1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License, Version 1.0 only 6 * (the "License"). You may not use this file except in compliance 7 * with the License. 8 * 9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 10 * or http://www.opensolaris.org/os/licensing. 11 * See the License for the specific language governing permissions 12 * and limitations under the License. 13 * 14 * When distributing Covered Code, include this CDDL HEADER in each 15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 16 * If applicable, add the following below this CDDL HEADER, with the 17 * fields enclosed by brackets "[]" replaced with your own identifying 18 * information: Portions Copyright [yyyy] [name of copyright owner] 19 * 20 * CDDL HEADER END 21 */ 22 /* 23 * Copyright 2005 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 #include <sys/types.h> 30 #include <sys/t_lock.h> 31 #include <sys/param.h> 32 #include <sys/systm.h> 33 #include <sys/buf.h> 34 #include <sys/conf.h> 35 #include <sys/cred.h> 36 #include <sys/kmem.h> 37 #include <sys/sysmacros.h> 38 #include <sys/vfs.h> 39 #include <sys/vnode.h> 40 #include <sys/debug.h> 41 #include <sys/errno.h> 42 #include <sys/time.h> 43 #include <sys/file.h> 44 #include <sys/open.h> 45 #include <sys/user.h> 46 #include <sys/termios.h> 47 #include <sys/stream.h> 48 #include <sys/strsubr.h> 49 #include <sys/strsun.h> 50 #include <sys/esunddi.h> 51 #include <sys/flock.h> 52 #include <sys/modctl.h> 53 #include <sys/cmn_err.h> 54 #include <sys/mkdev.h> 55 #include <sys/pathname.h> 56 #include <sys/ddi.h> 57 #include <sys/stat.h> 58 #include <sys/fs/snode.h> 59 #include <sys/fs/dv_node.h> 60 #include <sys/zone.h> 61 62 #include <sys/socket.h> 63 #include <sys/socketvar.h> 64 #include <netinet/in.h> 65 #include <sys/un.h> 66 67 #include <sys/ucred.h> 68 69 #include <sys/tiuser.h> 70 #define _SUN_TPI_VERSION 2 71 #include <sys/tihdr.h> 72 73 #include <c2/audit.h> 74 75 #include <fs/sockfs/nl7c.h> 76 77 /* 78 * Macros that operate on struct cmsghdr. 79 * The CMSG_VALID macro does not assume that the last option buffer is padded. 80 */ 81 #define CMSG_CONTENT(cmsg) (&((cmsg)[1])) 82 #define CMSG_CONTENTLEN(cmsg) ((cmsg)->cmsg_len - sizeof (struct cmsghdr)) 83 #define CMSG_VALID(cmsg, start, end) \ 84 (ISALIGNED_cmsghdr(cmsg) && \ 85 ((uintptr_t)(cmsg) >= (uintptr_t)(start)) && \ 86 ((uintptr_t)(cmsg) < (uintptr_t)(end)) && \ 87 ((ssize_t)(cmsg)->cmsg_len >= sizeof (struct cmsghdr)) && \ 88 ((uintptr_t)(cmsg) + (cmsg)->cmsg_len <= (uintptr_t)(end))) 89 #define SO_LOCK_WAKEUP_TIME 3000 /* Wakeup time in milliseconds */ 90 91 static struct kmem_cache *socktpi_cache, *socktpi_unix_cache; 92 93 dev_t sockdev; /* For fsid in getattr */ 94 95 struct sockparams *sphead; 96 krwlock_t splist_lock; 97 98 struct socklist socklist; 99 100 static int sockfs_update(kstat_t *, int); 101 static int sockfs_snapshot(kstat_t *, void *, int); 102 103 extern void sendfile_init(); 104 105 extern void nl7c_init(void); 106 107 #define ADRSTRLEN (2 * sizeof (void *) + 1) 108 /* 109 * kernel structure for passing the sockinfo data back up to the user. 110 * the strings array allows us to convert AF_UNIX addresses into strings 111 * with a common method regardless of which n-bit kernel we're running. 112 */ 113 struct k_sockinfo { 114 struct sockinfo ks_si; 115 char ks_straddr[3][ADRSTRLEN]; 116 }; 117 118 /* 119 * Translate from a device pathname (e.g. "/dev/tcp") to a vnode. 120 * Returns with the vnode held. 121 */ 122 static int 123 sogetvp(char *devpath, vnode_t **vpp, int uioflag) 124 { 125 struct snode *csp; 126 vnode_t *vp, *dvp; 127 major_t maj; 128 int error; 129 130 ASSERT(uioflag == UIO_SYSSPACE || uioflag == UIO_USERSPACE); 131 /* 132 * Lookup the underlying filesystem vnode. 133 */ 134 error = lookupname(devpath, uioflag, FOLLOW, NULLVPP, &vp); 135 if (error) 136 return (error); 137 138 /* Check that it is the correct vnode */ 139 if (vp->v_type != VCHR) { 140 VN_RELE(vp); 141 return (ENOTSOCK); 142 } 143 144 /* 145 * If devpath went through devfs, the device should already 146 * be configured. If devpath is a mknod file, however, we 147 * need to make sure the device is properly configured. 148 * To do this, we do something similar to spec_open() 149 * except that we resolve to the minor/leaf level since 150 * we need to return a vnode. 151 */ 152 csp = VTOS(VTOS(vp)->s_commonvp); 153 if (!(csp->s_flag & SDIPSET)) { 154 char *pathname = kmem_alloc(MAXPATHLEN, KM_SLEEP); 155 error = ddi_dev_pathname(vp->v_rdev, S_IFCHR, pathname); 156 if (error == 0) 157 error = devfs_lookupname(pathname, NULLVPP, &dvp); 158 VN_RELE(vp); 159 kmem_free(pathname, MAXPATHLEN); 160 if (error != 0) 161 return (ENXIO); 162 vp = dvp; /* use the devfs vp */ 163 } 164 165 /* device is configured at this point */ 166 maj = getmajor(vp->v_rdev); 167 if (!STREAMSTAB(maj)) { 168 VN_RELE(vp); 169 return (ENOSTR); 170 } 171 172 *vpp = vp; 173 return (0); 174 } 175 176 /* 177 * Add or delete (latter if devpath is NULL) an enter to the sockparams 178 * table. If devpathlen is zero the devpath with not be kmem_freed. Otherwise 179 * this routine assumes that the caller has kmem_alloced devpath/devpathlen 180 * for this routine to consume. 181 * The zero devpathlen could be used if the kernel wants to create entries 182 * itself by calling sockconfig(1,2,3, "/dev/tcp", 0); 183 */ 184 int 185 soconfig(int domain, int type, int protocol, 186 char *devpath, int devpathlen) 187 { 188 struct sockparams **spp; 189 struct sockparams *sp; 190 int error = 0; 191 192 dprint(0, ("soconfig(%d,%d,%d,%s,%d)\n", 193 domain, type, protocol, devpath, devpathlen)); 194 195 /* 196 * Look for an existing match. 197 */ 198 rw_enter(&splist_lock, RW_WRITER); 199 for (spp = &sphead; (sp = *spp) != NULL; spp = &sp->sp_next) { 200 if (sp->sp_domain == domain && 201 sp->sp_type == type && 202 sp->sp_protocol == protocol) { 203 break; 204 } 205 } 206 if (devpath == NULL) { 207 ASSERT(devpathlen == 0); 208 209 /* Delete existing entry */ 210 if (sp == NULL) { 211 error = ENXIO; 212 goto done; 213 } 214 /* Unlink and free existing entry */ 215 *spp = sp->sp_next; 216 ASSERT(sp->sp_vnode); 217 VN_RELE(sp->sp_vnode); 218 if (sp->sp_devpathlen != 0) 219 kmem_free(sp->sp_devpath, sp->sp_devpathlen); 220 kmem_free(sp, sizeof (*sp)); 221 } else { 222 vnode_t *vp; 223 224 /* Add new entry */ 225 if (sp != NULL) { 226 error = EEXIST; 227 goto done; 228 } 229 230 error = sogetvp(devpath, &vp, UIO_SYSSPACE); 231 if (error) { 232 dprint(0, ("soconfig: vp %s failed with %d\n", 233 devpath, error)); 234 goto done; 235 } 236 237 dprint(0, ("soconfig: %s => vp %p, dev 0x%lx\n", 238 devpath, vp, vp->v_rdev)); 239 240 sp = kmem_alloc(sizeof (*sp), KM_SLEEP); 241 sp->sp_domain = domain; 242 sp->sp_type = type; 243 sp->sp_protocol = protocol; 244 sp->sp_devpath = devpath; 245 sp->sp_devpathlen = devpathlen; 246 sp->sp_vnode = vp; 247 sp->sp_next = NULL; 248 *spp = sp; 249 } 250 done: 251 rw_exit(&splist_lock); 252 if (error) { 253 if (devpath != NULL) 254 kmem_free(devpath, devpathlen); 255 #ifdef SOCK_DEBUG 256 eprintline(error); 257 #endif /* SOCK_DEBUG */ 258 } 259 return (error); 260 } 261 262 /* 263 * Lookup an entry in the sockparams list based on the triple. 264 * If no entry is found and devpath is not NULL translate devpath to a 265 * vnode. Note that devpath is a pointer to a user address! 266 * Returns with the vnode held. 267 * 268 * When this routine uses devpath it does not create an entry in the sockparams 269 * list since this routine can run on behalf of any user and one user 270 * should not be able to effect the transport used by another user. 271 * 272 * In order to return the correct error this routine has to do wildcard scans 273 * of the list. The errors are (in decreasing precedence): 274 * EAFNOSUPPORT - address family not in list 275 * EPROTONOSUPPORT - address family supported but not protocol. 276 * EPROTOTYPE - address family and protocol supported but not socket type. 277 */ 278 vnode_t * 279 solookup(int domain, int type, int protocol, char *devpath, int *errorp) 280 { 281 struct sockparams *sp; 282 int error; 283 vnode_t *vp; 284 285 rw_enter(&splist_lock, RW_READER); 286 for (sp = sphead; sp != NULL; sp = sp->sp_next) { 287 if (sp->sp_domain == domain && 288 sp->sp_type == type && 289 sp->sp_protocol == protocol) { 290 break; 291 } 292 } 293 if (sp == NULL) { 294 dprint(0, ("solookup(%d,%d,%d) not found\n", 295 domain, type, protocol)); 296 if (devpath == NULL) { 297 /* Determine correct error code */ 298 int found = 0; 299 300 for (sp = sphead; sp != NULL; sp = sp->sp_next) { 301 if (sp->sp_domain == domain && found < 1) 302 found = 1; 303 if (sp->sp_domain == domain && 304 sp->sp_protocol == protocol && found < 2) 305 found = 2; 306 } 307 rw_exit(&splist_lock); 308 switch (found) { 309 case 0: 310 *errorp = EAFNOSUPPORT; 311 break; 312 case 1: 313 *errorp = EPROTONOSUPPORT; 314 break; 315 case 2: 316 *errorp = EPROTOTYPE; 317 break; 318 } 319 return (NULL); 320 } 321 rw_exit(&splist_lock); 322 323 /* 324 * Return vp based on devpath. 325 * Do not enter into table to avoid random users 326 * modifying the sockparams list. 327 */ 328 error = sogetvp(devpath, &vp, UIO_USERSPACE); 329 if (error) { 330 dprint(0, ("solookup: vp %p failed with %d\n", 331 devpath, error)); 332 *errorp = EPROTONOSUPPORT; 333 return (NULL); 334 } 335 dprint(0, ("solookup: %p => vp %p, dev 0x%lx\n", 336 devpath, vp, vp->v_rdev)); 337 338 return (vp); 339 } 340 dprint(0, ("solookup(%d,%d,%d) vp %p devpath %s\n", 341 domain, type, protocol, sp->sp_vnode, sp->sp_devpath)); 342 343 vp = sp->sp_vnode; 344 VN_HOLD(vp); 345 rw_exit(&splist_lock); 346 return (vp); 347 } 348 349 /* 350 * Return a socket vnode. 351 * 352 * Assumes that the caller is "passing" an VN_HOLD for accessvp i.e. 353 * when the socket is freed a VN_RELE will take place. 354 * 355 * Note that sockets assume that the driver will clone (either itself 356 * or by using the clone driver) i.e. a socket() call will always 357 * result in a new vnode being created. 358 */ 359 struct vnode * 360 makesockvp(struct vnode *accessvp, int domain, int type, int protocol) 361 { 362 kmem_cache_t *cp; 363 struct sonode *so; 364 struct vnode *vp; 365 time_t now; 366 dev_t dev; 367 368 cp = (domain == AF_UNIX) ? socktpi_unix_cache : socktpi_cache; 369 so = kmem_cache_alloc(cp, KM_SLEEP); 370 so->so_cache = cp; 371 so->so_obj = so; 372 vp = SOTOV(so); 373 now = gethrestime_sec(); 374 375 so->so_flag = 0; 376 ASSERT(so->so_accessvp == NULL); 377 so->so_accessvp = accessvp; 378 dev = accessvp->v_rdev; 379 380 /* 381 * Record in so_flag that it is a clone. 382 */ 383 if (getmajor(dev) == clone_major) { 384 so->so_flag |= SOCLONE; 385 } 386 so->so_dev = dev; 387 388 so->so_state = 0; 389 so->so_mode = 0; 390 391 so->so_fsid = sockdev; 392 so->so_atime = now; 393 so->so_mtime = now; 394 so->so_ctime = now; /* Never modified */ 395 so->so_count = 0; 396 397 so->so_family = (short)domain; 398 so->so_type = (short)type; 399 so->so_protocol = (short)protocol; 400 so->so_pushcnt = 0; 401 402 so->so_options = 0; 403 so->so_linger.l_onoff = 0; 404 so->so_linger.l_linger = 0; 405 so->so_sndbuf = 0; 406 so->so_rcvbuf = 0; 407 so->so_sndlowat = 0; 408 so->so_rcvlowat = 0; 409 #ifdef notyet 410 so->so_sndtimeo = 0; 411 so->so_rcvtimeo = 0; 412 #endif /* notyet */ 413 so->so_error = 0; 414 so->so_delayed_error = 0; 415 416 ASSERT(so->so_oobmsg == NULL); 417 so->so_oobcnt = 0; 418 so->so_oobsigcnt = 0; 419 so->so_pgrp = 0; 420 so->so_provinfo = NULL; 421 422 ASSERT(so->so_laddr_sa == NULL && so->so_faddr_sa == NULL); 423 so->so_laddr_len = so->so_faddr_len = 0; 424 so->so_laddr_maxlen = so->so_faddr_maxlen = 0; 425 so->so_eaddr_mp = NULL; 426 so->so_priv = NULL; 427 428 so->so_peercred = NULL; 429 430 ASSERT(so->so_ack_mp == NULL); 431 ASSERT(so->so_conn_ind_head == NULL); 432 ASSERT(so->so_conn_ind_tail == NULL); 433 ASSERT(so->so_ux_bound_vp == NULL); 434 ASSERT(so->so_unbind_mp == NULL); 435 436 vn_reinit(vp); 437 vp->v_vfsp = rootvfs; 438 vp->v_type = VSOCK; 439 vp->v_rdev = so->so_dev; 440 vn_exists(vp); 441 442 return (vp); 443 } 444 445 void 446 sockfree(struct sonode *so) 447 { 448 mblk_t *mp; 449 vnode_t *vp; 450 451 ASSERT(so->so_count == 0); 452 ASSERT(so->so_accessvp); 453 ASSERT(so->so_discon_ind_mp == NULL); 454 455 vp = so->so_accessvp; 456 VN_RELE(vp); 457 458 /* 459 * Protect so->so_[lf]addr_sa so that sockfs_snapshot() can safely 460 * indirect them. It also uses so_accessvp as a validity test. 461 */ 462 mutex_enter(&so->so_lock); 463 464 so->so_accessvp = NULL; 465 466 if (so->so_laddr_sa) { 467 ASSERT((caddr_t)so->so_faddr_sa == 468 (caddr_t)so->so_laddr_sa + so->so_laddr_maxlen); 469 ASSERT(so->so_faddr_maxlen == so->so_laddr_maxlen); 470 so->so_state &= ~(SS_LADDR_VALID | SS_FADDR_VALID); 471 kmem_free(so->so_laddr_sa, so->so_laddr_maxlen * 2); 472 so->so_laddr_sa = NULL; 473 so->so_laddr_len = so->so_laddr_maxlen = 0; 474 so->so_faddr_sa = NULL; 475 so->so_faddr_len = so->so_faddr_maxlen = 0; 476 } 477 478 mutex_exit(&so->so_lock); 479 480 if ((mp = so->so_eaddr_mp) != NULL) { 481 freemsg(mp); 482 so->so_eaddr_mp = NULL; 483 so->so_delayed_error = 0; 484 } 485 if ((mp = so->so_ack_mp) != NULL) { 486 freemsg(mp); 487 so->so_ack_mp = NULL; 488 } 489 if ((mp = so->so_conn_ind_head) != NULL) { 490 mblk_t *mp1; 491 492 while (mp) { 493 mp1 = mp->b_next; 494 mp->b_next = NULL; 495 freemsg(mp); 496 mp = mp1; 497 } 498 so->so_conn_ind_head = so->so_conn_ind_tail = NULL; 499 so->so_state &= ~SS_HASCONNIND; 500 } 501 #ifdef DEBUG 502 mutex_enter(&so->so_lock); 503 ASSERT(so_verify_oobstate(so)); 504 mutex_exit(&so->so_lock); 505 #endif /* DEBUG */ 506 if ((mp = so->so_oobmsg) != NULL) { 507 freemsg(mp); 508 so->so_oobmsg = NULL; 509 so->so_state &= ~(SS_OOBPEND|SS_HAVEOOBDATA|SS_HADOOBDATA); 510 } 511 512 if ((mp = so->so_nl7c_rcv_mp) != NULL) { 513 so->so_nl7c_rcv_mp = NULL; 514 freemsg(mp); 515 } 516 so->so_nl7c_rcv_rval = 0; 517 if (so->so_nl7c_uri != NULL) { 518 nl7c_urifree(so); 519 } 520 so->so_nl7c_flags = 0; 521 522 ASSERT(so->so_ux_bound_vp == NULL); 523 if ((mp = so->so_unbind_mp) != NULL) { 524 freemsg(mp); 525 so->so_unbind_mp = NULL; 526 } 527 vn_invalid(SOTOV(so)); 528 529 if (so->so_peercred != NULL) 530 crfree(so->so_peercred); 531 532 kmem_cache_free(so->so_cache, so->so_obj); 533 } 534 535 /* 536 * Update the accessed, updated, or changed times in an sonode 537 * with the current time. 538 * 539 * Note that both SunOS 4.X and 4.4BSD sockets do not present reasonable 540 * attributes in a fstat call. (They return the current time and 0 for 541 * all timestamps, respectively.) We maintain the current timestamps 542 * here primarily so that should sockmod be popped the resulting 543 * file descriptor will behave like a stream w.r.t. the timestamps. 544 */ 545 void 546 so_update_attrs(struct sonode *so, int flag) 547 { 548 time_t now = gethrestime_sec(); 549 550 mutex_enter(&so->so_lock); 551 so->so_flag |= flag; 552 if (flag & SOACC) 553 so->so_atime = now; 554 if (flag & SOMOD) 555 so->so_mtime = now; 556 mutex_exit(&so->so_lock); 557 } 558 559 /*ARGSUSED*/ 560 static int 561 socktpi_constructor(void *buf, void *cdrarg, int kmflags) 562 { 563 struct sonode *so = buf; 564 struct vnode *vp; 565 566 so->so_nl7c_flags = 0; 567 so->so_nl7c_uri = NULL; 568 so->so_nl7c_rcv_mp = NULL; 569 570 so->so_oobmsg = NULL; 571 so->so_ack_mp = NULL; 572 so->so_conn_ind_head = NULL; 573 so->so_conn_ind_tail = NULL; 574 so->so_discon_ind_mp = NULL; 575 so->so_ux_bound_vp = NULL; 576 so->so_unbind_mp = NULL; 577 so->so_accessvp = NULL; 578 so->so_laddr_sa = NULL; 579 so->so_faddr_sa = NULL; 580 so->so_ops = &sotpi_sonodeops; 581 582 vp = vn_alloc(KM_SLEEP); 583 so->so_vnode = vp; 584 585 vn_setops(vp, socktpi_vnodeops); 586 vp->v_data = (caddr_t)so; 587 588 mutex_init(&so->so_lock, NULL, MUTEX_DEFAULT, NULL); 589 mutex_init(&so->so_plumb_lock, NULL, MUTEX_DEFAULT, NULL); 590 cv_init(&so->so_state_cv, NULL, CV_DEFAULT, NULL); 591 cv_init(&so->so_ack_cv, NULL, CV_DEFAULT, NULL); 592 cv_init(&so->so_connind_cv, NULL, CV_DEFAULT, NULL); 593 cv_init(&so->so_want_cv, NULL, CV_DEFAULT, NULL); 594 595 return (0); 596 } 597 598 /*ARGSUSED1*/ 599 static void 600 socktpi_destructor(void *buf, void *cdrarg) 601 { 602 struct sonode *so = buf; 603 struct vnode *vp = SOTOV(so); 604 605 ASSERT(so->so_nl7c_flags == 0); 606 ASSERT(so->so_nl7c_uri == NULL); 607 ASSERT(so->so_nl7c_rcv_mp == NULL); 608 609 ASSERT(so->so_oobmsg == NULL); 610 ASSERT(so->so_ack_mp == NULL); 611 ASSERT(so->so_conn_ind_head == NULL); 612 ASSERT(so->so_conn_ind_tail == NULL); 613 ASSERT(so->so_discon_ind_mp == NULL); 614 ASSERT(so->so_ux_bound_vp == NULL); 615 ASSERT(so->so_unbind_mp == NULL); 616 ASSERT(so->so_ops == &sotpi_sonodeops); 617 618 ASSERT(vn_matchops(vp, socktpi_vnodeops)); 619 ASSERT(vp->v_data == (caddr_t)so); 620 621 vn_free(vp); 622 623 mutex_destroy(&so->so_lock); 624 mutex_destroy(&so->so_plumb_lock); 625 cv_destroy(&so->so_state_cv); 626 cv_destroy(&so->so_ack_cv); 627 cv_destroy(&so->so_connind_cv); 628 cv_destroy(&so->so_want_cv); 629 } 630 631 static int 632 socktpi_unix_constructor(void *buf, void *cdrarg, int kmflags) 633 { 634 int retval; 635 636 if ((retval = socktpi_constructor(buf, cdrarg, kmflags)) == 0) { 637 struct sonode *so = (struct sonode *)buf; 638 639 mutex_enter(&socklist.sl_lock); 640 641 so->so_next = socklist.sl_list; 642 so->so_prev = NULL; 643 if (so->so_next != NULL) 644 so->so_next->so_prev = so; 645 socklist.sl_list = so; 646 647 mutex_exit(&socklist.sl_lock); 648 649 } 650 return (retval); 651 } 652 653 static void 654 socktpi_unix_destructor(void *buf, void *cdrarg) 655 { 656 struct sonode *so = (struct sonode *)buf; 657 658 mutex_enter(&socklist.sl_lock); 659 660 if (so->so_next != NULL) 661 so->so_next->so_prev = so->so_prev; 662 if (so->so_prev != NULL) 663 so->so_prev->so_next = so->so_next; 664 else 665 socklist.sl_list = so->so_next; 666 667 mutex_exit(&socklist.sl_lock); 668 669 socktpi_destructor(buf, cdrarg); 670 } 671 672 /* 673 * Init function called when sockfs is loaded. 674 */ 675 int 676 sockinit(int fstype, char *name) 677 { 678 static const fs_operation_def_t sock_vfsops_template[] = { 679 NULL, NULL 680 }; 681 int error; 682 major_t dev; 683 char *err_str; 684 685 error = vfs_setfsops(fstype, sock_vfsops_template, NULL); 686 if (error != 0) { 687 cmn_err(CE_WARN, "sockinit: bad vfs ops template"); 688 return (error); 689 } 690 691 error = vn_make_ops(name, socktpi_vnodeops_template, &socktpi_vnodeops); 692 if (error != 0) { 693 err_str = "sockinit: bad sock vnode ops template"; 694 /* vn_make_ops() does not reset socktpi_vnodeops on failure. */ 695 socktpi_vnodeops = NULL; 696 goto failure; 697 } 698 699 error = vn_make_ops("nca", socknca_vnodeops_template, 700 &socknca_vnodeops); 701 if (error != 0) { 702 err_str = "sockinit: bad nca vnode ops template"; 703 socknca_vnodeops = NULL; 704 goto failure; 705 } 706 707 error = sosctp_init(); 708 if (error != 0) { 709 err_str = NULL; 710 goto failure; 711 } 712 713 /* 714 * Create sonode caches. We create a special one for AF_UNIX so 715 * that we can track them for netstat(1m). 716 */ 717 socktpi_cache = kmem_cache_create("socktpi_cache", 718 sizeof (struct sonode), 0, socktpi_constructor, 719 socktpi_destructor, NULL, NULL, NULL, 0); 720 721 socktpi_unix_cache = kmem_cache_create("socktpi_unix_cache", 722 sizeof (struct sonode), 0, socktpi_unix_constructor, 723 socktpi_unix_destructor, NULL, NULL, NULL, 0); 724 725 /* 726 * Build initial list mapping socket parameters to vnode. 727 */ 728 rw_init(&splist_lock, NULL, RW_DEFAULT, NULL); 729 730 /* 731 * If sockets are needed before init runs /sbin/soconfig 732 * it is possible to preload the sockparams list here using 733 * calls like: 734 * sockconfig(1,2,3, "/dev/tcp", 0); 735 */ 736 737 /* 738 * Create a unique dev_t for use in so_fsid. 739 */ 740 741 if ((dev = getudev()) == (major_t)-1) 742 dev = 0; 743 sockdev = makedevice(dev, 0); 744 745 mutex_init(&socklist.sl_lock, NULL, MUTEX_DEFAULT, NULL); 746 sonca_init(); 747 sendfile_init(); 748 nl7c_init(); 749 750 return (0); 751 752 failure: 753 (void) vfs_freevfsops_by_type(fstype); 754 if (socktpi_vnodeops != NULL) 755 vn_freevnodeops(socktpi_vnodeops); 756 if (socknca_vnodeops != NULL) 757 vn_freevnodeops(socknca_vnodeops); 758 if (err_str != NULL) 759 cmn_err(CE_WARN, err_str); 760 return (error); 761 } 762 763 /* 764 * Caller must hold the mutex. Used to set SOLOCKED. 765 */ 766 void 767 so_lock_single(struct sonode *so) 768 { 769 ASSERT(MUTEX_HELD(&so->so_lock)); 770 771 while (so->so_flag & (SOLOCKED | SOASYNC_UNBIND)) { 772 so->so_flag |= SOWANT; 773 cv_wait_stop(&so->so_want_cv, &so->so_lock, 774 SO_LOCK_WAKEUP_TIME); 775 } 776 so->so_flag |= SOLOCKED; 777 } 778 779 /* 780 * Caller must hold the mutex and pass in SOLOCKED or SOASYNC_UNBIND. 781 * Used to clear SOLOCKED or SOASYNC_UNBIND. 782 */ 783 void 784 so_unlock_single(struct sonode *so, int flag) 785 { 786 ASSERT(MUTEX_HELD(&so->so_lock)); 787 ASSERT(flag & (SOLOCKED|SOASYNC_UNBIND)); 788 ASSERT((flag & ~(SOLOCKED|SOASYNC_UNBIND)) == 0); 789 ASSERT(so->so_flag & flag); 790 791 /* 792 * Process the T_DISCON_IND on so_discon_ind_mp. 793 * 794 * Call to so_drain_discon_ind will result in so_lock 795 * being dropped and re-acquired later. 796 */ 797 if (so->so_discon_ind_mp != NULL) 798 so_drain_discon_ind(so); 799 800 if (so->so_flag & SOWANT) 801 cv_broadcast(&so->so_want_cv); 802 so->so_flag &= ~(SOWANT|flag); 803 } 804 805 /* 806 * Caller must hold the mutex. Used to set SOREADLOCKED. 807 * If the caller wants nonblocking behavior it should set fmode. 808 */ 809 int 810 so_lock_read(struct sonode *so, int fmode) 811 { 812 ASSERT(MUTEX_HELD(&so->so_lock)); 813 814 while (so->so_flag & SOREADLOCKED) { 815 if (fmode & (FNDELAY|FNONBLOCK)) 816 return (EWOULDBLOCK); 817 so->so_flag |= SOWANT; 818 cv_wait_stop(&so->so_want_cv, &so->so_lock, 819 SO_LOCK_WAKEUP_TIME); 820 } 821 so->so_flag |= SOREADLOCKED; 822 return (0); 823 } 824 825 /* 826 * Like so_lock_read above but allows signals. 827 */ 828 int 829 so_lock_read_intr(struct sonode *so, int fmode) 830 { 831 ASSERT(MUTEX_HELD(&so->so_lock)); 832 833 while (so->so_flag & SOREADLOCKED) { 834 if (fmode & (FNDELAY|FNONBLOCK)) 835 return (EWOULDBLOCK); 836 so->so_flag |= SOWANT; 837 if (!cv_wait_sig(&so->so_want_cv, &so->so_lock)) 838 return (EINTR); 839 } 840 so->so_flag |= SOREADLOCKED; 841 return (0); 842 } 843 844 /* 845 * Caller must hold the mutex. Used to clear SOREADLOCKED, 846 * set in so_lock_read() or so_lock_read_intr(). 847 */ 848 void 849 so_unlock_read(struct sonode *so) 850 { 851 ASSERT(MUTEX_HELD(&so->so_lock)); 852 ASSERT(so->so_flag & SOREADLOCKED); 853 854 if (so->so_flag & SOWANT) 855 cv_broadcast(&so->so_want_cv); 856 so->so_flag &= ~(SOWANT|SOREADLOCKED); 857 } 858 859 /* 860 * Verify that the specified offset falls within the mblk and 861 * that the resulting pointer is aligned. 862 * Returns NULL if not. 863 */ 864 void * 865 sogetoff(mblk_t *mp, t_uscalar_t offset, 866 t_uscalar_t length, uint_t align_size) 867 { 868 uintptr_t ptr1, ptr2; 869 870 ASSERT(mp && mp->b_wptr >= mp->b_rptr); 871 ptr1 = (uintptr_t)mp->b_rptr + offset; 872 ptr2 = (uintptr_t)ptr1 + length; 873 if (ptr1 < (uintptr_t)mp->b_rptr || ptr2 > (uintptr_t)mp->b_wptr) { 874 eprintline(0); 875 return (NULL); 876 } 877 if ((ptr1 & (align_size - 1)) != 0) { 878 eprintline(0); 879 return (NULL); 880 } 881 return ((void *)ptr1); 882 } 883 884 /* 885 * Return the AF_UNIX underlying filesystem vnode matching a given name. 886 * Makes sure the sending and the destination sonodes are compatible. 887 * The vnode is returned held. 888 * 889 * The underlying filesystem VSOCK vnode has a v_stream pointer that 890 * references the actual stream head (hence indirectly the actual sonode). 891 */ 892 static int 893 so_ux_lookup(struct sonode *so, struct sockaddr_un *soun, int checkaccess, 894 vnode_t **vpp) 895 { 896 vnode_t *vp; /* Underlying filesystem vnode */ 897 vnode_t *svp; /* sockfs vnode */ 898 struct sonode *so2; 899 int error; 900 901 dprintso(so, 1, ("so_ux_lookup(%p) name <%s>\n", 902 so, soun->sun_path)); 903 904 error = lookupname(soun->sun_path, UIO_SYSSPACE, FOLLOW, NULLVPP, &vp); 905 if (error) { 906 eprintsoline(so, error); 907 return (error); 908 } 909 if (vp->v_type != VSOCK) { 910 error = ENOTSOCK; 911 eprintsoline(so, error); 912 goto done2; 913 } 914 915 if (checkaccess) { 916 /* 917 * Check that we have permissions to access the destination 918 * vnode. This check is not done in BSD but it is required 919 * by X/Open. 920 */ 921 if (error = VOP_ACCESS(vp, VREAD|VWRITE, 0, CRED())) { 922 eprintsoline(so, error); 923 goto done2; 924 } 925 } 926 927 /* 928 * Check if the remote socket has been closed. 929 * 930 * Synchronize with vn_rele_stream by holding v_lock while traversing 931 * v_stream->sd_vnode. 932 */ 933 mutex_enter(&vp->v_lock); 934 if (vp->v_stream == NULL) { 935 mutex_exit(&vp->v_lock); 936 if (so->so_type == SOCK_DGRAM) 937 error = EDESTADDRREQ; 938 else 939 error = ECONNREFUSED; 940 941 eprintsoline(so, error); 942 goto done2; 943 } 944 ASSERT(vp->v_stream->sd_vnode); 945 svp = vp->v_stream->sd_vnode; 946 /* 947 * holding v_lock on underlying filesystem vnode and acquiring 948 * it on sockfs vnode. Assumes that no code ever attempts to 949 * acquire these locks in the reverse order. 950 */ 951 VN_HOLD(svp); 952 mutex_exit(&vp->v_lock); 953 954 if (svp->v_type != VSOCK) { 955 error = ENOTSOCK; 956 eprintsoline(so, error); 957 goto done; 958 } 959 960 so2 = VTOSO(svp); 961 962 if (so->so_type != so2->so_type) { 963 error = EPROTOTYPE; 964 eprintsoline(so, error); 965 goto done; 966 } 967 968 VN_RELE(svp); 969 *vpp = vp; 970 return (0); 971 972 done: 973 VN_RELE(svp); 974 done2: 975 VN_RELE(vp); 976 return (error); 977 } 978 979 /* 980 * Verify peer address for connect and sendto/sendmsg. 981 * Since sendto/sendmsg would not get synchronous errors from the transport 982 * provider we have to do these ugly checks in the socket layer to 983 * preserve compatibility with SunOS 4.X. 984 */ 985 int 986 so_addr_verify(struct sonode *so, const struct sockaddr *name, 987 socklen_t namelen) 988 { 989 int family; 990 991 dprintso(so, 1, ("so_addr_verify(%p, %p, %d)\n", so, name, namelen)); 992 993 ASSERT(name != NULL); 994 995 family = so->so_family; 996 switch (family) { 997 case AF_INET: 998 if (name->sa_family != family) { 999 eprintsoline(so, EAFNOSUPPORT); 1000 return (EAFNOSUPPORT); 1001 } 1002 if (namelen != (socklen_t)sizeof (struct sockaddr_in)) { 1003 eprintsoline(so, EINVAL); 1004 return (EINVAL); 1005 } 1006 break; 1007 case AF_INET6: { 1008 #ifdef DEBUG 1009 struct sockaddr_in6 *sin6; 1010 #endif /* DEBUG */ 1011 1012 if (name->sa_family != family) { 1013 eprintsoline(so, EAFNOSUPPORT); 1014 return (EAFNOSUPPORT); 1015 } 1016 if (namelen != (socklen_t)sizeof (struct sockaddr_in6)) { 1017 eprintsoline(so, EINVAL); 1018 return (EINVAL); 1019 } 1020 #ifdef DEBUG 1021 /* Verify that apps don't forget to clear sin6_scope_id etc */ 1022 sin6 = (struct sockaddr_in6 *)name; 1023 if (sin6->sin6_scope_id != 0 && 1024 !IN6_IS_ADDR_LINKSCOPE(&sin6->sin6_addr)) { 1025 cmn_err(CE_WARN, 1026 "connect/send* with uninitialized sin6_scope_id " 1027 "(%d) on socket. Pid = %d\n", 1028 (int)sin6->sin6_scope_id, (int)curproc->p_pid); 1029 } 1030 #endif /* DEBUG */ 1031 break; 1032 } 1033 case AF_UNIX: 1034 if (so->so_state & SS_FADDR_NOXLATE) { 1035 return (0); 1036 } 1037 if (namelen < (socklen_t)sizeof (short)) { 1038 eprintsoline(so, ENOENT); 1039 return (ENOENT); 1040 } 1041 if (name->sa_family != family) { 1042 eprintsoline(so, EAFNOSUPPORT); 1043 return (EAFNOSUPPORT); 1044 } 1045 /* MAXPATHLEN + soun_family + nul termination */ 1046 if (namelen > (socklen_t)(MAXPATHLEN + sizeof (short) + 1)) { 1047 eprintsoline(so, ENAMETOOLONG); 1048 return (ENAMETOOLONG); 1049 } 1050 1051 break; 1052 1053 default: 1054 /* 1055 * Default is don't do any length or sa_family check 1056 * to allow non-sockaddr style addresses. 1057 */ 1058 break; 1059 } 1060 1061 return (0); 1062 } 1063 1064 1065 /* 1066 * Translate an AF_UNIX sockaddr_un to the transport internal name. 1067 * Assumes caller has called so_addr_verify first. 1068 */ 1069 /*ARGSUSED*/ 1070 int 1071 so_ux_addr_xlate(struct sonode *so, struct sockaddr *name, 1072 socklen_t namelen, int checkaccess, 1073 void **addrp, socklen_t *addrlenp) 1074 { 1075 int error; 1076 struct sockaddr_un *soun; 1077 vnode_t *vp; 1078 void *addr; 1079 socklen_t addrlen; 1080 1081 dprintso(so, 1, ("so_ux_addr_xlate(%p, %p, %d, %d)\n", 1082 so, name, namelen, checkaccess)); 1083 1084 ASSERT(name != NULL); 1085 ASSERT(so->so_family == AF_UNIX); 1086 ASSERT(!(so->so_state & SS_FADDR_NOXLATE)); 1087 ASSERT(namelen >= (socklen_t)sizeof (short)); 1088 ASSERT(name->sa_family == AF_UNIX); 1089 soun = (struct sockaddr_un *)name; 1090 /* 1091 * Lookup vnode for the specified path name and verify that 1092 * it is a socket. 1093 */ 1094 error = so_ux_lookup(so, soun, checkaccess, &vp); 1095 if (error) { 1096 eprintsoline(so, error); 1097 return (error); 1098 } 1099 /* 1100 * Use the address of the peer vnode as the address to send 1101 * to. We release the peer vnode here. In case it has been 1102 * closed by the time the T_CONN_REQ or T_UNIDATA_REQ reaches the 1103 * transport the message will get an error or be dropped. 1104 */ 1105 so->so_ux_faddr.soua_vp = vp; 1106 so->so_ux_faddr.soua_magic = SOU_MAGIC_EXPLICIT; 1107 addr = &so->so_ux_faddr; 1108 addrlen = (socklen_t)sizeof (so->so_ux_faddr); 1109 dprintso(so, 1, ("ux_xlate UNIX: addrlen %d, vp %p\n", 1110 addrlen, vp)); 1111 VN_RELE(vp); 1112 *addrp = addr; 1113 *addrlenp = (socklen_t)addrlen; 1114 return (0); 1115 } 1116 1117 /* 1118 * Esballoc free function for messages that contain SO_FILEP option. 1119 * Decrement the reference count on the file pointers using closef. 1120 */ 1121 void 1122 fdbuf_free(struct fdbuf *fdbuf) 1123 { 1124 int i; 1125 struct file *fp; 1126 1127 dprint(1, ("fdbuf_free: %d fds\n", fdbuf->fd_numfd)); 1128 for (i = 0; i < fdbuf->fd_numfd; i++) { 1129 /* 1130 * We need pointer size alignment for fd_fds. On a LP64 1131 * kernel, the required alignment is 8 bytes while 1132 * the option headers and values are only 4 bytes 1133 * aligned. So its safer to do a bcopy compared to 1134 * assigning fdbuf->fd_fds[i] to fp. 1135 */ 1136 bcopy((char *)&fdbuf->fd_fds[i], (char *)&fp, sizeof (fp)); 1137 dprint(1, ("fdbuf_free: [%d] = %p\n", i, fp)); 1138 (void) closef(fp); 1139 } 1140 if (fdbuf->fd_ebuf != NULL) 1141 kmem_free(fdbuf->fd_ebuf, fdbuf->fd_ebuflen); 1142 kmem_free(fdbuf, fdbuf->fd_size); 1143 } 1144 1145 /* 1146 * Allocate an esballoc'ed message for use for AF_UNIX file descriptor 1147 * passing. Sleep waiting for memory unless catching a signal in strwaitbuf. 1148 */ 1149 mblk_t * 1150 fdbuf_allocmsg(int size, struct fdbuf *fdbuf) 1151 { 1152 void *buf; 1153 mblk_t *mp; 1154 1155 dprint(1, ("fdbuf_allocmsg: size %d, %d fds\n", size, fdbuf->fd_numfd)); 1156 buf = kmem_alloc(size, KM_SLEEP); 1157 fdbuf->fd_ebuf = (caddr_t)buf; 1158 fdbuf->fd_ebuflen = size; 1159 fdbuf->fd_frtn.free_func = fdbuf_free; 1160 fdbuf->fd_frtn.free_arg = (caddr_t)fdbuf; 1161 1162 while ((mp = esballoc((unsigned char *)buf, size, BPRI_MED, 1163 &fdbuf->fd_frtn)) == NULL) { 1164 if (strwaitbuf(sizeof (mblk_t), BPRI_MED) != 0) { 1165 /* 1166 * Got EINTR - pass out NULL. Caller will 1167 * return something like ENOBUFS. 1168 * XXX could use an esballoc_wait() type function. 1169 */ 1170 eprintline(ENOBUFS); 1171 return (NULL); 1172 } 1173 } 1174 if (mp == NULL) 1175 return (NULL); 1176 mp->b_datap->db_type = M_PROTO; 1177 return (mp); 1178 } 1179 1180 /* 1181 * Extract file descriptors from a fdbuf. 1182 * Return list in rights/rightslen. 1183 */ 1184 /*ARGSUSED*/ 1185 static int 1186 fdbuf_extract(struct fdbuf *fdbuf, void *rights, int rightslen) 1187 { 1188 int i, fd; 1189 int *rp; 1190 struct file *fp; 1191 int numfd; 1192 1193 dprint(1, ("fdbuf_extract: %d fds, len %d\n", 1194 fdbuf->fd_numfd, rightslen)); 1195 1196 numfd = fdbuf->fd_numfd; 1197 ASSERT(rightslen == numfd * (int)sizeof (int)); 1198 1199 /* 1200 * Allocate a file descriptor and increment the f_count. 1201 * The latter is needed since we always call fdbuf_free 1202 * which performs a closef. 1203 */ 1204 rp = (int *)rights; 1205 for (i = 0; i < numfd; i++) { 1206 if ((fd = ufalloc(0)) == -1) 1207 goto cleanup; 1208 /* 1209 * We need pointer size alignment for fd_fds. On a LP64 1210 * kernel, the required alignment is 8 bytes while 1211 * the option headers and values are only 4 bytes 1212 * aligned. So its safer to do a bcopy compared to 1213 * assigning fdbuf->fd_fds[i] to fp. 1214 */ 1215 bcopy((char *)&fdbuf->fd_fds[i], (char *)&fp, sizeof (fp)); 1216 mutex_enter(&fp->f_tlock); 1217 fp->f_count++; 1218 mutex_exit(&fp->f_tlock); 1219 setf(fd, fp); 1220 *rp++ = fd; 1221 #ifdef C2_AUDIT 1222 if (audit_active) 1223 audit_fdrecv(fd, fp); 1224 #endif 1225 dprint(1, ("fdbuf_extract: [%d] = %d, %p refcnt %d\n", 1226 i, fd, fp, fp->f_count)); 1227 } 1228 return (0); 1229 1230 cleanup: 1231 /* 1232 * Undo whatever partial work the loop above has done. 1233 */ 1234 { 1235 int j; 1236 1237 rp = (int *)rights; 1238 for (j = 0; j < i; j++) { 1239 dprint(0, 1240 ("fdbuf_extract: cleanup[%d] = %d\n", j, *rp)); 1241 (void) closeandsetf(*rp++, NULL); 1242 } 1243 } 1244 1245 return (EMFILE); 1246 } 1247 1248 /* 1249 * Insert file descriptors into an fdbuf. 1250 * Returns a kmem_alloc'ed fdbuf. The fdbuf should be freed 1251 * by calling fdbuf_free(). 1252 */ 1253 int 1254 fdbuf_create(void *rights, int rightslen, struct fdbuf **fdbufp) 1255 { 1256 int numfd, i; 1257 int *fds; 1258 struct file *fp; 1259 struct fdbuf *fdbuf; 1260 int fdbufsize; 1261 1262 dprint(1, ("fdbuf_create: len %d\n", rightslen)); 1263 1264 numfd = rightslen / (int)sizeof (int); 1265 1266 fdbufsize = (int)FDBUF_HDRSIZE + (numfd * (int)sizeof (struct file *)); 1267 fdbuf = kmem_alloc(fdbufsize, KM_SLEEP); 1268 fdbuf->fd_size = fdbufsize; 1269 fdbuf->fd_numfd = 0; 1270 fdbuf->fd_ebuf = NULL; 1271 fdbuf->fd_ebuflen = 0; 1272 fds = (int *)rights; 1273 for (i = 0; i < numfd; i++) { 1274 if ((fp = getf(fds[i])) == NULL) { 1275 fdbuf_free(fdbuf); 1276 return (EBADF); 1277 } 1278 dprint(1, ("fdbuf_create: [%d] = %d, %p refcnt %d\n", 1279 i, fds[i], fp, fp->f_count)); 1280 mutex_enter(&fp->f_tlock); 1281 fp->f_count++; 1282 mutex_exit(&fp->f_tlock); 1283 /* 1284 * The maximum alignment for fdbuf (or any option header 1285 * and its value) it 4 bytes. On a LP64 kernel, the alignment 1286 * is not sufficient for pointers (fd_fds in this case). Since 1287 * we just did a kmem_alloc (we get a double word alignment), 1288 * we don't need to do anything on the send side (we loose 1289 * the double word alignment because fdbuf goes after an 1290 * option header (eg T_unitdata_req) which is only 4 byte 1291 * aligned). We take care of this when we extract the file 1292 * descriptor in fdbuf_extract or fdbuf_free. 1293 */ 1294 fdbuf->fd_fds[i] = fp; 1295 fdbuf->fd_numfd++; 1296 releasef(fds[i]); 1297 #ifdef C2_AUDIT 1298 if (audit_active) 1299 audit_fdsend(fds[i], fp, 0); 1300 #endif 1301 } 1302 *fdbufp = fdbuf; 1303 return (0); 1304 } 1305 1306 static int 1307 fdbuf_optlen(int rightslen) 1308 { 1309 int numfd; 1310 1311 numfd = rightslen / (int)sizeof (int); 1312 1313 return ((int)FDBUF_HDRSIZE + (numfd * (int)sizeof (struct file *))); 1314 } 1315 1316 static t_uscalar_t 1317 fdbuf_cmsglen(int fdbuflen) 1318 { 1319 return (t_uscalar_t)((fdbuflen - FDBUF_HDRSIZE) / 1320 (int)sizeof (struct file *) * (int)sizeof (int)); 1321 } 1322 1323 1324 /* 1325 * Return non-zero if the mblk and fdbuf are consistent. 1326 */ 1327 static int 1328 fdbuf_verify(mblk_t *mp, struct fdbuf *fdbuf, int fdbuflen) 1329 { 1330 if (fdbuflen >= FDBUF_HDRSIZE && 1331 fdbuflen == fdbuf->fd_size) { 1332 frtn_t *frp = mp->b_datap->db_frtnp; 1333 /* 1334 * Check that the SO_FILEP portion of the 1335 * message has not been modified by 1336 * the loopback transport. The sending sockfs generates 1337 * a message that is esballoc'ed with the free function 1338 * being fdbuf_free() and where free_arg contains the 1339 * identical information as the SO_FILEP content. 1340 * 1341 * If any of these constraints are not satisfied we 1342 * silently ignore the option. 1343 */ 1344 ASSERT(mp); 1345 if (frp != NULL && 1346 frp->free_func == fdbuf_free && 1347 frp->free_arg != NULL && 1348 bcmp(frp->free_arg, fdbuf, fdbuflen) == 0) { 1349 dprint(1, ("fdbuf_verify: fdbuf %p len %d\n", 1350 fdbuf, fdbuflen)); 1351 return (1); 1352 } else { 1353 cmn_err(CE_WARN, 1354 "sockfs: mismatched fdbuf content (%p)", 1355 (void *)mp); 1356 return (0); 1357 } 1358 } else { 1359 cmn_err(CE_WARN, 1360 "sockfs: mismatched fdbuf len %d, %d\n", 1361 fdbuflen, fdbuf->fd_size); 1362 return (0); 1363 } 1364 } 1365 1366 /* 1367 * When the file descriptors returned by sorecvmsg can not be passed 1368 * to the application this routine will cleanup the references on 1369 * the files. Start at startoff bytes into the buffer. 1370 */ 1371 static void 1372 close_fds(void *fdbuf, int fdbuflen, int startoff) 1373 { 1374 int *fds = (int *)fdbuf; 1375 int numfd = fdbuflen / (int)sizeof (int); 1376 int i; 1377 1378 dprint(1, ("close_fds(%p, %d, %d)\n", fdbuf, fdbuflen, startoff)); 1379 1380 for (i = 0; i < numfd; i++) { 1381 if (startoff < 0) 1382 startoff = 0; 1383 if (startoff < (int)sizeof (int)) { 1384 /* 1385 * This file descriptor is partially or fully after 1386 * the offset 1387 */ 1388 dprint(0, 1389 ("close_fds: cleanup[%d] = %d\n", i, fds[i])); 1390 (void) closeandsetf(fds[i], NULL); 1391 } 1392 startoff -= (int)sizeof (int); 1393 } 1394 } 1395 1396 /* 1397 * Close all file descriptors contained in the control part starting at 1398 * the startoffset. 1399 */ 1400 void 1401 so_closefds(void *control, t_uscalar_t controllen, int oldflg, 1402 int startoff) 1403 { 1404 struct cmsghdr *cmsg; 1405 1406 if (control == NULL) 1407 return; 1408 1409 if (oldflg) { 1410 close_fds(control, controllen, startoff); 1411 return; 1412 } 1413 /* Scan control part for file descriptors. */ 1414 for (cmsg = (struct cmsghdr *)control; 1415 CMSG_VALID(cmsg, control, (uintptr_t)control + controllen); 1416 cmsg = CMSG_NEXT(cmsg)) { 1417 if (cmsg->cmsg_level == SOL_SOCKET && 1418 cmsg->cmsg_type == SCM_RIGHTS) { 1419 close_fds(CMSG_CONTENT(cmsg), 1420 (int)CMSG_CONTENTLEN(cmsg), 1421 startoff - (int)sizeof (struct cmsghdr)); 1422 } 1423 startoff -= cmsg->cmsg_len; 1424 } 1425 } 1426 1427 /* 1428 * Returns a pointer/length for the file descriptors contained 1429 * in the control buffer. Returns with *fdlenp == -1 if there are no 1430 * file descriptor options present. This is different than there being 1431 * a zero-length file descriptor option. 1432 * Fail if there are multiple SCM_RIGHT cmsgs. 1433 */ 1434 int 1435 so_getfdopt(void *control, t_uscalar_t controllen, int oldflg, 1436 void **fdsp, int *fdlenp) 1437 { 1438 struct cmsghdr *cmsg; 1439 void *fds; 1440 int fdlen; 1441 1442 if (control == NULL) { 1443 *fdsp = NULL; 1444 *fdlenp = -1; 1445 return (0); 1446 } 1447 1448 if (oldflg) { 1449 *fdsp = control; 1450 if (controllen == 0) 1451 *fdlenp = -1; 1452 else 1453 *fdlenp = controllen; 1454 dprint(1, ("so_getfdopt: old %d\n", *fdlenp)); 1455 return (0); 1456 } 1457 1458 fds = NULL; 1459 fdlen = 0; 1460 1461 for (cmsg = (struct cmsghdr *)control; 1462 CMSG_VALID(cmsg, control, (uintptr_t)control + controllen); 1463 cmsg = CMSG_NEXT(cmsg)) { 1464 if (cmsg->cmsg_level == SOL_SOCKET && 1465 cmsg->cmsg_type == SCM_RIGHTS) { 1466 if (fds != NULL) 1467 return (EINVAL); 1468 fds = CMSG_CONTENT(cmsg); 1469 fdlen = (int)CMSG_CONTENTLEN(cmsg); 1470 dprint(1, ("so_getfdopt: new %ld\n", 1471 CMSG_CONTENTLEN(cmsg))); 1472 } 1473 } 1474 if (fds == NULL) { 1475 dprint(1, ("so_getfdopt: NONE\n")); 1476 *fdlenp = -1; 1477 } else 1478 *fdlenp = fdlen; 1479 *fdsp = fds; 1480 return (0); 1481 } 1482 1483 /* 1484 * Return the length of the options including any file descriptor options. 1485 */ 1486 t_uscalar_t 1487 so_optlen(void *control, t_uscalar_t controllen, int oldflg) 1488 { 1489 struct cmsghdr *cmsg; 1490 t_uscalar_t optlen = 0; 1491 t_uscalar_t len; 1492 1493 if (control == NULL) 1494 return (0); 1495 1496 if (oldflg) 1497 return ((t_uscalar_t)(sizeof (struct T_opthdr) + 1498 fdbuf_optlen(controllen))); 1499 1500 for (cmsg = (struct cmsghdr *)control; 1501 CMSG_VALID(cmsg, control, (uintptr_t)control + controllen); 1502 cmsg = CMSG_NEXT(cmsg)) { 1503 if (cmsg->cmsg_level == SOL_SOCKET && 1504 cmsg->cmsg_type == SCM_RIGHTS) { 1505 len = fdbuf_optlen((int)CMSG_CONTENTLEN(cmsg)); 1506 } else { 1507 len = (t_uscalar_t)CMSG_CONTENTLEN(cmsg); 1508 } 1509 optlen += (t_uscalar_t)(_TPI_ALIGN_TOPT(len) + 1510 sizeof (struct T_opthdr)); 1511 } 1512 dprint(1, ("so_optlen: controllen %d, flg %d -> optlen %d\n", 1513 controllen, oldflg, optlen)); 1514 return (optlen); 1515 } 1516 1517 /* 1518 * Copy options from control to the mblk. Skip any file descriptor options. 1519 */ 1520 void 1521 so_cmsg2opt(void *control, t_uscalar_t controllen, int oldflg, mblk_t *mp) 1522 { 1523 struct T_opthdr toh; 1524 struct cmsghdr *cmsg; 1525 1526 if (control == NULL) 1527 return; 1528 1529 if (oldflg) { 1530 /* No real options - caller has handled file descriptors */ 1531 return; 1532 } 1533 for (cmsg = (struct cmsghdr *)control; 1534 CMSG_VALID(cmsg, control, (uintptr_t)control + controllen); 1535 cmsg = CMSG_NEXT(cmsg)) { 1536 /* 1537 * Note: The caller handles file descriptors prior 1538 * to calling this function. 1539 */ 1540 t_uscalar_t len; 1541 1542 if (cmsg->cmsg_level == SOL_SOCKET && 1543 cmsg->cmsg_type == SCM_RIGHTS) 1544 continue; 1545 1546 len = (t_uscalar_t)CMSG_CONTENTLEN(cmsg); 1547 toh.level = cmsg->cmsg_level; 1548 toh.name = cmsg->cmsg_type; 1549 toh.len = len + (t_uscalar_t)sizeof (struct T_opthdr); 1550 toh.status = 0; 1551 1552 soappendmsg(mp, &toh, sizeof (toh)); 1553 soappendmsg(mp, CMSG_CONTENT(cmsg), len); 1554 mp->b_wptr += _TPI_ALIGN_TOPT(len) - len; 1555 ASSERT(mp->b_wptr <= mp->b_datap->db_lim); 1556 } 1557 } 1558 1559 /* 1560 * Return the length of the control message derived from the options. 1561 * Exclude SO_SRCADDR and SO_UNIX_CLOSE options. Include SO_FILEP. 1562 * When oldflg is set only include SO_FILEP. 1563 */ 1564 t_uscalar_t 1565 so_cmsglen(mblk_t *mp, void *opt, t_uscalar_t optlen, int oldflg) 1566 { 1567 t_uscalar_t cmsglen = 0; 1568 struct T_opthdr *tohp; 1569 t_uscalar_t len; 1570 t_uscalar_t last_roundup = 0; 1571 1572 ASSERT(__TPI_TOPT_ISALIGNED(opt)); 1573 1574 for (tohp = (struct T_opthdr *)opt; 1575 tohp && _TPI_TOPT_VALID(tohp, opt, (uintptr_t)opt + optlen); 1576 tohp = _TPI_TOPT_NEXTHDR(opt, optlen, tohp)) { 1577 dprint(1, ("so_cmsglen: level 0x%x, name %d, len %d\n", 1578 tohp->level, tohp->name, tohp->len)); 1579 if (tohp->level == SOL_SOCKET && 1580 (tohp->name == SO_SRCADDR || 1581 tohp->name == SO_UNIX_CLOSE)) { 1582 continue; 1583 } 1584 if (tohp->level == SOL_SOCKET && tohp->name == SO_FILEP) { 1585 struct fdbuf *fdbuf; 1586 int fdbuflen; 1587 1588 fdbuf = (struct fdbuf *)_TPI_TOPT_DATA(tohp); 1589 fdbuflen = (int)_TPI_TOPT_DATALEN(tohp); 1590 1591 if (!fdbuf_verify(mp, fdbuf, fdbuflen)) 1592 continue; 1593 if (oldflg) { 1594 cmsglen += fdbuf_cmsglen(fdbuflen); 1595 continue; 1596 } 1597 len = fdbuf_cmsglen(fdbuflen); 1598 } else { 1599 if (oldflg) 1600 continue; 1601 len = (t_uscalar_t)_TPI_TOPT_DATALEN(tohp); 1602 } 1603 /* 1604 * Exlucde roundup for last option to not set 1605 * MSG_CTRUNC when the cmsg fits but the padding doesn't fit. 1606 */ 1607 last_roundup = (t_uscalar_t) 1608 (ROUNDUP_cmsglen(len + (int)sizeof (struct cmsghdr)) - 1609 (len + (int)sizeof (struct cmsghdr))); 1610 cmsglen += (t_uscalar_t)(len + (int)sizeof (struct cmsghdr)) + 1611 last_roundup; 1612 } 1613 cmsglen -= last_roundup; 1614 dprint(1, ("so_cmsglen: optlen %d, flg %d -> cmsglen %d\n", 1615 optlen, oldflg, cmsglen)); 1616 return (cmsglen); 1617 } 1618 1619 /* 1620 * Copy options from options to the control. Convert SO_FILEP to 1621 * file descriptors. 1622 * Returns errno or zero. 1623 */ 1624 int 1625 so_opt2cmsg(mblk_t *mp, void *opt, t_uscalar_t optlen, int oldflg, 1626 void *control, t_uscalar_t controllen) 1627 { 1628 struct T_opthdr *tohp; 1629 struct cmsghdr *cmsg; 1630 struct fdbuf *fdbuf; 1631 int fdbuflen; 1632 int error; 1633 1634 cmsg = (struct cmsghdr *)control; 1635 1636 ASSERT(__TPI_TOPT_ISALIGNED(opt)); 1637 1638 for (tohp = (struct T_opthdr *)opt; 1639 tohp && _TPI_TOPT_VALID(tohp, opt, (uintptr_t)opt + optlen); 1640 tohp = _TPI_TOPT_NEXTHDR(opt, optlen, tohp)) { 1641 dprint(1, ("so_opt2cmsg: level 0x%x, name %d, len %d\n", 1642 tohp->level, tohp->name, tohp->len)); 1643 1644 if (tohp->level == SOL_SOCKET && 1645 (tohp->name == SO_SRCADDR || 1646 tohp->name == SO_UNIX_CLOSE)) { 1647 continue; 1648 } 1649 ASSERT((uintptr_t)cmsg <= (uintptr_t)control + controllen); 1650 if (tohp->level == SOL_SOCKET && tohp->name == SO_FILEP) { 1651 fdbuf = (struct fdbuf *)_TPI_TOPT_DATA(tohp); 1652 fdbuflen = (int)_TPI_TOPT_DATALEN(tohp); 1653 1654 if (!fdbuf_verify(mp, fdbuf, fdbuflen)) 1655 return (EPROTO); 1656 if (oldflg) { 1657 error = fdbuf_extract(fdbuf, control, 1658 (int)controllen); 1659 if (error != 0) 1660 return (error); 1661 continue; 1662 } else { 1663 int fdlen; 1664 1665 fdlen = (int)fdbuf_cmsglen( 1666 (int)_TPI_TOPT_DATALEN(tohp)); 1667 1668 cmsg->cmsg_level = tohp->level; 1669 cmsg->cmsg_type = SCM_RIGHTS; 1670 cmsg->cmsg_len = (socklen_t)(fdlen + 1671 sizeof (struct cmsghdr)); 1672 1673 error = fdbuf_extract(fdbuf, 1674 CMSG_CONTENT(cmsg), fdlen); 1675 if (error != 0) 1676 return (error); 1677 } 1678 } else { 1679 if (oldflg) 1680 continue; 1681 1682 cmsg->cmsg_level = tohp->level; 1683 cmsg->cmsg_type = tohp->name; 1684 cmsg->cmsg_len = (socklen_t)(_TPI_TOPT_DATALEN(tohp) + 1685 sizeof (struct cmsghdr)); 1686 1687 /* copy content to control data part */ 1688 bcopy(&tohp[1], CMSG_CONTENT(cmsg), 1689 CMSG_CONTENTLEN(cmsg)); 1690 } 1691 /* move to next CMSG structure! */ 1692 cmsg = CMSG_NEXT(cmsg); 1693 } 1694 return (0); 1695 } 1696 1697 /* 1698 * Extract the SO_SRCADDR option value if present. 1699 */ 1700 void 1701 so_getopt_srcaddr(void *opt, t_uscalar_t optlen, void **srcp, 1702 t_uscalar_t *srclenp) 1703 { 1704 struct T_opthdr *tohp; 1705 1706 ASSERT(__TPI_TOPT_ISALIGNED(opt)); 1707 1708 ASSERT(srcp != NULL && srclenp != NULL); 1709 *srcp = NULL; 1710 *srclenp = 0; 1711 1712 for (tohp = (struct T_opthdr *)opt; 1713 tohp && _TPI_TOPT_VALID(tohp, opt, (uintptr_t)opt + optlen); 1714 tohp = _TPI_TOPT_NEXTHDR(opt, optlen, tohp)) { 1715 dprint(1, ("so_getopt_srcaddr: level 0x%x, name %d, len %d\n", 1716 tohp->level, tohp->name, tohp->len)); 1717 if (tohp->level == SOL_SOCKET && 1718 tohp->name == SO_SRCADDR) { 1719 *srcp = _TPI_TOPT_DATA(tohp); 1720 *srclenp = (t_uscalar_t)_TPI_TOPT_DATALEN(tohp); 1721 } 1722 } 1723 } 1724 1725 /* 1726 * Verify if the SO_UNIX_CLOSE option is present. 1727 */ 1728 int 1729 so_getopt_unix_close(void *opt, t_uscalar_t optlen) 1730 { 1731 struct T_opthdr *tohp; 1732 1733 ASSERT(__TPI_TOPT_ISALIGNED(opt)); 1734 1735 for (tohp = (struct T_opthdr *)opt; 1736 tohp && _TPI_TOPT_VALID(tohp, opt, (uintptr_t)opt + optlen); 1737 tohp = _TPI_TOPT_NEXTHDR(opt, optlen, tohp)) { 1738 dprint(1, 1739 ("so_getopt_unix_close: level 0x%x, name %d, len %d\n", 1740 tohp->level, tohp->name, tohp->len)); 1741 if (tohp->level == SOL_SOCKET && 1742 tohp->name == SO_UNIX_CLOSE) 1743 return (1); 1744 } 1745 return (0); 1746 } 1747 1748 /* 1749 * Allocate an M_PROTO message. 1750 * 1751 * If allocation fails the behavior depends on sleepflg: 1752 * _ALLOC_NOSLEEP fail immediately 1753 * _ALLOC_INTR sleep for memory until a signal is caught 1754 * _ALLOC_SLEEP sleep forever. Don't return NULL. 1755 */ 1756 mblk_t * 1757 soallocproto(size_t size, int sleepflg) 1758 { 1759 mblk_t *mp; 1760 1761 /* Round up size for reuse */ 1762 size = MAX(size, 64); 1763 mp = allocb(size, BPRI_MED); 1764 if (mp == NULL) { 1765 int error; /* Dummy - error not returned to caller */ 1766 1767 switch (sleepflg) { 1768 case _ALLOC_SLEEP: 1769 mp = allocb_wait(size, BPRI_MED, STR_NOSIG, &error); 1770 ASSERT(mp); 1771 break; 1772 case _ALLOC_INTR: 1773 mp = allocb_wait(size, BPRI_MED, 0, &error); 1774 if (mp == NULL) { 1775 /* Caught signal while sleeping for memory */ 1776 eprintline(ENOBUFS); 1777 return (NULL); 1778 } 1779 break; 1780 case _ALLOC_NOSLEEP: 1781 default: 1782 eprintline(ENOBUFS); 1783 return (NULL); 1784 } 1785 } 1786 DB_TYPE(mp) = M_PROTO; 1787 return (mp); 1788 } 1789 1790 /* 1791 * Allocate an M_PROTO message with a single component. 1792 * len is the length of buf. size is the amount to allocate. 1793 * 1794 * buf can be NULL with a non-zero len. 1795 * This results in a bzero'ed chunk being placed the message. 1796 */ 1797 mblk_t * 1798 soallocproto1(const void *buf, ssize_t len, ssize_t size, int sleepflg) 1799 { 1800 mblk_t *mp; 1801 1802 if (size == 0) 1803 size = len; 1804 1805 ASSERT(size >= len); 1806 /* Round up size for reuse */ 1807 size = MAX(size, 64); 1808 mp = soallocproto(size, sleepflg); 1809 if (mp == NULL) 1810 return (NULL); 1811 mp->b_datap->db_type = M_PROTO; 1812 if (len != 0) { 1813 if (buf != NULL) 1814 bcopy(buf, mp->b_wptr, len); 1815 else 1816 bzero(mp->b_wptr, len); 1817 mp->b_wptr += len; 1818 } 1819 return (mp); 1820 } 1821 1822 /* 1823 * Append buf/len to mp. 1824 * The caller has to ensure that there is enough room in the mblk. 1825 * 1826 * buf can be NULL with a non-zero len. 1827 * This results in a bzero'ed chunk being placed the message. 1828 */ 1829 void 1830 soappendmsg(mblk_t *mp, const void *buf, ssize_t len) 1831 { 1832 ASSERT(mp); 1833 1834 if (len != 0) { 1835 /* Assert for room left */ 1836 ASSERT(mp->b_datap->db_lim - mp->b_wptr >= len); 1837 if (buf != NULL) 1838 bcopy(buf, mp->b_wptr, len); 1839 else 1840 bzero(mp->b_wptr, len); 1841 } 1842 mp->b_wptr += len; 1843 } 1844 1845 /* 1846 * Create a message using two kernel buffers. 1847 * If size is set that will determine the allocation size (e.g. for future 1848 * soappendmsg calls). If size is zero it is derived from the buffer 1849 * lengths. 1850 */ 1851 mblk_t * 1852 soallocproto2(const void *buf1, ssize_t len1, const void *buf2, ssize_t len2, 1853 ssize_t size, int sleepflg) 1854 { 1855 mblk_t *mp; 1856 1857 if (size == 0) 1858 size = len1 + len2; 1859 ASSERT(size >= len1 + len2); 1860 1861 mp = soallocproto1(buf1, len1, size, sleepflg); 1862 if (mp) 1863 soappendmsg(mp, buf2, len2); 1864 return (mp); 1865 } 1866 1867 /* 1868 * Create a message using three kernel buffers. 1869 * If size is set that will determine the allocation size (for future 1870 * soappendmsg calls). If size is zero it is derived from the buffer 1871 * lengths. 1872 */ 1873 mblk_t * 1874 soallocproto3(const void *buf1, ssize_t len1, const void *buf2, ssize_t len2, 1875 const void *buf3, ssize_t len3, ssize_t size, int sleepflg) 1876 { 1877 mblk_t *mp; 1878 1879 if (size == 0) 1880 size = len1 + len2 +len3; 1881 ASSERT(size >= len1 + len2 + len3); 1882 1883 mp = soallocproto1(buf1, len1, size, sleepflg); 1884 if (mp != NULL) { 1885 soappendmsg(mp, buf2, len2); 1886 soappendmsg(mp, buf3, len3); 1887 } 1888 return (mp); 1889 } 1890 1891 #ifdef DEBUG 1892 char * 1893 pr_state(uint_t state, uint_t mode) 1894 { 1895 static char buf[1024]; 1896 1897 buf[0] = 0; 1898 if (state & SS_ISCONNECTED) 1899 strcat(buf, "ISCONNECTED "); 1900 if (state & SS_ISCONNECTING) 1901 strcat(buf, "ISCONNECTING "); 1902 if (state & SS_ISDISCONNECTING) 1903 strcat(buf, "ISDISCONNECTING "); 1904 if (state & SS_CANTSENDMORE) 1905 strcat(buf, "CANTSENDMORE "); 1906 1907 if (state & SS_CANTRCVMORE) 1908 strcat(buf, "CANTRCVMORE "); 1909 if (state & SS_ISBOUND) 1910 strcat(buf, "ISBOUND "); 1911 if (state & SS_NDELAY) 1912 strcat(buf, "NDELAY "); 1913 if (state & SS_NONBLOCK) 1914 strcat(buf, "NONBLOCK "); 1915 1916 if (state & SS_ASYNC) 1917 strcat(buf, "ASYNC "); 1918 if (state & SS_ACCEPTCONN) 1919 strcat(buf, "ACCEPTCONN "); 1920 if (state & SS_HASCONNIND) 1921 strcat(buf, "HASCONNIND "); 1922 if (state & SS_SAVEDEOR) 1923 strcat(buf, "SAVEDEOR "); 1924 1925 if (state & SS_RCVATMARK) 1926 strcat(buf, "RCVATMARK "); 1927 if (state & SS_OOBPEND) 1928 strcat(buf, "OOBPEND "); 1929 if (state & SS_HAVEOOBDATA) 1930 strcat(buf, "HAVEOOBDATA "); 1931 if (state & SS_HADOOBDATA) 1932 strcat(buf, "HADOOBDATA "); 1933 1934 if (state & SS_FADDR_NOXLATE) 1935 strcat(buf, "FADDR_NOXLATE "); 1936 1937 if (mode & SM_PRIV) 1938 strcat(buf, "PRIV "); 1939 if (mode & SM_ATOMIC) 1940 strcat(buf, "ATOMIC "); 1941 if (mode & SM_ADDR) 1942 strcat(buf, "ADDR "); 1943 if (mode & SM_CONNREQUIRED) 1944 strcat(buf, "CONNREQUIRED "); 1945 1946 if (mode & SM_FDPASSING) 1947 strcat(buf, "FDPASSING "); 1948 if (mode & SM_EXDATA) 1949 strcat(buf, "EXDATA "); 1950 if (mode & SM_OPTDATA) 1951 strcat(buf, "OPTDATA "); 1952 if (mode & SM_BYTESTREAM) 1953 strcat(buf, "BYTESTREAM "); 1954 return (buf); 1955 } 1956 1957 char * 1958 pr_addr(int family, struct sockaddr *addr, t_uscalar_t addrlen) 1959 { 1960 static char buf[1024]; 1961 1962 if (addr == NULL || addrlen == 0) { 1963 sprintf(buf, "(len %d) %p", addrlen, addr); 1964 return (buf); 1965 } 1966 switch (family) { 1967 case AF_INET: { 1968 struct sockaddr_in sin; 1969 1970 bcopy(addr, &sin, sizeof (sin)); 1971 1972 (void) sprintf(buf, "(len %d) %x/%d", 1973 addrlen, ntohl(sin.sin_addr.s_addr), 1974 ntohs(sin.sin_port)); 1975 break; 1976 } 1977 case AF_INET6: { 1978 struct sockaddr_in6 sin6; 1979 uint16_t *piece = (uint16_t *)&sin6.sin6_addr; 1980 1981 bcopy((char *)addr, (char *)&sin6, sizeof (sin6)); 1982 sprintf(buf, "(len %d) %x:%x:%x:%x:%x:%x:%x:%x/%d", 1983 addrlen, 1984 ntohs(piece[0]), ntohs(piece[1]), 1985 ntohs(piece[2]), ntohs(piece[3]), 1986 ntohs(piece[4]), ntohs(piece[5]), 1987 ntohs(piece[6]), ntohs(piece[7]), 1988 ntohs(sin6.sin6_port)); 1989 break; 1990 } 1991 case AF_UNIX: { 1992 struct sockaddr_un *soun = (struct sockaddr_un *)addr; 1993 1994 (void) sprintf(buf, "(len %d) %s", 1995 addrlen, 1996 (soun == NULL) ? "(none)" : soun->sun_path); 1997 break; 1998 } 1999 default: 2000 (void) sprintf(buf, "(unknown af %d)", family); 2001 break; 2002 } 2003 return (buf); 2004 } 2005 2006 /* The logical equivalence operator (a if-and-only-if b) */ 2007 #define EQUIV(a, b) (((a) && (b)) || (!(a) && (!(b)))) 2008 2009 /* 2010 * Verify limitations and invariants on oob state. 2011 * Return 1 if OK, otherwise 0 so that it can be used as 2012 * ASSERT(verify_oobstate(so)); 2013 */ 2014 int 2015 so_verify_oobstate(struct sonode *so) 2016 { 2017 ASSERT(MUTEX_HELD(&so->so_lock)); 2018 2019 /* 2020 * The possible state combinations are: 2021 * 0 2022 * SS_OOBPEND 2023 * SS_OOBPEND|SS_HAVEOOBDATA 2024 * SS_OOBPEND|SS_HADOOBDATA 2025 * SS_HADOOBDATA 2026 */ 2027 switch (so->so_state & (SS_OOBPEND|SS_HAVEOOBDATA|SS_HADOOBDATA)) { 2028 case 0: 2029 case SS_OOBPEND: 2030 case SS_OOBPEND|SS_HAVEOOBDATA: 2031 case SS_OOBPEND|SS_HADOOBDATA: 2032 case SS_HADOOBDATA: 2033 break; 2034 default: 2035 printf("Bad oob state 1 (%p): counts %d/%d state %s\n", 2036 so, so->so_oobsigcnt, 2037 so->so_oobcnt, pr_state(so->so_state, so->so_mode)); 2038 return (0); 2039 } 2040 2041 /* SS_RCVATMARK should only be set when SS_OOBPEND is set */ 2042 if ((so->so_state & (SS_RCVATMARK|SS_OOBPEND)) == SS_RCVATMARK) { 2043 printf("Bad oob state 2 (%p): counts %d/%d state %s\n", 2044 so, so->so_oobsigcnt, 2045 so->so_oobcnt, pr_state(so->so_state, so->so_mode)); 2046 return (0); 2047 } 2048 2049 /* 2050 * (so_oobsigcnt != 0 or SS_RCVATMARK) iff SS_OOBPEND 2051 */ 2052 if (!EQUIV((so->so_oobsigcnt != 0) || (so->so_state & SS_RCVATMARK), 2053 so->so_state & SS_OOBPEND)) { 2054 printf("Bad oob state 3 (%p): counts %d/%d state %s\n", 2055 so, so->so_oobsigcnt, 2056 so->so_oobcnt, pr_state(so->so_state, so->so_mode)); 2057 return (0); 2058 } 2059 2060 /* 2061 * Unless SO_OOBINLINE we have so_oobmsg != NULL iff SS_HAVEOOBDATA 2062 */ 2063 if (!(so->so_options & SO_OOBINLINE) && 2064 !EQUIV(so->so_oobmsg != NULL, so->so_state & SS_HAVEOOBDATA)) { 2065 printf("Bad oob state 4 (%p): counts %d/%d state %s\n", 2066 so, so->so_oobsigcnt, 2067 so->so_oobcnt, pr_state(so->so_state, so->so_mode)); 2068 return (0); 2069 } 2070 if (so->so_oobsigcnt < so->so_oobcnt) { 2071 printf("Bad oob state 5 (%p): counts %d/%d state %s\n", 2072 so, so->so_oobsigcnt, 2073 so->so_oobcnt, pr_state(so->so_state, so->so_mode)); 2074 return (0); 2075 } 2076 return (1); 2077 } 2078 #undef EQUIV 2079 2080 #endif /* DEBUG */ 2081 2082 /* initialize sockfs zone specific kstat related items */ 2083 void * 2084 sock_kstat_init(zoneid_t zoneid) 2085 { 2086 kstat_t *ksp; 2087 2088 ksp = kstat_create_zone("sockfs", 0, "sock_unix_list", "misc", 2089 KSTAT_TYPE_RAW, 0, KSTAT_FLAG_VAR_SIZE|KSTAT_FLAG_VIRTUAL, zoneid); 2090 2091 if (ksp != NULL) { 2092 ksp->ks_update = sockfs_update; 2093 ksp->ks_snapshot = sockfs_snapshot; 2094 ksp->ks_lock = &socklist.sl_lock; 2095 ksp->ks_private = (void *)(uintptr_t)zoneid; 2096 kstat_install(ksp); 2097 } 2098 2099 return (ksp); 2100 } 2101 2102 /* tear down sockfs zone specific kstat related items */ 2103 /*ARGSUSED*/ 2104 void 2105 sock_kstat_fini(zoneid_t zoneid, void *arg) 2106 { 2107 kstat_t *ksp = (kstat_t *)arg; 2108 2109 if (ksp != NULL) { 2110 ASSERT(zoneid == (zoneid_t)(uintptr_t)ksp->ks_private); 2111 kstat_delete(ksp); 2112 } 2113 } 2114 2115 /* 2116 * Zones: 2117 * Note that nactive is going to be different for each zone. 2118 * This means we require kstat to call sockfs_update and then sockfs_snapshot 2119 * for the same zone, or sockfs_snapshot will be taken into the wrong size 2120 * buffer. This is safe, but if the buffer is too small, user will not be 2121 * given details of all sockets. However, as this kstat has a ks_lock, kstat 2122 * driver will keep it locked between the update and the snapshot, so no 2123 * other process (zone) can currently get inbetween resulting in a wrong size 2124 * buffer allocation. 2125 */ 2126 static int 2127 sockfs_update(kstat_t *ksp, int rw) 2128 { 2129 uint_t nactive = 0; /* # of active AF_UNIX sockets */ 2130 struct sonode *so; /* current sonode on socklist */ 2131 zoneid_t myzoneid = (zoneid_t)(uintptr_t)ksp->ks_private; 2132 2133 ASSERT((zoneid_t)(uintptr_t)ksp->ks_private == getzoneid()); 2134 2135 if (rw == KSTAT_WRITE) { /* bounce all writes */ 2136 return (EACCES); 2137 } 2138 2139 for (so = socklist.sl_list; so != NULL; so = so->so_next) { 2140 if (so->so_accessvp != NULL && so->so_zoneid == myzoneid) { 2141 nactive++; 2142 } 2143 } 2144 ksp->ks_ndata = nactive; 2145 ksp->ks_data_size = nactive * sizeof (struct k_sockinfo); 2146 2147 return (0); 2148 } 2149 2150 static int 2151 sockfs_snapshot(kstat_t *ksp, void *buf, int rw) 2152 { 2153 int ns; /* # of sonodes we've copied */ 2154 struct sonode *so; /* current sonode on socklist */ 2155 struct k_sockinfo *pksi; /* where we put sockinfo data */ 2156 t_uscalar_t sn_len; /* soa_len */ 2157 zoneid_t myzoneid = (zoneid_t)(uintptr_t)ksp->ks_private; 2158 2159 ASSERT((zoneid_t)(uintptr_t)ksp->ks_private == getzoneid()); 2160 2161 ksp->ks_snaptime = gethrtime(); 2162 2163 if (rw == KSTAT_WRITE) { /* bounce all writes */ 2164 return (EACCES); 2165 } 2166 2167 /* 2168 * for each sonode on the socklist, we massage the important 2169 * info into buf, in k_sockinfo format. 2170 */ 2171 pksi = (struct k_sockinfo *)buf; 2172 for (ns = 0, so = socklist.sl_list; so != NULL; so = so->so_next) { 2173 /* only stuff active sonodes and the same zone: */ 2174 if (so->so_accessvp == NULL || so->so_zoneid != myzoneid) { 2175 continue; 2176 } 2177 2178 /* 2179 * If the sonode was activated between the update and the 2180 * snapshot, we're done - as this is only a snapshot. 2181 */ 2182 if ((caddr_t)(pksi) >= (caddr_t)buf + ksp->ks_data_size) { 2183 break; 2184 } 2185 2186 /* copy important info into buf: */ 2187 pksi->ks_si.si_size = sizeof (struct k_sockinfo); 2188 pksi->ks_si.si_family = so->so_family; 2189 pksi->ks_si.si_type = so->so_type; 2190 pksi->ks_si.si_flag = so->so_flag; 2191 pksi->ks_si.si_state = so->so_state; 2192 pksi->ks_si.si_serv_type = so->so_serv_type; 2193 pksi->ks_si.si_ux_laddr_sou_magic = so->so_ux_laddr.soua_magic; 2194 pksi->ks_si.si_ux_faddr_sou_magic = so->so_ux_faddr.soua_magic; 2195 pksi->ks_si.si_laddr_soa_len = so->so_laddr.soa_len; 2196 pksi->ks_si.si_faddr_soa_len = so->so_faddr.soa_len; 2197 pksi->ks_si.si_szoneid = so->so_zoneid; 2198 2199 mutex_enter(&so->so_lock); 2200 2201 if (so->so_laddr_sa != NULL) { 2202 ASSERT(so->so_laddr_sa->sa_data != NULL); 2203 sn_len = so->so_laddr_len; 2204 ASSERT(sn_len <= sizeof (short) + 2205 sizeof (pksi->ks_si.si_laddr_sun_path)); 2206 2207 pksi->ks_si.si_laddr_family = 2208 so->so_laddr_sa->sa_family; 2209 if (sn_len != 0) { 2210 /* AF_UNIX socket names are NULL terminated */ 2211 (void) strncpy(pksi->ks_si.si_laddr_sun_path, 2212 so->so_laddr_sa->sa_data, 2213 sizeof (pksi->ks_si.si_laddr_sun_path)); 2214 sn_len = strlen(pksi->ks_si.si_laddr_sun_path); 2215 } 2216 pksi->ks_si.si_laddr_sun_path[sn_len] = 0; 2217 } 2218 2219 if (so->so_faddr_sa != NULL) { 2220 ASSERT(so->so_faddr_sa->sa_data != NULL); 2221 sn_len = so->so_faddr_len; 2222 ASSERT(sn_len <= sizeof (short) + 2223 sizeof (pksi->ks_si.si_faddr_sun_path)); 2224 2225 pksi->ks_si.si_faddr_family = 2226 so->so_faddr_sa->sa_family; 2227 if (sn_len != 0) { 2228 (void) strncpy(pksi->ks_si.si_faddr_sun_path, 2229 so->so_faddr_sa->sa_data, 2230 sizeof (pksi->ks_si.si_faddr_sun_path)); 2231 sn_len = strlen(pksi->ks_si.si_faddr_sun_path); 2232 } 2233 pksi->ks_si.si_faddr_sun_path[sn_len] = 0; 2234 } 2235 2236 mutex_exit(&so->so_lock); 2237 2238 (void) sprintf(pksi->ks_straddr[0], "%p", (void *)so); 2239 (void) sprintf(pksi->ks_straddr[1], "%p", 2240 (void *)so->so_ux_laddr.soua_vp); 2241 (void) sprintf(pksi->ks_straddr[2], "%p", 2242 (void *)so->so_ux_faddr.soua_vp); 2243 2244 ns++; 2245 pksi++; 2246 } 2247 2248 ksp->ks_ndata = ns; 2249 return (0); 2250 } 2251 2252 ssize_t 2253 soreadfile(file_t *fp, uchar_t *buf, u_offset_t fileoff, int *err, size_t size) 2254 { 2255 struct uio auio; 2256 struct iovec aiov[MSG_MAXIOVLEN]; 2257 register vnode_t *vp; 2258 int ioflag, rwflag; 2259 ssize_t cnt; 2260 int error = 0; 2261 int iovcnt = 0; 2262 short fflag; 2263 2264 vp = fp->f_vnode; 2265 fflag = fp->f_flag; 2266 2267 rwflag = 0; 2268 aiov[0].iov_base = (caddr_t)buf; 2269 aiov[0].iov_len = size; 2270 iovcnt = 1; 2271 cnt = (ssize_t)size; 2272 (void) VOP_RWLOCK(vp, rwflag, NULL); 2273 2274 auio.uio_loffset = fileoff; 2275 auio.uio_iov = aiov; 2276 auio.uio_iovcnt = iovcnt; 2277 auio.uio_resid = cnt; 2278 auio.uio_segflg = UIO_SYSSPACE; 2279 auio.uio_llimit = MAXOFFSET_T; 2280 auio.uio_fmode = fflag; 2281 auio.uio_extflg = UIO_COPY_CACHED; 2282 2283 ioflag = auio.uio_fmode & (FAPPEND|FSYNC|FDSYNC|FRSYNC); 2284 2285 /* If read sync is not asked for, filter sync flags */ 2286 if ((ioflag & FRSYNC) == 0) 2287 ioflag &= ~(FSYNC|FDSYNC); 2288 error = VOP_READ(vp, &auio, ioflag, fp->f_cred, NULL); 2289 cnt -= auio.uio_resid; 2290 2291 VOP_RWUNLOCK(vp, rwflag, NULL); 2292 2293 if (error == EINTR && cnt != 0) 2294 error = 0; 2295 out: 2296 if (error != 0) { 2297 *err = error; 2298 return (0); 2299 } else { 2300 *err = 0; 2301 return (cnt); 2302 } 2303 } 2304