xref: /titanic_52/usr/src/uts/common/fs/sockfs/socksyscalls.c (revision 4c1177a46d4d850e30806d4e27d635527bba8e90)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 1995, 2010, Oracle and/or its affiliates. All rights reserved.
24  */
25 
26 /* Copyright (c) 2013, OmniTI Computer Consulting, Inc. All rights reserved. */
27 /*
28  * Copyright 2015 Nexenta Systems, Inc. All rights reserved.
29  */
30 
31 #include <sys/types.h>
32 #include <sys/t_lock.h>
33 #include <sys/param.h>
34 #include <sys/systm.h>
35 #include <sys/buf.h>
36 #include <sys/conf.h>
37 #include <sys/cred.h>
38 #include <sys/kmem.h>
39 #include <sys/sysmacros.h>
40 #include <sys/vfs.h>
41 #include <sys/vnode.h>
42 #include <sys/debug.h>
43 #include <sys/errno.h>
44 #include <sys/time.h>
45 #include <sys/file.h>
46 #include <sys/user.h>
47 #include <sys/stream.h>
48 #include <sys/strsubr.h>
49 #include <sys/strsun.h>
50 #include <sys/sunddi.h>
51 #include <sys/esunddi.h>
52 #include <sys/flock.h>
53 #include <sys/modctl.h>
54 #include <sys/cmn_err.h>
55 #include <sys/vmsystm.h>
56 #include <sys/policy.h>
57 
58 #include <sys/socket.h>
59 #include <sys/socketvar.h>
60 
61 #include <sys/isa_defs.h>
62 #include <sys/inttypes.h>
63 #include <sys/systm.h>
64 #include <sys/cpuvar.h>
65 #include <sys/filio.h>
66 #include <sys/sendfile.h>
67 #include <sys/ddi.h>
68 #include <vm/seg.h>
69 #include <vm/seg_map.h>
70 #include <vm/seg_kpm.h>
71 
72 #include <fs/sockfs/nl7c.h>
73 #include <fs/sockfs/sockcommon.h>
74 #include <fs/sockfs/sockfilter_impl.h>
75 #include <fs/sockfs/socktpi.h>
76 
77 #ifdef SOCK_TEST
78 int do_useracc = 1;		/* Controlled by setting SO_DEBUG to 4 */
79 #else
80 #define	do_useracc	1
81 #endif /* SOCK_TEST */
82 
83 extern int	xnet_truncate_print;
84 
85 extern void	nl7c_init(void);
86 extern int	sockfs_defer_nl7c_init;
87 
88 /*
89  * Note: DEF_IOV_MAX is defined and used as it is in "fs/vncalls.c"
90  *	 as there isn't a formal definition of IOV_MAX ???
91  */
92 #define	MSG_MAXIOVLEN	16
93 
94 /*
95  * Kernel component of socket creation.
96  *
97  * The socket library determines which version number to use.
98  * First the library calls this with a NULL devpath. If this fails
99  * to find a transport (using solookup) the library will look in /etc/netconfig
100  * for the appropriate transport. If one is found it will pass in the
101  * devpath for the kernel to use.
102  */
103 int
104 so_socket(int family, int type_w_flags, int protocol, char *devpath,
105     int version)
106 {
107 	struct sonode *so;
108 	vnode_t *vp;
109 	struct file *fp;
110 	int fd;
111 	int error;
112 	int type;
113 
114 	type = type_w_flags & SOCK_TYPE_MASK;
115 	type_w_flags &= ~SOCK_TYPE_MASK;
116 	if (type_w_flags & ~(SOCK_CLOEXEC|SOCK_NDELAY|SOCK_NONBLOCK))
117 		return (set_errno(EINVAL));
118 
119 	if (devpath != NULL) {
120 		char *buf;
121 		size_t kdevpathlen = 0;
122 
123 		buf = kmem_alloc(MAXPATHLEN, KM_SLEEP);
124 		if ((error = copyinstr(devpath, buf,
125 		    MAXPATHLEN, &kdevpathlen)) != 0) {
126 			kmem_free(buf, MAXPATHLEN);
127 			return (set_errno(error));
128 		}
129 		so = socket_create(family, type, protocol, buf, NULL,
130 		    SOCKET_SLEEP, version, CRED(), &error);
131 		kmem_free(buf, MAXPATHLEN);
132 	} else {
133 		so = socket_create(family, type, protocol, NULL, NULL,
134 		    SOCKET_SLEEP, version, CRED(), &error);
135 	}
136 	if (so == NULL)
137 		return (set_errno(error));
138 
139 	/* Allocate a file descriptor for the socket */
140 	vp = SOTOV(so);
141 	if (error = falloc(vp, FWRITE|FREAD, &fp, &fd)) {
142 		(void) socket_close(so, 0, CRED());
143 		socket_destroy(so);
144 		return (set_errno(error));
145 	}
146 
147 	/*
148 	 * Now fill in the entries that falloc reserved
149 	 */
150 	if (type_w_flags & SOCK_NDELAY) {
151 		so->so_state |= SS_NDELAY;
152 		fp->f_flag |= FNDELAY;
153 	}
154 	if (type_w_flags & SOCK_NONBLOCK) {
155 		so->so_state |= SS_NONBLOCK;
156 		fp->f_flag |= FNONBLOCK;
157 	}
158 	mutex_exit(&fp->f_tlock);
159 	setf(fd, fp);
160 	if ((type_w_flags & SOCK_CLOEXEC) != 0) {
161 		f_setfd(fd, FD_CLOEXEC);
162 	}
163 
164 	return (fd);
165 }
166 
167 /*
168  * Map from a file descriptor to a socket node.
169  * Returns with the file descriptor held i.e. the caller has to
170  * use releasef when done with the file descriptor.
171  */
172 struct sonode *
173 getsonode(int sock, int *errorp, file_t **fpp)
174 {
175 	file_t *fp;
176 	vnode_t *vp;
177 	struct sonode *so;
178 
179 	if ((fp = getf(sock)) == NULL) {
180 		*errorp = EBADF;
181 		eprintline(*errorp);
182 		return (NULL);
183 	}
184 	vp = fp->f_vnode;
185 	/* Check if it is a socket */
186 	if (vp->v_type != VSOCK) {
187 		releasef(sock);
188 		*errorp = ENOTSOCK;
189 		eprintline(*errorp);
190 		return (NULL);
191 	}
192 	/*
193 	 * Use the stream head to find the real socket vnode.
194 	 * This is needed when namefs sits above sockfs.
195 	 */
196 	if (vp->v_stream) {
197 		ASSERT(vp->v_stream->sd_vnode);
198 		vp = vp->v_stream->sd_vnode;
199 
200 		so = VTOSO(vp);
201 		if (so->so_version == SOV_STREAM) {
202 			releasef(sock);
203 			*errorp = ENOTSOCK;
204 			eprintsoline(so, *errorp);
205 			return (NULL);
206 		}
207 	} else {
208 		so = VTOSO(vp);
209 	}
210 	if (fpp)
211 		*fpp = fp;
212 	return (so);
213 }
214 
215 /*
216  * Allocate and copyin a sockaddr.
217  * Ensures NULL termination for AF_UNIX addresses by extending them
218  * with one NULL byte if need be. Verifies that the length is not
219  * excessive to prevent an application from consuming all of kernel
220  * memory. Returns NULL when an error occurred.
221  */
222 static struct sockaddr *
223 copyin_name(struct sonode *so, struct sockaddr *name, socklen_t *namelenp,
224     int *errorp)
225 {
226 	char	*faddr;
227 	size_t	namelen = (size_t)*namelenp;
228 
229 	ASSERT(namelen != 0);
230 	if (namelen > SO_MAXARGSIZE) {
231 		*errorp = EINVAL;
232 		eprintsoline(so, *errorp);
233 		return (NULL);
234 	}
235 
236 	faddr = (char *)kmem_alloc(namelen, KM_SLEEP);
237 	if (copyin(name, faddr, namelen)) {
238 		kmem_free(faddr, namelen);
239 		*errorp = EFAULT;
240 		eprintsoline(so, *errorp);
241 		return (NULL);
242 	}
243 
244 	/*
245 	 * Add space for NULL termination if needed.
246 	 * Do a quick check if the last byte is NUL.
247 	 */
248 	if (so->so_family == AF_UNIX && faddr[namelen - 1] != '\0') {
249 		/* Check if there is any NULL termination */
250 		size_t	i;
251 		int foundnull = 0;
252 
253 		for (i = sizeof (name->sa_family); i < namelen; i++) {
254 			if (faddr[i] == '\0') {
255 				foundnull = 1;
256 				break;
257 			}
258 		}
259 		if (!foundnull) {
260 			/* Add extra byte for NUL padding */
261 			char *nfaddr;
262 
263 			nfaddr = (char *)kmem_alloc(namelen + 1, KM_SLEEP);
264 			bcopy(faddr, nfaddr, namelen);
265 			kmem_free(faddr, namelen);
266 
267 			/* NUL terminate */
268 			nfaddr[namelen] = '\0';
269 			namelen++;
270 			ASSERT((socklen_t)namelen == namelen);
271 			*namelenp = (socklen_t)namelen;
272 			faddr = nfaddr;
273 		}
274 	}
275 	return ((struct sockaddr *)faddr);
276 }
277 
278 /*
279  * Copy from kaddr/klen to uaddr/ulen. Updates ulenp if non-NULL.
280  */
281 static int
282 copyout_arg(void *uaddr, socklen_t ulen, void *ulenp, void *kaddr,
283     socklen_t klen)
284 {
285 	if (uaddr != NULL) {
286 		if (ulen > klen)
287 			ulen = klen;
288 
289 		if (ulen != 0) {
290 			if (copyout(kaddr, uaddr, ulen))
291 				return (EFAULT);
292 		}
293 	} else
294 		ulen = 0;
295 
296 	if (ulenp != NULL) {
297 		if (copyout(&ulen, ulenp, sizeof (ulen)))
298 			return (EFAULT);
299 	}
300 	return (0);
301 }
302 
303 /*
304  * Copy from kaddr/klen to uaddr/ulen. Updates ulenp if non-NULL.
305  * If klen is greater than ulen it still uses the non-truncated
306  * klen to update ulenp.
307  */
308 static int
309 copyout_name(void *uaddr, socklen_t ulen, void *ulenp, void *kaddr,
310     socklen_t klen)
311 {
312 	if (uaddr != NULL) {
313 		if (ulen >= klen)
314 			ulen = klen;
315 		else if (ulen != 0 && xnet_truncate_print) {
316 			printf("sockfs: truncating copyout of address using "
317 			    "XNET semantics for pid = %d. Lengths %d, %d\n",
318 			    curproc->p_pid, klen, ulen);
319 		}
320 
321 		if (ulen != 0) {
322 			if (copyout(kaddr, uaddr, ulen))
323 				return (EFAULT);
324 		} else
325 			klen = 0;
326 	} else
327 		klen = 0;
328 
329 	if (ulenp != NULL) {
330 		if (copyout(&klen, ulenp, sizeof (klen)))
331 			return (EFAULT);
332 	}
333 	return (0);
334 }
335 
336 /*
337  * The socketpair() code in libsocket creates two sockets (using
338  * the /etc/netconfig fallback if needed) before calling this routine
339  * to connect the two sockets together.
340  *
341  * For a SOCK_STREAM socketpair a listener is needed - in that case this
342  * routine will create a new file descriptor as part of accepting the
343  * connection. The library socketpair() will check if svs[2] has changed
344  * in which case it will close the changed fd.
345  *
346  * Note that this code could use the TPI feature of accepting the connection
347  * on the listening endpoint. However, that would require significant changes
348  * to soaccept.
349  */
350 int
351 so_socketpair(int sv[2])
352 {
353 	int svs[2];
354 	struct sonode *so1, *so2;
355 	int error;
356 	int orig_flags;
357 	struct sockaddr_ux *name;
358 	size_t namelen;
359 	sotpi_info_t *sti1;
360 	sotpi_info_t *sti2;
361 
362 	dprint(1, ("so_socketpair(%p)\n", (void *)sv));
363 
364 	error = useracc(sv, sizeof (svs), B_WRITE);
365 	if (error && do_useracc)
366 		return (set_errno(EFAULT));
367 
368 	if (copyin(sv, svs, sizeof (svs)))
369 		return (set_errno(EFAULT));
370 
371 	if ((so1 = getsonode(svs[0], &error, NULL)) == NULL)
372 		return (set_errno(error));
373 
374 	if ((so2 = getsonode(svs[1], &error, NULL)) == NULL) {
375 		releasef(svs[0]);
376 		return (set_errno(error));
377 	}
378 
379 	if (so1->so_family != AF_UNIX || so2->so_family != AF_UNIX) {
380 		error = EOPNOTSUPP;
381 		goto done;
382 	}
383 
384 	sti1 = SOTOTPI(so1);
385 	sti2 = SOTOTPI(so2);
386 
387 	/*
388 	 * The code below makes assumptions about the "sockfs" implementation.
389 	 * So make sure that the correct implementation is really used.
390 	 */
391 	ASSERT(so1->so_ops == &sotpi_sonodeops);
392 	ASSERT(so2->so_ops == &sotpi_sonodeops);
393 
394 	if (so1->so_type == SOCK_DGRAM) {
395 		/*
396 		 * Bind both sockets and connect them with each other.
397 		 * Need to allocate name/namelen for soconnect.
398 		 */
399 		error = socket_bind(so1, NULL, 0, _SOBIND_UNSPEC, CRED());
400 		if (error) {
401 			eprintsoline(so1, error);
402 			goto done;
403 		}
404 		error = socket_bind(so2, NULL, 0, _SOBIND_UNSPEC, CRED());
405 		if (error) {
406 			eprintsoline(so2, error);
407 			goto done;
408 		}
409 		namelen = sizeof (struct sockaddr_ux);
410 		name = kmem_alloc(namelen, KM_SLEEP);
411 		name->sou_family = AF_UNIX;
412 		name->sou_addr = sti2->sti_ux_laddr;
413 		error = socket_connect(so1,
414 		    (struct sockaddr *)name,
415 		    (socklen_t)namelen,
416 		    0, _SOCONNECT_NOXLATE, CRED());
417 		if (error) {
418 			kmem_free(name, namelen);
419 			eprintsoline(so1, error);
420 			goto done;
421 		}
422 		name->sou_addr = sti1->sti_ux_laddr;
423 		error = socket_connect(so2,
424 		    (struct sockaddr *)name,
425 		    (socklen_t)namelen,
426 		    0, _SOCONNECT_NOXLATE, CRED());
427 		kmem_free(name, namelen);
428 		if (error) {
429 			eprintsoline(so2, error);
430 			goto done;
431 		}
432 		releasef(svs[0]);
433 		releasef(svs[1]);
434 	} else {
435 		/*
436 		 * Bind both sockets, with so1 being a listener.
437 		 * Connect so2 to so1 - nonblocking to avoid waiting for
438 		 * soaccept to complete.
439 		 * Accept a connection on so1. Pass out the new fd as sv[0].
440 		 * The library will detect the changed fd and close
441 		 * the original one.
442 		 */
443 		struct sonode *nso;
444 		struct vnode *nvp;
445 		struct file *nfp;
446 		int nfd;
447 
448 		/*
449 		 * We could simply call socket_listen() here (which would do the
450 		 * binding automatically) if the code didn't rely on passing
451 		 * _SOBIND_NOXLATE to the TPI implementation of socket_bind().
452 		 */
453 		error = socket_bind(so1, NULL, 0, _SOBIND_UNSPEC|
454 		    _SOBIND_NOXLATE|_SOBIND_LISTEN|_SOBIND_SOCKETPAIR,
455 		    CRED());
456 		if (error) {
457 			eprintsoline(so1, error);
458 			goto done;
459 		}
460 		error = socket_bind(so2, NULL, 0, _SOBIND_UNSPEC, CRED());
461 		if (error) {
462 			eprintsoline(so2, error);
463 			goto done;
464 		}
465 
466 		namelen = sizeof (struct sockaddr_ux);
467 		name = kmem_alloc(namelen, KM_SLEEP);
468 		name->sou_family = AF_UNIX;
469 		name->sou_addr = sti1->sti_ux_laddr;
470 		error = socket_connect(so2,
471 		    (struct sockaddr *)name,
472 		    (socklen_t)namelen,
473 		    FNONBLOCK, _SOCONNECT_NOXLATE, CRED());
474 		kmem_free(name, namelen);
475 		if (error) {
476 			if (error != EINPROGRESS) {
477 				eprintsoline(so2, error); goto done;
478 			}
479 		}
480 
481 		error = socket_accept(so1, 0, CRED(), &nso);
482 		if (error) {
483 			eprintsoline(so1, error);
484 			goto done;
485 		}
486 
487 		/* wait for so2 being SS_CONNECTED ignoring signals */
488 		mutex_enter(&so2->so_lock);
489 		error = sowaitconnected(so2, 0, 1);
490 		mutex_exit(&so2->so_lock);
491 		if (error != 0) {
492 			(void) socket_close(nso, 0, CRED());
493 			socket_destroy(nso);
494 			eprintsoline(so2, error);
495 			goto done;
496 		}
497 
498 		nvp = SOTOV(nso);
499 		if (error = falloc(nvp, FWRITE|FREAD, &nfp, &nfd)) {
500 			(void) socket_close(nso, 0, CRED());
501 			socket_destroy(nso);
502 			eprintsoline(nso, error);
503 			goto done;
504 		}
505 		/*
506 		 * copy over FNONBLOCK and FNDELAY flags should they exist
507 		 */
508 		if (so1->so_state & SS_NONBLOCK)
509 			nfp->f_flag |= FNONBLOCK;
510 		if (so1->so_state & SS_NDELAY)
511 			nfp->f_flag |= FNDELAY;
512 
513 		/*
514 		 * fill in the entries that falloc reserved
515 		 */
516 		mutex_exit(&nfp->f_tlock);
517 		setf(nfd, nfp);
518 
519 		/*
520 		 * get the original flags before we release
521 		 */
522 		VERIFY(f_getfd_error(svs[0], &orig_flags) == 0);
523 
524 		releasef(svs[0]);
525 		releasef(svs[1]);
526 
527 		/*
528 		 * If FD_CLOEXEC was set on the filedescriptor we're
529 		 * swapping out, we should set it on the new one too.
530 		 */
531 		if (orig_flags & FD_CLOEXEC) {
532 			f_setfd(nfd, FD_CLOEXEC);
533 		}
534 
535 		/*
536 		 * The socketpair library routine will close the original
537 		 * svs[0] when this code passes out a different file
538 		 * descriptor.
539 		 */
540 		svs[0] = nfd;
541 
542 		if (copyout(svs, sv, sizeof (svs))) {
543 			(void) closeandsetf(nfd, NULL);
544 			eprintline(EFAULT);
545 			return (set_errno(EFAULT));
546 		}
547 	}
548 	return (0);
549 
550 done:
551 	releasef(svs[0]);
552 	releasef(svs[1]);
553 	return (set_errno(error));
554 }
555 
556 int
557 bind(int sock, struct sockaddr *name, socklen_t namelen, int version)
558 {
559 	struct sonode *so;
560 	int error;
561 
562 	dprint(1, ("bind(%d, %p, %d)\n",
563 	    sock, (void *)name, namelen));
564 
565 	if ((so = getsonode(sock, &error, NULL)) == NULL)
566 		return (set_errno(error));
567 
568 	/* Allocate and copyin name */
569 	/*
570 	 * X/Open test does not expect EFAULT with NULL name and non-zero
571 	 * namelen.
572 	 */
573 	if (name != NULL && namelen != 0) {
574 		ASSERT(MUTEX_NOT_HELD(&so->so_lock));
575 		name = copyin_name(so, name, &namelen, &error);
576 		if (name == NULL) {
577 			releasef(sock);
578 			return (set_errno(error));
579 		}
580 	} else {
581 		name = NULL;
582 		namelen = 0;
583 	}
584 
585 	switch (version) {
586 	default:
587 		error = socket_bind(so, name, namelen, 0, CRED());
588 		break;
589 	case SOV_XPG4_2:
590 		error = socket_bind(so, name, namelen, _SOBIND_XPG4_2, CRED());
591 		break;
592 	case SOV_SOCKBSD:
593 		error = socket_bind(so, name, namelen, _SOBIND_SOCKBSD, CRED());
594 		break;
595 	}
596 done:
597 	releasef(sock);
598 	if (name != NULL)
599 		kmem_free(name, (size_t)namelen);
600 
601 	if (error)
602 		return (set_errno(error));
603 	return (0);
604 }
605 
606 /* ARGSUSED2 */
607 int
608 listen(int sock, int backlog, int version)
609 {
610 	struct sonode *so;
611 	int error;
612 
613 	dprint(1, ("listen(%d, %d)\n",
614 	    sock, backlog));
615 
616 	if ((so = getsonode(sock, &error, NULL)) == NULL)
617 		return (set_errno(error));
618 
619 	error = socket_listen(so, backlog, CRED());
620 
621 	releasef(sock);
622 	if (error)
623 		return (set_errno(error));
624 	return (0);
625 }
626 
627 /*ARGSUSED3*/
628 int
629 accept(int sock, struct sockaddr *name, socklen_t *namelenp, int version,
630     int flags)
631 {
632 	struct sonode *so;
633 	file_t *fp;
634 	int error;
635 	socklen_t namelen;
636 	struct sonode *nso;
637 	struct vnode *nvp;
638 	struct file *nfp;
639 	int nfd;
640 	int ssflags;
641 	struct sockaddr *addrp;
642 	socklen_t addrlen;
643 
644 	dprint(1, ("accept(%d, %p, %p)\n",
645 	    sock, (void *)name, (void *)namelenp));
646 
647 	if (flags & ~(SOCK_CLOEXEC|SOCK_NONBLOCK|SOCK_NDELAY)) {
648 		return (set_errno(EINVAL));
649 	}
650 
651 	/* Translate SOCK_ flags to their SS_ variant */
652 	ssflags = 0;
653 	if (flags & SOCK_NONBLOCK)
654 		ssflags |= SS_NONBLOCK;
655 	if (flags & SOCK_NDELAY)
656 		ssflags |= SS_NDELAY;
657 
658 	if ((so = getsonode(sock, &error, &fp)) == NULL)
659 		return (set_errno(error));
660 
661 	if (name != NULL) {
662 		ASSERT(MUTEX_NOT_HELD(&so->so_lock));
663 		if (copyin(namelenp, &namelen, sizeof (namelen))) {
664 			releasef(sock);
665 			return (set_errno(EFAULT));
666 		}
667 		if (namelen != 0) {
668 			error = useracc(name, (size_t)namelen, B_WRITE);
669 			if (error && do_useracc) {
670 				releasef(sock);
671 				return (set_errno(EFAULT));
672 			}
673 		} else
674 			name = NULL;
675 	} else {
676 		namelen = 0;
677 	}
678 
679 	/*
680 	 * Allocate the user fd before socket_accept() in order to
681 	 * catch EMFILE errors before calling socket_accept().
682 	 */
683 	if ((nfd = ufalloc(0)) == -1) {
684 		eprintsoline(so, EMFILE);
685 		releasef(sock);
686 		return (set_errno(EMFILE));
687 	}
688 	error = socket_accept(so, fp->f_flag, CRED(), &nso);
689 	if (error) {
690 		setf(nfd, NULL);
691 		releasef(sock);
692 		return (set_errno(error));
693 	}
694 
695 	nvp = SOTOV(nso);
696 
697 	ASSERT(MUTEX_NOT_HELD(&nso->so_lock));
698 	if (namelen != 0) {
699 		addrlen = so->so_max_addr_len;
700 		addrp = (struct sockaddr *)kmem_alloc(addrlen, KM_SLEEP);
701 
702 		if ((error = socket_getpeername(nso, (struct sockaddr *)addrp,
703 		    &addrlen, B_TRUE, CRED())) == 0) {
704 			error = copyout_name(name, namelen, namelenp,
705 			    addrp, addrlen);
706 		} else {
707 			ASSERT(error == EINVAL || error == ENOTCONN);
708 			error = ECONNABORTED;
709 		}
710 		kmem_free(addrp, so->so_max_addr_len);
711 	}
712 
713 	if (error) {
714 		setf(nfd, NULL);
715 		(void) socket_close(nso, 0, CRED());
716 		socket_destroy(nso);
717 		releasef(sock);
718 		return (set_errno(error));
719 	}
720 	if (error = falloc(NULL, FWRITE|FREAD, &nfp, NULL)) {
721 		setf(nfd, NULL);
722 		(void) socket_close(nso, 0, CRED());
723 		socket_destroy(nso);
724 		eprintsoline(so, error);
725 		releasef(sock);
726 		return (set_errno(error));
727 	}
728 	/*
729 	 * fill in the entries that falloc reserved
730 	 */
731 	nfp->f_vnode = nvp;
732 	mutex_exit(&nfp->f_tlock);
733 	setf(nfd, nfp);
734 
735 	/*
736 	 * Act on SOCK_CLOEXEC from flags
737 	 */
738 	if (flags & SOCK_CLOEXEC) {
739 		f_setfd(nfd, FD_CLOEXEC);
740 	}
741 
742 	/*
743 	 * Copy FNDELAY and FNONBLOCK from listener to acceptor
744 	 * and from ssflags
745 	 */
746 	if ((ssflags | so->so_state) & (SS_NDELAY|SS_NONBLOCK)) {
747 		uint_t oflag = nfp->f_flag;
748 		int arg = 0;
749 
750 		if ((ssflags | so->so_state) & SS_NONBLOCK)
751 			arg |= FNONBLOCK;
752 		else if ((ssflags | so->so_state) & SS_NDELAY)
753 			arg |= FNDELAY;
754 
755 		/*
756 		 * This code is a simplification of the F_SETFL code in fcntl()
757 		 * Ignore any errors from VOP_SETFL.
758 		 */
759 		if ((error = VOP_SETFL(nvp, oflag, arg, nfp->f_cred, NULL))
760 		    != 0) {
761 			eprintsoline(so, error);
762 			error = 0;
763 		} else {
764 			mutex_enter(&nfp->f_tlock);
765 			nfp->f_flag &= ~FMASK | (FREAD|FWRITE);
766 			nfp->f_flag |= arg;
767 			mutex_exit(&nfp->f_tlock);
768 		}
769 	}
770 	releasef(sock);
771 	return (nfd);
772 }
773 
774 int
775 connect(int sock, struct sockaddr *name, socklen_t namelen, int version)
776 {
777 	struct sonode *so;
778 	file_t *fp;
779 	int error;
780 
781 	dprint(1, ("connect(%d, %p, %d)\n",
782 	    sock, (void *)name, namelen));
783 
784 	if ((so = getsonode(sock, &error, &fp)) == NULL)
785 		return (set_errno(error));
786 
787 	/* Allocate and copyin name */
788 	if (namelen != 0) {
789 		ASSERT(MUTEX_NOT_HELD(&so->so_lock));
790 		name = copyin_name(so, name, &namelen, &error);
791 		if (name == NULL) {
792 			releasef(sock);
793 			return (set_errno(error));
794 		}
795 	} else
796 		name = NULL;
797 
798 	error = socket_connect(so, name, namelen, fp->f_flag,
799 	    (version != SOV_XPG4_2) ? 0 : _SOCONNECT_XPG4_2, CRED());
800 	releasef(sock);
801 	if (name)
802 		kmem_free(name, (size_t)namelen);
803 	if (error)
804 		return (set_errno(error));
805 	return (0);
806 }
807 
808 /*ARGSUSED2*/
809 int
810 shutdown(int sock, int how, int version)
811 {
812 	struct sonode *so;
813 	int error;
814 
815 	dprint(1, ("shutdown(%d, %d)\n",
816 	    sock, how));
817 
818 	if ((so = getsonode(sock, &error, NULL)) == NULL)
819 		return (set_errno(error));
820 
821 	error = socket_shutdown(so, how, CRED());
822 
823 	releasef(sock);
824 	if (error)
825 		return (set_errno(error));
826 	return (0);
827 }
828 
829 /*
830  * Common receive routine.
831  */
832 static ssize_t
833 recvit(int sock, struct nmsghdr *msg, struct uio *uiop, int flags,
834     socklen_t *namelenp, socklen_t *controllenp, int *flagsp)
835 {
836 	struct sonode *so;
837 	file_t *fp;
838 	void *name;
839 	socklen_t namelen;
840 	void *control;
841 	socklen_t controllen;
842 	ssize_t len;
843 	int error;
844 
845 	if ((so = getsonode(sock, &error, &fp)) == NULL)
846 		return (set_errno(error));
847 
848 	len = uiop->uio_resid;
849 	uiop->uio_fmode = fp->f_flag;
850 	uiop->uio_extflg = UIO_COPY_CACHED;
851 
852 	name = msg->msg_name;
853 	namelen = msg->msg_namelen;
854 	control = msg->msg_control;
855 	controllen = msg->msg_controllen;
856 
857 	msg->msg_flags = flags & (MSG_OOB | MSG_PEEK | MSG_WAITALL |
858 	    MSG_DONTWAIT | MSG_XPG4_2);
859 
860 	error = socket_recvmsg(so, msg, uiop, CRED());
861 	if (error) {
862 		releasef(sock);
863 		return (set_errno(error));
864 	}
865 	lwp_stat_update(LWP_STAT_MSGRCV, 1);
866 	releasef(sock);
867 
868 	error = copyout_name(name, namelen, namelenp,
869 	    msg->msg_name, msg->msg_namelen);
870 	if (error)
871 		goto err;
872 
873 	if (flagsp != NULL) {
874 		/*
875 		 * Clear internal flag.
876 		 */
877 		msg->msg_flags &= ~MSG_XPG4_2;
878 
879 		/*
880 		 * Determine MSG_CTRUNC. sorecvmsg sets MSG_CTRUNC only
881 		 * when controllen is zero and there is control data to
882 		 * copy out.
883 		 */
884 		if (controllen != 0 &&
885 		    (msg->msg_controllen > controllen || control == NULL)) {
886 			dprint(1, ("recvit: CTRUNC %d %d %p\n",
887 			    msg->msg_controllen, controllen, control));
888 
889 			msg->msg_flags |= MSG_CTRUNC;
890 		}
891 		if (copyout(&msg->msg_flags, flagsp,
892 		    sizeof (msg->msg_flags))) {
893 			error = EFAULT;
894 			goto err;
895 		}
896 	}
897 	/*
898 	 * Note: This MUST be done last. There can be no "goto err" after this
899 	 * point since it could make so_closefds run twice on some part
900 	 * of the file descriptor array.
901 	 */
902 	if (controllen != 0) {
903 		if (!(flags & MSG_XPG4_2)) {
904 			/*
905 			 * Good old msg_accrights can only return a multiple
906 			 * of 4 bytes.
907 			 */
908 			controllen &= ~((int)sizeof (uint32_t) - 1);
909 		}
910 		error = copyout_arg(control, controllen, controllenp,
911 		    msg->msg_control, msg->msg_controllen);
912 		if (error)
913 			goto err;
914 
915 		if (msg->msg_controllen > controllen || control == NULL) {
916 			if (control == NULL)
917 				controllen = 0;
918 			so_closefds(msg->msg_control, msg->msg_controllen,
919 			    !(flags & MSG_XPG4_2), controllen);
920 		}
921 	}
922 	if (msg->msg_namelen != 0)
923 		kmem_free(msg->msg_name, (size_t)msg->msg_namelen);
924 	if (msg->msg_controllen != 0)
925 		kmem_free(msg->msg_control, (size_t)msg->msg_controllen);
926 	return (len - uiop->uio_resid);
927 
928 err:
929 	/*
930 	 * If we fail and the control part contains file descriptors
931 	 * we have to close the fd's.
932 	 */
933 	if (msg->msg_controllen != 0)
934 		so_closefds(msg->msg_control, msg->msg_controllen,
935 		    !(flags & MSG_XPG4_2), 0);
936 	if (msg->msg_namelen != 0)
937 		kmem_free(msg->msg_name, (size_t)msg->msg_namelen);
938 	if (msg->msg_controllen != 0)
939 		kmem_free(msg->msg_control, (size_t)msg->msg_controllen);
940 	return (set_errno(error));
941 }
942 
943 /*
944  * Native system call
945  */
946 ssize_t
947 recv(int sock, void *buffer, size_t len, int flags)
948 {
949 	struct nmsghdr lmsg;
950 	struct uio auio;
951 	struct iovec aiov[1];
952 
953 	dprint(1, ("recv(%d, %p, %ld, %d)\n",
954 	    sock, buffer, len, flags));
955 
956 	if ((ssize_t)len < 0) {
957 		return (set_errno(EINVAL));
958 	}
959 
960 	aiov[0].iov_base = buffer;
961 	aiov[0].iov_len = len;
962 	auio.uio_loffset = 0;
963 	auio.uio_iov = aiov;
964 	auio.uio_iovcnt = 1;
965 	auio.uio_resid = len;
966 	auio.uio_segflg = UIO_USERSPACE;
967 	auio.uio_limit = 0;
968 
969 	lmsg.msg_namelen = 0;
970 	lmsg.msg_controllen = 0;
971 	lmsg.msg_flags = 0;
972 	return (recvit(sock, &lmsg, &auio, flags, NULL, NULL, NULL));
973 }
974 
975 ssize_t
976 recvfrom(int sock, void *buffer, size_t len, int flags, struct sockaddr *name,
977     socklen_t *namelenp)
978 {
979 	struct nmsghdr lmsg;
980 	struct uio auio;
981 	struct iovec aiov[1];
982 
983 	dprint(1, ("recvfrom(%d, %p, %ld, %d, %p, %p)\n",
984 	    sock, buffer, len, flags, (void *)name, (void *)namelenp));
985 
986 	if ((ssize_t)len < 0) {
987 		return (set_errno(EINVAL));
988 	}
989 
990 	aiov[0].iov_base = buffer;
991 	aiov[0].iov_len = len;
992 	auio.uio_loffset = 0;
993 	auio.uio_iov = aiov;
994 	auio.uio_iovcnt = 1;
995 	auio.uio_resid = len;
996 	auio.uio_segflg = UIO_USERSPACE;
997 	auio.uio_limit = 0;
998 
999 	lmsg.msg_name = (char *)name;
1000 	if (namelenp != NULL) {
1001 		if (copyin(namelenp, &lmsg.msg_namelen,
1002 		    sizeof (lmsg.msg_namelen)))
1003 			return (set_errno(EFAULT));
1004 	} else {
1005 		lmsg.msg_namelen = 0;
1006 	}
1007 	lmsg.msg_controllen = 0;
1008 	lmsg.msg_flags = 0;
1009 
1010 	return (recvit(sock, &lmsg, &auio, flags, namelenp, NULL, NULL));
1011 }
1012 
1013 /*
1014  * Uses the MSG_XPG4_2 flag to determine if the caller is using
1015  * struct omsghdr or struct nmsghdr.
1016  */
1017 ssize_t
1018 recvmsg(int sock, struct nmsghdr *msg, int flags)
1019 {
1020 	STRUCT_DECL(nmsghdr, u_lmsg);
1021 	STRUCT_HANDLE(nmsghdr, umsgptr);
1022 	struct nmsghdr lmsg;
1023 	struct uio auio;
1024 	struct iovec aiov[MSG_MAXIOVLEN];
1025 	int iovcnt;
1026 	ssize_t len;
1027 	int i;
1028 	int *flagsp;
1029 	model_t	model;
1030 
1031 	dprint(1, ("recvmsg(%d, %p, %d)\n",
1032 	    sock, (void *)msg, flags));
1033 
1034 	model = get_udatamodel();
1035 	STRUCT_INIT(u_lmsg, model);
1036 	STRUCT_SET_HANDLE(umsgptr, model, msg);
1037 
1038 	if (flags & MSG_XPG4_2) {
1039 		if (copyin(msg, STRUCT_BUF(u_lmsg), STRUCT_SIZE(u_lmsg)))
1040 			return (set_errno(EFAULT));
1041 		flagsp = STRUCT_FADDR(umsgptr, msg_flags);
1042 	} else {
1043 		/*
1044 		 * Assumes that nmsghdr and omsghdr are identically shaped
1045 		 * except for the added msg_flags field.
1046 		 */
1047 		if (copyin(msg, STRUCT_BUF(u_lmsg),
1048 		    SIZEOF_STRUCT(omsghdr, model)))
1049 			return (set_errno(EFAULT));
1050 		STRUCT_FSET(u_lmsg, msg_flags, 0);
1051 		flagsp = NULL;
1052 	}
1053 
1054 	/*
1055 	 * Code below us will kmem_alloc memory and hang it
1056 	 * off msg_control and msg_name fields. This forces
1057 	 * us to copy the structure to its native form.
1058 	 */
1059 	lmsg.msg_name = STRUCT_FGETP(u_lmsg, msg_name);
1060 	lmsg.msg_namelen = STRUCT_FGET(u_lmsg, msg_namelen);
1061 	lmsg.msg_iov = STRUCT_FGETP(u_lmsg, msg_iov);
1062 	lmsg.msg_iovlen = STRUCT_FGET(u_lmsg, msg_iovlen);
1063 	lmsg.msg_control = STRUCT_FGETP(u_lmsg, msg_control);
1064 	lmsg.msg_controllen = STRUCT_FGET(u_lmsg, msg_controllen);
1065 	lmsg.msg_flags = STRUCT_FGET(u_lmsg, msg_flags);
1066 
1067 	iovcnt = lmsg.msg_iovlen;
1068 
1069 	if (iovcnt <= 0 || iovcnt > MSG_MAXIOVLEN) {
1070 		return (set_errno(EMSGSIZE));
1071 	}
1072 
1073 #ifdef _SYSCALL32_IMPL
1074 	/*
1075 	 * 32-bit callers need to have their iovec expanded, while ensuring
1076 	 * that they can't move more than 2Gbytes of data in a single call.
1077 	 */
1078 	if (model == DATAMODEL_ILP32) {
1079 		struct iovec32 aiov32[MSG_MAXIOVLEN];
1080 		ssize32_t count32;
1081 
1082 		if (copyin((struct iovec32 *)lmsg.msg_iov, aiov32,
1083 		    iovcnt * sizeof (struct iovec32)))
1084 			return (set_errno(EFAULT));
1085 
1086 		count32 = 0;
1087 		for (i = 0; i < iovcnt; i++) {
1088 			ssize32_t iovlen32;
1089 
1090 			iovlen32 = aiov32[i].iov_len;
1091 			count32 += iovlen32;
1092 			if (iovlen32 < 0 || count32 < 0)
1093 				return (set_errno(EINVAL));
1094 			aiov[i].iov_len = iovlen32;
1095 			aiov[i].iov_base =
1096 			    (caddr_t)(uintptr_t)aiov32[i].iov_base;
1097 		}
1098 	} else
1099 #endif /* _SYSCALL32_IMPL */
1100 	if (copyin(lmsg.msg_iov, aiov, iovcnt * sizeof (struct iovec))) {
1101 		return (set_errno(EFAULT));
1102 	}
1103 	len = 0;
1104 	for (i = 0; i < iovcnt; i++) {
1105 		ssize_t iovlen = aiov[i].iov_len;
1106 		len += iovlen;
1107 		if (iovlen < 0 || len < 0) {
1108 			return (set_errno(EINVAL));
1109 		}
1110 	}
1111 	auio.uio_loffset = 0;
1112 	auio.uio_iov = aiov;
1113 	auio.uio_iovcnt = iovcnt;
1114 	auio.uio_resid = len;
1115 	auio.uio_segflg = UIO_USERSPACE;
1116 	auio.uio_limit = 0;
1117 
1118 	if (lmsg.msg_control != NULL &&
1119 	    (do_useracc == 0 ||
1120 	    useracc(lmsg.msg_control, lmsg.msg_controllen,
1121 	    B_WRITE) != 0)) {
1122 		return (set_errno(EFAULT));
1123 	}
1124 
1125 	return (recvit(sock, &lmsg, &auio, flags,
1126 	    STRUCT_FADDR(umsgptr, msg_namelen),
1127 	    STRUCT_FADDR(umsgptr, msg_controllen), flagsp));
1128 }
1129 
1130 /*
1131  * Common send function.
1132  */
1133 static ssize_t
1134 sendit(int sock, struct nmsghdr *msg, struct uio *uiop, int flags)
1135 {
1136 	struct sonode *so;
1137 	file_t *fp;
1138 	void *name;
1139 	socklen_t namelen;
1140 	void *control;
1141 	socklen_t controllen;
1142 	ssize_t len;
1143 	int error;
1144 
1145 	if ((so = getsonode(sock, &error, &fp)) == NULL)
1146 		return (set_errno(error));
1147 
1148 	uiop->uio_fmode = fp->f_flag;
1149 
1150 	if (so->so_family == AF_UNIX)
1151 		uiop->uio_extflg = UIO_COPY_CACHED;
1152 	else
1153 		uiop->uio_extflg = UIO_COPY_DEFAULT;
1154 
1155 	/* Allocate and copyin name and control */
1156 	name = msg->msg_name;
1157 	namelen = msg->msg_namelen;
1158 	if (name != NULL && namelen != 0) {
1159 		ASSERT(MUTEX_NOT_HELD(&so->so_lock));
1160 		name = copyin_name(so,
1161 		    (struct sockaddr *)name,
1162 		    &namelen, &error);
1163 		if (name == NULL)
1164 			goto done3;
1165 		/* copyin_name null terminates addresses for AF_UNIX */
1166 		msg->msg_namelen = namelen;
1167 		msg->msg_name = name;
1168 	} else {
1169 		msg->msg_name = name = NULL;
1170 		msg->msg_namelen = namelen = 0;
1171 	}
1172 
1173 	control = msg->msg_control;
1174 	controllen = msg->msg_controllen;
1175 	if ((control != NULL) && (controllen != 0)) {
1176 		/*
1177 		 * Verify that the length is not excessive to prevent
1178 		 * an application from consuming all of kernel memory.
1179 		 */
1180 		if (controllen > SO_MAXARGSIZE) {
1181 			error = EINVAL;
1182 			goto done2;
1183 		}
1184 		control = kmem_alloc(controllen, KM_SLEEP);
1185 
1186 		ASSERT(MUTEX_NOT_HELD(&so->so_lock));
1187 		if (copyin(msg->msg_control, control, controllen)) {
1188 			error = EFAULT;
1189 			goto done1;
1190 		}
1191 		msg->msg_control = control;
1192 	} else {
1193 		msg->msg_control = control = NULL;
1194 		msg->msg_controllen = controllen = 0;
1195 	}
1196 
1197 	len = uiop->uio_resid;
1198 	msg->msg_flags = flags;
1199 
1200 	error = socket_sendmsg(so, msg, uiop, CRED());
1201 done1:
1202 	if (control != NULL)
1203 		kmem_free(control, controllen);
1204 done2:
1205 	if (name != NULL)
1206 		kmem_free(name, namelen);
1207 done3:
1208 	if (error != 0) {
1209 		releasef(sock);
1210 		return (set_errno(error));
1211 	}
1212 	lwp_stat_update(LWP_STAT_MSGSND, 1);
1213 	releasef(sock);
1214 	return (len - uiop->uio_resid);
1215 }
1216 
1217 /*
1218  * Native system call
1219  */
1220 ssize_t
1221 send(int sock, void *buffer, size_t len, int flags)
1222 {
1223 	struct nmsghdr lmsg;
1224 	struct uio auio;
1225 	struct iovec aiov[1];
1226 
1227 	dprint(1, ("send(%d, %p, %ld, %d)\n",
1228 	    sock, buffer, len, flags));
1229 
1230 	if ((ssize_t)len < 0) {
1231 		return (set_errno(EINVAL));
1232 	}
1233 
1234 	aiov[0].iov_base = buffer;
1235 	aiov[0].iov_len = len;
1236 	auio.uio_loffset = 0;
1237 	auio.uio_iov = aiov;
1238 	auio.uio_iovcnt = 1;
1239 	auio.uio_resid = len;
1240 	auio.uio_segflg = UIO_USERSPACE;
1241 	auio.uio_limit = 0;
1242 
1243 	lmsg.msg_name = NULL;
1244 	lmsg.msg_control = NULL;
1245 	if (!(flags & MSG_XPG4_2)) {
1246 		/*
1247 		 * In order to be compatible with the libsocket/sockmod
1248 		 * implementation we set EOR for all send* calls.
1249 		 */
1250 		flags |= MSG_EOR;
1251 	}
1252 	return (sendit(sock, &lmsg, &auio, flags));
1253 }
1254 
1255 /*
1256  * Uses the MSG_XPG4_2 flag to determine if the caller is using
1257  * struct omsghdr or struct nmsghdr.
1258  */
1259 ssize_t
1260 sendmsg(int sock, struct nmsghdr *msg, int flags)
1261 {
1262 	struct nmsghdr lmsg;
1263 	STRUCT_DECL(nmsghdr, u_lmsg);
1264 	struct uio auio;
1265 	struct iovec aiov[MSG_MAXIOVLEN];
1266 	int iovcnt;
1267 	ssize_t len;
1268 	int i;
1269 	model_t	model;
1270 
1271 	dprint(1, ("sendmsg(%d, %p, %d)\n", sock, (void *)msg, flags));
1272 
1273 	model = get_udatamodel();
1274 	STRUCT_INIT(u_lmsg, model);
1275 
1276 	if (flags & MSG_XPG4_2) {
1277 		if (copyin(msg, (char *)STRUCT_BUF(u_lmsg),
1278 		    STRUCT_SIZE(u_lmsg)))
1279 			return (set_errno(EFAULT));
1280 	} else {
1281 		/*
1282 		 * Assumes that nmsghdr and omsghdr are identically shaped
1283 		 * except for the added msg_flags field.
1284 		 */
1285 		if (copyin(msg, (char *)STRUCT_BUF(u_lmsg),
1286 		    SIZEOF_STRUCT(omsghdr, model)))
1287 			return (set_errno(EFAULT));
1288 		/*
1289 		 * In order to be compatible with the libsocket/sockmod
1290 		 * implementation we set EOR for all send* calls.
1291 		 */
1292 		flags |= MSG_EOR;
1293 	}
1294 
1295 	/*
1296 	 * Code below us will kmem_alloc memory and hang it
1297 	 * off msg_control and msg_name fields. This forces
1298 	 * us to copy the structure to its native form.
1299 	 */
1300 	lmsg.msg_name = STRUCT_FGETP(u_lmsg, msg_name);
1301 	lmsg.msg_namelen = STRUCT_FGET(u_lmsg, msg_namelen);
1302 	lmsg.msg_iov = STRUCT_FGETP(u_lmsg, msg_iov);
1303 	lmsg.msg_iovlen = STRUCT_FGET(u_lmsg, msg_iovlen);
1304 	lmsg.msg_control = STRUCT_FGETP(u_lmsg, msg_control);
1305 	lmsg.msg_controllen = STRUCT_FGET(u_lmsg, msg_controllen);
1306 	lmsg.msg_flags = STRUCT_FGET(u_lmsg, msg_flags);
1307 
1308 	iovcnt = lmsg.msg_iovlen;
1309 
1310 	if (iovcnt <= 0 || iovcnt > MSG_MAXIOVLEN) {
1311 		/*
1312 		 * Unless this is XPG 4.2 we allow iovcnt == 0 to
1313 		 * be compatible with SunOS 4.X and 4.4BSD.
1314 		 */
1315 		if (iovcnt != 0 || (flags & MSG_XPG4_2))
1316 			return (set_errno(EMSGSIZE));
1317 	}
1318 
1319 #ifdef _SYSCALL32_IMPL
1320 	/*
1321 	 * 32-bit callers need to have their iovec expanded, while ensuring
1322 	 * that they can't move more than 2Gbytes of data in a single call.
1323 	 */
1324 	if (model == DATAMODEL_ILP32) {
1325 		struct iovec32 aiov32[MSG_MAXIOVLEN];
1326 		ssize32_t count32;
1327 
1328 		if (iovcnt != 0 &&
1329 		    copyin((struct iovec32 *)lmsg.msg_iov, aiov32,
1330 		    iovcnt * sizeof (struct iovec32)))
1331 			return (set_errno(EFAULT));
1332 
1333 		count32 = 0;
1334 		for (i = 0; i < iovcnt; i++) {
1335 			ssize32_t iovlen32;
1336 
1337 			iovlen32 = aiov32[i].iov_len;
1338 			count32 += iovlen32;
1339 			if (iovlen32 < 0 || count32 < 0)
1340 				return (set_errno(EINVAL));
1341 			aiov[i].iov_len = iovlen32;
1342 			aiov[i].iov_base =
1343 			    (caddr_t)(uintptr_t)aiov32[i].iov_base;
1344 		}
1345 	} else
1346 #endif /* _SYSCALL32_IMPL */
1347 	if (iovcnt != 0 &&
1348 	    copyin(lmsg.msg_iov, aiov,
1349 	    (unsigned)iovcnt * sizeof (struct iovec))) {
1350 		return (set_errno(EFAULT));
1351 	}
1352 	len = 0;
1353 	for (i = 0; i < iovcnt; i++) {
1354 		ssize_t iovlen = aiov[i].iov_len;
1355 		len += iovlen;
1356 		if (iovlen < 0 || len < 0) {
1357 			return (set_errno(EINVAL));
1358 		}
1359 	}
1360 	auio.uio_loffset = 0;
1361 	auio.uio_iov = aiov;
1362 	auio.uio_iovcnt = iovcnt;
1363 	auio.uio_resid = len;
1364 	auio.uio_segflg = UIO_USERSPACE;
1365 	auio.uio_limit = 0;
1366 
1367 	return (sendit(sock, &lmsg, &auio, flags));
1368 }
1369 
1370 ssize_t
1371 sendto(int sock, void *buffer, size_t len, int flags,
1372     struct sockaddr *name, socklen_t namelen)
1373 {
1374 	struct nmsghdr lmsg;
1375 	struct uio auio;
1376 	struct iovec aiov[1];
1377 
1378 	dprint(1, ("sendto(%d, %p, %ld, %d, %p, %d)\n",
1379 	    sock, buffer, len, flags, (void *)name, namelen));
1380 
1381 	if ((ssize_t)len < 0) {
1382 		return (set_errno(EINVAL));
1383 	}
1384 
1385 	aiov[0].iov_base = buffer;
1386 	aiov[0].iov_len = len;
1387 	auio.uio_loffset = 0;
1388 	auio.uio_iov = aiov;
1389 	auio.uio_iovcnt = 1;
1390 	auio.uio_resid = len;
1391 	auio.uio_segflg = UIO_USERSPACE;
1392 	auio.uio_limit = 0;
1393 
1394 	lmsg.msg_name = (char *)name;
1395 	lmsg.msg_namelen = namelen;
1396 	lmsg.msg_control = NULL;
1397 	if (!(flags & MSG_XPG4_2)) {
1398 		/*
1399 		 * In order to be compatible with the libsocket/sockmod
1400 		 * implementation we set EOR for all send* calls.
1401 		 */
1402 		flags |= MSG_EOR;
1403 	}
1404 	return (sendit(sock, &lmsg, &auio, flags));
1405 }
1406 
1407 /*ARGSUSED3*/
1408 int
1409 getpeername(int sock, struct sockaddr *name, socklen_t *namelenp, int version)
1410 {
1411 	struct sonode *so;
1412 	int error;
1413 	socklen_t namelen;
1414 	socklen_t sock_addrlen;
1415 	struct sockaddr *sock_addrp;
1416 
1417 	dprint(1, ("getpeername(%d, %p, %p)\n",
1418 	    sock, (void *)name, (void *)namelenp));
1419 
1420 	if ((so = getsonode(sock, &error, NULL)) == NULL)
1421 		goto bad;
1422 
1423 	ASSERT(MUTEX_NOT_HELD(&so->so_lock));
1424 	if (copyin(namelenp, &namelen, sizeof (namelen)) ||
1425 	    (name == NULL && namelen != 0)) {
1426 		error = EFAULT;
1427 		goto rel_out;
1428 	}
1429 	sock_addrlen = so->so_max_addr_len;
1430 	sock_addrp = (struct sockaddr *)kmem_alloc(sock_addrlen, KM_SLEEP);
1431 
1432 	if ((error = socket_getpeername(so, sock_addrp, &sock_addrlen,
1433 	    B_FALSE, CRED())) == 0) {
1434 		ASSERT(sock_addrlen <= so->so_max_addr_len);
1435 		error = copyout_name(name, namelen, namelenp,
1436 		    (void *)sock_addrp, sock_addrlen);
1437 	}
1438 	kmem_free(sock_addrp, so->so_max_addr_len);
1439 rel_out:
1440 	releasef(sock);
1441 bad:	return (error != 0 ? set_errno(error) : 0);
1442 }
1443 
1444 /*ARGSUSED3*/
1445 int
1446 getsockname(int sock, struct sockaddr *name, socklen_t *namelenp, int version)
1447 {
1448 	struct sonode *so;
1449 	int error;
1450 	socklen_t namelen, sock_addrlen;
1451 	struct sockaddr *sock_addrp;
1452 
1453 	dprint(1, ("getsockname(%d, %p, %p)\n",
1454 	    sock, (void *)name, (void *)namelenp));
1455 
1456 	if ((so = getsonode(sock, &error, NULL)) == NULL)
1457 		goto bad;
1458 
1459 	ASSERT(MUTEX_NOT_HELD(&so->so_lock));
1460 	if (copyin(namelenp, &namelen, sizeof (namelen)) ||
1461 	    (name == NULL && namelen != 0)) {
1462 		error = EFAULT;
1463 		goto rel_out;
1464 	}
1465 
1466 	sock_addrlen = so->so_max_addr_len;
1467 	sock_addrp = (struct sockaddr *)kmem_alloc(sock_addrlen, KM_SLEEP);
1468 	if ((error = socket_getsockname(so, sock_addrp, &sock_addrlen,
1469 	    CRED())) == 0) {
1470 		ASSERT(MUTEX_NOT_HELD(&so->so_lock));
1471 		ASSERT(sock_addrlen <= so->so_max_addr_len);
1472 		error = copyout_name(name, namelen, namelenp,
1473 		    (void *)sock_addrp, sock_addrlen);
1474 	}
1475 	kmem_free(sock_addrp, so->so_max_addr_len);
1476 rel_out:
1477 	releasef(sock);
1478 bad:	return (error != 0 ? set_errno(error) : 0);
1479 }
1480 
1481 /*ARGSUSED5*/
1482 int
1483 getsockopt(int sock, int level, int option_name, void *option_value,
1484     socklen_t *option_lenp, int version)
1485 {
1486 	struct sonode *so;
1487 	socklen_t optlen, optlen_res;
1488 	void *optval;
1489 	int error;
1490 
1491 	dprint(1, ("getsockopt(%d, %d, %d, %p, %p)\n",
1492 	    sock, level, option_name, option_value, (void *)option_lenp));
1493 
1494 	if ((so = getsonode(sock, &error, NULL)) == NULL)
1495 		return (set_errno(error));
1496 
1497 	ASSERT(MUTEX_NOT_HELD(&so->so_lock));
1498 	if (copyin(option_lenp, &optlen, sizeof (optlen))) {
1499 		releasef(sock);
1500 		return (set_errno(EFAULT));
1501 	}
1502 	/*
1503 	 * Verify that the length is not excessive to prevent
1504 	 * an application from consuming all of kernel memory.
1505 	 */
1506 	if (optlen > SO_MAXARGSIZE) {
1507 		error = EINVAL;
1508 		releasef(sock);
1509 		return (set_errno(error));
1510 	}
1511 	optval = kmem_alloc(optlen, KM_SLEEP);
1512 	optlen_res = optlen;
1513 	error = socket_getsockopt(so, level, option_name, optval,
1514 	    &optlen_res, (version != SOV_XPG4_2) ? 0 : _SOGETSOCKOPT_XPG4_2,
1515 	    CRED());
1516 	releasef(sock);
1517 	if (error) {
1518 		kmem_free(optval, optlen);
1519 		return (set_errno(error));
1520 	}
1521 	error = copyout_arg(option_value, optlen, option_lenp,
1522 	    optval, optlen_res);
1523 	kmem_free(optval, optlen);
1524 	if (error)
1525 		return (set_errno(error));
1526 	return (0);
1527 }
1528 
1529 /*ARGSUSED5*/
1530 int
1531 setsockopt(int sock, int level, int option_name, void *option_value,
1532     socklen_t option_len, int version)
1533 {
1534 	struct sonode *so;
1535 	intptr_t buffer[2];
1536 	void *optval = NULL;
1537 	int error;
1538 
1539 	dprint(1, ("setsockopt(%d, %d, %d, %p, %d)\n",
1540 	    sock, level, option_name, option_value, option_len));
1541 
1542 	if ((so = getsonode(sock, &error, NULL)) == NULL)
1543 		return (set_errno(error));
1544 
1545 	if (option_value != NULL) {
1546 		if (option_len != 0) {
1547 			/*
1548 			 * Verify that the length is not excessive to prevent
1549 			 * an application from consuming all of kernel memory.
1550 			 */
1551 			if (option_len > SO_MAXARGSIZE) {
1552 				error = EINVAL;
1553 				goto done2;
1554 			}
1555 			optval = option_len <= sizeof (buffer) ?
1556 			    &buffer : kmem_alloc((size_t)option_len, KM_SLEEP);
1557 			ASSERT(MUTEX_NOT_HELD(&so->so_lock));
1558 			if (copyin(option_value, optval, (size_t)option_len)) {
1559 				error = EFAULT;
1560 				goto done1;
1561 			}
1562 		}
1563 	} else
1564 		option_len = 0;
1565 
1566 	error = socket_setsockopt(so, level, option_name, optval,
1567 	    (t_uscalar_t)option_len, CRED());
1568 done1:
1569 	if (optval != buffer)
1570 		kmem_free(optval, (size_t)option_len);
1571 done2:
1572 	releasef(sock);
1573 	if (error)
1574 		return (set_errno(error));
1575 	return (0);
1576 }
1577 
1578 static int
1579 sockconf_add_sock(int family, int type, int protocol, char *name)
1580 {
1581 	int error = 0;
1582 	char *kdevpath = NULL;
1583 	char *kmodule = NULL;
1584 	char *buf = NULL;
1585 	size_t pathlen = 0;
1586 	struct sockparams *sp;
1587 
1588 	if (name == NULL)
1589 		return (EINVAL);
1590 	/*
1591 	 * Copyin the name.
1592 	 * This also makes it possible to check for too long pathnames.
1593 	 * Compress the space needed for the name before passing it
1594 	 * to soconfig - soconfig will store the string until
1595 	 * the configuration is removed.
1596 	 */
1597 	buf = kmem_alloc(MAXPATHLEN, KM_SLEEP);
1598 	if ((error = copyinstr(name, buf, MAXPATHLEN, &pathlen)) != 0) {
1599 		kmem_free(buf, MAXPATHLEN);
1600 		return (error);
1601 	}
1602 	if (strncmp(buf, "/dev", strlen("/dev")) == 0) {
1603 		/* For device */
1604 
1605 		/*
1606 		 * Special handling for NCA:
1607 		 *
1608 		 * DEV_NCA is never opened even if an application
1609 		 * requests for AF_NCA. The device opened is instead a
1610 		 * predefined AF_INET transport (NCA_INET_DEV).
1611 		 *
1612 		 * Prior to Volo (PSARC/2007/587) NCA would determine
1613 		 * the device using a lookup, which worked then because
1614 		 * all protocols were based on TPI. Since TPI is no
1615 		 * longer the default, we have to explicitly state
1616 		 * which device to use.
1617 		 */
1618 		if (strcmp(buf, NCA_DEV) == 0) {
1619 			/* only support entry <28, 2, 0> */
1620 			if (family != AF_NCA || type != SOCK_STREAM ||
1621 			    protocol != 0) {
1622 				kmem_free(buf, MAXPATHLEN);
1623 				return (EINVAL);
1624 			}
1625 
1626 			pathlen = strlen(NCA_INET_DEV) + 1;
1627 			kdevpath = kmem_alloc(pathlen, KM_SLEEP);
1628 			bcopy(NCA_INET_DEV, kdevpath, pathlen);
1629 			kdevpath[pathlen - 1] = '\0';
1630 		} else {
1631 			kdevpath = kmem_alloc(pathlen, KM_SLEEP);
1632 			bcopy(buf, kdevpath, pathlen);
1633 			kdevpath[pathlen - 1] = '\0';
1634 		}
1635 	} else {
1636 		/* For socket module */
1637 		kmodule = kmem_alloc(pathlen, KM_SLEEP);
1638 		bcopy(buf, kmodule, pathlen);
1639 		kmodule[pathlen - 1] = '\0';
1640 		pathlen = 0;
1641 	}
1642 	kmem_free(buf, MAXPATHLEN);
1643 
1644 	/* sockparams_create frees mod name and devpath upon failure */
1645 	sp = sockparams_create(family, type, protocol, kmodule,
1646 	    kdevpath, pathlen, 0, KM_SLEEP, &error);
1647 	if (sp != NULL) {
1648 		error = sockparams_add(sp);
1649 		if (error != 0)
1650 			sockparams_destroy(sp);
1651 	}
1652 
1653 	return (error);
1654 }
1655 
1656 static int
1657 sockconf_remove_sock(int family, int type, int protocol)
1658 {
1659 	return (sockparams_delete(family, type, protocol));
1660 }
1661 
1662 static int
1663 sockconfig_remove_filter(const char *uname)
1664 {
1665 	char kname[SOF_MAXNAMELEN];
1666 	size_t len;
1667 	int error;
1668 	sof_entry_t *ent;
1669 
1670 	if ((error = copyinstr(uname, kname, SOF_MAXNAMELEN, &len)) != 0)
1671 		return (error);
1672 
1673 	ent = sof_entry_remove_by_name(kname);
1674 	if (ent == NULL)
1675 		return (ENXIO);
1676 
1677 	mutex_enter(&ent->sofe_lock);
1678 	ASSERT(!(ent->sofe_flags & SOFEF_CONDEMED));
1679 	if (ent->sofe_refcnt == 0) {
1680 		mutex_exit(&ent->sofe_lock);
1681 		sof_entry_free(ent);
1682 	} else {
1683 		/* let the last socket free the filter */
1684 		ent->sofe_flags |= SOFEF_CONDEMED;
1685 		mutex_exit(&ent->sofe_lock);
1686 	}
1687 
1688 	return (0);
1689 }
1690 
1691 static int
1692 sockconfig_add_filter(const char *uname, void *ufilpropp)
1693 {
1694 	struct sockconfig_filter_props filprop;
1695 	sof_entry_t *ent;
1696 	int error;
1697 	size_t tuplesz, len;
1698 	char hintbuf[SOF_MAXNAMELEN];
1699 
1700 	ent = kmem_zalloc(sizeof (sof_entry_t), KM_SLEEP);
1701 	mutex_init(&ent->sofe_lock, NULL, MUTEX_DEFAULT, NULL);
1702 
1703 	if ((error = copyinstr(uname, ent->sofe_name, SOF_MAXNAMELEN,
1704 	    &len)) != 0) {
1705 		sof_entry_free(ent);
1706 		return (error);
1707 	}
1708 
1709 	if (get_udatamodel() == DATAMODEL_NATIVE) {
1710 		if (copyin(ufilpropp, &filprop, sizeof (filprop)) != 0) {
1711 			sof_entry_free(ent);
1712 			return (EFAULT);
1713 		}
1714 	}
1715 #ifdef	_SYSCALL32_IMPL
1716 	else {
1717 		struct sockconfig_filter_props32 filprop32;
1718 
1719 		if (copyin(ufilpropp, &filprop32, sizeof (filprop32)) != 0) {
1720 			sof_entry_free(ent);
1721 			return (EFAULT);
1722 		}
1723 		filprop.sfp_modname = (char *)(uintptr_t)filprop32.sfp_modname;
1724 		filprop.sfp_autoattach = filprop32.sfp_autoattach;
1725 		filprop.sfp_hint = filprop32.sfp_hint;
1726 		filprop.sfp_hintarg = (char *)(uintptr_t)filprop32.sfp_hintarg;
1727 		filprop.sfp_socktuple_cnt = filprop32.sfp_socktuple_cnt;
1728 		filprop.sfp_socktuple =
1729 		    (sof_socktuple_t *)(uintptr_t)filprop32.sfp_socktuple;
1730 	}
1731 #endif	/* _SYSCALL32_IMPL */
1732 
1733 	if ((error = copyinstr(filprop.sfp_modname, ent->sofe_modname,
1734 	    sizeof (ent->sofe_modname), &len)) != 0) {
1735 		sof_entry_free(ent);
1736 		return (error);
1737 	}
1738 
1739 	/*
1740 	 * A filter must specify at least one socket tuple.
1741 	 */
1742 	if (filprop.sfp_socktuple_cnt == 0 ||
1743 	    filprop.sfp_socktuple_cnt > SOF_MAXSOCKTUPLECNT) {
1744 		sof_entry_free(ent);
1745 		return (EINVAL);
1746 	}
1747 	ent->sofe_flags = filprop.sfp_autoattach ? SOFEF_AUTO : SOFEF_PROG;
1748 	ent->sofe_hint = filprop.sfp_hint;
1749 
1750 	/*
1751 	 * Verify the hint, and copy in the hint argument, if necessary.
1752 	 */
1753 	switch (ent->sofe_hint) {
1754 	case SOF_HINT_BEFORE:
1755 	case SOF_HINT_AFTER:
1756 		if ((error = copyinstr(filprop.sfp_hintarg, hintbuf,
1757 		    sizeof (hintbuf), &len)) != 0) {
1758 			sof_entry_free(ent);
1759 			return (error);
1760 		}
1761 		ent->sofe_hintarg = kmem_alloc(len, KM_SLEEP);
1762 		bcopy(hintbuf, ent->sofe_hintarg, len);
1763 		/* FALLTHRU */
1764 	case SOF_HINT_TOP:
1765 	case SOF_HINT_BOTTOM:
1766 		/* hints cannot be used with programmatic filters */
1767 		if (ent->sofe_flags & SOFEF_PROG) {
1768 			sof_entry_free(ent);
1769 			return (EINVAL);
1770 		}
1771 		break;
1772 	case SOF_HINT_NONE:
1773 		break;
1774 	default:
1775 		/* bad hint value */
1776 		sof_entry_free(ent);
1777 		return (EINVAL);
1778 	}
1779 
1780 	ent->sofe_socktuple_cnt = filprop.sfp_socktuple_cnt;
1781 	tuplesz = sizeof (sof_socktuple_t) * ent->sofe_socktuple_cnt;
1782 	ent->sofe_socktuple = kmem_alloc(tuplesz, KM_SLEEP);
1783 
1784 	if (get_udatamodel() == DATAMODEL_NATIVE) {
1785 		if (copyin(filprop.sfp_socktuple, ent->sofe_socktuple,
1786 		    tuplesz)) {
1787 			sof_entry_free(ent);
1788 			return (EFAULT);
1789 		}
1790 	}
1791 #ifdef	_SYSCALL32_IMPL
1792 	else {
1793 		int i;
1794 		caddr_t data = (caddr_t)filprop.sfp_socktuple;
1795 		sof_socktuple_t	*tup = ent->sofe_socktuple;
1796 		sof_socktuple32_t tup32;
1797 
1798 		tup = ent->sofe_socktuple;
1799 		for (i = 0; i < ent->sofe_socktuple_cnt; i++, tup++) {
1800 			ASSERT(tup < ent->sofe_socktuple + tuplesz);
1801 
1802 			if (copyin(data, &tup32, sizeof (tup32)) != 0) {
1803 				sof_entry_free(ent);
1804 				return (EFAULT);
1805 			}
1806 			tup->sofst_family = tup32.sofst_family;
1807 			tup->sofst_type = tup32.sofst_type;
1808 			tup->sofst_protocol = tup32.sofst_protocol;
1809 
1810 			data += sizeof (tup32);
1811 		}
1812 	}
1813 #endif	/* _SYSCALL32_IMPL */
1814 
1815 	/* Sockets can start using the filter as soon as the filter is added */
1816 	if ((error = sof_entry_add(ent)) != 0)
1817 		sof_entry_free(ent);
1818 
1819 	return (error);
1820 }
1821 
1822 /*
1823  * Socket configuration system call. It is used to add and remove
1824  * socket types.
1825  */
1826 int
1827 sockconfig(int cmd, void *arg1, void *arg2, void *arg3, void *arg4)
1828 {
1829 	int error = 0;
1830 
1831 	if (secpolicy_net_config(CRED(), B_FALSE) != 0)
1832 		return (set_errno(EPERM));
1833 
1834 	if (sockfs_defer_nl7c_init) {
1835 		nl7c_init();
1836 		sockfs_defer_nl7c_init = 0;
1837 	}
1838 
1839 	switch (cmd) {
1840 	case SOCKCONFIG_ADD_SOCK:
1841 		error = sockconf_add_sock((int)(uintptr_t)arg1,
1842 		    (int)(uintptr_t)arg2, (int)(uintptr_t)arg3, arg4);
1843 		break;
1844 	case SOCKCONFIG_REMOVE_SOCK:
1845 		error = sockconf_remove_sock((int)(uintptr_t)arg1,
1846 		    (int)(uintptr_t)arg2, (int)(uintptr_t)arg3);
1847 		break;
1848 	case SOCKCONFIG_ADD_FILTER:
1849 		error = sockconfig_add_filter((const char *)arg1, arg2);
1850 		break;
1851 	case SOCKCONFIG_REMOVE_FILTER:
1852 		error = sockconfig_remove_filter((const char *)arg1);
1853 		break;
1854 	case SOCKCONFIG_GET_SOCKTABLE:
1855 		error = sockparams_copyout_socktable((int)(uintptr_t)arg1);
1856 		break;
1857 	default:
1858 #ifdef	DEBUG
1859 		cmn_err(CE_NOTE, "sockconfig: unkonwn subcommand %d", cmd);
1860 #endif
1861 		error = EINVAL;
1862 		break;
1863 	}
1864 
1865 	if (error != 0) {
1866 		eprintline(error);
1867 		return (set_errno(error));
1868 	}
1869 	return (0);
1870 }
1871 
1872 
1873 /*
1874  * Sendfile is implemented through two schemes, direct I/O or by
1875  * caching in the filesystem page cache. We cache the input file by
1876  * default and use direct I/O only if sendfile_max_size is set
1877  * appropriately as explained below. Note that this logic is consistent
1878  * with other filesystems where caching is turned on by default
1879  * unless explicitly turned off by using the DIRECTIO ioctl.
1880  *
1881  * We choose a slightly different scheme here. One can turn off
1882  * caching by setting sendfile_max_size to 0. One can also enable
1883  * caching of files <= sendfile_max_size by setting sendfile_max_size
1884  * to an appropriate value. By default sendfile_max_size is set to the
1885  * maximum value so that all files are cached. In future, we may provide
1886  * better interfaces for caching the file.
1887  *
1888  * Sendfile through Direct I/O (Zero copy)
1889  * --------------------------------------
1890  *
1891  * As disks are normally slower than the network, we can't have a
1892  * single thread that reads the disk and writes to the network. We
1893  * need to have parallelism. This is done by having the sendfile
1894  * thread create another thread that reads from the filesystem
1895  * and queues it for network processing. In this scheme, the data
1896  * is never copied anywhere i.e it is zero copy unlike the other
1897  * scheme.
1898  *
1899  * We have a sendfile queue (snfq) where each sendfile
1900  * request (snf_req_t) is queued for processing by a thread. Number
1901  * of threads is dynamically allocated and they exit if they are idling
1902  * beyond a specified amount of time. When each request (snf_req_t) is
1903  * processed by a thread, it produces a number of mblk_t structures to
1904  * be consumed by the sendfile thread. snf_deque and snf_enque are
1905  * used for consuming and producing mblks. Size of the filesystem
1906  * read is determined by the tunable (sendfile_read_size). A single
1907  * mblk holds sendfile_read_size worth of data (except the last
1908  * read of the file) which is sent down as a whole to the network.
1909  * sendfile_read_size is set to 1 MB as this seems to be the optimal
1910  * value for the UFS filesystem backed by a striped storage array.
1911  *
1912  * Synchronisation between read (producer) and write (consumer) threads.
1913  * --------------------------------------------------------------------
1914  *
1915  * sr_lock protects sr_ib_head and sr_ib_tail. The lock is held while
1916  * adding and deleting items in this list. Error can happen anytime
1917  * during read or write. There could be unprocessed mblks in the
1918  * sr_ib_XXX list when a read or write error occurs. Whenever error
1919  * is encountered, we need two things to happen :
1920  *
1921  * a) One of the threads need to clean the mblks.
1922  * b) When one thread encounters an error, the other should stop.
1923  *
1924  * For (a), we don't want to penalize the reader thread as it could do
1925  * some useful work processing other requests. For (b), the error can
1926  * be detected by examining sr_read_error or sr_write_error.
1927  * sr_lock protects sr_read_error and sr_write_error. If both reader and
1928  * writer encounters error, we need to report the write error back to
1929  * the application as that's what would have happened if the operations
1930  * were done sequentially. With this in mind, following should work :
1931  *
1932  *	- Check for errors before read or write.
1933  *	- If the reader encounters error, set the error in sr_read_error.
1934  *	  Check sr_write_error, if it is set, send cv_signal as it is
1935  *	  waiting for reader to complete. If it is not set, the writer
1936  *	  is either running sinking data to the network or blocked
1937  *        because of flow control. For handling the latter case, we
1938  *	  always send a signal. In any case, it will examine sr_read_error
1939  *	  and return. sr_read_error is marked with SR_READ_DONE to tell
1940  *	  the writer that the reader is done in all the cases.
1941  *	- If the writer encounters error, set the error in sr_write_error.
1942  *	  The reader thread is either blocked because of flow control or
1943  *	  running reading data from the disk. For the former, we need to
1944  *	  wakeup the thread. Again to keep it simple, we always wake up
1945  *	  the reader thread. Then, wait for the read thread to complete
1946  *	  if it is not done yet. Cleanup and return.
1947  *
1948  * High and low water marks for the read thread.
1949  * --------------------------------------------
1950  *
1951  * If sendfile() is used to send data over a slow network, we need to
1952  * make sure that the read thread does not produce data at a faster
1953  * rate than the network. This can happen if the disk is faster than
1954  * the network. In such a case, we don't want to build a very large queue.
1955  * But we would still like to get all of the network throughput possible.
1956  * This implies that network should never block waiting for data.
1957  * As there are lot of disk throughput/network throughput combinations
1958  * possible, it is difficult to come up with an accurate number.
1959  * A typical 10K RPM disk has a max seek latency 17ms and rotational
1960  * latency of 3ms for reading a disk block. Thus, the total latency to
1961  * initiate a new read, transfer data from the disk and queue for
1962  * transmission would take about a max of 25ms. Todays max transfer rate
1963  * for network is 100MB/sec. If the thread is blocked because of flow
1964  * control, it would take 25ms to get new data ready for transmission.
1965  * We have to make sure that network is not idling, while we are initiating
1966  * new transfers. So, at 100MB/sec, to keep network busy we would need
1967  * 2.5MB of data. Rounding off, we keep the low water mark to be 3MB of data.
1968  * We need to pick a high water mark so that the woken up thread would
1969  * do considerable work before blocking again to prevent thrashing. Currently,
1970  * we pick this to be 10 times that of the low water mark.
1971  *
1972  * Sendfile with segmap caching (One copy from page cache to mblks).
1973  * ----------------------------------------------------------------
1974  *
1975  * We use the segmap cache for caching the file, if the size of file
1976  * is <= sendfile_max_size. In this case we don't use threads as VM
1977  * is reasonably fast enough to keep up with the network. If the underlying
1978  * transport allows, we call segmap_getmapflt() to map MAXBSIZE (8K) worth
1979  * of data into segmap space, and use the virtual address from segmap
1980  * directly through desballoc() to avoid copy. Once the transport is done
1981  * with the data, the mapping will be released through segmap_release()
1982  * called by the call-back routine.
1983  *
1984  * If zero-copy is not allowed by the transport, we simply call VOP_READ()
1985  * to copy the data from the filesystem into our temporary network buffer.
1986  *
1987  * To disable caching, set sendfile_max_size to 0.
1988  */
1989 
1990 uint_t sendfile_read_size = 1024 * 1024;
1991 #define	SENDFILE_REQ_LOWAT	3 * 1024 * 1024
1992 uint_t sendfile_req_lowat = SENDFILE_REQ_LOWAT;
1993 uint_t sendfile_req_hiwat = 10 * SENDFILE_REQ_LOWAT;
1994 struct sendfile_stats sf_stats;
1995 struct sendfile_queue *snfq;
1996 clock_t snfq_timeout;
1997 off64_t sendfile_max_size;
1998 
1999 static void snf_enque(snf_req_t *, mblk_t *);
2000 static mblk_t *snf_deque(snf_req_t *);
2001 
2002 void
2003 sendfile_init(void)
2004 {
2005 	snfq = kmem_zalloc(sizeof (struct sendfile_queue), KM_SLEEP);
2006 
2007 	mutex_init(&snfq->snfq_lock, NULL, MUTEX_DEFAULT, NULL);
2008 	cv_init(&snfq->snfq_cv, NULL, CV_DEFAULT, NULL);
2009 	snfq->snfq_max_threads = max_ncpus;
2010 	snfq_timeout = SNFQ_TIMEOUT;
2011 	/* Cache all files by default. */
2012 	sendfile_max_size = MAXOFFSET_T;
2013 }
2014 
2015 /*
2016  * Queues a mblk_t for network processing.
2017  */
2018 static void
2019 snf_enque(snf_req_t *sr, mblk_t *mp)
2020 {
2021 	mp->b_next = NULL;
2022 	mutex_enter(&sr->sr_lock);
2023 	if (sr->sr_mp_head == NULL) {
2024 		sr->sr_mp_head = sr->sr_mp_tail = mp;
2025 		cv_signal(&sr->sr_cv);
2026 	} else {
2027 		sr->sr_mp_tail->b_next = mp;
2028 		sr->sr_mp_tail = mp;
2029 	}
2030 	sr->sr_qlen += MBLKL(mp);
2031 	while ((sr->sr_qlen > sr->sr_hiwat) &&
2032 	    (sr->sr_write_error == 0)) {
2033 		sf_stats.ss_full_waits++;
2034 		cv_wait(&sr->sr_cv, &sr->sr_lock);
2035 	}
2036 	mutex_exit(&sr->sr_lock);
2037 }
2038 
2039 /*
2040  * De-queues a mblk_t for network processing.
2041  */
2042 static mblk_t *
2043 snf_deque(snf_req_t *sr)
2044 {
2045 	mblk_t *mp;
2046 
2047 	mutex_enter(&sr->sr_lock);
2048 	/*
2049 	 * If we have encountered an error on read or read is
2050 	 * completed and no more mblks, return NULL.
2051 	 * We need to check for NULL sr_mp_head also as
2052 	 * the reads could have completed and there is
2053 	 * nothing more to come.
2054 	 */
2055 	if (((sr->sr_read_error & ~SR_READ_DONE) != 0) ||
2056 	    ((sr->sr_read_error & SR_READ_DONE) &&
2057 	    sr->sr_mp_head == NULL)) {
2058 		mutex_exit(&sr->sr_lock);
2059 		return (NULL);
2060 	}
2061 	/*
2062 	 * To start with neither SR_READ_DONE is marked nor
2063 	 * the error is set. When we wake up from cv_wait,
2064 	 * following are the possibilities :
2065 	 *
2066 	 *	a) sr_read_error is zero and mblks are queued.
2067 	 *	b) sr_read_error is set to SR_READ_DONE
2068 	 *	   and mblks are queued.
2069 	 *	c) sr_read_error is set to SR_READ_DONE
2070 	 *	   and no mblks.
2071 	 *	d) sr_read_error is set to some error other
2072 	 *	   than SR_READ_DONE.
2073 	 */
2074 
2075 	while ((sr->sr_read_error == 0) && (sr->sr_mp_head == NULL)) {
2076 		sf_stats.ss_empty_waits++;
2077 		cv_wait(&sr->sr_cv, &sr->sr_lock);
2078 	}
2079 	/* Handle (a) and (b) first  - the normal case. */
2080 	if (((sr->sr_read_error & ~SR_READ_DONE) == 0) &&
2081 	    (sr->sr_mp_head != NULL)) {
2082 		mp = sr->sr_mp_head;
2083 		sr->sr_mp_head = mp->b_next;
2084 		sr->sr_qlen -= MBLKL(mp);
2085 		if (sr->sr_qlen < sr->sr_lowat)
2086 			cv_signal(&sr->sr_cv);
2087 		mutex_exit(&sr->sr_lock);
2088 		mp->b_next = NULL;
2089 		return (mp);
2090 	}
2091 	/* Handle (c) and (d). */
2092 	mutex_exit(&sr->sr_lock);
2093 	return (NULL);
2094 }
2095 
2096 /*
2097  * Reads data from the filesystem and queues it for network processing.
2098  */
2099 void
2100 snf_async_read(snf_req_t *sr)
2101 {
2102 	size_t iosize;
2103 	u_offset_t fileoff;
2104 	u_offset_t size;
2105 	int ret_size;
2106 	int error;
2107 	file_t *fp;
2108 	mblk_t *mp;
2109 	struct vnode *vp;
2110 	int extra = 0;
2111 	int maxblk = 0;
2112 	int wroff = 0;
2113 	struct sonode *so;
2114 
2115 	fp = sr->sr_fp;
2116 	size = sr->sr_file_size;
2117 	fileoff = sr->sr_file_off;
2118 
2119 	/*
2120 	 * Ignore the error for filesystems that doesn't support DIRECTIO.
2121 	 */
2122 	(void) VOP_IOCTL(fp->f_vnode, _FIODIRECTIO, DIRECTIO_ON, 0,
2123 	    kcred, NULL, NULL);
2124 
2125 	vp = sr->sr_vp;
2126 	if (vp->v_type == VSOCK) {
2127 		stdata_t *stp;
2128 
2129 		/*
2130 		 * Get the extra space to insert a header and a trailer.
2131 		 */
2132 		so = VTOSO(vp);
2133 		stp = vp->v_stream;
2134 		if (stp == NULL) {
2135 			wroff = so->so_proto_props.sopp_wroff;
2136 			maxblk = so->so_proto_props.sopp_maxblk;
2137 			extra = wroff + so->so_proto_props.sopp_tail;
2138 		} else {
2139 			wroff = (int)(stp->sd_wroff);
2140 			maxblk = (int)(stp->sd_maxblk);
2141 			extra = wroff + (int)(stp->sd_tail);
2142 		}
2143 	}
2144 
2145 	while ((size != 0) && (sr->sr_write_error == 0)) {
2146 
2147 		iosize = (int)MIN(sr->sr_maxpsz, size);
2148 
2149 		/*
2150 		 * Socket filters can limit the mblk size,
2151 		 * so limit reads to maxblk if there are
2152 		 * filters present.
2153 		 */
2154 		if (vp->v_type == VSOCK &&
2155 		    so->so_filter_active > 0 && maxblk != INFPSZ)
2156 			iosize = (int)MIN(iosize, maxblk);
2157 
2158 		if (is_system_labeled()) {
2159 			mp = allocb_cred(iosize + extra, CRED(),
2160 			    curproc->p_pid);
2161 		} else {
2162 			mp = allocb(iosize + extra, BPRI_MED);
2163 		}
2164 		if (mp == NULL) {
2165 			error = EAGAIN;
2166 			break;
2167 		}
2168 
2169 		mp->b_rptr += wroff;
2170 
2171 		ret_size = soreadfile(fp, mp->b_rptr, fileoff, &error, iosize);
2172 
2173 		/* Error or Reached EOF ? */
2174 		if ((error != 0) || (ret_size == 0)) {
2175 			freeb(mp);
2176 			break;
2177 		}
2178 		mp->b_wptr = mp->b_rptr + ret_size;
2179 
2180 		snf_enque(sr, mp);
2181 		size -= ret_size;
2182 		fileoff += ret_size;
2183 	}
2184 	(void) VOP_IOCTL(fp->f_vnode, _FIODIRECTIO, DIRECTIO_OFF, 0,
2185 	    kcred, NULL, NULL);
2186 	mutex_enter(&sr->sr_lock);
2187 	sr->sr_read_error = error;
2188 	sr->sr_read_error |= SR_READ_DONE;
2189 	cv_signal(&sr->sr_cv);
2190 	mutex_exit(&sr->sr_lock);
2191 }
2192 
2193 void
2194 snf_async_thread(void)
2195 {
2196 	snf_req_t *sr;
2197 	callb_cpr_t cprinfo;
2198 	clock_t time_left = 1;
2199 
2200 	CALLB_CPR_INIT(&cprinfo, &snfq->snfq_lock, callb_generic_cpr, "snfq");
2201 
2202 	mutex_enter(&snfq->snfq_lock);
2203 	for (;;) {
2204 		/*
2205 		 * If we didn't find a entry, then block until woken up
2206 		 * again and then look through the queues again.
2207 		 */
2208 		while ((sr = snfq->snfq_req_head) == NULL) {
2209 			CALLB_CPR_SAFE_BEGIN(&cprinfo);
2210 			if (time_left <= 0) {
2211 				snfq->snfq_svc_threads--;
2212 				CALLB_CPR_EXIT(&cprinfo);
2213 				thread_exit();
2214 				/* NOTREACHED */
2215 			}
2216 			snfq->snfq_idle_cnt++;
2217 
2218 			time_left = cv_reltimedwait(&snfq->snfq_cv,
2219 			    &snfq->snfq_lock, snfq_timeout, TR_CLOCK_TICK);
2220 			snfq->snfq_idle_cnt--;
2221 
2222 			CALLB_CPR_SAFE_END(&cprinfo, &snfq->snfq_lock);
2223 		}
2224 		snfq->snfq_req_head = sr->sr_next;
2225 		snfq->snfq_req_cnt--;
2226 		mutex_exit(&snfq->snfq_lock);
2227 		snf_async_read(sr);
2228 		mutex_enter(&snfq->snfq_lock);
2229 	}
2230 }
2231 
2232 
2233 snf_req_t *
2234 create_thread(int operation, struct vnode *vp, file_t *fp,
2235     u_offset_t fileoff, u_offset_t size)
2236 {
2237 	snf_req_t *sr;
2238 	stdata_t *stp;
2239 
2240 	sr = (snf_req_t *)kmem_zalloc(sizeof (snf_req_t), KM_SLEEP);
2241 
2242 	sr->sr_vp = vp;
2243 	sr->sr_fp = fp;
2244 	stp = vp->v_stream;
2245 
2246 	/*
2247 	 * store sd_qn_maxpsz into sr_maxpsz while we have stream head.
2248 	 * stream might be closed before thread returns from snf_async_read.
2249 	 */
2250 	if (stp != NULL && stp->sd_qn_maxpsz > 0) {
2251 		sr->sr_maxpsz = MIN(MAXBSIZE, stp->sd_qn_maxpsz);
2252 	} else {
2253 		sr->sr_maxpsz = MAXBSIZE;
2254 	}
2255 
2256 	sr->sr_operation = operation;
2257 	sr->sr_file_off = fileoff;
2258 	sr->sr_file_size = size;
2259 	sr->sr_hiwat = sendfile_req_hiwat;
2260 	sr->sr_lowat = sendfile_req_lowat;
2261 	mutex_init(&sr->sr_lock, NULL, MUTEX_DEFAULT, NULL);
2262 	cv_init(&sr->sr_cv, NULL, CV_DEFAULT, NULL);
2263 	/*
2264 	 * See whether we need another thread for servicing this
2265 	 * request. If there are already enough requests queued
2266 	 * for the threads, create one if not exceeding
2267 	 * snfq_max_threads.
2268 	 */
2269 	mutex_enter(&snfq->snfq_lock);
2270 	if (snfq->snfq_req_cnt >= snfq->snfq_idle_cnt &&
2271 	    snfq->snfq_svc_threads < snfq->snfq_max_threads) {
2272 		(void) thread_create(NULL, 0, &snf_async_thread, 0, 0, &p0,
2273 		    TS_RUN, minclsyspri);
2274 		snfq->snfq_svc_threads++;
2275 	}
2276 	if (snfq->snfq_req_head == NULL) {
2277 		snfq->snfq_req_head = snfq->snfq_req_tail = sr;
2278 		cv_signal(&snfq->snfq_cv);
2279 	} else {
2280 		snfq->snfq_req_tail->sr_next = sr;
2281 		snfq->snfq_req_tail = sr;
2282 	}
2283 	snfq->snfq_req_cnt++;
2284 	mutex_exit(&snfq->snfq_lock);
2285 	return (sr);
2286 }
2287 
2288 int
2289 snf_direct_io(file_t *fp, file_t *rfp, u_offset_t fileoff, u_offset_t size,
2290     ssize_t *count)
2291 {
2292 	snf_req_t *sr;
2293 	mblk_t *mp;
2294 	int iosize;
2295 	int error = 0;
2296 	short fflag;
2297 	struct vnode *vp;
2298 	int ksize;
2299 	struct nmsghdr msg;
2300 
2301 	ksize = 0;
2302 	*count = 0;
2303 	bzero(&msg, sizeof (msg));
2304 
2305 	vp = fp->f_vnode;
2306 	fflag = fp->f_flag;
2307 	if ((sr = create_thread(READ_OP, vp, rfp, fileoff, size)) == NULL)
2308 		return (EAGAIN);
2309 
2310 	/*
2311 	 * We check for read error in snf_deque. It has to check
2312 	 * for successful READ_DONE and return NULL, and we might
2313 	 * as well make an additional check there.
2314 	 */
2315 	while ((mp = snf_deque(sr)) != NULL) {
2316 
2317 		if (ISSIG(curthread, JUSTLOOKING)) {
2318 			freeb(mp);
2319 			error = EINTR;
2320 			break;
2321 		}
2322 		iosize = MBLKL(mp);
2323 
2324 		error = socket_sendmblk(VTOSO(vp), &msg, fflag, CRED(), &mp);
2325 
2326 		if (error != 0) {
2327 			if (mp != NULL)
2328 				freeb(mp);
2329 			break;
2330 		}
2331 		ksize += iosize;
2332 	}
2333 	*count = ksize;
2334 
2335 	mutex_enter(&sr->sr_lock);
2336 	sr->sr_write_error = error;
2337 	/* Look at the big comments on why we cv_signal here. */
2338 	cv_signal(&sr->sr_cv);
2339 
2340 	/* Wait for the reader to complete always. */
2341 	while (!(sr->sr_read_error & SR_READ_DONE)) {
2342 		cv_wait(&sr->sr_cv, &sr->sr_lock);
2343 	}
2344 	/* If there is no write error, check for read error. */
2345 	if (error == 0)
2346 		error = (sr->sr_read_error & ~SR_READ_DONE);
2347 
2348 	if (error != 0) {
2349 		mblk_t *next_mp;
2350 
2351 		mp = sr->sr_mp_head;
2352 		while (mp != NULL) {
2353 			next_mp = mp->b_next;
2354 			mp->b_next = NULL;
2355 			freeb(mp);
2356 			mp = next_mp;
2357 		}
2358 	}
2359 	mutex_exit(&sr->sr_lock);
2360 	kmem_free(sr, sizeof (snf_req_t));
2361 	return (error);
2362 }
2363 
2364 /* Maximum no.of pages allocated by vpm for sendfile at a time */
2365 #define	SNF_VPMMAXPGS	(VPMMAXPGS/2)
2366 
2367 /*
2368  * Maximum no.of elements in the list returned by vpm, including
2369  * NULL for the last entry
2370  */
2371 #define	SNF_MAXVMAPS	(SNF_VPMMAXPGS + 1)
2372 
2373 typedef struct {
2374 	unsigned int	snfv_ref;
2375 	frtn_t		snfv_frtn;
2376 	vnode_t		*snfv_vp;
2377 	struct vmap	snfv_vml[SNF_MAXVMAPS];
2378 } snf_vmap_desbinfo;
2379 
2380 typedef struct {
2381 	frtn_t		snfi_frtn;
2382 	caddr_t		snfi_base;
2383 	uint_t		snfi_mapoff;
2384 	size_t		snfi_len;
2385 	vnode_t		*snfi_vp;
2386 } snf_smap_desbinfo;
2387 
2388 /*
2389  * The callback function used for vpm mapped mblks called when the last ref of
2390  * the mblk is dropped which normally occurs when TCP receives the ack. But it
2391  * can be the driver too due to lazy reclaim.
2392  */
2393 void
2394 snf_vmap_desbfree(snf_vmap_desbinfo *snfv)
2395 {
2396 	ASSERT(snfv->snfv_ref != 0);
2397 	if (atomic_dec_32_nv(&snfv->snfv_ref) == 0) {
2398 		vpm_unmap_pages(snfv->snfv_vml, S_READ);
2399 		VN_RELE(snfv->snfv_vp);
2400 		kmem_free(snfv, sizeof (snf_vmap_desbinfo));
2401 	}
2402 }
2403 
2404 /*
2405  * The callback function used for segmap'ped mblks called when the last ref of
2406  * the mblk is dropped which normally occurs when TCP receives the ack. But it
2407  * can be the driver too due to lazy reclaim.
2408  */
2409 void
2410 snf_smap_desbfree(snf_smap_desbinfo *snfi)
2411 {
2412 	if (! IS_KPM_ADDR(snfi->snfi_base)) {
2413 		/*
2414 		 * We don't need to call segmap_fault(F_SOFTUNLOCK) for
2415 		 * segmap_kpm as long as the latter never falls back to
2416 		 * "use_segmap_range". (See segmap_getmapflt().)
2417 		 *
2418 		 * Using S_OTHER saves an redundant hat_setref() in
2419 		 * segmap_unlock()
2420 		 */
2421 		(void) segmap_fault(kas.a_hat, segkmap,
2422 		    (caddr_t)(uintptr_t)(((uintptr_t)snfi->snfi_base +
2423 		    snfi->snfi_mapoff) & PAGEMASK), snfi->snfi_len,
2424 		    F_SOFTUNLOCK, S_OTHER);
2425 	}
2426 	(void) segmap_release(segkmap, snfi->snfi_base, SM_DONTNEED);
2427 	VN_RELE(snfi->snfi_vp);
2428 	kmem_free(snfi, sizeof (*snfi));
2429 }
2430 
2431 /*
2432  * Use segmap or vpm instead of bcopy to send down a desballoca'ed, mblk.
2433  * When segmap is used, the mblk contains a segmap slot of no more
2434  * than MAXBSIZE.
2435  *
2436  * With vpm, a maximum of SNF_MAXVMAPS page-sized mappings can be obtained
2437  * in each iteration and sent by socket_sendmblk until an error occurs or
2438  * the requested size has been transferred. An mblk is esballoca'ed from
2439  * each mapped page and a chain of these mblk is sent to the transport layer.
2440  * vpm will be called to unmap the pages when all mblks have been freed by
2441  * free_func.
2442  *
2443  * At the end of the whole sendfile() operation, we wait till the data from
2444  * the last mblk is ack'ed by the transport before returning so that the
2445  * caller of sendfile() can safely modify the file content.
2446  *
2447  * The caller of this function should make sure that total_size does not exceed
2448  * the actual file size of fvp.
2449  */
2450 int
2451 snf_segmap(file_t *fp, vnode_t *fvp, u_offset_t fileoff, u_offset_t total_size,
2452     ssize_t *count, boolean_t nowait)
2453 {
2454 	caddr_t base;
2455 	int mapoff;
2456 	vnode_t *vp;
2457 	mblk_t *mp = NULL;
2458 	int chain_size;
2459 	int error;
2460 	clock_t deadlk_wait;
2461 	short fflag;
2462 	int ksize;
2463 	struct vattr va;
2464 	boolean_t dowait = B_FALSE;
2465 	struct nmsghdr msg;
2466 
2467 	vp = fp->f_vnode;
2468 	fflag = fp->f_flag;
2469 	ksize = 0;
2470 	bzero(&msg, sizeof (msg));
2471 
2472 	for (;;) {
2473 		if (ISSIG(curthread, JUSTLOOKING)) {
2474 			error = EINTR;
2475 			break;
2476 		}
2477 
2478 		if (vpm_enable) {
2479 			snf_vmap_desbinfo *snfv;
2480 			mblk_t *nmp;
2481 			int mblk_size;
2482 			int maxsize;
2483 			int i;
2484 
2485 			mapoff = fileoff & PAGEOFFSET;
2486 			maxsize = MIN((SNF_VPMMAXPGS * PAGESIZE), total_size);
2487 
2488 			snfv = kmem_zalloc(sizeof (snf_vmap_desbinfo),
2489 			    KM_SLEEP);
2490 
2491 			/*
2492 			 * Get vpm mappings for maxsize with read access.
2493 			 * If the pages aren't available yet, we get
2494 			 * DEADLK, so wait and try again a little later using
2495 			 * an increasing wait. We might be here a long time.
2496 			 *
2497 			 * If delay_sig returns EINTR, be sure to exit and
2498 			 * pass it up to the caller.
2499 			 */
2500 			deadlk_wait = 0;
2501 			while ((error = vpm_map_pages(fvp, fileoff,
2502 			    (size_t)maxsize, (VPM_FETCHPAGE), snfv->snfv_vml,
2503 			    SNF_MAXVMAPS, NULL, S_READ)) == EDEADLK) {
2504 				deadlk_wait += (deadlk_wait < 5) ? 1 : 4;
2505 				if ((error = delay_sig(deadlk_wait)) != 0) {
2506 					break;
2507 				}
2508 			}
2509 			if (error != 0) {
2510 				kmem_free(snfv, sizeof (snf_vmap_desbinfo));
2511 				error = (error == EINTR) ? EINTR : EIO;
2512 				goto out;
2513 			}
2514 			snfv->snfv_frtn.free_func = snf_vmap_desbfree;
2515 			snfv->snfv_frtn.free_arg = (caddr_t)snfv;
2516 
2517 			/* Construct the mblk chain from the page mappings */
2518 			chain_size = 0;
2519 			for (i = 0; (snfv->snfv_vml[i].vs_addr != NULL) &&
2520 			    total_size > 0; i++) {
2521 				ASSERT(chain_size < maxsize);
2522 				mblk_size = MIN(snfv->snfv_vml[i].vs_len -
2523 				    mapoff, total_size);
2524 				nmp = esballoca(
2525 				    (uchar_t *)snfv->snfv_vml[i].vs_addr +
2526 				    mapoff, mblk_size, BPRI_HI,
2527 				    &snfv->snfv_frtn);
2528 
2529 				/*
2530 				 * We return EAGAIN after unmapping the pages
2531 				 * if we cannot allocate the the head of the
2532 				 * chain. Otherwise, we continue sending the
2533 				 * mblks constructed so far.
2534 				 */
2535 				if (nmp == NULL) {
2536 					if (i == 0) {
2537 						vpm_unmap_pages(snfv->snfv_vml,
2538 						    S_READ);
2539 						kmem_free(snfv,
2540 						    sizeof (snf_vmap_desbinfo));
2541 						error = EAGAIN;
2542 						goto out;
2543 					}
2544 					break;
2545 				}
2546 				/* Mark this dblk with the zero-copy flag */
2547 				nmp->b_datap->db_struioflag |= STRUIO_ZC;
2548 				nmp->b_wptr += mblk_size;
2549 				chain_size += mblk_size;
2550 				fileoff += mblk_size;
2551 				total_size -= mblk_size;
2552 				snfv->snfv_ref++;
2553 				mapoff = 0;
2554 				if (i > 0)
2555 					linkb(mp, nmp);
2556 				else
2557 					mp = nmp;
2558 			}
2559 			VN_HOLD(fvp);
2560 			snfv->snfv_vp = fvp;
2561 		} else {
2562 			/* vpm not supported. fallback to segmap */
2563 			snf_smap_desbinfo *snfi;
2564 
2565 			mapoff = fileoff & MAXBOFFSET;
2566 			chain_size = MAXBSIZE - mapoff;
2567 			if (chain_size > total_size)
2568 				chain_size = total_size;
2569 			/*
2570 			 * we don't forcefault because we'll call
2571 			 * segmap_fault(F_SOFTLOCK) next.
2572 			 *
2573 			 * S_READ will get the ref bit set (by either
2574 			 * segmap_getmapflt() or segmap_fault()) and page
2575 			 * shared locked.
2576 			 */
2577 			base = segmap_getmapflt(segkmap, fvp, fileoff,
2578 			    chain_size, segmap_kpm ? SM_FAULT : 0, S_READ);
2579 
2580 			snfi = kmem_alloc(sizeof (*snfi), KM_SLEEP);
2581 			snfi->snfi_len = (size_t)roundup(mapoff+chain_size,
2582 			    PAGESIZE)- (mapoff & PAGEMASK);
2583 			/*
2584 			 * We must call segmap_fault() even for segmap_kpm
2585 			 * because that's how error gets returned.
2586 			 * (segmap_getmapflt() never fails but segmap_fault()
2587 			 * does.)
2588 			 *
2589 			 * If the pages aren't available yet, we get
2590 			 * DEADLK, so wait and try again a little later using
2591 			 * an increasing wait. We might be here a long time.
2592 			 *
2593 			 * If delay_sig returns EINTR, be sure to exit and
2594 			 * pass it up to the caller.
2595 			 */
2596 			deadlk_wait = 0;
2597 			while ((error = FC_ERRNO(segmap_fault(kas.a_hat,
2598 			    segkmap, (caddr_t)(uintptr_t)(((uintptr_t)base +
2599 			    mapoff) & PAGEMASK), snfi->snfi_len, F_SOFTLOCK,
2600 			    S_READ))) == EDEADLK) {
2601 				deadlk_wait += (deadlk_wait < 5) ? 1 : 4;
2602 				if ((error = delay_sig(deadlk_wait)) != 0) {
2603 					break;
2604 				}
2605 			}
2606 			if (error != 0) {
2607 				(void) segmap_release(segkmap, base, 0);
2608 				kmem_free(snfi, sizeof (*snfi));
2609 				error = (error == EINTR) ? EINTR : EIO;
2610 				goto out;
2611 			}
2612 			snfi->snfi_frtn.free_func = snf_smap_desbfree;
2613 			snfi->snfi_frtn.free_arg = (caddr_t)snfi;
2614 			snfi->snfi_base = base;
2615 			snfi->snfi_mapoff = mapoff;
2616 			mp = esballoca((uchar_t *)base + mapoff, chain_size,
2617 			    BPRI_HI, &snfi->snfi_frtn);
2618 
2619 			if (mp == NULL) {
2620 				(void) segmap_fault(kas.a_hat, segkmap,
2621 				    (caddr_t)(uintptr_t)(((uintptr_t)base +
2622 				    mapoff) & PAGEMASK), snfi->snfi_len,
2623 				    F_SOFTUNLOCK, S_OTHER);
2624 				(void) segmap_release(segkmap, base, 0);
2625 				kmem_free(snfi, sizeof (*snfi));
2626 				freemsg(mp);
2627 				error = EAGAIN;
2628 				goto out;
2629 			}
2630 			VN_HOLD(fvp);
2631 			snfi->snfi_vp = fvp;
2632 			mp->b_wptr += chain_size;
2633 
2634 			/* Mark this dblk with the zero-copy flag */
2635 			mp->b_datap->db_struioflag |= STRUIO_ZC;
2636 			fileoff += chain_size;
2637 			total_size -= chain_size;
2638 		}
2639 
2640 		if (total_size == 0 && !nowait) {
2641 			ASSERT(!dowait);
2642 			dowait = B_TRUE;
2643 			mp->b_datap->db_struioflag |= STRUIO_ZCNOTIFY;
2644 		}
2645 		VOP_RWUNLOCK(fvp, V_WRITELOCK_FALSE, NULL);
2646 		error = socket_sendmblk(VTOSO(vp), &msg, fflag, CRED(), &mp);
2647 		if (error != 0) {
2648 			/*
2649 			 * mp contains the mblks that were not sent by
2650 			 * socket_sendmblk. Use its size to update *count
2651 			 */
2652 			*count = ksize + (chain_size - msgdsize(mp));
2653 			if (mp != NULL)
2654 				freemsg(mp);
2655 			return (error);
2656 		}
2657 		ksize += chain_size;
2658 		if (total_size == 0)
2659 			goto done;
2660 
2661 		(void) VOP_RWLOCK(fvp, V_WRITELOCK_FALSE, NULL);
2662 		va.va_mask = AT_SIZE;
2663 		error = VOP_GETATTR(fvp, &va, 0, kcred, NULL);
2664 		if (error)
2665 			break;
2666 		/* Read as much as possible. */
2667 		if (fileoff >= va.va_size)
2668 			break;
2669 		if (total_size + fileoff > va.va_size)
2670 			total_size = va.va_size - fileoff;
2671 	}
2672 out:
2673 	VOP_RWUNLOCK(fvp, V_WRITELOCK_FALSE, NULL);
2674 done:
2675 	*count = ksize;
2676 	if (dowait) {
2677 		stdata_t *stp;
2678 
2679 		stp = vp->v_stream;
2680 		if (stp == NULL) {
2681 			struct sonode *so;
2682 			so = VTOSO(vp);
2683 			error = so_zcopy_wait(so);
2684 		} else {
2685 			mutex_enter(&stp->sd_lock);
2686 			while (!(stp->sd_flag & STZCNOTIFY)) {
2687 				if (cv_wait_sig(&stp->sd_zcopy_wait,
2688 				    &stp->sd_lock) == 0) {
2689 					error = EINTR;
2690 					break;
2691 				}
2692 			}
2693 			stp->sd_flag &= ~STZCNOTIFY;
2694 			mutex_exit(&stp->sd_lock);
2695 		}
2696 	}
2697 	return (error);
2698 }
2699 
2700 int
2701 snf_cache(file_t *fp, vnode_t *fvp, u_offset_t fileoff, u_offset_t size,
2702     uint_t maxpsz, ssize_t *count)
2703 {
2704 	struct vnode *vp;
2705 	mblk_t *mp;
2706 	int iosize;
2707 	int extra = 0;
2708 	int error;
2709 	short fflag;
2710 	int ksize;
2711 	int ioflag;
2712 	struct uio auio;
2713 	struct iovec aiov;
2714 	struct vattr va;
2715 	int maxblk = 0;
2716 	int wroff = 0;
2717 	struct sonode *so;
2718 	struct nmsghdr msg;
2719 
2720 	vp = fp->f_vnode;
2721 	if (vp->v_type == VSOCK) {
2722 		stdata_t *stp;
2723 
2724 		/*
2725 		 * Get the extra space to insert a header and a trailer.
2726 		 */
2727 		so = VTOSO(vp);
2728 		stp = vp->v_stream;
2729 		if (stp == NULL) {
2730 			wroff = so->so_proto_props.sopp_wroff;
2731 			maxblk = so->so_proto_props.sopp_maxblk;
2732 			extra = wroff + so->so_proto_props.sopp_tail;
2733 		} else {
2734 			wroff = (int)(stp->sd_wroff);
2735 			maxblk = (int)(stp->sd_maxblk);
2736 			extra = wroff + (int)(stp->sd_tail);
2737 		}
2738 	}
2739 	bzero(&msg, sizeof (msg));
2740 	fflag = fp->f_flag;
2741 	ksize = 0;
2742 	auio.uio_iov = &aiov;
2743 	auio.uio_iovcnt = 1;
2744 	auio.uio_segflg = UIO_SYSSPACE;
2745 	auio.uio_llimit = MAXOFFSET_T;
2746 	auio.uio_fmode = fflag;
2747 	auio.uio_extflg = UIO_COPY_CACHED;
2748 	ioflag = auio.uio_fmode & (FSYNC|FDSYNC|FRSYNC);
2749 	/* If read sync is not asked for, filter sync flags */
2750 	if ((ioflag & FRSYNC) == 0)
2751 		ioflag &= ~(FSYNC|FDSYNC);
2752 	for (;;) {
2753 		if (ISSIG(curthread, JUSTLOOKING)) {
2754 			error = EINTR;
2755 			break;
2756 		}
2757 		iosize = (int)MIN(maxpsz, size);
2758 
2759 		/*
2760 		 * Socket filters can limit the mblk size,
2761 		 * so limit reads to maxblk if there are
2762 		 * filters present.
2763 		 */
2764 		if (vp->v_type == VSOCK &&
2765 		    so->so_filter_active > 0 && maxblk != INFPSZ)
2766 			iosize = (int)MIN(iosize, maxblk);
2767 
2768 		if (is_system_labeled()) {
2769 			mp = allocb_cred(iosize + extra, CRED(),
2770 			    curproc->p_pid);
2771 		} else {
2772 			mp = allocb(iosize + extra, BPRI_MED);
2773 		}
2774 		if (mp == NULL) {
2775 			error = EAGAIN;
2776 			break;
2777 		}
2778 
2779 		mp->b_rptr += wroff;
2780 
2781 		aiov.iov_base = (caddr_t)mp->b_rptr;
2782 		aiov.iov_len = iosize;
2783 		auio.uio_loffset = fileoff;
2784 		auio.uio_resid = iosize;
2785 
2786 		error = VOP_READ(fvp, &auio, ioflag, fp->f_cred, NULL);
2787 		iosize -= auio.uio_resid;
2788 
2789 		if (error == EINTR && iosize != 0)
2790 			error = 0;
2791 
2792 		if (error != 0 || iosize == 0) {
2793 			freeb(mp);
2794 			break;
2795 		}
2796 		mp->b_wptr = mp->b_rptr + iosize;
2797 
2798 		VOP_RWUNLOCK(fvp, V_WRITELOCK_FALSE, NULL);
2799 
2800 		error = socket_sendmblk(VTOSO(vp), &msg, fflag, CRED(), &mp);
2801 
2802 		if (error != 0) {
2803 			*count = ksize;
2804 			if (mp != NULL)
2805 				freeb(mp);
2806 			return (error);
2807 		}
2808 		ksize += iosize;
2809 		size -= iosize;
2810 		if (size == 0)
2811 			goto done;
2812 
2813 		fileoff += iosize;
2814 		(void) VOP_RWLOCK(fvp, V_WRITELOCK_FALSE, NULL);
2815 		va.va_mask = AT_SIZE;
2816 		error = VOP_GETATTR(fvp, &va, 0, kcred, NULL);
2817 		if (error)
2818 			break;
2819 		/* Read as much as possible. */
2820 		if (fileoff >= va.va_size)
2821 			size = 0;
2822 		else if (size + fileoff > va.va_size)
2823 			size = va.va_size - fileoff;
2824 	}
2825 	VOP_RWUNLOCK(fvp, V_WRITELOCK_FALSE, NULL);
2826 done:
2827 	*count = ksize;
2828 	return (error);
2829 }
2830 
2831 #if defined(_SYSCALL32_IMPL) || defined(_ILP32)
2832 /*
2833  * Largefile support for 32 bit applications only.
2834  */
2835 int
2836 sosendfile64(file_t *fp, file_t *rfp, const struct ksendfilevec64 *sfv,
2837     ssize32_t *count32)
2838 {
2839 	ssize32_t sfv_len;
2840 	u_offset_t sfv_off, va_size;
2841 	struct vnode *vp, *fvp, *realvp;
2842 	struct vattr va;
2843 	stdata_t *stp;
2844 	ssize_t count = 0;
2845 	int error = 0;
2846 	boolean_t dozcopy = B_FALSE;
2847 	uint_t maxpsz;
2848 
2849 	sfv_len = (ssize32_t)sfv->sfv_len;
2850 	if (sfv_len < 0) {
2851 		error = EINVAL;
2852 		goto out;
2853 	}
2854 
2855 	if (sfv_len == 0) goto out;
2856 
2857 	sfv_off = (u_offset_t)sfv->sfv_off;
2858 
2859 	/* Same checks as in pread */
2860 	if (sfv_off > MAXOFFSET_T) {
2861 		error = EINVAL;
2862 		goto out;
2863 	}
2864 	if (sfv_off + sfv_len > MAXOFFSET_T)
2865 		sfv_len = (ssize32_t)(MAXOFFSET_T - sfv_off);
2866 
2867 	/*
2868 	 * There are no more checks on sfv_len. So, we cast it to
2869 	 * u_offset_t and share the snf_direct_io/snf_cache code between
2870 	 * 32 bit and 64 bit.
2871 	 *
2872 	 * TODO: should do nbl_need_check() like read()?
2873 	 */
2874 	if (sfv_len > sendfile_max_size) {
2875 		sf_stats.ss_file_not_cached++;
2876 		error = snf_direct_io(fp, rfp, sfv_off, (u_offset_t)sfv_len,
2877 		    &count);
2878 		goto out;
2879 	}
2880 	fvp = rfp->f_vnode;
2881 	if (VOP_REALVP(fvp, &realvp, NULL) == 0)
2882 		fvp = realvp;
2883 	/*
2884 	 * Grab the lock as a reader to prevent the file size
2885 	 * from changing underneath.
2886 	 */
2887 	(void) VOP_RWLOCK(fvp, V_WRITELOCK_FALSE, NULL);
2888 	va.va_mask = AT_SIZE;
2889 	error = VOP_GETATTR(fvp, &va, 0, kcred, NULL);
2890 	va_size = va.va_size;
2891 	if ((error != 0) || (va_size == 0) || (sfv_off >= va_size)) {
2892 		VOP_RWUNLOCK(fvp, V_WRITELOCK_FALSE, NULL);
2893 		goto out;
2894 	}
2895 	/* Read as much as possible. */
2896 	if (sfv_off + sfv_len > va_size)
2897 		sfv_len = va_size - sfv_off;
2898 
2899 	vp = fp->f_vnode;
2900 	stp = vp->v_stream;
2901 	/*
2902 	 * When the NOWAIT flag is not set, we enable zero-copy only if the
2903 	 * transfer size is large enough. This prevents performance loss
2904 	 * when the caller sends the file piece by piece.
2905 	 */
2906 	if (sfv_len >= MAXBSIZE && (sfv_len >= (va_size >> 1) ||
2907 	    (sfv->sfv_flag & SFV_NOWAIT) || sfv_len >= 0x1000000) &&
2908 	    !vn_has_flocks(fvp) && !(fvp->v_flag & VNOMAP)) {
2909 		uint_t copyflag;
2910 		copyflag = stp != NULL ? stp->sd_copyflag :
2911 		    VTOSO(vp)->so_proto_props.sopp_zcopyflag;
2912 		if ((copyflag & (STZCVMSAFE|STZCVMUNSAFE)) == 0) {
2913 			int on = 1;
2914 
2915 			if (socket_setsockopt(VTOSO(vp), SOL_SOCKET,
2916 			    SO_SND_COPYAVOID, &on, sizeof (on), CRED()) == 0)
2917 				dozcopy = B_TRUE;
2918 		} else {
2919 			dozcopy = copyflag & STZCVMSAFE;
2920 		}
2921 	}
2922 	if (dozcopy) {
2923 		sf_stats.ss_file_segmap++;
2924 		error = snf_segmap(fp, fvp, sfv_off, (u_offset_t)sfv_len,
2925 		    &count, ((sfv->sfv_flag & SFV_NOWAIT) != 0));
2926 	} else {
2927 		if (vp->v_type == VSOCK && stp == NULL) {
2928 			sonode_t *so = VTOSO(vp);
2929 			maxpsz = so->so_proto_props.sopp_maxpsz;
2930 		} else if (stp != NULL) {
2931 			maxpsz = stp->sd_qn_maxpsz;
2932 		} else {
2933 			maxpsz = maxphys;
2934 		}
2935 
2936 		if (maxpsz == INFPSZ)
2937 			maxpsz = maxphys;
2938 		else
2939 			maxpsz = roundup(maxpsz, MAXBSIZE);
2940 		sf_stats.ss_file_cached++;
2941 		error = snf_cache(fp, fvp, sfv_off, (u_offset_t)sfv_len,
2942 		    maxpsz, &count);
2943 	}
2944 out:
2945 	releasef(sfv->sfv_fd);
2946 	*count32 = (ssize32_t)count;
2947 	return (error);
2948 }
2949 #endif
2950 
2951 #ifdef _SYSCALL32_IMPL
2952 /*
2953  * recv32(), recvfrom32(), send32(), sendto32(): intentionally return a
2954  * ssize_t rather than ssize32_t; see the comments above read32 for details.
2955  */
2956 
2957 ssize_t
2958 recv32(int32_t sock, caddr32_t buffer, size32_t len, int32_t flags)
2959 {
2960 	return (recv(sock, (void *)(uintptr_t)buffer, (ssize32_t)len, flags));
2961 }
2962 
2963 ssize_t
2964 recvfrom32(int32_t sock, caddr32_t buffer, size32_t len, int32_t flags,
2965     caddr32_t name, caddr32_t namelenp)
2966 {
2967 	return (recvfrom(sock, (void *)(uintptr_t)buffer, (ssize32_t)len, flags,
2968 	    (void *)(uintptr_t)name, (void *)(uintptr_t)namelenp));
2969 }
2970 
2971 ssize_t
2972 send32(int32_t sock, caddr32_t buffer, size32_t len, int32_t flags)
2973 {
2974 	return (send(sock, (void *)(uintptr_t)buffer, (ssize32_t)len, flags));
2975 }
2976 
2977 ssize_t
2978 sendto32(int32_t sock, caddr32_t buffer, size32_t len, int32_t flags,
2979     caddr32_t name, socklen_t namelen)
2980 {
2981 	return (sendto(sock, (void *)(uintptr_t)buffer, (ssize32_t)len, flags,
2982 	    (void *)(uintptr_t)name, namelen));
2983 }
2984 #endif	/* _SYSCALL32_IMPL */
2985 
2986 /*
2987  * Function wrappers (mostly around the sonode switch) for
2988  * backward compatibility.
2989  */
2990 
2991 int
2992 soaccept(struct sonode *so, int fflag, struct sonode **nsop)
2993 {
2994 	return (socket_accept(so, fflag, CRED(), nsop));
2995 }
2996 
2997 int
2998 sobind(struct sonode *so, struct sockaddr *name, socklen_t namelen,
2999     int backlog, int flags)
3000 {
3001 	int	error;
3002 
3003 	error = socket_bind(so, name, namelen, flags, CRED());
3004 	if (error == 0 && backlog != 0)
3005 		return (socket_listen(so, backlog, CRED()));
3006 
3007 	return (error);
3008 }
3009 
3010 int
3011 solisten(struct sonode *so, int backlog)
3012 {
3013 	return (socket_listen(so, backlog, CRED()));
3014 }
3015 
3016 int
3017 soconnect(struct sonode *so, struct sockaddr *name, socklen_t namelen,
3018     int fflag, int flags)
3019 {
3020 	return (socket_connect(so, name, namelen, fflag, flags, CRED()));
3021 }
3022 
3023 int
3024 sorecvmsg(struct sonode *so, struct nmsghdr *msg, struct uio *uiop)
3025 {
3026 	return (socket_recvmsg(so, msg, uiop, CRED()));
3027 }
3028 
3029 int
3030 sosendmsg(struct sonode *so, struct nmsghdr *msg, struct uio *uiop)
3031 {
3032 	return (socket_sendmsg(so, msg, uiop, CRED()));
3033 }
3034 
3035 int
3036 soshutdown(struct sonode *so, int how)
3037 {
3038 	return (socket_shutdown(so, how, CRED()));
3039 }
3040 
3041 int
3042 sogetsockopt(struct sonode *so, int level, int option_name, void *optval,
3043     socklen_t *optlenp, int flags)
3044 {
3045 	return (socket_getsockopt(so, level, option_name, optval, optlenp,
3046 	    flags, CRED()));
3047 }
3048 
3049 int
3050 sosetsockopt(struct sonode *so, int level, int option_name, const void *optval,
3051     t_uscalar_t optlen)
3052 {
3053 	return (socket_setsockopt(so, level, option_name, optval, optlen,
3054 	    CRED()));
3055 }
3056 
3057 /*
3058  * Because this is backward compatibility interface it only needs to be
3059  * able to handle the creation of TPI sockfs sockets.
3060  */
3061 struct sonode *
3062 socreate(struct sockparams *sp, int family, int type, int protocol, int version,
3063     int *errorp)
3064 {
3065 	struct sonode *so;
3066 
3067 	ASSERT(sp != NULL);
3068 
3069 	so = sp->sp_smod_info->smod_sock_create_func(sp, family, type, protocol,
3070 	    version, SOCKET_SLEEP, errorp, CRED());
3071 	if (so == NULL) {
3072 		SOCKPARAMS_DEC_REF(sp);
3073 	} else {
3074 		if ((*errorp = SOP_INIT(so, NULL, CRED(), SOCKET_SLEEP)) == 0) {
3075 			/* Cannot fail, only bumps so_count */
3076 			(void) VOP_OPEN(&SOTOV(so), FREAD|FWRITE, CRED(), NULL);
3077 		} else {
3078 			socket_destroy(so);
3079 			so = NULL;
3080 		}
3081 	}
3082 	return (so);
3083 }
3084