1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License, Version 1.0 only 6 * (the "License"). You may not use this file except in compliance 7 * with the License. 8 * 9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 10 * or http://www.opensolaris.org/os/licensing. 11 * See the License for the specific language governing permissions 12 * and limitations under the License. 13 * 14 * When distributing Covered Code, include this CDDL HEADER in each 15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 16 * If applicable, add the following below this CDDL HEADER, with the 17 * fields enclosed by brackets "[]" replaced with your own identifying 18 * information: Portions Copyright [yyyy] [name of copyright owner] 19 * 20 * CDDL HEADER END 21 */ 22 /* 23 * Copyright 2005 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 /* Copyright (c) 1983, 1984, 1985, 1986, 1987, 1988, 1989 AT&T */ 28 /* All Rights Reserved */ 29 30 /* 31 * Portions of this source code were derived from Berkeley 4.3 BSD 32 * under license from the Regents of the University of California. 33 */ 34 35 #pragma ident "%Z%%M% %I% %E% SMI" 36 37 #include <sys/types.h> 38 #include <sys/t_lock.h> 39 #include <sys/ksynch.h> 40 #include <sys/param.h> 41 #include <sys/time.h> 42 #include <sys/systm.h> 43 #include <sys/sysmacros.h> 44 #include <sys/resource.h> 45 #include <sys/signal.h> 46 #include <sys/cred.h> 47 #include <sys/user.h> 48 #include <sys/buf.h> 49 #include <sys/vfs.h> 50 #include <sys/vnode.h> 51 #include <sys/proc.h> 52 #include <sys/disp.h> 53 #include <sys/file.h> 54 #include <sys/fcntl.h> 55 #include <sys/flock.h> 56 #include <sys/atomic.h> 57 #include <sys/kmem.h> 58 #include <sys/uio.h> 59 #include <sys/dnlc.h> 60 #include <sys/conf.h> 61 #include <sys/mman.h> 62 #include <sys/pathname.h> 63 #include <sys/debug.h> 64 #include <sys/vmsystm.h> 65 #include <sys/cmn_err.h> 66 #include <sys/vtrace.h> 67 #include <sys/filio.h> 68 #include <sys/policy.h> 69 70 #include <sys/fs/ufs_fs.h> 71 #include <sys/fs/ufs_lockfs.h> 72 #include <sys/fs/ufs_filio.h> 73 #include <sys/fs/ufs_inode.h> 74 #include <sys/fs/ufs_fsdir.h> 75 #include <sys/fs/ufs_quota.h> 76 #include <sys/fs/ufs_log.h> 77 #include <sys/fs/ufs_snap.h> 78 #include <sys/fs/ufs_trans.h> 79 #include <sys/fs/ufs_panic.h> 80 #include <sys/fs/ufs_bio.h> 81 #include <sys/dirent.h> /* must be AFTER <sys/fs/fsdir.h>! */ 82 #include <sys/errno.h> 83 #include <sys/fssnap_if.h> 84 #include <sys/unistd.h> 85 #include <sys/sunddi.h> 86 87 #include <sys/filio.h> /* _FIOIO */ 88 89 #include <vm/hat.h> 90 #include <vm/page.h> 91 #include <vm/pvn.h> 92 #include <vm/as.h> 93 #include <vm/seg.h> 94 #include <vm/seg_map.h> 95 #include <vm/seg_vn.h> 96 #include <vm/seg_kmem.h> 97 #include <vm/rm.h> 98 #include <sys/swap.h> 99 100 #include <fs/fs_subr.h> 101 102 static struct instats ins; 103 104 static int ufs_getpage_ra(struct vnode *, u_offset_t, struct seg *, caddr_t); 105 static int ufs_getpage_miss(struct vnode *, u_offset_t, size_t, struct seg *, 106 caddr_t, struct page **, size_t, enum seg_rw, int); 107 static int ufs_open(struct vnode **, int, struct cred *); 108 static int ufs_close(struct vnode *, int, int, offset_t, struct cred *); 109 static int ufs_read(struct vnode *, struct uio *, int, struct cred *, 110 struct caller_context *); 111 static int ufs_write(struct vnode *, struct uio *, int, struct cred *, 112 struct caller_context *); 113 static int ufs_ioctl(struct vnode *, int, intptr_t, int, struct cred *, int *); 114 static int ufs_getattr(struct vnode *, struct vattr *, int, struct cred *); 115 static int ufs_setattr(struct vnode *, struct vattr *, int, struct cred *, 116 caller_context_t *); 117 static int ufs_access(struct vnode *, int, int, struct cred *); 118 static int ufs_lookup(struct vnode *, char *, struct vnode **, 119 struct pathname *, int, struct vnode *, struct cred *); 120 static int ufs_create(struct vnode *, char *, struct vattr *, enum vcexcl, 121 int, struct vnode **, struct cred *, int); 122 static int ufs_remove(struct vnode *, char *, struct cred *); 123 static int ufs_link(struct vnode *, struct vnode *, char *, struct cred *); 124 static int ufs_rename(struct vnode *, char *, struct vnode *, char *, 125 struct cred *); 126 static int ufs_mkdir(struct vnode *, char *, struct vattr *, struct vnode **, 127 struct cred *); 128 static int ufs_rmdir(struct vnode *, char *, struct vnode *, struct cred *); 129 static int ufs_readdir(struct vnode *, struct uio *, struct cred *, int *); 130 static int ufs_symlink(struct vnode *, char *, struct vattr *, char *, 131 struct cred *); 132 static int ufs_readlink(struct vnode *, struct uio *, struct cred *); 133 static int ufs_fsync(struct vnode *, int, struct cred *); 134 static void ufs_inactive(struct vnode *, struct cred *); 135 static int ufs_fid(struct vnode *, struct fid *); 136 static int ufs_rwlock(struct vnode *, int, caller_context_t *); 137 static void ufs_rwunlock(struct vnode *, int, caller_context_t *); 138 static int ufs_seek(struct vnode *, offset_t, offset_t *); 139 static int ufs_frlock(struct vnode *, int, struct flock64 *, int, offset_t, 140 struct flk_callback *, struct cred *); 141 static int ufs_space(struct vnode *, int, struct flock64 *, int, offset_t, 142 cred_t *, caller_context_t *); 143 static int ufs_getpage(struct vnode *, offset_t, size_t, uint_t *, 144 struct page **, size_t, struct seg *, caddr_t, 145 enum seg_rw, struct cred *); 146 static int ufs_putpage(struct vnode *, offset_t, size_t, int, struct cred *); 147 static int ufs_putpages(struct vnode *, offset_t, size_t, int, struct cred *); 148 static int ufs_map(struct vnode *, offset_t, struct as *, caddr_t *, size_t, 149 uchar_t, uchar_t, uint_t, struct cred *); 150 static int ufs_addmap(struct vnode *, offset_t, struct as *, caddr_t, size_t, 151 uchar_t, uchar_t, uint_t, struct cred *); 152 static int ufs_delmap(struct vnode *, offset_t, struct as *, caddr_t, size_t, 153 uint_t, uint_t, uint_t, struct cred *); 154 static int ufs_poll(vnode_t *, short, int, short *, struct pollhead **); 155 static int ufs_dump(vnode_t *, caddr_t, int, int); 156 static int ufs_l_pathconf(struct vnode *, int, ulong_t *, struct cred *); 157 static int ufs_pageio(struct vnode *, struct page *, u_offset_t, size_t, int, 158 struct cred *); 159 static int ufs_dump(vnode_t *, caddr_t, int, int); 160 static int ufs_dumpctl(vnode_t *, int, int *); 161 static daddr32_t *save_dblks(struct inode *, struct ufsvfs *, daddr32_t *, 162 daddr32_t *, int, int); 163 static int ufs_getsecattr(struct vnode *, vsecattr_t *, int, struct cred *); 164 static int ufs_setsecattr(struct vnode *, vsecattr_t *, int, struct cred *); 165 166 /* 167 * For lockfs: ulockfs begin/end is now inlined in the ufs_xxx functions. 168 * 169 * XXX - ULOCKFS in fs_pathconf and ufs_ioctl is not inlined yet. 170 */ 171 struct vnodeops *ufs_vnodeops; 172 173 const fs_operation_def_t ufs_vnodeops_template[] = { 174 VOPNAME_OPEN, ufs_open, /* will not be blocked by lockfs */ 175 VOPNAME_CLOSE, ufs_close, /* will not be blocked by lockfs */ 176 VOPNAME_READ, ufs_read, 177 VOPNAME_WRITE, ufs_write, 178 VOPNAME_IOCTL, ufs_ioctl, 179 VOPNAME_GETATTR, ufs_getattr, 180 VOPNAME_SETATTR, ufs_setattr, 181 VOPNAME_ACCESS, ufs_access, 182 VOPNAME_LOOKUP, ufs_lookup, 183 VOPNAME_CREATE, ufs_create, 184 VOPNAME_REMOVE, ufs_remove, 185 VOPNAME_LINK, ufs_link, 186 VOPNAME_RENAME, ufs_rename, 187 VOPNAME_MKDIR, ufs_mkdir, 188 VOPNAME_RMDIR, ufs_rmdir, 189 VOPNAME_READDIR, ufs_readdir, 190 VOPNAME_SYMLINK, ufs_symlink, 191 VOPNAME_READLINK, ufs_readlink, 192 VOPNAME_FSYNC, ufs_fsync, 193 VOPNAME_INACTIVE, (fs_generic_func_p) ufs_inactive, /* not blocked */ 194 VOPNAME_FID, ufs_fid, 195 VOPNAME_RWLOCK, ufs_rwlock, /* not blocked */ 196 VOPNAME_RWUNLOCK, (fs_generic_func_p) ufs_rwunlock, /* not blocked */ 197 VOPNAME_SEEK, ufs_seek, 198 VOPNAME_FRLOCK, ufs_frlock, 199 VOPNAME_SPACE, ufs_space, 200 VOPNAME_GETPAGE, ufs_getpage, 201 VOPNAME_PUTPAGE, ufs_putpage, 202 VOPNAME_MAP, (fs_generic_func_p) ufs_map, 203 VOPNAME_ADDMAP, (fs_generic_func_p) ufs_addmap, /* not blocked */ 204 VOPNAME_DELMAP, ufs_delmap, /* will not be blocked by lockfs */ 205 VOPNAME_POLL, (fs_generic_func_p) ufs_poll, /* not blocked */ 206 VOPNAME_DUMP, ufs_dump, 207 VOPNAME_PATHCONF, ufs_l_pathconf, 208 VOPNAME_PAGEIO, ufs_pageio, 209 VOPNAME_DUMPCTL, ufs_dumpctl, 210 VOPNAME_GETSECATTR, ufs_getsecattr, 211 VOPNAME_SETSECATTR, ufs_setsecattr, 212 VOPNAME_VNEVENT, fs_vnevent_support, 213 NULL, NULL 214 }; 215 216 #define MAX_BACKFILE_COUNT 9999 217 218 /* 219 * Created by ufs_dumpctl() to store a file's disk block info into memory. 220 * Used by ufs_dump() to dump data to disk directly. 221 */ 222 struct dump { 223 struct inode *ip; /* the file we contain */ 224 daddr_t fsbs; /* number of blocks stored */ 225 struct timeval32 time; /* time stamp for the struct */ 226 daddr32_t dblk[1]; /* place holder for block info */ 227 }; 228 229 static struct dump *dump_info = NULL; 230 231 /* 232 * Previously there was no special action required for ordinary files. 233 * (Devices are handled through the device file system.) 234 * Now we support Large Files and Large File API requires open to 235 * fail if file is large. 236 * We could take care to prevent data corruption 237 * by doing an atomic check of size and truncate if file is opened with 238 * FTRUNC flag set but traditionally this is being done by the vfs/vnode 239 * layers. So taking care of truncation here is a change in the existing 240 * semantics of VOP_OPEN and therefore we chose not to implement any thing 241 * here. The check for the size of the file > 2GB is being done at the 242 * vfs layer in routine vn_open(). 243 */ 244 245 /* ARGSUSED */ 246 static int 247 ufs_open(struct vnode **vpp, int flag, struct cred *cr) 248 { 249 TRACE_1(TR_FAC_UFS, TR_UFS_OPEN, "ufs_open:vpp %p", vpp); 250 return (0); 251 } 252 253 /*ARGSUSED*/ 254 static int 255 ufs_close(struct vnode *vp, int flag, int count, offset_t offset, 256 struct cred *cr) 257 { 258 TRACE_1(TR_FAC_UFS, TR_UFS_CLOSE, "ufs_close:vp %p", vp); 259 260 cleanlocks(vp, ttoproc(curthread)->p_pid, 0); 261 cleanshares(vp, ttoproc(curthread)->p_pid); 262 263 /* 264 * Push partially filled cluster at last close. 265 * ``last close'' is approximated because the dnlc 266 * may have a hold on the vnode. 267 * Checking for VBAD here will also act as a forced umount check. 268 */ 269 if (vp->v_count <= 2 && vp->v_type != VBAD) { 270 struct inode *ip = VTOI(vp); 271 if (ip->i_delaylen) { 272 ins.in_poc.value.ul++; 273 (void) ufs_putpages(vp, ip->i_delayoff, ip->i_delaylen, 274 B_ASYNC | B_FREE, cr); 275 ip->i_delaylen = 0; 276 } 277 } 278 279 return (0); 280 } 281 282 /*ARGSUSED*/ 283 static int 284 ufs_read(struct vnode *vp, struct uio *uiop, int ioflag, struct cred *cr, 285 struct caller_context *ct) 286 { 287 struct inode *ip = VTOI(vp); 288 struct ufsvfs *ufsvfsp; 289 struct ulockfs *ulp = NULL; 290 int error = 0; 291 int intrans = 0; 292 293 ASSERT(RW_READ_HELD(&ip->i_rwlock)); 294 TRACE_3(TR_FAC_UFS, TR_UFS_READ_START, 295 "ufs_read_start:vp %p uiop %p ioflag %x", 296 vp, uiop, ioflag); 297 298 /* 299 * Mandatory locking needs to be done before ufs_lockfs_begin() 300 * and TRANS_BEGIN_SYNC() calls since mandatory locks can sleep. 301 */ 302 if (MANDLOCK(vp, ip->i_mode)) { 303 /* 304 * ufs_getattr ends up being called by chklock 305 */ 306 error = chklock(vp, FREAD, uiop->uio_loffset, 307 uiop->uio_resid, uiop->uio_fmode, ct); 308 if (error) 309 goto out; 310 } 311 312 ufsvfsp = ip->i_ufsvfs; 313 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_READ_MASK); 314 if (error) 315 goto out; 316 317 /* 318 * In the case that a directory is opened for reading as a file 319 * (eg "cat .") with the O_RSYNC, O_SYNC and O_DSYNC flags set. 320 * The locking order had to be changed to avoid a deadlock with 321 * an update taking place on that directory at the same time. 322 */ 323 if ((ip->i_mode & IFMT) == IFDIR) { 324 325 rw_enter(&ip->i_contents, RW_READER); 326 error = rdip(ip, uiop, ioflag, cr); 327 rw_exit(&ip->i_contents); 328 329 if (error) { 330 if (ulp) 331 ufs_lockfs_end(ulp); 332 goto out; 333 } 334 335 if (ulp && (ioflag & FRSYNC) && (ioflag & (FSYNC | FDSYNC)) && 336 TRANS_ISTRANS(ufsvfsp)) { 337 rw_exit(&ip->i_rwlock); 338 TRANS_BEGIN_SYNC(ufsvfsp, TOP_READ_SYNC, TOP_READ_SIZE, 339 error); 340 ASSERT(!error); 341 TRANS_END_SYNC(ufsvfsp, error, TOP_READ_SYNC, 342 TOP_READ_SIZE); 343 rw_enter(&ip->i_rwlock, RW_READER); 344 } 345 } else { 346 /* 347 * Only transact reads to files opened for sync-read and 348 * sync-write on a file system that is not write locked. 349 * 350 * The ``not write locked'' check prevents problems with 351 * enabling/disabling logging on a busy file system. E.g., 352 * logging exists at the beginning of the read but does not 353 * at the end. 354 * 355 */ 356 if (ulp && (ioflag & FRSYNC) && (ioflag & (FSYNC | FDSYNC)) && 357 TRANS_ISTRANS(ufsvfsp)) { 358 TRANS_BEGIN_SYNC(ufsvfsp, TOP_READ_SYNC, TOP_READ_SIZE, 359 error); 360 ASSERT(!error); 361 intrans = 1; 362 } 363 364 rw_enter(&ip->i_contents, RW_READER); 365 error = rdip(ip, uiop, ioflag, cr); 366 rw_exit(&ip->i_contents); 367 368 if (intrans) { 369 TRANS_END_SYNC(ufsvfsp, error, TOP_READ_SYNC, 370 TOP_READ_SIZE); 371 } 372 } 373 374 if (ulp) { 375 ufs_lockfs_end(ulp); 376 } 377 out: 378 379 TRACE_2(TR_FAC_UFS, TR_UFS_READ_END, 380 "ufs_read_end:vp %p error %d", vp, error); 381 return (error); 382 } 383 384 extern int ufs_HW; /* high water mark */ 385 extern int ufs_LW; /* low water mark */ 386 int ufs_WRITES = 1; /* XXX - enable/disable */ 387 int ufs_throttles = 0; /* throttling count */ 388 int ufs_allow_shared_writes = 1; /* directio shared writes */ 389 390 static int 391 ufs_check_rewrite(struct inode *ip, struct uio *uiop, int ioflag) 392 { 393 394 /* 395 * Filter to determine if this request is suitable as a 396 * concurrent rewrite. This write must not allocate blocks 397 * by extending the file or filling in holes. No use trying 398 * through FSYNC descriptors as the inode will be synchronously 399 * updated after the write. The uio structure has not yet been 400 * checked for sanity, so assume nothing. 401 */ 402 return (((ip->i_mode & IFMT) == IFREG) && !(ioflag & FAPPEND) && 403 (uiop->uio_loffset >= (offset_t)0) && 404 (uiop->uio_loffset < ip->i_size) && (uiop->uio_resid > 0) && 405 ((ip->i_size - uiop->uio_loffset) >= uiop->uio_resid) && 406 !(ioflag & FSYNC) && !bmap_has_holes(ip) && 407 ufs_allow_shared_writes); 408 } 409 410 /*ARGSUSED*/ 411 static int 412 ufs_write(struct vnode *vp, struct uio *uiop, int ioflag, cred_t *cr, 413 caller_context_t *ct) 414 { 415 struct inode *ip = VTOI(vp); 416 struct ufsvfs *ufsvfsp; 417 struct ulockfs *ulp; 418 int retry = 1; 419 int error, resv, resid = 0; 420 int directio_status; 421 int exclusive; 422 long start_resid = uiop->uio_resid; 423 424 TRACE_3(TR_FAC_UFS, TR_UFS_WRITE_START, 425 "ufs_write_start:vp %p uiop %p ioflag %x", 426 vp, uiop, ioflag); 427 428 ASSERT(RW_LOCK_HELD(&ip->i_rwlock)); 429 430 retry_mandlock: 431 /* 432 * Mandatory locking needs to be done before ufs_lockfs_begin() 433 * and TRANS_BEGIN_[A]SYNC() calls since mandatory locks can sleep. 434 * Check for forced unmounts normally done in ufs_lockfs_begin(). 435 */ 436 if ((ufsvfsp = ip->i_ufsvfs) == NULL) { 437 error = EIO; 438 goto out; 439 } 440 if (MANDLOCK(vp, ip->i_mode)) { 441 442 ASSERT(RW_WRITE_HELD(&ip->i_rwlock)); 443 444 /* 445 * ufs_getattr ends up being called by chklock 446 */ 447 error = chklock(vp, FWRITE, uiop->uio_loffset, 448 uiop->uio_resid, uiop->uio_fmode, ct); 449 if (error) 450 goto out; 451 } 452 453 /* i_rwlock can change in chklock */ 454 exclusive = rw_write_held(&ip->i_rwlock); 455 456 /* 457 * Check for fast-path special case of directio re-writes. 458 */ 459 if ((ip->i_flag & IDIRECTIO || ufsvfsp->vfs_forcedirectio) && 460 !exclusive && ufs_check_rewrite(ip, uiop, ioflag)) { 461 462 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_WRITE_MASK); 463 if (error) 464 goto out; 465 466 rw_enter(&ip->i_contents, RW_READER); 467 error = ufs_directio_write(ip, uiop, ioflag, 1, cr, 468 &directio_status); 469 if (directio_status == DIRECTIO_SUCCESS) { 470 uint_t i_flag_save; 471 472 if (start_resid != uiop->uio_resid) 473 error = 0; 474 /* 475 * Special treatment of access times for re-writes. 476 * If IMOD is not already set, then convert it 477 * to IMODACC for this operation. This defers 478 * entering a delta into the log until the inode 479 * is flushed. This mimics what is done for read 480 * operations and inode access time. 481 */ 482 mutex_enter(&ip->i_tlock); 483 i_flag_save = ip->i_flag; 484 ip->i_flag |= IUPD | ICHG; 485 ip->i_seq++; 486 ITIMES_NOLOCK(ip); 487 if ((i_flag_save & IMOD) == 0) { 488 ip->i_flag &= ~IMOD; 489 ip->i_flag |= IMODACC; 490 } 491 mutex_exit(&ip->i_tlock); 492 rw_exit(&ip->i_contents); 493 if (ulp) 494 ufs_lockfs_end(ulp); 495 goto out; 496 } 497 rw_exit(&ip->i_contents); 498 if (ulp) 499 ufs_lockfs_end(ulp); 500 } 501 502 if (!exclusive && !rw_tryupgrade(&ip->i_rwlock)) { 503 rw_exit(&ip->i_rwlock); 504 rw_enter(&ip->i_rwlock, RW_WRITER); 505 /* 506 * Mandatory locking could have been enabled 507 * after dropping the i_rwlock. 508 */ 509 if (MANDLOCK(vp, ip->i_mode)) 510 goto retry_mandlock; 511 } 512 513 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_WRITE_MASK); 514 if (error) 515 goto out; 516 517 /* 518 * Amount of log space needed for this write 519 */ 520 TRANS_WRITE_RESV(ip, uiop, ulp, &resv, &resid); 521 522 /* 523 * Throttle writes. 524 */ 525 if (ufs_WRITES && (ip->i_writes > ufs_HW)) { 526 mutex_enter(&ip->i_tlock); 527 while (ip->i_writes > ufs_HW) { 528 ufs_throttles++; 529 cv_wait(&ip->i_wrcv, &ip->i_tlock); 530 } 531 mutex_exit(&ip->i_tlock); 532 } 533 534 /* 535 * Enter Transaction 536 */ 537 if (ioflag & (FSYNC|FDSYNC)) { 538 if (ulp) { 539 int terr = 0; 540 TRANS_BEGIN_SYNC(ufsvfsp, TOP_WRITE_SYNC, resv, terr); 541 ASSERT(!terr); 542 } 543 } else { 544 if (ulp) 545 TRANS_BEGIN_ASYNC(ufsvfsp, TOP_WRITE, resv); 546 } 547 548 /* 549 * Write the file 550 */ 551 rw_enter(&ufsvfsp->vfs_dqrwlock, RW_READER); 552 rw_enter(&ip->i_contents, RW_WRITER); 553 if ((ioflag & FAPPEND) != 0 && (ip->i_mode & IFMT) == IFREG) { 554 /* 555 * In append mode start at end of file. 556 */ 557 uiop->uio_loffset = ip->i_size; 558 } 559 560 /* 561 * Mild optimisation, don't call ufs_trans_write() unless we have to 562 * Also, suppress file system full messages if we will retry. 563 */ 564 if (retry) 565 ip->i_flag |= IQUIET; 566 if (resid) { 567 TRANS_WRITE(ip, uiop, ioflag, error, ulp, cr, resv, resid); 568 } else { 569 error = wrip(ip, uiop, ioflag, cr); 570 } 571 ip->i_flag &= ~IQUIET; 572 573 rw_exit(&ip->i_contents); 574 rw_exit(&ufsvfsp->vfs_dqrwlock); 575 576 /* 577 * Leave Transaction 578 */ 579 if (ulp) { 580 if (ioflag & (FSYNC|FDSYNC)) { 581 int terr = 0; 582 TRANS_END_SYNC(ufsvfsp, terr, TOP_WRITE_SYNC, resv); 583 if (error == 0) 584 error = terr; 585 } else { 586 TRANS_END_ASYNC(ufsvfsp, TOP_WRITE, resv); 587 } 588 ufs_lockfs_end(ulp); 589 } 590 out: 591 if ((error == ENOSPC) && retry && TRANS_ISTRANS(ufsvfsp)) { 592 /* 593 * Any blocks tied up in pending deletes? 594 */ 595 ufs_delete_drain_wait(ufsvfsp, 1); 596 retry = 0; 597 goto retry_mandlock; 598 } 599 600 if (error == ENOSPC && (start_resid != uiop->uio_resid)) 601 error = 0; 602 603 TRACE_2(TR_FAC_UFS, TR_UFS_WRITE_END, 604 "ufs_write_end:vp %p error %d", vp, error); 605 return (error); 606 } 607 608 /* 609 * Don't cache write blocks to files with the sticky bit set. 610 * Used to keep swap files from blowing the page cache on a server. 611 */ 612 int stickyhack = 1; 613 614 /* 615 * Free behind hacks. The pager is busted. 616 * XXX - need to pass the information down to writedone() in a flag like B_SEQ 617 * or B_FREE_IF_TIGHT_ON_MEMORY. 618 */ 619 int freebehind = 1; 620 int smallfile = 0; 621 u_offset_t smallfile64 = 32 * 1024; 622 623 /* 624 * While we should, in most cases, cache the pages for write, we 625 * may also want to cache the pages for read as long as they are 626 * frequently re-usable. 627 * 628 * If cache_read_ahead = 1, the pages for read will go to the tail 629 * of the cache list when they are released, otherwise go to the head. 630 */ 631 int cache_read_ahead = 0; 632 633 /* 634 * Freebehind exists so that as we read large files sequentially we 635 * don't consume most of memory with pages from a few files. It takes 636 * longer to re-read from disk multiple small files as it does reading 637 * one large one sequentially. As system memory grows customers need 638 * to retain bigger chunks of files in memory. The advent of the 639 * cachelist opens up of the possibility freeing pages to the head or 640 * tail of the list. 641 * 642 * Not freeing a page is a bet that the page will be read again before 643 * it's segmap slot is needed for something else. If we loose the bet, 644 * it means some other thread is burdened with the page free we did 645 * not do. If we win we save a free and reclaim. 646 * 647 * Freeing it at the tail vs the head of cachelist is a bet that the 648 * page will survive until the next read. It's also saying that this 649 * page is more likely to be re-used than a page freed some time ago 650 * and never reclaimed. 651 * 652 * Freebehind maintains a range of file offset [smallfile1; smallfile2] 653 * 654 * 0 < offset < smallfile1 : pages are not freed. 655 * smallfile1 < offset < smallfile2 : pages freed to tail of cachelist. 656 * smallfile2 < offset : pages freed to head of cachelist. 657 * 658 * The range is computed at most once per second and depends on 659 * freemem and ncpus_online. Both parameters are bounded to be 660 * >= smallfile && >= smallfile64. 661 * 662 * smallfile1 = (free memory / ncpu) / 1000 663 * smallfile2 = (free memory / ncpu) / 10 664 * 665 * A few examples values: 666 * 667 * Free Mem (in Bytes) [smallfile1; smallfile2] [smallfile1; smallfile2] 668 * ncpus_online = 4 ncpus_online = 64 669 * ------------------ ----------------------- ----------------------- 670 * 1G [256K; 25M] [32K; 1.5M] 671 * 10G [2.5M; 250M] [156K; 15M] 672 * 100G [25M; 2.5G] [1.5M; 150M] 673 * 674 */ 675 676 #define SMALLFILE1_D 1000 677 #define SMALLFILE2_D 10 678 static u_offset_t smallfile1 = 32 * 1024; 679 static u_offset_t smallfile2 = 32 * 1024; 680 static clock_t smallfile_update = 0; /* lbolt value of when to recompute */ 681 uint_t smallfile1_d = SMALLFILE1_D; 682 uint_t smallfile2_d = SMALLFILE2_D; 683 684 /* 685 * wrip does the real work of write requests for ufs. 686 */ 687 int 688 wrip(struct inode *ip, struct uio *uio, int ioflag, struct cred *cr) 689 { 690 rlim64_t limit = uio->uio_llimit; 691 u_offset_t off; 692 u_offset_t old_i_size; 693 struct fs *fs; 694 struct vnode *vp; 695 struct ufsvfs *ufsvfsp; 696 caddr_t base; 697 long start_resid = uio->uio_resid; /* save starting resid */ 698 long premove_resid; /* resid before uiomove() */ 699 uint_t flags; 700 int newpage; 701 int iupdat_flag, directio_status; 702 int n, on, mapon; 703 int error, pagecreate; 704 int do_dqrwlock; /* drop/reacquire vfs_dqrwlock */ 705 int32_t iblocks; 706 int new_iblocks; 707 708 /* 709 * ip->i_size is incremented before the uiomove 710 * is done on a write. If the move fails (bad user 711 * address) reset ip->i_size. 712 * The better way would be to increment ip->i_size 713 * only if the uiomove succeeds. 714 */ 715 int i_size_changed = 0; 716 o_mode_t type; 717 int i_seq_needed = 0; 718 719 vp = ITOV(ip); 720 721 /* 722 * check for forced unmount - should not happen as 723 * the request passed the lockfs checks. 724 */ 725 if ((ufsvfsp = ip->i_ufsvfs) == NULL) 726 return (EIO); 727 728 fs = ip->i_fs; 729 730 TRACE_1(TR_FAC_UFS, TR_UFS_RWIP_START, 731 "ufs_wrip_start:vp %p", vp); 732 733 ASSERT(RW_WRITE_HELD(&ip->i_contents)); 734 735 /* check for valid filetype */ 736 type = ip->i_mode & IFMT; 737 if ((type != IFREG) && (type != IFDIR) && (type != IFATTRDIR) && 738 (type != IFLNK) && (type != IFSHAD)) { 739 return (EIO); 740 } 741 742 /* 743 * the actual limit of UFS file size 744 * is UFS_MAXOFFSET_T 745 */ 746 if (limit == RLIM64_INFINITY || limit > MAXOFFSET_T) 747 limit = MAXOFFSET_T; 748 749 if (uio->uio_loffset >= limit) { 750 proc_t *p = ttoproc(curthread); 751 752 TRACE_2(TR_FAC_UFS, TR_UFS_RWIP_END, 753 "ufs_wrip_end:vp %p error %d", vp, EINVAL); 754 755 mutex_enter(&p->p_lock); 756 (void) rctl_action(rctlproc_legacy[RLIMIT_FSIZE], p->p_rctls, 757 p, RCA_UNSAFE_SIGINFO); 758 mutex_exit(&p->p_lock); 759 return (EFBIG); 760 } 761 762 /* 763 * if largefiles are disallowed, the limit is 764 * the pre-largefiles value of 2GB 765 */ 766 if (ufsvfsp->vfs_lfflags & UFS_LARGEFILES) 767 limit = MIN(UFS_MAXOFFSET_T, limit); 768 else 769 limit = MIN(MAXOFF32_T, limit); 770 771 if (uio->uio_loffset < (offset_t)0) { 772 TRACE_2(TR_FAC_UFS, TR_UFS_RWIP_END, 773 "ufs_wrip_end:vp %p error %d", vp, EINVAL); 774 return (EINVAL); 775 } 776 if (uio->uio_resid == 0) { 777 TRACE_2(TR_FAC_UFS, TR_UFS_RWIP_END, 778 "ufs_wrip_end:vp %p error %d", vp, 0); 779 return (0); 780 } 781 782 if (uio->uio_loffset >= limit) 783 return (EFBIG); 784 785 ip->i_flag |= INOACC; /* don't update ref time in getpage */ 786 787 if (ioflag & (FSYNC|FDSYNC)) { 788 ip->i_flag |= ISYNC; 789 iupdat_flag = 1; 790 } 791 /* 792 * Try to go direct 793 */ 794 if (ip->i_flag & IDIRECTIO || ufsvfsp->vfs_forcedirectio) { 795 uio->uio_llimit = limit; 796 error = ufs_directio_write(ip, uio, ioflag, 0, cr, 797 &directio_status); 798 /* 799 * If ufs_directio wrote to the file or set the flags, 800 * we need to update i_seq, but it may be deferred. 801 */ 802 if (start_resid != uio->uio_resid || 803 (ip->i_flag & (ICHG|IUPD))) { 804 i_seq_needed = 1; 805 ip->i_flag |= ISEQ; 806 } 807 if (directio_status == DIRECTIO_SUCCESS) 808 goto out; 809 } 810 811 /* 812 * Behavior with respect to dropping/reacquiring vfs_dqrwlock: 813 * 814 * o shadow inodes: vfs_dqrwlock is not held at all 815 * o quota updates: vfs_dqrwlock is read or write held 816 * o other updates: vfs_dqrwlock is read held 817 * 818 * The first case is the only one where we do not hold 819 * vfs_dqrwlock at all while entering wrip(). 820 * We must make sure not to downgrade/drop vfs_dqrwlock if we 821 * have it as writer, i.e. if we are updating the quota inode. 822 * There is no potential deadlock scenario in this case as 823 * ufs_getpage() takes care of this and avoids reacquiring 824 * vfs_dqrwlock in that case. 825 * 826 * This check is done here since the above conditions do not change 827 * and we possibly loop below, so save a few cycles. 828 */ 829 if ((type == IFSHAD) || 830 (rw_owner(&ufsvfsp->vfs_dqrwlock) == curthread)) { 831 do_dqrwlock = 0; 832 } else { 833 do_dqrwlock = 1; 834 } 835 836 /* 837 * Large Files: We cast MAXBMASK to offset_t 838 * inorder to mask out the higher bits. Since offset_t 839 * is a signed value, the high order bit set in MAXBMASK 840 * value makes it do the right thing by having all bits 1 841 * in the higher word. May be removed for _SOLARIS64_. 842 */ 843 844 fs = ip->i_fs; 845 do { 846 u_offset_t uoff = uio->uio_loffset; 847 off = uoff & (offset_t)MAXBMASK; 848 mapon = (int)(uoff & (offset_t)MAXBOFFSET); 849 on = (int)blkoff(fs, uoff); 850 n = (int)MIN(fs->fs_bsize - on, uio->uio_resid); 851 new_iblocks = 1; 852 853 if (type == IFREG && uoff + n >= limit) { 854 if (uoff >= limit) { 855 error = EFBIG; 856 goto out; 857 } 858 /* 859 * since uoff + n >= limit, 860 * therefore n >= limit - uoff, and n is an int 861 * so it is safe to cast it to an int 862 */ 863 n = (int)(limit - (rlim64_t)uoff); 864 } 865 if (uoff + n > ip->i_size) { 866 /* 867 * We are extending the length of the file. 868 * bmap is used so that we are sure that 869 * if we need to allocate new blocks, that it 870 * is done here before we up the file size. 871 */ 872 error = bmap_write(ip, uoff, (int)(on + n), 873 mapon == 0, cr); 874 /* 875 * bmap_write never drops i_contents so if 876 * the flags are set it changed the file. 877 */ 878 if (ip->i_flag & (ICHG|IUPD)) { 879 i_seq_needed = 1; 880 ip->i_flag |= ISEQ; 881 } 882 if (error) 883 break; 884 /* 885 * There is a window of vulnerability here. 886 * The sequence of operations: allocate file 887 * system blocks, uiomove the data into pages, 888 * and then update the size of the file in the 889 * inode, must happen atomically. However, due 890 * to current locking constraints, this can not 891 * be done. 892 */ 893 ASSERT(ip->i_writer == NULL); 894 ip->i_writer = curthread; 895 i_size_changed = 1; 896 /* 897 * If we are writing from the beginning of 898 * the mapping, we can just create the 899 * pages without having to read them. 900 */ 901 pagecreate = (mapon == 0); 902 } else if (n == MAXBSIZE) { 903 /* 904 * Going to do a whole mappings worth, 905 * so we can just create the pages w/o 906 * having to read them in. But before 907 * we do that, we need to make sure any 908 * needed blocks are allocated first. 909 */ 910 iblocks = ip->i_blocks; 911 error = bmap_write(ip, uoff, (int)(on + n), 1, cr); 912 /* 913 * bmap_write never drops i_contents so if 914 * the flags are set it changed the file. 915 */ 916 if (ip->i_flag & (ICHG|IUPD)) { 917 i_seq_needed = 1; 918 ip->i_flag |= ISEQ; 919 } 920 if (error) 921 break; 922 pagecreate = 1; 923 /* 924 * check if the new created page needed the 925 * allocation of new disk blocks. 926 */ 927 if (iblocks == ip->i_blocks) 928 new_iblocks = 0; /* no new blocks allocated */ 929 } else { 930 pagecreate = 0; 931 /* 932 * In sync mode flush the indirect blocks which 933 * may have been allocated and not written on 934 * disk. In above cases bmap_write will allocate 935 * in sync mode. 936 */ 937 if (ioflag & (FSYNC|FDSYNC)) { 938 error = ufs_indirblk_sync(ip, uoff); 939 if (error) 940 break; 941 } 942 } 943 944 /* 945 * At this point we can enter ufs_getpage() in one 946 * of two ways: 947 * 1) segmap_getmapflt() calls ufs_getpage() when the 948 * forcefault parameter is true (pagecreate == 0) 949 * 2) uiomove() causes a page fault. 950 * 951 * We have to drop the contents lock to prevent the VM 952 * system from trying to reaquire it in ufs_getpage() 953 * should the uiomove cause a pagefault. 954 * 955 * We have to drop the reader vfs_dqrwlock here as well. 956 */ 957 rw_exit(&ip->i_contents); 958 if (do_dqrwlock) { 959 ASSERT(RW_LOCK_HELD(&ufsvfsp->vfs_dqrwlock)); 960 ASSERT(!(RW_WRITE_HELD(&ufsvfsp->vfs_dqrwlock))); 961 rw_exit(&ufsvfsp->vfs_dqrwlock); 962 } 963 964 base = segmap_getmapflt(segkmap, vp, (off + mapon), 965 (uint_t)n, !pagecreate, S_WRITE); 966 967 /* 968 * segmap_pagecreate() returns 1 if it calls 969 * page_create_va() to allocate any pages. 970 */ 971 newpage = 0; 972 973 if (pagecreate) 974 newpage = segmap_pagecreate(segkmap, base, 975 (size_t)n, 0); 976 977 premove_resid = uio->uio_resid; 978 error = uiomove(base + mapon, (long)n, UIO_WRITE, uio); 979 980 /* 981 * If "newpage" is set, then a new page was created and it 982 * does not contain valid data, so it needs to be initialized 983 * at this point. 984 * Otherwise the page contains old data, which was overwritten 985 * partially or as a whole in uiomove. 986 * If there is only one iovec structure within uio, then 987 * on error uiomove will not be able to update uio->uio_loffset 988 * and we would zero the whole page here! 989 * 990 * If uiomove fails because of an error, the old valid data 991 * is kept instead of filling the rest of the page with zero's. 992 */ 993 if (newpage && 994 uio->uio_loffset < roundup(off + mapon + n, PAGESIZE)) { 995 /* 996 * We created pages w/o initializing them completely, 997 * thus we need to zero the part that wasn't set up. 998 * This happens on most EOF write cases and if 999 * we had some sort of error during the uiomove. 1000 */ 1001 int nzero, nmoved; 1002 1003 nmoved = (int)(uio->uio_loffset - (off + mapon)); 1004 ASSERT(nmoved >= 0 && nmoved <= n); 1005 nzero = roundup(on + n, PAGESIZE) - nmoved; 1006 ASSERT(nzero > 0 && mapon + nmoved + nzero <= MAXBSIZE); 1007 (void) kzero(base + mapon + nmoved, (uint_t)nzero); 1008 } 1009 1010 /* 1011 * Unlock the pages allocated by page_create_va() 1012 * in segmap_pagecreate() 1013 */ 1014 if (newpage) 1015 segmap_pageunlock(segkmap, base, (size_t)n, S_WRITE); 1016 1017 /* 1018 * If the size of the file changed, then update the 1019 * size field in the inode now. This can't be done 1020 * before the call to segmap_pageunlock or there is 1021 * a potential deadlock with callers to ufs_putpage(). 1022 * They will be holding i_contents and trying to lock 1023 * a page, while this thread is holding a page locked 1024 * and trying to acquire i_contents. 1025 */ 1026 if (i_size_changed) { 1027 rw_enter(&ip->i_contents, RW_WRITER); 1028 old_i_size = ip->i_size; 1029 UFS_SET_ISIZE(uoff + n, ip); 1030 TRANS_INODE(ufsvfsp, ip); 1031 /* 1032 * file has grown larger than 2GB. Set flag 1033 * in superblock to indicate this, if it 1034 * is not already set. 1035 */ 1036 if ((ip->i_size > MAXOFF32_T) && 1037 !(fs->fs_flags & FSLARGEFILES)) { 1038 ASSERT(ufsvfsp->vfs_lfflags & UFS_LARGEFILES); 1039 mutex_enter(&ufsvfsp->vfs_lock); 1040 fs->fs_flags |= FSLARGEFILES; 1041 ufs_sbwrite(ufsvfsp); 1042 mutex_exit(&ufsvfsp->vfs_lock); 1043 } 1044 mutex_enter(&ip->i_tlock); 1045 ip->i_writer = NULL; 1046 cv_broadcast(&ip->i_wrcv); 1047 mutex_exit(&ip->i_tlock); 1048 rw_exit(&ip->i_contents); 1049 } 1050 1051 if (error) { 1052 /* 1053 * If we failed on a write, we may have already 1054 * allocated file blocks as well as pages. It's 1055 * hard to undo the block allocation, but we must 1056 * be sure to invalidate any pages that may have 1057 * been allocated. 1058 * 1059 * If the page was created without initialization 1060 * then we must check if it should be possible 1061 * to destroy the new page and to keep the old data 1062 * on the disk. 1063 * 1064 * It is possible to destroy the page without 1065 * having to write back its contents only when 1066 * - the size of the file keeps unchanged 1067 * - bmap_write() did not allocate new disk blocks 1068 * it is possible to create big files using "seek" and 1069 * write to the end of the file. A "write" to a 1070 * position before the end of the file would not 1071 * change the size of the file but it would allocate 1072 * new disk blocks. 1073 * - uiomove intended to overwrite the whole page. 1074 * - a new page was created (newpage == 1). 1075 */ 1076 1077 if (i_size_changed == 0 && new_iblocks == 0 && 1078 newpage) { 1079 1080 /* unwind what uiomove eventually last did */ 1081 uio->uio_resid = premove_resid; 1082 1083 /* 1084 * destroy the page, do not write ambiguous 1085 * data to the disk. 1086 */ 1087 flags = SM_DESTROY; 1088 } else { 1089 /* 1090 * write the page back to the disk, if dirty, 1091 * and remove the page from the cache. 1092 */ 1093 flags = SM_INVAL; 1094 } 1095 (void) segmap_release(segkmap, base, flags); 1096 } else { 1097 flags = 0; 1098 /* 1099 * Force write back for synchronous write cases. 1100 */ 1101 if ((ioflag & (FSYNC|FDSYNC)) || type == IFDIR) { 1102 /* 1103 * If the sticky bit is set but the 1104 * execute bit is not set, we do a 1105 * synchronous write back and free 1106 * the page when done. We set up swap 1107 * files to be handled this way to 1108 * prevent servers from keeping around 1109 * the client's swap pages too long. 1110 * XXX - there ought to be a better way. 1111 */ 1112 if (IS_SWAPVP(vp)) { 1113 flags = SM_WRITE | SM_FREE | 1114 SM_DONTNEED; 1115 iupdat_flag = 0; 1116 } else { 1117 flags = SM_WRITE; 1118 } 1119 } else if (n + on == MAXBSIZE || IS_SWAPVP(vp)) { 1120 /* 1121 * Have written a whole block. 1122 * Start an asynchronous write and 1123 * mark the buffer to indicate that 1124 * it won't be needed again soon. 1125 */ 1126 flags = SM_WRITE | SM_ASYNC | SM_DONTNEED; 1127 } 1128 error = segmap_release(segkmap, base, flags); 1129 /* 1130 * If the operation failed and is synchronous, 1131 * then we need to unwind what uiomove() last 1132 * did so we can potentially return an error to 1133 * the caller. If this write operation was 1134 * done in two pieces and the first succeeded, 1135 * then we won't return an error for the second 1136 * piece that failed. However, we only want to 1137 * return a resid value that reflects what was 1138 * really done. 1139 * 1140 * Failures for non-synchronous operations can 1141 * be ignored since the page subsystem will 1142 * retry the operation until it succeeds or the 1143 * file system is unmounted. 1144 */ 1145 if (error) { 1146 if ((ioflag & (FSYNC | FDSYNC)) || 1147 type == IFDIR) { 1148 uio->uio_resid = premove_resid; 1149 } else { 1150 error = 0; 1151 } 1152 } 1153 } 1154 1155 /* 1156 * Re-acquire contents lock. 1157 * If it was dropped, reacquire reader vfs_dqrwlock as well. 1158 */ 1159 if (do_dqrwlock) 1160 rw_enter(&ufsvfsp->vfs_dqrwlock, RW_READER); 1161 rw_enter(&ip->i_contents, RW_WRITER); 1162 1163 /* 1164 * If the uiomove() failed or if a synchronous 1165 * page push failed, fix up i_size. 1166 */ 1167 if (error) { 1168 if (i_size_changed) { 1169 /* 1170 * The uiomove failed, and we 1171 * allocated blocks,so get rid 1172 * of them. 1173 */ 1174 (void) ufs_itrunc(ip, old_i_size, 0, cr); 1175 } 1176 } else { 1177 /* 1178 * XXX - Can this be out of the loop? 1179 */ 1180 ip->i_flag |= IUPD | ICHG; 1181 /* 1182 * Only do one increase of i_seq for multiple 1183 * pieces. Because we drop locks, record 1184 * the fact that we changed the timestamp and 1185 * are deferring the increase in case another thread 1186 * pushes our timestamp update. 1187 */ 1188 i_seq_needed = 1; 1189 ip->i_flag |= ISEQ; 1190 if (i_size_changed) 1191 ip->i_flag |= IATTCHG; 1192 if ((ip->i_mode & (IEXEC | (IEXEC >> 3) | 1193 (IEXEC >> 6))) != 0 && 1194 (ip->i_mode & (ISUID | ISGID)) != 0 && 1195 secpolicy_vnode_setid_retain(cr, 1196 (ip->i_mode & ISUID) != 0 && ip->i_uid == 0) != 0) { 1197 /* 1198 * Clear Set-UID & Set-GID bits on 1199 * successful write if not privileged 1200 * and at least one of the execute bits 1201 * is set. If we always clear Set-GID, 1202 * mandatory file and record locking is 1203 * unuseable. 1204 */ 1205 ip->i_mode &= ~(ISUID | ISGID); 1206 } 1207 } 1208 TRANS_INODE(ufsvfsp, ip); 1209 } while (error == 0 && uio->uio_resid > 0 && n != 0); 1210 1211 out: 1212 /* 1213 * Make sure i_seq is increased at least once per write 1214 */ 1215 if (i_seq_needed) { 1216 ip->i_seq++; 1217 ip->i_flag &= ~ISEQ; /* no longer deferred */ 1218 } 1219 1220 /* 1221 * Inode is updated according to this table - 1222 * 1223 * FSYNC FDSYNC(posix.4) 1224 * -------------------------- 1225 * always@ IATTCHG|IBDWRITE 1226 * 1227 * @ - If we are doing synchronous write the only time we should 1228 * not be sync'ing the ip here is if we have the stickyhack 1229 * activated, the file is marked with the sticky bit and 1230 * no exec bit, the file length has not been changed and 1231 * no new blocks have been allocated during this write. 1232 */ 1233 1234 if ((ip->i_flag & ISYNC) != 0) { 1235 /* 1236 * we have eliminated nosync 1237 */ 1238 if ((ip->i_flag & (IATTCHG|IBDWRITE)) || 1239 ((ioflag & FSYNC) && iupdat_flag)) { 1240 ufs_iupdat(ip, 1); 1241 } 1242 } 1243 1244 /* 1245 * If we've already done a partial-write, terminate 1246 * the write but return no error unless the error is ENOSPC 1247 * because the caller can detect this and free resources and 1248 * try again. 1249 */ 1250 if ((start_resid != uio->uio_resid) && (error != ENOSPC)) 1251 error = 0; 1252 1253 ip->i_flag &= ~(INOACC | ISYNC); 1254 ITIMES_NOLOCK(ip); 1255 TRACE_2(TR_FAC_UFS, TR_UFS_RWIP_END, 1256 "ufs_wrip_end:vp %p error %d", vp, error); 1257 return (error); 1258 } 1259 1260 /* 1261 * rdip does the real work of read requests for ufs. 1262 */ 1263 int 1264 rdip(struct inode *ip, struct uio *uio, int ioflag, cred_t *cr) 1265 { 1266 u_offset_t off; 1267 caddr_t base; 1268 struct fs *fs; 1269 struct ufsvfs *ufsvfsp; 1270 struct vnode *vp; 1271 long oresid = uio->uio_resid; 1272 u_offset_t n, on, mapon; 1273 int error = 0; 1274 int doupdate = 1; 1275 uint_t flags; 1276 int dofree, directio_status; 1277 krw_t rwtype; 1278 o_mode_t type; 1279 1280 vp = ITOV(ip); 1281 1282 TRACE_1(TR_FAC_UFS, TR_UFS_RWIP_START, 1283 "ufs_rdip_start:vp %p", vp); 1284 1285 ASSERT(RW_LOCK_HELD(&ip->i_contents)); 1286 1287 ufsvfsp = ip->i_ufsvfs; 1288 1289 if (ufsvfsp == NULL) 1290 return (EIO); 1291 1292 fs = ufsvfsp->vfs_fs; 1293 1294 /* check for valid filetype */ 1295 type = ip->i_mode & IFMT; 1296 if ((type != IFREG) && (type != IFDIR) && (type != IFATTRDIR) && 1297 (type != IFLNK) && (type != IFSHAD)) { 1298 return (EIO); 1299 } 1300 1301 if (uio->uio_loffset > UFS_MAXOFFSET_T) { 1302 TRACE_2(TR_FAC_UFS, TR_UFS_RWIP_END, 1303 "ufs_rdip_end:vp %p error %d", vp, EINVAL); 1304 error = 0; 1305 goto out; 1306 } 1307 if (uio->uio_loffset < (offset_t)0) { 1308 TRACE_2(TR_FAC_UFS, TR_UFS_RWIP_END, 1309 "ufs_rdip_end:vp %p error %d", vp, EINVAL); 1310 return (EINVAL); 1311 } 1312 if (uio->uio_resid == 0) { 1313 TRACE_2(TR_FAC_UFS, TR_UFS_RWIP_END, 1314 "ufs_rdip_end:vp %p error %d", vp, 0); 1315 return (0); 1316 } 1317 1318 if (!ULOCKFS_IS_NOIACC(ITOUL(ip)) && (fs->fs_ronly == 0) && 1319 (!ufsvfsp->vfs_noatime)) { 1320 mutex_enter(&ip->i_tlock); 1321 ip->i_flag |= IACC; 1322 mutex_exit(&ip->i_tlock); 1323 } 1324 /* 1325 * Try to go direct 1326 */ 1327 if (ip->i_flag & IDIRECTIO || ufsvfsp->vfs_forcedirectio) { 1328 error = ufs_directio_read(ip, uio, cr, &directio_status); 1329 if (directio_status == DIRECTIO_SUCCESS) 1330 goto out; 1331 } 1332 1333 rwtype = (rw_write_held(&ip->i_contents)?RW_WRITER:RW_READER); 1334 1335 do { 1336 offset_t diff; 1337 u_offset_t uoff = uio->uio_loffset; 1338 off = uoff & (offset_t)MAXBMASK; 1339 mapon = (u_offset_t)(uoff & (offset_t)MAXBOFFSET); 1340 on = (u_offset_t)blkoff(fs, uoff); 1341 n = MIN((u_offset_t)fs->fs_bsize - on, 1342 (u_offset_t)uio->uio_resid); 1343 1344 diff = ip->i_size - uoff; 1345 1346 if (diff <= (offset_t)0) { 1347 error = 0; 1348 goto out; 1349 } 1350 if (diff < (offset_t)n) 1351 n = (int)diff; 1352 1353 /* 1354 * We update smallfile2 and smallfile1 at most every second. 1355 */ 1356 if (lbolt >= smallfile_update) { 1357 uint64_t percpufreeb; 1358 if (smallfile1_d == 0) smallfile1_d = SMALLFILE1_D; 1359 if (smallfile2_d == 0) smallfile2_d = SMALLFILE2_D; 1360 percpufreeb = ptob((uint64_t)freemem) / ncpus_online; 1361 smallfile1 = percpufreeb / smallfile1_d; 1362 smallfile2 = percpufreeb / smallfile2_d; 1363 smallfile1 = MAX(smallfile1, smallfile); 1364 smallfile1 = MAX(smallfile1, smallfile64); 1365 smallfile2 = MAX(smallfile1, smallfile2); 1366 smallfile_update = lbolt + hz; 1367 } 1368 1369 dofree = freebehind && 1370 ip->i_nextr == (off & PAGEMASK) && off > smallfile1; 1371 1372 /* 1373 * At this point we can enter ufs_getpage() in one of two 1374 * ways: 1375 * 1) segmap_getmapflt() calls ufs_getpage() when the 1376 * forcefault parameter is true (value of 1 is passed) 1377 * 2) uiomove() causes a page fault. 1378 * 1379 * We cannot hold onto an i_contents reader lock without 1380 * risking deadlock in ufs_getpage() so drop a reader lock. 1381 * The ufs_getpage() dolock logic already allows for a 1382 * thread holding i_contents as writer to work properly 1383 * so we keep a writer lock. 1384 */ 1385 if (rwtype == RW_READER) 1386 rw_exit(&ip->i_contents); 1387 base = segmap_getmapflt(segkmap, vp, (off + mapon), 1388 (uint_t)n, 1, S_READ); 1389 1390 error = uiomove(base + mapon, (long)n, UIO_READ, uio); 1391 1392 flags = 0; 1393 if (!error) { 1394 /* 1395 * If reading sequential we won't need this 1396 * buffer again soon. For offsets in range 1397 * [smallfile1, smallfile2] release the pages 1398 * at the tail of the cache list, larger 1399 * offsets are released at the head. 1400 */ 1401 if (dofree) { 1402 flags = SM_FREE | SM_ASYNC; 1403 if ((cache_read_ahead == 0) && 1404 (off > smallfile2)) 1405 flags |= SM_DONTNEED; 1406 } 1407 /* 1408 * In POSIX SYNC (FSYNC and FDSYNC) read mode, 1409 * we want to make sure that the page which has 1410 * been read, is written on disk if it is dirty. 1411 * And corresponding indirect blocks should also 1412 * be flushed out. 1413 */ 1414 if ((ioflag & FRSYNC) && (ioflag & (FSYNC|FDSYNC))) { 1415 flags &= ~SM_ASYNC; 1416 flags |= SM_WRITE; 1417 } 1418 error = segmap_release(segkmap, base, flags); 1419 } else 1420 (void) segmap_release(segkmap, base, flags); 1421 1422 if (rwtype == RW_READER) 1423 rw_enter(&ip->i_contents, rwtype); 1424 } while (error == 0 && uio->uio_resid > 0 && n != 0); 1425 out: 1426 /* 1427 * Inode is updated according to this table if FRSYNC is set. 1428 * 1429 * FSYNC FDSYNC(posix.4) 1430 * -------------------------- 1431 * always IATTCHG|IBDWRITE 1432 */ 1433 /* 1434 * The inode is not updated if we're logging and the inode is a 1435 * directory with FRSYNC, FSYNC and FDSYNC flags set. 1436 */ 1437 if (ioflag & FRSYNC) { 1438 if (TRANS_ISTRANS(ufsvfsp) && ((ip->i_mode & IFMT) == IFDIR)) { 1439 doupdate = 0; 1440 } 1441 if (doupdate) { 1442 if ((ioflag & FSYNC) || 1443 ((ioflag & FDSYNC) && 1444 (ip->i_flag & (IATTCHG|IBDWRITE)))) { 1445 ufs_iupdat(ip, 1); 1446 } 1447 } 1448 } 1449 /* 1450 * If we've already done a partial read, terminate 1451 * the read but return no error. 1452 */ 1453 if (oresid != uio->uio_resid) 1454 error = 0; 1455 ITIMES(ip); 1456 1457 TRACE_2(TR_FAC_UFS, TR_UFS_RWIP_END, 1458 "ufs_rdip_end:vp %p error %d", vp, error); 1459 return (error); 1460 } 1461 1462 /* ARGSUSED */ 1463 static int 1464 ufs_ioctl( 1465 struct vnode *vp, 1466 int cmd, 1467 intptr_t arg, 1468 int flag, 1469 struct cred *cr, 1470 int *rvalp) 1471 { 1472 struct lockfs lockfs, lockfs_out; 1473 struct ufsvfs *ufsvfsp = VTOI(vp)->i_ufsvfs; 1474 char *comment, *original_comment; 1475 struct fs *fs; 1476 struct ulockfs *ulp; 1477 offset_t off; 1478 extern int maxphys; 1479 int error; 1480 int issync; 1481 int trans_size; 1482 1483 1484 /* 1485 * forcibly unmounted 1486 */ 1487 if (ufsvfsp == NULL) { 1488 return (EIO); 1489 } 1490 1491 fs = ufsvfsp->vfs_fs; 1492 1493 if (cmd == Q_QUOTACTL) { 1494 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_QUOTA_MASK); 1495 if (error) 1496 return (error); 1497 1498 if (ulp) { 1499 TRANS_BEGIN_ASYNC(ufsvfsp, TOP_QUOTA, 1500 TOP_SETQUOTA_SIZE(fs)); 1501 } 1502 1503 error = quotactl(vp, arg, flag, cr); 1504 1505 if (ulp) { 1506 TRANS_END_ASYNC(ufsvfsp, TOP_QUOTA, 1507 TOP_SETQUOTA_SIZE(fs)); 1508 ufs_lockfs_end(ulp); 1509 } 1510 return (error); 1511 } 1512 1513 switch (cmd) { 1514 case _FIOLFS: 1515 /* 1516 * file system locking 1517 */ 1518 if (secpolicy_fs_config(cr, ufsvfsp->vfs_vfs) != 0) 1519 return (EPERM); 1520 1521 if ((flag & DATAMODEL_MASK) == DATAMODEL_NATIVE) { 1522 if (copyin((caddr_t)arg, &lockfs, 1523 sizeof (struct lockfs))) 1524 return (EFAULT); 1525 } 1526 #ifdef _SYSCALL32_IMPL 1527 else { 1528 struct lockfs32 lockfs32; 1529 /* Translate ILP32 lockfs to LP64 lockfs */ 1530 if (copyin((caddr_t)arg, &lockfs32, 1531 sizeof (struct lockfs32))) 1532 return (EFAULT); 1533 lockfs.lf_lock = (ulong_t)lockfs32.lf_lock; 1534 lockfs.lf_flags = (ulong_t)lockfs32.lf_flags; 1535 lockfs.lf_key = (ulong_t)lockfs32.lf_key; 1536 lockfs.lf_comlen = (ulong_t)lockfs32.lf_comlen; 1537 lockfs.lf_comment = 1538 (caddr_t)(uintptr_t)lockfs32.lf_comment; 1539 } 1540 #endif /* _SYSCALL32_IMPL */ 1541 1542 if (lockfs.lf_comlen) { 1543 if (lockfs.lf_comlen > LOCKFS_MAXCOMMENTLEN) 1544 return (ENAMETOOLONG); 1545 comment = kmem_alloc(lockfs.lf_comlen, 1546 KM_SLEEP); 1547 if (copyin(lockfs.lf_comment, comment, 1548 lockfs.lf_comlen)) { 1549 kmem_free(comment, lockfs.lf_comlen); 1550 return (EFAULT); 1551 } 1552 original_comment = lockfs.lf_comment; 1553 lockfs.lf_comment = comment; 1554 } 1555 if ((error = ufs_fiolfs(vp, &lockfs, 0)) == 0) { 1556 lockfs.lf_comment = original_comment; 1557 1558 if ((flag & DATAMODEL_MASK) == 1559 DATAMODEL_NATIVE) { 1560 (void) copyout(&lockfs, (caddr_t)arg, 1561 sizeof (struct lockfs)); 1562 } 1563 #ifdef _SYSCALL32_IMPL 1564 else { 1565 struct lockfs32 lockfs32; 1566 /* Translate LP64 to ILP32 lockfs */ 1567 lockfs32.lf_lock = 1568 (uint32_t)lockfs.lf_lock; 1569 lockfs32.lf_flags = 1570 (uint32_t)lockfs.lf_flags; 1571 lockfs32.lf_key = 1572 (uint32_t)lockfs.lf_key; 1573 lockfs32.lf_comlen = 1574 (uint32_t)lockfs.lf_comlen; 1575 lockfs32.lf_comment = 1576 (uint32_t)(uintptr_t)lockfs.lf_comment; 1577 (void) copyout(&lockfs32, (caddr_t)arg, 1578 sizeof (struct lockfs32)); 1579 } 1580 #endif /* _SYSCALL32_IMPL */ 1581 1582 } else { 1583 if (lockfs.lf_comlen) 1584 kmem_free(comment, lockfs.lf_comlen); 1585 } 1586 return (error); 1587 1588 case _FIOLFSS: 1589 /* 1590 * get file system locking status 1591 */ 1592 1593 if ((flag & DATAMODEL_MASK) == DATAMODEL_NATIVE) { 1594 if (copyin((caddr_t)arg, &lockfs, 1595 sizeof (struct lockfs))) 1596 return (EFAULT); 1597 } 1598 #ifdef _SYSCALL32_IMPL 1599 else { 1600 struct lockfs32 lockfs32; 1601 /* Translate ILP32 lockfs to LP64 lockfs */ 1602 if (copyin((caddr_t)arg, &lockfs32, 1603 sizeof (struct lockfs32))) 1604 return (EFAULT); 1605 lockfs.lf_lock = (ulong_t)lockfs32.lf_lock; 1606 lockfs.lf_flags = (ulong_t)lockfs32.lf_flags; 1607 lockfs.lf_key = (ulong_t)lockfs32.lf_key; 1608 lockfs.lf_comlen = (ulong_t)lockfs32.lf_comlen; 1609 lockfs.lf_comment = 1610 (caddr_t)(uintptr_t)lockfs32.lf_comment; 1611 } 1612 #endif /* _SYSCALL32_IMPL */ 1613 1614 if (error = ufs_fiolfss(vp, &lockfs_out)) 1615 return (error); 1616 lockfs.lf_lock = lockfs_out.lf_lock; 1617 lockfs.lf_key = lockfs_out.lf_key; 1618 lockfs.lf_flags = lockfs_out.lf_flags; 1619 lockfs.lf_comlen = MIN(lockfs.lf_comlen, 1620 lockfs_out.lf_comlen); 1621 1622 if ((flag & DATAMODEL_MASK) == DATAMODEL_NATIVE) { 1623 if (copyout(&lockfs, (caddr_t)arg, 1624 sizeof (struct lockfs))) 1625 return (EFAULT); 1626 } 1627 #ifdef _SYSCALL32_IMPL 1628 else { 1629 /* Translate LP64 to ILP32 lockfs */ 1630 struct lockfs32 lockfs32; 1631 lockfs32.lf_lock = (uint32_t)lockfs.lf_lock; 1632 lockfs32.lf_flags = (uint32_t)lockfs.lf_flags; 1633 lockfs32.lf_key = (uint32_t)lockfs.lf_key; 1634 lockfs32.lf_comlen = (uint32_t)lockfs.lf_comlen; 1635 lockfs32.lf_comment = 1636 (uint32_t)(uintptr_t)lockfs.lf_comment; 1637 if (copyout(&lockfs32, (caddr_t)arg, 1638 sizeof (struct lockfs32))) 1639 return (EFAULT); 1640 } 1641 #endif /* _SYSCALL32_IMPL */ 1642 1643 if (lockfs.lf_comlen && 1644 lockfs.lf_comment && lockfs_out.lf_comment) 1645 if (copyout(lockfs_out.lf_comment, 1646 lockfs.lf_comment, 1647 lockfs.lf_comlen)) 1648 return (EFAULT); 1649 return (0); 1650 1651 case _FIOSATIME: 1652 /* 1653 * set access time 1654 */ 1655 1656 /* 1657 * if mounted w/o atime, return quietly. 1658 * I briefly thought about returning ENOSYS, but 1659 * figured that most apps would consider this fatal 1660 * but the idea is to make this as seamless as poss. 1661 */ 1662 if (ufsvfsp->vfs_noatime) 1663 return (0); 1664 1665 error = ufs_lockfs_begin(ufsvfsp, &ulp, 1666 ULOCKFS_SETATTR_MASK); 1667 if (error) 1668 return (error); 1669 1670 if (ulp) { 1671 trans_size = (int)TOP_SETATTR_SIZE(VTOI(vp)); 1672 TRANS_BEGIN_CSYNC(ufsvfsp, issync, 1673 TOP_SETATTR, trans_size); 1674 } 1675 1676 error = ufs_fiosatime(vp, (struct timeval *)arg, 1677 flag, cr); 1678 1679 if (ulp) { 1680 TRANS_END_CSYNC(ufsvfsp, error, issync, 1681 TOP_SETATTR, trans_size); 1682 ufs_lockfs_end(ulp); 1683 } 1684 return (error); 1685 1686 case _FIOSDIO: 1687 /* 1688 * set delayed-io 1689 */ 1690 return (ufs_fiosdio(vp, (uint_t *)arg, flag, cr)); 1691 1692 case _FIOGDIO: 1693 /* 1694 * get delayed-io 1695 */ 1696 return (ufs_fiogdio(vp, (uint_t *)arg, flag, cr)); 1697 1698 case _FIOIO: 1699 /* 1700 * inode open 1701 */ 1702 error = ufs_lockfs_begin(ufsvfsp, &ulp, 1703 ULOCKFS_VGET_MASK); 1704 if (error) 1705 return (error); 1706 1707 error = ufs_fioio(vp, (struct fioio *)arg, flag, cr); 1708 1709 if (ulp) { 1710 ufs_lockfs_end(ulp); 1711 } 1712 return (error); 1713 1714 case _FIOFFS: 1715 /* 1716 * file system flush (push w/invalidate) 1717 */ 1718 if ((caddr_t)arg != NULL) 1719 return (EINVAL); 1720 return (ufs_fioffs(vp, NULL, cr)); 1721 1722 case _FIOISBUSY: 1723 /* 1724 * Contract-private interface for Legato 1725 * Purge this vnode from the DNLC and decide 1726 * if this vnode is busy (*arg == 1) or not 1727 * (*arg == 0) 1728 */ 1729 if (secpolicy_fs_config(cr, ufsvfsp->vfs_vfs) != 0) 1730 return (EPERM); 1731 error = ufs_fioisbusy(vp, (int *)arg, cr); 1732 return (error); 1733 1734 case _FIODIRECTIO: 1735 return (ufs_fiodirectio(vp, (int)arg, cr)); 1736 1737 case _FIOTUNE: 1738 /* 1739 * Tune the file system (aka setting fs attributes) 1740 */ 1741 error = ufs_lockfs_begin(ufsvfsp, &ulp, 1742 ULOCKFS_SETATTR_MASK); 1743 if (error) 1744 return (error); 1745 1746 error = ufs_fiotune(vp, (struct fiotune *)arg, cr); 1747 1748 if (ulp) 1749 ufs_lockfs_end(ulp); 1750 return (error); 1751 1752 case _FIOLOGENABLE: 1753 if (secpolicy_fs_config(cr, ufsvfsp->vfs_vfs) != 0) 1754 return (EPERM); 1755 return (ufs_fiologenable(vp, (void *)arg, cr, flag)); 1756 1757 case _FIOLOGDISABLE: 1758 if (secpolicy_fs_config(cr, ufsvfsp->vfs_vfs) != 0) 1759 return (EPERM); 1760 return (ufs_fiologdisable(vp, (void *)arg, cr, flag)); 1761 1762 case _FIOISLOG: 1763 return (ufs_fioislog(vp, (void *)arg, cr, flag)); 1764 1765 case _FIOSNAPSHOTCREATE_MULTI: 1766 { 1767 struct fiosnapcreate_multi fc, *fcp; 1768 size_t fcm_size; 1769 1770 if (copyin((void *)arg, &fc, sizeof (fc))) 1771 return (EFAULT); 1772 if (fc.backfilecount > MAX_BACKFILE_COUNT) 1773 return (EINVAL); 1774 fcm_size = sizeof (struct fiosnapcreate_multi) + 1775 (fc.backfilecount - 1) * sizeof (int); 1776 fcp = (struct fiosnapcreate_multi *) 1777 kmem_alloc(fcm_size, KM_SLEEP); 1778 if (copyin((void *)arg, fcp, fcm_size)) { 1779 kmem_free(fcp, fcm_size); 1780 return (EFAULT); 1781 } 1782 error = ufs_snap_create(vp, fcp, cr); 1783 if (!error && copyout(fcp, (void *)arg, fcm_size)) 1784 error = EFAULT; 1785 kmem_free(fcp, fcm_size); 1786 return (error); 1787 } 1788 1789 case _FIOSNAPSHOTDELETE: 1790 { 1791 struct fiosnapdelete fc; 1792 1793 if (copyin((void *)arg, &fc, sizeof (fc))) 1794 return (EFAULT); 1795 error = ufs_snap_delete(vp, &fc, cr); 1796 if (!error && copyout(&fc, (void *)arg, sizeof (fc))) 1797 error = EFAULT; 1798 return (error); 1799 } 1800 1801 case _FIOGETSUPERBLOCK: 1802 if (copyout(fs, (void *)arg, SBSIZE)) 1803 return (EFAULT); 1804 return (0); 1805 1806 case _FIOGETMAXPHYS: 1807 if (copyout(&maxphys, (void *)arg, sizeof (maxphys))) 1808 return (EFAULT); 1809 return (0); 1810 1811 /* 1812 * The following 3 ioctls are for TSufs support 1813 * although could potentially be used elsewhere 1814 */ 1815 case _FIO_SET_LUFS_DEBUG: 1816 if (secpolicy_fs_config(cr, ufsvfsp->vfs_vfs) != 0) 1817 return (EPERM); 1818 lufs_debug = (uint32_t)arg; 1819 return (0); 1820 1821 case _FIO_SET_LUFS_ERROR: 1822 if (secpolicy_fs_config(cr, ufsvfsp->vfs_vfs) != 0) 1823 return (EPERM); 1824 TRANS_SETERROR(ufsvfsp); 1825 return (0); 1826 1827 case _FIO_GET_TOP_STATS: 1828 { 1829 fio_lufs_stats_t *ls; 1830 ml_unit_t *ul = ufsvfsp->vfs_log; 1831 1832 ls = kmem_zalloc(sizeof (*ls), KM_SLEEP); 1833 ls->ls_debug = ul->un_debug; /* return debug value */ 1834 /* Copy stucture if statistics are being kept */ 1835 if (ul->un_logmap->mtm_tops) { 1836 ls->ls_topstats = *(ul->un_logmap->mtm_tops); 1837 } 1838 error = 0; 1839 if (copyout(ls, (void *)arg, sizeof (*ls))) 1840 error = EFAULT; 1841 kmem_free(ls, sizeof (*ls)); 1842 return (error); 1843 } 1844 1845 case _FIO_SEEK_DATA: 1846 case _FIO_SEEK_HOLE: 1847 if (ddi_copyin((void *)arg, &off, sizeof (off), flag)) 1848 return (EFAULT); 1849 /* offset paramater is in/out */ 1850 error = ufs_fio_holey(vp, cmd, &off); 1851 if (error) 1852 return (error); 1853 if (ddi_copyout(&off, (void *)arg, sizeof (off), flag)) 1854 return (EFAULT); 1855 return (0); 1856 1857 default: 1858 return (ENOTTY); 1859 } 1860 } 1861 1862 /* ARGSUSED */ 1863 static int 1864 ufs_getattr(struct vnode *vp, struct vattr *vap, int flags, 1865 struct cred *cr) 1866 { 1867 struct inode *ip = VTOI(vp); 1868 struct ufsvfs *ufsvfsp; 1869 int err; 1870 1871 TRACE_2(TR_FAC_UFS, TR_UFS_GETATTR_START, 1872 "ufs_getattr_start:vp %p flags %x", vp, flags); 1873 1874 if (vap->va_mask == AT_SIZE) { 1875 /* 1876 * for performance, if only the size is requested don't bother 1877 * with anything else. 1878 */ 1879 UFS_GET_ISIZE(&vap->va_size, ip); 1880 TRACE_1(TR_FAC_UFS, TR_UFS_GETATTR_END, 1881 "ufs_getattr_end:vp %p", vp); 1882 return (0); 1883 } 1884 1885 /* 1886 * inlined lockfs checks 1887 */ 1888 ufsvfsp = ip->i_ufsvfs; 1889 if ((ufsvfsp == NULL) || ULOCKFS_IS_HLOCK(&ufsvfsp->vfs_ulockfs)) { 1890 err = EIO; 1891 goto out; 1892 } 1893 1894 rw_enter(&ip->i_contents, RW_READER); 1895 /* 1896 * Return all the attributes. This should be refined so 1897 * that it only returns what's asked for. 1898 */ 1899 1900 /* 1901 * Copy from inode table. 1902 */ 1903 vap->va_type = vp->v_type; 1904 vap->va_mode = ip->i_mode & MODEMASK; 1905 /* 1906 * If there is an ACL and there is a mask entry, then do the 1907 * extra work that completes the equivalent of an acltomode(3) 1908 * call. According to POSIX P1003.1e, the acl mask should be 1909 * returned in the group permissions field. 1910 * 1911 * - start with the original permission and mode bits (from above) 1912 * - clear the group owner bits 1913 * - add in the mask bits. 1914 */ 1915 if (ip->i_ufs_acl && ip->i_ufs_acl->aclass.acl_ismask) { 1916 vap->va_mode &= ~((VREAD | VWRITE | VEXEC) >> 3); 1917 vap->va_mode |= 1918 (ip->i_ufs_acl->aclass.acl_maskbits & PERMMASK) << 3; 1919 } 1920 vap->va_uid = ip->i_uid; 1921 vap->va_gid = ip->i_gid; 1922 vap->va_fsid = ip->i_dev; 1923 vap->va_nodeid = (ino64_t)ip->i_number; 1924 vap->va_nlink = ip->i_nlink; 1925 vap->va_size = ip->i_size; 1926 if (vp->v_type == VCHR || vp->v_type == VBLK) 1927 vap->va_rdev = ip->i_rdev; 1928 else 1929 vap->va_rdev = 0; /* not a b/c spec. */ 1930 mutex_enter(&ip->i_tlock); 1931 ITIMES_NOLOCK(ip); /* mark correct time in inode */ 1932 vap->va_seq = ip->i_seq; 1933 vap->va_atime.tv_sec = (time_t)ip->i_atime.tv_sec; 1934 vap->va_atime.tv_nsec = ip->i_atime.tv_usec*1000; 1935 vap->va_mtime.tv_sec = (time_t)ip->i_mtime.tv_sec; 1936 vap->va_mtime.tv_nsec = ip->i_mtime.tv_usec*1000; 1937 vap->va_ctime.tv_sec = (time_t)ip->i_ctime.tv_sec; 1938 vap->va_ctime.tv_nsec = ip->i_ctime.tv_usec*1000; 1939 mutex_exit(&ip->i_tlock); 1940 1941 switch (ip->i_mode & IFMT) { 1942 1943 case IFBLK: 1944 vap->va_blksize = MAXBSIZE; /* was BLKDEV_IOSIZE */ 1945 break; 1946 1947 case IFCHR: 1948 vap->va_blksize = MAXBSIZE; 1949 break; 1950 1951 default: 1952 vap->va_blksize = ip->i_fs->fs_bsize; 1953 break; 1954 } 1955 vap->va_nblocks = (fsblkcnt64_t)ip->i_blocks; 1956 rw_exit(&ip->i_contents); 1957 err = 0; 1958 1959 out: 1960 TRACE_1(TR_FAC_UFS, TR_UFS_GETATTR_END, "ufs_getattr_end:vp %p", vp); 1961 1962 return (err); 1963 } 1964 1965 /*ARGSUSED4*/ 1966 static int 1967 ufs_setattr( 1968 struct vnode *vp, 1969 struct vattr *vap, 1970 int flags, 1971 struct cred *cr, 1972 caller_context_t *ct) 1973 { 1974 struct inode *ip = VTOI(vp); 1975 struct ufsvfs *ufsvfsp = ip->i_ufsvfs; 1976 struct fs *fs; 1977 struct ulockfs *ulp; 1978 char *errmsg1; 1979 char *errmsg2; 1980 long blocks; 1981 long int mask = vap->va_mask; 1982 size_t len1, len2; 1983 int issync; 1984 int trans_size; 1985 int dotrans; 1986 int dorwlock; 1987 int error; 1988 int owner_change; 1989 int dodqlock; 1990 timestruc_t now; 1991 vattr_t oldva; 1992 int retry = 1; 1993 1994 TRACE_2(TR_FAC_UFS, TR_UFS_SETATTR_START, 1995 "ufs_setattr_start:vp %p flags %x", vp, flags); 1996 1997 /* 1998 * Cannot set these attributes. 1999 */ 2000 if (mask & AT_NOSET) { 2001 error = EINVAL; 2002 goto out; 2003 } 2004 2005 /* 2006 * check for forced unmount 2007 */ 2008 if (ufsvfsp == NULL) 2009 return (EIO); 2010 2011 fs = ufsvfsp->vfs_fs; 2012 if (fs->fs_ronly != 0) 2013 return (EROFS); 2014 2015 again: 2016 errmsg1 = NULL; 2017 errmsg2 = NULL; 2018 dotrans = 0; 2019 dorwlock = 0; 2020 dodqlock = 0; 2021 2022 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_SETATTR_MASK); 2023 if (error) 2024 goto out; 2025 2026 /* 2027 * Acquire i_rwlock before TRANS_BEGIN_CSYNC() if this is a file. 2028 * This follows the protocol for read()/write(). 2029 */ 2030 if (vp->v_type != VDIR) { 2031 rw_enter(&ip->i_rwlock, RW_WRITER); 2032 dorwlock = 1; 2033 } 2034 2035 /* 2036 * Truncate file. Must have write permission and not be a directory. 2037 */ 2038 if (mask & AT_SIZE) { 2039 rw_enter(&ip->i_contents, RW_WRITER); 2040 if (vp->v_type == VDIR) { 2041 error = EISDIR; 2042 goto update_inode; 2043 } 2044 if (error = ufs_iaccess(ip, IWRITE, cr)) 2045 goto update_inode; 2046 2047 rw_exit(&ip->i_contents); 2048 error = TRANS_ITRUNC(ip, vap->va_size, 0, cr); 2049 if (error) { 2050 rw_enter(&ip->i_contents, RW_WRITER); 2051 goto update_inode; 2052 } 2053 } 2054 2055 if (ulp) { 2056 trans_size = (int)TOP_SETATTR_SIZE(ip); 2057 TRANS_BEGIN_CSYNC(ufsvfsp, issync, TOP_SETATTR, trans_size); 2058 ++dotrans; 2059 } 2060 2061 /* 2062 * Acquire i_rwlock after TRANS_BEGIN_CSYNC() if this is a directory. 2063 * This follows the protocol established by 2064 * ufs_link/create/remove/rename/mkdir/rmdir/symlink. 2065 */ 2066 if (vp->v_type == VDIR) { 2067 rw_enter(&ip->i_rwlock, RW_WRITER); 2068 dorwlock = 1; 2069 } 2070 2071 /* 2072 * Grab quota lock if we are changing the file's owner. 2073 */ 2074 if (mask & AT_UID) { 2075 rw_enter(&ufsvfsp->vfs_dqrwlock, RW_READER); 2076 dodqlock = 1; 2077 } 2078 rw_enter(&ip->i_contents, RW_WRITER); 2079 2080 oldva.va_mode = ip->i_mode; 2081 oldva.va_uid = ip->i_uid; 2082 oldva.va_gid = ip->i_gid; 2083 2084 vap->va_mask &= ~AT_SIZE; 2085 /* 2086 * ufs_iaccess is "close enough"; that's because it doesn't 2087 * map the defines. 2088 */ 2089 error = secpolicy_vnode_setattr(cr, vp, vap, &oldva, flags, 2090 ufs_iaccess, ip); 2091 if (error) 2092 goto update_inode; 2093 2094 mask = vap->va_mask; 2095 2096 /* 2097 * Change file access modes. 2098 */ 2099 if (mask & AT_MODE) { 2100 ip->i_mode = (ip->i_mode & IFMT) | (vap->va_mode & ~IFMT); 2101 TRANS_INODE(ufsvfsp, ip); 2102 ip->i_flag |= ICHG; 2103 if (stickyhack) { 2104 mutex_enter(&vp->v_lock); 2105 if ((ip->i_mode & (ISVTX | IEXEC | IFDIR)) == ISVTX) 2106 vp->v_flag |= VSWAPLIKE; 2107 else 2108 vp->v_flag &= ~VSWAPLIKE; 2109 mutex_exit(&vp->v_lock); 2110 } 2111 } 2112 if (mask & (AT_UID|AT_GID)) { 2113 if (mask & AT_UID) { 2114 /* 2115 * Don't change ownership of the quota inode. 2116 */ 2117 if (ufsvfsp->vfs_qinod == ip) { 2118 ASSERT(ufsvfsp->vfs_qflags & MQ_ENABLED); 2119 error = EINVAL; 2120 goto update_inode; 2121 } 2122 2123 /* 2124 * No real ownership change. 2125 */ 2126 if (ip->i_uid == vap->va_uid) { 2127 blocks = 0; 2128 owner_change = 0; 2129 } 2130 /* 2131 * Remove the blocks and the file, from the old user's 2132 * quota. 2133 */ 2134 else { 2135 blocks = ip->i_blocks; 2136 owner_change = 1; 2137 2138 (void) chkdq(ip, -blocks, /* force */ 1, cr, 2139 (char **)NULL, (size_t *)NULL); 2140 (void) chkiq(ufsvfsp, /* change */ -1, ip, 2141 (uid_t)ip->i_uid, 2142 /* force */ 1, cr, 2143 (char **)NULL, (size_t *)NULL); 2144 dqrele(ip->i_dquot); 2145 } 2146 2147 ip->i_uid = vap->va_uid; 2148 2149 /* 2150 * There is a real ownership change. 2151 */ 2152 if (owner_change) { 2153 /* 2154 * Add the blocks and the file to the new 2155 * user's quota. 2156 */ 2157 ip->i_dquot = getinoquota(ip); 2158 (void) chkdq(ip, blocks, /* force */ 1, cr, 2159 &errmsg1, &len1); 2160 (void) chkiq(ufsvfsp, /* change */ 1, 2161 (struct inode *)NULL, 2162 (uid_t)ip->i_uid, 2163 /* force */ 1, cr, 2164 &errmsg2, &len2); 2165 } 2166 } 2167 if (mask & AT_GID) { 2168 ip->i_gid = vap->va_gid; 2169 } 2170 TRANS_INODE(ufsvfsp, ip); 2171 ip->i_flag |= ICHG; 2172 } 2173 /* 2174 * Change file access or modified times. 2175 */ 2176 if (mask & (AT_ATIME|AT_MTIME)) { 2177 /* Check that the time value is within ufs range */ 2178 if (((mask & AT_ATIME) && TIMESPEC_OVERFLOW(&vap->va_atime)) || 2179 ((mask & AT_MTIME) && TIMESPEC_OVERFLOW(&vap->va_mtime))) { 2180 error = EOVERFLOW; 2181 goto update_inode; 2182 } 2183 2184 /* 2185 * if the "noaccess" mount option is set and only atime 2186 * update is requested, do nothing. No error is returned. 2187 */ 2188 if ((ufsvfsp->vfs_noatime) && 2189 ((mask & (AT_ATIME|AT_MTIME)) == AT_ATIME)) 2190 goto skip_atime; 2191 2192 if (mask & AT_ATIME) { 2193 ip->i_atime.tv_sec = vap->va_atime.tv_sec; 2194 ip->i_atime.tv_usec = vap->va_atime.tv_nsec / 1000; 2195 ip->i_flag &= ~IACC; 2196 } 2197 if (mask & AT_MTIME) { 2198 ip->i_mtime.tv_sec = vap->va_mtime.tv_sec; 2199 ip->i_mtime.tv_usec = vap->va_mtime.tv_nsec / 1000; 2200 gethrestime(&now); 2201 if (now.tv_sec > TIME32_MAX) { 2202 /* 2203 * In 2038, ctime sticks forever.. 2204 */ 2205 ip->i_ctime.tv_sec = TIME32_MAX; 2206 ip->i_ctime.tv_usec = 0; 2207 } else { 2208 ip->i_ctime.tv_sec = now.tv_sec; 2209 ip->i_ctime.tv_usec = now.tv_nsec / 1000; 2210 } 2211 ip->i_flag &= ~(IUPD|ICHG); 2212 ip->i_flag |= IMODTIME; 2213 } 2214 TRANS_INODE(ufsvfsp, ip); 2215 ip->i_flag |= IMOD; 2216 } 2217 2218 skip_atime: 2219 /* 2220 * The presence of a shadow inode may indicate an ACL, but does 2221 * not imply an ACL. Future FSD types should be handled here too 2222 * and check for the presence of the attribute-specific data 2223 * before referencing it. 2224 */ 2225 if (ip->i_shadow) { 2226 /* 2227 * XXX if ufs_iupdat is changed to sandbagged write fix 2228 * ufs_acl_setattr to push ip to keep acls consistent 2229 * 2230 * Suppress out of inodes messages if we will retry. 2231 */ 2232 if (retry) 2233 ip->i_flag |= IQUIET; 2234 error = ufs_acl_setattr(ip, vap, cr); 2235 ip->i_flag &= ~IQUIET; 2236 } 2237 2238 update_inode: 2239 /* 2240 * Setattr always increases the sequence number 2241 */ 2242 ip->i_seq++; 2243 2244 /* 2245 * if nfsd and not logging; push synchronously 2246 */ 2247 if ((curthread->t_flag & T_DONTPEND) && !TRANS_ISTRANS(ufsvfsp)) { 2248 ufs_iupdat(ip, 1); 2249 } else { 2250 ITIMES_NOLOCK(ip); 2251 } 2252 2253 rw_exit(&ip->i_contents); 2254 if (dodqlock) { 2255 rw_exit(&ufsvfsp->vfs_dqrwlock); 2256 } 2257 if (dorwlock) 2258 rw_exit(&ip->i_rwlock); 2259 2260 if (ulp) { 2261 if (dotrans) { 2262 int terr = 0; 2263 TRANS_END_CSYNC(ufsvfsp, terr, issync, TOP_SETATTR, 2264 trans_size); 2265 if (error == 0) 2266 error = terr; 2267 } 2268 ufs_lockfs_end(ulp); 2269 } 2270 out: 2271 /* 2272 * If out of inodes or blocks, see if we can free something 2273 * up from the delete queue. 2274 */ 2275 if ((error == ENOSPC) && retry && TRANS_ISTRANS(ufsvfsp)) { 2276 ufs_delete_drain_wait(ufsvfsp, 1); 2277 retry = 0; 2278 if (errmsg1 != NULL) 2279 kmem_free(errmsg1, len1); 2280 if (errmsg2 != NULL) 2281 kmem_free(errmsg2, len2); 2282 goto again; 2283 } 2284 TRACE_2(TR_FAC_UFS, TR_UFS_SETATTR_END, 2285 "ufs_setattr_end:vp %p error %d", vp, error); 2286 if (errmsg1 != NULL) { 2287 uprintf(errmsg1); 2288 kmem_free(errmsg1, len1); 2289 } 2290 if (errmsg2 != NULL) { 2291 uprintf(errmsg2); 2292 kmem_free(errmsg2, len2); 2293 } 2294 return (error); 2295 } 2296 2297 /*ARGSUSED*/ 2298 static int 2299 ufs_access(struct vnode *vp, int mode, int flags, struct cred *cr) 2300 { 2301 struct inode *ip = VTOI(vp); 2302 int error; 2303 2304 TRACE_3(TR_FAC_UFS, TR_UFS_ACCESS_START, 2305 "ufs_access_start:vp %p mode %x flags %x", vp, mode, flags); 2306 2307 if (ip->i_ufsvfs == NULL) 2308 return (EIO); 2309 2310 rw_enter(&ip->i_contents, RW_READER); 2311 2312 /* 2313 * The ufs_iaccess function wants to be called with 2314 * mode bits expressed as "ufs specific" bits. 2315 * I.e., VWRITE|VREAD|VEXEC do not make sense to 2316 * ufs_iaccess() but IWRITE|IREAD|IEXEC do. 2317 * But since they're the same we just pass the vnode mode 2318 * bit but just verify that assumption at compile time. 2319 */ 2320 #if IWRITE != VWRITE || IREAD != VREAD || IEXEC != VEXEC 2321 #error "ufs_access needs to map Vmodes to Imodes" 2322 #endif 2323 error = ufs_iaccess(ip, mode, cr); 2324 2325 rw_exit(&ip->i_contents); 2326 2327 TRACE_2(TR_FAC_UFS, TR_UFS_ACCESS_END, 2328 "ufs_access_end:vp %p error %d", vp, error); 2329 return (error); 2330 } 2331 2332 /* ARGSUSED */ 2333 static int 2334 ufs_readlink(struct vnode *vp, struct uio *uiop, struct cred *cr) 2335 { 2336 struct inode *ip = VTOI(vp); 2337 struct ufsvfs *ufsvfsp; 2338 struct ulockfs *ulp; 2339 int error; 2340 int fastsymlink; 2341 2342 TRACE_2(TR_FAC_UFS, TR_UFS_READLINK_START, 2343 "ufs_readlink_start:vp %p uiop %p", uiop, vp); 2344 2345 if (vp->v_type != VLNK) { 2346 error = EINVAL; 2347 goto nolockout; 2348 } 2349 2350 /* 2351 * If the symbolic link is empty there is nothing to read. 2352 * Fast-track these empty symbolic links 2353 */ 2354 if (ip->i_size == 0) { 2355 error = 0; 2356 goto nolockout; 2357 } 2358 2359 ufsvfsp = ip->i_ufsvfs; 2360 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_READLINK_MASK); 2361 if (error) 2362 goto nolockout; 2363 /* 2364 * The ip->i_rwlock protects the data blocks used for FASTSYMLINK 2365 */ 2366 again: 2367 fastsymlink = 0; 2368 if (ip->i_flag & IFASTSYMLNK) { 2369 rw_enter(&ip->i_rwlock, RW_READER); 2370 rw_enter(&ip->i_contents, RW_READER); 2371 if (ip->i_flag & IFASTSYMLNK) { 2372 if (!ULOCKFS_IS_NOIACC(ITOUL(ip)) && 2373 (ip->i_fs->fs_ronly == 0) && 2374 (!ufsvfsp->vfs_noatime)) { 2375 mutex_enter(&ip->i_tlock); 2376 ip->i_flag |= IACC; 2377 mutex_exit(&ip->i_tlock); 2378 } 2379 error = uiomove((caddr_t)&ip->i_db[1], 2380 MIN(ip->i_size, uiop->uio_resid), 2381 UIO_READ, uiop); 2382 ITIMES(ip); 2383 ++fastsymlink; 2384 } 2385 rw_exit(&ip->i_contents); 2386 rw_exit(&ip->i_rwlock); 2387 } 2388 if (!fastsymlink) { 2389 ssize_t size; /* number of bytes read */ 2390 caddr_t basep; /* pointer to input data */ 2391 ino_t ino; 2392 long igen; 2393 struct uio tuio; /* temp uio struct */ 2394 struct uio *tuiop; 2395 iovec_t tiov; /* temp iovec struct */ 2396 char kbuf[FSL_SIZE]; /* buffer to hold fast symlink */ 2397 int tflag = 0; /* flag to indicate temp vars used */ 2398 2399 ino = ip->i_number; 2400 igen = ip->i_gen; 2401 size = uiop->uio_resid; 2402 basep = uiop->uio_iov->iov_base; 2403 tuiop = uiop; 2404 2405 rw_enter(&ip->i_rwlock, RW_WRITER); 2406 rw_enter(&ip->i_contents, RW_WRITER); 2407 if (ip->i_flag & IFASTSYMLNK) { 2408 rw_exit(&ip->i_contents); 2409 rw_exit(&ip->i_rwlock); 2410 goto again; 2411 } 2412 2413 /* can this be a fast symlink and is it a user buffer? */ 2414 if (ip->i_size <= FSL_SIZE && 2415 (uiop->uio_segflg == UIO_USERSPACE || 2416 uiop->uio_segflg == UIO_USERISPACE)) { 2417 2418 bzero(&tuio, sizeof (struct uio)); 2419 /* 2420 * setup a kernel buffer to read link into. this 2421 * is to fix a race condition where the user buffer 2422 * got corrupted before copying it into the inode. 2423 */ 2424 size = ip->i_size; 2425 tiov.iov_len = size; 2426 tiov.iov_base = kbuf; 2427 tuio.uio_iov = &tiov; 2428 tuio.uio_iovcnt = 1; 2429 tuio.uio_offset = uiop->uio_offset; 2430 tuio.uio_segflg = UIO_SYSSPACE; 2431 tuio.uio_fmode = uiop->uio_fmode; 2432 tuio.uio_extflg = uiop->uio_extflg; 2433 tuio.uio_limit = uiop->uio_limit; 2434 tuio.uio_resid = size; 2435 2436 basep = tuio.uio_iov->iov_base; 2437 tuiop = &tuio; 2438 tflag = 1; 2439 } 2440 2441 error = rdip(ip, tuiop, 0, cr); 2442 if (!(error == 0 && ip->i_number == ino && ip->i_gen == igen)) { 2443 rw_exit(&ip->i_contents); 2444 rw_exit(&ip->i_rwlock); 2445 goto out; 2446 } 2447 2448 if (tflag == 0) 2449 size -= uiop->uio_resid; 2450 2451 if ((tflag == 0 && ip->i_size <= FSL_SIZE && 2452 ip->i_size == size) || (tflag == 1 && 2453 tuio.uio_resid == 0)) { 2454 error = kcopy(basep, &ip->i_db[1], ip->i_size); 2455 if (error == 0) { 2456 ip->i_flag |= IFASTSYMLNK; 2457 /* 2458 * free page 2459 */ 2460 (void) VOP_PUTPAGE(ITOV(ip), 2461 (offset_t)0, PAGESIZE, 2462 (B_DONTNEED | B_FREE | B_FORCE | B_ASYNC), 2463 cr); 2464 } else { 2465 int i; 2466 /* error, clear garbage left behind */ 2467 for (i = 1; i < NDADDR; i++) 2468 ip->i_db[i] = 0; 2469 for (i = 0; i < NIADDR; i++) 2470 ip->i_ib[i] = 0; 2471 } 2472 } 2473 if (tflag == 1) { 2474 /* now, copy it into the user buffer */ 2475 error = uiomove((caddr_t)kbuf, 2476 MIN(size, uiop->uio_resid), 2477 UIO_READ, uiop); 2478 } 2479 rw_exit(&ip->i_contents); 2480 rw_exit(&ip->i_rwlock); 2481 } 2482 out: 2483 if (ulp) { 2484 ufs_lockfs_end(ulp); 2485 } 2486 nolockout: 2487 TRACE_2(TR_FAC_UFS, TR_UFS_READLINK_END, 2488 "ufs_readlink_end:vp %p error %d", vp, error); 2489 2490 return (error); 2491 } 2492 2493 /* ARGSUSED */ 2494 static int 2495 ufs_fsync(struct vnode *vp, int syncflag, struct cred *cr) 2496 { 2497 struct inode *ip = VTOI(vp); 2498 struct ufsvfs *ufsvfsp = ip->i_ufsvfs; 2499 struct ulockfs *ulp; 2500 int error; 2501 2502 TRACE_1(TR_FAC_UFS, TR_UFS_FSYNC_START, 2503 "ufs_fsync_start:vp %p", vp); 2504 2505 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_FSYNC_MASK); 2506 if (error) 2507 return (error); 2508 2509 if (TRANS_ISTRANS(ufsvfsp)) { 2510 /* 2511 * First push out any data pages 2512 */ 2513 if (vn_has_cached_data(vp) && !(syncflag & FNODSYNC) && 2514 (vp->v_type != VCHR) && !(IS_SWAPVP(vp))) { 2515 error = VOP_PUTPAGE(vp, (offset_t)0, (size_t)0, 2516 0, CRED()); 2517 if (error) 2518 goto out; 2519 } 2520 2521 /* 2522 * Delta any delayed inode times updates 2523 * and push inode to log. 2524 * All other inode deltas will have already been delta'd 2525 * and will be pushed during the commit. 2526 */ 2527 if (!(syncflag & FDSYNC) && 2528 ((ip->i_flag & (IMOD|IMODACC)) == IMODACC)) { 2529 if (ulp) { 2530 TRANS_BEGIN_ASYNC(ufsvfsp, TOP_FSYNC, 2531 TOP_SYNCIP_SIZE); 2532 } 2533 rw_enter(&ip->i_contents, RW_READER); 2534 mutex_enter(&ip->i_tlock); 2535 ip->i_flag &= ~IMODTIME; 2536 mutex_exit(&ip->i_tlock); 2537 ufs_iupdat(ip, I_SYNC); 2538 rw_exit(&ip->i_contents); 2539 if (ulp) { 2540 TRANS_END_ASYNC(ufsvfsp, TOP_FSYNC, 2541 TOP_SYNCIP_SIZE); 2542 } 2543 } 2544 2545 /* 2546 * Commit the Moby transaction 2547 * 2548 * Deltas have already been made so we just need to 2549 * commit them with a synchronous transaction. 2550 * TRANS_BEGIN_SYNC() will return an error 2551 * if there are no deltas to commit, for an 2552 * empty transaction. 2553 */ 2554 if (ulp) { 2555 TRANS_BEGIN_SYNC(ufsvfsp, TOP_FSYNC, TOP_COMMIT_SIZE, 2556 error); 2557 if (error) { 2558 error = 0; /* commit wasn't needed */ 2559 goto out; 2560 } 2561 TRANS_END_SYNC(ufsvfsp, error, TOP_FSYNC, 2562 TOP_COMMIT_SIZE); 2563 } 2564 } else { /* not logging */ 2565 if (!(IS_SWAPVP(vp))) 2566 if (syncflag & FNODSYNC) { 2567 /* Just update the inode only */ 2568 TRANS_IUPDAT(ip, 1); 2569 error = 0; 2570 } else if (syncflag & FDSYNC) 2571 /* Do data-synchronous writes */ 2572 error = TRANS_SYNCIP(ip, 0, I_DSYNC, TOP_FSYNC); 2573 else 2574 /* Do synchronous writes */ 2575 error = TRANS_SYNCIP(ip, 0, I_SYNC, TOP_FSYNC); 2576 2577 rw_enter(&ip->i_contents, RW_WRITER); 2578 if (!error) 2579 error = ufs_sync_indir(ip); 2580 rw_exit(&ip->i_contents); 2581 } 2582 out: 2583 if (ulp) { 2584 ufs_lockfs_end(ulp); 2585 } 2586 TRACE_2(TR_FAC_UFS, TR_UFS_FSYNC_END, 2587 "ufs_fsync_end:vp %p error %d", vp, error); 2588 return (error); 2589 } 2590 2591 /*ARGSUSED*/ 2592 static void 2593 ufs_inactive(struct vnode *vp, struct cred *cr) 2594 { 2595 ufs_iinactive(VTOI(vp)); 2596 } 2597 2598 /* 2599 * Unix file system operations having to do with directory manipulation. 2600 */ 2601 int ufs_lookup_idle_count = 2; /* Number of inodes to idle each time */ 2602 /* ARGSUSED */ 2603 static int 2604 ufs_lookup(struct vnode *dvp, char *nm, struct vnode **vpp, 2605 struct pathname *pnp, int flags, struct vnode *rdir, struct cred *cr) 2606 { 2607 struct inode *ip; 2608 struct inode *sip; 2609 struct inode *xip; 2610 struct ufsvfs *ufsvfsp; 2611 struct ulockfs *ulp; 2612 struct vnode *vp; 2613 int error; 2614 2615 TRACE_2(TR_FAC_UFS, TR_UFS_LOOKUP_START, 2616 "ufs_lookup_start:dvp %p name %s", dvp, nm); 2617 2618 2619 /* 2620 * Check flags for type of lookup (regular file or attribute file) 2621 */ 2622 2623 ip = VTOI(dvp); 2624 2625 if (flags & LOOKUP_XATTR) { 2626 2627 /* 2628 * We don't allow recursive attributes... 2629 * Maybe someday we will. 2630 */ 2631 if ((ip->i_cflags & IXATTR)) { 2632 return (EINVAL); 2633 } 2634 2635 if ((vp = dnlc_lookup(dvp, XATTR_DIR_NAME)) == NULL) { 2636 error = ufs_xattr_getattrdir(dvp, &sip, flags, cr); 2637 if (error) { 2638 *vpp = NULL; 2639 goto out; 2640 } 2641 2642 vp = ITOV(sip); 2643 dnlc_update(dvp, XATTR_DIR_NAME, vp); 2644 } 2645 2646 /* 2647 * Check accessibility of directory. 2648 */ 2649 if (vp == DNLC_NO_VNODE) { 2650 VN_RELE(vp); 2651 error = ENOENT; 2652 goto out; 2653 } 2654 if ((error = ufs_iaccess(VTOI(vp), IEXEC, cr)) != 0) { 2655 VN_RELE(vp); 2656 goto out; 2657 } 2658 2659 *vpp = vp; 2660 return (0); 2661 } 2662 2663 /* 2664 * Check for a null component, which we should treat as 2665 * looking at dvp from within it's parent, so we don't 2666 * need a call to ufs_iaccess(), as it has already been 2667 * done. 2668 */ 2669 if (nm[0] == 0) { 2670 VN_HOLD(dvp); 2671 error = 0; 2672 *vpp = dvp; 2673 goto out; 2674 } 2675 2676 /* 2677 * Check for "." ie itself. this is a quick check and 2678 * avoids adding "." into the dnlc (which have been seen 2679 * to occupy >10% of the cache). 2680 */ 2681 if ((nm[0] == '.') && (nm[1] == 0)) { 2682 /* 2683 * Don't return without checking accessibility 2684 * of the directory. We only need the lock if 2685 * we are going to return it. 2686 */ 2687 if ((error = ufs_iaccess(ip, IEXEC, cr)) == 0) { 2688 VN_HOLD(dvp); 2689 *vpp = dvp; 2690 } 2691 goto out; 2692 } 2693 2694 /* 2695 * Fast path: Check the directory name lookup cache. 2696 */ 2697 if (vp = dnlc_lookup(dvp, nm)) { 2698 /* 2699 * Check accessibility of directory. 2700 */ 2701 if ((error = ufs_iaccess(ip, IEXEC, cr)) != 0) { 2702 VN_RELE(vp); 2703 goto out; 2704 } 2705 if (vp == DNLC_NO_VNODE) { 2706 VN_RELE(vp); 2707 error = ENOENT; 2708 goto out; 2709 } 2710 xip = VTOI(vp); 2711 ulp = NULL; 2712 goto fastpath; 2713 } 2714 2715 /* 2716 * Keep the idle queue from getting too long by 2717 * idling two inodes before attempting to allocate another. 2718 * This operation must be performed before entering 2719 * lockfs or a transaction. 2720 */ 2721 if (ufs_idle_q.uq_ne > ufs_idle_q.uq_hiwat) 2722 if ((curthread->t_flag & T_DONTBLOCK) == 0) { 2723 ins.in_lidles.value.ul += ufs_lookup_idle_count; 2724 ufs_idle_some(ufs_lookup_idle_count); 2725 } 2726 2727 ufsvfsp = ip->i_ufsvfs; 2728 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_LOOKUP_MASK); 2729 if (error) 2730 goto out; 2731 2732 error = ufs_dirlook(ip, nm, &xip, cr, 1); 2733 2734 fastpath: 2735 if (error == 0) { 2736 ip = xip; 2737 *vpp = ITOV(ip); 2738 2739 /* 2740 * If vnode is a device return special vnode instead. 2741 */ 2742 if (IS_DEVVP(*vpp)) { 2743 struct vnode *newvp; 2744 2745 newvp = specvp(*vpp, (*vpp)->v_rdev, (*vpp)->v_type, 2746 cr); 2747 VN_RELE(*vpp); 2748 if (newvp == NULL) 2749 error = ENOSYS; 2750 else 2751 *vpp = newvp; 2752 } 2753 } 2754 if (ulp) { 2755 ufs_lockfs_end(ulp); 2756 } 2757 2758 out: 2759 TRACE_3(TR_FAC_UFS, TR_UFS_LOOKUP_END, 2760 "ufs_lookup_end:dvp %p name %s error %d", vpp, nm, error); 2761 return (error); 2762 } 2763 2764 static int 2765 ufs_create(struct vnode *dvp, char *name, struct vattr *vap, enum vcexcl excl, 2766 int mode, struct vnode **vpp, struct cred *cr, int flag) 2767 { 2768 struct inode *ip; 2769 struct inode *xip; 2770 struct inode *dip; 2771 struct vnode *xvp; 2772 struct ufsvfs *ufsvfsp; 2773 struct ulockfs *ulp; 2774 int error; 2775 int issync; 2776 int truncflag; 2777 int trans_size; 2778 int noentry; 2779 int defer_dip_seq_update = 0; /* need to defer update of dip->i_seq */ 2780 int retry = 1; 2781 2782 TRACE_1(TR_FAC_UFS, TR_UFS_CREATE_START, 2783 "ufs_create_start:dvp %p", dvp); 2784 2785 again: 2786 ip = VTOI(dvp); 2787 ufsvfsp = ip->i_ufsvfs; 2788 truncflag = 0; 2789 2790 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_CREATE_MASK); 2791 if (error) 2792 goto out; 2793 2794 if (ulp) { 2795 trans_size = (int)TOP_CREATE_SIZE(ip); 2796 TRANS_BEGIN_CSYNC(ufsvfsp, issync, TOP_CREATE, trans_size); 2797 } 2798 2799 if ((vap->va_mode & VSVTX) && secpolicy_vnode_stky_modify(cr) != 0) 2800 vap->va_mode &= ~VSVTX; 2801 2802 if (*name == '\0') { 2803 /* 2804 * Null component name refers to the directory itself. 2805 */ 2806 VN_HOLD(dvp); 2807 /* 2808 * Even though this is an error case, we need to grab the 2809 * quota lock since the error handling code below is common. 2810 */ 2811 rw_enter(&ufsvfsp->vfs_dqrwlock, RW_READER); 2812 rw_enter(&ip->i_contents, RW_WRITER); 2813 error = EEXIST; 2814 } else { 2815 xip = NULL; 2816 noentry = 0; 2817 rw_enter(&ip->i_rwlock, RW_WRITER); 2818 xvp = dnlc_lookup(dvp, name); 2819 if (xvp == DNLC_NO_VNODE) { 2820 noentry = 1; 2821 VN_RELE(xvp); 2822 xvp = NULL; 2823 } 2824 if (xvp) { 2825 rw_exit(&ip->i_rwlock); 2826 if (error = ufs_iaccess(ip, IEXEC, cr)) { 2827 VN_RELE(xvp); 2828 } else { 2829 error = EEXIST; 2830 xip = VTOI(xvp); 2831 } 2832 } else { 2833 /* 2834 * Suppress file system full message if we will retry 2835 */ 2836 error = ufs_direnter_cm(ip, name, DE_CREATE, 2837 vap, &xip, cr, 2838 (noentry | (retry ? IQUIET : 0))); 2839 rw_exit(&ip->i_rwlock); 2840 } 2841 ip = xip; 2842 if (ip != NULL) { 2843 rw_enter(&ufsvfsp->vfs_dqrwlock, RW_READER); 2844 rw_enter(&ip->i_contents, RW_WRITER); 2845 } 2846 } 2847 2848 /* 2849 * If the file already exists and this is a non-exclusive create, 2850 * check permissions and allow access for non-directories. 2851 * Read-only create of an existing directory is also allowed. 2852 * We fail an exclusive create of anything which already exists. 2853 */ 2854 if (error == EEXIST) { 2855 dip = VTOI(dvp); 2856 if (excl == NONEXCL) { 2857 if ((((ip->i_mode & IFMT) == IFDIR) || 2858 ((ip->i_mode & IFMT) == IFATTRDIR)) && 2859 (mode & IWRITE)) 2860 error = EISDIR; 2861 else if (mode) 2862 error = ufs_iaccess(ip, mode, cr); 2863 else 2864 error = 0; 2865 } 2866 if (error) { 2867 rw_exit(&ip->i_contents); 2868 rw_exit(&ufsvfsp->vfs_dqrwlock); 2869 VN_RELE(ITOV(ip)); 2870 goto unlock; 2871 } 2872 /* 2873 * If the error EEXIST was set, then i_seq can not 2874 * have been updated. The sequence number interface 2875 * is defined such that a non-error VOP_CREATE must 2876 * increase the dir va_seq it by at least one. If we 2877 * have cleared the error, increase i_seq. Note that 2878 * we are increasing the dir i_seq and in rare cases 2879 * ip may actually be from the dvp, so we already have 2880 * the locks and it will not be subject to truncation. 2881 * In case we have to update i_seq of the parent 2882 * directory dip, we have to defer it till we have 2883 * released our locks on ip due to lock ordering requirements. 2884 */ 2885 if (ip != dip) 2886 defer_dip_seq_update = 1; 2887 else 2888 ip->i_seq++; 2889 2890 if (((ip->i_mode & IFMT) == IFREG) && 2891 (vap->va_mask & AT_SIZE) && vap->va_size == 0) { 2892 /* 2893 * Truncate regular files, if requested by caller. 2894 * Grab i_rwlock to make sure no one else is 2895 * currently writing to the file (we promised 2896 * bmap we would do this). 2897 * Must get the locks in the correct order. 2898 */ 2899 if (ip->i_size == 0) { 2900 ip->i_flag |= ICHG | IUPD; 2901 ip->i_seq++; 2902 TRANS_INODE(ufsvfsp, ip); 2903 } else { 2904 /* 2905 * Large Files: Why this check here? 2906 * Though we do it in vn_create() we really 2907 * want to guarantee that we do not destroy 2908 * Large file data by atomically checking 2909 * the size while holding the contents 2910 * lock. 2911 */ 2912 if (flag && !(flag & FOFFMAX) && 2913 ((ip->i_mode & IFMT) == IFREG) && 2914 (ip->i_size > (offset_t)MAXOFF32_T)) { 2915 rw_exit(&ip->i_contents); 2916 rw_exit(&ufsvfsp->vfs_dqrwlock); 2917 error = EOVERFLOW; 2918 goto unlock; 2919 } 2920 if (TRANS_ISTRANS(ufsvfsp)) 2921 truncflag++; 2922 else { 2923 rw_exit(&ip->i_contents); 2924 rw_exit(&ufsvfsp->vfs_dqrwlock); 2925 rw_enter(&ip->i_rwlock, RW_WRITER); 2926 rw_enter(&ufsvfsp->vfs_dqrwlock, 2927 RW_READER); 2928 rw_enter(&ip->i_contents, RW_WRITER); 2929 (void) ufs_itrunc(ip, (u_offset_t)0, 0, 2930 cr); 2931 rw_exit(&ip->i_rwlock); 2932 } 2933 } 2934 } 2935 } 2936 2937 if (error) { 2938 if (ip != NULL) { 2939 rw_exit(&ufsvfsp->vfs_dqrwlock); 2940 rw_exit(&ip->i_contents); 2941 } 2942 goto unlock; 2943 } 2944 2945 *vpp = ITOV(ip); 2946 ITIMES(ip); 2947 rw_exit(&ip->i_contents); 2948 rw_exit(&ufsvfsp->vfs_dqrwlock); 2949 2950 /* 2951 * If vnode is a device return special vnode instead. 2952 */ 2953 if (!error && IS_DEVVP(*vpp)) { 2954 struct vnode *newvp; 2955 2956 newvp = specvp(*vpp, (*vpp)->v_rdev, (*vpp)->v_type, cr); 2957 VN_RELE(*vpp); 2958 if (newvp == NULL) { 2959 error = ENOSYS; 2960 goto unlock; 2961 } 2962 truncflag = 0; 2963 *vpp = newvp; 2964 } 2965 unlock: 2966 2967 /* 2968 * Do the deferred update of the parent directory's sequence 2969 * number now. 2970 */ 2971 if (defer_dip_seq_update == 1) { 2972 rw_enter(&dip->i_contents, RW_READER); 2973 mutex_enter(&dip->i_tlock); 2974 dip->i_seq++; 2975 mutex_exit(&dip->i_tlock); 2976 rw_exit(&dip->i_contents); 2977 } 2978 2979 if (ulp) { 2980 int terr = 0; 2981 2982 TRANS_END_CSYNC(ufsvfsp, terr, issync, TOP_CREATE, 2983 trans_size); 2984 2985 /* 2986 * If we haven't had a more interesting failure 2987 * already, then anything that might've happened 2988 * here should be reported. 2989 */ 2990 if (error == 0) 2991 error = terr; 2992 } 2993 2994 if (!error && truncflag) { 2995 rw_enter(&ip->i_rwlock, RW_WRITER); 2996 (void) TRANS_ITRUNC(ip, (u_offset_t)0, 0, cr); 2997 rw_exit(&ip->i_rwlock); 2998 } 2999 3000 if (ulp) 3001 ufs_lockfs_end(ulp); 3002 3003 /* 3004 * If no inodes available, try to free one up out of the 3005 * pending delete queue. 3006 */ 3007 if ((error == ENOSPC) && retry && TRANS_ISTRANS(ufsvfsp)) { 3008 ufs_delete_drain_wait(ufsvfsp, 1); 3009 retry = 0; 3010 goto again; 3011 } 3012 3013 out: 3014 TRACE_3(TR_FAC_UFS, TR_UFS_CREATE_END, 3015 "ufs_create_end:dvp %p name %s error %d", vpp, name, error); 3016 return (error); 3017 } 3018 3019 extern int ufs_idle_max; 3020 /*ARGSUSED*/ 3021 static int 3022 ufs_remove(struct vnode *vp, char *nm, struct cred *cr) 3023 { 3024 struct inode *ip = VTOI(vp); 3025 struct ufsvfs *ufsvfsp = ip->i_ufsvfs; 3026 struct ulockfs *ulp; 3027 vnode_t *rmvp = NULL; /* Vnode corresponding to name being removed */ 3028 int error; 3029 int issync; 3030 int trans_size; 3031 3032 TRACE_1(TR_FAC_UFS, TR_UFS_REMOVE_START, 3033 "ufs_remove_start:vp %p", vp); 3034 3035 /* 3036 * don't let the delete queue get too long 3037 */ 3038 if (ufsvfsp == NULL) { 3039 error = EIO; 3040 goto out; 3041 } 3042 if (ufsvfsp->vfs_delete.uq_ne > ufs_idle_max) 3043 ufs_delete_drain(vp->v_vfsp, 1, 1); 3044 3045 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_REMOVE_MASK); 3046 if (error) 3047 goto out; 3048 3049 if (ulp) 3050 TRANS_BEGIN_CSYNC(ufsvfsp, issync, TOP_REMOVE, 3051 trans_size = (int)TOP_REMOVE_SIZE(VTOI(vp))); 3052 3053 rw_enter(&ip->i_rwlock, RW_WRITER); 3054 error = ufs_dirremove(ip, nm, (struct inode *)0, (struct vnode *)0, 3055 DR_REMOVE, cr, &rmvp); 3056 rw_exit(&ip->i_rwlock); 3057 3058 if (ulp) { 3059 TRANS_END_CSYNC(ufsvfsp, error, issync, TOP_REMOVE, trans_size); 3060 ufs_lockfs_end(ulp); 3061 } 3062 3063 /* 3064 * This must be called after the remove transaction is closed. 3065 */ 3066 if (rmvp != NULL) { 3067 /* Only send the event if there were no errors */ 3068 if (error == 0) 3069 vnevent_remove(rmvp); 3070 VN_RELE(rmvp); 3071 } 3072 out: 3073 TRACE_3(TR_FAC_UFS, TR_UFS_REMOVE_END, 3074 "ufs_remove_end:vp %p name %s error %d", vp, nm, error); 3075 return (error); 3076 } 3077 3078 /* 3079 * Link a file or a directory. Only privileged processes are allowed to 3080 * make links to directories. 3081 */ 3082 static int 3083 ufs_link(struct vnode *tdvp, struct vnode *svp, char *tnm, struct cred *cr) 3084 { 3085 struct inode *sip; 3086 struct inode *tdp = VTOI(tdvp); 3087 struct ufsvfs *ufsvfsp = tdp->i_ufsvfs; 3088 struct ulockfs *ulp; 3089 struct vnode *realvp; 3090 int error; 3091 int issync; 3092 int trans_size; 3093 int isdev; 3094 3095 TRACE_1(TR_FAC_UFS, TR_UFS_LINK_START, 3096 "ufs_link_start:tdvp %p", tdvp); 3097 3098 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_LINK_MASK); 3099 if (error) 3100 goto out; 3101 3102 if (ulp) 3103 TRANS_BEGIN_CSYNC(ufsvfsp, issync, TOP_LINK, 3104 trans_size = (int)TOP_LINK_SIZE(VTOI(tdvp))); 3105 3106 if (VOP_REALVP(svp, &realvp) == 0) 3107 svp = realvp; 3108 3109 /* 3110 * Make sure link for extended attributes is valid 3111 * We only support hard linking of attr in ATTRDIR to ATTRDIR 3112 * 3113 * Make certain we don't attempt to look at a device node as 3114 * a ufs inode. 3115 */ 3116 3117 isdev = IS_DEVVP(svp); 3118 if (((isdev == 0) && ((VTOI(svp)->i_cflags & IXATTR) == 0) && 3119 ((tdp->i_mode & IFMT) == IFATTRDIR)) || 3120 ((isdev == 0) && (VTOI(svp)->i_cflags & IXATTR) && 3121 ((tdp->i_mode & IFMT) == IFDIR))) { 3122 error = EINVAL; 3123 goto unlock; 3124 } 3125 3126 sip = VTOI(svp); 3127 if ((svp->v_type == VDIR && 3128 secpolicy_fs_linkdir(cr, ufsvfsp->vfs_vfs) != 0) || 3129 (sip->i_uid != crgetuid(cr) && secpolicy_basic_link(cr) != 0)) { 3130 error = EPERM; 3131 goto unlock; 3132 } 3133 rw_enter(&tdp->i_rwlock, RW_WRITER); 3134 error = ufs_direnter_lr(tdp, tnm, DE_LINK, (struct inode *)0, 3135 sip, cr, NULL); 3136 rw_exit(&tdp->i_rwlock); 3137 3138 unlock: 3139 if (ulp) { 3140 TRANS_END_CSYNC(ufsvfsp, error, issync, TOP_LINK, trans_size); 3141 ufs_lockfs_end(ulp); 3142 } 3143 out: 3144 TRACE_2(TR_FAC_UFS, TR_UFS_LINK_END, 3145 "ufs_link_end:tdvp %p error %d", tdvp, error); 3146 return (error); 3147 } 3148 3149 uint64_t ufs_rename_retry_cnt; 3150 uint64_t ufs_rename_upgrade_retry_cnt; 3151 uint64_t ufs_rename_dircheck_retry_cnt; 3152 clock_t ufs_rename_backoff_delay = 1; 3153 3154 /* 3155 * Rename a file or directory. 3156 * We are given the vnode and entry string of the source and the 3157 * vnode and entry string of the place we want to move the source 3158 * to (the target). The essential operation is: 3159 * unlink(target); 3160 * link(source, target); 3161 * unlink(source); 3162 * but "atomically". Can't do full commit without saving state in 3163 * the inode on disk, which isn't feasible at this time. Best we 3164 * can do is always guarantee that the TARGET exists. 3165 */ 3166 /*ARGSUSED*/ 3167 static int 3168 ufs_rename( 3169 struct vnode *sdvp, /* old (source) parent vnode */ 3170 char *snm, /* old (source) entry name */ 3171 struct vnode *tdvp, /* new (target) parent vnode */ 3172 char *tnm, /* new (target) entry name */ 3173 struct cred *cr) 3174 { 3175 struct inode *sip = NULL; /* source inode */ 3176 struct inode *sdp; /* old (source) parent inode */ 3177 struct inode *tdp; /* new (target) parent inode */ 3178 struct vnode *tvp = NULL; /* target vnode, if it exists */ 3179 struct vnode *realvp; 3180 struct ufsvfs *ufsvfsp; 3181 struct ulockfs *ulp; 3182 int error; 3183 int issync; 3184 int trans_size; 3185 3186 TRACE_1(TR_FAC_UFS, TR_UFS_RENAME_START, 3187 "ufs_rename_start:sdvp %p", sdvp); 3188 3189 3190 sdp = VTOI(sdvp); 3191 ufsvfsp = sdp->i_ufsvfs; 3192 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_RENAME_MASK); 3193 if (error) 3194 goto out; 3195 3196 if (ulp) 3197 TRANS_BEGIN_CSYNC(ufsvfsp, issync, TOP_RENAME, 3198 trans_size = (int)TOP_RENAME_SIZE(sdp)); 3199 3200 if (VOP_REALVP(tdvp, &realvp) == 0) 3201 tdvp = realvp; 3202 3203 tdp = VTOI(tdvp); 3204 3205 /* 3206 * We only allow renaming of attributes from ATTRDIR to ATTRDIR. 3207 */ 3208 if ((tdp->i_mode & IFMT) != (sdp->i_mode & IFMT)) { 3209 error = EINVAL; 3210 goto unlock; 3211 } 3212 3213 /* 3214 * Look up inode of file we're supposed to rename. 3215 */ 3216 if (error = ufs_dirlook(sdp, snm, &sip, cr, 0)) { 3217 goto unlock; 3218 } 3219 3220 /* 3221 * Lock both the source and target directories (they may be 3222 * the same) to provide the atomicity semantics that was 3223 * previously provided by the per file system vfs_rename_lock 3224 * 3225 * with vfs_rename_lock removed to allow simultaneous renames 3226 * within a file system, ufs_dircheckpath can deadlock while 3227 * traversing back to ensure that source is not a parent directory 3228 * of target parent directory. This is because we get into 3229 * ufs_dircheckpath with the sdp and tdp locks held as RW_WRITER. 3230 * If the tdp and sdp of the simultaneous renames happen to be 3231 * in the path of each other, it can lead to a deadlock. This 3232 * can be avoided by getting the locks as RW_READER here and then 3233 * upgrading to RW_WRITER after completing the ufs_dircheckpath. 3234 */ 3235 retry: 3236 rw_enter(&tdp->i_rwlock, RW_READER); 3237 if (tdp != sdp) { 3238 /* 3239 * We're locking 2 peer level locks, so must use tryenter 3240 * on the 2nd to avoid deadlocks that would occur 3241 * if we renamed a->b and b->a concurrently. 3242 */ 3243 if (!rw_tryenter(&sdp->i_rwlock, RW_READER)) { 3244 /* 3245 * Reverse the lock grabs in case we have heavy 3246 * contention on the 2nd lock. 3247 */ 3248 rw_exit(&tdp->i_rwlock); 3249 rw_enter(&sdp->i_rwlock, RW_READER); 3250 if (!rw_tryenter(&tdp->i_rwlock, RW_READER)) { 3251 ufs_rename_retry_cnt++; 3252 rw_exit(&sdp->i_rwlock); 3253 goto retry; 3254 } 3255 } 3256 } 3257 3258 if (sip == tdp) { 3259 error = EINVAL; 3260 goto errout; 3261 } 3262 /* 3263 * Make sure we can delete the source entry. This requires 3264 * write permission on the containing directory. 3265 * Check for sticky directories. 3266 */ 3267 rw_enter(&sdp->i_contents, RW_READER); 3268 rw_enter(&sip->i_contents, RW_READER); 3269 if ((error = ufs_iaccess(sdp, IWRITE, cr)) != 0 || 3270 (error = ufs_sticky_remove_access(sdp, sip, cr)) != 0) { 3271 rw_exit(&sip->i_contents); 3272 rw_exit(&sdp->i_contents); 3273 goto errout; 3274 } 3275 3276 /* 3277 * If this is a rename of a directory and the parent is 3278 * different (".." must be changed), then the source 3279 * directory must not be in the directory hierarchy 3280 * above the target, as this would orphan everything 3281 * below the source directory. Also the user must have 3282 * write permission in the source so as to be able to 3283 * change "..". 3284 */ 3285 if ((((sip->i_mode & IFMT) == IFDIR) || 3286 ((sip->i_mode & IFMT) == IFATTRDIR)) && sdp != tdp) { 3287 ino_t inum; 3288 3289 if ((error = ufs_iaccess(sip, IWRITE, cr))) { 3290 rw_exit(&sip->i_contents); 3291 rw_exit(&sdp->i_contents); 3292 goto errout; 3293 } 3294 inum = sip->i_number; 3295 rw_exit(&sip->i_contents); 3296 rw_exit(&sdp->i_contents); 3297 if ((error = ufs_dircheckpath(inum, tdp, sdp, cr))) { 3298 /* 3299 * If we got EAGAIN ufs_dircheckpath detected a 3300 * potential deadlock and backed out. We need 3301 * to retry the operation since sdp and tdp have 3302 * to be released to avoid the deadlock. 3303 */ 3304 if (error == EAGAIN) { 3305 rw_exit(&tdp->i_rwlock); 3306 if (tdp != sdp) 3307 rw_exit(&sdp->i_rwlock); 3308 delay(ufs_rename_backoff_delay); 3309 ufs_rename_dircheck_retry_cnt++; 3310 goto retry; 3311 } 3312 goto errout; 3313 } 3314 } else { 3315 rw_exit(&sip->i_contents); 3316 rw_exit(&sdp->i_contents); 3317 } 3318 3319 3320 /* 3321 * Check for renaming '.' or '..' or alias of '.' 3322 */ 3323 if (strcmp(snm, ".") == 0 || strcmp(snm, "..") == 0 || sdp == sip) { 3324 error = EINVAL; 3325 goto errout; 3326 } 3327 3328 /* 3329 * Simultaneous renames can deadlock in ufs_dircheckpath since it 3330 * tries to traverse back the file tree with both tdp and sdp held 3331 * as RW_WRITER. To avoid that we have to hold the tdp and sdp locks 3332 * as RW_READERS till ufs_dircheckpath is done. 3333 * Now that ufs_dircheckpath is done with, we can upgrade the locks 3334 * to RW_WRITER. 3335 */ 3336 if (!rw_tryupgrade(&tdp->i_rwlock)) { 3337 /* 3338 * The upgrade failed. We got to give away the lock 3339 * as to avoid deadlocking with someone else who is 3340 * waiting for writer lock. With the lock gone, we 3341 * cannot be sure the checks done above will hold 3342 * good when we eventually get them back as writer. 3343 * So if we can't upgrade we drop the locks and retry 3344 * everything again. 3345 */ 3346 rw_exit(&tdp->i_rwlock); 3347 if (tdp != sdp) 3348 rw_exit(&sdp->i_rwlock); 3349 delay(ufs_rename_backoff_delay); 3350 ufs_rename_upgrade_retry_cnt++; 3351 goto retry; 3352 } 3353 if (tdp != sdp) { 3354 if (!rw_tryupgrade(&sdp->i_rwlock)) { 3355 /* 3356 * The upgrade failed. We got to give away the lock 3357 * as to avoid deadlocking with someone else who is 3358 * waiting for writer lock. With the lock gone, we 3359 * cannot be sure the checks done above will hold 3360 * good when we eventually get them back as writer. 3361 * So if we can't upgrade we drop the locks and retry 3362 * everything again. 3363 */ 3364 rw_exit(&tdp->i_rwlock); 3365 rw_exit(&sdp->i_rwlock); 3366 delay(ufs_rename_backoff_delay); 3367 ufs_rename_upgrade_retry_cnt++; 3368 goto retry; 3369 } 3370 } 3371 /* 3372 * Link source to the target. If a target exists, return its 3373 * vnode pointer in tvp. We'll release it after sending the 3374 * vnevent. 3375 */ 3376 if (error = ufs_direnter_lr(tdp, tnm, DE_RENAME, sdp, sip, cr, &tvp)) { 3377 /* 3378 * ESAME isn't really an error; it indicates that the 3379 * operation should not be done because the source and target 3380 * are the same file, but that no error should be reported. 3381 */ 3382 if (error == ESAME) 3383 error = 0; 3384 goto errout; 3385 } 3386 3387 /* 3388 * Unlink the source. 3389 * Remove the source entry. ufs_dirremove() checks that the entry 3390 * still reflects sip, and returns an error if it doesn't. 3391 * If the entry has changed just forget about it. Release 3392 * the source inode. 3393 */ 3394 if ((error = ufs_dirremove(sdp, snm, sip, (struct vnode *)0, 3395 DR_RENAME, cr, NULL)) == ENOENT) 3396 error = 0; 3397 3398 errout: 3399 rw_exit(&tdp->i_rwlock); 3400 if (sdp != tdp) { 3401 rw_exit(&sdp->i_rwlock); 3402 } 3403 3404 unlock: 3405 if (ulp) { 3406 TRANS_END_CSYNC(ufsvfsp, error, issync, TOP_RENAME, trans_size); 3407 ufs_lockfs_end(ulp); 3408 } 3409 3410 /* 3411 * If no errors, send the appropriate events on the source 3412 * and destination (a.k.a, target) vnodes, if they exist. 3413 * This has to be done after the rename transaction has closed. 3414 */ 3415 if (error == 0) { 3416 if (tvp != NULL) 3417 vnevent_rename_dest(tvp); 3418 /* 3419 * Note that if ufs_direnter_lr() returned ESAME then 3420 * this event will still be sent. This isn't expected 3421 * to be a problem for anticipated usage by consumers. 3422 */ 3423 if (sip != NULL) 3424 vnevent_rename_src(ITOV(sip)); 3425 } 3426 3427 if (tvp != NULL) 3428 VN_RELE(tvp); 3429 3430 if (sip != NULL) 3431 VN_RELE(ITOV(sip)); 3432 3433 out: 3434 TRACE_5(TR_FAC_UFS, TR_UFS_RENAME_END, 3435 "ufs_rename_end:sdvp %p snm %s tdvp %p tnm %s error %d", 3436 sdvp, snm, tdvp, tnm, error); 3437 return (error); 3438 } 3439 3440 /*ARGSUSED*/ 3441 static int 3442 ufs_mkdir(struct vnode *dvp, char *dirname, struct vattr *vap, 3443 struct vnode **vpp, struct cred *cr) 3444 { 3445 struct inode *ip; 3446 struct inode *xip; 3447 struct ufsvfs *ufsvfsp; 3448 struct ulockfs *ulp; 3449 int error; 3450 int issync; 3451 int trans_size; 3452 int retry = 1; 3453 3454 ASSERT((vap->va_mask & (AT_TYPE|AT_MODE)) == (AT_TYPE|AT_MODE)); 3455 3456 TRACE_1(TR_FAC_UFS, TR_UFS_MKDIR_START, 3457 "ufs_mkdir_start:dvp %p", dvp); 3458 3459 /* 3460 * Can't make directory in attr hidden dir 3461 */ 3462 if ((VTOI(dvp)->i_mode & IFMT) == IFATTRDIR) 3463 return (EINVAL); 3464 3465 again: 3466 ip = VTOI(dvp); 3467 ufsvfsp = ip->i_ufsvfs; 3468 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_MKDIR_MASK); 3469 if (error) 3470 goto out; 3471 if (ulp) 3472 TRANS_BEGIN_CSYNC(ufsvfsp, issync, TOP_MKDIR, 3473 trans_size = (int)TOP_MKDIR_SIZE(ip)); 3474 3475 rw_enter(&ip->i_rwlock, RW_WRITER); 3476 3477 error = ufs_direnter_cm(ip, dirname, DE_MKDIR, vap, &xip, cr, 3478 (retry ? IQUIET : 0)); 3479 3480 rw_exit(&ip->i_rwlock); 3481 if (error == 0) { 3482 ip = xip; 3483 *vpp = ITOV(ip); 3484 } else if (error == EEXIST) 3485 VN_RELE(ITOV(xip)); 3486 3487 if (ulp) { 3488 int terr = 0; 3489 TRANS_END_CSYNC(ufsvfsp, terr, issync, TOP_MKDIR, trans_size); 3490 ufs_lockfs_end(ulp); 3491 if (error == 0) 3492 error = terr; 3493 } 3494 out: 3495 if ((error == ENOSPC) && retry && TRANS_ISTRANS(ufsvfsp)) { 3496 ufs_delete_drain_wait(ufsvfsp, 1); 3497 retry = 0; 3498 goto again; 3499 } 3500 3501 TRACE_2(TR_FAC_UFS, TR_UFS_MKDIR_END, 3502 "ufs_mkdir_end:dvp %p error %d", dvp, error); 3503 return (error); 3504 } 3505 3506 /*ARGSUSED*/ 3507 static int 3508 ufs_rmdir(struct vnode *vp, char *nm, struct vnode *cdir, struct cred *cr) 3509 { 3510 struct inode *ip = VTOI(vp); 3511 struct ufsvfs *ufsvfsp = ip->i_ufsvfs; 3512 struct ulockfs *ulp; 3513 vnode_t *rmvp = NULL; /* Vnode of removed directory */ 3514 int error; 3515 int issync; 3516 3517 TRACE_1(TR_FAC_UFS, TR_UFS_RMDIR_START, 3518 "ufs_rmdir_start:vp %p", vp); 3519 3520 /* 3521 * don't let the delete queue get too long 3522 */ 3523 if (ufsvfsp == NULL) { 3524 error = EIO; 3525 goto out; 3526 } 3527 if (ufsvfsp->vfs_delete.uq_ne > ufs_idle_max) 3528 ufs_delete_drain(vp->v_vfsp, 1, 1); 3529 3530 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_RMDIR_MASK); 3531 if (error) 3532 goto out; 3533 3534 if (ulp) 3535 TRANS_BEGIN_CSYNC(ufsvfsp, issync, TOP_RMDIR, TOP_RMDIR_SIZE); 3536 3537 rw_enter(&ip->i_rwlock, RW_WRITER); 3538 error = ufs_dirremove(ip, nm, (struct inode *)0, cdir, DR_RMDIR, cr, 3539 &rmvp); 3540 rw_exit(&ip->i_rwlock); 3541 3542 if (ulp) { 3543 TRANS_END_CSYNC(ufsvfsp, error, issync, TOP_RMDIR, 3544 TOP_RMDIR_SIZE); 3545 ufs_lockfs_end(ulp); 3546 } 3547 3548 /* 3549 * This must be done AFTER the rmdir transaction has closed. 3550 */ 3551 if (rmvp != NULL) { 3552 /* Only send the event if there were no errors */ 3553 if (error == 0) 3554 vnevent_rmdir(rmvp); 3555 VN_RELE(rmvp); 3556 } 3557 out: 3558 TRACE_2(TR_FAC_UFS, TR_UFS_RMDIR_END, 3559 "ufs_rmdir_end:vp %p error %d", vp, error); 3560 3561 return (error); 3562 } 3563 3564 /* ARGSUSED */ 3565 static int 3566 ufs_readdir( 3567 struct vnode *vp, 3568 struct uio *uiop, 3569 struct cred *cr, 3570 int *eofp) 3571 { 3572 struct iovec *iovp; 3573 struct inode *ip; 3574 struct direct *idp; 3575 struct dirent64 *odp; 3576 struct fbuf *fbp; 3577 struct ufsvfs *ufsvfsp; 3578 struct ulockfs *ulp; 3579 caddr_t outbuf; 3580 size_t bufsize; 3581 uint_t offset; 3582 uint_t bytes_wanted, total_bytes_wanted; 3583 int incount = 0; 3584 int outcount = 0; 3585 int error; 3586 3587 ip = VTOI(vp); 3588 ASSERT(RW_READ_HELD(&ip->i_rwlock)); 3589 3590 TRACE_2(TR_FAC_UFS, TR_UFS_READDIR_START, 3591 "ufs_readdir_start:vp %p uiop %p", vp, uiop); 3592 3593 if (uiop->uio_loffset >= MAXOFF32_T) { 3594 if (eofp) 3595 *eofp = 1; 3596 return (0); 3597 } 3598 3599 /* 3600 * Check if we have been called with a valid iov_len 3601 * and bail out if not, otherwise we may potentially loop 3602 * forever further down. 3603 */ 3604 if (uiop->uio_iov->iov_len <= 0) { 3605 error = EINVAL; 3606 goto out; 3607 } 3608 3609 /* 3610 * Large Files: When we come here we are guaranteed that 3611 * uio_offset can be used safely. The high word is zero. 3612 */ 3613 3614 ufsvfsp = ip->i_ufsvfs; 3615 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_READDIR_MASK); 3616 if (error) 3617 goto out; 3618 3619 iovp = uiop->uio_iov; 3620 total_bytes_wanted = iovp->iov_len; 3621 3622 /* Large Files: directory files should not be "large" */ 3623 3624 ASSERT(ip->i_size <= MAXOFF32_T); 3625 3626 /* Force offset to be valid (to guard against bogus lseek() values) */ 3627 offset = (uint_t)uiop->uio_offset & ~(DIRBLKSIZ - 1); 3628 3629 /* Quit if at end of file or link count of zero (posix) */ 3630 if (offset >= (uint_t)ip->i_size || ip->i_nlink <= 0) { 3631 if (eofp) 3632 *eofp = 1; 3633 error = 0; 3634 goto unlock; 3635 } 3636 3637 /* 3638 * Get space to change directory entries into fs independent format. 3639 * Do fast alloc for the most commonly used-request size (filesystem 3640 * block size). 3641 */ 3642 if (uiop->uio_segflg != UIO_SYSSPACE || uiop->uio_iovcnt != 1) { 3643 bufsize = total_bytes_wanted; 3644 outbuf = kmem_alloc(bufsize, KM_SLEEP); 3645 odp = (struct dirent64 *)outbuf; 3646 } else { 3647 bufsize = total_bytes_wanted; 3648 odp = (struct dirent64 *)iovp->iov_base; 3649 } 3650 3651 nextblk: 3652 bytes_wanted = total_bytes_wanted; 3653 3654 /* Truncate request to file size */ 3655 if (offset + bytes_wanted > (int)ip->i_size) 3656 bytes_wanted = (int)(ip->i_size - offset); 3657 3658 /* Comply with MAXBSIZE boundary restrictions of fbread() */ 3659 if ((offset & MAXBOFFSET) + bytes_wanted > MAXBSIZE) 3660 bytes_wanted = MAXBSIZE - (offset & MAXBOFFSET); 3661 3662 /* 3663 * Read in the next chunk. 3664 * We are still holding the i_rwlock. 3665 */ 3666 error = fbread(vp, (offset_t)offset, bytes_wanted, S_OTHER, &fbp); 3667 3668 if (error) 3669 goto update_inode; 3670 if (!ULOCKFS_IS_NOIACC(ITOUL(ip)) && (ip->i_fs->fs_ronly == 0) && 3671 (!ufsvfsp->vfs_noatime)) { 3672 ip->i_flag |= IACC; 3673 } 3674 incount = 0; 3675 idp = (struct direct *)fbp->fb_addr; 3676 if (idp->d_ino == 0 && idp->d_reclen == 0 && 3677 idp->d_namlen == 0) { 3678 cmn_err(CE_WARN, "ufs_readdir: bad dir, inumber = %llu, " 3679 "fs = %s\n", 3680 (u_longlong_t)ip->i_number, ufsvfsp->vfs_fs->fs_fsmnt); 3681 fbrelse(fbp, S_OTHER); 3682 error = ENXIO; 3683 goto update_inode; 3684 } 3685 /* Transform to file-system independent format */ 3686 while (incount < bytes_wanted) { 3687 /* 3688 * If the current directory entry is mangled, then skip 3689 * to the next block. It would be nice to set the FSBAD 3690 * flag in the super-block so that a fsck is forced on 3691 * next reboot, but locking is a problem. 3692 */ 3693 if (idp->d_reclen & 0x3) { 3694 offset = (offset + DIRBLKSIZ) & ~(DIRBLKSIZ-1); 3695 break; 3696 } 3697 3698 /* Skip to requested offset and skip empty entries */ 3699 if (idp->d_ino != 0 && offset >= (uint_t)uiop->uio_offset) { 3700 ushort_t this_reclen = 3701 DIRENT64_RECLEN(idp->d_namlen); 3702 /* Buffer too small for any entries */ 3703 if (!outcount && this_reclen > bufsize) { 3704 fbrelse(fbp, S_OTHER); 3705 error = EINVAL; 3706 goto update_inode; 3707 } 3708 /* If would overrun the buffer, quit */ 3709 if (outcount + this_reclen > bufsize) { 3710 break; 3711 } 3712 /* Take this entry */ 3713 odp->d_ino = (ino64_t)idp->d_ino; 3714 odp->d_reclen = (ushort_t)this_reclen; 3715 odp->d_off = (offset_t)(offset + idp->d_reclen); 3716 3717 /* use strncpy(9f) to zero out uninitialized bytes */ 3718 3719 ASSERT(strlen(idp->d_name) + 1 <= 3720 DIRENT64_NAMELEN(this_reclen)); 3721 (void) strncpy(odp->d_name, idp->d_name, 3722 DIRENT64_NAMELEN(this_reclen)); 3723 outcount += odp->d_reclen; 3724 odp = (struct dirent64 *)((intptr_t)odp + 3725 odp->d_reclen); 3726 ASSERT(outcount <= bufsize); 3727 } 3728 if (idp->d_reclen) { 3729 incount += idp->d_reclen; 3730 offset += idp->d_reclen; 3731 idp = (struct direct *)((intptr_t)idp + idp->d_reclen); 3732 } else { 3733 offset = (offset + DIRBLKSIZ) & ~(DIRBLKSIZ-1); 3734 break; 3735 } 3736 } 3737 /* Release the chunk */ 3738 fbrelse(fbp, S_OTHER); 3739 3740 /* Read whole block, but got no entries, read another if not eof */ 3741 3742 /* 3743 * Large Files: casting i_size to int here is not a problem 3744 * because directory sizes are always less than MAXOFF32_T. 3745 * See assertion above. 3746 */ 3747 3748 if (offset < (int)ip->i_size && !outcount) 3749 goto nextblk; 3750 3751 /* Copy out the entry data */ 3752 if (uiop->uio_segflg == UIO_SYSSPACE && uiop->uio_iovcnt == 1) { 3753 iovp->iov_base += outcount; 3754 iovp->iov_len -= outcount; 3755 uiop->uio_resid -= outcount; 3756 uiop->uio_offset = offset; 3757 } else if ((error = uiomove(outbuf, (long)outcount, UIO_READ, 3758 uiop)) == 0) 3759 uiop->uio_offset = offset; 3760 update_inode: 3761 ITIMES(ip); 3762 if (uiop->uio_segflg != UIO_SYSSPACE || uiop->uio_iovcnt != 1) 3763 kmem_free(outbuf, bufsize); 3764 3765 if (eofp && error == 0) 3766 *eofp = (uiop->uio_offset >= (int)ip->i_size); 3767 unlock: 3768 if (ulp) { 3769 ufs_lockfs_end(ulp); 3770 } 3771 out: 3772 TRACE_2(TR_FAC_UFS, TR_UFS_READDIR_END, 3773 "ufs_readdir_end:vp %p error %d", vp, error); 3774 return (error); 3775 } 3776 3777 /*ARGSUSED*/ 3778 static int 3779 ufs_symlink( 3780 struct vnode *dvp, /* ptr to parent dir vnode */ 3781 char *linkname, /* name of symbolic link */ 3782 struct vattr *vap, /* attributes */ 3783 char *target, /* target path */ 3784 struct cred *cr) /* user credentials */ 3785 { 3786 struct inode *ip, *dip = VTOI(dvp); 3787 struct ufsvfs *ufsvfsp = dip->i_ufsvfs; 3788 struct ulockfs *ulp; 3789 int error; 3790 int issync; 3791 int trans_size; 3792 int residual; 3793 int ioflag; 3794 int retry = 1; 3795 3796 TRACE_1(TR_FAC_UFS, TR_UFS_SYMLINK_START, 3797 "ufs_symlink_start:dvp %p", dvp); 3798 3799 /* 3800 * No symlinks in attrdirs at this time 3801 */ 3802 if ((VTOI(dvp)->i_mode & IFMT) == IFATTRDIR) 3803 return (EINVAL); 3804 3805 again: 3806 ip = (struct inode *)NULL; 3807 vap->va_type = VLNK; 3808 vap->va_rdev = 0; 3809 3810 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_SYMLINK_MASK); 3811 if (error) 3812 goto out; 3813 3814 if (ulp) 3815 TRANS_BEGIN_CSYNC(ufsvfsp, issync, TOP_SYMLINK, 3816 trans_size = (int)TOP_SYMLINK_SIZE(dip)); 3817 3818 /* 3819 * We must create the inode before the directory entry, to avoid 3820 * racing with readlink(). ufs_dirmakeinode requires that we 3821 * hold the quota lock as reader, and directory locks as writer. 3822 */ 3823 3824 rw_enter(&dip->i_rwlock, RW_WRITER); 3825 rw_enter(&ufsvfsp->vfs_dqrwlock, RW_READER); 3826 rw_enter(&dip->i_contents, RW_WRITER); 3827 3828 /* 3829 * Suppress any out of inodes messages if we will retry on 3830 * ENOSP 3831 */ 3832 if (retry) 3833 dip->i_flag |= IQUIET; 3834 3835 error = ufs_dirmakeinode(dip, &ip, vap, DE_SYMLINK, cr); 3836 3837 dip->i_flag &= ~IQUIET; 3838 3839 rw_exit(&dip->i_contents); 3840 rw_exit(&ufsvfsp->vfs_dqrwlock); 3841 rw_exit(&dip->i_rwlock); 3842 3843 if (error) 3844 goto unlock; 3845 3846 /* 3847 * OK. The inode has been created. Write out the data of the 3848 * symbolic link. Since symbolic links are metadata, and should 3849 * remain consistent across a system crash, we need to force the 3850 * data out synchronously. 3851 * 3852 * (This is a change from the semantics in earlier releases, which 3853 * only created symbolic links synchronously if the semi-documented 3854 * 'syncdir' option was set, or if we were being invoked by the NFS 3855 * server, which requires symbolic links to be created synchronously.) 3856 * 3857 * We need to pass in a pointer for the residual length; otherwise 3858 * ufs_rdwri() will always return EIO if it can't write the data, 3859 * even if the error was really ENOSPC or EDQUOT. 3860 */ 3861 3862 ioflag = FWRITE | FDSYNC; 3863 residual = 0; 3864 3865 rw_enter(&ufsvfsp->vfs_dqrwlock, RW_READER); 3866 rw_enter(&ip->i_contents, RW_WRITER); 3867 3868 /* 3869 * Suppress file system full messages if we will retry 3870 */ 3871 if (retry) 3872 ip->i_flag |= IQUIET; 3873 3874 error = ufs_rdwri(UIO_WRITE, ioflag, ip, target, strlen(target), 3875 (offset_t)0, UIO_SYSSPACE, &residual, cr); 3876 3877 ip->i_flag &= ~IQUIET; 3878 3879 if (error) { 3880 rw_exit(&ip->i_contents); 3881 rw_exit(&ufsvfsp->vfs_dqrwlock); 3882 goto remove; 3883 } 3884 3885 /* 3886 * If the link's data is small enough, we can cache it in the inode. 3887 * This is a "fast symbolic link". We don't use the first direct 3888 * block because that's actually used to point at the symbolic link's 3889 * contents on disk; but we know that none of the other direct or 3890 * indirect blocks can be used because symbolic links are restricted 3891 * to be smaller than a file system block. 3892 */ 3893 3894 ASSERT(MAXPATHLEN <= VBSIZE(ITOV(ip))); 3895 3896 if (ip->i_size > 0 && ip->i_size <= FSL_SIZE) { 3897 if (kcopy(target, &ip->i_db[1], ip->i_size) == 0) { 3898 ip->i_flag |= IFASTSYMLNK; 3899 } else { 3900 int i; 3901 /* error, clear garbage left behind */ 3902 for (i = 1; i < NDADDR; i++) 3903 ip->i_db[i] = 0; 3904 for (i = 0; i < NIADDR; i++) 3905 ip->i_ib[i] = 0; 3906 } 3907 } 3908 3909 rw_exit(&ip->i_contents); 3910 rw_exit(&ufsvfsp->vfs_dqrwlock); 3911 3912 /* 3913 * OK. We've successfully created the symbolic link. All that 3914 * remains is to insert it into the appropriate directory. 3915 */ 3916 3917 rw_enter(&dip->i_rwlock, RW_WRITER); 3918 error = ufs_direnter_lr(dip, linkname, DE_SYMLINK, NULL, ip, cr, NULL); 3919 rw_exit(&dip->i_rwlock); 3920 3921 /* 3922 * Fall through into remove-on-error code. We're either done, or we 3923 * need to remove the inode (if we couldn't insert it). 3924 */ 3925 3926 remove: 3927 if (error && (ip != NULL)) { 3928 rw_enter(&ip->i_contents, RW_WRITER); 3929 ip->i_nlink--; 3930 ip->i_flag |= ICHG; 3931 ip->i_seq++; 3932 ufs_setreclaim(ip); 3933 rw_exit(&ip->i_contents); 3934 } 3935 3936 unlock: 3937 if (ip != NULL) 3938 VN_RELE(ITOV(ip)); 3939 3940 if (ulp) { 3941 int terr = 0; 3942 3943 TRANS_END_CSYNC(ufsvfsp, terr, issync, TOP_SYMLINK, 3944 trans_size); 3945 ufs_lockfs_end(ulp); 3946 if (error == 0) 3947 error = terr; 3948 } 3949 3950 /* 3951 * We may have failed due to lack of an inode or of a block to 3952 * store the target in. Try flushing the delete queue to free 3953 * logically-available things up and try again. 3954 */ 3955 if ((error == ENOSPC) && retry && TRANS_ISTRANS(ufsvfsp)) { 3956 ufs_delete_drain_wait(ufsvfsp, 1); 3957 retry = 0; 3958 goto again; 3959 } 3960 3961 out: 3962 TRACE_2(TR_FAC_UFS, TR_UFS_SYMLINK_END, 3963 "ufs_symlink_end:dvp %p error %d", dvp, error); 3964 return (error); 3965 } 3966 3967 /* 3968 * Ufs specific routine used to do ufs io. 3969 */ 3970 int 3971 ufs_rdwri(enum uio_rw rw, int ioflag, struct inode *ip, caddr_t base, 3972 ssize_t len, offset_t offset, enum uio_seg seg, int *aresid, 3973 struct cred *cr) 3974 { 3975 struct uio auio; 3976 struct iovec aiov; 3977 int error; 3978 3979 ASSERT(RW_LOCK_HELD(&ip->i_contents)); 3980 3981 bzero((caddr_t)&auio, sizeof (uio_t)); 3982 bzero((caddr_t)&aiov, sizeof (iovec_t)); 3983 3984 aiov.iov_base = base; 3985 aiov.iov_len = len; 3986 auio.uio_iov = &aiov; 3987 auio.uio_iovcnt = 1; 3988 auio.uio_loffset = offset; 3989 auio.uio_segflg = (short)seg; 3990 auio.uio_resid = len; 3991 3992 if (rw == UIO_WRITE) { 3993 auio.uio_fmode = FWRITE; 3994 auio.uio_extflg = UIO_COPY_DEFAULT; 3995 auio.uio_llimit = curproc->p_fsz_ctl; 3996 error = wrip(ip, &auio, ioflag, cr); 3997 } else { 3998 auio.uio_fmode = FREAD; 3999 auio.uio_extflg = UIO_COPY_CACHED; 4000 auio.uio_llimit = MAXOFFSET_T; 4001 error = rdip(ip, &auio, ioflag, cr); 4002 } 4003 4004 if (aresid) { 4005 *aresid = auio.uio_resid; 4006 } else if (auio.uio_resid) { 4007 error = EIO; 4008 } 4009 return (error); 4010 } 4011 4012 static int 4013 ufs_fid(vp, fidp) 4014 struct vnode *vp; 4015 struct fid *fidp; 4016 { 4017 struct ufid *ufid; 4018 struct inode *ip = VTOI(vp); 4019 4020 if (ip->i_ufsvfs == NULL) 4021 return (EIO); 4022 4023 if (fidp->fid_len < (sizeof (struct ufid) - sizeof (ushort_t))) { 4024 fidp->fid_len = sizeof (struct ufid) - sizeof (ushort_t); 4025 return (ENOSPC); 4026 } 4027 4028 ufid = (struct ufid *)fidp; 4029 bzero((char *)ufid, sizeof (struct ufid)); 4030 ufid->ufid_len = sizeof (struct ufid) - sizeof (ushort_t); 4031 ufid->ufid_ino = ip->i_number; 4032 ufid->ufid_gen = ip->i_gen; 4033 4034 return (0); 4035 } 4036 4037 /* ARGSUSED2 */ 4038 static int 4039 ufs_rwlock(struct vnode *vp, int write_lock, caller_context_t *ctp) 4040 { 4041 struct inode *ip = VTOI(vp); 4042 struct ufsvfs *ufsvfsp; 4043 int forcedirectio; 4044 4045 /* 4046 * Read case is easy. 4047 */ 4048 if (!write_lock) { 4049 rw_enter(&ip->i_rwlock, RW_READER); 4050 return (V_WRITELOCK_FALSE); 4051 } 4052 4053 /* 4054 * Caller has requested a writer lock, but that inhibits any 4055 * concurrency in the VOPs that follow. Acquire the lock shared 4056 * and defer exclusive access until it is known to be needed in 4057 * other VOP handlers. Some cases can be determined here. 4058 */ 4059 4060 /* 4061 * If directio is not set, there is no chance of concurrency, 4062 * so just acquire the lock exclusive. Beware of a forced 4063 * unmount before looking at the mount option. 4064 */ 4065 ufsvfsp = ip->i_ufsvfs; 4066 forcedirectio = ufsvfsp ? ufsvfsp->vfs_forcedirectio : 0; 4067 if (!(ip->i_flag & IDIRECTIO || forcedirectio) || 4068 !ufs_allow_shared_writes) { 4069 rw_enter(&ip->i_rwlock, RW_WRITER); 4070 return (V_WRITELOCK_TRUE); 4071 } 4072 4073 /* 4074 * Mandatory locking forces acquiring i_rwlock exclusive. 4075 */ 4076 if (MANDLOCK(vp, ip->i_mode)) { 4077 rw_enter(&ip->i_rwlock, RW_WRITER); 4078 return (V_WRITELOCK_TRUE); 4079 } 4080 4081 /* 4082 * Acquire the lock shared in case a concurrent write follows. 4083 * Mandatory locking could have become enabled before the lock 4084 * was acquired. Re-check and upgrade if needed. 4085 */ 4086 rw_enter(&ip->i_rwlock, RW_READER); 4087 if (MANDLOCK(vp, ip->i_mode)) { 4088 rw_exit(&ip->i_rwlock); 4089 rw_enter(&ip->i_rwlock, RW_WRITER); 4090 return (V_WRITELOCK_TRUE); 4091 } 4092 return (V_WRITELOCK_FALSE); 4093 } 4094 4095 /*ARGSUSED*/ 4096 static void 4097 ufs_rwunlock(struct vnode *vp, int write_lock, caller_context_t *ctp) 4098 { 4099 struct inode *ip = VTOI(vp); 4100 4101 rw_exit(&ip->i_rwlock); 4102 } 4103 4104 /* ARGSUSED */ 4105 static int 4106 ufs_seek(struct vnode *vp, offset_t ooff, offset_t *noffp) 4107 { 4108 return ((*noffp < 0 || *noffp > MAXOFFSET_T) ? EINVAL : 0); 4109 } 4110 4111 /* ARGSUSED */ 4112 static int 4113 ufs_frlock(struct vnode *vp, int cmd, struct flock64 *bfp, int flag, 4114 offset_t offset, struct flk_callback *flk_cbp, struct cred *cr) 4115 { 4116 struct inode *ip = VTOI(vp); 4117 4118 if (ip->i_ufsvfs == NULL) 4119 return (EIO); 4120 4121 /* 4122 * If file is being mapped, disallow frlock. 4123 * XXX I am not holding tlock while checking i_mapcnt because the 4124 * current locking strategy drops all locks before calling fs_frlock. 4125 * So, mapcnt could change before we enter fs_frlock making is 4126 * meaningless to have held tlock in the first place. 4127 */ 4128 if (ip->i_mapcnt > 0 && MANDLOCK(vp, ip->i_mode)) 4129 return (EAGAIN); 4130 return (fs_frlock(vp, cmd, bfp, flag, offset, flk_cbp, cr)); 4131 } 4132 4133 /* ARGSUSED */ 4134 static int 4135 ufs_space( 4136 struct vnode *vp, 4137 int cmd, 4138 struct flock64 *bfp, 4139 int flag, 4140 offset_t offset, 4141 cred_t *cr, 4142 caller_context_t *ct) 4143 { 4144 struct ufsvfs *ufsvfsp = VTOI(vp)->i_ufsvfs; 4145 struct ulockfs *ulp; 4146 int error; 4147 4148 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_SPACE_MASK); 4149 if (error) 4150 return (error); 4151 4152 4153 if (cmd != F_FREESP) 4154 error = EINVAL; 4155 else if ((error = convoff(vp, bfp, 0, offset)) == 0) 4156 error = ufs_freesp(vp, bfp, flag, cr); 4157 4158 if (ulp) 4159 ufs_lockfs_end(ulp); 4160 return (error); 4161 } 4162 4163 /* 4164 * Used to determine if read ahead should be done. Also used to 4165 * to determine when write back occurs. 4166 */ 4167 #define CLUSTSZ(ip) ((ip)->i_ufsvfs->vfs_ioclustsz) 4168 4169 /* 4170 * A faster version of ufs_getpage. 4171 * 4172 * We optimize by inlining the pvn_getpages iterator, eliminating 4173 * calls to bmap_read if file doesn't have UFS holes, and avoiding 4174 * the overhead of page_exists(). 4175 * 4176 * When files has UFS_HOLES and ufs_getpage is called with S_READ, 4177 * we set *protp to PROT_READ to avoid calling bmap_read. This approach 4178 * victimizes performance when a file with UFS holes is faulted 4179 * first in the S_READ mode, and then in the S_WRITE mode. We will get 4180 * two MMU faults in this case. 4181 * 4182 * XXX - the inode fields which control the sequential mode are not 4183 * protected by any mutex. The read ahead will act wild if 4184 * multiple processes will access the file concurrently and 4185 * some of them in sequential mode. One particulary bad case 4186 * is if another thread will change the value of i_nextrio between 4187 * the time this thread tests the i_nextrio value and then reads it 4188 * again to use it as the offset for the read ahead. 4189 */ 4190 static int 4191 ufs_getpage(struct vnode *vp, offset_t off, size_t len, uint_t *protp, 4192 page_t *plarr[], size_t plsz, struct seg *seg, caddr_t addr, 4193 enum seg_rw rw, struct cred *cr) 4194 { 4195 u_offset_t uoff = (u_offset_t)off; /* type conversion */ 4196 u_offset_t pgoff; 4197 u_offset_t eoff; 4198 struct inode *ip = VTOI(vp); 4199 struct ufsvfs *ufsvfsp = ip->i_ufsvfs; 4200 struct fs *fs; 4201 struct ulockfs *ulp; 4202 page_t **pl; 4203 caddr_t pgaddr; 4204 krw_t rwtype; 4205 int err; 4206 int has_holes; 4207 int beyond_eof; 4208 int seqmode; 4209 int pgsize = PAGESIZE; 4210 int dolock; 4211 int do_qlock; 4212 int trans_size; 4213 4214 TRACE_1(TR_FAC_UFS, TR_UFS_GETPAGE_START, 4215 "ufs_getpage_start:vp %p", vp); 4216 4217 ASSERT((uoff & PAGEOFFSET) == 0); 4218 4219 if (protp) 4220 *protp = PROT_ALL; 4221 4222 /* 4223 * Obey the lockfs protocol 4224 */ 4225 err = ufs_lockfs_begin_getpage(ufsvfsp, &ulp, seg, 4226 rw == S_READ || rw == S_EXEC, protp); 4227 if (err) 4228 goto out; 4229 4230 fs = ufsvfsp->vfs_fs; 4231 4232 if (ulp && (rw == S_CREATE || rw == S_WRITE) && 4233 !(vp->v_flag & VISSWAP)) { 4234 /* 4235 * Try to start a transaction, will return if blocking is 4236 * expected to occur and the address space is not the 4237 * kernel address space. 4238 */ 4239 trans_size = TOP_GETPAGE_SIZE(ip); 4240 if (seg->s_as != &kas) { 4241 TRANS_TRY_BEGIN_ASYNC(ufsvfsp, TOP_GETPAGE, 4242 trans_size, err) 4243 if (err == EWOULDBLOCK) { 4244 /* 4245 * Use EDEADLK here because the VM code 4246 * can normally never see this error. 4247 */ 4248 err = EDEADLK; 4249 ufs_lockfs_end(ulp); 4250 goto out; 4251 } 4252 } else { 4253 TRANS_BEGIN_ASYNC(ufsvfsp, TOP_GETPAGE, trans_size); 4254 } 4255 } 4256 4257 if (vp->v_flag & VNOMAP) { 4258 err = ENOSYS; 4259 goto unlock; 4260 } 4261 4262 seqmode = ip->i_nextr == uoff && rw != S_CREATE; 4263 4264 rwtype = RW_READER; /* start as a reader */ 4265 dolock = (rw_owner(&ip->i_contents) != curthread); 4266 /* 4267 * If this thread owns the lock, i.e., this thread grabbed it 4268 * as writer somewhere above, then we don't need to grab the 4269 * lock as reader in this routine. 4270 */ 4271 do_qlock = (rw_owner(&ufsvfsp->vfs_dqrwlock) != curthread); 4272 4273 retrylock: 4274 if (dolock) { 4275 /* 4276 * Grab the quota lock if we need to call 4277 * bmap_write() below (with i_contents as writer). 4278 */ 4279 if (do_qlock && rwtype == RW_WRITER) 4280 rw_enter(&ufsvfsp->vfs_dqrwlock, RW_READER); 4281 rw_enter(&ip->i_contents, rwtype); 4282 } 4283 4284 /* 4285 * We may be getting called as a side effect of a bmap using 4286 * fbread() when the blocks might be being allocated and the 4287 * size has not yet been up'ed. In this case we want to be 4288 * able to return zero pages if we get back UFS_HOLE from 4289 * calling bmap for a non write case here. We also might have 4290 * to read some frags from the disk into a page if we are 4291 * extending the number of frags for a given lbn in bmap(). 4292 * Large Files: The read of i_size here is atomic because 4293 * i_contents is held here. If dolock is zero, the lock 4294 * is held in bmap routines. 4295 */ 4296 beyond_eof = uoff + len > ip->i_size + PAGEOFFSET; 4297 if (beyond_eof && seg != segkmap) { 4298 if (dolock) { 4299 rw_exit(&ip->i_contents); 4300 if (do_qlock && rwtype == RW_WRITER) 4301 rw_exit(&ufsvfsp->vfs_dqrwlock); 4302 } 4303 err = EFAULT; 4304 goto unlock; 4305 } 4306 4307 /* 4308 * Must hold i_contents lock throughout the call to pvn_getpages 4309 * since locked pages are returned from each call to ufs_getapage. 4310 * Must *not* return locked pages and then try for contents lock 4311 * due to lock ordering requirements (inode > page) 4312 */ 4313 4314 has_holes = bmap_has_holes(ip); 4315 4316 if ((rw == S_WRITE || rw == S_CREATE) && has_holes && !beyond_eof) { 4317 int blk_size; 4318 u_offset_t offset; 4319 4320 /* 4321 * We must acquire the RW_WRITER lock in order to 4322 * call bmap_write(). 4323 */ 4324 if (dolock && rwtype == RW_READER) { 4325 rwtype = RW_WRITER; 4326 4327 /* 4328 * Grab the quota lock before 4329 * upgrading i_contents, but if we can't grab it 4330 * don't wait here due to lock order: 4331 * vfs_dqrwlock > i_contents. 4332 */ 4333 if (do_qlock && rw_tryenter(&ufsvfsp->vfs_dqrwlock, 4334 RW_READER) == 0) { 4335 rw_exit(&ip->i_contents); 4336 goto retrylock; 4337 } 4338 if (!rw_tryupgrade(&ip->i_contents)) { 4339 rw_exit(&ip->i_contents); 4340 if (do_qlock) 4341 rw_exit(&ufsvfsp->vfs_dqrwlock); 4342 goto retrylock; 4343 } 4344 } 4345 4346 /* 4347 * May be allocating disk blocks for holes here as 4348 * a result of mmap faults. write(2) does the bmap_write 4349 * in rdip/wrip, not here. We are not dealing with frags 4350 * in this case. 4351 */ 4352 /* 4353 * Large Files: We cast fs_bmask field to offset_t 4354 * just as we do for MAXBMASK because uoff is a 64-bit 4355 * data type. fs_bmask will still be a 32-bit type 4356 * as we cannot change any ondisk data structures. 4357 */ 4358 4359 offset = uoff & (offset_t)fs->fs_bmask; 4360 while (offset < uoff + len) { 4361 blk_size = (int)blksize(fs, ip, lblkno(fs, offset)); 4362 err = bmap_write(ip, offset, blk_size, 0, cr); 4363 if (ip->i_flag & (ICHG|IUPD)) 4364 ip->i_seq++; 4365 if (err) 4366 goto update_inode; 4367 offset += blk_size; /* XXX - make this contig */ 4368 } 4369 } 4370 4371 /* 4372 * Can be a reader from now on. 4373 */ 4374 if (dolock && rwtype == RW_WRITER) { 4375 rw_downgrade(&ip->i_contents); 4376 /* 4377 * We can release vfs_dqrwlock early so do it, but make 4378 * sure we don't try to release it again at the bottom. 4379 */ 4380 if (do_qlock) { 4381 rw_exit(&ufsvfsp->vfs_dqrwlock); 4382 do_qlock = 0; 4383 } 4384 } 4385 4386 /* 4387 * We remove PROT_WRITE in cases when the file has UFS holes 4388 * because we don't want to call bmap_read() to check each 4389 * page if it is backed with a disk block. 4390 */ 4391 if (protp && has_holes && rw != S_WRITE && rw != S_CREATE) 4392 *protp &= ~PROT_WRITE; 4393 4394 err = 0; 4395 4396 /* 4397 * The loop looks up pages in the range [off, off + len). 4398 * For each page, we first check if we should initiate an asynchronous 4399 * read ahead before we call page_lookup (we may sleep in page_lookup 4400 * for a previously initiated disk read). 4401 */ 4402 eoff = (uoff + len); 4403 for (pgoff = uoff, pgaddr = addr, pl = plarr; 4404 pgoff < eoff; /* empty */) { 4405 page_t *pp; 4406 u_offset_t nextrio; 4407 se_t se; 4408 int retval; 4409 4410 se = ((rw == S_CREATE || rw == S_OTHER) ? SE_EXCL : SE_SHARED); 4411 4412 /* Handle async getpage (faultahead) */ 4413 if (plarr == NULL) { 4414 ip->i_nextrio = pgoff; 4415 (void) ufs_getpage_ra(vp, pgoff, seg, pgaddr); 4416 pgoff += pgsize; 4417 pgaddr += pgsize; 4418 continue; 4419 } 4420 /* 4421 * Check if we should initiate read ahead of next cluster. 4422 * We call page_exists only when we need to confirm that 4423 * we have the current page before we initiate the read ahead. 4424 */ 4425 nextrio = ip->i_nextrio; 4426 if (seqmode && 4427 pgoff + CLUSTSZ(ip) >= nextrio && pgoff <= nextrio && 4428 nextrio < ip->i_size && page_exists(vp, pgoff)) { 4429 retval = ufs_getpage_ra(vp, pgoff, seg, pgaddr); 4430 /* 4431 * We always read ahead the next cluster of data 4432 * starting from i_nextrio. If the page (vp,nextrio) 4433 * is actually in core at this point, the routine 4434 * ufs_getpage_ra() will stop pre-fetching data 4435 * until we read that page in a synchronized manner 4436 * through ufs_getpage_miss(). So, we should increase 4437 * i_nextrio if the page (vp, nextrio) exists. 4438 */ 4439 if ((retval == 0) && page_exists(vp, nextrio)) { 4440 ip->i_nextrio = nextrio + pgsize; 4441 } 4442 } 4443 4444 if ((pp = page_lookup(vp, pgoff, se)) != NULL) { 4445 /* 4446 * We found the page in the page cache. 4447 */ 4448 *pl++ = pp; 4449 pgoff += pgsize; 4450 pgaddr += pgsize; 4451 len -= pgsize; 4452 plsz -= pgsize; 4453 } else { 4454 /* 4455 * We have to create the page, or read it from disk. 4456 */ 4457 if (err = ufs_getpage_miss(vp, pgoff, len, seg, pgaddr, 4458 pl, plsz, rw, seqmode)) 4459 goto error; 4460 4461 while (*pl != NULL) { 4462 pl++; 4463 pgoff += pgsize; 4464 pgaddr += pgsize; 4465 len -= pgsize; 4466 plsz -= pgsize; 4467 } 4468 } 4469 } 4470 4471 /* 4472 * Return pages up to plsz if they are in the page cache. 4473 * We cannot return pages if there is a chance that they are 4474 * backed with a UFS hole and rw is S_WRITE or S_CREATE. 4475 */ 4476 if (plarr && !(has_holes && (rw == S_WRITE || rw == S_CREATE))) { 4477 4478 ASSERT((protp == NULL) || 4479 !(has_holes && (*protp & PROT_WRITE))); 4480 4481 eoff = pgoff + plsz; 4482 while (pgoff < eoff) { 4483 page_t *pp; 4484 4485 if ((pp = page_lookup_nowait(vp, pgoff, 4486 SE_SHARED)) == NULL) 4487 break; 4488 4489 *pl++ = pp; 4490 pgoff += pgsize; 4491 plsz -= pgsize; 4492 } 4493 } 4494 4495 if (plarr) 4496 *pl = NULL; /* Terminate page list */ 4497 ip->i_nextr = pgoff; 4498 4499 error: 4500 if (err && plarr) { 4501 /* 4502 * Release any pages we have locked. 4503 */ 4504 while (pl > &plarr[0]) 4505 page_unlock(*--pl); 4506 4507 plarr[0] = NULL; 4508 } 4509 4510 update_inode: 4511 /* 4512 * If the inode is not already marked for IACC (in rdip() for read) 4513 * and the inode is not marked for no access time update (in wrip() 4514 * for write) then update the inode access time and mod time now. 4515 */ 4516 if ((ip->i_flag & (IACC | INOACC)) == 0) { 4517 if ((rw != S_OTHER) && (ip->i_mode & IFMT) != IFDIR) { 4518 if (!ULOCKFS_IS_NOIACC(ITOUL(ip)) && 4519 (fs->fs_ronly == 0) && 4520 (!ufsvfsp->vfs_noatime)) { 4521 mutex_enter(&ip->i_tlock); 4522 ip->i_flag |= IACC; 4523 ITIMES_NOLOCK(ip); 4524 mutex_exit(&ip->i_tlock); 4525 } 4526 } 4527 } 4528 4529 if (dolock) { 4530 rw_exit(&ip->i_contents); 4531 if (do_qlock && rwtype == RW_WRITER) 4532 rw_exit(&ufsvfsp->vfs_dqrwlock); 4533 } 4534 4535 unlock: 4536 if (ulp) { 4537 if ((rw == S_CREATE || rw == S_WRITE) && 4538 !(vp->v_flag & VISSWAP)) { 4539 TRANS_END_ASYNC(ufsvfsp, TOP_GETPAGE, trans_size); 4540 } 4541 ufs_lockfs_end(ulp); 4542 } 4543 out: 4544 TRACE_2(TR_FAC_UFS, TR_UFS_GETPAGE_END, 4545 "ufs_getpage_end:vp %p error %d", vp, err); 4546 return (err); 4547 } 4548 4549 /* 4550 * ufs_getpage_miss is called when ufs_getpage missed the page in the page 4551 * cache. The page is either read from the disk, or it's created. 4552 * A page is created (without disk read) if rw == S_CREATE, or if 4553 * the page is not backed with a real disk block (UFS hole). 4554 */ 4555 /* ARGSUSED */ 4556 static int 4557 ufs_getpage_miss(struct vnode *vp, u_offset_t off, size_t len, struct seg *seg, 4558 caddr_t addr, page_t *pl[], size_t plsz, enum seg_rw rw, int seq) 4559 { 4560 struct inode *ip = VTOI(vp); 4561 page_t *pp; 4562 daddr_t bn; 4563 size_t io_len; 4564 int crpage; 4565 int err; 4566 int contig; 4567 int bsize = ip->i_fs->fs_bsize; 4568 4569 /* 4570 * Figure out whether the page can be created, or must be 4571 * must be read from the disk. 4572 */ 4573 if (rw == S_CREATE) 4574 crpage = 1; 4575 else { 4576 contig = 0; 4577 if (err = bmap_read(ip, off, &bn, &contig)) 4578 return (err); 4579 crpage = (bn == UFS_HOLE); 4580 } 4581 4582 if (crpage) { 4583 if ((pp = page_create_va(vp, off, PAGESIZE, PG_WAIT, seg, 4584 addr)) == NULL) { 4585 return (ufs_fault(vp, 4586 "ufs_getpage_miss: page_create == NULL")); 4587 } 4588 4589 if (rw != S_CREATE) 4590 pagezero(pp, 0, PAGESIZE); 4591 io_len = PAGESIZE; 4592 } else { 4593 u_offset_t io_off; 4594 uint_t xlen; 4595 struct buf *bp; 4596 ufsvfs_t *ufsvfsp = ip->i_ufsvfs; 4597 4598 /* 4599 * If access is not in sequential order, we read from disk 4600 * in bsize units. 4601 * 4602 * We limit the size of the transfer to bsize if we are reading 4603 * from the beginning of the file. Note in this situation we 4604 * will hedge our bets and initiate an async read ahead of 4605 * the second block. 4606 */ 4607 if (!seq || off == 0) 4608 contig = MIN(contig, bsize); 4609 4610 pp = pvn_read_kluster(vp, off, seg, addr, &io_off, 4611 &io_len, off, contig, 0); 4612 4613 /* 4614 * Some other thread has entered the page. 4615 * ufs_getpage will retry page_lookup. 4616 */ 4617 if (pp == NULL) { 4618 pl[0] = NULL; 4619 return (0); 4620 } 4621 4622 /* 4623 * Zero part of the page which we are not 4624 * going to read from the disk. 4625 */ 4626 xlen = io_len & PAGEOFFSET; 4627 if (xlen != 0) 4628 pagezero(pp->p_prev, xlen, PAGESIZE - xlen); 4629 4630 bp = pageio_setup(pp, io_len, ip->i_devvp, B_READ); 4631 bp->b_edev = ip->i_dev; 4632 bp->b_dev = cmpdev(ip->i_dev); 4633 bp->b_blkno = bn; 4634 bp->b_un.b_addr = (caddr_t)0; 4635 bp->b_file = ip->i_vnode; 4636 bp->b_offset = off; 4637 4638 if (ufsvfsp->vfs_log) { 4639 lufs_read_strategy(ufsvfsp->vfs_log, bp); 4640 } else if (ufsvfsp->vfs_snapshot) { 4641 fssnap_strategy(&ufsvfsp->vfs_snapshot, bp); 4642 } else { 4643 ufsvfsp->vfs_iotstamp = lbolt; 4644 ub.ub_getpages.value.ul++; 4645 (void) bdev_strategy(bp); 4646 lwp_stat_update(LWP_STAT_INBLK, 1); 4647 } 4648 4649 ip->i_nextrio = off + ((io_len + PAGESIZE - 1) & PAGEMASK); 4650 4651 /* 4652 * If the file access is sequential, initiate read ahead 4653 * of the next cluster. 4654 */ 4655 if (seq && ip->i_nextrio < ip->i_size) 4656 (void) ufs_getpage_ra(vp, off, seg, addr); 4657 err = biowait(bp); 4658 pageio_done(bp); 4659 4660 if (err) { 4661 pvn_read_done(pp, B_ERROR); 4662 return (err); 4663 } 4664 } 4665 4666 pvn_plist_init(pp, pl, plsz, off, io_len, rw); 4667 return (0); 4668 } 4669 4670 /* 4671 * Read ahead a cluster from the disk. Returns the length in bytes. 4672 */ 4673 static int 4674 ufs_getpage_ra(struct vnode *vp, u_offset_t off, struct seg *seg, caddr_t addr) 4675 { 4676 struct inode *ip = VTOI(vp); 4677 page_t *pp; 4678 u_offset_t io_off = ip->i_nextrio; 4679 ufsvfs_t *ufsvfsp; 4680 caddr_t addr2 = addr + (io_off - off); 4681 struct buf *bp; 4682 daddr_t bn; 4683 size_t io_len; 4684 int contig; 4685 int xlen; 4686 int bsize = ip->i_fs->fs_bsize; 4687 4688 /* 4689 * If the directio advisory is in effect on this file, 4690 * then do not do buffered read ahead. Read ahead makes 4691 * it more difficult on threads using directio as they 4692 * will be forced to flush the pages from this vnode. 4693 */ 4694 if ((ufsvfsp = ip->i_ufsvfs) == NULL) 4695 return (0); 4696 if (ip->i_flag & IDIRECTIO || ufsvfsp->vfs_forcedirectio) 4697 return (0); 4698 4699 /* 4700 * Is this test needed? 4701 */ 4702 if (addr2 >= seg->s_base + seg->s_size) 4703 return (0); 4704 4705 contig = 0; 4706 if (bmap_read(ip, io_off, &bn, &contig) != 0 || bn == UFS_HOLE) 4707 return (0); 4708 4709 /* 4710 * Limit the transfer size to bsize if this is the 2nd block. 4711 */ 4712 if (io_off == (u_offset_t)bsize) 4713 contig = MIN(contig, bsize); 4714 4715 if ((pp = pvn_read_kluster(vp, io_off, seg, addr2, &io_off, 4716 &io_len, io_off, contig, 1)) == NULL) 4717 return (0); 4718 4719 /* 4720 * Zero part of page which we are not going to read from disk 4721 */ 4722 if ((xlen = (io_len & PAGEOFFSET)) > 0) 4723 pagezero(pp->p_prev, xlen, PAGESIZE - xlen); 4724 4725 ip->i_nextrio = (io_off + io_len + PAGESIZE - 1) & PAGEMASK; 4726 4727 bp = pageio_setup(pp, io_len, ip->i_devvp, B_READ | B_ASYNC); 4728 bp->b_edev = ip->i_dev; 4729 bp->b_dev = cmpdev(ip->i_dev); 4730 bp->b_blkno = bn; 4731 bp->b_un.b_addr = (caddr_t)0; 4732 bp->b_file = ip->i_vnode; 4733 bp->b_offset = off; 4734 4735 if (ufsvfsp->vfs_log) { 4736 lufs_read_strategy(ufsvfsp->vfs_log, bp); 4737 } else if (ufsvfsp->vfs_snapshot) { 4738 fssnap_strategy(&ufsvfsp->vfs_snapshot, bp); 4739 } else { 4740 ufsvfsp->vfs_iotstamp = lbolt; 4741 ub.ub_getras.value.ul++; 4742 (void) bdev_strategy(bp); 4743 lwp_stat_update(LWP_STAT_INBLK, 1); 4744 } 4745 4746 return (io_len); 4747 } 4748 4749 int ufs_delay = 1; 4750 /* 4751 * Flags are composed of {B_INVAL, B_FREE, B_DONTNEED, B_FORCE, B_ASYNC} 4752 * 4753 * LMXXX - the inode really ought to contain a pointer to one of these 4754 * async args. Stuff gunk in there and just hand the whole mess off. 4755 * This would replace i_delaylen, i_delayoff. 4756 */ 4757 /*ARGSUSED*/ 4758 static int 4759 ufs_putpage(struct vnode *vp, offset_t off, size_t len, int flags, 4760 struct cred *cr) 4761 { 4762 struct inode *ip = VTOI(vp); 4763 int err = 0; 4764 4765 if (vp->v_count == 0) { 4766 return (ufs_fault(vp, "ufs_putpage: bad v_count == 0")); 4767 } 4768 4769 TRACE_1(TR_FAC_UFS, TR_UFS_PUTPAGE_START, 4770 "ufs_putpage_start:vp %p", vp); 4771 4772 /* 4773 * XXX - Why should this check be made here? 4774 */ 4775 if (vp->v_flag & VNOMAP) { 4776 err = ENOSYS; 4777 goto errout; 4778 } 4779 4780 if (ip->i_ufsvfs == NULL) { 4781 err = EIO; 4782 goto errout; 4783 } 4784 4785 if (flags & B_ASYNC) { 4786 if (ufs_delay && len && 4787 (flags & ~(B_ASYNC|B_DONTNEED|B_FREE)) == 0) { 4788 mutex_enter(&ip->i_tlock); 4789 /* 4790 * If nobody stalled, start a new cluster. 4791 */ 4792 if (ip->i_delaylen == 0) { 4793 ip->i_delayoff = off; 4794 ip->i_delaylen = len; 4795 mutex_exit(&ip->i_tlock); 4796 goto errout; 4797 } 4798 /* 4799 * If we have a full cluster or they are not contig, 4800 * then push last cluster and start over. 4801 */ 4802 if (ip->i_delaylen >= CLUSTSZ(ip) || 4803 ip->i_delayoff + ip->i_delaylen != off) { 4804 u_offset_t doff; 4805 size_t dlen; 4806 4807 doff = ip->i_delayoff; 4808 dlen = ip->i_delaylen; 4809 ip->i_delayoff = off; 4810 ip->i_delaylen = len; 4811 mutex_exit(&ip->i_tlock); 4812 err = ufs_putpages(vp, doff, dlen, 4813 flags, cr); 4814 /* LMXXX - flags are new val, not old */ 4815 goto errout; 4816 } 4817 /* 4818 * There is something there, it's not full, and 4819 * it is contig. 4820 */ 4821 ip->i_delaylen += len; 4822 mutex_exit(&ip->i_tlock); 4823 goto errout; 4824 } 4825 /* 4826 * Must have weird flags or we are not clustering. 4827 */ 4828 } 4829 4830 err = ufs_putpages(vp, off, len, flags, cr); 4831 4832 errout: 4833 TRACE_2(TR_FAC_UFS, TR_UFS_PUTPAGE_END, 4834 "ufs_putpage_end:vp %p error %d", vp, err); 4835 return (err); 4836 } 4837 4838 /* 4839 * If len == 0, do from off to EOF. 4840 * 4841 * The normal cases should be len == 0 & off == 0 (entire vp list), 4842 * len == MAXBSIZE (from segmap_release actions), and len == PAGESIZE 4843 * (from pageout). 4844 */ 4845 /*ARGSUSED*/ 4846 static int 4847 ufs_putpages( 4848 struct vnode *vp, 4849 offset_t off, 4850 size_t len, 4851 int flags, 4852 struct cred *cr) 4853 { 4854 u_offset_t io_off; 4855 u_offset_t eoff; 4856 struct inode *ip = VTOI(vp); 4857 page_t *pp; 4858 size_t io_len; 4859 int err = 0; 4860 int dolock; 4861 4862 if (vp->v_count == 0) 4863 return (ufs_fault(vp, "ufs_putpages: v_count == 0")); 4864 /* 4865 * Acquire the readers/write inode lock before locking 4866 * any pages in this inode. 4867 * The inode lock is held during i/o. 4868 */ 4869 if (len == 0) { 4870 mutex_enter(&ip->i_tlock); 4871 ip->i_delayoff = ip->i_delaylen = 0; 4872 mutex_exit(&ip->i_tlock); 4873 } 4874 dolock = (rw_owner(&ip->i_contents) != curthread); 4875 if (dolock) { 4876 /* 4877 * Must synchronize this thread and any possible thread 4878 * operating in the window of vulnerability in wrip(). 4879 * It is dangerous to allow both a thread doing a putpage 4880 * and a thread writing, so serialize them. The exception 4881 * is when the thread in wrip() does something which causes 4882 * a putpage operation. Then, the thread must be allowed 4883 * to continue. It may encounter a bmap_read problem in 4884 * ufs_putapage, but that is handled in ufs_putapage. 4885 * Allow async writers to proceed, we don't want to block 4886 * the pageout daemon. 4887 */ 4888 if (ip->i_writer == curthread) 4889 rw_enter(&ip->i_contents, RW_READER); 4890 else { 4891 for (;;) { 4892 rw_enter(&ip->i_contents, RW_READER); 4893 mutex_enter(&ip->i_tlock); 4894 /* 4895 * If there is no thread in the critical 4896 * section of wrip(), then proceed. 4897 * Otherwise, wait until there isn't one. 4898 */ 4899 if (ip->i_writer == NULL) { 4900 mutex_exit(&ip->i_tlock); 4901 break; 4902 } 4903 rw_exit(&ip->i_contents); 4904 /* 4905 * Bounce async writers when we have a writer 4906 * working on this file so we don't deadlock 4907 * the pageout daemon. 4908 */ 4909 if (flags & B_ASYNC) { 4910 mutex_exit(&ip->i_tlock); 4911 return (0); 4912 } 4913 cv_wait(&ip->i_wrcv, &ip->i_tlock); 4914 mutex_exit(&ip->i_tlock); 4915 } 4916 } 4917 } 4918 4919 if (!vn_has_cached_data(vp)) { 4920 if (dolock) 4921 rw_exit(&ip->i_contents); 4922 return (0); 4923 } 4924 4925 if (len == 0) { 4926 /* 4927 * Search the entire vp list for pages >= off. 4928 */ 4929 err = pvn_vplist_dirty(vp, (u_offset_t)off, ufs_putapage, 4930 flags, cr); 4931 } else { 4932 /* 4933 * Loop over all offsets in the range looking for 4934 * pages to deal with. 4935 */ 4936 if ((eoff = blkroundup(ip->i_fs, ip->i_size)) != 0) 4937 eoff = MIN(off + len, eoff); 4938 else 4939 eoff = off + len; 4940 4941 for (io_off = off; io_off < eoff; io_off += io_len) { 4942 /* 4943 * If we are not invalidating, synchronously 4944 * freeing or writing pages, use the routine 4945 * page_lookup_nowait() to prevent reclaiming 4946 * them from the free list. 4947 */ 4948 if ((flags & B_INVAL) || ((flags & B_ASYNC) == 0)) { 4949 pp = page_lookup(vp, io_off, 4950 (flags & (B_INVAL | B_FREE)) ? 4951 SE_EXCL : SE_SHARED); 4952 } else { 4953 pp = page_lookup_nowait(vp, io_off, 4954 (flags & B_FREE) ? SE_EXCL : SE_SHARED); 4955 } 4956 4957 if (pp == NULL || pvn_getdirty(pp, flags) == 0) 4958 io_len = PAGESIZE; 4959 else { 4960 u_offset_t *io_offp = &io_off; 4961 4962 err = ufs_putapage(vp, pp, io_offp, &io_len, 4963 flags, cr); 4964 if (err != 0) 4965 break; 4966 /* 4967 * "io_off" and "io_len" are returned as 4968 * the range of pages we actually wrote. 4969 * This allows us to skip ahead more quickly 4970 * since several pages may've been dealt 4971 * with by this iteration of the loop. 4972 */ 4973 } 4974 } 4975 } 4976 if (err == 0 && off == 0 && (len == 0 || len >= ip->i_size)) { 4977 /* 4978 * We have just sync'ed back all the pages on 4979 * the inode, turn off the IMODTIME flag. 4980 */ 4981 mutex_enter(&ip->i_tlock); 4982 ip->i_flag &= ~IMODTIME; 4983 mutex_exit(&ip->i_tlock); 4984 } 4985 if (dolock) 4986 rw_exit(&ip->i_contents); 4987 return (err); 4988 } 4989 4990 static void 4991 ufs_iodone(buf_t *bp) 4992 { 4993 struct inode *ip; 4994 4995 ASSERT((bp->b_pages->p_vnode != NULL) && !(bp->b_flags & B_READ)); 4996 4997 bp->b_iodone = NULL; 4998 4999 ip = VTOI(bp->b_pages->p_vnode); 5000 5001 mutex_enter(&ip->i_tlock); 5002 if (ip->i_writes >= ufs_LW) { 5003 if ((ip->i_writes -= bp->b_bcount) <= ufs_LW) 5004 if (ufs_WRITES) 5005 cv_broadcast(&ip->i_wrcv); /* wake all up */ 5006 } else { 5007 ip->i_writes -= bp->b_bcount; 5008 } 5009 5010 mutex_exit(&ip->i_tlock); 5011 iodone(bp); 5012 } 5013 5014 /* 5015 * Write out a single page, possibly klustering adjacent 5016 * dirty pages. The inode lock must be held. 5017 * 5018 * LMXXX - bsize < pagesize not done. 5019 */ 5020 /*ARGSUSED*/ 5021 int 5022 ufs_putapage( 5023 struct vnode *vp, 5024 page_t *pp, 5025 u_offset_t *offp, 5026 size_t *lenp, /* return values */ 5027 int flags, 5028 struct cred *cr) 5029 { 5030 u_offset_t io_off; 5031 u_offset_t off; 5032 struct inode *ip = VTOI(vp); 5033 struct ufsvfs *ufsvfsp = ip->i_ufsvfs; 5034 struct fs *fs; 5035 struct buf *bp; 5036 size_t io_len; 5037 daddr_t bn; 5038 int err; 5039 int contig; 5040 5041 ASSERT(RW_LOCK_HELD(&ip->i_contents)); 5042 5043 TRACE_1(TR_FAC_UFS, TR_UFS_PUTAPAGE_START, 5044 "ufs_putapage_start:vp %p", vp); 5045 5046 if (ufsvfsp == NULL) { 5047 err = EIO; 5048 goto out_trace; 5049 } 5050 5051 fs = ip->i_fs; 5052 ASSERT(fs->fs_ronly == 0); 5053 5054 /* 5055 * If the modified time on the inode has not already been 5056 * set elsewhere (e.g. for write/setattr) we set the time now. 5057 * This gives us approximate modified times for mmap'ed files 5058 * which are modified via stores in the user address space. 5059 */ 5060 if ((ip->i_flag & IMODTIME) == 0) { 5061 mutex_enter(&ip->i_tlock); 5062 ip->i_flag |= IUPD; 5063 ip->i_seq++; 5064 ITIMES_NOLOCK(ip); 5065 mutex_exit(&ip->i_tlock); 5066 } 5067 5068 /* 5069 * Align the request to a block boundry (for old file systems), 5070 * and go ask bmap() how contiguous things are for this file. 5071 */ 5072 off = pp->p_offset & (offset_t)fs->fs_bmask; /* block align it */ 5073 contig = 0; 5074 err = bmap_read(ip, off, &bn, &contig); 5075 if (err) 5076 goto out; 5077 if (bn == UFS_HOLE) { /* putpage never allocates */ 5078 /* 5079 * logging device is in error mode; simply return EIO 5080 */ 5081 if (TRANS_ISERROR(ufsvfsp)) { 5082 err = EIO; 5083 goto out; 5084 } 5085 /* 5086 * Oops, the thread in the window in wrip() did some 5087 * sort of operation which caused a putpage in the bad 5088 * range. In this case, just return an error which will 5089 * cause the software modified bit on the page to set 5090 * and the page will get written out again later. 5091 */ 5092 if (ip->i_writer == curthread) { 5093 err = EIO; 5094 goto out; 5095 } 5096 /* 5097 * If the pager is trying to push a page in the bad range 5098 * just tell him to try again later when things are better. 5099 */ 5100 if (flags & B_ASYNC) { 5101 err = EAGAIN; 5102 goto out; 5103 } 5104 err = ufs_fault(ITOV(ip), "ufs_putapage: bn == UFS_HOLE"); 5105 goto out; 5106 } 5107 5108 /* 5109 * Take the length (of contiguous bytes) passed back from bmap() 5110 * and _try_ and get a set of pages covering that extent. 5111 */ 5112 pp = pvn_write_kluster(vp, pp, &io_off, &io_len, off, contig, flags); 5113 5114 /* 5115 * May have run out of memory and not clustered backwards. 5116 * off p_offset 5117 * [ pp - 1 ][ pp ] 5118 * [ block ] 5119 * We told bmap off, so we have to adjust the bn accordingly. 5120 */ 5121 if (io_off > off) { 5122 bn += btod(io_off - off); 5123 contig -= (io_off - off); 5124 } 5125 5126 /* 5127 * bmap was carefull to tell us the right size so use that. 5128 * There might be unallocated frags at the end. 5129 * LMXXX - bzero the end of the page? We must be writing after EOF. 5130 */ 5131 if (io_len > contig) { 5132 ASSERT(io_len - contig < fs->fs_bsize); 5133 io_len -= (io_len - contig); 5134 } 5135 5136 /* 5137 * Handle the case where we are writing the last page after EOF. 5138 * 5139 * XXX - just a patch for i-mt3. 5140 */ 5141 if (io_len == 0) { 5142 ASSERT(pp->p_offset >= (u_offset_t)(roundup(ip->i_size, 5143 PAGESIZE))); 5144 io_len = PAGESIZE; 5145 } 5146 5147 bp = pageio_setup(pp, io_len, ip->i_devvp, B_WRITE | flags); 5148 5149 ULOCKFS_SET_MOD(ITOUL(ip)); 5150 5151 bp->b_edev = ip->i_dev; 5152 bp->b_dev = cmpdev(ip->i_dev); 5153 bp->b_blkno = bn; 5154 bp->b_un.b_addr = (caddr_t)0; 5155 bp->b_file = ip->i_vnode; 5156 5157 if (TRANS_ISTRANS(ufsvfsp)) { 5158 if ((ip->i_mode & IFMT) == IFSHAD) { 5159 TRANS_BUF(ufsvfsp, 0, io_len, bp, DT_SHAD); 5160 } else if (ufsvfsp->vfs_qinod == ip) { 5161 TRANS_DELTA(ufsvfsp, ldbtob(bn), bp->b_bcount, DT_QR, 5162 0, 0); 5163 } 5164 } 5165 5166 /* write throttle */ 5167 5168 ASSERT(bp->b_iodone == NULL); 5169 bp->b_iodone = (int (*)())ufs_iodone; 5170 mutex_enter(&ip->i_tlock); 5171 ip->i_writes += bp->b_bcount; 5172 mutex_exit(&ip->i_tlock); 5173 5174 if (bp->b_flags & B_ASYNC) { 5175 if (ufsvfsp->vfs_log) { 5176 lufs_write_strategy(ufsvfsp->vfs_log, bp); 5177 } else if (ufsvfsp->vfs_snapshot) { 5178 fssnap_strategy(&ufsvfsp->vfs_snapshot, bp); 5179 } else { 5180 ufsvfsp->vfs_iotstamp = lbolt; 5181 ub.ub_putasyncs.value.ul++; 5182 (void) bdev_strategy(bp); 5183 lwp_stat_update(LWP_STAT_OUBLK, 1); 5184 } 5185 } else { 5186 if (ufsvfsp->vfs_log) { 5187 lufs_write_strategy(ufsvfsp->vfs_log, bp); 5188 } else if (ufsvfsp->vfs_snapshot) { 5189 fssnap_strategy(&ufsvfsp->vfs_snapshot, bp); 5190 } else { 5191 ufsvfsp->vfs_iotstamp = lbolt; 5192 ub.ub_putsyncs.value.ul++; 5193 (void) bdev_strategy(bp); 5194 lwp_stat_update(LWP_STAT_OUBLK, 1); 5195 } 5196 err = biowait(bp); 5197 pageio_done(bp); 5198 pvn_write_done(pp, ((err) ? B_ERROR : 0) | B_WRITE | flags); 5199 } 5200 5201 pp = NULL; 5202 5203 out: 5204 if (err != 0 && pp != NULL) 5205 pvn_write_done(pp, B_ERROR | B_WRITE | flags); 5206 5207 if (offp) 5208 *offp = io_off; 5209 if (lenp) 5210 *lenp = io_len; 5211 out_trace: 5212 TRACE_2(TR_FAC_UFS, TR_UFS_PUTAPAGE_END, 5213 "ufs_putapage_end:vp %p error %d", vp, err); 5214 return (err); 5215 } 5216 5217 /* ARGSUSED */ 5218 static int 5219 ufs_map(struct vnode *vp, 5220 offset_t off, 5221 struct as *as, 5222 caddr_t *addrp, 5223 size_t len, 5224 uchar_t prot, 5225 uchar_t maxprot, 5226 uint_t flags, 5227 struct cred *cr) 5228 { 5229 struct segvn_crargs vn_a; 5230 struct ufsvfs *ufsvfsp = VTOI(vp)->i_ufsvfs; 5231 struct ulockfs *ulp; 5232 int error; 5233 5234 TRACE_1(TR_FAC_UFS, TR_UFS_MAP_START, 5235 "ufs_map_start:vp %p", vp); 5236 5237 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_MAP_MASK); 5238 if (error) 5239 goto out; 5240 5241 if (vp->v_flag & VNOMAP) { 5242 error = ENOSYS; 5243 goto unlock; 5244 } 5245 5246 if (off < (offset_t)0 || (offset_t)(off + len) < (offset_t)0) { 5247 error = ENXIO; 5248 goto unlock; 5249 } 5250 5251 if (vp->v_type != VREG) { 5252 error = ENODEV; 5253 goto unlock; 5254 } 5255 5256 /* 5257 * If file is being locked, disallow mapping. 5258 */ 5259 if (vn_has_mandatory_locks(vp, VTOI(vp)->i_mode)) { 5260 error = EAGAIN; 5261 goto unlock; 5262 } 5263 5264 as_rangelock(as); 5265 if ((flags & MAP_FIXED) == 0) { 5266 map_addr(addrp, len, off, 1, flags); 5267 if (*addrp == NULL) { 5268 as_rangeunlock(as); 5269 error = ENOMEM; 5270 goto unlock; 5271 } 5272 } else { 5273 /* 5274 * User specified address - blow away any previous mappings 5275 */ 5276 (void) as_unmap(as, *addrp, len); 5277 } 5278 5279 vn_a.vp = vp; 5280 vn_a.offset = (u_offset_t)off; 5281 vn_a.type = flags & MAP_TYPE; 5282 vn_a.prot = prot; 5283 vn_a.maxprot = maxprot; 5284 vn_a.cred = cr; 5285 vn_a.amp = NULL; 5286 vn_a.flags = flags & ~MAP_TYPE; 5287 vn_a.szc = 0; 5288 vn_a.lgrp_mem_policy_flags = 0; 5289 5290 error = as_map(as, *addrp, len, segvn_create, &vn_a); 5291 as_rangeunlock(as); 5292 5293 unlock: 5294 if (ulp) { 5295 ufs_lockfs_end(ulp); 5296 } 5297 out: 5298 TRACE_2(TR_FAC_UFS, TR_UFS_MAP_END, 5299 "ufs_map_end:vp %p error %d", vp, error); 5300 return (error); 5301 } 5302 5303 /* ARGSUSED */ 5304 static int 5305 ufs_addmap(struct vnode *vp, 5306 offset_t off, 5307 struct as *as, 5308 caddr_t addr, 5309 size_t len, 5310 uchar_t prot, 5311 uchar_t maxprot, 5312 uint_t flags, 5313 struct cred *cr) 5314 { 5315 struct inode *ip = VTOI(vp); 5316 5317 if (vp->v_flag & VNOMAP) { 5318 return (ENOSYS); 5319 } 5320 5321 mutex_enter(&ip->i_tlock); 5322 ip->i_mapcnt += btopr(len); 5323 mutex_exit(&ip->i_tlock); 5324 return (0); 5325 } 5326 5327 /*ARGSUSED*/ 5328 static int 5329 ufs_delmap(struct vnode *vp, offset_t off, struct as *as, caddr_t addr, 5330 size_t len, uint_t prot, uint_t maxprot, uint_t flags, 5331 struct cred *cr) 5332 { 5333 struct inode *ip = VTOI(vp); 5334 5335 if (vp->v_flag & VNOMAP) { 5336 return (ENOSYS); 5337 } 5338 5339 mutex_enter(&ip->i_tlock); 5340 ip->i_mapcnt -= btopr(len); /* Count released mappings */ 5341 ASSERT(ip->i_mapcnt >= 0); 5342 mutex_exit(&ip->i_tlock); 5343 return (0); 5344 } 5345 /* 5346 * Return the answer requested to poll() for non-device files 5347 */ 5348 struct pollhead ufs_pollhd; 5349 5350 /* ARGSUSED */ 5351 int 5352 ufs_poll(vnode_t *vp, short ev, int any, short *revp, struct pollhead **phpp) 5353 { 5354 struct ufsvfs *ufsvfsp; 5355 5356 *revp = 0; 5357 ufsvfsp = VTOI(vp)->i_ufsvfs; 5358 5359 if (!ufsvfsp) { 5360 *revp = POLLHUP; 5361 goto out; 5362 } 5363 5364 if (ULOCKFS_IS_HLOCK(&ufsvfsp->vfs_ulockfs) || 5365 ULOCKFS_IS_ELOCK(&ufsvfsp->vfs_ulockfs)) { 5366 *revp |= POLLERR; 5367 5368 } else { 5369 if ((ev & POLLOUT) && !ufsvfsp->vfs_fs->fs_ronly && 5370 !ULOCKFS_IS_WLOCK(&ufsvfsp->vfs_ulockfs)) 5371 *revp |= POLLOUT; 5372 5373 if ((ev & POLLWRBAND) && !ufsvfsp->vfs_fs->fs_ronly && 5374 !ULOCKFS_IS_WLOCK(&ufsvfsp->vfs_ulockfs)) 5375 *revp |= POLLWRBAND; 5376 5377 if (ev & POLLIN) 5378 *revp |= POLLIN; 5379 5380 if (ev & POLLRDNORM) 5381 *revp |= POLLRDNORM; 5382 5383 if (ev & POLLRDBAND) 5384 *revp |= POLLRDBAND; 5385 } 5386 5387 if ((ev & POLLPRI) && (*revp & (POLLERR|POLLHUP))) 5388 *revp |= POLLPRI; 5389 out: 5390 *phpp = !any && !*revp ? &ufs_pollhd : (struct pollhead *)NULL; 5391 5392 return (0); 5393 } 5394 5395 /* ARGSUSED */ 5396 static int 5397 ufs_l_pathconf(struct vnode *vp, int cmd, ulong_t *valp, struct cred *cr) 5398 { 5399 struct ufsvfs *ufsvfsp = VTOI(vp)->i_ufsvfs; 5400 struct ulockfs *ulp = NULL; 5401 struct inode *sip = NULL; 5402 int error; 5403 struct inode *ip = VTOI(vp); 5404 int issync; 5405 5406 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_PATHCONF_MASK); 5407 if (error) 5408 return (error); 5409 5410 switch (cmd) { 5411 /* 5412 * Have to handle _PC_NAME_MAX here, because the normal way 5413 * [fs_pathconf() -> VOP_STATVFS() -> ufs_statvfs()] 5414 * results in a lock ordering reversal between 5415 * ufs_lockfs_{begin,end}() and 5416 * ufs_thread_{suspend,continue}(). 5417 * 5418 * Keep in sync with ufs_statvfs(). 5419 */ 5420 case _PC_NAME_MAX: 5421 *valp = MAXNAMLEN; 5422 break; 5423 5424 case _PC_FILESIZEBITS: 5425 if (ufsvfsp->vfs_lfflags & UFS_LARGEFILES) 5426 *valp = UFS_FILESIZE_BITS; 5427 else 5428 *valp = 32; 5429 break; 5430 5431 case _PC_XATTR_EXISTS: 5432 if (vp->v_vfsp->vfs_flag & VFS_XATTR) { 5433 5434 error = ufs_xattr_getattrdir(vp, &sip, LOOKUP_XATTR, 5435 cr); 5436 if (error == 0 && sip != NULL) { 5437 /* Start transaction */ 5438 if (ulp) { 5439 TRANS_BEGIN_CSYNC(ufsvfsp, issync, 5440 TOP_RMDIR, TOP_RMDIR_SIZE); 5441 } 5442 /* 5443 * Is directory empty 5444 */ 5445 rw_enter(&sip->i_rwlock, RW_WRITER); 5446 rw_enter(&sip->i_contents, RW_WRITER); 5447 if (ufs_xattrdirempty(sip, 5448 sip->i_number, CRED())) { 5449 rw_enter(&ip->i_contents, RW_WRITER); 5450 ufs_unhook_shadow(ip, sip); 5451 rw_exit(&ip->i_contents); 5452 5453 *valp = 0; 5454 5455 } else 5456 *valp = 1; 5457 rw_exit(&sip->i_contents); 5458 rw_exit(&sip->i_rwlock); 5459 if (ulp) { 5460 TRANS_END_CSYNC(ufsvfsp, error, issync, 5461 TOP_RMDIR, TOP_RMDIR_SIZE); 5462 } 5463 VN_RELE(ITOV(sip)); 5464 } else if (error == ENOENT) { 5465 *valp = 0; 5466 error = 0; 5467 } 5468 } else { 5469 error = fs_pathconf(vp, cmd, valp, cr); 5470 } 5471 break; 5472 5473 case _PC_ACL_ENABLED: 5474 *valp = _ACL_ACLENT_ENABLED; 5475 break; 5476 5477 case _PC_MIN_HOLE_SIZE: 5478 *valp = (ulong_t)ip->i_fs->fs_bsize; 5479 break; 5480 5481 default: 5482 error = fs_pathconf(vp, cmd, valp, cr); 5483 } 5484 5485 if (ulp != NULL) { 5486 ufs_lockfs_end(ulp); 5487 } 5488 return (error); 5489 } 5490 5491 int ufs_pageio_writes, ufs_pageio_reads; 5492 5493 /*ARGSUSED*/ 5494 static int 5495 ufs_pageio(struct vnode *vp, page_t *pp, u_offset_t io_off, size_t io_len, 5496 int flags, struct cred *cr) 5497 { 5498 struct inode *ip = VTOI(vp); 5499 struct ufsvfs *ufsvfsp; 5500 page_t *npp = NULL, *opp = NULL, *cpp = pp; 5501 struct buf *bp; 5502 daddr_t bn; 5503 size_t done_len = 0, cur_len = 0; 5504 int err = 0; 5505 int contig = 0; 5506 int dolock; 5507 int vmpss = 0; 5508 struct ulockfs *ulp; 5509 5510 if ((flags & B_READ) && pp != NULL && pp->p_vnode == vp && 5511 vp->v_mpssdata != NULL) { 5512 vmpss = 1; 5513 } 5514 5515 dolock = (rw_owner(&ip->i_contents) != curthread); 5516 /* 5517 * We need a better check. Ideally, we would use another 5518 * vnodeops so that hlocked and forcibly unmounted file 5519 * systems would return EIO where appropriate and w/o the 5520 * need for these checks. 5521 */ 5522 if ((ufsvfsp = ip->i_ufsvfs) == NULL) 5523 return (EIO); 5524 5525 /* 5526 * For vmpss (pp can be NULL) case respect the quiesce protocol. 5527 * ul_lock must be taken before locking pages so we can't use it here 5528 * if pp is non NULL because segvn already locked pages 5529 * SE_EXCL. Instead we rely on the fact that a forced umount or 5530 * applying a filesystem lock via ufs_fiolfs() will block in the 5531 * implicit call to ufs_flush() until we unlock the pages after the 5532 * return to segvn. Other ufs_quiesce() callers keep ufs_quiesce_pend 5533 * above 0 until they are done. We have to be careful not to increment 5534 * ul_vnops_cnt here after forceful unmount hlocks the file system. 5535 * 5536 * If pp is NULL use ul_lock to make sure we don't increment 5537 * ul_vnops_cnt after forceful unmount hlocks the file system. 5538 */ 5539 if (vmpss || pp == NULL) { 5540 ulp = &ufsvfsp->vfs_ulockfs; 5541 if (pp == NULL) 5542 mutex_enter(&ulp->ul_lock); 5543 if (ulp->ul_fs_lock & ULOCKFS_GETREAD_MASK) { 5544 if (pp == NULL) { 5545 mutex_exit(&ulp->ul_lock); 5546 } 5547 return (vmpss ? EIO : EINVAL); 5548 } 5549 atomic_add_long(&ulp->ul_vnops_cnt, 1); 5550 if (pp == NULL) 5551 mutex_exit(&ulp->ul_lock); 5552 if (ufs_quiesce_pend) { 5553 if (!atomic_add_long_nv(&ulp->ul_vnops_cnt, -1)) 5554 cv_broadcast(&ulp->ul_cv); 5555 return (vmpss ? EIO : EINVAL); 5556 } 5557 } 5558 5559 if (dolock) { 5560 /* 5561 * segvn may call VOP_PAGEIO() instead of VOP_GETPAGE() to 5562 * handle a fault against a segment that maps vnode pages with 5563 * large mappings. Segvn creates pages and holds them locked 5564 * SE_EXCL during VOP_PAGEIO() call. In this case we have to 5565 * use rw_tryenter() to avoid a potential deadlock since in 5566 * lock order i_contents needs to be taken first. 5567 * Segvn will retry via VOP_GETPAGE() if VOP_PAGEIO() fails. 5568 */ 5569 if (!vmpss) { 5570 rw_enter(&ip->i_contents, RW_READER); 5571 } else if (!rw_tryenter(&ip->i_contents, RW_READER)) { 5572 if (!atomic_add_long_nv(&ulp->ul_vnops_cnt, -1)) 5573 cv_broadcast(&ulp->ul_cv); 5574 return (EDEADLK); 5575 } 5576 } 5577 5578 /* 5579 * Return an error to segvn because the pagefault request is beyond 5580 * PAGESIZE rounded EOF. 5581 */ 5582 if (vmpss && btopr(io_off + io_len) > btopr(ip->i_size)) { 5583 if (dolock) 5584 rw_exit(&ip->i_contents); 5585 if (!atomic_add_long_nv(&ulp->ul_vnops_cnt, -1)) 5586 cv_broadcast(&ulp->ul_cv); 5587 return (EFAULT); 5588 } 5589 5590 if (pp == NULL) { 5591 if (bmap_has_holes(ip)) { 5592 err = ENOSYS; 5593 } else { 5594 err = EINVAL; 5595 } 5596 if (dolock) 5597 rw_exit(&ip->i_contents); 5598 if (!atomic_add_long_nv(&ulp->ul_vnops_cnt, -1)) 5599 cv_broadcast(&ulp->ul_cv); 5600 return (err); 5601 } 5602 5603 /* 5604 * Break the io request into chunks, one for each contiguous 5605 * stretch of disk blocks in the target file. 5606 */ 5607 while (done_len < io_len) { 5608 ASSERT(cpp); 5609 contig = 0; 5610 if (err = bmap_read(ip, (u_offset_t)(io_off + done_len), 5611 &bn, &contig)) 5612 break; 5613 5614 if (bn == UFS_HOLE) { /* No holey swapfiles */ 5615 if (vmpss) { 5616 err = EFAULT; 5617 break; 5618 } 5619 err = ufs_fault(ITOV(ip), "ufs_pageio: bn == UFS_HOLE"); 5620 break; 5621 } 5622 5623 cur_len = MIN(io_len - done_len, contig); 5624 /* 5625 * Zero out a page beyond EOF, when the last block of 5626 * a file is a UFS fragment so that ufs_pageio() can be used 5627 * instead of ufs_getpage() to handle faults against 5628 * segvn segments that use large pages. 5629 */ 5630 page_list_break(&cpp, &npp, btopr(cur_len)); 5631 if ((flags & B_READ) && (cur_len & PAGEOFFSET)) { 5632 size_t xlen = cur_len & PAGEOFFSET; 5633 pagezero(cpp->p_prev, xlen, PAGESIZE - xlen); 5634 } 5635 5636 bp = pageio_setup(cpp, cur_len, ip->i_devvp, flags); 5637 ASSERT(bp != NULL); 5638 5639 bp->b_edev = ip->i_dev; 5640 bp->b_dev = cmpdev(ip->i_dev); 5641 bp->b_blkno = bn; 5642 bp->b_un.b_addr = (caddr_t)0; 5643 bp->b_file = ip->i_vnode; 5644 5645 ufsvfsp->vfs_iotstamp = lbolt; 5646 ub.ub_pageios.value.ul++; 5647 if (ufsvfsp->vfs_snapshot) 5648 fssnap_strategy(&(ufsvfsp->vfs_snapshot), bp); 5649 else 5650 (void) bdev_strategy(bp); 5651 5652 if (flags & B_READ) 5653 ufs_pageio_reads++; 5654 else 5655 ufs_pageio_writes++; 5656 if (flags & B_READ) 5657 lwp_stat_update(LWP_STAT_INBLK, 1); 5658 else 5659 lwp_stat_update(LWP_STAT_OUBLK, 1); 5660 /* 5661 * If the request is not B_ASYNC, wait for i/o to complete 5662 * and re-assemble the page list to return to the caller. 5663 * If it is B_ASYNC we leave the page list in pieces and 5664 * cleanup() will dispose of them. 5665 */ 5666 if ((flags & B_ASYNC) == 0) { 5667 err = biowait(bp); 5668 pageio_done(bp); 5669 if (err) 5670 break; 5671 page_list_concat(&opp, &cpp); 5672 } 5673 cpp = npp; 5674 npp = NULL; 5675 if (flags & B_READ) 5676 cur_len = P2ROUNDUP_TYPED(cur_len, PAGESIZE, size_t); 5677 done_len += cur_len; 5678 } 5679 ASSERT(err || (cpp == NULL && npp == NULL && done_len == io_len)); 5680 if (err) { 5681 if (flags & B_ASYNC) { 5682 /* Cleanup unprocessed parts of list */ 5683 page_list_concat(&cpp, &npp); 5684 if (flags & B_READ) 5685 pvn_read_done(cpp, B_ERROR); 5686 else 5687 pvn_write_done(cpp, B_ERROR); 5688 } else { 5689 /* Re-assemble list and let caller clean up */ 5690 page_list_concat(&opp, &cpp); 5691 page_list_concat(&opp, &npp); 5692 } 5693 } 5694 5695 if (vmpss && !(ip->i_flag & IACC) && !ULOCKFS_IS_NOIACC(ulp) && 5696 ufsvfsp->vfs_fs->fs_ronly == 0 && !ufsvfsp->vfs_noatime) { 5697 mutex_enter(&ip->i_tlock); 5698 ip->i_flag |= IACC; 5699 ITIMES_NOLOCK(ip); 5700 mutex_exit(&ip->i_tlock); 5701 } 5702 5703 if (dolock) 5704 rw_exit(&ip->i_contents); 5705 if (vmpss && !atomic_add_long_nv(&ulp->ul_vnops_cnt, -1)) 5706 cv_broadcast(&ulp->ul_cv); 5707 return (err); 5708 } 5709 5710 /* 5711 * Called when the kernel is in a frozen state to dump data 5712 * directly to the device. It uses a private dump data structure, 5713 * set up by dump_ctl, to locate the correct disk block to which to dump. 5714 */ 5715 static int 5716 ufs_dump(vnode_t *vp, caddr_t addr, int ldbn, int dblks) 5717 { 5718 u_offset_t file_size; 5719 struct inode *ip = VTOI(vp); 5720 struct fs *fs = ip->i_fs; 5721 daddr_t dbn, lfsbn; 5722 int disk_blks = fs->fs_bsize >> DEV_BSHIFT; 5723 int error = 0; 5724 int ndbs, nfsbs; 5725 5726 /* 5727 * forced unmount case 5728 */ 5729 if (ip->i_ufsvfs == NULL) 5730 return (EIO); 5731 /* 5732 * Validate the inode that it has not been modified since 5733 * the dump structure is allocated. 5734 */ 5735 mutex_enter(&ip->i_tlock); 5736 if ((dump_info == NULL) || 5737 (dump_info->ip != ip) || 5738 (dump_info->time.tv_sec != ip->i_mtime.tv_sec) || 5739 (dump_info->time.tv_usec != ip->i_mtime.tv_usec)) { 5740 mutex_exit(&ip->i_tlock); 5741 return (-1); 5742 } 5743 mutex_exit(&ip->i_tlock); 5744 5745 /* 5746 * See that the file has room for this write 5747 */ 5748 UFS_GET_ISIZE(&file_size, ip); 5749 5750 if (ldbtob((offset_t)(ldbn + dblks)) > file_size) 5751 return (ENOSPC); 5752 5753 /* 5754 * Find the physical disk block numbers from the dump 5755 * private data structure directly and write out the data 5756 * in contiguous block lumps 5757 */ 5758 while (dblks > 0 && !error) { 5759 lfsbn = (daddr_t)lblkno(fs, ldbtob((offset_t)ldbn)); 5760 dbn = fsbtodb(fs, dump_info->dblk[lfsbn]) + ldbn % disk_blks; 5761 nfsbs = 1; 5762 ndbs = disk_blks - ldbn % disk_blks; 5763 while (ndbs < dblks && fsbtodb(fs, dump_info->dblk[lfsbn + 5764 nfsbs]) == dbn + ndbs) { 5765 nfsbs++; 5766 ndbs += disk_blks; 5767 } 5768 if (ndbs > dblks) 5769 ndbs = dblks; 5770 error = bdev_dump(ip->i_dev, addr, dbn, ndbs); 5771 addr += ldbtob((offset_t)ndbs); 5772 dblks -= ndbs; 5773 ldbn += ndbs; 5774 } 5775 return (error); 5776 5777 } 5778 5779 /* 5780 * Prepare the file system before and after the dump operation. 5781 * 5782 * action = DUMP_ALLOC: 5783 * Preparation before dump, allocate dump private data structure 5784 * to hold all the direct and indirect block info for dump. 5785 * 5786 * action = DUMP_FREE: 5787 * Clean up after dump, deallocate the dump private data structure. 5788 * 5789 * action = DUMP_SCAN: 5790 * Scan dump_info for *blkp DEV_BSIZE blocks of contig fs space; 5791 * if found, the starting file-relative DEV_BSIZE lbn is written 5792 * to *bklp; that lbn is intended for use with VOP_DUMP() 5793 */ 5794 static int 5795 ufs_dumpctl(vnode_t *vp, int action, int *blkp) 5796 { 5797 struct inode *ip = VTOI(vp); 5798 ufsvfs_t *ufsvfsp = ip->i_ufsvfs; 5799 struct fs *fs; 5800 daddr32_t *dblk, *storeblk; 5801 daddr32_t *nextblk, *endblk; 5802 struct buf *bp; 5803 int i, entry, entries; 5804 int n, ncontig; 5805 5806 /* 5807 * check for forced unmount 5808 */ 5809 if (ufsvfsp == NULL) 5810 return (EIO); 5811 5812 if (action == DUMP_ALLOC) { 5813 /* 5814 * alloc and record dump_info 5815 */ 5816 if (dump_info != NULL) 5817 return (EINVAL); 5818 5819 ASSERT(vp->v_type == VREG); 5820 fs = ufsvfsp->vfs_fs; 5821 5822 rw_enter(&ip->i_contents, RW_READER); 5823 5824 if (bmap_has_holes(ip)) { 5825 rw_exit(&ip->i_contents); 5826 return (EFAULT); 5827 } 5828 5829 /* 5830 * calculate and allocate space needed according to i_size 5831 */ 5832 entries = (int)lblkno(fs, blkroundup(fs, ip->i_size)); 5833 if ((dump_info = (struct dump *) 5834 kmem_alloc(sizeof (struct dump) + 5835 (entries - 1) * sizeof (daddr32_t), KM_NOSLEEP)) == NULL) { 5836 rw_exit(&ip->i_contents); 5837 return (ENOMEM); 5838 } 5839 5840 /* Start saving the info */ 5841 dump_info->fsbs = entries; 5842 dump_info->ip = ip; 5843 storeblk = &dump_info->dblk[0]; 5844 5845 /* Direct Blocks */ 5846 for (entry = 0; entry < NDADDR && entry < entries; entry++) 5847 *storeblk++ = ip->i_db[entry]; 5848 5849 /* Indirect Blocks */ 5850 for (i = 0; i < NIADDR; i++) { 5851 int error = 0; 5852 5853 bp = UFS_BREAD(ufsvfsp, 5854 ip->i_dev, fsbtodb(fs, ip->i_ib[i]), 5855 fs->fs_bsize); 5856 if (bp->b_flags & B_ERROR) 5857 error = EIO; 5858 else { 5859 dblk = bp->b_un.b_daddr; 5860 if ((storeblk = save_dblks(ip, ufsvfsp, 5861 storeblk, dblk, i, entries)) == NULL) 5862 error = EIO; 5863 } 5864 5865 brelse(bp); 5866 5867 if (error != 0) { 5868 kmem_free(dump_info, sizeof (struct dump) + 5869 (entries - 1) * sizeof (daddr32_t)); 5870 rw_exit(&ip->i_contents); 5871 dump_info = NULL; 5872 return (error); 5873 } 5874 } 5875 /* and time stamp the information */ 5876 mutex_enter(&ip->i_tlock); 5877 dump_info->time = ip->i_mtime; 5878 mutex_exit(&ip->i_tlock); 5879 5880 rw_exit(&ip->i_contents); 5881 } else if (action == DUMP_FREE) { 5882 /* 5883 * free dump_info 5884 */ 5885 if (dump_info == NULL) 5886 return (EINVAL); 5887 entries = dump_info->fsbs - 1; 5888 kmem_free(dump_info, sizeof (struct dump) + 5889 entries * sizeof (daddr32_t)); 5890 dump_info = NULL; 5891 } else if (action == DUMP_SCAN) { 5892 /* 5893 * scan dump_info 5894 */ 5895 if (dump_info == NULL) 5896 return (EINVAL); 5897 5898 dblk = dump_info->dblk; 5899 nextblk = dblk + 1; 5900 endblk = dblk + dump_info->fsbs - 1; 5901 fs = ufsvfsp->vfs_fs; 5902 ncontig = *blkp >> (fs->fs_bshift - DEV_BSHIFT); 5903 5904 /* 5905 * scan dblk[] entries; contig fs space is found when: 5906 * ((current blkno + frags per block) == next blkno) 5907 */ 5908 n = 0; 5909 while (n < ncontig && dblk < endblk) { 5910 if ((*dblk + fs->fs_frag) == *nextblk) 5911 n++; 5912 else 5913 n = 0; 5914 dblk++; 5915 nextblk++; 5916 } 5917 5918 /* 5919 * index is where size bytes of contig space begins; 5920 * conversion from index to the file's DEV_BSIZE lbn 5921 * is equivalent to: (index * fs_bsize) / DEV_BSIZE 5922 */ 5923 if (n == ncontig) { 5924 i = (dblk - dump_info->dblk) - ncontig; 5925 *blkp = i << (fs->fs_bshift - DEV_BSHIFT); 5926 } else 5927 return (EFAULT); 5928 } 5929 return (0); 5930 } 5931 5932 /* 5933 * Recursive helper function for ufs_dumpctl(). It follows the indirect file 5934 * system blocks until it reaches the the disk block addresses, which are 5935 * then stored into the given buffer, storeblk. 5936 */ 5937 static daddr32_t * 5938 save_dblks(struct inode *ip, struct ufsvfs *ufsvfsp, daddr32_t *storeblk, 5939 daddr32_t *dblk, int level, int entries) 5940 { 5941 struct fs *fs = ufsvfsp->vfs_fs; 5942 struct buf *bp; 5943 int i; 5944 5945 if (level == 0) { 5946 for (i = 0; i < NINDIR(fs); i++) { 5947 if (storeblk - dump_info->dblk >= entries) 5948 break; 5949 *storeblk++ = dblk[i]; 5950 } 5951 return (storeblk); 5952 } 5953 for (i = 0; i < NINDIR(fs); i++) { 5954 if (storeblk - dump_info->dblk >= entries) 5955 break; 5956 bp = UFS_BREAD(ufsvfsp, 5957 ip->i_dev, fsbtodb(fs, dblk[i]), fs->fs_bsize); 5958 if (bp->b_flags & B_ERROR) { 5959 brelse(bp); 5960 return (NULL); 5961 } 5962 storeblk = save_dblks(ip, ufsvfsp, storeblk, bp->b_un.b_daddr, 5963 level - 1, entries); 5964 brelse(bp); 5965 5966 if (storeblk == NULL) 5967 return (NULL); 5968 } 5969 return (storeblk); 5970 } 5971 5972 /* ARGSUSED */ 5973 static int 5974 ufs_getsecattr(struct vnode *vp, vsecattr_t *vsap, int flag, 5975 struct cred *cr) 5976 { 5977 struct inode *ip = VTOI(vp); 5978 struct ulockfs *ulp; 5979 struct ufsvfs *ufsvfsp = ip->i_ufsvfs; 5980 ulong_t vsa_mask = vsap->vsa_mask; 5981 int err = EINVAL; 5982 5983 TRACE_3(TR_FAC_UFS, TR_UFS_GETSECATTR_START, 5984 "ufs_getsecattr_start:vp %p, vsap %p, flags %x", vp, vsap, flag); 5985 5986 vsa_mask &= (VSA_ACL | VSA_ACLCNT | VSA_DFACL | VSA_DFACLCNT); 5987 5988 /* 5989 * Only grab locks if needed - they're not needed to check vsa_mask 5990 * or if the mask contains no acl flags. 5991 */ 5992 if (vsa_mask != 0) { 5993 if (err = ufs_lockfs_begin(ufsvfsp, &ulp, 5994 ULOCKFS_GETATTR_MASK)) 5995 return (err); 5996 5997 rw_enter(&ip->i_contents, RW_READER); 5998 err = ufs_acl_get(ip, vsap, flag, cr); 5999 rw_exit(&ip->i_contents); 6000 6001 if (ulp) 6002 ufs_lockfs_end(ulp); 6003 } 6004 TRACE_1(TR_FAC_UFS, TR_UFS_GETSECATTR_END, 6005 "ufs_getsecattr_end:vp %p", vp); 6006 return (err); 6007 } 6008 6009 /* ARGSUSED */ 6010 static int 6011 ufs_setsecattr(struct vnode *vp, vsecattr_t *vsap, int flag, struct cred *cr) 6012 { 6013 struct inode *ip = VTOI(vp); 6014 struct ulockfs *ulp = NULL; 6015 struct ufsvfs *ufsvfsp = VTOI(vp)->i_ufsvfs; 6016 ulong_t vsa_mask = vsap->vsa_mask; 6017 int err; 6018 int haverwlock = 1; 6019 int trans_size; 6020 int donetrans = 0; 6021 int retry = 1; 6022 6023 6024 TRACE_3(TR_FAC_UFS, TR_UFS_SETSECATTR_START, 6025 "ufs_setsecattr_start:vp %p, vsap %p, flags %x", vp, vsap, flag); 6026 6027 ASSERT(RW_LOCK_HELD(&ip->i_rwlock)); 6028 6029 /* Abort now if the request is either empty or invalid. */ 6030 vsa_mask &= (VSA_ACL | VSA_ACLCNT | VSA_DFACL | VSA_DFACLCNT); 6031 if ((vsa_mask == 0) || 6032 ((vsap->vsa_aclentp == NULL) && 6033 (vsap->vsa_dfaclentp == NULL))) { 6034 err = EINVAL; 6035 goto out; 6036 } 6037 6038 /* 6039 * Following convention, if this is a directory then we acquire the 6040 * inode's i_rwlock after starting a UFS logging transaction; 6041 * otherwise, we acquire it beforehand. Since we were called (and 6042 * must therefore return) with the lock held, we will have to drop it, 6043 * and later reacquire it, if operating on a directory. 6044 */ 6045 if (vp->v_type == VDIR) { 6046 rw_exit(&ip->i_rwlock); 6047 haverwlock = 0; 6048 } else { 6049 /* Upgrade the lock if required. */ 6050 if (!rw_write_held(&ip->i_rwlock)) { 6051 rw_exit(&ip->i_rwlock); 6052 rw_enter(&ip->i_rwlock, RW_WRITER); 6053 } 6054 } 6055 6056 again: 6057 ASSERT(!(vp->v_type == VDIR && haverwlock)); 6058 if (err = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_SETATTR_MASK)) { 6059 ulp = NULL; 6060 retry = 0; 6061 goto out; 6062 } 6063 6064 /* 6065 * Check that the file system supports this operation. Note that 6066 * ufs_lockfs_begin() will have checked that the file system had 6067 * not been forcibly unmounted. 6068 */ 6069 if (ufsvfsp->vfs_fs->fs_ronly) { 6070 err = EROFS; 6071 goto out; 6072 } 6073 if (ufsvfsp->vfs_nosetsec) { 6074 err = ENOSYS; 6075 goto out; 6076 } 6077 6078 if (ulp) { 6079 TRANS_BEGIN_ASYNC(ufsvfsp, TOP_SETSECATTR, 6080 trans_size = TOP_SETSECATTR_SIZE(VTOI(vp))); 6081 donetrans = 1; 6082 } 6083 6084 if (vp->v_type == VDIR) { 6085 rw_enter(&ip->i_rwlock, RW_WRITER); 6086 haverwlock = 1; 6087 } 6088 6089 ASSERT(haverwlock); 6090 6091 /* Do the actual work. */ 6092 rw_enter(&ip->i_contents, RW_WRITER); 6093 /* 6094 * Suppress out of inodes messages if we will retry. 6095 */ 6096 if (retry) 6097 ip->i_flag |= IQUIET; 6098 err = ufs_acl_set(ip, vsap, flag, cr); 6099 ip->i_flag &= ~IQUIET; 6100 rw_exit(&ip->i_contents); 6101 6102 out: 6103 if (ulp) { 6104 if (donetrans) { 6105 /* 6106 * top_end_async() can eventually call 6107 * top_end_sync(), which can block. We must 6108 * therefore observe the lock-ordering protocol 6109 * here as well. 6110 */ 6111 if (vp->v_type == VDIR) { 6112 rw_exit(&ip->i_rwlock); 6113 haverwlock = 0; 6114 } 6115 TRANS_END_ASYNC(ufsvfsp, TOP_SETSECATTR, trans_size); 6116 } 6117 ufs_lockfs_end(ulp); 6118 } 6119 /* 6120 * If no inodes available, try scaring a logically- 6121 * free one out of the delete queue to someplace 6122 * that we can find it. 6123 */ 6124 if ((err == ENOSPC) && retry && TRANS_ISTRANS(ufsvfsp)) { 6125 ufs_delete_drain_wait(ufsvfsp, 1); 6126 retry = 0; 6127 if (vp->v_type == VDIR && haverwlock) { 6128 rw_exit(&ip->i_rwlock); 6129 haverwlock = 0; 6130 } 6131 goto again; 6132 } 6133 /* 6134 * If we need to reacquire the lock then it is safe to do so 6135 * as a reader. This is because ufs_rwunlock(), which will be 6136 * called by our caller after we return, does not differentiate 6137 * between shared and exclusive locks. 6138 */ 6139 if (!haverwlock) { 6140 ASSERT(vp->v_type == VDIR); 6141 rw_enter(&ip->i_rwlock, RW_READER); 6142 } 6143 6144 TRACE_1(TR_FAC_UFS, TR_UFS_SETSECATTR_END, 6145 "ufs_setsecattr_end:vp %p", vp); 6146 return (err); 6147 } 6148