xref: /titanic_52/usr/src/uts/common/fs/sockfs/sockcommon_subr.c (revision 6a1af1a67532df169a657cce07140be64bdea084)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2008, 2010, Oracle and/or its affiliates. All rights reserved.
24  */
25 
26 #include <sys/types.h>
27 #include <sys/param.h>
28 #include <sys/signal.h>
29 #include <sys/cmn_err.h>
30 
31 #include <sys/stropts.h>
32 #include <sys/socket.h>
33 #include <sys/socketvar.h>
34 #include <sys/sockio.h>
35 #include <sys/strsubr.h>
36 #include <sys/strsun.h>
37 #include <sys/atomic.h>
38 #include <sys/tihdr.h>
39 
40 #include <fs/sockfs/sockcommon.h>
41 #include <fs/sockfs/sockfilter_impl.h>
42 #include <fs/sockfs/socktpi.h>
43 #include <fs/sockfs/sodirect.h>
44 #include <sys/ddi.h>
45 #include <inet/ip.h>
46 #include <sys/time.h>
47 #include <sys/cmn_err.h>
48 
49 #ifdef SOCK_TEST
50 extern int do_useracc;
51 extern clock_t sock_test_timelimit;
52 #endif /* SOCK_TEST */
53 
54 #define	MBLK_PULL_LEN 64
55 uint32_t so_mblk_pull_len = MBLK_PULL_LEN;
56 
57 #ifdef DEBUG
58 boolean_t so_debug_length = B_FALSE;
59 static boolean_t so_check_length(sonode_t *so);
60 #endif
61 
62 static int
63 so_acceptq_dequeue_locked(struct sonode *so, boolean_t dontblock,
64     struct sonode **nsop)
65 {
66 	struct sonode *nso = NULL;
67 
68 	*nsop = NULL;
69 	ASSERT(MUTEX_HELD(&so->so_acceptq_lock));
70 	while ((nso = list_remove_head(&so->so_acceptq_list)) == NULL) {
71 		/*
72 		 * No need to check so_error here, because it is not
73 		 * possible for a listening socket to be reset or otherwise
74 		 * disconnected.
75 		 *
76 		 * So now we just need check if it's ok to wait.
77 		 */
78 		if (dontblock)
79 			return (EWOULDBLOCK);
80 		if (so->so_state & (SS_CLOSING | SS_FALLBACK_PENDING))
81 			return (EINTR);
82 
83 		if (cv_wait_sig_swap(&so->so_acceptq_cv,
84 		    &so->so_acceptq_lock) == 0)
85 			return (EINTR);
86 	}
87 
88 	ASSERT(nso != NULL);
89 	ASSERT(so->so_acceptq_len > 0);
90 	so->so_acceptq_len--;
91 	nso->so_listener = NULL;
92 
93 	*nsop = nso;
94 
95 	return (0);
96 }
97 
98 /*
99  * int so_acceptq_dequeue(struct sonode *, boolean_t, struct sonode **)
100  *
101  * Pulls a connection off of the accept queue.
102  *
103  * Arguments:
104  *   so	       - listening socket
105  *   dontblock - indicate whether it's ok to sleep if there are no
106  *		 connections on the queue
107  *   nsop      - Value-return argument
108  *
109  * Return values:
110  *   0 when a connection is successfully dequeued, in which case nsop
111  *   is set to point to the new connection. Upon failure a non-zero
112  *   value is returned, and the value of nsop is set to NULL.
113  *
114  * Note:
115  *   so_acceptq_dequeue() may return prematurly if the socket is falling
116  *   back to TPI.
117  */
118 int
119 so_acceptq_dequeue(struct sonode *so, boolean_t dontblock,
120     struct sonode **nsop)
121 {
122 	int error;
123 
124 	mutex_enter(&so->so_acceptq_lock);
125 	error = so_acceptq_dequeue_locked(so, dontblock, nsop);
126 	mutex_exit(&so->so_acceptq_lock);
127 
128 	return (error);
129 }
130 
131 static void
132 so_acceptq_flush_impl(struct sonode *so, list_t *list, boolean_t doclose)
133 {
134 	struct sonode *nso;
135 
136 	while ((nso = list_remove_head(list)) != NULL) {
137 		nso->so_listener = NULL;
138 		if (doclose) {
139 			(void) socket_close(nso, 0, CRED());
140 		} else {
141 			/*
142 			 * Only used for fallback - not possible when filters
143 			 * are present.
144 			 */
145 			ASSERT(so->so_filter_active == 0);
146 			/*
147 			 * Since the socket is on the accept queue, there can
148 			 * only be one reference. We drop the reference and
149 			 * just blow off the socket.
150 			 */
151 			ASSERT(nso->so_count == 1);
152 			nso->so_count--;
153 			/* drop the proto ref */
154 			VN_RELE(SOTOV(nso));
155 		}
156 		socket_destroy(nso);
157 	}
158 }
159 /*
160  * void so_acceptq_flush(struct sonode *so)
161  *
162  * Removes all pending connections from a listening socket, and
163  * frees the associated resources.
164  *
165  * Arguments
166  *   so	     - listening socket
167  *   doclose - make a close downcall for each socket on the accept queue
168  *
169  * Return values:
170  *   None.
171  *
172  * Note:
173  *   The caller has to ensure that no calls to so_acceptq_enqueue() or
174  *   so_acceptq_dequeue() occur while the accept queue is being flushed.
175  *   So either the socket needs to be in a state where no operations
176  *   would come in, or so_lock needs to be obtained.
177  */
178 void
179 so_acceptq_flush(struct sonode *so, boolean_t doclose)
180 {
181 	so_acceptq_flush_impl(so, &so->so_acceptq_list, doclose);
182 	so_acceptq_flush_impl(so, &so->so_acceptq_defer, doclose);
183 
184 	so->so_acceptq_len = 0;
185 }
186 
187 int
188 so_wait_connected_locked(struct sonode *so, boolean_t nonblock,
189     sock_connid_t id)
190 {
191 	ASSERT(MUTEX_HELD(&so->so_lock));
192 
193 	/*
194 	 * The protocol has notified us that a connection attempt is being
195 	 * made, so before we wait for a notification to arrive we must
196 	 * clear out any errors associated with earlier connection attempts.
197 	 */
198 	if (so->so_error != 0 && SOCK_CONNID_LT(so->so_proto_connid, id))
199 		so->so_error = 0;
200 
201 	while (SOCK_CONNID_LT(so->so_proto_connid, id)) {
202 		if (nonblock)
203 			return (EINPROGRESS);
204 
205 		if (so->so_state & (SS_CLOSING | SS_FALLBACK_PENDING))
206 			return (EINTR);
207 
208 		if (cv_wait_sig_swap(&so->so_state_cv, &so->so_lock) == 0)
209 			return (EINTR);
210 	}
211 
212 	if (so->so_error != 0)
213 		return (sogeterr(so, B_TRUE));
214 	/*
215 	 * Under normal circumstances, so_error should contain an error
216 	 * in case the connect failed. However, it is possible for another
217 	 * thread to come in a consume the error, so generate a sensible
218 	 * error in that case.
219 	 */
220 	if ((so->so_state & SS_ISCONNECTED) == 0)
221 		return (ECONNREFUSED);
222 
223 	return (0);
224 }
225 
226 /*
227  * int so_wait_connected(struct sonode *so, boolean_t nonblock,
228  *    sock_connid_t id)
229  *
230  * Wait until the socket is connected or an error has occured.
231  *
232  * Arguments:
233  *   so	      - socket
234  *   nonblock - indicate whether it's ok to sleep if the connection has
235  *		not yet been established
236  *   gen      - generation number that was returned by the protocol
237  *		when the operation was started
238  *
239  * Returns:
240  *   0 if the connection attempt was successful, or an error indicating why
241  *   the connection attempt failed.
242  */
243 int
244 so_wait_connected(struct sonode *so, boolean_t nonblock, sock_connid_t id)
245 {
246 	int error;
247 
248 	mutex_enter(&so->so_lock);
249 	error = so_wait_connected_locked(so, nonblock, id);
250 	mutex_exit(&so->so_lock);
251 
252 	return (error);
253 }
254 
255 int
256 so_snd_wait_qnotfull_locked(struct sonode *so, boolean_t dontblock)
257 {
258 	int error;
259 
260 	ASSERT(MUTEX_HELD(&so->so_lock));
261 	while (SO_SND_FLOWCTRLD(so)) {
262 		if (so->so_state & SS_CANTSENDMORE)
263 			return (EPIPE);
264 		if (dontblock)
265 			return (EWOULDBLOCK);
266 
267 		if (so->so_state & (SS_CLOSING | SS_FALLBACK_PENDING))
268 			return (EINTR);
269 
270 		if (so->so_sndtimeo == 0) {
271 			/*
272 			 * Zero means disable timeout.
273 			 */
274 			error = cv_wait_sig(&so->so_snd_cv, &so->so_lock);
275 		} else {
276 			error = cv_reltimedwait_sig(&so->so_snd_cv,
277 			    &so->so_lock, so->so_sndtimeo, TR_CLOCK_TICK);
278 		}
279 		if (error == 0)
280 			return (EINTR);
281 		else if (error == -1)
282 			return (EAGAIN);
283 	}
284 	return (0);
285 }
286 
287 /*
288  * int so_wait_sendbuf(struct sonode *so, boolean_t dontblock)
289  *
290  * Wait for the transport to notify us about send buffers becoming
291  * available.
292  */
293 int
294 so_snd_wait_qnotfull(struct sonode *so, boolean_t dontblock)
295 {
296 	int error = 0;
297 
298 	mutex_enter(&so->so_lock);
299 	so->so_snd_wakeup = B_TRUE;
300 	error = so_snd_wait_qnotfull_locked(so, dontblock);
301 	so->so_snd_wakeup = B_FALSE;
302 	mutex_exit(&so->so_lock);
303 
304 	return (error);
305 }
306 
307 void
308 so_snd_qfull(struct sonode *so)
309 {
310 	mutex_enter(&so->so_lock);
311 	so->so_snd_qfull = B_TRUE;
312 	mutex_exit(&so->so_lock);
313 }
314 
315 void
316 so_snd_qnotfull(struct sonode *so)
317 {
318 	mutex_enter(&so->so_lock);
319 	so->so_snd_qfull = B_FALSE;
320 	/* wake up everyone waiting for buffers */
321 	cv_broadcast(&so->so_snd_cv);
322 	mutex_exit(&so->so_lock);
323 }
324 
325 /*
326  * Change the process/process group to which SIGIO is sent.
327  */
328 int
329 socket_chgpgrp(struct sonode *so, pid_t pid)
330 {
331 	int error;
332 
333 	ASSERT(MUTEX_HELD(&so->so_lock));
334 	if (pid != 0) {
335 		/*
336 		 * Permissions check by sending signal 0.
337 		 * Note that when kill fails it does a
338 		 * set_errno causing the system call to fail.
339 		 */
340 		error = kill(pid, 0);
341 		if (error != 0) {
342 			return (error);
343 		}
344 	}
345 	so->so_pgrp = pid;
346 	return (0);
347 }
348 
349 
350 /*
351  * Generate a SIGIO, for 'writable' events include siginfo structure,
352  * for read events just send the signal.
353  */
354 /*ARGSUSED*/
355 static void
356 socket_sigproc(proc_t *proc, int event)
357 {
358 	k_siginfo_t info;
359 
360 	ASSERT(event & (SOCKETSIG_WRITE | SOCKETSIG_READ | SOCKETSIG_URG));
361 
362 	if (event & SOCKETSIG_WRITE) {
363 		info.si_signo = SIGPOLL;
364 		info.si_code = POLL_OUT;
365 		info.si_errno = 0;
366 		info.si_fd = 0;
367 		info.si_band = 0;
368 		sigaddq(proc, NULL, &info, KM_NOSLEEP);
369 	}
370 	if (event & SOCKETSIG_READ) {
371 		sigtoproc(proc, NULL, SIGPOLL);
372 	}
373 	if (event & SOCKETSIG_URG) {
374 		sigtoproc(proc, NULL, SIGURG);
375 	}
376 }
377 
378 void
379 socket_sendsig(struct sonode *so, int event)
380 {
381 	proc_t *proc;
382 
383 	ASSERT(MUTEX_HELD(&so->so_lock));
384 
385 	if (so->so_pgrp == 0 || (!(so->so_state & SS_ASYNC) &&
386 	    event != SOCKETSIG_URG)) {
387 		return;
388 	}
389 
390 	dprint(3, ("sending sig %d to %d\n", event, so->so_pgrp));
391 
392 	if (so->so_pgrp > 0) {
393 		/*
394 		 * XXX This unfortunately still generates
395 		 * a signal when a fd is closed but
396 		 * the proc is active.
397 		 */
398 		mutex_enter(&pidlock);
399 		proc = prfind(so->so_pgrp);
400 		if (proc == NULL) {
401 			mutex_exit(&pidlock);
402 			return;
403 		}
404 		mutex_enter(&proc->p_lock);
405 		mutex_exit(&pidlock);
406 		socket_sigproc(proc, event);
407 		mutex_exit(&proc->p_lock);
408 	} else {
409 		/*
410 		 * Send to process group. Hold pidlock across
411 		 * calls to socket_sigproc().
412 		 */
413 		pid_t pgrp = -so->so_pgrp;
414 
415 		mutex_enter(&pidlock);
416 		proc = pgfind(pgrp);
417 		while (proc != NULL) {
418 			mutex_enter(&proc->p_lock);
419 			socket_sigproc(proc, event);
420 			mutex_exit(&proc->p_lock);
421 			proc = proc->p_pglink;
422 		}
423 		mutex_exit(&pidlock);
424 	}
425 }
426 
427 #define	MIN(a, b) ((a) < (b) ? (a) : (b))
428 /* Copy userdata into a new mblk_t */
429 mblk_t *
430 socopyinuio(uio_t *uiop, ssize_t iosize, size_t wroff, ssize_t maxblk,
431     size_t tail_len, int *errorp)
432 {
433 	mblk_t	*head = NULL, **tail = &head;
434 
435 	ASSERT(iosize == INFPSZ || iosize > 0);
436 
437 	if (iosize == INFPSZ || iosize > uiop->uio_resid)
438 		iosize = uiop->uio_resid;
439 
440 	if (maxblk == INFPSZ)
441 		maxblk = iosize;
442 
443 	/* Nothing to do in these cases, so we're done */
444 	if (iosize < 0 || maxblk < 0 || (maxblk == 0 && iosize > 0))
445 		goto done;
446 
447 	/*
448 	 * We will enter the loop below if iosize is 0; it will allocate an
449 	 * empty message block and call uiomove(9F) which will just return.
450 	 * We could avoid that with an extra check but would only slow
451 	 * down the much more likely case where iosize is larger than 0.
452 	 */
453 	do {
454 		ssize_t blocksize;
455 		mblk_t	*mp;
456 
457 		blocksize = MIN(iosize, maxblk);
458 		ASSERT(blocksize >= 0);
459 		mp = allocb(wroff + blocksize + tail_len, BPRI_MED);
460 		if (mp == NULL) {
461 			*errorp = ENOMEM;
462 			return (head);
463 		}
464 		mp->b_rptr += wroff;
465 		mp->b_wptr = mp->b_rptr + blocksize;
466 
467 		*tail = mp;
468 		tail = &mp->b_cont;
469 
470 		/* uiomove(9F) either returns 0 or EFAULT */
471 		if ((*errorp = uiomove(mp->b_rptr, (size_t)blocksize,
472 		    UIO_WRITE, uiop)) != 0) {
473 			ASSERT(*errorp != ENOMEM);
474 			freemsg(head);
475 			return (NULL);
476 		}
477 
478 		iosize -= blocksize;
479 	} while (iosize > 0);
480 
481 done:
482 	*errorp = 0;
483 	return (head);
484 }
485 
486 mblk_t *
487 socopyoutuio(mblk_t *mp, struct uio *uiop, ssize_t max_read, int *errorp)
488 {
489 	int error;
490 	ptrdiff_t n;
491 	mblk_t *nmp;
492 
493 	ASSERT(mp->b_wptr >= mp->b_rptr);
494 
495 	/*
496 	 * max_read is the offset of the oobmark and read can not go pass
497 	 * the oobmark.
498 	 */
499 	if (max_read == INFPSZ || max_read > uiop->uio_resid)
500 		max_read = uiop->uio_resid;
501 
502 	do {
503 		if ((n = MIN(max_read, MBLKL(mp))) != 0) {
504 			ASSERT(n > 0);
505 
506 			error = uiomove(mp->b_rptr, n, UIO_READ, uiop);
507 			if (error != 0) {
508 				freemsg(mp);
509 				*errorp = error;
510 				return (NULL);
511 			}
512 		}
513 
514 		mp->b_rptr += n;
515 		max_read -= n;
516 		while (mp != NULL && (mp->b_rptr >= mp->b_wptr)) {
517 			/*
518 			 * get rid of zero length mblks
519 			 */
520 			nmp = mp;
521 			mp = mp->b_cont;
522 			freeb(nmp);
523 		}
524 	} while (mp != NULL && max_read > 0);
525 
526 	*errorp = 0;
527 	return (mp);
528 }
529 
530 static void
531 so_prepend_msg(struct sonode *so, mblk_t *mp, mblk_t *last_tail)
532 {
533 	ASSERT(last_tail != NULL);
534 	mp->b_next = so->so_rcv_q_head;
535 	mp->b_prev = last_tail;
536 	ASSERT(!(DB_FLAGS(mp) & DBLK_UIOA));
537 
538 	if (so->so_rcv_q_head == NULL) {
539 		ASSERT(so->so_rcv_q_last_head == NULL);
540 		so->so_rcv_q_last_head = mp;
541 #ifdef DEBUG
542 	} else {
543 		ASSERT(!(DB_FLAGS(so->so_rcv_q_head) & DBLK_UIOA));
544 #endif
545 	}
546 	so->so_rcv_q_head = mp;
547 
548 #ifdef DEBUG
549 	if (so_debug_length) {
550 		mutex_enter(&so->so_lock);
551 		ASSERT(so_check_length(so));
552 		mutex_exit(&so->so_lock);
553 	}
554 #endif
555 }
556 
557 /*
558  * Move a mblk chain (mp_head, mp_last_head) to the sonode's rcv queue so it
559  * can be processed by so_dequeue_msg().
560  */
561 void
562 so_process_new_message(struct sonode *so, mblk_t *mp_head, mblk_t *mp_last_head)
563 {
564 	if (so->so_filter_active > 0 &&
565 	    (mp_head = sof_filter_data_in_proc(so, mp_head,
566 	    &mp_last_head)) == NULL)
567 		return;
568 
569 	ASSERT(mp_head->b_prev != NULL);
570 	if (so->so_rcv_q_head == NULL) {
571 		so->so_rcv_q_head = mp_head;
572 		so->so_rcv_q_last_head = mp_last_head;
573 		ASSERT(so->so_rcv_q_last_head->b_prev != NULL);
574 	} else {
575 		boolean_t flag_equal = ((DB_FLAGS(mp_head) & DBLK_UIOA) ==
576 		    (DB_FLAGS(so->so_rcv_q_last_head) & DBLK_UIOA));
577 
578 		if (mp_head->b_next == NULL &&
579 		    DB_TYPE(mp_head) == M_DATA &&
580 		    DB_TYPE(so->so_rcv_q_last_head) == M_DATA && flag_equal) {
581 			so->so_rcv_q_last_head->b_prev->b_cont = mp_head;
582 			so->so_rcv_q_last_head->b_prev = mp_head->b_prev;
583 			mp_head->b_prev = NULL;
584 		} else if (flag_equal && (DB_FLAGS(mp_head) & DBLK_UIOA)) {
585 			/*
586 			 * Append to last_head if more than one mblks, and both
587 			 * mp_head and last_head are I/OAT mblks.
588 			 */
589 			ASSERT(mp_head->b_next != NULL);
590 			so->so_rcv_q_last_head->b_prev->b_cont = mp_head;
591 			so->so_rcv_q_last_head->b_prev = mp_head->b_prev;
592 			mp_head->b_prev = NULL;
593 
594 			so->so_rcv_q_last_head->b_next = mp_head->b_next;
595 			mp_head->b_next = NULL;
596 			so->so_rcv_q_last_head = mp_last_head;
597 		} else {
598 #ifdef DEBUG
599 			{
600 				mblk_t *tmp_mblk;
601 				tmp_mblk = mp_head;
602 				while (tmp_mblk != NULL) {
603 					ASSERT(tmp_mblk->b_prev != NULL);
604 					tmp_mblk = tmp_mblk->b_next;
605 				}
606 			}
607 #endif
608 			so->so_rcv_q_last_head->b_next = mp_head;
609 			so->so_rcv_q_last_head = mp_last_head;
610 		}
611 	}
612 }
613 
614 /*
615  * Check flow control on a given sonode.  Must have so_lock held, and
616  * this function will release the hold.  Return true if flow control
617  * is cleared.
618  */
619 boolean_t
620 so_check_flow_control(struct sonode *so)
621 {
622 	ASSERT(MUTEX_HELD(&so->so_lock));
623 
624 	if (so->so_flowctrld && (so->so_rcv_queued < so->so_rcvlowat &&
625 	    !(so->so_state & SS_FIL_RCV_FLOWCTRL))) {
626 		so->so_flowctrld = B_FALSE;
627 		mutex_exit(&so->so_lock);
628 		/*
629 		 * Open up flow control. SCTP does not have any downcalls, and
630 		 * it will clr flow ctrl in sosctp_recvmsg().
631 		 */
632 		if (so->so_downcalls != NULL &&
633 		    so->so_downcalls->sd_clr_flowctrl != NULL) {
634 			(*so->so_downcalls->sd_clr_flowctrl)
635 			    (so->so_proto_handle);
636 		}
637 		/* filters can start injecting data */
638 		sof_sonode_notify_filters(so, SOF_EV_INJECT_DATA_IN_OK, 0);
639 		return (B_TRUE);
640 	} else {
641 		mutex_exit(&so->so_lock);
642 		return (B_FALSE);
643 	}
644 }
645 
646 int
647 so_dequeue_msg(struct sonode *so, mblk_t **mctlp, struct uio *uiop,
648     rval_t *rvalp, int flags)
649 {
650 	mblk_t	*mp, *nmp;
651 	mblk_t	*savemp, *savemptail;
652 	mblk_t	*new_msg_head;
653 	mblk_t	*new_msg_last_head;
654 	mblk_t	*last_tail;
655 	boolean_t partial_read;
656 	boolean_t reset_atmark = B_FALSE;
657 	int more = 0;
658 	int error;
659 	ssize_t oobmark;
660 	sodirect_t *sodp = so->so_direct;
661 
662 	partial_read = B_FALSE;
663 	*mctlp = NULL;
664 again:
665 	mutex_enter(&so->so_lock);
666 again1:
667 #ifdef DEBUG
668 	if (so_debug_length) {
669 		ASSERT(so_check_length(so));
670 	}
671 #endif
672 	if (so->so_state & SS_RCVATMARK) {
673 		/* Check whether the caller is OK to read past the mark */
674 		if (flags & MSG_NOMARK) {
675 			mutex_exit(&so->so_lock);
676 			return (EWOULDBLOCK);
677 		}
678 		reset_atmark = B_TRUE;
679 	}
680 	/*
681 	 * First move messages from the dump area to processing area
682 	 */
683 	if (sodp != NULL) {
684 		if (sodp->sod_enabled) {
685 			if (sodp->sod_uioa.uioa_state & UIOA_ALLOC) {
686 				/* nothing to uioamove */
687 				sodp = NULL;
688 			} else if (sodp->sod_uioa.uioa_state & UIOA_INIT) {
689 				sodp->sod_uioa.uioa_state &= UIOA_CLR;
690 				sodp->sod_uioa.uioa_state |= UIOA_ENABLED;
691 				/*
692 				 * try to uioamove() the data that
693 				 * has already queued.
694 				 */
695 				sod_uioa_so_init(so, sodp, uiop);
696 			}
697 		} else {
698 			sodp = NULL;
699 		}
700 	}
701 	new_msg_head = so->so_rcv_head;
702 	new_msg_last_head = so->so_rcv_last_head;
703 	so->so_rcv_head = NULL;
704 	so->so_rcv_last_head = NULL;
705 	oobmark = so->so_oobmark;
706 	/*
707 	 * We can release the lock as there can only be one reader
708 	 */
709 	mutex_exit(&so->so_lock);
710 
711 	if (new_msg_head != NULL) {
712 		so_process_new_message(so, new_msg_head, new_msg_last_head);
713 	}
714 	savemp = savemptail = NULL;
715 	rvalp->r_vals = 0;
716 	error = 0;
717 	mp = so->so_rcv_q_head;
718 
719 	if (mp != NULL &&
720 	    (so->so_rcv_timer_tid == 0 ||
721 	    so->so_rcv_queued >= so->so_rcv_thresh)) {
722 		partial_read = B_FALSE;
723 
724 		if (flags & MSG_PEEK) {
725 			if ((nmp = dupmsg(mp)) == NULL &&
726 			    (nmp = copymsg(mp)) == NULL) {
727 				size_t size = msgsize(mp);
728 
729 				error = strwaitbuf(size, BPRI_HI);
730 				if (error) {
731 					return (error);
732 				}
733 				goto again;
734 			}
735 			mp = nmp;
736 		} else {
737 			ASSERT(mp->b_prev != NULL);
738 			last_tail = mp->b_prev;
739 			mp->b_prev = NULL;
740 			so->so_rcv_q_head = mp->b_next;
741 			if (so->so_rcv_q_head == NULL) {
742 				so->so_rcv_q_last_head = NULL;
743 			}
744 			mp->b_next = NULL;
745 		}
746 
747 		ASSERT(mctlp != NULL);
748 		/*
749 		 * First process PROTO or PCPROTO blocks, if any.
750 		 */
751 		if (DB_TYPE(mp) != M_DATA) {
752 			*mctlp = mp;
753 			savemp = mp;
754 			savemptail = mp;
755 			ASSERT(DB_TYPE(mp) == M_PROTO ||
756 			    DB_TYPE(mp) == M_PCPROTO);
757 			while (mp->b_cont != NULL &&
758 			    DB_TYPE(mp->b_cont) != M_DATA) {
759 				ASSERT(DB_TYPE(mp->b_cont) == M_PROTO ||
760 				    DB_TYPE(mp->b_cont) == M_PCPROTO);
761 				mp = mp->b_cont;
762 				savemptail = mp;
763 			}
764 			mp = savemptail->b_cont;
765 			savemptail->b_cont = NULL;
766 		}
767 
768 		ASSERT(DB_TYPE(mp) == M_DATA);
769 		/*
770 		 * Now process DATA blocks, if any. Note that for sodirect
771 		 * enabled socket, uio_resid can be 0.
772 		 */
773 		if (uiop->uio_resid >= 0) {
774 			ssize_t copied = 0;
775 
776 			if (sodp != NULL && (DB_FLAGS(mp) & DBLK_UIOA)) {
777 				mutex_enter(&so->so_lock);
778 				ASSERT(uiop == (uio_t *)&sodp->sod_uioa);
779 				copied = sod_uioa_mblk(so, mp);
780 				if (copied > 0)
781 					partial_read = B_TRUE;
782 				mutex_exit(&so->so_lock);
783 				/* mark this mblk as processed */
784 				mp = NULL;
785 			} else {
786 				ssize_t oldresid = uiop->uio_resid;
787 
788 				if (MBLKL(mp) < so_mblk_pull_len) {
789 					if (pullupmsg(mp, -1) == 1) {
790 						last_tail = mp;
791 					}
792 				}
793 				/*
794 				 * Can not read beyond the oobmark
795 				 */
796 				mp = socopyoutuio(mp, uiop,
797 				    oobmark == 0 ? INFPSZ : oobmark, &error);
798 				if (error != 0) {
799 					freemsg(*mctlp);
800 					*mctlp = NULL;
801 					more = 0;
802 					goto done;
803 				}
804 				ASSERT(oldresid >= uiop->uio_resid);
805 				copied = oldresid - uiop->uio_resid;
806 				if (oldresid > uiop->uio_resid)
807 					partial_read = B_TRUE;
808 			}
809 			ASSERT(copied >= 0);
810 			if (copied > 0 && !(flags & MSG_PEEK)) {
811 				mutex_enter(&so->so_lock);
812 				so->so_rcv_queued -= copied;
813 				ASSERT(so->so_oobmark >= 0);
814 				if (so->so_oobmark > 0) {
815 					so->so_oobmark -= copied;
816 					ASSERT(so->so_oobmark >= 0);
817 					if (so->so_oobmark == 0) {
818 						ASSERT(so->so_state &
819 						    SS_OOBPEND);
820 						so->so_oobmark = 0;
821 						so->so_state |= SS_RCVATMARK;
822 					}
823 				}
824 				/*
825 				 * so_check_flow_control() will drop
826 				 * so->so_lock.
827 				 */
828 				rvalp->r_val2 = so_check_flow_control(so);
829 			}
830 		}
831 		if (mp != NULL) { /* more data blocks in msg */
832 			more |= MOREDATA;
833 			if ((flags & (MSG_PEEK|MSG_TRUNC))) {
834 				if (flags & MSG_PEEK) {
835 					freemsg(mp);
836 				} else {
837 					unsigned int msize = msgdsize(mp);
838 
839 					freemsg(mp);
840 					mutex_enter(&so->so_lock);
841 					so->so_rcv_queued -= msize;
842 					/*
843 					 * so_check_flow_control() will drop
844 					 * so->so_lock.
845 					 */
846 					rvalp->r_val2 =
847 					    so_check_flow_control(so);
848 				}
849 			} else if (partial_read && !somsghasdata(mp)) {
850 				/*
851 				 * Avoid queuing a zero-length tail part of
852 				 * a message. partial_read == 1 indicates that
853 				 * we read some of the message.
854 				 */
855 				freemsg(mp);
856 				more &= ~MOREDATA;
857 			} else {
858 				if (savemp != NULL &&
859 				    (flags & MSG_DUPCTRL)) {
860 					mblk_t *nmp;
861 					/*
862 					 * There should only be non data mblks
863 					 */
864 					ASSERT(DB_TYPE(savemp) != M_DATA &&
865 					    DB_TYPE(savemptail) != M_DATA);
866 try_again:
867 					if ((nmp = dupmsg(savemp)) == NULL &&
868 					    (nmp = copymsg(savemp)) == NULL) {
869 
870 						size_t size = msgsize(savemp);
871 
872 						error = strwaitbuf(size,
873 						    BPRI_HI);
874 						if (error != 0) {
875 							/*
876 							 * In case we
877 							 * cannot copy
878 							 * control data
879 							 * free the remaining
880 							 * data.
881 							 */
882 							freemsg(mp);
883 							goto done;
884 						}
885 						goto try_again;
886 					}
887 
888 					ASSERT(nmp != NULL);
889 					ASSERT(DB_TYPE(nmp) != M_DATA);
890 					savemptail->b_cont = mp;
891 					*mctlp = nmp;
892 					mp = savemp;
893 				}
894 				/*
895 				 * putback mp
896 				 */
897 				so_prepend_msg(so, mp, last_tail);
898 			}
899 		}
900 
901 		/* fast check so_rcv_head if there is more data */
902 		if (partial_read && !(so->so_state & SS_RCVATMARK) &&
903 		    *mctlp == NULL && uiop->uio_resid > 0 &&
904 		    !(flags & MSG_PEEK) && so->so_rcv_head != NULL) {
905 			goto again;
906 		}
907 	} else if (!partial_read) {
908 		mutex_enter(&so->so_lock);
909 		if (so->so_error != 0) {
910 			error = sogeterr(so, !(flags & MSG_PEEK));
911 			mutex_exit(&so->so_lock);
912 			return (error);
913 		}
914 		/*
915 		 * No pending data. Return right away for nonblocking
916 		 * socket, otherwise sleep waiting for data.
917 		 */
918 		if (!(so->so_state & SS_CANTRCVMORE) && uiop->uio_resid > 0) {
919 			if ((uiop->uio_fmode & (FNDELAY|FNONBLOCK)) ||
920 			    (flags & MSG_DONTWAIT)) {
921 				error = EWOULDBLOCK;
922 			} else {
923 				if (so->so_state & (SS_CLOSING |
924 				    SS_FALLBACK_PENDING)) {
925 					mutex_exit(&so->so_lock);
926 					error = EINTR;
927 					goto done;
928 				}
929 
930 				if (so->so_rcv_head != NULL) {
931 					goto again1;
932 				}
933 				so->so_rcv_wakeup = B_TRUE;
934 				so->so_rcv_wanted = uiop->uio_resid;
935 				if (so->so_rcvtimeo == 0) {
936 					/*
937 					 * Zero means disable timeout.
938 					 */
939 					error = cv_wait_sig(&so->so_rcv_cv,
940 					    &so->so_lock);
941 				} else {
942 					error = cv_reltimedwait_sig(
943 					    &so->so_rcv_cv, &so->so_lock,
944 					    so->so_rcvtimeo, TR_CLOCK_TICK);
945 				}
946 				so->so_rcv_wakeup = B_FALSE;
947 				so->so_rcv_wanted = 0;
948 
949 				if (error == 0) {
950 					error = EINTR;
951 				} else if (error == -1) {
952 					error = EAGAIN;
953 				} else {
954 					goto again1;
955 				}
956 			}
957 		}
958 		mutex_exit(&so->so_lock);
959 	}
960 	if (reset_atmark && partial_read && !(flags & MSG_PEEK)) {
961 		/*
962 		 * We are passed the mark, update state
963 		 * 4.3BSD and 4.4BSD clears the mark when peeking across it.
964 		 * The draft Posix socket spec states that the mark should
965 		 * not be cleared when peeking. We follow the latter.
966 		 */
967 		mutex_enter(&so->so_lock);
968 		ASSERT(so_verify_oobstate(so));
969 		so->so_state &= ~(SS_OOBPEND|SS_HAVEOOBDATA|SS_RCVATMARK);
970 		freemsg(so->so_oobmsg);
971 		so->so_oobmsg = NULL;
972 		ASSERT(so_verify_oobstate(so));
973 		mutex_exit(&so->so_lock);
974 	}
975 	ASSERT(so->so_rcv_wakeup == B_FALSE);
976 done:
977 	if (sodp != NULL) {
978 		mutex_enter(&so->so_lock);
979 		if (sodp->sod_enabled &&
980 		    (sodp->sod_uioa.uioa_state & UIOA_ENABLED)) {
981 			SOD_UIOAFINI(sodp);
982 			if (sodp->sod_uioa.uioa_mbytes > 0) {
983 				ASSERT(so->so_rcv_q_head != NULL ||
984 				    so->so_rcv_head != NULL);
985 				so->so_rcv_queued -= sod_uioa_mblk(so, NULL);
986 				if (error == EWOULDBLOCK)
987 					error = 0;
988 			}
989 		}
990 		mutex_exit(&so->so_lock);
991 	}
992 #ifdef DEBUG
993 	if (so_debug_length) {
994 		mutex_enter(&so->so_lock);
995 		ASSERT(so_check_length(so));
996 		mutex_exit(&so->so_lock);
997 	}
998 #endif
999 	rvalp->r_val1 = more;
1000 	ASSERT(MUTEX_NOT_HELD(&so->so_lock));
1001 	return (error);
1002 }
1003 
1004 /*
1005  * Enqueue data from the protocol on the socket's rcv queue.
1006  *
1007  * We try to hook new M_DATA mblks onto an existing chain, however,
1008  * that cannot be done if the existing chain has already been
1009  * processed by I/OAT. Non-M_DATA mblks are just linked together via
1010  * b_next. In all cases the b_prev of the enqueued mblk is set to
1011  * point to the last mblk in its b_cont chain.
1012  */
1013 void
1014 so_enqueue_msg(struct sonode *so, mblk_t *mp, size_t msg_size)
1015 {
1016 	ASSERT(MUTEX_HELD(&so->so_lock));
1017 
1018 #ifdef DEBUG
1019 	if (so_debug_length) {
1020 		ASSERT(so_check_length(so));
1021 	}
1022 #endif
1023 	so->so_rcv_queued += msg_size;
1024 
1025 	if (so->so_rcv_head == NULL) {
1026 		ASSERT(so->so_rcv_last_head == NULL);
1027 		so->so_rcv_head = mp;
1028 		so->so_rcv_last_head = mp;
1029 	} else if ((DB_TYPE(mp) == M_DATA &&
1030 	    DB_TYPE(so->so_rcv_last_head) == M_DATA) &&
1031 	    ((DB_FLAGS(mp) & DBLK_UIOA) ==
1032 	    (DB_FLAGS(so->so_rcv_last_head) & DBLK_UIOA))) {
1033 		/* Added to the end */
1034 		ASSERT(so->so_rcv_last_head != NULL);
1035 		ASSERT(so->so_rcv_last_head->b_prev != NULL);
1036 		so->so_rcv_last_head->b_prev->b_cont = mp;
1037 	} else {
1038 		/* Start a new end */
1039 		so->so_rcv_last_head->b_next = mp;
1040 		so->so_rcv_last_head = mp;
1041 	}
1042 	while (mp->b_cont != NULL)
1043 		mp = mp->b_cont;
1044 
1045 	so->so_rcv_last_head->b_prev = mp;
1046 #ifdef DEBUG
1047 	if (so_debug_length) {
1048 		ASSERT(so_check_length(so));
1049 	}
1050 #endif
1051 }
1052 
1053 /*
1054  * Return B_TRUE if there is data in the message, B_FALSE otherwise.
1055  */
1056 boolean_t
1057 somsghasdata(mblk_t *mp)
1058 {
1059 	for (; mp; mp = mp->b_cont)
1060 		if (mp->b_datap->db_type == M_DATA) {
1061 			ASSERT(mp->b_wptr >= mp->b_rptr);
1062 			if (mp->b_wptr > mp->b_rptr)
1063 				return (B_TRUE);
1064 		}
1065 	return (B_FALSE);
1066 }
1067 
1068 /*
1069  * Flush the read side of sockfs.
1070  *
1071  * The caller must be sure that a reader is not already active when the
1072  * buffer is being flushed.
1073  */
1074 void
1075 so_rcv_flush(struct sonode *so)
1076 {
1077 	mblk_t  *mp;
1078 
1079 	ASSERT(MUTEX_HELD(&so->so_lock));
1080 
1081 	if (so->so_oobmsg != NULL) {
1082 		freemsg(so->so_oobmsg);
1083 		so->so_oobmsg = NULL;
1084 		so->so_oobmark = 0;
1085 		so->so_state &=
1086 		    ~(SS_OOBPEND|SS_HAVEOOBDATA|SS_HADOOBDATA|SS_RCVATMARK);
1087 	}
1088 
1089 	/*
1090 	 * Free messages sitting in the recv queues
1091 	 */
1092 	while (so->so_rcv_q_head != NULL) {
1093 		mp = so->so_rcv_q_head;
1094 		so->so_rcv_q_head = mp->b_next;
1095 		mp->b_next = mp->b_prev = NULL;
1096 		freemsg(mp);
1097 	}
1098 	while (so->so_rcv_head != NULL) {
1099 		mp = so->so_rcv_head;
1100 		so->so_rcv_head = mp->b_next;
1101 		mp->b_next = mp->b_prev = NULL;
1102 		freemsg(mp);
1103 	}
1104 	so->so_rcv_queued = 0;
1105 	so->so_rcv_q_head = NULL;
1106 	so->so_rcv_q_last_head = NULL;
1107 	so->so_rcv_head = NULL;
1108 	so->so_rcv_last_head = NULL;
1109 }
1110 
1111 /*
1112  * Handle recv* calls that set MSG_OOB or MSG_OOB together with MSG_PEEK.
1113  */
1114 int
1115 sorecvoob(struct sonode *so, struct nmsghdr *msg, struct uio *uiop, int flags,
1116     boolean_t oob_inline)
1117 {
1118 	mblk_t		*mp, *nmp;
1119 	int		error;
1120 
1121 	dprintso(so, 1, ("sorecvoob(%p, %p, 0x%x)\n", (void *)so, (void *)msg,
1122 	    flags));
1123 
1124 	if (msg != NULL) {
1125 		/*
1126 		 * There is never any oob data with addresses or control since
1127 		 * the T_EXDATA_IND does not carry any options.
1128 		 */
1129 		msg->msg_controllen = 0;
1130 		msg->msg_namelen = 0;
1131 		msg->msg_flags = 0;
1132 	}
1133 
1134 	mutex_enter(&so->so_lock);
1135 	ASSERT(so_verify_oobstate(so));
1136 	if (oob_inline ||
1137 	    (so->so_state & (SS_OOBPEND|SS_HADOOBDATA)) != SS_OOBPEND) {
1138 		dprintso(so, 1, ("sorecvoob: inline or data consumed\n"));
1139 		mutex_exit(&so->so_lock);
1140 		return (EINVAL);
1141 	}
1142 	if (!(so->so_state & SS_HAVEOOBDATA)) {
1143 		dprintso(so, 1, ("sorecvoob: no data yet\n"));
1144 		mutex_exit(&so->so_lock);
1145 		return (EWOULDBLOCK);
1146 	}
1147 	ASSERT(so->so_oobmsg != NULL);
1148 	mp = so->so_oobmsg;
1149 	if (flags & MSG_PEEK) {
1150 		/*
1151 		 * Since recv* can not return ENOBUFS we can not use dupmsg.
1152 		 * Instead we revert to the consolidation private
1153 		 * allocb_wait plus bcopy.
1154 		 */
1155 		mblk_t *mp1;
1156 
1157 		mp1 = allocb_wait(msgdsize(mp), BPRI_MED, STR_NOSIG, NULL);
1158 		ASSERT(mp1);
1159 
1160 		while (mp != NULL) {
1161 			ssize_t size;
1162 
1163 			size = MBLKL(mp);
1164 			bcopy(mp->b_rptr, mp1->b_wptr, size);
1165 			mp1->b_wptr += size;
1166 			ASSERT(mp1->b_wptr <= mp1->b_datap->db_lim);
1167 			mp = mp->b_cont;
1168 		}
1169 		mp = mp1;
1170 	} else {
1171 		/*
1172 		 * Update the state indicating that the data has been consumed.
1173 		 * Keep SS_OOBPEND set until data is consumed past the mark.
1174 		 */
1175 		so->so_oobmsg = NULL;
1176 		so->so_state ^= SS_HAVEOOBDATA|SS_HADOOBDATA;
1177 	}
1178 	ASSERT(so_verify_oobstate(so));
1179 	mutex_exit(&so->so_lock);
1180 
1181 	error = 0;
1182 	nmp = mp;
1183 	while (nmp != NULL && uiop->uio_resid > 0) {
1184 		ssize_t n = MBLKL(nmp);
1185 
1186 		n = MIN(n, uiop->uio_resid);
1187 		if (n > 0)
1188 			error = uiomove(nmp->b_rptr, n,
1189 			    UIO_READ, uiop);
1190 		if (error)
1191 			break;
1192 		nmp = nmp->b_cont;
1193 	}
1194 	ASSERT(mp->b_next == NULL && mp->b_prev == NULL);
1195 	freemsg(mp);
1196 	return (error);
1197 }
1198 
1199 /*
1200  * Allocate and initializ sonode
1201  */
1202 /* ARGSUSED */
1203 struct sonode *
1204 socket_sonode_create(struct sockparams *sp, int family, int type,
1205     int protocol, int version, int sflags, int *errorp, struct cred *cr)
1206 {
1207 	sonode_t *so;
1208 	int	kmflags;
1209 
1210 	/*
1211 	 * Choose the right set of sonodeops based on the upcall and
1212 	 * down call version that the protocol has provided
1213 	 */
1214 	if (SOCK_UC_VERSION != sp->sp_smod_info->smod_uc_version ||
1215 	    SOCK_DC_VERSION != sp->sp_smod_info->smod_dc_version) {
1216 		/*
1217 		 * mismatch
1218 		 */
1219 #ifdef DEBUG
1220 		cmn_err(CE_CONT, "protocol and socket module version mismatch");
1221 #endif
1222 		*errorp = EINVAL;
1223 		return (NULL);
1224 	}
1225 
1226 	kmflags = (sflags & SOCKET_NOSLEEP) ? KM_NOSLEEP : KM_SLEEP;
1227 
1228 	so = kmem_cache_alloc(socket_cache, kmflags);
1229 	if (so == NULL) {
1230 		*errorp = ENOMEM;
1231 		return (NULL);
1232 	}
1233 
1234 	sonode_init(so, sp, family, type, protocol, &so_sonodeops);
1235 
1236 	if (version == SOV_DEFAULT)
1237 		version = so_default_version;
1238 
1239 	so->so_version = (short)version;
1240 
1241 	/*
1242 	 * set the default values to be INFPSZ
1243 	 * if a protocol desires it can change the value later
1244 	 */
1245 	so->so_proto_props.sopp_rxhiwat = SOCKET_RECVHIWATER;
1246 	so->so_proto_props.sopp_rxlowat = SOCKET_RECVLOWATER;
1247 	so->so_proto_props.sopp_maxpsz = INFPSZ;
1248 	so->so_proto_props.sopp_maxblk = INFPSZ;
1249 
1250 	return (so);
1251 }
1252 
1253 int
1254 socket_init_common(struct sonode *so, struct sonode *pso, int flags, cred_t *cr)
1255 {
1256 	int error = 0;
1257 
1258 	if (pso != NULL) {
1259 		/*
1260 		 * We have a passive open, so inherit basic state from
1261 		 * the parent (listener).
1262 		 *
1263 		 * No need to grab the new sonode's lock, since there is no
1264 		 * one that can have a reference to it.
1265 		 */
1266 		mutex_enter(&pso->so_lock);
1267 
1268 		so->so_state |= SS_ISCONNECTED | (pso->so_state & SS_ASYNC);
1269 		so->so_pgrp = pso->so_pgrp;
1270 		so->so_rcvtimeo = pso->so_rcvtimeo;
1271 		so->so_sndtimeo = pso->so_sndtimeo;
1272 		so->so_xpg_rcvbuf = pso->so_xpg_rcvbuf;
1273 		/*
1274 		 * Make note of the socket level options. TCP and IP level
1275 		 * options are already inherited. We could do all this after
1276 		 * accept is successful but doing it here simplifies code and
1277 		 * no harm done for error case.
1278 		 */
1279 		so->so_options = pso->so_options & (SO_DEBUG|SO_REUSEADDR|
1280 		    SO_KEEPALIVE|SO_DONTROUTE|SO_BROADCAST|SO_USELOOPBACK|
1281 		    SO_OOBINLINE|SO_DGRAM_ERRIND|SO_LINGER);
1282 		so->so_proto_props = pso->so_proto_props;
1283 		so->so_mode = pso->so_mode;
1284 		so->so_pollev = pso->so_pollev & SO_POLLEV_ALWAYS;
1285 
1286 		mutex_exit(&pso->so_lock);
1287 
1288 		/*
1289 		 * If the parent has any filters, try to inherit them.
1290 		 */
1291 		if (pso->so_filter_active > 0 &&
1292 		    (error = sof_sonode_inherit_filters(so, pso)) != 0)
1293 			return (error);
1294 
1295 	} else {
1296 		struct sockparams *sp = so->so_sockparams;
1297 		sock_upcalls_t *upcalls_to_use;
1298 
1299 		/*
1300 		 * Attach automatic filters, if there are any.
1301 		 */
1302 		if (!list_is_empty(&sp->sp_auto_filters) &&
1303 		    (error = sof_sonode_autoattach_filters(so, cr)) != 0)
1304 			return (error);
1305 
1306 		/* OK to attach filters */
1307 		so->so_state |= SS_FILOP_OK;
1308 
1309 		/*
1310 		 * Based on the version number select the right upcalls to
1311 		 * pass down. Currently we only have one version so choose
1312 		 * default
1313 		 */
1314 		upcalls_to_use = &so_upcalls;
1315 
1316 		/* active open, so create a lower handle */
1317 		so->so_proto_handle =
1318 		    sp->sp_smod_info->smod_proto_create_func(so->so_family,
1319 		    so->so_type, so->so_protocol, &so->so_downcalls,
1320 		    &so->so_mode, &error, flags, cr);
1321 
1322 		if (so->so_proto_handle == NULL) {
1323 			ASSERT(error != 0);
1324 			/*
1325 			 * To be safe; if a lower handle cannot be created, and
1326 			 * the proto does not give a reason why, assume there
1327 			 * was a lack of memory.
1328 			 */
1329 			return ((error == 0) ? ENOMEM : error);
1330 		}
1331 		ASSERT(so->so_downcalls != NULL);
1332 		ASSERT(so->so_downcalls->sd_send != NULL ||
1333 		    so->so_downcalls->sd_send_uio != NULL);
1334 		if (so->so_downcalls->sd_recv_uio != NULL) {
1335 			ASSERT(so->so_downcalls->sd_poll != NULL);
1336 			so->so_pollev |= SO_POLLEV_ALWAYS;
1337 		}
1338 
1339 		(*so->so_downcalls->sd_activate)(so->so_proto_handle,
1340 		    (sock_upper_handle_t)so, upcalls_to_use, 0, cr);
1341 
1342 		/* Wildcard */
1343 
1344 		/*
1345 		 * FIXME No need for this, the protocol can deal with it in
1346 		 * sd_create(). Should update ICMP.
1347 		 */
1348 		if (so->so_protocol != so->so_sockparams->sp_protocol) {
1349 			int protocol = so->so_protocol;
1350 			int error;
1351 			/*
1352 			 * Issue SO_PROTOTYPE setsockopt.
1353 			 */
1354 			error = socket_setsockopt(so, SOL_SOCKET, SO_PROTOTYPE,
1355 			    &protocol, (t_uscalar_t)sizeof (protocol), cr);
1356 			if (error) {
1357 				(void) (*so->so_downcalls->sd_close)
1358 				    (so->so_proto_handle, 0, cr);
1359 
1360 				mutex_enter(&so->so_lock);
1361 				so_rcv_flush(so);
1362 				mutex_exit(&so->so_lock);
1363 				/*
1364 				 * Setsockopt often fails with ENOPROTOOPT but
1365 				 * socket() should fail with
1366 				 * EPROTONOSUPPORT/EPROTOTYPE.
1367 				 */
1368 				return (EPROTONOSUPPORT);
1369 			}
1370 		}
1371 	}
1372 
1373 	if (uioasync.enabled)
1374 		sod_sock_init(so);
1375 
1376 	/* put an extra reference on the socket for the protocol */
1377 	VN_HOLD(SOTOV(so));
1378 
1379 	return (0);
1380 }
1381 
1382 /*
1383  * int socket_ioctl_common(struct sonode *so, int cmd, intptr_t arg, int mode,
1384  *         struct cred *cr, int32_t *rvalp)
1385  *
1386  * Handle ioctls that manipulate basic socket state; non-blocking,
1387  * async, etc.
1388  *
1389  * Returns:
1390  *   < 0  - ioctl was not handle
1391  *  >= 0  - ioctl was handled, if > 0, then it is an errno
1392  *
1393  * Notes:
1394  *   Assumes the standard receive buffer is used to obtain info for
1395  *   NREAD.
1396  */
1397 /* ARGSUSED */
1398 int
1399 socket_ioctl_common(struct sonode *so, int cmd, intptr_t arg, int mode,
1400     struct cred *cr, int32_t *rvalp)
1401 {
1402 	switch (cmd) {
1403 	case SIOCSQPTR:
1404 		/*
1405 		 * SIOCSQPTR is valid only when helper stream is created
1406 		 * by the protocol.
1407 		 */
1408 
1409 		return (EOPNOTSUPP);
1410 	case FIONBIO: {
1411 		int32_t value;
1412 
1413 		if (so_copyin((void *)arg, &value, sizeof (int32_t),
1414 		    (mode & (int)FKIOCTL)))
1415 			return (EFAULT);
1416 
1417 		mutex_enter(&so->so_lock);
1418 		if (value) {
1419 			so->so_state |= SS_NDELAY;
1420 		} else {
1421 			so->so_state &= ~SS_NDELAY;
1422 		}
1423 		mutex_exit(&so->so_lock);
1424 		return (0);
1425 	}
1426 	case FIOASYNC: {
1427 		int32_t value;
1428 
1429 		if (so_copyin((void *)arg, &value, sizeof (int32_t),
1430 		    (mode & (int)FKIOCTL)))
1431 			return (EFAULT);
1432 
1433 		mutex_enter(&so->so_lock);
1434 
1435 		if (value) {
1436 			/* Turn on SIGIO */
1437 			so->so_state |= SS_ASYNC;
1438 		} else {
1439 			/* Turn off SIGIO */
1440 			so->so_state &= ~SS_ASYNC;
1441 		}
1442 		mutex_exit(&so->so_lock);
1443 
1444 		return (0);
1445 	}
1446 
1447 	case SIOCSPGRP:
1448 	case FIOSETOWN: {
1449 		int error;
1450 		pid_t pid;
1451 
1452 		if (so_copyin((void *)arg, &pid, sizeof (pid_t),
1453 		    (mode & (int)FKIOCTL)))
1454 			return (EFAULT);
1455 
1456 		mutex_enter(&so->so_lock);
1457 		error = (pid != so->so_pgrp) ? socket_chgpgrp(so, pid) : 0;
1458 		mutex_exit(&so->so_lock);
1459 		return (error);
1460 	}
1461 	case SIOCGPGRP:
1462 	case FIOGETOWN:
1463 		if (so_copyout(&so->so_pgrp, (void *)arg,
1464 		    sizeof (pid_t), (mode & (int)FKIOCTL)))
1465 			return (EFAULT);
1466 
1467 		return (0);
1468 	case SIOCATMARK: {
1469 		int retval;
1470 
1471 		/*
1472 		 * Only protocols that support urgent data can handle ATMARK.
1473 		 */
1474 		if ((so->so_mode & SM_EXDATA) == 0)
1475 			return (EINVAL);
1476 
1477 		/*
1478 		 * If the protocol is maintaining its own buffer, then the
1479 		 * request must be passed down.
1480 		 */
1481 		if (so->so_downcalls->sd_recv_uio != NULL)
1482 			return (-1);
1483 
1484 		retval = (so->so_state & SS_RCVATMARK) != 0;
1485 
1486 		if (so_copyout(&retval, (void *)arg, sizeof (int),
1487 		    (mode & (int)FKIOCTL))) {
1488 			return (EFAULT);
1489 		}
1490 		return (0);
1491 	}
1492 
1493 	case FIONREAD: {
1494 		int retval;
1495 
1496 		/*
1497 		 * If the protocol is maintaining its own buffer, then the
1498 		 * request must be passed down.
1499 		 */
1500 		if (so->so_downcalls->sd_recv_uio != NULL)
1501 			return (-1);
1502 
1503 		retval = MIN(so->so_rcv_queued, INT_MAX);
1504 
1505 		if (so_copyout(&retval, (void *)arg,
1506 		    sizeof (retval), (mode & (int)FKIOCTL))) {
1507 			return (EFAULT);
1508 		}
1509 		return (0);
1510 	}
1511 
1512 	case _I_GETPEERCRED: {
1513 		int error = 0;
1514 
1515 		if ((mode & FKIOCTL) == 0)
1516 			return (EINVAL);
1517 
1518 		mutex_enter(&so->so_lock);
1519 		if ((so->so_mode & SM_CONNREQUIRED) == 0) {
1520 			error = ENOTSUP;
1521 		} else if ((so->so_state & SS_ISCONNECTED) == 0) {
1522 			error = ENOTCONN;
1523 		} else if (so->so_peercred != NULL) {
1524 			k_peercred_t *kp = (k_peercred_t *)arg;
1525 			kp->pc_cr = so->so_peercred;
1526 			kp->pc_cpid = so->so_cpid;
1527 			crhold(so->so_peercred);
1528 		} else {
1529 			error = EINVAL;
1530 		}
1531 		mutex_exit(&so->so_lock);
1532 		return (error);
1533 	}
1534 	default:
1535 		return (-1);
1536 	}
1537 }
1538 
1539 /*
1540  * Handle the I_NREAD STREAM ioctl.
1541  */
1542 static int
1543 so_strioc_nread(struct sonode *so, intptr_t arg, int mode, int32_t *rvalp)
1544 {
1545 	size_t size = 0;
1546 	int retval;
1547 	int count = 0;
1548 	mblk_t *mp;
1549 	clock_t wakeup = drv_usectohz(10);
1550 
1551 	if (so->so_downcalls == NULL ||
1552 	    so->so_downcalls->sd_recv_uio != NULL)
1553 		return (EINVAL);
1554 
1555 	mutex_enter(&so->so_lock);
1556 	/* Wait for reader to get out of the way. */
1557 	while (so->so_flag & SOREADLOCKED) {
1558 		/*
1559 		 * If reader is waiting for data, then there should be nothing
1560 		 * on the rcv queue.
1561 		 */
1562 		if (so->so_rcv_wakeup)
1563 			goto out;
1564 
1565 		/* Do a timed sleep, in case the reader goes to sleep. */
1566 		(void) cv_reltimedwait(&so->so_read_cv, &so->so_lock, wakeup,
1567 		    TR_CLOCK_TICK);
1568 	}
1569 
1570 	/*
1571 	 * Since we are holding so_lock no new reader will come in, and the
1572 	 * protocol will not be able to enqueue data. So it's safe to walk
1573 	 * both rcv queues.
1574 	 */
1575 	mp = so->so_rcv_q_head;
1576 	if (mp != NULL) {
1577 		size = msgdsize(so->so_rcv_q_head);
1578 		for (; mp != NULL; mp = mp->b_next)
1579 			count++;
1580 	} else {
1581 		/*
1582 		 * In case the processing list was empty, get the size of the
1583 		 * next msg in line.
1584 		 */
1585 		size = msgdsize(so->so_rcv_head);
1586 	}
1587 
1588 	for (mp = so->so_rcv_head; mp != NULL; mp = mp->b_next)
1589 		count++;
1590 out:
1591 	mutex_exit(&so->so_lock);
1592 
1593 	/*
1594 	 * Drop down from size_t to the "int" required by the
1595 	 * interface.  Cap at INT_MAX.
1596 	 */
1597 	retval = MIN(size, INT_MAX);
1598 	if (so_copyout(&retval, (void *)arg, sizeof (retval),
1599 	    (mode & (int)FKIOCTL))) {
1600 		return (EFAULT);
1601 	} else {
1602 		*rvalp = count;
1603 		return (0);
1604 	}
1605 }
1606 
1607 /*
1608  * Process STREAM ioctls.
1609  *
1610  * Returns:
1611  *   < 0  - ioctl was not handle
1612  *  >= 0  - ioctl was handled, if > 0, then it is an errno
1613  */
1614 int
1615 socket_strioc_common(struct sonode *so, int cmd, intptr_t arg, int mode,
1616     struct cred *cr, int32_t *rvalp)
1617 {
1618 	int retval;
1619 
1620 	/* Only STREAM iotcls are handled here */
1621 	if ((cmd & 0xffffff00U) != STR)
1622 		return (-1);
1623 
1624 	switch (cmd) {
1625 	case I_CANPUT:
1626 		/*
1627 		 * We return an error for I_CANPUT so that isastream(3C) will
1628 		 * not report the socket as being a STREAM.
1629 		 */
1630 		return (EOPNOTSUPP);
1631 	case I_NREAD:
1632 		/* Avoid doing a fallback for I_NREAD. */
1633 		return (so_strioc_nread(so, arg, mode, rvalp));
1634 	case I_LOOK:
1635 		/* Avoid doing a fallback for I_LOOK. */
1636 		if (so_copyout("sockmod", (void *)arg, strlen("sockmod") + 1,
1637 		    (mode & (int)FKIOCTL))) {
1638 			return (EFAULT);
1639 		}
1640 		return (0);
1641 	default:
1642 		break;
1643 	}
1644 
1645 	/*
1646 	 * Try to fall back to TPI, and if successful, reissue the ioctl.
1647 	 */
1648 	if ((retval = so_tpi_fallback(so, cr)) == 0) {
1649 		/* Reissue the ioctl */
1650 		ASSERT(so->so_rcv_q_head == NULL);
1651 		return (SOP_IOCTL(so, cmd, arg, mode, cr, rvalp));
1652 	} else {
1653 		return (retval);
1654 	}
1655 }
1656 
1657 /*
1658  * This is called for all socket types to verify that the buffer size is large
1659  * enough for the option, and if we can, handle the request as well. Most
1660  * options will be forwarded to the protocol.
1661  */
1662 int
1663 socket_getopt_common(struct sonode *so, int level, int option_name,
1664     void *optval, socklen_t *optlenp, int flags)
1665 {
1666 	if (level != SOL_SOCKET)
1667 		return (-1);
1668 
1669 	switch (option_name) {
1670 	case SO_ERROR:
1671 	case SO_DOMAIN:
1672 	case SO_TYPE:
1673 	case SO_ACCEPTCONN: {
1674 		int32_t value;
1675 		socklen_t optlen = *optlenp;
1676 
1677 		if (optlen < (t_uscalar_t)sizeof (int32_t)) {
1678 			return (EINVAL);
1679 		}
1680 
1681 		switch (option_name) {
1682 		case SO_ERROR:
1683 			mutex_enter(&so->so_lock);
1684 			value = sogeterr(so, B_TRUE);
1685 			mutex_exit(&so->so_lock);
1686 			break;
1687 		case SO_DOMAIN:
1688 			value = so->so_family;
1689 			break;
1690 		case SO_TYPE:
1691 			value = so->so_type;
1692 			break;
1693 		case SO_ACCEPTCONN:
1694 			if (so->so_state & SS_ACCEPTCONN)
1695 				value = SO_ACCEPTCONN;
1696 			else
1697 				value = 0;
1698 			break;
1699 		}
1700 
1701 		bcopy(&value, optval, sizeof (value));
1702 		*optlenp = sizeof (value);
1703 
1704 		return (0);
1705 	}
1706 	case SO_SNDTIMEO:
1707 	case SO_RCVTIMEO: {
1708 		clock_t value;
1709 		socklen_t optlen = *optlenp;
1710 
1711 		if (get_udatamodel() == DATAMODEL_NONE ||
1712 		    get_udatamodel() == DATAMODEL_NATIVE) {
1713 			if (optlen < sizeof (struct timeval))
1714 				return (EINVAL);
1715 		} else {
1716 			if (optlen < sizeof (struct timeval32))
1717 				return (EINVAL);
1718 		}
1719 		if (option_name == SO_RCVTIMEO)
1720 			value = drv_hztousec(so->so_rcvtimeo);
1721 		else
1722 			value = drv_hztousec(so->so_sndtimeo);
1723 
1724 		if (get_udatamodel() == DATAMODEL_NONE ||
1725 		    get_udatamodel() == DATAMODEL_NATIVE) {
1726 			((struct timeval *)(optval))->tv_sec =
1727 			    value / (1000 * 1000);
1728 			((struct timeval *)(optval))->tv_usec =
1729 			    value % (1000 * 1000);
1730 			*optlenp = sizeof (struct timeval);
1731 		} else {
1732 			((struct timeval32 *)(optval))->tv_sec =
1733 			    value / (1000 * 1000);
1734 			((struct timeval32 *)(optval))->tv_usec =
1735 			    value % (1000 * 1000);
1736 			*optlenp = sizeof (struct timeval32);
1737 		}
1738 		return (0);
1739 	}
1740 	case SO_DEBUG:
1741 	case SO_REUSEADDR:
1742 	case SO_KEEPALIVE:
1743 	case SO_DONTROUTE:
1744 	case SO_BROADCAST:
1745 	case SO_USELOOPBACK:
1746 	case SO_OOBINLINE:
1747 	case SO_SNDBUF:
1748 #ifdef notyet
1749 	case SO_SNDLOWAT:
1750 	case SO_RCVLOWAT:
1751 #endif /* notyet */
1752 	case SO_DGRAM_ERRIND: {
1753 		socklen_t optlen = *optlenp;
1754 
1755 		if (optlen < (t_uscalar_t)sizeof (int32_t))
1756 			return (EINVAL);
1757 		break;
1758 	}
1759 	case SO_RCVBUF: {
1760 		socklen_t optlen = *optlenp;
1761 
1762 		if (optlen < (t_uscalar_t)sizeof (int32_t))
1763 			return (EINVAL);
1764 
1765 		if ((flags & _SOGETSOCKOPT_XPG4_2) && so->so_xpg_rcvbuf != 0) {
1766 			/*
1767 			 * XXX If SO_RCVBUF has been set and this is an
1768 			 * XPG 4.2 application then do not ask the transport
1769 			 * since the transport might adjust the value and not
1770 			 * return exactly what was set by the application.
1771 			 * For non-XPG 4.2 application we return the value
1772 			 * that the transport is actually using.
1773 			 */
1774 			*(int32_t *)optval = so->so_xpg_rcvbuf;
1775 			*optlenp = sizeof (so->so_xpg_rcvbuf);
1776 			return (0);
1777 		}
1778 		/*
1779 		 * If the option has not been set then get a default
1780 		 * value from the transport.
1781 		 */
1782 		break;
1783 	}
1784 	case SO_LINGER: {
1785 		socklen_t optlen = *optlenp;
1786 
1787 		if (optlen < (t_uscalar_t)sizeof (struct linger))
1788 			return (EINVAL);
1789 		break;
1790 	}
1791 	case SO_SND_BUFINFO: {
1792 		socklen_t optlen = *optlenp;
1793 
1794 		if (optlen < (t_uscalar_t)sizeof (struct so_snd_bufinfo))
1795 			return (EINVAL);
1796 		((struct so_snd_bufinfo *)(optval))->sbi_wroff =
1797 		    (so->so_proto_props).sopp_wroff;
1798 		((struct so_snd_bufinfo *)(optval))->sbi_maxblk =
1799 		    (so->so_proto_props).sopp_maxblk;
1800 		((struct so_snd_bufinfo *)(optval))->sbi_maxpsz =
1801 		    (so->so_proto_props).sopp_maxpsz;
1802 		((struct so_snd_bufinfo *)(optval))->sbi_tail =
1803 		    (so->so_proto_props).sopp_tail;
1804 		*optlenp = sizeof (struct so_snd_bufinfo);
1805 		return (0);
1806 	}
1807 	case SO_SND_COPYAVOID: {
1808 		sof_instance_t *inst;
1809 
1810 		/*
1811 		 * Avoid zero-copy if there is a filter with a data_out
1812 		 * callback. We could let the operation succeed, but then
1813 		 * the filter would have to copy the data anyway.
1814 		 */
1815 		for (inst = so->so_filter_top; inst != NULL;
1816 		    inst = inst->sofi_next) {
1817 			if (SOF_INTERESTED(inst, data_out))
1818 				return (EOPNOTSUPP);
1819 		}
1820 		break;
1821 	}
1822 
1823 	default:
1824 		break;
1825 	}
1826 
1827 	/* Unknown Option */
1828 	return (-1);
1829 }
1830 
1831 void
1832 socket_sonode_destroy(struct sonode *so)
1833 {
1834 	sonode_fini(so);
1835 	kmem_cache_free(socket_cache, so);
1836 }
1837 
1838 int
1839 so_zcopy_wait(struct sonode *so)
1840 {
1841 	int error = 0;
1842 
1843 	mutex_enter(&so->so_lock);
1844 	while (!(so->so_copyflag & STZCNOTIFY)) {
1845 		if (so->so_state & SS_CLOSING) {
1846 			mutex_exit(&so->so_lock);
1847 			return (EINTR);
1848 		}
1849 		if (cv_wait_sig(&so->so_copy_cv, &so->so_lock) == 0) {
1850 			error = EINTR;
1851 			break;
1852 		}
1853 	}
1854 	so->so_copyflag &= ~STZCNOTIFY;
1855 	mutex_exit(&so->so_lock);
1856 	return (error);
1857 }
1858 
1859 void
1860 so_timer_callback(void *arg)
1861 {
1862 	struct sonode *so = (struct sonode *)arg;
1863 
1864 	mutex_enter(&so->so_lock);
1865 
1866 	so->so_rcv_timer_tid = 0;
1867 	if (so->so_rcv_queued > 0) {
1868 		so_notify_data(so, so->so_rcv_queued);
1869 	} else {
1870 		mutex_exit(&so->so_lock);
1871 	}
1872 }
1873 
1874 #ifdef DEBUG
1875 /*
1876  * Verify that the length stored in so_rcv_queued and the length of data blocks
1877  * queued is same.
1878  */
1879 static boolean_t
1880 so_check_length(sonode_t *so)
1881 {
1882 	mblk_t *mp = so->so_rcv_q_head;
1883 	int len = 0;
1884 
1885 	ASSERT(MUTEX_HELD(&so->so_lock));
1886 
1887 	if (mp != NULL) {
1888 		len = msgdsize(mp);
1889 		while ((mp = mp->b_next) != NULL)
1890 			len += msgdsize(mp);
1891 	}
1892 	mp = so->so_rcv_head;
1893 	if (mp != NULL) {
1894 		len += msgdsize(mp);
1895 		while ((mp = mp->b_next) != NULL)
1896 			len += msgdsize(mp);
1897 	}
1898 	return ((len == so->so_rcv_queued) ? B_TRUE : B_FALSE);
1899 }
1900 #endif
1901 
1902 int
1903 so_get_mod_version(struct sockparams *sp)
1904 {
1905 	ASSERT(sp != NULL && sp->sp_smod_info != NULL);
1906 	return (sp->sp_smod_info->smod_version);
1907 }
1908 
1909 /*
1910  * so_start_fallback()
1911  *
1912  * Block new socket operations from coming in, and wait for active operations
1913  * to complete. Threads that are sleeping will be woken up so they can get
1914  * out of the way.
1915  *
1916  * The caller must be a reader on so_fallback_rwlock.
1917  */
1918 static boolean_t
1919 so_start_fallback(struct sonode *so)
1920 {
1921 	ASSERT(RW_READ_HELD(&so->so_fallback_rwlock));
1922 
1923 	mutex_enter(&so->so_lock);
1924 	if (so->so_state & SS_FALLBACK_PENDING) {
1925 		mutex_exit(&so->so_lock);
1926 		return (B_FALSE);
1927 	}
1928 	so->so_state |= SS_FALLBACK_PENDING;
1929 	/*
1930 	 * Poke all threads that might be sleeping. Any operation that comes
1931 	 * in after the cv_broadcast will observe the fallback pending flag
1932 	 * which cause the call to return where it would normally sleep.
1933 	 */
1934 	cv_broadcast(&so->so_state_cv);		/* threads in connect() */
1935 	cv_broadcast(&so->so_rcv_cv);		/* threads in recvmsg() */
1936 	cv_broadcast(&so->so_snd_cv);		/* threads in sendmsg() */
1937 	mutex_enter(&so->so_acceptq_lock);
1938 	cv_broadcast(&so->so_acceptq_cv);	/* threads in accept() */
1939 	mutex_exit(&so->so_acceptq_lock);
1940 	mutex_exit(&so->so_lock);
1941 
1942 	/*
1943 	 * The main reason for the rw_tryupgrade call is to provide
1944 	 * observability during the fallback process. We want to
1945 	 * be able to see if there are pending operations.
1946 	 */
1947 	if (rw_tryupgrade(&so->so_fallback_rwlock) == 0) {
1948 		/*
1949 		 * It is safe to drop and reaquire the fallback lock, because
1950 		 * we are guaranteed that another fallback cannot take place.
1951 		 */
1952 		rw_exit(&so->so_fallback_rwlock);
1953 		DTRACE_PROBE1(pending__ops__wait, (struct sonode *), so);
1954 		rw_enter(&so->so_fallback_rwlock, RW_WRITER);
1955 		DTRACE_PROBE1(pending__ops__complete, (struct sonode *), so);
1956 	}
1957 
1958 	return (B_TRUE);
1959 }
1960 
1961 /*
1962  * so_end_fallback()
1963  *
1964  * Allow socket opertions back in.
1965  *
1966  * The caller must be a writer on so_fallback_rwlock.
1967  */
1968 static void
1969 so_end_fallback(struct sonode *so)
1970 {
1971 	ASSERT(RW_ISWRITER(&so->so_fallback_rwlock));
1972 
1973 	mutex_enter(&so->so_lock);
1974 	so->so_state &= ~(SS_FALLBACK_PENDING|SS_FALLBACK_DRAIN);
1975 	mutex_exit(&so->so_lock);
1976 
1977 	rw_downgrade(&so->so_fallback_rwlock);
1978 }
1979 
1980 /*
1981  * so_quiesced_cb()
1982  *
1983  * Callback passed to the protocol during fallback. It is called once
1984  * the endpoint is quiescent.
1985  *
1986  * No requests from the user, no notifications from the protocol, so it
1987  * is safe to synchronize the state. Data can also be moved without
1988  * risk for reordering.
1989  *
1990  * We do not need to hold so_lock, since there can be only one thread
1991  * operating on the sonode.
1992  */
1993 static mblk_t *
1994 so_quiesced_cb(sock_upper_handle_t sock_handle, sock_quiesce_arg_t *arg,
1995     struct T_capability_ack *tcap,
1996     struct sockaddr *laddr, socklen_t laddrlen,
1997     struct sockaddr *faddr, socklen_t faddrlen, short opts)
1998 {
1999 	struct sonode *so = (struct sonode *)sock_handle;
2000 	boolean_t atmark;
2001 	mblk_t *retmp = NULL, **tailmpp = &retmp;
2002 
2003 	if (tcap != NULL)
2004 		sotpi_update_state(so, tcap, laddr, laddrlen, faddr, faddrlen,
2005 		    opts);
2006 
2007 	/*
2008 	 * Some protocols do not quiece the data path during fallback. Once
2009 	 * we set the SS_FALLBACK_DRAIN flag any attempt to queue data will
2010 	 * fail and the protocol is responsible for saving the data for later
2011 	 * delivery (i.e., once the fallback has completed).
2012 	 */
2013 	mutex_enter(&so->so_lock);
2014 	so->so_state |= SS_FALLBACK_DRAIN;
2015 	SOCKET_TIMER_CANCEL(so);
2016 	mutex_exit(&so->so_lock);
2017 
2018 	if (so->so_rcv_head != NULL) {
2019 		if (so->so_rcv_q_last_head == NULL)
2020 			so->so_rcv_q_head = so->so_rcv_head;
2021 		else
2022 			so->so_rcv_q_last_head->b_next = so->so_rcv_head;
2023 		so->so_rcv_q_last_head = so->so_rcv_last_head;
2024 	}
2025 
2026 	atmark = (so->so_state & SS_RCVATMARK) != 0;
2027 	/*
2028 	 * Clear any OOB state having to do with pending data. The TPI
2029 	 * code path will set the appropriate oob state when we move the
2030 	 * oob data to the STREAM head. We leave SS_HADOOBDATA since the oob
2031 	 * data has already been consumed.
2032 	 */
2033 	so->so_state &= ~(SS_RCVATMARK|SS_OOBPEND|SS_HAVEOOBDATA);
2034 
2035 	ASSERT(so->so_oobmsg != NULL || so->so_oobmark <= so->so_rcv_queued);
2036 
2037 	/*
2038 	 * Move data to the STREAM head.
2039 	 */
2040 	while (so->so_rcv_q_head != NULL) {
2041 		mblk_t *mp = so->so_rcv_q_head;
2042 		size_t mlen = msgdsize(mp);
2043 
2044 		so->so_rcv_q_head = mp->b_next;
2045 		mp->b_next = NULL;
2046 		mp->b_prev = NULL;
2047 
2048 		/*
2049 		 * Send T_EXDATA_IND if we are at the oob mark.
2050 		 */
2051 		if (atmark) {
2052 			struct T_exdata_ind *tei;
2053 			mblk_t *mp1 = arg->soqa_exdata_mp;
2054 
2055 			arg->soqa_exdata_mp = NULL;
2056 			ASSERT(mp1 != NULL);
2057 			mp1->b_datap->db_type = M_PROTO;
2058 			tei = (struct T_exdata_ind *)mp1->b_rptr;
2059 			tei->PRIM_type = T_EXDATA_IND;
2060 			tei->MORE_flag = 0;
2061 			mp1->b_wptr = (uchar_t *)&tei[1];
2062 
2063 			if (IS_SO_OOB_INLINE(so)) {
2064 				mp1->b_cont = mp;
2065 			} else {
2066 				ASSERT(so->so_oobmsg != NULL);
2067 				mp1->b_cont = so->so_oobmsg;
2068 				so->so_oobmsg = NULL;
2069 
2070 				/* process current mp next time around */
2071 				mp->b_next = so->so_rcv_q_head;
2072 				so->so_rcv_q_head = mp;
2073 				mlen = 0;
2074 			}
2075 			mp = mp1;
2076 
2077 			/* we have consumed the oob mark */
2078 			atmark = B_FALSE;
2079 		} else if (so->so_oobmark > 0) {
2080 			/*
2081 			 * Check if the OOB mark is within the current
2082 			 * mblk chain. In that case we have to split it up.
2083 			 */
2084 			if (so->so_oobmark < mlen) {
2085 				mblk_t *urg_mp = mp;
2086 
2087 				atmark = B_TRUE;
2088 				mp = NULL;
2089 				mlen = so->so_oobmark;
2090 
2091 				/*
2092 				 * It is assumed that the OOB mark does
2093 				 * not land within a mblk.
2094 				 */
2095 				do {
2096 					so->so_oobmark -= MBLKL(urg_mp);
2097 					mp = urg_mp;
2098 					urg_mp = urg_mp->b_cont;
2099 				} while (so->so_oobmark > 0);
2100 				mp->b_cont = NULL;
2101 				if (urg_mp != NULL) {
2102 					urg_mp->b_next = so->so_rcv_q_head;
2103 					so->so_rcv_q_head = urg_mp;
2104 				}
2105 			} else {
2106 				so->so_oobmark -= mlen;
2107 				if (so->so_oobmark == 0)
2108 					atmark = B_TRUE;
2109 			}
2110 		}
2111 
2112 		/*
2113 		 * Queue data on the STREAM head.
2114 		 */
2115 		so->so_rcv_queued -= mlen;
2116 		*tailmpp = mp;
2117 		tailmpp = &mp->b_next;
2118 	}
2119 	so->so_rcv_head = NULL;
2120 	so->so_rcv_last_head = NULL;
2121 	so->so_rcv_q_head = NULL;
2122 	so->so_rcv_q_last_head = NULL;
2123 
2124 	/*
2125 	 * Check if the oob byte is at the end of the data stream, or if the
2126 	 * oob byte has not yet arrived. In the latter case we have to send a
2127 	 * SIGURG and a mark indicator to the STREAM head. The mark indicator
2128 	 * is needed to guarantee correct behavior for SIOCATMARK. See block
2129 	 * comment in socktpi.h for more details.
2130 	 */
2131 	if (atmark || so->so_oobmark > 0) {
2132 		mblk_t *mp;
2133 
2134 		if (atmark && so->so_oobmsg != NULL) {
2135 			struct T_exdata_ind *tei;
2136 
2137 			mp = arg->soqa_exdata_mp;
2138 			arg->soqa_exdata_mp = NULL;
2139 			ASSERT(mp != NULL);
2140 			mp->b_datap->db_type = M_PROTO;
2141 			tei = (struct T_exdata_ind *)mp->b_rptr;
2142 			tei->PRIM_type = T_EXDATA_IND;
2143 			tei->MORE_flag = 0;
2144 			mp->b_wptr = (uchar_t *)&tei[1];
2145 
2146 			mp->b_cont = so->so_oobmsg;
2147 			so->so_oobmsg = NULL;
2148 
2149 			*tailmpp = mp;
2150 			tailmpp = &mp->b_next;
2151 		} else {
2152 			/* Send up the signal */
2153 			mp = arg->soqa_exdata_mp;
2154 			arg->soqa_exdata_mp = NULL;
2155 			ASSERT(mp != NULL);
2156 			DB_TYPE(mp) = M_PCSIG;
2157 			*mp->b_wptr++ = (uchar_t)SIGURG;
2158 			*tailmpp = mp;
2159 			tailmpp = &mp->b_next;
2160 
2161 			/* Send up the mark indicator */
2162 			mp = arg->soqa_urgmark_mp;
2163 			arg->soqa_urgmark_mp = NULL;
2164 			mp->b_flag = atmark ? MSGMARKNEXT : MSGNOTMARKNEXT;
2165 			*tailmpp = mp;
2166 			tailmpp = &mp->b_next;
2167 
2168 			so->so_oobmark = 0;
2169 		}
2170 	}
2171 	ASSERT(so->so_oobmark == 0);
2172 	ASSERT(so->so_rcv_queued == 0);
2173 
2174 	return (retmp);
2175 }
2176 
2177 #ifdef DEBUG
2178 /*
2179  * Do an integrity check of the sonode. This should be done if a
2180  * fallback fails after sonode has initially been converted to use
2181  * TPI and subsequently have to be reverted.
2182  *
2183  * Failure to pass the integrity check will panic the system.
2184  */
2185 void
2186 so_integrity_check(struct sonode *cur, struct sonode *orig)
2187 {
2188 	VERIFY(cur->so_vnode == orig->so_vnode);
2189 	VERIFY(cur->so_ops == orig->so_ops);
2190 	/*
2191 	 * For so_state we can only VERIFY the state flags in CHECK_STATE.
2192 	 * The other state flags might be affected by a notification from the
2193 	 * protocol.
2194 	 */
2195 #define	CHECK_STATE	(SS_CANTRCVMORE|SS_CANTSENDMORE|SS_NDELAY|SS_NONBLOCK| \
2196 	SS_ASYNC|SS_ACCEPTCONN|SS_SAVEDEOR|SS_RCVATMARK|SS_OOBPEND| \
2197 	SS_HAVEOOBDATA|SS_HADOOBDATA|SS_SENTLASTREADSIG|SS_SENTLASTWRITESIG)
2198 	VERIFY((cur->so_state & (orig->so_state & CHECK_STATE)) ==
2199 	    (orig->so_state & CHECK_STATE));
2200 	VERIFY(cur->so_mode == orig->so_mode);
2201 	VERIFY(cur->so_flag == orig->so_flag);
2202 	VERIFY(cur->so_count == orig->so_count);
2203 	/* Cannot VERIFY so_proto_connid; proto can update it */
2204 	VERIFY(cur->so_sockparams == orig->so_sockparams);
2205 	/* an error might have been recorded, but it can not be lost */
2206 	VERIFY(cur->so_error != 0 || orig->so_error == 0);
2207 	VERIFY(cur->so_family == orig->so_family);
2208 	VERIFY(cur->so_type == orig->so_type);
2209 	VERIFY(cur->so_protocol == orig->so_protocol);
2210 	VERIFY(cur->so_version == orig->so_version);
2211 	/* New conns might have arrived, but none should have been lost */
2212 	VERIFY(cur->so_acceptq_len >= orig->so_acceptq_len);
2213 	VERIFY(list_head(&cur->so_acceptq_list) ==
2214 	    list_head(&orig->so_acceptq_list));
2215 	VERIFY(cur->so_backlog == orig->so_backlog);
2216 	/* New OOB migth have arrived, but mark should not have been lost */
2217 	VERIFY(cur->so_oobmark >= orig->so_oobmark);
2218 	/* Cannot VERIFY so_oobmsg; the proto might have sent up a new one */
2219 	VERIFY(cur->so_pgrp == orig->so_pgrp);
2220 	VERIFY(cur->so_peercred == orig->so_peercred);
2221 	VERIFY(cur->so_cpid == orig->so_cpid);
2222 	VERIFY(cur->so_zoneid == orig->so_zoneid);
2223 	/* New data migth have arrived, but none should have been lost */
2224 	VERIFY(cur->so_rcv_queued >= orig->so_rcv_queued);
2225 	VERIFY(cur->so_rcv_q_head == orig->so_rcv_q_head);
2226 	VERIFY(cur->so_rcv_head == orig->so_rcv_head);
2227 	VERIFY(cur->so_proto_handle == orig->so_proto_handle);
2228 	VERIFY(cur->so_downcalls == orig->so_downcalls);
2229 	/* Cannot VERIFY so_proto_props; they can be updated by proto */
2230 }
2231 #endif
2232 
2233 /*
2234  * so_tpi_fallback()
2235  *
2236  * This is the fallback initation routine; things start here.
2237  *
2238  * Basic strategy:
2239  *   o Block new socket operations from coming in
2240  *   o Allocate/initate info needed by TPI
2241  *   o Quiesce the connection, at which point we sync
2242  *     state and move data
2243  *   o Change operations (sonodeops) associated with the socket
2244  *   o Unblock threads waiting for the fallback to finish
2245  */
2246 int
2247 so_tpi_fallback(struct sonode *so, struct cred *cr)
2248 {
2249 	int error;
2250 	queue_t *q;
2251 	struct sockparams *sp;
2252 	struct sockparams *newsp = NULL;
2253 	so_proto_fallback_func_t fbfunc;
2254 	const char *devpath;
2255 	boolean_t direct;
2256 	struct sonode *nso;
2257 	sock_quiesce_arg_t arg = { NULL, NULL };
2258 #ifdef DEBUG
2259 	struct sonode origso;
2260 #endif
2261 	error = 0;
2262 	sp = so->so_sockparams;
2263 	fbfunc = sp->sp_smod_info->smod_proto_fallback_func;
2264 
2265 	/*
2266 	 * Cannot fallback if the socket has active filters
2267 	 */
2268 	if (so->so_filter_active > 0)
2269 		return (EINVAL);
2270 
2271 	switch (so->so_family) {
2272 	case AF_INET:
2273 		devpath = sp->sp_smod_info->smod_fallback_devpath_v4;
2274 		break;
2275 	case AF_INET6:
2276 		devpath = sp->sp_smod_info->smod_fallback_devpath_v6;
2277 		break;
2278 	default:
2279 		return (EINVAL);
2280 	}
2281 
2282 	/*
2283 	 * Fallback can only happen if the socket module has a TPI device
2284 	 * and fallback function.
2285 	 */
2286 	if (devpath == NULL || fbfunc == NULL)
2287 		return (EINVAL);
2288 
2289 	/*
2290 	 * Initiate fallback; upon success we know that no new requests
2291 	 * will come in from the user.
2292 	 */
2293 	if (!so_start_fallback(so))
2294 		return (EAGAIN);
2295 #ifdef DEBUG
2296 	/*
2297 	 * Make a copy of the sonode in case we need to make an integrity
2298 	 * check later on.
2299 	 */
2300 	bcopy(so, &origso, sizeof (*so));
2301 #endif
2302 
2303 	sp->sp_stats.sps_nfallback.value.ui64++;
2304 
2305 	newsp = sockparams_hold_ephemeral_bydev(so->so_family, so->so_type,
2306 	    so->so_protocol, devpath, KM_SLEEP, &error);
2307 	if (error != 0)
2308 		goto out;
2309 
2310 	if (so->so_direct != NULL) {
2311 		sodirect_t *sodp = so->so_direct;
2312 		mutex_enter(&so->so_lock);
2313 
2314 		so->so_direct->sod_enabled = B_FALSE;
2315 		so->so_state &= ~SS_SODIRECT;
2316 		ASSERT(sodp->sod_uioafh == NULL);
2317 		mutex_exit(&so->so_lock);
2318 	}
2319 
2320 	/* Turn sonode into a TPI socket */
2321 	error = sotpi_convert_sonode(so, newsp, &direct, &q, cr);
2322 	if (error != 0)
2323 		goto out;
2324 	/*
2325 	 * When it comes to urgent data we have two cases to deal with;
2326 	 * (1) The oob byte has already arrived, or (2) the protocol has
2327 	 * notified that oob data is pending, but it has not yet arrived.
2328 	 *
2329 	 * For (1) all we need to do is send a T_EXDATA_IND to indicate were
2330 	 * in the byte stream the oob byte is. For (2) we have to send a
2331 	 * SIGURG (M_PCSIG), followed by a zero-length mblk indicating whether
2332 	 * the oob byte will be the next byte from the protocol.
2333 	 *
2334 	 * So in the worst case we need two mblks, one for the signal, another
2335 	 * for mark indication. In that case we use the exdata_mp for the sig.
2336 	 */
2337 	arg.soqa_exdata_mp = allocb_wait(sizeof (struct T_exdata_ind),
2338 	    BPRI_MED, STR_NOSIG, NULL);
2339 	arg.soqa_urgmark_mp = allocb_wait(0, BPRI_MED, STR_NOSIG, NULL);
2340 
2341 	/*
2342 	 * Now tell the protocol to start using TPI. so_quiesced_cb be
2343 	 * called once it's safe to synchronize state.
2344 	 */
2345 	DTRACE_PROBE1(proto__fallback__begin, struct sonode *, so);
2346 	error = (*fbfunc)(so->so_proto_handle, q, direct, so_quiesced_cb,
2347 	    &arg);
2348 	DTRACE_PROBE1(proto__fallback__end, struct sonode *, so);
2349 
2350 	if (error != 0) {
2351 		/* protocol was unable to do a fallback, revert the sonode */
2352 		sotpi_revert_sonode(so, cr);
2353 		goto out;
2354 	}
2355 
2356 	/*
2357 	 * Walk the accept queue and notify the proto that they should
2358 	 * fall back to TPI. The protocol will send up the T_CONN_IND.
2359 	 */
2360 	nso = list_head(&so->so_acceptq_list);
2361 	while (nso != NULL) {
2362 		int rval;
2363 		struct sonode *next;
2364 
2365 		if (arg.soqa_exdata_mp == NULL) {
2366 			arg.soqa_exdata_mp =
2367 			    allocb_wait(sizeof (struct T_exdata_ind),
2368 			    BPRI_MED, STR_NOSIG, NULL);
2369 		}
2370 		if (arg.soqa_urgmark_mp == NULL) {
2371 			arg.soqa_urgmark_mp = allocb_wait(0, BPRI_MED,
2372 			    STR_NOSIG, NULL);
2373 		}
2374 
2375 		DTRACE_PROBE1(proto__fallback__begin, struct sonode *, nso);
2376 		rval = (*fbfunc)(nso->so_proto_handle, NULL, direct,
2377 		    so_quiesced_cb, &arg);
2378 		DTRACE_PROBE1(proto__fallback__end, struct sonode *, nso);
2379 		if (rval != 0) {
2380 			/* Abort the connection */
2381 			zcmn_err(getzoneid(), CE_WARN,
2382 			    "Failed to convert socket in accept queue to TPI. "
2383 			    "Pid = %d\n", curproc->p_pid);
2384 			next = list_next(&so->so_acceptq_list, nso);
2385 			list_remove(&so->so_acceptq_list, nso);
2386 			so->so_acceptq_len--;
2387 
2388 			(void) socket_close(nso, 0, CRED());
2389 			socket_destroy(nso);
2390 			nso = next;
2391 		} else {
2392 			nso = list_next(&so->so_acceptq_list, nso);
2393 		}
2394 	}
2395 
2396 	/*
2397 	 * Now flush the acceptq, this will destroy all sockets. They will
2398 	 * be recreated in sotpi_accept().
2399 	 */
2400 	so_acceptq_flush(so, B_FALSE);
2401 
2402 	mutex_enter(&so->so_lock);
2403 	so->so_state |= SS_FALLBACK_COMP;
2404 	mutex_exit(&so->so_lock);
2405 
2406 	/*
2407 	 * Swap the sonode ops. Socket opertations that come in once this
2408 	 * is done will proceed without blocking.
2409 	 */
2410 	so->so_ops = &sotpi_sonodeops;
2411 
2412 	/*
2413 	 * Wake up any threads stuck in poll. This is needed since the poll
2414 	 * head changes when the fallback happens (moves from the sonode to
2415 	 * the STREAMS head).
2416 	 */
2417 	pollwakeup(&so->so_poll_list, POLLERR);
2418 
2419 	/*
2420 	 * When this non-STREAM socket was created we placed an extra ref on
2421 	 * the associated vnode to support asynchronous close. Drop that ref
2422 	 * here.
2423 	 */
2424 	ASSERT(SOTOV(so)->v_count >= 2);
2425 	VN_RELE(SOTOV(so));
2426 out:
2427 	so_end_fallback(so);
2428 
2429 	if (error != 0) {
2430 #ifdef DEBUG
2431 		so_integrity_check(so, &origso);
2432 #endif
2433 		zcmn_err(getzoneid(), CE_WARN,
2434 		    "Failed to convert socket to TPI (err=%d). Pid = %d\n",
2435 		    error, curproc->p_pid);
2436 		if (newsp != NULL)
2437 			SOCKPARAMS_DEC_REF(newsp);
2438 	}
2439 	if (arg.soqa_exdata_mp != NULL)
2440 		freemsg(arg.soqa_exdata_mp);
2441 	if (arg.soqa_urgmark_mp != NULL)
2442 		freemsg(arg.soqa_urgmark_mp);
2443 
2444 	return (error);
2445 }
2446