xref: /titanic_52/usr/src/uts/common/fs/nfs/nfs_server.c (revision 9bd90b910ac60a25b2b3f2a00f19fca0af45b174)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2015 Nexenta Systems, Inc.  All rights reserved.
24  * Copyright (c) 1990, 2010, Oracle and/or its affiliates. All rights reserved.
25  * Copyright (c) 2011 Bayard G. Bell. All rights reserved.
26  * Copyright (c) 2013 by Delphix. All rights reserved.
27  */
28 
29 /*
30  *	Copyright (c) 1983,1984,1985,1986,1987,1988,1989  AT&T.
31  *	All rights reserved.
32  *	Use is subject to license terms.
33  */
34 
35 #include <sys/param.h>
36 #include <sys/types.h>
37 #include <sys/systm.h>
38 #include <sys/cred.h>
39 #include <sys/proc.h>
40 #include <sys/user.h>
41 #include <sys/buf.h>
42 #include <sys/vfs.h>
43 #include <sys/vnode.h>
44 #include <sys/pathname.h>
45 #include <sys/uio.h>
46 #include <sys/file.h>
47 #include <sys/stat.h>
48 #include <sys/errno.h>
49 #include <sys/socket.h>
50 #include <sys/sysmacros.h>
51 #include <sys/siginfo.h>
52 #include <sys/tiuser.h>
53 #include <sys/statvfs.h>
54 #include <sys/stream.h>
55 #include <sys/strsun.h>
56 #include <sys/strsubr.h>
57 #include <sys/stropts.h>
58 #include <sys/timod.h>
59 #include <sys/t_kuser.h>
60 #include <sys/kmem.h>
61 #include <sys/kstat.h>
62 #include <sys/dirent.h>
63 #include <sys/cmn_err.h>
64 #include <sys/debug.h>
65 #include <sys/unistd.h>
66 #include <sys/vtrace.h>
67 #include <sys/mode.h>
68 #include <sys/acl.h>
69 #include <sys/sdt.h>
70 
71 #include <rpc/types.h>
72 #include <rpc/auth.h>
73 #include <rpc/auth_unix.h>
74 #include <rpc/auth_des.h>
75 #include <rpc/svc.h>
76 #include <rpc/xdr.h>
77 #include <rpc/rpc_rdma.h>
78 
79 #include <nfs/nfs.h>
80 #include <nfs/export.h>
81 #include <nfs/nfssys.h>
82 #include <nfs/nfs_clnt.h>
83 #include <nfs/nfs_acl.h>
84 #include <nfs/nfs_log.h>
85 #include <nfs/nfs_cmd.h>
86 #include <nfs/lm.h>
87 #include <nfs/nfs_dispatch.h>
88 #include <nfs/nfs4_drc.h>
89 
90 #include <sys/modctl.h>
91 #include <sys/cladm.h>
92 #include <sys/clconf.h>
93 
94 #include <sys/tsol/label.h>
95 
96 #define	MAXHOST 32
97 const char *kinet_ntop6(uchar_t *, char *, size_t);
98 
99 /*
100  * Module linkage information.
101  */
102 
103 static struct modlmisc modlmisc = {
104 	&mod_miscops, "NFS server module"
105 };
106 
107 static struct modlinkage modlinkage = {
108 	MODREV_1, (void *)&modlmisc, NULL
109 };
110 
111 kmem_cache_t *nfs_xuio_cache;
112 int nfs_loaned_buffers = 0;
113 
114 int
115 _init(void)
116 {
117 	int status;
118 
119 	if ((status = nfs_srvinit()) != 0) {
120 		cmn_err(CE_WARN, "_init: nfs_srvinit failed");
121 		return (status);
122 	}
123 
124 	status = mod_install((struct modlinkage *)&modlinkage);
125 	if (status != 0) {
126 		/*
127 		 * Could not load module, cleanup previous
128 		 * initialization work.
129 		 */
130 		nfs_srvfini();
131 
132 		return (status);
133 	}
134 
135 	/*
136 	 * Initialise some placeholders for nfssys() calls. These have
137 	 * to be declared by the nfs module, since that handles nfssys()
138 	 * calls - also used by NFS clients - but are provided by this
139 	 * nfssrv module. These also then serve as confirmation to the
140 	 * relevant code in nfs that nfssrv has been loaded, as they're
141 	 * initially NULL.
142 	 */
143 	nfs_srv_quiesce_func = nfs_srv_quiesce_all;
144 	nfs_srv_dss_func = rfs4_dss_setpaths;
145 
146 	/* setup DSS paths here; must be done before initial server startup */
147 	rfs4_dss_paths = rfs4_dss_oldpaths = NULL;
148 
149 	/* initialize the copy reduction caches */
150 
151 	nfs_xuio_cache = kmem_cache_create("nfs_xuio_cache",
152 	    sizeof (nfs_xuio_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
153 
154 	return (status);
155 }
156 
157 int
158 _fini()
159 {
160 	return (EBUSY);
161 }
162 
163 int
164 _info(struct modinfo *modinfop)
165 {
166 	return (mod_info(&modlinkage, modinfop));
167 }
168 
169 /*
170  * PUBLICFH_CHECK() checks if the dispatch routine supports
171  * RPC_PUBLICFH_OK, if the filesystem is exported public, and if the
172  * incoming request is using the public filehandle. The check duplicates
173  * the exportmatch() call done in checkexport(), and we should consider
174  * modifying those routines to avoid the duplication. For now, we optimize
175  * by calling exportmatch() only after checking that the dispatch routine
176  * supports RPC_PUBLICFH_OK, and if the filesystem is explicitly exported
177  * public (i.e., not the placeholder).
178  */
179 #define	PUBLICFH_CHECK(disp, exi, fsid, xfid) \
180 		((disp->dis_flags & RPC_PUBLICFH_OK) && \
181 		((exi->exi_export.ex_flags & EX_PUBLIC) || \
182 		(exi == exi_public && exportmatch(exi_root, \
183 		fsid, xfid))))
184 
185 static void	nfs_srv_shutdown_all(int);
186 static void	rfs4_server_start(int);
187 static void	nullfree(void);
188 static void	rfs_dispatch(struct svc_req *, SVCXPRT *);
189 static void	acl_dispatch(struct svc_req *, SVCXPRT *);
190 static void	common_dispatch(struct svc_req *, SVCXPRT *,
191 		rpcvers_t, rpcvers_t, char *,
192 		struct rpc_disptable *);
193 static void	hanfsv4_failover(void);
194 static	int	checkauth(struct exportinfo *, struct svc_req *, cred_t *, int,
195 		bool_t, bool_t *);
196 static char	*client_name(struct svc_req *req);
197 static char	*client_addr(struct svc_req *req, char *buf);
198 extern	int	sec_svc_getcred(struct svc_req *, cred_t *cr, char **, int *);
199 extern	bool_t	sec_svc_inrootlist(int, caddr_t, int, caddr_t *);
200 
201 #define	NFSLOG_COPY_NETBUF(exi, xprt, nb)	{		\
202 	(nb)->maxlen = (xprt)->xp_rtaddr.maxlen;		\
203 	(nb)->len = (xprt)->xp_rtaddr.len;			\
204 	(nb)->buf = kmem_alloc((nb)->len, KM_SLEEP);		\
205 	bcopy((xprt)->xp_rtaddr.buf, (nb)->buf, (nb)->len);	\
206 	}
207 
208 /*
209  * Public Filehandle common nfs routines
210  */
211 static int	MCLpath(char **);
212 static void	URLparse(char *);
213 
214 /*
215  * NFS callout table.
216  * This table is used by svc_getreq() to dispatch a request with
217  * a given prog/vers pair to an appropriate service provider
218  * dispatch routine.
219  *
220  * NOTE: ordering is relied upon below when resetting the version min/max
221  * for NFS_PROGRAM.  Careful, if this is ever changed.
222  */
223 static SVC_CALLOUT __nfs_sc_clts[] = {
224 	{ NFS_PROGRAM,	   NFS_VERSMIN,	    NFS_VERSMAX,	rfs_dispatch },
225 	{ NFS_ACL_PROGRAM, NFS_ACL_VERSMIN, NFS_ACL_VERSMAX,	acl_dispatch }
226 };
227 
228 static SVC_CALLOUT_TABLE nfs_sct_clts = {
229 	sizeof (__nfs_sc_clts) / sizeof (__nfs_sc_clts[0]), FALSE,
230 	__nfs_sc_clts
231 };
232 
233 static SVC_CALLOUT __nfs_sc_cots[] = {
234 	{ NFS_PROGRAM,	   NFS_VERSMIN,	    NFS_VERSMAX,	rfs_dispatch },
235 	{ NFS_ACL_PROGRAM, NFS_ACL_VERSMIN, NFS_ACL_VERSMAX,	acl_dispatch }
236 };
237 
238 static SVC_CALLOUT_TABLE nfs_sct_cots = {
239 	sizeof (__nfs_sc_cots) / sizeof (__nfs_sc_cots[0]), FALSE, __nfs_sc_cots
240 };
241 
242 static SVC_CALLOUT __nfs_sc_rdma[] = {
243 	{ NFS_PROGRAM,	   NFS_VERSMIN,	    NFS_VERSMAX,	rfs_dispatch },
244 	{ NFS_ACL_PROGRAM, NFS_ACL_VERSMIN, NFS_ACL_VERSMAX,	acl_dispatch }
245 };
246 
247 static SVC_CALLOUT_TABLE nfs_sct_rdma = {
248 	sizeof (__nfs_sc_rdma) / sizeof (__nfs_sc_rdma[0]), FALSE, __nfs_sc_rdma
249 };
250 rpcvers_t nfs_versmin = NFS_VERSMIN_DEFAULT;
251 rpcvers_t nfs_versmax = NFS_VERSMAX_DEFAULT;
252 
253 /*
254  * Used to track the state of the server so that initialization
255  * can be done properly.
256  */
257 typedef enum {
258 	NFS_SERVER_STOPPED,	/* server state destroyed */
259 	NFS_SERVER_STOPPING,	/* server state being destroyed */
260 	NFS_SERVER_RUNNING,
261 	NFS_SERVER_QUIESCED,	/* server state preserved */
262 	NFS_SERVER_OFFLINE	/* server pool offline */
263 } nfs_server_running_t;
264 
265 static nfs_server_running_t nfs_server_upordown;
266 static kmutex_t nfs_server_upordown_lock;
267 static	kcondvar_t nfs_server_upordown_cv;
268 
269 /*
270  * DSS: distributed stable storage
271  * lists of all DSS paths: current, and before last warmstart
272  */
273 nvlist_t *rfs4_dss_paths, *rfs4_dss_oldpaths;
274 
275 int rfs4_dispatch(struct rpcdisp *, struct svc_req *, SVCXPRT *, char *,
276     size_t *);
277 bool_t rfs4_minorvers_mismatch(struct svc_req *, SVCXPRT *, void *);
278 
279 /*
280  * RDMA wait variables.
281  */
282 static kcondvar_t rdma_wait_cv;
283 static kmutex_t rdma_wait_mutex;
284 
285 /*
286  * Will be called at the point the server pool is being unregistered
287  * from the pool list. From that point onwards, the pool is waiting
288  * to be drained and as such the server state is stale and pertains
289  * to the old instantiation of the NFS server pool.
290  */
291 void
292 nfs_srv_offline(void)
293 {
294 	mutex_enter(&nfs_server_upordown_lock);
295 	if (nfs_server_upordown == NFS_SERVER_RUNNING) {
296 		nfs_server_upordown = NFS_SERVER_OFFLINE;
297 	}
298 	mutex_exit(&nfs_server_upordown_lock);
299 }
300 
301 /*
302  * Will be called at the point the server pool is being destroyed so
303  * all transports have been closed and no service threads are in
304  * existence.
305  *
306  * If we quiesce the server, we're shutting it down without destroying the
307  * server state. This allows it to warm start subsequently.
308  */
309 void
310 nfs_srv_stop_all(void)
311 {
312 	int quiesce = 0;
313 	nfs_srv_shutdown_all(quiesce);
314 }
315 
316 /*
317  * This alternative shutdown routine can be requested via nfssys()
318  */
319 void
320 nfs_srv_quiesce_all(void)
321 {
322 	int quiesce = 1;
323 	nfs_srv_shutdown_all(quiesce);
324 }
325 
326 static void
327 nfs_srv_shutdown_all(int quiesce) {
328 	mutex_enter(&nfs_server_upordown_lock);
329 	if (quiesce) {
330 		if (nfs_server_upordown == NFS_SERVER_RUNNING ||
331 			nfs_server_upordown == NFS_SERVER_OFFLINE) {
332 			nfs_server_upordown = NFS_SERVER_QUIESCED;
333 			cv_signal(&nfs_server_upordown_cv);
334 
335 			/* reset DSS state, for subsequent warm restart */
336 			rfs4_dss_numnewpaths = 0;
337 			rfs4_dss_newpaths = NULL;
338 
339 			cmn_err(CE_NOTE, "nfs_server: server is now quiesced; "
340 			    "NFSv4 state has been preserved");
341 		}
342 	} else {
343 		if (nfs_server_upordown == NFS_SERVER_OFFLINE) {
344 			nfs_server_upordown = NFS_SERVER_STOPPING;
345 			mutex_exit(&nfs_server_upordown_lock);
346 			rfs4_state_fini();
347 			rfs4_fini_drc(nfs4_drc);
348 			mutex_enter(&nfs_server_upordown_lock);
349 			nfs_server_upordown = NFS_SERVER_STOPPED;
350 			cv_signal(&nfs_server_upordown_cv);
351 		}
352 	}
353 	mutex_exit(&nfs_server_upordown_lock);
354 }
355 
356 static int
357 nfs_srv_set_sc_versions(struct file *fp, SVC_CALLOUT_TABLE **sctpp,
358 			rpcvers_t versmin, rpcvers_t versmax)
359 {
360 	struct strioctl strioc;
361 	struct T_info_ack tinfo;
362 	int		error, retval;
363 
364 	/*
365 	 * Find out what type of transport this is.
366 	 */
367 	strioc.ic_cmd = TI_GETINFO;
368 	strioc.ic_timout = -1;
369 	strioc.ic_len = sizeof (tinfo);
370 	strioc.ic_dp = (char *)&tinfo;
371 	tinfo.PRIM_type = T_INFO_REQ;
372 
373 	error = strioctl(fp->f_vnode, I_STR, (intptr_t)&strioc, 0, K_TO_K,
374 	    CRED(), &retval);
375 	if (error || retval)
376 		return (error);
377 
378 	/*
379 	 * Based on our query of the transport type...
380 	 *
381 	 * Reset the min/max versions based on the caller's request
382 	 * NOTE: This assumes that NFS_PROGRAM is first in the array!!
383 	 * And the second entry is the NFS_ACL_PROGRAM.
384 	 */
385 	switch (tinfo.SERV_type) {
386 	case T_CLTS:
387 		if (versmax == NFS_V4)
388 			return (EINVAL);
389 		__nfs_sc_clts[0].sc_versmin = versmin;
390 		__nfs_sc_clts[0].sc_versmax = versmax;
391 		__nfs_sc_clts[1].sc_versmin = versmin;
392 		__nfs_sc_clts[1].sc_versmax = versmax;
393 		*sctpp = &nfs_sct_clts;
394 		break;
395 	case T_COTS:
396 	case T_COTS_ORD:
397 		__nfs_sc_cots[0].sc_versmin = versmin;
398 		__nfs_sc_cots[0].sc_versmax = versmax;
399 		/* For the NFS_ACL program, check the max version */
400 		if (versmax > NFS_ACL_VERSMAX)
401 			versmax = NFS_ACL_VERSMAX;
402 		__nfs_sc_cots[1].sc_versmin = versmin;
403 		__nfs_sc_cots[1].sc_versmax = versmax;
404 		*sctpp = &nfs_sct_cots;
405 		break;
406 	default:
407 		error = EINVAL;
408 	}
409 
410 	return (error);
411 }
412 
413 /*
414  * NFS Server system call.
415  * Does all of the work of running a NFS server.
416  * uap->fd is the fd of an open transport provider
417  */
418 int
419 nfs_svc(struct nfs_svc_args *arg, model_t model)
420 {
421 	file_t *fp;
422 	SVCMASTERXPRT *xprt;
423 	int error;
424 	int readsize;
425 	char buf[KNC_STRSIZE];
426 	size_t len;
427 	STRUCT_HANDLE(nfs_svc_args, uap);
428 	struct netbuf addrmask;
429 	SVC_CALLOUT_TABLE *sctp = NULL;
430 
431 #ifdef lint
432 	model = model;		/* STRUCT macros don't always refer to it */
433 #endif
434 
435 	STRUCT_SET_HANDLE(uap, model, arg);
436 
437 	/* Check privileges in nfssys() */
438 
439 	if ((fp = getf(STRUCT_FGET(uap, fd))) == NULL)
440 		return (EBADF);
441 
442 	/*
443 	 * Set read buffer size to rsize
444 	 * and add room for RPC headers.
445 	 */
446 	readsize = nfs3tsize() + (RPC_MAXDATASIZE - NFS_MAXDATA);
447 	if (readsize < RPC_MAXDATASIZE)
448 		readsize = RPC_MAXDATASIZE;
449 
450 	error = copyinstr((const char *)STRUCT_FGETP(uap, netid), buf,
451 	    KNC_STRSIZE, &len);
452 	if (error) {
453 		releasef(STRUCT_FGET(uap, fd));
454 		return (error);
455 	}
456 
457 	addrmask.len = STRUCT_FGET(uap, addrmask.len);
458 	addrmask.maxlen = STRUCT_FGET(uap, addrmask.maxlen);
459 	addrmask.buf = kmem_alloc(addrmask.maxlen, KM_SLEEP);
460 	error = copyin(STRUCT_FGETP(uap, addrmask.buf), addrmask.buf,
461 	    addrmask.len);
462 	if (error) {
463 		releasef(STRUCT_FGET(uap, fd));
464 		kmem_free(addrmask.buf, addrmask.maxlen);
465 		return (error);
466 	}
467 
468 	nfs_versmin = STRUCT_FGET(uap, versmin);
469 	nfs_versmax = STRUCT_FGET(uap, versmax);
470 
471 	/* Double check the vers min/max ranges */
472 	if ((nfs_versmin > nfs_versmax) ||
473 	    (nfs_versmin < NFS_VERSMIN) ||
474 	    (nfs_versmax > NFS_VERSMAX)) {
475 		nfs_versmin = NFS_VERSMIN_DEFAULT;
476 		nfs_versmax = NFS_VERSMAX_DEFAULT;
477 	}
478 
479 	if (error =
480 	    nfs_srv_set_sc_versions(fp, &sctp, nfs_versmin, nfs_versmax)) {
481 		releasef(STRUCT_FGET(uap, fd));
482 		kmem_free(addrmask.buf, addrmask.maxlen);
483 		return (error);
484 	}
485 
486 	/* Initialize nfsv4 server */
487 	if (nfs_versmax == (rpcvers_t)NFS_V4)
488 		rfs4_server_start(STRUCT_FGET(uap, delegation));
489 
490 	/* Create a transport handle. */
491 	error = svc_tli_kcreate(fp, readsize, buf, &addrmask, &xprt,
492 	    sctp, NULL, NFS_SVCPOOL_ID, TRUE);
493 
494 	if (error)
495 		kmem_free(addrmask.buf, addrmask.maxlen);
496 
497 	releasef(STRUCT_FGET(uap, fd));
498 
499 	/* HA-NFSv4: save the cluster nodeid */
500 	if (cluster_bootflags & CLUSTER_BOOTED)
501 		lm_global_nlmid = clconf_get_nodeid();
502 
503 	return (error);
504 }
505 
506 static void
507 rfs4_server_start(int nfs4_srv_delegation)
508 {
509 	/*
510 	 * Determine if the server has previously been "started" and
511 	 * if not, do the per instance initialization
512 	 */
513 	mutex_enter(&nfs_server_upordown_lock);
514 
515 	if (nfs_server_upordown != NFS_SERVER_RUNNING) {
516 		/* Do we need to stop and wait on the previous server? */
517 		while (nfs_server_upordown == NFS_SERVER_STOPPING ||
518 		    nfs_server_upordown == NFS_SERVER_OFFLINE)
519 			cv_wait(&nfs_server_upordown_cv,
520 			    &nfs_server_upordown_lock);
521 
522 		if (nfs_server_upordown != NFS_SERVER_RUNNING) {
523 			(void) svc_pool_control(NFS_SVCPOOL_ID,
524 			    SVCPSET_UNREGISTER_PROC, (void *)&nfs_srv_offline);
525 			(void) svc_pool_control(NFS_SVCPOOL_ID,
526 			    SVCPSET_SHUTDOWN_PROC, (void *)&nfs_srv_stop_all);
527 
528 			/* is this an nfsd warm start? */
529 			if (nfs_server_upordown == NFS_SERVER_QUIESCED) {
530 				cmn_err(CE_NOTE, "nfs_server: "
531 				    "server was previously quiesced; "
532 				    "existing NFSv4 state will be re-used");
533 
534 				/*
535 				 * HA-NFSv4: this is also the signal
536 				 * that a Resource Group failover has
537 				 * occurred.
538 				 */
539 				if (cluster_bootflags & CLUSTER_BOOTED)
540 					hanfsv4_failover();
541 			} else {
542 				/* cold start */
543 				rfs4_state_init();
544 				nfs4_drc = rfs4_init_drc(nfs4_drc_max,
545 				    nfs4_drc_hash);
546 			}
547 
548 			/*
549 			 * Check to see if delegation is to be
550 			 * enabled at the server
551 			 */
552 			if (nfs4_srv_delegation != FALSE)
553 				rfs4_set_deleg_policy(SRV_NORMAL_DELEGATE);
554 
555 			nfs_server_upordown = NFS_SERVER_RUNNING;
556 		}
557 		cv_signal(&nfs_server_upordown_cv);
558 	}
559 	mutex_exit(&nfs_server_upordown_lock);
560 }
561 
562 /*
563  * If RDMA device available,
564  * start RDMA listener.
565  */
566 int
567 rdma_start(struct rdma_svc_args *rsa)
568 {
569 	int error;
570 	rdma_xprt_group_t started_rdma_xprts;
571 	rdma_stat stat;
572 	int svc_state = 0;
573 
574 	/* Double check the vers min/max ranges */
575 	if ((rsa->nfs_versmin > rsa->nfs_versmax) ||
576 	    (rsa->nfs_versmin < NFS_VERSMIN) ||
577 	    (rsa->nfs_versmax > NFS_VERSMAX)) {
578 		rsa->nfs_versmin = NFS_VERSMIN_DEFAULT;
579 		rsa->nfs_versmax = NFS_VERSMAX_DEFAULT;
580 	}
581 	nfs_versmin = rsa->nfs_versmin;
582 	nfs_versmax = rsa->nfs_versmax;
583 
584 	/* Set the versions in the callout table */
585 	__nfs_sc_rdma[0].sc_versmin = rsa->nfs_versmin;
586 	__nfs_sc_rdma[0].sc_versmax = rsa->nfs_versmax;
587 	/* For the NFS_ACL program, check the max version */
588 	__nfs_sc_rdma[1].sc_versmin = rsa->nfs_versmin;
589 	if (rsa->nfs_versmax > NFS_ACL_VERSMAX)
590 		__nfs_sc_rdma[1].sc_versmax = NFS_ACL_VERSMAX;
591 	else
592 		__nfs_sc_rdma[1].sc_versmax = rsa->nfs_versmax;
593 
594 	/* Initialize nfsv4 server */
595 	if (rsa->nfs_versmax == (rpcvers_t)NFS_V4)
596 		rfs4_server_start(rsa->delegation);
597 
598 	started_rdma_xprts.rtg_count = 0;
599 	started_rdma_xprts.rtg_listhead = NULL;
600 	started_rdma_xprts.rtg_poolid = rsa->poolid;
601 
602 restart:
603 	error = svc_rdma_kcreate(rsa->netid, &nfs_sct_rdma, rsa->poolid,
604 	    &started_rdma_xprts);
605 
606 	svc_state = !error;
607 
608 	while (!error) {
609 
610 		/*
611 		 * wait till either interrupted by a signal on
612 		 * nfs service stop/restart or signalled by a
613 		 * rdma plugin attach/detatch.
614 		 */
615 
616 		stat = rdma_kwait();
617 
618 		/*
619 		 * stop services if running -- either on a HCA detach event
620 		 * or if the nfs service is stopped/restarted.
621 		 */
622 
623 		if ((stat == RDMA_HCA_DETACH || stat == RDMA_INTR) &&
624 		    svc_state) {
625 			rdma_stop(&started_rdma_xprts);
626 			svc_state = 0;
627 		}
628 
629 		/*
630 		 * nfs service stop/restart, break out of the
631 		 * wait loop and return;
632 		 */
633 		if (stat == RDMA_INTR)
634 			return (0);
635 
636 		/*
637 		 * restart stopped services on a HCA attach event
638 		 * (if not already running)
639 		 */
640 
641 		if ((stat == RDMA_HCA_ATTACH) && (svc_state == 0))
642 			goto restart;
643 
644 		/*
645 		 * loop until a nfs service stop/restart
646 		 */
647 	}
648 
649 	return (error);
650 }
651 
652 /* ARGSUSED */
653 void
654 rpc_null(caddr_t *argp, caddr_t *resp, struct exportinfo *exi,
655     struct svc_req *req, cred_t *cr, bool_t ro)
656 {
657 }
658 
659 /* ARGSUSED */
660 void
661 rpc_null_v3(caddr_t *argp, caddr_t *resp, struct exportinfo *exi,
662     struct svc_req *req, cred_t *cr, bool_t ro)
663 {
664 	DTRACE_NFSV3_3(op__null__start, struct svc_req *, req,
665 	    cred_t *, cr, vnode_t *, NULL);
666 	DTRACE_NFSV3_3(op__null__done, struct svc_req *, req,
667 	    cred_t *, cr, vnode_t *, NULL);
668 }
669 
670 /* ARGSUSED */
671 static void
672 rfs_error(caddr_t *argp, caddr_t *resp, struct exportinfo *exi,
673     struct svc_req *req, cred_t *cr, bool_t ro)
674 {
675 	/* return (EOPNOTSUPP); */
676 }
677 
678 static void
679 nullfree(void)
680 {
681 }
682 
683 static char *rfscallnames_v2[] = {
684 	"RFS2_NULL",
685 	"RFS2_GETATTR",
686 	"RFS2_SETATTR",
687 	"RFS2_ROOT",
688 	"RFS2_LOOKUP",
689 	"RFS2_READLINK",
690 	"RFS2_READ",
691 	"RFS2_WRITECACHE",
692 	"RFS2_WRITE",
693 	"RFS2_CREATE",
694 	"RFS2_REMOVE",
695 	"RFS2_RENAME",
696 	"RFS2_LINK",
697 	"RFS2_SYMLINK",
698 	"RFS2_MKDIR",
699 	"RFS2_RMDIR",
700 	"RFS2_READDIR",
701 	"RFS2_STATFS"
702 };
703 
704 static struct rpcdisp rfsdisptab_v2[] = {
705 	/*
706 	 * NFS VERSION 2
707 	 */
708 
709 	/* RFS_NULL = 0 */
710 	{rpc_null,
711 	    xdr_void, NULL_xdrproc_t, 0,
712 	    xdr_void, NULL_xdrproc_t, 0,
713 	    nullfree, RPC_IDEMPOTENT,
714 	    0},
715 
716 	/* RFS_GETATTR = 1 */
717 	{rfs_getattr,
718 	    xdr_fhandle, xdr_fastfhandle, sizeof (fhandle_t),
719 	    xdr_attrstat, xdr_fastattrstat, sizeof (struct nfsattrstat),
720 	    nullfree, RPC_IDEMPOTENT|RPC_ALLOWANON|RPC_MAPRESP,
721 	    rfs_getattr_getfh},
722 
723 	/* RFS_SETATTR = 2 */
724 	{rfs_setattr,
725 	    xdr_saargs, NULL_xdrproc_t, sizeof (struct nfssaargs),
726 	    xdr_attrstat, xdr_fastattrstat, sizeof (struct nfsattrstat),
727 	    nullfree, RPC_MAPRESP,
728 	    rfs_setattr_getfh},
729 
730 	/* RFS_ROOT = 3 *** NO LONGER SUPPORTED *** */
731 	{rfs_error,
732 	    xdr_void, NULL_xdrproc_t, 0,
733 	    xdr_void, NULL_xdrproc_t, 0,
734 	    nullfree, RPC_IDEMPOTENT,
735 	    0},
736 
737 	/* RFS_LOOKUP = 4 */
738 	{rfs_lookup,
739 	    xdr_diropargs, NULL_xdrproc_t, sizeof (struct nfsdiropargs),
740 	    xdr_diropres, xdr_fastdiropres, sizeof (struct nfsdiropres),
741 	    nullfree, RPC_IDEMPOTENT|RPC_MAPRESP|RPC_PUBLICFH_OK,
742 	    rfs_lookup_getfh},
743 
744 	/* RFS_READLINK = 5 */
745 	{rfs_readlink,
746 	    xdr_fhandle, xdr_fastfhandle, sizeof (fhandle_t),
747 	    xdr_rdlnres, NULL_xdrproc_t, sizeof (struct nfsrdlnres),
748 	    rfs_rlfree, RPC_IDEMPOTENT,
749 	    rfs_readlink_getfh},
750 
751 	/* RFS_READ = 6 */
752 	{rfs_read,
753 	    xdr_readargs, NULL_xdrproc_t, sizeof (struct nfsreadargs),
754 	    xdr_rdresult, NULL_xdrproc_t, sizeof (struct nfsrdresult),
755 	    rfs_rdfree, RPC_IDEMPOTENT,
756 	    rfs_read_getfh},
757 
758 	/* RFS_WRITECACHE = 7 *** NO LONGER SUPPORTED *** */
759 	{rfs_error,
760 	    xdr_void, NULL_xdrproc_t, 0,
761 	    xdr_void, NULL_xdrproc_t, 0,
762 	    nullfree, RPC_IDEMPOTENT,
763 	    0},
764 
765 	/* RFS_WRITE = 8 */
766 	{rfs_write,
767 	    xdr_writeargs, NULL_xdrproc_t, sizeof (struct nfswriteargs),
768 	    xdr_attrstat, xdr_fastattrstat, sizeof (struct nfsattrstat),
769 	    nullfree, RPC_MAPRESP,
770 	    rfs_write_getfh},
771 
772 	/* RFS_CREATE = 9 */
773 	{rfs_create,
774 	    xdr_creatargs, NULL_xdrproc_t, sizeof (struct nfscreatargs),
775 	    xdr_diropres, xdr_fastdiropres, sizeof (struct nfsdiropres),
776 	    nullfree, RPC_MAPRESP,
777 	    rfs_create_getfh},
778 
779 	/* RFS_REMOVE = 10 */
780 	{rfs_remove,
781 	    xdr_diropargs, NULL_xdrproc_t, sizeof (struct nfsdiropargs),
782 #ifdef _LITTLE_ENDIAN
783 	    xdr_enum, xdr_fastenum, sizeof (enum nfsstat),
784 #else
785 	    xdr_enum, NULL_xdrproc_t, sizeof (enum nfsstat),
786 #endif
787 	    nullfree, RPC_MAPRESP,
788 	    rfs_remove_getfh},
789 
790 	/* RFS_RENAME = 11 */
791 	{rfs_rename,
792 	    xdr_rnmargs, NULL_xdrproc_t, sizeof (struct nfsrnmargs),
793 #ifdef _LITTLE_ENDIAN
794 	    xdr_enum, xdr_fastenum, sizeof (enum nfsstat),
795 #else
796 	    xdr_enum, NULL_xdrproc_t, sizeof (enum nfsstat),
797 #endif
798 	    nullfree, RPC_MAPRESP,
799 	    rfs_rename_getfh},
800 
801 	/* RFS_LINK = 12 */
802 	{rfs_link,
803 	    xdr_linkargs, NULL_xdrproc_t, sizeof (struct nfslinkargs),
804 #ifdef _LITTLE_ENDIAN
805 	    xdr_enum, xdr_fastenum, sizeof (enum nfsstat),
806 #else
807 	    xdr_enum, NULL_xdrproc_t, sizeof (enum nfsstat),
808 #endif
809 	    nullfree, RPC_MAPRESP,
810 	    rfs_link_getfh},
811 
812 	/* RFS_SYMLINK = 13 */
813 	{rfs_symlink,
814 	    xdr_slargs, NULL_xdrproc_t, sizeof (struct nfsslargs),
815 #ifdef _LITTLE_ENDIAN
816 	    xdr_enum, xdr_fastenum, sizeof (enum nfsstat),
817 #else
818 	    xdr_enum, NULL_xdrproc_t, sizeof (enum nfsstat),
819 #endif
820 	    nullfree, RPC_MAPRESP,
821 	    rfs_symlink_getfh},
822 
823 	/* RFS_MKDIR = 14 */
824 	{rfs_mkdir,
825 	    xdr_creatargs, NULL_xdrproc_t, sizeof (struct nfscreatargs),
826 	    xdr_diropres, xdr_fastdiropres, sizeof (struct nfsdiropres),
827 	    nullfree, RPC_MAPRESP,
828 	    rfs_mkdir_getfh},
829 
830 	/* RFS_RMDIR = 15 */
831 	{rfs_rmdir,
832 	    xdr_diropargs, NULL_xdrproc_t, sizeof (struct nfsdiropargs),
833 #ifdef _LITTLE_ENDIAN
834 	    xdr_enum, xdr_fastenum, sizeof (enum nfsstat),
835 #else
836 	    xdr_enum, NULL_xdrproc_t, sizeof (enum nfsstat),
837 #endif
838 	    nullfree, RPC_MAPRESP,
839 	    rfs_rmdir_getfh},
840 
841 	/* RFS_READDIR = 16 */
842 	{rfs_readdir,
843 	    xdr_rddirargs, NULL_xdrproc_t, sizeof (struct nfsrddirargs),
844 	    xdr_putrddirres, NULL_xdrproc_t, sizeof (struct nfsrddirres),
845 	    rfs_rddirfree, RPC_IDEMPOTENT,
846 	    rfs_readdir_getfh},
847 
848 	/* RFS_STATFS = 17 */
849 	{rfs_statfs,
850 	    xdr_fhandle, xdr_fastfhandle, sizeof (fhandle_t),
851 	    xdr_statfs, xdr_faststatfs, sizeof (struct nfsstatfs),
852 	    nullfree, RPC_IDEMPOTENT|RPC_ALLOWANON|RPC_MAPRESP,
853 	    rfs_statfs_getfh},
854 };
855 
856 static char *rfscallnames_v3[] = {
857 	"RFS3_NULL",
858 	"RFS3_GETATTR",
859 	"RFS3_SETATTR",
860 	"RFS3_LOOKUP",
861 	"RFS3_ACCESS",
862 	"RFS3_READLINK",
863 	"RFS3_READ",
864 	"RFS3_WRITE",
865 	"RFS3_CREATE",
866 	"RFS3_MKDIR",
867 	"RFS3_SYMLINK",
868 	"RFS3_MKNOD",
869 	"RFS3_REMOVE",
870 	"RFS3_RMDIR",
871 	"RFS3_RENAME",
872 	"RFS3_LINK",
873 	"RFS3_READDIR",
874 	"RFS3_READDIRPLUS",
875 	"RFS3_FSSTAT",
876 	"RFS3_FSINFO",
877 	"RFS3_PATHCONF",
878 	"RFS3_COMMIT"
879 };
880 
881 static struct rpcdisp rfsdisptab_v3[] = {
882 	/*
883 	 * NFS VERSION 3
884 	 */
885 
886 	/* RFS_NULL = 0 */
887 	{rpc_null_v3,
888 	    xdr_void, NULL_xdrproc_t, 0,
889 	    xdr_void, NULL_xdrproc_t, 0,
890 	    nullfree, RPC_IDEMPOTENT,
891 	    0},
892 
893 	/* RFS3_GETATTR = 1 */
894 	{rfs3_getattr,
895 	    xdr_nfs_fh3_server, NULL_xdrproc_t, sizeof (GETATTR3args),
896 	    xdr_GETATTR3res, NULL_xdrproc_t, sizeof (GETATTR3res),
897 	    nullfree, (RPC_IDEMPOTENT | RPC_ALLOWANON),
898 	    rfs3_getattr_getfh},
899 
900 	/* RFS3_SETATTR = 2 */
901 	{rfs3_setattr,
902 	    xdr_SETATTR3args, NULL_xdrproc_t, sizeof (SETATTR3args),
903 	    xdr_SETATTR3res, NULL_xdrproc_t, sizeof (SETATTR3res),
904 	    nullfree, 0,
905 	    rfs3_setattr_getfh},
906 
907 	/* RFS3_LOOKUP = 3 */
908 	{rfs3_lookup,
909 	    xdr_diropargs3, NULL_xdrproc_t, sizeof (LOOKUP3args),
910 	    xdr_LOOKUP3res, NULL_xdrproc_t, sizeof (LOOKUP3res),
911 	    nullfree, (RPC_IDEMPOTENT | RPC_PUBLICFH_OK),
912 	    rfs3_lookup_getfh},
913 
914 	/* RFS3_ACCESS = 4 */
915 	{rfs3_access,
916 	    xdr_ACCESS3args, NULL_xdrproc_t, sizeof (ACCESS3args),
917 	    xdr_ACCESS3res, NULL_xdrproc_t, sizeof (ACCESS3res),
918 	    nullfree, RPC_IDEMPOTENT,
919 	    rfs3_access_getfh},
920 
921 	/* RFS3_READLINK = 5 */
922 	{rfs3_readlink,
923 	    xdr_nfs_fh3_server, NULL_xdrproc_t, sizeof (READLINK3args),
924 	    xdr_READLINK3res, NULL_xdrproc_t, sizeof (READLINK3res),
925 	    rfs3_readlink_free, RPC_IDEMPOTENT,
926 	    rfs3_readlink_getfh},
927 
928 	/* RFS3_READ = 6 */
929 	{rfs3_read,
930 	    xdr_READ3args, NULL_xdrproc_t, sizeof (READ3args),
931 	    xdr_READ3res, NULL_xdrproc_t, sizeof (READ3res),
932 	    rfs3_read_free, RPC_IDEMPOTENT,
933 	    rfs3_read_getfh},
934 
935 	/* RFS3_WRITE = 7 */
936 	{rfs3_write,
937 	    xdr_WRITE3args, NULL_xdrproc_t, sizeof (WRITE3args),
938 	    xdr_WRITE3res, NULL_xdrproc_t, sizeof (WRITE3res),
939 	    nullfree, 0,
940 	    rfs3_write_getfh},
941 
942 	/* RFS3_CREATE = 8 */
943 	{rfs3_create,
944 	    xdr_CREATE3args, NULL_xdrproc_t, sizeof (CREATE3args),
945 	    xdr_CREATE3res, NULL_xdrproc_t, sizeof (CREATE3res),
946 	    nullfree, 0,
947 	    rfs3_create_getfh},
948 
949 	/* RFS3_MKDIR = 9 */
950 	{rfs3_mkdir,
951 	    xdr_MKDIR3args, NULL_xdrproc_t, sizeof (MKDIR3args),
952 	    xdr_MKDIR3res, NULL_xdrproc_t, sizeof (MKDIR3res),
953 	    nullfree, 0,
954 	    rfs3_mkdir_getfh},
955 
956 	/* RFS3_SYMLINK = 10 */
957 	{rfs3_symlink,
958 	    xdr_SYMLINK3args, NULL_xdrproc_t, sizeof (SYMLINK3args),
959 	    xdr_SYMLINK3res, NULL_xdrproc_t, sizeof (SYMLINK3res),
960 	    nullfree, 0,
961 	    rfs3_symlink_getfh},
962 
963 	/* RFS3_MKNOD = 11 */
964 	{rfs3_mknod,
965 	    xdr_MKNOD3args, NULL_xdrproc_t, sizeof (MKNOD3args),
966 	    xdr_MKNOD3res, NULL_xdrproc_t, sizeof (MKNOD3res),
967 	    nullfree, 0,
968 	    rfs3_mknod_getfh},
969 
970 	/* RFS3_REMOVE = 12 */
971 	{rfs3_remove,
972 	    xdr_diropargs3, NULL_xdrproc_t, sizeof (REMOVE3args),
973 	    xdr_REMOVE3res, NULL_xdrproc_t, sizeof (REMOVE3res),
974 	    nullfree, 0,
975 	    rfs3_remove_getfh},
976 
977 	/* RFS3_RMDIR = 13 */
978 	{rfs3_rmdir,
979 	    xdr_diropargs3, NULL_xdrproc_t, sizeof (RMDIR3args),
980 	    xdr_RMDIR3res, NULL_xdrproc_t, sizeof (RMDIR3res),
981 	    nullfree, 0,
982 	    rfs3_rmdir_getfh},
983 
984 	/* RFS3_RENAME = 14 */
985 	{rfs3_rename,
986 	    xdr_RENAME3args, NULL_xdrproc_t, sizeof (RENAME3args),
987 	    xdr_RENAME3res, NULL_xdrproc_t, sizeof (RENAME3res),
988 	    nullfree, 0,
989 	    rfs3_rename_getfh},
990 
991 	/* RFS3_LINK = 15 */
992 	{rfs3_link,
993 	    xdr_LINK3args, NULL_xdrproc_t, sizeof (LINK3args),
994 	    xdr_LINK3res, NULL_xdrproc_t, sizeof (LINK3res),
995 	    nullfree, 0,
996 	    rfs3_link_getfh},
997 
998 	/* RFS3_READDIR = 16 */
999 	{rfs3_readdir,
1000 	    xdr_READDIR3args, NULL_xdrproc_t, sizeof (READDIR3args),
1001 	    xdr_READDIR3res, NULL_xdrproc_t, sizeof (READDIR3res),
1002 	    rfs3_readdir_free, RPC_IDEMPOTENT,
1003 	    rfs3_readdir_getfh},
1004 
1005 	/* RFS3_READDIRPLUS = 17 */
1006 	{rfs3_readdirplus,
1007 	    xdr_READDIRPLUS3args, NULL_xdrproc_t, sizeof (READDIRPLUS3args),
1008 	    xdr_READDIRPLUS3res, NULL_xdrproc_t, sizeof (READDIRPLUS3res),
1009 	    rfs3_readdirplus_free, RPC_AVOIDWORK,
1010 	    rfs3_readdirplus_getfh},
1011 
1012 	/* RFS3_FSSTAT = 18 */
1013 	{rfs3_fsstat,
1014 	    xdr_nfs_fh3_server, NULL_xdrproc_t, sizeof (FSSTAT3args),
1015 	    xdr_FSSTAT3res, NULL_xdrproc_t, sizeof (FSSTAT3res),
1016 	    nullfree, RPC_IDEMPOTENT,
1017 	    rfs3_fsstat_getfh},
1018 
1019 	/* RFS3_FSINFO = 19 */
1020 	{rfs3_fsinfo,
1021 	    xdr_nfs_fh3_server, NULL_xdrproc_t, sizeof (FSINFO3args),
1022 	    xdr_FSINFO3res, NULL_xdrproc_t, sizeof (FSINFO3res),
1023 	    nullfree, RPC_IDEMPOTENT|RPC_ALLOWANON,
1024 	    rfs3_fsinfo_getfh},
1025 
1026 	/* RFS3_PATHCONF = 20 */
1027 	{rfs3_pathconf,
1028 	    xdr_nfs_fh3_server, NULL_xdrproc_t, sizeof (PATHCONF3args),
1029 	    xdr_PATHCONF3res, NULL_xdrproc_t, sizeof (PATHCONF3res),
1030 	    nullfree, RPC_IDEMPOTENT,
1031 	    rfs3_pathconf_getfh},
1032 
1033 	/* RFS3_COMMIT = 21 */
1034 	{rfs3_commit,
1035 	    xdr_COMMIT3args, NULL_xdrproc_t, sizeof (COMMIT3args),
1036 	    xdr_COMMIT3res, NULL_xdrproc_t, sizeof (COMMIT3res),
1037 	    nullfree, RPC_IDEMPOTENT,
1038 	    rfs3_commit_getfh},
1039 };
1040 
1041 static char *rfscallnames_v4[] = {
1042 	"RFS4_NULL",
1043 	"RFS4_COMPOUND",
1044 	"RFS4_NULL",
1045 	"RFS4_NULL",
1046 	"RFS4_NULL",
1047 	"RFS4_NULL",
1048 	"RFS4_NULL",
1049 	"RFS4_NULL",
1050 	"RFS4_CREATE"
1051 };
1052 
1053 static struct rpcdisp rfsdisptab_v4[] = {
1054 	/*
1055 	 * NFS VERSION 4
1056 	 */
1057 
1058 	/* RFS_NULL = 0 */
1059 	{rpc_null,
1060 	    xdr_void, NULL_xdrproc_t, 0,
1061 	    xdr_void, NULL_xdrproc_t, 0,
1062 	    nullfree, RPC_IDEMPOTENT, 0},
1063 
1064 	/* RFS4_compound = 1 */
1065 	{rfs4_compound,
1066 	    xdr_COMPOUND4args_srv, NULL_xdrproc_t, sizeof (COMPOUND4args),
1067 	    xdr_COMPOUND4res_srv, NULL_xdrproc_t, sizeof (COMPOUND4res),
1068 	    rfs4_compound_free, 0, 0},
1069 };
1070 
1071 union rfs_args {
1072 	/*
1073 	 * NFS VERSION 2
1074 	 */
1075 
1076 	/* RFS_NULL = 0 */
1077 
1078 	/* RFS_GETATTR = 1 */
1079 	fhandle_t nfs2_getattr_args;
1080 
1081 	/* RFS_SETATTR = 2 */
1082 	struct nfssaargs nfs2_setattr_args;
1083 
1084 	/* RFS_ROOT = 3 *** NO LONGER SUPPORTED *** */
1085 
1086 	/* RFS_LOOKUP = 4 */
1087 	struct nfsdiropargs nfs2_lookup_args;
1088 
1089 	/* RFS_READLINK = 5 */
1090 	fhandle_t nfs2_readlink_args;
1091 
1092 	/* RFS_READ = 6 */
1093 	struct nfsreadargs nfs2_read_args;
1094 
1095 	/* RFS_WRITECACHE = 7 *** NO LONGER SUPPORTED *** */
1096 
1097 	/* RFS_WRITE = 8 */
1098 	struct nfswriteargs nfs2_write_args;
1099 
1100 	/* RFS_CREATE = 9 */
1101 	struct nfscreatargs nfs2_create_args;
1102 
1103 	/* RFS_REMOVE = 10 */
1104 	struct nfsdiropargs nfs2_remove_args;
1105 
1106 	/* RFS_RENAME = 11 */
1107 	struct nfsrnmargs nfs2_rename_args;
1108 
1109 	/* RFS_LINK = 12 */
1110 	struct nfslinkargs nfs2_link_args;
1111 
1112 	/* RFS_SYMLINK = 13 */
1113 	struct nfsslargs nfs2_symlink_args;
1114 
1115 	/* RFS_MKDIR = 14 */
1116 	struct nfscreatargs nfs2_mkdir_args;
1117 
1118 	/* RFS_RMDIR = 15 */
1119 	struct nfsdiropargs nfs2_rmdir_args;
1120 
1121 	/* RFS_READDIR = 16 */
1122 	struct nfsrddirargs nfs2_readdir_args;
1123 
1124 	/* RFS_STATFS = 17 */
1125 	fhandle_t nfs2_statfs_args;
1126 
1127 	/*
1128 	 * NFS VERSION 3
1129 	 */
1130 
1131 	/* RFS_NULL = 0 */
1132 
1133 	/* RFS3_GETATTR = 1 */
1134 	GETATTR3args nfs3_getattr_args;
1135 
1136 	/* RFS3_SETATTR = 2 */
1137 	SETATTR3args nfs3_setattr_args;
1138 
1139 	/* RFS3_LOOKUP = 3 */
1140 	LOOKUP3args nfs3_lookup_args;
1141 
1142 	/* RFS3_ACCESS = 4 */
1143 	ACCESS3args nfs3_access_args;
1144 
1145 	/* RFS3_READLINK = 5 */
1146 	READLINK3args nfs3_readlink_args;
1147 
1148 	/* RFS3_READ = 6 */
1149 	READ3args nfs3_read_args;
1150 
1151 	/* RFS3_WRITE = 7 */
1152 	WRITE3args nfs3_write_args;
1153 
1154 	/* RFS3_CREATE = 8 */
1155 	CREATE3args nfs3_create_args;
1156 
1157 	/* RFS3_MKDIR = 9 */
1158 	MKDIR3args nfs3_mkdir_args;
1159 
1160 	/* RFS3_SYMLINK = 10 */
1161 	SYMLINK3args nfs3_symlink_args;
1162 
1163 	/* RFS3_MKNOD = 11 */
1164 	MKNOD3args nfs3_mknod_args;
1165 
1166 	/* RFS3_REMOVE = 12 */
1167 	REMOVE3args nfs3_remove_args;
1168 
1169 	/* RFS3_RMDIR = 13 */
1170 	RMDIR3args nfs3_rmdir_args;
1171 
1172 	/* RFS3_RENAME = 14 */
1173 	RENAME3args nfs3_rename_args;
1174 
1175 	/* RFS3_LINK = 15 */
1176 	LINK3args nfs3_link_args;
1177 
1178 	/* RFS3_READDIR = 16 */
1179 	READDIR3args nfs3_readdir_args;
1180 
1181 	/* RFS3_READDIRPLUS = 17 */
1182 	READDIRPLUS3args nfs3_readdirplus_args;
1183 
1184 	/* RFS3_FSSTAT = 18 */
1185 	FSSTAT3args nfs3_fsstat_args;
1186 
1187 	/* RFS3_FSINFO = 19 */
1188 	FSINFO3args nfs3_fsinfo_args;
1189 
1190 	/* RFS3_PATHCONF = 20 */
1191 	PATHCONF3args nfs3_pathconf_args;
1192 
1193 	/* RFS3_COMMIT = 21 */
1194 	COMMIT3args nfs3_commit_args;
1195 
1196 	/*
1197 	 * NFS VERSION 4
1198 	 */
1199 
1200 	/* RFS_NULL = 0 */
1201 
1202 	/* COMPUND = 1 */
1203 	COMPOUND4args nfs4_compound_args;
1204 };
1205 
1206 union rfs_res {
1207 	/*
1208 	 * NFS VERSION 2
1209 	 */
1210 
1211 	/* RFS_NULL = 0 */
1212 
1213 	/* RFS_GETATTR = 1 */
1214 	struct nfsattrstat nfs2_getattr_res;
1215 
1216 	/* RFS_SETATTR = 2 */
1217 	struct nfsattrstat nfs2_setattr_res;
1218 
1219 	/* RFS_ROOT = 3 *** NO LONGER SUPPORTED *** */
1220 
1221 	/* RFS_LOOKUP = 4 */
1222 	struct nfsdiropres nfs2_lookup_res;
1223 
1224 	/* RFS_READLINK = 5 */
1225 	struct nfsrdlnres nfs2_readlink_res;
1226 
1227 	/* RFS_READ = 6 */
1228 	struct nfsrdresult nfs2_read_res;
1229 
1230 	/* RFS_WRITECACHE = 7 *** NO LONGER SUPPORTED *** */
1231 
1232 	/* RFS_WRITE = 8 */
1233 	struct nfsattrstat nfs2_write_res;
1234 
1235 	/* RFS_CREATE = 9 */
1236 	struct nfsdiropres nfs2_create_res;
1237 
1238 	/* RFS_REMOVE = 10 */
1239 	enum nfsstat nfs2_remove_res;
1240 
1241 	/* RFS_RENAME = 11 */
1242 	enum nfsstat nfs2_rename_res;
1243 
1244 	/* RFS_LINK = 12 */
1245 	enum nfsstat nfs2_link_res;
1246 
1247 	/* RFS_SYMLINK = 13 */
1248 	enum nfsstat nfs2_symlink_res;
1249 
1250 	/* RFS_MKDIR = 14 */
1251 	struct nfsdiropres nfs2_mkdir_res;
1252 
1253 	/* RFS_RMDIR = 15 */
1254 	enum nfsstat nfs2_rmdir_res;
1255 
1256 	/* RFS_READDIR = 16 */
1257 	struct nfsrddirres nfs2_readdir_res;
1258 
1259 	/* RFS_STATFS = 17 */
1260 	struct nfsstatfs nfs2_statfs_res;
1261 
1262 	/*
1263 	 * NFS VERSION 3
1264 	 */
1265 
1266 	/* RFS_NULL = 0 */
1267 
1268 	/* RFS3_GETATTR = 1 */
1269 	GETATTR3res nfs3_getattr_res;
1270 
1271 	/* RFS3_SETATTR = 2 */
1272 	SETATTR3res nfs3_setattr_res;
1273 
1274 	/* RFS3_LOOKUP = 3 */
1275 	LOOKUP3res nfs3_lookup_res;
1276 
1277 	/* RFS3_ACCESS = 4 */
1278 	ACCESS3res nfs3_access_res;
1279 
1280 	/* RFS3_READLINK = 5 */
1281 	READLINK3res nfs3_readlink_res;
1282 
1283 	/* RFS3_READ = 6 */
1284 	READ3res nfs3_read_res;
1285 
1286 	/* RFS3_WRITE = 7 */
1287 	WRITE3res nfs3_write_res;
1288 
1289 	/* RFS3_CREATE = 8 */
1290 	CREATE3res nfs3_create_res;
1291 
1292 	/* RFS3_MKDIR = 9 */
1293 	MKDIR3res nfs3_mkdir_res;
1294 
1295 	/* RFS3_SYMLINK = 10 */
1296 	SYMLINK3res nfs3_symlink_res;
1297 
1298 	/* RFS3_MKNOD = 11 */
1299 	MKNOD3res nfs3_mknod_res;
1300 
1301 	/* RFS3_REMOVE = 12 */
1302 	REMOVE3res nfs3_remove_res;
1303 
1304 	/* RFS3_RMDIR = 13 */
1305 	RMDIR3res nfs3_rmdir_res;
1306 
1307 	/* RFS3_RENAME = 14 */
1308 	RENAME3res nfs3_rename_res;
1309 
1310 	/* RFS3_LINK = 15 */
1311 	LINK3res nfs3_link_res;
1312 
1313 	/* RFS3_READDIR = 16 */
1314 	READDIR3res nfs3_readdir_res;
1315 
1316 	/* RFS3_READDIRPLUS = 17 */
1317 	READDIRPLUS3res nfs3_readdirplus_res;
1318 
1319 	/* RFS3_FSSTAT = 18 */
1320 	FSSTAT3res nfs3_fsstat_res;
1321 
1322 	/* RFS3_FSINFO = 19 */
1323 	FSINFO3res nfs3_fsinfo_res;
1324 
1325 	/* RFS3_PATHCONF = 20 */
1326 	PATHCONF3res nfs3_pathconf_res;
1327 
1328 	/* RFS3_COMMIT = 21 */
1329 	COMMIT3res nfs3_commit_res;
1330 
1331 	/*
1332 	 * NFS VERSION 4
1333 	 */
1334 
1335 	/* RFS_NULL = 0 */
1336 
1337 	/* RFS4_COMPOUND = 1 */
1338 	COMPOUND4res nfs4_compound_res;
1339 
1340 };
1341 
1342 static struct rpc_disptable rfs_disptable[] = {
1343 	{sizeof (rfsdisptab_v2) / sizeof (rfsdisptab_v2[0]),
1344 	    rfscallnames_v2,
1345 	    &rfsproccnt_v2_ptr, &rfsprocio_v2_ptr, rfsdisptab_v2},
1346 	{sizeof (rfsdisptab_v3) / sizeof (rfsdisptab_v3[0]),
1347 	    rfscallnames_v3,
1348 	    &rfsproccnt_v3_ptr, &rfsprocio_v3_ptr, rfsdisptab_v3},
1349 	{sizeof (rfsdisptab_v4) / sizeof (rfsdisptab_v4[0]),
1350 	    rfscallnames_v4,
1351 	    &rfsproccnt_v4_ptr, &rfsprocio_v4_ptr, rfsdisptab_v4},
1352 };
1353 
1354 /*
1355  * If nfs_portmon is set, then clients are required to use privileged
1356  * ports (ports < IPPORT_RESERVED) in order to get NFS services.
1357  *
1358  * N.B.: this attempt to carry forward the already ill-conceived notion
1359  * of privileged ports for TCP/UDP is really quite ineffectual.  Not only
1360  * is it transport-dependent, it's laughably easy to spoof.  If you're
1361  * really interested in security, you must start with secure RPC instead.
1362  */
1363 static int nfs_portmon = 0;
1364 
1365 #ifdef DEBUG
1366 static int cred_hits = 0;
1367 static int cred_misses = 0;
1368 #endif
1369 
1370 
1371 #ifdef DEBUG
1372 /*
1373  * Debug code to allow disabling of rfs_dispatch() use of
1374  * fastxdrargs() and fastxdrres() calls for testing purposes.
1375  */
1376 static int rfs_no_fast_xdrargs = 0;
1377 static int rfs_no_fast_xdrres = 0;
1378 #endif
1379 
1380 union acl_args {
1381 	/*
1382 	 * ACL VERSION 2
1383 	 */
1384 
1385 	/* ACL2_NULL = 0 */
1386 
1387 	/* ACL2_GETACL = 1 */
1388 	GETACL2args acl2_getacl_args;
1389 
1390 	/* ACL2_SETACL = 2 */
1391 	SETACL2args acl2_setacl_args;
1392 
1393 	/* ACL2_GETATTR = 3 */
1394 	GETATTR2args acl2_getattr_args;
1395 
1396 	/* ACL2_ACCESS = 4 */
1397 	ACCESS2args acl2_access_args;
1398 
1399 	/* ACL2_GETXATTRDIR = 5 */
1400 	GETXATTRDIR2args acl2_getxattrdir_args;
1401 
1402 	/*
1403 	 * ACL VERSION 3
1404 	 */
1405 
1406 	/* ACL3_NULL = 0 */
1407 
1408 	/* ACL3_GETACL = 1 */
1409 	GETACL3args acl3_getacl_args;
1410 
1411 	/* ACL3_SETACL = 2 */
1412 	SETACL3args acl3_setacl;
1413 
1414 	/* ACL3_GETXATTRDIR = 3 */
1415 	GETXATTRDIR3args acl3_getxattrdir_args;
1416 
1417 };
1418 
1419 union acl_res {
1420 	/*
1421 	 * ACL VERSION 2
1422 	 */
1423 
1424 	/* ACL2_NULL = 0 */
1425 
1426 	/* ACL2_GETACL = 1 */
1427 	GETACL2res acl2_getacl_res;
1428 
1429 	/* ACL2_SETACL = 2 */
1430 	SETACL2res acl2_setacl_res;
1431 
1432 	/* ACL2_GETATTR = 3 */
1433 	GETATTR2res acl2_getattr_res;
1434 
1435 	/* ACL2_ACCESS = 4 */
1436 	ACCESS2res acl2_access_res;
1437 
1438 	/* ACL2_GETXATTRDIR = 5 */
1439 	GETXATTRDIR2args acl2_getxattrdir_res;
1440 
1441 	/*
1442 	 * ACL VERSION 3
1443 	 */
1444 
1445 	/* ACL3_NULL = 0 */
1446 
1447 	/* ACL3_GETACL = 1 */
1448 	GETACL3res acl3_getacl_res;
1449 
1450 	/* ACL3_SETACL = 2 */
1451 	SETACL3res acl3_setacl_res;
1452 
1453 	/* ACL3_GETXATTRDIR = 3 */
1454 	GETXATTRDIR3res acl3_getxattrdir_res;
1455 
1456 };
1457 
1458 static bool_t
1459 auth_tooweak(struct svc_req *req, char *res)
1460 {
1461 
1462 	if (req->rq_vers == NFS_VERSION && req->rq_proc == RFS_LOOKUP) {
1463 		struct nfsdiropres *dr = (struct nfsdiropres *)res;
1464 		if ((enum wnfsstat)dr->dr_status == WNFSERR_CLNT_FLAVOR)
1465 			return (TRUE);
1466 	} else if (req->rq_vers == NFS_V3 && req->rq_proc == NFSPROC3_LOOKUP) {
1467 		LOOKUP3res *resp = (LOOKUP3res *)res;
1468 		if ((enum wnfsstat)resp->status == WNFSERR_CLNT_FLAVOR)
1469 			return (TRUE);
1470 	}
1471 	return (FALSE);
1472 }
1473 
1474 
1475 static void
1476 common_dispatch(struct svc_req *req, SVCXPRT *xprt, rpcvers_t min_vers,
1477 		rpcvers_t max_vers, char *pgmname,
1478 		struct rpc_disptable *disptable)
1479 {
1480 	int which;
1481 	rpcvers_t vers;
1482 	char *args;
1483 	union {
1484 			union rfs_args ra;
1485 			union acl_args aa;
1486 		} args_buf;
1487 	char *res;
1488 	union {
1489 			union rfs_res rr;
1490 			union acl_res ar;
1491 		} res_buf;
1492 	struct rpcdisp *disp = NULL;
1493 	int dis_flags = 0;
1494 	cred_t *cr;
1495 	int error = 0;
1496 	int anon_ok;
1497 	struct exportinfo *exi = NULL;
1498 	unsigned int nfslog_rec_id;
1499 	int dupstat;
1500 	struct dupreq *dr;
1501 	int authres;
1502 	bool_t publicfh_ok = FALSE;
1503 	enum_t auth_flavor;
1504 	bool_t dupcached = FALSE;
1505 	struct netbuf	nb;
1506 	bool_t logging_enabled = FALSE;
1507 	struct exportinfo *nfslog_exi = NULL;
1508 	char **procnames;
1509 	char cbuf[INET6_ADDRSTRLEN];	/* to hold both IPv4 and IPv6 addr */
1510 	bool_t ro = FALSE;
1511 	kstat_t *ksp = NULL;
1512 	kstat_t *exi_ksp = NULL;
1513 	size_t pos;			/* request size */
1514 	size_t rlen;			/* reply size */
1515 	bool_t rsent = FALSE;		/* reply was sent successfully */
1516 
1517 	vers = req->rq_vers;
1518 
1519 	if (vers < min_vers || vers > max_vers) {
1520 		svcerr_progvers(req->rq_xprt, min_vers, max_vers);
1521 		error++;
1522 		cmn_err(CE_NOTE, "%s: bad version number %u", pgmname, vers);
1523 		goto done;
1524 	}
1525 	vers -= min_vers;
1526 
1527 	which = req->rq_proc;
1528 	if (which < 0 || which >= disptable[(int)vers].dis_nprocs) {
1529 		svcerr_noproc(req->rq_xprt);
1530 		error++;
1531 		goto done;
1532 	}
1533 
1534 	(*(disptable[(int)vers].dis_proccntp))[which].value.ui64++;
1535 
1536 	ksp = (*(disptable[(int)vers].dis_prociop))[which];
1537 	if (ksp != NULL) {
1538 		mutex_enter(ksp->ks_lock);
1539 		kstat_runq_enter(KSTAT_IO_PTR(ksp));
1540 		mutex_exit(ksp->ks_lock);
1541 	}
1542 	pos = XDR_GETPOS(&xprt->xp_xdrin);
1543 
1544 	disp = &disptable[(int)vers].dis_table[which];
1545 	procnames = disptable[(int)vers].dis_procnames;
1546 
1547 	auth_flavor = req->rq_cred.oa_flavor;
1548 
1549 	/*
1550 	 * Deserialize into the args struct.
1551 	 */
1552 	args = (char *)&args_buf;
1553 
1554 #ifdef DEBUG
1555 	if (rfs_no_fast_xdrargs || (auth_flavor == RPCSEC_GSS) ||
1556 	    disp->dis_fastxdrargs == NULL_xdrproc_t ||
1557 	    !SVC_GETARGS(xprt, disp->dis_fastxdrargs, (char *)&args))
1558 #else
1559 	if ((auth_flavor == RPCSEC_GSS) ||
1560 	    disp->dis_fastxdrargs == NULL_xdrproc_t ||
1561 	    !SVC_GETARGS(xprt, disp->dis_fastxdrargs, (char *)&args))
1562 #endif
1563 	{
1564 		bzero(args, disp->dis_argsz);
1565 		if (!SVC_GETARGS(xprt, disp->dis_xdrargs, args)) {
1566 			error++;
1567 			/*
1568 			 * Check if we are outside our capabilities.
1569 			 */
1570 			if (rfs4_minorvers_mismatch(req, xprt, (void *)args))
1571 				goto done;
1572 
1573 			svcerr_decode(xprt);
1574 			cmn_err(CE_NOTE,
1575 			    "Failed to decode arguments for %s version %u "
1576 			    "procedure %s client %s%s",
1577 			    pgmname, vers + min_vers, procnames[which],
1578 			    client_name(req), client_addr(req, cbuf));
1579 			goto done;
1580 		}
1581 	}
1582 
1583 	/*
1584 	 * If Version 4 use that specific dispatch function.
1585 	 */
1586 	if (req->rq_vers == 4) {
1587 		error += rfs4_dispatch(disp, req, xprt, args, &rlen);
1588 		if (error == 0)
1589 			rsent = TRUE;
1590 		goto done;
1591 	}
1592 
1593 	dis_flags = disp->dis_flags;
1594 
1595 	/*
1596 	 * Find export information and check authentication,
1597 	 * setting the credential if everything is ok.
1598 	 */
1599 	if (disp->dis_getfh != NULL) {
1600 		void *fh;
1601 		fsid_t *fsid;
1602 		fid_t *fid, *xfid;
1603 		fhandle_t *fh2;
1604 		nfs_fh3 *fh3;
1605 
1606 		fh = (*disp->dis_getfh)(args);
1607 		switch (req->rq_vers) {
1608 		case NFS_VERSION:
1609 			fh2 = (fhandle_t *)fh;
1610 			fsid = &fh2->fh_fsid;
1611 			fid = (fid_t *)&fh2->fh_len;
1612 			xfid = (fid_t *)&fh2->fh_xlen;
1613 			break;
1614 		case NFS_V3:
1615 			fh3 = (nfs_fh3 *)fh;
1616 			fsid = &fh3->fh3_fsid;
1617 			fid = FH3TOFIDP(fh3);
1618 			xfid = FH3TOXFIDP(fh3);
1619 			break;
1620 		}
1621 
1622 		/*
1623 		 * Fix for bug 1038302 - corbin
1624 		 * There is a problem here if anonymous access is
1625 		 * disallowed.  If the current request is part of the
1626 		 * client's mount process for the requested filesystem,
1627 		 * then it will carry root (uid 0) credentials on it, and
1628 		 * will be denied by checkauth if that client does not
1629 		 * have explicit root=0 permission.  This will cause the
1630 		 * client's mount operation to fail.  As a work-around,
1631 		 * we check here to see if the request is a getattr or
1632 		 * statfs operation on the exported vnode itself, and
1633 		 * pass a flag to checkauth with the result of this test.
1634 		 *
1635 		 * The filehandle refers to the mountpoint itself if
1636 		 * the fh_data and fh_xdata portions of the filehandle
1637 		 * are equal.
1638 		 *
1639 		 * Added anon_ok argument to checkauth().
1640 		 */
1641 
1642 		if ((dis_flags & RPC_ALLOWANON) && EQFID(fid, xfid))
1643 			anon_ok = 1;
1644 		else
1645 			anon_ok = 0;
1646 
1647 		cr = xprt->xp_cred;
1648 		ASSERT(cr != NULL);
1649 #ifdef DEBUG
1650 		if (crgetref(cr) != 1) {
1651 			crfree(cr);
1652 			cr = crget();
1653 			xprt->xp_cred = cr;
1654 			cred_misses++;
1655 		} else
1656 			cred_hits++;
1657 #else
1658 		if (crgetref(cr) != 1) {
1659 			crfree(cr);
1660 			cr = crget();
1661 			xprt->xp_cred = cr;
1662 		}
1663 #endif
1664 
1665 		exi = checkexport(fsid, xfid);
1666 
1667 		if (exi != NULL) {
1668 			rw_enter(&exported_lock, RW_READER);
1669 
1670 			switch (req->rq_vers) {
1671 			case NFS_VERSION:
1672 				exi_ksp = (disptable == rfs_disptable) ?
1673 				    exi->exi_kstats->rfsprocio_v2_ptr[which] :
1674 				    exi->exi_kstats->aclprocio_v2_ptr[which];
1675 				break;
1676 			case NFS_V3:
1677 				exi_ksp = (disptable == rfs_disptable) ?
1678 				    exi->exi_kstats->rfsprocio_v3_ptr[which] :
1679 				    exi->exi_kstats->aclprocio_v3_ptr[which];
1680 				break;
1681 			default:
1682 				ASSERT(0);
1683 				break;
1684 			}
1685 
1686 			if (exi_ksp != NULL) {
1687 				mutex_enter(exi_ksp->ks_lock);
1688 				kstat_runq_enter(KSTAT_IO_PTR(exi_ksp));
1689 				mutex_exit(exi_ksp->ks_lock);
1690 			} else {
1691 				rw_exit(&exported_lock);
1692 			}
1693 
1694 			publicfh_ok = PUBLICFH_CHECK(disp, exi, fsid, xfid);
1695 
1696 			/*
1697 			 * Don't allow non-V4 clients access
1698 			 * to pseudo exports
1699 			 */
1700 			if (PSEUDO(exi)) {
1701 				svcerr_weakauth(xprt);
1702 				error++;
1703 				goto done;
1704 			}
1705 
1706 			authres = checkauth(exi, req, cr, anon_ok, publicfh_ok,
1707 			    &ro);
1708 			/*
1709 			 * authres >  0: authentication OK - proceed
1710 			 * authres == 0: authentication weak - return error
1711 			 * authres <  0: authentication timeout - drop
1712 			 */
1713 			if (authres <= 0) {
1714 				if (authres == 0) {
1715 					svcerr_weakauth(xprt);
1716 					error++;
1717 				}
1718 				goto done;
1719 			}
1720 		}
1721 	} else
1722 		cr = NULL;
1723 
1724 	if ((dis_flags & RPC_MAPRESP) && (auth_flavor != RPCSEC_GSS)) {
1725 		res = (char *)SVC_GETRES(xprt, disp->dis_ressz);
1726 		if (res == NULL)
1727 			res = (char *)&res_buf;
1728 	} else
1729 		res = (char *)&res_buf;
1730 
1731 	if (!(dis_flags & RPC_IDEMPOTENT)) {
1732 		dupstat = SVC_DUP_EXT(xprt, req, res, disp->dis_ressz, &dr,
1733 		    &dupcached);
1734 
1735 		switch (dupstat) {
1736 		case DUP_ERROR:
1737 			svcerr_systemerr(xprt);
1738 			error++;
1739 			goto done;
1740 			/* NOTREACHED */
1741 		case DUP_INPROGRESS:
1742 			if (res != (char *)&res_buf)
1743 				SVC_FREERES(xprt);
1744 			error++;
1745 			goto done;
1746 			/* NOTREACHED */
1747 		case DUP_NEW:
1748 		case DUP_DROP:
1749 			curthread->t_flag |= T_DONTPEND;
1750 
1751 			(*disp->dis_proc)(args, res, exi, req, cr, ro);
1752 
1753 			curthread->t_flag &= ~T_DONTPEND;
1754 			if (curthread->t_flag & T_WOULDBLOCK) {
1755 				curthread->t_flag &= ~T_WOULDBLOCK;
1756 				SVC_DUPDONE_EXT(xprt, dr, res, NULL,
1757 				    disp->dis_ressz, DUP_DROP);
1758 				if (res != (char *)&res_buf)
1759 					SVC_FREERES(xprt);
1760 				error++;
1761 				goto done;
1762 			}
1763 			if (dis_flags & RPC_AVOIDWORK) {
1764 				SVC_DUPDONE_EXT(xprt, dr, res, NULL,
1765 				    disp->dis_ressz, DUP_DROP);
1766 			} else {
1767 				SVC_DUPDONE_EXT(xprt, dr, res,
1768 				    disp->dis_resfree == nullfree ? NULL :
1769 				    disp->dis_resfree,
1770 				    disp->dis_ressz, DUP_DONE);
1771 				dupcached = TRUE;
1772 			}
1773 			break;
1774 		case DUP_DONE:
1775 			break;
1776 		}
1777 
1778 	} else {
1779 		curthread->t_flag |= T_DONTPEND;
1780 
1781 		(*disp->dis_proc)(args, res, exi, req, cr, ro);
1782 
1783 		curthread->t_flag &= ~T_DONTPEND;
1784 		if (curthread->t_flag & T_WOULDBLOCK) {
1785 			curthread->t_flag &= ~T_WOULDBLOCK;
1786 			if (res != (char *)&res_buf)
1787 				SVC_FREERES(xprt);
1788 			error++;
1789 			goto done;
1790 		}
1791 	}
1792 
1793 	if (auth_tooweak(req, res)) {
1794 		svcerr_weakauth(xprt);
1795 		error++;
1796 		goto done;
1797 	}
1798 
1799 	/*
1800 	 * Check to see if logging has been enabled on the server.
1801 	 * If so, then obtain the export info struct to be used for
1802 	 * the later writing of the log record.  This is done for
1803 	 * the case that a lookup is done across a non-logged public
1804 	 * file system.
1805 	 */
1806 	if (nfslog_buffer_list != NULL) {
1807 		nfslog_exi = nfslog_get_exi(exi, req, res, &nfslog_rec_id);
1808 		/*
1809 		 * Is logging enabled?
1810 		 */
1811 		logging_enabled = (nfslog_exi != NULL);
1812 
1813 		/*
1814 		 * Copy the netbuf for logging purposes, before it is
1815 		 * freed by svc_sendreply().
1816 		 */
1817 		if (logging_enabled) {
1818 			NFSLOG_COPY_NETBUF(nfslog_exi, xprt, &nb);
1819 			/*
1820 			 * If RPC_MAPRESP flag set (i.e. in V2 ops) the
1821 			 * res gets copied directly into the mbuf and
1822 			 * may be freed soon after the sendreply. So we
1823 			 * must copy it here to a safe place...
1824 			 */
1825 			if (res != (char *)&res_buf) {
1826 				bcopy(res, (char *)&res_buf, disp->dis_ressz);
1827 			}
1828 		}
1829 	}
1830 
1831 	/*
1832 	 * Serialize and send results struct
1833 	 */
1834 #ifdef DEBUG
1835 	if (rfs_no_fast_xdrres == 0 && res != (char *)&res_buf)
1836 #else
1837 	if (res != (char *)&res_buf)
1838 #endif
1839 	{
1840 		if (!svc_sendreply(xprt, disp->dis_fastxdrres, res)) {
1841 			cmn_err(CE_NOTE, "%s: bad sendreply", pgmname);
1842 			svcerr_systemerr(xprt);
1843 			error++;
1844 		} else {
1845 			rlen = xdr_sizeof(disp->dis_fastxdrres, res);
1846 			rsent = TRUE;
1847 		}
1848 	} else {
1849 		if (!svc_sendreply(xprt, disp->dis_xdrres, res)) {
1850 			cmn_err(CE_NOTE, "%s: bad sendreply", pgmname);
1851 			svcerr_systemerr(xprt);
1852 			error++;
1853 		} else {
1854 			rlen = xdr_sizeof(disp->dis_xdrres, res);
1855 			rsent = TRUE;
1856 		}
1857 	}
1858 
1859 	/*
1860 	 * Log if needed
1861 	 */
1862 	if (logging_enabled) {
1863 		nfslog_write_record(nfslog_exi, req, args, (char *)&res_buf,
1864 		    cr, &nb, nfslog_rec_id, NFSLOG_ONE_BUFFER);
1865 		exi_rele(nfslog_exi);
1866 		kmem_free((&nb)->buf, (&nb)->len);
1867 	}
1868 
1869 	/*
1870 	 * Free results struct. With the addition of NFS V4 we can
1871 	 * have non-idempotent procedures with functions.
1872 	 */
1873 	if (disp->dis_resfree != nullfree && dupcached == FALSE) {
1874 		(*disp->dis_resfree)(res);
1875 	}
1876 
1877 done:
1878 	if (ksp != NULL || exi_ksp != NULL) {
1879 		pos = XDR_GETPOS(&xprt->xp_xdrin) - pos;
1880 	}
1881 
1882 	/*
1883 	 * Free arguments struct
1884 	 */
1885 	if (disp) {
1886 		if (!SVC_FREEARGS(xprt, disp->dis_xdrargs, args)) {
1887 			cmn_err(CE_NOTE, "%s: bad freeargs", pgmname);
1888 			error++;
1889 		}
1890 	} else {
1891 		if (!SVC_FREEARGS(xprt, (xdrproc_t)0, (caddr_t)0)) {
1892 			cmn_err(CE_NOTE, "%s: bad freeargs", pgmname);
1893 			error++;
1894 		}
1895 	}
1896 
1897 	if (exi_ksp != NULL) {
1898 		mutex_enter(exi_ksp->ks_lock);
1899 		KSTAT_IO_PTR(exi_ksp)->nwritten += pos;
1900 		KSTAT_IO_PTR(exi_ksp)->writes++;
1901 		if (rsent) {
1902 			KSTAT_IO_PTR(exi_ksp)->nread += rlen;
1903 			KSTAT_IO_PTR(exi_ksp)->reads++;
1904 		}
1905 		kstat_runq_exit(KSTAT_IO_PTR(exi_ksp));
1906 		mutex_exit(exi_ksp->ks_lock);
1907 
1908 		rw_exit(&exported_lock);
1909 	}
1910 
1911 	if (exi != NULL)
1912 		exi_rele(exi);
1913 
1914 	if (ksp != NULL) {
1915 		mutex_enter(ksp->ks_lock);
1916 		KSTAT_IO_PTR(ksp)->nwritten += pos;
1917 		KSTAT_IO_PTR(ksp)->writes++;
1918 		if (rsent) {
1919 			KSTAT_IO_PTR(ksp)->nread += rlen;
1920 			KSTAT_IO_PTR(ksp)->reads++;
1921 		}
1922 		kstat_runq_exit(KSTAT_IO_PTR(ksp));
1923 		mutex_exit(ksp->ks_lock);
1924 	}
1925 
1926 	global_svstat_ptr[req->rq_vers][NFS_BADCALLS].value.ui64 += error;
1927 
1928 	global_svstat_ptr[req->rq_vers][NFS_CALLS].value.ui64++;
1929 }
1930 
1931 static void
1932 rfs_dispatch(struct svc_req *req, SVCXPRT *xprt)
1933 {
1934 	common_dispatch(req, xprt, NFS_VERSMIN, NFS_VERSMAX,
1935 	    "NFS", rfs_disptable);
1936 }
1937 
1938 static char *aclcallnames_v2[] = {
1939 	"ACL2_NULL",
1940 	"ACL2_GETACL",
1941 	"ACL2_SETACL",
1942 	"ACL2_GETATTR",
1943 	"ACL2_ACCESS",
1944 	"ACL2_GETXATTRDIR"
1945 };
1946 
1947 static struct rpcdisp acldisptab_v2[] = {
1948 	/*
1949 	 * ACL VERSION 2
1950 	 */
1951 
1952 	/* ACL2_NULL = 0 */
1953 	{rpc_null,
1954 	    xdr_void, NULL_xdrproc_t, 0,
1955 	    xdr_void, NULL_xdrproc_t, 0,
1956 	    nullfree, RPC_IDEMPOTENT,
1957 	    0},
1958 
1959 	/* ACL2_GETACL = 1 */
1960 	{acl2_getacl,
1961 	    xdr_GETACL2args, xdr_fastGETACL2args, sizeof (GETACL2args),
1962 	    xdr_GETACL2res, NULL_xdrproc_t, sizeof (GETACL2res),
1963 	    acl2_getacl_free, RPC_IDEMPOTENT,
1964 	    acl2_getacl_getfh},
1965 
1966 	/* ACL2_SETACL = 2 */
1967 	{acl2_setacl,
1968 	    xdr_SETACL2args, NULL_xdrproc_t, sizeof (SETACL2args),
1969 #ifdef _LITTLE_ENDIAN
1970 	    xdr_SETACL2res, xdr_fastSETACL2res, sizeof (SETACL2res),
1971 #else
1972 	    xdr_SETACL2res, NULL_xdrproc_t, sizeof (SETACL2res),
1973 #endif
1974 	    nullfree, RPC_MAPRESP,
1975 	    acl2_setacl_getfh},
1976 
1977 	/* ACL2_GETATTR = 3 */
1978 	{acl2_getattr,
1979 	    xdr_GETATTR2args, xdr_fastGETATTR2args, sizeof (GETATTR2args),
1980 #ifdef _LITTLE_ENDIAN
1981 	    xdr_GETATTR2res, xdr_fastGETATTR2res, sizeof (GETATTR2res),
1982 #else
1983 	    xdr_GETATTR2res, NULL_xdrproc_t, sizeof (GETATTR2res),
1984 #endif
1985 	    nullfree, RPC_IDEMPOTENT|RPC_ALLOWANON|RPC_MAPRESP,
1986 	    acl2_getattr_getfh},
1987 
1988 	/* ACL2_ACCESS = 4 */
1989 	{acl2_access,
1990 	    xdr_ACCESS2args, xdr_fastACCESS2args, sizeof (ACCESS2args),
1991 #ifdef _LITTLE_ENDIAN
1992 	    xdr_ACCESS2res, xdr_fastACCESS2res, sizeof (ACCESS2res),
1993 #else
1994 	    xdr_ACCESS2res, NULL_xdrproc_t, sizeof (ACCESS2res),
1995 #endif
1996 	    nullfree, RPC_IDEMPOTENT|RPC_MAPRESP,
1997 	    acl2_access_getfh},
1998 
1999 	/* ACL2_GETXATTRDIR = 5 */
2000 	{acl2_getxattrdir,
2001 	    xdr_GETXATTRDIR2args, NULL_xdrproc_t, sizeof (GETXATTRDIR2args),
2002 	    xdr_GETXATTRDIR2res, NULL_xdrproc_t, sizeof (GETXATTRDIR2res),
2003 	    nullfree, RPC_IDEMPOTENT,
2004 	    acl2_getxattrdir_getfh},
2005 };
2006 
2007 static char *aclcallnames_v3[] = {
2008 	"ACL3_NULL",
2009 	"ACL3_GETACL",
2010 	"ACL3_SETACL",
2011 	"ACL3_GETXATTRDIR"
2012 };
2013 
2014 static struct rpcdisp acldisptab_v3[] = {
2015 	/*
2016 	 * ACL VERSION 3
2017 	 */
2018 
2019 	/* ACL3_NULL = 0 */
2020 	{rpc_null,
2021 	    xdr_void, NULL_xdrproc_t, 0,
2022 	    xdr_void, NULL_xdrproc_t, 0,
2023 	    nullfree, RPC_IDEMPOTENT,
2024 	    0},
2025 
2026 	/* ACL3_GETACL = 1 */
2027 	{acl3_getacl,
2028 	    xdr_GETACL3args, NULL_xdrproc_t, sizeof (GETACL3args),
2029 	    xdr_GETACL3res, NULL_xdrproc_t, sizeof (GETACL3res),
2030 	    acl3_getacl_free, RPC_IDEMPOTENT,
2031 	    acl3_getacl_getfh},
2032 
2033 	/* ACL3_SETACL = 2 */
2034 	{acl3_setacl,
2035 	    xdr_SETACL3args, NULL_xdrproc_t, sizeof (SETACL3args),
2036 	    xdr_SETACL3res, NULL_xdrproc_t, sizeof (SETACL3res),
2037 	    nullfree, 0,
2038 	    acl3_setacl_getfh},
2039 
2040 	/* ACL3_GETXATTRDIR = 3 */
2041 	{acl3_getxattrdir,
2042 	    xdr_GETXATTRDIR3args, NULL_xdrproc_t, sizeof (GETXATTRDIR3args),
2043 	    xdr_GETXATTRDIR3res, NULL_xdrproc_t, sizeof (GETXATTRDIR3res),
2044 	    nullfree, RPC_IDEMPOTENT,
2045 	    acl3_getxattrdir_getfh},
2046 };
2047 
2048 static struct rpc_disptable acl_disptable[] = {
2049 	{sizeof (acldisptab_v2) / sizeof (acldisptab_v2[0]),
2050 		aclcallnames_v2,
2051 		&aclproccnt_v2_ptr, &aclprocio_v2_ptr, acldisptab_v2},
2052 	{sizeof (acldisptab_v3) / sizeof (acldisptab_v3[0]),
2053 		aclcallnames_v3,
2054 		&aclproccnt_v3_ptr, &aclprocio_v3_ptr, acldisptab_v3},
2055 };
2056 
2057 static void
2058 acl_dispatch(struct svc_req *req, SVCXPRT *xprt)
2059 {
2060 	common_dispatch(req, xprt, NFS_ACL_VERSMIN, NFS_ACL_VERSMAX,
2061 	    "ACL", acl_disptable);
2062 }
2063 
2064 int
2065 checkwin(int flavor, int window, struct svc_req *req)
2066 {
2067 	struct authdes_cred *adc;
2068 
2069 	switch (flavor) {
2070 	case AUTH_DES:
2071 		adc = (struct authdes_cred *)req->rq_clntcred;
2072 		if (adc->adc_fullname.window > window)
2073 			return (0);
2074 		break;
2075 
2076 	default:
2077 		break;
2078 	}
2079 	return (1);
2080 }
2081 
2082 
2083 /*
2084  * checkauth() will check the access permission against the export
2085  * information.  Then map root uid/gid to appropriate uid/gid.
2086  *
2087  * This routine is used by NFS V3 and V2 code.
2088  */
2089 static int
2090 checkauth(struct exportinfo *exi, struct svc_req *req, cred_t *cr, int anon_ok,
2091     bool_t publicfh_ok, bool_t *ro)
2092 {
2093 	int i, nfsflavor, rpcflavor, stat, access;
2094 	struct secinfo *secp;
2095 	caddr_t principal;
2096 	char buf[INET6_ADDRSTRLEN]; /* to hold both IPv4 and IPv6 addr */
2097 	int anon_res = 0;
2098 
2099 	uid_t uid;
2100 	gid_t gid;
2101 	uint_t ngids;
2102 	gid_t *gids;
2103 
2104 	/*
2105 	 * Check for privileged port number
2106 	 * N.B.:  this assumes that we know the format of a netbuf.
2107 	 */
2108 	if (nfs_portmon) {
2109 		struct sockaddr *ca;
2110 		ca = (struct sockaddr *)svc_getrpccaller(req->rq_xprt)->buf;
2111 
2112 		if (ca == NULL)
2113 			return (0);
2114 
2115 		if ((ca->sa_family == AF_INET &&
2116 		    ntohs(((struct sockaddr_in *)ca)->sin_port) >=
2117 		    IPPORT_RESERVED) ||
2118 		    (ca->sa_family == AF_INET6 &&
2119 		    ntohs(((struct sockaddr_in6 *)ca)->sin6_port) >=
2120 		    IPPORT_RESERVED)) {
2121 			cmn_err(CE_NOTE,
2122 			    "nfs_server: client %s%ssent NFS request from "
2123 			    "unprivileged port",
2124 			    client_name(req), client_addr(req, buf));
2125 			return (0);
2126 		}
2127 	}
2128 
2129 	/*
2130 	 *  return 1 on success or 0 on failure
2131 	 */
2132 	stat = sec_svc_getcred(req, cr, &principal, &nfsflavor);
2133 
2134 	/*
2135 	 * A failed AUTH_UNIX sec_svc_getcred() implies we couldn't set
2136 	 * the credentials; below we map that to anonymous.
2137 	 */
2138 	if (!stat && nfsflavor != AUTH_UNIX) {
2139 		cmn_err(CE_NOTE,
2140 		    "nfs_server: couldn't get unix cred for %s",
2141 		    client_name(req));
2142 		return (0);
2143 	}
2144 
2145 	/*
2146 	 * Short circuit checkauth() on operations that support the
2147 	 * public filehandle, and if the request for that operation
2148 	 * is using the public filehandle. Note that we must call
2149 	 * sec_svc_getcred() first so that xp_cookie is set to the
2150 	 * right value. Normally xp_cookie is just the RPC flavor
2151 	 * of the the request, but in the case of RPCSEC_GSS it
2152 	 * could be a pseudo flavor.
2153 	 */
2154 	if (publicfh_ok)
2155 		return (1);
2156 
2157 	rpcflavor = req->rq_cred.oa_flavor;
2158 	/*
2159 	 * Check if the auth flavor is valid for this export
2160 	 */
2161 	access = nfsauth_access(exi, req, cr, &uid, &gid, &ngids, &gids);
2162 	if (access & NFSAUTH_DROP)
2163 		return (-1);	/* drop the request */
2164 
2165 	if (access & NFSAUTH_RO)
2166 		*ro = TRUE;
2167 
2168 	if (access & NFSAUTH_DENIED) {
2169 		/*
2170 		 * If anon_ok == 1 and we got NFSAUTH_DENIED, it was
2171 		 * probably due to the flavor not matching during
2172 		 * the mount attempt. So map the flavor to AUTH_NONE
2173 		 * so that the credentials get mapped to the anonymous
2174 		 * user.
2175 		 */
2176 		if (anon_ok == 1)
2177 			rpcflavor = AUTH_NONE;
2178 		else
2179 			return (0);	/* deny access */
2180 
2181 	} else if (access & NFSAUTH_MAPNONE) {
2182 		/*
2183 		 * Access was granted even though the flavor mismatched
2184 		 * because AUTH_NONE was one of the exported flavors.
2185 		 */
2186 		rpcflavor = AUTH_NONE;
2187 
2188 	} else if (access & NFSAUTH_WRONGSEC) {
2189 		/*
2190 		 * NFSAUTH_WRONGSEC is used for NFSv4. If we get here,
2191 		 * it means a client ignored the list of allowed flavors
2192 		 * returned via the MOUNT protocol. So we just disallow it!
2193 		 */
2194 		return (0);
2195 	}
2196 
2197 	if (rpcflavor != AUTH_SYS)
2198 		kmem_free(gids, ngids * sizeof (gid_t));
2199 
2200 	switch (rpcflavor) {
2201 	case AUTH_NONE:
2202 		anon_res = crsetugid(cr, exi->exi_export.ex_anon,
2203 		    exi->exi_export.ex_anon);
2204 		(void) crsetgroups(cr, 0, NULL);
2205 		break;
2206 
2207 	case AUTH_UNIX:
2208 		if (!stat || crgetuid(cr) == 0 && !(access & NFSAUTH_UIDMAP)) {
2209 			anon_res = crsetugid(cr, exi->exi_export.ex_anon,
2210 			    exi->exi_export.ex_anon);
2211 			(void) crsetgroups(cr, 0, NULL);
2212 		} else if (crgetuid(cr) == 0 && access & NFSAUTH_ROOT) {
2213 			/*
2214 			 * It is root, so apply rootid to get real UID
2215 			 * Find the secinfo structure.  We should be able
2216 			 * to find it by the time we reach here.
2217 			 * nfsauth_access() has done the checking.
2218 			 */
2219 			secp = NULL;
2220 			for (i = 0; i < exi->exi_export.ex_seccnt; i++) {
2221 				struct secinfo *sptr;
2222 				sptr = &exi->exi_export.ex_secinfo[i];
2223 				if (sptr->s_secinfo.sc_nfsnum == nfsflavor) {
2224 					secp = sptr;
2225 					break;
2226 				}
2227 			}
2228 			if (secp != NULL) {
2229 				(void) crsetugid(cr, secp->s_rootid,
2230 				    secp->s_rootid);
2231 				(void) crsetgroups(cr, 0, NULL);
2232 			}
2233 		} else if (crgetuid(cr) != uid || crgetgid(cr) != gid) {
2234 			if (crsetugid(cr, uid, gid) != 0)
2235 				anon_res = crsetugid(cr,
2236 				    exi->exi_export.ex_anon,
2237 				    exi->exi_export.ex_anon);
2238 			(void) crsetgroups(cr, 0, NULL);
2239 		} else if (access & NFSAUTH_GROUPS) {
2240 			(void) crsetgroups(cr, ngids, gids);
2241 		}
2242 
2243 		kmem_free(gids, ngids * sizeof (gid_t));
2244 
2245 		break;
2246 
2247 	case AUTH_DES:
2248 	case RPCSEC_GSS:
2249 		/*
2250 		 *  Find the secinfo structure.  We should be able
2251 		 *  to find it by the time we reach here.
2252 		 *  nfsauth_access() has done the checking.
2253 		 */
2254 		secp = NULL;
2255 		for (i = 0; i < exi->exi_export.ex_seccnt; i++) {
2256 			if (exi->exi_export.ex_secinfo[i].s_secinfo.sc_nfsnum ==
2257 			    nfsflavor) {
2258 				secp = &exi->exi_export.ex_secinfo[i];
2259 				break;
2260 			}
2261 		}
2262 
2263 		if (!secp) {
2264 			cmn_err(CE_NOTE, "nfs_server: client %s%shad "
2265 			    "no secinfo data for flavor %d",
2266 			    client_name(req), client_addr(req, buf),
2267 			    nfsflavor);
2268 			return (0);
2269 		}
2270 
2271 		if (!checkwin(rpcflavor, secp->s_window, req)) {
2272 			cmn_err(CE_NOTE,
2273 			    "nfs_server: client %s%sused invalid "
2274 			    "auth window value",
2275 			    client_name(req), client_addr(req, buf));
2276 			return (0);
2277 		}
2278 
2279 		/*
2280 		 * Map root principals listed in the share's root= list to root,
2281 		 * and map any others principals that were mapped to root by RPC
2282 		 * to anon.
2283 		 */
2284 		if (principal && sec_svc_inrootlist(rpcflavor, principal,
2285 		    secp->s_rootcnt, secp->s_rootnames)) {
2286 			if (crgetuid(cr) == 0 && secp->s_rootid == 0)
2287 				return (1);
2288 
2289 
2290 			(void) crsetugid(cr, secp->s_rootid, secp->s_rootid);
2291 
2292 			/*
2293 			 * NOTE: If and when kernel-land privilege tracing is
2294 			 * added this may have to be replaced with code that
2295 			 * retrieves root's supplementary groups (e.g., using
2296 			 * kgss_get_group_info().  In the meantime principals
2297 			 * mapped to uid 0 get all privileges, so setting cr's
2298 			 * supplementary groups for them does nothing.
2299 			 */
2300 			(void) crsetgroups(cr, 0, NULL);
2301 
2302 			return (1);
2303 		}
2304 
2305 		/*
2306 		 * Not a root princ, or not in root list, map UID 0/nobody to
2307 		 * the anon ID for the share.  (RPC sets cr's UIDs and GIDs to
2308 		 * UID_NOBODY and GID_NOBODY, respectively.)
2309 		 */
2310 		if (crgetuid(cr) != 0 &&
2311 		    (crgetuid(cr) != UID_NOBODY || crgetgid(cr) != GID_NOBODY))
2312 			return (1);
2313 
2314 		anon_res = crsetugid(cr, exi->exi_export.ex_anon,
2315 		    exi->exi_export.ex_anon);
2316 		(void) crsetgroups(cr, 0, NULL);
2317 		break;
2318 	default:
2319 		return (0);
2320 	} /* switch on rpcflavor */
2321 
2322 	/*
2323 	 * Even if anon access is disallowed via ex_anon == -1, we allow
2324 	 * this access if anon_ok is set.  So set creds to the default
2325 	 * "nobody" id.
2326 	 */
2327 	if (anon_res != 0) {
2328 		if (anon_ok == 0) {
2329 			cmn_err(CE_NOTE,
2330 			    "nfs_server: client %s%ssent wrong "
2331 			    "authentication for %s",
2332 			    client_name(req), client_addr(req, buf),
2333 			    exi->exi_export.ex_path ?
2334 			    exi->exi_export.ex_path : "?");
2335 			return (0);
2336 		}
2337 
2338 		if (crsetugid(cr, UID_NOBODY, GID_NOBODY) != 0)
2339 			return (0);
2340 	}
2341 
2342 	return (1);
2343 }
2344 
2345 /*
2346  * returns 0 on failure, -1 on a drop, -2 on wrong security flavor,
2347  * and 1 on success
2348  */
2349 int
2350 checkauth4(struct compound_state *cs, struct svc_req *req)
2351 {
2352 	int i, rpcflavor, access;
2353 	struct secinfo *secp;
2354 	char buf[MAXHOST + 1];
2355 	int anon_res = 0, nfsflavor;
2356 	struct exportinfo *exi;
2357 	cred_t	*cr;
2358 	caddr_t	principal;
2359 
2360 	uid_t uid;
2361 	gid_t gid;
2362 	uint_t ngids;
2363 	gid_t *gids;
2364 
2365 	exi = cs->exi;
2366 	cr = cs->cr;
2367 	principal = cs->principal;
2368 	nfsflavor = cs->nfsflavor;
2369 
2370 	ASSERT(cr != NULL);
2371 
2372 	rpcflavor = req->rq_cred.oa_flavor;
2373 	cs->access &= ~CS_ACCESS_LIMITED;
2374 
2375 	/*
2376 	 * Check for privileged port number
2377 	 * N.B.:  this assumes that we know the format of a netbuf.
2378 	 */
2379 	if (nfs_portmon) {
2380 		struct sockaddr *ca;
2381 		ca = (struct sockaddr *)svc_getrpccaller(req->rq_xprt)->buf;
2382 
2383 		if (ca == NULL)
2384 			return (0);
2385 
2386 		if ((ca->sa_family == AF_INET &&
2387 		    ntohs(((struct sockaddr_in *)ca)->sin_port) >=
2388 		    IPPORT_RESERVED) ||
2389 		    (ca->sa_family == AF_INET6 &&
2390 		    ntohs(((struct sockaddr_in6 *)ca)->sin6_port) >=
2391 		    IPPORT_RESERVED)) {
2392 			cmn_err(CE_NOTE,
2393 			    "nfs_server: client %s%ssent NFSv4 request from "
2394 			    "unprivileged port",
2395 			    client_name(req), client_addr(req, buf));
2396 			return (0);
2397 		}
2398 	}
2399 
2400 	/*
2401 	 * Check the access right per auth flavor on the vnode of
2402 	 * this export for the given request.
2403 	 */
2404 	access = nfsauth4_access(cs->exi, cs->vp, req, cr, &uid, &gid, &ngids,
2405 	    &gids);
2406 
2407 	if (access & NFSAUTH_WRONGSEC)
2408 		return (-2);	/* no access for this security flavor */
2409 
2410 	if (access & NFSAUTH_DROP)
2411 		return (-1);	/* drop the request */
2412 
2413 	if (access & NFSAUTH_DENIED) {
2414 
2415 		if (exi->exi_export.ex_seccnt > 0)
2416 			return (0);	/* deny access */
2417 
2418 	} else if (access & NFSAUTH_LIMITED) {
2419 
2420 		cs->access |= CS_ACCESS_LIMITED;
2421 
2422 	} else if (access & NFSAUTH_MAPNONE) {
2423 		/*
2424 		 * Access was granted even though the flavor mismatched
2425 		 * because AUTH_NONE was one of the exported flavors.
2426 		 */
2427 		rpcflavor = AUTH_NONE;
2428 	}
2429 
2430 	/*
2431 	 * XXX probably need to redo some of it for nfsv4?
2432 	 * return 1 on success or 0 on failure
2433 	 */
2434 
2435 	if (rpcflavor != AUTH_SYS)
2436 		kmem_free(gids, ngids * sizeof (gid_t));
2437 
2438 	switch (rpcflavor) {
2439 	case AUTH_NONE:
2440 		anon_res = crsetugid(cr, exi->exi_export.ex_anon,
2441 		    exi->exi_export.ex_anon);
2442 		(void) crsetgroups(cr, 0, NULL);
2443 		break;
2444 
2445 	case AUTH_UNIX:
2446 		if (crgetuid(cr) == 0 && !(access & NFSAUTH_UIDMAP)) {
2447 			anon_res = crsetugid(cr, exi->exi_export.ex_anon,
2448 			    exi->exi_export.ex_anon);
2449 			(void) crsetgroups(cr, 0, NULL);
2450 		} else if (crgetuid(cr) == 0 && access & NFSAUTH_ROOT) {
2451 			/*
2452 			 * It is root, so apply rootid to get real UID
2453 			 * Find the secinfo structure.  We should be able
2454 			 * to find it by the time we reach here.
2455 			 * nfsauth_access() has done the checking.
2456 			 */
2457 			secp = NULL;
2458 			for (i = 0; i < exi->exi_export.ex_seccnt; i++) {
2459 				struct secinfo *sptr;
2460 				sptr = &exi->exi_export.ex_secinfo[i];
2461 				if (sptr->s_secinfo.sc_nfsnum == nfsflavor) {
2462 					secp = &exi->exi_export.ex_secinfo[i];
2463 					break;
2464 				}
2465 			}
2466 			if (secp != NULL) {
2467 				(void) crsetugid(cr, secp->s_rootid,
2468 				    secp->s_rootid);
2469 				(void) crsetgroups(cr, 0, NULL);
2470 			}
2471 		} else if (crgetuid(cr) != uid || crgetgid(cr) != gid) {
2472 			if (crsetugid(cr, uid, gid) != 0)
2473 				anon_res = crsetugid(cr,
2474 				    exi->exi_export.ex_anon,
2475 				    exi->exi_export.ex_anon);
2476 			(void) crsetgroups(cr, 0, NULL);
2477 		} if (access & NFSAUTH_GROUPS) {
2478 			(void) crsetgroups(cr, ngids, gids);
2479 		}
2480 
2481 		kmem_free(gids, ngids * sizeof (gid_t));
2482 
2483 		break;
2484 
2485 	default:
2486 		/*
2487 		 *  Find the secinfo structure.  We should be able
2488 		 *  to find it by the time we reach here.
2489 		 *  nfsauth_access() has done the checking.
2490 		 */
2491 		secp = NULL;
2492 		for (i = 0; i < exi->exi_export.ex_seccnt; i++) {
2493 			if (exi->exi_export.ex_secinfo[i].s_secinfo.sc_nfsnum ==
2494 			    nfsflavor) {
2495 				secp = &exi->exi_export.ex_secinfo[i];
2496 				break;
2497 			}
2498 		}
2499 
2500 		if (!secp) {
2501 			cmn_err(CE_NOTE, "nfs_server: client %s%shad "
2502 			    "no secinfo data for flavor %d",
2503 			    client_name(req), client_addr(req, buf),
2504 			    nfsflavor);
2505 			return (0);
2506 		}
2507 
2508 		if (!checkwin(rpcflavor, secp->s_window, req)) {
2509 			cmn_err(CE_NOTE,
2510 			    "nfs_server: client %s%sused invalid "
2511 			    "auth window value",
2512 			    client_name(req), client_addr(req, buf));
2513 			return (0);
2514 		}
2515 
2516 		/*
2517 		 * Map root principals listed in the share's root= list to root,
2518 		 * and map any others principals that were mapped to root by RPC
2519 		 * to anon. If not going to anon, set to rootid (root_mapping).
2520 		 */
2521 		if (principal && sec_svc_inrootlist(rpcflavor, principal,
2522 		    secp->s_rootcnt, secp->s_rootnames)) {
2523 			if (crgetuid(cr) == 0 && secp->s_rootid == 0)
2524 				return (1);
2525 
2526 			(void) crsetugid(cr, secp->s_rootid, secp->s_rootid);
2527 
2528 			/*
2529 			 * NOTE: If and when kernel-land privilege tracing is
2530 			 * added this may have to be replaced with code that
2531 			 * retrieves root's supplementary groups (e.g., using
2532 			 * kgss_get_group_info().  In the meantime principals
2533 			 * mapped to uid 0 get all privileges, so setting cr's
2534 			 * supplementary groups for them does nothing.
2535 			 */
2536 			(void) crsetgroups(cr, 0, NULL);
2537 
2538 			return (1);
2539 		}
2540 
2541 		/*
2542 		 * Not a root princ, or not in root list, map UID 0/nobody to
2543 		 * the anon ID for the share.  (RPC sets cr's UIDs and GIDs to
2544 		 * UID_NOBODY and GID_NOBODY, respectively.)
2545 		 */
2546 		if (crgetuid(cr) != 0 &&
2547 		    (crgetuid(cr) != UID_NOBODY || crgetgid(cr) != GID_NOBODY))
2548 			return (1);
2549 
2550 		anon_res = crsetugid(cr, exi->exi_export.ex_anon,
2551 		    exi->exi_export.ex_anon);
2552 		(void) crsetgroups(cr, 0, NULL);
2553 		break;
2554 	} /* switch on rpcflavor */
2555 
2556 	/*
2557 	 * Even if anon access is disallowed via ex_anon == -1, we allow
2558 	 * this access if anon_ok is set.  So set creds to the default
2559 	 * "nobody" id.
2560 	 */
2561 
2562 	if (anon_res != 0) {
2563 		cmn_err(CE_NOTE,
2564 		    "nfs_server: client %s%ssent wrong "
2565 		    "authentication for %s",
2566 		    client_name(req), client_addr(req, buf),
2567 		    exi->exi_export.ex_path ?
2568 		    exi->exi_export.ex_path : "?");
2569 		return (0);
2570 	}
2571 
2572 	return (1);
2573 }
2574 
2575 
2576 static char *
2577 client_name(struct svc_req *req)
2578 {
2579 	char *hostname = NULL;
2580 
2581 	/*
2582 	 * If it's a Unix cred then use the
2583 	 * hostname from the credential.
2584 	 */
2585 	if (req->rq_cred.oa_flavor == AUTH_UNIX) {
2586 		hostname = ((struct authunix_parms *)
2587 		    req->rq_clntcred)->aup_machname;
2588 	}
2589 	if (hostname == NULL)
2590 		hostname = "";
2591 
2592 	return (hostname);
2593 }
2594 
2595 static char *
2596 client_addr(struct svc_req *req, char *buf)
2597 {
2598 	struct sockaddr *ca;
2599 	uchar_t *b;
2600 	char *frontspace = "";
2601 
2602 	/*
2603 	 * We assume we are called in tandem with client_name and the
2604 	 * format string looks like "...client %s%sblah blah..."
2605 	 *
2606 	 * If it's a Unix cred then client_name returned
2607 	 * a host name, so we need insert a space between host name
2608 	 * and IP address.
2609 	 */
2610 	if (req->rq_cred.oa_flavor == AUTH_UNIX)
2611 		frontspace = " ";
2612 
2613 	/*
2614 	 * Convert the caller's IP address to a dotted string
2615 	 */
2616 	ca = (struct sockaddr *)svc_getrpccaller(req->rq_xprt)->buf;
2617 
2618 	if (ca->sa_family == AF_INET) {
2619 		b = (uchar_t *)&((struct sockaddr_in *)ca)->sin_addr;
2620 		(void) sprintf(buf, "%s(%d.%d.%d.%d) ", frontspace,
2621 		    b[0] & 0xFF, b[1] & 0xFF, b[2] & 0xFF, b[3] & 0xFF);
2622 	} else if (ca->sa_family == AF_INET6) {
2623 		struct sockaddr_in6 *sin6;
2624 		sin6 = (struct sockaddr_in6 *)ca;
2625 		(void) kinet_ntop6((uchar_t *)&sin6->sin6_addr,
2626 		    buf, INET6_ADDRSTRLEN);
2627 
2628 	} else {
2629 
2630 		/*
2631 		 * No IP address to print. If there was a host name
2632 		 * printed, then we print a space.
2633 		 */
2634 		(void) sprintf(buf, frontspace);
2635 	}
2636 
2637 	return (buf);
2638 }
2639 
2640 /*
2641  * NFS Server initialization routine.  This routine should only be called
2642  * once.  It performs the following tasks:
2643  *	- Call sub-initialization routines (localize access to variables)
2644  *	- Initialize all locks
2645  *	- initialize the version 3 write verifier
2646  */
2647 int
2648 nfs_srvinit(void)
2649 {
2650 	int error;
2651 
2652 	error = nfs_exportinit();
2653 	if (error != 0)
2654 		return (error);
2655 	error = rfs4_srvrinit();
2656 	if (error != 0) {
2657 		nfs_exportfini();
2658 		return (error);
2659 	}
2660 	rfs_srvrinit();
2661 	rfs3_srvrinit();
2662 	nfsauth_init();
2663 
2664 	/* Init the stuff to control start/stop */
2665 	nfs_server_upordown = NFS_SERVER_STOPPED;
2666 	mutex_init(&nfs_server_upordown_lock, NULL, MUTEX_DEFAULT, NULL);
2667 	cv_init(&nfs_server_upordown_cv, NULL, CV_DEFAULT, NULL);
2668 	mutex_init(&rdma_wait_mutex, NULL, MUTEX_DEFAULT, NULL);
2669 	cv_init(&rdma_wait_cv, NULL, CV_DEFAULT, NULL);
2670 
2671 	return (0);
2672 }
2673 
2674 /*
2675  * NFS Server finalization routine. This routine is called to cleanup the
2676  * initialization work previously performed if the NFS server module could
2677  * not be loaded correctly.
2678  */
2679 void
2680 nfs_srvfini(void)
2681 {
2682 	nfsauth_fini();
2683 	rfs3_srvrfini();
2684 	rfs_srvrfini();
2685 	nfs_exportfini();
2686 
2687 	mutex_destroy(&nfs_server_upordown_lock);
2688 	cv_destroy(&nfs_server_upordown_cv);
2689 	mutex_destroy(&rdma_wait_mutex);
2690 	cv_destroy(&rdma_wait_cv);
2691 }
2692 
2693 /*
2694  * Set up an iovec array of up to cnt pointers.
2695  */
2696 
2697 void
2698 mblk_to_iov(mblk_t *m, int cnt, struct iovec *iovp)
2699 {
2700 	while (m != NULL && cnt-- > 0) {
2701 		iovp->iov_base = (caddr_t)m->b_rptr;
2702 		iovp->iov_len = (m->b_wptr - m->b_rptr);
2703 		iovp++;
2704 		m = m->b_cont;
2705 	}
2706 }
2707 
2708 /*
2709  * Common code between NFS Version 2 and NFS Version 3 for the public
2710  * filehandle multicomponent lookups.
2711  */
2712 
2713 /*
2714  * Public filehandle evaluation of a multi-component lookup, following
2715  * symbolic links, if necessary. This may result in a vnode in another
2716  * filesystem, which is OK as long as the other filesystem is exported.
2717  *
2718  * Note that the exi will be set either to NULL or a new reference to the
2719  * exportinfo struct that corresponds to the vnode of the multi-component path.
2720  * It is the callers responsibility to release this reference.
2721  */
2722 int
2723 rfs_publicfh_mclookup(char *p, vnode_t *dvp, cred_t *cr, vnode_t **vpp,
2724     struct exportinfo **exi, struct sec_ol *sec)
2725 {
2726 	int pathflag;
2727 	vnode_t *mc_dvp = NULL;
2728 	vnode_t *realvp;
2729 	int error;
2730 
2731 	*exi = NULL;
2732 
2733 	/*
2734 	 * check if the given path is a url or native path. Since p is
2735 	 * modified by MCLpath(), it may be empty after returning from
2736 	 * there, and should be checked.
2737 	 */
2738 	if ((pathflag = MCLpath(&p)) == -1)
2739 		return (EIO);
2740 
2741 	/*
2742 	 * If pathflag is SECURITY_QUERY, turn the SEC_QUERY bit
2743 	 * on in sec->sec_flags. This bit will later serve as an
2744 	 * indication in makefh_ol() or makefh3_ol() to overload the
2745 	 * filehandle to contain the sec modes used by the server for
2746 	 * the path.
2747 	 */
2748 	if (pathflag == SECURITY_QUERY) {
2749 		if ((sec->sec_index = (uint_t)(*p)) > 0) {
2750 			sec->sec_flags |= SEC_QUERY;
2751 			p++;
2752 			if ((pathflag = MCLpath(&p)) == -1)
2753 				return (EIO);
2754 		} else {
2755 			cmn_err(CE_NOTE,
2756 			    "nfs_server: invalid security index %d, "
2757 			    "violating WebNFS SNEGO protocol.", sec->sec_index);
2758 			return (EIO);
2759 		}
2760 	}
2761 
2762 	if (p[0] == '\0') {
2763 		error = ENOENT;
2764 		goto publicfh_done;
2765 	}
2766 
2767 	error = rfs_pathname(p, &mc_dvp, vpp, dvp, cr, pathflag);
2768 
2769 	/*
2770 	 * If name resolves to "/" we get EINVAL since we asked for
2771 	 * the vnode of the directory that the file is in. Try again
2772 	 * with NULL directory vnode.
2773 	 */
2774 	if (error == EINVAL) {
2775 		error = rfs_pathname(p, NULL, vpp, dvp, cr, pathflag);
2776 		if (!error) {
2777 			ASSERT(*vpp != NULL);
2778 			if ((*vpp)->v_type == VDIR) {
2779 				VN_HOLD(*vpp);
2780 				mc_dvp = *vpp;
2781 			} else {
2782 				/*
2783 				 * This should not happen, the filesystem is
2784 				 * in an inconsistent state. Fail the lookup
2785 				 * at this point.
2786 				 */
2787 				VN_RELE(*vpp);
2788 				error = EINVAL;
2789 			}
2790 		}
2791 	}
2792 
2793 	if (error)
2794 		goto publicfh_done;
2795 
2796 	if (*vpp == NULL) {
2797 		error = ENOENT;
2798 		goto publicfh_done;
2799 	}
2800 
2801 	ASSERT(mc_dvp != NULL);
2802 	ASSERT(*vpp != NULL);
2803 
2804 	if ((*vpp)->v_type == VDIR) {
2805 		do {
2806 			/*
2807 			 * *vpp may be an AutoFS node, so we perform
2808 			 * a VOP_ACCESS() to trigger the mount of the intended
2809 			 * filesystem, so we can perform the lookup in the
2810 			 * intended filesystem.
2811 			 */
2812 			(void) VOP_ACCESS(*vpp, 0, 0, cr, NULL);
2813 
2814 			/*
2815 			 * If vnode is covered, get the
2816 			 * the topmost vnode.
2817 			 */
2818 			if (vn_mountedvfs(*vpp) != NULL) {
2819 				error = traverse(vpp);
2820 				if (error) {
2821 					VN_RELE(*vpp);
2822 					goto publicfh_done;
2823 				}
2824 			}
2825 
2826 			if (VOP_REALVP(*vpp, &realvp, NULL) == 0 &&
2827 			    realvp != *vpp) {
2828 				/*
2829 				 * If realvp is different from *vpp
2830 				 * then release our reference on *vpp, so that
2831 				 * the export access check be performed on the
2832 				 * real filesystem instead.
2833 				 */
2834 				VN_HOLD(realvp);
2835 				VN_RELE(*vpp);
2836 				*vpp = realvp;
2837 			} else {
2838 				break;
2839 			}
2840 		/* LINTED */
2841 		} while (TRUE);
2842 
2843 		/*
2844 		 * Let nfs_vptexi() figure what the real parent is.
2845 		 */
2846 		VN_RELE(mc_dvp);
2847 		mc_dvp = NULL;
2848 
2849 	} else {
2850 		/*
2851 		 * If vnode is covered, get the
2852 		 * the topmost vnode.
2853 		 */
2854 		if (vn_mountedvfs(mc_dvp) != NULL) {
2855 			error = traverse(&mc_dvp);
2856 			if (error) {
2857 				VN_RELE(*vpp);
2858 				goto publicfh_done;
2859 			}
2860 		}
2861 
2862 		if (VOP_REALVP(mc_dvp, &realvp, NULL) == 0 &&
2863 		    realvp != mc_dvp) {
2864 			/*
2865 			 * *vpp is a file, obtain realvp of the parent
2866 			 * directory vnode.
2867 			 */
2868 			VN_HOLD(realvp);
2869 			VN_RELE(mc_dvp);
2870 			mc_dvp = realvp;
2871 		}
2872 	}
2873 
2874 	/*
2875 	 * The pathname may take us from the public filesystem to another.
2876 	 * If that's the case then just set the exportinfo to the new export
2877 	 * and build filehandle for it. Thanks to per-access checking there's
2878 	 * no security issues with doing this. If the client is not allowed
2879 	 * access to this new export then it will get an access error when it
2880 	 * tries to use the filehandle
2881 	 */
2882 	if (error = nfs_check_vpexi(mc_dvp, *vpp, kcred, exi)) {
2883 		VN_RELE(*vpp);
2884 		goto publicfh_done;
2885 	}
2886 
2887 	/*
2888 	 * Not allowed access to pseudo exports.
2889 	 */
2890 	if (PSEUDO(*exi)) {
2891 		error = ENOENT;
2892 		VN_RELE(*vpp);
2893 		goto publicfh_done;
2894 	}
2895 
2896 	/*
2897 	 * Do a lookup for the index file. We know the index option doesn't
2898 	 * allow paths through handling in the share command, so mc_dvp will
2899 	 * be the parent for the index file vnode, if its present. Use
2900 	 * temporary pointers to preserve and reuse the vnode pointers of the
2901 	 * original directory in case there's no index file. Note that the
2902 	 * index file is a native path, and should not be interpreted by
2903 	 * the URL parser in rfs_pathname()
2904 	 */
2905 	if (((*exi)->exi_export.ex_flags & EX_INDEX) &&
2906 	    ((*vpp)->v_type == VDIR) && (pathflag == URLPATH)) {
2907 		vnode_t *tvp, *tmc_dvp;	/* temporary vnode pointers */
2908 
2909 		tmc_dvp = mc_dvp;
2910 		mc_dvp = tvp = *vpp;
2911 
2912 		error = rfs_pathname((*exi)->exi_export.ex_index, NULL, vpp,
2913 		    mc_dvp, cr, NATIVEPATH);
2914 
2915 		if (error == ENOENT) {
2916 			*vpp = tvp;
2917 			mc_dvp = tmc_dvp;
2918 			error = 0;
2919 		} else {	/* ok or error other than ENOENT */
2920 			if (tmc_dvp)
2921 				VN_RELE(tmc_dvp);
2922 			if (error)
2923 				goto publicfh_done;
2924 
2925 			/*
2926 			 * Found a valid vp for index "filename". Sanity check
2927 			 * for odd case where a directory is provided as index
2928 			 * option argument and leads us to another filesystem
2929 			 */
2930 
2931 			/* Release the reference on the old exi value */
2932 			ASSERT(*exi != NULL);
2933 			exi_rele(*exi);
2934 
2935 			if (error = nfs_check_vpexi(mc_dvp, *vpp, kcred, exi)) {
2936 				VN_RELE(*vpp);
2937 				goto publicfh_done;
2938 			}
2939 		}
2940 	}
2941 
2942 publicfh_done:
2943 	if (mc_dvp)
2944 		VN_RELE(mc_dvp);
2945 
2946 	return (error);
2947 }
2948 
2949 /*
2950  * Evaluate a multi-component path
2951  */
2952 int
2953 rfs_pathname(
2954 	char *path,			/* pathname to evaluate */
2955 	vnode_t **dirvpp,		/* ret for ptr to parent dir vnode */
2956 	vnode_t **compvpp,		/* ret for ptr to component vnode */
2957 	vnode_t *startdvp,		/* starting vnode */
2958 	cred_t *cr,			/* user's credential */
2959 	int pathflag)			/* flag to identify path, e.g. URL */
2960 {
2961 	char namebuf[TYPICALMAXPATHLEN];
2962 	struct pathname pn;
2963 	int error;
2964 
2965 	/*
2966 	 * If pathname starts with '/', then set startdvp to root.
2967 	 */
2968 	if (*path == '/') {
2969 		while (*path == '/')
2970 			path++;
2971 
2972 		startdvp = rootdir;
2973 	}
2974 
2975 	error = pn_get_buf(path, UIO_SYSSPACE, &pn, namebuf, sizeof (namebuf));
2976 	if (error == 0) {
2977 		/*
2978 		 * Call the URL parser for URL paths to modify the original
2979 		 * string to handle any '%' encoded characters that exist.
2980 		 * Done here to avoid an extra bcopy in the lookup.
2981 		 * We need to be careful about pathlen's. We know that
2982 		 * rfs_pathname() is called with a non-empty path. However,
2983 		 * it could be emptied due to the path simply being all /'s,
2984 		 * which is valid to proceed with the lookup, or due to the
2985 		 * URL parser finding an encoded null character at the
2986 		 * beginning of path which should not proceed with the lookup.
2987 		 */
2988 		if (pn.pn_pathlen != 0 && pathflag == URLPATH) {
2989 			URLparse(pn.pn_path);
2990 			if ((pn.pn_pathlen = strlen(pn.pn_path)) == 0)
2991 				return (ENOENT);
2992 		}
2993 		VN_HOLD(startdvp);
2994 		error = lookuppnvp(&pn, NULL, NO_FOLLOW, dirvpp, compvpp,
2995 		    rootdir, startdvp, cr);
2996 	}
2997 	if (error == ENAMETOOLONG) {
2998 		/*
2999 		 * This thread used a pathname > TYPICALMAXPATHLEN bytes long.
3000 		 */
3001 		if (error = pn_get(path, UIO_SYSSPACE, &pn))
3002 			return (error);
3003 		if (pn.pn_pathlen != 0 && pathflag == URLPATH) {
3004 			URLparse(pn.pn_path);
3005 			if ((pn.pn_pathlen = strlen(pn.pn_path)) == 0) {
3006 				pn_free(&pn);
3007 				return (ENOENT);
3008 			}
3009 		}
3010 		VN_HOLD(startdvp);
3011 		error = lookuppnvp(&pn, NULL, NO_FOLLOW, dirvpp, compvpp,
3012 		    rootdir, startdvp, cr);
3013 		pn_free(&pn);
3014 	}
3015 
3016 	return (error);
3017 }
3018 
3019 /*
3020  * Adapt the multicomponent lookup path depending on the pathtype
3021  */
3022 static int
3023 MCLpath(char **path)
3024 {
3025 	unsigned char c = (unsigned char)**path;
3026 
3027 	/*
3028 	 * If the MCL path is between 0x20 and 0x7E (graphic printable
3029 	 * character of the US-ASCII coded character set), its a URL path,
3030 	 * per RFC 1738.
3031 	 */
3032 	if (c >= 0x20 && c <= 0x7E)
3033 		return (URLPATH);
3034 
3035 	/*
3036 	 * If the first octet of the MCL path is not an ASCII character
3037 	 * then it must be interpreted as a tag value that describes the
3038 	 * format of the remaining octets of the MCL path.
3039 	 *
3040 	 * If the first octet of the MCL path is 0x81 it is a query
3041 	 * for the security info.
3042 	 */
3043 	switch (c) {
3044 	case 0x80:	/* native path, i.e. MCL via mount protocol */
3045 		(*path)++;
3046 		return (NATIVEPATH);
3047 	case 0x81:	/* security query */
3048 		(*path)++;
3049 		return (SECURITY_QUERY);
3050 	default:
3051 		return (-1);
3052 	}
3053 }
3054 
3055 #define	fromhex(c)  ((c >= '0' && c <= '9') ? (c - '0') : \
3056 			((c >= 'A' && c <= 'F') ? (c - 'A' + 10) :\
3057 			((c >= 'a' && c <= 'f') ? (c - 'a' + 10) : 0)))
3058 
3059 /*
3060  * The implementation of URLparse guarantees that the final string will
3061  * fit in the original one. Replaces '%' occurrences followed by 2 characters
3062  * with its corresponding hexadecimal character.
3063  */
3064 static void
3065 URLparse(char *str)
3066 {
3067 	char *p, *q;
3068 
3069 	p = q = str;
3070 	while (*p) {
3071 		*q = *p;
3072 		if (*p++ == '%') {
3073 			if (*p) {
3074 				*q = fromhex(*p) * 16;
3075 				p++;
3076 				if (*p) {
3077 					*q += fromhex(*p);
3078 					p++;
3079 				}
3080 			}
3081 		}
3082 		q++;
3083 	}
3084 	*q = '\0';
3085 }
3086 
3087 
3088 /*
3089  * Get the export information for the lookup vnode, and verify its
3090  * useable.
3091  */
3092 int
3093 nfs_check_vpexi(vnode_t *mc_dvp, vnode_t *vp, cred_t *cr,
3094     struct exportinfo **exi)
3095 {
3096 	int walk;
3097 	int error = 0;
3098 
3099 	*exi = nfs_vptoexi(mc_dvp, vp, cr, &walk, NULL, FALSE);
3100 	if (*exi == NULL)
3101 		error = EACCES;
3102 	else {
3103 		/*
3104 		 * If nosub is set for this export then
3105 		 * a lookup relative to the public fh
3106 		 * must not terminate below the
3107 		 * exported directory.
3108 		 */
3109 		if ((*exi)->exi_export.ex_flags & EX_NOSUB && walk > 0)
3110 			error = EACCES;
3111 	}
3112 
3113 	return (error);
3114 }
3115 
3116 /*
3117  * Do the main work of handling HA-NFSv4 Resource Group failover on
3118  * Sun Cluster.
3119  * We need to detect whether any RG admin paths have been added or removed,
3120  * and adjust resources accordingly.
3121  * Currently we're using a very inefficient algorithm, ~ 2 * O(n**2). In
3122  * order to scale, the list and array of paths need to be held in more
3123  * suitable data structures.
3124  */
3125 static void
3126 hanfsv4_failover(void)
3127 {
3128 	int i, start_grace, numadded_paths = 0;
3129 	char **added_paths = NULL;
3130 	rfs4_dss_path_t *dss_path;
3131 
3132 	/*
3133 	 * Note: currently, rfs4_dss_pathlist cannot be NULL, since
3134 	 * it will always include an entry for NFS4_DSS_VAR_DIR. If we
3135 	 * make the latter dynamically specified too, the following will
3136 	 * need to be adjusted.
3137 	 */
3138 
3139 	/*
3140 	 * First, look for removed paths: RGs that have been failed-over
3141 	 * away from this node.
3142 	 * Walk the "currently-serving" rfs4_dss_pathlist and, for each
3143 	 * path, check if it is on the "passed-in" rfs4_dss_newpaths array
3144 	 * from nfsd. If not, that RG path has been removed.
3145 	 *
3146 	 * Note that nfsd has sorted rfs4_dss_newpaths for us, and removed
3147 	 * any duplicates.
3148 	 */
3149 	dss_path = rfs4_dss_pathlist;
3150 	do {
3151 		int found = 0;
3152 		char *path = dss_path->path;
3153 
3154 		/* used only for non-HA so may not be removed */
3155 		if (strcmp(path, NFS4_DSS_VAR_DIR) == 0) {
3156 			dss_path = dss_path->next;
3157 			continue;
3158 		}
3159 
3160 		for (i = 0; i < rfs4_dss_numnewpaths; i++) {
3161 			int cmpret;
3162 			char *newpath = rfs4_dss_newpaths[i];
3163 
3164 			/*
3165 			 * Since nfsd has sorted rfs4_dss_newpaths for us,
3166 			 * once the return from strcmp is negative we know
3167 			 * we've passed the point where "path" should be,
3168 			 * and can stop searching: "path" has been removed.
3169 			 */
3170 			cmpret = strcmp(path, newpath);
3171 			if (cmpret < 0)
3172 				break;
3173 			if (cmpret == 0) {
3174 				found = 1;
3175 				break;
3176 			}
3177 		}
3178 
3179 		if (found == 0) {
3180 			unsigned index = dss_path->index;
3181 			rfs4_servinst_t *sip = dss_path->sip;
3182 			rfs4_dss_path_t *path_next = dss_path->next;
3183 
3184 			/*
3185 			 * This path has been removed.
3186 			 * We must clear out the servinst reference to
3187 			 * it, since it's now owned by another
3188 			 * node: we should not attempt to touch it.
3189 			 */
3190 			ASSERT(dss_path == sip->dss_paths[index]);
3191 			sip->dss_paths[index] = NULL;
3192 
3193 			/* remove from "currently-serving" list, and destroy */
3194 			remque(dss_path);
3195 			/* allow for NUL */
3196 			kmem_free(dss_path->path, strlen(dss_path->path) + 1);
3197 			kmem_free(dss_path, sizeof (rfs4_dss_path_t));
3198 
3199 			dss_path = path_next;
3200 		} else {
3201 			/* path was found; not removed */
3202 			dss_path = dss_path->next;
3203 		}
3204 	} while (dss_path != rfs4_dss_pathlist);
3205 
3206 	/*
3207 	 * Now, look for added paths: RGs that have been failed-over
3208 	 * to this node.
3209 	 * Walk the "passed-in" rfs4_dss_newpaths array from nfsd and,
3210 	 * for each path, check if it is on the "currently-serving"
3211 	 * rfs4_dss_pathlist. If not, that RG path has been added.
3212 	 *
3213 	 * Note: we don't do duplicate detection here; nfsd does that for us.
3214 	 *
3215 	 * Note: numadded_paths <= rfs4_dss_numnewpaths, which gives us
3216 	 * an upper bound for the size needed for added_paths[numadded_paths].
3217 	 */
3218 
3219 	/* probably more space than we need, but guaranteed to be enough */
3220 	if (rfs4_dss_numnewpaths > 0) {
3221 		size_t sz = rfs4_dss_numnewpaths * sizeof (char *);
3222 		added_paths = kmem_zalloc(sz, KM_SLEEP);
3223 	}
3224 
3225 	/* walk the "passed-in" rfs4_dss_newpaths array from nfsd */
3226 	for (i = 0; i < rfs4_dss_numnewpaths; i++) {
3227 		int found = 0;
3228 		char *newpath = rfs4_dss_newpaths[i];
3229 
3230 		dss_path = rfs4_dss_pathlist;
3231 		do {
3232 			char *path = dss_path->path;
3233 
3234 			/* used only for non-HA */
3235 			if (strcmp(path, NFS4_DSS_VAR_DIR) == 0) {
3236 				dss_path = dss_path->next;
3237 				continue;
3238 			}
3239 
3240 			if (strncmp(path, newpath, strlen(path)) == 0) {
3241 				found = 1;
3242 				break;
3243 			}
3244 
3245 			dss_path = dss_path->next;
3246 		} while (dss_path != rfs4_dss_pathlist);
3247 
3248 		if (found == 0) {
3249 			added_paths[numadded_paths] = newpath;
3250 			numadded_paths++;
3251 		}
3252 	}
3253 
3254 	/* did we find any added paths? */
3255 	if (numadded_paths > 0) {
3256 		/* create a new server instance, and start its grace period */
3257 		start_grace = 1;
3258 		rfs4_servinst_create(start_grace, numadded_paths, added_paths);
3259 
3260 		/* read in the stable storage state from these paths */
3261 		rfs4_dss_readstate(numadded_paths, added_paths);
3262 
3263 		/*
3264 		 * Multiple failovers during a grace period will cause
3265 		 * clients of the same resource group to be partitioned
3266 		 * into different server instances, with different
3267 		 * grace periods.  Since clients of the same resource
3268 		 * group must be subject to the same grace period,
3269 		 * we need to reset all currently active grace periods.
3270 		 */
3271 		rfs4_grace_reset_all();
3272 	}
3273 
3274 	if (rfs4_dss_numnewpaths > 0)
3275 		kmem_free(added_paths, rfs4_dss_numnewpaths * sizeof (char *));
3276 }
3277 
3278 /*
3279  * Used by NFSv3 and NFSv4 server to query label of
3280  * a pathname component during lookup/access ops.
3281  */
3282 ts_label_t *
3283 nfs_getflabel(vnode_t *vp, struct exportinfo *exi)
3284 {
3285 	zone_t *zone;
3286 	ts_label_t *zone_label;
3287 	char *path;
3288 
3289 	mutex_enter(&vp->v_lock);
3290 	if (vp->v_path != NULL) {
3291 		zone = zone_find_by_any_path(vp->v_path, B_FALSE);
3292 		mutex_exit(&vp->v_lock);
3293 	} else {
3294 		/*
3295 		 * v_path not cached. Fall back on pathname of exported
3296 		 * file system as we rely on pathname from which we can
3297 		 * derive a label. The exported file system portion of
3298 		 * path is sufficient to obtain a label.
3299 		 */
3300 		path = exi->exi_export.ex_path;
3301 		if (path == NULL) {
3302 			mutex_exit(&vp->v_lock);
3303 			return (NULL);
3304 		}
3305 		zone = zone_find_by_any_path(path, B_FALSE);
3306 		mutex_exit(&vp->v_lock);
3307 	}
3308 	/*
3309 	 * Caller has verified that the file is either
3310 	 * exported or visible. So if the path falls in
3311 	 * global zone, admin_low is returned; otherwise
3312 	 * the zone's label is returned.
3313 	 */
3314 	zone_label = zone->zone_slabel;
3315 	label_hold(zone_label);
3316 	zone_rele(zone);
3317 	return (zone_label);
3318 }
3319 
3320 /*
3321  * TX NFS routine used by NFSv3 and NFSv4 to do label check
3322  * on client label and server's file object lable.
3323  */
3324 boolean_t
3325 do_rfs_label_check(bslabel_t *clabel, vnode_t *vp, int flag,
3326     struct exportinfo *exi)
3327 {
3328 	bslabel_t *slabel;
3329 	ts_label_t *tslabel;
3330 	boolean_t result;
3331 
3332 	if ((tslabel = nfs_getflabel(vp, exi)) == NULL) {
3333 		return (B_FALSE);
3334 	}
3335 	slabel = label2bslabel(tslabel);
3336 	DTRACE_PROBE4(tx__rfs__log__info__labelcheck, char *,
3337 	    "comparing server's file label(1) with client label(2) (vp(3))",
3338 	    bslabel_t *, slabel, bslabel_t *, clabel, vnode_t *, vp);
3339 
3340 	if (flag == EQUALITY_CHECK)
3341 		result = blequal(clabel, slabel);
3342 	else
3343 		result = bldominates(clabel, slabel);
3344 	label_rele(tslabel);
3345 	return (result);
3346 }
3347 
3348 /*
3349  * Callback function to return the loaned buffers.
3350  * Calls VOP_RETZCBUF() only after all uio_iov[]
3351  * buffers are returned. nu_ref maintains the count.
3352  */
3353 void
3354 rfs_free_xuio(void *free_arg)
3355 {
3356 	uint_t ref;
3357 	nfs_xuio_t *nfsuiop = (nfs_xuio_t *)free_arg;
3358 
3359 	ref = atomic_dec_uint_nv(&nfsuiop->nu_ref);
3360 
3361 	/*
3362 	 * Call VOP_RETZCBUF() only when all the iov buffers
3363 	 * are sent OTW.
3364 	 */
3365 	if (ref != 0)
3366 		return;
3367 
3368 	if (((uio_t *)nfsuiop)->uio_extflg & UIO_XUIO) {
3369 		(void) VOP_RETZCBUF(nfsuiop->nu_vp, (xuio_t *)free_arg, NULL,
3370 		    NULL);
3371 		VN_RELE(nfsuiop->nu_vp);
3372 	}
3373 
3374 	kmem_cache_free(nfs_xuio_cache, free_arg);
3375 }
3376 
3377 xuio_t *
3378 rfs_setup_xuio(vnode_t *vp)
3379 {
3380 	nfs_xuio_t *nfsuiop;
3381 
3382 	nfsuiop = kmem_cache_alloc(nfs_xuio_cache, KM_SLEEP);
3383 
3384 	bzero(nfsuiop, sizeof (nfs_xuio_t));
3385 	nfsuiop->nu_vp = vp;
3386 
3387 	/*
3388 	 * ref count set to 1. more may be added
3389 	 * if multiple mblks refer to multiple iov's.
3390 	 * This is done in uio_to_mblk().
3391 	 */
3392 
3393 	nfsuiop->nu_ref = 1;
3394 
3395 	nfsuiop->nu_frtn.free_func = rfs_free_xuio;
3396 	nfsuiop->nu_frtn.free_arg = (char *)nfsuiop;
3397 
3398 	nfsuiop->nu_uio.xu_type = UIOTYPE_ZEROCOPY;
3399 
3400 	return (&nfsuiop->nu_uio);
3401 }
3402 
3403 mblk_t *
3404 uio_to_mblk(uio_t *uiop)
3405 {
3406 	struct iovec *iovp;
3407 	int i;
3408 	mblk_t *mp, *mp1;
3409 	nfs_xuio_t *nfsuiop = (nfs_xuio_t *)uiop;
3410 
3411 	if (uiop->uio_iovcnt == 0)
3412 		return (NULL);
3413 
3414 	iovp = uiop->uio_iov;
3415 	mp = mp1 = esballoca((uchar_t *)iovp->iov_base, iovp->iov_len,
3416 	    BPRI_MED, &nfsuiop->nu_frtn);
3417 	ASSERT(mp != NULL);
3418 
3419 	mp->b_wptr += iovp->iov_len;
3420 	mp->b_datap->db_type = M_DATA;
3421 
3422 	for (i = 1; i < uiop->uio_iovcnt; i++) {
3423 		iovp = (uiop->uio_iov + i);
3424 
3425 		mp1->b_cont = esballoca(
3426 		    (uchar_t *)iovp->iov_base, iovp->iov_len, BPRI_MED,
3427 		    &nfsuiop->nu_frtn);
3428 
3429 		mp1 = mp1->b_cont;
3430 		ASSERT(mp1 != NULL);
3431 		mp1->b_wptr += iovp->iov_len;
3432 		mp1->b_datap->db_type = M_DATA;
3433 	}
3434 
3435 	nfsuiop->nu_ref = uiop->uio_iovcnt;
3436 
3437 	return (mp);
3438 }
3439 
3440 /*
3441  * Allocate memory to hold data for a read request of len bytes.
3442  *
3443  * We don't allocate buffers greater than kmem_max_cached in size to avoid
3444  * allocating memory from the kmem_oversized arena.  If we allocate oversized
3445  * buffers, we incur heavy cross-call activity when freeing these large buffers
3446  * in the TCP receive path. Note that we can't set b_wptr here since the
3447  * length of the data returned may differ from the length requested when
3448  * reading the end of a file; we set b_wptr in rfs_rndup_mblks() once the
3449  * length of the read is known.
3450  */
3451 mblk_t *
3452 rfs_read_alloc(uint_t len, struct iovec **iov, int *iovcnt)
3453 {
3454 	struct iovec *iovarr;
3455 	mblk_t *mp, **mpp = &mp;
3456 	size_t mpsize;
3457 	uint_t remain = len;
3458 	int i, err = 0;
3459 
3460 	*iovcnt = howmany(len, kmem_max_cached);
3461 
3462 	iovarr = kmem_alloc(*iovcnt * sizeof (struct iovec), KM_SLEEP);
3463 	*iov = iovarr;
3464 
3465 	for (i = 0; i < *iovcnt; remain -= mpsize, i++) {
3466 		ASSERT(remain <= len);
3467 		/*
3468 		 * We roundup the size we allocate to a multiple of
3469 		 * BYTES_PER_XDR_UNIT (4 bytes) so that the call to
3470 		 * xdrmblk_putmblk() never fails.
3471 		 */
3472 		ASSERT(kmem_max_cached % BYTES_PER_XDR_UNIT == 0);
3473 		mpsize = MIN(kmem_max_cached, remain);
3474 		*mpp = allocb_wait(RNDUP(mpsize), BPRI_MED, STR_NOSIG, &err);
3475 		ASSERT(*mpp != NULL);
3476 		ASSERT(err == 0);
3477 
3478 		iovarr[i].iov_base = (caddr_t)(*mpp)->b_rptr;
3479 		iovarr[i].iov_len = mpsize;
3480 		mpp = &(*mpp)->b_cont;
3481 	}
3482 	return (mp);
3483 }
3484 
3485 void
3486 rfs_rndup_mblks(mblk_t *mp, uint_t len, int buf_loaned)
3487 {
3488 	int i;
3489 	int alloc_err = 0;
3490 	mblk_t *rmp;
3491 	uint_t mpsize, remainder;
3492 
3493 	remainder = P2NPHASE(len, BYTES_PER_XDR_UNIT);
3494 
3495 	/*
3496 	 * Non copy-reduction case.  This function assumes that blocks were
3497 	 * allocated in multiples of BYTES_PER_XDR_UNIT bytes, which makes this
3498 	 * padding safe without bounds checking.
3499 	 */
3500 	if (!buf_loaned) {
3501 		/*
3502 		 * Set the size of each mblk in the chain until we've consumed
3503 		 * the specified length for all but the last one.
3504 		 */
3505 		while ((mpsize = MBLKSIZE(mp)) < len) {
3506 			ASSERT(mpsize % BYTES_PER_XDR_UNIT == 0);
3507 			mp->b_wptr += mpsize;
3508 			len -= mpsize;
3509 			mp = mp->b_cont;
3510 			ASSERT(mp != NULL);
3511 		}
3512 
3513 		ASSERT(len + remainder <= mpsize);
3514 		mp->b_wptr += len;
3515 		for (i = 0; i < remainder; i++)
3516 			*mp->b_wptr++ = '\0';
3517 		return;
3518 	}
3519 
3520 	/*
3521 	 * No remainder mblk required.
3522 	 */
3523 	if (remainder == 0)
3524 		return;
3525 
3526 	/*
3527 	 * Get to the last mblk in the chain.
3528 	 */
3529 	while (mp->b_cont != NULL)
3530 		mp = mp->b_cont;
3531 
3532 	/*
3533 	 * In case of copy-reduction mblks, the size of the mblks are fixed
3534 	 * and are of the size of the loaned buffers.  Allocate a remainder
3535 	 * mblk and chain it to the data buffers. This is sub-optimal, but not
3536 	 * expected to happen commonly.
3537 	 */
3538 	rmp = allocb_wait(remainder, BPRI_MED, STR_NOSIG, &alloc_err);
3539 	ASSERT(rmp != NULL);
3540 	ASSERT(alloc_err == 0);
3541 
3542 	for (i = 0; i < remainder; i++)
3543 		*rmp->b_wptr++ = '\0';
3544 
3545 	rmp->b_datap->db_type = M_DATA;
3546 	mp->b_cont = rmp;
3547 }
3548