xref: /titanic_52/usr/src/uts/common/fs/sockfs/socksubr.c (revision 8780f632c8794e526157dc18c87834b2cc4f6592)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #include <sys/types.h>
28 #include <sys/t_lock.h>
29 #include <sys/param.h>
30 #include <sys/systm.h>
31 #include <sys/buf.h>
32 #include <sys/conf.h>
33 #include <sys/cred.h>
34 #include <sys/kmem.h>
35 #include <sys/sysmacros.h>
36 #include <sys/vfs.h>
37 #include <sys/vfs_opreg.h>
38 #include <sys/vnode.h>
39 #include <sys/debug.h>
40 #include <sys/errno.h>
41 #include <sys/time.h>
42 #include <sys/file.h>
43 #include <sys/open.h>
44 #include <sys/user.h>
45 #include <sys/termios.h>
46 #include <sys/stream.h>
47 #include <sys/strsubr.h>
48 #include <sys/strsun.h>
49 #include <sys/esunddi.h>
50 #include <sys/flock.h>
51 #include <sys/modctl.h>
52 #include <sys/cmn_err.h>
53 #include <sys/mkdev.h>
54 #include <sys/pathname.h>
55 #include <sys/ddi.h>
56 #include <sys/stat.h>
57 #include <sys/fs/snode.h>
58 #include <sys/fs/dv_node.h>
59 #include <sys/zone.h>
60 
61 #include <sys/socket.h>
62 #include <sys/socketvar.h>
63 #include <netinet/in.h>
64 #include <sys/un.h>
65 
66 #include <sys/ucred.h>
67 
68 #include <sys/tiuser.h>
69 #define	_SUN_TPI_VERSION	2
70 #include <sys/tihdr.h>
71 
72 #include <c2/audit.h>
73 
74 #include <fs/sockfs/nl7c.h>
75 #include <fs/sockfs/sockcommon.h>
76 #include <fs/sockfs/socktpi.h>
77 #include <fs/sockfs/socktpi_impl.h>
78 #include <fs/sockfs/sodirect.h>
79 
80 /*
81  * Macros that operate on struct cmsghdr.
82  * The CMSG_VALID macro does not assume that the last option buffer is padded.
83  */
84 #define	CMSG_CONTENT(cmsg)	(&((cmsg)[1]))
85 #define	CMSG_CONTENTLEN(cmsg)	((cmsg)->cmsg_len - sizeof (struct cmsghdr))
86 #define	CMSG_VALID(cmsg, start, end)					\
87 	(ISALIGNED_cmsghdr(cmsg) &&					\
88 	((uintptr_t)(cmsg) >= (uintptr_t)(start)) &&			\
89 	((uintptr_t)(cmsg) < (uintptr_t)(end)) &&			\
90 	((ssize_t)(cmsg)->cmsg_len >= sizeof (struct cmsghdr)) &&	\
91 	((uintptr_t)(cmsg) + (cmsg)->cmsg_len <= (uintptr_t)(end)))
92 #define	SO_LOCK_WAKEUP_TIME	3000	/* Wakeup time in milliseconds */
93 
94 dev_t sockdev;	/* For fsid in getattr */
95 int sockfs_defer_nl7c_init = 0;
96 
97 struct socklist socklist;
98 
99 struct kmem_cache *socket_cache;
100 
101 static int sockfs_update(kstat_t *, int);
102 static int sockfs_snapshot(kstat_t *, void *, int);
103 extern smod_info_t *sotpi_smod_create(void);
104 
105 extern void sendfile_init();
106 
107 extern void nl7c_init(void);
108 
109 extern int modrootloaded;
110 
111 #define	ADRSTRLEN (2 * sizeof (void *) + 1)
112 /*
113  * kernel structure for passing the sockinfo data back up to the user.
114  * the strings array allows us to convert AF_UNIX addresses into strings
115  * with a common method regardless of which n-bit kernel we're running.
116  */
117 struct k_sockinfo {
118 	struct sockinfo	ks_si;
119 	char		ks_straddr[3][ADRSTRLEN];
120 };
121 
122 /*
123  * Translate from a device pathname (e.g. "/dev/tcp") to a vnode.
124  * Returns with the vnode held.
125  */
126 int
127 sogetvp(char *devpath, vnode_t **vpp, int uioflag)
128 {
129 	struct snode *csp;
130 	vnode_t *vp, *dvp;
131 	major_t maj;
132 	int error;
133 
134 	ASSERT(uioflag == UIO_SYSSPACE || uioflag == UIO_USERSPACE);
135 
136 	/*
137 	 * Lookup the underlying filesystem vnode.
138 	 */
139 	error = lookupname(devpath, uioflag, FOLLOW, NULLVPP, &vp);
140 	if (error)
141 		return (error);
142 
143 	/* Check that it is the correct vnode */
144 	if (vp->v_type != VCHR) {
145 		VN_RELE(vp);
146 		return (ENOTSOCK);
147 	}
148 
149 	/*
150 	 * If devpath went through devfs, the device should already
151 	 * be configured. If devpath is a mknod file, however, we
152 	 * need to make sure the device is properly configured.
153 	 * To do this, we do something similar to spec_open()
154 	 * except that we resolve to the minor/leaf level since
155 	 * we need to return a vnode.
156 	 */
157 	csp = VTOS(VTOS(vp)->s_commonvp);
158 	if (!(csp->s_flag & SDIPSET)) {
159 		char *pathname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
160 		error = ddi_dev_pathname(vp->v_rdev, S_IFCHR, pathname);
161 		if (error == 0)
162 			error = devfs_lookupname(pathname, NULLVPP, &dvp);
163 		VN_RELE(vp);
164 		kmem_free(pathname, MAXPATHLEN);
165 		if (error != 0)
166 			return (ENXIO);
167 		vp = dvp;	/* use the devfs vp */
168 	}
169 
170 	/* device is configured at this point */
171 	maj = getmajor(vp->v_rdev);
172 	if (!STREAMSTAB(maj)) {
173 		VN_RELE(vp);
174 		return (ENOSTR);
175 	}
176 
177 	*vpp = vp;
178 	return (0);
179 }
180 
181 /*
182  * Update the accessed, updated, or changed times in an sonode
183  * with the current time.
184  *
185  * Note that both SunOS 4.X and 4.4BSD sockets do not present reasonable
186  * attributes in a fstat call. (They return the current time and 0 for
187  * all timestamps, respectively.) We maintain the current timestamps
188  * here primarily so that should sockmod be popped the resulting
189  * file descriptor will behave like a stream w.r.t. the timestamps.
190  */
191 void
192 so_update_attrs(struct sonode *so, int flag)
193 {
194 	time_t now = gethrestime_sec();
195 
196 	if (SOCK_IS_NONSTR(so))
197 		return;
198 
199 	mutex_enter(&so->so_lock);
200 	so->so_flag |= flag;
201 	if (flag & SOACC)
202 		SOTOTPI(so)->sti_atime = now;
203 	if (flag & SOMOD)
204 		SOTOTPI(so)->sti_mtime = now;
205 	mutex_exit(&so->so_lock);
206 }
207 
208 extern so_create_func_t sock_comm_create_function;
209 extern so_destroy_func_t sock_comm_destroy_function;
210 /*
211  * Init function called when sockfs is loaded.
212  */
213 int
214 sockinit(int fstype, char *name)
215 {
216 	static const fs_operation_def_t sock_vfsops_template[] = {
217 		NULL, NULL
218 	};
219 	int error;
220 	major_t dev;
221 	char *err_str;
222 
223 	error = vfs_setfsops(fstype, sock_vfsops_template, NULL);
224 	if (error != 0) {
225 		zcmn_err(GLOBAL_ZONEID, CE_WARN,
226 		    "sockinit: bad vfs ops template");
227 		return (error);
228 	}
229 
230 	error = vn_make_ops(name, socket_vnodeops_template,
231 	    &socket_vnodeops);
232 	if (error != 0) {
233 		err_str = "sockinit: bad socket vnode ops template";
234 		/* vn_make_ops() does not reset socktpi_vnodeops on failure. */
235 		socket_vnodeops = NULL;
236 		goto failure;
237 	}
238 
239 	socket_cache = kmem_cache_create("socket_cache",
240 	    sizeof (struct sonode), 0, sonode_constructor,
241 	    sonode_destructor, NULL, NULL, NULL, 0);
242 
243 	error = socktpi_init();
244 	if (error != 0) {
245 		err_str = NULL;
246 		goto failure;
247 	}
248 
249 	error = sod_init();
250 	if (error != 0) {
251 		err_str = NULL;
252 		goto failure;
253 	}
254 
255 	/*
256 	 * Set up the default create and destroy functions
257 	 */
258 	sock_comm_create_function = socket_sonode_create;
259 	sock_comm_destroy_function = socket_sonode_destroy;
260 
261 	/*
262 	 * Build initial list mapping socket parameters to vnode.
263 	 */
264 	smod_init();
265 	smod_add(sotpi_smod_create());
266 
267 	sockparams_init();
268 
269 	/*
270 	 * If sockets are needed before init runs /sbin/soconfig
271 	 * it is possible to preload the sockparams list here using
272 	 * calls like:
273 	 *	sockconfig(1,2,3, "/dev/tcp", 0);
274 	 */
275 
276 	/*
277 	 * Create a unique dev_t for use in so_fsid.
278 	 */
279 
280 	if ((dev = getudev()) == (major_t)-1)
281 		dev = 0;
282 	sockdev = makedevice(dev, 0);
283 
284 	mutex_init(&socklist.sl_lock, NULL, MUTEX_DEFAULT, NULL);
285 	sendfile_init();
286 	if (!modrootloaded) {
287 		sockfs_defer_nl7c_init = 1;
288 	} else {
289 		nl7c_init();
290 	}
291 
292 	return (0);
293 
294 failure:
295 	(void) vfs_freevfsops_by_type(fstype);
296 	if (socket_vnodeops != NULL)
297 		vn_freevnodeops(socket_vnodeops);
298 	if (err_str != NULL)
299 		zcmn_err(GLOBAL_ZONEID, CE_WARN, err_str);
300 	return (error);
301 }
302 
303 /*
304  * Caller must hold the mutex. Used to set SOLOCKED.
305  */
306 void
307 so_lock_single(struct sonode *so)
308 {
309 	ASSERT(MUTEX_HELD(&so->so_lock));
310 
311 	while (so->so_flag & (SOLOCKED | SOASYNC_UNBIND)) {
312 		so->so_flag |= SOWANT;
313 		cv_wait_stop(&so->so_want_cv, &so->so_lock,
314 		    SO_LOCK_WAKEUP_TIME);
315 	}
316 	so->so_flag |= SOLOCKED;
317 }
318 
319 /*
320  * Caller must hold the mutex and pass in SOLOCKED or SOASYNC_UNBIND.
321  * Used to clear SOLOCKED or SOASYNC_UNBIND.
322  */
323 void
324 so_unlock_single(struct sonode *so, int flag)
325 {
326 	ASSERT(MUTEX_HELD(&so->so_lock));
327 	ASSERT(flag & (SOLOCKED|SOASYNC_UNBIND));
328 	ASSERT((flag & ~(SOLOCKED|SOASYNC_UNBIND)) == 0);
329 	ASSERT(so->so_flag & flag);
330 	/*
331 	 * Process the T_DISCON_IND on sti_discon_ind_mp.
332 	 *
333 	 * Call to so_drain_discon_ind will result in so_lock
334 	 * being dropped and re-acquired later.
335 	 */
336 	if (!SOCK_IS_NONSTR(so)) {
337 		sotpi_info_t *sti = SOTOTPI(so);
338 
339 		if (sti->sti_discon_ind_mp != NULL)
340 			so_drain_discon_ind(so);
341 	}
342 
343 	if (so->so_flag & SOWANT)
344 		cv_broadcast(&so->so_want_cv);
345 	so->so_flag &= ~(SOWANT|flag);
346 }
347 
348 /*
349  * Caller must hold the mutex. Used to set SOREADLOCKED.
350  * If the caller wants nonblocking behavior it should set fmode.
351  */
352 int
353 so_lock_read(struct sonode *so, int fmode)
354 {
355 	ASSERT(MUTEX_HELD(&so->so_lock));
356 
357 	while (so->so_flag & SOREADLOCKED) {
358 		if (fmode & (FNDELAY|FNONBLOCK))
359 			return (EWOULDBLOCK);
360 		so->so_flag |= SOWANT;
361 		cv_wait_stop(&so->so_want_cv, &so->so_lock,
362 		    SO_LOCK_WAKEUP_TIME);
363 	}
364 	so->so_flag |= SOREADLOCKED;
365 	return (0);
366 }
367 
368 /*
369  * Like so_lock_read above but allows signals.
370  */
371 int
372 so_lock_read_intr(struct sonode *so, int fmode)
373 {
374 	ASSERT(MUTEX_HELD(&so->so_lock));
375 
376 	while (so->so_flag & SOREADLOCKED) {
377 		if (fmode & (FNDELAY|FNONBLOCK))
378 			return (EWOULDBLOCK);
379 		so->so_flag |= SOWANT;
380 		if (!cv_wait_sig(&so->so_want_cv, &so->so_lock))
381 			return (EINTR);
382 	}
383 	so->so_flag |= SOREADLOCKED;
384 	return (0);
385 }
386 
387 /*
388  * Caller must hold the mutex. Used to clear SOREADLOCKED,
389  * set in so_lock_read() or so_lock_read_intr().
390  */
391 void
392 so_unlock_read(struct sonode *so)
393 {
394 	ASSERT(MUTEX_HELD(&so->so_lock));
395 	ASSERT(so->so_flag & SOREADLOCKED);
396 
397 	if (so->so_flag & SOWANT)
398 		cv_broadcast(&so->so_want_cv);
399 	so->so_flag &= ~(SOWANT|SOREADLOCKED);
400 }
401 
402 /*
403  * Verify that the specified offset falls within the mblk and
404  * that the resulting pointer is aligned.
405  * Returns NULL if not.
406  */
407 void *
408 sogetoff(mblk_t *mp, t_uscalar_t offset,
409     t_uscalar_t length, uint_t align_size)
410 {
411 	uintptr_t ptr1, ptr2;
412 
413 	ASSERT(mp && mp->b_wptr >= mp->b_rptr);
414 	ptr1 = (uintptr_t)mp->b_rptr + offset;
415 	ptr2 = (uintptr_t)ptr1 + length;
416 	if (ptr1 < (uintptr_t)mp->b_rptr || ptr2 > (uintptr_t)mp->b_wptr) {
417 		eprintline(0);
418 		return (NULL);
419 	}
420 	if ((ptr1 & (align_size - 1)) != 0) {
421 		eprintline(0);
422 		return (NULL);
423 	}
424 	return ((void *)ptr1);
425 }
426 
427 /*
428  * Return the AF_UNIX underlying filesystem vnode matching a given name.
429  * Makes sure the sending and the destination sonodes are compatible.
430  * The vnode is returned held.
431  *
432  * The underlying filesystem VSOCK vnode has a v_stream pointer that
433  * references the actual stream head (hence indirectly the actual sonode).
434  */
435 static int
436 so_ux_lookup(struct sonode *so, struct sockaddr_un *soun, int checkaccess,
437 		vnode_t **vpp)
438 {
439 	vnode_t		*vp;	/* Underlying filesystem vnode */
440 	vnode_t		*rvp;	/* real vnode */
441 	vnode_t		*svp;	/* sockfs vnode */
442 	struct sonode	*so2;
443 	int		error;
444 
445 	dprintso(so, 1, ("so_ux_lookup(%p) name <%s>\n", (void *)so,
446 	    soun->sun_path));
447 
448 	error = lookupname(soun->sun_path, UIO_SYSSPACE, FOLLOW, NULLVPP, &vp);
449 	if (error) {
450 		eprintsoline(so, error);
451 		return (error);
452 	}
453 
454 	/*
455 	 * Traverse lofs mounts get the real vnode
456 	 */
457 	if (VOP_REALVP(vp, &rvp, NULL) == 0) {
458 		VN_HOLD(rvp);		/* hold the real vnode */
459 		VN_RELE(vp);		/* release hold from lookup */
460 		vp = rvp;
461 	}
462 
463 	if (vp->v_type != VSOCK) {
464 		error = ENOTSOCK;
465 		eprintsoline(so, error);
466 		goto done2;
467 	}
468 
469 	if (checkaccess) {
470 		/*
471 		 * Check that we have permissions to access the destination
472 		 * vnode. This check is not done in BSD but it is required
473 		 * by X/Open.
474 		 */
475 		if (error = VOP_ACCESS(vp, VREAD|VWRITE, 0, CRED(), NULL)) {
476 			eprintsoline(so, error);
477 			goto done2;
478 		}
479 	}
480 
481 	/*
482 	 * Check if the remote socket has been closed.
483 	 *
484 	 * Synchronize with vn_rele_stream by holding v_lock while traversing
485 	 * v_stream->sd_vnode.
486 	 */
487 	mutex_enter(&vp->v_lock);
488 	if (vp->v_stream == NULL) {
489 		mutex_exit(&vp->v_lock);
490 		if (so->so_type == SOCK_DGRAM)
491 			error = EDESTADDRREQ;
492 		else
493 			error = ECONNREFUSED;
494 
495 		eprintsoline(so, error);
496 		goto done2;
497 	}
498 	ASSERT(vp->v_stream->sd_vnode);
499 	svp = vp->v_stream->sd_vnode;
500 	/*
501 	 * holding v_lock on underlying filesystem vnode and acquiring
502 	 * it on sockfs vnode. Assumes that no code ever attempts to
503 	 * acquire these locks in the reverse order.
504 	 */
505 	VN_HOLD(svp);
506 	mutex_exit(&vp->v_lock);
507 
508 	if (svp->v_type != VSOCK) {
509 		error = ENOTSOCK;
510 		eprintsoline(so, error);
511 		goto done;
512 	}
513 
514 	so2 = VTOSO(svp);
515 
516 	if (so->so_type != so2->so_type) {
517 		error = EPROTOTYPE;
518 		eprintsoline(so, error);
519 		goto done;
520 	}
521 
522 	VN_RELE(svp);
523 	*vpp = vp;
524 	return (0);
525 
526 done:
527 	VN_RELE(svp);
528 done2:
529 	VN_RELE(vp);
530 	return (error);
531 }
532 
533 /*
534  * Verify peer address for connect and sendto/sendmsg.
535  * Since sendto/sendmsg would not get synchronous errors from the transport
536  * provider we have to do these ugly checks in the socket layer to
537  * preserve compatibility with SunOS 4.X.
538  */
539 int
540 so_addr_verify(struct sonode *so, const struct sockaddr *name,
541     socklen_t namelen)
542 {
543 	int		family;
544 
545 	dprintso(so, 1, ("so_addr_verify(%p, %p, %d)\n",
546 	    (void *)so, (void *)name, namelen));
547 
548 	ASSERT(name != NULL);
549 
550 	family = so->so_family;
551 	switch (family) {
552 	case AF_INET:
553 		if (name->sa_family != family) {
554 			eprintsoline(so, EAFNOSUPPORT);
555 			return (EAFNOSUPPORT);
556 		}
557 		if (namelen != (socklen_t)sizeof (struct sockaddr_in)) {
558 			eprintsoline(so, EINVAL);
559 			return (EINVAL);
560 		}
561 		break;
562 	case AF_INET6: {
563 #ifdef DEBUG
564 		struct sockaddr_in6 *sin6;
565 #endif /* DEBUG */
566 
567 		if (name->sa_family != family) {
568 			eprintsoline(so, EAFNOSUPPORT);
569 			return (EAFNOSUPPORT);
570 		}
571 		if (namelen != (socklen_t)sizeof (struct sockaddr_in6)) {
572 			eprintsoline(so, EINVAL);
573 			return (EINVAL);
574 		}
575 #ifdef DEBUG
576 		/* Verify that apps don't forget to clear sin6_scope_id etc */
577 		sin6 = (struct sockaddr_in6 *)name;
578 		if (sin6->sin6_scope_id != 0 &&
579 		    !IN6_IS_ADDR_LINKSCOPE(&sin6->sin6_addr)) {
580 			zcmn_err(getzoneid(), CE_WARN,
581 			    "connect/send* with uninitialized sin6_scope_id "
582 			    "(%d) on socket. Pid = %d\n",
583 			    (int)sin6->sin6_scope_id, (int)curproc->p_pid);
584 		}
585 #endif /* DEBUG */
586 		break;
587 	}
588 	case AF_UNIX:
589 		if (SOTOTPI(so)->sti_faddr_noxlate) {
590 			return (0);
591 		}
592 		if (namelen < (socklen_t)sizeof (short)) {
593 			eprintsoline(so, ENOENT);
594 			return (ENOENT);
595 		}
596 		if (name->sa_family != family) {
597 			eprintsoline(so, EAFNOSUPPORT);
598 			return (EAFNOSUPPORT);
599 		}
600 		/* MAXPATHLEN + soun_family + nul termination */
601 		if (namelen > (socklen_t)(MAXPATHLEN + sizeof (short) + 1)) {
602 			eprintsoline(so, ENAMETOOLONG);
603 			return (ENAMETOOLONG);
604 		}
605 
606 		break;
607 
608 	default:
609 		/*
610 		 * Default is don't do any length or sa_family check
611 		 * to allow non-sockaddr style addresses.
612 		 */
613 		break;
614 	}
615 
616 	return (0);
617 }
618 
619 
620 /*
621  * Translate an AF_UNIX sockaddr_un to the transport internal name.
622  * Assumes caller has called so_addr_verify first.
623  */
624 /*ARGSUSED*/
625 int
626 so_ux_addr_xlate(struct sonode *so, struct sockaddr *name,
627     socklen_t namelen, int checkaccess,
628     void **addrp, socklen_t *addrlenp)
629 {
630 	int			error;
631 	struct sockaddr_un	*soun;
632 	vnode_t			*vp;
633 	void			*addr;
634 	socklen_t		addrlen;
635 	sotpi_info_t		*sti = SOTOTPI(so);
636 
637 	dprintso(so, 1, ("so_ux_addr_xlate(%p, %p, %d, %d)\n",
638 	    (void *)so, (void *)name, namelen, checkaccess));
639 
640 	ASSERT(name != NULL);
641 	ASSERT(so->so_family == AF_UNIX);
642 	ASSERT(!sti->sti_faddr_noxlate);
643 	ASSERT(namelen >= (socklen_t)sizeof (short));
644 	ASSERT(name->sa_family == AF_UNIX);
645 	soun = (struct sockaddr_un *)name;
646 	/*
647 	 * Lookup vnode for the specified path name and verify that
648 	 * it is a socket.
649 	 */
650 	error = so_ux_lookup(so, soun, checkaccess, &vp);
651 	if (error) {
652 		eprintsoline(so, error);
653 		return (error);
654 	}
655 	/*
656 	 * Use the address of the peer vnode as the address to send
657 	 * to. We release the peer vnode here. In case it has been
658 	 * closed by the time the T_CONN_REQ or T_UNIDATA_REQ reaches the
659 	 * transport the message will get an error or be dropped.
660 	 */
661 	sti->sti_ux_faddr.soua_vp = vp;
662 	sti->sti_ux_faddr.soua_magic = SOU_MAGIC_EXPLICIT;
663 	addr = &sti->sti_ux_faddr;
664 	addrlen = (socklen_t)sizeof (sti->sti_ux_faddr);
665 	dprintso(so, 1, ("ux_xlate UNIX: addrlen %d, vp %p\n",
666 	    addrlen, (void *)vp));
667 	VN_RELE(vp);
668 	*addrp = addr;
669 	*addrlenp = (socklen_t)addrlen;
670 	return (0);
671 }
672 
673 /*
674  * Esballoc free function for messages that contain SO_FILEP option.
675  * Decrement the reference count on the file pointers using closef.
676  */
677 void
678 fdbuf_free(struct fdbuf *fdbuf)
679 {
680 	int	i;
681 	struct file *fp;
682 
683 	dprint(1, ("fdbuf_free: %d fds\n", fdbuf->fd_numfd));
684 	for (i = 0; i < fdbuf->fd_numfd; i++) {
685 		/*
686 		 * We need pointer size alignment for fd_fds. On a LP64
687 		 * kernel, the required alignment is 8 bytes while
688 		 * the option headers and values are only 4 bytes
689 		 * aligned. So its safer to do a bcopy compared to
690 		 * assigning fdbuf->fd_fds[i] to fp.
691 		 */
692 		bcopy((char *)&fdbuf->fd_fds[i], (char *)&fp, sizeof (fp));
693 		dprint(1, ("fdbuf_free: [%d] = %p\n", i, (void *)fp));
694 		(void) closef(fp);
695 	}
696 	if (fdbuf->fd_ebuf != NULL)
697 		kmem_free(fdbuf->fd_ebuf, fdbuf->fd_ebuflen);
698 	kmem_free(fdbuf, fdbuf->fd_size);
699 }
700 
701 /*
702  * Allocate an esballoc'ed message for AF_UNIX file descriptor passing.
703  * Waits if memory is not available.
704  */
705 mblk_t *
706 fdbuf_allocmsg(int size, struct fdbuf *fdbuf)
707 {
708 	uchar_t	*buf;
709 	mblk_t	*mp;
710 
711 	dprint(1, ("fdbuf_allocmsg: size %d, %d fds\n", size, fdbuf->fd_numfd));
712 	buf = kmem_alloc(size, KM_SLEEP);
713 	fdbuf->fd_ebuf = (caddr_t)buf;
714 	fdbuf->fd_ebuflen = size;
715 	fdbuf->fd_frtn.free_func = fdbuf_free;
716 	fdbuf->fd_frtn.free_arg = (caddr_t)fdbuf;
717 
718 	mp = esballoc_wait(buf, size, BPRI_MED, &fdbuf->fd_frtn);
719 	mp->b_datap->db_type = M_PROTO;
720 	return (mp);
721 }
722 
723 /*
724  * Extract file descriptors from a fdbuf.
725  * Return list in rights/rightslen.
726  */
727 /*ARGSUSED*/
728 static int
729 fdbuf_extract(struct fdbuf *fdbuf, void *rights, int rightslen)
730 {
731 	int	i, fd;
732 	int	*rp;
733 	struct file *fp;
734 	int	numfd;
735 
736 	dprint(1, ("fdbuf_extract: %d fds, len %d\n",
737 	    fdbuf->fd_numfd, rightslen));
738 
739 	numfd = fdbuf->fd_numfd;
740 	ASSERT(rightslen == numfd * (int)sizeof (int));
741 
742 	/*
743 	 * Allocate a file descriptor and increment the f_count.
744 	 * The latter is needed since we always call fdbuf_free
745 	 * which performs a closef.
746 	 */
747 	rp = (int *)rights;
748 	for (i = 0; i < numfd; i++) {
749 		if ((fd = ufalloc(0)) == -1)
750 			goto cleanup;
751 		/*
752 		 * We need pointer size alignment for fd_fds. On a LP64
753 		 * kernel, the required alignment is 8 bytes while
754 		 * the option headers and values are only 4 bytes
755 		 * aligned. So its safer to do a bcopy compared to
756 		 * assigning fdbuf->fd_fds[i] to fp.
757 		 */
758 		bcopy((char *)&fdbuf->fd_fds[i], (char *)&fp, sizeof (fp));
759 		mutex_enter(&fp->f_tlock);
760 		fp->f_count++;
761 		mutex_exit(&fp->f_tlock);
762 		setf(fd, fp);
763 		*rp++ = fd;
764 		if (audit_active)
765 			audit_fdrecv(fd, fp);
766 		dprint(1, ("fdbuf_extract: [%d] = %d, %p refcnt %d\n",
767 		    i, fd, (void *)fp, fp->f_count));
768 	}
769 	return (0);
770 
771 cleanup:
772 	/*
773 	 * Undo whatever partial work the loop above has done.
774 	 */
775 	{
776 		int j;
777 
778 		rp = (int *)rights;
779 		for (j = 0; j < i; j++) {
780 			dprint(0,
781 			    ("fdbuf_extract: cleanup[%d] = %d\n", j, *rp));
782 			(void) closeandsetf(*rp++, NULL);
783 		}
784 	}
785 
786 	return (EMFILE);
787 }
788 
789 /*
790  * Insert file descriptors into an fdbuf.
791  * Returns a kmem_alloc'ed fdbuf. The fdbuf should be freed
792  * by calling fdbuf_free().
793  */
794 int
795 fdbuf_create(void *rights, int rightslen, struct fdbuf **fdbufp)
796 {
797 	int		numfd, i;
798 	int		*fds;
799 	struct file	*fp;
800 	struct fdbuf	*fdbuf;
801 	int		fdbufsize;
802 
803 	dprint(1, ("fdbuf_create: len %d\n", rightslen));
804 
805 	numfd = rightslen / (int)sizeof (int);
806 
807 	fdbufsize = (int)FDBUF_HDRSIZE + (numfd * (int)sizeof (struct file *));
808 	fdbuf = kmem_alloc(fdbufsize, KM_SLEEP);
809 	fdbuf->fd_size = fdbufsize;
810 	fdbuf->fd_numfd = 0;
811 	fdbuf->fd_ebuf = NULL;
812 	fdbuf->fd_ebuflen = 0;
813 	fds = (int *)rights;
814 	for (i = 0; i < numfd; i++) {
815 		if ((fp = getf(fds[i])) == NULL) {
816 			fdbuf_free(fdbuf);
817 			return (EBADF);
818 		}
819 		dprint(1, ("fdbuf_create: [%d] = %d, %p refcnt %d\n",
820 		    i, fds[i], (void *)fp, fp->f_count));
821 		mutex_enter(&fp->f_tlock);
822 		fp->f_count++;
823 		mutex_exit(&fp->f_tlock);
824 		/*
825 		 * The maximum alignment for fdbuf (or any option header
826 		 * and its value) it 4 bytes. On a LP64 kernel, the alignment
827 		 * is not sufficient for pointers (fd_fds in this case). Since
828 		 * we just did a kmem_alloc (we get a double word alignment),
829 		 * we don't need to do anything on the send side (we loose
830 		 * the double word alignment because fdbuf goes after an
831 		 * option header (eg T_unitdata_req) which is only 4 byte
832 		 * aligned). We take care of this when we extract the file
833 		 * descriptor in fdbuf_extract or fdbuf_free.
834 		 */
835 		fdbuf->fd_fds[i] = fp;
836 		fdbuf->fd_numfd++;
837 		releasef(fds[i]);
838 		if (audit_active)
839 			audit_fdsend(fds[i], fp, 0);
840 	}
841 	*fdbufp = fdbuf;
842 	return (0);
843 }
844 
845 static int
846 fdbuf_optlen(int rightslen)
847 {
848 	int numfd;
849 
850 	numfd = rightslen / (int)sizeof (int);
851 
852 	return ((int)FDBUF_HDRSIZE + (numfd * (int)sizeof (struct file *)));
853 }
854 
855 static t_uscalar_t
856 fdbuf_cmsglen(int fdbuflen)
857 {
858 	return (t_uscalar_t)((fdbuflen - FDBUF_HDRSIZE) /
859 	    (int)sizeof (struct file *) * (int)sizeof (int));
860 }
861 
862 
863 /*
864  * Return non-zero if the mblk and fdbuf are consistent.
865  */
866 static int
867 fdbuf_verify(mblk_t *mp, struct fdbuf *fdbuf, int fdbuflen)
868 {
869 	if (fdbuflen >= FDBUF_HDRSIZE &&
870 	    fdbuflen == fdbuf->fd_size) {
871 		frtn_t *frp = mp->b_datap->db_frtnp;
872 		/*
873 		 * Check that the SO_FILEP portion of the
874 		 * message has not been modified by
875 		 * the loopback transport. The sending sockfs generates
876 		 * a message that is esballoc'ed with the free function
877 		 * being fdbuf_free() and where free_arg contains the
878 		 * identical information as the SO_FILEP content.
879 		 *
880 		 * If any of these constraints are not satisfied we
881 		 * silently ignore the option.
882 		 */
883 		ASSERT(mp);
884 		if (frp != NULL &&
885 		    frp->free_func == fdbuf_free &&
886 		    frp->free_arg != NULL &&
887 		    bcmp(frp->free_arg, fdbuf, fdbuflen) == 0) {
888 			dprint(1, ("fdbuf_verify: fdbuf %p len %d\n",
889 			    (void *)fdbuf, fdbuflen));
890 			return (1);
891 		} else {
892 			zcmn_err(getzoneid(), CE_WARN,
893 			    "sockfs: mismatched fdbuf content (%p)",
894 			    (void *)mp);
895 			return (0);
896 		}
897 	} else {
898 		zcmn_err(getzoneid(), CE_WARN,
899 		    "sockfs: mismatched fdbuf len %d, %d\n",
900 		    fdbuflen, fdbuf->fd_size);
901 		return (0);
902 	}
903 }
904 
905 /*
906  * When the file descriptors returned by sorecvmsg can not be passed
907  * to the application this routine will cleanup the references on
908  * the files. Start at startoff bytes into the buffer.
909  */
910 static void
911 close_fds(void *fdbuf, int fdbuflen, int startoff)
912 {
913 	int *fds = (int *)fdbuf;
914 	int numfd = fdbuflen / (int)sizeof (int);
915 	int i;
916 
917 	dprint(1, ("close_fds(%p, %d, %d)\n", fdbuf, fdbuflen, startoff));
918 
919 	for (i = 0; i < numfd; i++) {
920 		if (startoff < 0)
921 			startoff = 0;
922 		if (startoff < (int)sizeof (int)) {
923 			/*
924 			 * This file descriptor is partially or fully after
925 			 * the offset
926 			 */
927 			dprint(0,
928 			    ("close_fds: cleanup[%d] = %d\n", i, fds[i]));
929 			(void) closeandsetf(fds[i], NULL);
930 		}
931 		startoff -= (int)sizeof (int);
932 	}
933 }
934 
935 /*
936  * Close all file descriptors contained in the control part starting at
937  * the startoffset.
938  */
939 void
940 so_closefds(void *control, t_uscalar_t controllen, int oldflg,
941     int startoff)
942 {
943 	struct cmsghdr *cmsg;
944 
945 	if (control == NULL)
946 		return;
947 
948 	if (oldflg) {
949 		close_fds(control, controllen, startoff);
950 		return;
951 	}
952 	/* Scan control part for file descriptors. */
953 	for (cmsg = (struct cmsghdr *)control;
954 	    CMSG_VALID(cmsg, control, (uintptr_t)control + controllen);
955 	    cmsg = CMSG_NEXT(cmsg)) {
956 		if (cmsg->cmsg_level == SOL_SOCKET &&
957 		    cmsg->cmsg_type == SCM_RIGHTS) {
958 			close_fds(CMSG_CONTENT(cmsg),
959 			    (int)CMSG_CONTENTLEN(cmsg),
960 			    startoff - (int)sizeof (struct cmsghdr));
961 		}
962 		startoff -= cmsg->cmsg_len;
963 	}
964 }
965 
966 /*
967  * Returns a pointer/length for the file descriptors contained
968  * in the control buffer. Returns with *fdlenp == -1 if there are no
969  * file descriptor options present. This is different than there being
970  * a zero-length file descriptor option.
971  * Fail if there are multiple SCM_RIGHT cmsgs.
972  */
973 int
974 so_getfdopt(void *control, t_uscalar_t controllen, int oldflg,
975     void **fdsp, int *fdlenp)
976 {
977 	struct cmsghdr *cmsg;
978 	void *fds;
979 	int fdlen;
980 
981 	if (control == NULL) {
982 		*fdsp = NULL;
983 		*fdlenp = -1;
984 		return (0);
985 	}
986 
987 	if (oldflg) {
988 		*fdsp = control;
989 		if (controllen == 0)
990 			*fdlenp = -1;
991 		else
992 			*fdlenp = controllen;
993 		dprint(1, ("so_getfdopt: old %d\n", *fdlenp));
994 		return (0);
995 	}
996 
997 	fds = NULL;
998 	fdlen = 0;
999 
1000 	for (cmsg = (struct cmsghdr *)control;
1001 	    CMSG_VALID(cmsg, control, (uintptr_t)control + controllen);
1002 	    cmsg = CMSG_NEXT(cmsg)) {
1003 		if (cmsg->cmsg_level == SOL_SOCKET &&
1004 		    cmsg->cmsg_type == SCM_RIGHTS) {
1005 			if (fds != NULL)
1006 				return (EINVAL);
1007 			fds = CMSG_CONTENT(cmsg);
1008 			fdlen = (int)CMSG_CONTENTLEN(cmsg);
1009 			dprint(1, ("so_getfdopt: new %lu\n",
1010 			    (size_t)CMSG_CONTENTLEN(cmsg)));
1011 		}
1012 	}
1013 	if (fds == NULL) {
1014 		dprint(1, ("so_getfdopt: NONE\n"));
1015 		*fdlenp = -1;
1016 	} else
1017 		*fdlenp = fdlen;
1018 	*fdsp = fds;
1019 	return (0);
1020 }
1021 
1022 /*
1023  * Return the length of the options including any file descriptor options.
1024  */
1025 t_uscalar_t
1026 so_optlen(void *control, t_uscalar_t controllen, int oldflg)
1027 {
1028 	struct cmsghdr *cmsg;
1029 	t_uscalar_t optlen = 0;
1030 	t_uscalar_t len;
1031 
1032 	if (control == NULL)
1033 		return (0);
1034 
1035 	if (oldflg)
1036 		return ((t_uscalar_t)(sizeof (struct T_opthdr) +
1037 		    fdbuf_optlen(controllen)));
1038 
1039 	for (cmsg = (struct cmsghdr *)control;
1040 	    CMSG_VALID(cmsg, control, (uintptr_t)control + controllen);
1041 	    cmsg = CMSG_NEXT(cmsg)) {
1042 		if (cmsg->cmsg_level == SOL_SOCKET &&
1043 		    cmsg->cmsg_type == SCM_RIGHTS) {
1044 			len = fdbuf_optlen((int)CMSG_CONTENTLEN(cmsg));
1045 		} else {
1046 			len = (t_uscalar_t)CMSG_CONTENTLEN(cmsg);
1047 		}
1048 		optlen += (t_uscalar_t)(_TPI_ALIGN_TOPT(len) +
1049 		    sizeof (struct T_opthdr));
1050 	}
1051 	dprint(1, ("so_optlen: controllen %d, flg %d -> optlen %d\n",
1052 	    controllen, oldflg, optlen));
1053 	return (optlen);
1054 }
1055 
1056 /*
1057  * Copy options from control to the mblk. Skip any file descriptor options.
1058  */
1059 void
1060 so_cmsg2opt(void *control, t_uscalar_t controllen, int oldflg, mblk_t *mp)
1061 {
1062 	struct T_opthdr toh;
1063 	struct cmsghdr *cmsg;
1064 
1065 	if (control == NULL)
1066 		return;
1067 
1068 	if (oldflg) {
1069 		/* No real options - caller has handled file descriptors */
1070 		return;
1071 	}
1072 	for (cmsg = (struct cmsghdr *)control;
1073 	    CMSG_VALID(cmsg, control, (uintptr_t)control + controllen);
1074 	    cmsg = CMSG_NEXT(cmsg)) {
1075 		/*
1076 		 * Note: The caller handles file descriptors prior
1077 		 * to calling this function.
1078 		 */
1079 		t_uscalar_t len;
1080 
1081 		if (cmsg->cmsg_level == SOL_SOCKET &&
1082 		    cmsg->cmsg_type == SCM_RIGHTS)
1083 			continue;
1084 
1085 		len = (t_uscalar_t)CMSG_CONTENTLEN(cmsg);
1086 		toh.level = cmsg->cmsg_level;
1087 		toh.name = cmsg->cmsg_type;
1088 		toh.len = len + (t_uscalar_t)sizeof (struct T_opthdr);
1089 		toh.status = 0;
1090 
1091 		soappendmsg(mp, &toh, sizeof (toh));
1092 		soappendmsg(mp, CMSG_CONTENT(cmsg), len);
1093 		mp->b_wptr += _TPI_ALIGN_TOPT(len) - len;
1094 		ASSERT(mp->b_wptr <= mp->b_datap->db_lim);
1095 	}
1096 }
1097 
1098 /*
1099  * Return the length of the control message derived from the options.
1100  * Exclude SO_SRCADDR and SO_UNIX_CLOSE options. Include SO_FILEP.
1101  * When oldflg is set only include SO_FILEP.
1102  * so_opt2cmsg and so_cmsglen are inter-related since so_cmsglen
1103  * allocates the space that so_opt2cmsg fills. If one changes, the other should
1104  * also be checked for any possible impacts.
1105  */
1106 t_uscalar_t
1107 so_cmsglen(mblk_t *mp, void *opt, t_uscalar_t optlen, int oldflg)
1108 {
1109 	t_uscalar_t cmsglen = 0;
1110 	struct T_opthdr *tohp;
1111 	t_uscalar_t len;
1112 	t_uscalar_t last_roundup = 0;
1113 
1114 	ASSERT(__TPI_TOPT_ISALIGNED(opt));
1115 
1116 	for (tohp = (struct T_opthdr *)opt;
1117 	    tohp && _TPI_TOPT_VALID(tohp, opt, (uintptr_t)opt + optlen);
1118 	    tohp = _TPI_TOPT_NEXTHDR(opt, optlen, tohp)) {
1119 		dprint(1, ("so_cmsglen: level 0x%x, name %d, len %d\n",
1120 		    tohp->level, tohp->name, tohp->len));
1121 		if (tohp->level == SOL_SOCKET &&
1122 		    (tohp->name == SO_SRCADDR ||
1123 		    tohp->name == SO_UNIX_CLOSE)) {
1124 			continue;
1125 		}
1126 		if (tohp->level == SOL_SOCKET && tohp->name == SO_FILEP) {
1127 			struct fdbuf *fdbuf;
1128 			int fdbuflen;
1129 
1130 			fdbuf = (struct fdbuf *)_TPI_TOPT_DATA(tohp);
1131 			fdbuflen = (int)_TPI_TOPT_DATALEN(tohp);
1132 
1133 			if (!fdbuf_verify(mp, fdbuf, fdbuflen))
1134 				continue;
1135 			if (oldflg) {
1136 				cmsglen += fdbuf_cmsglen(fdbuflen);
1137 				continue;
1138 			}
1139 			len = fdbuf_cmsglen(fdbuflen);
1140 		} else if (tohp->level == SOL_SOCKET &&
1141 		    tohp->name == SCM_TIMESTAMP) {
1142 			if (oldflg)
1143 				continue;
1144 
1145 			if (get_udatamodel() == DATAMODEL_NATIVE) {
1146 				len = sizeof (struct timeval);
1147 			} else {
1148 				len = sizeof (struct timeval32);
1149 			}
1150 		} else {
1151 			if (oldflg)
1152 				continue;
1153 			len = (t_uscalar_t)_TPI_TOPT_DATALEN(tohp);
1154 		}
1155 		/*
1156 		 * Exclude roundup for last option to not set
1157 		 * MSG_CTRUNC when the cmsg fits but the padding doesn't fit.
1158 		 */
1159 		last_roundup = (t_uscalar_t)
1160 		    (ROUNDUP_cmsglen(len + (int)sizeof (struct cmsghdr)) -
1161 		    (len + (int)sizeof (struct cmsghdr)));
1162 		cmsglen += (t_uscalar_t)(len + (int)sizeof (struct cmsghdr)) +
1163 		    last_roundup;
1164 	}
1165 	cmsglen -= last_roundup;
1166 	dprint(1, ("so_cmsglen: optlen %d, flg %d -> cmsglen %d\n",
1167 	    optlen, oldflg, cmsglen));
1168 	return (cmsglen);
1169 }
1170 
1171 /*
1172  * Copy options from options to the control. Convert SO_FILEP to
1173  * file descriptors.
1174  * Returns errno or zero.
1175  * so_opt2cmsg and so_cmsglen are inter-related since so_cmsglen
1176  * allocates the space that so_opt2cmsg fills. If one changes, the other should
1177  * also be checked for any possible impacts.
1178  */
1179 int
1180 so_opt2cmsg(mblk_t *mp, void *opt, t_uscalar_t optlen, int oldflg,
1181     void *control, t_uscalar_t controllen)
1182 {
1183 	struct T_opthdr *tohp;
1184 	struct cmsghdr *cmsg;
1185 	struct fdbuf *fdbuf;
1186 	int fdbuflen;
1187 	int error;
1188 #if defined(DEBUG) || defined(__lint)
1189 	struct cmsghdr *cend = (struct cmsghdr *)
1190 	    (((uint8_t *)control) + ROUNDUP_cmsglen(controllen));
1191 #endif
1192 	cmsg = (struct cmsghdr *)control;
1193 
1194 	ASSERT(__TPI_TOPT_ISALIGNED(opt));
1195 
1196 	for (tohp = (struct T_opthdr *)opt;
1197 	    tohp && _TPI_TOPT_VALID(tohp, opt, (uintptr_t)opt + optlen);
1198 	    tohp = _TPI_TOPT_NEXTHDR(opt, optlen, tohp)) {
1199 		dprint(1, ("so_opt2cmsg: level 0x%x, name %d, len %d\n",
1200 		    tohp->level, tohp->name, tohp->len));
1201 
1202 		if (tohp->level == SOL_SOCKET &&
1203 		    (tohp->name == SO_SRCADDR ||
1204 		    tohp->name == SO_UNIX_CLOSE)) {
1205 			continue;
1206 		}
1207 		ASSERT((uintptr_t)cmsg <= (uintptr_t)control + controllen);
1208 		if (tohp->level == SOL_SOCKET && tohp->name == SO_FILEP) {
1209 			fdbuf = (struct fdbuf *)_TPI_TOPT_DATA(tohp);
1210 			fdbuflen = (int)_TPI_TOPT_DATALEN(tohp);
1211 
1212 			if (!fdbuf_verify(mp, fdbuf, fdbuflen))
1213 				return (EPROTO);
1214 			if (oldflg) {
1215 				error = fdbuf_extract(fdbuf, control,
1216 				    (int)controllen);
1217 				if (error != 0)
1218 					return (error);
1219 				continue;
1220 			} else {
1221 				int fdlen;
1222 
1223 				fdlen = (int)fdbuf_cmsglen(
1224 				    (int)_TPI_TOPT_DATALEN(tohp));
1225 
1226 				cmsg->cmsg_level = tohp->level;
1227 				cmsg->cmsg_type = SCM_RIGHTS;
1228 				cmsg->cmsg_len = (socklen_t)(fdlen +
1229 				    sizeof (struct cmsghdr));
1230 
1231 				error = fdbuf_extract(fdbuf,
1232 				    CMSG_CONTENT(cmsg), fdlen);
1233 				if (error != 0)
1234 					return (error);
1235 			}
1236 		} else if (tohp->level == SOL_SOCKET &&
1237 		    tohp->name == SCM_TIMESTAMP) {
1238 			timestruc_t *timestamp;
1239 
1240 			if (oldflg)
1241 				continue;
1242 
1243 			cmsg->cmsg_level = tohp->level;
1244 			cmsg->cmsg_type = tohp->name;
1245 
1246 			timestamp =
1247 			    (timestruc_t *)P2ROUNDUP((intptr_t)&tohp[1],
1248 			    sizeof (intptr_t));
1249 
1250 			if (get_udatamodel() == DATAMODEL_NATIVE) {
1251 				struct timeval tv;
1252 
1253 				cmsg->cmsg_len = sizeof (struct timeval) +
1254 				    sizeof (struct cmsghdr);
1255 				tv.tv_sec = timestamp->tv_sec;
1256 				tv.tv_usec = timestamp->tv_nsec /
1257 				    (NANOSEC / MICROSEC);
1258 				/*
1259 				 * on LP64 systems, the struct timeval in
1260 				 * the destination will not be 8-byte aligned,
1261 				 * so use bcopy to avoid alignment trouble
1262 				 */
1263 				bcopy(&tv, CMSG_CONTENT(cmsg), sizeof (tv));
1264 			} else {
1265 				struct timeval32 *time32;
1266 
1267 				cmsg->cmsg_len = sizeof (struct timeval32) +
1268 				    sizeof (struct cmsghdr);
1269 				time32 = (struct timeval32 *)CMSG_CONTENT(cmsg);
1270 				time32->tv_sec = (time32_t)timestamp->tv_sec;
1271 				time32->tv_usec =
1272 				    (int32_t)(timestamp->tv_nsec /
1273 				    (NANOSEC / MICROSEC));
1274 			}
1275 
1276 		} else {
1277 			if (oldflg)
1278 				continue;
1279 
1280 			cmsg->cmsg_level = tohp->level;
1281 			cmsg->cmsg_type = tohp->name;
1282 			cmsg->cmsg_len = (socklen_t)(_TPI_TOPT_DATALEN(tohp) +
1283 			    sizeof (struct cmsghdr));
1284 
1285 			/* copy content to control data part */
1286 			bcopy(&tohp[1], CMSG_CONTENT(cmsg),
1287 			    CMSG_CONTENTLEN(cmsg));
1288 		}
1289 		/* move to next CMSG structure! */
1290 		cmsg = CMSG_NEXT(cmsg);
1291 	}
1292 	dprint(1, ("so_opt2cmsg: buf %p len %d; cend %p; final cmsg %p\n",
1293 	    control, controllen, (void *)cend, (void *)cmsg));
1294 	ASSERT(cmsg <= cend);
1295 	return (0);
1296 }
1297 
1298 /*
1299  * Extract the SO_SRCADDR option value if present.
1300  */
1301 void
1302 so_getopt_srcaddr(void *opt, t_uscalar_t optlen, void **srcp,
1303     t_uscalar_t *srclenp)
1304 {
1305 	struct T_opthdr		*tohp;
1306 
1307 	ASSERT(__TPI_TOPT_ISALIGNED(opt));
1308 
1309 	ASSERT(srcp != NULL && srclenp != NULL);
1310 	*srcp = NULL;
1311 	*srclenp = 0;
1312 
1313 	for (tohp = (struct T_opthdr *)opt;
1314 	    tohp && _TPI_TOPT_VALID(tohp, opt, (uintptr_t)opt + optlen);
1315 	    tohp = _TPI_TOPT_NEXTHDR(opt, optlen, tohp)) {
1316 		dprint(1, ("so_getopt_srcaddr: level 0x%x, name %d, len %d\n",
1317 		    tohp->level, tohp->name, tohp->len));
1318 		if (tohp->level == SOL_SOCKET &&
1319 		    tohp->name == SO_SRCADDR) {
1320 			*srcp = _TPI_TOPT_DATA(tohp);
1321 			*srclenp = (t_uscalar_t)_TPI_TOPT_DATALEN(tohp);
1322 		}
1323 	}
1324 }
1325 
1326 /*
1327  * Verify if the SO_UNIX_CLOSE option is present.
1328  */
1329 int
1330 so_getopt_unix_close(void *opt, t_uscalar_t optlen)
1331 {
1332 	struct T_opthdr		*tohp;
1333 
1334 	ASSERT(__TPI_TOPT_ISALIGNED(opt));
1335 
1336 	for (tohp = (struct T_opthdr *)opt;
1337 	    tohp && _TPI_TOPT_VALID(tohp, opt, (uintptr_t)opt + optlen);
1338 	    tohp = _TPI_TOPT_NEXTHDR(opt, optlen, tohp)) {
1339 		dprint(1,
1340 		    ("so_getopt_unix_close: level 0x%x, name %d, len %d\n",
1341 		    tohp->level, tohp->name, tohp->len));
1342 		if (tohp->level == SOL_SOCKET &&
1343 		    tohp->name == SO_UNIX_CLOSE)
1344 			return (1);
1345 	}
1346 	return (0);
1347 }
1348 
1349 /*
1350  * Allocate an M_PROTO message.
1351  *
1352  * If allocation fails the behavior depends on sleepflg:
1353  *	_ALLOC_NOSLEEP	fail immediately
1354  *	_ALLOC_INTR	sleep for memory until a signal is caught
1355  *	_ALLOC_SLEEP	sleep forever. Don't return NULL.
1356  */
1357 mblk_t *
1358 soallocproto(size_t size, int sleepflg, cred_t *cr)
1359 {
1360 	mblk_t	*mp;
1361 
1362 	/* Round up size for reuse */
1363 	size = MAX(size, 64);
1364 	if (cr != NULL)
1365 		mp = allocb_cred(size, cr, curproc->p_pid);
1366 	else
1367 		mp = allocb(size, BPRI_MED);
1368 
1369 	if (mp == NULL) {
1370 		int error;	/* Dummy - error not returned to caller */
1371 
1372 		switch (sleepflg) {
1373 		case _ALLOC_SLEEP:
1374 			if (cr != NULL) {
1375 				mp = allocb_cred_wait(size, STR_NOSIG, &error,
1376 				    cr, curproc->p_pid);
1377 			} else {
1378 				mp = allocb_wait(size, BPRI_MED, STR_NOSIG,
1379 				    &error);
1380 			}
1381 			ASSERT(mp);
1382 			break;
1383 		case _ALLOC_INTR:
1384 			if (cr != NULL) {
1385 				mp = allocb_cred_wait(size, 0, &error, cr,
1386 				    curproc->p_pid);
1387 			} else {
1388 				mp = allocb_wait(size, BPRI_MED, 0, &error);
1389 			}
1390 			if (mp == NULL) {
1391 				/* Caught signal while sleeping for memory */
1392 				eprintline(ENOBUFS);
1393 				return (NULL);
1394 			}
1395 			break;
1396 		case _ALLOC_NOSLEEP:
1397 		default:
1398 			eprintline(ENOBUFS);
1399 			return (NULL);
1400 		}
1401 	}
1402 	DB_TYPE(mp) = M_PROTO;
1403 	return (mp);
1404 }
1405 
1406 /*
1407  * Allocate an M_PROTO message with a single component.
1408  * len is the length of buf. size is the amount to allocate.
1409  *
1410  * buf can be NULL with a non-zero len.
1411  * This results in a bzero'ed chunk being placed the message.
1412  */
1413 mblk_t *
1414 soallocproto1(const void *buf, ssize_t len, ssize_t size, int sleepflg,
1415     cred_t *cr)
1416 {
1417 	mblk_t	*mp;
1418 
1419 	if (size == 0)
1420 		size = len;
1421 
1422 	ASSERT(size >= len);
1423 	/* Round up size for reuse */
1424 	size = MAX(size, 64);
1425 	mp = soallocproto(size, sleepflg, cr);
1426 	if (mp == NULL)
1427 		return (NULL);
1428 	mp->b_datap->db_type = M_PROTO;
1429 	if (len != 0) {
1430 		if (buf != NULL)
1431 			bcopy(buf, mp->b_wptr, len);
1432 		else
1433 			bzero(mp->b_wptr, len);
1434 		mp->b_wptr += len;
1435 	}
1436 	return (mp);
1437 }
1438 
1439 /*
1440  * Append buf/len to mp.
1441  * The caller has to ensure that there is enough room in the mblk.
1442  *
1443  * buf can be NULL with a non-zero len.
1444  * This results in a bzero'ed chunk being placed the message.
1445  */
1446 void
1447 soappendmsg(mblk_t *mp, const void *buf, ssize_t len)
1448 {
1449 	ASSERT(mp);
1450 
1451 	if (len != 0) {
1452 		/* Assert for room left */
1453 		ASSERT(mp->b_datap->db_lim - mp->b_wptr >= len);
1454 		if (buf != NULL)
1455 			bcopy(buf, mp->b_wptr, len);
1456 		else
1457 			bzero(mp->b_wptr, len);
1458 	}
1459 	mp->b_wptr += len;
1460 }
1461 
1462 /*
1463  * Create a message using two kernel buffers.
1464  * If size is set that will determine the allocation size (e.g. for future
1465  * soappendmsg calls). If size is zero it is derived from the buffer
1466  * lengths.
1467  */
1468 mblk_t *
1469 soallocproto2(const void *buf1, ssize_t len1, const void *buf2, ssize_t len2,
1470     ssize_t size, int sleepflg, cred_t *cr)
1471 {
1472 	mblk_t *mp;
1473 
1474 	if (size == 0)
1475 		size = len1 + len2;
1476 	ASSERT(size >= len1 + len2);
1477 
1478 	mp = soallocproto1(buf1, len1, size, sleepflg, cr);
1479 	if (mp)
1480 		soappendmsg(mp, buf2, len2);
1481 	return (mp);
1482 }
1483 
1484 /*
1485  * Create a message using three kernel buffers.
1486  * If size is set that will determine the allocation size (for future
1487  * soappendmsg calls). If size is zero it is derived from the buffer
1488  * lengths.
1489  */
1490 mblk_t *
1491 soallocproto3(const void *buf1, ssize_t len1, const void *buf2, ssize_t len2,
1492     const void *buf3, ssize_t len3, ssize_t size, int sleepflg, cred_t *cr)
1493 {
1494 	mblk_t *mp;
1495 
1496 	if (size == 0)
1497 		size = len1 + len2 +len3;
1498 	ASSERT(size >= len1 + len2 + len3);
1499 
1500 	mp = soallocproto1(buf1, len1, size, sleepflg, cr);
1501 	if (mp != NULL) {
1502 		soappendmsg(mp, buf2, len2);
1503 		soappendmsg(mp, buf3, len3);
1504 	}
1505 	return (mp);
1506 }
1507 
1508 #ifdef DEBUG
1509 char *
1510 pr_state(uint_t state, uint_t mode)
1511 {
1512 	static char buf[1024];
1513 
1514 	buf[0] = 0;
1515 	if (state & SS_ISCONNECTED)
1516 		(void) strcat(buf, "ISCONNECTED ");
1517 	if (state & SS_ISCONNECTING)
1518 		(void) strcat(buf, "ISCONNECTING ");
1519 	if (state & SS_ISDISCONNECTING)
1520 		(void) strcat(buf, "ISDISCONNECTING ");
1521 	if (state & SS_CANTSENDMORE)
1522 		(void) strcat(buf, "CANTSENDMORE ");
1523 
1524 	if (state & SS_CANTRCVMORE)
1525 		(void) strcat(buf, "CANTRCVMORE ");
1526 	if (state & SS_ISBOUND)
1527 		(void) strcat(buf, "ISBOUND ");
1528 	if (state & SS_NDELAY)
1529 		(void) strcat(buf, "NDELAY ");
1530 	if (state & SS_NONBLOCK)
1531 		(void) strcat(buf, "NONBLOCK ");
1532 
1533 	if (state & SS_ASYNC)
1534 		(void) strcat(buf, "ASYNC ");
1535 	if (state & SS_ACCEPTCONN)
1536 		(void) strcat(buf, "ACCEPTCONN ");
1537 	if (state & SS_SAVEDEOR)
1538 		(void) strcat(buf, "SAVEDEOR ");
1539 
1540 	if (state & SS_RCVATMARK)
1541 		(void) strcat(buf, "RCVATMARK ");
1542 	if (state & SS_OOBPEND)
1543 		(void) strcat(buf, "OOBPEND ");
1544 	if (state & SS_HAVEOOBDATA)
1545 		(void) strcat(buf, "HAVEOOBDATA ");
1546 	if (state & SS_HADOOBDATA)
1547 		(void) strcat(buf, "HADOOBDATA ");
1548 
1549 	if (mode & SM_PRIV)
1550 		(void) strcat(buf, "PRIV ");
1551 	if (mode & SM_ATOMIC)
1552 		(void) strcat(buf, "ATOMIC ");
1553 	if (mode & SM_ADDR)
1554 		(void) strcat(buf, "ADDR ");
1555 	if (mode & SM_CONNREQUIRED)
1556 		(void) strcat(buf, "CONNREQUIRED ");
1557 
1558 	if (mode & SM_FDPASSING)
1559 		(void) strcat(buf, "FDPASSING ");
1560 	if (mode & SM_EXDATA)
1561 		(void) strcat(buf, "EXDATA ");
1562 	if (mode & SM_OPTDATA)
1563 		(void) strcat(buf, "OPTDATA ");
1564 	if (mode & SM_BYTESTREAM)
1565 		(void) strcat(buf, "BYTESTREAM ");
1566 	return (buf);
1567 }
1568 
1569 char *
1570 pr_addr(int family, struct sockaddr *addr, t_uscalar_t addrlen)
1571 {
1572 	static char buf[1024];
1573 
1574 	if (addr == NULL || addrlen == 0) {
1575 		(void) sprintf(buf, "(len %d) %p", addrlen, (void *)addr);
1576 		return (buf);
1577 	}
1578 	switch (family) {
1579 	case AF_INET: {
1580 		struct sockaddr_in sin;
1581 
1582 		bcopy(addr, &sin, sizeof (sin));
1583 
1584 		(void) sprintf(buf, "(len %d) %x/%d",
1585 		    addrlen, ntohl(sin.sin_addr.s_addr), ntohs(sin.sin_port));
1586 		break;
1587 	}
1588 	case AF_INET6: {
1589 		struct sockaddr_in6 sin6;
1590 		uint16_t *piece = (uint16_t *)&sin6.sin6_addr;
1591 
1592 		bcopy((char *)addr, (char *)&sin6, sizeof (sin6));
1593 		(void) sprintf(buf, "(len %d) %x:%x:%x:%x:%x:%x:%x:%x/%d",
1594 		    addrlen,
1595 		    ntohs(piece[0]), ntohs(piece[1]),
1596 		    ntohs(piece[2]), ntohs(piece[3]),
1597 		    ntohs(piece[4]), ntohs(piece[5]),
1598 		    ntohs(piece[6]), ntohs(piece[7]),
1599 		    ntohs(sin6.sin6_port));
1600 		break;
1601 	}
1602 	case AF_UNIX: {
1603 		struct sockaddr_un *soun = (struct sockaddr_un *)addr;
1604 
1605 		(void) sprintf(buf, "(len %d) %s", addrlen,
1606 		    (soun == NULL) ? "(none)" : soun->sun_path);
1607 		break;
1608 	}
1609 	default:
1610 		(void) sprintf(buf, "(unknown af %d)", family);
1611 		break;
1612 	}
1613 	return (buf);
1614 }
1615 
1616 /* The logical equivalence operator (a if-and-only-if b) */
1617 #define	EQUIV(a, b)	(((a) && (b)) || (!(a) && (!(b))))
1618 
1619 /*
1620  * Verify limitations and invariants on oob state.
1621  * Return 1 if OK, otherwise 0 so that it can be used as
1622  *	ASSERT(verify_oobstate(so));
1623  */
1624 int
1625 so_verify_oobstate(struct sonode *so)
1626 {
1627 	boolean_t havemark;
1628 
1629 	ASSERT(MUTEX_HELD(&so->so_lock));
1630 
1631 	/*
1632 	 * The possible state combinations are:
1633 	 *	0
1634 	 *	SS_OOBPEND
1635 	 *	SS_OOBPEND|SS_HAVEOOBDATA
1636 	 *	SS_OOBPEND|SS_HADOOBDATA
1637 	 *	SS_HADOOBDATA
1638 	 */
1639 	switch (so->so_state & (SS_OOBPEND|SS_HAVEOOBDATA|SS_HADOOBDATA)) {
1640 	case 0:
1641 	case SS_OOBPEND:
1642 	case SS_OOBPEND|SS_HAVEOOBDATA:
1643 	case SS_OOBPEND|SS_HADOOBDATA:
1644 	case SS_HADOOBDATA:
1645 		break;
1646 	default:
1647 		printf("Bad oob state 1 (%p): state %s\n",
1648 		    (void *)so, pr_state(so->so_state, so->so_mode));
1649 		return (0);
1650 	}
1651 
1652 	/* SS_RCVATMARK should only be set when SS_OOBPEND is set */
1653 	if ((so->so_state & (SS_RCVATMARK|SS_OOBPEND)) == SS_RCVATMARK) {
1654 		printf("Bad oob state 2 (%p): state %s\n",
1655 		    (void *)so, pr_state(so->so_state, so->so_mode));
1656 		return (0);
1657 	}
1658 
1659 	/*
1660 	 * (havemark != 0 or SS_RCVATMARK) iff SS_OOBPEND
1661 	 * For TPI, the presence of a "mark" is indicated by sti_oobsigcnt.
1662 	 */
1663 	havemark = (SOCK_IS_NONSTR(so)) ? so->so_oobmark > 0 :
1664 	    SOTOTPI(so)->sti_oobsigcnt > 0;
1665 
1666 	if (!EQUIV(havemark || (so->so_state & SS_RCVATMARK),
1667 	    so->so_state & SS_OOBPEND)) {
1668 		printf("Bad oob state 3 (%p): state %s\n",
1669 		    (void *)so, pr_state(so->so_state, so->so_mode));
1670 		return (0);
1671 	}
1672 
1673 	/*
1674 	 * Unless SO_OOBINLINE we have so_oobmsg != NULL iff SS_HAVEOOBDATA
1675 	 */
1676 	if (!(so->so_options & SO_OOBINLINE) &&
1677 	    !EQUIV(so->so_oobmsg != NULL, so->so_state & SS_HAVEOOBDATA)) {
1678 		printf("Bad oob state 4 (%p): state %s\n",
1679 		    (void *)so, pr_state(so->so_state, so->so_mode));
1680 		return (0);
1681 	}
1682 
1683 	if (!SOCK_IS_NONSTR(so) &&
1684 	    SOTOTPI(so)->sti_oobsigcnt < SOTOTPI(so)->sti_oobcnt) {
1685 		printf("Bad oob state 5 (%p): counts %d/%d state %s\n",
1686 		    (void *)so, SOTOTPI(so)->sti_oobsigcnt,
1687 		    SOTOTPI(so)->sti_oobcnt,
1688 		    pr_state(so->so_state, so->so_mode));
1689 		return (0);
1690 	}
1691 
1692 	return (1);
1693 }
1694 #undef	EQUIV
1695 #endif /* DEBUG */
1696 
1697 /* initialize sockfs zone specific kstat related items			*/
1698 void *
1699 sock_kstat_init(zoneid_t zoneid)
1700 {
1701 	kstat_t	*ksp;
1702 
1703 	ksp = kstat_create_zone("sockfs", 0, "sock_unix_list", "misc",
1704 	    KSTAT_TYPE_RAW, 0, KSTAT_FLAG_VAR_SIZE|KSTAT_FLAG_VIRTUAL, zoneid);
1705 
1706 	if (ksp != NULL) {
1707 		ksp->ks_update = sockfs_update;
1708 		ksp->ks_snapshot = sockfs_snapshot;
1709 		ksp->ks_lock = &socklist.sl_lock;
1710 		ksp->ks_private = (void *)(uintptr_t)zoneid;
1711 		kstat_install(ksp);
1712 	}
1713 
1714 	return (ksp);
1715 }
1716 
1717 /* tear down sockfs zone specific kstat related items			*/
1718 /*ARGSUSED*/
1719 void
1720 sock_kstat_fini(zoneid_t zoneid, void *arg)
1721 {
1722 	kstat_t *ksp = (kstat_t *)arg;
1723 
1724 	if (ksp != NULL) {
1725 		ASSERT(zoneid == (zoneid_t)(uintptr_t)ksp->ks_private);
1726 		kstat_delete(ksp);
1727 	}
1728 }
1729 
1730 /*
1731  * Zones:
1732  * Note that nactive is going to be different for each zone.
1733  * This means we require kstat to call sockfs_update and then sockfs_snapshot
1734  * for the same zone, or sockfs_snapshot will be taken into the wrong size
1735  * buffer. This is safe, but if the buffer is too small, user will not be
1736  * given details of all sockets. However, as this kstat has a ks_lock, kstat
1737  * driver will keep it locked between the update and the snapshot, so no
1738  * other process (zone) can currently get inbetween resulting in a wrong size
1739  * buffer allocation.
1740  */
1741 static int
1742 sockfs_update(kstat_t *ksp, int rw)
1743 {
1744 	uint_t	nactive = 0;		/* # of active AF_UNIX sockets	*/
1745 	struct sonode	*so;		/* current sonode on socklist	*/
1746 	zoneid_t	myzoneid = (zoneid_t)(uintptr_t)ksp->ks_private;
1747 
1748 	ASSERT((zoneid_t)(uintptr_t)ksp->ks_private == getzoneid());
1749 
1750 	if (rw == KSTAT_WRITE) {	/* bounce all writes		*/
1751 		return (EACCES);
1752 	}
1753 
1754 	for (so = socklist.sl_list; so != NULL; so = SOTOTPI(so)->sti_next_so) {
1755 		if (so->so_count != 0 && so->so_zoneid == myzoneid) {
1756 			nactive++;
1757 		}
1758 	}
1759 	ksp->ks_ndata = nactive;
1760 	ksp->ks_data_size = nactive * sizeof (struct k_sockinfo);
1761 
1762 	return (0);
1763 }
1764 
1765 static int
1766 sockfs_snapshot(kstat_t *ksp, void *buf, int rw)
1767 {
1768 	int			ns;	/* # of sonodes we've copied	*/
1769 	struct sonode		*so;	/* current sonode on socklist	*/
1770 	struct k_sockinfo	*pksi;	/* where we put sockinfo data	*/
1771 	t_uscalar_t		sn_len;	/* soa_len			*/
1772 	zoneid_t		myzoneid = (zoneid_t)(uintptr_t)ksp->ks_private;
1773 	sotpi_info_t 		*sti;
1774 
1775 	ASSERT((zoneid_t)(uintptr_t)ksp->ks_private == getzoneid());
1776 
1777 	ksp->ks_snaptime = gethrtime();
1778 
1779 	if (rw == KSTAT_WRITE) {	/* bounce all writes		*/
1780 		return (EACCES);
1781 	}
1782 
1783 	/*
1784 	 * for each sonode on the socklist, we massage the important
1785 	 * info into buf, in k_sockinfo format.
1786 	 */
1787 	pksi = (struct k_sockinfo *)buf;
1788 	ns = 0;
1789 	for (so = socklist.sl_list; so != NULL; so = SOTOTPI(so)->sti_next_so) {
1790 		/* only stuff active sonodes and the same zone:		*/
1791 		if (so->so_count == 0 || so->so_zoneid != myzoneid) {
1792 			continue;
1793 		}
1794 
1795 		/*
1796 		 * If the sonode was activated between the update and the
1797 		 * snapshot, we're done - as this is only a snapshot.
1798 		 */
1799 		if ((caddr_t)(pksi) >= (caddr_t)buf + ksp->ks_data_size) {
1800 			break;
1801 		}
1802 
1803 		sti = SOTOTPI(so);
1804 		/* copy important info into buf:			*/
1805 		pksi->ks_si.si_size = sizeof (struct k_sockinfo);
1806 		pksi->ks_si.si_family = so->so_family;
1807 		pksi->ks_si.si_type = so->so_type;
1808 		pksi->ks_si.si_flag = so->so_flag;
1809 		pksi->ks_si.si_state = so->so_state;
1810 		pksi->ks_si.si_serv_type = sti->sti_serv_type;
1811 		pksi->ks_si.si_ux_laddr_sou_magic =
1812 		    sti->sti_ux_laddr.soua_magic;
1813 		pksi->ks_si.si_ux_faddr_sou_magic =
1814 		    sti->sti_ux_faddr.soua_magic;
1815 		pksi->ks_si.si_laddr_soa_len = sti->sti_laddr.soa_len;
1816 		pksi->ks_si.si_faddr_soa_len = sti->sti_faddr.soa_len;
1817 		pksi->ks_si.si_szoneid = so->so_zoneid;
1818 		pksi->ks_si.si_faddr_noxlate = sti->sti_faddr_noxlate;
1819 
1820 		mutex_enter(&so->so_lock);
1821 
1822 		if (sti->sti_laddr_sa != NULL) {
1823 			ASSERT(sti->sti_laddr_sa->sa_data != NULL);
1824 			sn_len = sti->sti_laddr_len;
1825 			ASSERT(sn_len <= sizeof (short) +
1826 			    sizeof (pksi->ks_si.si_laddr_sun_path));
1827 
1828 			pksi->ks_si.si_laddr_family =
1829 			    sti->sti_laddr_sa->sa_family;
1830 			if (sn_len != 0) {
1831 				/* AF_UNIX socket names are NULL terminated */
1832 				(void) strncpy(pksi->ks_si.si_laddr_sun_path,
1833 				    sti->sti_laddr_sa->sa_data,
1834 				    sizeof (pksi->ks_si.si_laddr_sun_path));
1835 				sn_len = strlen(pksi->ks_si.si_laddr_sun_path);
1836 			}
1837 			pksi->ks_si.si_laddr_sun_path[sn_len] = 0;
1838 		}
1839 
1840 		if (sti->sti_faddr_sa != NULL) {
1841 			ASSERT(sti->sti_faddr_sa->sa_data != NULL);
1842 			sn_len = sti->sti_faddr_len;
1843 			ASSERT(sn_len <= sizeof (short) +
1844 			    sizeof (pksi->ks_si.si_faddr_sun_path));
1845 
1846 			pksi->ks_si.si_faddr_family =
1847 			    sti->sti_faddr_sa->sa_family;
1848 			if (sn_len != 0) {
1849 				(void) strncpy(pksi->ks_si.si_faddr_sun_path,
1850 				    sti->sti_faddr_sa->sa_data,
1851 				    sizeof (pksi->ks_si.si_faddr_sun_path));
1852 				sn_len = strlen(pksi->ks_si.si_faddr_sun_path);
1853 			}
1854 			pksi->ks_si.si_faddr_sun_path[sn_len] = 0;
1855 		}
1856 
1857 		mutex_exit(&so->so_lock);
1858 
1859 		(void) sprintf(pksi->ks_straddr[0], "%p", (void *)so);
1860 		(void) sprintf(pksi->ks_straddr[1], "%p",
1861 		    (void *)sti->sti_ux_laddr.soua_vp);
1862 		(void) sprintf(pksi->ks_straddr[2], "%p",
1863 		    (void *)sti->sti_ux_faddr.soua_vp);
1864 
1865 		ns++;
1866 		pksi++;
1867 	}
1868 
1869 	ksp->ks_ndata = ns;
1870 	return (0);
1871 }
1872 
1873 ssize_t
1874 soreadfile(file_t *fp, uchar_t *buf, u_offset_t fileoff, int *err, size_t size)
1875 {
1876 	struct uio auio;
1877 	struct iovec aiov[MSG_MAXIOVLEN];
1878 	register vnode_t *vp;
1879 	int ioflag, rwflag;
1880 	ssize_t cnt;
1881 	int error = 0;
1882 	int iovcnt = 0;
1883 	short fflag;
1884 
1885 	vp = fp->f_vnode;
1886 	fflag = fp->f_flag;
1887 
1888 	rwflag = 0;
1889 	aiov[0].iov_base = (caddr_t)buf;
1890 	aiov[0].iov_len = size;
1891 	iovcnt = 1;
1892 	cnt = (ssize_t)size;
1893 	(void) VOP_RWLOCK(vp, rwflag, NULL);
1894 
1895 	auio.uio_loffset = fileoff;
1896 	auio.uio_iov = aiov;
1897 	auio.uio_iovcnt = iovcnt;
1898 	auio.uio_resid = cnt;
1899 	auio.uio_segflg = UIO_SYSSPACE;
1900 	auio.uio_llimit = MAXOFFSET_T;
1901 	auio.uio_fmode = fflag;
1902 	auio.uio_extflg = UIO_COPY_CACHED;
1903 
1904 	ioflag = auio.uio_fmode & (FAPPEND|FSYNC|FDSYNC|FRSYNC);
1905 
1906 	/* If read sync is not asked for, filter sync flags */
1907 	if ((ioflag & FRSYNC) == 0)
1908 		ioflag &= ~(FSYNC|FDSYNC);
1909 	error = VOP_READ(vp, &auio, ioflag, fp->f_cred, NULL);
1910 	cnt -= auio.uio_resid;
1911 
1912 	VOP_RWUNLOCK(vp, rwflag, NULL);
1913 
1914 	if (error == EINTR && cnt != 0)
1915 		error = 0;
1916 out:
1917 	if (error != 0) {
1918 		*err = error;
1919 		return (0);
1920 	} else {
1921 		*err = 0;
1922 		return (cnt);
1923 	}
1924 }
1925 
1926 int
1927 so_copyin(const void *from, void *to, size_t size, int fromkernel)
1928 {
1929 	if (fromkernel) {
1930 		bcopy(from, to, size);
1931 		return (0);
1932 	}
1933 	return (xcopyin(from, to, size));
1934 }
1935 
1936 int
1937 so_copyout(const void *from, void *to, size_t size, int tokernel)
1938 {
1939 	if (tokernel) {
1940 		bcopy(from, to, size);
1941 		return (0);
1942 	}
1943 	return (xcopyout(from, to, size));
1944 }
1945