1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* Copyright (c) 1983, 1984, 1985, 1986, 1987, 1988, 1989 AT&T */ 27 /* All Rights Reserved */ 28 29 /* 30 * University Copyright- Copyright (c) 1982, 1986, 1988 31 * The Regents of the University of California 32 * All Rights Reserved 33 * 34 * University Acknowledgment- Portions of this document are derived from 35 * software developed by the University of California, Berkeley, and its 36 * contributors. 37 */ 38 39 40 #pragma ident "%Z%%M% %I% %E% SMI" 41 42 #include <sys/types.h> 43 #include <sys/thread.h> 44 #include <sys/t_lock.h> 45 #include <sys/param.h> 46 #include <sys/systm.h> 47 #include <sys/bitmap.h> 48 #include <sys/buf.h> 49 #include <sys/cmn_err.h> 50 #include <sys/conf.h> 51 #include <sys/ddi.h> 52 #include <sys/debug.h> 53 #include <sys/dkio.h> 54 #include <sys/errno.h> 55 #include <sys/time.h> 56 #include <sys/fcntl.h> 57 #include <sys/flock.h> 58 #include <sys/file.h> 59 #include <sys/kmem.h> 60 #include <sys/mman.h> 61 #include <sys/open.h> 62 #include <sys/swap.h> 63 #include <sys/sysmacros.h> 64 #include <sys/uio.h> 65 #include <sys/vfs.h> 66 #include <sys/vfs_opreg.h> 67 #include <sys/vnode.h> 68 #include <sys/stat.h> 69 #include <sys/poll.h> 70 #include <sys/stream.h> 71 #include <sys/strsubr.h> 72 #include <sys/policy.h> 73 #include <sys/devpolicy.h> 74 75 #include <sys/proc.h> 76 #include <sys/user.h> 77 #include <sys/session.h> 78 #include <sys/vmsystm.h> 79 #include <sys/vtrace.h> 80 #include <sys/pathname.h> 81 82 #include <sys/fs/snode.h> 83 84 #include <vm/seg.h> 85 #include <vm/seg_map.h> 86 #include <vm/page.h> 87 #include <vm/pvn.h> 88 #include <vm/seg_dev.h> 89 #include <vm/seg_vn.h> 90 91 #include <fs/fs_subr.h> 92 93 #include <sys/esunddi.h> 94 #include <sys/autoconf.h> 95 #include <sys/sunndi.h> 96 #include <sys/contract/device_impl.h> 97 98 99 static int spec_open(struct vnode **, int, struct cred *, caller_context_t *); 100 static int spec_close(struct vnode *, int, int, offset_t, struct cred *, 101 caller_context_t *); 102 static int spec_read(struct vnode *, struct uio *, int, struct cred *, 103 caller_context_t *); 104 static int spec_write(struct vnode *, struct uio *, int, struct cred *, 105 caller_context_t *); 106 static int spec_ioctl(struct vnode *, int, intptr_t, int, struct cred *, int *, 107 caller_context_t *); 108 static int spec_getattr(struct vnode *, struct vattr *, int, struct cred *, 109 caller_context_t *); 110 static int spec_setattr(struct vnode *, struct vattr *, int, struct cred *, 111 caller_context_t *); 112 static int spec_access(struct vnode *, int, int, struct cred *, 113 caller_context_t *); 114 static int spec_create(struct vnode *, char *, vattr_t *, enum vcexcl, int, 115 struct vnode **, struct cred *, int, caller_context_t *, vsecattr_t *); 116 static int spec_fsync(struct vnode *, int, struct cred *, caller_context_t *); 117 static void spec_inactive(struct vnode *, struct cred *, caller_context_t *); 118 static int spec_fid(struct vnode *, struct fid *, caller_context_t *); 119 static int spec_seek(struct vnode *, offset_t, offset_t *, caller_context_t *); 120 static int spec_frlock(struct vnode *, int, struct flock64 *, int, offset_t, 121 struct flk_callback *, struct cred *, caller_context_t *); 122 static int spec_realvp(struct vnode *, struct vnode **, caller_context_t *); 123 124 static int spec_getpage(struct vnode *, offset_t, size_t, uint_t *, page_t **, 125 size_t, struct seg *, caddr_t, enum seg_rw, struct cred *, 126 caller_context_t *); 127 static int spec_putapage(struct vnode *, page_t *, u_offset_t *, size_t *, int, 128 struct cred *); 129 static struct buf *spec_startio(struct vnode *, page_t *, u_offset_t, size_t, 130 int); 131 static int spec_getapage(struct vnode *, u_offset_t, size_t, uint_t *, 132 page_t **, size_t, struct seg *, caddr_t, enum seg_rw, struct cred *); 133 static int spec_map(struct vnode *, offset_t, struct as *, caddr_t *, size_t, 134 uchar_t, uchar_t, uint_t, struct cred *, caller_context_t *); 135 static int spec_addmap(struct vnode *, offset_t, struct as *, caddr_t, size_t, 136 uchar_t, uchar_t, uint_t, struct cred *, caller_context_t *); 137 static int spec_delmap(struct vnode *, offset_t, struct as *, caddr_t, size_t, 138 uint_t, uint_t, uint_t, struct cred *, caller_context_t *); 139 140 static int spec_poll(struct vnode *, short, int, short *, struct pollhead **, 141 caller_context_t *); 142 static int spec_dump(struct vnode *, caddr_t, offset_t, offset_t, 143 caller_context_t *); 144 static int spec_pageio(struct vnode *, page_t *, u_offset_t, size_t, int, 145 cred_t *, caller_context_t *); 146 147 static int spec_getsecattr(struct vnode *, vsecattr_t *, int, struct cred *, 148 caller_context_t *); 149 static int spec_setsecattr(struct vnode *, vsecattr_t *, int, struct cred *, 150 caller_context_t *); 151 static int spec_pathconf(struct vnode *, int, ulong_t *, struct cred *, 152 caller_context_t *); 153 154 #define SN_HOLD(csp) { \ 155 mutex_enter(&csp->s_lock); \ 156 csp->s_count++; \ 157 mutex_exit(&csp->s_lock); \ 158 } 159 160 #define SN_RELE(csp) { \ 161 mutex_enter(&csp->s_lock); \ 162 csp->s_count--; \ 163 ASSERT((csp->s_count > 0) || (csp->s_vnode->v_stream == NULL)); \ 164 mutex_exit(&csp->s_lock); \ 165 } 166 167 #define S_ISFENCED(sp) ((VTOS((sp)->s_commonvp))->s_flag & SFENCED) 168 169 struct vnodeops *spec_vnodeops; 170 171 /* 172 * *PLEASE NOTE*: If you add new entry points to specfs, do 173 * not forget to add support for fencing. A fenced snode 174 * is indicated by the SFENCED flag in the common snode. 175 * If a snode is fenced, determine if your entry point is 176 * a configuration operation (Example: open), a detection 177 * operation (Example: gettattr), an I/O operation (Example: ioctl()) 178 * or an unconfiguration operation (Example: close). If it is 179 * a configuration or detection operation, fail the operation 180 * for a fenced snode with an ENXIO or EIO as appropriate. If 181 * it is any other operation, let it through. 182 */ 183 184 const fs_operation_def_t spec_vnodeops_template[] = { 185 VOPNAME_OPEN, { .vop_open = spec_open }, 186 VOPNAME_CLOSE, { .vop_close = spec_close }, 187 VOPNAME_READ, { .vop_read = spec_read }, 188 VOPNAME_WRITE, { .vop_write = spec_write }, 189 VOPNAME_IOCTL, { .vop_ioctl = spec_ioctl }, 190 VOPNAME_GETATTR, { .vop_getattr = spec_getattr }, 191 VOPNAME_SETATTR, { .vop_setattr = spec_setattr }, 192 VOPNAME_ACCESS, { .vop_access = spec_access }, 193 VOPNAME_CREATE, { .vop_create = spec_create }, 194 VOPNAME_FSYNC, { .vop_fsync = spec_fsync }, 195 VOPNAME_INACTIVE, { .vop_inactive = spec_inactive }, 196 VOPNAME_FID, { .vop_fid = spec_fid }, 197 VOPNAME_SEEK, { .vop_seek = spec_seek }, 198 VOPNAME_PATHCONF, { .vop_pathconf = spec_pathconf }, 199 VOPNAME_FRLOCK, { .vop_frlock = spec_frlock }, 200 VOPNAME_REALVP, { .vop_realvp = spec_realvp }, 201 VOPNAME_GETPAGE, { .vop_getpage = spec_getpage }, 202 VOPNAME_PUTPAGE, { .vop_putpage = spec_putpage }, 203 VOPNAME_MAP, { .vop_map = spec_map }, 204 VOPNAME_ADDMAP, { .vop_addmap = spec_addmap }, 205 VOPNAME_DELMAP, { .vop_delmap = spec_delmap }, 206 VOPNAME_POLL, { .vop_poll = spec_poll }, 207 VOPNAME_DUMP, { .vop_dump = spec_dump }, 208 VOPNAME_PAGEIO, { .vop_pageio = spec_pageio }, 209 VOPNAME_SETSECATTR, { .vop_setsecattr = spec_setsecattr }, 210 VOPNAME_GETSECATTR, { .vop_getsecattr = spec_getsecattr }, 211 NULL, NULL 212 }; 213 214 /* 215 * Return address of spec_vnodeops 216 */ 217 struct vnodeops * 218 spec_getvnodeops(void) 219 { 220 return (spec_vnodeops); 221 } 222 223 extern vnode_t *rconsvp; 224 225 /* 226 * Acquire the serial lock on the common snode. 227 */ 228 #define LOCK_CSP(csp) (void) spec_lockcsp(csp, 0, 1, 0) 229 #define LOCKHOLD_CSP_SIG(csp) spec_lockcsp(csp, 1, 1, 1) 230 #define SYNCHOLD_CSP_SIG(csp, intr) spec_lockcsp(csp, intr, 0, 1) 231 232 typedef enum { 233 LOOP, 234 INTR, 235 SUCCESS 236 } slock_ret_t; 237 238 /* 239 * Synchronize with active SLOCKED snode, optionally checking for a signal and 240 * optionally returning with SLOCKED set and SN_HOLD done. The 'intr' 241 * argument determines if the thread is interruptible by a signal while 242 * waiting, the function returns INTR if interrupted while there is another 243 * thread closing this snonde and LOOP if interrupted otherwise. 244 * When SUCCESS is returned the 'hold' argument determines if the open 245 * count (SN_HOLD) has been incremented and the 'setlock' argument 246 * determines if the function returns with SLOCKED set. 247 */ 248 static slock_ret_t 249 spec_lockcsp(struct snode *csp, int intr, int setlock, int hold) 250 { 251 slock_ret_t ret = SUCCESS; 252 mutex_enter(&csp->s_lock); 253 while (csp->s_flag & SLOCKED) { 254 csp->s_flag |= SWANT; 255 if (intr) { 256 if (!cv_wait_sig(&csp->s_cv, &csp->s_lock)) { 257 if (csp->s_flag & SCLOSING) 258 ret = INTR; 259 else 260 ret = LOOP; 261 mutex_exit(&csp->s_lock); 262 return (ret); /* interrupted */ 263 } 264 } else { 265 cv_wait(&csp->s_cv, &csp->s_lock); 266 } 267 } 268 if (setlock) 269 csp->s_flag |= SLOCKED; 270 if (hold) 271 csp->s_count++; /* one more open reference : SN_HOLD */ 272 mutex_exit(&csp->s_lock); 273 return (ret); /* serialized/locked */ 274 } 275 276 /* 277 * Unlock the serial lock on the common snode 278 */ 279 #define UNLOCK_CSP_LOCK_HELD(csp) \ 280 ASSERT(mutex_owned(&csp->s_lock)); \ 281 if (csp->s_flag & SWANT) \ 282 cv_broadcast(&csp->s_cv); \ 283 csp->s_flag &= ~(SWANT|SLOCKED); 284 285 #define UNLOCK_CSP(csp) \ 286 mutex_enter(&csp->s_lock); \ 287 UNLOCK_CSP_LOCK_HELD(csp); \ 288 mutex_exit(&csp->s_lock); 289 290 /* 291 * compute/return the size of the device 292 */ 293 #define SPEC_SIZE(csp) \ 294 (((csp)->s_flag & SSIZEVALID) ? (csp)->s_size : spec_size(csp)) 295 296 /* 297 * Compute and return the size. If the size in the common snode is valid then 298 * return it. If not valid then get the size from the driver and set size in 299 * the common snode. If the device has not been attached then we don't ask for 300 * an update from the driver- for non-streams SSIZEVALID stays unset until the 301 * device is attached. A stat of a mknod outside /devices (non-devfs) may 302 * report UNKNOWN_SIZE because the device may not be attached yet (SDIPSET not 303 * established in mknod until open time). An stat in /devices will report the 304 * size correctly. Specfs should always call SPEC_SIZE instead of referring 305 * directly to s_size to initialize/retrieve the size of a device. 306 * 307 * XXX There is an inconsistency between block and raw - "unknown" is 308 * UNKNOWN_SIZE for VBLK and 0 for VCHR(raw). 309 */ 310 static u_offset_t 311 spec_size(struct snode *csp) 312 { 313 struct vnode *cvp = STOV(csp); 314 u_offset_t size; 315 int plen; 316 uint32_t size32; 317 dev_t dev; 318 dev_info_t *devi; 319 major_t maj; 320 uint_t blksize; 321 int blkshift; 322 323 ASSERT((csp)->s_commonvp == cvp); /* must be common node */ 324 325 /* return cached value */ 326 mutex_enter(&csp->s_lock); 327 if (csp->s_flag & SSIZEVALID) { 328 mutex_exit(&csp->s_lock); 329 return (csp->s_size); 330 } 331 332 /* VOP_GETATTR of mknod has not had devcnt restriction applied */ 333 dev = cvp->v_rdev; 334 maj = getmajor(dev); 335 if (maj >= devcnt) { 336 /* return non-cached UNKNOWN_SIZE */ 337 mutex_exit(&csp->s_lock); 338 return ((cvp->v_type == VCHR) ? 0 : UNKNOWN_SIZE); 339 } 340 341 /* establish cached zero size for streams */ 342 if (STREAMSTAB(maj)) { 343 csp->s_size = 0; 344 csp->s_flag |= SSIZEVALID; 345 mutex_exit(&csp->s_lock); 346 return (0); 347 } 348 349 /* 350 * Return non-cached UNKNOWN_SIZE if not open. 351 * 352 * NB: This check is bogus, calling prop_op(9E) should be gated by 353 * attach, not open. Not having this check however opens up a new 354 * context under which a driver's prop_op(9E) could be called. Calling 355 * prop_op(9E) in this new context has been shown to expose latent 356 * driver bugs (insufficient NULL pointer checks that lead to panic). 357 * We are keeping this open check for now to avoid these panics. 358 */ 359 if (csp->s_count == 0) { 360 mutex_exit(&csp->s_lock); 361 return ((cvp->v_type == VCHR) ? 0 : UNKNOWN_SIZE); 362 } 363 364 /* Return non-cached UNKNOWN_SIZE if not attached. */ 365 if (((csp->s_flag & SDIPSET) == 0) || (csp->s_dip == NULL) || 366 !i_ddi_devi_attached(csp->s_dip)) { 367 mutex_exit(&csp->s_lock); 368 return ((cvp->v_type == VCHR) ? 0 : UNKNOWN_SIZE); 369 } 370 371 devi = csp->s_dip; 372 373 /* 374 * Established cached size obtained from the attached driver. Since we 375 * know the devinfo node, for efficiency we use cdev_prop_op directly 376 * instead of [cb]dev_[Ss]size. 377 */ 378 if (cvp->v_type == VCHR) { 379 size = 0; 380 plen = sizeof (size); 381 if (cdev_prop_op(dev, devi, PROP_LEN_AND_VAL_BUF, 382 DDI_PROP_NOTPROM | DDI_PROP_DONTPASS | 383 DDI_PROP_CONSUMER_TYPED, "Size", (caddr_t)&size, 384 &plen) != DDI_PROP_SUCCESS) { 385 plen = sizeof (size32); 386 if (cdev_prop_op(dev, devi, PROP_LEN_AND_VAL_BUF, 387 DDI_PROP_NOTPROM | DDI_PROP_DONTPASS, 388 "size", (caddr_t)&size32, &plen) == 389 DDI_PROP_SUCCESS) 390 size = size32; 391 } 392 } else { 393 size = UNKNOWN_SIZE; 394 plen = sizeof (size); 395 if (cdev_prop_op(dev, devi, PROP_LEN_AND_VAL_BUF, 396 DDI_PROP_NOTPROM | DDI_PROP_DONTPASS | 397 DDI_PROP_CONSUMER_TYPED, "Nblocks", (caddr_t)&size, 398 &plen) != DDI_PROP_SUCCESS) { 399 plen = sizeof (size32); 400 if (cdev_prop_op(dev, devi, PROP_LEN_AND_VAL_BUF, 401 DDI_PROP_NOTPROM | DDI_PROP_DONTPASS, 402 "nblocks", (caddr_t)&size32, &plen) == 403 DDI_PROP_SUCCESS) 404 size = size32; 405 } 406 407 if (size != UNKNOWN_SIZE) { 408 blksize = DEV_BSIZE; /* default */ 409 plen = sizeof (blksize); 410 411 /* try to get dev_t specific "blksize" */ 412 if (cdev_prop_op(dev, devi, PROP_LEN_AND_VAL_BUF, 413 DDI_PROP_NOTPROM | DDI_PROP_DONTPASS, 414 "blksize", (caddr_t)&blksize, &plen) != 415 DDI_PROP_SUCCESS) { 416 /* 417 * Try for dev_info node "device-blksize". 418 * If this fails then blksize will still be 419 * DEV_BSIZE default value. 420 */ 421 (void) cdev_prop_op(DDI_DEV_T_ANY, devi, 422 PROP_LEN_AND_VAL_BUF, 423 DDI_PROP_NOTPROM | DDI_PROP_DONTPASS, 424 "device-blksize", (caddr_t)&blksize, &plen); 425 } 426 427 /* blksize must be a power of two */ 428 ASSERT(BIT_ONLYONESET(blksize)); 429 blkshift = highbit(blksize) - 1; 430 431 /* convert from block size to byte size */ 432 if (size < (MAXOFFSET_T >> blkshift)) 433 size = size << blkshift; 434 else 435 size = UNKNOWN_SIZE; 436 } 437 } 438 439 csp->s_size = size; 440 csp->s_flag |= SSIZEVALID; 441 442 mutex_exit(&csp->s_lock); 443 return (size); 444 } 445 446 /* 447 * This function deal with vnode substitution in the case of 448 * device cloning. 449 */ 450 static int 451 spec_clone(struct vnode **vpp, dev_t newdev, int vtype, struct stdata *stp) 452 { 453 dev_t dev = (*vpp)->v_rdev; 454 major_t maj = getmajor(dev); 455 major_t newmaj = getmajor(newdev); 456 int sysclone = (maj == clone_major); 457 int qassociate_used = 0; 458 struct snode *oldsp, *oldcsp; 459 struct snode *newsp, *newcsp; 460 struct vnode *newvp, *newcvp; 461 dev_info_t *dip; 462 queue_t *dq; 463 464 ASSERT(dev != newdev); 465 466 /* 467 * Check for cloning across different drivers. 468 * We only support this under the system provided clone driver 469 */ 470 if ((maj != newmaj) && !sysclone) { 471 cmn_err(CE_NOTE, 472 "unsupported clone open maj = %u, newmaj = %u", 473 maj, newmaj); 474 return (ENXIO); 475 } 476 477 /* old */ 478 oldsp = VTOS(*vpp); 479 oldcsp = VTOS(oldsp->s_commonvp); 480 481 /* new */ 482 newvp = makespecvp(newdev, vtype); 483 ASSERT(newvp != NULL); 484 newsp = VTOS(newvp); 485 newcvp = newsp->s_commonvp; 486 newcsp = VTOS(newcvp); 487 488 /* 489 * Clones inherit fsid, realvp, and dip. 490 * XXX realvp inherit is not occurring, does fstat of clone work? 491 */ 492 newsp->s_fsid = oldsp->s_fsid; 493 if (sysclone) { 494 newsp->s_flag |= SCLONE; 495 dip = NULL; 496 } else { 497 newsp->s_flag |= SSELFCLONE; 498 dip = oldcsp->s_dip; 499 } 500 501 /* 502 * If we cloned to an opened newdev that already has called 503 * spec_assoc_vp_with_devi (SDIPSET set) then the association is 504 * already established. 505 */ 506 if (!(newcsp->s_flag & SDIPSET)) { 507 /* 508 * Establish s_dip association for newdev. 509 * 510 * If we trusted the getinfo(9E) DDI_INFO_DEVT2INSTANCE 511 * implementation of all cloning drivers (SCLONE and SELFCLONE) 512 * we would always use e_ddi_hold_devi_by_dev(). We know that 513 * many drivers have had (still have?) problems with 514 * DDI_INFO_DEVT2INSTANCE, so we try to minimize reliance by 515 * detecting drivers that use QASSOCIATE (by looking down the 516 * stream) and setting their s_dip association to NULL. 517 */ 518 qassociate_used = 0; 519 if (stp) { 520 for (dq = stp->sd_wrq; dq; dq = dq->q_next) { 521 if (_RD(dq)->q_flag & _QASSOCIATED) { 522 qassociate_used = 1; 523 dip = NULL; 524 break; 525 } 526 } 527 } 528 529 if (dip || qassociate_used) { 530 spec_assoc_vp_with_devi(newvp, dip); 531 } else { 532 /* derive association from newdev */ 533 dip = e_ddi_hold_devi_by_dev(newdev, 0); 534 spec_assoc_vp_with_devi(newvp, dip); 535 if (dip) 536 ddi_release_devi(dip); 537 } 538 } 539 540 SN_HOLD(newcsp); 541 542 /* deal with stream stuff */ 543 if (stp != NULL) { 544 LOCK_CSP(newcsp); /* synchronize stream open/close */ 545 mutex_enter(&newcsp->s_lock); 546 newcvp->v_stream = newvp->v_stream = stp; 547 stp->sd_vnode = newcvp; 548 stp->sd_strtab = STREAMSTAB(newmaj); 549 mutex_exit(&newcsp->s_lock); 550 UNLOCK_CSP(newcsp); 551 } 552 553 /* substitute the vnode */ 554 SN_RELE(oldcsp); 555 VN_RELE(*vpp); 556 *vpp = newvp; 557 558 return (0); 559 } 560 561 static int 562 spec_open(struct vnode **vpp, int flag, struct cred *cr, caller_context_t *cc) 563 { 564 major_t maj; 565 dev_t dev, newdev; 566 struct vnode *vp, *cvp; 567 struct snode *sp, *csp; 568 struct stdata *stp; 569 dev_info_t *dip; 570 int error, type; 571 contract_t *ct = NULL; 572 int open_returns_eintr; 573 slock_ret_t spec_locksp_ret; 574 575 576 flag &= ~FCREAT; /* paranoia */ 577 578 vp = *vpp; 579 sp = VTOS(vp); 580 ASSERT((vp->v_type == VCHR) || (vp->v_type == VBLK)); 581 if ((vp->v_type != VCHR) && (vp->v_type != VBLK)) 582 return (ENXIO); 583 584 /* 585 * If the VFS_NODEVICES bit was set for the mount, 586 * do not allow opens of special devices. 587 */ 588 if (sp->s_realvp && (sp->s_realvp->v_vfsp->vfs_flag & VFS_NODEVICES)) 589 return (ENXIO); 590 591 newdev = dev = vp->v_rdev; 592 593 /* 594 * If we are opening a node that has not had spec_assoc_vp_with_devi 595 * called against it (mknod outside /devices or a non-dacf makespecvp 596 * node) then SDIPSET will not be set. In this case we call an 597 * interface which will reconstruct the path and lookup (drive attach) 598 * through devfs (e_ddi_hold_devi_by_dev -> e_ddi_hold_devi_by_path -> 599 * devfs_lookupname). For support of broken drivers that don't call 600 * ddi_create_minor_node for all minor nodes in their instance space, 601 * we call interfaces that operates at the directory/devinfo 602 * (major/instance) level instead of to the leaf/minor node level. 603 * After finding and attaching the dip we associate it with the 604 * common specfs vnode (s_dip), which sets SDIPSET. A DL_DETACH_REQ 605 * to style-2 stream driver may set s_dip to NULL with SDIPSET set. 606 * 607 * NOTE: Although e_ddi_hold_devi_by_dev takes a dev_t argument, its 608 * implementation operates at the major/instance level since it only 609 * need to return a dip. 610 */ 611 cvp = sp->s_commonvp; 612 csp = VTOS(cvp); 613 if (!(csp->s_flag & SDIPSET)) { 614 /* try to attach, return error if we fail */ 615 if ((dip = e_ddi_hold_devi_by_dev(dev, 0)) == NULL) 616 return (ENXIO); 617 618 /* associate dip with the common snode s_dip */ 619 spec_assoc_vp_with_devi(vp, dip); 620 ddi_release_devi(dip); /* from e_ddi_hold_devi_by_dev */ 621 } 622 623 /* check if device fenced off */ 624 if (S_ISFENCED(sp)) 625 return (ENXIO); 626 627 #ifdef DEBUG 628 /* verify attach/open exclusion guarantee */ 629 dip = csp->s_dip; 630 ASSERT((dip == NULL) || i_ddi_devi_attached(dip)); 631 #endif /* DEBUG */ 632 633 if ((error = secpolicy_spec_open(cr, vp, flag)) != 0) 634 return (error); 635 636 maj = getmajor(dev); 637 if (STREAMSTAB(maj)) 638 goto streams_open; 639 640 /* 641 * Wait for in progress last close to complete. This guarantees 642 * to the driver writer that we will never be in the drivers 643 * open and close on the same (dev_t, otype) at the same time. 644 * Open count already incremented (SN_HOLD) on non-zero return. 645 * The wait is interruptible by a signal if the driver sets the 646 * D_OPEN_RETURNS_EINTR cb_ops(9S) cb_flag or sets the 647 * ddi-open-returns-eintr(9P) property in its driver.conf. 648 */ 649 if ((devopsp[maj]->devo_cb_ops->cb_flag & D_OPEN_RETURNS_EINTR) || 650 (devnamesp[maj].dn_flags & DN_OPEN_RETURNS_EINTR)) 651 open_returns_eintr = 1; 652 else 653 open_returns_eintr = 0; 654 while ((spec_locksp_ret = SYNCHOLD_CSP_SIG(csp, open_returns_eintr)) != 655 SUCCESS) { 656 if (spec_locksp_ret == INTR) 657 return (EINTR); 658 } 659 660 /* non streams open */ 661 type = (vp->v_type == VBLK ? OTYP_BLK : OTYP_CHR); 662 error = dev_open(&newdev, flag, type, cr); 663 664 /* deal with clone case */ 665 if (error == 0 && dev != newdev) { 666 error = spec_clone(vpp, newdev, vp->v_type, NULL); 667 /* 668 * bail on clone failure, further processing 669 * results in undefined behaviors. 670 */ 671 if (error != 0) 672 return (error); 673 sp = VTOS(*vpp); 674 csp = VTOS(sp->s_commonvp); 675 } 676 677 /* 678 * create contracts only for userland opens 679 * Successful open and cloning is done at this point. 680 */ 681 if (error == 0 && !(flag & FKLYR)) { 682 int spec_type; 683 spec_type = (STOV(csp)->v_type == VCHR) ? S_IFCHR : S_IFBLK; 684 if (contract_device_open(newdev, spec_type, NULL) != 0) { 685 error = EIO; 686 } 687 } 688 689 if (error == 0) { 690 sp->s_size = SPEC_SIZE(csp); 691 692 if ((csp->s_flag & SNEEDCLOSE) == 0) { 693 int nmaj = getmajor(newdev); 694 mutex_enter(&csp->s_lock); 695 /* successful open needs a close later */ 696 csp->s_flag |= SNEEDCLOSE; 697 698 /* 699 * Invalidate possible cached "unknown" size 700 * established by a VOP_GETATTR while open was in 701 * progress, and the driver might fail prop_op(9E). 702 */ 703 if (((cvp->v_type == VCHR) && (csp->s_size == 0)) || 704 ((cvp->v_type == VBLK) && 705 (csp->s_size == UNKNOWN_SIZE))) 706 csp->s_flag &= ~SSIZEVALID; 707 708 if (devopsp[nmaj]->devo_cb_ops->cb_flag & D_64BIT) 709 csp->s_flag |= SLOFFSET; 710 if (devopsp[nmaj]->devo_cb_ops->cb_flag & D_U64BIT) 711 csp->s_flag |= SLOFFSET | SANYOFFSET; 712 mutex_exit(&csp->s_lock); 713 } 714 return (0); 715 } 716 717 /* 718 * Open failed. If we missed a close operation because 719 * we were trying to get the device open and it is the 720 * last in progress open that is failing then call close. 721 * 722 * NOTE: Only non-streams open has this race condition. 723 */ 724 mutex_enter(&csp->s_lock); 725 csp->s_count--; /* decrement open count : SN_RELE */ 726 if ((csp->s_count == 0) && /* no outstanding open */ 727 (csp->s_mapcnt == 0) && /* no mapping */ 728 (csp->s_flag & SNEEDCLOSE)) { /* need a close */ 729 csp->s_flag &= ~(SNEEDCLOSE | SSIZEVALID); 730 731 /* See comment in spec_close() */ 732 if (csp->s_flag & (SCLONE | SSELFCLONE)) 733 csp->s_flag &= ~SDIPSET; 734 735 csp->s_flag |= SCLOSING; 736 mutex_exit(&csp->s_lock); 737 738 ASSERT(*vpp != NULL); 739 (void) device_close(*vpp, flag, cr); 740 741 mutex_enter(&csp->s_lock); 742 csp->s_flag &= ~SCLOSING; 743 mutex_exit(&csp->s_lock); 744 } else { 745 mutex_exit(&csp->s_lock); 746 } 747 return (error); 748 749 streams_open: 750 if (vp->v_type != VCHR) 751 return (ENXIO); 752 753 /* 754 * Lock common snode to prevent any new clone opens on this 755 * stream while one is in progress. This is necessary since 756 * the stream currently associated with the clone device will 757 * not be part of it after the clone open completes. Unfortunately 758 * we don't know in advance if this is a clone 759 * device so we have to lock all opens. 760 * 761 * If we fail, it's because of an interrupt - EINTR return is an 762 * expected aspect of opening a stream so we don't need to check 763 * D_OPEN_RETURNS_EINTR. Open count already incremented (SN_HOLD) 764 * on non-zero return. 765 */ 766 if (LOCKHOLD_CSP_SIG(csp) != SUCCESS) 767 return (EINTR); 768 769 error = stropen(cvp, &newdev, flag, cr); 770 stp = cvp->v_stream; 771 772 /* deal with the clone case */ 773 if ((error == 0) && (dev != newdev)) { 774 vp->v_stream = cvp->v_stream = NULL; 775 UNLOCK_CSP(csp); 776 error = spec_clone(vpp, newdev, vp->v_type, stp); 777 /* 778 * bail on clone failure, further processing 779 * results in undefined behaviors. 780 */ 781 if (error != 0) 782 return (error); 783 sp = VTOS(*vpp); 784 csp = VTOS(sp->s_commonvp); 785 } else if (error == 0) { 786 vp->v_stream = stp; 787 UNLOCK_CSP(csp); 788 } 789 790 /* 791 * create contracts only for userland opens 792 * Successful open and cloning is done at this point. 793 */ 794 if (error == 0 && !(flag & FKLYR)) { 795 /* STREAM is of type S_IFCHR */ 796 if (contract_device_open(newdev, S_IFCHR, &ct) != 0) { 797 UNLOCK_CSP(csp); 798 (void) spec_close(vp, flag, 1, 0, cr, cc); 799 return (EIO); 800 } 801 } 802 803 if (error == 0) { 804 /* STREAMS devices don't have a size */ 805 sp->s_size = csp->s_size = 0; 806 807 if (!(stp->sd_flag & STRISTTY) || (flag & FNOCTTY)) 808 return (0); 809 810 /* try to allocate it as a controlling terminal */ 811 if (strctty(stp) != EINTR) 812 return (0); 813 814 /* strctty() was interrupted by a signal */ 815 if (ct) { 816 /* we only create contracts for userland opens */ 817 ASSERT(ttoproc(curthread)); 818 (void) contract_abandon(ct, ttoproc(curthread), 0); 819 } 820 (void) spec_close(vp, flag, 1, 0, cr, cc); 821 return (EINTR); 822 } 823 824 /* 825 * Deal with stropen failure. 826 * 827 * sd_flag in the stream head cannot change since the 828 * common snode is locked before the call to stropen(). 829 */ 830 if ((stp != NULL) && (stp->sd_flag & STREOPENFAIL)) { 831 /* 832 * Open failed part way through. 833 */ 834 mutex_enter(&stp->sd_lock); 835 stp->sd_flag &= ~STREOPENFAIL; 836 mutex_exit(&stp->sd_lock); 837 838 UNLOCK_CSP(csp); 839 (void) spec_close(vp, flag, 1, 0, cr, cc); 840 } else { 841 UNLOCK_CSP(csp); 842 SN_RELE(csp); 843 } 844 845 return (error); 846 } 847 848 /*ARGSUSED2*/ 849 static int 850 spec_close( 851 struct vnode *vp, 852 int flag, 853 int count, 854 offset_t offset, 855 struct cred *cr, 856 caller_context_t *ct) 857 { 858 struct vnode *cvp; 859 struct snode *sp, *csp; 860 enum vtype type; 861 dev_t dev; 862 int error = 0; 863 int sysclone; 864 865 if (!(flag & FKLYR)) { 866 /* this only applies to closes of devices from userland */ 867 cleanlocks(vp, ttoproc(curthread)->p_pid, 0); 868 cleanshares(vp, ttoproc(curthread)->p_pid); 869 if (vp->v_stream) 870 strclean(vp); 871 } 872 if (count > 1) 873 return (0); 874 875 /* we allow close to succeed even if device is fenced off */ 876 sp = VTOS(vp); 877 cvp = sp->s_commonvp; 878 879 dev = sp->s_dev; 880 type = vp->v_type; 881 882 ASSERT(type == VCHR || type == VBLK); 883 884 /* 885 * Prevent close/close and close/open races by serializing closes 886 * on this common snode. Clone opens are held up until after 887 * we have closed this device so the streams linkage is maintained 888 */ 889 csp = VTOS(cvp); 890 891 LOCK_CSP(csp); 892 mutex_enter(&csp->s_lock); 893 894 csp->s_count--; /* one fewer open reference : SN_RELE */ 895 sysclone = sp->s_flag & SCLONE; 896 897 /* 898 * Invalidate size on each close. 899 * 900 * XXX We do this on each close because we don't have interfaces that 901 * allow a driver to invalidate the size. Since clearing this on each 902 * close this causes property overhead we skip /dev/null and 903 * /dev/zero to avoid degrading kenbus performance. 904 */ 905 if (getmajor(dev) != mm_major) 906 csp->s_flag &= ~SSIZEVALID; 907 908 /* 909 * Only call the close routine when the last open reference through 910 * any [s, v]node goes away. This can be checked by looking at 911 * s_count on the common vnode. 912 */ 913 if ((csp->s_count == 0) && (csp->s_mapcnt == 0)) { 914 /* we don't need a close */ 915 csp->s_flag &= ~(SNEEDCLOSE | SSIZEVALID); 916 917 /* 918 * A cloning driver may open-clone to the same dev_t that we 919 * are closing before spec_inactive destroys the common snode. 920 * If this occurs the s_dip association needs to be reevaluated. 921 * We clear SDIPSET to force reevaluation in this case. When 922 * reevaluation occurs (by spec_clone after open), if the 923 * devinfo association has changed then the old association 924 * will be released as the new association is established by 925 * spec_assoc_vp_with_devi(). 926 */ 927 if (csp->s_flag & (SCLONE | SSELFCLONE)) 928 csp->s_flag &= ~SDIPSET; 929 930 csp->s_flag |= SCLOSING; 931 mutex_exit(&csp->s_lock); 932 error = device_close(vp, flag, cr); 933 934 /* 935 * Decrement the devops held in clnopen() 936 */ 937 if (sysclone) { 938 ddi_rele_driver(getmajor(dev)); 939 } 940 mutex_enter(&csp->s_lock); 941 csp->s_flag &= ~SCLOSING; 942 } 943 944 UNLOCK_CSP_LOCK_HELD(csp); 945 mutex_exit(&csp->s_lock); 946 947 return (error); 948 } 949 950 /*ARGSUSED2*/ 951 static int 952 spec_read( 953 struct vnode *vp, 954 struct uio *uiop, 955 int ioflag, 956 struct cred *cr, 957 caller_context_t *ct) 958 { 959 int error; 960 struct snode *sp = VTOS(vp); 961 dev_t dev = sp->s_dev; 962 size_t n; 963 ulong_t on; 964 u_offset_t bdevsize; 965 offset_t maxoff; 966 offset_t off; 967 struct vnode *blkvp; 968 969 ASSERT(vp->v_type == VCHR || vp->v_type == VBLK); 970 971 if (STREAMSTAB(getmajor(dev))) { /* stream */ 972 ASSERT(vp->v_type == VCHR); 973 smark(sp, SACC); 974 return (strread(vp, uiop, cr)); 975 } 976 977 if (uiop->uio_resid == 0) 978 return (0); 979 980 /* 981 * Plain old character devices that set D_U64BIT can have 982 * unrestricted offsets. 983 */ 984 maxoff = spec_maxoffset(vp); 985 ASSERT(maxoff != -1 || vp->v_type == VCHR); 986 987 if (maxoff != -1 && (uiop->uio_loffset < 0 || 988 uiop->uio_loffset + uiop->uio_resid > maxoff)) 989 return (EINVAL); 990 991 if (vp->v_type == VCHR) { 992 smark(sp, SACC); 993 ASSERT(STREAMSTAB(getmajor(dev)) == 0); 994 return (cdev_read(dev, uiop, cr)); 995 } 996 997 /* 998 * Block device. 999 */ 1000 error = 0; 1001 blkvp = sp->s_commonvp; 1002 bdevsize = SPEC_SIZE(VTOS(blkvp)); 1003 1004 do { 1005 caddr_t base; 1006 offset_t diff; 1007 1008 off = uiop->uio_loffset & (offset_t)MAXBMASK; 1009 on = (size_t)(uiop->uio_loffset & MAXBOFFSET); 1010 n = (size_t)MIN(MAXBSIZE - on, uiop->uio_resid); 1011 diff = bdevsize - uiop->uio_loffset; 1012 1013 if (diff <= 0) 1014 break; 1015 if (diff < n) 1016 n = (size_t)diff; 1017 1018 if (vpm_enable) { 1019 error = vpm_data_copy(blkvp, (u_offset_t)(off + on), 1020 n, uiop, 1, NULL, 0, S_READ); 1021 } else { 1022 base = segmap_getmapflt(segkmap, blkvp, 1023 (u_offset_t)(off + on), n, 1, S_READ); 1024 1025 error = uiomove(base + on, n, UIO_READ, uiop); 1026 } 1027 if (!error) { 1028 int flags = 0; 1029 /* 1030 * If we read a whole block, we won't need this 1031 * buffer again soon. 1032 */ 1033 if (n + on == MAXBSIZE) 1034 flags = SM_DONTNEED | SM_FREE; 1035 if (vpm_enable) { 1036 error = vpm_sync_pages(blkvp, off, n, flags); 1037 } else { 1038 error = segmap_release(segkmap, base, flags); 1039 } 1040 } else { 1041 if (vpm_enable) { 1042 (void) vpm_sync_pages(blkvp, off, n, 0); 1043 } else { 1044 (void) segmap_release(segkmap, base, 0); 1045 } 1046 if (bdevsize == UNKNOWN_SIZE) { 1047 error = 0; 1048 break; 1049 } 1050 } 1051 } while (error == 0 && uiop->uio_resid > 0 && n != 0); 1052 1053 return (error); 1054 } 1055 1056 /*ARGSUSED*/ 1057 static int 1058 spec_write( 1059 struct vnode *vp, 1060 struct uio *uiop, 1061 int ioflag, 1062 struct cred *cr, 1063 caller_context_t *ct) 1064 { 1065 int error; 1066 struct snode *sp = VTOS(vp); 1067 dev_t dev = sp->s_dev; 1068 size_t n; 1069 ulong_t on; 1070 u_offset_t bdevsize; 1071 offset_t maxoff; 1072 offset_t off; 1073 struct vnode *blkvp; 1074 1075 ASSERT(vp->v_type == VCHR || vp->v_type == VBLK); 1076 1077 if (STREAMSTAB(getmajor(dev))) { 1078 ASSERT(vp->v_type == VCHR); 1079 smark(sp, SUPD); 1080 return (strwrite(vp, uiop, cr)); 1081 } 1082 1083 /* 1084 * Plain old character devices that set D_U64BIT can have 1085 * unrestricted offsets. 1086 */ 1087 maxoff = spec_maxoffset(vp); 1088 ASSERT(maxoff != -1 || vp->v_type == VCHR); 1089 1090 if (maxoff != -1 && (uiop->uio_loffset < 0 || 1091 uiop->uio_loffset + uiop->uio_resid > maxoff)) 1092 return (EINVAL); 1093 1094 if (vp->v_type == VCHR) { 1095 smark(sp, SUPD); 1096 ASSERT(STREAMSTAB(getmajor(dev)) == 0); 1097 return (cdev_write(dev, uiop, cr)); 1098 } 1099 1100 if (uiop->uio_resid == 0) 1101 return (0); 1102 1103 error = 0; 1104 blkvp = sp->s_commonvp; 1105 bdevsize = SPEC_SIZE(VTOS(blkvp)); 1106 1107 do { 1108 int pagecreate; 1109 int newpage; 1110 caddr_t base; 1111 offset_t diff; 1112 1113 off = uiop->uio_loffset & (offset_t)MAXBMASK; 1114 on = (ulong_t)(uiop->uio_loffset & MAXBOFFSET); 1115 n = (size_t)MIN(MAXBSIZE - on, uiop->uio_resid); 1116 pagecreate = 0; 1117 1118 diff = bdevsize - uiop->uio_loffset; 1119 if (diff <= 0) { 1120 error = ENXIO; 1121 break; 1122 } 1123 if (diff < n) 1124 n = (size_t)diff; 1125 1126 /* 1127 * Check to see if we can skip reading in the page 1128 * and just allocate the memory. We can do this 1129 * if we are going to rewrite the entire mapping 1130 * or if we are going to write to end of the device 1131 * from the beginning of the mapping. 1132 */ 1133 if (n == MAXBSIZE || (on == 0 && (off + n) == bdevsize)) 1134 pagecreate = 1; 1135 1136 newpage = 0; 1137 if (vpm_enable) { 1138 error = vpm_data_copy(blkvp, (u_offset_t)(off + on), 1139 n, uiop, !pagecreate, NULL, 0, S_WRITE); 1140 } else { 1141 base = segmap_getmapflt(segkmap, blkvp, 1142 (u_offset_t)(off + on), n, !pagecreate, S_WRITE); 1143 1144 /* 1145 * segmap_pagecreate() returns 1 if it calls 1146 * page_create_va() to allocate any pages. 1147 */ 1148 1149 if (pagecreate) 1150 newpage = segmap_pagecreate(segkmap, base + on, 1151 n, 0); 1152 1153 error = uiomove(base + on, n, UIO_WRITE, uiop); 1154 } 1155 1156 if (!vpm_enable && pagecreate && 1157 uiop->uio_loffset < 1158 P2ROUNDUP_TYPED(off + on + n, PAGESIZE, offset_t)) { 1159 /* 1160 * We created pages w/o initializing them completely, 1161 * thus we need to zero the part that wasn't set up. 1162 * This can happen if we write to the end of the device 1163 * or if we had some sort of error during the uiomove. 1164 */ 1165 long nzero; 1166 offset_t nmoved; 1167 1168 nmoved = (uiop->uio_loffset - (off + on)); 1169 if (nmoved < 0 || nmoved > n) { 1170 panic("spec_write: nmoved bogus"); 1171 /*NOTREACHED*/ 1172 } 1173 nzero = (long)P2ROUNDUP(on + n, PAGESIZE) - 1174 (on + nmoved); 1175 if (nzero < 0 || (on + nmoved + nzero > MAXBSIZE)) { 1176 panic("spec_write: nzero bogus"); 1177 /*NOTREACHED*/ 1178 } 1179 (void) kzero(base + on + nmoved, (size_t)nzero); 1180 } 1181 1182 /* 1183 * Unlock the pages which have been allocated by 1184 * page_create_va() in segmap_pagecreate(). 1185 */ 1186 if (!vpm_enable && newpage) 1187 segmap_pageunlock(segkmap, base + on, 1188 (size_t)n, S_WRITE); 1189 1190 if (error == 0) { 1191 int flags = 0; 1192 1193 /* 1194 * Force write back for synchronous write cases. 1195 */ 1196 if (ioflag & (FSYNC|FDSYNC)) 1197 flags = SM_WRITE; 1198 else if (n + on == MAXBSIZE || IS_SWAPVP(vp)) { 1199 /* 1200 * Have written a whole block. 1201 * Start an asynchronous write and 1202 * mark the buffer to indicate that 1203 * it won't be needed again soon. 1204 * Push swap files here, since it 1205 * won't happen anywhere else. 1206 */ 1207 flags = SM_WRITE | SM_ASYNC | SM_DONTNEED; 1208 } 1209 smark(sp, SUPD|SCHG); 1210 if (vpm_enable) { 1211 error = vpm_sync_pages(blkvp, off, n, flags); 1212 } else { 1213 error = segmap_release(segkmap, base, flags); 1214 } 1215 } else { 1216 if (vpm_enable) { 1217 (void) vpm_sync_pages(blkvp, off, n, SM_INVAL); 1218 } else { 1219 (void) segmap_release(segkmap, base, SM_INVAL); 1220 } 1221 } 1222 1223 } while (error == 0 && uiop->uio_resid > 0 && n != 0); 1224 1225 return (error); 1226 } 1227 1228 /*ARGSUSED6*/ 1229 static int 1230 spec_ioctl(struct vnode *vp, int cmd, intptr_t arg, int mode, struct cred *cr, 1231 int *rvalp, caller_context_t *ct) 1232 { 1233 struct snode *sp; 1234 dev_t dev; 1235 int error; 1236 1237 if (vp->v_type != VCHR) 1238 return (ENOTTY); 1239 1240 /* 1241 * allow ioctls() to go through even for fenced snodes, as they 1242 * may include unconfiguration operation - for example popping of 1243 * streams modules. 1244 */ 1245 1246 sp = VTOS(vp); 1247 dev = sp->s_dev; 1248 if (STREAMSTAB(getmajor(dev))) { 1249 error = strioctl(vp, cmd, arg, mode, U_TO_K, cr, rvalp); 1250 } else { 1251 error = cdev_ioctl(dev, cmd, arg, mode, cr, rvalp); 1252 } 1253 return (error); 1254 } 1255 1256 static int 1257 spec_getattr( 1258 struct vnode *vp, 1259 struct vattr *vap, 1260 int flags, 1261 struct cred *cr, 1262 caller_context_t *ct) 1263 { 1264 int error; 1265 struct snode *sp; 1266 struct vnode *realvp; 1267 1268 /* With ATTR_COMM we will not get attributes from realvp */ 1269 if (flags & ATTR_COMM) { 1270 sp = VTOS(vp); 1271 vp = sp->s_commonvp; 1272 } 1273 sp = VTOS(vp); 1274 1275 /* we want stat() to fail with ENXIO if the device is fenced off */ 1276 if (S_ISFENCED(sp)) 1277 return (ENXIO); 1278 1279 realvp = sp->s_realvp; 1280 1281 if (realvp == NULL) { 1282 static int snode_shift = 0; 1283 1284 /* 1285 * Calculate the amount of bitshift to a snode pointer which 1286 * will still keep it unique. See below. 1287 */ 1288 if (snode_shift == 0) 1289 snode_shift = highbit(sizeof (struct snode)); 1290 ASSERT(snode_shift > 0); 1291 1292 /* 1293 * No real vnode behind this one. Fill in the fields 1294 * from the snode. 1295 * 1296 * This code should be refined to return only the 1297 * attributes asked for instead of all of them. 1298 */ 1299 vap->va_type = vp->v_type; 1300 vap->va_mode = 0; 1301 vap->va_uid = vap->va_gid = 0; 1302 vap->va_fsid = sp->s_fsid; 1303 1304 /* 1305 * If the va_nodeid is > MAX_USHORT, then i386 stats might 1306 * fail. So we shift down the snode pointer to try and get 1307 * the most uniqueness into 16-bits. 1308 */ 1309 vap->va_nodeid = ((ino64_t)(uintptr_t)sp >> snode_shift) & 1310 0xFFFF; 1311 vap->va_nlink = 0; 1312 vap->va_rdev = sp->s_dev; 1313 1314 /* 1315 * va_nblocks is the number of 512 byte blocks used to store 1316 * the mknod for the device, not the number of blocks on the 1317 * device itself. This is typically zero since the mknod is 1318 * represented directly in the inode itself. 1319 */ 1320 vap->va_nblocks = 0; 1321 } else { 1322 error = VOP_GETATTR(realvp, vap, flags, cr, ct); 1323 if (error != 0) 1324 return (error); 1325 } 1326 1327 /* set the size from the snode */ 1328 vap->va_size = SPEC_SIZE(VTOS(sp->s_commonvp)); 1329 vap->va_blksize = MAXBSIZE; 1330 1331 mutex_enter(&sp->s_lock); 1332 vap->va_atime.tv_sec = sp->s_atime; 1333 vap->va_mtime.tv_sec = sp->s_mtime; 1334 vap->va_ctime.tv_sec = sp->s_ctime; 1335 mutex_exit(&sp->s_lock); 1336 1337 vap->va_atime.tv_nsec = 0; 1338 vap->va_mtime.tv_nsec = 0; 1339 vap->va_ctime.tv_nsec = 0; 1340 vap->va_seq = 0; 1341 1342 return (0); 1343 } 1344 1345 static int 1346 spec_setattr( 1347 struct vnode *vp, 1348 struct vattr *vap, 1349 int flags, 1350 struct cred *cr, 1351 caller_context_t *ct) 1352 { 1353 struct snode *sp = VTOS(vp); 1354 struct vnode *realvp; 1355 int error; 1356 1357 /* fail with ENXIO if the device is fenced off */ 1358 if (S_ISFENCED(sp)) 1359 return (ENXIO); 1360 1361 if (vp->v_type == VCHR && vp->v_stream && (vap->va_mask & AT_SIZE)) { 1362 /* 1363 * 1135080: O_TRUNC should have no effect on 1364 * named pipes and terminal devices. 1365 */ 1366 ASSERT(vap->va_mask == AT_SIZE); 1367 return (0); 1368 } 1369 1370 if ((realvp = sp->s_realvp) == NULL) 1371 error = 0; /* no real vnode to update */ 1372 else 1373 error = VOP_SETATTR(realvp, vap, flags, cr, ct); 1374 if (error == 0) { 1375 /* 1376 * If times were changed, update snode. 1377 */ 1378 mutex_enter(&sp->s_lock); 1379 if (vap->va_mask & AT_ATIME) 1380 sp->s_atime = vap->va_atime.tv_sec; 1381 if (vap->va_mask & AT_MTIME) { 1382 sp->s_mtime = vap->va_mtime.tv_sec; 1383 sp->s_ctime = gethrestime_sec(); 1384 } 1385 mutex_exit(&sp->s_lock); 1386 } 1387 return (error); 1388 } 1389 1390 static int 1391 spec_access( 1392 struct vnode *vp, 1393 int mode, 1394 int flags, 1395 struct cred *cr, 1396 caller_context_t *ct) 1397 { 1398 struct vnode *realvp; 1399 struct snode *sp = VTOS(vp); 1400 1401 /* fail with ENXIO if the device is fenced off */ 1402 if (S_ISFENCED(sp)) 1403 return (ENXIO); 1404 1405 if ((realvp = sp->s_realvp) != NULL) 1406 return (VOP_ACCESS(realvp, mode, flags, cr, ct)); 1407 else 1408 return (0); /* Allow all access. */ 1409 } 1410 1411 /* 1412 * This can be called if creat or an open with O_CREAT is done on the root 1413 * of a lofs mount where the mounted entity is a special file. 1414 */ 1415 /*ARGSUSED*/ 1416 static int 1417 spec_create( 1418 struct vnode *dvp, 1419 char *name, 1420 vattr_t *vap, 1421 enum vcexcl excl, 1422 int mode, 1423 struct vnode **vpp, 1424 struct cred *cr, 1425 int flag, 1426 caller_context_t *ct, 1427 vsecattr_t *vsecp) 1428 { 1429 int error; 1430 struct snode *sp = VTOS(dvp); 1431 1432 /* fail with ENXIO if the device is fenced off */ 1433 if (S_ISFENCED(sp)) 1434 return (ENXIO); 1435 1436 ASSERT(dvp && (dvp->v_flag & VROOT) && *name == '\0'); 1437 if (excl == NONEXCL) { 1438 if (mode && (error = spec_access(dvp, mode, 0, cr, ct))) 1439 return (error); 1440 VN_HOLD(dvp); 1441 return (0); 1442 } 1443 return (EEXIST); 1444 } 1445 1446 /* 1447 * In order to sync out the snode times without multi-client problems, 1448 * make sure the times written out are never earlier than the times 1449 * already set in the vnode. 1450 */ 1451 static int 1452 spec_fsync( 1453 struct vnode *vp, 1454 int syncflag, 1455 struct cred *cr, 1456 caller_context_t *ct) 1457 { 1458 struct snode *sp = VTOS(vp); 1459 struct vnode *realvp; 1460 struct vnode *cvp; 1461 struct vattr va, vatmp; 1462 1463 /* allow syncing even if device is fenced off */ 1464 1465 /* If times didn't change, don't flush anything. */ 1466 mutex_enter(&sp->s_lock); 1467 if ((sp->s_flag & (SACC|SUPD|SCHG)) == 0 && vp->v_type != VBLK) { 1468 mutex_exit(&sp->s_lock); 1469 return (0); 1470 } 1471 sp->s_flag &= ~(SACC|SUPD|SCHG); 1472 mutex_exit(&sp->s_lock); 1473 cvp = sp->s_commonvp; 1474 realvp = sp->s_realvp; 1475 1476 if (vp->v_type == VBLK && cvp != vp && vn_has_cached_data(cvp) && 1477 (cvp->v_flag & VISSWAP) == 0) 1478 (void) VOP_PUTPAGE(cvp, (offset_t)0, 0, 0, cr, ct); 1479 1480 /* 1481 * For devices that support it, force write cache to stable storage. 1482 * We don't need the lock to check s_flags since we can treat 1483 * SNOFLUSH as a hint. 1484 */ 1485 if ((vp->v_type == VBLK || vp->v_type == VCHR) && 1486 !(sp->s_flag & SNOFLUSH)) { 1487 int rval, rc; 1488 struct dk_callback spec_callback; 1489 1490 spec_callback.dkc_flag = FLUSH_VOLATILE; 1491 spec_callback.dkc_callback = NULL; 1492 1493 /* synchronous flush on volatile cache */ 1494 rc = cdev_ioctl(vp->v_rdev, DKIOCFLUSHWRITECACHE, 1495 (intptr_t)&spec_callback, FNATIVE|FKIOCTL, cr, &rval); 1496 1497 if (rc == ENOTSUP || rc == ENOTTY) { 1498 mutex_enter(&sp->s_lock); 1499 sp->s_flag |= SNOFLUSH; 1500 mutex_exit(&sp->s_lock); 1501 } 1502 } 1503 1504 /* 1505 * If no real vnode to update, don't flush anything. 1506 */ 1507 if (realvp == NULL) 1508 return (0); 1509 1510 vatmp.va_mask = AT_ATIME|AT_MTIME; 1511 if (VOP_GETATTR(realvp, &vatmp, 0, cr, ct) == 0) { 1512 1513 mutex_enter(&sp->s_lock); 1514 if (vatmp.va_atime.tv_sec > sp->s_atime) 1515 va.va_atime = vatmp.va_atime; 1516 else { 1517 va.va_atime.tv_sec = sp->s_atime; 1518 va.va_atime.tv_nsec = 0; 1519 } 1520 if (vatmp.va_mtime.tv_sec > sp->s_mtime) 1521 va.va_mtime = vatmp.va_mtime; 1522 else { 1523 va.va_mtime.tv_sec = sp->s_mtime; 1524 va.va_mtime.tv_nsec = 0; 1525 } 1526 mutex_exit(&sp->s_lock); 1527 1528 va.va_mask = AT_ATIME|AT_MTIME; 1529 (void) VOP_SETATTR(realvp, &va, 0, cr, ct); 1530 } 1531 (void) VOP_FSYNC(realvp, syncflag, cr, ct); 1532 return (0); 1533 } 1534 1535 /*ARGSUSED*/ 1536 static void 1537 spec_inactive(struct vnode *vp, struct cred *cr, caller_context_t *ct) 1538 { 1539 struct snode *sp = VTOS(vp); 1540 struct vnode *cvp; 1541 struct vnode *rvp; 1542 1543 /* 1544 * If no one has reclaimed the vnode, remove from the 1545 * cache now. 1546 */ 1547 if (vp->v_count < 1) { 1548 panic("spec_inactive: Bad v_count"); 1549 /*NOTREACHED*/ 1550 } 1551 mutex_enter(&stable_lock); 1552 1553 mutex_enter(&vp->v_lock); 1554 /* 1555 * Drop the temporary hold by vn_rele now 1556 */ 1557 if (--vp->v_count != 0) { 1558 mutex_exit(&vp->v_lock); 1559 mutex_exit(&stable_lock); 1560 return; 1561 } 1562 mutex_exit(&vp->v_lock); 1563 1564 sdelete(sp); 1565 mutex_exit(&stable_lock); 1566 1567 /* We are the sole owner of sp now */ 1568 cvp = sp->s_commonvp; 1569 rvp = sp->s_realvp; 1570 1571 if (rvp) { 1572 /* 1573 * If the snode times changed, then update the times 1574 * associated with the "realvp". 1575 */ 1576 if ((sp->s_flag & (SACC|SUPD|SCHG)) != 0) { 1577 1578 struct vattr va, vatmp; 1579 1580 mutex_enter(&sp->s_lock); 1581 sp->s_flag &= ~(SACC|SUPD|SCHG); 1582 mutex_exit(&sp->s_lock); 1583 vatmp.va_mask = AT_ATIME|AT_MTIME; 1584 /* 1585 * The user may not own the device, but we 1586 * want to update the attributes anyway. 1587 */ 1588 if (VOP_GETATTR(rvp, &vatmp, 0, kcred, ct) == 0) { 1589 if (vatmp.va_atime.tv_sec > sp->s_atime) 1590 va.va_atime = vatmp.va_atime; 1591 else { 1592 va.va_atime.tv_sec = sp->s_atime; 1593 va.va_atime.tv_nsec = 0; 1594 } 1595 if (vatmp.va_mtime.tv_sec > sp->s_mtime) 1596 va.va_mtime = vatmp.va_mtime; 1597 else { 1598 va.va_mtime.tv_sec = sp->s_mtime; 1599 va.va_mtime.tv_nsec = 0; 1600 } 1601 1602 va.va_mask = AT_ATIME|AT_MTIME; 1603 (void) VOP_SETATTR(rvp, &va, 0, kcred, ct); 1604 } 1605 } 1606 } 1607 ASSERT(!vn_has_cached_data(vp)); 1608 vn_invalid(vp); 1609 1610 /* if we are sharing another file systems vfs, release it */ 1611 if (vp->v_vfsp && (vp->v_vfsp != &spec_vfs)) 1612 VFS_RELE(vp->v_vfsp); 1613 1614 /* if we have a realvp, release the realvp */ 1615 if (rvp) 1616 VN_RELE(rvp); 1617 1618 /* if we have a common, release the common */ 1619 if (cvp && (cvp != vp)) { 1620 VN_RELE(cvp); 1621 #ifdef DEBUG 1622 } else if (cvp) { 1623 /* 1624 * if this is the last reference to a common vnode, any 1625 * associated stream had better have been closed 1626 */ 1627 ASSERT(cvp == vp); 1628 ASSERT(cvp->v_stream == NULL); 1629 #endif /* DEBUG */ 1630 } 1631 1632 /* 1633 * if we have a hold on a devinfo node (established by 1634 * spec_assoc_vp_with_devi), release the hold 1635 */ 1636 if (sp->s_dip) 1637 ddi_release_devi(sp->s_dip); 1638 1639 /* 1640 * If we have an associated device policy, release it. 1641 */ 1642 if (sp->s_plcy != NULL) 1643 dpfree(sp->s_plcy); 1644 1645 /* 1646 * If all holds on the devinfo node are through specfs/devfs 1647 * and we just destroyed the last specfs node associated with the 1648 * device, then the devinfo node reference count should now be 1649 * zero. We can't check this because there may be other holds 1650 * on the node from non file system sources: ddi_hold_devi_by_instance 1651 * for example. 1652 */ 1653 kmem_cache_free(snode_cache, sp); 1654 } 1655 1656 static int 1657 spec_fid(struct vnode *vp, struct fid *fidp, caller_context_t *ct) 1658 { 1659 struct vnode *realvp; 1660 struct snode *sp = VTOS(vp); 1661 1662 if ((realvp = sp->s_realvp) != NULL) 1663 return (VOP_FID(realvp, fidp, ct)); 1664 else 1665 return (EINVAL); 1666 } 1667 1668 /*ARGSUSED1*/ 1669 static int 1670 spec_seek( 1671 struct vnode *vp, 1672 offset_t ooff, 1673 offset_t *noffp, 1674 caller_context_t *ct) 1675 { 1676 offset_t maxoff = spec_maxoffset(vp); 1677 1678 if (maxoff == -1 || *noffp <= maxoff) 1679 return (0); 1680 else 1681 return (EINVAL); 1682 } 1683 1684 static int 1685 spec_frlock( 1686 struct vnode *vp, 1687 int cmd, 1688 struct flock64 *bfp, 1689 int flag, 1690 offset_t offset, 1691 struct flk_callback *flk_cbp, 1692 struct cred *cr, 1693 caller_context_t *ct) 1694 { 1695 struct snode *sp = VTOS(vp); 1696 struct snode *csp; 1697 1698 csp = VTOS(sp->s_commonvp); 1699 /* 1700 * If file is being mapped, disallow frlock. 1701 */ 1702 if (csp->s_mapcnt > 0) 1703 return (EAGAIN); 1704 1705 return (fs_frlock(vp, cmd, bfp, flag, offset, flk_cbp, cr, ct)); 1706 } 1707 1708 static int 1709 spec_realvp(struct vnode *vp, struct vnode **vpp, caller_context_t *ct) 1710 { 1711 struct vnode *rvp; 1712 1713 if ((rvp = VTOS(vp)->s_realvp) != NULL) { 1714 vp = rvp; 1715 if (VOP_REALVP(vp, &rvp, ct) == 0) 1716 vp = rvp; 1717 } 1718 1719 *vpp = vp; 1720 return (0); 1721 } 1722 1723 /* 1724 * Return all the pages from [off..off + len] in block 1725 * or character device. 1726 */ 1727 /*ARGSUSED*/ 1728 static int 1729 spec_getpage( 1730 struct vnode *vp, 1731 offset_t off, 1732 size_t len, 1733 uint_t *protp, 1734 page_t *pl[], 1735 size_t plsz, 1736 struct seg *seg, 1737 caddr_t addr, 1738 enum seg_rw rw, 1739 struct cred *cr, 1740 caller_context_t *ct) 1741 { 1742 struct snode *sp = VTOS(vp); 1743 int err; 1744 1745 ASSERT(sp->s_commonvp == vp); 1746 1747 /* 1748 * XXX Given the above assertion, this might not do 1749 * what is wanted here. 1750 */ 1751 if (vp->v_flag & VNOMAP) 1752 return (ENOSYS); 1753 TRACE_4(TR_FAC_SPECFS, TR_SPECFS_GETPAGE, 1754 "specfs getpage:vp %p off %llx len %ld snode %p", 1755 vp, off, len, sp); 1756 1757 switch (vp->v_type) { 1758 case VBLK: 1759 if (protp != NULL) 1760 *protp = PROT_ALL; 1761 1762 if (((u_offset_t)off + len) > (SPEC_SIZE(sp) + PAGEOFFSET)) 1763 return (EFAULT); /* beyond EOF */ 1764 1765 if (len <= PAGESIZE) 1766 err = spec_getapage(vp, (u_offset_t)off, len, protp, pl, 1767 plsz, seg, addr, rw, cr); 1768 else 1769 err = pvn_getpages(spec_getapage, vp, (u_offset_t)off, 1770 len, protp, pl, plsz, seg, addr, rw, cr); 1771 break; 1772 1773 case VCHR: 1774 cmn_err(CE_NOTE, "spec_getpage called for character device. " 1775 "Check any non-ON consolidation drivers"); 1776 err = 0; 1777 pl[0] = (page_t *)0; 1778 break; 1779 1780 default: 1781 panic("spec_getpage: bad v_type 0x%x", vp->v_type); 1782 /*NOTREACHED*/ 1783 } 1784 1785 return (err); 1786 } 1787 1788 extern int klustsize; /* set in machdep.c */ 1789 1790 int spec_ra = 1; 1791 int spec_lostpage; /* number of times we lost original page */ 1792 1793 /*ARGSUSED2*/ 1794 static int 1795 spec_getapage( 1796 struct vnode *vp, 1797 u_offset_t off, 1798 size_t len, 1799 uint_t *protp, 1800 page_t *pl[], 1801 size_t plsz, 1802 struct seg *seg, 1803 caddr_t addr, 1804 enum seg_rw rw, 1805 struct cred *cr) 1806 { 1807 struct snode *sp; 1808 struct buf *bp; 1809 page_t *pp, *pp2; 1810 u_offset_t io_off1, io_off2; 1811 size_t io_len1; 1812 size_t io_len2; 1813 size_t blksz; 1814 u_offset_t blkoff; 1815 int dora, err; 1816 page_t *pagefound; 1817 uint_t xlen; 1818 size_t adj_klustsize; 1819 u_offset_t size; 1820 u_offset_t tmpoff; 1821 1822 sp = VTOS(vp); 1823 TRACE_3(TR_FAC_SPECFS, TR_SPECFS_GETAPAGE, 1824 "specfs getapage:vp %p off %llx snode %p", vp, off, sp); 1825 reread: 1826 1827 err = 0; 1828 bp = NULL; 1829 pp = NULL; 1830 pp2 = NULL; 1831 1832 if (pl != NULL) 1833 pl[0] = NULL; 1834 1835 size = SPEC_SIZE(VTOS(sp->s_commonvp)); 1836 1837 if (spec_ra && sp->s_nextr == off) 1838 dora = 1; 1839 else 1840 dora = 0; 1841 1842 if (size == UNKNOWN_SIZE) { 1843 dora = 0; 1844 adj_klustsize = PAGESIZE; 1845 } else { 1846 adj_klustsize = dora ? klustsize : PAGESIZE; 1847 } 1848 1849 again: 1850 if ((pagefound = page_exists(vp, off)) == NULL) { 1851 if (rw == S_CREATE) { 1852 /* 1853 * We're allocating a swap slot and it's 1854 * associated page was not found, so allocate 1855 * and return it. 1856 */ 1857 if ((pp = page_create_va(vp, off, 1858 PAGESIZE, PG_WAIT, seg, addr)) == NULL) { 1859 panic("spec_getapage: page_create"); 1860 /*NOTREACHED*/ 1861 } 1862 io_len1 = PAGESIZE; 1863 sp->s_nextr = off + PAGESIZE; 1864 } else { 1865 /* 1866 * Need to really do disk I/O to get the page(s). 1867 */ 1868 blkoff = (off / adj_klustsize) * adj_klustsize; 1869 if (size == UNKNOWN_SIZE) { 1870 blksz = PAGESIZE; 1871 } else { 1872 if (blkoff + adj_klustsize <= size) 1873 blksz = adj_klustsize; 1874 else 1875 blksz = 1876 MIN(size - blkoff, adj_klustsize); 1877 } 1878 1879 pp = pvn_read_kluster(vp, off, seg, addr, &tmpoff, 1880 &io_len1, blkoff, blksz, 0); 1881 io_off1 = tmpoff; 1882 /* 1883 * Make sure the page didn't sneek into the 1884 * cache while we blocked in pvn_read_kluster. 1885 */ 1886 if (pp == NULL) 1887 goto again; 1888 1889 /* 1890 * Zero part of page which we are not 1891 * going to be reading from disk now. 1892 */ 1893 xlen = (uint_t)(io_len1 & PAGEOFFSET); 1894 if (xlen != 0) 1895 pagezero(pp->p_prev, xlen, PAGESIZE - xlen); 1896 1897 bp = spec_startio(vp, pp, io_off1, io_len1, 1898 pl == NULL ? (B_ASYNC | B_READ) : B_READ); 1899 sp->s_nextr = io_off1 + io_len1; 1900 } 1901 } 1902 1903 if (dora && rw != S_CREATE) { 1904 u_offset_t off2; 1905 caddr_t addr2; 1906 1907 off2 = ((off / adj_klustsize) + 1) * adj_klustsize; 1908 addr2 = addr + (off2 - off); 1909 1910 pp2 = NULL; 1911 /* 1912 * If we are past EOF then don't bother trying 1913 * with read-ahead. 1914 */ 1915 if (off2 >= size) 1916 pp2 = NULL; 1917 else { 1918 if (off2 + adj_klustsize <= size) 1919 blksz = adj_klustsize; 1920 else 1921 blksz = MIN(size - off2, adj_klustsize); 1922 1923 pp2 = pvn_read_kluster(vp, off2, seg, addr2, &tmpoff, 1924 &io_len2, off2, blksz, 1); 1925 io_off2 = tmpoff; 1926 } 1927 1928 if (pp2 != NULL) { 1929 /* 1930 * Zero part of page which we are not 1931 * going to be reading from disk now. 1932 */ 1933 xlen = (uint_t)(io_len2 & PAGEOFFSET); 1934 if (xlen != 0) 1935 pagezero(pp2->p_prev, xlen, PAGESIZE - xlen); 1936 1937 (void) spec_startio(vp, pp2, io_off2, io_len2, 1938 B_READ | B_ASYNC); 1939 } 1940 } 1941 1942 if (pl == NULL) 1943 return (err); 1944 1945 if (bp != NULL) { 1946 err = biowait(bp); 1947 pageio_done(bp); 1948 1949 if (err) { 1950 if (pp != NULL) 1951 pvn_read_done(pp, B_ERROR); 1952 return (err); 1953 } 1954 } 1955 1956 if (pagefound) { 1957 se_t se = (rw == S_CREATE ? SE_EXCL : SE_SHARED); 1958 /* 1959 * Page exists in the cache, acquire the appropriate 1960 * lock. If this fails, start all over again. 1961 */ 1962 1963 if ((pp = page_lookup(vp, off, se)) == NULL) { 1964 spec_lostpage++; 1965 goto reread; 1966 } 1967 pl[0] = pp; 1968 pl[1] = NULL; 1969 1970 sp->s_nextr = off + PAGESIZE; 1971 return (0); 1972 } 1973 1974 if (pp != NULL) 1975 pvn_plist_init(pp, pl, plsz, off, io_len1, rw); 1976 return (0); 1977 } 1978 1979 /* 1980 * Flags are composed of {B_INVAL, B_DIRTY B_FREE, B_DONTNEED, B_FORCE}. 1981 * If len == 0, do from off to EOF. 1982 * 1983 * The normal cases should be len == 0 & off == 0 (entire vp list), 1984 * len == MAXBSIZE (from segmap_release actions), and len == PAGESIZE 1985 * (from pageout). 1986 */ 1987 /*ARGSUSED5*/ 1988 int 1989 spec_putpage( 1990 struct vnode *vp, 1991 offset_t off, 1992 size_t len, 1993 int flags, 1994 struct cred *cr, 1995 caller_context_t *ct) 1996 { 1997 struct snode *sp = VTOS(vp); 1998 struct vnode *cvp; 1999 page_t *pp; 2000 u_offset_t io_off; 2001 size_t io_len = 0; /* for lint */ 2002 int err = 0; 2003 u_offset_t size; 2004 u_offset_t tmpoff; 2005 2006 ASSERT(vp->v_count != 0); 2007 2008 if (vp->v_flag & VNOMAP) 2009 return (ENOSYS); 2010 2011 cvp = sp->s_commonvp; 2012 size = SPEC_SIZE(VTOS(cvp)); 2013 2014 if (!vn_has_cached_data(vp) || off >= size) 2015 return (0); 2016 2017 ASSERT(vp->v_type == VBLK && cvp == vp); 2018 TRACE_4(TR_FAC_SPECFS, TR_SPECFS_PUTPAGE, 2019 "specfs putpage:vp %p off %llx len %ld snode %p", 2020 vp, off, len, sp); 2021 2022 if (len == 0) { 2023 /* 2024 * Search the entire vp list for pages >= off. 2025 */ 2026 err = pvn_vplist_dirty(vp, off, spec_putapage, 2027 flags, cr); 2028 } else { 2029 u_offset_t eoff; 2030 2031 /* 2032 * Loop over all offsets in the range [off...off + len] 2033 * looking for pages to deal with. We set limits so 2034 * that we kluster to klustsize boundaries. 2035 */ 2036 eoff = off + len; 2037 for (io_off = off; io_off < eoff && io_off < size; 2038 io_off += io_len) { 2039 /* 2040 * If we are not invalidating, synchronously 2041 * freeing or writing pages use the routine 2042 * page_lookup_nowait() to prevent reclaiming 2043 * them from the free list. 2044 */ 2045 if ((flags & B_INVAL) || ((flags & B_ASYNC) == 0)) { 2046 pp = page_lookup(vp, io_off, 2047 (flags & (B_INVAL | B_FREE)) ? 2048 SE_EXCL : SE_SHARED); 2049 } else { 2050 pp = page_lookup_nowait(vp, io_off, 2051 (flags & B_FREE) ? SE_EXCL : SE_SHARED); 2052 } 2053 2054 if (pp == NULL || pvn_getdirty(pp, flags) == 0) 2055 io_len = PAGESIZE; 2056 else { 2057 err = spec_putapage(vp, pp, &tmpoff, &io_len, 2058 flags, cr); 2059 io_off = tmpoff; 2060 if (err != 0) 2061 break; 2062 /* 2063 * "io_off" and "io_len" are returned as 2064 * the range of pages we actually wrote. 2065 * This allows us to skip ahead more quickly 2066 * since several pages may've been dealt 2067 * with by this iteration of the loop. 2068 */ 2069 } 2070 } 2071 } 2072 return (err); 2073 } 2074 2075 2076 /* 2077 * Write out a single page, possibly klustering adjacent 2078 * dirty pages. 2079 */ 2080 /*ARGSUSED5*/ 2081 static int 2082 spec_putapage( 2083 struct vnode *vp, 2084 page_t *pp, 2085 u_offset_t *offp, /* return value */ 2086 size_t *lenp, /* return value */ 2087 int flags, 2088 struct cred *cr) 2089 { 2090 struct snode *sp = VTOS(vp); 2091 u_offset_t io_off; 2092 size_t io_len; 2093 size_t blksz; 2094 u_offset_t blkoff; 2095 int err = 0; 2096 struct buf *bp; 2097 u_offset_t size; 2098 size_t adj_klustsize; 2099 u_offset_t tmpoff; 2100 2101 /* 2102 * Destroy read ahead value since we are really going to write. 2103 */ 2104 sp->s_nextr = 0; 2105 size = SPEC_SIZE(VTOS(sp->s_commonvp)); 2106 2107 adj_klustsize = klustsize; 2108 2109 blkoff = (pp->p_offset / adj_klustsize) * adj_klustsize; 2110 2111 if (blkoff + adj_klustsize <= size) 2112 blksz = adj_klustsize; 2113 else 2114 blksz = size - blkoff; 2115 2116 /* 2117 * Find a kluster that fits in one contiguous chunk. 2118 */ 2119 pp = pvn_write_kluster(vp, pp, &tmpoff, &io_len, blkoff, 2120 blksz, flags); 2121 io_off = tmpoff; 2122 2123 /* 2124 * Check for page length rounding problems 2125 * XXX - Is this necessary? 2126 */ 2127 if (io_off + io_len > size) { 2128 ASSERT((io_off + io_len) - size < PAGESIZE); 2129 io_len = size - io_off; 2130 } 2131 2132 bp = spec_startio(vp, pp, io_off, io_len, B_WRITE | flags); 2133 2134 /* 2135 * Wait for i/o to complete if the request is not B_ASYNC. 2136 */ 2137 if ((flags & B_ASYNC) == 0) { 2138 err = biowait(bp); 2139 pageio_done(bp); 2140 pvn_write_done(pp, ((err) ? B_ERROR : 0) | B_WRITE | flags); 2141 } 2142 2143 if (offp) 2144 *offp = io_off; 2145 if (lenp) 2146 *lenp = io_len; 2147 TRACE_4(TR_FAC_SPECFS, TR_SPECFS_PUTAPAGE, 2148 "specfs putapage:vp %p offp %p snode %p err %d", 2149 vp, offp, sp, err); 2150 return (err); 2151 } 2152 2153 /* 2154 * Flags are composed of {B_ASYNC, B_INVAL, B_FREE, B_DONTNEED} 2155 */ 2156 static struct buf * 2157 spec_startio( 2158 struct vnode *vp, 2159 page_t *pp, 2160 u_offset_t io_off, 2161 size_t io_len, 2162 int flags) 2163 { 2164 struct buf *bp; 2165 2166 bp = pageio_setup(pp, io_len, vp, flags); 2167 2168 bp->b_edev = vp->v_rdev; 2169 bp->b_dev = cmpdev(vp->v_rdev); 2170 bp->b_blkno = btodt(io_off); 2171 bp->b_un.b_addr = (caddr_t)0; 2172 2173 (void) bdev_strategy(bp); 2174 2175 if (flags & B_READ) 2176 lwp_stat_update(LWP_STAT_INBLK, 1); 2177 else 2178 lwp_stat_update(LWP_STAT_OUBLK, 1); 2179 2180 return (bp); 2181 } 2182 2183 static int 2184 spec_poll( 2185 struct vnode *vp, 2186 short events, 2187 int anyyet, 2188 short *reventsp, 2189 struct pollhead **phpp, 2190 caller_context_t *ct) 2191 { 2192 dev_t dev; 2193 int error; 2194 2195 if (vp->v_type == VBLK) 2196 error = fs_poll(vp, events, anyyet, reventsp, phpp, ct); 2197 else { 2198 ASSERT(vp->v_type == VCHR); 2199 dev = vp->v_rdev; 2200 if (STREAMSTAB(getmajor(dev))) { 2201 ASSERT(vp->v_stream != NULL); 2202 error = strpoll(vp->v_stream, events, anyyet, 2203 reventsp, phpp); 2204 } else if (devopsp[getmajor(dev)]->devo_cb_ops->cb_chpoll) { 2205 error = cdev_poll(dev, events, anyyet, reventsp, phpp); 2206 } else { 2207 error = fs_poll(vp, events, anyyet, reventsp, phpp, ct); 2208 } 2209 } 2210 return (error); 2211 } 2212 2213 /* 2214 * This routine is called through the cdevsw[] table to handle 2215 * traditional mmap'able devices that support a d_mmap function. 2216 */ 2217 /*ARGSUSED8*/ 2218 int 2219 spec_segmap( 2220 dev_t dev, 2221 off_t off, 2222 struct as *as, 2223 caddr_t *addrp, 2224 off_t len, 2225 uint_t prot, 2226 uint_t maxprot, 2227 uint_t flags, 2228 struct cred *cred) 2229 { 2230 struct segdev_crargs dev_a; 2231 int (*mapfunc)(dev_t dev, off_t off, int prot); 2232 size_t i; 2233 int error; 2234 2235 if ((mapfunc = devopsp[getmajor(dev)]->devo_cb_ops->cb_mmap) == nodev) 2236 return (ENODEV); 2237 TRACE_4(TR_FAC_SPECFS, TR_SPECFS_SEGMAP, 2238 "specfs segmap:dev %x as %p len %lx prot %x", 2239 dev, as, len, prot); 2240 2241 /* 2242 * Character devices that support the d_mmap 2243 * interface can only be mmap'ed shared. 2244 */ 2245 if ((flags & MAP_TYPE) != MAP_SHARED) 2246 return (EINVAL); 2247 2248 /* 2249 * Check to ensure that the entire range is 2250 * legal and we are not trying to map in 2251 * more than the device will let us. 2252 */ 2253 for (i = 0; i < len; i += PAGESIZE) { 2254 if (cdev_mmap(mapfunc, dev, off + i, maxprot) == -1) 2255 return (ENXIO); 2256 } 2257 2258 as_rangelock(as); 2259 /* Pick an address w/o worrying about any vac alignment constraints. */ 2260 error = choose_addr(as, addrp, len, off, ADDR_NOVACALIGN, flags); 2261 if (error != 0) { 2262 as_rangeunlock(as); 2263 return (error); 2264 } 2265 2266 dev_a.mapfunc = mapfunc; 2267 dev_a.dev = dev; 2268 dev_a.offset = off; 2269 dev_a.prot = (uchar_t)prot; 2270 dev_a.maxprot = (uchar_t)maxprot; 2271 dev_a.hat_flags = 0; 2272 dev_a.hat_attr = 0; 2273 dev_a.devmap_data = NULL; 2274 2275 error = as_map(as, *addrp, len, segdev_create, &dev_a); 2276 as_rangeunlock(as); 2277 return (error); 2278 } 2279 2280 int 2281 spec_char_map( 2282 dev_t dev, 2283 offset_t off, 2284 struct as *as, 2285 caddr_t *addrp, 2286 size_t len, 2287 uchar_t prot, 2288 uchar_t maxprot, 2289 uint_t flags, 2290 struct cred *cred) 2291 { 2292 int error = 0; 2293 major_t maj = getmajor(dev); 2294 int map_flag; 2295 int (*segmap)(dev_t, off_t, struct as *, 2296 caddr_t *, off_t, uint_t, uint_t, uint_t, cred_t *); 2297 int (*devmap)(dev_t, devmap_cookie_t, offset_t, 2298 size_t, size_t *, uint_t); 2299 int (*mmap)(dev_t dev, off_t off, int prot); 2300 2301 /* 2302 * Character device: let the device driver 2303 * pick the appropriate segment driver. 2304 * 2305 * 4.x compat.: allow 'NULL' cb_segmap => spec_segmap 2306 * Kindness: allow 'nulldev' cb_segmap => spec_segmap 2307 */ 2308 segmap = devopsp[maj]->devo_cb_ops->cb_segmap; 2309 if (segmap == NULL || segmap == nulldev || segmap == nodev) { 2310 mmap = devopsp[maj]->devo_cb_ops->cb_mmap; 2311 map_flag = devopsp[maj]->devo_cb_ops->cb_flag; 2312 2313 /* 2314 * Use old mmap framework if the driver has both mmap 2315 * and devmap entry points. This is to prevent the 2316 * system from calling invalid devmap entry point 2317 * for some drivers that might have put garbage in the 2318 * devmap entry point. 2319 */ 2320 if ((map_flag & D_DEVMAP) || mmap == NULL || 2321 mmap == nulldev || mmap == nodev) { 2322 devmap = devopsp[maj]->devo_cb_ops->cb_devmap; 2323 2324 /* 2325 * If driver provides devmap entry point in 2326 * cb_ops but not xx_segmap(9E), call 2327 * devmap_setup with default settings 2328 * (NULL) for callback_ops and driver 2329 * callback private data 2330 */ 2331 if (devmap == nodev || devmap == NULL || 2332 devmap == nulldev) 2333 return (ENODEV); 2334 2335 error = devmap_setup(dev, off, as, addrp, 2336 len, prot, maxprot, flags, cred); 2337 2338 return (error); 2339 } else 2340 segmap = spec_segmap; 2341 } else 2342 segmap = cdev_segmap; 2343 2344 return ((*segmap)(dev, (off_t)off, as, addrp, len, prot, 2345 maxprot, flags, cred)); 2346 } 2347 2348 /*ARGSUSED9*/ 2349 static int 2350 spec_map( 2351 struct vnode *vp, 2352 offset_t off, 2353 struct as *as, 2354 caddr_t *addrp, 2355 size_t len, 2356 uchar_t prot, 2357 uchar_t maxprot, 2358 uint_t flags, 2359 struct cred *cred, 2360 caller_context_t *ct) 2361 { 2362 int error = 0; 2363 struct snode *sp = VTOS(vp); 2364 2365 if (vp->v_flag & VNOMAP) 2366 return (ENOSYS); 2367 2368 /* fail map with ENXIO if the device is fenced off */ 2369 if (S_ISFENCED(sp)) 2370 return (ENXIO); 2371 2372 /* 2373 * If file is locked, fail mapping attempt. 2374 */ 2375 if (vn_has_flocks(vp)) 2376 return (EAGAIN); 2377 2378 if (vp->v_type == VCHR) { 2379 return (spec_char_map(vp->v_rdev, off, as, addrp, len, prot, 2380 maxprot, flags, cred)); 2381 } else if (vp->v_type == VBLK) { 2382 struct segvn_crargs vn_a; 2383 struct vnode *cvp; 2384 struct snode *sp; 2385 2386 /* 2387 * Block device, use segvn mapping to the underlying commonvp 2388 * for pages. 2389 */ 2390 if (off > spec_maxoffset(vp)) 2391 return (ENXIO); 2392 2393 sp = VTOS(vp); 2394 cvp = sp->s_commonvp; 2395 ASSERT(cvp != NULL); 2396 2397 if (off < 0 || ((offset_t)(off + len) < 0)) 2398 return (ENXIO); 2399 2400 as_rangelock(as); 2401 error = choose_addr(as, addrp, len, off, ADDR_VACALIGN, flags); 2402 if (error != 0) { 2403 as_rangeunlock(as); 2404 return (error); 2405 } 2406 2407 vn_a.vp = cvp; 2408 vn_a.offset = off; 2409 vn_a.type = flags & MAP_TYPE; 2410 vn_a.prot = (uchar_t)prot; 2411 vn_a.maxprot = (uchar_t)maxprot; 2412 vn_a.flags = flags & ~MAP_TYPE; 2413 vn_a.cred = cred; 2414 vn_a.amp = NULL; 2415 vn_a.szc = 0; 2416 vn_a.lgrp_mem_policy_flags = 0; 2417 2418 error = as_map(as, *addrp, len, segvn_create, &vn_a); 2419 as_rangeunlock(as); 2420 } else 2421 return (ENODEV); 2422 2423 return (error); 2424 } 2425 2426 /*ARGSUSED1*/ 2427 static int 2428 spec_addmap( 2429 struct vnode *vp, /* the common vnode */ 2430 offset_t off, 2431 struct as *as, 2432 caddr_t addr, 2433 size_t len, /* how many bytes to add */ 2434 uchar_t prot, 2435 uchar_t maxprot, 2436 uint_t flags, 2437 struct cred *cred, 2438 caller_context_t *ct) 2439 { 2440 int error = 0; 2441 struct snode *csp = VTOS(vp); 2442 ulong_t npages; 2443 2444 ASSERT(vp != NULL && VTOS(vp)->s_commonvp == vp); 2445 2446 /* 2447 * XXX Given the above assertion, this might not 2448 * be a particularly sensible thing to test. 2449 */ 2450 if (vp->v_flag & VNOMAP) 2451 return (ENOSYS); 2452 2453 /* fail with EIO if the device is fenced off */ 2454 if (S_ISFENCED(csp)) 2455 return (EIO); 2456 2457 npages = btopr(len); 2458 LOCK_CSP(csp); 2459 csp->s_mapcnt += npages; 2460 2461 UNLOCK_CSP(csp); 2462 return (error); 2463 } 2464 2465 /*ARGSUSED1*/ 2466 static int 2467 spec_delmap( 2468 struct vnode *vp, /* the common vnode */ 2469 offset_t off, 2470 struct as *as, 2471 caddr_t addr, 2472 size_t len, /* how many bytes to take away */ 2473 uint_t prot, 2474 uint_t maxprot, 2475 uint_t flags, 2476 struct cred *cred, 2477 caller_context_t *ct) 2478 { 2479 struct snode *csp = VTOS(vp); 2480 ulong_t npages; 2481 long mcnt; 2482 2483 /* segdev passes us the common vp */ 2484 2485 ASSERT(vp != NULL && VTOS(vp)->s_commonvp == vp); 2486 2487 /* allow delmap to succeed even if device fenced off */ 2488 2489 /* 2490 * XXX Given the above assertion, this might not 2491 * be a particularly sensible thing to test.. 2492 */ 2493 if (vp->v_flag & VNOMAP) 2494 return (ENOSYS); 2495 2496 npages = btopr(len); 2497 2498 LOCK_CSP(csp); 2499 mutex_enter(&csp->s_lock); 2500 mcnt = (csp->s_mapcnt -= npages); 2501 2502 if (mcnt == 0) { 2503 /* 2504 * Call the close routine when the last reference of any 2505 * kind through any [s, v]node goes away. The s_dip hold 2506 * on the devinfo node is released when the vnode is 2507 * destroyed. 2508 */ 2509 if (csp->s_count == 0) { 2510 csp->s_flag &= ~(SNEEDCLOSE | SSIZEVALID); 2511 2512 /* See comment in spec_close() */ 2513 if (csp->s_flag & (SCLONE | SSELFCLONE)) 2514 csp->s_flag &= ~SDIPSET; 2515 2516 mutex_exit(&csp->s_lock); 2517 2518 (void) device_close(vp, 0, cred); 2519 } else 2520 mutex_exit(&csp->s_lock); 2521 2522 mutex_enter(&csp->s_lock); 2523 } 2524 ASSERT(mcnt >= 0); 2525 2526 UNLOCK_CSP_LOCK_HELD(csp); 2527 mutex_exit(&csp->s_lock); 2528 2529 return (0); 2530 } 2531 2532 /*ARGSUSED4*/ 2533 static int 2534 spec_dump( 2535 struct vnode *vp, 2536 caddr_t addr, 2537 offset_t bn, 2538 offset_t count, 2539 caller_context_t *ct) 2540 { 2541 /* allow dump to succeed even if device fenced off */ 2542 2543 ASSERT(vp->v_type == VBLK); 2544 return (bdev_dump(vp->v_rdev, addr, (daddr_t)bn, (int)count)); 2545 } 2546 2547 2548 /* 2549 * Do i/o on the given page list from/to vp, io_off for io_len. 2550 * Flags are composed of: 2551 * {B_ASYNC, B_INVAL, B_FREE, B_DONTNEED, B_READ, B_WRITE} 2552 * If B_ASYNC is not set i/o is waited for. 2553 */ 2554 /*ARGSUSED5*/ 2555 static int 2556 spec_pageio( 2557 struct vnode *vp, 2558 page_t *pp, 2559 u_offset_t io_off, 2560 size_t io_len, 2561 int flags, 2562 cred_t *cr, 2563 caller_context_t *ct) 2564 { 2565 struct buf *bp = NULL; 2566 int err = 0; 2567 2568 if (pp == NULL) 2569 return (EINVAL); 2570 2571 bp = spec_startio(vp, pp, io_off, io_len, flags); 2572 2573 /* 2574 * Wait for i/o to complete if the request is not B_ASYNC. 2575 */ 2576 if ((flags & B_ASYNC) == 0) { 2577 err = biowait(bp); 2578 pageio_done(bp); 2579 } 2580 return (err); 2581 } 2582 2583 /* 2584 * Set ACL on underlying vnode if one exists, or return ENOSYS otherwise. 2585 */ 2586 int 2587 spec_setsecattr( 2588 struct vnode *vp, 2589 vsecattr_t *vsap, 2590 int flag, 2591 struct cred *cr, 2592 caller_context_t *ct) 2593 { 2594 struct vnode *realvp; 2595 struct snode *sp = VTOS(vp); 2596 int error; 2597 2598 /* fail with ENXIO if the device is fenced off */ 2599 if (S_ISFENCED(sp)) 2600 return (ENXIO); 2601 2602 /* 2603 * The acl(2) system calls VOP_RWLOCK on the file before setting an 2604 * ACL, but since specfs does not serialize reads and writes, this 2605 * VOP does not do anything. However, some backing file systems may 2606 * expect the lock to be held before setting an ACL, so it is taken 2607 * here privately to avoid serializing specfs reads and writes. 2608 */ 2609 if ((realvp = sp->s_realvp) != NULL) { 2610 (void) VOP_RWLOCK(realvp, V_WRITELOCK_TRUE, ct); 2611 error = VOP_SETSECATTR(realvp, vsap, flag, cr, ct); 2612 (void) VOP_RWUNLOCK(realvp, V_WRITELOCK_TRUE, ct); 2613 return (error); 2614 } else 2615 return (fs_nosys()); 2616 } 2617 2618 /* 2619 * Get ACL from underlying vnode if one exists, or fabricate it from 2620 * the permissions returned by spec_getattr() otherwise. 2621 */ 2622 int 2623 spec_getsecattr( 2624 struct vnode *vp, 2625 vsecattr_t *vsap, 2626 int flag, 2627 struct cred *cr, 2628 caller_context_t *ct) 2629 { 2630 struct vnode *realvp; 2631 struct snode *sp = VTOS(vp); 2632 2633 /* fail with ENXIO if the device is fenced off */ 2634 if (S_ISFENCED(sp)) 2635 return (ENXIO); 2636 2637 if ((realvp = sp->s_realvp) != NULL) 2638 return (VOP_GETSECATTR(realvp, vsap, flag, cr, ct)); 2639 else 2640 return (fs_fab_acl(vp, vsap, flag, cr, ct)); 2641 } 2642 2643 int 2644 spec_pathconf( 2645 vnode_t *vp, 2646 int cmd, 2647 ulong_t *valp, 2648 cred_t *cr, 2649 caller_context_t *ct) 2650 { 2651 vnode_t *realvp; 2652 struct snode *sp = VTOS(vp); 2653 2654 /* fail with ENXIO if the device is fenced off */ 2655 if (S_ISFENCED(sp)) 2656 return (ENXIO); 2657 2658 if ((realvp = sp->s_realvp) != NULL) 2659 return (VOP_PATHCONF(realvp, cmd, valp, cr, ct)); 2660 else 2661 return (fs_pathconf(vp, cmd, valp, cr, ct)); 2662 } 2663