1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 #include <sys/param.h> 29 #include <sys/systm.h> 30 #include <sys/kmem.h> 31 #include <sys/user.h> 32 #include <sys/proc.h> 33 #include <sys/cred.h> 34 #include <sys/disp.h> 35 #include <sys/buf.h> 36 #include <sys/vfs.h> 37 #include <sys/vfs_opreg.h> 38 #include <sys/vnode.h> 39 #include <sys/fdio.h> 40 #include <sys/file.h> 41 #include <sys/uio.h> 42 #include <sys/conf.h> 43 #include <sys/statvfs.h> 44 #include <sys/mount.h> 45 #include <sys/pathname.h> 46 #include <sys/cmn_err.h> 47 #include <sys/debug.h> 48 #include <sys/sysmacros.h> 49 #include <sys/conf.h> 50 #include <sys/mkdev.h> 51 #include <sys/swap.h> 52 #include <sys/sunddi.h> 53 #include <sys/sunldi.h> 54 #include <sys/dktp/fdisk.h> 55 #include <sys/fs/pc_label.h> 56 #include <sys/fs/pc_fs.h> 57 #include <sys/fs/pc_dir.h> 58 #include <sys/fs/pc_node.h> 59 #include <fs/fs_subr.h> 60 #include <sys/modctl.h> 61 #include <sys/dkio.h> 62 #include <sys/open.h> 63 #include <sys/mntent.h> 64 #include <sys/policy.h> 65 #include <sys/atomic.h> 66 #include <sys/sdt.h> 67 68 /* 69 * The majority of PC media use a 512 sector size, but 70 * occasionally you will run across a 1k sector size. 71 * For media with a 1k sector size, fd_strategy() requires 72 * the I/O size to be a 1k multiple; so when the sector size 73 * is not yet known, always read 1k. 74 */ 75 #define PC_SAFESECSIZE (PC_SECSIZE * 2) 76 77 static int pcfs_pseudo_floppy(dev_t); 78 79 static int pcfsinit(int, char *); 80 static int pcfs_mount(struct vfs *, struct vnode *, struct mounta *, 81 struct cred *); 82 static int pcfs_unmount(struct vfs *, int, struct cred *); 83 static int pcfs_root(struct vfs *, struct vnode **); 84 static int pcfs_statvfs(struct vfs *, struct statvfs64 *); 85 static int pc_syncfsnodes(struct pcfs *); 86 static int pcfs_sync(struct vfs *, short, struct cred *); 87 static int pcfs_vget(struct vfs *vfsp, struct vnode **vpp, struct fid *fidp); 88 static void pcfs_freevfs(vfs_t *vfsp); 89 90 static int pc_readfat(struct pcfs *fsp, uchar_t *fatp); 91 static int pc_writefat(struct pcfs *fsp, daddr_t start); 92 93 static int pc_getfattype(struct pcfs *fsp); 94 static void pcfs_parse_mntopts(struct pcfs *fsp, struct mounta *uap); 95 96 97 /* 98 * pcfs mount options table 99 */ 100 101 static char *nohidden_cancel[] = { MNTOPT_PCFS_HIDDEN, NULL }; 102 static char *hidden_cancel[] = { MNTOPT_PCFS_NOHIDDEN, NULL }; 103 static char *nofoldcase_cancel[] = { MNTOPT_PCFS_FOLDCASE, NULL }; 104 static char *foldcase_cancel[] = { MNTOPT_PCFS_NOFOLDCASE, NULL }; 105 static char *clamptime_cancel[] = { MNTOPT_PCFS_NOCLAMPTIME, NULL }; 106 static char *noclamptime_cancel[] = { MNTOPT_PCFS_CLAMPTIME, NULL }; 107 static char *atime_cancel[] = { MNTOPT_NOATIME, NULL }; 108 static char *noatime_cancel[] = { MNTOPT_ATIME, NULL }; 109 110 static mntopt_t mntopts[] = { 111 /* 112 * option name cancel option default arg flags opt data 113 */ 114 { MNTOPT_PCFS_NOHIDDEN, nohidden_cancel, NULL, 0, NULL }, 115 { MNTOPT_PCFS_HIDDEN, hidden_cancel, NULL, MO_DEFAULT, NULL }, 116 { MNTOPT_PCFS_NOFOLDCASE, nofoldcase_cancel, NULL, MO_DEFAULT, NULL }, 117 { MNTOPT_PCFS_FOLDCASE, foldcase_cancel, NULL, 0, NULL }, 118 { MNTOPT_PCFS_CLAMPTIME, clamptime_cancel, NULL, MO_DEFAULT, NULL }, 119 { MNTOPT_PCFS_NOCLAMPTIME, noclamptime_cancel, NULL, NULL, NULL }, 120 { MNTOPT_NOATIME, noatime_cancel, NULL, NULL, NULL }, 121 { MNTOPT_ATIME, atime_cancel, NULL, NULL, NULL }, 122 { MNTOPT_PCFS_TIMEZONE, NULL, "+0", MO_DEFAULT | MO_HASVALUE, NULL }, 123 { MNTOPT_PCFS_SECSIZE, NULL, NULL, MO_HASVALUE, NULL } 124 }; 125 126 static mntopts_t pcfs_mntopts = { 127 sizeof (mntopts) / sizeof (mntopt_t), 128 mntopts 129 }; 130 131 int pcfsdebuglevel = 0; 132 133 /* 134 * pcfslock: protects the list of mounted pc filesystems "pc_mounttab. 135 * pcfs_lock: (inside per filesystem structure "pcfs") 136 * per filesystem lock. Most of the vfsops and vnodeops are 137 * protected by this lock. 138 * pcnodes_lock: protects the pcnode hash table "pcdhead", "pcfhead". 139 * 140 * Lock hierarchy: pcfslock > pcfs_lock > pcnodes_lock 141 * 142 * pcfs_mountcount: used to prevent module unloads while there is still 143 * pcfs state from a former mount hanging around. With 144 * forced umount support, the filesystem module must not 145 * be allowed to go away before the last VFS_FREEVFS() 146 * call has been made. 147 * Since this is just an atomic counter, there's no need 148 * for locking. 149 */ 150 kmutex_t pcfslock; 151 krwlock_t pcnodes_lock; 152 uint32_t pcfs_mountcount; 153 154 static int pcfstype; 155 156 static vfsdef_t vfw = { 157 VFSDEF_VERSION, 158 "pcfs", 159 pcfsinit, 160 VSW_HASPROTO|VSW_CANREMOUNT|VSW_STATS, 161 &pcfs_mntopts 162 }; 163 164 extern struct mod_ops mod_fsops; 165 166 static struct modlfs modlfs = { 167 &mod_fsops, 168 "PC filesystem v1.2", 169 &vfw 170 }; 171 172 static struct modlinkage modlinkage = { 173 MODREV_1, 174 &modlfs, 175 NULL 176 }; 177 178 int 179 _init(void) 180 { 181 int error; 182 183 #if !defined(lint) 184 /* make sure the on-disk structures are sane */ 185 ASSERT(sizeof (struct pcdir) == 32); 186 ASSERT(sizeof (struct pcdir_lfn) == 32); 187 #endif 188 mutex_init(&pcfslock, NULL, MUTEX_DEFAULT, NULL); 189 rw_init(&pcnodes_lock, NULL, RW_DEFAULT, NULL); 190 error = mod_install(&modlinkage); 191 if (error) { 192 mutex_destroy(&pcfslock); 193 rw_destroy(&pcnodes_lock); 194 } 195 return (error); 196 } 197 198 int 199 _fini(void) 200 { 201 int error; 202 203 /* 204 * If a forcedly unmounted instance is still hanging around, 205 * we cannot allow the module to be unloaded because that would 206 * cause panics once the VFS framework decides it's time to call 207 * into VFS_FREEVFS(). 208 */ 209 if (pcfs_mountcount) 210 return (EBUSY); 211 212 error = mod_remove(&modlinkage); 213 if (error) 214 return (error); 215 mutex_destroy(&pcfslock); 216 rw_destroy(&pcnodes_lock); 217 /* 218 * Tear down the operations vectors 219 */ 220 (void) vfs_freevfsops_by_type(pcfstype); 221 vn_freevnodeops(pcfs_fvnodeops); 222 vn_freevnodeops(pcfs_dvnodeops); 223 return (0); 224 } 225 226 int 227 _info(struct modinfo *modinfop) 228 { 229 return (mod_info(&modlinkage, modinfop)); 230 } 231 232 /* ARGSUSED1 */ 233 static int 234 pcfsinit(int fstype, char *name) 235 { 236 static const fs_operation_def_t pcfs_vfsops_template[] = { 237 VFSNAME_MOUNT, { .vfs_mount = pcfs_mount }, 238 VFSNAME_UNMOUNT, { .vfs_unmount = pcfs_unmount }, 239 VFSNAME_ROOT, { .vfs_root = pcfs_root }, 240 VFSNAME_STATVFS, { .vfs_statvfs = pcfs_statvfs }, 241 VFSNAME_SYNC, { .vfs_sync = pcfs_sync }, 242 VFSNAME_VGET, { .vfs_vget = pcfs_vget }, 243 VFSNAME_FREEVFS, { .vfs_freevfs = pcfs_freevfs }, 244 NULL, NULL 245 }; 246 int error; 247 248 error = vfs_setfsops(fstype, pcfs_vfsops_template, NULL); 249 if (error != 0) { 250 cmn_err(CE_WARN, "pcfsinit: bad vfs ops template"); 251 return (error); 252 } 253 254 error = vn_make_ops("pcfs", pcfs_fvnodeops_template, &pcfs_fvnodeops); 255 if (error != 0) { 256 (void) vfs_freevfsops_by_type(fstype); 257 cmn_err(CE_WARN, "pcfsinit: bad file vnode ops template"); 258 return (error); 259 } 260 261 error = vn_make_ops("pcfsd", pcfs_dvnodeops_template, &pcfs_dvnodeops); 262 if (error != 0) { 263 (void) vfs_freevfsops_by_type(fstype); 264 vn_freevnodeops(pcfs_fvnodeops); 265 cmn_err(CE_WARN, "pcfsinit: bad dir vnode ops template"); 266 return (error); 267 } 268 269 pcfstype = fstype; 270 (void) pc_init(); 271 pcfs_mountcount = 0; 272 return (0); 273 } 274 275 static struct pcfs *pc_mounttab = NULL; 276 277 extern struct pcfs_args pc_tz; 278 279 /* 280 * Define some special logical drives we use internal to this file. 281 */ 282 #define BOOT_PARTITION_DRIVE 99 283 #define PRIMARY_DOS_DRIVE 1 284 #define UNPARTITIONED_DRIVE 0 285 286 static int 287 pcfs_device_identify( 288 struct vfs *vfsp, 289 struct mounta *uap, 290 struct cred *cr, 291 int *dos_ldrive, 292 dev_t *xdev) 293 { 294 struct pathname special; 295 char *c; 296 struct vnode *bvp; 297 int oflag, aflag; 298 int error; 299 300 /* 301 * Resolve path name of special file being mounted. 302 */ 303 if (error = pn_get(uap->spec, UIO_USERSPACE, &special)) { 304 return (error); 305 } 306 307 *dos_ldrive = -1; 308 309 if (error = 310 lookupname(special.pn_path, UIO_SYSSPACE, FOLLOW, NULLVPP, &bvp)) { 311 /* 312 * If there's no device node, the name specified most likely 313 * maps to a PCFS-style "partition specifier" to select a 314 * harddisk primary/logical partition. Disable floppy-specific 315 * checks in such cases unless an explicit :A or :B is 316 * requested. 317 */ 318 319 /* 320 * Split the pathname string at the last ':' separator. 321 * If there's no ':' in the device name, or the ':' is the 322 * last character in the string, the name is invalid and 323 * the error from the previous lookup will be returned. 324 */ 325 c = strrchr(special.pn_path, ':'); 326 if (c == NULL || strlen(c) == 0) 327 goto devlookup_done; 328 329 *c++ = '\0'; 330 331 /* 332 * PCFS partition name suffixes can be: 333 * - "boot" to indicate the X86BOOT partition 334 * - a drive letter [c-z] for the "DOS logical drive" 335 * - a drive number 1..24 for the "DOS logical drive" 336 * - a "floppy name letter", 'a' or 'b' (just strip this) 337 */ 338 if (strcasecmp(c, "boot") == 0) { 339 /* 340 * The Solaris boot partition is requested. 341 */ 342 *dos_ldrive = BOOT_PARTITION_DRIVE; 343 } else if (strspn(c, "0123456789") == strlen(c)) { 344 /* 345 * All digits - parse the partition number. 346 */ 347 long drvnum = 0; 348 349 if ((error = ddi_strtol(c, NULL, 10, &drvnum)) == 0) { 350 /* 351 * A number alright - in the allowed range ? 352 */ 353 if (drvnum > 24 || drvnum == 0) 354 error = ENXIO; 355 } 356 if (error) 357 goto devlookup_done; 358 *dos_ldrive = (int)drvnum; 359 } else if (strlen(c) == 1) { 360 /* 361 * A single trailing character was specified. 362 * - [c-zC-Z] means a harddisk partition, and 363 * we retrieve the partition number. 364 * - [abAB] means a floppy drive, so we swallow 365 * the "drive specifier" and test later 366 * whether the physical device is a floppy or 367 * PCMCIA pseudofloppy (sram card). 368 */ 369 *c = tolower(*c); 370 if (*c == 'a' || *c == 'b') { 371 *dos_ldrive = UNPARTITIONED_DRIVE; 372 } else if (*c < 'c' || *c > 'z') { 373 error = ENXIO; 374 goto devlookup_done; 375 } else { 376 *dos_ldrive = 1 + *c - 'c'; 377 } 378 } else { 379 /* 380 * Can't parse this - pass through previous error. 381 */ 382 goto devlookup_done; 383 } 384 385 386 error = lookupname(special.pn_path, UIO_SYSSPACE, FOLLOW, 387 NULLVPP, &bvp); 388 } else { 389 *dos_ldrive = UNPARTITIONED_DRIVE; 390 } 391 devlookup_done: 392 pn_free(&special); 393 if (error) 394 return (error); 395 396 ASSERT(*dos_ldrive >= UNPARTITIONED_DRIVE); 397 398 *xdev = bvp->v_rdev; 399 400 /* 401 * Verify caller's permission to open the device special file. 402 */ 403 if ((vfsp->vfs_flag & VFS_RDONLY) != 0 || 404 ((uap->flags & MS_RDONLY) != 0)) { 405 oflag = FREAD; 406 aflag = VREAD; 407 } else { 408 oflag = FREAD | FWRITE; 409 aflag = VREAD | VWRITE; 410 } 411 412 if (bvp->v_type != VBLK) 413 error = ENOTBLK; 414 else if (getmajor(*xdev) >= devcnt) 415 error = ENXIO; 416 417 if ((error != 0) || 418 (error = VOP_ACCESS(bvp, aflag, 0, cr, NULL)) != 0 || 419 (error = secpolicy_spec_open(cr, bvp, oflag)) != 0) { 420 VN_RELE(bvp); 421 return (error); 422 } 423 424 VN_RELE(bvp); 425 return (0); 426 } 427 428 static int 429 pcfs_device_ismounted( 430 struct vfs *vfsp, 431 int dos_ldrive, 432 dev_t xdev, 433 int *remounting, 434 dev_t *pseudodev) 435 { 436 struct pcfs *fsp; 437 int remount = *remounting; 438 439 /* 440 * Ensure that this logical drive isn't already mounted, unless 441 * this is a REMOUNT request. 442 * Note: The framework will perform this check if the "...:c" 443 * PCFS-style "logical drive" syntax has not been used and an 444 * actually existing physical device is backing this filesystem. 445 * Once all block device drivers support PC-style partitioning, 446 * this codeblock can be dropped. 447 */ 448 *pseudodev = xdev; 449 450 if (dos_ldrive) { 451 mutex_enter(&pcfslock); 452 for (fsp = pc_mounttab; fsp; fsp = fsp->pcfs_nxt) 453 if (fsp->pcfs_xdev == xdev && 454 fsp->pcfs_ldrive == dos_ldrive) { 455 mutex_exit(&pcfslock); 456 if (remount) { 457 return (0); 458 } else { 459 return (EBUSY); 460 } 461 } 462 /* 463 * Assign a unique device number for the vfs 464 * The old way (getudev() + a constantly incrementing 465 * major number) was wrong because it changes vfs_dev 466 * across mounts and reboots, which breaks nfs file handles. 467 * UFS just uses the real dev_t. We can't do that because 468 * of the way pcfs opens fdisk partitons (the :c and :d 469 * partitions are on the same dev_t). Though that _might_ 470 * actually be ok, since the file handle contains an 471 * absolute block number, it's probably better to make them 472 * different. So I think we should retain the original 473 * dev_t, but come up with a different minor number based 474 * on the logical drive that will _always_ come up the same. 475 * For now, we steal the upper 6 bits. 476 */ 477 #ifdef notdef 478 /* what should we do here? */ 479 if (((getminor(xdev) >> 12) & 0x3F) != 0) 480 printf("whoops - upper bits used!\n"); 481 #endif 482 *pseudodev = makedevice(getmajor(xdev), 483 ((dos_ldrive << 12) | getminor(xdev)) & MAXMIN32); 484 if (vfs_devmounting(*pseudodev, vfsp)) { 485 mutex_exit(&pcfslock); 486 return (EBUSY); 487 } 488 if (vfs_devismounted(*pseudodev)) { 489 mutex_exit(&pcfslock); 490 if (remount) { 491 return (0); 492 } else { 493 return (EBUSY); 494 } 495 } 496 mutex_exit(&pcfslock); 497 } else { 498 *pseudodev = xdev; 499 if (vfs_devmounting(*pseudodev, vfsp)) { 500 return (EBUSY); 501 } 502 if (vfs_devismounted(*pseudodev)) 503 if (remount) { 504 return (0); 505 } else { 506 return (EBUSY); 507 } 508 } 509 510 /* 511 * This is not a remount. Even if MS_REMOUNT was requested, 512 * the caller needs to proceed as it would on an ordinary 513 * mount. 514 */ 515 *remounting = 0; 516 517 ASSERT(*pseudodev); 518 return (0); 519 } 520 521 /* 522 * Get the PCFS-specific mount options from the VFS framework. 523 * For "timezone" and "secsize", we need to parse the number 524 * ourselves and ensure its validity. 525 * Note: "secsize" is deliberately undocumented at this time, 526 * it's a workaround for devices (particularly: lofi image files) 527 * that don't support the DKIOCGMEDIAINFO ioctl for autodetection. 528 */ 529 static void 530 pcfs_parse_mntopts(struct pcfs *fsp, struct mounta *uap) 531 { 532 char *c; 533 char *endptr; 534 long l; 535 struct vfs *vfsp = fsp->pcfs_vfs; 536 537 ASSERT(fsp->pcfs_secondswest == 0); 538 ASSERT(fsp->pcfs_secsize == 0); 539 540 if (uap->flags & MS_RDONLY) { 541 vfsp->vfs_flag |= VFS_RDONLY; 542 vfs_setmntopt(vfsp, MNTOPT_RO, NULL, 0); 543 } 544 545 if (vfs_optionisset(vfsp, MNTOPT_PCFS_HIDDEN, NULL)) 546 fsp->pcfs_flags |= PCFS_HIDDEN; 547 if (vfs_optionisset(vfsp, MNTOPT_PCFS_FOLDCASE, NULL)) 548 fsp->pcfs_flags |= PCFS_FOLDCASE; 549 if (vfs_optionisset(vfsp, MNTOPT_PCFS_NOCLAMPTIME, NULL)) 550 fsp->pcfs_flags |= PCFS_NOCLAMPTIME; 551 if (vfs_optionisset(vfsp, MNTOPT_NOATIME, NULL)) 552 fsp->pcfs_flags |= PCFS_NOATIME; 553 554 if (vfs_optionisset(vfsp, MNTOPT_PCFS_TIMEZONE, &c)) { 555 if (ddi_strtol(c, &endptr, 10, &l) == 0 && 556 endptr == c + strlen(c)) { 557 /* 558 * A number alright - in the allowed range ? 559 */ 560 if (l <= -12*3600 || l >= 12*3600) { 561 cmn_err(CE_WARN, "!pcfs: invalid use of " 562 "'timezone' mount option - %ld " 563 "is out of range. Assuming 0.", l); 564 l = 0; 565 } 566 } else { 567 cmn_err(CE_WARN, "!pcfs: invalid use of " 568 "'timezone' mount option - argument %s " 569 "is not a valid number. Assuming 0.", c); 570 l = 0; 571 } 572 fsp->pcfs_secondswest = l; 573 } 574 575 /* 576 * The "secsize=..." mount option is a workaround for the lack of 577 * lofi(7d) support for DKIOCGMEDIAINFO. If PCFS wants to parse the 578 * partition table of a disk image and it has been partitioned with 579 * sector sizes other than 512 bytes, we'd fail on loopback'ed disk 580 * images. 581 * That should really be fixed in lofi ... this is a workaround. 582 */ 583 if (vfs_optionisset(vfsp, MNTOPT_PCFS_SECSIZE, &c)) { 584 if (ddi_strtol(c, &endptr, 10, &l) == 0 && 585 endptr == c + strlen(c)) { 586 /* 587 * A number alright - a valid sector size as well ? 588 */ 589 if (!VALID_SECSIZE(l)) { 590 cmn_err(CE_WARN, "!pcfs: invalid use of " 591 "'secsize' mount option - %ld is " 592 "unsupported. Autodetecting.", l); 593 l = 0; 594 } 595 } else { 596 cmn_err(CE_WARN, "!pcfs: invalid use of " 597 "'secsize' mount option - argument %s " 598 "is not a valid number. Autodetecting.", c); 599 l = 0; 600 } 601 fsp->pcfs_secsize = l; 602 fsp->pcfs_sdshift = ddi_ffs(l / DEV_BSIZE) - 1; 603 } 604 } 605 606 /* 607 * vfs operations 608 */ 609 610 /* 611 * pcfs_mount - backend for VFS_MOUNT() on PCFS. 612 */ 613 static int 614 pcfs_mount( 615 struct vfs *vfsp, 616 struct vnode *mvp, 617 struct mounta *uap, 618 struct cred *cr) 619 { 620 struct pcfs *fsp; 621 struct vnode *devvp; 622 dev_t pseudodev; 623 dev_t xdev; 624 int dos_ldrive = 0; 625 int error; 626 int remounting; 627 628 if ((error = secpolicy_fs_mount(cr, mvp, vfsp)) != 0) 629 return (error); 630 631 if (mvp->v_type != VDIR) 632 return (ENOTDIR); 633 634 mutex_enter(&mvp->v_lock); 635 if ((uap->flags & MS_REMOUNT) == 0 && 636 (uap->flags & MS_OVERLAY) == 0 && 637 (mvp->v_count != 1 || (mvp->v_flag & VROOT))) { 638 mutex_exit(&mvp->v_lock); 639 return (EBUSY); 640 } 641 mutex_exit(&mvp->v_lock); 642 643 /* 644 * PCFS doesn't do mount arguments anymore - everything's a mount 645 * option these days. In order not to break existing callers, we 646 * don't reject it yet, just warn that the data (if any) is ignored. 647 */ 648 if (uap->datalen != 0) 649 cmn_err(CE_WARN, "!pcfs: deprecated use of mount(2) with " 650 "mount argument structures instead of mount options. " 651 "Ignoring mount(2) 'dataptr' argument."); 652 653 /* 654 * For most filesystems, this is just a lookupname() on the 655 * mount pathname string. PCFS historically has to do its own 656 * partition table parsing because not all Solaris architectures 657 * support all styles of partitioning that PC media can have, and 658 * hence PCFS understands "device names" that don't map to actual 659 * physical device nodes. Parsing the "PCFS syntax" for device 660 * names is done in pcfs_device_identify() - see there. 661 * 662 * Once all block device drivers that can host FAT filesystems have 663 * been enhanced to create device nodes for all PC-style partitions, 664 * this code can go away. 665 */ 666 if (error = pcfs_device_identify(vfsp, uap, cr, &dos_ldrive, &xdev)) 667 return (error); 668 669 /* 670 * As with looking up the actual device to mount, PCFS cannot rely 671 * on just the checks done by vfs_ismounted() whether a given device 672 * is mounted already. The additional check against the "PCFS syntax" 673 * is done in pcfs_device_ismounted(). 674 */ 675 remounting = (uap->flags & MS_REMOUNT); 676 677 if (error = pcfs_device_ismounted(vfsp, dos_ldrive, xdev, &remounting, 678 &pseudodev)) 679 return (error); 680 681 if (remounting) 682 return (0); 683 684 /* 685 * Mount the filesystem. 686 * An instance structure is required before the attempt to locate 687 * and parse the FAT BPB. This is because mount options may change 688 * the behaviour of the filesystem type matching code. Precreate 689 * it and fill it in to a degree that allows parsing the mount 690 * options. 691 */ 692 devvp = makespecvp(xdev, VBLK); 693 if (IS_SWAPVP(devvp)) { 694 VN_RELE(devvp); 695 return (EBUSY); 696 } 697 error = VOP_OPEN(&devvp, 698 (vfsp->vfs_flag & VFS_RDONLY) ? FREAD : FREAD | FWRITE, cr, NULL); 699 if (error) { 700 VN_RELE(devvp); 701 return (error); 702 } 703 704 fsp = kmem_zalloc(sizeof (*fsp), KM_SLEEP); 705 fsp->pcfs_vfs = vfsp; 706 fsp->pcfs_xdev = xdev; 707 fsp->pcfs_devvp = devvp; 708 fsp->pcfs_ldrive = dos_ldrive; 709 mutex_init(&fsp->pcfs_lock, NULL, MUTEX_DEFAULT, NULL); 710 vfsp->vfs_data = fsp; 711 vfsp->vfs_dev = pseudodev; 712 vfsp->vfs_fstype = pcfstype; 713 vfs_make_fsid(&vfsp->vfs_fsid, pseudodev, pcfstype); 714 vfsp->vfs_bcount = 0; 715 vfsp->vfs_bsize = fsp->pcfs_clsize; 716 717 pcfs_parse_mntopts(fsp, uap); 718 719 /* 720 * This is the actual "mount" - the PCFS superblock check. 721 * 722 * Find the requested logical drive and the FAT BPB therein. 723 * Check device type and flag the instance if media is removeable. 724 * 725 * Initializes most members of the filesystem instance structure. 726 * Returns EINVAL if no valid BPB can be found. Other errors may 727 * occur after I/O failures, or when invalid / unparseable partition 728 * tables are encountered. 729 */ 730 if (error = pc_getfattype(fsp)) 731 goto errout; 732 733 /* 734 * Validate that we can access the FAT and that it is, to the 735 * degree we can verify here, self-consistent. 736 */ 737 if (error = pc_verify(fsp)) 738 goto errout; 739 740 /* 741 * Record the time of the mount, to return as an "approximate" 742 * timestamp for the FAT root directory. Since FAT roots don't 743 * have timestamps, this is less confusing to the user than 744 * claiming "zero" / Jan/01/1970. 745 */ 746 gethrestime(&fsp->pcfs_mounttime); 747 748 /* 749 * Fix up the mount options. Because "noatime" is made default on 750 * removeable media only, a fixed disk will have neither "atime" 751 * nor "noatime" set. We set the options explicitly depending on 752 * the PCFS_NOATIME flag, to inform the user of what applies. 753 * Mount option cancellation will take care that the mutually 754 * exclusive 'other' is cleared. 755 */ 756 vfs_setmntopt(vfsp, 757 fsp->pcfs_flags & PCFS_NOATIME ? MNTOPT_NOATIME : MNTOPT_ATIME, 758 NULL, 0); 759 760 /* 761 * All clear - insert the FS instance into PCFS' list. 762 */ 763 mutex_enter(&pcfslock); 764 fsp->pcfs_nxt = pc_mounttab; 765 pc_mounttab = fsp; 766 mutex_exit(&pcfslock); 767 atomic_inc_32(&pcfs_mountcount); 768 return (0); 769 770 errout: 771 (void) VOP_CLOSE(devvp, 772 vfsp->vfs_flag & VFS_RDONLY ? FREAD : FREAD | FWRITE, 773 1, (offset_t)0, cr, NULL); 774 VN_RELE(devvp); 775 mutex_destroy(&fsp->pcfs_lock); 776 kmem_free(fsp, sizeof (*fsp)); 777 return (error); 778 779 } 780 781 static int 782 pcfs_unmount( 783 struct vfs *vfsp, 784 int flag, 785 struct cred *cr) 786 { 787 struct pcfs *fsp, *fsp1; 788 789 if (secpolicy_fs_unmount(cr, vfsp) != 0) 790 return (EPERM); 791 792 fsp = VFSTOPCFS(vfsp); 793 794 /* 795 * We don't have to lock fsp because the VVFSLOCK in vfs layer will 796 * prevent lookuppn from crossing the mount point. 797 * If this is not a forced umount request and there's ongoing I/O, 798 * don't allow the mount to proceed. 799 */ 800 if (flag & MS_FORCE) 801 vfsp->vfs_flag |= VFS_UNMOUNTED; 802 else if (fsp->pcfs_nrefs) 803 return (EBUSY); 804 805 mutex_enter(&pcfslock); 806 807 /* 808 * If this is a forced umount request or if the fs instance has 809 * been marked as beyond recovery, allow the umount to proceed 810 * regardless of state. pc_diskchanged() forcibly releases all 811 * inactive vnodes/pcnodes. 812 */ 813 if (flag & MS_FORCE || fsp->pcfs_flags & PCFS_IRRECOV) { 814 rw_enter(&pcnodes_lock, RW_WRITER); 815 pc_diskchanged(fsp); 816 rw_exit(&pcnodes_lock); 817 } 818 819 /* now there should be no pcp node on pcfhead or pcdhead. */ 820 821 if (fsp == pc_mounttab) { 822 pc_mounttab = fsp->pcfs_nxt; 823 } else { 824 for (fsp1 = pc_mounttab; fsp1 != NULL; fsp1 = fsp1->pcfs_nxt) 825 if (fsp1->pcfs_nxt == fsp) 826 fsp1->pcfs_nxt = fsp->pcfs_nxt; 827 } 828 829 mutex_exit(&pcfslock); 830 831 /* 832 * Since we support VFS_FREEVFS(), there's no need to 833 * free the fsp right now. The framework will tell us 834 * when the right time to do so has arrived by calling 835 * into pcfs_freevfs. 836 */ 837 return (0); 838 } 839 840 /* 841 * find root of pcfs 842 */ 843 static int 844 pcfs_root( 845 struct vfs *vfsp, 846 struct vnode **vpp) 847 { 848 struct pcfs *fsp; 849 struct pcnode *pcp; 850 int error; 851 852 fsp = VFSTOPCFS(vfsp); 853 if (error = pc_lockfs(fsp, 0, 0)) 854 return (error); 855 856 pcp = pc_getnode(fsp, (daddr_t)0, 0, (struct pcdir *)0); 857 pc_unlockfs(fsp); 858 *vpp = PCTOV(pcp); 859 pcp->pc_flags |= PC_EXTERNAL; 860 return (0); 861 } 862 863 /* 864 * Get file system statistics. 865 */ 866 static int 867 pcfs_statvfs( 868 struct vfs *vfsp, 869 struct statvfs64 *sp) 870 { 871 struct pcfs *fsp; 872 int error; 873 dev32_t d32; 874 875 fsp = VFSTOPCFS(vfsp); 876 error = pc_getfat(fsp); 877 if (error) 878 return (error); 879 bzero(sp, sizeof (*sp)); 880 sp->f_bsize = sp->f_frsize = fsp->pcfs_clsize; 881 sp->f_blocks = (fsblkcnt64_t)fsp->pcfs_ncluster; 882 sp->f_bavail = sp->f_bfree = (fsblkcnt64_t)pc_freeclusters(fsp); 883 sp->f_files = (fsfilcnt64_t)-1; 884 sp->f_ffree = (fsfilcnt64_t)-1; 885 sp->f_favail = (fsfilcnt64_t)-1; 886 #ifdef notdef 887 (void) cmpldev(&d32, fsp->pcfs_devvp->v_rdev); 888 #endif /* notdef */ 889 (void) cmpldev(&d32, vfsp->vfs_dev); 890 sp->f_fsid = d32; 891 (void) strcpy(sp->f_basetype, vfssw[vfsp->vfs_fstype].vsw_name); 892 sp->f_flag = vf_to_stf(vfsp->vfs_flag); 893 sp->f_namemax = PCFNAMESIZE; 894 return (0); 895 } 896 897 static int 898 pc_syncfsnodes(struct pcfs *fsp) 899 { 900 struct pchead *hp; 901 struct pcnode *pcp; 902 int error; 903 904 if (error = pc_lockfs(fsp, 0, 0)) 905 return (error); 906 907 if (!(error = pc_syncfat(fsp))) { 908 hp = pcfhead; 909 while (hp < & pcfhead [ NPCHASH ]) { 910 rw_enter(&pcnodes_lock, RW_READER); 911 pcp = hp->pch_forw; 912 while (pcp != (struct pcnode *)hp) { 913 if (VFSTOPCFS(PCTOV(pcp) -> v_vfsp) == fsp) 914 if (error = pc_nodesync(pcp)) 915 break; 916 pcp = pcp -> pc_forw; 917 } 918 rw_exit(&pcnodes_lock); 919 if (error) 920 break; 921 hp++; 922 } 923 } 924 pc_unlockfs(fsp); 925 return (error); 926 } 927 928 /* 929 * Flush any pending I/O. 930 */ 931 /*ARGSUSED*/ 932 static int 933 pcfs_sync( 934 struct vfs *vfsp, 935 short flag, 936 struct cred *cr) 937 { 938 struct pcfs *fsp; 939 int error = 0; 940 941 /* this prevents the filesystem from being umounted. */ 942 mutex_enter(&pcfslock); 943 if (vfsp != NULL) { 944 fsp = VFSTOPCFS(vfsp); 945 if (!(fsp->pcfs_flags & PCFS_IRRECOV)) { 946 error = pc_syncfsnodes(fsp); 947 } else { 948 rw_enter(&pcnodes_lock, RW_WRITER); 949 pc_diskchanged(fsp); 950 rw_exit(&pcnodes_lock); 951 error = EIO; 952 } 953 } else { 954 fsp = pc_mounttab; 955 while (fsp != NULL) { 956 if (fsp->pcfs_flags & PCFS_IRRECOV) { 957 rw_enter(&pcnodes_lock, RW_WRITER); 958 pc_diskchanged(fsp); 959 rw_exit(&pcnodes_lock); 960 error = EIO; 961 break; 962 } 963 error = pc_syncfsnodes(fsp); 964 if (error) break; 965 fsp = fsp->pcfs_nxt; 966 } 967 } 968 mutex_exit(&pcfslock); 969 return (error); 970 } 971 972 int 973 pc_lockfs(struct pcfs *fsp, int diskchanged, int releasing) 974 { 975 int err; 976 977 if ((fsp->pcfs_flags & PCFS_IRRECOV) && !releasing) 978 return (EIO); 979 980 if ((fsp->pcfs_flags & PCFS_LOCKED) && (fsp->pcfs_owner == curthread)) { 981 fsp->pcfs_count++; 982 } else { 983 mutex_enter(&fsp->pcfs_lock); 984 if (fsp->pcfs_flags & PCFS_LOCKED) 985 panic("pc_lockfs"); 986 /* 987 * We check the IRRECOV bit again just in case somebody 988 * snuck past the initial check but then got held up before 989 * they could grab the lock. (And in the meantime someone 990 * had grabbed the lock and set the bit) 991 */ 992 if (!diskchanged && !(fsp->pcfs_flags & PCFS_IRRECOV)) { 993 if ((err = pc_getfat(fsp))) { 994 mutex_exit(&fsp->pcfs_lock); 995 return (err); 996 } 997 } 998 fsp->pcfs_flags |= PCFS_LOCKED; 999 fsp->pcfs_owner = curthread; 1000 fsp->pcfs_count++; 1001 } 1002 return (0); 1003 } 1004 1005 void 1006 pc_unlockfs(struct pcfs *fsp) 1007 { 1008 1009 if ((fsp->pcfs_flags & PCFS_LOCKED) == 0) 1010 panic("pc_unlockfs"); 1011 if (--fsp->pcfs_count < 0) 1012 panic("pc_unlockfs: count"); 1013 if (fsp->pcfs_count == 0) { 1014 fsp->pcfs_flags &= ~PCFS_LOCKED; 1015 fsp->pcfs_owner = 0; 1016 mutex_exit(&fsp->pcfs_lock); 1017 } 1018 } 1019 1020 int 1021 pc_syncfat(struct pcfs *fsp) 1022 { 1023 struct buf *bp; 1024 int nfat; 1025 int error = 0; 1026 struct fat_od_fsi *fsinfo_disk; 1027 1028 if ((fsp->pcfs_fatp == (uchar_t *)0) || 1029 !(fsp->pcfs_flags & PCFS_FATMOD)) 1030 return (0); 1031 /* 1032 * write out all copies of FATs 1033 */ 1034 fsp->pcfs_flags &= ~PCFS_FATMOD; 1035 fsp->pcfs_fattime = gethrestime_sec() + PCFS_DISKTIMEOUT; 1036 for (nfat = 0; nfat < fsp->pcfs_numfat; nfat++) { 1037 error = pc_writefat(fsp, pc_dbdaddr(fsp, 1038 fsp->pcfs_fatstart + nfat * fsp->pcfs_fatsec)); 1039 if (error) { 1040 pc_mark_irrecov(fsp); 1041 return (EIO); 1042 } 1043 } 1044 pc_clear_fatchanges(fsp); 1045 1046 /* 1047 * Write out fsinfo sector. 1048 */ 1049 if (IS_FAT32(fsp)) { 1050 bp = bread(fsp->pcfs_xdev, 1051 pc_dbdaddr(fsp, fsp->pcfs_fsistart), fsp->pcfs_secsize); 1052 if (bp->b_flags & (B_ERROR | B_STALE)) { 1053 error = geterror(bp); 1054 } 1055 fsinfo_disk = (fat_od_fsi_t *)(bp->b_un.b_addr); 1056 if (!error && FSISIG_OK(fsinfo_disk)) { 1057 fsinfo_disk->fsi_incore.fs_free_clusters = 1058 LE_32(fsp->pcfs_fsinfo.fs_free_clusters); 1059 fsinfo_disk->fsi_incore.fs_next_free = 1060 LE_32(FSINFO_UNKNOWN); 1061 bwrite2(bp); 1062 error = geterror(bp); 1063 } 1064 brelse(bp); 1065 if (error) { 1066 pc_mark_irrecov(fsp); 1067 return (EIO); 1068 } 1069 } 1070 return (0); 1071 } 1072 1073 void 1074 pc_invalfat(struct pcfs *fsp) 1075 { 1076 struct pcfs *xfsp; 1077 int mount_cnt = 0; 1078 1079 if (fsp->pcfs_fatp == (uchar_t *)0) 1080 panic("pc_invalfat"); 1081 /* 1082 * Release FAT 1083 */ 1084 kmem_free(fsp->pcfs_fatp, fsp->pcfs_fatsec * fsp->pcfs_secsize); 1085 fsp->pcfs_fatp = NULL; 1086 kmem_free(fsp->pcfs_fat_changemap, fsp->pcfs_fat_changemapsize); 1087 fsp->pcfs_fat_changemap = NULL; 1088 /* 1089 * Invalidate all the blocks associated with the device. 1090 * Not needed if stateless. 1091 */ 1092 for (xfsp = pc_mounttab; xfsp; xfsp = xfsp->pcfs_nxt) 1093 if (xfsp != fsp && xfsp->pcfs_xdev == fsp->pcfs_xdev) 1094 mount_cnt++; 1095 1096 if (!mount_cnt) 1097 binval(fsp->pcfs_xdev); 1098 /* 1099 * close mounted device 1100 */ 1101 (void) VOP_CLOSE(fsp->pcfs_devvp, 1102 (PCFSTOVFS(fsp)->vfs_flag & VFS_RDONLY) ? FREAD : FREAD|FWRITE, 1103 1, (offset_t)0, CRED(), NULL); 1104 } 1105 1106 void 1107 pc_badfs(struct pcfs *fsp) 1108 { 1109 cmn_err(CE_WARN, "corrupted PC file system on dev (%x.%x):%d\n", 1110 getmajor(fsp->pcfs_devvp->v_rdev), 1111 getminor(fsp->pcfs_devvp->v_rdev), fsp->pcfs_ldrive); 1112 } 1113 1114 /* 1115 * The problem with supporting NFS on the PCFS filesystem is that there 1116 * is no good place to keep the generation number. The only possible 1117 * place is inside a directory entry. There are a few words that we 1118 * don't use - they store NT & OS/2 attributes, and the creation/last access 1119 * time of the file - but it seems wrong to use them. In addition, directory 1120 * entries come and go. If a directory is removed completely, its directory 1121 * blocks are freed and the generation numbers are lost. Whereas in ufs, 1122 * inode blocks are dedicated for inodes, so the generation numbers are 1123 * permanently kept on the disk. 1124 */ 1125 static int 1126 pcfs_vget(struct vfs *vfsp, struct vnode **vpp, struct fid *fidp) 1127 { 1128 struct pcnode *pcp; 1129 struct pc_fid *pcfid; 1130 struct pcfs *fsp; 1131 struct pcdir *ep; 1132 daddr_t eblkno; 1133 int eoffset; 1134 struct buf *bp; 1135 int error; 1136 pc_cluster32_t cn; 1137 1138 pcfid = (struct pc_fid *)fidp; 1139 fsp = VFSTOPCFS(vfsp); 1140 1141 error = pc_lockfs(fsp, 0, 0); 1142 if (error) { 1143 *vpp = NULL; 1144 return (error); 1145 } 1146 1147 if (pcfid->pcfid_block == 0) { 1148 pcp = pc_getnode(fsp, (daddr_t)0, 0, (struct pcdir *)0); 1149 pcp->pc_flags |= PC_EXTERNAL; 1150 *vpp = PCTOV(pcp); 1151 pc_unlockfs(fsp); 1152 return (0); 1153 } 1154 eblkno = pcfid->pcfid_block; 1155 eoffset = pcfid->pcfid_offset; 1156 1157 if ((pc_dbtocl(fsp, 1158 eblkno - fsp->pcfs_dosstart) >= fsp->pcfs_ncluster) || 1159 (eoffset > fsp->pcfs_clsize)) { 1160 pc_unlockfs(fsp); 1161 *vpp = NULL; 1162 return (EINVAL); 1163 } 1164 1165 if (eblkno >= fsp->pcfs_datastart || (eblkno - fsp->pcfs_rdirstart) 1166 < (fsp->pcfs_rdirsec & ~(fsp->pcfs_spcl - 1))) { 1167 bp = bread(fsp->pcfs_xdev, pc_dbdaddr(fsp, eblkno), 1168 fsp->pcfs_clsize); 1169 } else { 1170 /* 1171 * This is an access "backwards" into the FAT12/FAT16 1172 * root directory. A better code structure would 1173 * significantly improve maintainability here ... 1174 */ 1175 bp = bread(fsp->pcfs_xdev, pc_dbdaddr(fsp, eblkno), 1176 (int)(fsp->pcfs_datastart - eblkno) * fsp->pcfs_secsize); 1177 } 1178 if (bp->b_flags & (B_ERROR | B_STALE)) { 1179 error = geterror(bp); 1180 brelse(bp); 1181 if (error) 1182 pc_mark_irrecov(fsp); 1183 *vpp = NULL; 1184 pc_unlockfs(fsp); 1185 return (error); 1186 } 1187 ep = (struct pcdir *)(bp->b_un.b_addr + eoffset); 1188 /* 1189 * Ok, if this is a valid file handle that we gave out, 1190 * then simply ensuring that the creation time matches, 1191 * the entry has not been deleted, and it has a valid first 1192 * character should be enough. 1193 * 1194 * Unfortunately, verifying that the <blkno, offset> _still_ 1195 * refers to a directory entry is not easy, since we'd have 1196 * to search _all_ directories starting from root to find it. 1197 * That's a high price to pay just in case somebody is forging 1198 * file handles. So instead we verify that as much of the 1199 * entry is valid as we can: 1200 * 1201 * 1. The starting cluster is 0 (unallocated) or valid 1202 * 2. It is not an LFN entry 1203 * 3. It is not hidden (unless mounted as such) 1204 * 4. It is not the label 1205 */ 1206 cn = pc_getstartcluster(fsp, ep); 1207 /* 1208 * if the starting cluster is valid, but not valid according 1209 * to pc_validcl(), force it to be to simplify the following if. 1210 */ 1211 if (cn == 0) 1212 cn = PCF_FIRSTCLUSTER; 1213 if (IS_FAT32(fsp)) { 1214 if (cn >= PCF_LASTCLUSTER32) 1215 cn = PCF_FIRSTCLUSTER; 1216 } else { 1217 if (cn >= PCF_LASTCLUSTER) 1218 cn = PCF_FIRSTCLUSTER; 1219 } 1220 if ((!pc_validcl(fsp, cn)) || 1221 (PCDL_IS_LFN(ep)) || 1222 (PCA_IS_HIDDEN(fsp, ep->pcd_attr)) || 1223 ((ep->pcd_attr & PCA_LABEL) == PCA_LABEL)) { 1224 bp->b_flags |= B_STALE | B_AGE; 1225 brelse(bp); 1226 pc_unlockfs(fsp); 1227 return (EINVAL); 1228 } 1229 if ((ep->pcd_crtime.pct_time == pcfid->pcfid_ctime) && 1230 (ep->pcd_filename[0] != PCD_ERASED) && 1231 (pc_validchar(ep->pcd_filename[0]) || 1232 (ep->pcd_filename[0] == '.' && ep->pcd_filename[1] == '.'))) { 1233 pcp = pc_getnode(fsp, eblkno, eoffset, ep); 1234 pcp->pc_flags |= PC_EXTERNAL; 1235 *vpp = PCTOV(pcp); 1236 } else { 1237 *vpp = NULL; 1238 } 1239 bp->b_flags |= B_STALE | B_AGE; 1240 brelse(bp); 1241 pc_unlockfs(fsp); 1242 return (0); 1243 } 1244 1245 /* 1246 * Unfortunately, FAT32 fat's can be pretty big (On a 1 gig jaz drive, about 1247 * a meg), so we can't bread() it all in at once. This routine reads a 1248 * fat a chunk at a time. 1249 */ 1250 static int 1251 pc_readfat(struct pcfs *fsp, uchar_t *fatp) 1252 { 1253 struct buf *bp; 1254 size_t off; 1255 size_t readsize; 1256 daddr_t diskblk; 1257 size_t fatsize = fsp->pcfs_fatsec * fsp->pcfs_secsize; 1258 daddr_t start = fsp->pcfs_fatstart; 1259 1260 readsize = fsp->pcfs_clsize; 1261 for (off = 0; off < fatsize; off += readsize, fatp += readsize) { 1262 if (readsize > (fatsize - off)) 1263 readsize = fatsize - off; 1264 diskblk = pc_dbdaddr(fsp, start + 1265 pc_cltodb(fsp, pc_lblkno(fsp, off))); 1266 bp = bread(fsp->pcfs_xdev, diskblk, readsize); 1267 if (bp->b_flags & (B_ERROR | B_STALE)) { 1268 brelse(bp); 1269 return (EIO); 1270 } 1271 bp->b_flags |= B_STALE | B_AGE; 1272 bcopy(bp->b_un.b_addr, fatp, readsize); 1273 brelse(bp); 1274 } 1275 return (0); 1276 } 1277 1278 /* 1279 * We write the FAT out a _lot_, in order to make sure that it 1280 * is up-to-date. But on a FAT32 system (large drive, small clusters) 1281 * the FAT might be a couple of megabytes, and writing it all out just 1282 * because we created or deleted a small file is painful (especially 1283 * since we do it for each alternate FAT too). So instead, for FAT16 and 1284 * FAT32 we only write out the bit that has changed. We don't clear 1285 * the 'updated' fields here because the caller might be writing out 1286 * several FATs, so the caller must use pc_clear_fatchanges() after 1287 * all FATs have been updated. 1288 * This function doesn't take "start" from fsp->pcfs_dosstart because 1289 * callers can use it to write either the primary or any of the alternate 1290 * FAT tables. 1291 */ 1292 static int 1293 pc_writefat(struct pcfs *fsp, daddr_t start) 1294 { 1295 struct buf *bp; 1296 size_t off; 1297 size_t writesize; 1298 int error; 1299 uchar_t *fatp = fsp->pcfs_fatp; 1300 size_t fatsize = fsp->pcfs_fatsec * fsp->pcfs_secsize; 1301 1302 writesize = fsp->pcfs_clsize; 1303 for (off = 0; off < fatsize; off += writesize, fatp += writesize) { 1304 if (writesize > (fatsize - off)) 1305 writesize = fatsize - off; 1306 if (!pc_fat_is_changed(fsp, pc_lblkno(fsp, off))) { 1307 continue; 1308 } 1309 bp = ngeteblk(writesize); 1310 bp->b_edev = fsp->pcfs_xdev; 1311 bp->b_dev = cmpdev(bp->b_edev); 1312 bp->b_blkno = pc_dbdaddr(fsp, start + 1313 pc_cltodb(fsp, pc_lblkno(fsp, off))); 1314 bcopy(fatp, bp->b_un.b_addr, writesize); 1315 bwrite2(bp); 1316 error = geterror(bp); 1317 brelse(bp); 1318 if (error) { 1319 return (error); 1320 } 1321 } 1322 return (0); 1323 } 1324 1325 /* 1326 * Mark the FAT cluster that 'cn' is stored in as modified. 1327 */ 1328 void 1329 pc_mark_fat_updated(struct pcfs *fsp, pc_cluster32_t cn) 1330 { 1331 pc_cluster32_t bn; 1332 size_t size; 1333 1334 /* which fat block is the cluster number stored in? */ 1335 if (IS_FAT32(fsp)) { 1336 size = sizeof (pc_cluster32_t); 1337 bn = pc_lblkno(fsp, cn * size); 1338 fsp->pcfs_fat_changemap[bn] = 1; 1339 } else if (IS_FAT16(fsp)) { 1340 size = sizeof (pc_cluster16_t); 1341 bn = pc_lblkno(fsp, cn * size); 1342 fsp->pcfs_fat_changemap[bn] = 1; 1343 } else { 1344 offset_t off; 1345 pc_cluster32_t nbn; 1346 1347 ASSERT(IS_FAT12(fsp)); 1348 off = cn + (cn >> 1); 1349 bn = pc_lblkno(fsp, off); 1350 fsp->pcfs_fat_changemap[bn] = 1; 1351 /* does this field wrap into the next fat cluster? */ 1352 nbn = pc_lblkno(fsp, off + 1); 1353 if (nbn != bn) { 1354 fsp->pcfs_fat_changemap[nbn] = 1; 1355 } 1356 } 1357 } 1358 1359 /* 1360 * return whether the FAT cluster 'bn' is updated and needs to 1361 * be written out. 1362 */ 1363 int 1364 pc_fat_is_changed(struct pcfs *fsp, pc_cluster32_t bn) 1365 { 1366 return (fsp->pcfs_fat_changemap[bn] == 1); 1367 } 1368 1369 /* 1370 * Implementation of VFS_FREEVFS() to support forced umounts. 1371 * This is called by the vfs framework after umount, to trigger 1372 * the release of any resources still associated with the given 1373 * vfs_t once the need to keep them has gone away. 1374 */ 1375 void 1376 pcfs_freevfs(vfs_t *vfsp) 1377 { 1378 struct pcfs *fsp = VFSTOPCFS(vfsp); 1379 1380 mutex_enter(&pcfslock); 1381 /* 1382 * Purging the FAT closes the device - can't do any more 1383 * I/O after this. 1384 */ 1385 if (fsp->pcfs_fatp != (uchar_t *)0) 1386 pc_invalfat(fsp); 1387 mutex_exit(&pcfslock); 1388 1389 VN_RELE(fsp->pcfs_devvp); 1390 mutex_destroy(&fsp->pcfs_lock); 1391 kmem_free(fsp, sizeof (*fsp)); 1392 1393 /* 1394 * Allow _fini() to succeed now, if so desired. 1395 */ 1396 atomic_dec_32(&pcfs_mountcount); 1397 } 1398 1399 1400 /* 1401 * PC-style partition parsing and FAT BPB identification/validation code. 1402 * The partition parsers here assume: 1403 * - a FAT filesystem will be in a partition that has one of a set of 1404 * recognized partition IDs 1405 * - the user wants the 'numbering' (C:, D:, ...) that one would get 1406 * on MSDOS 6.x. 1407 * That means any non-FAT partition type (NTFS, HPFS, or any Linux fs) 1408 * will not factor in the enumeration. 1409 * These days, such assumptions should be revisited. FAT is no longer the 1410 * only game in 'PC town'. 1411 */ 1412 /* 1413 * isDosDrive() 1414 * Boolean function. Give it the systid field for an fdisk partition 1415 * and it decides if that's a systid that describes a DOS drive. We 1416 * use systid values defined in sys/dktp/fdisk.h. 1417 */ 1418 static int 1419 isDosDrive(uchar_t checkMe) 1420 { 1421 return ((checkMe == DOSOS12) || (checkMe == DOSOS16) || 1422 (checkMe == DOSHUGE) || (checkMe == FDISK_WINDOWS) || 1423 (checkMe == FDISK_EXT_WIN) || (checkMe == FDISK_FAT95) || 1424 (checkMe == DIAGPART)); 1425 } 1426 1427 1428 /* 1429 * isDosExtended() 1430 * Boolean function. Give it the systid field for an fdisk partition 1431 * and it decides if that's a systid that describes an extended DOS 1432 * partition. 1433 */ 1434 static int 1435 isDosExtended(uchar_t checkMe) 1436 { 1437 return ((checkMe == EXTDOS) || (checkMe == FDISK_EXTLBA)); 1438 } 1439 1440 1441 /* 1442 * isBootPart() 1443 * Boolean function. Give it the systid field for an fdisk partition 1444 * and it decides if that's a systid that describes a Solaris boot 1445 * partition. 1446 */ 1447 static int 1448 isBootPart(uchar_t checkMe) 1449 { 1450 return (checkMe == X86BOOT); 1451 } 1452 1453 1454 /* 1455 * noLogicalDrive() 1456 * Display error message about not being able to find a logical 1457 * drive. 1458 */ 1459 static void 1460 noLogicalDrive(int ldrive) 1461 { 1462 if (ldrive == BOOT_PARTITION_DRIVE) { 1463 cmn_err(CE_NOTE, "!pcfs: no boot partition"); 1464 } else { 1465 cmn_err(CE_NOTE, "!pcfs: %d: no such logical drive", ldrive); 1466 } 1467 } 1468 1469 1470 /* 1471 * findTheDrive() 1472 * Discover offset of the requested logical drive, and return 1473 * that offset (startSector), the systid of that drive (sysid), 1474 * and a buffer pointer (bp), with the buffer contents being 1475 * the first sector of the logical drive (i.e., the sector that 1476 * contains the BPB for that drive). 1477 * 1478 * Note: this code is not capable of addressing >2TB disks, as it uses 1479 * daddr_t not diskaddr_t, some of the calculations would overflow 1480 */ 1481 #define COPY_PTBL(mbr, ptblp) \ 1482 bcopy(&(((struct mboot *)(mbr))->parts), (ptblp), \ 1483 FD_NUMPART * sizeof (struct ipart)) 1484 1485 static int 1486 findTheDrive(struct pcfs *fsp, buf_t **bp) 1487 { 1488 int ldrive = fsp->pcfs_ldrive; 1489 dev_t dev = fsp->pcfs_devvp->v_rdev; 1490 1491 struct ipart dosp[FD_NUMPART]; /* incore fdisk partition structure */ 1492 daddr_t lastseek = 0; /* Disk block we sought previously */ 1493 daddr_t diskblk = 0; /* Disk block to get */ 1494 daddr_t xstartsect; /* base of Extended DOS partition */ 1495 int logicalDriveCount = 0; /* Count of logical drives seen */ 1496 int extendedPart = -1; /* index of extended dos partition */ 1497 int primaryPart = -1; /* index of primary dos partition */ 1498 int bootPart = -1; /* index of a Solaris boot partition */ 1499 int xnumsect = -1; /* length of extended DOS partition */ 1500 int driveIndex; /* computed FDISK table index */ 1501 daddr_t startsec; 1502 len_t mediasize; 1503 int i; 1504 /* 1505 * Count of drives in the current extended partition's 1506 * FDISK table, and indexes of the drives themselves. 1507 */ 1508 int extndDrives[FD_NUMPART]; 1509 int numDrives = 0; 1510 1511 /* 1512 * Count of drives (beyond primary) in master boot record's 1513 * FDISK table, and indexes of the drives themselves. 1514 */ 1515 int extraDrives[FD_NUMPART]; 1516 int numExtraDrives = 0; 1517 1518 /* 1519 * "ldrive == 0" should never happen, as this is a request to 1520 * mount the physical device (and ignore partitioning). The code 1521 * in pcfs_mount() should have made sure that a logical drive number 1522 * is at least 1, meaning we're looking for drive "C:". It is not 1523 * safe (and a bug in the callers of this function) to request logical 1524 * drive number 0; we could ASSERT() but a graceful EIO is a more 1525 * polite way. 1526 */ 1527 if (ldrive == 0) { 1528 cmn_err(CE_NOTE, "!pcfs: request for logical partition zero"); 1529 noLogicalDrive(ldrive); 1530 return (EIO); 1531 } 1532 1533 /* 1534 * Copy from disk block into memory aligned structure for fdisk usage. 1535 */ 1536 COPY_PTBL((*bp)->b_un.b_addr, dosp); 1537 1538 /* 1539 * This check is ok because a FAT BPB and a master boot record (MBB) 1540 * have the same signature, in the same position within the block. 1541 */ 1542 if (bpb_get_BPBSig((*bp)->b_un.b_addr) != MBB_MAGIC) { 1543 cmn_err(CE_NOTE, "!pcfs: MBR partition table signature err, " 1544 "device (%x.%x):%d\n", 1545 getmajor(dev), getminor(dev), ldrive); 1546 return (EINVAL); 1547 } 1548 1549 /* 1550 * Get a summary of what is in the Master FDISK table. 1551 * Normally we expect to find one partition marked as a DOS drive. 1552 * This partition is the one Windows calls the primary dos partition. 1553 * If the machine has any logical drives then we also expect 1554 * to find a partition marked as an extended DOS partition. 1555 * 1556 * Sometimes we'll find multiple partitions marked as DOS drives. 1557 * The Solaris fdisk program allows these partitions 1558 * to be created, but Windows fdisk no longer does. We still need 1559 * to support these, though, since Windows does. We also need to fix 1560 * our fdisk to behave like the Windows version. 1561 * 1562 * It turns out that some off-the-shelf media have *only* an 1563 * Extended partition, so we need to deal with that case as well. 1564 * 1565 * Only a single (the first) Extended or Boot Partition will 1566 * be recognized. Any others will be ignored. 1567 */ 1568 for (i = 0; i < FD_NUMPART; i++) { 1569 DTRACE_PROBE4(primarypart, struct pcfs *, fsp, 1570 uint_t, (uint_t)dosp[i].systid, 1571 uint_t, LE_32(dosp[i].relsect), 1572 uint_t, LE_32(dosp[i].numsect)); 1573 1574 if (isDosDrive(dosp[i].systid)) { 1575 if (primaryPart < 0) { 1576 logicalDriveCount++; 1577 primaryPart = i; 1578 } else { 1579 extraDrives[numExtraDrives++] = i; 1580 } 1581 continue; 1582 } 1583 if ((extendedPart < 0) && isDosExtended(dosp[i].systid)) { 1584 extendedPart = i; 1585 continue; 1586 } 1587 if ((bootPart < 0) && isBootPart(dosp[i].systid)) { 1588 bootPart = i; 1589 continue; 1590 } 1591 } 1592 1593 if (ldrive == BOOT_PARTITION_DRIVE) { 1594 if (bootPart < 0) { 1595 noLogicalDrive(ldrive); 1596 return (EINVAL); 1597 } 1598 startsec = LE_32(dosp[bootPart].relsect); 1599 mediasize = LE_32(dosp[bootPart].numsect); 1600 goto found; 1601 } 1602 1603 if (ldrive == PRIMARY_DOS_DRIVE && primaryPart >= 0) { 1604 startsec = LE_32(dosp[primaryPart].relsect); 1605 mediasize = LE_32(dosp[primaryPart].numsect); 1606 goto found; 1607 } 1608 1609 /* 1610 * We are not looking for the C: drive (or the primary drive 1611 * was not found), so we had better have an extended partition 1612 * or extra drives in the Master FDISK table. 1613 */ 1614 if ((extendedPart < 0) && (numExtraDrives == 0)) { 1615 cmn_err(CE_NOTE, "!pcfs: no extended dos partition"); 1616 noLogicalDrive(ldrive); 1617 return (EINVAL); 1618 } 1619 1620 if (extendedPart >= 0) { 1621 diskblk = xstartsect = LE_32(dosp[extendedPart].relsect); 1622 xnumsect = LE_32(dosp[extendedPart].numsect); 1623 do { 1624 /* 1625 * If the seek would not cause us to change 1626 * position on the drive, then we're out of 1627 * extended partitions to examine. 1628 */ 1629 if (diskblk == lastseek) 1630 break; 1631 logicalDriveCount += numDrives; 1632 /* 1633 * Seek the next extended partition, and find 1634 * logical drives within it. 1635 */ 1636 brelse(*bp); 1637 /* 1638 * bread() block numbers are multiples of DEV_BSIZE 1639 * but the device sector size (the unit of partitioning) 1640 * might be larger than that; pcfs_get_device_info() 1641 * has calculated the multiplicator for us. 1642 */ 1643 *bp = bread(dev, 1644 pc_dbdaddr(fsp, diskblk), fsp->pcfs_secsize); 1645 if ((*bp)->b_flags & B_ERROR) { 1646 return (EIO); 1647 } 1648 1649 lastseek = diskblk; 1650 COPY_PTBL((*bp)->b_un.b_addr, dosp); 1651 if (bpb_get_BPBSig((*bp)->b_un.b_addr) != MBB_MAGIC) { 1652 cmn_err(CE_NOTE, "!pcfs: " 1653 "extended partition table signature err, " 1654 "device (%x.%x):%d, LBA %u", 1655 getmajor(dev), getminor(dev), ldrive, 1656 (uint_t)pc_dbdaddr(fsp, diskblk)); 1657 return (EINVAL); 1658 } 1659 /* 1660 * Count up drives, and track where the next 1661 * extended partition is in case we need it. We 1662 * are expecting only one extended partition. If 1663 * there is more than one we'll only go to the 1664 * first one we see, but warn about ignoring. 1665 */ 1666 numDrives = 0; 1667 for (i = 0; i < FD_NUMPART; i++) { 1668 DTRACE_PROBE4(extendedpart, 1669 struct pcfs *, fsp, 1670 uint_t, (uint_t)dosp[i].systid, 1671 uint_t, LE_32(dosp[i].relsect), 1672 uint_t, LE_32(dosp[i].numsect)); 1673 if (isDosDrive(dosp[i].systid)) { 1674 extndDrives[numDrives++] = i; 1675 } else if (isDosExtended(dosp[i].systid)) { 1676 if (diskblk != lastseek) { 1677 /* 1678 * Already found an extended 1679 * partition in this table. 1680 */ 1681 cmn_err(CE_NOTE, 1682 "!pcfs: ignoring unexpected" 1683 " additional extended" 1684 " partition"); 1685 } else { 1686 diskblk = xstartsect + 1687 LE_32(dosp[i].relsect); 1688 } 1689 } 1690 } 1691 } while (ldrive > logicalDriveCount + numDrives); 1692 1693 ASSERT(numDrives <= FD_NUMPART); 1694 1695 if (ldrive <= logicalDriveCount + numDrives) { 1696 /* 1697 * The number of logical drives we've found thus 1698 * far is enough to get us to the one we were 1699 * searching for. 1700 */ 1701 driveIndex = logicalDriveCount + numDrives - ldrive; 1702 mediasize = 1703 LE_32(dosp[extndDrives[driveIndex]].numsect); 1704 startsec = 1705 LE_32(dosp[extndDrives[driveIndex]].relsect) + 1706 lastseek; 1707 if (startsec > (xstartsect + xnumsect)) { 1708 cmn_err(CE_NOTE, "!pcfs: extended partition " 1709 "values bad"); 1710 return (EINVAL); 1711 } 1712 goto found; 1713 } else { 1714 /* 1715 * We ran out of extended dos partition 1716 * drives. The only hope now is to go 1717 * back to extra drives defined in the master 1718 * fdisk table. But we overwrote that table 1719 * already, so we must load it in again. 1720 */ 1721 logicalDriveCount += numDrives; 1722 brelse(*bp); 1723 ASSERT(fsp->pcfs_dosstart == 0); 1724 *bp = bread(dev, pc_dbdaddr(fsp, fsp->pcfs_dosstart), 1725 fsp->pcfs_secsize); 1726 if ((*bp)->b_flags & B_ERROR) { 1727 return (EIO); 1728 } 1729 COPY_PTBL((*bp)->b_un.b_addr, dosp); 1730 } 1731 } 1732 /* 1733 * Still haven't found the drive, is it an extra 1734 * drive defined in the main FDISK table? 1735 */ 1736 if (ldrive <= logicalDriveCount + numExtraDrives) { 1737 driveIndex = logicalDriveCount + numExtraDrives - ldrive; 1738 ASSERT(driveIndex < MIN(numExtraDrives, FD_NUMPART)); 1739 mediasize = LE_32(dosp[extraDrives[driveIndex]].numsect); 1740 startsec = LE_32(dosp[extraDrives[driveIndex]].relsect); 1741 goto found; 1742 } 1743 /* 1744 * Still haven't found the drive, and there is 1745 * nowhere else to look. 1746 */ 1747 noLogicalDrive(ldrive); 1748 return (EINVAL); 1749 1750 found: 1751 /* 1752 * We need this value in units of sectorsize, because PCFS' internal 1753 * offset calculations go haywire for > 512Byte sectors unless all 1754 * pcfs_.*start values are in units of sectors. 1755 * So, assign before the capacity check (that's done in DEV_BSIZE) 1756 */ 1757 fsp->pcfs_dosstart = startsec; 1758 1759 /* 1760 * convert from device sectors to proper units: 1761 * - starting sector: DEV_BSIZE (as argument to bread()) 1762 * - media size: Bytes 1763 */ 1764 startsec = pc_dbdaddr(fsp, startsec); 1765 mediasize *= fsp->pcfs_secsize; 1766 1767 /* 1768 * some additional validation / warnings in case the partition table 1769 * and the actual media capacity are not in accordance ... 1770 */ 1771 if (fsp->pcfs_mediasize != 0) { 1772 diskaddr_t startoff = 1773 (diskaddr_t)startsec * (diskaddr_t)DEV_BSIZE; 1774 1775 if (startoff >= fsp->pcfs_mediasize || 1776 startoff + mediasize > fsp->pcfs_mediasize) { 1777 cmn_err(CE_WARN, 1778 "!pcfs: partition size (LBA start %u, %lld bytes, " 1779 "device (%x.%x):%d) smaller than " 1780 "mediasize (%lld bytes).\n" 1781 "filesystem may be truncated, access errors " 1782 "may result.\n", 1783 (uint_t)startsec, (long long)mediasize, 1784 getmajor(fsp->pcfs_xdev), getminor(fsp->pcfs_xdev), 1785 fsp->pcfs_ldrive, (long long)fsp->pcfs_mediasize); 1786 } 1787 } else { 1788 fsp->pcfs_mediasize = mediasize; 1789 } 1790 1791 return (0); 1792 } 1793 1794 1795 static fattype_t 1796 secondaryBPBChecks(struct pcfs *fsp, uchar_t *bpb, size_t secsize) 1797 { 1798 uint32_t ncl = fsp->pcfs_ncluster; 1799 1800 if (ncl <= 4096) { 1801 if (bpb_get_FatSz16(bpb) == 0) 1802 return (FAT_UNKNOWN); 1803 1804 if (bpb_get_FatSz16(bpb) * secsize < ncl * 2 && 1805 bpb_get_FatSz16(bpb) * secsize >= (3 * ncl / 2)) 1806 return (FAT12); 1807 if (bcmp(bpb_FilSysType16(bpb), "FAT12", 5) == 0) 1808 return (FAT12); 1809 if (bcmp(bpb_FilSysType16(bpb), "FAT16", 5) == 0) 1810 return (FAT16); 1811 1812 switch (bpb_get_Media(bpb)) { 1813 case SS8SPT: 1814 case DS8SPT: 1815 case SS9SPT: 1816 case DS9SPT: 1817 case DS18SPT: 1818 case DS9_15SPT: 1819 /* 1820 * Is this reliable - all floppies are FAT12 ? 1821 */ 1822 return (FAT12); 1823 case MD_FIXED: 1824 /* 1825 * Is this reliable - disks are always FAT16 ? 1826 */ 1827 return (FAT16); 1828 default: 1829 break; 1830 } 1831 } else if (ncl <= 65536) { 1832 if (bpb_get_FatSz16(bpb) == 0 && bpb_get_FatSz32(bpb) > 0) 1833 return (FAT32); 1834 if (VALID_BOOTSIG(bpb_get_BootSig32(bpb))) 1835 return (FAT32); 1836 if (VALID_FSTYPSTR32(bpb_FilSysType32(bpb))) 1837 return (FAT32); 1838 1839 if (VALID_BOOTSIG(bpb_get_BootSig16(bpb))) 1840 return (FAT16); 1841 if (bpb_get_FatSz16(bpb) * secsize < ncl * 4) 1842 return (FAT16); 1843 } 1844 1845 /* 1846 * We don't know 1847 */ 1848 return (FAT_UNKNOWN); 1849 } 1850 1851 /* 1852 * Check to see if the BPB we found is correct. 1853 * 1854 * This looks far more complicated that it needs to be for pure structural 1855 * validation. The reason for this is that parseBPB() is also used for 1856 * debugging purposes (mdb dcmd) and we therefore want a bitmap of which 1857 * BPB fields have 'known good' values, even if we do not reject the BPB 1858 * when attempting to mount the filesystem. 1859 */ 1860 static int 1861 parseBPB(struct pcfs *fsp, uchar_t *bpb, int *valid) 1862 { 1863 fattype_t type; 1864 1865 uint32_t ncl; /* number of clusters in file area */ 1866 uint32_t rec; 1867 uint32_t reserved; 1868 uint32_t fsisec, bkbootsec; 1869 blkcnt_t totsec, totsec16, totsec32, datasec; 1870 size_t fatsec, fatsec16, fatsec32, rdirsec; 1871 size_t secsize; 1872 len_t mediasize; 1873 uint64_t validflags = 0; 1874 1875 if (VALID_BPBSIG(bpb_get_BPBSig(bpb))) 1876 validflags |= BPB_BPBSIG_OK; 1877 1878 rec = bpb_get_RootEntCnt(bpb); 1879 reserved = bpb_get_RsvdSecCnt(bpb); 1880 fsisec = bpb_get_FSInfo32(bpb); 1881 bkbootsec = bpb_get_BkBootSec32(bpb); 1882 totsec16 = (blkcnt_t)bpb_get_TotSec16(bpb); 1883 totsec32 = (blkcnt_t)bpb_get_TotSec32(bpb); 1884 fatsec16 = bpb_get_FatSz16(bpb); 1885 fatsec32 = bpb_get_FatSz32(bpb); 1886 1887 totsec = totsec16 ? totsec16 : totsec32; 1888 fatsec = fatsec16 ? fatsec16 : fatsec32; 1889 1890 secsize = bpb_get_BytesPerSec(bpb); 1891 if (!VALID_SECSIZE(secsize)) 1892 secsize = fsp->pcfs_secsize; 1893 if (secsize != fsp->pcfs_secsize) { 1894 PC_DPRINTF3(3, "!pcfs: parseBPB, device (%x.%x):%d:\n", 1895 getmajor(fsp->pcfs_xdev), 1896 getminor(fsp->pcfs_xdev), fsp->pcfs_ldrive); 1897 PC_DPRINTF2(3, "!BPB secsize %d != " 1898 "autodetected media block size %d\n", 1899 (int)secsize, (int)fsp->pcfs_secsize); 1900 if (fsp->pcfs_ldrive) { 1901 /* 1902 * We've already attempted to parse the partition 1903 * table. If the block size used for that don't match 1904 * the PCFS sector size, we're hosed one way or the 1905 * other. Just try what happens. 1906 */ 1907 secsize = fsp->pcfs_secsize; 1908 PC_DPRINTF1(3, 1909 "!pcfs: Using autodetected secsize %d\n", 1910 (int)secsize); 1911 } else { 1912 /* 1913 * This allows mounting lofi images of PCFS partitions 1914 * with sectorsize != DEV_BSIZE. We can't parse the 1915 * partition table on whole-disk images unless the 1916 * (undocumented) "secsize=..." mount option is used, 1917 * but at least this allows us to mount if we have 1918 * an image of a partition. 1919 */ 1920 PC_DPRINTF1(3, 1921 "!pcfs: Using BPB secsize %d\n", (int)secsize); 1922 } 1923 } 1924 1925 if (fsp->pcfs_mediasize == 0) { 1926 mediasize = (len_t)totsec * (len_t)secsize; 1927 PC_DPRINTF4(3, "!pcfs: parseBPB: mediasize autodetect failed " 1928 "on device (%x.%x):%d, trusting BPB totsec (%lld Bytes)\n", 1929 getmajor(fsp->pcfs_xdev), getminor(fsp->pcfs_xdev), 1930 fsp->pcfs_ldrive, (long long)fsp->pcfs_mediasize); 1931 } else if ((len_t)totsec * (len_t)secsize > fsp->pcfs_mediasize) { 1932 cmn_err(CE_WARN, 1933 "!pcfs: autodetected mediasize (%lld Bytes) smaller than " 1934 "FAT BPB mediasize (%lld Bytes).\n" 1935 "truncated filesystem on device (%x.%x):%d, access errors " 1936 "possible.\n", 1937 (long long)fsp->pcfs_mediasize, 1938 (long long)(totsec * (blkcnt_t)secsize), 1939 getmajor(fsp->pcfs_xdev), getminor(fsp->pcfs_xdev), 1940 fsp->pcfs_ldrive); 1941 mediasize = fsp->pcfs_mediasize; 1942 } else { 1943 /* 1944 * This is actually ok. A FAT needs not occupy the maximum 1945 * space available in its partition, it can be shorter. 1946 */ 1947 mediasize = (len_t)totsec * (len_t)secsize; 1948 } 1949 1950 /* 1951 * Since we let just about anything pass through this function, 1952 * fence against divide-by-zero here. 1953 */ 1954 if (secsize) 1955 rdirsec = roundup(rec * 32, secsize) / secsize; 1956 else 1957 rdirsec = 0; 1958 1959 /* 1960 * This assignment is necessary before pc_dbdaddr() can first be 1961 * used. Must initialize the value here. 1962 */ 1963 fsp->pcfs_secsize = secsize; 1964 fsp->pcfs_sdshift = ddi_ffs(secsize / DEV_BSIZE) - 1; 1965 1966 fsp->pcfs_mediasize = mediasize; 1967 1968 fsp->pcfs_spcl = bpb_get_SecPerClus(bpb); 1969 fsp->pcfs_numfat = bpb_get_NumFATs(bpb); 1970 fsp->pcfs_mediadesc = bpb_get_Media(bpb); 1971 fsp->pcfs_clsize = secsize * fsp->pcfs_spcl; 1972 fsp->pcfs_rdirsec = rdirsec; 1973 1974 /* 1975 * Remember: All PCFS offset calculations in sectors. Before I/O 1976 * is done, convert to DEV_BSIZE units via pc_dbdaddr(). This is 1977 * necessary so that media with > 512Byte sector sizes work correctly. 1978 */ 1979 fsp->pcfs_fatstart = fsp->pcfs_dosstart + reserved; 1980 fsp->pcfs_rdirstart = fsp->pcfs_fatstart + fsp->pcfs_numfat * fatsec; 1981 fsp->pcfs_datastart = fsp->pcfs_rdirstart + rdirsec; 1982 datasec = totsec - 1983 (blkcnt_t)fatsec * fsp->pcfs_numfat - 1984 (blkcnt_t)rdirsec - 1985 (blkcnt_t)reserved; 1986 1987 DTRACE_PROBE4(fatgeometry, 1988 blkcnt_t, totsec, size_t, fatsec, 1989 size_t, rdirsec, blkcnt_t, datasec); 1990 1991 /* 1992 * UINT32_MAX is an underflow check - we calculate in "blkcnt_t" which 1993 * is 64bit in order to be able to catch "impossible" sector counts. 1994 * A sector count in FAT must fit 32bit unsigned int. 1995 */ 1996 if (totsec != 0 && 1997 (totsec16 == totsec32 || totsec16 == 0 || totsec32 == 0) && 1998 (len_t)totsec * (len_t)secsize <= mediasize && 1999 datasec < totsec && datasec <= UINT32_MAX) 2000 validflags |= BPB_TOTSEC_OK; 2001 2002 if (mediasize >= (len_t)datasec * (len_t)secsize) 2003 validflags |= BPB_MEDIASZ_OK; 2004 2005 if (VALID_SECSIZE(secsize)) 2006 validflags |= BPB_SECSIZE_OK; 2007 if (VALID_SPCL(fsp->pcfs_spcl)) 2008 validflags |= BPB_SECPERCLUS_OK; 2009 if (VALID_CLSIZE(fsp->pcfs_clsize)) 2010 validflags |= BPB_CLSIZE_OK; 2011 if (VALID_NUMFATS(fsp->pcfs_numfat)) 2012 validflags |= BPB_NUMFAT_OK; 2013 if (VALID_RSVDSEC(reserved) && reserved < totsec) 2014 validflags |= BPB_RSVDSECCNT_OK; 2015 if (VALID_MEDIA(fsp->pcfs_mediadesc)) 2016 validflags |= BPB_MEDIADESC_OK; 2017 if (VALID_BOOTSIG(bpb_get_BootSig16(bpb))) 2018 validflags |= BPB_BOOTSIG16_OK; 2019 if (VALID_BOOTSIG(bpb_get_BootSig32(bpb))) 2020 validflags |= BPB_BOOTSIG32_OK; 2021 if (VALID_FSTYPSTR16(bpb_FilSysType16(bpb))) 2022 validflags |= BPB_FSTYPSTR16_OK; 2023 if (VALID_FSTYPSTR32(bpb_FilSysType32(bpb))) 2024 validflags |= BPB_FSTYPSTR32_OK; 2025 if (VALID_OEMNAME(bpb_OEMName(bpb))) 2026 validflags |= BPB_OEMNAME_OK; 2027 if (bkbootsec > 0 && bkbootsec <= reserved && fsisec != bkbootsec) 2028 validflags |= BPB_BKBOOTSEC_OK; 2029 if (fsisec > 0 && fsisec <= reserved) 2030 validflags |= BPB_FSISEC_OK; 2031 if (VALID_JMPBOOT(bpb_jmpBoot(bpb))) 2032 validflags |= BPB_JMPBOOT_OK; 2033 if (VALID_FSVER32(bpb_get_FSVer32(bpb))) 2034 validflags |= BPB_FSVER_OK; 2035 if (VALID_VOLLAB(bpb_VolLab16(bpb))) 2036 validflags |= BPB_VOLLAB16_OK; 2037 if (VALID_VOLLAB(bpb_VolLab32(bpb))) 2038 validflags |= BPB_VOLLAB32_OK; 2039 if (VALID_EXTFLAGS(bpb_get_ExtFlags32(bpb))) 2040 validflags |= BPB_EXTFLAGS_OK; 2041 2042 /* 2043 * Try to determine which FAT format to use. 2044 * 2045 * Calculate the number of clusters in order to determine 2046 * the type of FAT we are looking at. This is the only 2047 * recommended way of determining FAT type, though there 2048 * are other hints in the data, this is the best way. 2049 * 2050 * Since we let just about "anything" pass through this function 2051 * without early exits, fence against divide-by-zero here. 2052 * 2053 * datasec was already validated against UINT32_MAX so we know 2054 * the result will not overflow the 32bit calculation. 2055 */ 2056 if (fsp->pcfs_spcl) 2057 ncl = (uint32_t)datasec / fsp->pcfs_spcl; 2058 else 2059 ncl = 0; 2060 2061 fsp->pcfs_ncluster = ncl; 2062 2063 /* 2064 * From the Microsoft FAT specification: 2065 * In the following example, when it says <, it does not mean <=. 2066 * Note also that the numbers are correct. The first number for 2067 * FAT12 is 4085; the second number for FAT16 is 65525. These numbers 2068 * and the '<' signs are not wrong. 2069 * 2070 * We "specialdetect" the corner cases, and use at least one "extra" 2071 * criterion to decide whether it's FAT16 or FAT32 if the cluster 2072 * count is dangerously close to the boundaries. 2073 */ 2074 2075 if (ncl <= PCF_FIRSTCLUSTER) { 2076 type = FAT_UNKNOWN; 2077 } else if (ncl < 4085) { 2078 type = FAT12; 2079 } else if (ncl <= 4096) { 2080 type = FAT_QUESTIONABLE; 2081 } else if (ncl < 65525) { 2082 type = FAT16; 2083 } else if (ncl <= 65536) { 2084 type = FAT_QUESTIONABLE; 2085 } else if (ncl < PCF_LASTCLUSTER32) { 2086 type = FAT32; 2087 } else { 2088 type = FAT_UNKNOWN; 2089 } 2090 2091 DTRACE_PROBE4(parseBPB__initial, 2092 struct pcfs *, fsp, unsigned char *, bpb, 2093 int, validflags, fattype_t, type); 2094 2095 recheck: 2096 fsp->pcfs_fatsec = fatsec; 2097 2098 /* Do some final sanity checks for each specific type of FAT */ 2099 switch (type) { 2100 case FAT12: 2101 if (rec != 0) 2102 validflags |= BPB_ROOTENTCNT_OK; 2103 if ((blkcnt_t)bpb_get_TotSec16(bpb) == totsec || 2104 bpb_get_TotSec16(bpb) == 0) 2105 validflags |= BPB_TOTSEC16_OK; 2106 if ((blkcnt_t)bpb_get_TotSec32(bpb) == totsec || 2107 bpb_get_TotSec32(bpb) == 0) 2108 validflags |= BPB_TOTSEC32_OK; 2109 if (bpb_get_FatSz16(bpb) == fatsec) 2110 validflags |= BPB_FATSZ16_OK; 2111 if (fatsec * secsize >= ncl * 3 / 2) 2112 validflags |= BPB_FATSZ_OK; 2113 if (ncl < 4085) 2114 validflags |= BPB_NCLUSTERS_OK; 2115 2116 fsp->pcfs_lastclmark = (PCF_LASTCLUSTER & 0xfff); 2117 fsp->pcfs_rootblksize = 2118 fsp->pcfs_rdirsec * secsize; 2119 fsp->pcfs_fsistart = 0; 2120 2121 if ((validflags & FAT12_VALIDMSK) != FAT12_VALIDMSK) 2122 type = FAT_UNKNOWN; 2123 break; 2124 case FAT16: 2125 if (rec != 0) 2126 validflags |= BPB_ROOTENTCNT_OK; 2127 if ((blkcnt_t)bpb_get_TotSec16(bpb) == totsec || 2128 bpb_get_TotSec16(bpb) == 0) 2129 validflags |= BPB_TOTSEC16_OK; 2130 if ((blkcnt_t)bpb_get_TotSec32(bpb) == totsec || 2131 bpb_get_TotSec32(bpb) == 0) 2132 validflags |= BPB_TOTSEC32_OK; 2133 if (bpb_get_FatSz16(bpb) == fatsec) 2134 validflags |= BPB_FATSZ16_OK; 2135 if (fatsec * secsize >= ncl * 2) 2136 validflags |= BPB_FATSZ_OK; 2137 if (ncl >= 4085 && ncl < 65525) 2138 validflags |= BPB_NCLUSTERS_OK; 2139 2140 fsp->pcfs_lastclmark = PCF_LASTCLUSTER; 2141 fsp->pcfs_rootblksize = 2142 fsp->pcfs_rdirsec * secsize; 2143 fsp->pcfs_fsistart = 0; 2144 2145 if ((validflags & FAT16_VALIDMSK) != FAT16_VALIDMSK) 2146 type = FAT_UNKNOWN; 2147 break; 2148 case FAT32: 2149 if (rec == 0) 2150 validflags |= BPB_ROOTENTCNT_OK; 2151 if (bpb_get_TotSec16(bpb) == 0) 2152 validflags |= BPB_TOTSEC16_OK; 2153 if ((blkcnt_t)bpb_get_TotSec32(bpb) == totsec) 2154 validflags |= BPB_TOTSEC32_OK; 2155 if (bpb_get_FatSz16(bpb) == 0) 2156 validflags |= BPB_FATSZ16_OK; 2157 if (bpb_get_FatSz32(bpb) == fatsec) 2158 validflags |= BPB_FATSZ32_OK; 2159 if (fatsec * secsize >= ncl * 4) 2160 validflags |= BPB_FATSZ_OK; 2161 if (ncl >= 65525 && ncl < PCF_LASTCLUSTER32) 2162 validflags |= BPB_NCLUSTERS_OK; 2163 2164 fsp->pcfs_lastclmark = PCF_LASTCLUSTER32; 2165 fsp->pcfs_rootblksize = fsp->pcfs_clsize; 2166 fsp->pcfs_fsistart = fsp->pcfs_dosstart + fsisec; 2167 if (validflags & BPB_FSISEC_OK) 2168 fsp->pcfs_flags |= PCFS_FSINFO_OK; 2169 fsp->pcfs_rootclnum = bpb_get_RootClus32(bpb); 2170 if (pc_validcl(fsp, fsp->pcfs_rootclnum)) 2171 validflags |= BPB_ROOTCLUSTER_OK; 2172 2173 /* 2174 * Current PCFS code only works if 'pcfs_rdirstart' 2175 * contains the root cluster number on FAT32. 2176 * That's a mis-use and would better be changed. 2177 */ 2178 fsp->pcfs_rdirstart = (daddr_t)fsp->pcfs_rootclnum; 2179 2180 if ((validflags & FAT32_VALIDMSK) != FAT32_VALIDMSK) 2181 type = FAT_UNKNOWN; 2182 break; 2183 case FAT_QUESTIONABLE: 2184 type = secondaryBPBChecks(fsp, bpb, secsize); 2185 goto recheck; 2186 default: 2187 ASSERT(type == FAT_UNKNOWN); 2188 break; 2189 } 2190 2191 ASSERT(type != FAT_QUESTIONABLE); 2192 2193 fsp->pcfs_fattype = type; 2194 2195 if (valid) 2196 *valid = validflags; 2197 2198 DTRACE_PROBE4(parseBPB__final, 2199 struct pcfs *, fsp, unsigned char *, bpb, 2200 int, validflags, fattype_t, type); 2201 2202 if (type != FAT_UNKNOWN) { 2203 ASSERT((secsize & (DEV_BSIZE - 1)) == 0); 2204 ASSERT(ISP2(secsize / DEV_BSIZE)); 2205 return (1); 2206 } 2207 2208 return (0); 2209 } 2210 2211 2212 /* 2213 * Detect the device's native block size (sector size). 2214 * 2215 * Test whether the device is: 2216 * - a floppy device from a known controller type via DKIOCINFO 2217 * - a real floppy using the fd(7d) driver and capable of fdio(7I) ioctls 2218 * - a PCMCIA sram memory card (pseudofloppy) using pcram(7d) 2219 * - a USB floppy drive (identified by drive geometry) 2220 * 2221 * Detecting a floppy will make PCFS metadata updates on such media synchronous, 2222 * to minimize risks due to slow I/O and user hotplugging / device ejection. 2223 * 2224 * This might be a bit wasteful on kernel stack space; if anyone's 2225 * bothered by this, kmem_alloc/kmem_free the ioctl arguments... 2226 */ 2227 static void 2228 pcfs_device_getinfo(struct pcfs *fsp) 2229 { 2230 dev_t rdev = fsp->pcfs_xdev; 2231 int error; 2232 union { 2233 struct dk_minfo mi; 2234 struct dk_cinfo ci; 2235 struct dk_geom gi; 2236 struct fd_char fc; 2237 } arg; /* save stackspace ... */ 2238 intptr_t argp = (intptr_t)&arg; 2239 ldi_handle_t lh; 2240 ldi_ident_t li; 2241 int isfloppy, isremoveable, ishotpluggable; 2242 cred_t *cr = CRED(); 2243 2244 if (ldi_ident_from_dev(rdev, &li)) 2245 goto out; 2246 2247 error = ldi_open_by_dev(&rdev, OTYP_CHR, FREAD, cr, &lh, li); 2248 ldi_ident_release(li); 2249 if (error) 2250 goto out; 2251 2252 /* 2253 * Not sure if this could possibly happen. It'd be a bit like 2254 * VOP_OPEN() changing the passed-in vnode ptr. We're just not 2255 * expecting it, needs some thought if triggered ... 2256 */ 2257 ASSERT(fsp->pcfs_xdev == rdev); 2258 2259 /* 2260 * Check for removeable/hotpluggable media. 2261 */ 2262 if (ldi_ioctl(lh, DKIOCREMOVABLE, 2263 (intptr_t)&isremoveable, FKIOCTL, cr, NULL)) { 2264 isremoveable = 0; 2265 } 2266 if (ldi_ioctl(lh, DKIOCHOTPLUGGABLE, 2267 (intptr_t)&ishotpluggable, FKIOCTL, cr, NULL)) { 2268 ishotpluggable = 0; 2269 } 2270 2271 /* 2272 * Make sure we don't use "half-initialized" values if the ioctls fail. 2273 */ 2274 if (ldi_ioctl(lh, DKIOCGMEDIAINFO, argp, FKIOCTL, cr, NULL)) { 2275 bzero(&arg, sizeof (arg)); 2276 fsp->pcfs_mediasize = 0; 2277 } else { 2278 fsp->pcfs_mediasize = 2279 (len_t)arg.mi.dki_lbsize * 2280 (len_t)arg.mi.dki_capacity; 2281 } 2282 2283 if (VALID_SECSIZE(arg.mi.dki_lbsize)) { 2284 if (fsp->pcfs_secsize == 0) { 2285 fsp->pcfs_secsize = arg.mi.dki_lbsize; 2286 fsp->pcfs_sdshift = 2287 ddi_ffs(arg.mi.dki_lbsize / DEV_BSIZE) - 1; 2288 } else { 2289 PC_DPRINTF4(1, "!pcfs: autodetected media block size " 2290 "%d, device (%x.%x), different from user-provided " 2291 "%d. User override - ignoring autodetect result.\n", 2292 arg.mi.dki_lbsize, 2293 getmajor(fsp->pcfs_xdev), getminor(fsp->pcfs_xdev), 2294 fsp->pcfs_secsize); 2295 } 2296 } else if (arg.mi.dki_lbsize) { 2297 PC_DPRINTF3(1, "!pcfs: autodetected media block size " 2298 "%d, device (%x.%x), invalid (not 512, 1024, 2048, 4096). " 2299 "Ignoring autodetect result.\n", 2300 arg.mi.dki_lbsize, 2301 getmajor(fsp->pcfs_xdev), getminor(fsp->pcfs_xdev)); 2302 } 2303 2304 /* 2305 * We treat the following media types as a floppy by default. 2306 */ 2307 isfloppy = 2308 (arg.mi.dki_media_type == DK_FLOPPY || 2309 arg.mi.dki_media_type == DK_ZIP || 2310 arg.mi.dki_media_type == DK_JAZ); 2311 2312 /* 2313 * if this device understands fdio(7I) requests it's 2314 * obviously a floppy drive. 2315 */ 2316 if (!isfloppy && 2317 !ldi_ioctl(lh, FDIOGCHAR, argp, FKIOCTL, cr, NULL)) 2318 isfloppy = 1; 2319 2320 /* 2321 * some devices (PCMCIA pseudofloppies) we like to treat 2322 * as floppies, but they don't understand fdio(7I) requests. 2323 */ 2324 if (!isfloppy && 2325 !ldi_ioctl(lh, DKIOCINFO, argp, FKIOCTL, cr, NULL) && 2326 (arg.ci.dki_ctype == DKC_WDC2880 || 2327 arg.ci.dki_ctype == DKC_NCRFLOPPY || 2328 arg.ci.dki_ctype == DKC_SMSFLOPPY || 2329 arg.ci.dki_ctype == DKC_INTEL82077 || 2330 (arg.ci.dki_ctype == DKC_PCMCIA_MEM && 2331 arg.ci.dki_flags & DKI_PCMCIA_PFD))) 2332 isfloppy = 1; 2333 2334 /* 2335 * This is the "final fallback" test - media with 2336 * 2 heads and 80 cylinders are assumed to be floppies. 2337 * This is normally true for USB floppy drives ... 2338 */ 2339 if (!isfloppy && 2340 !ldi_ioctl(lh, DKIOCGGEOM, argp, FKIOCTL, cr, NULL) && 2341 (arg.gi.dkg_ncyl == 80 && arg.gi.dkg_nhead == 2)) 2342 isfloppy = 1; 2343 2344 /* 2345 * This is similar to the "old" PCFS code that sets this flag 2346 * just based on the media descriptor being 0xf8 (MD_FIXED). 2347 * Should be re-worked. We really need some specialcasing for 2348 * removeable media. 2349 */ 2350 if (!isfloppy) { 2351 fsp->pcfs_flags |= PCFS_NOCHK; 2352 } 2353 2354 /* 2355 * We automatically disable access time updates if the medium is 2356 * removeable and/or hotpluggable, and the admin did not explicitly 2357 * request access time updates (via the "atime" mount option). 2358 * The majority of flash-based media should fit this category. 2359 * Minimizing write access extends the lifetime of your memory stick ! 2360 */ 2361 if (!vfs_optionisset(fsp->pcfs_vfs, MNTOPT_ATIME, NULL) && 2362 (isremoveable || ishotpluggable | isfloppy)) { 2363 fsp->pcfs_flags |= PCFS_NOATIME; 2364 } 2365 2366 (void) ldi_close(lh, FREAD, cr); 2367 out: 2368 if (fsp->pcfs_secsize == 0) { 2369 PC_DPRINTF3(1, "!pcfs: media block size autodetection " 2370 "device (%x.%x) failed, no user-provided fallback. " 2371 "Using %d bytes.\n", 2372 getmajor(fsp->pcfs_xdev), getminor(fsp->pcfs_xdev), 2373 DEV_BSIZE); 2374 fsp->pcfs_secsize = DEV_BSIZE; 2375 fsp->pcfs_sdshift = 0; 2376 } 2377 ASSERT(fsp->pcfs_secsize % DEV_BSIZE == 0); 2378 ASSERT(VALID_SECSIZE(fsp->pcfs_secsize)); 2379 } 2380 2381 /* 2382 * Get the FAT type for the DOS medium. 2383 * 2384 * ------------------------- 2385 * According to Microsoft: 2386 * The FAT type one of FAT12, FAT16, or FAT32 is determined by the 2387 * count of clusters on the volume and nothing else. 2388 * ------------------------- 2389 * 2390 */ 2391 static int 2392 pc_getfattype(struct pcfs *fsp) 2393 { 2394 int error = 0; 2395 buf_t *bp = NULL; 2396 struct vnode *devvp = fsp->pcfs_devvp; 2397 dev_t dev = devvp->v_rdev; 2398 2399 /* 2400 * Detect the native block size of the medium, and attempt to 2401 * detect whether the medium is removeable. 2402 * We do treat removeable media (floppies, PCMCIA memory cards, 2403 * USB and FireWire disks) differently wrt. to the frequency 2404 * and synchronicity of FAT updates. 2405 * We need to know the media block size in order to be able to 2406 * parse the partition table. 2407 */ 2408 pcfs_device_getinfo(fsp); 2409 2410 /* 2411 * Unpartitioned media (floppies and some removeable devices) 2412 * don't have a partition table, the FAT BPB is at disk block 0. 2413 * Start out by reading block 0. 2414 */ 2415 fsp->pcfs_dosstart = 0; 2416 bp = bread(dev, pc_dbdaddr(fsp, fsp->pcfs_dosstart), fsp->pcfs_secsize); 2417 2418 if (error = geterror(bp)) 2419 goto out; 2420 2421 /* 2422 * If a logical drive number is requested, parse the partition table 2423 * and attempt to locate it. Otherwise, proceed immediately to the 2424 * BPB check. findTheDrive(), if successful, returns the disk block 2425 * number where the requested partition starts in "startsec". 2426 */ 2427 if (fsp->pcfs_ldrive != 0) { 2428 PC_DPRINTF3(5, "!pcfs: pc_getfattype: using FDISK table on " 2429 "device (%x,%x):%d to find BPB\n", 2430 getmajor(dev), getminor(dev), fsp->pcfs_ldrive); 2431 2432 if (error = findTheDrive(fsp, &bp)) 2433 goto out; 2434 2435 ASSERT(fsp->pcfs_dosstart != 0); 2436 2437 brelse(bp); 2438 bp = bread(dev, pc_dbdaddr(fsp, fsp->pcfs_dosstart), 2439 fsp->pcfs_secsize); 2440 if (error = geterror(bp)) 2441 goto out; 2442 } 2443 2444 /* 2445 * Validate the BPB and fill in the instance structure. 2446 */ 2447 if (!parseBPB(fsp, (uchar_t *)bp->b_un.b_addr, NULL)) { 2448 PC_DPRINTF4(1, "!pcfs: pc_getfattype: No FAT BPB on " 2449 "device (%x.%x):%d, disk LBA %u\n", 2450 getmajor(dev), getminor(dev), fsp->pcfs_ldrive, 2451 (uint_t)pc_dbdaddr(fsp, fsp->pcfs_dosstart)); 2452 error = EINVAL; 2453 goto out; 2454 } 2455 2456 ASSERT(fsp->pcfs_fattype != FAT_UNKNOWN); 2457 2458 out: 2459 /* 2460 * Release the buffer used 2461 */ 2462 if (bp != NULL) 2463 brelse(bp); 2464 return (error); 2465 } 2466 2467 2468 /* 2469 * Get the file allocation table. 2470 * If there is an old FAT, invalidate it. 2471 */ 2472 int 2473 pc_getfat(struct pcfs *fsp) 2474 { 2475 struct buf *bp = NULL; 2476 uchar_t *fatp = NULL; 2477 uchar_t *fat_changemap = NULL; 2478 int error; 2479 int fat_changemapsize; 2480 int flags = 0; 2481 int nfat; 2482 int altfat_mustmatch = 0; 2483 int fatsize = fsp->pcfs_fatsec * fsp->pcfs_secsize; 2484 2485 if (fsp->pcfs_fatp) { 2486 /* 2487 * There is a FAT in core. 2488 * If there are open file pcnodes or we have modified it or 2489 * it hasn't timed out yet use the in core FAT. 2490 * Otherwise invalidate it and get a new one 2491 */ 2492 #ifdef notdef 2493 if (fsp->pcfs_frefs || 2494 (fsp->pcfs_flags & PCFS_FATMOD) || 2495 (gethrestime_sec() < fsp->pcfs_fattime)) { 2496 return (0); 2497 } else { 2498 mutex_enter(&pcfslock); 2499 pc_invalfat(fsp); 2500 mutex_exit(&pcfslock); 2501 } 2502 #endif /* notdef */ 2503 return (0); 2504 } 2505 2506 /* 2507 * Get FAT and check it for validity 2508 */ 2509 fatp = kmem_alloc(fatsize, KM_SLEEP); 2510 error = pc_readfat(fsp, fatp); 2511 if (error) { 2512 flags = B_ERROR; 2513 goto out; 2514 } 2515 fat_changemapsize = (fatsize / fsp->pcfs_clsize) + 1; 2516 fat_changemap = kmem_zalloc(fat_changemapsize, KM_SLEEP); 2517 fsp->pcfs_fatp = fatp; 2518 fsp->pcfs_fat_changemapsize = fat_changemapsize; 2519 fsp->pcfs_fat_changemap = fat_changemap; 2520 2521 /* 2522 * The only definite signature check is that the 2523 * media descriptor byte should match the first byte 2524 * of the FAT block. 2525 */ 2526 if (fatp[0] != fsp->pcfs_mediadesc) { 2527 cmn_err(CE_NOTE, "!pcfs: FAT signature mismatch, " 2528 "media descriptor %x, FAT[0] lowbyte %x\n", 2529 (uint32_t)fsp->pcfs_mediadesc, (uint32_t)fatp[0]); 2530 cmn_err(CE_NOTE, "!pcfs: Enforcing alternate FAT validation\n"); 2531 altfat_mustmatch = 1; 2532 } 2533 2534 /* 2535 * Get alternate FATs and check for consistency 2536 * This is an inlined version of pc_readfat(). 2537 * Since we're only comparing FAT and alternate FAT, 2538 * there's no reason to let pc_readfat() copy data out 2539 * of the buf. Instead, compare in-situ, one cluster 2540 * at a time. 2541 */ 2542 for (nfat = 1; nfat < fsp->pcfs_numfat; nfat++) { 2543 size_t startsec; 2544 size_t off; 2545 2546 startsec = pc_dbdaddr(fsp, 2547 fsp->pcfs_fatstart + nfat * fsp->pcfs_fatsec); 2548 2549 for (off = 0; off < fatsize; off += fsp->pcfs_clsize) { 2550 daddr_t fatblk = startsec + pc_dbdaddr(fsp, 2551 pc_cltodb(fsp, pc_lblkno(fsp, off))); 2552 2553 bp = bread(fsp->pcfs_xdev, fatblk, 2554 MIN(fsp->pcfs_clsize, fatsize - off)); 2555 if (bp->b_flags & (B_ERROR | B_STALE)) { 2556 cmn_err(CE_NOTE, 2557 "!pcfs: alternate FAT #%d (start LBA %p)" 2558 " read error at offset %ld on device" 2559 " (%x.%x):%d", 2560 nfat, (void *)(uintptr_t)startsec, off, 2561 getmajor(fsp->pcfs_xdev), 2562 getminor(fsp->pcfs_xdev), 2563 fsp->pcfs_ldrive); 2564 flags = B_ERROR; 2565 error = EIO; 2566 goto out; 2567 } 2568 bp->b_flags |= B_STALE | B_AGE; 2569 if (bcmp(bp->b_un.b_addr, fatp + off, 2570 MIN(fsp->pcfs_clsize, fatsize - off))) { 2571 cmn_err(CE_NOTE, 2572 "!pcfs: alternate FAT #%d (start LBA %p)" 2573 " corrupted at offset %ld on device" 2574 " (%x.%x):%d", 2575 nfat, (void *)(uintptr_t)startsec, off, 2576 getmajor(fsp->pcfs_xdev), 2577 getminor(fsp->pcfs_xdev), 2578 fsp->pcfs_ldrive); 2579 if (altfat_mustmatch) { 2580 flags = B_ERROR; 2581 error = EIO; 2582 goto out; 2583 } 2584 } 2585 brelse(bp); 2586 bp = NULL; /* prevent double release */ 2587 } 2588 } 2589 2590 fsp->pcfs_fattime = gethrestime_sec() + PCFS_DISKTIMEOUT; 2591 fsp->pcfs_fatjustread = 1; 2592 2593 /* 2594 * Retrieve FAT32 fsinfo sector. 2595 * A failure to read this is not fatal to accessing the volume. 2596 * It simply means operations that count or search free blocks 2597 * will have to do a full FAT walk, vs. a possibly quicker lookup 2598 * of the summary information. 2599 * Hence, we log a message but return success overall after this point. 2600 */ 2601 if (IS_FAT32(fsp) && (fsp->pcfs_flags & PCFS_FSINFO_OK)) { 2602 struct fat_od_fsi *fsinfo_disk; 2603 2604 bp = bread(fsp->pcfs_xdev, 2605 pc_dbdaddr(fsp, fsp->pcfs_fsistart), fsp->pcfs_secsize); 2606 fsinfo_disk = (struct fat_od_fsi *)bp->b_un.b_addr; 2607 if (bp->b_flags & (B_ERROR | B_STALE) || 2608 !FSISIG_OK(fsinfo_disk)) { 2609 cmn_err(CE_NOTE, 2610 "!pcfs: error reading fat32 fsinfo from " 2611 "device (%x.%x):%d, block %lld", 2612 getmajor(fsp->pcfs_xdev), getminor(fsp->pcfs_xdev), 2613 fsp->pcfs_ldrive, 2614 (long long)pc_dbdaddr(fsp, fsp->pcfs_fsistart)); 2615 fsp->pcfs_flags &= ~PCFS_FSINFO_OK; 2616 fsp->pcfs_fsinfo.fs_free_clusters = FSINFO_UNKNOWN; 2617 fsp->pcfs_fsinfo.fs_next_free = FSINFO_UNKNOWN; 2618 } else { 2619 bp->b_flags |= B_STALE | B_AGE; 2620 fsinfo_disk = (fat_od_fsi_t *)(bp->b_un.b_addr); 2621 fsp->pcfs_fsinfo.fs_free_clusters = 2622 LE_32(fsinfo_disk->fsi_incore.fs_free_clusters); 2623 fsp->pcfs_fsinfo.fs_next_free = 2624 LE_32(fsinfo_disk->fsi_incore.fs_next_free); 2625 } 2626 brelse(bp); 2627 bp = NULL; 2628 } 2629 2630 if (pc_validcl(fsp, (pc_cluster32_t)fsp->pcfs_fsinfo.fs_next_free)) 2631 fsp->pcfs_nxfrecls = fsp->pcfs_fsinfo.fs_next_free; 2632 else 2633 fsp->pcfs_nxfrecls = PCF_FIRSTCLUSTER; 2634 2635 return (0); 2636 2637 out: 2638 cmn_err(CE_NOTE, "!pcfs: illegal disk format"); 2639 if (bp) 2640 brelse(bp); 2641 if (fatp) 2642 kmem_free(fatp, fatsize); 2643 if (fat_changemap) 2644 kmem_free(fat_changemap, fat_changemapsize); 2645 2646 if (flags) { 2647 pc_mark_irrecov(fsp); 2648 } 2649 return (error); 2650 } 2651