xref: /titanic_52/usr/src/uts/common/fs/sockfs/nl7curi.c (revision 42d159821800ff240cc201c8fe07f575b9e8a62b)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #include <sys/strsubr.h>
27 #include <sys/strsun.h>
28 #include <sys/param.h>
29 #include <sys/sysmacros.h>
30 #include <vm/seg_map.h>
31 #include <vm/seg_kpm.h>
32 #include <sys/condvar_impl.h>
33 #include <sys/sendfile.h>
34 #include <fs/sockfs/nl7c.h>
35 #include <fs/sockfs/nl7curi.h>
36 #include <fs/sockfs/socktpi_impl.h>
37 
38 #include <inet/common.h>
39 #include <inet/ip.h>
40 #include <inet/ip6.h>
41 #include <inet/tcp.h>
42 #include <inet/led.h>
43 #include <inet/mi.h>
44 
45 #include <inet/nca/ncadoorhdr.h>
46 #include <inet/nca/ncalogd.h>
47 #include <inet/nca/ncandd.h>
48 
49 #include <sys/promif.h>
50 
51 /*
52  * Some externs:
53  */
54 
55 extern boolean_t	nl7c_logd_enabled;
56 extern void		nl7c_logd_log(uri_desc_t *, uri_desc_t *,
57 			    time_t, ipaddr_t);
58 extern boolean_t	nl7c_close_addr(struct sonode *);
59 extern struct sonode	*nl7c_addr2portso(void *);
60 extern uri_desc_t	*nl7c_http_cond(uri_desc_t *, uri_desc_t *);
61 
62 /*
63  * Various global tuneables:
64  */
65 
66 clock_t		nl7c_uri_ttl = -1;	/* TTL in seconds (-1 == infinite) */
67 
68 boolean_t	nl7c_use_kmem = B_FALSE; /* Force use of kmem (no segmap) */
69 
70 uint64_t	nl7c_file_prefetch = 1; /* File cache prefetch pages */
71 
72 uint64_t	nl7c_uri_max = 0;	/* Maximum bytes (0 == infinite) */
73 uint64_t	nl7c_uri_bytes = 0;	/* Bytes of kmem used by URIs */
74 
75 /*
76  * Locals:
77  */
78 
79 static int	uri_rd_response(struct sonode *, uri_desc_t *,
80 		    uri_rd_t *, boolean_t);
81 static int	uri_response(struct sonode *, uri_desc_t *);
82 
83 /*
84  * HTTP scheme functions called from nl7chttp.c:
85  */
86 
87 boolean_t nl7c_http_request(char **, char *, uri_desc_t *, struct sonode *);
88 boolean_t nl7c_http_response(char **, char *, uri_desc_t *, struct sonode *);
89 boolean_t nl7c_http_cmp(void *, void *);
90 mblk_t *nl7c_http_persist(struct sonode *);
91 void nl7c_http_free(void *arg);
92 void nl7c_http_init(void);
93 
94 /*
95  * Counters that need to move to kstat and/or be removed:
96  */
97 
98 volatile uint64_t nl7c_uri_request = 0;
99 volatile uint64_t nl7c_uri_hit = 0;
100 volatile uint64_t nl7c_uri_pass = 0;
101 volatile uint64_t nl7c_uri_miss = 0;
102 volatile uint64_t nl7c_uri_temp = 0;
103 volatile uint64_t nl7c_uri_more = 0;
104 volatile uint64_t nl7c_uri_data = 0;
105 volatile uint64_t nl7c_uri_sendfilev = 0;
106 volatile uint64_t nl7c_uri_reclaim_calls = 0;
107 volatile uint64_t nl7c_uri_reclaim_cnt = 0;
108 volatile uint64_t nl7c_uri_pass_urifail = 0;
109 volatile uint64_t nl7c_uri_pass_dupbfail = 0;
110 volatile uint64_t nl7c_uri_more_get = 0;
111 volatile uint64_t nl7c_uri_pass_method = 0;
112 volatile uint64_t nl7c_uri_pass_option = 0;
113 volatile uint64_t nl7c_uri_more_eol = 0;
114 volatile uint64_t nl7c_uri_more_http = 0;
115 volatile uint64_t nl7c_uri_pass_http = 0;
116 volatile uint64_t nl7c_uri_pass_addfail = 0;
117 volatile uint64_t nl7c_uri_pass_temp = 0;
118 volatile uint64_t nl7c_uri_expire = 0;
119 volatile uint64_t nl7c_uri_purge = 0;
120 volatile uint64_t nl7c_uri_NULL1 = 0;
121 volatile uint64_t nl7c_uri_NULL2 = 0;
122 volatile uint64_t nl7c_uri_close = 0;
123 volatile uint64_t nl7c_uri_temp_close = 0;
124 volatile uint64_t nl7c_uri_free = 0;
125 volatile uint64_t nl7c_uri_temp_free = 0;
126 volatile uint64_t nl7c_uri_temp_mk = 0;
127 volatile uint64_t nl7c_uri_rd_EAGAIN = 0;
128 
129 /*
130  * Various kmem_cache_t's:
131  */
132 
133 kmem_cache_t *nl7c_uri_kmc;
134 kmem_cache_t *nl7c_uri_rd_kmc;
135 static kmem_cache_t *uri_desb_kmc;
136 static kmem_cache_t *uri_segmap_kmc;
137 
138 static void uri_kmc_reclaim(void *);
139 
140 static void nl7c_uri_reclaim(void);
141 
142 /*
143  * The URI hash is a dynamically sized A/B bucket hash, when the current
144  * hash's average bucket chain length exceeds URI_HASH_AVRG a new hash of
145  * the next P2Ps[] size is created.
146  *
147  * All lookups are done in the current hash then the new hash (if any),
148  * if there is a new has then when a current hash bucket chain is examined
149  * any uri_desc_t members will be migrated to the new hash and when the
150  * last uri_desc_t has been migrated then the new hash will become the
151  * current and the previous current hash will be freed leaving a single
152  * hash.
153  *
154  * uri_hash_t - hash bucket (chain) type, contained in the uri_hash_ab[]
155  * and can be accessed only after aquiring the uri_hash_access lock (for
156  * READER or WRITER) then acquiring the lock uri_hash_t.lock, the uri_hash_t
157  * and all linked uri_desc_t.hash members are protected. Note, a REF_HOLD()
158  * is placed on all uri_desc_t uri_hash_t list members.
159  *
160  * uri_hash_access - rwlock for all uri_hash_* variables, READER for read
161  * access and WRITER for write access. Note, WRITER is only required for
162  * hash geometry changes.
163  *
164  * uri_hash_which - which uri_hash_ab[] is the current hash.
165  *
166  * uri_hash_n[] - the P2Ps[] index for each uri_hash_ab[].
167  *
168  * uri_hash_sz[] - the size for each uri_hash_ab[].
169  *
170  * uri_hash_cnt[] - the total uri_desc_t members for each uri_hash_ab[].
171  *
172  * uri_hash_overflow[] - the uri_hash_cnt[] for each uri_hash_ab[] when
173  * a new uri_hash_ab[] needs to be created.
174  *
175  * uri_hash_ab[] - the uri_hash_t entries.
176  *
177  * uri_hash_lru[] - the last uri_hash_ab[] walked for lru reclaim.
178  */
179 
180 typedef struct uri_hash_s {
181 	struct uri_desc_s	*list;		/* List of uri_t(s) */
182 	kmutex_t		lock;
183 } uri_hash_t;
184 
185 #define	URI_HASH_AVRG	5	/* Desired average hash chain length */
186 #define	URI_HASH_N_INIT	9	/* P2Ps[] initial index */
187 
188 static krwlock_t	uri_hash_access;
189 static uint32_t		uri_hash_which = 0;
190 static uint32_t		uri_hash_n[2] = {URI_HASH_N_INIT, 0};
191 static uint32_t		uri_hash_sz[2] = {0, 0};
192 static uint32_t		uri_hash_cnt[2] = {0, 0};
193 static uint32_t		uri_hash_overflow[2] = {0, 0};
194 static uri_hash_t	*uri_hash_ab[2] = {NULL, NULL};
195 static uri_hash_t	*uri_hash_lru[2] = {NULL, NULL};
196 
197 /*
198  * Primes for N of 3 - 24 where P is first prime less then (2^(N-1))+(2^(N-2))
199  * these primes have been foud to be useful for prime sized hash tables.
200  */
201 
202 static const int P2Ps[] = {
203 	0, 0, 0, 5, 11, 23, 47, 89, 191, 383, 761, 1531, 3067,
204 	6143, 12281, 24571, 49139, 98299, 196597, 393209,
205 	786431, 1572853, 3145721, 6291449, 12582893, 0};
206 
207 /*
208  * Hash macros:
209  *
210  *    H2A(char *cp, char *ep, char c) - convert the escaped octet (ASCII)
211  *    hex multichar of the format "%HH" pointeded to by *cp to a char and
212  *    return in c, *ep points to past end of (char *), on return *cp will
213  *    point to the last char consumed.
214  *
215  *    URI_HASH(unsigned hix, char *cp, char *ep) - hash the char(s) from
216  *    *cp to *ep to the unsigned hix, cp nor ep are modified.
217  *
218  *    URI_HASH_IX(unsigned hix, int which) - convert the hash value hix to
219  *    a hash index 0 - (uri_hash_sz[which] - 1).
220  *
221  *    URI_HASH_MIGRATE(from, hp, to) - migrate the uri_hash_t *hp list
222  *    uri_desc_t members from hash from to hash to.
223  *
224  *    URI_HASH_UNLINK(cur, new, hp, puri, uri) - unlink the uri_desc_t
225  *    *uri which is a member of the uri_hash_t *hp list with a previous
226  *    list member of *puri for the uri_hash_ab[] cur. After unlinking
227  *    check for cur hash empty, if so make new cur. Note, as this macro
228  *    can change a hash chain it needs to be run under hash_access as
229  *    RW_WRITER, futher as it can change the new hash to cur any access
230  *    to the hash state must be done after either dropping locks and
231  *    starting over or making sure the global state is consistent after
232  *    as before.
233  */
234 
235 #define	H2A(cp, ep, c) {						\
236 	int	_h = 2;							\
237 	int	_n = 0;							\
238 	char	_hc;							\
239 									\
240 	while (_h > 0 && ++(cp) < (ep)) {				\
241 		if (_h == 1)						\
242 			_n *= 0x10;					\
243 		_hc = *(cp);						\
244 		if (_hc >= '0' && _hc <= '9')				\
245 			_n += _hc - '0';				\
246 		else if (_hc >= 'a' || _hc <= 'f')			\
247 			_n += _hc - 'W';				\
248 		else if (_hc >= 'A' || _hc <= 'F')			\
249 			_n += _hc - '7';				\
250 		_h--;							\
251 	}								\
252 	(c) = _n;							\
253 }
254 
255 #define	URI_HASH(hv, cp, ep) {						\
256 	char	*_s = (cp);						\
257 	char	_c;							\
258 									\
259 	while (_s < (ep)) {						\
260 		if ((_c = *_s) == '%') {				\
261 			H2A(_s, (ep), _c);				\
262 		}							\
263 		CHASH(hv, _c);						\
264 		_s++;							\
265 	}								\
266 }
267 
268 #define	URI_HASH_IX(hix, which) (hix) = (hix) % (uri_hash_sz[(which)])
269 
270 #define	URI_HASH_MIGRATE(from, hp, to) {				\
271 	uri_desc_t	*_nuri;						\
272 	uint32_t	_nhix;						\
273 	uri_hash_t	*_nhp;						\
274 									\
275 	mutex_enter(&(hp)->lock);					\
276 	while ((_nuri = (hp)->list) != NULL) {				\
277 		(hp)->list = _nuri->hash;				\
278 		atomic_add_32(&uri_hash_cnt[(from)], -1);		\
279 		atomic_add_32(&uri_hash_cnt[(to)], 1);			\
280 		_nhix = _nuri->hvalue;					\
281 		URI_HASH_IX(_nhix, to);					\
282 		_nhp = &uri_hash_ab[(to)][_nhix];			\
283 		mutex_enter(&_nhp->lock);				\
284 		_nuri->hash = _nhp->list;				\
285 		_nhp->list = _nuri;					\
286 		_nuri->hit = 0;						\
287 		mutex_exit(&_nhp->lock);				\
288 	}								\
289 	mutex_exit(&(hp)->lock);					\
290 }
291 
292 #define	URI_HASH_UNLINK(cur, new, hp, puri, uri) {			\
293 	if ((puri) != NULL) {						\
294 		(puri)->hash = (uri)->hash;				\
295 	} else {							\
296 		(hp)->list = (uri)->hash;				\
297 	}								\
298 	if (atomic_add_32_nv(&uri_hash_cnt[(cur)], -1) == 0 &&		\
299 	    uri_hash_ab[(new)] != NULL) {				\
300 		kmem_free(uri_hash_ab[cur],				\
301 		    sizeof (uri_hash_t) * uri_hash_sz[cur]);		\
302 		uri_hash_ab[(cur)] = NULL;				\
303 		uri_hash_lru[(cur)] = NULL;				\
304 		uri_hash_which = (new);					\
305 	} else {							\
306 		uri_hash_lru[(cur)] = (hp);				\
307 	}								\
308 }
309 
310 void
311 nl7c_uri_init(void)
312 {
313 	uint32_t	cur = uri_hash_which;
314 
315 	rw_init(&uri_hash_access, NULL, RW_DEFAULT, NULL);
316 
317 	uri_hash_sz[cur] = P2Ps[URI_HASH_N_INIT];
318 	uri_hash_overflow[cur] = P2Ps[URI_HASH_N_INIT] * URI_HASH_AVRG;
319 	uri_hash_ab[cur] = kmem_zalloc(sizeof (uri_hash_t) * uri_hash_sz[cur],
320 	    KM_SLEEP);
321 	uri_hash_lru[cur] = uri_hash_ab[cur];
322 
323 	nl7c_uri_kmc = kmem_cache_create("NL7C_uri_kmc", sizeof (uri_desc_t),
324 	    0, NULL, NULL, uri_kmc_reclaim, NULL, NULL, 0);
325 
326 	nl7c_uri_rd_kmc = kmem_cache_create("NL7C_uri_rd_kmc",
327 	    sizeof (uri_rd_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
328 
329 	uri_desb_kmc = kmem_cache_create("NL7C_uri_desb_kmc",
330 	    sizeof (uri_desb_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
331 
332 	uri_segmap_kmc = kmem_cache_create("NL7C_uri_segmap_kmc",
333 	    sizeof (uri_segmap_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
334 
335 	nl7c_http_init();
336 }
337 
338 #define	CV_SZ	16
339 
340 void
341 nl7c_mi_report_hash(mblk_t *mp)
342 {
343 	uri_hash_t	*hp, *pend;
344 	uri_desc_t	*uri;
345 	uint32_t	cur;
346 	uint32_t	new;
347 	int		n, nz, tot;
348 	uint32_t	cv[CV_SZ + 1];
349 
350 	rw_enter(&uri_hash_access, RW_READER);
351 	cur = uri_hash_which;
352 	new = cur ? 0 : 1;
353 next:
354 	for (n = 0; n <= CV_SZ; n++)
355 		cv[n] = 0;
356 	nz = 0;
357 	tot = 0;
358 	hp = &uri_hash_ab[cur][0];
359 	pend = &uri_hash_ab[cur][uri_hash_sz[cur]];
360 	while (hp < pend) {
361 		n = 0;
362 		for (uri = hp->list; uri != NULL; uri = uri->hash) {
363 			n++;
364 		}
365 		tot += n;
366 		if (n > 0)
367 			nz++;
368 		if (n > CV_SZ)
369 			n = CV_SZ;
370 		cv[n]++;
371 		hp++;
372 	}
373 
374 	(void) mi_mpprintf(mp, "\nHash=%s, Buckets=%d, "
375 	    "Avrg=%d\nCount by bucket:", cur != new ? "CUR" : "NEW",
376 	    uri_hash_sz[cur], nz != 0 ? ((tot * 10 + 5) / nz) / 10 : 0);
377 	(void) mi_mpprintf(mp, "Free=%d", cv[0]);
378 	for (n = 1; n < CV_SZ; n++) {
379 		int	pn = 0;
380 		char	pv[5];
381 		char	*pp = pv;
382 
383 		for (pn = n; pn < 1000; pn *= 10)
384 			*pp++ = ' ';
385 		*pp = 0;
386 		(void) mi_mpprintf(mp, "%s%d=%d", pv, n, cv[n]);
387 	}
388 	(void) mi_mpprintf(mp, "Long=%d", cv[CV_SZ]);
389 
390 	if (cur != new && uri_hash_ab[new] != NULL) {
391 		cur = new;
392 		goto next;
393 	}
394 	rw_exit(&uri_hash_access);
395 }
396 
397 void
398 nl7c_mi_report_uri(mblk_t *mp)
399 {
400 	uri_hash_t	*hp;
401 	uri_desc_t	*uri;
402 	uint32_t	cur;
403 	uint32_t	new;
404 	int		ix;
405 	int		ret;
406 	char		sc;
407 
408 	rw_enter(&uri_hash_access, RW_READER);
409 	cur = uri_hash_which;
410 	new = cur ? 0 : 1;
411 next:
412 	for (ix = 0; ix < uri_hash_sz[cur]; ix++) {
413 		hp = &uri_hash_ab[cur][ix];
414 		mutex_enter(&hp->lock);
415 		uri = hp->list;
416 		while (uri != NULL) {
417 			sc = *(uri->path.ep);
418 			*(uri->path.ep) = 0;
419 			ret = mi_mpprintf(mp, "%s: %d %d %d",
420 			    uri->path.cp, (int)uri->resplen,
421 			    (int)uri->respclen, (int)uri->count);
422 			*(uri->path.ep) = sc;
423 			if (ret == -1) break;
424 			uri = uri->hash;
425 		}
426 		mutex_exit(&hp->lock);
427 		if (ret == -1) break;
428 	}
429 	if (ret != -1 && cur != new && uri_hash_ab[new] != NULL) {
430 		cur = new;
431 		goto next;
432 	}
433 	rw_exit(&uri_hash_access);
434 }
435 
436 /*
437  * The uri_desc_t ref_t inactive function called on the last REF_RELE(),
438  * free all resources contained in the uri_desc_t. Note, the uri_desc_t
439  * will be freed by REF_RELE() on return.
440  */
441 
442 void
443 nl7c_uri_inactive(uri_desc_t *uri)
444 {
445 	int64_t	 bytes = 0;
446 
447 	if (uri->tail) {
448 		uri_rd_t *rdp = &uri->response;
449 		uri_rd_t *free = NULL;
450 
451 		while (rdp) {
452 			if (rdp->off == -1) {
453 				bytes += rdp->sz;
454 				kmem_free(rdp->data.kmem, rdp->sz);
455 			} else {
456 				VN_RELE(rdp->data.vnode);
457 			}
458 			rdp = rdp->next;
459 			if (free != NULL) {
460 				kmem_cache_free(nl7c_uri_rd_kmc, free);
461 			}
462 			free = rdp;
463 		}
464 	}
465 	if (bytes) {
466 		atomic_add_64(&nl7c_uri_bytes, -bytes);
467 	}
468 	if (uri->scheme != NULL) {
469 		nl7c_http_free(uri->scheme);
470 	}
471 	if (uri->reqmp) {
472 		freeb(uri->reqmp);
473 	}
474 }
475 
476 /*
477  * The reclaim is called by the kmem subsystem when kmem is running
478  * low. More work is needed to determine the best reclaim policy, for
479  * now we just manipulate the nl7c_uri_max global maximum bytes threshold
480  * value using a simple arithmetic backoff of the value every time this
481  * function is called then call uri_reclaim() to enforce it.
482  *
483  * Note, this value remains in place and enforced for all subsequent
484  * URI request/response processing.
485  *
486  * Note, nl7c_uri_max is currently initialized to 0 or infinite such that
487  * the first call here set it to the current uri_bytes value then backoff
488  * from there.
489  *
490  * XXX how do we determine when to increase nl7c_uri_max ???
491  */
492 
493 /*ARGSUSED*/
494 static void
495 uri_kmc_reclaim(void *arg)
496 {
497 	uint64_t new_max;
498 
499 	if ((new_max = nl7c_uri_max) == 0) {
500 		/* Currently infinite, initialize to current bytes used */
501 		nl7c_uri_max = nl7c_uri_bytes;
502 		new_max = nl7c_uri_bytes;
503 	}
504 	if (new_max > 1) {
505 		/* Lower max_bytes to 93% of current value */
506 		new_max >>= 1;			/* 50% */
507 		new_max += (new_max >> 1);	/* 75% */
508 		new_max += (new_max >> 2);	/* 93% */
509 		if (new_max < nl7c_uri_max)
510 			nl7c_uri_max = new_max;
511 		else
512 			nl7c_uri_max = 1;
513 	}
514 	nl7c_uri_reclaim();
515 }
516 
517 /*
518  * Delete a uri_desc_t from the URI hash.
519  */
520 
521 static void
522 uri_delete(uri_desc_t *del)
523 {
524 	uint32_t	hix;
525 	uri_hash_t	*hp;
526 	uri_desc_t	*uri;
527 	uri_desc_t	*puri;
528 	uint32_t	cur;
529 	uint32_t	new;
530 
531 	ASSERT(del->hash != URI_TEMP);
532 	rw_enter(&uri_hash_access, RW_WRITER);
533 	cur = uri_hash_which;
534 	new = cur ? 0 : 1;
535 next:
536 	puri = NULL;
537 	hix = del->hvalue;
538 	URI_HASH_IX(hix, cur);
539 	hp = &uri_hash_ab[cur][hix];
540 	for (uri = hp->list; uri != NULL; uri = uri->hash) {
541 		if (uri != del) {
542 			puri = uri;
543 			continue;
544 		}
545 		/*
546 		 * Found the URI, unlink from the hash chain,
547 		 * drop locks, ref release it.
548 		 */
549 		URI_HASH_UNLINK(cur, new, hp, puri, uri);
550 		rw_exit(&uri_hash_access);
551 		REF_RELE(uri);
552 		return;
553 	}
554 	if (cur != new && uri_hash_ab[new] != NULL) {
555 		/*
556 		 * Not found in current hash and have a new hash so
557 		 * check the new hash next.
558 		 */
559 		cur = new;
560 		goto next;
561 	}
562 	rw_exit(&uri_hash_access);
563 }
564 
565 /*
566  * Add a uri_desc_t to the URI hash.
567  */
568 
569 static void
570 uri_add(uri_desc_t *uri, krw_t rwlock, boolean_t nonblocking)
571 {
572 	uint32_t	hix;
573 	uri_hash_t	*hp;
574 	uint32_t	cur = uri_hash_which;
575 	uint32_t	new = cur ? 0 : 1;
576 
577 	/*
578 	 * Caller of uri_add() must hold the uri_hash_access rwlock.
579 	 */
580 	ASSERT((rwlock == RW_READER && RW_READ_HELD(&uri_hash_access)) ||
581 	    (rwlock == RW_WRITER && RW_WRITE_HELD(&uri_hash_access)));
582 	/*
583 	 * uri_add() always succeeds so add a hash ref to the URI now.
584 	 */
585 	REF_HOLD(uri);
586 again:
587 	hix = uri->hvalue;
588 	URI_HASH_IX(hix, cur);
589 	if (uri_hash_ab[new] == NULL &&
590 	    uri_hash_cnt[cur] < uri_hash_overflow[cur]) {
591 		/*
592 		 * Easy case, no new hash and current hasn't overflowed,
593 		 * add URI to current hash and return.
594 		 *
595 		 * Note, the check for uri_hash_cnt[] above aren't done
596 		 * atomictally, i.e. multiple threads can be in this code
597 		 * as RW_READER and update the cnt[], this isn't a problem
598 		 * as the check is only advisory.
599 		 */
600 	fast:
601 		atomic_add_32(&uri_hash_cnt[cur], 1);
602 		hp = &uri_hash_ab[cur][hix];
603 		mutex_enter(&hp->lock);
604 		uri->hash = hp->list;
605 		hp->list = uri;
606 		mutex_exit(&hp->lock);
607 		rw_exit(&uri_hash_access);
608 		return;
609 	}
610 	if (uri_hash_ab[new] == NULL) {
611 		/*
612 		 * Need a new a or b hash, if not already RW_WRITER
613 		 * try to upgrade our lock to writer.
614 		 */
615 		if (rwlock != RW_WRITER && ! rw_tryupgrade(&uri_hash_access)) {
616 			/*
617 			 * Upgrade failed, we can't simple exit and reenter
618 			 * the lock as after the exit and before the reenter
619 			 * the whole world can change so just wait for writer
620 			 * then do everything again.
621 			 */
622 			if (nonblocking) {
623 				/*
624 				 * Can't block, use fast-path above.
625 				 *
626 				 * XXX should have a background thread to
627 				 * handle new ab[] in this case so as to
628 				 * not overflow the cur hash to much.
629 				 */
630 				goto fast;
631 			}
632 			rw_exit(&uri_hash_access);
633 			rwlock = RW_WRITER;
634 			rw_enter(&uri_hash_access, rwlock);
635 			cur = uri_hash_which;
636 			new = cur ? 0 : 1;
637 			goto again;
638 		}
639 		rwlock = RW_WRITER;
640 		if (uri_hash_ab[new] == NULL) {
641 			/*
642 			 * Still need a new hash, allocate and initialize
643 			 * the new hash.
644 			 */
645 			uri_hash_n[new] = uri_hash_n[cur] + 1;
646 			if (uri_hash_n[new] == 0) {
647 				/*
648 				 * No larger P2Ps[] value so use current,
649 				 * i.e. 2 of the largest are better than 1 ?
650 				 */
651 				uri_hash_n[new] = uri_hash_n[cur];
652 				cmn_err(CE_NOTE, "NL7C: hash index overflow");
653 			}
654 			uri_hash_sz[new] = P2Ps[uri_hash_n[new]];
655 			ASSERT(uri_hash_cnt[new] == 0);
656 			uri_hash_overflow[new] = uri_hash_sz[new] *
657 			    URI_HASH_AVRG;
658 			uri_hash_ab[new] = kmem_zalloc(sizeof (uri_hash_t) *
659 			    uri_hash_sz[new], nonblocking ? KM_NOSLEEP :
660 			    KM_SLEEP);
661 			if (uri_hash_ab[new] == NULL) {
662 				/*
663 				 * Alloc failed, use fast-path above.
664 				 *
665 				 * XXX should have a background thread to
666 				 * handle new ab[] in this case so as to
667 				 * not overflow the cur hash to much.
668 				 */
669 				goto fast;
670 			}
671 			uri_hash_lru[new] = uri_hash_ab[new];
672 		}
673 	}
674 	/*
675 	 * Hashed against current hash so migrate any current hash chain
676 	 * members, if any.
677 	 *
678 	 * Note, the hash chain list can be checked for a non empty list
679 	 * outside of the hash chain list lock as the hash chain struct
680 	 * can't be destroyed while in the uri_hash_access rwlock, worst
681 	 * case is that a non empty list is found and after acquiring the
682 	 * lock another thread beats us to it (i.e. migrated the list).
683 	 */
684 	hp = &uri_hash_ab[cur][hix];
685 	if (hp->list != NULL) {
686 		URI_HASH_MIGRATE(cur, hp, new);
687 	}
688 	/*
689 	 * If new hash has overflowed before current hash has been
690 	 * completely migrated then walk all current hash chains and
691 	 * migrate list members now.
692 	 */
693 	if (atomic_add_32_nv(&uri_hash_cnt[new], 1) >= uri_hash_overflow[new]) {
694 		for (hix = 0; hix < uri_hash_sz[cur]; hix++) {
695 			hp = &uri_hash_ab[cur][hix];
696 			if (hp->list != NULL) {
697 				URI_HASH_MIGRATE(cur, hp, new);
698 			}
699 		}
700 	}
701 	/*
702 	 * Add URI to new hash.
703 	 */
704 	hix = uri->hvalue;
705 	URI_HASH_IX(hix, new);
706 	hp = &uri_hash_ab[new][hix];
707 	mutex_enter(&hp->lock);
708 	uri->hash = hp->list;
709 	hp->list = uri;
710 	mutex_exit(&hp->lock);
711 	/*
712 	 * Last, check to see if last cur hash chain has been
713 	 * migrated, if so free cur hash and make new hash cur.
714 	 */
715 	if (uri_hash_cnt[cur] == 0) {
716 		/*
717 		 * If we don't already hold the uri_hash_access rwlock for
718 		 * RW_WRITE try to upgrade to RW_WRITE and if successful
719 		 * check again and to see if still need to do the free.
720 		 */
721 		if ((rwlock == RW_WRITER || rw_tryupgrade(&uri_hash_access)) &&
722 		    uri_hash_cnt[cur] == 0 && uri_hash_ab[new] != 0) {
723 			kmem_free(uri_hash_ab[cur],
724 			    sizeof (uri_hash_t) * uri_hash_sz[cur]);
725 			uri_hash_ab[cur] = NULL;
726 			uri_hash_lru[cur] = NULL;
727 			uri_hash_which = new;
728 		}
729 	}
730 	rw_exit(&uri_hash_access);
731 }
732 
733 /*
734  * Lookup a uri_desc_t in the URI hash, if found free the request uri_desc_t
735  * and return the found uri_desc_t with a REF_HOLD() placed on it. Else, if
736  * add B_TRUE use the request URI to create a new hash entry. Else if add
737  * B_FALSE ...
738  */
739 
740 static uri_desc_t *
741 uri_lookup(uri_desc_t *ruri, boolean_t add, boolean_t nonblocking)
742 {
743 	uint32_t	hix;
744 	uri_hash_t	*hp;
745 	uri_desc_t	*uri;
746 	uri_desc_t	*puri;
747 	uint32_t	cur;
748 	uint32_t	new;
749 	char		*rcp = ruri->path.cp;
750 	char		*rep = ruri->path.ep;
751 
752 again:
753 	rw_enter(&uri_hash_access, RW_READER);
754 	cur = uri_hash_which;
755 	new = cur ? 0 : 1;
756 nexthash:
757 	puri = NULL;
758 	hix = ruri->hvalue;
759 	URI_HASH_IX(hix, cur);
760 	hp = &uri_hash_ab[cur][hix];
761 	mutex_enter(&hp->lock);
762 	for (uri = hp->list; uri != NULL; uri = uri->hash) {
763 		char	*ap = uri->path.cp;
764 		char	*bp = rcp;
765 		char	a, b;
766 
767 		/* Compare paths */
768 		while (bp < rep && ap < uri->path.ep) {
769 			if ((a = *ap) == '%') {
770 				/* Escaped hex multichar, convert it */
771 				H2A(ap, uri->path.ep, a);
772 			}
773 			if ((b = *bp) == '%') {
774 				/* Escaped hex multichar, convert it */
775 				H2A(bp, rep, b);
776 			}
777 			if (a != b) {
778 				/* Char's don't match */
779 				goto nexturi;
780 			}
781 			ap++;
782 			bp++;
783 		}
784 		if (bp != rep || ap != uri->path.ep) {
785 			/* Not same length */
786 			goto nexturi;
787 		}
788 		ap = uri->auth.cp;
789 		bp = ruri->auth.cp;
790 		if (ap != NULL) {
791 			if (bp == NULL) {
792 				/* URI has auth request URI doesn't */
793 				goto nexturi;
794 			}
795 			while (bp < ruri->auth.ep && ap < uri->auth.ep) {
796 				if ((a = *ap) == '%') {
797 					/* Escaped hex multichar, convert it */
798 					H2A(ap, uri->path.ep, a);
799 				}
800 				if ((b = *bp) == '%') {
801 					/* Escaped hex multichar, convert it */
802 					H2A(bp, rep, b);
803 				}
804 				if (a != b) {
805 					/* Char's don't match */
806 					goto nexturi;
807 				}
808 				ap++;
809 				bp++;
810 			}
811 			if (bp != ruri->auth.ep || ap != uri->auth.ep) {
812 				/* Not same length */
813 				goto nexturi;
814 			}
815 		} else if (bp != NULL) {
816 			/* URI doesn't have auth and request URI does */
817 			goto nexturi;
818 		}
819 		/*
820 		 * Have a path/auth match so before any other processing
821 		 * of requested URI, check for expire or request no cache
822 		 * purge.
823 		 */
824 		if (uri->expire >= 0 && uri->expire <= ddi_get_lbolt() ||
825 		    ruri->nocache) {
826 			/*
827 			 * URI has expired or request specified to not use
828 			 * the cached version, unlink the URI from the hash
829 			 * chain, release all locks, release the hash ref
830 			 * on the URI, and last look it up again.
831 			 *
832 			 * Note, this will cause all variants of the named
833 			 * URI to be purged.
834 			 */
835 			if (puri != NULL) {
836 				puri->hash = uri->hash;
837 			} else {
838 				hp->list = uri->hash;
839 			}
840 			mutex_exit(&hp->lock);
841 			atomic_add_32(&uri_hash_cnt[cur], -1);
842 			rw_exit(&uri_hash_access);
843 			if (ruri->nocache)
844 				nl7c_uri_purge++;
845 			else
846 				nl7c_uri_expire++;
847 			REF_RELE(uri);
848 			goto again;
849 		}
850 		if (uri->scheme != NULL) {
851 			/*
852 			 * URI has scheme private qualifier(s), if request
853 			 * URI doesn't or if no match skip this URI.
854 			 */
855 			if (ruri->scheme == NULL ||
856 			    ! nl7c_http_cmp(uri->scheme, ruri->scheme))
857 				goto nexturi;
858 		} else if (ruri->scheme != NULL) {
859 			/*
860 			 * URI doesn't have scheme private qualifiers but
861 			 * request URI does, no match, skip this URI.
862 			 */
863 			goto nexturi;
864 		}
865 		/*
866 		 * Have a match, ready URI for return, first put a reference
867 		 * hold on the URI, if this URI is currently being processed
868 		 * then have to wait for the processing to be completed and
869 		 * redo the lookup, else return it.
870 		 */
871 		REF_HOLD(uri);
872 		mutex_enter(&uri->proclock);
873 		if (uri->proc != NULL) {
874 			/* The URI is being processed, wait for completion */
875 			mutex_exit(&hp->lock);
876 			rw_exit(&uri_hash_access);
877 			if (! nonblocking &&
878 			    cv_wait_sig(&uri->waiting, &uri->proclock)) {
879 				/*
880 				 * URI has been processed but things may
881 				 * have changed while we were away so do
882 				 * most everything again.
883 				 */
884 				mutex_exit(&uri->proclock);
885 				REF_RELE(uri);
886 				goto again;
887 			} else {
888 				/*
889 				 * A nonblocking socket or an interrupted
890 				 * cv_wait_sig() in the first case can't
891 				 * block waiting for the processing of the
892 				 * uri hash hit uri to complete, in both
893 				 * cases just return failure to lookup.
894 				 */
895 				mutex_exit(&uri->proclock);
896 				REF_RELE(uri);
897 				return (NULL);
898 			}
899 		}
900 		mutex_exit(&uri->proclock);
901 		uri->hit++;
902 		mutex_exit(&hp->lock);
903 		rw_exit(&uri_hash_access);
904 		return (uri);
905 	nexturi:
906 		puri = uri;
907 	}
908 	mutex_exit(&hp->lock);
909 	if (cur != new && uri_hash_ab[new] != NULL) {
910 		/*
911 		 * Not found in current hash and have a new hash so
912 		 * check the new hash next.
913 		 */
914 		cur = new;
915 		goto nexthash;
916 	}
917 add:
918 	if (! add) {
919 		/* Lookup only so return failure */
920 		rw_exit(&uri_hash_access);
921 		return (NULL);
922 	}
923 	/*
924 	 * URI not hashed, finish intialization of the
925 	 * request URI, add it to the hash, return it.
926 	 */
927 	ruri->hit = 0;
928 	ruri->expire = -1;
929 	ruri->response.sz = 0;
930 	ruri->proc = (struct sonode *)~NULL;
931 	cv_init(&ruri->waiting, NULL, CV_DEFAULT, NULL);
932 	mutex_init(&ruri->proclock, NULL, MUTEX_DEFAULT, NULL);
933 	uri_add(ruri, RW_READER, nonblocking);
934 	/* uri_add() has done rw_exit(&uri_hash_access) */
935 	return (ruri);
936 }
937 
938 /*
939  * Reclaim URIs until max cache size threshold has been reached.
940  *
941  * A CLOCK based reclaim modified with a history (hit counter) counter.
942  */
943 
944 static void
945 nl7c_uri_reclaim(void)
946 {
947 	uri_hash_t	*hp, *start, *pend;
948 	uri_desc_t	*uri;
949 	uri_desc_t	*puri;
950 	uint32_t	cur;
951 	uint32_t	new;
952 
953 	nl7c_uri_reclaim_calls++;
954 again:
955 	rw_enter(&uri_hash_access, RW_WRITER);
956 	cur = uri_hash_which;
957 	new = cur ? 0 : 1;
958 next:
959 	hp = uri_hash_lru[cur];
960 	start = hp;
961 	pend = &uri_hash_ab[cur][uri_hash_sz[cur]];
962 	while (nl7c_uri_bytes > nl7c_uri_max) {
963 		puri = NULL;
964 		for (uri = hp->list; uri != NULL; uri = uri->hash) {
965 			if (uri->hit != 0) {
966 				/*
967 				 * Decrement URI activity counter and skip.
968 				 */
969 				uri->hit--;
970 				puri = uri;
971 				continue;
972 			}
973 			if (uri->proc != NULL) {
974 				/*
975 				 * Currently being processed by a socket, skip.
976 				 */
977 				continue;
978 			}
979 			/*
980 			 * Found a candidate, no hit(s) since added or last
981 			 * reclaim pass, unlink from it's hash chain, update
982 			 * lru scan pointer, drop lock, ref release it.
983 			 */
984 			URI_HASH_UNLINK(cur, new, hp, puri, uri);
985 			if (cur == uri_hash_which) {
986 				if (++hp == pend) {
987 					/* Wrap pointer */
988 					hp = uri_hash_ab[cur];
989 				}
990 				uri_hash_lru[cur] = hp;
991 			}
992 			rw_exit(&uri_hash_access);
993 			REF_RELE(uri);
994 			nl7c_uri_reclaim_cnt++;
995 			goto again;
996 		}
997 		if (++hp == pend) {
998 			/* Wrap pointer */
999 			hp = uri_hash_ab[cur];
1000 		}
1001 		if (hp == start) {
1002 			if (cur != new && uri_hash_ab[new] != NULL) {
1003 				/*
1004 				 * Done with the current hash and have a
1005 				 * new hash so check the new hash next.
1006 				 */
1007 				cur = new;
1008 				goto next;
1009 			}
1010 		}
1011 	}
1012 	rw_exit(&uri_hash_access);
1013 }
1014 
1015 /*
1016  * Called for a socket which is being freed prior to close, e.g. errored.
1017  */
1018 
1019 void
1020 nl7c_urifree(struct sonode *so)
1021 {
1022 	sotpi_info_t *sti = SOTOTPI(so);
1023 	uri_desc_t *uri = (uri_desc_t *)sti->sti_nl7c_uri;
1024 
1025 	sti->sti_nl7c_uri = NULL;
1026 	if (uri->hash != URI_TEMP) {
1027 		uri_delete(uri);
1028 		mutex_enter(&uri->proclock);
1029 		uri->proc = NULL;
1030 		if (CV_HAS_WAITERS(&uri->waiting)) {
1031 			cv_broadcast(&uri->waiting);
1032 		}
1033 		mutex_exit(&uri->proclock);
1034 		nl7c_uri_free++;
1035 	} else {
1036 		/* No proclock as uri exclusively owned by so */
1037 		uri->proc = NULL;
1038 		nl7c_uri_temp_free++;
1039 	}
1040 	REF_RELE(uri);
1041 }
1042 
1043 /*
1044  * ...
1045  *
1046  *	< 0	need more data
1047  *
1048  *	  0	parse complete
1049  *
1050  *	> 0	parse error
1051  */
1052 
1053 volatile uint64_t nl7c_resp_pfail = 0;
1054 volatile uint64_t nl7c_resp_ntemp = 0;
1055 volatile uint64_t nl7c_resp_pass = 0;
1056 
1057 static int
1058 nl7c_resp_parse(struct sonode *so, uri_desc_t *uri, char *data, int sz)
1059 {
1060 	if (! nl7c_http_response(&data, &data[sz], uri, so)) {
1061 		if (data == NULL) {
1062 			/* Parse fail */
1063 			goto pfail;
1064 		}
1065 		/* More data */
1066 		data = NULL;
1067 	} else if (data == NULL) {
1068 		goto pass;
1069 	}
1070 	if (uri->hash != URI_TEMP && uri->nocache) {
1071 		/*
1072 		 * After response parse now no cache,
1073 		 * delete it from cache, wakeup any
1074 		 * waiters on this URI, make URI_TEMP.
1075 		 */
1076 		uri_delete(uri);
1077 		mutex_enter(&uri->proclock);
1078 		if (CV_HAS_WAITERS(&uri->waiting)) {
1079 			cv_broadcast(&uri->waiting);
1080 		}
1081 		mutex_exit(&uri->proclock);
1082 		uri->hash = URI_TEMP;
1083 		nl7c_uri_temp_mk++;
1084 	}
1085 	if (data == NULL) {
1086 		/* More data needed */
1087 		return (-1);
1088 	}
1089 	/* Success */
1090 	return (0);
1091 
1092 pfail:
1093 	nl7c_resp_pfail++;
1094 	return (EINVAL);
1095 
1096 pass:
1097 	nl7c_resp_pass++;
1098 	return (ENOTSUP);
1099 }
1100 
1101 /*
1102  * Called to sink application response data, the processing of the data
1103  * is the same for a cached or temp URI (i.e. a URI for which we aren't
1104  * going to cache the URI but want to parse it for detecting response
1105  * data end such that for a persistent connection we can parse the next
1106  * request).
1107  *
1108  * On return 0 is returned for sink success, > 0 on error, and < 0 on
1109  * no so URI (note, data not sinked).
1110  */
1111 
1112 int
1113 nl7c_data(struct sonode *so, uio_t *uio)
1114 {
1115 	sotpi_info_t	*sti = SOTOTPI(so);
1116 	uri_desc_t	*uri = (uri_desc_t *)sti->sti_nl7c_uri;
1117 	iovec_t		*iov;
1118 	int		cnt;
1119 	int		sz = uio->uio_resid;
1120 	char		*data, *alloc;
1121 	char		*bp;
1122 	uri_rd_t	*rdp;
1123 	boolean_t	first;
1124 	int		error, perror;
1125 
1126 	nl7c_uri_data++;
1127 
1128 	if (uri == NULL) {
1129 		/* Socket & NL7C out of sync, disable NL7C */
1130 		sti->sti_nl7c_flags = 0;
1131 		nl7c_uri_NULL1++;
1132 		return (-1);
1133 	}
1134 
1135 	if (sti->sti_nl7c_flags & NL7C_WAITWRITE) {
1136 		sti->sti_nl7c_flags &= ~NL7C_WAITWRITE;
1137 		first = B_TRUE;
1138 	} else {
1139 		first = B_FALSE;
1140 	}
1141 
1142 	alloc = kmem_alloc(sz, KM_SLEEP);
1143 	URI_RD_ADD(uri, rdp, sz, -1);
1144 	if (rdp == NULL) {
1145 		error = ENOMEM;
1146 		goto fail;
1147 	}
1148 
1149 	if (uri->hash != URI_TEMP && uri->count > nca_max_cache_size) {
1150 		uri_delete(uri);
1151 		uri->hash = URI_TEMP;
1152 	}
1153 	data = alloc;
1154 	alloc = NULL;
1155 	rdp->data.kmem = data;
1156 	atomic_add_64(&nl7c_uri_bytes, sz);
1157 
1158 	bp = data;
1159 	while (uio->uio_resid > 0) {
1160 		iov = uio->uio_iov;
1161 		if ((cnt = iov->iov_len) == 0) {
1162 			goto next;
1163 		}
1164 		cnt = MIN(cnt, uio->uio_resid);
1165 		error = xcopyin(iov->iov_base, bp, cnt);
1166 		if (error)
1167 			goto fail;
1168 
1169 		iov->iov_base += cnt;
1170 		iov->iov_len -= cnt;
1171 		uio->uio_resid -= cnt;
1172 		uio->uio_loffset += cnt;
1173 		bp += cnt;
1174 	next:
1175 		uio->uio_iov++;
1176 		uio->uio_iovcnt--;
1177 	}
1178 
1179 	/* Successfull sink of data, response parse the data */
1180 	perror = nl7c_resp_parse(so, uri, data, sz);
1181 
1182 	/* Send the data out the connection */
1183 	error = uri_rd_response(so, uri, rdp, first);
1184 	if (error)
1185 		goto fail;
1186 
1187 	/* Success */
1188 	if (perror == 0 &&
1189 	    ((uri->respclen == URI_LEN_NOVALUE &&
1190 	    uri->resplen == URI_LEN_NOVALUE) ||
1191 	    uri->count >= uri->resplen)) {
1192 		/*
1193 		 * No more data needed and no pending response
1194 		 * data or current data count >= response length
1195 		 * so close the URI processing for this so.
1196 		 */
1197 		nl7c_close(so);
1198 		if (! (sti->sti_nl7c_flags & NL7C_SOPERSIST)) {
1199 			/* Not a persistent connection */
1200 			sti->sti_nl7c_flags = 0;
1201 		}
1202 	}
1203 
1204 	return (0);
1205 
1206 fail:
1207 	if (alloc != NULL) {
1208 		kmem_free(alloc, sz);
1209 	}
1210 	sti->sti_nl7c_flags = 0;
1211 	nl7c_urifree(so);
1212 
1213 	return (error);
1214 }
1215 
1216 /*
1217  * Called to read data from file "*fp" at offset "*off" of length "*len"
1218  * for a maximum of "*max_rem" bytes.
1219  *
1220  * On success a pointer to the kmem_alloc()ed file data is returned, "*off"
1221  * and "*len" are updated for the acutal number of bytes read and "*max_rem"
1222  * is updated with the number of bytes remaining to be read.
1223  *
1224  * Else, "NULL" is returned.
1225  */
1226 
1227 static char *
1228 nl7c_readfile(file_t *fp, u_offset_t *off, int *len, int max, int *ret)
1229 {
1230 	vnode_t	*vp = fp->f_vnode;
1231 	int	flg = 0;
1232 	size_t	size = MIN(*len, max);
1233 	char	*data;
1234 	int	error;
1235 	uio_t	uio;
1236 	iovec_t	iov;
1237 
1238 	(void) VOP_RWLOCK(vp, flg, NULL);
1239 
1240 	if (*off > MAXOFFSET_T) {
1241 		VOP_RWUNLOCK(vp, flg, NULL);
1242 		*ret = EFBIG;
1243 		return (NULL);
1244 	}
1245 
1246 	if (*off + size > MAXOFFSET_T)
1247 		size = (ssize32_t)(MAXOFFSET_T - *off);
1248 
1249 	data = kmem_alloc(size, KM_SLEEP);
1250 
1251 	iov.iov_base = data;
1252 	iov.iov_len = size;
1253 	uio.uio_loffset = *off;
1254 	uio.uio_iov = &iov;
1255 	uio.uio_iovcnt = 1;
1256 	uio.uio_resid = size;
1257 	uio.uio_segflg = UIO_SYSSPACE;
1258 	uio.uio_llimit = MAXOFFSET_T;
1259 	uio.uio_fmode = fp->f_flag;
1260 
1261 	error = VOP_READ(vp, &uio, fp->f_flag, fp->f_cred, NULL);
1262 	VOP_RWUNLOCK(vp, flg, NULL);
1263 	*ret = error;
1264 	if (error) {
1265 		kmem_free(data, size);
1266 		return (NULL);
1267 	}
1268 	*len = size;
1269 	*off += size;
1270 	return (data);
1271 }
1272 
1273 /*
1274  * Called to sink application response sendfilev, as with nl7c_data() above
1275  * all the data will be processed by NL7C unless there's an error.
1276  */
1277 
1278 int
1279 nl7c_sendfilev(struct sonode *so, u_offset_t *fileoff, sendfilevec_t *sfvp,
1280 	int sfvc, ssize_t *xfer)
1281 {
1282 	sotpi_info_t	*sti = SOTOTPI(so);
1283 	uri_desc_t	*uri = (uri_desc_t *)sti->sti_nl7c_uri;
1284 	file_t		*fp = NULL;
1285 	vnode_t		*vp = NULL;
1286 	char		*data = NULL;
1287 	u_offset_t	off;
1288 	int		len;
1289 	int		cnt;
1290 	int		total_count = 0;
1291 	char		*alloc;
1292 	uri_rd_t	*rdp;
1293 	int		max;
1294 	int		perror;
1295 	int		error = 0;
1296 	boolean_t	first = B_TRUE;
1297 
1298 	nl7c_uri_sendfilev++;
1299 
1300 	if (uri == NULL) {
1301 		/* Socket & NL7C out of sync, disable NL7C */
1302 		sti->sti_nl7c_flags = 0;
1303 		nl7c_uri_NULL2++;
1304 		return (0);
1305 	}
1306 
1307 	if (sti->sti_nl7c_flags & NL7C_WAITWRITE)
1308 		sti->sti_nl7c_flags &= ~NL7C_WAITWRITE;
1309 
1310 	while (sfvc-- > 0) {
1311 		/*
1312 		 * off - the current sfv read file offset or user address.
1313 		 *
1314 		 * len - the current sfv length in bytes.
1315 		 *
1316 		 * cnt - number of bytes kmem_alloc()ed.
1317 		 *
1318 		 * alloc - the kmem_alloc()ed buffer of size "cnt".
1319 		 *
1320 		 * data - copy of "alloc" used for post alloc references.
1321 		 *
1322 		 * fp - the current sfv file_t pointer.
1323 		 *
1324 		 * vp - the current "*vp" vnode_t pointer.
1325 		 *
1326 		 * Note, for "data" and "fp" and "vp" a NULL value is used
1327 		 * when not allocated such that the common failure path "fail"
1328 		 * is used.
1329 		 */
1330 		off = sfvp->sfv_off;
1331 		len = sfvp->sfv_len;
1332 		cnt = len;
1333 
1334 		if (len == 0) {
1335 			sfvp++;
1336 			continue;
1337 		}
1338 
1339 		if (sfvp->sfv_fd == SFV_FD_SELF) {
1340 			/*
1341 			 * User memory, copyin() all the bytes.
1342 			 */
1343 			alloc = kmem_alloc(cnt, KM_SLEEP);
1344 			error = xcopyin((caddr_t)(uintptr_t)off, alloc, cnt);
1345 			if (error)
1346 				goto fail;
1347 		} else {
1348 			/*
1349 			 * File descriptor, prefetch some bytes.
1350 			 */
1351 			if ((fp = getf(sfvp->sfv_fd)) == NULL) {
1352 				error = EBADF;
1353 				goto fail;
1354 			}
1355 			if ((fp->f_flag & FREAD) == 0) {
1356 				error = EACCES;
1357 				goto fail;
1358 			}
1359 			vp = fp->f_vnode;
1360 			if (vp->v_type != VREG) {
1361 				error = EINVAL;
1362 				goto fail;
1363 			}
1364 			VN_HOLD(vp);
1365 
1366 			/* Read max_rem bytes from file for prefetch */
1367 			if (nl7c_use_kmem) {
1368 				max = cnt;
1369 			} else {
1370 				max = MAXBSIZE * nl7c_file_prefetch;
1371 			}
1372 			alloc = nl7c_readfile(fp, &off, &cnt, max, &error);
1373 			if (alloc == NULL)
1374 				goto fail;
1375 
1376 			releasef(sfvp->sfv_fd);
1377 			fp = NULL;
1378 		}
1379 		URI_RD_ADD(uri, rdp, cnt, -1);
1380 		if (rdp == NULL) {
1381 			error = ENOMEM;
1382 			goto fail;
1383 		}
1384 		data = alloc;
1385 		alloc = NULL;
1386 		rdp->data.kmem = data;
1387 		total_count += cnt;
1388 		if (uri->hash != URI_TEMP && total_count > nca_max_cache_size) {
1389 			uri_delete(uri);
1390 			uri->hash = URI_TEMP;
1391 		}
1392 
1393 		/* Response parse */
1394 		perror = nl7c_resp_parse(so, uri, data, len);
1395 
1396 		/* Send kmem data out the connection */
1397 		error = uri_rd_response(so, uri, rdp, first);
1398 
1399 		if (error)
1400 			goto fail;
1401 
1402 		if (sfvp->sfv_fd != SFV_FD_SELF) {
1403 			/*
1404 			 * File descriptor, if any bytes left save vnode_t.
1405 			 */
1406 			if (len > cnt) {
1407 				/* More file data so add it */
1408 				URI_RD_ADD(uri, rdp, len - cnt, off);
1409 				if (rdp == NULL) {
1410 					error = ENOMEM;
1411 					goto fail;
1412 				}
1413 				rdp->data.vnode = vp;
1414 
1415 				/* Send vnode data out the connection */
1416 				error = uri_rd_response(so, uri, rdp, first);
1417 			} else {
1418 				/* All file data fit in the prefetch */
1419 				VN_RELE(vp);
1420 			}
1421 			*fileoff += len;
1422 			vp = NULL;
1423 		}
1424 		*xfer += len;
1425 		sfvp++;
1426 
1427 		if (first)
1428 			first = B_FALSE;
1429 	}
1430 	if (total_count > 0) {
1431 		atomic_add_64(&nl7c_uri_bytes, total_count);
1432 	}
1433 	if (perror == 0 &&
1434 	    ((uri->respclen == URI_LEN_NOVALUE &&
1435 	    uri->resplen == URI_LEN_NOVALUE) ||
1436 	    uri->count >= uri->resplen)) {
1437 		/*
1438 		 * No more data needed and no pending response
1439 		 * data or current data count >= response length
1440 		 * so close the URI processing for this so.
1441 		 */
1442 		nl7c_close(so);
1443 		if (! (sti->sti_nl7c_flags & NL7C_SOPERSIST)) {
1444 			/* Not a persistent connection */
1445 			sti->sti_nl7c_flags = 0;
1446 		}
1447 	}
1448 
1449 	return (0);
1450 
1451 fail:
1452 	if (error == EPIPE)
1453 		tsignal(curthread, SIGPIPE);
1454 
1455 	if (alloc != NULL)
1456 		kmem_free(data, len);
1457 
1458 	if (vp != NULL)
1459 		VN_RELE(vp);
1460 
1461 	if (fp != NULL)
1462 		releasef(sfvp->sfv_fd);
1463 
1464 	if (total_count > 0) {
1465 		atomic_add_64(&nl7c_uri_bytes, total_count);
1466 	}
1467 
1468 	sti->sti_nl7c_flags = 0;
1469 	nl7c_urifree(so);
1470 
1471 	return (error);
1472 }
1473 
1474 /*
1475  * Called for a socket which is closing or when an application has
1476  * completed sending all the response data (i.e. for a persistent
1477  * connection called once for each completed application response).
1478  */
1479 
1480 void
1481 nl7c_close(struct sonode *so)
1482 {
1483 	sotpi_info_t	*sti = SOTOTPI(so);
1484 	uri_desc_t 	*uri = (uri_desc_t *)sti->sti_nl7c_uri;
1485 
1486 	if (uri == NULL) {
1487 		/*
1488 		 * No URI being processed so might be a listen()er
1489 		 * if so do any cleanup, else nothing more to do.
1490 		 */
1491 		if (so->so_state & SS_ACCEPTCONN) {
1492 			(void) nl7c_close_addr(so);
1493 		}
1494 		return;
1495 	}
1496 	sti->sti_nl7c_uri = NULL;
1497 	if (uri->hash != URI_TEMP) {
1498 		mutex_enter(&uri->proclock);
1499 		uri->proc = NULL;
1500 		if (CV_HAS_WAITERS(&uri->waiting)) {
1501 			cv_broadcast(&uri->waiting);
1502 		}
1503 		mutex_exit(&uri->proclock);
1504 		nl7c_uri_close++;
1505 	} else {
1506 		/* No proclock as uri exclusively owned by so */
1507 		uri->proc = NULL;
1508 		nl7c_uri_temp_close++;
1509 	}
1510 	REF_RELE(uri);
1511 	if (nl7c_uri_max > 0 && nl7c_uri_bytes > nl7c_uri_max) {
1512 		nl7c_uri_reclaim();
1513 	}
1514 }
1515 
1516 /*
1517  * The uri_segmap_t ref_t inactive function called on the last REF_RELE(),
1518  * release the segmap mapping. Note, the uri_segmap_t will be freed by
1519  * REF_RELE() on return.
1520  */
1521 
1522 void
1523 uri_segmap_inactive(uri_segmap_t *smp)
1524 {
1525 	if (!segmap_kpm) {
1526 		(void) segmap_fault(kas.a_hat, segkmap, smp->base,
1527 		    smp->len, F_SOFTUNLOCK, S_OTHER);
1528 	}
1529 	(void) segmap_release(segkmap, smp->base, SM_DONTNEED);
1530 	VN_RELE(smp->vp);
1531 }
1532 
1533 /*
1534  * The call-back for desballoc()ed mblk_t's, if a segmap mapped mblk_t
1535  * release the reference, one per desballoc() of a segmap page, if a rd_t
1536  * mapped mblk_t release the reference, one per desballoc() of a uri_desc_t,
1537  * last kmem free the uri_desb_t.
1538  */
1539 
1540 static void
1541 uri_desb_free(uri_desb_t *desb)
1542 {
1543 	if (desb->segmap != NULL) {
1544 		REF_RELE(desb->segmap);
1545 	}
1546 	REF_RELE(desb->uri);
1547 	kmem_cache_free(uri_desb_kmc, desb);
1548 }
1549 
1550 /*
1551  * Segmap map up to a page of a uri_rd_t file descriptor.
1552  */
1553 
1554 uri_segmap_t *
1555 uri_segmap_map(uri_rd_t *rdp, int bytes)
1556 {
1557 	uri_segmap_t	*segmap = kmem_cache_alloc(uri_segmap_kmc, KM_SLEEP);
1558 	int		len = MIN(rdp->sz, MAXBSIZE);
1559 
1560 	if (len > bytes)
1561 		len = bytes;
1562 
1563 	REF_INIT(segmap, 1, uri_segmap_inactive, uri_segmap_kmc);
1564 	segmap->len = len;
1565 	VN_HOLD(rdp->data.vnode);
1566 	segmap->vp = rdp->data.vnode;
1567 
1568 	segmap->base = segmap_getmapflt(segkmap, segmap->vp, rdp->off, len,
1569 	    segmap_kpm ? SM_FAULT : 0, S_READ);
1570 
1571 	if (segmap_fault(kas.a_hat, segkmap, segmap->base, len,
1572 	    F_SOFTLOCK, S_READ) != 0) {
1573 		REF_RELE(segmap);
1574 		return (NULL);
1575 	}
1576 	return (segmap);
1577 }
1578 
1579 /*
1580  * Chop up the kernel virtual memory area *data of size *sz bytes for
1581  * a maximum of *bytes bytes into an besballoc()ed mblk_t chain using
1582  * the given template uri_desb_t *temp of max_mblk bytes per.
1583  *
1584  * The values of *data, *sz, and *bytes are updated on return, the
1585  * mblk_t chain is returned.
1586  */
1587 
1588 static mblk_t *
1589 uri_desb_chop(
1590 	char 		**data,
1591 	size_t		*sz,
1592 	int 		*bytes,
1593 	uri_desb_t 	*temp,
1594 	int		max_mblk,
1595 	char		*eoh,
1596 	mblk_t		*persist
1597 )
1598 {
1599 	char		*ldata = *data;
1600 	size_t		lsz = *sz;
1601 	int		lbytes = bytes ? *bytes : lsz;
1602 	uri_desb_t	*desb;
1603 	mblk_t		*mp = NULL;
1604 	mblk_t		*nmp, *pmp = NULL;
1605 	int		msz;
1606 
1607 	if (lbytes == 0 && lsz == 0)
1608 		return (NULL);
1609 
1610 	while (lbytes > 0 && lsz > 0) {
1611 		msz = MIN(lbytes, max_mblk);
1612 		msz = MIN(msz, lsz);
1613 		if (persist && eoh >= ldata && eoh < &ldata[msz]) {
1614 			msz = (eoh - ldata);
1615 			pmp = persist;
1616 			persist = NULL;
1617 			if (msz == 0) {
1618 				nmp = pmp;
1619 				pmp = NULL;
1620 				goto zero;
1621 			}
1622 		}
1623 		desb = kmem_cache_alloc(uri_desb_kmc, KM_SLEEP);
1624 		REF_HOLD(temp->uri);
1625 		if (temp->segmap) {
1626 			REF_HOLD(temp->segmap);
1627 		}
1628 		bcopy(temp, desb, sizeof (*desb));
1629 		desb->frtn.free_arg = (caddr_t)desb;
1630 		nmp = desballoc((uchar_t *)ldata, msz, BPRI_HI, &desb->frtn);
1631 		if (nmp == NULL) {
1632 			if (temp->segmap) {
1633 				REF_RELE(temp->segmap);
1634 			}
1635 			REF_RELE(temp->uri);
1636 			if (mp != NULL) {
1637 				mp->b_next = NULL;
1638 				freemsg(mp);
1639 			}
1640 			if (persist != NULL) {
1641 				freeb(persist);
1642 			}
1643 			return (NULL);
1644 		}
1645 		nmp->b_wptr += msz;
1646 	zero:
1647 		if (mp != NULL) {
1648 			mp->b_next->b_cont = nmp;
1649 		} else {
1650 			mp = nmp;
1651 		}
1652 		if (pmp != NULL) {
1653 			nmp->b_cont = pmp;
1654 			nmp = pmp;
1655 			pmp = NULL;
1656 		}
1657 		mp->b_next = nmp;
1658 		ldata += msz;
1659 		lsz -= msz;
1660 		lbytes -= msz;
1661 	}
1662 	*data = ldata;
1663 	*sz = lsz;
1664 	if (bytes)
1665 		*bytes = lbytes;
1666 	return (mp);
1667 }
1668 
1669 /*
1670  * Experimential noqwait (i.e. no canput()/qwait() checks), just send
1671  * the entire mblk_t chain down without flow-control checks.
1672  */
1673 
1674 static int
1675 kstrwritempnoqwait(struct vnode *vp, mblk_t *mp)
1676 {
1677 	struct stdata *stp;
1678 	int error = 0;
1679 
1680 	ASSERT(vp->v_stream);
1681 	stp = vp->v_stream;
1682 
1683 	/* Fast check of flags before acquiring the lock */
1684 	if (stp->sd_flag & (STWRERR|STRHUP|STPLEX)) {
1685 		mutex_enter(&stp->sd_lock);
1686 		error = strgeterr(stp, STWRERR|STRHUP|STPLEX, 0);
1687 		mutex_exit(&stp->sd_lock);
1688 		if (error != 0) {
1689 			if (!(stp->sd_flag & STPLEX) &&
1690 			    (stp->sd_wput_opt & SW_SIGPIPE)) {
1691 				error = EPIPE;
1692 			}
1693 			return (error);
1694 		}
1695 	}
1696 	putnext(stp->sd_wrq, mp);
1697 	return (0);
1698 }
1699 
1700 /*
1701  * Send the URI uri_desc_t *uri response uri_rd_t *rdp out the socket_t *so.
1702  */
1703 
1704 static int
1705 uri_rd_response(struct sonode *so,
1706     uri_desc_t *uri,
1707     uri_rd_t *rdp,
1708     boolean_t first)
1709 {
1710 	vnode_t		*vp = SOTOV(so);
1711 	int		max_mblk = (int)vp->v_stream->sd_maxblk;
1712 	int		wsz;
1713 	mblk_t		*mp, *wmp, *persist;
1714 	int		write_bytes;
1715 	uri_rd_t	rd;
1716 	uri_desb_t	desb;
1717 	uri_segmap_t	*segmap = NULL;
1718 	char		*segmap_data;
1719 	size_t		segmap_sz;
1720 	int		error;
1721 	int		fflg = ((so->so_state & SS_NDELAY) ? FNDELAY : 0) |
1722 	    ((so->so_state & SS_NONBLOCK) ? FNONBLOCK : 0);
1723 
1724 
1725 	/* Initialize template uri_desb_t */
1726 	desb.frtn.free_func = uri_desb_free;
1727 	desb.frtn.free_arg = NULL;
1728 	desb.uri = uri;
1729 
1730 	/* Get a local copy of the rd_t */
1731 	bcopy(rdp, &rd, sizeof (rd));
1732 	do {
1733 		if (first) {
1734 			/*
1735 			 * For first kstrwrite() enough data to get
1736 			 * things going, note non blocking version of
1737 			 * kstrwrite() will be used below.
1738 			 */
1739 			write_bytes = P2ROUNDUP((max_mblk * 4),
1740 			    MAXBSIZE * nl7c_file_prefetch);
1741 		} else {
1742 			if ((write_bytes = so->so_sndbuf) == 0)
1743 				write_bytes = vp->v_stream->sd_qn_maxpsz;
1744 			ASSERT(write_bytes > 0);
1745 			write_bytes = P2ROUNDUP(write_bytes, MAXBSIZE);
1746 		}
1747 		/*
1748 		 * Chop up to a write_bytes worth of data.
1749 		 */
1750 		wmp = NULL;
1751 		wsz = write_bytes;
1752 		do {
1753 			if (rd.sz == 0)
1754 				break;
1755 			if (rd.off == -1) {
1756 				if (uri->eoh >= rd.data.kmem &&
1757 				    uri->eoh < &rd.data.kmem[rd.sz]) {
1758 					persist = nl7c_http_persist(so);
1759 				} else {
1760 					persist = NULL;
1761 				}
1762 				desb.segmap = NULL;
1763 				mp = uri_desb_chop(&rd.data.kmem, &rd.sz,
1764 				    &wsz, &desb, max_mblk, uri->eoh, persist);
1765 				if (mp == NULL) {
1766 					error = ENOMEM;
1767 					goto invalidate;
1768 				}
1769 			} else {
1770 				if (segmap == NULL) {
1771 					segmap = uri_segmap_map(&rd,
1772 					    write_bytes);
1773 					if (segmap == NULL) {
1774 						error = ENOMEM;
1775 						goto invalidate;
1776 					}
1777 					desb.segmap = segmap;
1778 					segmap_data = segmap->base;
1779 					segmap_sz = segmap->len;
1780 				}
1781 				mp = uri_desb_chop(&segmap_data, &segmap_sz,
1782 				    &wsz, &desb, max_mblk, NULL, NULL);
1783 				if (mp == NULL) {
1784 					error = ENOMEM;
1785 					goto invalidate;
1786 				}
1787 				if (segmap_sz == 0) {
1788 					rd.sz -= segmap->len;
1789 					rd.off += segmap->len;
1790 					REF_RELE(segmap);
1791 					segmap = NULL;
1792 				}
1793 			}
1794 			if (wmp == NULL) {
1795 				wmp = mp;
1796 			} else {
1797 				wmp->b_next->b_cont = mp;
1798 				wmp->b_next = mp->b_next;
1799 				mp->b_next = NULL;
1800 			}
1801 		} while (wsz > 0 && rd.sz > 0);
1802 
1803 		wmp->b_next = NULL;
1804 		if (first) {
1805 			/* First kstrwrite(), use noqwait */
1806 			if ((error = kstrwritempnoqwait(vp, wmp)) != 0)
1807 				goto invalidate;
1808 			/*
1809 			 * For the rest of the kstrwrite()s use SO_SNDBUF
1810 			 * worth of data at a time, note these kstrwrite()s
1811 			 * may (will) block one or more times.
1812 			 */
1813 			first = B_FALSE;
1814 		} else {
1815 			if ((error = kstrwritemp(vp, wmp, fflg)) != 0) {
1816 				if (error == EAGAIN) {
1817 					nl7c_uri_rd_EAGAIN++;
1818 					if ((error =
1819 					    kstrwritempnoqwait(vp, wmp)) != 0)
1820 						goto invalidate;
1821 				} else
1822 					goto invalidate;
1823 			}
1824 		}
1825 	} while (rd.sz > 0);
1826 
1827 	return (0);
1828 
1829 invalidate:
1830 	if (segmap) {
1831 		REF_RELE(segmap);
1832 	}
1833 	if (wmp)
1834 		freemsg(wmp);
1835 
1836 	return (error);
1837 }
1838 
1839 /*
1840  * Send the URI uri_desc_t *uri response out the socket_t *so.
1841  */
1842 
1843 static int
1844 uri_response(struct sonode *so, uri_desc_t *uri)
1845 {
1846 	uri_rd_t	*rdp = &uri->response;
1847 	boolean_t	first = B_TRUE;
1848 	int		error;
1849 
1850 	while (rdp != NULL) {
1851 		error = uri_rd_response(so, uri, rdp, first);
1852 		if (error != 0) {
1853 			goto invalidate;
1854 		}
1855 		first = B_FALSE;
1856 		rdp = rdp->next;
1857 	}
1858 	return (0);
1859 
1860 invalidate:
1861 	uri_delete(uri);
1862 	return (error);
1863 }
1864 
1865 /*
1866  * The pchars[] array is indexed by a char to determine if it's a
1867  * valid URI path component chararcter where:
1868  *
1869  *    pchar       = unreserved | escaped |
1870  *                  ":" | "@" | "&" | "=" | "+" | "$" | ","
1871  *
1872  *    unreserved  = alphanum | mark
1873  *
1874  *    alphanum    = alpha | digit
1875  *
1876  *    alpha       = lowalpha | upalpha
1877  *
1878  *    lowalpha    = "a" | "b" | "c" | "d" | "e" | "f" | "g" | "h" |
1879  *                  "i" | "j" | "k" | "l" | "m" | "n" | "o" | "p" |
1880  *                  "q" | "r" | "s" | "t" | "u" | "v" | "w" | "x" |
1881  *                  "y" | "z"
1882  *
1883  *    upalpha     = "A" | "B" | "C" | "D" | "E" | "F" | "G" | "H" |
1884  *                  "I" | "J" | "K" | "L" | "M" | "N" | "O" | "P" |
1885  *                  "Q" | "R" | "S" | "T" | "U" | "V" | "W" | "X" |
1886  *                  "Y" | "Z"
1887  *
1888  *    digit       = "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" |
1889  *                  "8" | "9"
1890  *
1891  *    mark        = "-" | "_" | "." | "!" | "~" | "*" | "'" | "(" | ")"
1892  *
1893  *    escaped     = "%" hex hex
1894  *    hex         = digit | "A" | "B" | "C" | "D" | "E" | "F" |
1895  *                  "a" | "b" | "c" | "d" | "e" | "f"
1896  */
1897 
1898 static char pchars[] = {
1899     0, 0, 0, 0, 0, 0, 0, 0,	/* 0x00 - 0x07 */
1900     0, 0, 0, 0, 0, 0, 0, 0,	/* 0x08 - 0x0F */
1901     0, 0, 0, 0, 0, 0, 0, 0,	/* 0x10 - 0x17 */
1902     0, 0, 0, 0, 0, 0, 0, 0,	/* 0x18 - 0x1F */
1903     0, 1, 0, 0, 1, 1, 1, 1,	/* 0x20 - 0x27 */
1904     0, 0, 1, 1, 1, 1, 1, 1,	/* 0x28 - 0x2F */
1905     1, 1, 1, 1, 1, 1, 1, 1,	/* 0x30 - 0x37 */
1906     1, 1, 1, 0, 0, 1, 0, 0,	/* 0x38 - 0x3F */
1907     1, 1, 1, 1, 1, 1, 1, 1,	/* 0x40 - 0x47 */
1908     1, 1, 1, 1, 1, 1, 1, 1,	/* 0x48 - 0x4F */
1909     1, 1, 1, 1, 1, 1, 1, 1,	/* 0x50 - 0x57 */
1910     1, 1, 1, 0, 0, 0, 0, 1,	/* 0x58 - 0x5F */
1911     0, 1, 1, 1, 1, 1, 1, 1,	/* 0x60 - 0x67 */
1912     1, 1, 1, 1, 1, 1, 1, 1,	/* 0x68 - 0x6F */
1913     1, 1, 1, 1, 1, 1, 1, 1,	/* 0x70 - 0x77 */
1914     1, 1, 1, 0, 0, 0, 1, 0	/* 0x78 - 0x7F */
1915 };
1916 
1917 #define	PCHARS_MASK 0x7F
1918 
1919 /*
1920  * This is the main L7 request message parse, we are called each time
1921  * new data is availble for a socket, each time a single buffer of the
1922  * entire message to date is given.
1923  *
1924  * Here we parse the request looking for the URI, parse it, and if a
1925  * supported scheme call the scheme parser to commplete the parse of any
1926  * headers which may further qualify the identity of the requested object
1927  * then lookup it up in the URI hash.
1928  *
1929  * Return B_TRUE for more processing.
1930  *
1931  * Note, at this time the parser supports the generic message format as
1932  * specified in RFC 822 with potentional limitations as specified in RFC
1933  * 2616 for HTTP messages.
1934  *
1935  * Note, the caller supports an mblk_t chain, for now the parser(s)
1936  * require the complete header in a single mblk_t. This is the common
1937  * case and certainly for high performance environments, if at a future
1938  * date mblk_t chains are important the parse can be reved to process
1939  * mblk_t chains.
1940  */
1941 
1942 boolean_t
1943 nl7c_parse(struct sonode *so, boolean_t nonblocking, boolean_t *ret)
1944 {
1945 	sotpi_info_t *sti = SOTOTPI(so);
1946 	char	*cp = (char *)sti->sti_nl7c_rcv_mp->b_rptr;
1947 	char	*ep = (char *)sti->sti_nl7c_rcv_mp->b_wptr;
1948 	char	*get = "GET ";
1949 	char	*post = "POST ";
1950 	char	c;
1951 	char	*uris;
1952 	uri_desc_t *uri = NULL;
1953 	uri_desc_t *ruri = NULL;
1954 	mblk_t	*reqmp;
1955 	uint32_t hv = 0;
1956 
1957 	if ((reqmp = dupb(sti->sti_nl7c_rcv_mp)) == NULL) {
1958 		nl7c_uri_pass_dupbfail++;
1959 		goto pass;
1960 	}
1961 	/*
1962 	 * Allocate and initialize minimumal state for the request
1963 	 * uri_desc_t, in the cache hit case this uri_desc_t will
1964 	 * be freed.
1965 	 */
1966 	uri = kmem_cache_alloc(nl7c_uri_kmc, KM_SLEEP);
1967 	REF_INIT(uri, 1, nl7c_uri_inactive, nl7c_uri_kmc);
1968 	uri->hash = NULL;
1969 	uri->tail = NULL;
1970 	uri->scheme = NULL;
1971 	uri->count = 0;
1972 	uri->reqmp = reqmp;
1973 
1974 	/*
1975 	 * Set request time to current time.
1976 	 */
1977 	sti->sti_nl7c_rtime = gethrestime_sec();
1978 
1979 	/*
1980 	 * Parse the Request-Line for the URI.
1981 	 *
1982 	 * For backwards HTTP version compatable reasons skip any leading
1983 	 * CRLF (or CR or LF) line terminator(s) preceding Request-Line.
1984 	 */
1985 	while (cp < ep && (*cp == '\r' || *cp == '\n')) {
1986 		cp++;
1987 	}
1988 	while (cp < ep && *get == *cp) {
1989 		get++;
1990 		cp++;
1991 	}
1992 	if (*get != 0) {
1993 		/* Note a "GET", check for "POST" */
1994 		while (cp < ep && *post == *cp) {
1995 			post++;
1996 			cp++;
1997 		}
1998 		if (*post != 0) {
1999 			if (cp == ep) {
2000 				nl7c_uri_more_get++;
2001 				goto more;
2002 			}
2003 			/* Not a "GET" or a "POST", just pass */
2004 			nl7c_uri_pass_method++;
2005 			goto pass;
2006 		}
2007 		/* "POST", don't cache but still may want to parse */
2008 		uri->hash = URI_TEMP;
2009 	}
2010 	/*
2011 	 * Skip over URI path char(s) and save start and past end pointers.
2012 	 */
2013 	uris = cp;
2014 	while (cp < ep && (c = *cp) != ' ' && c != '\r') {
2015 		if (c == '?') {
2016 			/* Don't cache but still may want to parse */
2017 			uri->hash = URI_TEMP;
2018 		}
2019 		CHASH(hv, c);
2020 		cp++;
2021 	}
2022 	if (c != '\r' && cp == ep) {
2023 		nl7c_uri_more_eol++;
2024 		goto more;
2025 	}
2026 	/*
2027 	 * Request-Line URI parsed, pass the rest of the request on
2028 	 * to the the http scheme parse.
2029 	 */
2030 	uri->path.cp = uris;
2031 	uri->path.ep = cp;
2032 	uri->hvalue = hv;
2033 	if (! nl7c_http_request(&cp, ep, uri, so) || cp == NULL) {
2034 		/*
2035 		 * Parse not successful or pass on request, the pointer
2036 		 * to the parse pointer "cp" is overloaded such that ! NULL
2037 		 * for more data and NULL for bad parse of request or pass.
2038 		 */
2039 		if (cp != NULL) {
2040 			nl7c_uri_more_http++;
2041 			goto more;
2042 		}
2043 		nl7c_uri_pass_http++;
2044 		goto pass;
2045 	}
2046 	if (uri->nocache) {
2047 		uri->hash = URI_TEMP;
2048 		(void) uri_lookup(uri, B_FALSE, nonblocking);
2049 	} else if (uri->hash == URI_TEMP) {
2050 		uri->nocache = B_TRUE;
2051 		(void) uri_lookup(uri, B_FALSE, nonblocking);
2052 	}
2053 
2054 	if (uri->hash == URI_TEMP) {
2055 		if (sti->sti_nl7c_flags & NL7C_SOPERSIST) {
2056 			/* Temporary URI so skip hash processing */
2057 			nl7c_uri_request++;
2058 			nl7c_uri_temp++;
2059 			goto temp;
2060 		}
2061 		/* Not persistent so not interested in the response */
2062 		nl7c_uri_pass_temp++;
2063 		goto pass;
2064 	}
2065 	/*
2066 	 * Check the URI hash for a cached response, save the request
2067 	 * uri in case we need it below.
2068 	 */
2069 	ruri = uri;
2070 	if ((uri = uri_lookup(uri, B_TRUE, nonblocking)) == NULL) {
2071 		/*
2072 		 * Failed to lookup due to nonblocking wait required,
2073 		 * interrupted cv_wait_sig(), KM_NOSLEEP memory alloc
2074 		 * failure, ... Just pass on this request.
2075 		 */
2076 		nl7c_uri_pass_addfail++;
2077 		goto pass;
2078 	}
2079 	nl7c_uri_request++;
2080 	if (uri->response.sz > 0) {
2081 		/*
2082 		 * We have the response cached, update recv mblk rptr
2083 		 * to reflect the data consumed in parse.
2084 		 */
2085 		mblk_t	*mp = sti->sti_nl7c_rcv_mp;
2086 
2087 		if (cp == (char *)mp->b_wptr) {
2088 			sti->sti_nl7c_rcv_mp = mp->b_cont;
2089 			mp->b_cont = NULL;
2090 			freeb(mp);
2091 		} else {
2092 			mp->b_rptr = (unsigned char *)cp;
2093 		}
2094 		nl7c_uri_hit++;
2095 		/* If logging enabled log request */
2096 		if (nl7c_logd_enabled) {
2097 			ipaddr_t faddr;
2098 
2099 			if (so->so_family == AF_INET) {
2100 				/* Only support IPv4 addrs */
2101 				faddr = ((struct sockaddr_in *)
2102 				    sti->sti_faddr_sa) ->sin_addr.s_addr;
2103 			} else {
2104 				faddr = 0;
2105 			}
2106 			/* XXX need to pass response type, e.g. 200, 304 */
2107 			nl7c_logd_log(ruri, uri, sti->sti_nl7c_rtime, faddr);
2108 		}
2109 
2110 		/* If conditional request check for substitute response */
2111 		if (ruri->conditional) {
2112 			uri = nl7c_http_cond(ruri, uri);
2113 		}
2114 
2115 		/*
2116 		 * Release reference on request URI, send the response out
2117 		 * the socket, release reference on response uri, set the
2118 		 * *ret value to B_TRUE to indicate request was consumed
2119 		 * then return B_FALSE to indcate no more data needed.
2120 		 */
2121 		REF_RELE(ruri);
2122 		(void) uri_response(so, uri);
2123 		REF_RELE(uri);
2124 		*ret = B_TRUE;
2125 		return (B_FALSE);
2126 	}
2127 	/*
2128 	 * Miss the cache, the request URI is in the cache waiting for
2129 	 * application write-side data to fill it.
2130 	 */
2131 	nl7c_uri_miss++;
2132 temp:
2133 	/*
2134 	 * A miss or temp URI for which response data is needed, link
2135 	 * uri to so and so to uri, set WAITWRITE in the so such that
2136 	 * read-side processing is suspended (so the next read() gets
2137 	 * the request data) until a write() is processed by NL7C.
2138 	 *
2139 	 * Note, sti->sti_nl7c_uri now owns the REF_INIT() ref.
2140 	 */
2141 	uri->proc = so;
2142 	sti->sti_nl7c_uri = uri;
2143 	sti->sti_nl7c_flags |= NL7C_WAITWRITE;
2144 	*ret = B_FALSE;
2145 	return (B_FALSE);
2146 
2147 more:
2148 	/* More data is needed, note fragmented recv not supported */
2149 	nl7c_uri_more++;
2150 
2151 pass:
2152 	/* Pass on this request */
2153 	nl7c_uri_pass++;
2154 	nl7c_uri_request++;
2155 	if (ruri != NULL) {
2156 		REF_RELE(ruri);
2157 	}
2158 	if (uri) {
2159 		REF_RELE(uri);
2160 	}
2161 	sti->sti_nl7c_flags = 0;
2162 	*ret = B_FALSE;
2163 	return (B_FALSE);
2164 }
2165