4841 } 4842 4843 unlock: 4844 if (ulp) { 4845 if ((rw == S_CREATE || rw == S_WRITE) && 4846 !(vp->v_flag & VISSWAP)) { 4847 TRANS_END_ASYNC(ufsvfsp, TOP_GETPAGE, trans_size); 4848 } 4849 ufs_lockfs_end(ulp); 4850 } 4851 out: 4852 return (err); 4853 } 4854 4855 /* 4856 * ufs_getpage_miss is called when ufs_getpage missed the page in the page 4857 * cache. The page is either read from the disk, or it's created. 4858 * A page is created (without disk read) if rw == S_CREATE, or if 4859 * the page is not backed with a real disk block (UFS hole). 4860 */ 4861 /* ARGSUSED */ 4862 static int 4863 ufs_getpage_miss(struct vnode *vp, u_offset_t off, size_t len, struct seg *seg, 4864 caddr_t addr, page_t *pl[], size_t plsz, enum seg_rw rw, int seq) 4865 { 4866 struct inode *ip = VTOI(vp); 4867 page_t *pp; 4868 daddr_t bn; 4869 size_t io_len; 4870 int crpage = 0; 4871 int err; 4872 int contig; 4873 int bsize = ip->i_fs->fs_bsize; 4874 4875 /* 4876 * Figure out whether the page can be created, or must be 4877 * must be read from the disk. 4878 */ 4879 if (rw == S_CREATE) 4880 crpage = 1; 4881 else { 4882 contig = 0; 4883 if (err = bmap_read(ip, off, &bn, &contig)) 4884 return (err); 4885 4886 crpage = (bn == UFS_HOLE); 4887 4888 /* 4889 * If its also a fallocated block that hasn't been written to 4890 * yet, we will treat it just like a UFS_HOLE and create 4891 * a zero page for it 4892 */ 4893 if (ISFALLOCBLK(ip, bn)) 4894 crpage = 1; 4895 } 4896 4897 if (crpage) { 4898 if ((pp = page_create_va(vp, off, PAGESIZE, PG_WAIT, seg, 4899 addr)) == NULL) { 4900 return (ufs_fault(vp, 4901 "ufs_getpage_miss: page_create == NULL")); 4902 } 4903 4904 if (rw != S_CREATE) 4905 pagezero(pp, 0, PAGESIZE); 4906 4907 io_len = PAGESIZE; 4908 } else { 4909 u_offset_t io_off; 4910 uint_t xlen; 4911 struct buf *bp; 4912 ufsvfs_t *ufsvfsp = ip->i_ufsvfs; 4913 4914 /* 4915 * If access is not in sequential order, we read from disk 4916 * in bsize units. 4917 * 4918 * We limit the size of the transfer to bsize if we are reading 4919 * from the beginning of the file. Note in this situation we 4920 * will hedge our bets and initiate an async read ahead of 4921 * the second block. 4922 */ 4923 if (!seq || off == 0) 4924 contig = MIN(contig, bsize); 4925 4926 pp = pvn_read_kluster(vp, off, seg, addr, &io_off, 4927 &io_len, off, contig, 0); 4928 4929 /* 4930 * Some other thread has entered the page. 4931 * ufs_getpage will retry page_lookup. 4932 */ 4933 if (pp == NULL) { 4934 pl[0] = NULL; 4935 return (0); 4936 } 4937 4938 /* 4939 * Zero part of the page which we are not 4940 * going to read from the disk. 4941 */ 4942 xlen = io_len & PAGEOFFSET; 4943 if (xlen != 0) 4944 pagezero(pp->p_prev, xlen, PAGESIZE - xlen); 4945 4946 bp = pageio_setup(pp, io_len, ip->i_devvp, B_READ); 4947 bp->b_edev = ip->i_dev; 4948 bp->b_dev = cmpdev(ip->i_dev); 4949 bp->b_blkno = bn; 4950 bp->b_un.b_addr = (caddr_t)0; 4951 bp->b_file = ip->i_vnode; 4952 bp->b_offset = off; 4953 4954 if (ufsvfsp->vfs_log) { 4955 lufs_read_strategy(ufsvfsp->vfs_log, bp); 4956 } else if (ufsvfsp->vfs_snapshot) { 4957 fssnap_strategy(&ufsvfsp->vfs_snapshot, bp); 4958 } else { 4959 ufsvfsp->vfs_iotstamp = lbolt; 4960 ub.ub_getpages.value.ul++; 4961 (void) bdev_strategy(bp); 4962 lwp_stat_update(LWP_STAT_INBLK, 1); 4963 } 4964 4965 ip->i_nextrio = off + ((io_len + PAGESIZE - 1) & PAGEMASK); 4966 4967 /* 4968 * If the file access is sequential, initiate read ahead 4969 * of the next cluster. 4970 */ 4971 if (seq && ip->i_nextrio < ip->i_size) 4972 (void) ufs_getpage_ra(vp, off, seg, addr); 4973 err = biowait(bp); 4974 pageio_done(bp); 4975 4976 if (err) { 4977 pvn_read_done(pp, B_ERROR); 4978 return (err); 4979 } 4980 } 4981 4982 pvn_plist_init(pp, pl, plsz, off, io_len, rw); 4983 return (0); 4984 } 4985 4986 /* 4987 * Read ahead a cluster from the disk. Returns the length in bytes. 4988 */ 4989 static int 4990 ufs_getpage_ra(struct vnode *vp, u_offset_t off, struct seg *seg, caddr_t addr) 4991 { 4992 struct inode *ip = VTOI(vp); 4993 page_t *pp; 4994 u_offset_t io_off = ip->i_nextrio; 4995 ufsvfs_t *ufsvfsp; 4996 caddr_t addr2 = addr + (io_off - off); 4997 struct buf *bp; 4998 daddr_t bn; 4999 size_t io_len; 5000 int err; 5001 int contig; 5002 int xlen; 5003 int bsize = ip->i_fs->fs_bsize; 5004 5005 /* 5006 * If the directio advisory is in effect on this file, 5007 * then do not do buffered read ahead. Read ahead makes 5008 * it more difficult on threads using directio as they 5009 * will be forced to flush the pages from this vnode. 5010 */ 5011 if ((ufsvfsp = ip->i_ufsvfs) == NULL) 5012 return (0); 5013 if (ip->i_flag & IDIRECTIO || ufsvfsp->vfs_forcedirectio) 5014 return (0); 5015 5016 /* 5017 * Is this test needed? 5018 */ 5019 if (addr2 >= seg->s_base + seg->s_size) 5020 return (0); 5021 5022 contig = 0; 5023 err = bmap_read(ip, io_off, &bn, &contig); 5024 /* 5025 * If its a UFS_HOLE or a fallocated block, do not perform 5026 * any read ahead's since there probably is nothing to read ahead 5027 */ 5028 if (err || bn == UFS_HOLE || ISFALLOCBLK(ip, bn)) 5029 return (0); 5030 5031 /* 5032 * Limit the transfer size to bsize if this is the 2nd block. 5033 */ 5034 if (io_off == (u_offset_t)bsize) 5035 contig = MIN(contig, bsize); 5036 5037 if ((pp = pvn_read_kluster(vp, io_off, seg, addr2, &io_off, 5038 &io_len, io_off, contig, 1)) == NULL) 5039 return (0); 5040 5041 /* 5042 * Zero part of page which we are not going to read from disk 5043 */ 5044 if ((xlen = (io_len & PAGEOFFSET)) > 0) 5045 pagezero(pp->p_prev, xlen, PAGESIZE - xlen); 5046 5047 ip->i_nextrio = (io_off + io_len + PAGESIZE - 1) & PAGEMASK; 5048 5049 bp = pageio_setup(pp, io_len, ip->i_devvp, B_READ | B_ASYNC); 5050 bp->b_edev = ip->i_dev; 5051 bp->b_dev = cmpdev(ip->i_dev); 5052 bp->b_blkno = bn; 5053 bp->b_un.b_addr = (caddr_t)0; 5054 bp->b_file = ip->i_vnode; 5055 bp->b_offset = off; 5056 5057 if (ufsvfsp->vfs_log) { 5058 lufs_read_strategy(ufsvfsp->vfs_log, bp); 5059 } else if (ufsvfsp->vfs_snapshot) { 5060 fssnap_strategy(&ufsvfsp->vfs_snapshot, bp); 5061 } else { 5062 ufsvfsp->vfs_iotstamp = lbolt; 5063 ub.ub_getras.value.ul++; 5064 (void) bdev_strategy(bp); 5065 lwp_stat_update(LWP_STAT_INBLK, 1); 5066 } 5067 5068 return (io_len); 5069 } 5070 5071 int ufs_delay = 1; 5072 /* 5073 * Flags are composed of {B_INVAL, B_FREE, B_DONTNEED, B_FORCE, B_ASYNC} 5074 * 5075 * LMXXX - the inode really ought to contain a pointer to one of these 5076 * async args. Stuff gunk in there and just hand the whole mess off. 5077 * This would replace i_delaylen, i_delayoff. 5078 */ 5079 /*ARGSUSED*/ 5080 static int 5081 ufs_putpage(struct vnode *vp, offset_t off, size_t len, int flags, 5082 struct cred *cr, caller_context_t *ct) 5083 { 5084 struct inode *ip = VTOI(vp); 5085 int err = 0; 5086 5087 if (vp->v_count == 0) { 5088 return (ufs_fault(vp, "ufs_putpage: bad v_count == 0")); 5089 } 5090 5091 /* 5092 * XXX - Why should this check be made here? 5093 */ 5094 if (vp->v_flag & VNOMAP) { 5095 err = ENOSYS; 5096 goto errout; 5097 } 5098 5099 if (ip->i_ufsvfs == NULL) { 5100 err = EIO; 5101 goto errout; 5102 } 5103 5104 if (flags & B_ASYNC) { 5105 if (ufs_delay && len && 5106 (flags & ~(B_ASYNC|B_DONTNEED|B_FREE)) == 0) { 5107 mutex_enter(&ip->i_tlock); 5108 /* 5109 * If nobody stalled, start a new cluster. 5110 */ 5111 if (ip->i_delaylen == 0) { 5112 ip->i_delayoff = off; 5113 ip->i_delaylen = len; 5114 mutex_exit(&ip->i_tlock); 5115 goto errout; 5116 } 5117 /* 5118 * If we have a full cluster or they are not contig, 5119 * then push last cluster and start over. 5120 */ 5121 if (ip->i_delaylen >= CLUSTSZ(ip) || 5122 ip->i_delayoff + ip->i_delaylen != off) { 5123 u_offset_t doff; 5124 size_t dlen; 5125 5126 doff = ip->i_delayoff; 5127 dlen = ip->i_delaylen; 5128 ip->i_delayoff = off; 5129 ip->i_delaylen = len; 5130 mutex_exit(&ip->i_tlock); 5131 err = ufs_putpages(vp, doff, dlen, 5132 flags, cr); 5133 /* LMXXX - flags are new val, not old */ 5134 goto errout; 5135 } 5136 /* 5137 * There is something there, it's not full, and 5138 * it is contig. 5139 */ 5140 ip->i_delaylen += len; 5141 mutex_exit(&ip->i_tlock); 5142 goto errout; 5143 } 5144 /* 5145 * Must have weird flags or we are not clustering. 5146 */ 5147 } 5148 5149 err = ufs_putpages(vp, off, len, flags, cr); 5150 5151 errout: 5152 return (err); 5153 } 5154 5155 /* 5156 * If len == 0, do from off to EOF. 5157 * 5158 * The normal cases should be len == 0 & off == 0 (entire vp list), 5159 * len == MAXBSIZE (from segmap_release actions), and len == PAGESIZE 5160 * (from pageout). 5161 */ 5162 /*ARGSUSED*/ 5163 static int 5164 ufs_putpages( 5165 struct vnode *vp, 5166 offset_t off, 5167 size_t len, 5168 int flags, 5169 struct cred *cr) 5170 { 5171 u_offset_t io_off; 5172 u_offset_t eoff; 5173 struct inode *ip = VTOI(vp); 5174 page_t *pp; 5175 size_t io_len; 5176 int err = 0; 5177 int dolock; 5178 5179 if (vp->v_count == 0) 5180 return (ufs_fault(vp, "ufs_putpages: v_count == 0")); 5181 /* 5182 * Acquire the readers/write inode lock before locking 5183 * any pages in this inode. 5184 * The inode lock is held during i/o. 5185 */ 5186 if (len == 0) { 5187 mutex_enter(&ip->i_tlock); 5188 ip->i_delayoff = ip->i_delaylen = 0; 5189 mutex_exit(&ip->i_tlock); 5190 } 5191 dolock = (rw_owner(&ip->i_contents) != curthread); 5192 if (dolock) { 5193 /* 5194 * Must synchronize this thread and any possible thread 5195 * operating in the window of vulnerability in wrip(). 5196 * It is dangerous to allow both a thread doing a putpage 5197 * and a thread writing, so serialize them. The exception 5198 * is when the thread in wrip() does something which causes 5199 * a putpage operation. Then, the thread must be allowed 5200 * to continue. It may encounter a bmap_read problem in 5201 * ufs_putapage, but that is handled in ufs_putapage. 5202 * Allow async writers to proceed, we don't want to block 5203 * the pageout daemon. 5204 */ 5205 if (ip->i_writer == curthread) 5206 rw_enter(&ip->i_contents, RW_READER); 5207 else { 5208 for (;;) { 5209 rw_enter(&ip->i_contents, RW_READER); 5210 mutex_enter(&ip->i_tlock); 5211 /* 5212 * If there is no thread in the critical 5213 * section of wrip(), then proceed. 5214 * Otherwise, wait until there isn't one. 5215 */ 5216 if (ip->i_writer == NULL) { 5217 mutex_exit(&ip->i_tlock); 5218 break; 5219 } 5220 rw_exit(&ip->i_contents); 5221 /* 5222 * Bounce async writers when we have a writer 5223 * working on this file so we don't deadlock 5224 * the pageout daemon. 5225 */ 5226 if (flags & B_ASYNC) { 5227 mutex_exit(&ip->i_tlock); 5228 return (0); 5229 } 5230 cv_wait(&ip->i_wrcv, &ip->i_tlock); 5231 mutex_exit(&ip->i_tlock); 5232 } 5233 } 5234 } 5235 5236 if (!vn_has_cached_data(vp)) { 5237 if (dolock) 5238 rw_exit(&ip->i_contents); 5239 return (0); 5240 } 5241 5242 if (len == 0) { 5243 /* 5244 * Search the entire vp list for pages >= off. 5245 */ 5246 err = pvn_vplist_dirty(vp, (u_offset_t)off, ufs_putapage, 5247 flags, cr); 5248 } else { 5249 /* 5250 * Loop over all offsets in the range looking for 5251 * pages to deal with. 5252 */ 5253 if ((eoff = blkroundup(ip->i_fs, ip->i_size)) != 0) 5254 eoff = MIN(off + len, eoff); 5255 else 5256 eoff = off + len; 5257 5258 for (io_off = off; io_off < eoff; io_off += io_len) { 5259 /* 5260 * If we are not invalidating, synchronously 5261 * freeing or writing pages, use the routine 5262 * page_lookup_nowait() to prevent reclaiming 5263 * them from the free list. 5264 */ 5265 if ((flags & B_INVAL) || ((flags & B_ASYNC) == 0)) { 5266 pp = page_lookup(vp, io_off, 5267 (flags & (B_INVAL | B_FREE)) ? 5268 SE_EXCL : SE_SHARED); 5269 } else { 5270 pp = page_lookup_nowait(vp, io_off, 5271 (flags & B_FREE) ? SE_EXCL : SE_SHARED); 5272 } 5273 5274 if (pp == NULL || pvn_getdirty(pp, flags) == 0) 5275 io_len = PAGESIZE; 5276 else { 5277 u_offset_t *io_offp = &io_off; 5278 5279 err = ufs_putapage(vp, pp, io_offp, &io_len, 5280 flags, cr); 5281 if (err != 0) 5282 break; 5283 /* 5284 * "io_off" and "io_len" are returned as 5285 * the range of pages we actually wrote. 5286 * This allows us to skip ahead more quickly 5287 * since several pages may've been dealt 5288 * with by this iteration of the loop. 5289 */ 5290 } 5291 } 5292 } 5293 if (err == 0 && off == 0 && (len == 0 || len >= ip->i_size)) { 5294 /* 5295 * We have just sync'ed back all the pages on 5296 * the inode, turn off the IMODTIME flag. 5297 */ 5298 mutex_enter(&ip->i_tlock); 5299 ip->i_flag &= ~IMODTIME; 5300 mutex_exit(&ip->i_tlock); 5301 } 5302 if (dolock) 5303 rw_exit(&ip->i_contents); 5304 return (err); 5305 } 5306 5307 static void 5308 ufs_iodone(buf_t *bp) 5309 { 5310 struct inode *ip; 5311 5312 ASSERT((bp->b_pages->p_vnode != NULL) && !(bp->b_flags & B_READ)); 5313 5314 bp->b_iodone = NULL; 5315 5316 ip = VTOI(bp->b_pages->p_vnode); 5317 5318 mutex_enter(&ip->i_tlock); 5319 if (ip->i_writes >= ufs_LW) { 5320 if ((ip->i_writes -= bp->b_bcount) <= ufs_LW) 5321 if (ufs_WRITES) 5322 cv_broadcast(&ip->i_wrcv); /* wake all up */ 5323 } else { 5324 ip->i_writes -= bp->b_bcount; 5325 } 5326 5327 mutex_exit(&ip->i_tlock); 5328 iodone(bp); 5329 } 5330 5331 /* 5332 * Write out a single page, possibly klustering adjacent 5333 * dirty pages. The inode lock must be held. 5334 * 5335 * LMXXX - bsize < pagesize not done. 5336 */ 5337 /*ARGSUSED*/ 5338 int 5339 ufs_putapage( 5340 struct vnode *vp, 5341 page_t *pp, 5342 u_offset_t *offp, 5343 size_t *lenp, /* return values */ 5344 int flags, 5345 struct cred *cr) 5346 { 5347 u_offset_t io_off; 5348 u_offset_t off; 5349 struct inode *ip = VTOI(vp); 5350 struct ufsvfs *ufsvfsp = ip->i_ufsvfs; 5351 struct fs *fs; 5352 struct buf *bp; 5353 size_t io_len; 5354 daddr_t bn; 5355 int err; 5356 int contig; 5357 int dotrans; 5358 5359 ASSERT(RW_LOCK_HELD(&ip->i_contents)); 5360 5361 if (ufsvfsp == NULL) { 5362 err = EIO; 5363 goto out_trace; 5364 } 5365 5366 fs = ip->i_fs; 5367 ASSERT(fs->fs_ronly == 0); 5368 5369 /* 5370 * If the modified time on the inode has not already been 5371 * set elsewhere (e.g. for write/setattr) we set the time now. 5372 * This gives us approximate modified times for mmap'ed files 5373 * which are modified via stores in the user address space. 5374 */ 5375 if ((ip->i_flag & IMODTIME) == 0) { 5376 mutex_enter(&ip->i_tlock); 5377 ip->i_flag |= IUPD; 5378 ip->i_seq++; 5379 ITIMES_NOLOCK(ip); 5380 mutex_exit(&ip->i_tlock); 5381 } 5382 5383 /* 5384 * Align the request to a block boundry (for old file systems), 5385 * and go ask bmap() how contiguous things are for this file. 5386 */ 5387 off = pp->p_offset & (offset_t)fs->fs_bmask; /* block align it */ 5388 contig = 0; 5389 err = bmap_read(ip, off, &bn, &contig); 5390 if (err) 5391 goto out; 5392 if (bn == UFS_HOLE) { /* putpage never allocates */ 5393 /* 5394 * logging device is in error mode; simply return EIO 5395 */ 5396 if (TRANS_ISERROR(ufsvfsp)) { 5397 err = EIO; 5398 goto out; 5399 } 5400 /* 5401 * Oops, the thread in the window in wrip() did some 5402 * sort of operation which caused a putpage in the bad 5403 * range. In this case, just return an error which will 5404 * cause the software modified bit on the page to set 5405 * and the page will get written out again later. 5406 */ 5407 if (ip->i_writer == curthread) { 5408 err = EIO; 5409 goto out; 5410 } 5411 /* 5412 * If the pager is trying to push a page in the bad range 5413 * just tell him to try again later when things are better. 5414 */ 5415 if (flags & B_ASYNC) { 5416 err = EAGAIN; 5417 goto out; 5418 } 5419 err = ufs_fault(ITOV(ip), "ufs_putapage: bn == UFS_HOLE"); 5420 goto out; 5421 } 5422 5423 /* 5424 * If it is an fallocate'd block, reverse the negativity since 5425 * we are now writing to it 5426 */ 5427 if (ISFALLOCBLK(ip, bn)) { 5428 err = bmap_set_bn(vp, off, dbtofsb(fs, -bn)); 5429 if (err) 5430 goto out; 5431 5432 bn = -bn; 5433 } 5434 5435 /* 5436 * Take the length (of contiguous bytes) passed back from bmap() 5437 * and _try_ and get a set of pages covering that extent. 5438 */ 5439 pp = pvn_write_kluster(vp, pp, &io_off, &io_len, off, contig, flags); 5440 5441 /* 5442 * May have run out of memory and not clustered backwards. 5443 * off p_offset 5444 * [ pp - 1 ][ pp ] 5445 * [ block ] 5446 * We told bmap off, so we have to adjust the bn accordingly. 5447 */ 5448 if (io_off > off) { 5449 bn += btod(io_off - off); 5450 contig -= (io_off - off); 5451 } 5452 5453 /* 5454 * bmap was carefull to tell us the right size so use that. 5455 * There might be unallocated frags at the end. 5456 * LMXXX - bzero the end of the page? We must be writing after EOF. 5457 */ 5458 if (io_len > contig) { 5459 ASSERT(io_len - contig < fs->fs_bsize); 5460 io_len -= (io_len - contig); 5461 } 5462 5463 /* 5464 * Handle the case where we are writing the last page after EOF. 5465 * 5466 * XXX - just a patch for i-mt3. 5467 */ 5468 if (io_len == 0) { 5469 ASSERT(pp->p_offset >= 5470 (u_offset_t)(roundup(ip->i_size, PAGESIZE))); 5471 io_len = PAGESIZE; 5472 } 5473 5474 bp = pageio_setup(pp, io_len, ip->i_devvp, B_WRITE | flags); 5475 5476 ULOCKFS_SET_MOD(ITOUL(ip)); 5477 5478 bp->b_edev = ip->i_dev; 5479 bp->b_dev = cmpdev(ip->i_dev); 5480 bp->b_blkno = bn; 5481 bp->b_un.b_addr = (caddr_t)0; 5482 bp->b_file = ip->i_vnode; 5483 5484 /* 5485 * File contents of shadow or quota inodes are metadata, and updates 5486 * to these need to be put into a logging transaction. All direct 5487 * callers in UFS do that, but fsflush can come here _before_ the 5488 * normal codepath. An example would be updating ACL information, for 5489 * which the normal codepath would be: 5490 * ufs_si_store() 5491 * ufs_rdwri() 5492 * wrip() 5493 * segmap_release() 5494 * VOP_PUTPAGE() 5495 * Here, fsflush can pick up the dirty page before segmap_release() 5496 * forces it out. If that happens, there's no transaction. 5497 * We therefore need to test whether a transaction exists, and if not 5498 * create one - for fsflush. 5499 */ 5500 dotrans = 5501 (((ip->i_mode & IFMT) == IFSHAD || ufsvfsp->vfs_qinod == ip) && 5502 ((curthread->t_flag & T_DONTBLOCK) == 0) && 5503 (TRANS_ISTRANS(ufsvfsp))); 5504 5505 if (dotrans) { 5506 curthread->t_flag |= T_DONTBLOCK; 5507 TRANS_BEGIN_ASYNC(ufsvfsp, TOP_PUTPAGE, TOP_PUTPAGE_SIZE(ip)); 5508 } 5509 if (TRANS_ISTRANS(ufsvfsp)) { 5510 if ((ip->i_mode & IFMT) == IFSHAD) { 5511 TRANS_BUF(ufsvfsp, 0, io_len, bp, DT_SHAD); 5512 } else if (ufsvfsp->vfs_qinod == ip) { 5513 TRANS_DELTA(ufsvfsp, ldbtob(bn), bp->b_bcount, DT_QR, 5514 0, 0); 5515 } 5516 } 5517 if (dotrans) { 5518 TRANS_END_ASYNC(ufsvfsp, TOP_PUTPAGE, TOP_PUTPAGE_SIZE(ip)); 5519 curthread->t_flag &= ~T_DONTBLOCK; 5520 } 5521 5522 /* write throttle */ 5523 5524 ASSERT(bp->b_iodone == NULL); 5525 bp->b_iodone = (int (*)())ufs_iodone; 5526 mutex_enter(&ip->i_tlock); 5527 ip->i_writes += bp->b_bcount; 5528 mutex_exit(&ip->i_tlock); 5529 5530 if (bp->b_flags & B_ASYNC) { 5531 if (ufsvfsp->vfs_log) { 5532 lufs_write_strategy(ufsvfsp->vfs_log, bp); 5533 } else if (ufsvfsp->vfs_snapshot) { 5534 fssnap_strategy(&ufsvfsp->vfs_snapshot, bp); 5535 } else { 5536 ufsvfsp->vfs_iotstamp = lbolt; 5537 ub.ub_putasyncs.value.ul++; 5538 (void) bdev_strategy(bp); 5539 lwp_stat_update(LWP_STAT_OUBLK, 1); 5540 } 5541 } else { 5542 if (ufsvfsp->vfs_log) { 5543 lufs_write_strategy(ufsvfsp->vfs_log, bp); 5544 } else if (ufsvfsp->vfs_snapshot) { 5545 fssnap_strategy(&ufsvfsp->vfs_snapshot, bp); 5546 } else { 5547 ufsvfsp->vfs_iotstamp = lbolt; 5548 ub.ub_putsyncs.value.ul++; 5549 (void) bdev_strategy(bp); 5550 lwp_stat_update(LWP_STAT_OUBLK, 1); 5551 } 5552 err = biowait(bp); 5553 pageio_done(bp); 5554 pvn_write_done(pp, ((err) ? B_ERROR : 0) | B_WRITE | flags); 5555 } 5556 5557 pp = NULL; 5558 5559 out: 5560 if (err != 0 && pp != NULL) 5561 pvn_write_done(pp, B_ERROR | B_WRITE | flags); 5562 5563 if (offp) 5564 *offp = io_off; 5565 if (lenp) 5566 *lenp = io_len; 5567 out_trace: 5568 return (err); 5569 } 5570 5571 uint64_t ufs_map_alock_retry_cnt; 5572 uint64_t ufs_map_lockfs_retry_cnt; 5573 5574 /* ARGSUSED */ 5575 static int 5576 ufs_map(struct vnode *vp, 5577 offset_t off, 5578 struct as *as, 5579 caddr_t *addrp, 5580 size_t len, 5581 uchar_t prot, 5582 uchar_t maxprot, 5583 uint_t flags, 5584 struct cred *cr, 5585 caller_context_t *ct) 5586 { 5587 struct segvn_crargs vn_a; 5588 struct ufsvfs *ufsvfsp = VTOI(vp)->i_ufsvfs; 5589 struct ulockfs *ulp; 5590 int error, sig; 5591 k_sigset_t smask; 5592 caddr_t hint = *addrp; 5593 5594 if (vp->v_flag & VNOMAP) { 5595 error = ENOSYS; 5596 goto out; 5597 } 5598 5599 if (off < (offset_t)0 || (offset_t)(off + len) < (offset_t)0) { 5600 error = ENXIO; 5601 goto out; 5602 } 5603 5604 if (vp->v_type != VREG) { 5605 error = ENODEV; 5606 goto out; 5607 } 5608 5609 retry_map: 5610 *addrp = hint; 5611 /* 5612 * If file is being locked, disallow mapping. 5613 */ 5614 if (vn_has_mandatory_locks(vp, VTOI(vp)->i_mode)) { 5615 error = EAGAIN; 5616 goto out; 5617 } 5618 5619 as_rangelock(as); 5620 /* 5621 * Note that if we are retrying (because ufs_lockfs_trybegin failed in 5622 * the previous attempt), some other thread could have grabbed 5623 * the same VA range if MAP_FIXED is set. In that case, choose_addr 5624 * would unmap the valid VA range, that is ok. 5625 */ 5626 error = choose_addr(as, addrp, len, off, ADDR_VACALIGN, flags); 5627 if (error != 0) { 5628 as_rangeunlock(as); 5629 goto out; 5630 } 5631 5632 /* 5633 * a_lock has to be acquired before entering the lockfs protocol 5634 * because that is the order in which pagefault works. Also we cannot 5635 * block on a_lock here because this waiting writer will prevent 5636 * further readers like ufs_read from progressing and could cause 5637 * deadlock between ufs_read/ufs_map/pagefault when a quiesce is 5638 * pending. 5639 */ 5640 while (!AS_LOCK_TRYENTER(as, &as->a_lock, RW_WRITER)) { 5641 ufs_map_alock_retry_cnt++; 5642 delay(RETRY_LOCK_DELAY); 5643 } 5644 5645 /* 5646 * We can't hold as->a_lock and wait for lockfs to succeed because 5647 * the proc tools might hang on a_lock, so call ufs_lockfs_trybegin() 5648 * instead. 5649 */ 5650 if (error = ufs_lockfs_trybegin(ufsvfsp, &ulp, ULOCKFS_MAP_MASK)) { 5651 /* 5652 * ufs_lockfs_trybegin() did not succeed. It is safer to give up 5653 * as->a_lock and wait for ulp->ul_fs_lock status to change. 5654 */ 5655 ufs_map_lockfs_retry_cnt++; 5656 AS_LOCK_EXIT(as, &as->a_lock); 5657 as_rangeunlock(as); 5658 if (error == EIO) 5659 goto out; 5660 5661 mutex_enter(&ulp->ul_lock); 5662 while (ulp->ul_fs_lock & ULOCKFS_MAP_MASK) { 5663 if (ULOCKFS_IS_SLOCK(ulp) || ufsvfsp->vfs_nointr) { 5664 cv_wait(&ulp->ul_cv, &ulp->ul_lock); 5665 } else { 5666 sigintr(&smask, 1); 5667 sig = cv_wait_sig(&ulp->ul_cv, &ulp->ul_lock); 5668 sigunintr(&smask); 5669 if (((ulp->ul_fs_lock & ULOCKFS_MAP_MASK) && 5670 !sig) || ufsvfsp->vfs_dontblock) { 5671 mutex_exit(&ulp->ul_lock); 5672 return (EINTR); 5673 } 5674 } 5675 } 5676 mutex_exit(&ulp->ul_lock); 5677 goto retry_map; 5678 } 5679 5680 vn_a.vp = vp; 5681 vn_a.offset = (u_offset_t)off; 5682 vn_a.type = flags & MAP_TYPE; 5683 vn_a.prot = prot; 5684 vn_a.maxprot = maxprot; 5685 vn_a.cred = cr; 5686 vn_a.amp = NULL; 5687 vn_a.flags = flags & ~MAP_TYPE; 5688 vn_a.szc = 0; 5689 vn_a.lgrp_mem_policy_flags = 0; 5690 5691 error = as_map_locked(as, *addrp, len, segvn_create, &vn_a); 5692 if (ulp) 5693 ufs_lockfs_end(ulp); 5694 as_rangeunlock(as); 5695 out: 5696 return (error); 5697 } 5698 5699 /* ARGSUSED */ 5700 static int 5701 ufs_addmap(struct vnode *vp, 5702 offset_t off, 5703 struct as *as, 5704 caddr_t addr, 5705 size_t len, 5706 uchar_t prot, 5707 uchar_t maxprot, 5708 uint_t flags, 5709 struct cred *cr, 5710 caller_context_t *ct) 5711 { 5712 struct inode *ip = VTOI(vp); 5713 5714 if (vp->v_flag & VNOMAP) { 5715 return (ENOSYS); 5716 } 5717 5718 mutex_enter(&ip->i_tlock); 5719 ip->i_mapcnt += btopr(len); 5720 mutex_exit(&ip->i_tlock); 5721 return (0); 5722 } 5723 5724 /*ARGSUSED*/ 5725 static int 5726 ufs_delmap(struct vnode *vp, offset_t off, struct as *as, caddr_t addr, 5727 size_t len, uint_t prot, uint_t maxprot, uint_t flags, 5728 struct cred *cr, caller_context_t *ct) 5729 { 5730 struct inode *ip = VTOI(vp); 5731 5732 if (vp->v_flag & VNOMAP) { 5733 return (ENOSYS); 5734 } 5735 5736 mutex_enter(&ip->i_tlock); 5737 ip->i_mapcnt -= btopr(len); /* Count released mappings */ 5738 ASSERT(ip->i_mapcnt >= 0); 5739 mutex_exit(&ip->i_tlock); 5740 return (0); 5741 } 5742 /* 5743 * Return the answer requested to poll() for non-device files 5744 */ 5745 struct pollhead ufs_pollhd; 5746 5747 /* ARGSUSED */ 5748 int 5749 ufs_poll(vnode_t *vp, short ev, int any, short *revp, struct pollhead **phpp, 5750 caller_context_t *ct) 5751 { 5752 struct ufsvfs *ufsvfsp; 5753 5754 *revp = 0; 5755 ufsvfsp = VTOI(vp)->i_ufsvfs; 5756 5757 if (!ufsvfsp) { 5758 *revp = POLLHUP; 5759 goto out; 5760 } 5761 5762 if (ULOCKFS_IS_HLOCK(&ufsvfsp->vfs_ulockfs) || 5763 ULOCKFS_IS_ELOCK(&ufsvfsp->vfs_ulockfs)) { 5764 *revp |= POLLERR; 5765 5766 } else { 5767 if ((ev & POLLOUT) && !ufsvfsp->vfs_fs->fs_ronly && 5768 !ULOCKFS_IS_WLOCK(&ufsvfsp->vfs_ulockfs)) 5769 *revp |= POLLOUT; 5770 5771 if ((ev & POLLWRBAND) && !ufsvfsp->vfs_fs->fs_ronly && 5772 !ULOCKFS_IS_WLOCK(&ufsvfsp->vfs_ulockfs)) 5773 *revp |= POLLWRBAND; 5774 5775 if (ev & POLLIN) 5776 *revp |= POLLIN; 5777 5778 if (ev & POLLRDNORM) 5779 *revp |= POLLRDNORM; 5780 5781 if (ev & POLLRDBAND) 5782 *revp |= POLLRDBAND; 5783 } 5784 5785 if ((ev & POLLPRI) && (*revp & (POLLERR|POLLHUP))) 5786 *revp |= POLLPRI; 5787 out: 5788 *phpp = !any && !*revp ? &ufs_pollhd : (struct pollhead *)NULL; 5789 5790 return (0); 5791 } 5792 5793 /* ARGSUSED */ 5794 static int 5795 ufs_l_pathconf(struct vnode *vp, int cmd, ulong_t *valp, struct cred *cr, 5796 caller_context_t *ct) 5797 { 5798 struct ufsvfs *ufsvfsp = VTOI(vp)->i_ufsvfs; 5799 struct ulockfs *ulp = NULL; 5800 struct inode *sip = NULL; 5801 int error; 5802 struct inode *ip = VTOI(vp); 5803 int issync; 5804 5805 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_PATHCONF_MASK); 5806 if (error) 5807 return (error); 5808 5809 switch (cmd) { 5810 /* 5811 * Have to handle _PC_NAME_MAX here, because the normal way 5812 * [fs_pathconf() -> VOP_STATVFS() -> ufs_statvfs()] 5813 * results in a lock ordering reversal between 5814 * ufs_lockfs_{begin,end}() and 5815 * ufs_thread_{suspend,continue}(). 5816 * 5817 * Keep in sync with ufs_statvfs(). 5818 */ 5819 case _PC_NAME_MAX: 5820 *valp = MAXNAMLEN; 5821 break; 5822 5823 case _PC_FILESIZEBITS: 5824 if (ufsvfsp->vfs_lfflags & UFS_LARGEFILES) 5825 *valp = UFS_FILESIZE_BITS; 5826 else 5827 *valp = 32; 5828 break; 5829 5830 case _PC_XATTR_EXISTS: 5831 if (vp->v_vfsp->vfs_flag & VFS_XATTR) { 5832 5833 error = 5834 ufs_xattr_getattrdir(vp, &sip, LOOKUP_XATTR, cr); 5835 if (error == 0 && sip != NULL) { 5836 /* Start transaction */ 5837 if (ulp) { 5838 TRANS_BEGIN_CSYNC(ufsvfsp, issync, 5839 TOP_RMDIR, TOP_RMDIR_SIZE); 5840 } 5841 /* 5842 * Is directory empty 5843 */ 5844 rw_enter(&sip->i_rwlock, RW_WRITER); 5845 rw_enter(&sip->i_contents, RW_WRITER); 5846 if (ufs_xattrdirempty(sip, 5847 sip->i_number, CRED())) { 5848 rw_enter(&ip->i_contents, RW_WRITER); 5849 ufs_unhook_shadow(ip, sip); 5850 rw_exit(&ip->i_contents); 5851 5852 *valp = 0; 5853 5854 } else 5855 *valp = 1; 5856 rw_exit(&sip->i_contents); 5857 rw_exit(&sip->i_rwlock); 5858 if (ulp) { 5859 TRANS_END_CSYNC(ufsvfsp, error, issync, 5860 TOP_RMDIR, TOP_RMDIR_SIZE); 5861 } 5862 VN_RELE(ITOV(sip)); 5863 } else if (error == ENOENT) { 5864 *valp = 0; 5865 error = 0; 5866 } 5867 } else { 5868 error = fs_pathconf(vp, cmd, valp, cr, ct); 5869 } 5870 break; 5871 5872 case _PC_ACL_ENABLED: 5873 *valp = _ACL_ACLENT_ENABLED; 5874 break; 5875 5876 case _PC_MIN_HOLE_SIZE: 5877 *valp = (ulong_t)ip->i_fs->fs_bsize; 5878 break; 5879 5880 case _PC_SATTR_ENABLED: 5881 case _PC_SATTR_EXISTS: 5882 *valp = vfs_has_feature(vp->v_vfsp, VFSFT_SYSATTR_VIEWS) && 5883 (vp->v_type == VREG || vp->v_type == VDIR); 5884 break; 5885 5886 default: 5887 error = fs_pathconf(vp, cmd, valp, cr, ct); 5888 } 5889 5890 if (ulp != NULL) { 5891 ufs_lockfs_end(ulp); 5892 } 5893 return (error); 5894 } 5895 5896 int ufs_pageio_writes, ufs_pageio_reads; 5897 5898 /*ARGSUSED*/ 5899 static int 5900 ufs_pageio(struct vnode *vp, page_t *pp, u_offset_t io_off, size_t io_len, 5901 int flags, struct cred *cr, caller_context_t *ct) 5902 { 5903 struct inode *ip = VTOI(vp); 5904 struct ufsvfs *ufsvfsp; 5905 page_t *npp = NULL, *opp = NULL, *cpp = pp; 5906 struct buf *bp; 5907 daddr_t bn; 5908 size_t done_len = 0, cur_len = 0; 5909 int err = 0; 5910 int contig = 0; 5911 int dolock; 5912 int vmpss = 0; 5913 struct ulockfs *ulp; 5914 5915 if ((flags & B_READ) && pp != NULL && pp->p_vnode == vp && 5916 vp->v_mpssdata != NULL) { 5917 vmpss = 1; 5918 } 5919 5920 dolock = (rw_owner(&ip->i_contents) != curthread); 5921 /* 5922 * We need a better check. Ideally, we would use another 5923 * vnodeops so that hlocked and forcibly unmounted file 5924 * systems would return EIO where appropriate and w/o the 5925 * need for these checks. 5926 */ 5927 if ((ufsvfsp = ip->i_ufsvfs) == NULL) 5928 return (EIO); 5929 5930 /* 5931 * For vmpss (pp can be NULL) case respect the quiesce protocol. 5932 * ul_lock must be taken before locking pages so we can't use it here 5933 * if pp is non NULL because segvn already locked pages 5934 * SE_EXCL. Instead we rely on the fact that a forced umount or 5935 * applying a filesystem lock via ufs_fiolfs() will block in the 5936 * implicit call to ufs_flush() until we unlock the pages after the 5937 * return to segvn. Other ufs_quiesce() callers keep ufs_quiesce_pend 5938 * above 0 until they are done. We have to be careful not to increment 5939 * ul_vnops_cnt here after forceful unmount hlocks the file system. 5940 * 5941 * If pp is NULL use ul_lock to make sure we don't increment 5942 * ul_vnops_cnt after forceful unmount hlocks the file system. 5943 */ 5944 if (vmpss || pp == NULL) { 5945 ulp = &ufsvfsp->vfs_ulockfs; 5946 if (pp == NULL) 5947 mutex_enter(&ulp->ul_lock); 5948 if (ulp->ul_fs_lock & ULOCKFS_GETREAD_MASK) { 5949 if (pp == NULL) { 5950 mutex_exit(&ulp->ul_lock); 5951 } 5952 return (vmpss ? EIO : EINVAL); 5953 } 5954 atomic_add_long(&ulp->ul_vnops_cnt, 1); 5955 if (pp == NULL) 5956 mutex_exit(&ulp->ul_lock); 5957 if (ufs_quiesce_pend) { 5958 if (!atomic_add_long_nv(&ulp->ul_vnops_cnt, -1)) 5959 cv_broadcast(&ulp->ul_cv); 5960 return (vmpss ? EIO : EINVAL); 5961 } 5962 } 5963 5964 if (dolock) { 5965 /* 5966 * segvn may call VOP_PAGEIO() instead of VOP_GETPAGE() to 5967 * handle a fault against a segment that maps vnode pages with 5968 * large mappings. Segvn creates pages and holds them locked 5969 * SE_EXCL during VOP_PAGEIO() call. In this case we have to 5970 * use rw_tryenter() to avoid a potential deadlock since in 5971 * lock order i_contents needs to be taken first. 5972 * Segvn will retry via VOP_GETPAGE() if VOP_PAGEIO() fails. 5973 */ 5974 if (!vmpss) { 5975 rw_enter(&ip->i_contents, RW_READER); 5976 } else if (!rw_tryenter(&ip->i_contents, RW_READER)) { 5977 if (!atomic_add_long_nv(&ulp->ul_vnops_cnt, -1)) 5978 cv_broadcast(&ulp->ul_cv); 5979 return (EDEADLK); 5980 } 5981 } 5982 5983 /* 5984 * Return an error to segvn because the pagefault request is beyond 5985 * PAGESIZE rounded EOF. 5986 */ 5987 if (vmpss && btopr(io_off + io_len) > btopr(ip->i_size)) { 5988 if (dolock) 5989 rw_exit(&ip->i_contents); 5990 if (!atomic_add_long_nv(&ulp->ul_vnops_cnt, -1)) 5991 cv_broadcast(&ulp->ul_cv); 5992 return (EFAULT); 5993 } 5994 5995 if (pp == NULL) { 5996 if (bmap_has_holes(ip)) { 5997 err = ENOSYS; 5998 } else { 5999 err = EINVAL; 6000 } 6001 if (dolock) 6002 rw_exit(&ip->i_contents); 6003 if (!atomic_add_long_nv(&ulp->ul_vnops_cnt, -1)) 6004 cv_broadcast(&ulp->ul_cv); 6005 return (err); 6006 } 6007 6008 /* 6009 * Break the io request into chunks, one for each contiguous 6010 * stretch of disk blocks in the target file. 6011 */ 6012 while (done_len < io_len) { 6013 ASSERT(cpp); 6014 contig = 0; 6015 if (err = bmap_read(ip, (u_offset_t)(io_off + done_len), 6016 &bn, &contig)) 6017 break; 6018 6019 if (bn == UFS_HOLE) { /* No holey swapfiles */ 6020 if (vmpss) { 6021 err = EFAULT; 6022 break; 6023 } 6024 err = ufs_fault(ITOV(ip), "ufs_pageio: bn == UFS_HOLE"); 6025 break; 6026 } 6027 6028 cur_len = MIN(io_len - done_len, contig); 6029 /* 6030 * Zero out a page beyond EOF, when the last block of 6031 * a file is a UFS fragment so that ufs_pageio() can be used 6032 * instead of ufs_getpage() to handle faults against 6033 * segvn segments that use large pages. 6034 */ 6035 page_list_break(&cpp, &npp, btopr(cur_len)); 6036 if ((flags & B_READ) && (cur_len & PAGEOFFSET)) { 6037 size_t xlen = cur_len & PAGEOFFSET; 6038 pagezero(cpp->p_prev, xlen, PAGESIZE - xlen); 6039 } 6040 6041 bp = pageio_setup(cpp, cur_len, ip->i_devvp, flags); 6042 ASSERT(bp != NULL); 6043 6044 bp->b_edev = ip->i_dev; 6045 bp->b_dev = cmpdev(ip->i_dev); 6046 bp->b_blkno = bn; 6047 bp->b_un.b_addr = (caddr_t)0; 6048 bp->b_file = ip->i_vnode; 6049 6050 ufsvfsp->vfs_iotstamp = lbolt; 6051 ub.ub_pageios.value.ul++; 6052 if (ufsvfsp->vfs_snapshot) 6053 fssnap_strategy(&(ufsvfsp->vfs_snapshot), bp); 6054 else 6055 (void) bdev_strategy(bp); 6056 6057 if (flags & B_READ) 6058 ufs_pageio_reads++; 6059 else 6060 ufs_pageio_writes++; 6061 if (flags & B_READ) 6062 lwp_stat_update(LWP_STAT_INBLK, 1); 6063 else 6064 lwp_stat_update(LWP_STAT_OUBLK, 1); 6065 /* 6066 * If the request is not B_ASYNC, wait for i/o to complete 6067 * and re-assemble the page list to return to the caller. 6068 * If it is B_ASYNC we leave the page list in pieces and 6069 * cleanup() will dispose of them. 6070 */ 6071 if ((flags & B_ASYNC) == 0) { 6072 err = biowait(bp); 6073 pageio_done(bp); 6074 if (err) 6075 break; 6076 page_list_concat(&opp, &cpp); 6077 } 6078 cpp = npp; 6079 npp = NULL; 6080 if (flags & B_READ) 6081 cur_len = P2ROUNDUP_TYPED(cur_len, PAGESIZE, size_t); 6082 done_len += cur_len; 6083 } 6084 ASSERT(err || (cpp == NULL && npp == NULL && done_len == io_len)); 6085 if (err) { 6086 if (flags & B_ASYNC) { 6087 /* Cleanup unprocessed parts of list */ 6088 page_list_concat(&cpp, &npp); 6089 if (flags & B_READ) 6090 pvn_read_done(cpp, B_ERROR); 6091 else 6092 pvn_write_done(cpp, B_ERROR); 6093 } else { 6094 /* Re-assemble list and let caller clean up */ 6095 page_list_concat(&opp, &cpp); 6096 page_list_concat(&opp, &npp); 6097 } 6098 } 6099 6100 if (vmpss && !(ip->i_flag & IACC) && !ULOCKFS_IS_NOIACC(ulp) && 6101 ufsvfsp->vfs_fs->fs_ronly == 0 && !ufsvfsp->vfs_noatime) { 6102 mutex_enter(&ip->i_tlock); 6103 ip->i_flag |= IACC; 6104 ITIMES_NOLOCK(ip); 6105 mutex_exit(&ip->i_tlock); 6106 } 6107 6108 if (dolock) 6109 rw_exit(&ip->i_contents); 6110 if (vmpss && !atomic_add_long_nv(&ulp->ul_vnops_cnt, -1)) 6111 cv_broadcast(&ulp->ul_cv); 6112 return (err); 6113 } 6114 6115 /* 6116 * Called when the kernel is in a frozen state to dump data 6117 * directly to the device. It uses a private dump data structure, 6118 * set up by dump_ctl, to locate the correct disk block to which to dump. 6119 */ 6120 /*ARGSUSED*/ 6121 static int 6122 ufs_dump(vnode_t *vp, caddr_t addr, offset_t ldbn, offset_t dblks, 6123 caller_context_t *ct) 6124 { 6125 u_offset_t file_size; 6126 struct inode *ip = VTOI(vp); 6127 struct fs *fs = ip->i_fs; 6128 daddr_t dbn, lfsbn; 6129 int disk_blks = fs->fs_bsize >> DEV_BSHIFT; 6130 int error = 0; 6131 int ndbs, nfsbs; 6132 6133 /* 6134 * forced unmount case 6135 */ 6136 if (ip->i_ufsvfs == NULL) 6137 return (EIO); 6138 /* 6139 * Validate the inode that it has not been modified since 6140 * the dump structure is allocated. 6141 */ 6142 mutex_enter(&ip->i_tlock); 6143 if ((dump_info == NULL) || 6144 (dump_info->ip != ip) || 6145 (dump_info->time.tv_sec != ip->i_mtime.tv_sec) || 6146 (dump_info->time.tv_usec != ip->i_mtime.tv_usec)) { 6147 mutex_exit(&ip->i_tlock); 6148 return (-1); 6149 } 6150 mutex_exit(&ip->i_tlock); 6151 6152 /* 6153 * See that the file has room for this write 6154 */ 6155 UFS_GET_ISIZE(&file_size, ip); 6156 6157 if (ldbtob(ldbn + dblks) > file_size) 6158 return (ENOSPC); 6159 6160 /* 6161 * Find the physical disk block numbers from the dump 6162 * private data structure directly and write out the data 6163 * in contiguous block lumps 6164 */ 6165 while (dblks > 0 && !error) { 6166 lfsbn = (daddr_t)lblkno(fs, ldbtob(ldbn)); 6167 dbn = fsbtodb(fs, dump_info->dblk[lfsbn]) + ldbn % disk_blks; 6168 nfsbs = 1; 6169 ndbs = disk_blks - ldbn % disk_blks; 6170 while (ndbs < dblks && fsbtodb(fs, dump_info->dblk[lfsbn + 6171 nfsbs]) == dbn + ndbs) { 6172 nfsbs++; 6173 ndbs += disk_blks; 6174 } 6175 if (ndbs > dblks) 6176 ndbs = dblks; 6177 error = bdev_dump(ip->i_dev, addr, dbn, ndbs); 6178 addr += ldbtob((offset_t)ndbs); 6179 dblks -= ndbs; 6180 ldbn += ndbs; 6181 } 6182 return (error); 6183 6184 } 6185 6186 /* 6187 * Prepare the file system before and after the dump operation. 6188 * 6189 * action = DUMP_ALLOC: 6190 * Preparation before dump, allocate dump private data structure 6191 * to hold all the direct and indirect block info for dump. 6192 * 6193 * action = DUMP_FREE: 6194 * Clean up after dump, deallocate the dump private data structure. 6195 * 6196 * action = DUMP_SCAN: 6197 * Scan dump_info for *blkp DEV_BSIZE blocks of contig fs space; 6198 * if found, the starting file-relative DEV_BSIZE lbn is written 6199 * to *bklp; that lbn is intended for use with VOP_DUMP() 6200 */ 6201 /*ARGSUSED*/ 6202 static int 6203 ufs_dumpctl(vnode_t *vp, int action, offset_t *blkp, caller_context_t *ct) 6204 { 6205 struct inode *ip = VTOI(vp); 6206 ufsvfs_t *ufsvfsp = ip->i_ufsvfs; 6207 struct fs *fs; 6208 daddr32_t *dblk, *storeblk; 6209 daddr32_t *nextblk, *endblk; 6210 struct buf *bp; 6211 int i, entry, entries; 6212 int n, ncontig; 6213 6214 /* 6215 * check for forced unmount 6216 */ 6217 if (ufsvfsp == NULL) 6218 return (EIO); 6219 6220 if (action == DUMP_ALLOC) { 6221 /* 6222 * alloc and record dump_info 6223 */ 6224 if (dump_info != NULL) 6225 return (EINVAL); 6226 6227 ASSERT(vp->v_type == VREG); 6228 fs = ufsvfsp->vfs_fs; 6229 6230 rw_enter(&ip->i_contents, RW_READER); 6231 6232 if (bmap_has_holes(ip)) { 6233 rw_exit(&ip->i_contents); 6234 return (EFAULT); 6235 } 6236 6237 /* 6238 * calculate and allocate space needed according to i_size 6239 */ 6240 entries = (int)lblkno(fs, blkroundup(fs, ip->i_size)); 6241 dump_info = kmem_alloc(sizeof (struct dump) + 6242 (entries - 1) * sizeof (daddr32_t), KM_NOSLEEP); 6243 if (dump_info == NULL) { 6244 rw_exit(&ip->i_contents); 6245 return (ENOMEM); 6246 } 6247 6248 /* Start saving the info */ 6249 dump_info->fsbs = entries; 6250 dump_info->ip = ip; 6251 storeblk = &dump_info->dblk[0]; 6252 6253 /* Direct Blocks */ 6254 for (entry = 0; entry < NDADDR && entry < entries; entry++) 6255 *storeblk++ = ip->i_db[entry]; 6256 6257 /* Indirect Blocks */ 6258 for (i = 0; i < NIADDR; i++) { 6259 int error = 0; 6260 6261 bp = UFS_BREAD(ufsvfsp, 6262 ip->i_dev, fsbtodb(fs, ip->i_ib[i]), fs->fs_bsize); 6263 if (bp->b_flags & B_ERROR) 6264 error = EIO; 6265 else { 6266 dblk = bp->b_un.b_daddr; 6267 if ((storeblk = save_dblks(ip, ufsvfsp, 6268 storeblk, dblk, i, entries)) == NULL) 6269 error = EIO; 6270 } 6271 6272 brelse(bp); 6273 6274 if (error != 0) { 6275 kmem_free(dump_info, sizeof (struct dump) + 6276 (entries - 1) * sizeof (daddr32_t)); 6277 rw_exit(&ip->i_contents); 6278 dump_info = NULL; 6279 return (error); 6280 } 6281 } 6282 /* and time stamp the information */ 6283 mutex_enter(&ip->i_tlock); 6284 dump_info->time = ip->i_mtime; 6285 mutex_exit(&ip->i_tlock); 6286 6287 rw_exit(&ip->i_contents); 6288 } else if (action == DUMP_FREE) { 6289 /* 6290 * free dump_info 6291 */ 6292 if (dump_info == NULL) 6293 return (EINVAL); 6294 entries = dump_info->fsbs - 1; 6295 kmem_free(dump_info, sizeof (struct dump) + 6296 entries * sizeof (daddr32_t)); 6297 dump_info = NULL; 6298 } else if (action == DUMP_SCAN) { 6299 /* 6300 * scan dump_info 6301 */ 6302 if (dump_info == NULL) 6303 return (EINVAL); 6304 6305 dblk = dump_info->dblk; 6306 nextblk = dblk + 1; 6307 endblk = dblk + dump_info->fsbs - 1; 6308 fs = ufsvfsp->vfs_fs; 6309 ncontig = *blkp >> (fs->fs_bshift - DEV_BSHIFT); 6310 6311 /* 6312 * scan dblk[] entries; contig fs space is found when: 6313 * ((current blkno + frags per block) == next blkno) 6314 */ 6315 n = 0; 6316 while (n < ncontig && dblk < endblk) { 6317 if ((*dblk + fs->fs_frag) == *nextblk) 6318 n++; 6319 else 6320 n = 0; 6321 dblk++; 6322 nextblk++; 6323 } 6324 6325 /* 6326 * index is where size bytes of contig space begins; 6327 * conversion from index to the file's DEV_BSIZE lbn 6328 * is equivalent to: (index * fs_bsize) / DEV_BSIZE 6329 */ 6330 if (n == ncontig) { 6331 i = (dblk - dump_info->dblk) - ncontig; 6332 *blkp = i << (fs->fs_bshift - DEV_BSHIFT); 6333 } else 6334 return (EFAULT); 6335 } 6336 return (0); 6337 } 6338 6339 /* 6340 * Recursive helper function for ufs_dumpctl(). It follows the indirect file 6341 * system blocks until it reaches the the disk block addresses, which are 6342 * then stored into the given buffer, storeblk. 6343 */ 6344 static daddr32_t * 6345 save_dblks(struct inode *ip, struct ufsvfs *ufsvfsp, daddr32_t *storeblk, 6346 daddr32_t *dblk, int level, int entries) 6347 { 6348 struct fs *fs = ufsvfsp->vfs_fs; 6349 struct buf *bp; 6350 int i; 6351 6352 if (level == 0) { 6353 for (i = 0; i < NINDIR(fs); i++) { 6354 if (storeblk - dump_info->dblk >= entries) 6355 break; 6356 *storeblk++ = dblk[i]; 6357 } 6358 return (storeblk); 6359 } 6360 for (i = 0; i < NINDIR(fs); i++) { 6361 if (storeblk - dump_info->dblk >= entries) 6362 break; 6363 bp = UFS_BREAD(ufsvfsp, 6364 ip->i_dev, fsbtodb(fs, dblk[i]), fs->fs_bsize); 6365 if (bp->b_flags & B_ERROR) { 6366 brelse(bp); 6367 return (NULL); 6368 } 6369 storeblk = save_dblks(ip, ufsvfsp, storeblk, bp->b_un.b_daddr, 6370 level - 1, entries); 6371 brelse(bp); 6372 6373 if (storeblk == NULL) 6374 return (NULL); 6375 } 6376 return (storeblk); 6377 } 6378 6379 /* ARGSUSED */ 6380 static int 6381 ufs_getsecattr(struct vnode *vp, vsecattr_t *vsap, int flag, 6382 struct cred *cr, caller_context_t *ct) 6383 { 6384 struct inode *ip = VTOI(vp); 6385 struct ulockfs *ulp; 6386 struct ufsvfs *ufsvfsp = ip->i_ufsvfs; 6387 ulong_t vsa_mask = vsap->vsa_mask; 6388 int err = EINVAL; 6389 6390 vsa_mask &= (VSA_ACL | VSA_ACLCNT | VSA_DFACL | VSA_DFACLCNT); 6391 6392 /* 6393 * Only grab locks if needed - they're not needed to check vsa_mask 6394 * or if the mask contains no acl flags. 6395 */ 6396 if (vsa_mask != 0) { 6397 if (err = ufs_lockfs_begin(ufsvfsp, &ulp, 6398 ULOCKFS_GETATTR_MASK)) 6399 return (err); 6400 6401 rw_enter(&ip->i_contents, RW_READER); 6402 err = ufs_acl_get(ip, vsap, flag, cr); 6403 rw_exit(&ip->i_contents); 6404 6405 if (ulp) 6406 ufs_lockfs_end(ulp); 6407 } 6408 return (err); 6409 } 6410 6411 /* ARGSUSED */ 6412 static int 6413 ufs_setsecattr(struct vnode *vp, vsecattr_t *vsap, int flag, struct cred *cr, 6414 caller_context_t *ct) 6415 { 6416 struct inode *ip = VTOI(vp); 6417 struct ulockfs *ulp = NULL; 6418 struct ufsvfs *ufsvfsp = VTOI(vp)->i_ufsvfs; 6419 ulong_t vsa_mask = vsap->vsa_mask; 6420 int err; 6421 int haverwlock = 1; 6422 int trans_size; 6423 int donetrans = 0; 6424 int retry = 1; 6425 6426 ASSERT(RW_LOCK_HELD(&ip->i_rwlock)); 6427 6428 /* Abort now if the request is either empty or invalid. */ 6429 vsa_mask &= (VSA_ACL | VSA_ACLCNT | VSA_DFACL | VSA_DFACLCNT); 6430 if ((vsa_mask == 0) || 6431 ((vsap->vsa_aclentp == NULL) && 6432 (vsap->vsa_dfaclentp == NULL))) { 6433 err = EINVAL; 6434 goto out; 6435 } 6436 6437 /* 6438 * Following convention, if this is a directory then we acquire the 6439 * inode's i_rwlock after starting a UFS logging transaction; 6440 * otherwise, we acquire it beforehand. Since we were called (and 6441 * must therefore return) with the lock held, we will have to drop it, 6442 * and later reacquire it, if operating on a directory. 6443 */ 6444 if (vp->v_type == VDIR) { 6445 rw_exit(&ip->i_rwlock); 6446 haverwlock = 0; 6447 } else { 6448 /* Upgrade the lock if required. */ 6449 if (!rw_write_held(&ip->i_rwlock)) { 6450 rw_exit(&ip->i_rwlock); 6451 rw_enter(&ip->i_rwlock, RW_WRITER); 6452 } 6453 } 6454 6455 again: 6456 ASSERT(!(vp->v_type == VDIR && haverwlock)); 6457 if (err = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_SETATTR_MASK)) { 6458 ulp = NULL; 6459 retry = 0; 6460 goto out; 6461 } 6462 6463 /* 6464 * Check that the file system supports this operation. Note that 6465 * ufs_lockfs_begin() will have checked that the file system had 6466 * not been forcibly unmounted. 6467 */ 6468 if (ufsvfsp->vfs_fs->fs_ronly) { 6469 err = EROFS; 6470 goto out; 6471 } 6472 if (ufsvfsp->vfs_nosetsec) { 6473 err = ENOSYS; 6474 goto out; 6475 } 6476 6477 if (ulp) { 6478 TRANS_BEGIN_ASYNC(ufsvfsp, TOP_SETSECATTR, 6479 trans_size = TOP_SETSECATTR_SIZE(VTOI(vp))); 6480 donetrans = 1; 6481 } 6482 6483 if (vp->v_type == VDIR) { 6484 rw_enter(&ip->i_rwlock, RW_WRITER); 6485 haverwlock = 1; 6486 } 6487 6488 ASSERT(haverwlock); 6489 6490 /* Do the actual work. */ 6491 rw_enter(&ip->i_contents, RW_WRITER); 6492 /* 6493 * Suppress out of inodes messages if we will retry. 6494 */ 6495 if (retry) 6496 ip->i_flag |= IQUIET; 6497 err = ufs_acl_set(ip, vsap, flag, cr); 6498 ip->i_flag &= ~IQUIET; 6499 rw_exit(&ip->i_contents); 6500 6501 out: 6502 if (ulp) { 6503 if (donetrans) { 6504 /* 6505 * top_end_async() can eventually call 6506 * top_end_sync(), which can block. We must 6507 * therefore observe the lock-ordering protocol 6508 * here as well. 6509 */ 6510 if (vp->v_type == VDIR) { 6511 rw_exit(&ip->i_rwlock); 6512 haverwlock = 0; 6513 } 6514 TRANS_END_ASYNC(ufsvfsp, TOP_SETSECATTR, trans_size); 6515 } 6516 ufs_lockfs_end(ulp); 6517 } 6518 /* 6519 * If no inodes available, try scaring a logically- 6520 * free one out of the delete queue to someplace 6521 * that we can find it. 6522 */ 6523 if ((err == ENOSPC) && retry && TRANS_ISTRANS(ufsvfsp)) { 6524 ufs_delete_drain_wait(ufsvfsp, 1); 6525 retry = 0; 6526 if (vp->v_type == VDIR && haverwlock) { 6527 rw_exit(&ip->i_rwlock); 6528 haverwlock = 0; 6529 } 6530 goto again; 6531 } 6532 /* 6533 * If we need to reacquire the lock then it is safe to do so 6534 * as a reader. This is because ufs_rwunlock(), which will be 6535 * called by our caller after we return, does not differentiate 6536 * between shared and exclusive locks. 6537 */ 6538 if (!haverwlock) { 6539 ASSERT(vp->v_type == VDIR); 6540 rw_enter(&ip->i_rwlock, RW_READER); 6541 } 6542 6543 return (err); 6544 } 6545