1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* 27 * Copyright 1983,1984,1985,1986,1987,1988,1989 AT&T. 28 * All Rights Reserved 29 */ 30 31 #include <sys/param.h> 32 #include <sys/types.h> 33 #include <sys/systm.h> 34 #include <sys/cred.h> 35 #include <sys/time.h> 36 #include <sys/vnode.h> 37 #include <sys/vfs.h> 38 #include <sys/vfs_opreg.h> 39 #include <sys/file.h> 40 #include <sys/filio.h> 41 #include <sys/uio.h> 42 #include <sys/buf.h> 43 #include <sys/mman.h> 44 #include <sys/pathname.h> 45 #include <sys/dirent.h> 46 #include <sys/debug.h> 47 #include <sys/vmsystm.h> 48 #include <sys/fcntl.h> 49 #include <sys/flock.h> 50 #include <sys/swap.h> 51 #include <sys/errno.h> 52 #include <sys/strsubr.h> 53 #include <sys/sysmacros.h> 54 #include <sys/kmem.h> 55 #include <sys/cmn_err.h> 56 #include <sys/pathconf.h> 57 #include <sys/utsname.h> 58 #include <sys/dnlc.h> 59 #include <sys/acl.h> 60 #include <sys/systeminfo.h> 61 #include <sys/policy.h> 62 #include <sys/sdt.h> 63 #include <sys/list.h> 64 #include <sys/stat.h> 65 #include <sys/zone.h> 66 67 #include <rpc/types.h> 68 #include <rpc/auth.h> 69 #include <rpc/clnt.h> 70 71 #include <nfs/nfs.h> 72 #include <nfs/nfs_clnt.h> 73 #include <nfs/nfs_acl.h> 74 #include <nfs/lm.h> 75 #include <nfs/nfs4.h> 76 #include <nfs/nfs4_kprot.h> 77 #include <nfs/rnode4.h> 78 #include <nfs/nfs4_clnt.h> 79 80 #include <vm/hat.h> 81 #include <vm/as.h> 82 #include <vm/page.h> 83 #include <vm/pvn.h> 84 #include <vm/seg.h> 85 #include <vm/seg_map.h> 86 #include <vm/seg_kpm.h> 87 #include <vm/seg_vn.h> 88 89 #include <fs/fs_subr.h> 90 91 #include <sys/ddi.h> 92 #include <sys/int_fmtio.h> 93 94 typedef struct { 95 nfs4_ga_res_t *di_garp; 96 cred_t *di_cred; 97 hrtime_t di_time_call; 98 } dirattr_info_t; 99 100 typedef enum nfs4_acl_op { 101 NFS4_ACL_GET, 102 NFS4_ACL_SET 103 } nfs4_acl_op_t; 104 105 static struct lm_sysid *nfs4_find_sysid(mntinfo4_t *mi); 106 107 static void nfs4_update_dircaches(change_info4 *, vnode_t *, vnode_t *, 108 char *, dirattr_info_t *); 109 110 static void nfs4close_otw(rnode4_t *, cred_t *, nfs4_open_owner_t *, 111 nfs4_open_stream_t *, int *, int *, nfs4_close_type_t, 112 nfs4_error_t *, int *); 113 static int nfs4_rdwrlbn(vnode_t *, page_t *, u_offset_t, size_t, int, 114 cred_t *); 115 static int nfs4write(vnode_t *, caddr_t, u_offset_t, int, cred_t *, 116 stable_how4 *); 117 static int nfs4read(vnode_t *, caddr_t, offset_t, int, size_t *, 118 cred_t *, bool_t, struct uio *); 119 static int nfs4setattr(vnode_t *, struct vattr *, int, cred_t *, 120 vsecattr_t *); 121 static int nfs4openattr(vnode_t *, vnode_t **, int, cred_t *); 122 static int nfs4lookup(vnode_t *, char *, vnode_t **, cred_t *, int); 123 static int nfs4lookup_xattr(vnode_t *, char *, vnode_t **, int, cred_t *); 124 static int nfs4lookupvalidate_otw(vnode_t *, char *, vnode_t **, cred_t *); 125 static int nfs4lookupnew_otw(vnode_t *, char *, vnode_t **, cred_t *); 126 static int nfs4mknod(vnode_t *, char *, struct vattr *, enum vcexcl, 127 int, vnode_t **, cred_t *); 128 static int nfs4open_otw(vnode_t *, char *, struct vattr *, vnode_t **, 129 cred_t *, int, int, enum createmode4, int); 130 static int nfs4rename(vnode_t *, char *, vnode_t *, char *, cred_t *, 131 caller_context_t *); 132 static int nfs4rename_persistent_fh(vnode_t *, char *, vnode_t *, 133 vnode_t *, char *, cred_t *, nfsstat4 *); 134 static int nfs4rename_volatile_fh(vnode_t *, char *, vnode_t *, 135 vnode_t *, char *, cred_t *, nfsstat4 *); 136 static int do_nfs4readdir(vnode_t *, rddir4_cache *, cred_t *); 137 static void nfs4readdir(vnode_t *, rddir4_cache *, cred_t *); 138 static int nfs4_bio(struct buf *, stable_how4 *, cred_t *, bool_t); 139 static int nfs4_getapage(vnode_t *, u_offset_t, size_t, uint_t *, 140 page_t *[], size_t, struct seg *, caddr_t, 141 enum seg_rw, cred_t *); 142 static void nfs4_readahead(vnode_t *, u_offset_t, caddr_t, struct seg *, 143 cred_t *); 144 static int nfs4_sync_putapage(vnode_t *, page_t *, u_offset_t, size_t, 145 int, cred_t *); 146 static int nfs4_sync_pageio(vnode_t *, page_t *, u_offset_t, size_t, 147 int, cred_t *); 148 static int nfs4_commit(vnode_t *, offset4, count4, cred_t *); 149 static void nfs4_set_mod(vnode_t *); 150 static void nfs4_get_commit(vnode_t *); 151 static void nfs4_get_commit_range(vnode_t *, u_offset_t, size_t); 152 static int nfs4_putpage_commit(vnode_t *, offset_t, size_t, cred_t *); 153 static int nfs4_commit_vp(vnode_t *, u_offset_t, size_t, cred_t *, int); 154 static int nfs4_sync_commit(vnode_t *, page_t *, offset3, count3, 155 cred_t *); 156 static void do_nfs4_async_commit(vnode_t *, page_t *, offset3, count3, 157 cred_t *); 158 static int nfs4_update_attrcache(nfsstat4, nfs4_ga_res_t *, 159 hrtime_t, vnode_t *, cred_t *); 160 static int nfs4_open_non_reg_file(vnode_t **, int, cred_t *); 161 static int nfs4_safelock(vnode_t *, const struct flock64 *, cred_t *); 162 static void nfs4_register_lock_locally(vnode_t *, struct flock64 *, int, 163 u_offset_t); 164 static int nfs4_lockrelease(vnode_t *, int, offset_t, cred_t *); 165 static int nfs4_block_and_wait(clock_t *, rnode4_t *); 166 static cred_t *state_to_cred(nfs4_open_stream_t *); 167 static int vtoname(vnode_t *, char *, ssize_t); 168 static void denied_to_flk(LOCK4denied *, flock64_t *, LOCKT4args *); 169 static pid_t lo_to_pid(lock_owner4 *); 170 static void nfs4_reinstitute_local_lock_state(vnode_t *, flock64_t *, 171 cred_t *, nfs4_lock_owner_t *); 172 static void push_reinstate(vnode_t *, int, flock64_t *, cred_t *, 173 nfs4_lock_owner_t *); 174 static int open_and_get_osp(vnode_t *, cred_t *, nfs4_open_stream_t **); 175 static void nfs4_delmap_callback(struct as *, void *, uint_t); 176 static void nfs4_free_delmapcall(nfs4_delmapcall_t *); 177 static nfs4_delmapcall_t *nfs4_init_delmapcall(); 178 static int nfs4_find_and_delete_delmapcall(rnode4_t *, int *); 179 static int nfs4_is_acl_mask_valid(uint_t, nfs4_acl_op_t); 180 static int nfs4_create_getsecattr_return(vsecattr_t *, vsecattr_t *, 181 uid_t, gid_t, int); 182 183 /* 184 * Routines that implement the setting of v4 args for the misc. ops 185 */ 186 static void nfs4args_lock_free(nfs_argop4 *); 187 static void nfs4args_lockt_free(nfs_argop4 *); 188 static void nfs4args_setattr(nfs_argop4 *, vattr_t *, vsecattr_t *, 189 int, rnode4_t *, cred_t *, bitmap4, int *, 190 nfs4_stateid_types_t *); 191 static void nfs4args_setattr_free(nfs_argop4 *); 192 static int nfs4args_verify(nfs_argop4 *, vattr_t *, enum nfs_opnum4, 193 bitmap4); 194 static void nfs4args_verify_free(nfs_argop4 *); 195 static void nfs4args_write(nfs_argop4 *, stable_how4, rnode4_t *, cred_t *, 196 WRITE4args **, nfs4_stateid_types_t *); 197 198 /* 199 * These are the vnode ops functions that implement the vnode interface to 200 * the networked file system. See more comments below at nfs4_vnodeops. 201 */ 202 static int nfs4_open(vnode_t **, int, cred_t *, caller_context_t *); 203 static int nfs4_close(vnode_t *, int, int, offset_t, cred_t *, 204 caller_context_t *); 205 static int nfs4_read(vnode_t *, struct uio *, int, cred_t *, 206 caller_context_t *); 207 static int nfs4_write(vnode_t *, struct uio *, int, cred_t *, 208 caller_context_t *); 209 static int nfs4_ioctl(vnode_t *, int, intptr_t, int, cred_t *, int *, 210 caller_context_t *); 211 static int nfs4_setattr(vnode_t *, struct vattr *, int, cred_t *, 212 caller_context_t *); 213 static int nfs4_access(vnode_t *, int, int, cred_t *, caller_context_t *); 214 static int nfs4_readlink(vnode_t *, struct uio *, cred_t *, 215 caller_context_t *); 216 static int nfs4_fsync(vnode_t *, int, cred_t *, caller_context_t *); 217 static int nfs4_create(vnode_t *, char *, struct vattr *, enum vcexcl, 218 int, vnode_t **, cred_t *, int, caller_context_t *, 219 vsecattr_t *); 220 static int nfs4_remove(vnode_t *, char *, cred_t *, caller_context_t *, 221 int); 222 static int nfs4_link(vnode_t *, vnode_t *, char *, cred_t *, 223 caller_context_t *, int); 224 static int nfs4_rename(vnode_t *, char *, vnode_t *, char *, cred_t *, 225 caller_context_t *, int); 226 static int nfs4_mkdir(vnode_t *, char *, struct vattr *, vnode_t **, 227 cred_t *, caller_context_t *, int, vsecattr_t *); 228 static int nfs4_rmdir(vnode_t *, char *, vnode_t *, cred_t *, 229 caller_context_t *, int); 230 static int nfs4_symlink(vnode_t *, char *, struct vattr *, char *, 231 cred_t *, caller_context_t *, int); 232 static int nfs4_readdir(vnode_t *, struct uio *, cred_t *, int *, 233 caller_context_t *, int); 234 static int nfs4_seek(vnode_t *, offset_t, offset_t *, caller_context_t *); 235 static int nfs4_getpage(vnode_t *, offset_t, size_t, uint_t *, 236 page_t *[], size_t, struct seg *, caddr_t, 237 enum seg_rw, cred_t *, caller_context_t *); 238 static int nfs4_putpage(vnode_t *, offset_t, size_t, int, cred_t *, 239 caller_context_t *); 240 static int nfs4_map(vnode_t *, offset_t, struct as *, caddr_t *, size_t, 241 uchar_t, uchar_t, uint_t, cred_t *, caller_context_t *); 242 static int nfs4_addmap(vnode_t *, offset_t, struct as *, caddr_t, size_t, 243 uchar_t, uchar_t, uint_t, cred_t *, caller_context_t *); 244 static int nfs4_cmp(vnode_t *, vnode_t *, caller_context_t *); 245 static int nfs4_frlock(vnode_t *, int, struct flock64 *, int, offset_t, 246 struct flk_callback *, cred_t *, caller_context_t *); 247 static int nfs4_space(vnode_t *, int, struct flock64 *, int, offset_t, 248 cred_t *, caller_context_t *); 249 static int nfs4_delmap(vnode_t *, offset_t, struct as *, caddr_t, size_t, 250 uint_t, uint_t, uint_t, cred_t *, caller_context_t *); 251 static int nfs4_pageio(vnode_t *, page_t *, u_offset_t, size_t, int, 252 cred_t *, caller_context_t *); 253 static void nfs4_dispose(vnode_t *, page_t *, int, int, cred_t *, 254 caller_context_t *); 255 static int nfs4_setsecattr(vnode_t *, vsecattr_t *, int, cred_t *, 256 caller_context_t *); 257 /* 258 * These vnode ops are required to be called from outside this source file, 259 * e.g. by ephemeral mount stub vnode ops, and so may not be declared 260 * as static. 261 */ 262 int nfs4_getattr(vnode_t *, struct vattr *, int, cred_t *, 263 caller_context_t *); 264 void nfs4_inactive(vnode_t *, cred_t *, caller_context_t *); 265 int nfs4_lookup(vnode_t *, char *, vnode_t **, 266 struct pathname *, int, vnode_t *, cred_t *, 267 caller_context_t *, int *, pathname_t *); 268 int nfs4_fid(vnode_t *, fid_t *, caller_context_t *); 269 int nfs4_rwlock(vnode_t *, int, caller_context_t *); 270 void nfs4_rwunlock(vnode_t *, int, caller_context_t *); 271 int nfs4_realvp(vnode_t *, vnode_t **, caller_context_t *); 272 int nfs4_pathconf(vnode_t *, int, ulong_t *, cred_t *, 273 caller_context_t *); 274 int nfs4_getsecattr(vnode_t *, vsecattr_t *, int, cred_t *, 275 caller_context_t *); 276 int nfs4_shrlock(vnode_t *, int, struct shrlock *, int, cred_t *, 277 caller_context_t *); 278 279 /* 280 * Used for nfs4_commit_vp() to indicate if we should 281 * wait on pending writes. 282 */ 283 #define NFS4_WRITE_NOWAIT 0 284 #define NFS4_WRITE_WAIT 1 285 286 #define NFS4_BASE_WAIT_TIME 1 /* 1 second */ 287 288 /* 289 * Error flags used to pass information about certain special errors 290 * which need to be handled specially. 291 */ 292 #define NFS_EOF -98 293 #define NFS_VERF_MISMATCH -97 294 295 /* 296 * Flags used to differentiate between which operation drove the 297 * potential CLOSE OTW. (see nfs4_close_otw_if_necessary) 298 */ 299 #define NFS4_CLOSE_OP 0x1 300 #define NFS4_DELMAP_OP 0x2 301 #define NFS4_INACTIVE_OP 0x3 302 303 #define ISVDEV(t) ((t == VBLK) || (t == VCHR) || (t == VFIFO)) 304 305 /* ALIGN64 aligns the given buffer and adjust buffer size to 64 bit */ 306 #define ALIGN64(x, ptr, sz) \ 307 x = ((uintptr_t)(ptr)) & (sizeof (uint64_t) - 1); \ 308 if (x) { \ 309 x = sizeof (uint64_t) - (x); \ 310 sz -= (x); \ 311 ptr += (x); \ 312 } 313 314 #ifdef DEBUG 315 int nfs4_client_attr_debug = 0; 316 int nfs4_client_state_debug = 0; 317 int nfs4_client_shadow_debug = 0; 318 int nfs4_client_lock_debug = 0; 319 int nfs4_seqid_sync = 0; 320 int nfs4_client_map_debug = 0; 321 static int nfs4_pageio_debug = 0; 322 int nfs4_client_inactive_debug = 0; 323 int nfs4_client_recov_debug = 0; 324 int nfs4_client_failover_debug = 0; 325 int nfs4_client_call_debug = 0; 326 int nfs4_client_lookup_debug = 0; 327 int nfs4_client_zone_debug = 0; 328 int nfs4_lost_rqst_debug = 0; 329 int nfs4_rdattrerr_debug = 0; 330 int nfs4_open_stream_debug = 0; 331 332 int nfs4read_error_inject; 333 334 static int nfs4_create_misses = 0; 335 336 static int nfs4_readdir_cache_shorts = 0; 337 static int nfs4_readdir_readahead = 0; 338 339 static int nfs4_bio_do_stop = 0; 340 341 static int nfs4_lostpage = 0; /* number of times we lost original page */ 342 343 int nfs4_mmap_debug = 0; 344 345 static int nfs4_pathconf_cache_hits = 0; 346 static int nfs4_pathconf_cache_misses = 0; 347 348 int nfs4close_all_cnt; 349 int nfs4close_one_debug = 0; 350 int nfs4close_notw_debug = 0; 351 352 int denied_to_flk_debug = 0; 353 void *lockt_denied_debug; 354 355 #endif 356 357 /* 358 * How long to wait before trying again if OPEN_CONFIRM gets ETIMEDOUT 359 * or NFS4ERR_RESOURCE. 360 */ 361 static int confirm_retry_sec = 30; 362 363 static int nfs4_lookup_neg_cache = 1; 364 365 /* 366 * number of pages to read ahead 367 * optimized for 100 base-T. 368 */ 369 static int nfs4_nra = 4; 370 371 static int nfs4_do_symlink_cache = 1; 372 373 static int nfs4_pathconf_disable_cache = 0; 374 375 /* 376 * These are the vnode ops routines which implement the vnode interface to 377 * the networked file system. These routines just take their parameters, 378 * make them look networkish by putting the right info into interface structs, 379 * and then calling the appropriate remote routine(s) to do the work. 380 * 381 * Note on directory name lookup cacheing: If we detect a stale fhandle, 382 * we purge the directory cache relative to that vnode. This way, the 383 * user won't get burned by the cache repeatedly. See <nfs/rnode4.h> for 384 * more details on rnode locking. 385 */ 386 387 struct vnodeops *nfs4_vnodeops; 388 389 const fs_operation_def_t nfs4_vnodeops_template[] = { 390 VOPNAME_OPEN, { .vop_open = nfs4_open }, 391 VOPNAME_CLOSE, { .vop_close = nfs4_close }, 392 VOPNAME_READ, { .vop_read = nfs4_read }, 393 VOPNAME_WRITE, { .vop_write = nfs4_write }, 394 VOPNAME_IOCTL, { .vop_ioctl = nfs4_ioctl }, 395 VOPNAME_GETATTR, { .vop_getattr = nfs4_getattr }, 396 VOPNAME_SETATTR, { .vop_setattr = nfs4_setattr }, 397 VOPNAME_ACCESS, { .vop_access = nfs4_access }, 398 VOPNAME_LOOKUP, { .vop_lookup = nfs4_lookup }, 399 VOPNAME_CREATE, { .vop_create = nfs4_create }, 400 VOPNAME_REMOVE, { .vop_remove = nfs4_remove }, 401 VOPNAME_LINK, { .vop_link = nfs4_link }, 402 VOPNAME_RENAME, { .vop_rename = nfs4_rename }, 403 VOPNAME_MKDIR, { .vop_mkdir = nfs4_mkdir }, 404 VOPNAME_RMDIR, { .vop_rmdir = nfs4_rmdir }, 405 VOPNAME_READDIR, { .vop_readdir = nfs4_readdir }, 406 VOPNAME_SYMLINK, { .vop_symlink = nfs4_symlink }, 407 VOPNAME_READLINK, { .vop_readlink = nfs4_readlink }, 408 VOPNAME_FSYNC, { .vop_fsync = nfs4_fsync }, 409 VOPNAME_INACTIVE, { .vop_inactive = nfs4_inactive }, 410 VOPNAME_FID, { .vop_fid = nfs4_fid }, 411 VOPNAME_RWLOCK, { .vop_rwlock = nfs4_rwlock }, 412 VOPNAME_RWUNLOCK, { .vop_rwunlock = nfs4_rwunlock }, 413 VOPNAME_SEEK, { .vop_seek = nfs4_seek }, 414 VOPNAME_FRLOCK, { .vop_frlock = nfs4_frlock }, 415 VOPNAME_SPACE, { .vop_space = nfs4_space }, 416 VOPNAME_REALVP, { .vop_realvp = nfs4_realvp }, 417 VOPNAME_GETPAGE, { .vop_getpage = nfs4_getpage }, 418 VOPNAME_PUTPAGE, { .vop_putpage = nfs4_putpage }, 419 VOPNAME_MAP, { .vop_map = nfs4_map }, 420 VOPNAME_ADDMAP, { .vop_addmap = nfs4_addmap }, 421 VOPNAME_DELMAP, { .vop_delmap = nfs4_delmap }, 422 /* no separate nfs4_dump */ 423 VOPNAME_DUMP, { .vop_dump = nfs_dump }, 424 VOPNAME_PATHCONF, { .vop_pathconf = nfs4_pathconf }, 425 VOPNAME_PAGEIO, { .vop_pageio = nfs4_pageio }, 426 VOPNAME_DISPOSE, { .vop_dispose = nfs4_dispose }, 427 VOPNAME_SETSECATTR, { .vop_setsecattr = nfs4_setsecattr }, 428 VOPNAME_GETSECATTR, { .vop_getsecattr = nfs4_getsecattr }, 429 VOPNAME_SHRLOCK, { .vop_shrlock = nfs4_shrlock }, 430 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 431 NULL, NULL 432 }; 433 434 /* 435 * The following are subroutines and definitions to set args or get res 436 * for the different nfsv4 ops 437 */ 438 439 void 440 nfs4args_lookup_free(nfs_argop4 *argop, int arglen) 441 { 442 int i; 443 444 for (i = 0; i < arglen; i++) { 445 if (argop[i].argop == OP_LOOKUP) { 446 kmem_free( 447 argop[i].nfs_argop4_u.oplookup. 448 objname.utf8string_val, 449 argop[i].nfs_argop4_u.oplookup. 450 objname.utf8string_len); 451 } 452 } 453 } 454 455 static void 456 nfs4args_lock_free(nfs_argop4 *argop) 457 { 458 locker4 *locker = &argop->nfs_argop4_u.oplock.locker; 459 460 if (locker->new_lock_owner == TRUE) { 461 open_to_lock_owner4 *open_owner; 462 463 open_owner = &locker->locker4_u.open_owner; 464 if (open_owner->lock_owner.owner_val != NULL) { 465 kmem_free(open_owner->lock_owner.owner_val, 466 open_owner->lock_owner.owner_len); 467 } 468 } 469 } 470 471 static void 472 nfs4args_lockt_free(nfs_argop4 *argop) 473 { 474 lock_owner4 *lowner = &argop->nfs_argop4_u.oplockt.owner; 475 476 if (lowner->owner_val != NULL) { 477 kmem_free(lowner->owner_val, lowner->owner_len); 478 } 479 } 480 481 static void 482 nfs4args_setattr(nfs_argop4 *argop, vattr_t *vap, vsecattr_t *vsap, int flags, 483 rnode4_t *rp, cred_t *cr, bitmap4 supp, int *error, 484 nfs4_stateid_types_t *sid_types) 485 { 486 fattr4 *attr = &argop->nfs_argop4_u.opsetattr.obj_attributes; 487 mntinfo4_t *mi; 488 489 argop->argop = OP_SETATTR; 490 /* 491 * The stateid is set to 0 if client is not modifying the size 492 * and otherwise to whatever nfs4_get_stateid() returns. 493 * 494 * XXX Note: nfs4_get_stateid() returns 0 if no lockowner and/or no 495 * state struct could be found for the process/file pair. We may 496 * want to change this in the future (by OPENing the file). See 497 * bug # 4474852. 498 */ 499 if (vap->va_mask & AT_SIZE) { 500 501 ASSERT(rp != NULL); 502 mi = VTOMI4(RTOV4(rp)); 503 504 argop->nfs_argop4_u.opsetattr.stateid = 505 nfs4_get_stateid(cr, rp, curproc->p_pidp->pid_id, mi, 506 OP_SETATTR, sid_types, FALSE); 507 } else { 508 bzero(&argop->nfs_argop4_u.opsetattr.stateid, 509 sizeof (stateid4)); 510 } 511 512 *error = vattr_to_fattr4(vap, vsap, attr, flags, OP_SETATTR, supp); 513 if (*error) 514 bzero(attr, sizeof (*attr)); 515 } 516 517 static void 518 nfs4args_setattr_free(nfs_argop4 *argop) 519 { 520 nfs4_fattr4_free(&argop->nfs_argop4_u.opsetattr.obj_attributes); 521 } 522 523 static int 524 nfs4args_verify(nfs_argop4 *argop, vattr_t *vap, enum nfs_opnum4 op, 525 bitmap4 supp) 526 { 527 fattr4 *attr; 528 int error = 0; 529 530 argop->argop = op; 531 switch (op) { 532 case OP_VERIFY: 533 attr = &argop->nfs_argop4_u.opverify.obj_attributes; 534 break; 535 case OP_NVERIFY: 536 attr = &argop->nfs_argop4_u.opnverify.obj_attributes; 537 break; 538 default: 539 return (EINVAL); 540 } 541 if (!error) 542 error = vattr_to_fattr4(vap, NULL, attr, 0, op, supp); 543 if (error) 544 bzero(attr, sizeof (*attr)); 545 return (error); 546 } 547 548 static void 549 nfs4args_verify_free(nfs_argop4 *argop) 550 { 551 switch (argop->argop) { 552 case OP_VERIFY: 553 nfs4_fattr4_free(&argop->nfs_argop4_u.opverify.obj_attributes); 554 break; 555 case OP_NVERIFY: 556 nfs4_fattr4_free(&argop->nfs_argop4_u.opnverify.obj_attributes); 557 break; 558 default: 559 break; 560 } 561 } 562 563 static void 564 nfs4args_write(nfs_argop4 *argop, stable_how4 stable, rnode4_t *rp, cred_t *cr, 565 WRITE4args **wargs_pp, nfs4_stateid_types_t *sid_tp) 566 { 567 WRITE4args *wargs = &argop->nfs_argop4_u.opwrite; 568 mntinfo4_t *mi = VTOMI4(RTOV4(rp)); 569 570 argop->argop = OP_WRITE; 571 wargs->stable = stable; 572 wargs->stateid = nfs4_get_w_stateid(cr, rp, curproc->p_pidp->pid_id, 573 mi, OP_WRITE, sid_tp); 574 wargs->mblk = NULL; 575 *wargs_pp = wargs; 576 } 577 578 void 579 nfs4args_copen_free(OPEN4cargs *open_args) 580 { 581 if (open_args->owner.owner_val) { 582 kmem_free(open_args->owner.owner_val, 583 open_args->owner.owner_len); 584 } 585 if ((open_args->opentype == OPEN4_CREATE) && 586 (open_args->mode != EXCLUSIVE4)) { 587 nfs4_fattr4_free(&open_args->createhow4_u.createattrs); 588 } 589 } 590 591 /* 592 * XXX: This is referenced in modstubs.s 593 */ 594 struct vnodeops * 595 nfs4_getvnodeops(void) 596 { 597 return (nfs4_vnodeops); 598 } 599 600 /* 601 * The OPEN operation opens a regular file. 602 */ 603 /*ARGSUSED3*/ 604 static int 605 nfs4_open(vnode_t **vpp, int flag, cred_t *cr, caller_context_t *ct) 606 { 607 vnode_t *dvp = NULL; 608 rnode4_t *rp, *drp; 609 int error; 610 int just_been_created; 611 char fn[MAXNAMELEN]; 612 613 NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE, "nfs4_open: ")); 614 if (nfs_zone() != VTOMI4(*vpp)->mi_zone) 615 return (EIO); 616 rp = VTOR4(*vpp); 617 618 /* 619 * Check to see if opening something besides a regular file; 620 * if so skip the OTW call 621 */ 622 if ((*vpp)->v_type != VREG) { 623 error = nfs4_open_non_reg_file(vpp, flag, cr); 624 return (error); 625 } 626 627 /* 628 * XXX - would like a check right here to know if the file is 629 * executable or not, so as to skip OTW 630 */ 631 632 if ((error = vtodv(*vpp, &dvp, cr, TRUE)) != 0) 633 return (error); 634 635 drp = VTOR4(dvp); 636 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_READER, INTR4(dvp))) 637 return (EINTR); 638 639 if ((error = vtoname(*vpp, fn, MAXNAMELEN)) != 0) { 640 nfs_rw_exit(&drp->r_rwlock); 641 return (error); 642 } 643 644 /* 645 * See if this file has just been CREATEd. 646 * If so, clear the flag and update the dnlc, which was previously 647 * skipped in nfs4_create. 648 * XXX need better serilization on this. 649 * XXX move this into the nf4open_otw call, after we have 650 * XXX acquired the open owner seqid sync. 651 */ 652 mutex_enter(&rp->r_statev4_lock); 653 if (rp->created_v4) { 654 rp->created_v4 = 0; 655 mutex_exit(&rp->r_statev4_lock); 656 657 dnlc_update(dvp, fn, *vpp); 658 /* This is needed so we don't bump the open ref count */ 659 just_been_created = 1; 660 } else { 661 mutex_exit(&rp->r_statev4_lock); 662 just_been_created = 0; 663 } 664 665 /* 666 * If caller specified O_TRUNC/FTRUNC, then be sure to set 667 * FWRITE (to drive successful setattr(size=0) after open) 668 */ 669 if (flag & FTRUNC) 670 flag |= FWRITE; 671 672 error = nfs4open_otw(dvp, fn, NULL, vpp, cr, 0, flag, 0, 673 just_been_created); 674 675 if (!error && !((*vpp)->v_flag & VROOT)) 676 dnlc_update(dvp, fn, *vpp); 677 678 nfs_rw_exit(&drp->r_rwlock); 679 680 /* release the hold from vtodv */ 681 VN_RELE(dvp); 682 683 /* exchange the shadow for the master vnode, if needed */ 684 685 if (error == 0 && IS_SHADOW(*vpp, rp)) 686 sv_exchange(vpp); 687 688 return (error); 689 } 690 691 /* 692 * See if there's a "lost open" request to be saved and recovered. 693 */ 694 static void 695 nfs4open_save_lost_rqst(int error, nfs4_lost_rqst_t *lost_rqstp, 696 nfs4_open_owner_t *oop, cred_t *cr, vnode_t *vp, 697 vnode_t *dvp, OPEN4cargs *open_args) 698 { 699 vfs_t *vfsp; 700 char *srccfp; 701 702 vfsp = (dvp ? dvp->v_vfsp : vp->v_vfsp); 703 704 if (error != ETIMEDOUT && error != EINTR && 705 !NFS4_FRC_UNMT_ERR(error, vfsp)) { 706 lost_rqstp->lr_op = 0; 707 return; 708 } 709 710 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE, 711 "nfs4open_save_lost_rqst: error %d", error)); 712 713 lost_rqstp->lr_op = OP_OPEN; 714 715 /* 716 * The vp (if it is not NULL) and dvp are held and rele'd via 717 * the recovery code. See nfs4_save_lost_rqst. 718 */ 719 lost_rqstp->lr_vp = vp; 720 lost_rqstp->lr_dvp = dvp; 721 lost_rqstp->lr_oop = oop; 722 lost_rqstp->lr_osp = NULL; 723 lost_rqstp->lr_lop = NULL; 724 lost_rqstp->lr_cr = cr; 725 lost_rqstp->lr_flk = NULL; 726 lost_rqstp->lr_oacc = open_args->share_access; 727 lost_rqstp->lr_odeny = open_args->share_deny; 728 lost_rqstp->lr_oclaim = open_args->claim; 729 if (open_args->claim == CLAIM_DELEGATE_CUR) { 730 lost_rqstp->lr_ostateid = 731 open_args->open_claim4_u.delegate_cur_info.delegate_stateid; 732 srccfp = open_args->open_claim4_u.delegate_cur_info.cfile; 733 } else { 734 srccfp = open_args->open_claim4_u.cfile; 735 } 736 lost_rqstp->lr_ofile.utf8string_len = 0; 737 lost_rqstp->lr_ofile.utf8string_val = NULL; 738 (void) str_to_utf8(srccfp, &lost_rqstp->lr_ofile); 739 lost_rqstp->lr_putfirst = FALSE; 740 } 741 742 struct nfs4_excl_time { 743 uint32 seconds; 744 uint32 nseconds; 745 }; 746 747 /* 748 * The OPEN operation creates and/or opens a regular file 749 * 750 * ARGSUSED 751 */ 752 static int 753 nfs4open_otw(vnode_t *dvp, char *file_name, struct vattr *in_va, 754 vnode_t **vpp, cred_t *cr, int create_flag, int open_flag, 755 enum createmode4 createmode, int file_just_been_created) 756 { 757 rnode4_t *rp; 758 rnode4_t *drp = VTOR4(dvp); 759 vnode_t *vp = NULL; 760 vnode_t *vpi = *vpp; 761 bool_t needrecov = FALSE; 762 763 int doqueue = 1; 764 765 COMPOUND4args_clnt args; 766 COMPOUND4res_clnt res; 767 nfs_argop4 *argop; 768 nfs_resop4 *resop; 769 int argoplist_size; 770 int idx_open, idx_fattr; 771 772 GETFH4res *gf_res = NULL; 773 OPEN4res *op_res = NULL; 774 nfs4_ga_res_t *garp; 775 fattr4 *attr = NULL; 776 struct nfs4_excl_time verf; 777 bool_t did_excl_setup = FALSE; 778 int created_osp; 779 780 OPEN4cargs *open_args; 781 nfs4_open_owner_t *oop = NULL; 782 nfs4_open_stream_t *osp = NULL; 783 seqid4 seqid = 0; 784 bool_t retry_open = FALSE; 785 nfs4_recov_state_t recov_state; 786 nfs4_lost_rqst_t lost_rqst; 787 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 788 hrtime_t t; 789 int acc = 0; 790 cred_t *cred_otw = NULL; /* cred used to do the RPC call */ 791 cred_t *ncr = NULL; 792 793 nfs4_sharedfh_t *otw_sfh; 794 nfs4_sharedfh_t *orig_sfh; 795 int fh_differs = 0; 796 int numops, setgid_flag; 797 int num_bseqid_retry = NFS4_NUM_RETRY_BAD_SEQID + 1; 798 799 /* 800 * Make sure we properly deal with setting the right gid on 801 * a newly created file to reflect the parent's setgid bit 802 */ 803 setgid_flag = 0; 804 if (create_flag && in_va) { 805 806 /* 807 * If the parent's directory has the setgid bit set 808 * _and_ the client was able to get a valid mapping 809 * for the parent dir's owner_group, we want to 810 * append NVERIFY(owner_group == dva.va_gid) and 811 * SETATTR to the CREATE compound. 812 */ 813 mutex_enter(&drp->r_statelock); 814 if (drp->r_attr.va_mode & VSGID && 815 drp->r_attr.va_gid != GID_NOBODY) { 816 in_va->va_gid = drp->r_attr.va_gid; 817 setgid_flag = 1; 818 } 819 mutex_exit(&drp->r_statelock); 820 } 821 822 /* 823 * Normal/non-create compound: 824 * PUTFH(dfh) + OPEN(create) + GETFH + GETATTR(new) 825 * 826 * Open(create) compound no setgid: 827 * PUTFH(dfh) + SAVEFH + OPEN(create) + GETFH + GETATTR(new) + 828 * RESTOREFH + GETATTR 829 * 830 * Open(create) setgid: 831 * PUTFH(dfh) + OPEN(create) + GETFH + GETATTR(new) + 832 * SAVEFH + PUTFH(dfh) + GETATTR(dvp) + RESTOREFH + 833 * NVERIFY(grp) + SETATTR 834 */ 835 if (setgid_flag) { 836 numops = 10; 837 idx_open = 1; 838 idx_fattr = 3; 839 } else if (create_flag) { 840 numops = 7; 841 idx_open = 2; 842 idx_fattr = 4; 843 } else { 844 numops = 4; 845 idx_open = 1; 846 idx_fattr = 3; 847 } 848 849 args.array_len = numops; 850 argoplist_size = numops * sizeof (nfs_argop4); 851 argop = kmem_alloc(argoplist_size, KM_SLEEP); 852 853 NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE, "nfs4open_otw: " 854 "open %s open flag 0x%x cred %p", file_name, open_flag, 855 (void *)cr)); 856 857 ASSERT(nfs_zone() == VTOMI4(dvp)->mi_zone); 858 if (create_flag) { 859 /* 860 * We are to create a file. Initialize the passed in vnode 861 * pointer. 862 */ 863 vpi = NULL; 864 } else { 865 /* 866 * Check to see if the client owns a read delegation and is 867 * trying to open for write. If so, then return the delegation 868 * to avoid the server doing a cb_recall and returning DELAY. 869 * NB - we don't use the statev4_lock here because we'd have 870 * to drop the lock anyway and the result would be stale. 871 */ 872 if ((open_flag & FWRITE) && 873 VTOR4(vpi)->r_deleg_type == OPEN_DELEGATE_READ) 874 (void) nfs4delegreturn(VTOR4(vpi), NFS4_DR_REOPEN); 875 876 /* 877 * If the file has a delegation, then do an access check up 878 * front. This avoids having to an access check later after 879 * we've already done start_op, which could deadlock. 880 */ 881 if (VTOR4(vpi)->r_deleg_type != OPEN_DELEGATE_NONE) { 882 if (open_flag & FREAD && 883 nfs4_access(vpi, VREAD, 0, cr, NULL) == 0) 884 acc |= VREAD; 885 if (open_flag & FWRITE && 886 nfs4_access(vpi, VWRITE, 0, cr, NULL) == 0) 887 acc |= VWRITE; 888 } 889 } 890 891 drp = VTOR4(dvp); 892 893 recov_state.rs_flags = 0; 894 recov_state.rs_num_retry_despite_err = 0; 895 cred_otw = cr; 896 897 recov_retry: 898 fh_differs = 0; 899 nfs4_error_zinit(&e); 900 901 e.error = nfs4_start_op(VTOMI4(dvp), dvp, vpi, &recov_state); 902 if (e.error) { 903 if (ncr != NULL) 904 crfree(ncr); 905 kmem_free(argop, argoplist_size); 906 return (e.error); 907 } 908 909 args.ctag = TAG_OPEN; 910 args.array_len = numops; 911 args.array = argop; 912 913 /* putfh directory fh */ 914 argop[0].argop = OP_CPUTFH; 915 argop[0].nfs_argop4_u.opcputfh.sfh = drp->r_fh; 916 917 /* OPEN: either op 1 or op 2 depending upon create/setgid flags */ 918 argop[idx_open].argop = OP_COPEN; 919 open_args = &argop[idx_open].nfs_argop4_u.opcopen; 920 open_args->claim = CLAIM_NULL; 921 922 /* name of file */ 923 open_args->open_claim4_u.cfile = file_name; 924 open_args->owner.owner_len = 0; 925 open_args->owner.owner_val = NULL; 926 927 if (create_flag) { 928 /* CREATE a file */ 929 open_args->opentype = OPEN4_CREATE; 930 open_args->mode = createmode; 931 if (createmode == EXCLUSIVE4) { 932 if (did_excl_setup == FALSE) { 933 verf.seconds = zone_get_hostid(NULL); 934 if (verf.seconds != 0) 935 verf.nseconds = newnum(); 936 else { 937 timestruc_t now; 938 939 gethrestime(&now); 940 verf.seconds = now.tv_sec; 941 verf.nseconds = now.tv_nsec; 942 } 943 /* 944 * Since the server will use this value for the 945 * mtime, make sure that it can't overflow. Zero 946 * out the MSB. The actual value does not matter 947 * here, only its uniqeness. 948 */ 949 verf.seconds &= INT32_MAX; 950 did_excl_setup = TRUE; 951 } 952 953 /* Now copy over verifier to OPEN4args. */ 954 open_args->createhow4_u.createverf = *(uint64_t *)&verf; 955 } else { 956 int v_error; 957 bitmap4 supp_attrs; 958 servinfo4_t *svp; 959 960 attr = &open_args->createhow4_u.createattrs; 961 962 svp = drp->r_server; 963 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0); 964 supp_attrs = svp->sv_supp_attrs; 965 nfs_rw_exit(&svp->sv_lock); 966 967 /* GUARDED4 or UNCHECKED4 */ 968 v_error = vattr_to_fattr4(in_va, NULL, attr, 0, OP_OPEN, 969 supp_attrs); 970 if (v_error) { 971 bzero(attr, sizeof (*attr)); 972 nfs4args_copen_free(open_args); 973 nfs4_end_op(VTOMI4(dvp), dvp, vpi, 974 &recov_state, FALSE); 975 if (ncr != NULL) 976 crfree(ncr); 977 kmem_free(argop, argoplist_size); 978 return (v_error); 979 } 980 } 981 } else { 982 /* NO CREATE */ 983 open_args->opentype = OPEN4_NOCREATE; 984 } 985 986 if (recov_state.rs_sp != NULL) { 987 mutex_enter(&recov_state.rs_sp->s_lock); 988 open_args->owner.clientid = recov_state.rs_sp->clientid; 989 mutex_exit(&recov_state.rs_sp->s_lock); 990 } else { 991 /* XXX should we just fail here? */ 992 open_args->owner.clientid = 0; 993 } 994 995 /* 996 * This increments oop's ref count or creates a temporary 'just_created' 997 * open owner that will become valid when this OPEN/OPEN_CONFIRM call 998 * completes. 999 */ 1000 mutex_enter(&VTOMI4(dvp)->mi_lock); 1001 1002 /* See if a permanent or just created open owner exists */ 1003 oop = find_open_owner_nolock(cr, NFS4_JUST_CREATED, VTOMI4(dvp)); 1004 if (!oop) { 1005 /* 1006 * This open owner does not exist so create a temporary 1007 * just created one. 1008 */ 1009 oop = create_open_owner(cr, VTOMI4(dvp)); 1010 ASSERT(oop != NULL); 1011 } 1012 mutex_exit(&VTOMI4(dvp)->mi_lock); 1013 1014 /* this length never changes, do alloc before seqid sync */ 1015 open_args->owner.owner_len = sizeof (oop->oo_name); 1016 open_args->owner.owner_val = 1017 kmem_alloc(open_args->owner.owner_len, KM_SLEEP); 1018 1019 e.error = nfs4_start_open_seqid_sync(oop, VTOMI4(dvp)); 1020 if (e.error == EAGAIN) { 1021 open_owner_rele(oop); 1022 nfs4args_copen_free(open_args); 1023 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, TRUE); 1024 if (ncr != NULL) { 1025 crfree(ncr); 1026 ncr = NULL; 1027 } 1028 goto recov_retry; 1029 } 1030 1031 /* Check to see if we need to do the OTW call */ 1032 if (!create_flag) { 1033 if (!nfs4_is_otw_open_necessary(oop, open_flag, vpi, 1034 file_just_been_created, &e.error, acc, &recov_state)) { 1035 1036 /* 1037 * The OTW open is not necessary. Either 1038 * the open can succeed without it (eg. 1039 * delegation, error == 0) or the open 1040 * must fail due to an access failure 1041 * (error != 0). In either case, tidy 1042 * up and return. 1043 */ 1044 1045 nfs4_end_open_seqid_sync(oop); 1046 open_owner_rele(oop); 1047 nfs4args_copen_free(open_args); 1048 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, FALSE); 1049 if (ncr != NULL) 1050 crfree(ncr); 1051 kmem_free(argop, argoplist_size); 1052 return (e.error); 1053 } 1054 } 1055 1056 bcopy(&oop->oo_name, open_args->owner.owner_val, 1057 open_args->owner.owner_len); 1058 1059 seqid = nfs4_get_open_seqid(oop) + 1; 1060 open_args->seqid = seqid; 1061 open_args->share_access = 0; 1062 if (open_flag & FREAD) 1063 open_args->share_access |= OPEN4_SHARE_ACCESS_READ; 1064 if (open_flag & FWRITE) 1065 open_args->share_access |= OPEN4_SHARE_ACCESS_WRITE; 1066 open_args->share_deny = OPEN4_SHARE_DENY_NONE; 1067 1068 1069 1070 /* 1071 * getfh w/sanity check for idx_open/idx_fattr 1072 */ 1073 ASSERT((idx_open + 1) == (idx_fattr - 1)); 1074 argop[idx_open + 1].argop = OP_GETFH; 1075 1076 /* getattr */ 1077 argop[idx_fattr].argop = OP_GETATTR; 1078 argop[idx_fattr].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 1079 argop[idx_fattr].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp); 1080 1081 if (setgid_flag) { 1082 vattr_t _v; 1083 servinfo4_t *svp; 1084 bitmap4 supp_attrs; 1085 1086 svp = drp->r_server; 1087 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0); 1088 supp_attrs = svp->sv_supp_attrs; 1089 nfs_rw_exit(&svp->sv_lock); 1090 1091 /* 1092 * For setgid case, we need to: 1093 * 4:savefh(new) 5:putfh(dir) 6:getattr(dir) 7:restorefh(new) 1094 */ 1095 argop[4].argop = OP_SAVEFH; 1096 1097 argop[5].argop = OP_CPUTFH; 1098 argop[5].nfs_argop4_u.opcputfh.sfh = drp->r_fh; 1099 1100 argop[6].argop = OP_GETATTR; 1101 argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 1102 argop[6].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp); 1103 1104 argop[7].argop = OP_RESTOREFH; 1105 1106 /* 1107 * nverify 1108 */ 1109 _v.va_mask = AT_GID; 1110 _v.va_gid = in_va->va_gid; 1111 if (!(e.error = nfs4args_verify(&argop[8], &_v, OP_NVERIFY, 1112 supp_attrs))) { 1113 1114 /* 1115 * setattr 1116 * 1117 * We _know_ we're not messing with AT_SIZE or 1118 * AT_XTIME, so no need for stateid or flags. 1119 * Also we specify NULL rp since we're only 1120 * interested in setting owner_group attributes. 1121 */ 1122 nfs4args_setattr(&argop[9], &_v, NULL, 0, NULL, cr, 1123 supp_attrs, &e.error, 0); 1124 if (e.error) 1125 nfs4args_verify_free(&argop[8]); 1126 } 1127 1128 if (e.error) { 1129 /* 1130 * XXX - Revisit the last argument to nfs4_end_op() 1131 * once 5020486 is fixed. 1132 */ 1133 nfs4_end_open_seqid_sync(oop); 1134 open_owner_rele(oop); 1135 nfs4args_copen_free(open_args); 1136 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, TRUE); 1137 if (ncr != NULL) 1138 crfree(ncr); 1139 kmem_free(argop, argoplist_size); 1140 return (e.error); 1141 } 1142 } else if (create_flag) { 1143 /* 1144 * For setgid case, we need to: 1145 * 4:savefh(new) 5:putfh(dir) 6:getattr(dir) 7:restorefh(new) 1146 */ 1147 argop[1].argop = OP_SAVEFH; 1148 1149 argop[5].argop = OP_RESTOREFH; 1150 1151 argop[6].argop = OP_GETATTR; 1152 argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 1153 argop[6].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp); 1154 } 1155 1156 NFS4_DEBUG(nfs4_client_call_debug, (CE_NOTE, 1157 "nfs4open_otw: %s call, nm %s, rp %s", 1158 needrecov ? "recov" : "first", file_name, 1159 rnode4info(VTOR4(dvp)))); 1160 1161 t = gethrtime(); 1162 1163 rfs4call(VTOMI4(dvp), &args, &res, cred_otw, &doqueue, 0, &e); 1164 1165 if (!e.error && nfs4_need_to_bump_seqid(&res)) 1166 nfs4_set_open_seqid(seqid, oop, args.ctag); 1167 1168 needrecov = nfs4_needs_recovery(&e, TRUE, dvp->v_vfsp); 1169 1170 if (e.error || needrecov) { 1171 bool_t abort = FALSE; 1172 1173 if (needrecov) { 1174 nfs4_bseqid_entry_t *bsep = NULL; 1175 1176 nfs4open_save_lost_rqst(e.error, &lost_rqst, oop, 1177 cred_otw, vpi, dvp, open_args); 1178 1179 if (!e.error && res.status == NFS4ERR_BAD_SEQID) { 1180 bsep = nfs4_create_bseqid_entry(oop, NULL, 1181 vpi, 0, args.ctag, open_args->seqid); 1182 num_bseqid_retry--; 1183 } 1184 1185 abort = nfs4_start_recovery(&e, VTOMI4(dvp), dvp, vpi, 1186 NULL, lost_rqst.lr_op == OP_OPEN ? 1187 &lost_rqst : NULL, OP_OPEN, bsep); 1188 1189 if (bsep) 1190 kmem_free(bsep, sizeof (*bsep)); 1191 /* give up if we keep getting BAD_SEQID */ 1192 if (num_bseqid_retry == 0) 1193 abort = TRUE; 1194 if (abort == TRUE && e.error == 0) 1195 e.error = geterrno4(res.status); 1196 } 1197 nfs4_end_open_seqid_sync(oop); 1198 open_owner_rele(oop); 1199 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, needrecov); 1200 nfs4args_copen_free(open_args); 1201 if (setgid_flag) { 1202 nfs4args_verify_free(&argop[8]); 1203 nfs4args_setattr_free(&argop[9]); 1204 } 1205 if (!e.error) 1206 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1207 if (ncr != NULL) { 1208 crfree(ncr); 1209 ncr = NULL; 1210 } 1211 if (!needrecov || abort == TRUE || e.error == EINTR || 1212 NFS4_FRC_UNMT_ERR(e.error, dvp->v_vfsp)) { 1213 kmem_free(argop, argoplist_size); 1214 return (e.error); 1215 } 1216 goto recov_retry; 1217 } 1218 1219 /* 1220 * Will check and update lease after checking the rflag for 1221 * OPEN_CONFIRM in the successful OPEN call. 1222 */ 1223 if (res.status != NFS4_OK && res.array_len <= idx_fattr + 1) { 1224 1225 /* 1226 * XXX what if we're crossing mount points from server1:/drp 1227 * to server2:/drp/rp. 1228 */ 1229 1230 /* Signal our end of use of the open seqid */ 1231 nfs4_end_open_seqid_sync(oop); 1232 1233 /* 1234 * This will destroy the open owner if it was just created, 1235 * and no one else has put a reference on it. 1236 */ 1237 open_owner_rele(oop); 1238 if (create_flag && (createmode != EXCLUSIVE4) && 1239 res.status == NFS4ERR_BADOWNER) 1240 nfs4_log_badowner(VTOMI4(dvp), OP_OPEN); 1241 1242 e.error = geterrno4(res.status); 1243 nfs4args_copen_free(open_args); 1244 if (setgid_flag) { 1245 nfs4args_verify_free(&argop[8]); 1246 nfs4args_setattr_free(&argop[9]); 1247 } 1248 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1249 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, needrecov); 1250 /* 1251 * If the reply is NFS4ERR_ACCESS, it may be because 1252 * we are root (no root net access). If the real uid 1253 * is not root, then retry with the real uid instead. 1254 */ 1255 if (ncr != NULL) { 1256 crfree(ncr); 1257 ncr = NULL; 1258 } 1259 if (res.status == NFS4ERR_ACCESS && 1260 (ncr = crnetadjust(cred_otw)) != NULL) { 1261 cred_otw = ncr; 1262 goto recov_retry; 1263 } 1264 kmem_free(argop, argoplist_size); 1265 return (e.error); 1266 } 1267 1268 resop = &res.array[idx_open]; /* open res */ 1269 op_res = &resop->nfs_resop4_u.opopen; 1270 1271 #ifdef DEBUG 1272 /* 1273 * verify attrset bitmap 1274 */ 1275 if (create_flag && 1276 (createmode == UNCHECKED4 || createmode == GUARDED4)) { 1277 /* make sure attrset returned is what we asked for */ 1278 /* XXX Ignore this 'error' for now */ 1279 if (attr->attrmask != op_res->attrset) 1280 /* EMPTY */; 1281 } 1282 #endif 1283 1284 if (op_res->rflags & OPEN4_RESULT_LOCKTYPE_POSIX) { 1285 mutex_enter(&VTOMI4(dvp)->mi_lock); 1286 VTOMI4(dvp)->mi_flags |= MI4_POSIX_LOCK; 1287 mutex_exit(&VTOMI4(dvp)->mi_lock); 1288 } 1289 1290 resop = &res.array[idx_open + 1]; /* getfh res */ 1291 gf_res = &resop->nfs_resop4_u.opgetfh; 1292 1293 otw_sfh = sfh4_get(&gf_res->object, VTOMI4(dvp)); 1294 1295 /* 1296 * The open stateid has been updated on the server but not 1297 * on the client yet. There is a path: makenfs4node->nfs4_attr_cache-> 1298 * flush_pages->VOP_PUTPAGE->...->nfs4write where we will issue an OTW 1299 * WRITE call. That, however, will use the old stateid, so go ahead 1300 * and upate the open stateid now, before any call to makenfs4node. 1301 */ 1302 if (vpi) { 1303 nfs4_open_stream_t *tmp_osp; 1304 rnode4_t *tmp_rp = VTOR4(vpi); 1305 1306 tmp_osp = find_open_stream(oop, tmp_rp); 1307 if (tmp_osp) { 1308 tmp_osp->open_stateid = op_res->stateid; 1309 mutex_exit(&tmp_osp->os_sync_lock); 1310 open_stream_rele(tmp_osp, tmp_rp); 1311 } 1312 1313 /* 1314 * We must determine if the file handle given by the otw open 1315 * is the same as the file handle which was passed in with 1316 * *vpp. This case can be reached if the file we are trying 1317 * to open has been removed and another file has been created 1318 * having the same file name. The passed in vnode is released 1319 * later. 1320 */ 1321 orig_sfh = VTOR4(vpi)->r_fh; 1322 fh_differs = nfs4cmpfh(&orig_sfh->sfh_fh, &otw_sfh->sfh_fh); 1323 } 1324 1325 garp = &res.array[idx_fattr].nfs_resop4_u.opgetattr.ga_res; 1326 1327 if (create_flag || fh_differs) { 1328 int rnode_err = 0; 1329 1330 vp = makenfs4node(otw_sfh, garp, dvp->v_vfsp, t, cr, 1331 dvp, fn_get(VTOSV(dvp)->sv_name, file_name, otw_sfh)); 1332 1333 if (e.error) 1334 PURGE_ATTRCACHE4(vp); 1335 /* 1336 * For the newly created vp case, make sure the rnode 1337 * isn't bad before using it. 1338 */ 1339 mutex_enter(&(VTOR4(vp))->r_statelock); 1340 if (VTOR4(vp)->r_flags & R4RECOVERR) 1341 rnode_err = EIO; 1342 mutex_exit(&(VTOR4(vp))->r_statelock); 1343 1344 if (rnode_err) { 1345 nfs4_end_open_seqid_sync(oop); 1346 nfs4args_copen_free(open_args); 1347 if (setgid_flag) { 1348 nfs4args_verify_free(&argop[8]); 1349 nfs4args_setattr_free(&argop[9]); 1350 } 1351 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1352 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, 1353 needrecov); 1354 open_owner_rele(oop); 1355 VN_RELE(vp); 1356 if (ncr != NULL) 1357 crfree(ncr); 1358 sfh4_rele(&otw_sfh); 1359 kmem_free(argop, argoplist_size); 1360 return (EIO); 1361 } 1362 } else { 1363 vp = vpi; 1364 } 1365 sfh4_rele(&otw_sfh); 1366 1367 /* 1368 * It seems odd to get a full set of attrs and then not update 1369 * the object's attrcache in the non-create case. Create case uses 1370 * the attrs since makenfs4node checks to see if the attrs need to 1371 * be updated (and then updates them). The non-create case should 1372 * update attrs also. 1373 */ 1374 if (! create_flag && ! fh_differs && !e.error) { 1375 nfs4_attr_cache(vp, garp, t, cr, TRUE, NULL); 1376 } 1377 1378 nfs4_error_zinit(&e); 1379 if (op_res->rflags & OPEN4_RESULT_CONFIRM) { 1380 /* This does not do recovery for vp explicitly. */ 1381 nfs4open_confirm(vp, &seqid, &op_res->stateid, cred_otw, FALSE, 1382 &retry_open, oop, FALSE, &e, &num_bseqid_retry); 1383 1384 if (e.error || e.stat) { 1385 nfs4_end_open_seqid_sync(oop); 1386 nfs4args_copen_free(open_args); 1387 if (setgid_flag) { 1388 nfs4args_verify_free(&argop[8]); 1389 nfs4args_setattr_free(&argop[9]); 1390 } 1391 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1392 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, 1393 needrecov); 1394 open_owner_rele(oop); 1395 if (create_flag || fh_differs) { 1396 /* rele the makenfs4node */ 1397 VN_RELE(vp); 1398 } 1399 if (ncr != NULL) { 1400 crfree(ncr); 1401 ncr = NULL; 1402 } 1403 if (retry_open == TRUE) { 1404 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 1405 "nfs4open_otw: retry the open since OPEN " 1406 "CONFIRM failed with error %d stat %d", 1407 e.error, e.stat)); 1408 if (create_flag && createmode == GUARDED4) { 1409 NFS4_DEBUG(nfs4_client_recov_debug, 1410 (CE_NOTE, "nfs4open_otw: switch " 1411 "createmode from GUARDED4 to " 1412 "UNCHECKED4")); 1413 createmode = UNCHECKED4; 1414 } 1415 goto recov_retry; 1416 } 1417 if (!e.error) { 1418 if (create_flag && (createmode != EXCLUSIVE4) && 1419 e.stat == NFS4ERR_BADOWNER) 1420 nfs4_log_badowner(VTOMI4(dvp), OP_OPEN); 1421 1422 e.error = geterrno4(e.stat); 1423 } 1424 kmem_free(argop, argoplist_size); 1425 return (e.error); 1426 } 1427 } 1428 1429 rp = VTOR4(vp); 1430 1431 mutex_enter(&rp->r_statev4_lock); 1432 if (create_flag) 1433 rp->created_v4 = 1; 1434 mutex_exit(&rp->r_statev4_lock); 1435 1436 mutex_enter(&oop->oo_lock); 1437 /* Doesn't matter if 'oo_just_created' already was set as this */ 1438 oop->oo_just_created = NFS4_PERM_CREATED; 1439 if (oop->oo_cred_otw) 1440 crfree(oop->oo_cred_otw); 1441 oop->oo_cred_otw = cred_otw; 1442 crhold(oop->oo_cred_otw); 1443 mutex_exit(&oop->oo_lock); 1444 1445 /* returns with 'os_sync_lock' held */ 1446 osp = find_or_create_open_stream(oop, rp, &created_osp); 1447 if (!osp) { 1448 NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE, 1449 "nfs4open_otw: failed to create an open stream")); 1450 NFS4_DEBUG(nfs4_seqid_sync, (CE_NOTE, "nfs4open_otw: " 1451 "signal our end of use of the open seqid")); 1452 1453 nfs4_end_open_seqid_sync(oop); 1454 open_owner_rele(oop); 1455 nfs4args_copen_free(open_args); 1456 if (setgid_flag) { 1457 nfs4args_verify_free(&argop[8]); 1458 nfs4args_setattr_free(&argop[9]); 1459 } 1460 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1461 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, needrecov); 1462 if (create_flag || fh_differs) 1463 VN_RELE(vp); 1464 if (ncr != NULL) 1465 crfree(ncr); 1466 1467 kmem_free(argop, argoplist_size); 1468 return (EINVAL); 1469 1470 } 1471 1472 osp->open_stateid = op_res->stateid; 1473 1474 if (open_flag & FREAD) 1475 osp->os_share_acc_read++; 1476 if (open_flag & FWRITE) 1477 osp->os_share_acc_write++; 1478 osp->os_share_deny_none++; 1479 1480 /* 1481 * Need to reset this bitfield for the possible case where we were 1482 * going to OTW CLOSE the file, got a non-recoverable error, and before 1483 * we could retry the CLOSE, OPENed the file again. 1484 */ 1485 ASSERT(osp->os_open_owner->oo_seqid_inuse); 1486 osp->os_final_close = 0; 1487 osp->os_force_close = 0; 1488 #ifdef DEBUG 1489 if (osp->os_failed_reopen) 1490 NFS4_DEBUG(nfs4_open_stream_debug, (CE_NOTE, "nfs4open_otw:" 1491 " clearing os_failed_reopen for osp %p, cr %p, rp %s", 1492 (void *)osp, (void *)cr, rnode4info(rp))); 1493 #endif 1494 osp->os_failed_reopen = 0; 1495 1496 mutex_exit(&osp->os_sync_lock); 1497 1498 nfs4_end_open_seqid_sync(oop); 1499 1500 if (created_osp && recov_state.rs_sp != NULL) { 1501 mutex_enter(&recov_state.rs_sp->s_lock); 1502 nfs4_inc_state_ref_count_nolock(recov_state.rs_sp, VTOMI4(dvp)); 1503 mutex_exit(&recov_state.rs_sp->s_lock); 1504 } 1505 1506 /* get rid of our reference to find oop */ 1507 open_owner_rele(oop); 1508 1509 open_stream_rele(osp, rp); 1510 1511 /* accept delegation, if any */ 1512 nfs4_delegation_accept(rp, CLAIM_NULL, op_res, garp, cred_otw); 1513 1514 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, needrecov); 1515 1516 if (createmode == EXCLUSIVE4 && 1517 (in_va->va_mask & ~(AT_GID | AT_SIZE))) { 1518 NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE, "nfs4open_otw:" 1519 " EXCLUSIVE4: sending a SETATTR")); 1520 /* 1521 * If doing an exclusive create, then generate 1522 * a SETATTR to set the initial attributes. 1523 * Try to set the mtime and the atime to the 1524 * server's current time. It is somewhat 1525 * expected that these fields will be used to 1526 * store the exclusive create cookie. If not, 1527 * server implementors will need to know that 1528 * a SETATTR will follow an exclusive create 1529 * and the cookie should be destroyed if 1530 * appropriate. 1531 * 1532 * The AT_GID and AT_SIZE bits are turned off 1533 * so that the SETATTR request will not attempt 1534 * to process these. The gid will be set 1535 * separately if appropriate. The size is turned 1536 * off because it is assumed that a new file will 1537 * be created empty and if the file wasn't empty, 1538 * then the exclusive create will have failed 1539 * because the file must have existed already. 1540 * Therefore, no truncate operation is needed. 1541 */ 1542 in_va->va_mask &= ~(AT_GID | AT_SIZE); 1543 in_va->va_mask |= (AT_MTIME | AT_ATIME); 1544 1545 e.error = nfs4setattr(vp, in_va, 0, cr, NULL); 1546 if (e.error) { 1547 /* 1548 * Couldn't correct the attributes of 1549 * the newly created file and the 1550 * attributes are wrong. Remove the 1551 * file and return an error to the 1552 * application. 1553 */ 1554 /* XXX will this take care of client state ? */ 1555 NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE, 1556 "nfs4open_otw: EXCLUSIVE4: error %d on SETATTR:" 1557 " remove file", e.error)); 1558 VN_RELE(vp); 1559 (void) nfs4_remove(dvp, file_name, cr, NULL, 0); 1560 /* 1561 * Since we've reled the vnode and removed 1562 * the file we now need to return the error. 1563 * At this point we don't want to update the 1564 * dircaches, call nfs4_waitfor_purge_complete 1565 * or set vpp to vp so we need to skip these 1566 * as well. 1567 */ 1568 goto skip_update_dircaches; 1569 } 1570 } 1571 1572 /* 1573 * If we created or found the correct vnode, due to create_flag or 1574 * fh_differs being set, then update directory cache attribute, readdir 1575 * and dnlc caches. 1576 */ 1577 if (create_flag || fh_differs) { 1578 dirattr_info_t dinfo, *dinfop; 1579 1580 /* 1581 * Make sure getattr succeeded before using results. 1582 * note: op 7 is getattr(dir) for both flavors of 1583 * open(create). 1584 */ 1585 if (create_flag && res.status == NFS4_OK) { 1586 dinfo.di_time_call = t; 1587 dinfo.di_cred = cr; 1588 dinfo.di_garp = 1589 &res.array[6].nfs_resop4_u.opgetattr.ga_res; 1590 dinfop = &dinfo; 1591 } else { 1592 dinfop = NULL; 1593 } 1594 1595 nfs4_update_dircaches(&op_res->cinfo, dvp, vp, file_name, 1596 dinfop); 1597 } 1598 1599 /* 1600 * If the page cache for this file was flushed from actions 1601 * above, it was done asynchronously and if that is true, 1602 * there is a need to wait here for it to complete. This must 1603 * be done outside of start_fop/end_fop. 1604 */ 1605 (void) nfs4_waitfor_purge_complete(vp); 1606 1607 /* 1608 * It is implicit that we are in the open case (create_flag == 0) since 1609 * fh_differs can only be set to a non-zero value in the open case. 1610 */ 1611 if (fh_differs != 0 && vpi != NULL) 1612 VN_RELE(vpi); 1613 1614 /* 1615 * Be sure to set *vpp to the correct value before returning. 1616 */ 1617 *vpp = vp; 1618 1619 skip_update_dircaches: 1620 1621 nfs4args_copen_free(open_args); 1622 if (setgid_flag) { 1623 nfs4args_verify_free(&argop[8]); 1624 nfs4args_setattr_free(&argop[9]); 1625 } 1626 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1627 1628 if (ncr) 1629 crfree(ncr); 1630 kmem_free(argop, argoplist_size); 1631 return (e.error); 1632 } 1633 1634 /* 1635 * Reopen an open instance. cf. nfs4open_otw(). 1636 * 1637 * Errors are returned by the nfs4_error_t parameter. 1638 * - ep->error contains an errno value or zero. 1639 * - if it is zero, ep->stat is set to an NFS status code, if any. 1640 * If the file could not be reopened, but the caller should continue, the 1641 * file is marked dead and no error values are returned. If the caller 1642 * should stop recovering open files and start over, either the ep->error 1643 * value or ep->stat will indicate an error (either something that requires 1644 * recovery or EAGAIN). Note that some recovery (e.g., expired volatile 1645 * filehandles) may be handled silently by this routine. 1646 * - if it is EINTR, ETIMEDOUT, or NFS4_FRC_UNMT_ERR, recovery for lost state 1647 * will be started, so the caller should not do it. 1648 * 1649 * Gotos: 1650 * - kill_file : reopen failed in such a fashion to constitute marking the 1651 * file dead and setting the open stream's 'os_failed_reopen' as 1. This 1652 * is for cases where recovery is not possible. 1653 * - failed_reopen : same as above, except that the file has already been 1654 * marked dead, so no need to do it again. 1655 * - bailout : reopen failed but we are able to recover and retry the reopen - 1656 * either within this function immediately or via the calling function. 1657 */ 1658 1659 void 1660 nfs4_reopen(vnode_t *vp, nfs4_open_stream_t *osp, nfs4_error_t *ep, 1661 open_claim_type4 claim, bool_t frc_use_claim_previous, 1662 bool_t is_recov) 1663 { 1664 COMPOUND4args_clnt args; 1665 COMPOUND4res_clnt res; 1666 nfs_argop4 argop[4]; 1667 nfs_resop4 *resop; 1668 OPEN4res *op_res = NULL; 1669 OPEN4cargs *open_args; 1670 GETFH4res *gf_res; 1671 rnode4_t *rp = VTOR4(vp); 1672 int doqueue = 1; 1673 cred_t *cr = NULL, *cred_otw = NULL; 1674 nfs4_open_owner_t *oop = NULL; 1675 seqid4 seqid; 1676 nfs4_ga_res_t *garp; 1677 char fn[MAXNAMELEN]; 1678 nfs4_recov_state_t recov = {NULL, 0}; 1679 nfs4_lost_rqst_t lost_rqst; 1680 mntinfo4_t *mi = VTOMI4(vp); 1681 bool_t abort; 1682 char *failed_msg = ""; 1683 int fh_different; 1684 hrtime_t t; 1685 nfs4_bseqid_entry_t *bsep = NULL; 1686 1687 ASSERT(nfs4_consistent_type(vp)); 1688 ASSERT(nfs_zone() == mi->mi_zone); 1689 1690 nfs4_error_zinit(ep); 1691 1692 /* this is the cred used to find the open owner */ 1693 cr = state_to_cred(osp); 1694 if (cr == NULL) { 1695 failed_msg = "Couldn't reopen: no cred"; 1696 goto kill_file; 1697 } 1698 /* use this cred for OTW operations */ 1699 cred_otw = nfs4_get_otw_cred(cr, mi, osp->os_open_owner); 1700 1701 top: 1702 nfs4_error_zinit(ep); 1703 1704 if (mi->mi_vfsp->vfs_flag & VFS_UNMOUNTED) { 1705 /* File system has been unmounted, quit */ 1706 ep->error = EIO; 1707 failed_msg = "Couldn't reopen: file system has been unmounted"; 1708 goto kill_file; 1709 } 1710 1711 oop = osp->os_open_owner; 1712 1713 ASSERT(oop != NULL); 1714 if (oop == NULL) { /* be defensive in non-DEBUG */ 1715 failed_msg = "can't reopen: no open owner"; 1716 goto kill_file; 1717 } 1718 open_owner_hold(oop); 1719 1720 ep->error = nfs4_start_open_seqid_sync(oop, mi); 1721 if (ep->error) { 1722 open_owner_rele(oop); 1723 oop = NULL; 1724 goto bailout; 1725 } 1726 1727 /* 1728 * If the rnode has a delegation and the delegation has been 1729 * recovered and the server didn't request a recall and the caller 1730 * didn't specifically ask for CLAIM_PREVIOUS (nfs4frlock during 1731 * recovery) and the rnode hasn't been marked dead, then install 1732 * the delegation stateid in the open stream. Otherwise, proceed 1733 * with a CLAIM_PREVIOUS or CLAIM_NULL OPEN. 1734 */ 1735 mutex_enter(&rp->r_statev4_lock); 1736 if (rp->r_deleg_type != OPEN_DELEGATE_NONE && 1737 !rp->r_deleg_return_pending && 1738 (rp->r_deleg_needs_recovery == OPEN_DELEGATE_NONE) && 1739 !rp->r_deleg_needs_recall && 1740 claim != CLAIM_DELEGATE_CUR && !frc_use_claim_previous && 1741 !(rp->r_flags & R4RECOVERR)) { 1742 mutex_enter(&osp->os_sync_lock); 1743 osp->os_delegation = 1; 1744 osp->open_stateid = rp->r_deleg_stateid; 1745 mutex_exit(&osp->os_sync_lock); 1746 mutex_exit(&rp->r_statev4_lock); 1747 goto bailout; 1748 } 1749 mutex_exit(&rp->r_statev4_lock); 1750 1751 /* 1752 * If the file failed recovery, just quit. This failure need not 1753 * affect other reopens, so don't return an error. 1754 */ 1755 mutex_enter(&rp->r_statelock); 1756 if (rp->r_flags & R4RECOVERR) { 1757 mutex_exit(&rp->r_statelock); 1758 ep->error = 0; 1759 goto failed_reopen; 1760 } 1761 mutex_exit(&rp->r_statelock); 1762 1763 /* 1764 * argop is empty here 1765 * 1766 * PUTFH, OPEN, GETATTR 1767 */ 1768 args.ctag = TAG_REOPEN; 1769 args.array_len = 4; 1770 args.array = argop; 1771 1772 NFS4_DEBUG(nfs4_client_failover_debug, (CE_NOTE, 1773 "nfs4_reopen: file is type %d, id %s", 1774 vp->v_type, rnode4info(VTOR4(vp)))); 1775 1776 argop[0].argop = OP_CPUTFH; 1777 1778 if (claim != CLAIM_PREVIOUS) { 1779 /* 1780 * if this is a file mount then 1781 * use the mntinfo parentfh 1782 */ 1783 argop[0].nfs_argop4_u.opcputfh.sfh = 1784 (vp->v_flag & VROOT) ? mi->mi_srvparentfh : 1785 VTOSV(vp)->sv_dfh; 1786 } else { 1787 /* putfh fh to reopen */ 1788 argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh; 1789 } 1790 1791 argop[1].argop = OP_COPEN; 1792 open_args = &argop[1].nfs_argop4_u.opcopen; 1793 open_args->claim = claim; 1794 1795 if (claim == CLAIM_NULL) { 1796 1797 if ((ep->error = vtoname(vp, fn, MAXNAMELEN)) != 0) { 1798 nfs_cmn_err(ep->error, CE_WARN, "nfs4_reopen: vtoname " 1799 "failed for vp 0x%p for CLAIM_NULL with %m", 1800 (void *)vp); 1801 failed_msg = "Couldn't reopen: vtoname failed for " 1802 "CLAIM_NULL"; 1803 /* nothing allocated yet */ 1804 goto kill_file; 1805 } 1806 1807 open_args->open_claim4_u.cfile = fn; 1808 } else if (claim == CLAIM_PREVIOUS) { 1809 1810 /* 1811 * We have two cases to deal with here: 1812 * 1) We're being called to reopen files in order to satisfy 1813 * a lock operation request which requires us to explicitly 1814 * reopen files which were opened under a delegation. If 1815 * we're in recovery, we *must* use CLAIM_PREVIOUS. In 1816 * that case, frc_use_claim_previous is TRUE and we must 1817 * use the rnode's current delegation type (r_deleg_type). 1818 * 2) We're reopening files during some form of recovery. 1819 * In this case, frc_use_claim_previous is FALSE and we 1820 * use the delegation type appropriate for recovery 1821 * (r_deleg_needs_recovery). 1822 */ 1823 mutex_enter(&rp->r_statev4_lock); 1824 open_args->open_claim4_u.delegate_type = 1825 frc_use_claim_previous ? 1826 rp->r_deleg_type : 1827 rp->r_deleg_needs_recovery; 1828 mutex_exit(&rp->r_statev4_lock); 1829 1830 } else if (claim == CLAIM_DELEGATE_CUR) { 1831 1832 if ((ep->error = vtoname(vp, fn, MAXNAMELEN)) != 0) { 1833 nfs_cmn_err(ep->error, CE_WARN, "nfs4_reopen: vtoname " 1834 "failed for vp 0x%p for CLAIM_DELEGATE_CUR " 1835 "with %m", (void *)vp); 1836 failed_msg = "Couldn't reopen: vtoname failed for " 1837 "CLAIM_DELEGATE_CUR"; 1838 /* nothing allocated yet */ 1839 goto kill_file; 1840 } 1841 1842 mutex_enter(&rp->r_statev4_lock); 1843 open_args->open_claim4_u.delegate_cur_info.delegate_stateid = 1844 rp->r_deleg_stateid; 1845 mutex_exit(&rp->r_statev4_lock); 1846 1847 open_args->open_claim4_u.delegate_cur_info.cfile = fn; 1848 } 1849 open_args->opentype = OPEN4_NOCREATE; 1850 open_args->owner.clientid = mi2clientid(mi); 1851 open_args->owner.owner_len = sizeof (oop->oo_name); 1852 open_args->owner.owner_val = 1853 kmem_alloc(open_args->owner.owner_len, KM_SLEEP); 1854 bcopy(&oop->oo_name, open_args->owner.owner_val, 1855 open_args->owner.owner_len); 1856 open_args->share_access = 0; 1857 open_args->share_deny = 0; 1858 1859 mutex_enter(&osp->os_sync_lock); 1860 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, "nfs4_reopen: osp %p rp " 1861 "%p: read acc %"PRIu64" write acc %"PRIu64": open ref count %d: " 1862 "mmap read %"PRIu64" mmap write %"PRIu64" claim %d ", 1863 (void *)osp, (void *)rp, osp->os_share_acc_read, 1864 osp->os_share_acc_write, osp->os_open_ref_count, 1865 osp->os_mmap_read, osp->os_mmap_write, claim)); 1866 1867 if (osp->os_share_acc_read || osp->os_mmap_read) 1868 open_args->share_access |= OPEN4_SHARE_ACCESS_READ; 1869 if (osp->os_share_acc_write || osp->os_mmap_write) 1870 open_args->share_access |= OPEN4_SHARE_ACCESS_WRITE; 1871 if (osp->os_share_deny_read) 1872 open_args->share_deny |= OPEN4_SHARE_DENY_READ; 1873 if (osp->os_share_deny_write) 1874 open_args->share_deny |= OPEN4_SHARE_DENY_WRITE; 1875 mutex_exit(&osp->os_sync_lock); 1876 1877 seqid = nfs4_get_open_seqid(oop) + 1; 1878 open_args->seqid = seqid; 1879 1880 /* Construct the getfh part of the compound */ 1881 argop[2].argop = OP_GETFH; 1882 1883 /* Construct the getattr part of the compound */ 1884 argop[3].argop = OP_GETATTR; 1885 argop[3].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 1886 argop[3].nfs_argop4_u.opgetattr.mi = mi; 1887 1888 t = gethrtime(); 1889 1890 rfs4call(mi, &args, &res, cred_otw, &doqueue, 0, ep); 1891 1892 if (ep->error) { 1893 if (!is_recov && !frc_use_claim_previous && 1894 (ep->error == EINTR || ep->error == ETIMEDOUT || 1895 NFS4_FRC_UNMT_ERR(ep->error, vp->v_vfsp))) { 1896 nfs4open_save_lost_rqst(ep->error, &lost_rqst, oop, 1897 cred_otw, vp, NULL, open_args); 1898 abort = nfs4_start_recovery(ep, 1899 VTOMI4(vp), vp, NULL, NULL, 1900 lost_rqst.lr_op == OP_OPEN ? 1901 &lost_rqst : NULL, OP_OPEN, NULL); 1902 nfs4args_copen_free(open_args); 1903 goto bailout; 1904 } 1905 1906 nfs4args_copen_free(open_args); 1907 1908 if (ep->error == EACCES && cred_otw != cr) { 1909 crfree(cred_otw); 1910 cred_otw = cr; 1911 crhold(cred_otw); 1912 nfs4_end_open_seqid_sync(oop); 1913 open_owner_rele(oop); 1914 oop = NULL; 1915 goto top; 1916 } 1917 if (ep->error == ETIMEDOUT) 1918 goto bailout; 1919 failed_msg = "Couldn't reopen: rpc error"; 1920 goto kill_file; 1921 } 1922 1923 if (nfs4_need_to_bump_seqid(&res)) 1924 nfs4_set_open_seqid(seqid, oop, args.ctag); 1925 1926 switch (res.status) { 1927 case NFS4_OK: 1928 if (recov.rs_flags & NFS4_RS_DELAY_MSG) { 1929 mutex_enter(&rp->r_statelock); 1930 rp->r_delay_interval = 0; 1931 mutex_exit(&rp->r_statelock); 1932 } 1933 break; 1934 case NFS4ERR_BAD_SEQID: 1935 bsep = nfs4_create_bseqid_entry(oop, NULL, vp, 0, 1936 args.ctag, open_args->seqid); 1937 1938 abort = nfs4_start_recovery(ep, VTOMI4(vp), vp, NULL, 1939 NULL, lost_rqst.lr_op == OP_OPEN ? &lost_rqst : 1940 NULL, OP_OPEN, bsep); 1941 1942 nfs4args_copen_free(open_args); 1943 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1944 nfs4_end_open_seqid_sync(oop); 1945 open_owner_rele(oop); 1946 oop = NULL; 1947 kmem_free(bsep, sizeof (*bsep)); 1948 1949 goto kill_file; 1950 case NFS4ERR_NO_GRACE: 1951 nfs4args_copen_free(open_args); 1952 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1953 nfs4_end_open_seqid_sync(oop); 1954 open_owner_rele(oop); 1955 oop = NULL; 1956 if (claim == CLAIM_PREVIOUS) { 1957 /* 1958 * Retry as a plain open. We don't need to worry about 1959 * checking the changeinfo: it is acceptable for a 1960 * client to re-open a file and continue processing 1961 * (in the absence of locks). 1962 */ 1963 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 1964 "nfs4_reopen: CLAIM_PREVIOUS: NFS4ERR_NO_GRACE; " 1965 "will retry as CLAIM_NULL")); 1966 claim = CLAIM_NULL; 1967 nfs4_mi_kstat_inc_no_grace(mi); 1968 goto top; 1969 } 1970 failed_msg = 1971 "Couldn't reopen: tried reclaim outside grace period. "; 1972 goto kill_file; 1973 case NFS4ERR_GRACE: 1974 nfs4_set_grace_wait(mi); 1975 nfs4args_copen_free(open_args); 1976 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1977 nfs4_end_open_seqid_sync(oop); 1978 open_owner_rele(oop); 1979 oop = NULL; 1980 ep->error = nfs4_wait_for_grace(mi, &recov); 1981 if (ep->error != 0) 1982 goto bailout; 1983 goto top; 1984 case NFS4ERR_DELAY: 1985 nfs4_set_delay_wait(vp); 1986 nfs4args_copen_free(open_args); 1987 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1988 nfs4_end_open_seqid_sync(oop); 1989 open_owner_rele(oop); 1990 oop = NULL; 1991 ep->error = nfs4_wait_for_delay(vp, &recov); 1992 nfs4_mi_kstat_inc_delay(mi); 1993 if (ep->error != 0) 1994 goto bailout; 1995 goto top; 1996 case NFS4ERR_FHEXPIRED: 1997 /* recover filehandle and retry */ 1998 abort = nfs4_start_recovery(ep, 1999 mi, vp, NULL, NULL, NULL, OP_OPEN, NULL); 2000 nfs4args_copen_free(open_args); 2001 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 2002 nfs4_end_open_seqid_sync(oop); 2003 open_owner_rele(oop); 2004 oop = NULL; 2005 if (abort == FALSE) 2006 goto top; 2007 failed_msg = "Couldn't reopen: recovery aborted"; 2008 goto kill_file; 2009 case NFS4ERR_RESOURCE: 2010 case NFS4ERR_STALE_CLIENTID: 2011 case NFS4ERR_WRONGSEC: 2012 case NFS4ERR_EXPIRED: 2013 /* 2014 * Do not mark the file dead and let the calling 2015 * function initiate recovery. 2016 */ 2017 nfs4args_copen_free(open_args); 2018 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 2019 nfs4_end_open_seqid_sync(oop); 2020 open_owner_rele(oop); 2021 oop = NULL; 2022 goto bailout; 2023 case NFS4ERR_ACCESS: 2024 if (cred_otw != cr) { 2025 crfree(cred_otw); 2026 cred_otw = cr; 2027 crhold(cred_otw); 2028 nfs4args_copen_free(open_args); 2029 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 2030 nfs4_end_open_seqid_sync(oop); 2031 open_owner_rele(oop); 2032 oop = NULL; 2033 goto top; 2034 } 2035 /* fall through */ 2036 default: 2037 NFS4_DEBUG(nfs4_client_failover_debug, (CE_NOTE, 2038 "nfs4_reopen: r_server 0x%p, mi_curr_serv 0x%p, rnode %s", 2039 (void*)VTOR4(vp)->r_server, (void*)mi->mi_curr_serv, 2040 rnode4info(VTOR4(vp)))); 2041 failed_msg = "Couldn't reopen: NFSv4 error"; 2042 nfs4args_copen_free(open_args); 2043 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 2044 goto kill_file; 2045 } 2046 2047 resop = &res.array[1]; /* open res */ 2048 op_res = &resop->nfs_resop4_u.opopen; 2049 2050 garp = &res.array[3].nfs_resop4_u.opgetattr.ga_res; 2051 2052 /* 2053 * Check if the path we reopened really is the same 2054 * file. We could end up in a situation where the file 2055 * was removed and a new file created with the same name. 2056 */ 2057 resop = &res.array[2]; 2058 gf_res = &resop->nfs_resop4_u.opgetfh; 2059 (void) nfs_rw_enter_sig(&mi->mi_fh_lock, RW_READER, 0); 2060 fh_different = (nfs4cmpfh(&rp->r_fh->sfh_fh, &gf_res->object) != 0); 2061 if (fh_different) { 2062 if (mi->mi_fh_expire_type == FH4_PERSISTENT || 2063 mi->mi_fh_expire_type & FH4_NOEXPIRE_WITH_OPEN) { 2064 /* Oops, we don't have the same file */ 2065 if (mi->mi_fh_expire_type == FH4_PERSISTENT) 2066 failed_msg = "Couldn't reopen: Persistent " 2067 "file handle changed"; 2068 else 2069 failed_msg = "Couldn't reopen: Volatile " 2070 "(no expire on open) file handle changed"; 2071 2072 nfs4args_copen_free(open_args); 2073 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 2074 nfs_rw_exit(&mi->mi_fh_lock); 2075 goto kill_file; 2076 2077 } else { 2078 /* 2079 * We have volatile file handles that don't compare. 2080 * If the fids are the same then we assume that the 2081 * file handle expired but the rnode still refers to 2082 * the same file object. 2083 * 2084 * First check that we have fids or not. 2085 * If we don't we have a dumb server so we will 2086 * just assume every thing is ok for now. 2087 */ 2088 if (!ep->error && garp->n4g_va.va_mask & AT_NODEID && 2089 rp->r_attr.va_mask & AT_NODEID && 2090 rp->r_attr.va_nodeid != garp->n4g_va.va_nodeid) { 2091 /* 2092 * We have fids, but they don't 2093 * compare. So kill the file. 2094 */ 2095 failed_msg = 2096 "Couldn't reopen: file handle changed" 2097 " due to mismatched fids"; 2098 nfs4args_copen_free(open_args); 2099 (void) xdr_free(xdr_COMPOUND4res_clnt, 2100 (caddr_t)&res); 2101 nfs_rw_exit(&mi->mi_fh_lock); 2102 goto kill_file; 2103 } else { 2104 /* 2105 * We have volatile file handles that refers 2106 * to the same file (at least they have the 2107 * same fid) or we don't have fids so we 2108 * can't tell. :(. We'll be a kind and accepting 2109 * client so we'll update the rnode's file 2110 * handle with the otw handle. 2111 * 2112 * We need to drop mi->mi_fh_lock since 2113 * sh4_update acquires it. Since there is 2114 * only one recovery thread there is no 2115 * race. 2116 */ 2117 nfs_rw_exit(&mi->mi_fh_lock); 2118 sfh4_update(rp->r_fh, &gf_res->object); 2119 } 2120 } 2121 } else { 2122 nfs_rw_exit(&mi->mi_fh_lock); 2123 } 2124 2125 ASSERT(nfs4_consistent_type(vp)); 2126 2127 /* 2128 * If the server wanted an OPEN_CONFIRM but that fails, just start 2129 * over. Presumably if there is a persistent error it will show up 2130 * when we resend the OPEN. 2131 */ 2132 if (op_res->rflags & OPEN4_RESULT_CONFIRM) { 2133 bool_t retry_open = FALSE; 2134 2135 nfs4open_confirm(vp, &seqid, &op_res->stateid, 2136 cred_otw, is_recov, &retry_open, 2137 oop, FALSE, ep, NULL); 2138 if (ep->error || ep->stat) { 2139 nfs4args_copen_free(open_args); 2140 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 2141 nfs4_end_open_seqid_sync(oop); 2142 open_owner_rele(oop); 2143 oop = NULL; 2144 goto top; 2145 } 2146 } 2147 2148 mutex_enter(&osp->os_sync_lock); 2149 osp->open_stateid = op_res->stateid; 2150 osp->os_delegation = 0; 2151 /* 2152 * Need to reset this bitfield for the possible case where we were 2153 * going to OTW CLOSE the file, got a non-recoverable error, and before 2154 * we could retry the CLOSE, OPENed the file again. 2155 */ 2156 ASSERT(osp->os_open_owner->oo_seqid_inuse); 2157 osp->os_final_close = 0; 2158 osp->os_force_close = 0; 2159 if (claim == CLAIM_DELEGATE_CUR || claim == CLAIM_PREVIOUS) 2160 osp->os_dc_openacc = open_args->share_access; 2161 mutex_exit(&osp->os_sync_lock); 2162 2163 nfs4_end_open_seqid_sync(oop); 2164 2165 /* accept delegation, if any */ 2166 nfs4_delegation_accept(rp, claim, op_res, garp, cred_otw); 2167 2168 nfs4args_copen_free(open_args); 2169 2170 nfs4_attr_cache(vp, garp, t, cr, TRUE, NULL); 2171 2172 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 2173 2174 ASSERT(nfs4_consistent_type(vp)); 2175 2176 open_owner_rele(oop); 2177 crfree(cr); 2178 crfree(cred_otw); 2179 return; 2180 2181 kill_file: 2182 nfs4_fail_recov(vp, failed_msg, ep->error, ep->stat); 2183 failed_reopen: 2184 NFS4_DEBUG(nfs4_open_stream_debug, (CE_NOTE, 2185 "nfs4_reopen: setting os_failed_reopen for osp %p, cr %p, rp %s", 2186 (void *)osp, (void *)cr, rnode4info(rp))); 2187 mutex_enter(&osp->os_sync_lock); 2188 osp->os_failed_reopen = 1; 2189 mutex_exit(&osp->os_sync_lock); 2190 bailout: 2191 if (oop != NULL) { 2192 nfs4_end_open_seqid_sync(oop); 2193 open_owner_rele(oop); 2194 } 2195 if (cr != NULL) 2196 crfree(cr); 2197 if (cred_otw != NULL) 2198 crfree(cred_otw); 2199 } 2200 2201 /* for . and .. OPENs */ 2202 /* ARGSUSED */ 2203 static int 2204 nfs4_open_non_reg_file(vnode_t **vpp, int flag, cred_t *cr) 2205 { 2206 rnode4_t *rp; 2207 nfs4_ga_res_t gar; 2208 2209 ASSERT(nfs_zone() == VTOMI4(*vpp)->mi_zone); 2210 2211 /* 2212 * If close-to-open consistency checking is turned off or 2213 * if there is no cached data, we can avoid 2214 * the over the wire getattr. Otherwise, force a 2215 * call to the server to get fresh attributes and to 2216 * check caches. This is required for close-to-open 2217 * consistency. 2218 */ 2219 rp = VTOR4(*vpp); 2220 if (VTOMI4(*vpp)->mi_flags & MI4_NOCTO || 2221 (rp->r_dir == NULL && !nfs4_has_pages(*vpp))) 2222 return (0); 2223 2224 gar.n4g_va.va_mask = AT_ALL; 2225 return (nfs4_getattr_otw(*vpp, &gar, cr, 0)); 2226 } 2227 2228 /* 2229 * CLOSE a file 2230 */ 2231 /* ARGSUSED */ 2232 static int 2233 nfs4_close(vnode_t *vp, int flag, int count, offset_t offset, cred_t *cr, 2234 caller_context_t *ct) 2235 { 2236 rnode4_t *rp; 2237 int error = 0; 2238 int r_error = 0; 2239 int n4error = 0; 2240 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 2241 2242 /* 2243 * Remove client state for this (lockowner, file) pair. 2244 * Issue otw v4 call to have the server do the same. 2245 */ 2246 2247 rp = VTOR4(vp); 2248 2249 /* 2250 * zone_enter(2) prevents processes from changing zones with NFS files 2251 * open; if we happen to get here from the wrong zone we can't do 2252 * anything over the wire. 2253 */ 2254 if (VTOMI4(vp)->mi_zone != nfs_zone()) { 2255 /* 2256 * We could attempt to clean up locks, except we're sure 2257 * that the current process didn't acquire any locks on 2258 * the file: any attempt to lock a file belong to another zone 2259 * will fail, and one can't lock an NFS file and then change 2260 * zones, as that fails too. 2261 * 2262 * Returning an error here is the sane thing to do. A 2263 * subsequent call to VN_RELE() which translates to a 2264 * nfs4_inactive() will clean up state: if the zone of the 2265 * vnode's origin is still alive and kicking, the inactive 2266 * thread will handle the request (from the correct zone), and 2267 * everything (minus the OTW close call) should be OK. If the 2268 * zone is going away nfs4_async_inactive() will throw away 2269 * delegations, open streams and cached pages inline. 2270 */ 2271 return (EIO); 2272 } 2273 2274 /* 2275 * If we are using local locking for this filesystem, then 2276 * release all of the SYSV style record locks. Otherwise, 2277 * we are doing network locking and we need to release all 2278 * of the network locks. All of the locks held by this 2279 * process on this file are released no matter what the 2280 * incoming reference count is. 2281 */ 2282 if (VTOMI4(vp)->mi_flags & MI4_LLOCK) { 2283 cleanlocks(vp, ttoproc(curthread)->p_pid, 0); 2284 cleanshares(vp, ttoproc(curthread)->p_pid); 2285 } else 2286 e.error = nfs4_lockrelease(vp, flag, offset, cr); 2287 2288 if (e.error) { 2289 struct lm_sysid *lmsid; 2290 lmsid = nfs4_find_sysid(VTOMI4(vp)); 2291 if (lmsid == NULL) { 2292 DTRACE_PROBE2(unknown__sysid, int, e.error, 2293 vnode_t *, vp); 2294 } else { 2295 cleanlocks(vp, ttoproc(curthread)->p_pid, 2296 (lm_sysidt(lmsid) | LM_SYSID_CLIENT)); 2297 } 2298 return (e.error); 2299 } 2300 2301 if (count > 1) 2302 return (0); 2303 2304 /* 2305 * If the file has been `unlinked', then purge the 2306 * DNLC so that this vnode will get reycled quicker 2307 * and the .nfs* file on the server will get removed. 2308 */ 2309 if (rp->r_unldvp != NULL) 2310 dnlc_purge_vp(vp); 2311 2312 /* 2313 * If the file was open for write and there are pages, 2314 * do a synchronous flush and commit of all of the 2315 * dirty and uncommitted pages. 2316 */ 2317 ASSERT(!e.error); 2318 if ((flag & FWRITE) && nfs4_has_pages(vp)) 2319 error = nfs4_putpage_commit(vp, 0, 0, cr); 2320 2321 mutex_enter(&rp->r_statelock); 2322 r_error = rp->r_error; 2323 rp->r_error = 0; 2324 mutex_exit(&rp->r_statelock); 2325 2326 /* 2327 * If this file type is one for which no explicit 'open' was 2328 * done, then bail now (ie. no need for protocol 'close'). If 2329 * there was an error w/the vm subsystem, return _that_ error, 2330 * otherwise, return any errors that may've been reported via 2331 * the rnode. 2332 */ 2333 if (vp->v_type != VREG) 2334 return (error ? error : r_error); 2335 2336 /* 2337 * The sync putpage commit may have failed above, but since 2338 * we're working w/a regular file, we need to do the protocol 2339 * 'close' (nfs4close_one will figure out if an otw close is 2340 * needed or not). Report any errors _after_ doing the protocol 2341 * 'close'. 2342 */ 2343 nfs4close_one(vp, NULL, cr, flag, NULL, &e, CLOSE_NORM, 0, 0, 0); 2344 n4error = e.error ? e.error : geterrno4(e.stat); 2345 2346 /* 2347 * Error reporting prio (Hi -> Lo) 2348 * 2349 * i) nfs4_putpage_commit (error) 2350 * ii) rnode's (r_error) 2351 * iii) nfs4close_one (n4error) 2352 */ 2353 return (error ? error : (r_error ? r_error : n4error)); 2354 } 2355 2356 /* 2357 * Initialize *lost_rqstp. 2358 */ 2359 2360 static void 2361 nfs4close_save_lost_rqst(int error, nfs4_lost_rqst_t *lost_rqstp, 2362 nfs4_open_owner_t *oop, nfs4_open_stream_t *osp, cred_t *cr, 2363 vnode_t *vp) 2364 { 2365 if (error != ETIMEDOUT && error != EINTR && 2366 !NFS4_FRC_UNMT_ERR(error, vp->v_vfsp)) { 2367 lost_rqstp->lr_op = 0; 2368 return; 2369 } 2370 2371 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE, 2372 "nfs4close_save_lost_rqst: error %d", error)); 2373 2374 lost_rqstp->lr_op = OP_CLOSE; 2375 /* 2376 * The vp is held and rele'd via the recovery code. 2377 * See nfs4_save_lost_rqst. 2378 */ 2379 lost_rqstp->lr_vp = vp; 2380 lost_rqstp->lr_dvp = NULL; 2381 lost_rqstp->lr_oop = oop; 2382 lost_rqstp->lr_osp = osp; 2383 ASSERT(osp != NULL); 2384 ASSERT(mutex_owned(&osp->os_sync_lock)); 2385 osp->os_pending_close = 1; 2386 lost_rqstp->lr_lop = NULL; 2387 lost_rqstp->lr_cr = cr; 2388 lost_rqstp->lr_flk = NULL; 2389 lost_rqstp->lr_putfirst = FALSE; 2390 } 2391 2392 /* 2393 * Assumes you already have the open seqid sync grabbed as well as the 2394 * 'os_sync_lock'. Note: this will release the open seqid sync and 2395 * 'os_sync_lock' if client recovery starts. Calling functions have to 2396 * be prepared to handle this. 2397 * 2398 * 'recov' is returned as 1 if the CLOSE operation detected client recovery 2399 * was needed and was started, and that the calling function should retry 2400 * this function; otherwise it is returned as 0. 2401 * 2402 * Errors are returned via the nfs4_error_t parameter. 2403 */ 2404 static void 2405 nfs4close_otw(rnode4_t *rp, cred_t *cred_otw, nfs4_open_owner_t *oop, 2406 nfs4_open_stream_t *osp, int *recov, int *did_start_seqid_syncp, 2407 nfs4_close_type_t close_type, nfs4_error_t *ep, int *have_sync_lockp) 2408 { 2409 COMPOUND4args_clnt args; 2410 COMPOUND4res_clnt res; 2411 CLOSE4args *close_args; 2412 nfs_resop4 *resop; 2413 nfs_argop4 argop[3]; 2414 int doqueue = 1; 2415 mntinfo4_t *mi; 2416 seqid4 seqid; 2417 vnode_t *vp; 2418 bool_t needrecov = FALSE; 2419 nfs4_lost_rqst_t lost_rqst; 2420 hrtime_t t; 2421 2422 ASSERT(nfs_zone() == VTOMI4(RTOV4(rp))->mi_zone); 2423 2424 ASSERT(MUTEX_HELD(&osp->os_sync_lock)); 2425 2426 NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE, "nfs4close_otw")); 2427 2428 /* Only set this to 1 if recovery is started */ 2429 *recov = 0; 2430 2431 /* do the OTW call to close the file */ 2432 2433 if (close_type == CLOSE_RESEND) 2434 args.ctag = TAG_CLOSE_LOST; 2435 else if (close_type == CLOSE_AFTER_RESEND) 2436 args.ctag = TAG_CLOSE_UNDO; 2437 else 2438 args.ctag = TAG_CLOSE; 2439 2440 args.array_len = 3; 2441 args.array = argop; 2442 2443 vp = RTOV4(rp); 2444 2445 mi = VTOMI4(vp); 2446 2447 /* putfh target fh */ 2448 argop[0].argop = OP_CPUTFH; 2449 argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh; 2450 2451 argop[1].argop = OP_GETATTR; 2452 argop[1].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 2453 argop[1].nfs_argop4_u.opgetattr.mi = mi; 2454 2455 argop[2].argop = OP_CLOSE; 2456 close_args = &argop[2].nfs_argop4_u.opclose; 2457 2458 seqid = nfs4_get_open_seqid(oop) + 1; 2459 2460 close_args->seqid = seqid; 2461 close_args->open_stateid = osp->open_stateid; 2462 2463 NFS4_DEBUG(nfs4_client_call_debug, (CE_NOTE, 2464 "nfs4close_otw: %s call, rp %s", needrecov ? "recov" : "first", 2465 rnode4info(rp))); 2466 2467 t = gethrtime(); 2468 2469 rfs4call(mi, &args, &res, cred_otw, &doqueue, 0, ep); 2470 2471 if (!ep->error && nfs4_need_to_bump_seqid(&res)) { 2472 nfs4_set_open_seqid(seqid, oop, args.ctag); 2473 } 2474 2475 needrecov = nfs4_needs_recovery(ep, TRUE, mi->mi_vfsp); 2476 if (ep->error && !needrecov) { 2477 /* 2478 * if there was an error and no recovery is to be done 2479 * then then set up the file to flush its cache if 2480 * needed for the next caller. 2481 */ 2482 mutex_enter(&rp->r_statelock); 2483 PURGE_ATTRCACHE4_LOCKED(rp); 2484 rp->r_flags &= ~R4WRITEMODIFIED; 2485 mutex_exit(&rp->r_statelock); 2486 return; 2487 } 2488 2489 if (needrecov) { 2490 bool_t abort; 2491 nfs4_bseqid_entry_t *bsep = NULL; 2492 2493 if (close_type != CLOSE_RESEND) 2494 nfs4close_save_lost_rqst(ep->error, &lost_rqst, oop, 2495 osp, cred_otw, vp); 2496 2497 if (!ep->error && res.status == NFS4ERR_BAD_SEQID) 2498 bsep = nfs4_create_bseqid_entry(oop, NULL, vp, 2499 0, args.ctag, close_args->seqid); 2500 2501 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 2502 "nfs4close_otw: initiating recovery. error %d " 2503 "res.status %d", ep->error, res.status)); 2504 2505 /* 2506 * Drop the 'os_sync_lock' here so we don't hit 2507 * a potential recursive mutex_enter via an 2508 * 'open_stream_hold()'. 2509 */ 2510 mutex_exit(&osp->os_sync_lock); 2511 *have_sync_lockp = 0; 2512 abort = nfs4_start_recovery(ep, VTOMI4(vp), vp, NULL, NULL, 2513 (close_type != CLOSE_RESEND && 2514 lost_rqst.lr_op == OP_CLOSE) ? &lost_rqst : NULL, 2515 OP_CLOSE, bsep); 2516 2517 /* drop open seq sync, and let the calling function regrab it */ 2518 nfs4_end_open_seqid_sync(oop); 2519 *did_start_seqid_syncp = 0; 2520 2521 if (bsep) 2522 kmem_free(bsep, sizeof (*bsep)); 2523 /* 2524 * For signals, the caller wants to quit, so don't say to 2525 * retry. For forced unmount, if it's a user thread, it 2526 * wants to quit. If it's a recovery thread, the retry 2527 * will happen higher-up on the call stack. Either way, 2528 * don't say to retry. 2529 */ 2530 if (abort == FALSE && ep->error != EINTR && 2531 !NFS4_FRC_UNMT_ERR(ep->error, mi->mi_vfsp) && 2532 close_type != CLOSE_RESEND && 2533 close_type != CLOSE_AFTER_RESEND) 2534 *recov = 1; 2535 else 2536 *recov = 0; 2537 2538 if (!ep->error) 2539 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 2540 return; 2541 } 2542 2543 if (res.status) { 2544 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 2545 return; 2546 } 2547 2548 mutex_enter(&rp->r_statev4_lock); 2549 rp->created_v4 = 0; 2550 mutex_exit(&rp->r_statev4_lock); 2551 2552 resop = &res.array[2]; 2553 osp->open_stateid = resop->nfs_resop4_u.opclose.open_stateid; 2554 osp->os_valid = 0; 2555 2556 /* 2557 * This removes the reference obtained at OPEN; ie, when the 2558 * open stream structure was created. 2559 * 2560 * We don't have to worry about calling 'open_stream_rele' 2561 * since we our currently holding a reference to the open 2562 * stream which means the count cannot go to 0 with this 2563 * decrement. 2564 */ 2565 ASSERT(osp->os_ref_count >= 2); 2566 osp->os_ref_count--; 2567 2568 if (!ep->error) 2569 nfs4_attr_cache(vp, 2570 &res.array[1].nfs_resop4_u.opgetattr.ga_res, 2571 t, cred_otw, TRUE, NULL); 2572 2573 NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE, "nfs4close_otw:" 2574 " returning %d", ep->error)); 2575 2576 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 2577 } 2578 2579 /* ARGSUSED */ 2580 static int 2581 nfs4_read(vnode_t *vp, struct uio *uiop, int ioflag, cred_t *cr, 2582 caller_context_t *ct) 2583 { 2584 rnode4_t *rp; 2585 u_offset_t off; 2586 offset_t diff; 2587 uint_t on; 2588 uint_t n; 2589 caddr_t base; 2590 uint_t flags; 2591 int error; 2592 mntinfo4_t *mi; 2593 2594 rp = VTOR4(vp); 2595 2596 ASSERT(nfs_rw_lock_held(&rp->r_rwlock, RW_READER)); 2597 2598 if (IS_SHADOW(vp, rp)) 2599 vp = RTOV4(rp); 2600 2601 if (vp->v_type != VREG) 2602 return (EISDIR); 2603 2604 mi = VTOMI4(vp); 2605 2606 if (nfs_zone() != mi->mi_zone) 2607 return (EIO); 2608 2609 if (uiop->uio_resid == 0) 2610 return (0); 2611 2612 if (uiop->uio_loffset < 0 || uiop->uio_loffset + uiop->uio_resid < 0) 2613 return (EINVAL); 2614 2615 mutex_enter(&rp->r_statelock); 2616 if (rp->r_flags & R4RECOVERRP) 2617 error = (rp->r_error ? rp->r_error : EIO); 2618 else 2619 error = 0; 2620 mutex_exit(&rp->r_statelock); 2621 if (error) 2622 return (error); 2623 2624 /* 2625 * Bypass VM if caching has been disabled (e.g., locking) or if 2626 * using client-side direct I/O and the file is not mmap'd and 2627 * there are no cached pages. 2628 */ 2629 if ((vp->v_flag & VNOCACHE) || 2630 (((rp->r_flags & R4DIRECTIO) || (mi->mi_flags & MI4_DIRECTIO)) && 2631 rp->r_mapcnt == 0 && rp->r_inmap == 0 && !nfs4_has_pages(vp))) { 2632 size_t resid = 0; 2633 2634 return (nfs4read(vp, NULL, uiop->uio_loffset, 2635 uiop->uio_resid, &resid, cr, FALSE, uiop)); 2636 } 2637 2638 error = 0; 2639 2640 do { 2641 off = uiop->uio_loffset & MAXBMASK; /* mapping offset */ 2642 on = uiop->uio_loffset & MAXBOFFSET; /* Relative offset */ 2643 n = MIN(MAXBSIZE - on, uiop->uio_resid); 2644 2645 if (error = nfs4_validate_caches(vp, cr)) 2646 break; 2647 2648 mutex_enter(&rp->r_statelock); 2649 while (rp->r_flags & R4INCACHEPURGE) { 2650 if (!cv_wait_sig(&rp->r_cv, &rp->r_statelock)) { 2651 mutex_exit(&rp->r_statelock); 2652 return (EINTR); 2653 } 2654 } 2655 diff = rp->r_size - uiop->uio_loffset; 2656 mutex_exit(&rp->r_statelock); 2657 if (diff <= 0) 2658 break; 2659 if (diff < n) 2660 n = (uint_t)diff; 2661 2662 if (vpm_enable) { 2663 /* 2664 * Copy data. 2665 */ 2666 error = vpm_data_copy(vp, off + on, n, uiop, 2667 1, NULL, 0, S_READ); 2668 } else { 2669 base = segmap_getmapflt(segkmap, vp, off + on, n, 1, 2670 S_READ); 2671 2672 error = uiomove(base + on, n, UIO_READ, uiop); 2673 } 2674 2675 if (!error) { 2676 /* 2677 * If read a whole block or read to eof, 2678 * won't need this buffer again soon. 2679 */ 2680 mutex_enter(&rp->r_statelock); 2681 if (n + on == MAXBSIZE || 2682 uiop->uio_loffset == rp->r_size) 2683 flags = SM_DONTNEED; 2684 else 2685 flags = 0; 2686 mutex_exit(&rp->r_statelock); 2687 if (vpm_enable) { 2688 error = vpm_sync_pages(vp, off, n, flags); 2689 } else { 2690 error = segmap_release(segkmap, base, flags); 2691 } 2692 } else { 2693 if (vpm_enable) { 2694 (void) vpm_sync_pages(vp, off, n, 0); 2695 } else { 2696 (void) segmap_release(segkmap, base, 0); 2697 } 2698 } 2699 } while (!error && uiop->uio_resid > 0); 2700 2701 return (error); 2702 } 2703 2704 /* ARGSUSED */ 2705 static int 2706 nfs4_write(vnode_t *vp, struct uio *uiop, int ioflag, cred_t *cr, 2707 caller_context_t *ct) 2708 { 2709 rlim64_t limit = uiop->uio_llimit; 2710 rnode4_t *rp; 2711 u_offset_t off; 2712 caddr_t base; 2713 uint_t flags; 2714 int remainder; 2715 size_t n; 2716 int on; 2717 int error; 2718 int resid; 2719 u_offset_t offset; 2720 mntinfo4_t *mi; 2721 uint_t bsize; 2722 2723 rp = VTOR4(vp); 2724 2725 if (IS_SHADOW(vp, rp)) 2726 vp = RTOV4(rp); 2727 2728 if (vp->v_type != VREG) 2729 return (EISDIR); 2730 2731 mi = VTOMI4(vp); 2732 2733 if (nfs_zone() != mi->mi_zone) 2734 return (EIO); 2735 2736 if (uiop->uio_resid == 0) 2737 return (0); 2738 2739 mutex_enter(&rp->r_statelock); 2740 if (rp->r_flags & R4RECOVERRP) 2741 error = (rp->r_error ? rp->r_error : EIO); 2742 else 2743 error = 0; 2744 mutex_exit(&rp->r_statelock); 2745 if (error) 2746 return (error); 2747 2748 if (ioflag & FAPPEND) { 2749 struct vattr va; 2750 2751 /* 2752 * Must serialize if appending. 2753 */ 2754 if (nfs_rw_lock_held(&rp->r_rwlock, RW_READER)) { 2755 nfs_rw_exit(&rp->r_rwlock); 2756 if (nfs_rw_enter_sig(&rp->r_rwlock, RW_WRITER, 2757 INTR4(vp))) 2758 return (EINTR); 2759 } 2760 2761 va.va_mask = AT_SIZE; 2762 error = nfs4getattr(vp, &va, cr); 2763 if (error) 2764 return (error); 2765 uiop->uio_loffset = va.va_size; 2766 } 2767 2768 offset = uiop->uio_loffset + uiop->uio_resid; 2769 2770 if (uiop->uio_loffset < (offset_t)0 || offset < 0) 2771 return (EINVAL); 2772 2773 if (limit == RLIM64_INFINITY || limit > MAXOFFSET_T) 2774 limit = MAXOFFSET_T; 2775 2776 /* 2777 * Check to make sure that the process will not exceed 2778 * its limit on file size. It is okay to write up to 2779 * the limit, but not beyond. Thus, the write which 2780 * reaches the limit will be short and the next write 2781 * will return an error. 2782 */ 2783 remainder = 0; 2784 if (offset > uiop->uio_llimit) { 2785 remainder = offset - uiop->uio_llimit; 2786 uiop->uio_resid = uiop->uio_llimit - uiop->uio_loffset; 2787 if (uiop->uio_resid <= 0) { 2788 proc_t *p = ttoproc(curthread); 2789 2790 uiop->uio_resid += remainder; 2791 mutex_enter(&p->p_lock); 2792 (void) rctl_action(rctlproc_legacy[RLIMIT_FSIZE], 2793 p->p_rctls, p, RCA_UNSAFE_SIGINFO); 2794 mutex_exit(&p->p_lock); 2795 return (EFBIG); 2796 } 2797 } 2798 2799 /* update the change attribute, if we have a write delegation */ 2800 2801 mutex_enter(&rp->r_statev4_lock); 2802 if (rp->r_deleg_type == OPEN_DELEGATE_WRITE) 2803 rp->r_deleg_change++; 2804 2805 mutex_exit(&rp->r_statev4_lock); 2806 2807 if (nfs_rw_enter_sig(&rp->r_lkserlock, RW_READER, INTR4(vp))) 2808 return (EINTR); 2809 2810 /* 2811 * Bypass VM if caching has been disabled (e.g., locking) or if 2812 * using client-side direct I/O and the file is not mmap'd and 2813 * there are no cached pages. 2814 */ 2815 if ((vp->v_flag & VNOCACHE) || 2816 (((rp->r_flags & R4DIRECTIO) || (mi->mi_flags & MI4_DIRECTIO)) && 2817 rp->r_mapcnt == 0 && rp->r_inmap == 0 && !nfs4_has_pages(vp))) { 2818 size_t bufsize; 2819 int count; 2820 u_offset_t org_offset; 2821 stable_how4 stab_comm; 2822 nfs4_fwrite: 2823 if (rp->r_flags & R4STALE) { 2824 resid = uiop->uio_resid; 2825 offset = uiop->uio_loffset; 2826 error = rp->r_error; 2827 /* 2828 * A close may have cleared r_error, if so, 2829 * propagate ESTALE error return properly 2830 */ 2831 if (error == 0) 2832 error = ESTALE; 2833 goto bottom; 2834 } 2835 2836 bufsize = MIN(uiop->uio_resid, mi->mi_stsize); 2837 base = kmem_alloc(bufsize, KM_SLEEP); 2838 do { 2839 if (ioflag & FDSYNC) 2840 stab_comm = DATA_SYNC4; 2841 else 2842 stab_comm = FILE_SYNC4; 2843 resid = uiop->uio_resid; 2844 offset = uiop->uio_loffset; 2845 count = MIN(uiop->uio_resid, bufsize); 2846 org_offset = uiop->uio_loffset; 2847 error = uiomove(base, count, UIO_WRITE, uiop); 2848 if (!error) { 2849 error = nfs4write(vp, base, org_offset, 2850 count, cr, &stab_comm); 2851 if (!error) { 2852 mutex_enter(&rp->r_statelock); 2853 if (rp->r_size < uiop->uio_loffset) 2854 rp->r_size = uiop->uio_loffset; 2855 mutex_exit(&rp->r_statelock); 2856 } 2857 } 2858 } while (!error && uiop->uio_resid > 0); 2859 kmem_free(base, bufsize); 2860 goto bottom; 2861 } 2862 2863 bsize = vp->v_vfsp->vfs_bsize; 2864 2865 do { 2866 off = uiop->uio_loffset & MAXBMASK; /* mapping offset */ 2867 on = uiop->uio_loffset & MAXBOFFSET; /* Relative offset */ 2868 n = MIN(MAXBSIZE - on, uiop->uio_resid); 2869 2870 resid = uiop->uio_resid; 2871 offset = uiop->uio_loffset; 2872 2873 if (rp->r_flags & R4STALE) { 2874 error = rp->r_error; 2875 /* 2876 * A close may have cleared r_error, if so, 2877 * propagate ESTALE error return properly 2878 */ 2879 if (error == 0) 2880 error = ESTALE; 2881 break; 2882 } 2883 2884 /* 2885 * Don't create dirty pages faster than they 2886 * can be cleaned so that the system doesn't 2887 * get imbalanced. If the async queue is 2888 * maxed out, then wait for it to drain before 2889 * creating more dirty pages. Also, wait for 2890 * any threads doing pagewalks in the vop_getattr 2891 * entry points so that they don't block for 2892 * long periods. 2893 */ 2894 mutex_enter(&rp->r_statelock); 2895 while ((mi->mi_max_threads != 0 && 2896 rp->r_awcount > 2 * mi->mi_max_threads) || 2897 rp->r_gcount > 0) 2898 cv_wait(&rp->r_cv, &rp->r_statelock); 2899 mutex_exit(&rp->r_statelock); 2900 2901 /* 2902 * Touch the page and fault it in if it is not in core 2903 * before segmap_getmapflt or vpm_data_copy can lock it. 2904 * This is to avoid the deadlock if the buffer is mapped 2905 * to the same file through mmap which we want to write. 2906 */ 2907 uio_prefaultpages((long)n, uiop); 2908 2909 if (vpm_enable) { 2910 /* 2911 * It will use kpm mappings, so no need to 2912 * pass an address. 2913 */ 2914 error = writerp4(rp, NULL, n, uiop, 0); 2915 } else { 2916 if (segmap_kpm) { 2917 int pon = uiop->uio_loffset & PAGEOFFSET; 2918 size_t pn = MIN(PAGESIZE - pon, 2919 uiop->uio_resid); 2920 int pagecreate; 2921 2922 mutex_enter(&rp->r_statelock); 2923 pagecreate = (pon == 0) && (pn == PAGESIZE || 2924 uiop->uio_loffset + pn >= rp->r_size); 2925 mutex_exit(&rp->r_statelock); 2926 2927 base = segmap_getmapflt(segkmap, vp, off + on, 2928 pn, !pagecreate, S_WRITE); 2929 2930 error = writerp4(rp, base + pon, n, uiop, 2931 pagecreate); 2932 2933 } else { 2934 base = segmap_getmapflt(segkmap, vp, off + on, 2935 n, 0, S_READ); 2936 error = writerp4(rp, base + on, n, uiop, 0); 2937 } 2938 } 2939 2940 if (!error) { 2941 if (mi->mi_flags & MI4_NOAC) 2942 flags = SM_WRITE; 2943 else if ((uiop->uio_loffset % bsize) == 0 || 2944 IS_SWAPVP(vp)) { 2945 /* 2946 * Have written a whole block. 2947 * Start an asynchronous write 2948 * and mark the buffer to 2949 * indicate that it won't be 2950 * needed again soon. 2951 */ 2952 flags = SM_WRITE | SM_ASYNC | SM_DONTNEED; 2953 } else 2954 flags = 0; 2955 if ((ioflag & (FSYNC|FDSYNC)) || 2956 (rp->r_flags & R4OUTOFSPACE)) { 2957 flags &= ~SM_ASYNC; 2958 flags |= SM_WRITE; 2959 } 2960 if (vpm_enable) { 2961 error = vpm_sync_pages(vp, off, n, flags); 2962 } else { 2963 error = segmap_release(segkmap, base, flags); 2964 } 2965 } else { 2966 if (vpm_enable) { 2967 (void) vpm_sync_pages(vp, off, n, 0); 2968 } else { 2969 (void) segmap_release(segkmap, base, 0); 2970 } 2971 /* 2972 * In the event that we got an access error while 2973 * faulting in a page for a write-only file just 2974 * force a write. 2975 */ 2976 if (error == EACCES) 2977 goto nfs4_fwrite; 2978 } 2979 } while (!error && uiop->uio_resid > 0); 2980 2981 bottom: 2982 if (error) { 2983 uiop->uio_resid = resid + remainder; 2984 uiop->uio_loffset = offset; 2985 } else { 2986 uiop->uio_resid += remainder; 2987 2988 mutex_enter(&rp->r_statev4_lock); 2989 if (rp->r_deleg_type == OPEN_DELEGATE_WRITE) { 2990 gethrestime(&rp->r_attr.va_mtime); 2991 rp->r_attr.va_ctime = rp->r_attr.va_mtime; 2992 } 2993 mutex_exit(&rp->r_statev4_lock); 2994 } 2995 2996 nfs_rw_exit(&rp->r_lkserlock); 2997 2998 return (error); 2999 } 3000 3001 /* 3002 * Flags are composed of {B_ASYNC, B_INVAL, B_FREE, B_DONTNEED} 3003 */ 3004 static int 3005 nfs4_rdwrlbn(vnode_t *vp, page_t *pp, u_offset_t off, size_t len, 3006 int flags, cred_t *cr) 3007 { 3008 struct buf *bp; 3009 int error; 3010 page_t *savepp; 3011 uchar_t fsdata; 3012 stable_how4 stab_comm; 3013 3014 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 3015 bp = pageio_setup(pp, len, vp, flags); 3016 ASSERT(bp != NULL); 3017 3018 /* 3019 * pageio_setup should have set b_addr to 0. This 3020 * is correct since we want to do I/O on a page 3021 * boundary. bp_mapin will use this addr to calculate 3022 * an offset, and then set b_addr to the kernel virtual 3023 * address it allocated for us. 3024 */ 3025 ASSERT(bp->b_un.b_addr == 0); 3026 3027 bp->b_edev = 0; 3028 bp->b_dev = 0; 3029 bp->b_lblkno = lbtodb(off); 3030 bp->b_file = vp; 3031 bp->b_offset = (offset_t)off; 3032 bp_mapin(bp); 3033 3034 if ((flags & (B_WRITE|B_ASYNC)) == (B_WRITE|B_ASYNC) && 3035 freemem > desfree) 3036 stab_comm = UNSTABLE4; 3037 else 3038 stab_comm = FILE_SYNC4; 3039 3040 error = nfs4_bio(bp, &stab_comm, cr, FALSE); 3041 3042 bp_mapout(bp); 3043 pageio_done(bp); 3044 3045 if (stab_comm == UNSTABLE4) 3046 fsdata = C_DELAYCOMMIT; 3047 else 3048 fsdata = C_NOCOMMIT; 3049 3050 savepp = pp; 3051 do { 3052 pp->p_fsdata = fsdata; 3053 } while ((pp = pp->p_next) != savepp); 3054 3055 return (error); 3056 } 3057 3058 /* 3059 */ 3060 static int 3061 nfs4rdwr_check_osid(vnode_t *vp, nfs4_error_t *ep, cred_t *cr) 3062 { 3063 nfs4_open_owner_t *oop; 3064 nfs4_open_stream_t *osp; 3065 rnode4_t *rp = VTOR4(vp); 3066 mntinfo4_t *mi = VTOMI4(vp); 3067 int reopen_needed; 3068 3069 ASSERT(nfs_zone() == mi->mi_zone); 3070 3071 3072 oop = find_open_owner(cr, NFS4_PERM_CREATED, mi); 3073 if (!oop) 3074 return (EIO); 3075 3076 /* returns with 'os_sync_lock' held */ 3077 osp = find_open_stream(oop, rp); 3078 if (!osp) { 3079 open_owner_rele(oop); 3080 return (EIO); 3081 } 3082 3083 if (osp->os_failed_reopen) { 3084 mutex_exit(&osp->os_sync_lock); 3085 open_stream_rele(osp, rp); 3086 open_owner_rele(oop); 3087 return (EIO); 3088 } 3089 3090 /* 3091 * Determine whether a reopen is needed. If this 3092 * is a delegation open stream, then the os_delegation bit 3093 * should be set. 3094 */ 3095 3096 reopen_needed = osp->os_delegation; 3097 3098 mutex_exit(&osp->os_sync_lock); 3099 open_owner_rele(oop); 3100 3101 if (reopen_needed) { 3102 nfs4_error_zinit(ep); 3103 nfs4_reopen(vp, osp, ep, CLAIM_NULL, FALSE, FALSE); 3104 mutex_enter(&osp->os_sync_lock); 3105 if (ep->error || ep->stat || osp->os_failed_reopen) { 3106 mutex_exit(&osp->os_sync_lock); 3107 open_stream_rele(osp, rp); 3108 return (EIO); 3109 } 3110 mutex_exit(&osp->os_sync_lock); 3111 } 3112 open_stream_rele(osp, rp); 3113 3114 return (0); 3115 } 3116 3117 /* 3118 * Write to file. Writes to remote server in largest size 3119 * chunks that the server can handle. Write is synchronous. 3120 */ 3121 static int 3122 nfs4write(vnode_t *vp, caddr_t base, u_offset_t offset, int count, cred_t *cr, 3123 stable_how4 *stab_comm) 3124 { 3125 mntinfo4_t *mi; 3126 COMPOUND4args_clnt args; 3127 COMPOUND4res_clnt res; 3128 WRITE4args *wargs; 3129 WRITE4res *wres; 3130 nfs_argop4 argop[2]; 3131 nfs_resop4 *resop; 3132 int tsize; 3133 stable_how4 stable; 3134 rnode4_t *rp; 3135 int doqueue = 1; 3136 bool_t needrecov; 3137 nfs4_recov_state_t recov_state; 3138 nfs4_stateid_types_t sid_types; 3139 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 3140 int recov; 3141 3142 rp = VTOR4(vp); 3143 mi = VTOMI4(vp); 3144 3145 ASSERT(nfs_zone() == mi->mi_zone); 3146 3147 stable = *stab_comm; 3148 *stab_comm = FILE_SYNC4; 3149 3150 needrecov = FALSE; 3151 recov_state.rs_flags = 0; 3152 recov_state.rs_num_retry_despite_err = 0; 3153 nfs4_init_stateid_types(&sid_types); 3154 3155 /* Is curthread the recovery thread? */ 3156 mutex_enter(&mi->mi_lock); 3157 recov = (mi->mi_recovthread == curthread); 3158 mutex_exit(&mi->mi_lock); 3159 3160 recov_retry: 3161 args.ctag = TAG_WRITE; 3162 args.array_len = 2; 3163 args.array = argop; 3164 3165 if (!recov) { 3166 e.error = nfs4_start_fop(VTOMI4(vp), vp, NULL, OH_WRITE, 3167 &recov_state, NULL); 3168 if (e.error) 3169 return (e.error); 3170 } 3171 3172 /* 0. putfh target fh */ 3173 argop[0].argop = OP_CPUTFH; 3174 argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh; 3175 3176 /* 1. write */ 3177 nfs4args_write(&argop[1], stable, rp, cr, &wargs, &sid_types); 3178 3179 do { 3180 3181 wargs->offset = (offset4)offset; 3182 wargs->data_val = base; 3183 3184 if (mi->mi_io_kstats) { 3185 mutex_enter(&mi->mi_lock); 3186 kstat_runq_enter(KSTAT_IO_PTR(mi->mi_io_kstats)); 3187 mutex_exit(&mi->mi_lock); 3188 } 3189 3190 if ((vp->v_flag & VNOCACHE) || 3191 (rp->r_flags & R4DIRECTIO) || 3192 (mi->mi_flags & MI4_DIRECTIO)) 3193 tsize = MIN(mi->mi_stsize, count); 3194 else 3195 tsize = MIN(mi->mi_curwrite, count); 3196 wargs->data_len = (uint_t)tsize; 3197 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e); 3198 3199 if (mi->mi_io_kstats) { 3200 mutex_enter(&mi->mi_lock); 3201 kstat_runq_exit(KSTAT_IO_PTR(mi->mi_io_kstats)); 3202 mutex_exit(&mi->mi_lock); 3203 } 3204 3205 if (!recov) { 3206 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp); 3207 if (e.error && !needrecov) { 3208 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_WRITE, 3209 &recov_state, needrecov); 3210 return (e.error); 3211 } 3212 } else { 3213 if (e.error) 3214 return (e.error); 3215 } 3216 3217 /* 3218 * Do handling of OLD_STATEID outside 3219 * of the normal recovery framework. 3220 * 3221 * If write receives a BAD stateid error while using a 3222 * delegation stateid, retry using the open stateid (if it 3223 * exists). If it doesn't have an open stateid, reopen the 3224 * file first, then retry. 3225 */ 3226 if (!e.error && res.status == NFS4ERR_OLD_STATEID && 3227 sid_types.cur_sid_type != SPEC_SID) { 3228 nfs4_save_stateid(&wargs->stateid, &sid_types); 3229 if (!recov) 3230 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_WRITE, 3231 &recov_state, needrecov); 3232 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3233 goto recov_retry; 3234 } else if (e.error == 0 && res.status == NFS4ERR_BAD_STATEID && 3235 sid_types.cur_sid_type == DEL_SID) { 3236 nfs4_save_stateid(&wargs->stateid, &sid_types); 3237 mutex_enter(&rp->r_statev4_lock); 3238 rp->r_deleg_return_pending = TRUE; 3239 mutex_exit(&rp->r_statev4_lock); 3240 if (nfs4rdwr_check_osid(vp, &e, cr)) { 3241 if (!recov) 3242 nfs4_end_fop(mi, vp, NULL, OH_WRITE, 3243 &recov_state, needrecov); 3244 (void) xdr_free(xdr_COMPOUND4res_clnt, 3245 (caddr_t)&res); 3246 return (EIO); 3247 } 3248 if (!recov) 3249 nfs4_end_fop(mi, vp, NULL, OH_WRITE, 3250 &recov_state, needrecov); 3251 /* hold needed for nfs4delegreturn_thread */ 3252 VN_HOLD(vp); 3253 nfs4delegreturn_async(rp, (NFS4_DR_PUSH|NFS4_DR_REOPEN| 3254 NFS4_DR_DISCARD), FALSE); 3255 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3256 goto recov_retry; 3257 } 3258 3259 if (needrecov) { 3260 bool_t abort; 3261 3262 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 3263 "nfs4write: client got error %d, res.status %d" 3264 ", so start recovery", e.error, res.status)); 3265 3266 abort = nfs4_start_recovery(&e, 3267 VTOMI4(vp), vp, NULL, &wargs->stateid, 3268 NULL, OP_WRITE, NULL); 3269 if (!e.error) { 3270 e.error = geterrno4(res.status); 3271 (void) xdr_free(xdr_COMPOUND4res_clnt, 3272 (caddr_t)&res); 3273 } 3274 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_WRITE, 3275 &recov_state, needrecov); 3276 if (abort == FALSE) 3277 goto recov_retry; 3278 return (e.error); 3279 } 3280 3281 if (res.status) { 3282 e.error = geterrno4(res.status); 3283 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3284 if (!recov) 3285 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_WRITE, 3286 &recov_state, needrecov); 3287 return (e.error); 3288 } 3289 3290 resop = &res.array[1]; /* write res */ 3291 wres = &resop->nfs_resop4_u.opwrite; 3292 3293 if ((int)wres->count > tsize) { 3294 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3295 3296 zcmn_err(getzoneid(), CE_WARN, 3297 "nfs4write: server wrote %u, requested was %u", 3298 (int)wres->count, tsize); 3299 if (!recov) 3300 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_WRITE, 3301 &recov_state, needrecov); 3302 return (EIO); 3303 } 3304 if (wres->committed == UNSTABLE4) { 3305 *stab_comm = UNSTABLE4; 3306 if (wargs->stable == DATA_SYNC4 || 3307 wargs->stable == FILE_SYNC4) { 3308 (void) xdr_free(xdr_COMPOUND4res_clnt, 3309 (caddr_t)&res); 3310 zcmn_err(getzoneid(), CE_WARN, 3311 "nfs4write: server %s did not commit " 3312 "to stable storage", 3313 rp->r_server->sv_hostname); 3314 if (!recov) 3315 nfs4_end_fop(VTOMI4(vp), vp, NULL, 3316 OH_WRITE, &recov_state, needrecov); 3317 return (EIO); 3318 } 3319 } 3320 3321 tsize = (int)wres->count; 3322 count -= tsize; 3323 base += tsize; 3324 offset += tsize; 3325 if (mi->mi_io_kstats) { 3326 mutex_enter(&mi->mi_lock); 3327 KSTAT_IO_PTR(mi->mi_io_kstats)->writes++; 3328 KSTAT_IO_PTR(mi->mi_io_kstats)->nwritten += 3329 tsize; 3330 mutex_exit(&mi->mi_lock); 3331 } 3332 lwp_stat_update(LWP_STAT_OUBLK, 1); 3333 mutex_enter(&rp->r_statelock); 3334 if (rp->r_flags & R4HAVEVERF) { 3335 if (rp->r_writeverf != wres->writeverf) { 3336 nfs4_set_mod(vp); 3337 rp->r_writeverf = wres->writeverf; 3338 } 3339 } else { 3340 rp->r_writeverf = wres->writeverf; 3341 rp->r_flags |= R4HAVEVERF; 3342 } 3343 PURGE_ATTRCACHE4_LOCKED(rp); 3344 rp->r_flags |= R4WRITEMODIFIED; 3345 gethrestime(&rp->r_attr.va_mtime); 3346 rp->r_attr.va_ctime = rp->r_attr.va_mtime; 3347 mutex_exit(&rp->r_statelock); 3348 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3349 } while (count); 3350 3351 if (!recov) 3352 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_WRITE, &recov_state, 3353 needrecov); 3354 3355 return (e.error); 3356 } 3357 3358 /* 3359 * Read from a file. Reads data in largest chunks our interface can handle. 3360 */ 3361 static int 3362 nfs4read(vnode_t *vp, caddr_t base, offset_t offset, int count, 3363 size_t *residp, cred_t *cr, bool_t async, struct uio *uiop) 3364 { 3365 mntinfo4_t *mi; 3366 COMPOUND4args_clnt args; 3367 COMPOUND4res_clnt res; 3368 READ4args *rargs; 3369 nfs_argop4 argop[2]; 3370 int tsize; 3371 int doqueue; 3372 rnode4_t *rp; 3373 int data_len; 3374 bool_t is_eof; 3375 bool_t needrecov = FALSE; 3376 nfs4_recov_state_t recov_state; 3377 nfs4_stateid_types_t sid_types; 3378 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 3379 3380 rp = VTOR4(vp); 3381 mi = VTOMI4(vp); 3382 doqueue = 1; 3383 3384 ASSERT(nfs_zone() == mi->mi_zone); 3385 3386 args.ctag = async ? TAG_READAHEAD : TAG_READ; 3387 3388 args.array_len = 2; 3389 args.array = argop; 3390 3391 nfs4_init_stateid_types(&sid_types); 3392 3393 recov_state.rs_flags = 0; 3394 recov_state.rs_num_retry_despite_err = 0; 3395 3396 recov_retry: 3397 e.error = nfs4_start_fop(mi, vp, NULL, OH_READ, 3398 &recov_state, NULL); 3399 if (e.error) 3400 return (e.error); 3401 3402 /* putfh target fh */ 3403 argop[0].argop = OP_CPUTFH; 3404 argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh; 3405 3406 /* read */ 3407 argop[1].argop = OP_READ; 3408 rargs = &argop[1].nfs_argop4_u.opread; 3409 rargs->stateid = nfs4_get_stateid(cr, rp, curproc->p_pidp->pid_id, mi, 3410 OP_READ, &sid_types, async); 3411 3412 do { 3413 if (mi->mi_io_kstats) { 3414 mutex_enter(&mi->mi_lock); 3415 kstat_runq_enter(KSTAT_IO_PTR(mi->mi_io_kstats)); 3416 mutex_exit(&mi->mi_lock); 3417 } 3418 3419 NFS4_DEBUG(nfs4_client_call_debug, (CE_NOTE, 3420 "nfs4read: %s call, rp %s", 3421 needrecov ? "recov" : "first", 3422 rnode4info(rp))); 3423 3424 if ((vp->v_flag & VNOCACHE) || 3425 (rp->r_flags & R4DIRECTIO) || 3426 (mi->mi_flags & MI4_DIRECTIO)) 3427 tsize = MIN(mi->mi_tsize, count); 3428 else 3429 tsize = MIN(mi->mi_curread, count); 3430 3431 rargs->offset = (offset4)offset; 3432 rargs->count = (count4)tsize; 3433 rargs->res_data_val_alt = NULL; 3434 rargs->res_mblk = NULL; 3435 rargs->res_uiop = NULL; 3436 rargs->res_maxsize = 0; 3437 rargs->wlist = NULL; 3438 3439 if (uiop) 3440 rargs->res_uiop = uiop; 3441 else 3442 rargs->res_data_val_alt = base; 3443 rargs->res_maxsize = tsize; 3444 3445 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e); 3446 #ifdef DEBUG 3447 if (nfs4read_error_inject) { 3448 res.status = nfs4read_error_inject; 3449 nfs4read_error_inject = 0; 3450 } 3451 #endif 3452 3453 if (mi->mi_io_kstats) { 3454 mutex_enter(&mi->mi_lock); 3455 kstat_runq_exit(KSTAT_IO_PTR(mi->mi_io_kstats)); 3456 mutex_exit(&mi->mi_lock); 3457 } 3458 3459 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp); 3460 if (e.error != 0 && !needrecov) { 3461 nfs4_end_fop(mi, vp, NULL, OH_READ, 3462 &recov_state, needrecov); 3463 return (e.error); 3464 } 3465 3466 /* 3467 * Do proper retry for OLD and BAD stateid errors outside 3468 * of the normal recovery framework. There are two differences 3469 * between async and sync reads. The first is that we allow 3470 * retry on BAD_STATEID for async reads, but not sync reads. 3471 * The second is that we mark the file dead for a failed 3472 * attempt with a special stateid for sync reads, but just 3473 * return EIO for async reads. 3474 * 3475 * If a sync read receives a BAD stateid error while using a 3476 * delegation stateid, retry using the open stateid (if it 3477 * exists). If it doesn't have an open stateid, reopen the 3478 * file first, then retry. 3479 */ 3480 if (e.error == 0 && (res.status == NFS4ERR_OLD_STATEID || 3481 res.status == NFS4ERR_BAD_STATEID) && async) { 3482 nfs4_end_fop(mi, vp, NULL, OH_READ, 3483 &recov_state, needrecov); 3484 if (sid_types.cur_sid_type == SPEC_SID) { 3485 (void) xdr_free(xdr_COMPOUND4res_clnt, 3486 (caddr_t)&res); 3487 return (EIO); 3488 } 3489 nfs4_save_stateid(&rargs->stateid, &sid_types); 3490 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3491 goto recov_retry; 3492 } else if (e.error == 0 && res.status == NFS4ERR_OLD_STATEID && 3493 !async && sid_types.cur_sid_type != SPEC_SID) { 3494 nfs4_save_stateid(&rargs->stateid, &sid_types); 3495 nfs4_end_fop(mi, vp, NULL, OH_READ, 3496 &recov_state, needrecov); 3497 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3498 goto recov_retry; 3499 } else if (e.error == 0 && res.status == NFS4ERR_BAD_STATEID && 3500 sid_types.cur_sid_type == DEL_SID) { 3501 nfs4_save_stateid(&rargs->stateid, &sid_types); 3502 mutex_enter(&rp->r_statev4_lock); 3503 rp->r_deleg_return_pending = TRUE; 3504 mutex_exit(&rp->r_statev4_lock); 3505 if (nfs4rdwr_check_osid(vp, &e, cr)) { 3506 nfs4_end_fop(mi, vp, NULL, OH_READ, 3507 &recov_state, needrecov); 3508 (void) xdr_free(xdr_COMPOUND4res_clnt, 3509 (caddr_t)&res); 3510 return (EIO); 3511 } 3512 nfs4_end_fop(mi, vp, NULL, OH_READ, 3513 &recov_state, needrecov); 3514 /* hold needed for nfs4delegreturn_thread */ 3515 VN_HOLD(vp); 3516 nfs4delegreturn_async(rp, (NFS4_DR_PUSH|NFS4_DR_REOPEN| 3517 NFS4_DR_DISCARD), FALSE); 3518 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3519 goto recov_retry; 3520 } 3521 if (needrecov) { 3522 bool_t abort; 3523 3524 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 3525 "nfs4read: initiating recovery\n")); 3526 abort = nfs4_start_recovery(&e, 3527 mi, vp, NULL, &rargs->stateid, 3528 NULL, OP_READ, NULL); 3529 nfs4_end_fop(mi, vp, NULL, OH_READ, 3530 &recov_state, needrecov); 3531 /* 3532 * Do not retry if we got OLD_STATEID using a special 3533 * stateid. This avoids looping with a broken server. 3534 */ 3535 if (e.error == 0 && res.status == NFS4ERR_OLD_STATEID && 3536 sid_types.cur_sid_type == SPEC_SID) 3537 abort = TRUE; 3538 3539 if (abort == FALSE) { 3540 /* 3541 * Need to retry all possible stateids in 3542 * case the recovery error wasn't stateid 3543 * related or the stateids have become 3544 * stale (server reboot). 3545 */ 3546 nfs4_init_stateid_types(&sid_types); 3547 (void) xdr_free(xdr_COMPOUND4res_clnt, 3548 (caddr_t)&res); 3549 goto recov_retry; 3550 } 3551 3552 if (!e.error) { 3553 e.error = geterrno4(res.status); 3554 (void) xdr_free(xdr_COMPOUND4res_clnt, 3555 (caddr_t)&res); 3556 } 3557 return (e.error); 3558 } 3559 3560 if (res.status) { 3561 e.error = geterrno4(res.status); 3562 nfs4_end_fop(mi, vp, NULL, OH_READ, 3563 &recov_state, needrecov); 3564 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3565 return (e.error); 3566 } 3567 3568 data_len = res.array[1].nfs_resop4_u.opread.data_len; 3569 count -= data_len; 3570 if (base) 3571 base += data_len; 3572 offset += data_len; 3573 if (mi->mi_io_kstats) { 3574 mutex_enter(&mi->mi_lock); 3575 KSTAT_IO_PTR(mi->mi_io_kstats)->reads++; 3576 KSTAT_IO_PTR(mi->mi_io_kstats)->nread += data_len; 3577 mutex_exit(&mi->mi_lock); 3578 } 3579 lwp_stat_update(LWP_STAT_INBLK, 1); 3580 is_eof = res.array[1].nfs_resop4_u.opread.eof; 3581 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3582 3583 } while (count && !is_eof); 3584 3585 *residp = count; 3586 3587 nfs4_end_fop(mi, vp, NULL, OH_READ, &recov_state, needrecov); 3588 3589 return (e.error); 3590 } 3591 3592 /* ARGSUSED */ 3593 static int 3594 nfs4_ioctl(vnode_t *vp, int cmd, intptr_t arg, int flag, cred_t *cr, int *rvalp, 3595 caller_context_t *ct) 3596 { 3597 if (nfs_zone() != VTOMI4(vp)->mi_zone) 3598 return (EIO); 3599 switch (cmd) { 3600 case _FIODIRECTIO: 3601 return (nfs4_directio(vp, (int)arg, cr)); 3602 default: 3603 return (ENOTTY); 3604 } 3605 } 3606 3607 /* ARGSUSED */ 3608 int 3609 nfs4_getattr(vnode_t *vp, struct vattr *vap, int flags, cred_t *cr, 3610 caller_context_t *ct) 3611 { 3612 int error; 3613 rnode4_t *rp = VTOR4(vp); 3614 3615 if (nfs_zone() != VTOMI4(vp)->mi_zone) 3616 return (EIO); 3617 /* 3618 * If it has been specified that the return value will 3619 * just be used as a hint, and we are only being asked 3620 * for size, fsid or rdevid, then return the client's 3621 * notion of these values without checking to make sure 3622 * that the attribute cache is up to date. 3623 * The whole point is to avoid an over the wire GETATTR 3624 * call. 3625 */ 3626 if (flags & ATTR_HINT) { 3627 if (vap->va_mask == 3628 (vap->va_mask & (AT_SIZE | AT_FSID | AT_RDEV))) { 3629 mutex_enter(&rp->r_statelock); 3630 if (vap->va_mask | AT_SIZE) 3631 vap->va_size = rp->r_size; 3632 if (vap->va_mask | AT_FSID) 3633 vap->va_fsid = rp->r_attr.va_fsid; 3634 if (vap->va_mask | AT_RDEV) 3635 vap->va_rdev = rp->r_attr.va_rdev; 3636 mutex_exit(&rp->r_statelock); 3637 return (0); 3638 } 3639 } 3640 3641 /* 3642 * Only need to flush pages if asking for the mtime 3643 * and if there any dirty pages or any outstanding 3644 * asynchronous (write) requests for this file. 3645 */ 3646 if (vap->va_mask & AT_MTIME) { 3647 rp = VTOR4(vp); 3648 if (nfs4_has_pages(vp)) { 3649 mutex_enter(&rp->r_statev4_lock); 3650 if (rp->r_deleg_type != OPEN_DELEGATE_WRITE) { 3651 mutex_exit(&rp->r_statev4_lock); 3652 if (rp->r_flags & R4DIRTY || 3653 rp->r_awcount > 0) { 3654 mutex_enter(&rp->r_statelock); 3655 rp->r_gcount++; 3656 mutex_exit(&rp->r_statelock); 3657 error = 3658 nfs4_putpage(vp, (u_offset_t)0, 3659 0, 0, cr, NULL); 3660 mutex_enter(&rp->r_statelock); 3661 if (error && (error == ENOSPC || 3662 error == EDQUOT)) { 3663 if (!rp->r_error) 3664 rp->r_error = error; 3665 } 3666 if (--rp->r_gcount == 0) 3667 cv_broadcast(&rp->r_cv); 3668 mutex_exit(&rp->r_statelock); 3669 } 3670 } else { 3671 mutex_exit(&rp->r_statev4_lock); 3672 } 3673 } 3674 } 3675 return (nfs4getattr(vp, vap, cr)); 3676 } 3677 3678 int 3679 nfs4_compare_modes(mode_t from_server, mode_t on_client) 3680 { 3681 /* 3682 * If these are the only two bits cleared 3683 * on the server then return 0 (OK) else 3684 * return 1 (BAD). 3685 */ 3686 on_client &= ~(S_ISUID|S_ISGID); 3687 if (on_client == from_server) 3688 return (0); 3689 else 3690 return (1); 3691 } 3692 3693 /*ARGSUSED4*/ 3694 static int 3695 nfs4_setattr(vnode_t *vp, struct vattr *vap, int flags, cred_t *cr, 3696 caller_context_t *ct) 3697 { 3698 if (vap->va_mask & AT_NOSET) 3699 return (EINVAL); 3700 3701 if (nfs_zone() != VTOMI4(vp)->mi_zone) 3702 return (EIO); 3703 3704 /* 3705 * Don't call secpolicy_vnode_setattr, the client cannot 3706 * use its cached attributes to make security decisions 3707 * as the server may be faking mode bits or mapping uid/gid. 3708 * Always just let the server to the checking. 3709 * If we provide the ability to remove basic priviledges 3710 * to setattr (e.g. basic without chmod) then we will 3711 * need to add a check here before calling the server. 3712 */ 3713 3714 return (nfs4setattr(vp, vap, flags, cr, NULL)); 3715 } 3716 3717 /* 3718 * To replace the "guarded" version 3 setattr, we use two types of compound 3719 * setattr requests: 3720 * 1. The "normal" setattr, used when the size of the file isn't being 3721 * changed - { Putfh <fh>; Setattr; Getattr }/ 3722 * 2. If the size is changed, precede Setattr with: Getattr; Verify 3723 * with only ctime as the argument. If the server ctime differs from 3724 * what is cached on the client, the verify will fail, but we would 3725 * already have the ctime from the preceding getattr, so just set it 3726 * and retry. Thus the compound here is - { Putfh <fh>; Getattr; Verify; 3727 * Setattr; Getattr }. 3728 * 3729 * The vsecattr_t * input parameter will be non-NULL if ACLs are being set in 3730 * this setattr and NULL if they are not. 3731 */ 3732 static int 3733 nfs4setattr(vnode_t *vp, struct vattr *vap, int flags, cred_t *cr, 3734 vsecattr_t *vsap) 3735 { 3736 COMPOUND4args_clnt args; 3737 COMPOUND4res_clnt res, *resp = NULL; 3738 nfs4_ga_res_t *garp = NULL; 3739 int numops = 3; /* { Putfh; Setattr; Getattr } */ 3740 nfs_argop4 argop[5]; 3741 int verify_argop = -1; 3742 int setattr_argop = 1; 3743 nfs_resop4 *resop; 3744 vattr_t va; 3745 rnode4_t *rp; 3746 int doqueue = 1; 3747 uint_t mask = vap->va_mask; 3748 mode_t omode; 3749 vsecattr_t *vsp; 3750 timestruc_t ctime; 3751 bool_t needrecov = FALSE; 3752 nfs4_recov_state_t recov_state; 3753 nfs4_stateid_types_t sid_types; 3754 stateid4 stateid; 3755 hrtime_t t; 3756 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 3757 servinfo4_t *svp; 3758 bitmap4 supp_attrs; 3759 3760 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 3761 rp = VTOR4(vp); 3762 nfs4_init_stateid_types(&sid_types); 3763 3764 /* 3765 * Only need to flush pages if there are any pages and 3766 * if the file is marked as dirty in some fashion. The 3767 * file must be flushed so that we can accurately 3768 * determine the size of the file and the cached data 3769 * after the SETATTR returns. A file is considered to 3770 * be dirty if it is either marked with R4DIRTY, has 3771 * outstanding i/o's active, or is mmap'd. In this 3772 * last case, we can't tell whether there are dirty 3773 * pages, so we flush just to be sure. 3774 */ 3775 if (nfs4_has_pages(vp) && 3776 ((rp->r_flags & R4DIRTY) || 3777 rp->r_count > 0 || 3778 rp->r_mapcnt > 0)) { 3779 ASSERT(vp->v_type != VCHR); 3780 e.error = nfs4_putpage(vp, (offset_t)0, 0, 0, cr, NULL); 3781 if (e.error && (e.error == ENOSPC || e.error == EDQUOT)) { 3782 mutex_enter(&rp->r_statelock); 3783 if (!rp->r_error) 3784 rp->r_error = e.error; 3785 mutex_exit(&rp->r_statelock); 3786 } 3787 } 3788 3789 if (mask & AT_SIZE) { 3790 /* 3791 * Verification setattr compound for non-deleg AT_SIZE: 3792 * { Putfh; Getattr; Verify; Setattr; Getattr } 3793 * Set ctime local here (outside the do_again label) 3794 * so that subsequent retries (after failed VERIFY) 3795 * will use ctime from GETATTR results (from failed 3796 * verify compound) as VERIFY arg. 3797 * If file has delegation, then VERIFY(time_metadata) 3798 * is of little added value, so don't bother. 3799 */ 3800 mutex_enter(&rp->r_statev4_lock); 3801 if (rp->r_deleg_type == OPEN_DELEGATE_NONE || 3802 rp->r_deleg_return_pending) { 3803 numops = 5; 3804 ctime = rp->r_attr.va_ctime; 3805 } 3806 mutex_exit(&rp->r_statev4_lock); 3807 } 3808 3809 recov_state.rs_flags = 0; 3810 recov_state.rs_num_retry_despite_err = 0; 3811 3812 args.ctag = TAG_SETATTR; 3813 do_again: 3814 recov_retry: 3815 setattr_argop = numops - 2; 3816 3817 args.array = argop; 3818 args.array_len = numops; 3819 3820 e.error = nfs4_start_op(VTOMI4(vp), vp, NULL, &recov_state); 3821 if (e.error) 3822 return (e.error); 3823 3824 3825 /* putfh target fh */ 3826 argop[0].argop = OP_CPUTFH; 3827 argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh; 3828 3829 if (numops == 5) { 3830 /* 3831 * We only care about the ctime, but need to get mtime 3832 * and size for proper cache update. 3833 */ 3834 /* getattr */ 3835 argop[1].argop = OP_GETATTR; 3836 argop[1].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 3837 argop[1].nfs_argop4_u.opgetattr.mi = VTOMI4(vp); 3838 3839 /* verify - set later in loop */ 3840 verify_argop = 2; 3841 } 3842 3843 /* setattr */ 3844 svp = rp->r_server; 3845 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0); 3846 supp_attrs = svp->sv_supp_attrs; 3847 nfs_rw_exit(&svp->sv_lock); 3848 3849 nfs4args_setattr(&argop[setattr_argop], vap, vsap, flags, rp, cr, 3850 supp_attrs, &e.error, &sid_types); 3851 stateid = argop[setattr_argop].nfs_argop4_u.opsetattr.stateid; 3852 if (e.error) { 3853 /* req time field(s) overflow - return immediately */ 3854 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state, needrecov); 3855 nfs4_fattr4_free(&argop[setattr_argop].nfs_argop4_u. 3856 opsetattr.obj_attributes); 3857 return (e.error); 3858 } 3859 omode = rp->r_attr.va_mode; 3860 3861 /* getattr */ 3862 argop[numops-1].argop = OP_GETATTR; 3863 argop[numops-1].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 3864 /* 3865 * If we are setting the ACL (indicated only by vsap != NULL), request 3866 * the ACL in this getattr. The ACL returned from this getattr will be 3867 * used in updating the ACL cache. 3868 */ 3869 if (vsap != NULL) 3870 argop[numops-1].nfs_argop4_u.opgetattr.attr_request |= 3871 FATTR4_ACL_MASK; 3872 argop[numops-1].nfs_argop4_u.opgetattr.mi = VTOMI4(vp); 3873 3874 /* 3875 * setattr iterates if the object size is set and the cached ctime 3876 * does not match the file ctime. In that case, verify the ctime first. 3877 */ 3878 3879 do { 3880 if (verify_argop != -1) { 3881 /* 3882 * Verify that the ctime match before doing setattr. 3883 */ 3884 va.va_mask = AT_CTIME; 3885 va.va_ctime = ctime; 3886 svp = rp->r_server; 3887 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0); 3888 supp_attrs = svp->sv_supp_attrs; 3889 nfs_rw_exit(&svp->sv_lock); 3890 e.error = nfs4args_verify(&argop[verify_argop], &va, 3891 OP_VERIFY, supp_attrs); 3892 if (e.error) { 3893 /* req time field(s) overflow - return */ 3894 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state, 3895 needrecov); 3896 break; 3897 } 3898 } 3899 3900 doqueue = 1; 3901 3902 t = gethrtime(); 3903 3904 rfs4call(VTOMI4(vp), &args, &res, cr, &doqueue, 0, &e); 3905 3906 /* 3907 * Purge the access cache and ACL cache if changing either the 3908 * owner of the file, the group owner, or the mode. These may 3909 * change the access permissions of the file, so purge old 3910 * information and start over again. 3911 */ 3912 if (mask & (AT_UID | AT_GID | AT_MODE)) { 3913 (void) nfs4_access_purge_rp(rp); 3914 if (rp->r_secattr != NULL) { 3915 mutex_enter(&rp->r_statelock); 3916 vsp = rp->r_secattr; 3917 rp->r_secattr = NULL; 3918 mutex_exit(&rp->r_statelock); 3919 if (vsp != NULL) 3920 nfs4_acl_free_cache(vsp); 3921 } 3922 } 3923 3924 /* 3925 * If res.array_len == numops, then everything succeeded, 3926 * except for possibly the final getattr. If only the 3927 * last getattr failed, give up, and don't try recovery. 3928 */ 3929 if (res.array_len == numops) { 3930 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state, 3931 needrecov); 3932 if (! e.error) 3933 resp = &res; 3934 break; 3935 } 3936 3937 /* 3938 * if either rpc call failed or completely succeeded - done 3939 */ 3940 needrecov = nfs4_needs_recovery(&e, FALSE, vp->v_vfsp); 3941 if (e.error) { 3942 PURGE_ATTRCACHE4(vp); 3943 if (!needrecov) { 3944 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state, 3945 needrecov); 3946 break; 3947 } 3948 } 3949 3950 /* 3951 * Do proper retry for OLD_STATEID outside of the normal 3952 * recovery framework. 3953 */ 3954 if (e.error == 0 && res.status == NFS4ERR_OLD_STATEID && 3955 sid_types.cur_sid_type != SPEC_SID && 3956 sid_types.cur_sid_type != NO_SID) { 3957 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state, 3958 needrecov); 3959 nfs4_save_stateid(&stateid, &sid_types); 3960 nfs4_fattr4_free(&argop[setattr_argop].nfs_argop4_u. 3961 opsetattr.obj_attributes); 3962 if (verify_argop != -1) { 3963 nfs4args_verify_free(&argop[verify_argop]); 3964 verify_argop = -1; 3965 } 3966 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3967 goto recov_retry; 3968 } 3969 3970 if (needrecov) { 3971 bool_t abort; 3972 3973 abort = nfs4_start_recovery(&e, 3974 VTOMI4(vp), vp, NULL, NULL, NULL, 3975 OP_SETATTR, NULL); 3976 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state, 3977 needrecov); 3978 /* 3979 * Do not retry if we failed with OLD_STATEID using 3980 * a special stateid. This is done to avoid looping 3981 * with a broken server. 3982 */ 3983 if (e.error == 0 && res.status == NFS4ERR_OLD_STATEID && 3984 (sid_types.cur_sid_type == SPEC_SID || 3985 sid_types.cur_sid_type == NO_SID)) 3986 abort = TRUE; 3987 if (!e.error) { 3988 if (res.status == NFS4ERR_BADOWNER) 3989 nfs4_log_badowner(VTOMI4(vp), 3990 OP_SETATTR); 3991 3992 e.error = geterrno4(res.status); 3993 (void) xdr_free(xdr_COMPOUND4res_clnt, 3994 (caddr_t)&res); 3995 } 3996 nfs4_fattr4_free(&argop[setattr_argop].nfs_argop4_u. 3997 opsetattr.obj_attributes); 3998 if (verify_argop != -1) { 3999 nfs4args_verify_free(&argop[verify_argop]); 4000 verify_argop = -1; 4001 } 4002 if (abort == FALSE) { 4003 /* 4004 * Need to retry all possible stateids in 4005 * case the recovery error wasn't stateid 4006 * related or the stateids have become 4007 * stale (server reboot). 4008 */ 4009 nfs4_init_stateid_types(&sid_types); 4010 goto recov_retry; 4011 } 4012 return (e.error); 4013 } 4014 4015 /* 4016 * Need to call nfs4_end_op before nfs4getattr to 4017 * avoid potential nfs4_start_op deadlock. See RFE 4018 * 4777612. Calls to nfs4_invalidate_pages() and 4019 * nfs4_purge_stale_fh() might also generate over the 4020 * wire calls which my cause nfs4_start_op() deadlock. 4021 */ 4022 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state, needrecov); 4023 4024 /* 4025 * Check to update lease. 4026 */ 4027 resp = &res; 4028 if (res.status == NFS4_OK) { 4029 break; 4030 } 4031 4032 /* 4033 * Check if verify failed to see if try again 4034 */ 4035 if ((verify_argop == -1) || (res.array_len != 3)) { 4036 /* 4037 * can't continue... 4038 */ 4039 if (res.status == NFS4ERR_BADOWNER) 4040 nfs4_log_badowner(VTOMI4(vp), OP_SETATTR); 4041 4042 e.error = geterrno4(res.status); 4043 } else { 4044 /* 4045 * When the verify request fails, the client ctime is 4046 * not in sync with the server. This is the same as 4047 * the version 3 "not synchronized" error, and we 4048 * handle it in a similar manner (XXX do we need to???). 4049 * Use the ctime returned in the first getattr for 4050 * the input to the next verify. 4051 * If we couldn't get the attributes, then we give up 4052 * because we can't complete the operation as required. 4053 */ 4054 garp = &res.array[1].nfs_resop4_u.opgetattr.ga_res; 4055 } 4056 if (e.error) { 4057 PURGE_ATTRCACHE4(vp); 4058 nfs4_purge_stale_fh(e.error, vp, cr); 4059 } else { 4060 /* 4061 * retry with a new verify value 4062 */ 4063 ctime = garp->n4g_va.va_ctime; 4064 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 4065 resp = NULL; 4066 } 4067 if (!e.error) { 4068 nfs4_fattr4_free(&argop[setattr_argop].nfs_argop4_u. 4069 opsetattr.obj_attributes); 4070 if (verify_argop != -1) { 4071 nfs4args_verify_free(&argop[verify_argop]); 4072 verify_argop = -1; 4073 } 4074 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 4075 goto do_again; 4076 } 4077 } while (!e.error); 4078 4079 if (e.error) { 4080 /* 4081 * If we are here, rfs4call has an irrecoverable error - return 4082 */ 4083 nfs4_fattr4_free(&argop[setattr_argop].nfs_argop4_u. 4084 opsetattr.obj_attributes); 4085 if (verify_argop != -1) { 4086 nfs4args_verify_free(&argop[verify_argop]); 4087 verify_argop = -1; 4088 } 4089 if (resp) 4090 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp); 4091 return (e.error); 4092 } 4093 4094 4095 4096 /* 4097 * If changing the size of the file, invalidate 4098 * any local cached data which is no longer part 4099 * of the file. We also possibly invalidate the 4100 * last page in the file. We could use 4101 * pvn_vpzero(), but this would mark the page as 4102 * modified and require it to be written back to 4103 * the server for no particularly good reason. 4104 * This way, if we access it, then we bring it 4105 * back in. A read should be cheaper than a 4106 * write. 4107 */ 4108 if (mask & AT_SIZE) { 4109 nfs4_invalidate_pages(vp, (vap->va_size & PAGEMASK), cr); 4110 } 4111 4112 /* either no error or one of the postop getattr failed */ 4113 4114 /* 4115 * XXX Perform a simplified version of wcc checking. Instead of 4116 * have another getattr to get pre-op, just purge cache if 4117 * any of the ops prior to and including the getattr failed. 4118 * If the getattr succeeded then update the attrcache accordingly. 4119 */ 4120 4121 garp = NULL; 4122 if (res.status == NFS4_OK) { 4123 /* 4124 * Last getattr 4125 */ 4126 resop = &res.array[numops - 1]; 4127 garp = &resop->nfs_resop4_u.opgetattr.ga_res; 4128 } 4129 /* 4130 * In certain cases, nfs4_update_attrcache() will purge the attrcache, 4131 * rather than filling it. See the function itself for details. 4132 */ 4133 e.error = nfs4_update_attrcache(res.status, garp, t, vp, cr); 4134 if (garp != NULL) { 4135 if (garp->n4g_resbmap & FATTR4_ACL_MASK) { 4136 nfs4_acl_fill_cache(rp, &garp->n4g_vsa); 4137 vs_ace4_destroy(&garp->n4g_vsa); 4138 } else { 4139 if (vsap != NULL) { 4140 /* 4141 * The ACL was supposed to be set and to be 4142 * returned in the last getattr of this 4143 * compound, but for some reason the getattr 4144 * result doesn't contain the ACL. In this 4145 * case, purge the ACL cache. 4146 */ 4147 if (rp->r_secattr != NULL) { 4148 mutex_enter(&rp->r_statelock); 4149 vsp = rp->r_secattr; 4150 rp->r_secattr = NULL; 4151 mutex_exit(&rp->r_statelock); 4152 if (vsp != NULL) 4153 nfs4_acl_free_cache(vsp); 4154 } 4155 } 4156 } 4157 } 4158 4159 if (res.status == NFS4_OK && (mask & AT_SIZE)) { 4160 /* 4161 * Set the size, rather than relying on getting it updated 4162 * via a GETATTR. With delegations the client tries to 4163 * suppress GETATTR calls. 4164 */ 4165 mutex_enter(&rp->r_statelock); 4166 rp->r_size = vap->va_size; 4167 mutex_exit(&rp->r_statelock); 4168 } 4169 4170 /* 4171 * Can free up request args and res 4172 */ 4173 nfs4_fattr4_free(&argop[setattr_argop].nfs_argop4_u. 4174 opsetattr.obj_attributes); 4175 if (verify_argop != -1) { 4176 nfs4args_verify_free(&argop[verify_argop]); 4177 verify_argop = -1; 4178 } 4179 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 4180 4181 /* 4182 * Some servers will change the mode to clear the setuid 4183 * and setgid bits when changing the uid or gid. The 4184 * client needs to compensate appropriately. 4185 */ 4186 if (mask & (AT_UID | AT_GID)) { 4187 int terror, do_setattr; 4188 4189 do_setattr = 0; 4190 va.va_mask = AT_MODE; 4191 terror = nfs4getattr(vp, &va, cr); 4192 if (!terror && 4193 (((mask & AT_MODE) && va.va_mode != vap->va_mode) || 4194 (!(mask & AT_MODE) && va.va_mode != omode))) { 4195 va.va_mask = AT_MODE; 4196 if (mask & AT_MODE) { 4197 /* 4198 * We asked the mode to be changed and what 4199 * we just got from the server in getattr is 4200 * not what we wanted it to be, so set it now. 4201 */ 4202 va.va_mode = vap->va_mode; 4203 do_setattr = 1; 4204 } else { 4205 /* 4206 * We did not ask the mode to be changed, 4207 * Check to see that the server just cleared 4208 * I_SUID and I_GUID from it. If not then 4209 * set mode to omode with UID/GID cleared. 4210 */ 4211 if (nfs4_compare_modes(va.va_mode, omode)) { 4212 omode &= ~(S_ISUID|S_ISGID); 4213 va.va_mode = omode; 4214 do_setattr = 1; 4215 } 4216 } 4217 4218 if (do_setattr) 4219 (void) nfs4setattr(vp, &va, 0, cr, NULL); 4220 } 4221 } 4222 4223 return (e.error); 4224 } 4225 4226 /* ARGSUSED */ 4227 static int 4228 nfs4_access(vnode_t *vp, int mode, int flags, cred_t *cr, caller_context_t *ct) 4229 { 4230 COMPOUND4args_clnt args; 4231 COMPOUND4res_clnt res; 4232 int doqueue; 4233 uint32_t acc, resacc, argacc; 4234 rnode4_t *rp; 4235 cred_t *cred, *ncr, *ncrfree = NULL; 4236 nfs4_access_type_t cacc; 4237 int num_ops; 4238 nfs_argop4 argop[3]; 4239 nfs_resop4 *resop; 4240 bool_t needrecov = FALSE, do_getattr; 4241 nfs4_recov_state_t recov_state; 4242 int rpc_error; 4243 hrtime_t t; 4244 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 4245 mntinfo4_t *mi = VTOMI4(vp); 4246 4247 if (nfs_zone() != mi->mi_zone) 4248 return (EIO); 4249 4250 acc = 0; 4251 if (mode & VREAD) 4252 acc |= ACCESS4_READ; 4253 if (mode & VWRITE) { 4254 if ((vp->v_vfsp->vfs_flag & VFS_RDONLY) && !ISVDEV(vp->v_type)) 4255 return (EROFS); 4256 if (vp->v_type == VDIR) 4257 acc |= ACCESS4_DELETE; 4258 acc |= ACCESS4_MODIFY | ACCESS4_EXTEND; 4259 } 4260 if (mode & VEXEC) { 4261 if (vp->v_type == VDIR) 4262 acc |= ACCESS4_LOOKUP; 4263 else 4264 acc |= ACCESS4_EXECUTE; 4265 } 4266 4267 if (VTOR4(vp)->r_acache != NULL) { 4268 e.error = nfs4_validate_caches(vp, cr); 4269 if (e.error) 4270 return (e.error); 4271 } 4272 4273 rp = VTOR4(vp); 4274 if (vp->v_type == VDIR) 4275 argacc = ACCESS4_READ | ACCESS4_DELETE | ACCESS4_MODIFY | 4276 ACCESS4_EXTEND | ACCESS4_LOOKUP; 4277 else 4278 argacc = ACCESS4_READ | ACCESS4_MODIFY | ACCESS4_EXTEND | 4279 ACCESS4_EXECUTE; 4280 recov_state.rs_flags = 0; 4281 recov_state.rs_num_retry_despite_err = 0; 4282 4283 cred = cr; 4284 /* 4285 * ncr and ncrfree both initially 4286 * point to the memory area returned 4287 * by crnetadjust(); 4288 * ncrfree not NULL when exiting means 4289 * that we need to release it 4290 */ 4291 ncr = crnetadjust(cred); 4292 ncrfree = ncr; 4293 4294 tryagain: 4295 cacc = nfs4_access_check(rp, acc, cred); 4296 if (cacc == NFS4_ACCESS_ALLOWED) { 4297 if (ncrfree != NULL) 4298 crfree(ncrfree); 4299 return (0); 4300 } 4301 if (cacc == NFS4_ACCESS_DENIED) { 4302 /* 4303 * If the cred can be adjusted, try again 4304 * with the new cred. 4305 */ 4306 if (ncr != NULL) { 4307 cred = ncr; 4308 ncr = NULL; 4309 goto tryagain; 4310 } 4311 if (ncrfree != NULL) 4312 crfree(ncrfree); 4313 return (EACCES); 4314 } 4315 4316 recov_retry: 4317 /* 4318 * Don't take with r_statev4_lock here. r_deleg_type could 4319 * change as soon as lock is released. Since it is an int, 4320 * there is no atomicity issue. 4321 */ 4322 do_getattr = (rp->r_deleg_type == OPEN_DELEGATE_NONE); 4323 num_ops = do_getattr ? 3 : 2; 4324 4325 args.ctag = TAG_ACCESS; 4326 4327 args.array_len = num_ops; 4328 args.array = argop; 4329 4330 if (e.error = nfs4_start_fop(mi, vp, NULL, OH_ACCESS, 4331 &recov_state, NULL)) { 4332 if (ncrfree != NULL) 4333 crfree(ncrfree); 4334 return (e.error); 4335 } 4336 4337 /* putfh target fh */ 4338 argop[0].argop = OP_CPUTFH; 4339 argop[0].nfs_argop4_u.opcputfh.sfh = VTOR4(vp)->r_fh; 4340 4341 /* access */ 4342 argop[1].argop = OP_ACCESS; 4343 argop[1].nfs_argop4_u.opaccess.access = argacc; 4344 4345 /* getattr */ 4346 if (do_getattr) { 4347 argop[2].argop = OP_GETATTR; 4348 argop[2].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 4349 argop[2].nfs_argop4_u.opgetattr.mi = mi; 4350 } 4351 4352 NFS4_DEBUG(nfs4_client_call_debug, (CE_NOTE, 4353 "nfs4_access: %s call, rp %s", needrecov ? "recov" : "first", 4354 rnode4info(VTOR4(vp)))); 4355 4356 doqueue = 1; 4357 t = gethrtime(); 4358 rfs4call(VTOMI4(vp), &args, &res, cred, &doqueue, 0, &e); 4359 rpc_error = e.error; 4360 4361 needrecov = nfs4_needs_recovery(&e, FALSE, vp->v_vfsp); 4362 if (needrecov) { 4363 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 4364 "nfs4_access: initiating recovery\n")); 4365 4366 if (nfs4_start_recovery(&e, VTOMI4(vp), vp, NULL, NULL, 4367 NULL, OP_ACCESS, NULL) == FALSE) { 4368 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_ACCESS, 4369 &recov_state, needrecov); 4370 if (!e.error) 4371 (void) xdr_free(xdr_COMPOUND4res_clnt, 4372 (caddr_t)&res); 4373 goto recov_retry; 4374 } 4375 } 4376 nfs4_end_fop(mi, vp, NULL, OH_ACCESS, &recov_state, needrecov); 4377 4378 if (e.error) 4379 goto out; 4380 4381 if (res.status) { 4382 e.error = geterrno4(res.status); 4383 /* 4384 * This might generate over the wire calls throught 4385 * nfs4_invalidate_pages. Hence we need to call nfs4_end_op() 4386 * here to avoid a deadlock. 4387 */ 4388 nfs4_purge_stale_fh(e.error, vp, cr); 4389 goto out; 4390 } 4391 resop = &res.array[1]; /* access res */ 4392 4393 resacc = resop->nfs_resop4_u.opaccess.access; 4394 4395 if (do_getattr) { 4396 resop++; /* getattr res */ 4397 nfs4_attr_cache(vp, &resop->nfs_resop4_u.opgetattr.ga_res, 4398 t, cr, FALSE, NULL); 4399 } 4400 4401 if (!e.error) { 4402 nfs4_access_cache(rp, argacc, resacc, cred); 4403 /* 4404 * we just cached results with cred; if cred is the 4405 * adjusted credentials from crnetadjust, we do not want 4406 * to release them before exiting: hence setting ncrfree 4407 * to NULL 4408 */ 4409 if (cred != cr) 4410 ncrfree = NULL; 4411 /* XXX check the supported bits too? */ 4412 if ((acc & resacc) != acc) { 4413 /* 4414 * The following code implements the semantic 4415 * that a setuid root program has *at least* the 4416 * permissions of the user that is running the 4417 * program. See rfs3call() for more portions 4418 * of the implementation of this functionality. 4419 */ 4420 /* XXX-LP */ 4421 if (ncr != NULL) { 4422 (void) xdr_free(xdr_COMPOUND4res_clnt, 4423 (caddr_t)&res); 4424 cred = ncr; 4425 ncr = NULL; 4426 goto tryagain; 4427 } 4428 e.error = EACCES; 4429 } 4430 } 4431 4432 out: 4433 if (!rpc_error) 4434 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 4435 4436 if (ncrfree != NULL) 4437 crfree(ncrfree); 4438 4439 return (e.error); 4440 } 4441 4442 /* ARGSUSED */ 4443 static int 4444 nfs4_readlink(vnode_t *vp, struct uio *uiop, cred_t *cr, caller_context_t *ct) 4445 { 4446 COMPOUND4args_clnt args; 4447 COMPOUND4res_clnt res; 4448 int doqueue; 4449 rnode4_t *rp; 4450 nfs_argop4 argop[3]; 4451 nfs_resop4 *resop; 4452 READLINK4res *lr_res; 4453 nfs4_ga_res_t *garp; 4454 uint_t len; 4455 char *linkdata; 4456 bool_t needrecov = FALSE; 4457 nfs4_recov_state_t recov_state; 4458 hrtime_t t; 4459 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 4460 4461 if (nfs_zone() != VTOMI4(vp)->mi_zone) 4462 return (EIO); 4463 /* 4464 * Can't readlink anything other than a symbolic link. 4465 */ 4466 if (vp->v_type != VLNK) 4467 return (EINVAL); 4468 4469 rp = VTOR4(vp); 4470 if (nfs4_do_symlink_cache && rp->r_symlink.contents != NULL) { 4471 e.error = nfs4_validate_caches(vp, cr); 4472 if (e.error) 4473 return (e.error); 4474 mutex_enter(&rp->r_statelock); 4475 if (rp->r_symlink.contents != NULL) { 4476 e.error = uiomove(rp->r_symlink.contents, 4477 rp->r_symlink.len, UIO_READ, uiop); 4478 mutex_exit(&rp->r_statelock); 4479 return (e.error); 4480 } 4481 mutex_exit(&rp->r_statelock); 4482 } 4483 recov_state.rs_flags = 0; 4484 recov_state.rs_num_retry_despite_err = 0; 4485 4486 recov_retry: 4487 args.array_len = 3; 4488 args.array = argop; 4489 args.ctag = TAG_READLINK; 4490 4491 e.error = nfs4_start_op(VTOMI4(vp), vp, NULL, &recov_state); 4492 if (e.error) { 4493 return (e.error); 4494 } 4495 4496 /* 0. putfh symlink fh */ 4497 argop[0].argop = OP_CPUTFH; 4498 argop[0].nfs_argop4_u.opcputfh.sfh = VTOR4(vp)->r_fh; 4499 4500 /* 1. readlink */ 4501 argop[1].argop = OP_READLINK; 4502 4503 /* 2. getattr */ 4504 argop[2].argop = OP_GETATTR; 4505 argop[2].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 4506 argop[2].nfs_argop4_u.opgetattr.mi = VTOMI4(vp); 4507 4508 doqueue = 1; 4509 4510 NFS4_DEBUG(nfs4_client_call_debug, (CE_NOTE, 4511 "nfs4_readlink: %s call, rp %s", needrecov ? "recov" : "first", 4512 rnode4info(VTOR4(vp)))); 4513 4514 t = gethrtime(); 4515 4516 rfs4call(VTOMI4(vp), &args, &res, cr, &doqueue, 0, &e); 4517 4518 needrecov = nfs4_needs_recovery(&e, FALSE, vp->v_vfsp); 4519 if (needrecov) { 4520 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 4521 "nfs4_readlink: initiating recovery\n")); 4522 4523 if (nfs4_start_recovery(&e, VTOMI4(vp), vp, NULL, NULL, 4524 NULL, OP_READLINK, NULL) == FALSE) { 4525 if (!e.error) 4526 (void) xdr_free(xdr_COMPOUND4res_clnt, 4527 (caddr_t)&res); 4528 4529 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state, 4530 needrecov); 4531 goto recov_retry; 4532 } 4533 } 4534 4535 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state, needrecov); 4536 4537 if (e.error) 4538 return (e.error); 4539 4540 /* 4541 * There is an path in the code below which calls 4542 * nfs4_purge_stale_fh(), which may generate otw calls through 4543 * nfs4_invalidate_pages. Hence we need to call nfs4_end_op() 4544 * here to avoid nfs4_start_op() deadlock. 4545 */ 4546 4547 if (res.status && (res.array_len < args.array_len)) { 4548 /* 4549 * either Putfh or Link failed 4550 */ 4551 e.error = geterrno4(res.status); 4552 nfs4_purge_stale_fh(e.error, vp, cr); 4553 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 4554 return (e.error); 4555 } 4556 4557 resop = &res.array[1]; /* readlink res */ 4558 lr_res = &resop->nfs_resop4_u.opreadlink; 4559 4560 /* 4561 * treat symlink names as data 4562 */ 4563 linkdata = utf8_to_str(&lr_res->link, &len, NULL); 4564 if (linkdata != NULL) { 4565 int uio_len = len - 1; 4566 /* len includes null byte, which we won't uiomove */ 4567 e.error = uiomove(linkdata, uio_len, UIO_READ, uiop); 4568 if (nfs4_do_symlink_cache && rp->r_symlink.contents == NULL) { 4569 mutex_enter(&rp->r_statelock); 4570 if (rp->r_symlink.contents == NULL) { 4571 rp->r_symlink.contents = linkdata; 4572 rp->r_symlink.len = uio_len; 4573 rp->r_symlink.size = len; 4574 mutex_exit(&rp->r_statelock); 4575 } else { 4576 mutex_exit(&rp->r_statelock); 4577 kmem_free(linkdata, len); 4578 } 4579 } else { 4580 kmem_free(linkdata, len); 4581 } 4582 } 4583 if (res.status == NFS4_OK) { 4584 resop++; /* getattr res */ 4585 garp = &resop->nfs_resop4_u.opgetattr.ga_res; 4586 } 4587 e.error = nfs4_update_attrcache(res.status, garp, t, vp, cr); 4588 4589 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 4590 4591 /* 4592 * The over the wire error for attempting to readlink something 4593 * other than a symbolic link is ENXIO. However, we need to 4594 * return EINVAL instead of ENXIO, so we map it here. 4595 */ 4596 return (e.error == ENXIO ? EINVAL : e.error); 4597 } 4598 4599 /* 4600 * Flush local dirty pages to stable storage on the server. 4601 * 4602 * If FNODSYNC is specified, then there is nothing to do because 4603 * metadata changes are not cached on the client before being 4604 * sent to the server. 4605 */ 4606 /* ARGSUSED */ 4607 static int 4608 nfs4_fsync(vnode_t *vp, int syncflag, cred_t *cr, caller_context_t *ct) 4609 { 4610 int error; 4611 4612 if ((syncflag & FNODSYNC) || IS_SWAPVP(vp)) 4613 return (0); 4614 if (nfs_zone() != VTOMI4(vp)->mi_zone) 4615 return (EIO); 4616 error = nfs4_putpage_commit(vp, (offset_t)0, 0, cr); 4617 if (!error) 4618 error = VTOR4(vp)->r_error; 4619 return (error); 4620 } 4621 4622 /* 4623 * Weirdness: if the file was removed or the target of a rename 4624 * operation while it was open, it got renamed instead. Here we 4625 * remove the renamed file. 4626 */ 4627 /* ARGSUSED */ 4628 void 4629 nfs4_inactive(vnode_t *vp, cred_t *cr, caller_context_t *ct) 4630 { 4631 rnode4_t *rp; 4632 4633 ASSERT(vp != DNLC_NO_VNODE); 4634 4635 rp = VTOR4(vp); 4636 4637 if (IS_SHADOW(vp, rp)) { 4638 sv_inactive(vp); 4639 return; 4640 } 4641 4642 /* 4643 * If this is coming from the wrong zone, we let someone in the right 4644 * zone take care of it asynchronously. We can get here due to 4645 * VN_RELE() being called from pageout() or fsflush(). This call may 4646 * potentially turn into an expensive no-op if, for instance, v_count 4647 * gets incremented in the meantime, but it's still correct. 4648 */ 4649 if (nfs_zone() != VTOMI4(vp)->mi_zone) { 4650 nfs4_async_inactive(vp, cr); 4651 return; 4652 } 4653 4654 /* 4655 * Some of the cleanup steps might require over-the-wire 4656 * operations. Since VOP_INACTIVE can get called as a result of 4657 * other over-the-wire operations (e.g., an attribute cache update 4658 * can lead to a DNLC purge), doing those steps now would lead to a 4659 * nested call to the recovery framework, which can deadlock. So 4660 * do any over-the-wire cleanups asynchronously, in a separate 4661 * thread. 4662 */ 4663 4664 mutex_enter(&rp->r_os_lock); 4665 mutex_enter(&rp->r_statelock); 4666 mutex_enter(&rp->r_statev4_lock); 4667 4668 if (vp->v_type == VREG && list_head(&rp->r_open_streams) != NULL) { 4669 mutex_exit(&rp->r_statev4_lock); 4670 mutex_exit(&rp->r_statelock); 4671 mutex_exit(&rp->r_os_lock); 4672 nfs4_async_inactive(vp, cr); 4673 return; 4674 } 4675 4676 if (rp->r_deleg_type == OPEN_DELEGATE_READ || 4677 rp->r_deleg_type == OPEN_DELEGATE_WRITE) { 4678 mutex_exit(&rp->r_statev4_lock); 4679 mutex_exit(&rp->r_statelock); 4680 mutex_exit(&rp->r_os_lock); 4681 nfs4_async_inactive(vp, cr); 4682 return; 4683 } 4684 4685 if (rp->r_unldvp != NULL) { 4686 mutex_exit(&rp->r_statev4_lock); 4687 mutex_exit(&rp->r_statelock); 4688 mutex_exit(&rp->r_os_lock); 4689 nfs4_async_inactive(vp, cr); 4690 return; 4691 } 4692 mutex_exit(&rp->r_statev4_lock); 4693 mutex_exit(&rp->r_statelock); 4694 mutex_exit(&rp->r_os_lock); 4695 4696 rp4_addfree(rp, cr); 4697 } 4698 4699 /* 4700 * nfs4_inactive_otw - nfs4_inactive, plus over-the-wire calls to free up 4701 * various bits of state. The caller must not refer to vp after this call. 4702 */ 4703 4704 void 4705 nfs4_inactive_otw(vnode_t *vp, cred_t *cr) 4706 { 4707 rnode4_t *rp = VTOR4(vp); 4708 nfs4_recov_state_t recov_state; 4709 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 4710 vnode_t *unldvp; 4711 char *unlname; 4712 cred_t *unlcred; 4713 COMPOUND4args_clnt args; 4714 COMPOUND4res_clnt res, *resp; 4715 nfs_argop4 argop[2]; 4716 int doqueue; 4717 #ifdef DEBUG 4718 char *name; 4719 #endif 4720 4721 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 4722 ASSERT(!IS_SHADOW(vp, rp)); 4723 4724 #ifdef DEBUG 4725 name = fn_name(VTOSV(vp)->sv_name); 4726 NFS4_DEBUG(nfs4_client_inactive_debug, (CE_NOTE, "nfs4_inactive_otw: " 4727 "release vnode %s", name)); 4728 kmem_free(name, MAXNAMELEN); 4729 #endif 4730 4731 if (vp->v_type == VREG) { 4732 bool_t recov_failed = FALSE; 4733 4734 e.error = nfs4close_all(vp, cr); 4735 if (e.error) { 4736 /* Check to see if recovery failed */ 4737 mutex_enter(&(VTOMI4(vp)->mi_lock)); 4738 if (VTOMI4(vp)->mi_flags & MI4_RECOV_FAIL) 4739 recov_failed = TRUE; 4740 mutex_exit(&(VTOMI4(vp)->mi_lock)); 4741 if (!recov_failed) { 4742 mutex_enter(&rp->r_statelock); 4743 if (rp->r_flags & R4RECOVERR) 4744 recov_failed = TRUE; 4745 mutex_exit(&rp->r_statelock); 4746 } 4747 if (recov_failed) { 4748 NFS4_DEBUG(nfs4_client_recov_debug, 4749 (CE_NOTE, "nfs4_inactive_otw: " 4750 "close failed (recovery failure)")); 4751 } 4752 } 4753 } 4754 4755 redo: 4756 if (rp->r_unldvp == NULL) { 4757 rp4_addfree(rp, cr); 4758 return; 4759 } 4760 4761 /* 4762 * Save the vnode pointer for the directory where the 4763 * unlinked-open file got renamed, then set it to NULL 4764 * to prevent another thread from getting here before 4765 * we're done with the remove. While we have the 4766 * statelock, make local copies of the pertinent rnode 4767 * fields. If we weren't to do this in an atomic way, the 4768 * the unl* fields could become inconsistent with respect 4769 * to each other due to a race condition between this 4770 * code and nfs_remove(). See bug report 1034328. 4771 */ 4772 mutex_enter(&rp->r_statelock); 4773 if (rp->r_unldvp == NULL) { 4774 mutex_exit(&rp->r_statelock); 4775 rp4_addfree(rp, cr); 4776 return; 4777 } 4778 4779 unldvp = rp->r_unldvp; 4780 rp->r_unldvp = NULL; 4781 unlname = rp->r_unlname; 4782 rp->r_unlname = NULL; 4783 unlcred = rp->r_unlcred; 4784 rp->r_unlcred = NULL; 4785 mutex_exit(&rp->r_statelock); 4786 4787 /* 4788 * If there are any dirty pages left, then flush 4789 * them. This is unfortunate because they just 4790 * may get thrown away during the remove operation, 4791 * but we have to do this for correctness. 4792 */ 4793 if (nfs4_has_pages(vp) && 4794 ((rp->r_flags & R4DIRTY) || rp->r_count > 0)) { 4795 ASSERT(vp->v_type != VCHR); 4796 e.error = nfs4_putpage(vp, (u_offset_t)0, 0, 0, cr, NULL); 4797 if (e.error) { 4798 mutex_enter(&rp->r_statelock); 4799 if (!rp->r_error) 4800 rp->r_error = e.error; 4801 mutex_exit(&rp->r_statelock); 4802 } 4803 } 4804 4805 recov_state.rs_flags = 0; 4806 recov_state.rs_num_retry_despite_err = 0; 4807 recov_retry_remove: 4808 /* 4809 * Do the remove operation on the renamed file 4810 */ 4811 args.ctag = TAG_INACTIVE; 4812 4813 /* 4814 * Remove ops: putfh dir; remove 4815 */ 4816 args.array_len = 2; 4817 args.array = argop; 4818 4819 e.error = nfs4_start_op(VTOMI4(unldvp), unldvp, NULL, &recov_state); 4820 if (e.error) { 4821 kmem_free(unlname, MAXNAMELEN); 4822 crfree(unlcred); 4823 VN_RELE(unldvp); 4824 /* 4825 * Try again; this time around r_unldvp will be NULL, so we'll 4826 * just call rp4_addfree() and return. 4827 */ 4828 goto redo; 4829 } 4830 4831 /* putfh directory */ 4832 argop[0].argop = OP_CPUTFH; 4833 argop[0].nfs_argop4_u.opcputfh.sfh = VTOR4(unldvp)->r_fh; 4834 4835 /* remove */ 4836 argop[1].argop = OP_CREMOVE; 4837 argop[1].nfs_argop4_u.opcremove.ctarget = unlname; 4838 4839 doqueue = 1; 4840 resp = &res; 4841 4842 #if 0 /* notyet */ 4843 /* 4844 * Can't do this yet. We may be being called from 4845 * dnlc_purge_XXX while that routine is holding a 4846 * mutex lock to the nc_rele list. The calls to 4847 * nfs3_cache_wcc_data may result in calls to 4848 * dnlc_purge_XXX. This will result in a deadlock. 4849 */ 4850 rfs4call(VTOMI4(unldvp), &args, &res, unlcred, &doqueue, 0, &e); 4851 if (e.error) { 4852 PURGE_ATTRCACHE4(unldvp); 4853 resp = NULL; 4854 } else if (res.status) { 4855 e.error = geterrno4(res.status); 4856 PURGE_ATTRCACHE4(unldvp); 4857 /* 4858 * This code is inactive right now 4859 * but if made active there should 4860 * be a nfs4_end_op() call before 4861 * nfs4_purge_stale_fh to avoid start_op() 4862 * deadlock. See BugId: 4948726 4863 */ 4864 nfs4_purge_stale_fh(error, unldvp, cr); 4865 } else { 4866 nfs_resop4 *resop; 4867 REMOVE4res *rm_res; 4868 4869 resop = &res.array[1]; 4870 rm_res = &resop->nfs_resop4_u.opremove; 4871 /* 4872 * Update directory cache attribute, 4873 * readdir and dnlc caches. 4874 */ 4875 nfs4_update_dircaches(&rm_res->cinfo, unldvp, NULL, NULL, NULL); 4876 } 4877 #else 4878 rfs4call(VTOMI4(unldvp), &args, &res, unlcred, &doqueue, 0, &e); 4879 4880 PURGE_ATTRCACHE4(unldvp); 4881 #endif 4882 4883 if (nfs4_needs_recovery(&e, FALSE, unldvp->v_vfsp)) { 4884 if (nfs4_start_recovery(&e, VTOMI4(unldvp), unldvp, NULL, 4885 NULL, NULL, OP_REMOVE, NULL) == FALSE) { 4886 if (!e.error) 4887 (void) xdr_free(xdr_COMPOUND4res_clnt, 4888 (caddr_t)&res); 4889 nfs4_end_op(VTOMI4(unldvp), unldvp, NULL, 4890 &recov_state, TRUE); 4891 goto recov_retry_remove; 4892 } 4893 } 4894 nfs4_end_op(VTOMI4(unldvp), unldvp, NULL, &recov_state, FALSE); 4895 4896 /* 4897 * Release stuff held for the remove 4898 */ 4899 VN_RELE(unldvp); 4900 if (!e.error && resp) 4901 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp); 4902 4903 kmem_free(unlname, MAXNAMELEN); 4904 crfree(unlcred); 4905 goto redo; 4906 } 4907 4908 /* 4909 * Remote file system operations having to do with directory manipulation. 4910 */ 4911 /* ARGSUSED3 */ 4912 int 4913 nfs4_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, struct pathname *pnp, 4914 int flags, vnode_t *rdir, cred_t *cr, caller_context_t *ct, 4915 int *direntflags, pathname_t *realpnp) 4916 { 4917 int error; 4918 vnode_t *vp, *avp = NULL; 4919 rnode4_t *drp; 4920 4921 *vpp = NULL; 4922 if (nfs_zone() != VTOMI4(dvp)->mi_zone) 4923 return (EPERM); 4924 /* 4925 * if LOOKUP_XATTR, must replace dvp (object) with 4926 * object's attrdir before continuing with lookup 4927 */ 4928 if (flags & LOOKUP_XATTR) { 4929 error = nfs4lookup_xattr(dvp, nm, &avp, flags, cr); 4930 if (error) 4931 return (error); 4932 4933 dvp = avp; 4934 4935 /* 4936 * If lookup is for "", just return dvp now. The attrdir 4937 * has already been activated (from nfs4lookup_xattr), and 4938 * the caller will RELE the original dvp -- not 4939 * the attrdir. So, set vpp and return. 4940 * Currently, when the LOOKUP_XATTR flag is 4941 * passed to VOP_LOOKUP, the name is always empty, and 4942 * shortcircuiting here avoids 3 unneeded lock/unlock 4943 * pairs. 4944 * 4945 * If a non-empty name was provided, then it is the 4946 * attribute name, and it will be looked up below. 4947 */ 4948 if (*nm == '\0') { 4949 *vpp = dvp; 4950 return (0); 4951 } 4952 4953 /* 4954 * The vfs layer never sends a name when asking for the 4955 * attrdir, so we should never get here (unless of course 4956 * name is passed at some time in future -- at which time 4957 * we'll blow up here). 4958 */ 4959 ASSERT(0); 4960 } 4961 4962 drp = VTOR4(dvp); 4963 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_READER, INTR4(dvp))) 4964 return (EINTR); 4965 4966 error = nfs4lookup(dvp, nm, vpp, cr, 0); 4967 nfs_rw_exit(&drp->r_rwlock); 4968 4969 /* 4970 * If vnode is a device, create special vnode. 4971 */ 4972 if (!error && ISVDEV((*vpp)->v_type)) { 4973 vp = *vpp; 4974 *vpp = specvp(vp, vp->v_rdev, vp->v_type, cr); 4975 VN_RELE(vp); 4976 } 4977 4978 return (error); 4979 } 4980 4981 /* ARGSUSED */ 4982 static int 4983 nfs4lookup_xattr(vnode_t *dvp, char *nm, vnode_t **vpp, int flags, cred_t *cr) 4984 { 4985 int error; 4986 rnode4_t *drp; 4987 int cflag = ((flags & CREATE_XATTR_DIR) != 0); 4988 mntinfo4_t *mi; 4989 4990 mi = VTOMI4(dvp); 4991 if (!(mi->mi_vfsp->vfs_flag & VFS_XATTR) && 4992 !vfs_has_feature(mi->mi_vfsp, VFSFT_SYSATTR_VIEWS)) 4993 return (EINVAL); 4994 4995 drp = VTOR4(dvp); 4996 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_READER, INTR4(dvp))) 4997 return (EINTR); 4998 4999 mutex_enter(&drp->r_statelock); 5000 /* 5001 * If the server doesn't support xattrs just return EINVAL 5002 */ 5003 if (drp->r_xattr_dir == NFS4_XATTR_DIR_NOTSUPP) { 5004 mutex_exit(&drp->r_statelock); 5005 nfs_rw_exit(&drp->r_rwlock); 5006 return (EINVAL); 5007 } 5008 5009 /* 5010 * If there is a cached xattr directory entry, 5011 * use it as long as the attributes are valid. If the 5012 * attributes are not valid, take the simple approach and 5013 * free the cached value and re-fetch a new value. 5014 * 5015 * We don't negative entry cache for now, if we did we 5016 * would need to check if the file has changed on every 5017 * lookup. But xattrs don't exist very often and failing 5018 * an openattr is not much more expensive than and NVERIFY or GETATTR 5019 * so do an openattr over the wire for now. 5020 */ 5021 if (drp->r_xattr_dir != NULL) { 5022 if (ATTRCACHE4_VALID(dvp)) { 5023 VN_HOLD(drp->r_xattr_dir); 5024 *vpp = drp->r_xattr_dir; 5025 mutex_exit(&drp->r_statelock); 5026 nfs_rw_exit(&drp->r_rwlock); 5027 return (0); 5028 } 5029 VN_RELE(drp->r_xattr_dir); 5030 drp->r_xattr_dir = NULL; 5031 } 5032 mutex_exit(&drp->r_statelock); 5033 5034 error = nfs4openattr(dvp, vpp, cflag, cr); 5035 5036 nfs_rw_exit(&drp->r_rwlock); 5037 5038 return (error); 5039 } 5040 5041 static int 5042 nfs4lookup(vnode_t *dvp, char *nm, vnode_t **vpp, cred_t *cr, int skipdnlc) 5043 { 5044 int error; 5045 rnode4_t *drp; 5046 5047 ASSERT(nfs_zone() == VTOMI4(dvp)->mi_zone); 5048 5049 /* 5050 * If lookup is for "", just return dvp. Don't need 5051 * to send it over the wire, look it up in the dnlc, 5052 * or perform any access checks. 5053 */ 5054 if (*nm == '\0') { 5055 VN_HOLD(dvp); 5056 *vpp = dvp; 5057 return (0); 5058 } 5059 5060 /* 5061 * Can't do lookups in non-directories. 5062 */ 5063 if (dvp->v_type != VDIR) 5064 return (ENOTDIR); 5065 5066 /* 5067 * If lookup is for ".", just return dvp. Don't need 5068 * to send it over the wire or look it up in the dnlc, 5069 * just need to check access. 5070 */ 5071 if (nm[0] == '.' && nm[1] == '\0') { 5072 error = nfs4_access(dvp, VEXEC, 0, cr, NULL); 5073 if (error) 5074 return (error); 5075 VN_HOLD(dvp); 5076 *vpp = dvp; 5077 return (0); 5078 } 5079 5080 drp = VTOR4(dvp); 5081 if (!(drp->r_flags & R4LOOKUP)) { 5082 mutex_enter(&drp->r_statelock); 5083 drp->r_flags |= R4LOOKUP; 5084 mutex_exit(&drp->r_statelock); 5085 } 5086 5087 *vpp = NULL; 5088 /* 5089 * Lookup this name in the DNLC. If there is no entry 5090 * lookup over the wire. 5091 */ 5092 if (!skipdnlc) 5093 *vpp = dnlc_lookup(dvp, nm); 5094 if (*vpp == NULL) { 5095 /* 5096 * We need to go over the wire to lookup the name. 5097 */ 5098 return (nfs4lookupnew_otw(dvp, nm, vpp, cr)); 5099 } 5100 5101 /* 5102 * We hit on the dnlc 5103 */ 5104 if (*vpp != DNLC_NO_VNODE || 5105 (dvp->v_vfsp->vfs_flag & VFS_RDONLY)) { 5106 /* 5107 * But our attrs may not be valid. 5108 */ 5109 if (ATTRCACHE4_VALID(dvp)) { 5110 error = nfs4_waitfor_purge_complete(dvp); 5111 if (error) { 5112 VN_RELE(*vpp); 5113 *vpp = NULL; 5114 return (error); 5115 } 5116 5117 /* 5118 * If after the purge completes, check to make sure 5119 * our attrs are still valid. 5120 */ 5121 if (ATTRCACHE4_VALID(dvp)) { 5122 /* 5123 * If we waited for a purge we may have 5124 * lost our vnode so look it up again. 5125 */ 5126 VN_RELE(*vpp); 5127 *vpp = dnlc_lookup(dvp, nm); 5128 if (*vpp == NULL) 5129 return (nfs4lookupnew_otw(dvp, 5130 nm, vpp, cr)); 5131 5132 /* 5133 * The access cache should almost always hit 5134 */ 5135 error = nfs4_access(dvp, VEXEC, 0, cr, NULL); 5136 5137 if (error) { 5138 VN_RELE(*vpp); 5139 *vpp = NULL; 5140 return (error); 5141 } 5142 if (*vpp == DNLC_NO_VNODE) { 5143 VN_RELE(*vpp); 5144 *vpp = NULL; 5145 return (ENOENT); 5146 } 5147 return (0); 5148 } 5149 } 5150 } 5151 5152 ASSERT(*vpp != NULL); 5153 5154 /* 5155 * We may have gotten here we have one of the following cases: 5156 * 1) vpp != DNLC_NO_VNODE, our attrs have timed out so we 5157 * need to validate them. 5158 * 2) vpp == DNLC_NO_VNODE, a negative entry that we always 5159 * must validate. 5160 * 5161 * Go to the server and check if the directory has changed, if 5162 * it hasn't we are done and can use the dnlc entry. 5163 */ 5164 return (nfs4lookupvalidate_otw(dvp, nm, vpp, cr)); 5165 } 5166 5167 /* 5168 * Go to the server and check if the directory has changed, if 5169 * it hasn't we are done and can use the dnlc entry. If it 5170 * has changed we get a new copy of its attributes and check 5171 * the access for VEXEC, then relookup the filename and 5172 * get its filehandle and attributes. 5173 * 5174 * PUTFH dfh NVERIFY GETATTR ACCESS LOOKUP GETFH GETATTR 5175 * if the NVERIFY failed we must 5176 * purge the caches 5177 * cache new attributes (will set r_time_attr_inval) 5178 * cache new access 5179 * recheck VEXEC access 5180 * add name to dnlc, possibly negative 5181 * if LOOKUP succeeded 5182 * cache new attributes 5183 * else 5184 * set a new r_time_attr_inval for dvp 5185 * check to make sure we have access 5186 * 5187 * The vpp returned is the vnode passed in if the directory is valid, 5188 * a new vnode if successful lookup, or NULL on error. 5189 */ 5190 static int 5191 nfs4lookupvalidate_otw(vnode_t *dvp, char *nm, vnode_t **vpp, cred_t *cr) 5192 { 5193 COMPOUND4args_clnt args; 5194 COMPOUND4res_clnt res; 5195 fattr4 *ver_fattr; 5196 fattr4_change dchange; 5197 int32_t *ptr; 5198 int argoplist_size = 7 * sizeof (nfs_argop4); 5199 nfs_argop4 *argop; 5200 int doqueue; 5201 mntinfo4_t *mi; 5202 nfs4_recov_state_t recov_state; 5203 hrtime_t t; 5204 int isdotdot; 5205 vnode_t *nvp; 5206 nfs_fh4 *fhp; 5207 nfs4_sharedfh_t *sfhp; 5208 nfs4_access_type_t cacc; 5209 rnode4_t *nrp; 5210 rnode4_t *drp = VTOR4(dvp); 5211 nfs4_ga_res_t *garp = NULL; 5212 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 5213 5214 ASSERT(nfs_zone() == VTOMI4(dvp)->mi_zone); 5215 ASSERT(nm != NULL); 5216 ASSERT(nm[0] != '\0'); 5217 ASSERT(dvp->v_type == VDIR); 5218 ASSERT(nm[0] != '.' || nm[1] != '\0'); 5219 ASSERT(*vpp != NULL); 5220 5221 if (nm[0] == '.' && nm[1] == '.' && nm[2] == '\0') { 5222 isdotdot = 1; 5223 args.ctag = TAG_LOOKUP_VPARENT; 5224 } else { 5225 /* 5226 * If dvp were a stub, it should have triggered and caused 5227 * a mount for us to get this far. 5228 */ 5229 ASSERT(!RP_ISSTUB(VTOR4(dvp))); 5230 5231 isdotdot = 0; 5232 args.ctag = TAG_LOOKUP_VALID; 5233 } 5234 5235 mi = VTOMI4(dvp); 5236 recov_state.rs_flags = 0; 5237 recov_state.rs_num_retry_despite_err = 0; 5238 5239 nvp = NULL; 5240 5241 /* Save the original mount point security information */ 5242 (void) save_mnt_secinfo(mi->mi_curr_serv); 5243 5244 recov_retry: 5245 e.error = nfs4_start_fop(mi, dvp, NULL, OH_LOOKUP, 5246 &recov_state, NULL); 5247 if (e.error) { 5248 (void) check_mnt_secinfo(mi->mi_curr_serv, nvp); 5249 VN_RELE(*vpp); 5250 *vpp = NULL; 5251 return (e.error); 5252 } 5253 5254 argop = kmem_alloc(argoplist_size, KM_SLEEP); 5255 5256 /* PUTFH dfh NVERIFY GETATTR ACCESS LOOKUP GETFH GETATTR */ 5257 args.array_len = 7; 5258 args.array = argop; 5259 5260 /* 0. putfh file */ 5261 argop[0].argop = OP_CPUTFH; 5262 argop[0].nfs_argop4_u.opcputfh.sfh = VTOR4(dvp)->r_fh; 5263 5264 /* 1. nverify the change info */ 5265 argop[1].argop = OP_NVERIFY; 5266 ver_fattr = &argop[1].nfs_argop4_u.opnverify.obj_attributes; 5267 ver_fattr->attrmask = FATTR4_CHANGE_MASK; 5268 ver_fattr->attrlist4 = (char *)&dchange; 5269 ptr = (int32_t *)&dchange; 5270 IXDR_PUT_HYPER(ptr, VTOR4(dvp)->r_change); 5271 ver_fattr->attrlist4_len = sizeof (fattr4_change); 5272 5273 /* 2. getattr directory */ 5274 argop[2].argop = OP_GETATTR; 5275 argop[2].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 5276 argop[2].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp); 5277 5278 /* 3. access directory */ 5279 argop[3].argop = OP_ACCESS; 5280 argop[3].nfs_argop4_u.opaccess.access = ACCESS4_READ | ACCESS4_DELETE | 5281 ACCESS4_MODIFY | ACCESS4_EXTEND | ACCESS4_LOOKUP; 5282 5283 /* 4. lookup name */ 5284 if (isdotdot) { 5285 argop[4].argop = OP_LOOKUPP; 5286 } else { 5287 argop[4].argop = OP_CLOOKUP; 5288 argop[4].nfs_argop4_u.opclookup.cname = nm; 5289 } 5290 5291 /* 5. resulting file handle */ 5292 argop[5].argop = OP_GETFH; 5293 5294 /* 6. resulting file attributes */ 5295 argop[6].argop = OP_GETATTR; 5296 argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 5297 argop[6].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp); 5298 5299 doqueue = 1; 5300 t = gethrtime(); 5301 5302 rfs4call(VTOMI4(dvp), &args, &res, cr, &doqueue, 0, &e); 5303 5304 if (nfs4_needs_recovery(&e, FALSE, dvp->v_vfsp)) { 5305 /* 5306 * For WRONGSEC of a non-dotdot case, send secinfo directly 5307 * from this thread, do not go thru the recovery thread since 5308 * we need the nm information. 5309 * 5310 * Not doing dotdot case because there is no specification 5311 * for (PUTFH, SECINFO "..") yet. 5312 */ 5313 if (!isdotdot && res.status == NFS4ERR_WRONGSEC) { 5314 if ((e.error = nfs4_secinfo_vnode_otw(dvp, nm, cr))) 5315 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP, 5316 &recov_state, FALSE); 5317 else 5318 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP, 5319 &recov_state, TRUE); 5320 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 5321 kmem_free(argop, argoplist_size); 5322 if (!e.error) 5323 goto recov_retry; 5324 (void) check_mnt_secinfo(mi->mi_curr_serv, nvp); 5325 VN_RELE(*vpp); 5326 *vpp = NULL; 5327 return (e.error); 5328 } 5329 5330 if (nfs4_start_recovery(&e, mi, dvp, NULL, NULL, NULL, 5331 OP_LOOKUP, NULL) == FALSE) { 5332 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP, 5333 &recov_state, TRUE); 5334 5335 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 5336 kmem_free(argop, argoplist_size); 5337 goto recov_retry; 5338 } 5339 } 5340 5341 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP, &recov_state, FALSE); 5342 5343 if (e.error || res.array_len == 0) { 5344 /* 5345 * If e.error isn't set, then reply has no ops (or we couldn't 5346 * be here). The only legal way to reply without an op array 5347 * is via NFS4ERR_MINOR_VERS_MISMATCH. An ops array should 5348 * be in the reply for all other status values. 5349 * 5350 * For valid replies without an ops array, return ENOTSUP 5351 * (geterrno4 xlation of VERS_MISMATCH). For illegal replies, 5352 * return EIO -- don't trust status. 5353 */ 5354 if (e.error == 0) 5355 e.error = (res.status == NFS4ERR_MINOR_VERS_MISMATCH) ? 5356 ENOTSUP : EIO; 5357 VN_RELE(*vpp); 5358 *vpp = NULL; 5359 kmem_free(argop, argoplist_size); 5360 (void) check_mnt_secinfo(mi->mi_curr_serv, nvp); 5361 return (e.error); 5362 } 5363 5364 if (res.status != NFS4ERR_SAME) { 5365 e.error = geterrno4(res.status); 5366 5367 /* 5368 * The NVERIFY "failed" so the directory has changed 5369 * First make sure PUTFH succeeded and NVERIFY "failed" 5370 * cleanly. 5371 */ 5372 if ((res.array[0].nfs_resop4_u.opputfh.status != NFS4_OK) || 5373 (res.array[1].nfs_resop4_u.opnverify.status != NFS4_OK)) { 5374 nfs4_purge_stale_fh(e.error, dvp, cr); 5375 VN_RELE(*vpp); 5376 *vpp = NULL; 5377 goto exit; 5378 } 5379 5380 /* 5381 * We know the NVERIFY "failed" so we must: 5382 * purge the caches (access and indirectly dnlc if needed) 5383 */ 5384 nfs4_purge_caches(dvp, NFS4_NOPURGE_DNLC, cr, TRUE); 5385 5386 if (res.array[2].nfs_resop4_u.opgetattr.status != NFS4_OK) { 5387 nfs4_purge_stale_fh(e.error, dvp, cr); 5388 VN_RELE(*vpp); 5389 *vpp = NULL; 5390 goto exit; 5391 } 5392 5393 /* 5394 * Install new cached attributes for the directory 5395 */ 5396 nfs4_attr_cache(dvp, 5397 &res.array[2].nfs_resop4_u.opgetattr.ga_res, 5398 t, cr, FALSE, NULL); 5399 5400 if (res.array[3].nfs_resop4_u.opaccess.status != NFS4_OK) { 5401 nfs4_purge_stale_fh(e.error, dvp, cr); 5402 VN_RELE(*vpp); 5403 *vpp = NULL; 5404 e.error = geterrno4(res.status); 5405 goto exit; 5406 } 5407 5408 /* 5409 * Now we know the directory is valid, 5410 * cache new directory access 5411 */ 5412 nfs4_access_cache(drp, 5413 args.array[3].nfs_argop4_u.opaccess.access, 5414 res.array[3].nfs_resop4_u.opaccess.access, cr); 5415 5416 /* 5417 * recheck VEXEC access 5418 */ 5419 cacc = nfs4_access_check(drp, ACCESS4_LOOKUP, cr); 5420 if (cacc != NFS4_ACCESS_ALLOWED) { 5421 /* 5422 * Directory permissions might have been revoked 5423 */ 5424 if (cacc == NFS4_ACCESS_DENIED) { 5425 e.error = EACCES; 5426 VN_RELE(*vpp); 5427 *vpp = NULL; 5428 goto exit; 5429 } 5430 5431 /* 5432 * Somehow we must not have asked for enough 5433 * so try a singleton ACCESS, should never happen. 5434 */ 5435 e.error = nfs4_access(dvp, VEXEC, 0, cr, NULL); 5436 if (e.error) { 5437 VN_RELE(*vpp); 5438 *vpp = NULL; 5439 goto exit; 5440 } 5441 } 5442 5443 e.error = geterrno4(res.status); 5444 if (res.array[4].nfs_resop4_u.oplookup.status != NFS4_OK) { 5445 /* 5446 * The lookup failed, probably no entry 5447 */ 5448 if (e.error == ENOENT && nfs4_lookup_neg_cache) { 5449 dnlc_update(dvp, nm, DNLC_NO_VNODE); 5450 } else { 5451 /* 5452 * Might be some other error, so remove 5453 * the dnlc entry to make sure we start all 5454 * over again, next time. 5455 */ 5456 dnlc_remove(dvp, nm); 5457 } 5458 VN_RELE(*vpp); 5459 *vpp = NULL; 5460 goto exit; 5461 } 5462 5463 if (res.array[5].nfs_resop4_u.opgetfh.status != NFS4_OK) { 5464 /* 5465 * The file exists but we can't get its fh for 5466 * some unknown reason. Remove it from the dnlc 5467 * and error out to be safe. 5468 */ 5469 dnlc_remove(dvp, nm); 5470 VN_RELE(*vpp); 5471 *vpp = NULL; 5472 goto exit; 5473 } 5474 fhp = &res.array[5].nfs_resop4_u.opgetfh.object; 5475 if (fhp->nfs_fh4_len == 0) { 5476 /* 5477 * The file exists but a bogus fh 5478 * some unknown reason. Remove it from the dnlc 5479 * and error out to be safe. 5480 */ 5481 e.error = ENOENT; 5482 dnlc_remove(dvp, nm); 5483 VN_RELE(*vpp); 5484 *vpp = NULL; 5485 goto exit; 5486 } 5487 sfhp = sfh4_get(fhp, mi); 5488 5489 if (res.array[6].nfs_resop4_u.opgetattr.status == NFS4_OK) 5490 garp = &res.array[6].nfs_resop4_u.opgetattr.ga_res; 5491 5492 /* 5493 * Make the new rnode 5494 */ 5495 if (isdotdot) { 5496 e.error = nfs4_make_dotdot(sfhp, t, dvp, cr, &nvp, 1); 5497 if (e.error) { 5498 sfh4_rele(&sfhp); 5499 VN_RELE(*vpp); 5500 *vpp = NULL; 5501 goto exit; 5502 } 5503 /* 5504 * XXX if nfs4_make_dotdot uses an existing rnode 5505 * XXX it doesn't update the attributes. 5506 * XXX for now just save them again to save an OTW 5507 */ 5508 nfs4_attr_cache(nvp, garp, t, cr, FALSE, NULL); 5509 } else { 5510 nvp = makenfs4node(sfhp, garp, dvp->v_vfsp, t, cr, 5511 dvp, fn_get(VTOSV(dvp)->sv_name, nm, sfhp)); 5512 /* 5513 * If v_type == VNON, then garp was NULL because 5514 * the last op in the compound failed and makenfs4node 5515 * could not find the vnode for sfhp. It created 5516 * a new vnode, so we have nothing to purge here. 5517 */ 5518 if (nvp->v_type == VNON) { 5519 vattr_t vattr; 5520 5521 vattr.va_mask = AT_TYPE; 5522 /* 5523 * N.B. We've already called nfs4_end_fop above. 5524 */ 5525 e.error = nfs4getattr(nvp, &vattr, cr); 5526 if (e.error) { 5527 sfh4_rele(&sfhp); 5528 VN_RELE(*vpp); 5529 *vpp = NULL; 5530 VN_RELE(nvp); 5531 goto exit; 5532 } 5533 nvp->v_type = vattr.va_type; 5534 } 5535 } 5536 sfh4_rele(&sfhp); 5537 5538 nrp = VTOR4(nvp); 5539 mutex_enter(&nrp->r_statev4_lock); 5540 if (!nrp->created_v4) { 5541 mutex_exit(&nrp->r_statev4_lock); 5542 dnlc_update(dvp, nm, nvp); 5543 } else 5544 mutex_exit(&nrp->r_statev4_lock); 5545 5546 VN_RELE(*vpp); 5547 *vpp = nvp; 5548 } else { 5549 hrtime_t now; 5550 hrtime_t delta = 0; 5551 5552 e.error = 0; 5553 5554 /* 5555 * Because the NVERIFY "succeeded" we know that the 5556 * directory attributes are still valid 5557 * so update r_time_attr_inval 5558 */ 5559 now = gethrtime(); 5560 mutex_enter(&drp->r_statelock); 5561 if (!(mi->mi_flags & MI4_NOAC) && !(dvp->v_flag & VNOCACHE)) { 5562 delta = now - drp->r_time_attr_saved; 5563 if (delta < mi->mi_acdirmin) 5564 delta = mi->mi_acdirmin; 5565 else if (delta > mi->mi_acdirmax) 5566 delta = mi->mi_acdirmax; 5567 } 5568 drp->r_time_attr_inval = now + delta; 5569 mutex_exit(&drp->r_statelock); 5570 dnlc_update(dvp, nm, *vpp); 5571 5572 /* 5573 * Even though we have a valid directory attr cache 5574 * and dnlc entry, we may not have access. 5575 * This should almost always hit the cache. 5576 */ 5577 e.error = nfs4_access(dvp, VEXEC, 0, cr, NULL); 5578 if (e.error) { 5579 VN_RELE(*vpp); 5580 *vpp = NULL; 5581 } 5582 5583 if (*vpp == DNLC_NO_VNODE) { 5584 VN_RELE(*vpp); 5585 *vpp = NULL; 5586 e.error = ENOENT; 5587 } 5588 } 5589 5590 exit: 5591 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 5592 kmem_free(argop, argoplist_size); 5593 (void) check_mnt_secinfo(mi->mi_curr_serv, nvp); 5594 return (e.error); 5595 } 5596 5597 /* 5598 * We need to go over the wire to lookup the name, but 5599 * while we are there verify the directory has not 5600 * changed but if it has, get new attributes and check access 5601 * 5602 * PUTFH dfh SAVEFH LOOKUP nm GETFH GETATTR RESTOREFH 5603 * NVERIFY GETATTR ACCESS 5604 * 5605 * With the results: 5606 * if the NVERIFY failed we must purge the caches, add new attributes, 5607 * and cache new access. 5608 * set a new r_time_attr_inval 5609 * add name to dnlc, possibly negative 5610 * if LOOKUP succeeded 5611 * cache new attributes 5612 */ 5613 static int 5614 nfs4lookupnew_otw(vnode_t *dvp, char *nm, vnode_t **vpp, cred_t *cr) 5615 { 5616 COMPOUND4args_clnt args; 5617 COMPOUND4res_clnt res; 5618 fattr4 *ver_fattr; 5619 fattr4_change dchange; 5620 int32_t *ptr; 5621 nfs4_ga_res_t *garp = NULL; 5622 int argoplist_size = 9 * sizeof (nfs_argop4); 5623 nfs_argop4 *argop; 5624 int doqueue; 5625 mntinfo4_t *mi; 5626 nfs4_recov_state_t recov_state; 5627 hrtime_t t; 5628 int isdotdot; 5629 vnode_t *nvp; 5630 nfs_fh4 *fhp; 5631 nfs4_sharedfh_t *sfhp; 5632 nfs4_access_type_t cacc; 5633 rnode4_t *nrp; 5634 rnode4_t *drp = VTOR4(dvp); 5635 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 5636 5637 ASSERT(nfs_zone() == VTOMI4(dvp)->mi_zone); 5638 ASSERT(nm != NULL); 5639 ASSERT(nm[0] != '\0'); 5640 ASSERT(dvp->v_type == VDIR); 5641 ASSERT(nm[0] != '.' || nm[1] != '\0'); 5642 ASSERT(*vpp == NULL); 5643 5644 if (nm[0] == '.' && nm[1] == '.' && nm[2] == '\0') { 5645 isdotdot = 1; 5646 args.ctag = TAG_LOOKUP_PARENT; 5647 } else { 5648 /* 5649 * If dvp were a stub, it should have triggered and caused 5650 * a mount for us to get this far. 5651 */ 5652 ASSERT(!RP_ISSTUB(VTOR4(dvp))); 5653 5654 isdotdot = 0; 5655 args.ctag = TAG_LOOKUP; 5656 } 5657 5658 mi = VTOMI4(dvp); 5659 recov_state.rs_flags = 0; 5660 recov_state.rs_num_retry_despite_err = 0; 5661 5662 nvp = NULL; 5663 5664 /* Save the original mount point security information */ 5665 (void) save_mnt_secinfo(mi->mi_curr_serv); 5666 5667 recov_retry: 5668 e.error = nfs4_start_fop(mi, dvp, NULL, OH_LOOKUP, 5669 &recov_state, NULL); 5670 if (e.error) { 5671 (void) check_mnt_secinfo(mi->mi_curr_serv, nvp); 5672 return (e.error); 5673 } 5674 5675 argop = kmem_alloc(argoplist_size, KM_SLEEP); 5676 5677 /* PUTFH SAVEFH LOOKUP GETFH GETATTR RESTOREFH NVERIFY GETATTR ACCESS */ 5678 args.array_len = 9; 5679 args.array = argop; 5680 5681 /* 0. putfh file */ 5682 argop[0].argop = OP_CPUTFH; 5683 argop[0].nfs_argop4_u.opcputfh.sfh = VTOR4(dvp)->r_fh; 5684 5685 /* 1. savefh for the nverify */ 5686 argop[1].argop = OP_SAVEFH; 5687 5688 /* 2. lookup name */ 5689 if (isdotdot) { 5690 argop[2].argop = OP_LOOKUPP; 5691 } else { 5692 argop[2].argop = OP_CLOOKUP; 5693 argop[2].nfs_argop4_u.opclookup.cname = nm; 5694 } 5695 5696 /* 3. resulting file handle */ 5697 argop[3].argop = OP_GETFH; 5698 5699 /* 4. resulting file attributes */ 5700 argop[4].argop = OP_GETATTR; 5701 argop[4].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 5702 argop[4].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp); 5703 5704 /* 5. restorefh back the directory for the nverify */ 5705 argop[5].argop = OP_RESTOREFH; 5706 5707 /* 6. nverify the change info */ 5708 argop[6].argop = OP_NVERIFY; 5709 ver_fattr = &argop[6].nfs_argop4_u.opnverify.obj_attributes; 5710 ver_fattr->attrmask = FATTR4_CHANGE_MASK; 5711 ver_fattr->attrlist4 = (char *)&dchange; 5712 ptr = (int32_t *)&dchange; 5713 IXDR_PUT_HYPER(ptr, VTOR4(dvp)->r_change); 5714 ver_fattr->attrlist4_len = sizeof (fattr4_change); 5715 5716 /* 7. getattr directory */ 5717 argop[7].argop = OP_GETATTR; 5718 argop[7].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 5719 argop[7].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp); 5720 5721 /* 8. access directory */ 5722 argop[8].argop = OP_ACCESS; 5723 argop[8].nfs_argop4_u.opaccess.access = ACCESS4_READ | ACCESS4_DELETE | 5724 ACCESS4_MODIFY | ACCESS4_EXTEND | ACCESS4_LOOKUP; 5725 5726 doqueue = 1; 5727 t = gethrtime(); 5728 5729 rfs4call(VTOMI4(dvp), &args, &res, cr, &doqueue, 0, &e); 5730 5731 if (nfs4_needs_recovery(&e, FALSE, dvp->v_vfsp)) { 5732 /* 5733 * For WRONGSEC of a non-dotdot case, send secinfo directly 5734 * from this thread, do not go thru the recovery thread since 5735 * we need the nm information. 5736 * 5737 * Not doing dotdot case because there is no specification 5738 * for (PUTFH, SECINFO "..") yet. 5739 */ 5740 if (!isdotdot && res.status == NFS4ERR_WRONGSEC) { 5741 if ((e.error = nfs4_secinfo_vnode_otw(dvp, nm, cr))) 5742 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP, 5743 &recov_state, FALSE); 5744 else 5745 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP, 5746 &recov_state, TRUE); 5747 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 5748 kmem_free(argop, argoplist_size); 5749 if (!e.error) 5750 goto recov_retry; 5751 (void) check_mnt_secinfo(mi->mi_curr_serv, nvp); 5752 return (e.error); 5753 } 5754 5755 if (nfs4_start_recovery(&e, mi, dvp, NULL, NULL, NULL, 5756 OP_LOOKUP, NULL) == FALSE) { 5757 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP, 5758 &recov_state, TRUE); 5759 5760 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 5761 kmem_free(argop, argoplist_size); 5762 goto recov_retry; 5763 } 5764 } 5765 5766 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP, &recov_state, FALSE); 5767 5768 if (e.error || res.array_len == 0) { 5769 /* 5770 * If e.error isn't set, then reply has no ops (or we couldn't 5771 * be here). The only legal way to reply without an op array 5772 * is via NFS4ERR_MINOR_VERS_MISMATCH. An ops array should 5773 * be in the reply for all other status values. 5774 * 5775 * For valid replies without an ops array, return ENOTSUP 5776 * (geterrno4 xlation of VERS_MISMATCH). For illegal replies, 5777 * return EIO -- don't trust status. 5778 */ 5779 if (e.error == 0) 5780 e.error = (res.status == NFS4ERR_MINOR_VERS_MISMATCH) ? 5781 ENOTSUP : EIO; 5782 5783 kmem_free(argop, argoplist_size); 5784 (void) check_mnt_secinfo(mi->mi_curr_serv, nvp); 5785 return (e.error); 5786 } 5787 5788 e.error = geterrno4(res.status); 5789 5790 /* 5791 * The PUTFH and SAVEFH may have failed. 5792 */ 5793 if ((res.array[0].nfs_resop4_u.opputfh.status != NFS4_OK) || 5794 (res.array[1].nfs_resop4_u.opsavefh.status != NFS4_OK)) { 5795 nfs4_purge_stale_fh(e.error, dvp, cr); 5796 goto exit; 5797 } 5798 5799 /* 5800 * Check if the file exists, if it does delay entering 5801 * into the dnlc until after we update the directory 5802 * attributes so we don't cause it to get purged immediately. 5803 */ 5804 if (res.array[2].nfs_resop4_u.oplookup.status != NFS4_OK) { 5805 /* 5806 * The lookup failed, probably no entry 5807 */ 5808 if (e.error == ENOENT && nfs4_lookup_neg_cache) 5809 dnlc_update(dvp, nm, DNLC_NO_VNODE); 5810 goto exit; 5811 } 5812 5813 if (res.array[3].nfs_resop4_u.opgetfh.status != NFS4_OK) { 5814 /* 5815 * The file exists but we can't get its fh for 5816 * some unknown reason. Error out to be safe. 5817 */ 5818 goto exit; 5819 } 5820 5821 fhp = &res.array[3].nfs_resop4_u.opgetfh.object; 5822 if (fhp->nfs_fh4_len == 0) { 5823 /* 5824 * The file exists but a bogus fh 5825 * some unknown reason. Error out to be safe. 5826 */ 5827 e.error = EIO; 5828 goto exit; 5829 } 5830 sfhp = sfh4_get(fhp, mi); 5831 5832 if (res.array[4].nfs_resop4_u.opgetattr.status != NFS4_OK) { 5833 sfh4_rele(&sfhp); 5834 goto exit; 5835 } 5836 garp = &res.array[4].nfs_resop4_u.opgetattr.ga_res; 5837 5838 /* 5839 * The RESTOREFH may have failed 5840 */ 5841 if (res.array[5].nfs_resop4_u.oprestorefh.status != NFS4_OK) { 5842 sfh4_rele(&sfhp); 5843 e.error = EIO; 5844 goto exit; 5845 } 5846 5847 if (res.array[6].nfs_resop4_u.opnverify.status != NFS4ERR_SAME) { 5848 /* 5849 * First make sure the NVERIFY failed as we expected, 5850 * if it didn't then be conservative and error out 5851 * as we can't trust the directory. 5852 */ 5853 if (res.array[6].nfs_resop4_u.opnverify.status != NFS4_OK) { 5854 sfh4_rele(&sfhp); 5855 e.error = EIO; 5856 goto exit; 5857 } 5858 5859 /* 5860 * We know the NVERIFY "failed" so the directory has changed, 5861 * so we must: 5862 * purge the caches (access and indirectly dnlc if needed) 5863 */ 5864 nfs4_purge_caches(dvp, NFS4_NOPURGE_DNLC, cr, TRUE); 5865 5866 if (res.array[7].nfs_resop4_u.opgetattr.status != NFS4_OK) { 5867 sfh4_rele(&sfhp); 5868 goto exit; 5869 } 5870 nfs4_attr_cache(dvp, 5871 &res.array[7].nfs_resop4_u.opgetattr.ga_res, 5872 t, cr, FALSE, NULL); 5873 5874 if (res.array[8].nfs_resop4_u.opaccess.status != NFS4_OK) { 5875 nfs4_purge_stale_fh(e.error, dvp, cr); 5876 sfh4_rele(&sfhp); 5877 e.error = geterrno4(res.status); 5878 goto exit; 5879 } 5880 5881 /* 5882 * Now we know the directory is valid, 5883 * cache new directory access 5884 */ 5885 nfs4_access_cache(drp, 5886 args.array[8].nfs_argop4_u.opaccess.access, 5887 res.array[8].nfs_resop4_u.opaccess.access, cr); 5888 5889 /* 5890 * recheck VEXEC access 5891 */ 5892 cacc = nfs4_access_check(drp, ACCESS4_LOOKUP, cr); 5893 if (cacc != NFS4_ACCESS_ALLOWED) { 5894 /* 5895 * Directory permissions might have been revoked 5896 */ 5897 if (cacc == NFS4_ACCESS_DENIED) { 5898 sfh4_rele(&sfhp); 5899 e.error = EACCES; 5900 goto exit; 5901 } 5902 5903 /* 5904 * Somehow we must not have asked for enough 5905 * so try a singleton ACCESS should never happen 5906 */ 5907 e.error = nfs4_access(dvp, VEXEC, 0, cr, NULL); 5908 if (e.error) { 5909 sfh4_rele(&sfhp); 5910 goto exit; 5911 } 5912 } 5913 5914 e.error = geterrno4(res.status); 5915 } else { 5916 hrtime_t now; 5917 hrtime_t delta = 0; 5918 5919 e.error = 0; 5920 5921 /* 5922 * Because the NVERIFY "succeeded" we know that the 5923 * directory attributes are still valid 5924 * so update r_time_attr_inval 5925 */ 5926 now = gethrtime(); 5927 mutex_enter(&drp->r_statelock); 5928 if (!(mi->mi_flags & MI4_NOAC) && !(dvp->v_flag & VNOCACHE)) { 5929 delta = now - drp->r_time_attr_saved; 5930 if (delta < mi->mi_acdirmin) 5931 delta = mi->mi_acdirmin; 5932 else if (delta > mi->mi_acdirmax) 5933 delta = mi->mi_acdirmax; 5934 } 5935 drp->r_time_attr_inval = now + delta; 5936 mutex_exit(&drp->r_statelock); 5937 5938 /* 5939 * Even though we have a valid directory attr cache, 5940 * we may not have access. 5941 * This should almost always hit the cache. 5942 */ 5943 e.error = nfs4_access(dvp, VEXEC, 0, cr, NULL); 5944 if (e.error) { 5945 sfh4_rele(&sfhp); 5946 goto exit; 5947 } 5948 } 5949 5950 /* 5951 * Now we have successfully completed the lookup, if the 5952 * directory has changed we now have the valid attributes. 5953 * We also know we have directory access. 5954 * Create the new rnode and insert it in the dnlc. 5955 */ 5956 if (isdotdot) { 5957 e.error = nfs4_make_dotdot(sfhp, t, dvp, cr, &nvp, 1); 5958 if (e.error) { 5959 sfh4_rele(&sfhp); 5960 goto exit; 5961 } 5962 /* 5963 * XXX if nfs4_make_dotdot uses an existing rnode 5964 * XXX it doesn't update the attributes. 5965 * XXX for now just save them again to save an OTW 5966 */ 5967 nfs4_attr_cache(nvp, garp, t, cr, FALSE, NULL); 5968 } else { 5969 nvp = makenfs4node(sfhp, garp, dvp->v_vfsp, t, cr, 5970 dvp, fn_get(VTOSV(dvp)->sv_name, nm, sfhp)); 5971 } 5972 sfh4_rele(&sfhp); 5973 5974 nrp = VTOR4(nvp); 5975 mutex_enter(&nrp->r_statev4_lock); 5976 if (!nrp->created_v4) { 5977 mutex_exit(&nrp->r_statev4_lock); 5978 dnlc_update(dvp, nm, nvp); 5979 } else 5980 mutex_exit(&nrp->r_statev4_lock); 5981 5982 *vpp = nvp; 5983 5984 exit: 5985 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 5986 kmem_free(argop, argoplist_size); 5987 (void) check_mnt_secinfo(mi->mi_curr_serv, nvp); 5988 return (e.error); 5989 } 5990 5991 #ifdef DEBUG 5992 void 5993 nfs4lookup_dump_compound(char *where, nfs_argop4 *argbase, int argcnt) 5994 { 5995 uint_t i, len; 5996 zoneid_t zoneid = getzoneid(); 5997 char *s; 5998 5999 zcmn_err(zoneid, CE_NOTE, "%s: dumping cmpd", where); 6000 for (i = 0; i < argcnt; i++) { 6001 nfs_argop4 *op = &argbase[i]; 6002 switch (op->argop) { 6003 case OP_CPUTFH: 6004 case OP_PUTFH: 6005 zcmn_err(zoneid, CE_NOTE, "\t op %d, putfh", i); 6006 break; 6007 case OP_PUTROOTFH: 6008 zcmn_err(zoneid, CE_NOTE, "\t op %d, putrootfh", i); 6009 break; 6010 case OP_CLOOKUP: 6011 s = op->nfs_argop4_u.opclookup.cname; 6012 zcmn_err(zoneid, CE_NOTE, "\t op %d, lookup %s", i, s); 6013 break; 6014 case OP_LOOKUP: 6015 s = utf8_to_str(&op->nfs_argop4_u.oplookup.objname, 6016 &len, NULL); 6017 zcmn_err(zoneid, CE_NOTE, "\t op %d, lookup %s", i, s); 6018 kmem_free(s, len); 6019 break; 6020 case OP_LOOKUPP: 6021 zcmn_err(zoneid, CE_NOTE, "\t op %d, lookupp ..", i); 6022 break; 6023 case OP_GETFH: 6024 zcmn_err(zoneid, CE_NOTE, "\t op %d, getfh", i); 6025 break; 6026 case OP_GETATTR: 6027 zcmn_err(zoneid, CE_NOTE, "\t op %d, getattr", i); 6028 break; 6029 case OP_OPENATTR: 6030 zcmn_err(zoneid, CE_NOTE, "\t op %d, openattr", i); 6031 break; 6032 default: 6033 zcmn_err(zoneid, CE_NOTE, "\t op %d, opcode %d", i, 6034 op->argop); 6035 break; 6036 } 6037 } 6038 } 6039 #endif 6040 6041 /* 6042 * nfs4lookup_setup - constructs a multi-lookup compound request. 6043 * 6044 * Given the path "nm1/nm2/.../nmn", the following compound requests 6045 * may be created: 6046 * 6047 * Note: Getfh is not be needed because filehandle attr is mandatory, but it 6048 * is faster, for now. 6049 * 6050 * l4_getattrs indicates the type of compound requested. 6051 * 6052 * LKP4_NO_ATTRIBUTE - no attributes (used by secinfo): 6053 * 6054 * compound { Put*fh; Lookup {nm1}; Lookup {nm2}; ... Lookup {nmn} } 6055 * 6056 * total number of ops is n + 1. 6057 * 6058 * LKP4_LAST_NAMED_ATTR - multi-component path for a named 6059 * attribute: create lookups plus one OPENATTR/GETFH/GETATTR 6060 * before the last component, and only get attributes 6061 * for the last component. Note that the second-to-last 6062 * pathname component is XATTR_RPATH, which does NOT go 6063 * over-the-wire as a lookup. 6064 * 6065 * compound { Put*fh; Lookup {nm1}; Lookup {nm2}; ... Lookup {nmn-2}; 6066 * Openattr; Getfh; Getattr; Lookup {nmn}; Getfh; Getattr } 6067 * 6068 * and total number of ops is n + 5. 6069 * 6070 * LKP4_LAST_ATTRDIR - multi-component path for the hidden named 6071 * attribute directory: create lookups plus an OPENATTR 6072 * replacing the last lookup. Note that the last pathname 6073 * component is XATTR_RPATH, which does NOT go over-the-wire 6074 * as a lookup. 6075 * 6076 * compound { Put*fh; Lookup {nm1}; Lookup {nm2}; ... Getfh; Getattr; 6077 * Openattr; Getfh; Getattr } 6078 * 6079 * and total number of ops is n + 5. 6080 * 6081 * LKP4_ALL_ATTRIBUTES - create lookups and get attributes for intermediate 6082 * nodes too. 6083 * 6084 * compound { Put*fh; Lookup {nm1}; Getfh; Getattr; 6085 * Lookup {nm2}; ... Lookup {nmn}; Getfh; Getattr } 6086 * 6087 * and total number of ops is 3*n + 1. 6088 * 6089 * All cases: returns the index in the arg array of the final LOOKUP op, or 6090 * -1 if no LOOKUPs were used. 6091 */ 6092 int 6093 nfs4lookup_setup(char *nm, lookup4_param_t *lookupargp, int needgetfh) 6094 { 6095 enum lkp4_attr_setup l4_getattrs = lookupargp->l4_getattrs; 6096 nfs_argop4 *argbase, *argop; 6097 int arglen, argcnt; 6098 int n = 1; /* number of components */ 6099 int nga = 1; /* number of Getattr's in request */ 6100 char c = '\0', *s, *p; 6101 int lookup_idx = -1; 6102 int argoplist_size; 6103 6104 /* set lookuparg response result to 0 */ 6105 lookupargp->resp->status = NFS4_OK; 6106 6107 /* skip leading "/" or "." e.g. ".//./" if there is */ 6108 for (; ; nm++) { 6109 if (*nm != '/' && *nm != '.') 6110 break; 6111 6112 /* ".." is counted as 1 component */ 6113 if (*nm == '.' && *(nm + 1) != '/') 6114 break; 6115 } 6116 6117 /* 6118 * Find n = number of components - nm must be null terminated 6119 * Skip "." components. 6120 */ 6121 if (*nm != '\0') 6122 for (n = 1, s = nm; *s != '\0'; s++) { 6123 if ((*s == '/') && (*(s + 1) != '/') && 6124 (*(s + 1) != '\0') && 6125 !(*(s + 1) == '.' && (*(s + 2) == '/' || 6126 *(s + 2) == '\0'))) 6127 n++; 6128 } 6129 else 6130 n = 0; 6131 6132 /* 6133 * nga is number of components that need Getfh+Getattr 6134 */ 6135 switch (l4_getattrs) { 6136 case LKP4_NO_ATTRIBUTES: 6137 nga = 0; 6138 break; 6139 case LKP4_ALL_ATTRIBUTES: 6140 nga = n; 6141 /* 6142 * Always have at least 1 getfh, getattr pair 6143 */ 6144 if (nga == 0) 6145 nga++; 6146 break; 6147 case LKP4_LAST_ATTRDIR: 6148 case LKP4_LAST_NAMED_ATTR: 6149 nga = n+1; 6150 break; 6151 } 6152 6153 /* 6154 * If change to use the filehandle attr instead of getfh 6155 * the following line can be deleted. 6156 */ 6157 nga *= 2; 6158 6159 /* 6160 * calculate number of ops in request as 6161 * header + trailer + lookups + getattrs 6162 */ 6163 arglen = lookupargp->header_len + lookupargp->trailer_len + n + nga; 6164 6165 argoplist_size = arglen * sizeof (nfs_argop4); 6166 argop = argbase = kmem_alloc(argoplist_size, KM_SLEEP); 6167 lookupargp->argsp->array = argop; 6168 6169 argcnt = lookupargp->header_len; 6170 argop += argcnt; 6171 6172 /* 6173 * loop and create a lookup op and possibly getattr/getfh for 6174 * each component. Skip "." components. 6175 */ 6176 for (s = nm; *s != '\0'; s = p) { 6177 /* 6178 * Set up a pathname struct for each component if needed 6179 */ 6180 while (*s == '/') 6181 s++; 6182 if (*s == '\0') 6183 break; 6184 6185 for (p = s; (*p != '/') && (*p != '\0'); p++) 6186 ; 6187 c = *p; 6188 *p = '\0'; 6189 6190 if (s[0] == '.' && s[1] == '\0') { 6191 *p = c; 6192 continue; 6193 } 6194 if (l4_getattrs == LKP4_LAST_ATTRDIR && 6195 strcmp(s, XATTR_RPATH) == 0) { 6196 /* getfh XXX may not be needed in future */ 6197 argop->argop = OP_GETFH; 6198 argop++; 6199 argcnt++; 6200 6201 /* getattr */ 6202 argop->argop = OP_GETATTR; 6203 argop->nfs_argop4_u.opgetattr.attr_request = 6204 lookupargp->ga_bits; 6205 argop->nfs_argop4_u.opgetattr.mi = 6206 lookupargp->mi; 6207 argop++; 6208 argcnt++; 6209 6210 /* openattr */ 6211 argop->argop = OP_OPENATTR; 6212 } else if (l4_getattrs == LKP4_LAST_NAMED_ATTR && 6213 strcmp(s, XATTR_RPATH) == 0) { 6214 /* openattr */ 6215 argop->argop = OP_OPENATTR; 6216 argop++; 6217 argcnt++; 6218 6219 /* getfh XXX may not be needed in future */ 6220 argop->argop = OP_GETFH; 6221 argop++; 6222 argcnt++; 6223 6224 /* getattr */ 6225 argop->argop = OP_GETATTR; 6226 argop->nfs_argop4_u.opgetattr.attr_request = 6227 lookupargp->ga_bits; 6228 argop->nfs_argop4_u.opgetattr.mi = 6229 lookupargp->mi; 6230 argop++; 6231 argcnt++; 6232 *p = c; 6233 continue; 6234 } else if (s[0] == '.' && s[1] == '.' && s[2] == '\0') { 6235 /* lookupp */ 6236 argop->argop = OP_LOOKUPP; 6237 } else { 6238 /* lookup */ 6239 argop->argop = OP_LOOKUP; 6240 (void) str_to_utf8(s, 6241 &argop->nfs_argop4_u.oplookup.objname); 6242 } 6243 lookup_idx = argcnt; 6244 argop++; 6245 argcnt++; 6246 6247 *p = c; 6248 6249 if (l4_getattrs == LKP4_ALL_ATTRIBUTES) { 6250 /* getfh XXX may not be needed in future */ 6251 argop->argop = OP_GETFH; 6252 argop++; 6253 argcnt++; 6254 6255 /* getattr */ 6256 argop->argop = OP_GETATTR; 6257 argop->nfs_argop4_u.opgetattr.attr_request = 6258 lookupargp->ga_bits; 6259 argop->nfs_argop4_u.opgetattr.mi = 6260 lookupargp->mi; 6261 argop++; 6262 argcnt++; 6263 } 6264 } 6265 6266 if ((l4_getattrs != LKP4_NO_ATTRIBUTES) && 6267 ((l4_getattrs != LKP4_ALL_ATTRIBUTES) || (lookup_idx < 0))) { 6268 if (needgetfh) { 6269 /* stick in a post-lookup getfh */ 6270 argop->argop = OP_GETFH; 6271 argcnt++; 6272 argop++; 6273 } 6274 /* post-lookup getattr */ 6275 argop->argop = OP_GETATTR; 6276 argop->nfs_argop4_u.opgetattr.attr_request = 6277 lookupargp->ga_bits; 6278 argop->nfs_argop4_u.opgetattr.mi = lookupargp->mi; 6279 argcnt++; 6280 } 6281 argcnt += lookupargp->trailer_len; /* actual op count */ 6282 lookupargp->argsp->array_len = argcnt; 6283 lookupargp->arglen = arglen; 6284 6285 #ifdef DEBUG 6286 if (nfs4_client_lookup_debug) 6287 nfs4lookup_dump_compound("nfs4lookup_setup", argbase, argcnt); 6288 #endif 6289 6290 return (lookup_idx); 6291 } 6292 6293 static int 6294 nfs4openattr(vnode_t *dvp, vnode_t **avp, int cflag, cred_t *cr) 6295 { 6296 COMPOUND4args_clnt args; 6297 COMPOUND4res_clnt res; 6298 GETFH4res *gf_res = NULL; 6299 nfs_argop4 argop[4]; 6300 nfs_resop4 *resop = NULL; 6301 nfs4_sharedfh_t *sfhp; 6302 hrtime_t t; 6303 nfs4_error_t e; 6304 6305 rnode4_t *drp; 6306 int doqueue = 1; 6307 vnode_t *vp; 6308 int needrecov = 0; 6309 nfs4_recov_state_t recov_state; 6310 6311 ASSERT(nfs_zone() == VTOMI4(dvp)->mi_zone); 6312 6313 *avp = NULL; 6314 recov_state.rs_flags = 0; 6315 recov_state.rs_num_retry_despite_err = 0; 6316 6317 recov_retry: 6318 /* COMPOUND: putfh, openattr, getfh, getattr */ 6319 args.array_len = 4; 6320 args.array = argop; 6321 args.ctag = TAG_OPENATTR; 6322 6323 e.error = nfs4_start_op(VTOMI4(dvp), dvp, NULL, &recov_state); 6324 if (e.error) 6325 return (e.error); 6326 6327 drp = VTOR4(dvp); 6328 6329 /* putfh */ 6330 argop[0].argop = OP_CPUTFH; 6331 argop[0].nfs_argop4_u.opcputfh.sfh = drp->r_fh; 6332 6333 /* openattr */ 6334 argop[1].argop = OP_OPENATTR; 6335 argop[1].nfs_argop4_u.opopenattr.createdir = (cflag ? TRUE : FALSE); 6336 6337 /* getfh */ 6338 argop[2].argop = OP_GETFH; 6339 6340 /* getattr */ 6341 argop[3].argop = OP_GETATTR; 6342 argop[3].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 6343 argop[3].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp); 6344 6345 NFS4_DEBUG(nfs4_client_call_debug, (CE_NOTE, 6346 "nfs4openattr: %s call, drp %s", needrecov ? "recov" : "first", 6347 rnode4info(drp))); 6348 6349 t = gethrtime(); 6350 6351 rfs4call(VTOMI4(dvp), &args, &res, cr, &doqueue, 0, &e); 6352 6353 needrecov = nfs4_needs_recovery(&e, FALSE, dvp->v_vfsp); 6354 if (needrecov) { 6355 bool_t abort; 6356 6357 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 6358 "nfs4openattr: initiating recovery\n")); 6359 6360 abort = nfs4_start_recovery(&e, 6361 VTOMI4(dvp), dvp, NULL, NULL, NULL, 6362 OP_OPENATTR, NULL); 6363 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, needrecov); 6364 if (!e.error) { 6365 e.error = geterrno4(res.status); 6366 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 6367 } 6368 if (abort == FALSE) 6369 goto recov_retry; 6370 return (e.error); 6371 } 6372 6373 if (e.error) { 6374 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, needrecov); 6375 return (e.error); 6376 } 6377 6378 if (res.status) { 6379 /* 6380 * If OTW errro is NOTSUPP, then it should be 6381 * translated to EINVAL. All Solaris file system 6382 * implementations return EINVAL to the syscall layer 6383 * when the attrdir cannot be created due to an 6384 * implementation restriction or noxattr mount option. 6385 */ 6386 if (res.status == NFS4ERR_NOTSUPP) { 6387 mutex_enter(&drp->r_statelock); 6388 if (drp->r_xattr_dir) 6389 VN_RELE(drp->r_xattr_dir); 6390 VN_HOLD(NFS4_XATTR_DIR_NOTSUPP); 6391 drp->r_xattr_dir = NFS4_XATTR_DIR_NOTSUPP; 6392 mutex_exit(&drp->r_statelock); 6393 6394 e.error = EINVAL; 6395 } else { 6396 e.error = geterrno4(res.status); 6397 } 6398 6399 if (e.error) { 6400 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 6401 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, 6402 needrecov); 6403 return (e.error); 6404 } 6405 } 6406 6407 resop = &res.array[0]; /* putfh res */ 6408 ASSERT(resop->nfs_resop4_u.opgetfh.status == NFS4_OK); 6409 6410 resop = &res.array[1]; /* openattr res */ 6411 ASSERT(resop->nfs_resop4_u.opopenattr.status == NFS4_OK); 6412 6413 resop = &res.array[2]; /* getfh res */ 6414 gf_res = &resop->nfs_resop4_u.opgetfh; 6415 if (gf_res->object.nfs_fh4_len == 0) { 6416 *avp = NULL; 6417 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 6418 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, needrecov); 6419 return (ENOENT); 6420 } 6421 6422 sfhp = sfh4_get(&gf_res->object, VTOMI4(dvp)); 6423 vp = makenfs4node(sfhp, &res.array[3].nfs_resop4_u.opgetattr.ga_res, 6424 dvp->v_vfsp, t, cr, dvp, 6425 fn_get(VTOSV(dvp)->sv_name, XATTR_RPATH, sfhp)); 6426 sfh4_rele(&sfhp); 6427 6428 if (e.error) 6429 PURGE_ATTRCACHE4(vp); 6430 6431 mutex_enter(&vp->v_lock); 6432 vp->v_flag |= V_XATTRDIR; 6433 mutex_exit(&vp->v_lock); 6434 6435 *avp = vp; 6436 6437 mutex_enter(&drp->r_statelock); 6438 if (drp->r_xattr_dir) 6439 VN_RELE(drp->r_xattr_dir); 6440 VN_HOLD(vp); 6441 drp->r_xattr_dir = vp; 6442 6443 /* 6444 * Invalidate pathconf4 cache because r_xattr_dir is no longer 6445 * NULL. xattrs could be created at any time, and we have no 6446 * way to update pc4_xattr_exists in the base object if/when 6447 * it happens. 6448 */ 6449 drp->r_pathconf.pc4_xattr_valid = 0; 6450 6451 mutex_exit(&drp->r_statelock); 6452 6453 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, needrecov); 6454 6455 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 6456 6457 return (0); 6458 } 6459 6460 /* ARGSUSED */ 6461 static int 6462 nfs4_create(vnode_t *dvp, char *nm, struct vattr *va, enum vcexcl exclusive, 6463 int mode, vnode_t **vpp, cred_t *cr, int flags, caller_context_t *ct, 6464 vsecattr_t *vsecp) 6465 { 6466 int error; 6467 vnode_t *vp = NULL; 6468 rnode4_t *rp; 6469 struct vattr vattr; 6470 rnode4_t *drp; 6471 vnode_t *tempvp; 6472 enum createmode4 createmode; 6473 bool_t must_trunc = FALSE; 6474 int truncating = 0; 6475 6476 if (nfs_zone() != VTOMI4(dvp)->mi_zone) 6477 return (EPERM); 6478 if (exclusive == EXCL && (dvp->v_flag & V_XATTRDIR)) { 6479 return (EINVAL); 6480 } 6481 6482 /* . and .. have special meaning in the protocol, reject them. */ 6483 6484 if (nm[0] == '.' && (nm[1] == '\0' || (nm[1] == '.' && nm[2] == '\0'))) 6485 return (EISDIR); 6486 6487 drp = VTOR4(dvp); 6488 6489 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR4(dvp))) 6490 return (EINTR); 6491 6492 top: 6493 /* 6494 * We make a copy of the attributes because the caller does not 6495 * expect us to change what va points to. 6496 */ 6497 vattr = *va; 6498 6499 /* 6500 * If the pathname is "", then dvp is the root vnode of 6501 * a remote file mounted over a local directory. 6502 * All that needs to be done is access 6503 * checking and truncation. Note that we avoid doing 6504 * open w/ create because the parent directory might 6505 * be in pseudo-fs and the open would fail. 6506 */ 6507 if (*nm == '\0') { 6508 error = 0; 6509 VN_HOLD(dvp); 6510 vp = dvp; 6511 must_trunc = TRUE; 6512 } else { 6513 /* 6514 * We need to go over the wire, just to be sure whether the 6515 * file exists or not. Using the DNLC can be dangerous in 6516 * this case when making a decision regarding existence. 6517 */ 6518 error = nfs4lookup(dvp, nm, &vp, cr, 1); 6519 } 6520 6521 if (exclusive) 6522 createmode = EXCLUSIVE4; 6523 else 6524 createmode = GUARDED4; 6525 6526 /* 6527 * error would be set if the file does not exist on the 6528 * server, so lets go create it. 6529 */ 6530 if (error) { 6531 goto create_otw; 6532 } 6533 6534 /* 6535 * File does exist on the server 6536 */ 6537 if (exclusive == EXCL) 6538 error = EEXIST; 6539 else if (vp->v_type == VDIR && (mode & VWRITE)) 6540 error = EISDIR; 6541 else { 6542 /* 6543 * If vnode is a device, create special vnode. 6544 */ 6545 if (ISVDEV(vp->v_type)) { 6546 tempvp = vp; 6547 vp = specvp(vp, vp->v_rdev, vp->v_type, cr); 6548 VN_RELE(tempvp); 6549 } 6550 if (!(error = VOP_ACCESS(vp, mode, 0, cr, ct))) { 6551 if ((vattr.va_mask & AT_SIZE) && 6552 vp->v_type == VREG) { 6553 rp = VTOR4(vp); 6554 /* 6555 * Check here for large file handled 6556 * by LF-unaware process (as 6557 * ufs_create() does) 6558 */ 6559 if (!(flags & FOFFMAX)) { 6560 mutex_enter(&rp->r_statelock); 6561 if (rp->r_size > MAXOFF32_T) 6562 error = EOVERFLOW; 6563 mutex_exit(&rp->r_statelock); 6564 } 6565 6566 /* if error is set then we need to return */ 6567 if (error) { 6568 nfs_rw_exit(&drp->r_rwlock); 6569 VN_RELE(vp); 6570 return (error); 6571 } 6572 6573 if (must_trunc) { 6574 vattr.va_mask = AT_SIZE; 6575 error = nfs4setattr(vp, &vattr, 0, cr, 6576 NULL); 6577 } else { 6578 /* 6579 * we know we have a regular file that already 6580 * exists and we may end up truncating the file 6581 * as a result of the open_otw, so flush out 6582 * any dirty pages for this file first. 6583 */ 6584 if (nfs4_has_pages(vp) && 6585 ((rp->r_flags & R4DIRTY) || 6586 rp->r_count > 0 || 6587 rp->r_mapcnt > 0)) { 6588 error = nfs4_putpage(vp, 6589 (offset_t)0, 0, 0, cr, ct); 6590 if (error && (error == ENOSPC || 6591 error == EDQUOT)) { 6592 mutex_enter( 6593 &rp->r_statelock); 6594 if (!rp->r_error) 6595 rp->r_error = 6596 error; 6597 mutex_exit( 6598 &rp->r_statelock); 6599 } 6600 } 6601 vattr.va_mask = (AT_SIZE | 6602 AT_TYPE | AT_MODE); 6603 vattr.va_type = VREG; 6604 createmode = UNCHECKED4; 6605 truncating = 1; 6606 goto create_otw; 6607 } 6608 } 6609 } 6610 } 6611 nfs_rw_exit(&drp->r_rwlock); 6612 if (error) { 6613 VN_RELE(vp); 6614 } else { 6615 vnode_t *tvp; 6616 rnode4_t *trp; 6617 /* 6618 * existing file got truncated, notify. 6619 */ 6620 tvp = vp; 6621 if (vp->v_type == VREG) { 6622 trp = VTOR4(vp); 6623 if (IS_SHADOW(vp, trp)) 6624 tvp = RTOV4(trp); 6625 } 6626 vnevent_create(tvp, ct); 6627 *vpp = vp; 6628 } 6629 return (error); 6630 6631 create_otw: 6632 dnlc_remove(dvp, nm); 6633 6634 ASSERT(vattr.va_mask & AT_TYPE); 6635 6636 /* 6637 * If not a regular file let nfs4mknod() handle it. 6638 */ 6639 if (vattr.va_type != VREG) { 6640 error = nfs4mknod(dvp, nm, &vattr, exclusive, mode, vpp, cr); 6641 nfs_rw_exit(&drp->r_rwlock); 6642 return (error); 6643 } 6644 6645 /* 6646 * It _is_ a regular file. 6647 */ 6648 ASSERT(vattr.va_mask & AT_MODE); 6649 if (MANDMODE(vattr.va_mode)) { 6650 nfs_rw_exit(&drp->r_rwlock); 6651 return (EACCES); 6652 } 6653 6654 /* 6655 * If this happens to be a mknod of a regular file, then flags will 6656 * have neither FREAD or FWRITE. However, we must set at least one 6657 * for the call to nfs4open_otw. If it's open(O_CREAT) driving 6658 * nfs4_create, then either FREAD, FWRITE, or FRDWR has already been 6659 * set (based on openmode specified by app). 6660 */ 6661 if ((flags & (FREAD|FWRITE)) == 0) 6662 flags |= (FREAD|FWRITE); 6663 6664 error = nfs4open_otw(dvp, nm, &vattr, vpp, cr, 1, flags, createmode, 0); 6665 6666 if (vp != NULL) { 6667 /* if create was successful, throw away the file's pages */ 6668 if (!error && (vattr.va_mask & AT_SIZE)) 6669 nfs4_invalidate_pages(vp, (vattr.va_size & PAGEMASK), 6670 cr); 6671 /* release the lookup hold */ 6672 VN_RELE(vp); 6673 vp = NULL; 6674 } 6675 6676 /* 6677 * validate that we opened a regular file. This handles a misbehaving 6678 * server that returns an incorrect FH. 6679 */ 6680 if ((error == 0) && *vpp && (*vpp)->v_type != VREG) { 6681 error = EISDIR; 6682 VN_RELE(*vpp); 6683 } 6684 6685 /* 6686 * If this is not an exclusive create, then the CREATE 6687 * request will be made with the GUARDED mode set. This 6688 * means that the server will return EEXIST if the file 6689 * exists. The file could exist because of a retransmitted 6690 * request. In this case, we recover by starting over and 6691 * checking to see whether the file exists. This second 6692 * time through it should and a CREATE request will not be 6693 * sent. 6694 * 6695 * This handles the problem of a dangling CREATE request 6696 * which contains attributes which indicate that the file 6697 * should be truncated. This retransmitted request could 6698 * possibly truncate valid data in the file if not caught 6699 * by the duplicate request mechanism on the server or if 6700 * not caught by other means. The scenario is: 6701 * 6702 * Client transmits CREATE request with size = 0 6703 * Client times out, retransmits request. 6704 * Response to the first request arrives from the server 6705 * and the client proceeds on. 6706 * Client writes data to the file. 6707 * The server now processes retransmitted CREATE request 6708 * and truncates file. 6709 * 6710 * The use of the GUARDED CREATE request prevents this from 6711 * happening because the retransmitted CREATE would fail 6712 * with EEXIST and would not truncate the file. 6713 */ 6714 if (error == EEXIST && exclusive == NONEXCL) { 6715 #ifdef DEBUG 6716 nfs4_create_misses++; 6717 #endif 6718 goto top; 6719 } 6720 nfs_rw_exit(&drp->r_rwlock); 6721 if (truncating && !error && *vpp) { 6722 vnode_t *tvp; 6723 rnode4_t *trp; 6724 /* 6725 * existing file got truncated, notify. 6726 */ 6727 tvp = *vpp; 6728 trp = VTOR4(tvp); 6729 if (IS_SHADOW(tvp, trp)) 6730 tvp = RTOV4(trp); 6731 vnevent_create(tvp, ct); 6732 } 6733 return (error); 6734 } 6735 6736 /* 6737 * Create compound (for mkdir, mknod, symlink): 6738 * { Putfh <dfh>; Create; Getfh; Getattr } 6739 * It's okay if setattr failed to set gid - this is not considered 6740 * an error, but purge attrs in that case. 6741 */ 6742 static int 6743 call_nfs4_create_req(vnode_t *dvp, char *nm, void *data, struct vattr *va, 6744 vnode_t **vpp, cred_t *cr, nfs_ftype4 type) 6745 { 6746 int need_end_op = FALSE; 6747 COMPOUND4args_clnt args; 6748 COMPOUND4res_clnt res, *resp = NULL; 6749 nfs_argop4 *argop; 6750 nfs_resop4 *resop; 6751 int doqueue; 6752 mntinfo4_t *mi; 6753 rnode4_t *drp = VTOR4(dvp); 6754 change_info4 *cinfo; 6755 GETFH4res *gf_res; 6756 struct vattr vattr; 6757 vnode_t *vp; 6758 fattr4 *crattr; 6759 bool_t needrecov = FALSE; 6760 nfs4_recov_state_t recov_state; 6761 nfs4_sharedfh_t *sfhp = NULL; 6762 hrtime_t t; 6763 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 6764 int numops, argoplist_size, setgid_flag, idx_create, idx_fattr; 6765 dirattr_info_t dinfo, *dinfop; 6766 servinfo4_t *svp; 6767 bitmap4 supp_attrs; 6768 6769 ASSERT(type == NF4DIR || type == NF4LNK || type == NF4BLK || 6770 type == NF4CHR || type == NF4SOCK || type == NF4FIFO); 6771 6772 mi = VTOMI4(dvp); 6773 6774 /* 6775 * Make sure we properly deal with setting the right gid 6776 * on a new directory to reflect the parent's setgid bit 6777 */ 6778 setgid_flag = 0; 6779 if (type == NF4DIR) { 6780 struct vattr dva; 6781 6782 va->va_mode &= ~VSGID; 6783 dva.va_mask = AT_MODE | AT_GID; 6784 if (VOP_GETATTR(dvp, &dva, 0, cr, NULL) == 0) { 6785 6786 /* 6787 * If the parent's directory has the setgid bit set 6788 * _and_ the client was able to get a valid mapping 6789 * for the parent dir's owner_group, we want to 6790 * append NVERIFY(owner_group == dva.va_gid) and 6791 * SETTATTR to the CREATE compound. 6792 */ 6793 if (mi->mi_flags & MI4_GRPID || dva.va_mode & VSGID) { 6794 setgid_flag = 1; 6795 va->va_mode |= VSGID; 6796 if (dva.va_gid != GID_NOBODY) { 6797 va->va_mask |= AT_GID; 6798 va->va_gid = dva.va_gid; 6799 } 6800 } 6801 } 6802 } 6803 6804 /* 6805 * Create ops: 6806 * 0:putfh(dir) 1:savefh(dir) 2:create 3:getfh(new) 4:getattr(new) 6807 * 5:restorefh(dir) 6:getattr(dir) 6808 * 6809 * if (setgid) 6810 * 0:putfh(dir) 1:create 2:getfh(new) 3:getattr(new) 6811 * 4:savefh(new) 5:putfh(dir) 6:getattr(dir) 7:restorefh(new) 6812 * 8:nverify 9:setattr 6813 */ 6814 if (setgid_flag) { 6815 numops = 10; 6816 idx_create = 1; 6817 idx_fattr = 3; 6818 } else { 6819 numops = 7; 6820 idx_create = 2; 6821 idx_fattr = 4; 6822 } 6823 6824 ASSERT(nfs_zone() == mi->mi_zone); 6825 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR4(dvp))) { 6826 return (EINTR); 6827 } 6828 recov_state.rs_flags = 0; 6829 recov_state.rs_num_retry_despite_err = 0; 6830 6831 argoplist_size = numops * sizeof (nfs_argop4); 6832 argop = kmem_alloc(argoplist_size, KM_SLEEP); 6833 6834 recov_retry: 6835 if (type == NF4LNK) 6836 args.ctag = TAG_SYMLINK; 6837 else if (type == NF4DIR) 6838 args.ctag = TAG_MKDIR; 6839 else 6840 args.ctag = TAG_MKNOD; 6841 6842 args.array_len = numops; 6843 args.array = argop; 6844 6845 if (e.error = nfs4_start_op(mi, dvp, NULL, &recov_state)) { 6846 nfs_rw_exit(&drp->r_rwlock); 6847 kmem_free(argop, argoplist_size); 6848 return (e.error); 6849 } 6850 need_end_op = TRUE; 6851 6852 6853 /* 0: putfh directory */ 6854 argop[0].argop = OP_CPUTFH; 6855 argop[0].nfs_argop4_u.opcputfh.sfh = drp->r_fh; 6856 6857 /* 1/2: Create object */ 6858 argop[idx_create].argop = OP_CCREATE; 6859 argop[idx_create].nfs_argop4_u.opccreate.cname = nm; 6860 argop[idx_create].nfs_argop4_u.opccreate.type = type; 6861 if (type == NF4LNK) { 6862 /* 6863 * symlink, treat name as data 6864 */ 6865 ASSERT(data != NULL); 6866 argop[idx_create].nfs_argop4_u.opccreate.ftype4_u.clinkdata = 6867 (char *)data; 6868 } 6869 if (type == NF4BLK || type == NF4CHR) { 6870 ASSERT(data != NULL); 6871 argop[idx_create].nfs_argop4_u.opccreate.ftype4_u.devdata = 6872 *((specdata4 *)data); 6873 } 6874 6875 crattr = &argop[idx_create].nfs_argop4_u.opccreate.createattrs; 6876 6877 svp = drp->r_server; 6878 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0); 6879 supp_attrs = svp->sv_supp_attrs; 6880 nfs_rw_exit(&svp->sv_lock); 6881 6882 if (vattr_to_fattr4(va, NULL, crattr, 0, OP_CREATE, supp_attrs)) { 6883 nfs_rw_exit(&drp->r_rwlock); 6884 nfs4_end_op(mi, dvp, NULL, &recov_state, needrecov); 6885 e.error = EINVAL; 6886 kmem_free(argop, argoplist_size); 6887 return (e.error); 6888 } 6889 6890 /* 2/3: getfh fh of created object */ 6891 ASSERT(idx_create + 1 == idx_fattr - 1); 6892 argop[idx_create + 1].argop = OP_GETFH; 6893 6894 /* 3/4: getattr of new object */ 6895 argop[idx_fattr].argop = OP_GETATTR; 6896 argop[idx_fattr].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 6897 argop[idx_fattr].nfs_argop4_u.opgetattr.mi = mi; 6898 6899 if (setgid_flag) { 6900 vattr_t _v; 6901 6902 argop[4].argop = OP_SAVEFH; 6903 6904 argop[5].argop = OP_CPUTFH; 6905 argop[5].nfs_argop4_u.opcputfh.sfh = drp->r_fh; 6906 6907 argop[6].argop = OP_GETATTR; 6908 argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 6909 argop[6].nfs_argop4_u.opgetattr.mi = mi; 6910 6911 argop[7].argop = OP_RESTOREFH; 6912 6913 /* 6914 * nverify 6915 * 6916 * XXX - Revisit the last argument to nfs4_end_op() 6917 * once 5020486 is fixed. 6918 */ 6919 _v.va_mask = AT_GID; 6920 _v.va_gid = va->va_gid; 6921 if (e.error = nfs4args_verify(&argop[8], &_v, OP_NVERIFY, 6922 supp_attrs)) { 6923 nfs4_end_op(mi, dvp, *vpp, &recov_state, TRUE); 6924 nfs_rw_exit(&drp->r_rwlock); 6925 nfs4_fattr4_free(crattr); 6926 kmem_free(argop, argoplist_size); 6927 return (e.error); 6928 } 6929 6930 /* 6931 * setattr 6932 * 6933 * We _know_ we're not messing with AT_SIZE or AT_XTIME, 6934 * so no need for stateid or flags. Also we specify NULL 6935 * rp since we're only interested in setting owner_group 6936 * attributes. 6937 */ 6938 nfs4args_setattr(&argop[9], &_v, NULL, 0, NULL, cr, supp_attrs, 6939 &e.error, 0); 6940 6941 if (e.error) { 6942 nfs4_end_op(mi, dvp, *vpp, &recov_state, TRUE); 6943 nfs_rw_exit(&drp->r_rwlock); 6944 nfs4_fattr4_free(crattr); 6945 nfs4args_verify_free(&argop[8]); 6946 kmem_free(argop, argoplist_size); 6947 return (e.error); 6948 } 6949 } else { 6950 argop[1].argop = OP_SAVEFH; 6951 6952 argop[5].argop = OP_RESTOREFH; 6953 6954 argop[6].argop = OP_GETATTR; 6955 argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 6956 argop[6].nfs_argop4_u.opgetattr.mi = mi; 6957 } 6958 6959 dnlc_remove(dvp, nm); 6960 6961 doqueue = 1; 6962 t = gethrtime(); 6963 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e); 6964 6965 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp); 6966 if (e.error) { 6967 PURGE_ATTRCACHE4(dvp); 6968 if (!needrecov) 6969 goto out; 6970 } 6971 6972 if (needrecov) { 6973 if (nfs4_start_recovery(&e, mi, dvp, NULL, NULL, NULL, 6974 OP_CREATE, NULL) == FALSE) { 6975 nfs4_end_op(mi, dvp, NULL, &recov_state, 6976 needrecov); 6977 need_end_op = FALSE; 6978 nfs4_fattr4_free(crattr); 6979 if (setgid_flag) { 6980 nfs4args_verify_free(&argop[8]); 6981 nfs4args_setattr_free(&argop[9]); 6982 } 6983 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 6984 goto recov_retry; 6985 } 6986 } 6987 6988 resp = &res; 6989 6990 if (res.status != NFS4_OK && res.array_len <= idx_fattr + 1) { 6991 6992 if (res.status == NFS4ERR_BADOWNER) 6993 nfs4_log_badowner(mi, OP_CREATE); 6994 6995 e.error = geterrno4(res.status); 6996 6997 /* 6998 * This check is left over from when create was implemented 6999 * using a setattr op (instead of createattrs). If the 7000 * putfh/create/getfh failed, the error was returned. If 7001 * setattr/getattr failed, we keep going. 7002 * 7003 * It might be better to get rid of the GETFH also, and just 7004 * do PUTFH/CREATE/GETATTR since the FH attr is mandatory. 7005 * Then if any of the operations failed, we could return the 7006 * error now, and remove much of the error code below. 7007 */ 7008 if (res.array_len <= idx_fattr) { 7009 /* 7010 * Either Putfh, Create or Getfh failed. 7011 */ 7012 PURGE_ATTRCACHE4(dvp); 7013 /* 7014 * nfs4_purge_stale_fh() may generate otw calls through 7015 * nfs4_invalidate_pages. Hence the need to call 7016 * nfs4_end_op() here to avoid nfs4_start_op() deadlock. 7017 */ 7018 nfs4_end_op(mi, dvp, NULL, &recov_state, 7019 needrecov); 7020 need_end_op = FALSE; 7021 nfs4_purge_stale_fh(e.error, dvp, cr); 7022 goto out; 7023 } 7024 } 7025 7026 resop = &res.array[idx_create]; /* create res */ 7027 cinfo = &resop->nfs_resop4_u.opcreate.cinfo; 7028 7029 resop = &res.array[idx_create + 1]; /* getfh res */ 7030 gf_res = &resop->nfs_resop4_u.opgetfh; 7031 7032 sfhp = sfh4_get(&gf_res->object, mi); 7033 if (e.error) { 7034 *vpp = vp = makenfs4node(sfhp, NULL, dvp->v_vfsp, t, cr, dvp, 7035 fn_get(VTOSV(dvp)->sv_name, nm, sfhp)); 7036 if (vp->v_type == VNON) { 7037 vattr.va_mask = AT_TYPE; 7038 /* 7039 * Need to call nfs4_end_op before nfs4getattr to avoid 7040 * potential nfs4_start_op deadlock. See RFE 4777612. 7041 */ 7042 nfs4_end_op(mi, dvp, NULL, &recov_state, 7043 needrecov); 7044 need_end_op = FALSE; 7045 e.error = nfs4getattr(vp, &vattr, cr); 7046 if (e.error) { 7047 VN_RELE(vp); 7048 *vpp = NULL; 7049 goto out; 7050 } 7051 vp->v_type = vattr.va_type; 7052 } 7053 e.error = 0; 7054 } else { 7055 *vpp = vp = makenfs4node(sfhp, 7056 &res.array[idx_fattr].nfs_resop4_u.opgetattr.ga_res, 7057 dvp->v_vfsp, t, cr, 7058 dvp, fn_get(VTOSV(dvp)->sv_name, nm, sfhp)); 7059 } 7060 7061 /* 7062 * If compound succeeded, then update dir attrs 7063 */ 7064 if (res.status == NFS4_OK) { 7065 dinfo.di_garp = &res.array[6].nfs_resop4_u.opgetattr.ga_res; 7066 dinfo.di_cred = cr; 7067 dinfo.di_time_call = t; 7068 dinfop = &dinfo; 7069 } else 7070 dinfop = NULL; 7071 7072 /* Update directory cache attribute, readdir and dnlc caches */ 7073 nfs4_update_dircaches(cinfo, dvp, vp, nm, dinfop); 7074 7075 out: 7076 if (sfhp != NULL) 7077 sfh4_rele(&sfhp); 7078 nfs_rw_exit(&drp->r_rwlock); 7079 nfs4_fattr4_free(crattr); 7080 if (setgid_flag) { 7081 nfs4args_verify_free(&argop[8]); 7082 nfs4args_setattr_free(&argop[9]); 7083 } 7084 if (resp) 7085 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp); 7086 if (need_end_op) 7087 nfs4_end_op(mi, dvp, NULL, &recov_state, needrecov); 7088 7089 kmem_free(argop, argoplist_size); 7090 return (e.error); 7091 } 7092 7093 /* ARGSUSED */ 7094 static int 7095 nfs4mknod(vnode_t *dvp, char *nm, struct vattr *va, enum vcexcl exclusive, 7096 int mode, vnode_t **vpp, cred_t *cr) 7097 { 7098 int error; 7099 vnode_t *vp; 7100 nfs_ftype4 type; 7101 specdata4 spec, *specp = NULL; 7102 7103 ASSERT(nfs_zone() == VTOMI4(dvp)->mi_zone); 7104 7105 switch (va->va_type) { 7106 case VCHR: 7107 case VBLK: 7108 type = (va->va_type == VCHR) ? NF4CHR : NF4BLK; 7109 spec.specdata1 = getmajor(va->va_rdev); 7110 spec.specdata2 = getminor(va->va_rdev); 7111 specp = &spec; 7112 break; 7113 7114 case VFIFO: 7115 type = NF4FIFO; 7116 break; 7117 case VSOCK: 7118 type = NF4SOCK; 7119 break; 7120 7121 default: 7122 return (EINVAL); 7123 } 7124 7125 error = call_nfs4_create_req(dvp, nm, specp, va, &vp, cr, type); 7126 if (error) { 7127 return (error); 7128 } 7129 7130 /* 7131 * This might not be needed any more; special case to deal 7132 * with problematic v2/v3 servers. Since create was unable 7133 * to set group correctly, not sure what hope setattr has. 7134 */ 7135 if (va->va_gid != VTOR4(vp)->r_attr.va_gid) { 7136 va->va_mask = AT_GID; 7137 (void) nfs4setattr(vp, va, 0, cr, NULL); 7138 } 7139 7140 /* 7141 * If vnode is a device create special vnode 7142 */ 7143 if (ISVDEV(vp->v_type)) { 7144 *vpp = specvp(vp, vp->v_rdev, vp->v_type, cr); 7145 VN_RELE(vp); 7146 } else { 7147 *vpp = vp; 7148 } 7149 return (error); 7150 } 7151 7152 /* 7153 * Remove requires that the current fh be the target directory. 7154 * After the operation, the current fh is unchanged. 7155 * The compound op structure is: 7156 * PUTFH(targetdir), REMOVE 7157 * 7158 * Weirdness: if the vnode to be removed is open 7159 * we rename it instead of removing it and nfs_inactive 7160 * will remove the new name. 7161 */ 7162 /* ARGSUSED */ 7163 static int 7164 nfs4_remove(vnode_t *dvp, char *nm, cred_t *cr, caller_context_t *ct, int flags) 7165 { 7166 COMPOUND4args_clnt args; 7167 COMPOUND4res_clnt res, *resp = NULL; 7168 REMOVE4res *rm_res; 7169 nfs_argop4 argop[3]; 7170 nfs_resop4 *resop; 7171 vnode_t *vp; 7172 char *tmpname; 7173 int doqueue; 7174 mntinfo4_t *mi; 7175 rnode4_t *rp; 7176 rnode4_t *drp; 7177 int needrecov = 0; 7178 nfs4_recov_state_t recov_state; 7179 int isopen; 7180 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 7181 dirattr_info_t dinfo; 7182 7183 if (nfs_zone() != VTOMI4(dvp)->mi_zone) 7184 return (EPERM); 7185 drp = VTOR4(dvp); 7186 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR4(dvp))) 7187 return (EINTR); 7188 7189 e.error = nfs4lookup(dvp, nm, &vp, cr, 0); 7190 if (e.error) { 7191 nfs_rw_exit(&drp->r_rwlock); 7192 return (e.error); 7193 } 7194 7195 if (vp->v_type == VDIR) { 7196 VN_RELE(vp); 7197 nfs_rw_exit(&drp->r_rwlock); 7198 return (EISDIR); 7199 } 7200 7201 /* 7202 * First just remove the entry from the name cache, as it 7203 * is most likely the only entry for this vp. 7204 */ 7205 dnlc_remove(dvp, nm); 7206 7207 rp = VTOR4(vp); 7208 7209 /* 7210 * For regular file types, check to see if the file is open by looking 7211 * at the open streams. 7212 * For all other types, check the reference count on the vnode. Since 7213 * they are not opened OTW they never have an open stream. 7214 * 7215 * If the file is open, rename it to .nfsXXXX. 7216 */ 7217 if (vp->v_type != VREG) { 7218 /* 7219 * If the file has a v_count > 1 then there may be more than one 7220 * entry in the name cache due multiple links or an open file, 7221 * but we don't have the real reference count so flush all 7222 * possible entries. 7223 */ 7224 if (vp->v_count > 1) 7225 dnlc_purge_vp(vp); 7226 7227 /* 7228 * Now we have the real reference count. 7229 */ 7230 isopen = vp->v_count > 1; 7231 } else { 7232 mutex_enter(&rp->r_os_lock); 7233 isopen = list_head(&rp->r_open_streams) != NULL; 7234 mutex_exit(&rp->r_os_lock); 7235 } 7236 7237 mutex_enter(&rp->r_statelock); 7238 if (isopen && 7239 (rp->r_unldvp == NULL || strcmp(nm, rp->r_unlname) == 0)) { 7240 mutex_exit(&rp->r_statelock); 7241 tmpname = newname(); 7242 e.error = nfs4rename(dvp, nm, dvp, tmpname, cr, ct); 7243 if (e.error) 7244 kmem_free(tmpname, MAXNAMELEN); 7245 else { 7246 mutex_enter(&rp->r_statelock); 7247 if (rp->r_unldvp == NULL) { 7248 VN_HOLD(dvp); 7249 rp->r_unldvp = dvp; 7250 if (rp->r_unlcred != NULL) 7251 crfree(rp->r_unlcred); 7252 crhold(cr); 7253 rp->r_unlcred = cr; 7254 rp->r_unlname = tmpname; 7255 } else { 7256 kmem_free(rp->r_unlname, MAXNAMELEN); 7257 rp->r_unlname = tmpname; 7258 } 7259 mutex_exit(&rp->r_statelock); 7260 } 7261 VN_RELE(vp); 7262 nfs_rw_exit(&drp->r_rwlock); 7263 return (e.error); 7264 } 7265 /* 7266 * Actually remove the file/dir 7267 */ 7268 mutex_exit(&rp->r_statelock); 7269 7270 /* 7271 * We need to flush any dirty pages which happen to 7272 * be hanging around before removing the file. 7273 * This shouldn't happen very often since in NFSv4 7274 * we should be close to open consistent. 7275 */ 7276 if (nfs4_has_pages(vp) && 7277 ((rp->r_flags & R4DIRTY) || rp->r_count > 0)) { 7278 e.error = nfs4_putpage(vp, (u_offset_t)0, 0, 0, cr, ct); 7279 if (e.error && (e.error == ENOSPC || e.error == EDQUOT)) { 7280 mutex_enter(&rp->r_statelock); 7281 if (!rp->r_error) 7282 rp->r_error = e.error; 7283 mutex_exit(&rp->r_statelock); 7284 } 7285 } 7286 7287 mi = VTOMI4(dvp); 7288 7289 (void) nfs4delegreturn(rp, NFS4_DR_REOPEN); 7290 recov_state.rs_flags = 0; 7291 recov_state.rs_num_retry_despite_err = 0; 7292 7293 recov_retry: 7294 /* 7295 * Remove ops: putfh dir; remove 7296 */ 7297 args.ctag = TAG_REMOVE; 7298 args.array_len = 3; 7299 args.array = argop; 7300 7301 e.error = nfs4_start_op(VTOMI4(dvp), dvp, NULL, &recov_state); 7302 if (e.error) { 7303 nfs_rw_exit(&drp->r_rwlock); 7304 VN_RELE(vp); 7305 return (e.error); 7306 } 7307 7308 /* putfh directory */ 7309 argop[0].argop = OP_CPUTFH; 7310 argop[0].nfs_argop4_u.opcputfh.sfh = drp->r_fh; 7311 7312 /* remove */ 7313 argop[1].argop = OP_CREMOVE; 7314 argop[1].nfs_argop4_u.opcremove.ctarget = nm; 7315 7316 /* getattr dir */ 7317 argop[2].argop = OP_GETATTR; 7318 argop[2].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 7319 argop[2].nfs_argop4_u.opgetattr.mi = mi; 7320 7321 doqueue = 1; 7322 dinfo.di_time_call = gethrtime(); 7323 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e); 7324 7325 PURGE_ATTRCACHE4(vp); 7326 7327 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp); 7328 if (e.error) 7329 PURGE_ATTRCACHE4(dvp); 7330 7331 if (needrecov) { 7332 if (nfs4_start_recovery(&e, VTOMI4(dvp), dvp, 7333 NULL, NULL, NULL, OP_REMOVE, NULL) == FALSE) { 7334 if (!e.error) 7335 (void) xdr_free(xdr_COMPOUND4res_clnt, 7336 (caddr_t)&res); 7337 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, 7338 needrecov); 7339 goto recov_retry; 7340 } 7341 } 7342 7343 /* 7344 * Matching nfs4_end_op() for start_op() above. 7345 * There is a path in the code below which calls 7346 * nfs4_purge_stale_fh(), which may generate otw calls through 7347 * nfs4_invalidate_pages. Hence we need to call nfs4_end_op() 7348 * here to avoid nfs4_start_op() deadlock. 7349 */ 7350 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, needrecov); 7351 7352 if (!e.error) { 7353 resp = &res; 7354 7355 if (res.status) { 7356 e.error = geterrno4(res.status); 7357 PURGE_ATTRCACHE4(dvp); 7358 nfs4_purge_stale_fh(e.error, dvp, cr); 7359 } else { 7360 resop = &res.array[1]; /* remove res */ 7361 rm_res = &resop->nfs_resop4_u.opremove; 7362 7363 dinfo.di_garp = 7364 &res.array[2].nfs_resop4_u.opgetattr.ga_res; 7365 dinfo.di_cred = cr; 7366 7367 /* Update directory attr, readdir and dnlc caches */ 7368 nfs4_update_dircaches(&rm_res->cinfo, dvp, NULL, NULL, 7369 &dinfo); 7370 } 7371 } 7372 nfs_rw_exit(&drp->r_rwlock); 7373 if (resp) 7374 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp); 7375 7376 if (e.error == 0) { 7377 vnode_t *tvp; 7378 rnode4_t *trp; 7379 trp = VTOR4(vp); 7380 tvp = vp; 7381 if (IS_SHADOW(vp, trp)) 7382 tvp = RTOV4(trp); 7383 vnevent_remove(tvp, dvp, nm, ct); 7384 } 7385 VN_RELE(vp); 7386 return (e.error); 7387 } 7388 7389 /* 7390 * Link requires that the current fh be the target directory and the 7391 * saved fh be the source fh. After the operation, the current fh is unchanged. 7392 * Thus the compound op structure is: 7393 * PUTFH(file), SAVEFH, PUTFH(targetdir), LINK, RESTOREFH, 7394 * GETATTR(file) 7395 */ 7396 /* ARGSUSED */ 7397 static int 7398 nfs4_link(vnode_t *tdvp, vnode_t *svp, char *tnm, cred_t *cr, 7399 caller_context_t *ct, int flags) 7400 { 7401 COMPOUND4args_clnt args; 7402 COMPOUND4res_clnt res, *resp = NULL; 7403 LINK4res *ln_res; 7404 int argoplist_size = 7 * sizeof (nfs_argop4); 7405 nfs_argop4 *argop; 7406 nfs_resop4 *resop; 7407 vnode_t *realvp, *nvp; 7408 int doqueue; 7409 mntinfo4_t *mi; 7410 rnode4_t *tdrp; 7411 bool_t needrecov = FALSE; 7412 nfs4_recov_state_t recov_state; 7413 hrtime_t t; 7414 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 7415 dirattr_info_t dinfo; 7416 7417 ASSERT(*tnm != '\0'); 7418 ASSERT(tdvp->v_type == VDIR); 7419 ASSERT(nfs4_consistent_type(tdvp)); 7420 ASSERT(nfs4_consistent_type(svp)); 7421 7422 if (nfs_zone() != VTOMI4(tdvp)->mi_zone) 7423 return (EPERM); 7424 if (VOP_REALVP(svp, &realvp, ct) == 0) { 7425 svp = realvp; 7426 ASSERT(nfs4_consistent_type(svp)); 7427 } 7428 7429 tdrp = VTOR4(tdvp); 7430 mi = VTOMI4(svp); 7431 7432 if (!(mi->mi_flags & MI4_LINK)) { 7433 return (EOPNOTSUPP); 7434 } 7435 recov_state.rs_flags = 0; 7436 recov_state.rs_num_retry_despite_err = 0; 7437 7438 if (nfs_rw_enter_sig(&tdrp->r_rwlock, RW_WRITER, INTR4(tdvp))) 7439 return (EINTR); 7440 7441 recov_retry: 7442 argop = kmem_alloc(argoplist_size, KM_SLEEP); 7443 7444 args.ctag = TAG_LINK; 7445 7446 /* 7447 * Link ops: putfh fl; savefh; putfh tdir; link; getattr(dir); 7448 * restorefh; getattr(fl) 7449 */ 7450 args.array_len = 7; 7451 args.array = argop; 7452 7453 e.error = nfs4_start_op(VTOMI4(svp), svp, tdvp, &recov_state); 7454 if (e.error) { 7455 kmem_free(argop, argoplist_size); 7456 nfs_rw_exit(&tdrp->r_rwlock); 7457 return (e.error); 7458 } 7459 7460 /* 0. putfh file */ 7461 argop[0].argop = OP_CPUTFH; 7462 argop[0].nfs_argop4_u.opcputfh.sfh = VTOR4(svp)->r_fh; 7463 7464 /* 1. save current fh to free up the space for the dir */ 7465 argop[1].argop = OP_SAVEFH; 7466 7467 /* 2. putfh targetdir */ 7468 argop[2].argop = OP_CPUTFH; 7469 argop[2].nfs_argop4_u.opcputfh.sfh = tdrp->r_fh; 7470 7471 /* 3. link: current_fh is targetdir, saved_fh is source */ 7472 argop[3].argop = OP_CLINK; 7473 argop[3].nfs_argop4_u.opclink.cnewname = tnm; 7474 7475 /* 4. Get attributes of dir */ 7476 argop[4].argop = OP_GETATTR; 7477 argop[4].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 7478 argop[4].nfs_argop4_u.opgetattr.mi = mi; 7479 7480 /* 5. If link was successful, restore current vp to file */ 7481 argop[5].argop = OP_RESTOREFH; 7482 7483 /* 6. Get attributes of linked object */ 7484 argop[6].argop = OP_GETATTR; 7485 argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 7486 argop[6].nfs_argop4_u.opgetattr.mi = mi; 7487 7488 dnlc_remove(tdvp, tnm); 7489 7490 doqueue = 1; 7491 t = gethrtime(); 7492 7493 rfs4call(VTOMI4(svp), &args, &res, cr, &doqueue, 0, &e); 7494 7495 needrecov = nfs4_needs_recovery(&e, FALSE, svp->v_vfsp); 7496 if (e.error != 0 && !needrecov) { 7497 PURGE_ATTRCACHE4(tdvp); 7498 PURGE_ATTRCACHE4(svp); 7499 nfs4_end_op(VTOMI4(svp), svp, tdvp, &recov_state, needrecov); 7500 goto out; 7501 } 7502 7503 if (needrecov) { 7504 bool_t abort; 7505 7506 abort = nfs4_start_recovery(&e, VTOMI4(svp), svp, tdvp, 7507 NULL, NULL, OP_LINK, NULL); 7508 if (abort == FALSE) { 7509 nfs4_end_op(VTOMI4(svp), svp, tdvp, &recov_state, 7510 needrecov); 7511 kmem_free(argop, argoplist_size); 7512 if (!e.error) 7513 (void) xdr_free(xdr_COMPOUND4res_clnt, 7514 (caddr_t)&res); 7515 goto recov_retry; 7516 } else { 7517 if (e.error != 0) { 7518 PURGE_ATTRCACHE4(tdvp); 7519 PURGE_ATTRCACHE4(svp); 7520 nfs4_end_op(VTOMI4(svp), svp, tdvp, 7521 &recov_state, needrecov); 7522 goto out; 7523 } 7524 /* fall through for res.status case */ 7525 } 7526 } 7527 7528 nfs4_end_op(VTOMI4(svp), svp, tdvp, &recov_state, needrecov); 7529 7530 resp = &res; 7531 if (res.status) { 7532 /* If link succeeded, then don't return error */ 7533 e.error = geterrno4(res.status); 7534 if (res.array_len <= 4) { 7535 /* 7536 * Either Putfh, Savefh, Putfh dir, or Link failed 7537 */ 7538 PURGE_ATTRCACHE4(svp); 7539 PURGE_ATTRCACHE4(tdvp); 7540 if (e.error == EOPNOTSUPP) { 7541 mutex_enter(&mi->mi_lock); 7542 mi->mi_flags &= ~MI4_LINK; 7543 mutex_exit(&mi->mi_lock); 7544 } 7545 /* Remap EISDIR to EPERM for non-root user for SVVS */ 7546 /* XXX-LP */ 7547 if (e.error == EISDIR && crgetuid(cr) != 0) 7548 e.error = EPERM; 7549 goto out; 7550 } 7551 } 7552 7553 /* either no error or one of the postop getattr failed */ 7554 7555 /* 7556 * XXX - if LINK succeeded, but no attrs were returned for link 7557 * file, purge its cache. 7558 * 7559 * XXX Perform a simplified version of wcc checking. Instead of 7560 * have another getattr to get pre-op, just purge cache if 7561 * any of the ops prior to and including the getattr failed. 7562 * If the getattr succeeded then update the attrcache accordingly. 7563 */ 7564 7565 /* 7566 * update cache with link file postattrs. 7567 * Note: at this point resop points to link res. 7568 */ 7569 resop = &res.array[3]; /* link res */ 7570 ln_res = &resop->nfs_resop4_u.oplink; 7571 if (res.status == NFS4_OK) 7572 e.error = nfs4_update_attrcache(res.status, 7573 &res.array[6].nfs_resop4_u.opgetattr.ga_res, 7574 t, svp, cr); 7575 7576 /* 7577 * Call makenfs4node to create the new shadow vp for tnm. 7578 * We pass NULL attrs because we just cached attrs for 7579 * the src object. All we're trying to accomplish is to 7580 * to create the new shadow vnode. 7581 */ 7582 nvp = makenfs4node(VTOR4(svp)->r_fh, NULL, tdvp->v_vfsp, t, cr, 7583 tdvp, fn_get(VTOSV(tdvp)->sv_name, tnm, VTOR4(svp)->r_fh)); 7584 7585 /* Update target cache attribute, readdir and dnlc caches */ 7586 dinfo.di_garp = &res.array[4].nfs_resop4_u.opgetattr.ga_res; 7587 dinfo.di_time_call = t; 7588 dinfo.di_cred = cr; 7589 7590 nfs4_update_dircaches(&ln_res->cinfo, tdvp, nvp, tnm, &dinfo); 7591 ASSERT(nfs4_consistent_type(tdvp)); 7592 ASSERT(nfs4_consistent_type(svp)); 7593 ASSERT(nfs4_consistent_type(nvp)); 7594 VN_RELE(nvp); 7595 7596 if (!e.error) { 7597 vnode_t *tvp; 7598 rnode4_t *trp; 7599 /* 7600 * Notify the source file of this link operation. 7601 */ 7602 trp = VTOR4(svp); 7603 tvp = svp; 7604 if (IS_SHADOW(svp, trp)) 7605 tvp = RTOV4(trp); 7606 vnevent_link(tvp, ct); 7607 } 7608 out: 7609 kmem_free(argop, argoplist_size); 7610 if (resp) 7611 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp); 7612 7613 nfs_rw_exit(&tdrp->r_rwlock); 7614 7615 return (e.error); 7616 } 7617 7618 /* ARGSUSED */ 7619 static int 7620 nfs4_rename(vnode_t *odvp, char *onm, vnode_t *ndvp, char *nnm, cred_t *cr, 7621 caller_context_t *ct, int flags) 7622 { 7623 vnode_t *realvp; 7624 7625 if (nfs_zone() != VTOMI4(odvp)->mi_zone) 7626 return (EPERM); 7627 if (VOP_REALVP(ndvp, &realvp, ct) == 0) 7628 ndvp = realvp; 7629 7630 return (nfs4rename(odvp, onm, ndvp, nnm, cr, ct)); 7631 } 7632 7633 /* 7634 * nfs4rename does the real work of renaming in NFS Version 4. 7635 * 7636 * A file handle is considered volatile for renaming purposes if either 7637 * of the volatile bits are turned on. However, the compound may differ 7638 * based on the likelihood of the filehandle to change during rename. 7639 */ 7640 static int 7641 nfs4rename(vnode_t *odvp, char *onm, vnode_t *ndvp, char *nnm, cred_t *cr, 7642 caller_context_t *ct) 7643 { 7644 int error; 7645 mntinfo4_t *mi; 7646 vnode_t *nvp = NULL; 7647 vnode_t *ovp = NULL; 7648 char *tmpname = NULL; 7649 rnode4_t *rp; 7650 rnode4_t *odrp; 7651 rnode4_t *ndrp; 7652 int did_link = 0; 7653 int do_link = 1; 7654 nfsstat4 stat = NFS4_OK; 7655 7656 ASSERT(nfs_zone() == VTOMI4(odvp)->mi_zone); 7657 ASSERT(nfs4_consistent_type(odvp)); 7658 ASSERT(nfs4_consistent_type(ndvp)); 7659 7660 if (onm[0] == '.' && (onm[1] == '\0' || 7661 (onm[1] == '.' && onm[2] == '\0'))) 7662 return (EINVAL); 7663 7664 if (nnm[0] == '.' && (nnm[1] == '\0' || 7665 (nnm[1] == '.' && nnm[2] == '\0'))) 7666 return (EINVAL); 7667 7668 odrp = VTOR4(odvp); 7669 ndrp = VTOR4(ndvp); 7670 if ((intptr_t)odrp < (intptr_t)ndrp) { 7671 if (nfs_rw_enter_sig(&odrp->r_rwlock, RW_WRITER, INTR4(odvp))) 7672 return (EINTR); 7673 if (nfs_rw_enter_sig(&ndrp->r_rwlock, RW_WRITER, INTR4(ndvp))) { 7674 nfs_rw_exit(&odrp->r_rwlock); 7675 return (EINTR); 7676 } 7677 } else { 7678 if (nfs_rw_enter_sig(&ndrp->r_rwlock, RW_WRITER, INTR4(ndvp))) 7679 return (EINTR); 7680 if (nfs_rw_enter_sig(&odrp->r_rwlock, RW_WRITER, INTR4(odvp))) { 7681 nfs_rw_exit(&ndrp->r_rwlock); 7682 return (EINTR); 7683 } 7684 } 7685 7686 /* 7687 * Lookup the target file. If it exists, it needs to be 7688 * checked to see whether it is a mount point and whether 7689 * it is active (open). 7690 */ 7691 error = nfs4lookup(ndvp, nnm, &nvp, cr, 0); 7692 if (!error) { 7693 int isactive; 7694 7695 ASSERT(nfs4_consistent_type(nvp)); 7696 /* 7697 * If this file has been mounted on, then just 7698 * return busy because renaming to it would remove 7699 * the mounted file system from the name space. 7700 */ 7701 if (vn_ismntpt(nvp)) { 7702 VN_RELE(nvp); 7703 nfs_rw_exit(&odrp->r_rwlock); 7704 nfs_rw_exit(&ndrp->r_rwlock); 7705 return (EBUSY); 7706 } 7707 7708 /* 7709 * First just remove the entry from the name cache, as it 7710 * is most likely the only entry for this vp. 7711 */ 7712 dnlc_remove(ndvp, nnm); 7713 7714 rp = VTOR4(nvp); 7715 7716 if (nvp->v_type != VREG) { 7717 /* 7718 * Purge the name cache of all references to this vnode 7719 * so that we can check the reference count to infer 7720 * whether it is active or not. 7721 */ 7722 if (nvp->v_count > 1) 7723 dnlc_purge_vp(nvp); 7724 7725 isactive = nvp->v_count > 1; 7726 } else { 7727 mutex_enter(&rp->r_os_lock); 7728 isactive = list_head(&rp->r_open_streams) != NULL; 7729 mutex_exit(&rp->r_os_lock); 7730 } 7731 7732 /* 7733 * If the vnode is active and is not a directory, 7734 * arrange to rename it to a 7735 * temporary file so that it will continue to be 7736 * accessible. This implements the "unlink-open-file" 7737 * semantics for the target of a rename operation. 7738 * Before doing this though, make sure that the 7739 * source and target files are not already the same. 7740 */ 7741 if (isactive && nvp->v_type != VDIR) { 7742 /* 7743 * Lookup the source name. 7744 */ 7745 error = nfs4lookup(odvp, onm, &ovp, cr, 0); 7746 7747 /* 7748 * The source name *should* already exist. 7749 */ 7750 if (error) { 7751 VN_RELE(nvp); 7752 nfs_rw_exit(&odrp->r_rwlock); 7753 nfs_rw_exit(&ndrp->r_rwlock); 7754 return (error); 7755 } 7756 7757 ASSERT(nfs4_consistent_type(ovp)); 7758 7759 /* 7760 * Compare the two vnodes. If they are the same, 7761 * just release all held vnodes and return success. 7762 */ 7763 if (VN_CMP(ovp, nvp)) { 7764 VN_RELE(ovp); 7765 VN_RELE(nvp); 7766 nfs_rw_exit(&odrp->r_rwlock); 7767 nfs_rw_exit(&ndrp->r_rwlock); 7768 return (0); 7769 } 7770 7771 /* 7772 * Can't mix and match directories and non- 7773 * directories in rename operations. We already 7774 * know that the target is not a directory. If 7775 * the source is a directory, return an error. 7776 */ 7777 if (ovp->v_type == VDIR) { 7778 VN_RELE(ovp); 7779 VN_RELE(nvp); 7780 nfs_rw_exit(&odrp->r_rwlock); 7781 nfs_rw_exit(&ndrp->r_rwlock); 7782 return (ENOTDIR); 7783 } 7784 link_call: 7785 /* 7786 * The target file exists, is not the same as 7787 * the source file, and is active. We first 7788 * try to Link it to a temporary filename to 7789 * avoid having the server removing the file 7790 * completely (which could cause data loss to 7791 * the user's POV in the event the Rename fails 7792 * -- see bug 1165874). 7793 */ 7794 /* 7795 * The do_link and did_link booleans are 7796 * introduced in the event we get NFS4ERR_FILE_OPEN 7797 * returned for the Rename. Some servers can 7798 * not Rename over an Open file, so they return 7799 * this error. The client needs to Remove the 7800 * newly created Link and do two Renames, just 7801 * as if the server didn't support LINK. 7802 */ 7803 tmpname = newname(); 7804 error = 0; 7805 7806 if (do_link) { 7807 error = nfs4_link(ndvp, nvp, tmpname, cr, 7808 NULL, 0); 7809 } 7810 if (error == EOPNOTSUPP || !do_link) { 7811 error = nfs4_rename(ndvp, nnm, ndvp, tmpname, 7812 cr, NULL, 0); 7813 did_link = 0; 7814 } else { 7815 did_link = 1; 7816 } 7817 if (error) { 7818 kmem_free(tmpname, MAXNAMELEN); 7819 VN_RELE(ovp); 7820 VN_RELE(nvp); 7821 nfs_rw_exit(&odrp->r_rwlock); 7822 nfs_rw_exit(&ndrp->r_rwlock); 7823 return (error); 7824 } 7825 7826 mutex_enter(&rp->r_statelock); 7827 if (rp->r_unldvp == NULL) { 7828 VN_HOLD(ndvp); 7829 rp->r_unldvp = ndvp; 7830 if (rp->r_unlcred != NULL) 7831 crfree(rp->r_unlcred); 7832 crhold(cr); 7833 rp->r_unlcred = cr; 7834 rp->r_unlname = tmpname; 7835 } else { 7836 if (rp->r_unlname) 7837 kmem_free(rp->r_unlname, MAXNAMELEN); 7838 rp->r_unlname = tmpname; 7839 } 7840 mutex_exit(&rp->r_statelock); 7841 } 7842 7843 (void) nfs4delegreturn(VTOR4(nvp), NFS4_DR_PUSH|NFS4_DR_REOPEN); 7844 7845 ASSERT(nfs4_consistent_type(nvp)); 7846 } 7847 7848 if (ovp == NULL) { 7849 /* 7850 * When renaming directories to be a subdirectory of a 7851 * different parent, the dnlc entry for ".." will no 7852 * longer be valid, so it must be removed. 7853 * 7854 * We do a lookup here to determine whether we are renaming 7855 * a directory and we need to check if we are renaming 7856 * an unlinked file. This might have already been done 7857 * in previous code, so we check ovp == NULL to avoid 7858 * doing it twice. 7859 */ 7860 error = nfs4lookup(odvp, onm, &ovp, cr, 0); 7861 /* 7862 * The source name *should* already exist. 7863 */ 7864 if (error) { 7865 nfs_rw_exit(&odrp->r_rwlock); 7866 nfs_rw_exit(&ndrp->r_rwlock); 7867 if (nvp) { 7868 VN_RELE(nvp); 7869 } 7870 return (error); 7871 } 7872 ASSERT(ovp != NULL); 7873 ASSERT(nfs4_consistent_type(ovp)); 7874 } 7875 7876 /* 7877 * Is the object being renamed a dir, and if so, is 7878 * it being renamed to a child of itself? The underlying 7879 * fs should ultimately return EINVAL for this case; 7880 * however, buggy beta non-Solaris NFSv4 servers at 7881 * interop testing events have allowed this behavior, 7882 * and it caused our client to panic due to a recursive 7883 * mutex_enter in fn_move. 7884 * 7885 * The tedious locking in fn_move could be changed to 7886 * deal with this case, and the client could avoid the 7887 * panic; however, the client would just confuse itself 7888 * later and misbehave. A better way to handle the broken 7889 * server is to detect this condition and return EINVAL 7890 * without ever sending the the bogus rename to the server. 7891 * We know the rename is invalid -- just fail it now. 7892 */ 7893 if (ovp->v_type == VDIR && VN_CMP(ndvp, ovp)) { 7894 VN_RELE(ovp); 7895 nfs_rw_exit(&odrp->r_rwlock); 7896 nfs_rw_exit(&ndrp->r_rwlock); 7897 if (nvp) { 7898 VN_RELE(nvp); 7899 } 7900 return (EINVAL); 7901 } 7902 7903 (void) nfs4delegreturn(VTOR4(ovp), NFS4_DR_PUSH|NFS4_DR_REOPEN); 7904 7905 /* 7906 * If FH4_VOL_RENAME or FH4_VOLATILE_ANY bits are set, it is 7907 * possible for the filehandle to change due to the rename. 7908 * If neither of these bits is set, but FH4_VOL_MIGRATION is set, 7909 * the fh will not change because of the rename, but we still need 7910 * to update its rnode entry with the new name for 7911 * an eventual fh change due to migration. The FH4_NOEXPIRE_ON_OPEN 7912 * has no effect on these for now, but for future improvements, 7913 * we might want to use it too to simplify handling of files 7914 * that are open with that flag on. (XXX) 7915 */ 7916 mi = VTOMI4(odvp); 7917 if (NFS4_VOLATILE_FH(mi)) 7918 error = nfs4rename_volatile_fh(odvp, onm, ovp, ndvp, nnm, cr, 7919 &stat); 7920 else 7921 error = nfs4rename_persistent_fh(odvp, onm, ovp, ndvp, nnm, cr, 7922 &stat); 7923 7924 ASSERT(nfs4_consistent_type(odvp)); 7925 ASSERT(nfs4_consistent_type(ndvp)); 7926 ASSERT(nfs4_consistent_type(ovp)); 7927 7928 if (stat == NFS4ERR_FILE_OPEN && did_link) { 7929 do_link = 0; 7930 /* 7931 * Before the 'link_call' code, we did a nfs4_lookup 7932 * that puts a VN_HOLD on nvp. After the nfs4_link 7933 * call we call VN_RELE to match that hold. We need 7934 * to place an additional VN_HOLD here since we will 7935 * be hitting that VN_RELE again. 7936 */ 7937 VN_HOLD(nvp); 7938 7939 (void) nfs4_remove(ndvp, tmpname, cr, NULL, 0); 7940 7941 /* Undo the unlinked file naming stuff we just did */ 7942 mutex_enter(&rp->r_statelock); 7943 if (rp->r_unldvp) { 7944 VN_RELE(ndvp); 7945 rp->r_unldvp = NULL; 7946 if (rp->r_unlcred != NULL) 7947 crfree(rp->r_unlcred); 7948 rp->r_unlcred = NULL; 7949 /* rp->r_unlanme points to tmpname */ 7950 if (rp->r_unlname) 7951 kmem_free(rp->r_unlname, MAXNAMELEN); 7952 rp->r_unlname = NULL; 7953 } 7954 mutex_exit(&rp->r_statelock); 7955 7956 if (nvp) { 7957 VN_RELE(nvp); 7958 } 7959 goto link_call; 7960 } 7961 7962 if (error) { 7963 VN_RELE(ovp); 7964 nfs_rw_exit(&odrp->r_rwlock); 7965 nfs_rw_exit(&ndrp->r_rwlock); 7966 if (nvp) { 7967 VN_RELE(nvp); 7968 } 7969 return (error); 7970 } 7971 7972 /* 7973 * when renaming directories to be a subdirectory of a 7974 * different parent, the dnlc entry for ".." will no 7975 * longer be valid, so it must be removed 7976 */ 7977 rp = VTOR4(ovp); 7978 if (ndvp != odvp) { 7979 if (ovp->v_type == VDIR) { 7980 dnlc_remove(ovp, ".."); 7981 if (rp->r_dir != NULL) 7982 nfs4_purge_rddir_cache(ovp); 7983 } 7984 } 7985 7986 /* 7987 * If we are renaming the unlinked file, update the 7988 * r_unldvp and r_unlname as needed. 7989 */ 7990 mutex_enter(&rp->r_statelock); 7991 if (rp->r_unldvp != NULL) { 7992 if (strcmp(rp->r_unlname, onm) == 0) { 7993 (void) strncpy(rp->r_unlname, nnm, MAXNAMELEN); 7994 rp->r_unlname[MAXNAMELEN - 1] = '\0'; 7995 if (ndvp != rp->r_unldvp) { 7996 VN_RELE(rp->r_unldvp); 7997 rp->r_unldvp = ndvp; 7998 VN_HOLD(ndvp); 7999 } 8000 } 8001 } 8002 mutex_exit(&rp->r_statelock); 8003 8004 /* 8005 * Notify the rename vnevents to source vnode, and to the target 8006 * vnode if it already existed. 8007 */ 8008 if (error == 0) { 8009 vnode_t *tvp; 8010 rnode4_t *trp; 8011 /* 8012 * Notify the vnode. Each links is represented by 8013 * a different vnode, in nfsv4. 8014 */ 8015 if (nvp) { 8016 trp = VTOR4(nvp); 8017 tvp = nvp; 8018 if (IS_SHADOW(nvp, trp)) 8019 tvp = RTOV4(trp); 8020 vnevent_rename_dest(tvp, ndvp, nnm, ct); 8021 } 8022 8023 /* 8024 * if the source and destination directory are not the 8025 * same notify the destination directory. 8026 */ 8027 if (VTOR4(odvp) != VTOR4(ndvp)) { 8028 trp = VTOR4(ndvp); 8029 tvp = ndvp; 8030 if (IS_SHADOW(ndvp, trp)) 8031 tvp = RTOV4(trp); 8032 vnevent_rename_dest_dir(tvp, ct); 8033 } 8034 8035 trp = VTOR4(ovp); 8036 tvp = ovp; 8037 if (IS_SHADOW(ovp, trp)) 8038 tvp = RTOV4(trp); 8039 vnevent_rename_src(tvp, odvp, onm, ct); 8040 } 8041 8042 if (nvp) { 8043 VN_RELE(nvp); 8044 } 8045 VN_RELE(ovp); 8046 8047 nfs_rw_exit(&odrp->r_rwlock); 8048 nfs_rw_exit(&ndrp->r_rwlock); 8049 8050 return (error); 8051 } 8052 8053 /* 8054 * When the parent directory has changed, sv_dfh must be updated 8055 */ 8056 static void 8057 update_parentdir_sfh(vnode_t *vp, vnode_t *ndvp) 8058 { 8059 svnode_t *sv = VTOSV(vp); 8060 nfs4_sharedfh_t *old_dfh = sv->sv_dfh; 8061 nfs4_sharedfh_t *new_dfh = VTOR4(ndvp)->r_fh; 8062 8063 sfh4_hold(new_dfh); 8064 sv->sv_dfh = new_dfh; 8065 sfh4_rele(&old_dfh); 8066 } 8067 8068 /* 8069 * nfs4rename_persistent does the otw portion of renaming in NFS Version 4, 8070 * when it is known that the filehandle is persistent through rename. 8071 * 8072 * Rename requires that the current fh be the target directory and the 8073 * saved fh be the source directory. After the operation, the current fh 8074 * is unchanged. 8075 * The compound op structure for persistent fh rename is: 8076 * PUTFH(sourcdir), SAVEFH, PUTFH(targetdir), RENAME 8077 * Rather than bother with the directory postop args, we'll simply 8078 * update that a change occurred in the cache, so no post-op getattrs. 8079 */ 8080 static int 8081 nfs4rename_persistent_fh(vnode_t *odvp, char *onm, vnode_t *renvp, 8082 vnode_t *ndvp, char *nnm, cred_t *cr, nfsstat4 *statp) 8083 { 8084 COMPOUND4args_clnt args; 8085 COMPOUND4res_clnt res, *resp = NULL; 8086 nfs_argop4 *argop; 8087 nfs_resop4 *resop; 8088 int doqueue, argoplist_size; 8089 mntinfo4_t *mi; 8090 rnode4_t *odrp = VTOR4(odvp); 8091 rnode4_t *ndrp = VTOR4(ndvp); 8092 RENAME4res *rn_res; 8093 bool_t needrecov; 8094 nfs4_recov_state_t recov_state; 8095 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 8096 dirattr_info_t dinfo, *dinfop; 8097 8098 ASSERT(nfs_zone() == VTOMI4(odvp)->mi_zone); 8099 8100 recov_state.rs_flags = 0; 8101 recov_state.rs_num_retry_despite_err = 0; 8102 8103 /* 8104 * Rename ops: putfh sdir; savefh; putfh tdir; rename; getattr tdir 8105 * 8106 * If source/target are different dirs, then append putfh(src); getattr 8107 */ 8108 args.array_len = (odvp == ndvp) ? 5 : 7; 8109 argoplist_size = args.array_len * sizeof (nfs_argop4); 8110 args.array = argop = kmem_alloc(argoplist_size, KM_SLEEP); 8111 8112 recov_retry: 8113 *statp = NFS4_OK; 8114 8115 /* No need to Lookup the file, persistent fh */ 8116 args.ctag = TAG_RENAME; 8117 8118 mi = VTOMI4(odvp); 8119 e.error = nfs4_start_op(mi, odvp, ndvp, &recov_state); 8120 if (e.error) { 8121 kmem_free(argop, argoplist_size); 8122 return (e.error); 8123 } 8124 8125 /* 0: putfh source directory */ 8126 argop[0].argop = OP_CPUTFH; 8127 argop[0].nfs_argop4_u.opcputfh.sfh = odrp->r_fh; 8128 8129 /* 1: Save source fh to free up current for target */ 8130 argop[1].argop = OP_SAVEFH; 8131 8132 /* 2: putfh targetdir */ 8133 argop[2].argop = OP_CPUTFH; 8134 argop[2].nfs_argop4_u.opcputfh.sfh = ndrp->r_fh; 8135 8136 /* 3: current_fh is targetdir, saved_fh is sourcedir */ 8137 argop[3].argop = OP_CRENAME; 8138 argop[3].nfs_argop4_u.opcrename.coldname = onm; 8139 argop[3].nfs_argop4_u.opcrename.cnewname = nnm; 8140 8141 /* 4: getattr (targetdir) */ 8142 argop[4].argop = OP_GETATTR; 8143 argop[4].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 8144 argop[4].nfs_argop4_u.opgetattr.mi = mi; 8145 8146 if (ndvp != odvp) { 8147 8148 /* 5: putfh (sourcedir) */ 8149 argop[5].argop = OP_CPUTFH; 8150 argop[5].nfs_argop4_u.opcputfh.sfh = ndrp->r_fh; 8151 8152 /* 6: getattr (sourcedir) */ 8153 argop[6].argop = OP_GETATTR; 8154 argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 8155 argop[6].nfs_argop4_u.opgetattr.mi = mi; 8156 } 8157 8158 dnlc_remove(odvp, onm); 8159 dnlc_remove(ndvp, nnm); 8160 8161 doqueue = 1; 8162 dinfo.di_time_call = gethrtime(); 8163 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e); 8164 8165 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp); 8166 if (e.error) { 8167 PURGE_ATTRCACHE4(odvp); 8168 PURGE_ATTRCACHE4(ndvp); 8169 } else { 8170 *statp = res.status; 8171 } 8172 8173 if (needrecov) { 8174 if (nfs4_start_recovery(&e, mi, odvp, ndvp, NULL, NULL, 8175 OP_RENAME, NULL) == FALSE) { 8176 nfs4_end_op(mi, odvp, ndvp, &recov_state, needrecov); 8177 if (!e.error) 8178 (void) xdr_free(xdr_COMPOUND4res_clnt, 8179 (caddr_t)&res); 8180 goto recov_retry; 8181 } 8182 } 8183 8184 if (!e.error) { 8185 resp = &res; 8186 /* 8187 * as long as OP_RENAME 8188 */ 8189 if (res.status != NFS4_OK && res.array_len <= 4) { 8190 e.error = geterrno4(res.status); 8191 PURGE_ATTRCACHE4(odvp); 8192 PURGE_ATTRCACHE4(ndvp); 8193 /* 8194 * System V defines rename to return EEXIST, not 8195 * ENOTEMPTY if the target directory is not empty. 8196 * Over the wire, the error is NFSERR_ENOTEMPTY 8197 * which geterrno4 maps to ENOTEMPTY. 8198 */ 8199 if (e.error == ENOTEMPTY) 8200 e.error = EEXIST; 8201 } else { 8202 8203 resop = &res.array[3]; /* rename res */ 8204 rn_res = &resop->nfs_resop4_u.oprename; 8205 8206 if (res.status == NFS4_OK) { 8207 /* 8208 * Update target attribute, readdir and dnlc 8209 * caches. 8210 */ 8211 dinfo.di_garp = 8212 &res.array[4].nfs_resop4_u.opgetattr.ga_res; 8213 dinfo.di_cred = cr; 8214 dinfop = &dinfo; 8215 } else 8216 dinfop = NULL; 8217 8218 nfs4_update_dircaches(&rn_res->target_cinfo, 8219 ndvp, NULL, NULL, dinfop); 8220 8221 /* 8222 * Update source attribute, readdir and dnlc caches 8223 * 8224 */ 8225 if (ndvp != odvp) { 8226 update_parentdir_sfh(renvp, ndvp); 8227 8228 if (dinfop) 8229 dinfo.di_garp = 8230 &(res.array[6].nfs_resop4_u. 8231 opgetattr.ga_res); 8232 8233 nfs4_update_dircaches(&rn_res->source_cinfo, 8234 odvp, NULL, NULL, dinfop); 8235 } 8236 8237 fn_move(VTOSV(renvp)->sv_name, VTOSV(ndvp)->sv_name, 8238 nnm); 8239 } 8240 } 8241 8242 if (resp) 8243 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp); 8244 nfs4_end_op(mi, odvp, ndvp, &recov_state, needrecov); 8245 kmem_free(argop, argoplist_size); 8246 8247 return (e.error); 8248 } 8249 8250 /* 8251 * nfs4rename_volatile_fh does the otw part of renaming in NFS Version 4, when 8252 * it is possible for the filehandle to change due to the rename. 8253 * 8254 * The compound req in this case includes a post-rename lookup and getattr 8255 * to ensure that we have the correct fh and attributes for the object. 8256 * 8257 * Rename requires that the current fh be the target directory and the 8258 * saved fh be the source directory. After the operation, the current fh 8259 * is unchanged. 8260 * 8261 * We need the new filehandle (hence a LOOKUP and GETFH) so that we can 8262 * update the filehandle for the renamed object. We also get the old 8263 * filehandle for historical reasons; this should be taken out sometime. 8264 * This results in a rather cumbersome compound... 8265 * 8266 * PUTFH(sourcdir), SAVEFH, LOOKUP(src), GETFH(old), 8267 * PUTFH(targetdir), RENAME, LOOKUP(trgt), GETFH(new), GETATTR 8268 * 8269 */ 8270 static int 8271 nfs4rename_volatile_fh(vnode_t *odvp, char *onm, vnode_t *ovp, 8272 vnode_t *ndvp, char *nnm, cred_t *cr, nfsstat4 *statp) 8273 { 8274 COMPOUND4args_clnt args; 8275 COMPOUND4res_clnt res, *resp = NULL; 8276 int argoplist_size; 8277 nfs_argop4 *argop; 8278 nfs_resop4 *resop; 8279 int doqueue; 8280 mntinfo4_t *mi; 8281 rnode4_t *odrp = VTOR4(odvp); /* old directory */ 8282 rnode4_t *ndrp = VTOR4(ndvp); /* new directory */ 8283 rnode4_t *orp = VTOR4(ovp); /* object being renamed */ 8284 RENAME4res *rn_res; 8285 GETFH4res *ngf_res; 8286 bool_t needrecov; 8287 nfs4_recov_state_t recov_state; 8288 hrtime_t t; 8289 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 8290 dirattr_info_t dinfo, *dinfop = &dinfo; 8291 8292 ASSERT(nfs_zone() == VTOMI4(odvp)->mi_zone); 8293 8294 recov_state.rs_flags = 0; 8295 recov_state.rs_num_retry_despite_err = 0; 8296 8297 recov_retry: 8298 *statp = NFS4_OK; 8299 8300 /* 8301 * There is a window between the RPC and updating the path and 8302 * filehandle stored in the rnode. Lock out the FHEXPIRED recovery 8303 * code, so that it doesn't try to use the old path during that 8304 * window. 8305 */ 8306 mutex_enter(&orp->r_statelock); 8307 while (orp->r_flags & R4RECEXPFH) { 8308 klwp_t *lwp = ttolwp(curthread); 8309 8310 if (lwp != NULL) 8311 lwp->lwp_nostop++; 8312 if (cv_wait_sig(&orp->r_cv, &orp->r_statelock) == 0) { 8313 mutex_exit(&orp->r_statelock); 8314 if (lwp != NULL) 8315 lwp->lwp_nostop--; 8316 return (EINTR); 8317 } 8318 if (lwp != NULL) 8319 lwp->lwp_nostop--; 8320 } 8321 orp->r_flags |= R4RECEXPFH; 8322 mutex_exit(&orp->r_statelock); 8323 8324 mi = VTOMI4(odvp); 8325 8326 args.ctag = TAG_RENAME_VFH; 8327 args.array_len = (odvp == ndvp) ? 10 : 12; 8328 argoplist_size = args.array_len * sizeof (nfs_argop4); 8329 argop = kmem_alloc(argoplist_size, KM_SLEEP); 8330 8331 /* 8332 * Rename ops: 8333 * PUTFH(sourcdir), SAVEFH, LOOKUP(src), GETFH(old), 8334 * PUTFH(targetdir), RENAME, GETATTR(targetdir) 8335 * LOOKUP(trgt), GETFH(new), GETATTR, 8336 * 8337 * if (odvp != ndvp) 8338 * add putfh(sourcedir), getattr(sourcedir) } 8339 */ 8340 args.array = argop; 8341 8342 e.error = nfs4_start_fop(mi, odvp, ndvp, OH_VFH_RENAME, 8343 &recov_state, NULL); 8344 if (e.error) { 8345 kmem_free(argop, argoplist_size); 8346 mutex_enter(&orp->r_statelock); 8347 orp->r_flags &= ~R4RECEXPFH; 8348 cv_broadcast(&orp->r_cv); 8349 mutex_exit(&orp->r_statelock); 8350 return (e.error); 8351 } 8352 8353 /* 0: putfh source directory */ 8354 argop[0].argop = OP_CPUTFH; 8355 argop[0].nfs_argop4_u.opcputfh.sfh = odrp->r_fh; 8356 8357 /* 1: Save source fh to free up current for target */ 8358 argop[1].argop = OP_SAVEFH; 8359 8360 /* 2: Lookup pre-rename fh of renamed object */ 8361 argop[2].argop = OP_CLOOKUP; 8362 argop[2].nfs_argop4_u.opclookup.cname = onm; 8363 8364 /* 3: getfh fh of renamed object (before rename) */ 8365 argop[3].argop = OP_GETFH; 8366 8367 /* 4: putfh targetdir */ 8368 argop[4].argop = OP_CPUTFH; 8369 argop[4].nfs_argop4_u.opcputfh.sfh = ndrp->r_fh; 8370 8371 /* 5: current_fh is targetdir, saved_fh is sourcedir */ 8372 argop[5].argop = OP_CRENAME; 8373 argop[5].nfs_argop4_u.opcrename.coldname = onm; 8374 argop[5].nfs_argop4_u.opcrename.cnewname = nnm; 8375 8376 /* 6: getattr of target dir (post op attrs) */ 8377 argop[6].argop = OP_GETATTR; 8378 argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 8379 argop[6].nfs_argop4_u.opgetattr.mi = mi; 8380 8381 /* 7: Lookup post-rename fh of renamed object */ 8382 argop[7].argop = OP_CLOOKUP; 8383 argop[7].nfs_argop4_u.opclookup.cname = nnm; 8384 8385 /* 8: getfh fh of renamed object (after rename) */ 8386 argop[8].argop = OP_GETFH; 8387 8388 /* 9: getattr of renamed object */ 8389 argop[9].argop = OP_GETATTR; 8390 argop[9].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 8391 argop[9].nfs_argop4_u.opgetattr.mi = mi; 8392 8393 /* 8394 * If source/target dirs are different, then get new post-op 8395 * attrs for source dir also. 8396 */ 8397 if (ndvp != odvp) { 8398 /* 10: putfh (sourcedir) */ 8399 argop[10].argop = OP_CPUTFH; 8400 argop[10].nfs_argop4_u.opcputfh.sfh = ndrp->r_fh; 8401 8402 /* 11: getattr (sourcedir) */ 8403 argop[11].argop = OP_GETATTR; 8404 argop[11].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 8405 argop[11].nfs_argop4_u.opgetattr.mi = mi; 8406 } 8407 8408 dnlc_remove(odvp, onm); 8409 dnlc_remove(ndvp, nnm); 8410 8411 doqueue = 1; 8412 t = gethrtime(); 8413 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e); 8414 8415 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp); 8416 if (e.error) { 8417 PURGE_ATTRCACHE4(odvp); 8418 PURGE_ATTRCACHE4(ndvp); 8419 if (!needrecov) { 8420 nfs4_end_fop(mi, odvp, ndvp, OH_VFH_RENAME, 8421 &recov_state, needrecov); 8422 goto out; 8423 } 8424 } else { 8425 *statp = res.status; 8426 } 8427 8428 if (needrecov) { 8429 bool_t abort; 8430 8431 abort = nfs4_start_recovery(&e, mi, odvp, ndvp, NULL, NULL, 8432 OP_RENAME, NULL); 8433 if (abort == FALSE) { 8434 nfs4_end_fop(mi, odvp, ndvp, OH_VFH_RENAME, 8435 &recov_state, needrecov); 8436 kmem_free(argop, argoplist_size); 8437 if (!e.error) 8438 (void) xdr_free(xdr_COMPOUND4res_clnt, 8439 (caddr_t)&res); 8440 mutex_enter(&orp->r_statelock); 8441 orp->r_flags &= ~R4RECEXPFH; 8442 cv_broadcast(&orp->r_cv); 8443 mutex_exit(&orp->r_statelock); 8444 goto recov_retry; 8445 } else { 8446 if (e.error != 0) { 8447 nfs4_end_fop(mi, odvp, ndvp, OH_VFH_RENAME, 8448 &recov_state, needrecov); 8449 goto out; 8450 } 8451 /* fall through for res.status case */ 8452 } 8453 } 8454 8455 resp = &res; 8456 /* 8457 * If OP_RENAME (or any prev op) failed, then return an error. 8458 * OP_RENAME is index 5, so if array len <= 6 we return an error. 8459 */ 8460 if ((res.status != NFS4_OK) && (res.array_len <= 6)) { 8461 /* 8462 * Error in an op other than last Getattr 8463 */ 8464 e.error = geterrno4(res.status); 8465 PURGE_ATTRCACHE4(odvp); 8466 PURGE_ATTRCACHE4(ndvp); 8467 /* 8468 * System V defines rename to return EEXIST, not 8469 * ENOTEMPTY if the target directory is not empty. 8470 * Over the wire, the error is NFSERR_ENOTEMPTY 8471 * which geterrno4 maps to ENOTEMPTY. 8472 */ 8473 if (e.error == ENOTEMPTY) 8474 e.error = EEXIST; 8475 nfs4_end_fop(mi, odvp, ndvp, OH_VFH_RENAME, &recov_state, 8476 needrecov); 8477 goto out; 8478 } 8479 8480 /* rename results */ 8481 rn_res = &res.array[5].nfs_resop4_u.oprename; 8482 8483 if (res.status == NFS4_OK) { 8484 /* Update target attribute, readdir and dnlc caches */ 8485 dinfo.di_garp = 8486 &res.array[6].nfs_resop4_u.opgetattr.ga_res; 8487 dinfo.di_cred = cr; 8488 dinfo.di_time_call = t; 8489 } else 8490 dinfop = NULL; 8491 8492 /* Update source cache attribute, readdir and dnlc caches */ 8493 nfs4_update_dircaches(&rn_res->target_cinfo, ndvp, NULL, NULL, dinfop); 8494 8495 /* Update source cache attribute, readdir and dnlc caches */ 8496 if (ndvp != odvp) { 8497 update_parentdir_sfh(ovp, ndvp); 8498 8499 /* 8500 * If dinfop is non-NULL, then compound succeded, so 8501 * set di_garp to attrs for source dir. dinfop is only 8502 * set to NULL when compound fails. 8503 */ 8504 if (dinfop) 8505 dinfo.di_garp = 8506 &res.array[11].nfs_resop4_u.opgetattr.ga_res; 8507 nfs4_update_dircaches(&rn_res->source_cinfo, odvp, NULL, NULL, 8508 dinfop); 8509 } 8510 8511 /* 8512 * Update the rnode with the new component name and args, 8513 * and if the file handle changed, also update it with the new fh. 8514 * This is only necessary if the target object has an rnode 8515 * entry and there is no need to create one for it. 8516 */ 8517 resop = &res.array[8]; /* getfh new res */ 8518 ngf_res = &resop->nfs_resop4_u.opgetfh; 8519 8520 /* 8521 * Update the path and filehandle for the renamed object. 8522 */ 8523 nfs4rename_update(ovp, ndvp, &ngf_res->object, nnm); 8524 8525 nfs4_end_fop(mi, odvp, ndvp, OH_VFH_RENAME, &recov_state, needrecov); 8526 8527 if (res.status == NFS4_OK) { 8528 resop++; /* getattr res */ 8529 e.error = nfs4_update_attrcache(res.status, 8530 &resop->nfs_resop4_u.opgetattr.ga_res, 8531 t, ovp, cr); 8532 } 8533 8534 out: 8535 kmem_free(argop, argoplist_size); 8536 if (resp) 8537 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp); 8538 mutex_enter(&orp->r_statelock); 8539 orp->r_flags &= ~R4RECEXPFH; 8540 cv_broadcast(&orp->r_cv); 8541 mutex_exit(&orp->r_statelock); 8542 8543 return (e.error); 8544 } 8545 8546 /* ARGSUSED */ 8547 static int 8548 nfs4_mkdir(vnode_t *dvp, char *nm, struct vattr *va, vnode_t **vpp, cred_t *cr, 8549 caller_context_t *ct, int flags, vsecattr_t *vsecp) 8550 { 8551 int error; 8552 vnode_t *vp; 8553 8554 if (nfs_zone() != VTOMI4(dvp)->mi_zone) 8555 return (EPERM); 8556 /* 8557 * As ".." has special meaning and rather than send a mkdir 8558 * over the wire to just let the server freak out, we just 8559 * short circuit it here and return EEXIST 8560 */ 8561 if (nm[0] == '.' && nm[1] == '.' && nm[2] == '\0') 8562 return (EEXIST); 8563 8564 /* 8565 * Decision to get the right gid and setgid bit of the 8566 * new directory is now made in call_nfs4_create_req. 8567 */ 8568 va->va_mask |= AT_MODE; 8569 error = call_nfs4_create_req(dvp, nm, NULL, va, &vp, cr, NF4DIR); 8570 if (error) 8571 return (error); 8572 8573 *vpp = vp; 8574 return (0); 8575 } 8576 8577 8578 /* 8579 * rmdir is using the same remove v4 op as does remove. 8580 * Remove requires that the current fh be the target directory. 8581 * After the operation, the current fh is unchanged. 8582 * The compound op structure is: 8583 * PUTFH(targetdir), REMOVE 8584 */ 8585 /*ARGSUSED4*/ 8586 static int 8587 nfs4_rmdir(vnode_t *dvp, char *nm, vnode_t *cdir, cred_t *cr, 8588 caller_context_t *ct, int flags) 8589 { 8590 int need_end_op = FALSE; 8591 COMPOUND4args_clnt args; 8592 COMPOUND4res_clnt res, *resp = NULL; 8593 REMOVE4res *rm_res; 8594 nfs_argop4 argop[3]; 8595 nfs_resop4 *resop; 8596 vnode_t *vp; 8597 int doqueue; 8598 mntinfo4_t *mi; 8599 rnode4_t *drp; 8600 bool_t needrecov = FALSE; 8601 nfs4_recov_state_t recov_state; 8602 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 8603 dirattr_info_t dinfo, *dinfop; 8604 8605 if (nfs_zone() != VTOMI4(dvp)->mi_zone) 8606 return (EPERM); 8607 /* 8608 * As ".." has special meaning and rather than send a rmdir 8609 * over the wire to just let the server freak out, we just 8610 * short circuit it here and return EEXIST 8611 */ 8612 if (nm[0] == '.' && nm[1] == '.' && nm[2] == '\0') 8613 return (EEXIST); 8614 8615 drp = VTOR4(dvp); 8616 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR4(dvp))) 8617 return (EINTR); 8618 8619 /* 8620 * Attempt to prevent a rmdir(".") from succeeding. 8621 */ 8622 e.error = nfs4lookup(dvp, nm, &vp, cr, 0); 8623 if (e.error) { 8624 nfs_rw_exit(&drp->r_rwlock); 8625 return (e.error); 8626 } 8627 if (vp == cdir) { 8628 VN_RELE(vp); 8629 nfs_rw_exit(&drp->r_rwlock); 8630 return (EINVAL); 8631 } 8632 8633 /* 8634 * Since nfsv4 remove op works on both files and directories, 8635 * check that the removed object is indeed a directory. 8636 */ 8637 if (vp->v_type != VDIR) { 8638 VN_RELE(vp); 8639 nfs_rw_exit(&drp->r_rwlock); 8640 return (ENOTDIR); 8641 } 8642 8643 /* 8644 * First just remove the entry from the name cache, as it 8645 * is most likely an entry for this vp. 8646 */ 8647 dnlc_remove(dvp, nm); 8648 8649 /* 8650 * If there vnode reference count is greater than one, then 8651 * there may be additional references in the DNLC which will 8652 * need to be purged. First, trying removing the entry for 8653 * the parent directory and see if that removes the additional 8654 * reference(s). If that doesn't do it, then use dnlc_purge_vp 8655 * to completely remove any references to the directory which 8656 * might still exist in the DNLC. 8657 */ 8658 if (vp->v_count > 1) { 8659 dnlc_remove(vp, ".."); 8660 if (vp->v_count > 1) 8661 dnlc_purge_vp(vp); 8662 } 8663 8664 mi = VTOMI4(dvp); 8665 recov_state.rs_flags = 0; 8666 recov_state.rs_num_retry_despite_err = 0; 8667 8668 recov_retry: 8669 args.ctag = TAG_RMDIR; 8670 8671 /* 8672 * Rmdir ops: putfh dir; remove 8673 */ 8674 args.array_len = 3; 8675 args.array = argop; 8676 8677 e.error = nfs4_start_op(VTOMI4(dvp), dvp, NULL, &recov_state); 8678 if (e.error) { 8679 nfs_rw_exit(&drp->r_rwlock); 8680 return (e.error); 8681 } 8682 need_end_op = TRUE; 8683 8684 /* putfh directory */ 8685 argop[0].argop = OP_CPUTFH; 8686 argop[0].nfs_argop4_u.opcputfh.sfh = drp->r_fh; 8687 8688 /* remove */ 8689 argop[1].argop = OP_CREMOVE; 8690 argop[1].nfs_argop4_u.opcremove.ctarget = nm; 8691 8692 /* getattr (postop attrs for dir that contained removed dir) */ 8693 argop[2].argop = OP_GETATTR; 8694 argop[2].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 8695 argop[2].nfs_argop4_u.opgetattr.mi = mi; 8696 8697 dinfo.di_time_call = gethrtime(); 8698 doqueue = 1; 8699 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e); 8700 8701 PURGE_ATTRCACHE4(vp); 8702 8703 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp); 8704 if (e.error) { 8705 PURGE_ATTRCACHE4(dvp); 8706 } 8707 8708 if (needrecov) { 8709 if (nfs4_start_recovery(&e, VTOMI4(dvp), dvp, NULL, NULL, 8710 NULL, OP_REMOVE, NULL) == FALSE) { 8711 if (!e.error) 8712 (void) xdr_free(xdr_COMPOUND4res_clnt, 8713 (caddr_t)&res); 8714 8715 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, 8716 needrecov); 8717 need_end_op = FALSE; 8718 goto recov_retry; 8719 } 8720 } 8721 8722 if (!e.error) { 8723 resp = &res; 8724 8725 /* 8726 * Only return error if first 2 ops (OP_REMOVE or earlier) 8727 * failed. 8728 */ 8729 if (res.status != NFS4_OK && res.array_len <= 2) { 8730 e.error = geterrno4(res.status); 8731 PURGE_ATTRCACHE4(dvp); 8732 nfs4_end_op(VTOMI4(dvp), dvp, NULL, 8733 &recov_state, needrecov); 8734 need_end_op = FALSE; 8735 nfs4_purge_stale_fh(e.error, dvp, cr); 8736 /* 8737 * System V defines rmdir to return EEXIST, not 8738 * ENOTEMPTY if the directory is not empty. Over 8739 * the wire, the error is NFSERR_ENOTEMPTY which 8740 * geterrno4 maps to ENOTEMPTY. 8741 */ 8742 if (e.error == ENOTEMPTY) 8743 e.error = EEXIST; 8744 } else { 8745 resop = &res.array[1]; /* remove res */ 8746 rm_res = &resop->nfs_resop4_u.opremove; 8747 8748 if (res.status == NFS4_OK) { 8749 resop = &res.array[2]; /* dir attrs */ 8750 dinfo.di_garp = 8751 &resop->nfs_resop4_u.opgetattr.ga_res; 8752 dinfo.di_cred = cr; 8753 dinfop = &dinfo; 8754 } else 8755 dinfop = NULL; 8756 8757 /* Update dir attribute, readdir and dnlc caches */ 8758 nfs4_update_dircaches(&rm_res->cinfo, dvp, NULL, NULL, 8759 dinfop); 8760 8761 /* destroy rddir cache for dir that was removed */ 8762 if (VTOR4(vp)->r_dir != NULL) 8763 nfs4_purge_rddir_cache(vp); 8764 } 8765 } 8766 8767 if (need_end_op) 8768 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, needrecov); 8769 8770 nfs_rw_exit(&drp->r_rwlock); 8771 8772 if (resp) 8773 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp); 8774 8775 if (e.error == 0) { 8776 vnode_t *tvp; 8777 rnode4_t *trp; 8778 trp = VTOR4(vp); 8779 tvp = vp; 8780 if (IS_SHADOW(vp, trp)) 8781 tvp = RTOV4(trp); 8782 vnevent_rmdir(tvp, dvp, nm, ct); 8783 } 8784 8785 VN_RELE(vp); 8786 8787 return (e.error); 8788 } 8789 8790 /* ARGSUSED */ 8791 static int 8792 nfs4_symlink(vnode_t *dvp, char *lnm, struct vattr *tva, char *tnm, cred_t *cr, 8793 caller_context_t *ct, int flags) 8794 { 8795 int error; 8796 vnode_t *vp; 8797 rnode4_t *rp; 8798 char *contents; 8799 mntinfo4_t *mi = VTOMI4(dvp); 8800 8801 if (nfs_zone() != mi->mi_zone) 8802 return (EPERM); 8803 if (!(mi->mi_flags & MI4_SYMLINK)) 8804 return (EOPNOTSUPP); 8805 8806 error = call_nfs4_create_req(dvp, lnm, tnm, tva, &vp, cr, NF4LNK); 8807 if (error) 8808 return (error); 8809 8810 ASSERT(nfs4_consistent_type(vp)); 8811 rp = VTOR4(vp); 8812 if (nfs4_do_symlink_cache && rp->r_symlink.contents == NULL) { 8813 8814 contents = kmem_alloc(MAXPATHLEN, KM_SLEEP); 8815 8816 if (contents != NULL) { 8817 mutex_enter(&rp->r_statelock); 8818 if (rp->r_symlink.contents == NULL) { 8819 rp->r_symlink.len = strlen(tnm); 8820 bcopy(tnm, contents, rp->r_symlink.len); 8821 rp->r_symlink.contents = contents; 8822 rp->r_symlink.size = MAXPATHLEN; 8823 mutex_exit(&rp->r_statelock); 8824 } else { 8825 mutex_exit(&rp->r_statelock); 8826 kmem_free((void *)contents, MAXPATHLEN); 8827 } 8828 } 8829 } 8830 VN_RELE(vp); 8831 8832 return (error); 8833 } 8834 8835 8836 /* 8837 * Read directory entries. 8838 * There are some weird things to look out for here. The uio_loffset 8839 * field is either 0 or it is the offset returned from a previous 8840 * readdir. It is an opaque value used by the server to find the 8841 * correct directory block to read. The count field is the number 8842 * of blocks to read on the server. This is advisory only, the server 8843 * may return only one block's worth of entries. Entries may be compressed 8844 * on the server. 8845 */ 8846 /* ARGSUSED */ 8847 static int 8848 nfs4_readdir(vnode_t *vp, struct uio *uiop, cred_t *cr, int *eofp, 8849 caller_context_t *ct, int flags) 8850 { 8851 int error; 8852 uint_t count; 8853 rnode4_t *rp; 8854 rddir4_cache *rdc; 8855 rddir4_cache *rrdc; 8856 8857 if (nfs_zone() != VTOMI4(vp)->mi_zone) 8858 return (EIO); 8859 rp = VTOR4(vp); 8860 8861 ASSERT(nfs_rw_lock_held(&rp->r_rwlock, RW_READER)); 8862 8863 /* 8864 * Make sure that the directory cache is valid. 8865 */ 8866 if (rp->r_dir != NULL) { 8867 if (nfs_disable_rddir_cache != 0) { 8868 /* 8869 * Setting nfs_disable_rddir_cache in /etc/system 8870 * allows interoperability with servers that do not 8871 * properly update the attributes of directories. 8872 * Any cached information gets purged before an 8873 * access is made to it. 8874 */ 8875 nfs4_purge_rddir_cache(vp); 8876 } 8877 8878 error = nfs4_validate_caches(vp, cr); 8879 if (error) 8880 return (error); 8881 } 8882 8883 count = MIN(uiop->uio_iov->iov_len, MAXBSIZE); 8884 8885 /* 8886 * Short circuit last readdir which always returns 0 bytes. 8887 * This can be done after the directory has been read through 8888 * completely at least once. This will set r_direof which 8889 * can be used to find the value of the last cookie. 8890 */ 8891 mutex_enter(&rp->r_statelock); 8892 if (rp->r_direof != NULL && 8893 uiop->uio_loffset == rp->r_direof->nfs4_ncookie) { 8894 mutex_exit(&rp->r_statelock); 8895 #ifdef DEBUG 8896 nfs4_readdir_cache_shorts++; 8897 #endif 8898 if (eofp) 8899 *eofp = 1; 8900 return (0); 8901 } 8902 8903 /* 8904 * Look for a cache entry. Cache entries are identified 8905 * by the NFS cookie value and the byte count requested. 8906 */ 8907 rdc = rddir4_cache_lookup(rp, uiop->uio_loffset, count); 8908 8909 /* 8910 * If rdc is NULL then the lookup resulted in an unrecoverable error. 8911 */ 8912 if (rdc == NULL) { 8913 mutex_exit(&rp->r_statelock); 8914 return (EINTR); 8915 } 8916 8917 /* 8918 * Check to see if we need to fill this entry in. 8919 */ 8920 if (rdc->flags & RDDIRREQ) { 8921 rdc->flags &= ~RDDIRREQ; 8922 rdc->flags |= RDDIR; 8923 mutex_exit(&rp->r_statelock); 8924 8925 /* 8926 * Do the readdir. 8927 */ 8928 nfs4readdir(vp, rdc, cr); 8929 8930 /* 8931 * Reacquire the lock, so that we can continue 8932 */ 8933 mutex_enter(&rp->r_statelock); 8934 /* 8935 * The entry is now complete 8936 */ 8937 rdc->flags &= ~RDDIR; 8938 } 8939 8940 ASSERT(!(rdc->flags & RDDIR)); 8941 8942 /* 8943 * If an error occurred while attempting 8944 * to fill the cache entry, mark the entry invalid and 8945 * just return the error. 8946 */ 8947 if (rdc->error) { 8948 error = rdc->error; 8949 rdc->flags |= RDDIRREQ; 8950 rddir4_cache_rele(rp, rdc); 8951 mutex_exit(&rp->r_statelock); 8952 return (error); 8953 } 8954 8955 /* 8956 * The cache entry is complete and good, 8957 * copyout the dirent structs to the calling 8958 * thread. 8959 */ 8960 error = uiomove(rdc->entries, rdc->actlen, UIO_READ, uiop); 8961 8962 /* 8963 * If no error occurred during the copyout, 8964 * update the offset in the uio struct to 8965 * contain the value of the next NFS 4 cookie 8966 * and set the eof value appropriately. 8967 */ 8968 if (!error) { 8969 uiop->uio_loffset = rdc->nfs4_ncookie; 8970 if (eofp) 8971 *eofp = rdc->eof; 8972 } 8973 8974 /* 8975 * Decide whether to do readahead. Don't if we 8976 * have already read to the end of directory. 8977 */ 8978 if (rdc->eof) { 8979 /* 8980 * Make the entry the direof only if it is cached 8981 */ 8982 if (rdc->flags & RDDIRCACHED) 8983 rp->r_direof = rdc; 8984 rddir4_cache_rele(rp, rdc); 8985 mutex_exit(&rp->r_statelock); 8986 return (error); 8987 } 8988 8989 /* Determine if a readdir readahead should be done */ 8990 if (!(rp->r_flags & R4LOOKUP)) { 8991 rddir4_cache_rele(rp, rdc); 8992 mutex_exit(&rp->r_statelock); 8993 return (error); 8994 } 8995 8996 /* 8997 * Now look for a readahead entry. 8998 * 8999 * Check to see whether we found an entry for the readahead. 9000 * If so, we don't need to do anything further, so free the new 9001 * entry if one was allocated. Otherwise, allocate a new entry, add 9002 * it to the cache, and then initiate an asynchronous readdir 9003 * operation to fill it. 9004 */ 9005 rrdc = rddir4_cache_lookup(rp, rdc->nfs4_ncookie, count); 9006 9007 /* 9008 * A readdir cache entry could not be obtained for the readahead. In 9009 * this case we skip the readahead and return. 9010 */ 9011 if (rrdc == NULL) { 9012 rddir4_cache_rele(rp, rdc); 9013 mutex_exit(&rp->r_statelock); 9014 return (error); 9015 } 9016 9017 /* 9018 * Check to see if we need to fill this entry in. 9019 */ 9020 if (rrdc->flags & RDDIRREQ) { 9021 rrdc->flags &= ~RDDIRREQ; 9022 rrdc->flags |= RDDIR; 9023 rddir4_cache_rele(rp, rdc); 9024 mutex_exit(&rp->r_statelock); 9025 #ifdef DEBUG 9026 nfs4_readdir_readahead++; 9027 #endif 9028 /* 9029 * Do the readdir. 9030 */ 9031 nfs4_async_readdir(vp, rrdc, cr, do_nfs4readdir); 9032 return (error); 9033 } 9034 9035 rddir4_cache_rele(rp, rrdc); 9036 rddir4_cache_rele(rp, rdc); 9037 mutex_exit(&rp->r_statelock); 9038 return (error); 9039 } 9040 9041 static int 9042 do_nfs4readdir(vnode_t *vp, rddir4_cache *rdc, cred_t *cr) 9043 { 9044 int error; 9045 rnode4_t *rp; 9046 9047 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 9048 9049 rp = VTOR4(vp); 9050 9051 /* 9052 * Obtain the readdir results for the caller. 9053 */ 9054 nfs4readdir(vp, rdc, cr); 9055 9056 mutex_enter(&rp->r_statelock); 9057 /* 9058 * The entry is now complete 9059 */ 9060 rdc->flags &= ~RDDIR; 9061 9062 error = rdc->error; 9063 if (error) 9064 rdc->flags |= RDDIRREQ; 9065 rddir4_cache_rele(rp, rdc); 9066 mutex_exit(&rp->r_statelock); 9067 9068 return (error); 9069 } 9070 9071 /* 9072 * Read directory entries. 9073 * There are some weird things to look out for here. The uio_loffset 9074 * field is either 0 or it is the offset returned from a previous 9075 * readdir. It is an opaque value used by the server to find the 9076 * correct directory block to read. The count field is the number 9077 * of blocks to read on the server. This is advisory only, the server 9078 * may return only one block's worth of entries. Entries may be compressed 9079 * on the server. 9080 * 9081 * Generates the following compound request: 9082 * 1. If readdir offset is zero and no dnlc entry for parent exists, 9083 * must include a Lookupp as well. In this case, send: 9084 * { Putfh <fh>; Readdir; Lookupp; Getfh; Getattr } 9085 * 2. Otherwise just do: { Putfh <fh>; Readdir } 9086 * 9087 * Get complete attributes and filehandles for entries if this is the 9088 * first read of the directory. Otherwise, just get fileid's. 9089 */ 9090 static void 9091 nfs4readdir(vnode_t *vp, rddir4_cache *rdc, cred_t *cr) 9092 { 9093 COMPOUND4args_clnt args; 9094 COMPOUND4res_clnt res; 9095 READDIR4args *rargs; 9096 READDIR4res_clnt *rd_res; 9097 bitmap4 rd_bitsval; 9098 nfs_argop4 argop[5]; 9099 nfs_resop4 *resop; 9100 rnode4_t *rp = VTOR4(vp); 9101 mntinfo4_t *mi = VTOMI4(vp); 9102 int doqueue; 9103 u_longlong_t nodeid, pnodeid; /* id's of dir and its parents */ 9104 vnode_t *dvp; 9105 nfs_cookie4 cookie = (nfs_cookie4)rdc->nfs4_cookie; 9106 int num_ops, res_opcnt; 9107 bool_t needrecov = FALSE; 9108 nfs4_recov_state_t recov_state; 9109 hrtime_t t; 9110 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 9111 9112 ASSERT(nfs_zone() == mi->mi_zone); 9113 ASSERT(rdc->flags & RDDIR); 9114 ASSERT(rdc->entries == NULL); 9115 9116 /* 9117 * If rp were a stub, it should have triggered and caused 9118 * a mount for us to get this far. 9119 */ 9120 ASSERT(!RP_ISSTUB(rp)); 9121 9122 num_ops = 2; 9123 if (cookie == (nfs_cookie4)0 || cookie == (nfs_cookie4)1) { 9124 /* 9125 * Since nfsv4 readdir may not return entries for "." and "..", 9126 * the client must recreate them: 9127 * To find the correct nodeid, do the following: 9128 * For current node, get nodeid from dnlc. 9129 * - if current node is rootvp, set pnodeid to nodeid. 9130 * - else if parent is in the dnlc, get its nodeid from there. 9131 * - else add LOOKUPP+GETATTR to compound. 9132 */ 9133 nodeid = rp->r_attr.va_nodeid; 9134 if (vp->v_flag & VROOT) { 9135 pnodeid = nodeid; /* root of mount point */ 9136 } else { 9137 dvp = dnlc_lookup(vp, ".."); 9138 if (dvp != NULL && dvp != DNLC_NO_VNODE) { 9139 /* parent in dnlc cache - no need for otw */ 9140 pnodeid = VTOR4(dvp)->r_attr.va_nodeid; 9141 } else { 9142 /* 9143 * parent not in dnlc cache, 9144 * do lookupp to get its id 9145 */ 9146 num_ops = 5; 9147 pnodeid = 0; /* set later by getattr parent */ 9148 } 9149 if (dvp) 9150 VN_RELE(dvp); 9151 } 9152 } 9153 recov_state.rs_flags = 0; 9154 recov_state.rs_num_retry_despite_err = 0; 9155 9156 /* Save the original mount point security flavor */ 9157 (void) save_mnt_secinfo(mi->mi_curr_serv); 9158 9159 recov_retry: 9160 args.ctag = TAG_READDIR; 9161 9162 args.array = argop; 9163 args.array_len = num_ops; 9164 9165 if (e.error = nfs4_start_fop(VTOMI4(vp), vp, NULL, OH_READDIR, 9166 &recov_state, NULL)) { 9167 /* 9168 * If readdir a node that is a stub for a crossed mount point, 9169 * keep the original secinfo flavor for the current file 9170 * system, not the crossed one. 9171 */ 9172 (void) check_mnt_secinfo(mi->mi_curr_serv, vp); 9173 rdc->error = e.error; 9174 return; 9175 } 9176 9177 /* 9178 * Determine which attrs to request for dirents. This code 9179 * must be protected by nfs4_start/end_fop because of r_server 9180 * (which will change during failover recovery). 9181 * 9182 */ 9183 if (rp->r_flags & (R4LOOKUP | R4READDIRWATTR)) { 9184 /* 9185 * Get all vattr attrs plus filehandle and rdattr_error 9186 */ 9187 rd_bitsval = NFS4_VATTR_MASK | 9188 FATTR4_RDATTR_ERROR_MASK | 9189 FATTR4_FILEHANDLE_MASK; 9190 9191 if (rp->r_flags & R4READDIRWATTR) { 9192 mutex_enter(&rp->r_statelock); 9193 rp->r_flags &= ~R4READDIRWATTR; 9194 mutex_exit(&rp->r_statelock); 9195 } 9196 } else { 9197 servinfo4_t *svp = rp->r_server; 9198 9199 /* 9200 * Already read directory. Use readdir with 9201 * no attrs (except for mounted_on_fileid) for updates. 9202 */ 9203 rd_bitsval = FATTR4_RDATTR_ERROR_MASK; 9204 9205 /* 9206 * request mounted on fileid if supported, else request 9207 * fileid. maybe we should verify that fileid is supported 9208 * and request something else if not. 9209 */ 9210 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0); 9211 if (svp->sv_supp_attrs & FATTR4_MOUNTED_ON_FILEID_MASK) 9212 rd_bitsval |= FATTR4_MOUNTED_ON_FILEID_MASK; 9213 nfs_rw_exit(&svp->sv_lock); 9214 } 9215 9216 /* putfh directory fh */ 9217 argop[0].argop = OP_CPUTFH; 9218 argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh; 9219 9220 argop[1].argop = OP_READDIR; 9221 rargs = &argop[1].nfs_argop4_u.opreaddir; 9222 /* 9223 * 1 and 2 are reserved for client "." and ".." entry offset. 9224 * cookie 0 should be used over-the-wire to start reading at 9225 * the beginning of the directory excluding "." and "..". 9226 */ 9227 if (rdc->nfs4_cookie == 0 || 9228 rdc->nfs4_cookie == 1 || 9229 rdc->nfs4_cookie == 2) { 9230 rargs->cookie = (nfs_cookie4)0; 9231 rargs->cookieverf = 0; 9232 } else { 9233 rargs->cookie = (nfs_cookie4)rdc->nfs4_cookie; 9234 mutex_enter(&rp->r_statelock); 9235 rargs->cookieverf = rp->r_cookieverf4; 9236 mutex_exit(&rp->r_statelock); 9237 } 9238 rargs->dircount = MIN(rdc->buflen, mi->mi_tsize); 9239 rargs->maxcount = mi->mi_tsize; 9240 rargs->attr_request = rd_bitsval; 9241 rargs->rdc = rdc; 9242 rargs->dvp = vp; 9243 rargs->mi = mi; 9244 rargs->cr = cr; 9245 9246 9247 /* 9248 * If count < than the minimum required, we return no entries 9249 * and fail with EINVAL 9250 */ 9251 if (rargs->dircount < (DIRENT64_RECLEN(1) + DIRENT64_RECLEN(2))) { 9252 rdc->error = EINVAL; 9253 goto out; 9254 } 9255 9256 if (args.array_len == 5) { 9257 /* 9258 * Add lookupp and getattr for parent nodeid. 9259 */ 9260 argop[2].argop = OP_LOOKUPP; 9261 9262 argop[3].argop = OP_GETFH; 9263 9264 /* getattr parent */ 9265 argop[4].argop = OP_GETATTR; 9266 argop[4].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 9267 argop[4].nfs_argop4_u.opgetattr.mi = mi; 9268 } 9269 9270 doqueue = 1; 9271 9272 if (mi->mi_io_kstats) { 9273 mutex_enter(&mi->mi_lock); 9274 kstat_runq_enter(KSTAT_IO_PTR(mi->mi_io_kstats)); 9275 mutex_exit(&mi->mi_lock); 9276 } 9277 9278 /* capture the time of this call */ 9279 rargs->t = t = gethrtime(); 9280 9281 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e); 9282 9283 if (mi->mi_io_kstats) { 9284 mutex_enter(&mi->mi_lock); 9285 kstat_runq_exit(KSTAT_IO_PTR(mi->mi_io_kstats)); 9286 mutex_exit(&mi->mi_lock); 9287 } 9288 9289 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp); 9290 9291 /* 9292 * If RPC error occurred and it isn't an error that 9293 * triggers recovery, then go ahead and fail now. 9294 */ 9295 if (e.error != 0 && !needrecov) { 9296 rdc->error = e.error; 9297 goto out; 9298 } 9299 9300 if (needrecov) { 9301 bool_t abort; 9302 9303 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 9304 "nfs4readdir: initiating recovery.\n")); 9305 9306 abort = nfs4_start_recovery(&e, VTOMI4(vp), vp, NULL, NULL, 9307 NULL, OP_READDIR, NULL); 9308 if (abort == FALSE) { 9309 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_READDIR, 9310 &recov_state, needrecov); 9311 if (!e.error) 9312 (void) xdr_free(xdr_COMPOUND4res_clnt, 9313 (caddr_t)&res); 9314 if (rdc->entries != NULL) { 9315 kmem_free(rdc->entries, rdc->entlen); 9316 rdc->entries = NULL; 9317 } 9318 goto recov_retry; 9319 } 9320 9321 if (e.error != 0) { 9322 rdc->error = e.error; 9323 goto out; 9324 } 9325 9326 /* fall through for res.status case */ 9327 } 9328 9329 res_opcnt = res.array_len; 9330 9331 /* 9332 * If compound failed first 2 ops (PUTFH+READDIR), then return 9333 * failure here. Subsequent ops are for filling out dot-dot 9334 * dirent, and if they fail, we still want to give the caller 9335 * the dirents returned by (the successful) READDIR op, so we need 9336 * to silently ignore failure for subsequent ops (LOOKUPP+GETATTR). 9337 * 9338 * One example where PUTFH+READDIR ops would succeed but 9339 * LOOKUPP+GETATTR would fail would be a dir that has r perm 9340 * but lacks x. In this case, a POSIX server's VOP_READDIR 9341 * would succeed; however, VOP_LOOKUP(..) would fail since no 9342 * x perm. We need to come up with a non-vendor-specific way 9343 * for a POSIX server to return d_ino from dotdot's dirent if 9344 * client only requests mounted_on_fileid, and just say the 9345 * LOOKUPP succeeded and fill out the GETATTR. However, if 9346 * client requested any mandatory attrs, server would be required 9347 * to fail the GETATTR op because it can't call VOP_LOOKUP+VOP_GETATTR 9348 * for dotdot. 9349 */ 9350 9351 if (res.status) { 9352 if (res_opcnt <= 2) { 9353 e.error = geterrno4(res.status); 9354 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_READDIR, 9355 &recov_state, needrecov); 9356 nfs4_purge_stale_fh(e.error, vp, cr); 9357 rdc->error = e.error; 9358 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 9359 if (rdc->entries != NULL) { 9360 kmem_free(rdc->entries, rdc->entlen); 9361 rdc->entries = NULL; 9362 } 9363 /* 9364 * If readdir a node that is a stub for a 9365 * crossed mount point, keep the original 9366 * secinfo flavor for the current file system, 9367 * not the crossed one. 9368 */ 9369 (void) check_mnt_secinfo(mi->mi_curr_serv, vp); 9370 return; 9371 } 9372 } 9373 9374 resop = &res.array[1]; /* readdir res */ 9375 rd_res = &resop->nfs_resop4_u.opreaddirclnt; 9376 9377 mutex_enter(&rp->r_statelock); 9378 rp->r_cookieverf4 = rd_res->cookieverf; 9379 mutex_exit(&rp->r_statelock); 9380 9381 /* 9382 * For "." and ".." entries 9383 * e.g. 9384 * seek(cookie=0) -> "." entry with d_off = 1 9385 * seek(cookie=1) -> ".." entry with d_off = 2 9386 */ 9387 if (cookie == (nfs_cookie4) 0) { 9388 if (rd_res->dotp) 9389 rd_res->dotp->d_ino = nodeid; 9390 if (rd_res->dotdotp) 9391 rd_res->dotdotp->d_ino = pnodeid; 9392 } 9393 if (cookie == (nfs_cookie4) 1) { 9394 if (rd_res->dotdotp) 9395 rd_res->dotdotp->d_ino = pnodeid; 9396 } 9397 9398 9399 /* LOOKUPP+GETATTR attemped */ 9400 if (args.array_len == 5 && rd_res->dotdotp) { 9401 if (res.status == NFS4_OK && res_opcnt == 5) { 9402 nfs_fh4 *fhp; 9403 nfs4_sharedfh_t *sfhp; 9404 vnode_t *pvp; 9405 nfs4_ga_res_t *garp; 9406 9407 resop++; /* lookupp */ 9408 resop++; /* getfh */ 9409 fhp = &resop->nfs_resop4_u.opgetfh.object; 9410 9411 resop++; /* getattr of parent */ 9412 9413 /* 9414 * First, take care of finishing the 9415 * readdir results. 9416 */ 9417 garp = &resop->nfs_resop4_u.opgetattr.ga_res; 9418 /* 9419 * The d_ino of .. must be the inode number 9420 * of the mounted filesystem. 9421 */ 9422 if (garp->n4g_va.va_mask & AT_NODEID) 9423 rd_res->dotdotp->d_ino = 9424 garp->n4g_va.va_nodeid; 9425 9426 9427 /* 9428 * Next, create the ".." dnlc entry 9429 */ 9430 sfhp = sfh4_get(fhp, mi); 9431 if (!nfs4_make_dotdot(sfhp, t, vp, cr, &pvp, 0)) { 9432 dnlc_update(vp, "..", pvp); 9433 VN_RELE(pvp); 9434 } 9435 sfh4_rele(&sfhp); 9436 } 9437 } 9438 9439 if (mi->mi_io_kstats) { 9440 mutex_enter(&mi->mi_lock); 9441 KSTAT_IO_PTR(mi->mi_io_kstats)->reads++; 9442 KSTAT_IO_PTR(mi->mi_io_kstats)->nread += rdc->actlen; 9443 mutex_exit(&mi->mi_lock); 9444 } 9445 9446 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 9447 9448 out: 9449 /* 9450 * If readdir a node that is a stub for a crossed mount point, 9451 * keep the original secinfo flavor for the current file system, 9452 * not the crossed one. 9453 */ 9454 (void) check_mnt_secinfo(mi->mi_curr_serv, vp); 9455 9456 nfs4_end_fop(mi, vp, NULL, OH_READDIR, &recov_state, needrecov); 9457 } 9458 9459 9460 static int 9461 nfs4_bio(struct buf *bp, stable_how4 *stab_comm, cred_t *cr, bool_t readahead) 9462 { 9463 rnode4_t *rp = VTOR4(bp->b_vp); 9464 int count; 9465 int error; 9466 cred_t *cred_otw = NULL; 9467 offset_t offset; 9468 nfs4_open_stream_t *osp = NULL; 9469 bool_t first_time = TRUE; /* first time getting otw cred */ 9470 bool_t last_time = FALSE; /* last time getting otw cred */ 9471 9472 ASSERT(nfs_zone() == VTOMI4(bp->b_vp)->mi_zone); 9473 9474 DTRACE_IO1(start, struct buf *, bp); 9475 offset = ldbtob(bp->b_lblkno); 9476 9477 if (bp->b_flags & B_READ) { 9478 read_again: 9479 /* 9480 * Releases the osp, if it is provided. 9481 * Puts a hold on the cred_otw and the new osp (if found). 9482 */ 9483 cred_otw = nfs4_get_otw_cred_by_osp(rp, cr, &osp, 9484 &first_time, &last_time); 9485 error = bp->b_error = nfs4read(bp->b_vp, bp->b_un.b_addr, 9486 offset, bp->b_bcount, &bp->b_resid, cred_otw, 9487 readahead, NULL); 9488 crfree(cred_otw); 9489 if (!error) { 9490 if (bp->b_resid) { 9491 /* 9492 * Didn't get it all because we hit EOF, 9493 * zero all the memory beyond the EOF. 9494 */ 9495 /* bzero(rdaddr + */ 9496 bzero(bp->b_un.b_addr + 9497 bp->b_bcount - bp->b_resid, bp->b_resid); 9498 } 9499 mutex_enter(&rp->r_statelock); 9500 if (bp->b_resid == bp->b_bcount && 9501 offset >= rp->r_size) { 9502 /* 9503 * We didn't read anything at all as we are 9504 * past EOF. Return an error indicator back 9505 * but don't destroy the pages (yet). 9506 */ 9507 error = NFS_EOF; 9508 } 9509 mutex_exit(&rp->r_statelock); 9510 } else if (error == EACCES && last_time == FALSE) { 9511 goto read_again; 9512 } 9513 } else { 9514 if (!(rp->r_flags & R4STALE)) { 9515 write_again: 9516 /* 9517 * Releases the osp, if it is provided. 9518 * Puts a hold on the cred_otw and the new 9519 * osp (if found). 9520 */ 9521 cred_otw = nfs4_get_otw_cred_by_osp(rp, cr, &osp, 9522 &first_time, &last_time); 9523 mutex_enter(&rp->r_statelock); 9524 count = MIN(bp->b_bcount, rp->r_size - offset); 9525 mutex_exit(&rp->r_statelock); 9526 if (count < 0) 9527 cmn_err(CE_PANIC, "nfs4_bio: write count < 0"); 9528 #ifdef DEBUG 9529 if (count == 0) { 9530 zoneid_t zoneid = getzoneid(); 9531 9532 zcmn_err(zoneid, CE_WARN, 9533 "nfs4_bio: zero length write at %lld", 9534 offset); 9535 zcmn_err(zoneid, CE_CONT, "flags=0x%x, " 9536 "b_bcount=%ld, file size=%lld", 9537 rp->r_flags, (long)bp->b_bcount, 9538 rp->r_size); 9539 sfh4_printfhandle(VTOR4(bp->b_vp)->r_fh); 9540 if (nfs4_bio_do_stop) 9541 debug_enter("nfs4_bio"); 9542 } 9543 #endif 9544 error = nfs4write(bp->b_vp, bp->b_un.b_addr, offset, 9545 count, cred_otw, stab_comm); 9546 if (error == EACCES && last_time == FALSE) { 9547 crfree(cred_otw); 9548 goto write_again; 9549 } 9550 bp->b_error = error; 9551 if (error && error != EINTR && 9552 !(bp->b_vp->v_vfsp->vfs_flag & VFS_UNMOUNTED)) { 9553 /* 9554 * Don't print EDQUOT errors on the console. 9555 * Don't print asynchronous EACCES errors. 9556 * Don't print EFBIG errors. 9557 * Print all other write errors. 9558 */ 9559 if (error != EDQUOT && error != EFBIG && 9560 (error != EACCES || 9561 !(bp->b_flags & B_ASYNC))) 9562 nfs4_write_error(bp->b_vp, 9563 error, cred_otw); 9564 /* 9565 * Update r_error and r_flags as appropriate. 9566 * If the error was ESTALE, then mark the 9567 * rnode as not being writeable and save 9568 * the error status. Otherwise, save any 9569 * errors which occur from asynchronous 9570 * page invalidations. Any errors occurring 9571 * from other operations should be saved 9572 * by the caller. 9573 */ 9574 mutex_enter(&rp->r_statelock); 9575 if (error == ESTALE) { 9576 rp->r_flags |= R4STALE; 9577 if (!rp->r_error) 9578 rp->r_error = error; 9579 } else if (!rp->r_error && 9580 (bp->b_flags & 9581 (B_INVAL|B_FORCE|B_ASYNC)) == 9582 (B_INVAL|B_FORCE|B_ASYNC)) { 9583 rp->r_error = error; 9584 } 9585 mutex_exit(&rp->r_statelock); 9586 } 9587 crfree(cred_otw); 9588 } else { 9589 error = rp->r_error; 9590 /* 9591 * A close may have cleared r_error, if so, 9592 * propagate ESTALE error return properly 9593 */ 9594 if (error == 0) 9595 error = ESTALE; 9596 } 9597 } 9598 9599 if (error != 0 && error != NFS_EOF) 9600 bp->b_flags |= B_ERROR; 9601 9602 if (osp) 9603 open_stream_rele(osp, rp); 9604 9605 DTRACE_IO1(done, struct buf *, bp); 9606 9607 return (error); 9608 } 9609 9610 /* ARGSUSED */ 9611 int 9612 nfs4_fid(vnode_t *vp, fid_t *fidp, caller_context_t *ct) 9613 { 9614 return (EREMOTE); 9615 } 9616 9617 /* ARGSUSED2 */ 9618 int 9619 nfs4_rwlock(vnode_t *vp, int write_lock, caller_context_t *ctp) 9620 { 9621 rnode4_t *rp = VTOR4(vp); 9622 9623 if (!write_lock) { 9624 (void) nfs_rw_enter_sig(&rp->r_rwlock, RW_READER, FALSE); 9625 return (V_WRITELOCK_FALSE); 9626 } 9627 9628 if ((rp->r_flags & R4DIRECTIO) || 9629 (VTOMI4(vp)->mi_flags & MI4_DIRECTIO)) { 9630 (void) nfs_rw_enter_sig(&rp->r_rwlock, RW_READER, FALSE); 9631 if (rp->r_mapcnt == 0 && !nfs4_has_pages(vp)) 9632 return (V_WRITELOCK_FALSE); 9633 nfs_rw_exit(&rp->r_rwlock); 9634 } 9635 9636 (void) nfs_rw_enter_sig(&rp->r_rwlock, RW_WRITER, FALSE); 9637 return (V_WRITELOCK_TRUE); 9638 } 9639 9640 /* ARGSUSED */ 9641 void 9642 nfs4_rwunlock(vnode_t *vp, int write_lock, caller_context_t *ctp) 9643 { 9644 rnode4_t *rp = VTOR4(vp); 9645 9646 nfs_rw_exit(&rp->r_rwlock); 9647 } 9648 9649 /* ARGSUSED */ 9650 static int 9651 nfs4_seek(vnode_t *vp, offset_t ooff, offset_t *noffp, caller_context_t *ct) 9652 { 9653 if (nfs_zone() != VTOMI4(vp)->mi_zone) 9654 return (EIO); 9655 9656 /* 9657 * Because we stuff the readdir cookie into the offset field 9658 * someone may attempt to do an lseek with the cookie which 9659 * we want to succeed. 9660 */ 9661 if (vp->v_type == VDIR) 9662 return (0); 9663 if (*noffp < 0) 9664 return (EINVAL); 9665 return (0); 9666 } 9667 9668 9669 /* 9670 * Return all the pages from [off..off+len) in file 9671 */ 9672 /* ARGSUSED */ 9673 static int 9674 nfs4_getpage(vnode_t *vp, offset_t off, size_t len, uint_t *protp, 9675 page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr, 9676 enum seg_rw rw, cred_t *cr, caller_context_t *ct) 9677 { 9678 rnode4_t *rp; 9679 int error; 9680 mntinfo4_t *mi; 9681 9682 if (nfs_zone() != VTOMI4(vp)->mi_zone) 9683 return (EIO); 9684 rp = VTOR4(vp); 9685 if (IS_SHADOW(vp, rp)) 9686 vp = RTOV4(rp); 9687 9688 if (vp->v_flag & VNOMAP) 9689 return (ENOSYS); 9690 9691 if (protp != NULL) 9692 *protp = PROT_ALL; 9693 9694 /* 9695 * Now validate that the caches are up to date. 9696 */ 9697 if (error = nfs4_validate_caches(vp, cr)) 9698 return (error); 9699 9700 mi = VTOMI4(vp); 9701 retry: 9702 mutex_enter(&rp->r_statelock); 9703 9704 /* 9705 * Don't create dirty pages faster than they 9706 * can be cleaned so that the system doesn't 9707 * get imbalanced. If the async queue is 9708 * maxed out, then wait for it to drain before 9709 * creating more dirty pages. Also, wait for 9710 * any threads doing pagewalks in the vop_getattr 9711 * entry points so that they don't block for 9712 * long periods. 9713 */ 9714 if (rw == S_CREATE) { 9715 while ((mi->mi_max_threads != 0 && 9716 rp->r_awcount > 2 * mi->mi_max_threads) || 9717 rp->r_gcount > 0) 9718 cv_wait(&rp->r_cv, &rp->r_statelock); 9719 } 9720 9721 /* 9722 * If we are getting called as a side effect of an nfs_write() 9723 * operation the local file size might not be extended yet. 9724 * In this case we want to be able to return pages of zeroes. 9725 */ 9726 if (off + len > rp->r_size + PAGEOFFSET && seg != segkmap) { 9727 NFS4_DEBUG(nfs4_pageio_debug, 9728 (CE_NOTE, "getpage beyond EOF: off=%lld, " 9729 "len=%llu, size=%llu, attrsize =%llu", off, 9730 (u_longlong_t)len, rp->r_size, rp->r_attr.va_size)); 9731 mutex_exit(&rp->r_statelock); 9732 return (EFAULT); /* beyond EOF */ 9733 } 9734 9735 mutex_exit(&rp->r_statelock); 9736 9737 if (len <= PAGESIZE) { 9738 error = nfs4_getapage(vp, off, len, protp, pl, plsz, 9739 seg, addr, rw, cr); 9740 NFS4_DEBUG(nfs4_pageio_debug && error, 9741 (CE_NOTE, "getpage error %d; off=%lld, " 9742 "len=%lld", error, off, (u_longlong_t)len)); 9743 } else { 9744 error = pvn_getpages(nfs4_getapage, vp, off, len, protp, 9745 pl, plsz, seg, addr, rw, cr); 9746 NFS4_DEBUG(nfs4_pageio_debug && error, 9747 (CE_NOTE, "getpages error %d; off=%lld, " 9748 "len=%lld", error, off, (u_longlong_t)len)); 9749 } 9750 9751 switch (error) { 9752 case NFS_EOF: 9753 nfs4_purge_caches(vp, NFS4_NOPURGE_DNLC, cr, FALSE); 9754 goto retry; 9755 case ESTALE: 9756 nfs4_purge_stale_fh(error, vp, cr); 9757 } 9758 9759 return (error); 9760 } 9761 9762 /* 9763 * Called from pvn_getpages or nfs4_getpage to get a particular page. 9764 */ 9765 /* ARGSUSED */ 9766 static int 9767 nfs4_getapage(vnode_t *vp, u_offset_t off, size_t len, uint_t *protp, 9768 page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr, 9769 enum seg_rw rw, cred_t *cr) 9770 { 9771 rnode4_t *rp; 9772 uint_t bsize; 9773 struct buf *bp; 9774 page_t *pp; 9775 u_offset_t lbn; 9776 u_offset_t io_off; 9777 u_offset_t blkoff; 9778 u_offset_t rablkoff; 9779 size_t io_len; 9780 uint_t blksize; 9781 int error; 9782 int readahead; 9783 int readahead_issued = 0; 9784 int ra_window; /* readahead window */ 9785 page_t *pagefound; 9786 page_t *savepp; 9787 9788 if (nfs_zone() != VTOMI4(vp)->mi_zone) 9789 return (EIO); 9790 9791 rp = VTOR4(vp); 9792 ASSERT(!IS_SHADOW(vp, rp)); 9793 bsize = MAX(vp->v_vfsp->vfs_bsize, PAGESIZE); 9794 9795 reread: 9796 bp = NULL; 9797 pp = NULL; 9798 pagefound = NULL; 9799 9800 if (pl != NULL) 9801 pl[0] = NULL; 9802 9803 error = 0; 9804 lbn = off / bsize; 9805 blkoff = lbn * bsize; 9806 9807 /* 9808 * Queueing up the readahead before doing the synchronous read 9809 * results in a significant increase in read throughput because 9810 * of the increased parallelism between the async threads and 9811 * the process context. 9812 */ 9813 if ((off & ((vp->v_vfsp->vfs_bsize) - 1)) == 0 && 9814 rw != S_CREATE && 9815 !(vp->v_flag & VNOCACHE)) { 9816 mutex_enter(&rp->r_statelock); 9817 9818 /* 9819 * Calculate the number of readaheads to do. 9820 * a) No readaheads at offset = 0. 9821 * b) Do maximum(nfs4_nra) readaheads when the readahead 9822 * window is closed. 9823 * c) Do readaheads between 1 to (nfs4_nra - 1) depending 9824 * upon how far the readahead window is open or close. 9825 * d) No readaheads if rp->r_nextr is not within the scope 9826 * of the readahead window (random i/o). 9827 */ 9828 9829 if (off == 0) 9830 readahead = 0; 9831 else if (blkoff == rp->r_nextr) 9832 readahead = nfs4_nra; 9833 else if (rp->r_nextr > blkoff && 9834 ((ra_window = (rp->r_nextr - blkoff) / bsize) 9835 <= (nfs4_nra - 1))) 9836 readahead = nfs4_nra - ra_window; 9837 else 9838 readahead = 0; 9839 9840 rablkoff = rp->r_nextr; 9841 while (readahead > 0 && rablkoff + bsize < rp->r_size) { 9842 mutex_exit(&rp->r_statelock); 9843 if (nfs4_async_readahead(vp, rablkoff + bsize, 9844 addr + (rablkoff + bsize - off), 9845 seg, cr, nfs4_readahead) < 0) { 9846 mutex_enter(&rp->r_statelock); 9847 break; 9848 } 9849 readahead--; 9850 rablkoff += bsize; 9851 /* 9852 * Indicate that we did a readahead so 9853 * readahead offset is not updated 9854 * by the synchronous read below. 9855 */ 9856 readahead_issued = 1; 9857 mutex_enter(&rp->r_statelock); 9858 /* 9859 * set readahead offset to 9860 * offset of last async readahead 9861 * request. 9862 */ 9863 rp->r_nextr = rablkoff; 9864 } 9865 mutex_exit(&rp->r_statelock); 9866 } 9867 9868 again: 9869 if ((pagefound = page_exists(vp, off)) == NULL) { 9870 if (pl == NULL) { 9871 (void) nfs4_async_readahead(vp, blkoff, addr, seg, cr, 9872 nfs4_readahead); 9873 } else if (rw == S_CREATE) { 9874 /* 9875 * Block for this page is not allocated, or the offset 9876 * is beyond the current allocation size, or we're 9877 * allocating a swap slot and the page was not found, 9878 * so allocate it and return a zero page. 9879 */ 9880 if ((pp = page_create_va(vp, off, 9881 PAGESIZE, PG_WAIT, seg, addr)) == NULL) 9882 cmn_err(CE_PANIC, "nfs4_getapage: page_create"); 9883 io_len = PAGESIZE; 9884 mutex_enter(&rp->r_statelock); 9885 rp->r_nextr = off + PAGESIZE; 9886 mutex_exit(&rp->r_statelock); 9887 } else { 9888 /* 9889 * Need to go to server to get a block 9890 */ 9891 mutex_enter(&rp->r_statelock); 9892 if (blkoff < rp->r_size && 9893 blkoff + bsize > rp->r_size) { 9894 /* 9895 * If less than a block left in 9896 * file read less than a block. 9897 */ 9898 if (rp->r_size <= off) { 9899 /* 9900 * Trying to access beyond EOF, 9901 * set up to get at least one page. 9902 */ 9903 blksize = off + PAGESIZE - blkoff; 9904 } else 9905 blksize = rp->r_size - blkoff; 9906 } else if ((off == 0) || 9907 (off != rp->r_nextr && !readahead_issued)) { 9908 blksize = PAGESIZE; 9909 blkoff = off; /* block = page here */ 9910 } else 9911 blksize = bsize; 9912 mutex_exit(&rp->r_statelock); 9913 9914 pp = pvn_read_kluster(vp, off, seg, addr, &io_off, 9915 &io_len, blkoff, blksize, 0); 9916 9917 /* 9918 * Some other thread has entered the page, 9919 * so just use it. 9920 */ 9921 if (pp == NULL) 9922 goto again; 9923 9924 /* 9925 * Now round the request size up to page boundaries. 9926 * This ensures that the entire page will be 9927 * initialized to zeroes if EOF is encountered. 9928 */ 9929 io_len = ptob(btopr(io_len)); 9930 9931 bp = pageio_setup(pp, io_len, vp, B_READ); 9932 ASSERT(bp != NULL); 9933 9934 /* 9935 * pageio_setup should have set b_addr to 0. This 9936 * is correct since we want to do I/O on a page 9937 * boundary. bp_mapin will use this addr to calculate 9938 * an offset, and then set b_addr to the kernel virtual 9939 * address it allocated for us. 9940 */ 9941 ASSERT(bp->b_un.b_addr == 0); 9942 9943 bp->b_edev = 0; 9944 bp->b_dev = 0; 9945 bp->b_lblkno = lbtodb(io_off); 9946 bp->b_file = vp; 9947 bp->b_offset = (offset_t)off; 9948 bp_mapin(bp); 9949 9950 /* 9951 * If doing a write beyond what we believe is EOF, 9952 * don't bother trying to read the pages from the 9953 * server, we'll just zero the pages here. We 9954 * don't check that the rw flag is S_WRITE here 9955 * because some implementations may attempt a 9956 * read access to the buffer before copying data. 9957 */ 9958 mutex_enter(&rp->r_statelock); 9959 if (io_off >= rp->r_size && seg == segkmap) { 9960 mutex_exit(&rp->r_statelock); 9961 bzero(bp->b_un.b_addr, io_len); 9962 } else { 9963 mutex_exit(&rp->r_statelock); 9964 error = nfs4_bio(bp, NULL, cr, FALSE); 9965 } 9966 9967 /* 9968 * Unmap the buffer before freeing it. 9969 */ 9970 bp_mapout(bp); 9971 pageio_done(bp); 9972 9973 savepp = pp; 9974 do { 9975 pp->p_fsdata = C_NOCOMMIT; 9976 } while ((pp = pp->p_next) != savepp); 9977 9978 if (error == NFS_EOF) { 9979 /* 9980 * If doing a write system call just return 9981 * zeroed pages, else user tried to get pages 9982 * beyond EOF, return error. We don't check 9983 * that the rw flag is S_WRITE here because 9984 * some implementations may attempt a read 9985 * access to the buffer before copying data. 9986 */ 9987 if (seg == segkmap) 9988 error = 0; 9989 else 9990 error = EFAULT; 9991 } 9992 9993 if (!readahead_issued && !error) { 9994 mutex_enter(&rp->r_statelock); 9995 rp->r_nextr = io_off + io_len; 9996 mutex_exit(&rp->r_statelock); 9997 } 9998 } 9999 } 10000 10001 out: 10002 if (pl == NULL) 10003 return (error); 10004 10005 if (error) { 10006 if (pp != NULL) 10007 pvn_read_done(pp, B_ERROR); 10008 return (error); 10009 } 10010 10011 if (pagefound) { 10012 se_t se = (rw == S_CREATE ? SE_EXCL : SE_SHARED); 10013 10014 /* 10015 * Page exists in the cache, acquire the appropriate lock. 10016 * If this fails, start all over again. 10017 */ 10018 if ((pp = page_lookup(vp, off, se)) == NULL) { 10019 #ifdef DEBUG 10020 nfs4_lostpage++; 10021 #endif 10022 goto reread; 10023 } 10024 pl[0] = pp; 10025 pl[1] = NULL; 10026 return (0); 10027 } 10028 10029 if (pp != NULL) 10030 pvn_plist_init(pp, pl, plsz, off, io_len, rw); 10031 10032 return (error); 10033 } 10034 10035 static void 10036 nfs4_readahead(vnode_t *vp, u_offset_t blkoff, caddr_t addr, struct seg *seg, 10037 cred_t *cr) 10038 { 10039 int error; 10040 page_t *pp; 10041 u_offset_t io_off; 10042 size_t io_len; 10043 struct buf *bp; 10044 uint_t bsize, blksize; 10045 rnode4_t *rp = VTOR4(vp); 10046 page_t *savepp; 10047 10048 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 10049 10050 bsize = MAX(vp->v_vfsp->vfs_bsize, PAGESIZE); 10051 10052 mutex_enter(&rp->r_statelock); 10053 if (blkoff < rp->r_size && blkoff + bsize > rp->r_size) { 10054 /* 10055 * If less than a block left in file read less 10056 * than a block. 10057 */ 10058 blksize = rp->r_size - blkoff; 10059 } else 10060 blksize = bsize; 10061 mutex_exit(&rp->r_statelock); 10062 10063 pp = pvn_read_kluster(vp, blkoff, segkmap, addr, 10064 &io_off, &io_len, blkoff, blksize, 1); 10065 /* 10066 * The isra flag passed to the kluster function is 1, we may have 10067 * gotten a return value of NULL for a variety of reasons (# of free 10068 * pages < minfree, someone entered the page on the vnode etc). In all 10069 * cases, we want to punt on the readahead. 10070 */ 10071 if (pp == NULL) 10072 return; 10073 10074 /* 10075 * Now round the request size up to page boundaries. 10076 * This ensures that the entire page will be 10077 * initialized to zeroes if EOF is encountered. 10078 */ 10079 io_len = ptob(btopr(io_len)); 10080 10081 bp = pageio_setup(pp, io_len, vp, B_READ); 10082 ASSERT(bp != NULL); 10083 10084 /* 10085 * pageio_setup should have set b_addr to 0. This is correct since 10086 * we want to do I/O on a page boundary. bp_mapin() will use this addr 10087 * to calculate an offset, and then set b_addr to the kernel virtual 10088 * address it allocated for us. 10089 */ 10090 ASSERT(bp->b_un.b_addr == 0); 10091 10092 bp->b_edev = 0; 10093 bp->b_dev = 0; 10094 bp->b_lblkno = lbtodb(io_off); 10095 bp->b_file = vp; 10096 bp->b_offset = (offset_t)blkoff; 10097 bp_mapin(bp); 10098 10099 /* 10100 * If doing a write beyond what we believe is EOF, don't bother trying 10101 * to read the pages from the server, we'll just zero the pages here. 10102 * We don't check that the rw flag is S_WRITE here because some 10103 * implementations may attempt a read access to the buffer before 10104 * copying data. 10105 */ 10106 mutex_enter(&rp->r_statelock); 10107 if (io_off >= rp->r_size && seg == segkmap) { 10108 mutex_exit(&rp->r_statelock); 10109 bzero(bp->b_un.b_addr, io_len); 10110 error = 0; 10111 } else { 10112 mutex_exit(&rp->r_statelock); 10113 error = nfs4_bio(bp, NULL, cr, TRUE); 10114 if (error == NFS_EOF) 10115 error = 0; 10116 } 10117 10118 /* 10119 * Unmap the buffer before freeing it. 10120 */ 10121 bp_mapout(bp); 10122 pageio_done(bp); 10123 10124 savepp = pp; 10125 do { 10126 pp->p_fsdata = C_NOCOMMIT; 10127 } while ((pp = pp->p_next) != savepp); 10128 10129 pvn_read_done(pp, error ? B_READ | B_ERROR : B_READ); 10130 10131 /* 10132 * In case of error set readahead offset 10133 * to the lowest offset. 10134 * pvn_read_done() calls VN_DISPOSE to destroy the pages 10135 */ 10136 if (error && rp->r_nextr > io_off) { 10137 mutex_enter(&rp->r_statelock); 10138 if (rp->r_nextr > io_off) 10139 rp->r_nextr = io_off; 10140 mutex_exit(&rp->r_statelock); 10141 } 10142 } 10143 10144 /* 10145 * Flags are composed of {B_INVAL, B_FREE, B_DONTNEED, B_FORCE} 10146 * If len == 0, do from off to EOF. 10147 * 10148 * The normal cases should be len == 0 && off == 0 (entire vp list) or 10149 * len == MAXBSIZE (from segmap_release actions), and len == PAGESIZE 10150 * (from pageout). 10151 */ 10152 /* ARGSUSED */ 10153 static int 10154 nfs4_putpage(vnode_t *vp, offset_t off, size_t len, int flags, cred_t *cr, 10155 caller_context_t *ct) 10156 { 10157 int error; 10158 rnode4_t *rp; 10159 10160 ASSERT(cr != NULL); 10161 10162 if (!(flags & B_ASYNC) && nfs_zone() != VTOMI4(vp)->mi_zone) 10163 return (EIO); 10164 10165 rp = VTOR4(vp); 10166 if (IS_SHADOW(vp, rp)) 10167 vp = RTOV4(rp); 10168 10169 /* 10170 * XXX - Why should this check be made here? 10171 */ 10172 if (vp->v_flag & VNOMAP) 10173 return (ENOSYS); 10174 10175 if (len == 0 && !(flags & B_INVAL) && 10176 (vp->v_vfsp->vfs_flag & VFS_RDONLY)) 10177 return (0); 10178 10179 mutex_enter(&rp->r_statelock); 10180 rp->r_count++; 10181 mutex_exit(&rp->r_statelock); 10182 error = nfs4_putpages(vp, off, len, flags, cr); 10183 mutex_enter(&rp->r_statelock); 10184 rp->r_count--; 10185 cv_broadcast(&rp->r_cv); 10186 mutex_exit(&rp->r_statelock); 10187 10188 return (error); 10189 } 10190 10191 /* 10192 * Write out a single page, possibly klustering adjacent dirty pages. 10193 */ 10194 int 10195 nfs4_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp, size_t *lenp, 10196 int flags, cred_t *cr) 10197 { 10198 u_offset_t io_off; 10199 u_offset_t lbn_off; 10200 u_offset_t lbn; 10201 size_t io_len; 10202 uint_t bsize; 10203 int error; 10204 rnode4_t *rp; 10205 10206 ASSERT(!(vp->v_vfsp->vfs_flag & VFS_RDONLY)); 10207 ASSERT(pp != NULL); 10208 ASSERT(cr != NULL); 10209 ASSERT((flags & B_ASYNC) || nfs_zone() == VTOMI4(vp)->mi_zone); 10210 10211 rp = VTOR4(vp); 10212 ASSERT(rp->r_count > 0); 10213 ASSERT(!IS_SHADOW(vp, rp)); 10214 10215 bsize = MAX(vp->v_vfsp->vfs_bsize, PAGESIZE); 10216 lbn = pp->p_offset / bsize; 10217 lbn_off = lbn * bsize; 10218 10219 /* 10220 * Find a kluster that fits in one block, or in 10221 * one page if pages are bigger than blocks. If 10222 * there is less file space allocated than a whole 10223 * page, we'll shorten the i/o request below. 10224 */ 10225 pp = pvn_write_kluster(vp, pp, &io_off, &io_len, lbn_off, 10226 roundup(bsize, PAGESIZE), flags); 10227 10228 /* 10229 * pvn_write_kluster shouldn't have returned a page with offset 10230 * behind the original page we were given. Verify that. 10231 */ 10232 ASSERT((pp->p_offset / bsize) >= lbn); 10233 10234 /* 10235 * Now pp will have the list of kept dirty pages marked for 10236 * write back. It will also handle invalidation and freeing 10237 * of pages that are not dirty. Check for page length rounding 10238 * problems. 10239 */ 10240 if (io_off + io_len > lbn_off + bsize) { 10241 ASSERT((io_off + io_len) - (lbn_off + bsize) < PAGESIZE); 10242 io_len = lbn_off + bsize - io_off; 10243 } 10244 /* 10245 * The R4MODINPROGRESS flag makes sure that nfs4_bio() sees a 10246 * consistent value of r_size. R4MODINPROGRESS is set in writerp4(). 10247 * When R4MODINPROGRESS is set it indicates that a uiomove() is in 10248 * progress and the r_size has not been made consistent with the 10249 * new size of the file. When the uiomove() completes the r_size is 10250 * updated and the R4MODINPROGRESS flag is cleared. 10251 * 10252 * The R4MODINPROGRESS flag makes sure that nfs4_bio() sees a 10253 * consistent value of r_size. Without this handshaking, it is 10254 * possible that nfs4_bio() picks up the old value of r_size 10255 * before the uiomove() in writerp4() completes. This will result 10256 * in the write through nfs4_bio() being dropped. 10257 * 10258 * More precisely, there is a window between the time the uiomove() 10259 * completes and the time the r_size is updated. If a VOP_PUTPAGE() 10260 * operation intervenes in this window, the page will be picked up, 10261 * because it is dirty (it will be unlocked, unless it was 10262 * pagecreate'd). When the page is picked up as dirty, the dirty 10263 * bit is reset (pvn_getdirty()). In nfs4write(), r_size is 10264 * checked. This will still be the old size. Therefore the page will 10265 * not be written out. When segmap_release() calls VOP_PUTPAGE(), 10266 * the page will be found to be clean and the write will be dropped. 10267 */ 10268 if (rp->r_flags & R4MODINPROGRESS) { 10269 mutex_enter(&rp->r_statelock); 10270 if ((rp->r_flags & R4MODINPROGRESS) && 10271 rp->r_modaddr + MAXBSIZE > io_off && 10272 rp->r_modaddr < io_off + io_len) { 10273 page_t *plist; 10274 /* 10275 * A write is in progress for this region of the file. 10276 * If we did not detect R4MODINPROGRESS here then this 10277 * path through nfs_putapage() would eventually go to 10278 * nfs4_bio() and may not write out all of the data 10279 * in the pages. We end up losing data. So we decide 10280 * to set the modified bit on each page in the page 10281 * list and mark the rnode with R4DIRTY. This write 10282 * will be restarted at some later time. 10283 */ 10284 plist = pp; 10285 while (plist != NULL) { 10286 pp = plist; 10287 page_sub(&plist, pp); 10288 hat_setmod(pp); 10289 page_io_unlock(pp); 10290 page_unlock(pp); 10291 } 10292 rp->r_flags |= R4DIRTY; 10293 mutex_exit(&rp->r_statelock); 10294 if (offp) 10295 *offp = io_off; 10296 if (lenp) 10297 *lenp = io_len; 10298 return (0); 10299 } 10300 mutex_exit(&rp->r_statelock); 10301 } 10302 10303 if (flags & B_ASYNC) { 10304 error = nfs4_async_putapage(vp, pp, io_off, io_len, flags, cr, 10305 nfs4_sync_putapage); 10306 } else 10307 error = nfs4_sync_putapage(vp, pp, io_off, io_len, flags, cr); 10308 10309 if (offp) 10310 *offp = io_off; 10311 if (lenp) 10312 *lenp = io_len; 10313 return (error); 10314 } 10315 10316 static int 10317 nfs4_sync_putapage(vnode_t *vp, page_t *pp, u_offset_t io_off, size_t io_len, 10318 int flags, cred_t *cr) 10319 { 10320 int error; 10321 rnode4_t *rp; 10322 10323 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 10324 10325 flags |= B_WRITE; 10326 10327 error = nfs4_rdwrlbn(vp, pp, io_off, io_len, flags, cr); 10328 10329 rp = VTOR4(vp); 10330 10331 if ((error == ENOSPC || error == EDQUOT || error == EFBIG || 10332 error == EACCES) && 10333 (flags & (B_INVAL|B_FORCE)) != (B_INVAL|B_FORCE)) { 10334 if (!(rp->r_flags & R4OUTOFSPACE)) { 10335 mutex_enter(&rp->r_statelock); 10336 rp->r_flags |= R4OUTOFSPACE; 10337 mutex_exit(&rp->r_statelock); 10338 } 10339 flags |= B_ERROR; 10340 pvn_write_done(pp, flags); 10341 /* 10342 * If this was not an async thread, then try again to 10343 * write out the pages, but this time, also destroy 10344 * them whether or not the write is successful. This 10345 * will prevent memory from filling up with these 10346 * pages and destroying them is the only alternative 10347 * if they can't be written out. 10348 * 10349 * Don't do this if this is an async thread because 10350 * when the pages are unlocked in pvn_write_done, 10351 * some other thread could have come along, locked 10352 * them, and queued for an async thread. It would be 10353 * possible for all of the async threads to be tied 10354 * up waiting to lock the pages again and they would 10355 * all already be locked and waiting for an async 10356 * thread to handle them. Deadlock. 10357 */ 10358 if (!(flags & B_ASYNC)) { 10359 error = nfs4_putpage(vp, io_off, io_len, 10360 B_INVAL | B_FORCE, cr, NULL); 10361 } 10362 } else { 10363 if (error) 10364 flags |= B_ERROR; 10365 else if (rp->r_flags & R4OUTOFSPACE) { 10366 mutex_enter(&rp->r_statelock); 10367 rp->r_flags &= ~R4OUTOFSPACE; 10368 mutex_exit(&rp->r_statelock); 10369 } 10370 pvn_write_done(pp, flags); 10371 if (freemem < desfree) 10372 (void) nfs4_commit_vp(vp, (u_offset_t)0, 0, cr, 10373 NFS4_WRITE_NOWAIT); 10374 } 10375 10376 return (error); 10377 } 10378 10379 #ifdef DEBUG 10380 int nfs4_force_open_before_mmap = 0; 10381 #endif 10382 10383 /* ARGSUSED */ 10384 static int 10385 nfs4_map(vnode_t *vp, offset_t off, struct as *as, caddr_t *addrp, 10386 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr, 10387 caller_context_t *ct) 10388 { 10389 struct segvn_crargs vn_a; 10390 int error = 0; 10391 rnode4_t *rp = VTOR4(vp); 10392 mntinfo4_t *mi = VTOMI4(vp); 10393 10394 if (nfs_zone() != VTOMI4(vp)->mi_zone) 10395 return (EIO); 10396 10397 if (vp->v_flag & VNOMAP) 10398 return (ENOSYS); 10399 10400 if (off < 0 || (off + len) < 0) 10401 return (ENXIO); 10402 10403 if (vp->v_type != VREG) 10404 return (ENODEV); 10405 10406 /* 10407 * If the file is delegated to the client don't do anything. 10408 * If the file is not delegated, then validate the data cache. 10409 */ 10410 mutex_enter(&rp->r_statev4_lock); 10411 if (rp->r_deleg_type == OPEN_DELEGATE_NONE) { 10412 mutex_exit(&rp->r_statev4_lock); 10413 error = nfs4_validate_caches(vp, cr); 10414 if (error) 10415 return (error); 10416 } else { 10417 mutex_exit(&rp->r_statev4_lock); 10418 } 10419 10420 /* 10421 * Check to see if the vnode is currently marked as not cachable. 10422 * This means portions of the file are locked (through VOP_FRLOCK). 10423 * In this case the map request must be refused. We use 10424 * rp->r_lkserlock to avoid a race with concurrent lock requests. 10425 * 10426 * Atomically increment r_inmap after acquiring r_rwlock. The 10427 * idea here is to acquire r_rwlock to block read/write and 10428 * not to protect r_inmap. r_inmap will inform nfs4_read/write() 10429 * that we are in nfs4_map(). Now, r_rwlock is acquired in order 10430 * and we can prevent the deadlock that would have occurred 10431 * when nfs4_addmap() would have acquired it out of order. 10432 * 10433 * Since we are not protecting r_inmap by any lock, we do not 10434 * hold any lock when we decrement it. We atomically decrement 10435 * r_inmap after we release r_lkserlock. 10436 */ 10437 10438 if (nfs_rw_enter_sig(&rp->r_rwlock, RW_WRITER, INTR4(vp))) 10439 return (EINTR); 10440 atomic_add_int(&rp->r_inmap, 1); 10441 nfs_rw_exit(&rp->r_rwlock); 10442 10443 if (nfs_rw_enter_sig(&rp->r_lkserlock, RW_READER, INTR4(vp))) { 10444 atomic_add_int(&rp->r_inmap, -1); 10445 return (EINTR); 10446 } 10447 10448 10449 if (vp->v_flag & VNOCACHE) { 10450 error = EAGAIN; 10451 goto done; 10452 } 10453 10454 /* 10455 * Don't allow concurrent locks and mapping if mandatory locking is 10456 * enabled. 10457 */ 10458 if (flk_has_remote_locks(vp)) { 10459 struct vattr va; 10460 va.va_mask = AT_MODE; 10461 error = nfs4getattr(vp, &va, cr); 10462 if (error != 0) 10463 goto done; 10464 if (MANDLOCK(vp, va.va_mode)) { 10465 error = EAGAIN; 10466 goto done; 10467 } 10468 } 10469 10470 /* 10471 * It is possible that the rnode has a lost lock request that we 10472 * are still trying to recover, and that the request conflicts with 10473 * this map request. 10474 * 10475 * An alternative approach would be for nfs4_safemap() to consider 10476 * queued lock requests when deciding whether to set or clear 10477 * VNOCACHE. This would require the frlock code path to call 10478 * nfs4_safemap() after enqueing a lost request. 10479 */ 10480 if (nfs4_map_lost_lock_conflict(vp)) { 10481 error = EAGAIN; 10482 goto done; 10483 } 10484 10485 as_rangelock(as); 10486 error = choose_addr(as, addrp, len, off, ADDR_VACALIGN, flags); 10487 if (error != 0) { 10488 as_rangeunlock(as); 10489 goto done; 10490 } 10491 10492 if (vp->v_type == VREG) { 10493 /* 10494 * We need to retrieve the open stream 10495 */ 10496 nfs4_open_stream_t *osp = NULL; 10497 nfs4_open_owner_t *oop = NULL; 10498 10499 oop = find_open_owner(cr, NFS4_PERM_CREATED, mi); 10500 if (oop != NULL) { 10501 /* returns with 'os_sync_lock' held */ 10502 osp = find_open_stream(oop, rp); 10503 open_owner_rele(oop); 10504 } 10505 if (osp == NULL) { 10506 #ifdef DEBUG 10507 if (nfs4_force_open_before_mmap) { 10508 error = EIO; 10509 goto done; 10510 } 10511 #endif 10512 /* returns with 'os_sync_lock' held */ 10513 error = open_and_get_osp(vp, cr, &osp); 10514 if (osp == NULL) { 10515 NFS4_DEBUG(nfs4_mmap_debug, (CE_NOTE, 10516 "nfs4_map: we tried to OPEN the file " 10517 "but again no osp, so fail with EIO")); 10518 goto done; 10519 } 10520 } 10521 10522 if (osp->os_failed_reopen) { 10523 mutex_exit(&osp->os_sync_lock); 10524 open_stream_rele(osp, rp); 10525 NFS4_DEBUG(nfs4_open_stream_debug, (CE_NOTE, 10526 "nfs4_map: os_failed_reopen set on " 10527 "osp %p, cr %p, rp %s", (void *)osp, 10528 (void *)cr, rnode4info(rp))); 10529 error = EIO; 10530 goto done; 10531 } 10532 mutex_exit(&osp->os_sync_lock); 10533 open_stream_rele(osp, rp); 10534 } 10535 10536 vn_a.vp = vp; 10537 vn_a.offset = off; 10538 vn_a.type = (flags & MAP_TYPE); 10539 vn_a.prot = (uchar_t)prot; 10540 vn_a.maxprot = (uchar_t)maxprot; 10541 vn_a.flags = (flags & ~MAP_TYPE); 10542 vn_a.cred = cr; 10543 vn_a.amp = NULL; 10544 vn_a.szc = 0; 10545 vn_a.lgrp_mem_policy_flags = 0; 10546 10547 error = as_map(as, *addrp, len, segvn_create, &vn_a); 10548 as_rangeunlock(as); 10549 10550 done: 10551 nfs_rw_exit(&rp->r_lkserlock); 10552 atomic_add_int(&rp->r_inmap, -1); 10553 return (error); 10554 } 10555 10556 /* 10557 * We're most likely dealing with a kernel module that likes to READ 10558 * and mmap without OPENing the file (ie: lookup/read/mmap), so lets 10559 * officially OPEN the file to create the necessary client state 10560 * for bookkeeping of os_mmap_read/write counts. 10561 * 10562 * Since VOP_MAP only passes in a pointer to the vnode rather than 10563 * a double pointer, we can't handle the case where nfs4open_otw() 10564 * returns a different vnode than the one passed into VOP_MAP (since 10565 * VOP_DELMAP will not see the vnode nfs4open_otw used). In this case, 10566 * we return NULL and let nfs4_map() fail. Note: the only case where 10567 * this should happen is if the file got removed and replaced with the 10568 * same name on the server (in addition to the fact that we're trying 10569 * to VOP_MAP withouth VOP_OPENing the file in the first place). 10570 */ 10571 static int 10572 open_and_get_osp(vnode_t *map_vp, cred_t *cr, nfs4_open_stream_t **ospp) 10573 { 10574 rnode4_t *rp, *drp; 10575 vnode_t *dvp, *open_vp; 10576 char file_name[MAXNAMELEN]; 10577 int just_created; 10578 nfs4_open_stream_t *osp; 10579 nfs4_open_owner_t *oop; 10580 int error; 10581 10582 *ospp = NULL; 10583 open_vp = map_vp; 10584 10585 rp = VTOR4(open_vp); 10586 if ((error = vtodv(open_vp, &dvp, cr, TRUE)) != 0) 10587 return (error); 10588 drp = VTOR4(dvp); 10589 10590 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_READER, INTR4(dvp))) { 10591 VN_RELE(dvp); 10592 return (EINTR); 10593 } 10594 10595 if ((error = vtoname(open_vp, file_name, MAXNAMELEN)) != 0) { 10596 nfs_rw_exit(&drp->r_rwlock); 10597 VN_RELE(dvp); 10598 return (error); 10599 } 10600 10601 mutex_enter(&rp->r_statev4_lock); 10602 if (rp->created_v4) { 10603 rp->created_v4 = 0; 10604 mutex_exit(&rp->r_statev4_lock); 10605 10606 dnlc_update(dvp, file_name, open_vp); 10607 /* This is needed so we don't bump the open ref count */ 10608 just_created = 1; 10609 } else { 10610 mutex_exit(&rp->r_statev4_lock); 10611 just_created = 0; 10612 } 10613 10614 VN_HOLD(map_vp); 10615 10616 error = nfs4open_otw(dvp, file_name, NULL, &open_vp, cr, 0, FREAD, 0, 10617 just_created); 10618 if (error) { 10619 nfs_rw_exit(&drp->r_rwlock); 10620 VN_RELE(dvp); 10621 VN_RELE(map_vp); 10622 return (error); 10623 } 10624 10625 nfs_rw_exit(&drp->r_rwlock); 10626 VN_RELE(dvp); 10627 10628 /* 10629 * If nfs4open_otw() returned a different vnode then "undo" 10630 * the open and return failure to the caller. 10631 */ 10632 if (!VN_CMP(open_vp, map_vp)) { 10633 nfs4_error_t e; 10634 10635 NFS4_DEBUG(nfs4_mmap_debug, (CE_NOTE, "open_and_get_osp: " 10636 "open returned a different vnode")); 10637 /* 10638 * If there's an error, ignore it, 10639 * and let VOP_INACTIVE handle it. 10640 */ 10641 (void) nfs4close_one(open_vp, NULL, cr, FREAD, NULL, &e, 10642 CLOSE_NORM, 0, 0, 0); 10643 VN_RELE(map_vp); 10644 return (EIO); 10645 } 10646 10647 VN_RELE(map_vp); 10648 10649 oop = find_open_owner(cr, NFS4_PERM_CREATED, VTOMI4(open_vp)); 10650 if (!oop) { 10651 nfs4_error_t e; 10652 10653 NFS4_DEBUG(nfs4_mmap_debug, (CE_NOTE, "open_and_get_osp: " 10654 "no open owner")); 10655 /* 10656 * If there's an error, ignore it, 10657 * and let VOP_INACTIVE handle it. 10658 */ 10659 (void) nfs4close_one(open_vp, NULL, cr, FREAD, NULL, &e, 10660 CLOSE_NORM, 0, 0, 0); 10661 return (EIO); 10662 } 10663 osp = find_open_stream(oop, rp); 10664 open_owner_rele(oop); 10665 *ospp = osp; 10666 return (0); 10667 } 10668 10669 /* 10670 * Please be aware that when this function is called, the address space write 10671 * a_lock is held. Do not put over the wire calls in this function. 10672 */ 10673 /* ARGSUSED */ 10674 static int 10675 nfs4_addmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr, 10676 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr, 10677 caller_context_t *ct) 10678 { 10679 rnode4_t *rp; 10680 int error = 0; 10681 mntinfo4_t *mi; 10682 10683 mi = VTOMI4(vp); 10684 rp = VTOR4(vp); 10685 10686 if (nfs_zone() != mi->mi_zone) 10687 return (EIO); 10688 if (vp->v_flag & VNOMAP) 10689 return (ENOSYS); 10690 10691 /* 10692 * Don't need to update the open stream first, since this 10693 * mmap can't add any additional share access that isn't 10694 * already contained in the open stream (for the case where we 10695 * open/mmap/only update rp->r_mapcnt/server reboots/reopen doesn't 10696 * take into account os_mmap_read[write] counts). 10697 */ 10698 atomic_add_long((ulong_t *)&rp->r_mapcnt, btopr(len)); 10699 10700 if (vp->v_type == VREG) { 10701 /* 10702 * We need to retrieve the open stream and update the counts. 10703 * If there is no open stream here, something is wrong. 10704 */ 10705 nfs4_open_stream_t *osp = NULL; 10706 nfs4_open_owner_t *oop = NULL; 10707 10708 oop = find_open_owner(cr, NFS4_PERM_CREATED, mi); 10709 if (oop != NULL) { 10710 /* returns with 'os_sync_lock' held */ 10711 osp = find_open_stream(oop, rp); 10712 open_owner_rele(oop); 10713 } 10714 if (osp == NULL) { 10715 NFS4_DEBUG(nfs4_mmap_debug, (CE_NOTE, 10716 "nfs4_addmap: we should have an osp" 10717 "but we don't, so fail with EIO")); 10718 error = EIO; 10719 goto out; 10720 } 10721 10722 NFS4_DEBUG(nfs4_mmap_debug, (CE_NOTE, "nfs4_addmap: osp %p," 10723 " pages %ld, prot 0x%x", (void *)osp, btopr(len), prot)); 10724 10725 /* 10726 * Update the map count in the open stream. 10727 * This is necessary in the case where we 10728 * open/mmap/close/, then the server reboots, and we 10729 * attempt to reopen. If the mmap doesn't add share 10730 * access then we send an invalid reopen with 10731 * access = NONE. 10732 * 10733 * We need to specifically check each PROT_* so a mmap 10734 * call of (PROT_WRITE | PROT_EXEC) will ensure us both 10735 * read and write access. A simple comparison of prot 10736 * to ~PROT_WRITE to determine read access is insufficient 10737 * since prot can be |= with PROT_USER, etc. 10738 */ 10739 10740 /* 10741 * Unless we're MAP_SHARED, no sense in adding os_mmap_write 10742 */ 10743 if ((flags & MAP_SHARED) && (maxprot & PROT_WRITE)) 10744 osp->os_mmap_write += btopr(len); 10745 if (maxprot & PROT_READ) 10746 osp->os_mmap_read += btopr(len); 10747 if (maxprot & PROT_EXEC) 10748 osp->os_mmap_read += btopr(len); 10749 /* 10750 * Ensure that os_mmap_read gets incremented, even if 10751 * maxprot were to look like PROT_NONE. 10752 */ 10753 if (!(maxprot & PROT_READ) && !(maxprot & PROT_WRITE) && 10754 !(maxprot & PROT_EXEC)) 10755 osp->os_mmap_read += btopr(len); 10756 osp->os_mapcnt += btopr(len); 10757 mutex_exit(&osp->os_sync_lock); 10758 open_stream_rele(osp, rp); 10759 } 10760 10761 out: 10762 /* 10763 * If we got an error, then undo our 10764 * incrementing of 'r_mapcnt'. 10765 */ 10766 10767 if (error) { 10768 atomic_add_long((ulong_t *)&rp->r_mapcnt, -btopr(len)); 10769 ASSERT(rp->r_mapcnt >= 0); 10770 } 10771 return (error); 10772 } 10773 10774 /* ARGSUSED */ 10775 static int 10776 nfs4_cmp(vnode_t *vp1, vnode_t *vp2, caller_context_t *ct) 10777 { 10778 10779 return (VTOR4(vp1) == VTOR4(vp2)); 10780 } 10781 10782 /* ARGSUSED */ 10783 static int 10784 nfs4_frlock(vnode_t *vp, int cmd, struct flock64 *bfp, int flag, 10785 offset_t offset, struct flk_callback *flk_cbp, cred_t *cr, 10786 caller_context_t *ct) 10787 { 10788 int rc; 10789 u_offset_t start, end; 10790 rnode4_t *rp; 10791 int error = 0, intr = INTR4(vp); 10792 nfs4_error_t e; 10793 10794 if (nfs_zone() != VTOMI4(vp)->mi_zone) 10795 return (EIO); 10796 10797 /* check for valid cmd parameter */ 10798 if (cmd != F_GETLK && cmd != F_SETLK && cmd != F_SETLKW) 10799 return (EINVAL); 10800 10801 /* Verify l_type. */ 10802 switch (bfp->l_type) { 10803 case F_RDLCK: 10804 if (cmd != F_GETLK && !(flag & FREAD)) 10805 return (EBADF); 10806 break; 10807 case F_WRLCK: 10808 if (cmd != F_GETLK && !(flag & FWRITE)) 10809 return (EBADF); 10810 break; 10811 case F_UNLCK: 10812 intr = 0; 10813 break; 10814 10815 default: 10816 return (EINVAL); 10817 } 10818 10819 /* check the validity of the lock range */ 10820 if (rc = flk_convert_lock_data(vp, bfp, &start, &end, offset)) 10821 return (rc); 10822 if (rc = flk_check_lock_data(start, end, MAXEND)) 10823 return (rc); 10824 10825 /* 10826 * If the filesystem is mounted using local locking, pass the 10827 * request off to the local locking code. 10828 */ 10829 if (VTOMI4(vp)->mi_flags & MI4_LLOCK || vp->v_type != VREG) { 10830 if (cmd == F_SETLK || cmd == F_SETLKW) { 10831 /* 10832 * For complete safety, we should be holding 10833 * r_lkserlock. However, we can't call 10834 * nfs4_safelock and then fs_frlock while 10835 * holding r_lkserlock, so just invoke 10836 * nfs4_safelock and expect that this will 10837 * catch enough of the cases. 10838 */ 10839 if (!nfs4_safelock(vp, bfp, cr)) 10840 return (EAGAIN); 10841 } 10842 return (fs_frlock(vp, cmd, bfp, flag, offset, flk_cbp, cr, ct)); 10843 } 10844 10845 rp = VTOR4(vp); 10846 10847 /* 10848 * Check whether the given lock request can proceed, given the 10849 * current file mappings. 10850 */ 10851 if (nfs_rw_enter_sig(&rp->r_lkserlock, RW_WRITER, intr)) 10852 return (EINTR); 10853 if (cmd == F_SETLK || cmd == F_SETLKW) { 10854 if (!nfs4_safelock(vp, bfp, cr)) { 10855 rc = EAGAIN; 10856 goto done; 10857 } 10858 } 10859 10860 /* 10861 * Flush the cache after waiting for async I/O to finish. For new 10862 * locks, this is so that the process gets the latest bits from the 10863 * server. For unlocks, this is so that other clients see the 10864 * latest bits once the file has been unlocked. If currently dirty 10865 * pages can't be flushed, then don't allow a lock to be set. But 10866 * allow unlocks to succeed, to avoid having orphan locks on the 10867 * server. 10868 */ 10869 if (cmd != F_GETLK) { 10870 mutex_enter(&rp->r_statelock); 10871 while (rp->r_count > 0) { 10872 if (intr) { 10873 klwp_t *lwp = ttolwp(curthread); 10874 10875 if (lwp != NULL) 10876 lwp->lwp_nostop++; 10877 if (cv_wait_sig(&rp->r_cv, 10878 &rp->r_statelock) == 0) { 10879 if (lwp != NULL) 10880 lwp->lwp_nostop--; 10881 rc = EINTR; 10882 break; 10883 } 10884 if (lwp != NULL) 10885 lwp->lwp_nostop--; 10886 } else 10887 cv_wait(&rp->r_cv, &rp->r_statelock); 10888 } 10889 mutex_exit(&rp->r_statelock); 10890 if (rc != 0) 10891 goto done; 10892 error = nfs4_putpage(vp, (offset_t)0, 0, B_INVAL, cr, ct); 10893 if (error) { 10894 if (error == ENOSPC || error == EDQUOT) { 10895 mutex_enter(&rp->r_statelock); 10896 if (!rp->r_error) 10897 rp->r_error = error; 10898 mutex_exit(&rp->r_statelock); 10899 } 10900 if (bfp->l_type != F_UNLCK) { 10901 rc = ENOLCK; 10902 goto done; 10903 } 10904 } 10905 } 10906 10907 /* 10908 * Call the lock manager to do the real work of contacting 10909 * the server and obtaining the lock. 10910 */ 10911 nfs4frlock(NFS4_LCK_CTYPE_NORM, vp, cmd, bfp, flag, offset, 10912 cr, &e, NULL, NULL); 10913 rc = e.error; 10914 10915 if (rc == 0) 10916 nfs4_lockcompletion(vp, cmd); 10917 10918 done: 10919 nfs_rw_exit(&rp->r_lkserlock); 10920 10921 return (rc); 10922 } 10923 10924 /* 10925 * Free storage space associated with the specified vnode. The portion 10926 * to be freed is specified by bfp->l_start and bfp->l_len (already 10927 * normalized to a "whence" of 0). 10928 * 10929 * This is an experimental facility whose continued existence is not 10930 * guaranteed. Currently, we only support the special case 10931 * of l_len == 0, meaning free to end of file. 10932 */ 10933 /* ARGSUSED */ 10934 static int 10935 nfs4_space(vnode_t *vp, int cmd, struct flock64 *bfp, int flag, 10936 offset_t offset, cred_t *cr, caller_context_t *ct) 10937 { 10938 int error; 10939 10940 if (nfs_zone() != VTOMI4(vp)->mi_zone) 10941 return (EIO); 10942 ASSERT(vp->v_type == VREG); 10943 if (cmd != F_FREESP) 10944 return (EINVAL); 10945 10946 error = convoff(vp, bfp, 0, offset); 10947 if (!error) { 10948 ASSERT(bfp->l_start >= 0); 10949 if (bfp->l_len == 0) { 10950 struct vattr va; 10951 10952 va.va_mask = AT_SIZE; 10953 va.va_size = bfp->l_start; 10954 error = nfs4setattr(vp, &va, 0, cr, NULL); 10955 } else 10956 error = EINVAL; 10957 } 10958 10959 return (error); 10960 } 10961 10962 /* ARGSUSED */ 10963 int 10964 nfs4_realvp(vnode_t *vp, vnode_t **vpp, caller_context_t *ct) 10965 { 10966 rnode4_t *rp; 10967 rp = VTOR4(vp); 10968 10969 if (vp->v_type == VREG && IS_SHADOW(vp, rp)) { 10970 vp = RTOV4(rp); 10971 } 10972 *vpp = vp; 10973 return (0); 10974 } 10975 10976 /* 10977 * Setup and add an address space callback to do the work of the delmap call. 10978 * The callback will (and must be) deleted in the actual callback function. 10979 * 10980 * This is done in order to take care of the problem that we have with holding 10981 * the address space's a_lock for a long period of time (e.g. if the NFS server 10982 * is down). Callbacks will be executed in the address space code while the 10983 * a_lock is not held. Holding the address space's a_lock causes things such 10984 * as ps and fork to hang because they are trying to acquire this lock as well. 10985 */ 10986 /* ARGSUSED */ 10987 static int 10988 nfs4_delmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr, 10989 size_t len, uint_t prot, uint_t maxprot, uint_t flags, cred_t *cr, 10990 caller_context_t *ct) 10991 { 10992 int caller_found; 10993 int error; 10994 rnode4_t *rp; 10995 nfs4_delmap_args_t *dmapp; 10996 nfs4_delmapcall_t *delmap_call; 10997 10998 if (vp->v_flag & VNOMAP) 10999 return (ENOSYS); 11000 11001 /* 11002 * A process may not change zones if it has NFS pages mmap'ed 11003 * in, so we can't legitimately get here from the wrong zone. 11004 */ 11005 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 11006 11007 rp = VTOR4(vp); 11008 11009 /* 11010 * The way that the address space of this process deletes its mapping 11011 * of this file is via the following call chains: 11012 * - as_free()->SEGOP_UNMAP()/segvn_unmap()->VOP_DELMAP()/nfs4_delmap() 11013 * - as_unmap()->SEGOP_UNMAP()/segvn_unmap()->VOP_DELMAP()/nfs4_delmap() 11014 * 11015 * With the use of address space callbacks we are allowed to drop the 11016 * address space lock, a_lock, while executing the NFS operations that 11017 * need to go over the wire. Returning EAGAIN to the caller of this 11018 * function is what drives the execution of the callback that we add 11019 * below. The callback will be executed by the address space code 11020 * after dropping the a_lock. When the callback is finished, since 11021 * we dropped the a_lock, it must be re-acquired and segvn_unmap() 11022 * is called again on the same segment to finish the rest of the work 11023 * that needs to happen during unmapping. 11024 * 11025 * This action of calling back into the segment driver causes 11026 * nfs4_delmap() to get called again, but since the callback was 11027 * already executed at this point, it already did the work and there 11028 * is nothing left for us to do. 11029 * 11030 * To Summarize: 11031 * - The first time nfs4_delmap is called by the current thread is when 11032 * we add the caller associated with this delmap to the delmap caller 11033 * list, add the callback, and return EAGAIN. 11034 * - The second time in this call chain when nfs4_delmap is called we 11035 * will find this caller in the delmap caller list and realize there 11036 * is no more work to do thus removing this caller from the list and 11037 * returning the error that was set in the callback execution. 11038 */ 11039 caller_found = nfs4_find_and_delete_delmapcall(rp, &error); 11040 if (caller_found) { 11041 /* 11042 * 'error' is from the actual delmap operations. To avoid 11043 * hangs, we need to handle the return of EAGAIN differently 11044 * since this is what drives the callback execution. 11045 * In this case, we don't want to return EAGAIN and do the 11046 * callback execution because there are none to execute. 11047 */ 11048 if (error == EAGAIN) 11049 return (0); 11050 else 11051 return (error); 11052 } 11053 11054 /* current caller was not in the list */ 11055 delmap_call = nfs4_init_delmapcall(); 11056 11057 mutex_enter(&rp->r_statelock); 11058 list_insert_tail(&rp->r_indelmap, delmap_call); 11059 mutex_exit(&rp->r_statelock); 11060 11061 dmapp = kmem_alloc(sizeof (nfs4_delmap_args_t), KM_SLEEP); 11062 11063 dmapp->vp = vp; 11064 dmapp->off = off; 11065 dmapp->addr = addr; 11066 dmapp->len = len; 11067 dmapp->prot = prot; 11068 dmapp->maxprot = maxprot; 11069 dmapp->flags = flags; 11070 dmapp->cr = cr; 11071 dmapp->caller = delmap_call; 11072 11073 error = as_add_callback(as, nfs4_delmap_callback, dmapp, 11074 AS_UNMAP_EVENT, addr, len, KM_SLEEP); 11075 11076 return (error ? error : EAGAIN); 11077 } 11078 11079 static nfs4_delmapcall_t * 11080 nfs4_init_delmapcall() 11081 { 11082 nfs4_delmapcall_t *delmap_call; 11083 11084 delmap_call = kmem_alloc(sizeof (nfs4_delmapcall_t), KM_SLEEP); 11085 delmap_call->call_id = curthread; 11086 delmap_call->error = 0; 11087 11088 return (delmap_call); 11089 } 11090 11091 static void 11092 nfs4_free_delmapcall(nfs4_delmapcall_t *delmap_call) 11093 { 11094 kmem_free(delmap_call, sizeof (nfs4_delmapcall_t)); 11095 } 11096 11097 /* 11098 * Searches for the current delmap caller (based on curthread) in the list of 11099 * callers. If it is found, we remove it and free the delmap caller. 11100 * Returns: 11101 * 0 if the caller wasn't found 11102 * 1 if the caller was found, removed and freed. *errp will be set 11103 * to what the result of the delmap was. 11104 */ 11105 static int 11106 nfs4_find_and_delete_delmapcall(rnode4_t *rp, int *errp) 11107 { 11108 nfs4_delmapcall_t *delmap_call; 11109 11110 /* 11111 * If the list doesn't exist yet, we create it and return 11112 * that the caller wasn't found. No list = no callers. 11113 */ 11114 mutex_enter(&rp->r_statelock); 11115 if (!(rp->r_flags & R4DELMAPLIST)) { 11116 /* The list does not exist */ 11117 list_create(&rp->r_indelmap, sizeof (nfs4_delmapcall_t), 11118 offsetof(nfs4_delmapcall_t, call_node)); 11119 rp->r_flags |= R4DELMAPLIST; 11120 mutex_exit(&rp->r_statelock); 11121 return (0); 11122 } else { 11123 /* The list exists so search it */ 11124 for (delmap_call = list_head(&rp->r_indelmap); 11125 delmap_call != NULL; 11126 delmap_call = list_next(&rp->r_indelmap, delmap_call)) { 11127 if (delmap_call->call_id == curthread) { 11128 /* current caller is in the list */ 11129 *errp = delmap_call->error; 11130 list_remove(&rp->r_indelmap, delmap_call); 11131 mutex_exit(&rp->r_statelock); 11132 nfs4_free_delmapcall(delmap_call); 11133 return (1); 11134 } 11135 } 11136 } 11137 mutex_exit(&rp->r_statelock); 11138 return (0); 11139 } 11140 11141 /* 11142 * Remove some pages from an mmap'd vnode. Just update the 11143 * count of pages. If doing close-to-open, then flush and 11144 * commit all of the pages associated with this file. 11145 * Otherwise, start an asynchronous page flush to write out 11146 * any dirty pages. This will also associate a credential 11147 * with the rnode which can be used to write the pages. 11148 */ 11149 /* ARGSUSED */ 11150 static void 11151 nfs4_delmap_callback(struct as *as, void *arg, uint_t event) 11152 { 11153 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 11154 rnode4_t *rp; 11155 mntinfo4_t *mi; 11156 nfs4_delmap_args_t *dmapp = (nfs4_delmap_args_t *)arg; 11157 11158 rp = VTOR4(dmapp->vp); 11159 mi = VTOMI4(dmapp->vp); 11160 11161 atomic_add_long((ulong_t *)&rp->r_mapcnt, -btopr(dmapp->len)); 11162 ASSERT(rp->r_mapcnt >= 0); 11163 11164 /* 11165 * Initiate a page flush and potential commit if there are 11166 * pages, the file system was not mounted readonly, the segment 11167 * was mapped shared, and the pages themselves were writeable. 11168 */ 11169 if (nfs4_has_pages(dmapp->vp) && 11170 !(dmapp->vp->v_vfsp->vfs_flag & VFS_RDONLY) && 11171 dmapp->flags == MAP_SHARED && (dmapp->maxprot & PROT_WRITE)) { 11172 mutex_enter(&rp->r_statelock); 11173 rp->r_flags |= R4DIRTY; 11174 mutex_exit(&rp->r_statelock); 11175 e.error = nfs4_putpage_commit(dmapp->vp, dmapp->off, 11176 dmapp->len, dmapp->cr); 11177 if (!e.error) { 11178 mutex_enter(&rp->r_statelock); 11179 e.error = rp->r_error; 11180 rp->r_error = 0; 11181 mutex_exit(&rp->r_statelock); 11182 } 11183 } else 11184 e.error = 0; 11185 11186 if ((rp->r_flags & R4DIRECTIO) || (mi->mi_flags & MI4_DIRECTIO)) 11187 (void) nfs4_putpage(dmapp->vp, dmapp->off, dmapp->len, 11188 B_INVAL, dmapp->cr, NULL); 11189 11190 if (e.error) { 11191 e.stat = puterrno4(e.error); 11192 nfs4_queue_fact(RF_DELMAP_CB_ERR, mi, e.stat, 0, 11193 OP_COMMIT, FALSE, NULL, 0, dmapp->vp); 11194 dmapp->caller->error = e.error; 11195 } 11196 11197 /* Check to see if we need to close the file */ 11198 11199 if (dmapp->vp->v_type == VREG) { 11200 nfs4close_one(dmapp->vp, NULL, dmapp->cr, 0, NULL, &e, 11201 CLOSE_DELMAP, dmapp->len, dmapp->maxprot, dmapp->flags); 11202 11203 if (e.error != 0 || e.stat != NFS4_OK) { 11204 /* 11205 * Since it is possible that e.error == 0 and 11206 * e.stat != NFS4_OK (and vice versa), 11207 * we do the proper checking in order to get both 11208 * e.error and e.stat reporting the correct info. 11209 */ 11210 if (e.stat == NFS4_OK) 11211 e.stat = puterrno4(e.error); 11212 if (e.error == 0) 11213 e.error = geterrno4(e.stat); 11214 11215 nfs4_queue_fact(RF_DELMAP_CB_ERR, mi, e.stat, 0, 11216 OP_CLOSE, FALSE, NULL, 0, dmapp->vp); 11217 dmapp->caller->error = e.error; 11218 } 11219 } 11220 11221 (void) as_delete_callback(as, arg); 11222 kmem_free(dmapp, sizeof (nfs4_delmap_args_t)); 11223 } 11224 11225 11226 static uint_t 11227 fattr4_maxfilesize_to_bits(uint64_t ll) 11228 { 11229 uint_t l = 1; 11230 11231 if (ll == 0) { 11232 return (0); 11233 } 11234 11235 if (ll & 0xffffffff00000000) { 11236 l += 32; ll >>= 32; 11237 } 11238 if (ll & 0xffff0000) { 11239 l += 16; ll >>= 16; 11240 } 11241 if (ll & 0xff00) { 11242 l += 8; ll >>= 8; 11243 } 11244 if (ll & 0xf0) { 11245 l += 4; ll >>= 4; 11246 } 11247 if (ll & 0xc) { 11248 l += 2; ll >>= 2; 11249 } 11250 if (ll & 0x2) { 11251 l += 1; 11252 } 11253 return (l); 11254 } 11255 11256 static int 11257 nfs4_have_xattrs(vnode_t *vp, ulong_t *valp, cred_t *cr) 11258 { 11259 vnode_t *avp = NULL; 11260 int error; 11261 11262 if ((error = nfs4lookup_xattr(vp, "", &avp, 11263 LOOKUP_XATTR, cr)) == 0) 11264 error = do_xattr_exists_check(avp, valp, cr); 11265 if (avp) 11266 VN_RELE(avp); 11267 11268 return (error); 11269 } 11270 11271 /* ARGSUSED */ 11272 int 11273 nfs4_pathconf(vnode_t *vp, int cmd, ulong_t *valp, cred_t *cr, 11274 caller_context_t *ct) 11275 { 11276 int error; 11277 hrtime_t t; 11278 rnode4_t *rp; 11279 nfs4_ga_res_t gar; 11280 nfs4_ga_ext_res_t ger; 11281 11282 gar.n4g_ext_res = &ger; 11283 11284 if (nfs_zone() != VTOMI4(vp)->mi_zone) 11285 return (EIO); 11286 if (cmd == _PC_PATH_MAX || cmd == _PC_SYMLINK_MAX) { 11287 *valp = MAXPATHLEN; 11288 return (0); 11289 } 11290 if (cmd == _PC_ACL_ENABLED) { 11291 *valp = _ACL_ACE_ENABLED; 11292 return (0); 11293 } 11294 11295 rp = VTOR4(vp); 11296 if (cmd == _PC_XATTR_EXISTS) { 11297 /* 11298 * The existence of the xattr directory is not sufficient 11299 * for determining whether generic user attributes exists. 11300 * The attribute directory could only be a transient directory 11301 * used for Solaris sysattr support. Do a small readdir 11302 * to verify if the only entries are sysattrs or not. 11303 * 11304 * pc4_xattr_valid can be only be trusted when r_xattr_dir 11305 * is NULL. Once the xadir vp exists, we can create xattrs, 11306 * and we don't have any way to update the "base" object's 11307 * pc4_xattr_exists from the xattr or xadir. Maybe FEM 11308 * could help out. 11309 */ 11310 if (ATTRCACHE4_VALID(vp) && rp->r_pathconf.pc4_xattr_valid && 11311 rp->r_xattr_dir == NULL) { 11312 return (nfs4_have_xattrs(vp, valp, cr)); 11313 } 11314 } else { /* OLD CODE */ 11315 if (ATTRCACHE4_VALID(vp)) { 11316 mutex_enter(&rp->r_statelock); 11317 if (rp->r_pathconf.pc4_cache_valid) { 11318 error = 0; 11319 switch (cmd) { 11320 case _PC_FILESIZEBITS: 11321 *valp = 11322 rp->r_pathconf.pc4_filesizebits; 11323 break; 11324 case _PC_LINK_MAX: 11325 *valp = 11326 rp->r_pathconf.pc4_link_max; 11327 break; 11328 case _PC_NAME_MAX: 11329 *valp = 11330 rp->r_pathconf.pc4_name_max; 11331 break; 11332 case _PC_CHOWN_RESTRICTED: 11333 *valp = 11334 rp->r_pathconf.pc4_chown_restricted; 11335 break; 11336 case _PC_NO_TRUNC: 11337 *valp = 11338 rp->r_pathconf.pc4_no_trunc; 11339 break; 11340 default: 11341 error = EINVAL; 11342 break; 11343 } 11344 mutex_exit(&rp->r_statelock); 11345 #ifdef DEBUG 11346 nfs4_pathconf_cache_hits++; 11347 #endif 11348 return (error); 11349 } 11350 mutex_exit(&rp->r_statelock); 11351 } 11352 } 11353 #ifdef DEBUG 11354 nfs4_pathconf_cache_misses++; 11355 #endif 11356 11357 t = gethrtime(); 11358 11359 error = nfs4_attr_otw(vp, TAG_PATHCONF, &gar, NFS4_PATHCONF_MASK, cr); 11360 11361 if (error) { 11362 mutex_enter(&rp->r_statelock); 11363 rp->r_pathconf.pc4_cache_valid = FALSE; 11364 rp->r_pathconf.pc4_xattr_valid = FALSE; 11365 mutex_exit(&rp->r_statelock); 11366 return (error); 11367 } 11368 11369 /* interpret the max filesize */ 11370 gar.n4g_ext_res->n4g_pc4.pc4_filesizebits = 11371 fattr4_maxfilesize_to_bits(gar.n4g_ext_res->n4g_maxfilesize); 11372 11373 /* Store the attributes we just received */ 11374 nfs4_attr_cache(vp, &gar, t, cr, TRUE, NULL); 11375 11376 switch (cmd) { 11377 case _PC_FILESIZEBITS: 11378 *valp = gar.n4g_ext_res->n4g_pc4.pc4_filesizebits; 11379 break; 11380 case _PC_LINK_MAX: 11381 *valp = gar.n4g_ext_res->n4g_pc4.pc4_link_max; 11382 break; 11383 case _PC_NAME_MAX: 11384 *valp = gar.n4g_ext_res->n4g_pc4.pc4_name_max; 11385 break; 11386 case _PC_CHOWN_RESTRICTED: 11387 *valp = gar.n4g_ext_res->n4g_pc4.pc4_chown_restricted; 11388 break; 11389 case _PC_NO_TRUNC: 11390 *valp = gar.n4g_ext_res->n4g_pc4.pc4_no_trunc; 11391 break; 11392 case _PC_XATTR_EXISTS: 11393 if (gar.n4g_ext_res->n4g_pc4.pc4_xattr_exists) { 11394 if (error = nfs4_have_xattrs(vp, valp, cr)) 11395 return (error); 11396 } 11397 break; 11398 default: 11399 return (EINVAL); 11400 } 11401 11402 return (0); 11403 } 11404 11405 /* 11406 * Called by async thread to do synchronous pageio. Do the i/o, wait 11407 * for it to complete, and cleanup the page list when done. 11408 */ 11409 static int 11410 nfs4_sync_pageio(vnode_t *vp, page_t *pp, u_offset_t io_off, size_t io_len, 11411 int flags, cred_t *cr) 11412 { 11413 int error; 11414 11415 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 11416 11417 error = nfs4_rdwrlbn(vp, pp, io_off, io_len, flags, cr); 11418 if (flags & B_READ) 11419 pvn_read_done(pp, (error ? B_ERROR : 0) | flags); 11420 else 11421 pvn_write_done(pp, (error ? B_ERROR : 0) | flags); 11422 return (error); 11423 } 11424 11425 /* ARGSUSED */ 11426 static int 11427 nfs4_pageio(vnode_t *vp, page_t *pp, u_offset_t io_off, size_t io_len, 11428 int flags, cred_t *cr, caller_context_t *ct) 11429 { 11430 int error; 11431 rnode4_t *rp; 11432 11433 if (!(flags & B_ASYNC) && nfs_zone() != VTOMI4(vp)->mi_zone) 11434 return (EIO); 11435 11436 if (pp == NULL) 11437 return (EINVAL); 11438 11439 rp = VTOR4(vp); 11440 mutex_enter(&rp->r_statelock); 11441 rp->r_count++; 11442 mutex_exit(&rp->r_statelock); 11443 11444 if (flags & B_ASYNC) { 11445 error = nfs4_async_pageio(vp, pp, io_off, io_len, flags, cr, 11446 nfs4_sync_pageio); 11447 } else 11448 error = nfs4_rdwrlbn(vp, pp, io_off, io_len, flags, cr); 11449 mutex_enter(&rp->r_statelock); 11450 rp->r_count--; 11451 cv_broadcast(&rp->r_cv); 11452 mutex_exit(&rp->r_statelock); 11453 return (error); 11454 } 11455 11456 /* ARGSUSED */ 11457 static void 11458 nfs4_dispose(vnode_t *vp, page_t *pp, int fl, int dn, cred_t *cr, 11459 caller_context_t *ct) 11460 { 11461 int error; 11462 rnode4_t *rp; 11463 page_t *plist; 11464 page_t *pptr; 11465 offset3 offset; 11466 count3 len; 11467 k_sigset_t smask; 11468 11469 /* 11470 * We should get called with fl equal to either B_FREE or 11471 * B_INVAL. Any other value is illegal. 11472 * 11473 * The page that we are either supposed to free or destroy 11474 * should be exclusive locked and its io lock should not 11475 * be held. 11476 */ 11477 ASSERT(fl == B_FREE || fl == B_INVAL); 11478 ASSERT((PAGE_EXCL(pp) && !page_iolock_assert(pp)) || panicstr); 11479 11480 rp = VTOR4(vp); 11481 11482 /* 11483 * If the page doesn't need to be committed or we shouldn't 11484 * even bother attempting to commit it, then just make sure 11485 * that the p_fsdata byte is clear and then either free or 11486 * destroy the page as appropriate. 11487 */ 11488 if (pp->p_fsdata == C_NOCOMMIT || (rp->r_flags & R4STALE)) { 11489 pp->p_fsdata = C_NOCOMMIT; 11490 if (fl == B_FREE) 11491 page_free(pp, dn); 11492 else 11493 page_destroy(pp, dn); 11494 return; 11495 } 11496 11497 /* 11498 * If there is a page invalidation operation going on, then 11499 * if this is one of the pages being destroyed, then just 11500 * clear the p_fsdata byte and then either free or destroy 11501 * the page as appropriate. 11502 */ 11503 mutex_enter(&rp->r_statelock); 11504 if ((rp->r_flags & R4TRUNCATE) && pp->p_offset >= rp->r_truncaddr) { 11505 mutex_exit(&rp->r_statelock); 11506 pp->p_fsdata = C_NOCOMMIT; 11507 if (fl == B_FREE) 11508 page_free(pp, dn); 11509 else 11510 page_destroy(pp, dn); 11511 return; 11512 } 11513 11514 /* 11515 * If we are freeing this page and someone else is already 11516 * waiting to do a commit, then just unlock the page and 11517 * return. That other thread will take care of commiting 11518 * this page. The page can be freed sometime after the 11519 * commit has finished. Otherwise, if the page is marked 11520 * as delay commit, then we may be getting called from 11521 * pvn_write_done, one page at a time. This could result 11522 * in one commit per page, so we end up doing lots of small 11523 * commits instead of fewer larger commits. This is bad, 11524 * we want do as few commits as possible. 11525 */ 11526 if (fl == B_FREE) { 11527 if (rp->r_flags & R4COMMITWAIT) { 11528 page_unlock(pp); 11529 mutex_exit(&rp->r_statelock); 11530 return; 11531 } 11532 if (pp->p_fsdata == C_DELAYCOMMIT) { 11533 pp->p_fsdata = C_COMMIT; 11534 page_unlock(pp); 11535 mutex_exit(&rp->r_statelock); 11536 return; 11537 } 11538 } 11539 11540 /* 11541 * Check to see if there is a signal which would prevent an 11542 * attempt to commit the pages from being successful. If so, 11543 * then don't bother with all of the work to gather pages and 11544 * generate the unsuccessful RPC. Just return from here and 11545 * let the page be committed at some later time. 11546 */ 11547 sigintr(&smask, VTOMI4(vp)->mi_flags & MI4_INT); 11548 if (ttolwp(curthread) != NULL && ISSIG(curthread, JUSTLOOKING)) { 11549 sigunintr(&smask); 11550 page_unlock(pp); 11551 mutex_exit(&rp->r_statelock); 11552 return; 11553 } 11554 sigunintr(&smask); 11555 11556 /* 11557 * We are starting to need to commit pages, so let's try 11558 * to commit as many as possible at once to reduce the 11559 * overhead. 11560 * 11561 * Set the `commit inprogress' state bit. We must 11562 * first wait until any current one finishes. Then 11563 * we initialize the c_pages list with this page. 11564 */ 11565 while (rp->r_flags & R4COMMIT) { 11566 rp->r_flags |= R4COMMITWAIT; 11567 cv_wait(&rp->r_commit.c_cv, &rp->r_statelock); 11568 rp->r_flags &= ~R4COMMITWAIT; 11569 } 11570 rp->r_flags |= R4COMMIT; 11571 mutex_exit(&rp->r_statelock); 11572 ASSERT(rp->r_commit.c_pages == NULL); 11573 rp->r_commit.c_pages = pp; 11574 rp->r_commit.c_commbase = (offset3)pp->p_offset; 11575 rp->r_commit.c_commlen = PAGESIZE; 11576 11577 /* 11578 * Gather together all other pages which can be committed. 11579 * They will all be chained off r_commit.c_pages. 11580 */ 11581 nfs4_get_commit(vp); 11582 11583 /* 11584 * Clear the `commit inprogress' status and disconnect 11585 * the list of pages to be committed from the rnode. 11586 * At this same time, we also save the starting offset 11587 * and length of data to be committed on the server. 11588 */ 11589 plist = rp->r_commit.c_pages; 11590 rp->r_commit.c_pages = NULL; 11591 offset = rp->r_commit.c_commbase; 11592 len = rp->r_commit.c_commlen; 11593 mutex_enter(&rp->r_statelock); 11594 rp->r_flags &= ~R4COMMIT; 11595 cv_broadcast(&rp->r_commit.c_cv); 11596 mutex_exit(&rp->r_statelock); 11597 11598 if (curproc == proc_pageout || curproc == proc_fsflush || 11599 nfs_zone() != VTOMI4(vp)->mi_zone) { 11600 nfs4_async_commit(vp, plist, offset, len, 11601 cr, do_nfs4_async_commit); 11602 return; 11603 } 11604 11605 /* 11606 * Actually generate the COMMIT op over the wire operation. 11607 */ 11608 error = nfs4_commit(vp, (offset4)offset, (count4)len, cr); 11609 11610 /* 11611 * If we got an error during the commit, just unlock all 11612 * of the pages. The pages will get retransmitted to the 11613 * server during a putpage operation. 11614 */ 11615 if (error) { 11616 while (plist != NULL) { 11617 pptr = plist; 11618 page_sub(&plist, pptr); 11619 page_unlock(pptr); 11620 } 11621 return; 11622 } 11623 11624 /* 11625 * We've tried as hard as we can to commit the data to stable 11626 * storage on the server. We just unlock the rest of the pages 11627 * and clear the commit required state. They will be put 11628 * onto the tail of the cachelist if they are nolonger 11629 * mapped. 11630 */ 11631 while (plist != pp) { 11632 pptr = plist; 11633 page_sub(&plist, pptr); 11634 pptr->p_fsdata = C_NOCOMMIT; 11635 page_unlock(pptr); 11636 } 11637 11638 /* 11639 * It is possible that nfs4_commit didn't return error but 11640 * some other thread has modified the page we are going 11641 * to free/destroy. 11642 * In this case we need to rewrite the page. Do an explicit check 11643 * before attempting to free/destroy the page. If modified, needs to 11644 * be rewritten so unlock the page and return. 11645 */ 11646 if (hat_ismod(pp)) { 11647 pp->p_fsdata = C_NOCOMMIT; 11648 page_unlock(pp); 11649 return; 11650 } 11651 11652 /* 11653 * Now, as appropriate, either free or destroy the page 11654 * that we were called with. 11655 */ 11656 pp->p_fsdata = C_NOCOMMIT; 11657 if (fl == B_FREE) 11658 page_free(pp, dn); 11659 else 11660 page_destroy(pp, dn); 11661 } 11662 11663 /* 11664 * Commit requires that the current fh be the file written to. 11665 * The compound op structure is: 11666 * PUTFH(file), COMMIT 11667 */ 11668 static int 11669 nfs4_commit(vnode_t *vp, offset4 offset, count4 count, cred_t *cr) 11670 { 11671 COMPOUND4args_clnt args; 11672 COMPOUND4res_clnt res; 11673 COMMIT4res *cm_res; 11674 nfs_argop4 argop[2]; 11675 nfs_resop4 *resop; 11676 int doqueue; 11677 mntinfo4_t *mi; 11678 rnode4_t *rp; 11679 cred_t *cred_otw = NULL; 11680 bool_t needrecov = FALSE; 11681 nfs4_recov_state_t recov_state; 11682 nfs4_open_stream_t *osp = NULL; 11683 bool_t first_time = TRUE; /* first time getting OTW cred */ 11684 bool_t last_time = FALSE; /* last time getting OTW cred */ 11685 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 11686 11687 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 11688 11689 rp = VTOR4(vp); 11690 11691 mi = VTOMI4(vp); 11692 recov_state.rs_flags = 0; 11693 recov_state.rs_num_retry_despite_err = 0; 11694 get_commit_cred: 11695 /* 11696 * Releases the osp, if a valid open stream is provided. 11697 * Puts a hold on the cred_otw and the new osp (if found). 11698 */ 11699 cred_otw = nfs4_get_otw_cred_by_osp(rp, cr, &osp, 11700 &first_time, &last_time); 11701 args.ctag = TAG_COMMIT; 11702 recov_retry: 11703 /* 11704 * Commit ops: putfh file; commit 11705 */ 11706 args.array_len = 2; 11707 args.array = argop; 11708 11709 e.error = nfs4_start_fop(VTOMI4(vp), vp, NULL, OH_COMMIT, 11710 &recov_state, NULL); 11711 if (e.error) { 11712 crfree(cred_otw); 11713 if (osp != NULL) 11714 open_stream_rele(osp, rp); 11715 return (e.error); 11716 } 11717 11718 /* putfh directory */ 11719 argop[0].argop = OP_CPUTFH; 11720 argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh; 11721 11722 /* commit */ 11723 argop[1].argop = OP_COMMIT; 11724 argop[1].nfs_argop4_u.opcommit.offset = offset; 11725 argop[1].nfs_argop4_u.opcommit.count = count; 11726 11727 doqueue = 1; 11728 rfs4call(mi, &args, &res, cred_otw, &doqueue, 0, &e); 11729 11730 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp); 11731 if (!needrecov && e.error) { 11732 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_COMMIT, &recov_state, 11733 needrecov); 11734 crfree(cred_otw); 11735 if (e.error == EACCES && last_time == FALSE) 11736 goto get_commit_cred; 11737 if (osp != NULL) 11738 open_stream_rele(osp, rp); 11739 return (e.error); 11740 } 11741 11742 if (needrecov) { 11743 if (nfs4_start_recovery(&e, VTOMI4(vp), vp, NULL, NULL, 11744 NULL, OP_COMMIT, NULL) == FALSE) { 11745 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_COMMIT, 11746 &recov_state, needrecov); 11747 if (!e.error) 11748 (void) xdr_free(xdr_COMPOUND4res_clnt, 11749 (caddr_t)&res); 11750 goto recov_retry; 11751 } 11752 if (e.error) { 11753 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_COMMIT, 11754 &recov_state, needrecov); 11755 crfree(cred_otw); 11756 if (osp != NULL) 11757 open_stream_rele(osp, rp); 11758 return (e.error); 11759 } 11760 /* fall through for res.status case */ 11761 } 11762 11763 if (res.status) { 11764 e.error = geterrno4(res.status); 11765 if (e.error == EACCES && last_time == FALSE) { 11766 crfree(cred_otw); 11767 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_COMMIT, 11768 &recov_state, needrecov); 11769 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 11770 goto get_commit_cred; 11771 } 11772 /* 11773 * Can't do a nfs4_purge_stale_fh here because this 11774 * can cause a deadlock. nfs4_commit can 11775 * be called from nfs4_dispose which can be called 11776 * indirectly via pvn_vplist_dirty. nfs4_purge_stale_fh 11777 * can call back to pvn_vplist_dirty. 11778 */ 11779 if (e.error == ESTALE) { 11780 mutex_enter(&rp->r_statelock); 11781 rp->r_flags |= R4STALE; 11782 if (!rp->r_error) 11783 rp->r_error = e.error; 11784 mutex_exit(&rp->r_statelock); 11785 PURGE_ATTRCACHE4(vp); 11786 } else { 11787 mutex_enter(&rp->r_statelock); 11788 if (!rp->r_error) 11789 rp->r_error = e.error; 11790 mutex_exit(&rp->r_statelock); 11791 } 11792 } else { 11793 ASSERT(rp->r_flags & R4HAVEVERF); 11794 resop = &res.array[1]; /* commit res */ 11795 cm_res = &resop->nfs_resop4_u.opcommit; 11796 mutex_enter(&rp->r_statelock); 11797 if (cm_res->writeverf == rp->r_writeverf) { 11798 mutex_exit(&rp->r_statelock); 11799 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 11800 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_COMMIT, 11801 &recov_state, needrecov); 11802 crfree(cred_otw); 11803 if (osp != NULL) 11804 open_stream_rele(osp, rp); 11805 return (0); 11806 } 11807 nfs4_set_mod(vp); 11808 rp->r_writeverf = cm_res->writeverf; 11809 mutex_exit(&rp->r_statelock); 11810 e.error = NFS_VERF_MISMATCH; 11811 } 11812 11813 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 11814 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_COMMIT, &recov_state, needrecov); 11815 crfree(cred_otw); 11816 if (osp != NULL) 11817 open_stream_rele(osp, rp); 11818 11819 return (e.error); 11820 } 11821 11822 static void 11823 nfs4_set_mod(vnode_t *vp) 11824 { 11825 page_t *pp; 11826 kmutex_t *vphm; 11827 rnode4_t *rp; 11828 11829 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 11830 11831 /* make sure we're looking at the master vnode, not a shadow */ 11832 11833 rp = VTOR4(vp); 11834 if (IS_SHADOW(vp, rp)) 11835 vp = RTOV4(rp); 11836 11837 vphm = page_vnode_mutex(vp); 11838 mutex_enter(vphm); 11839 /* 11840 * If there are no pages associated with this vnode, then 11841 * just return. 11842 */ 11843 if ((pp = vp->v_pages) == NULL) { 11844 mutex_exit(vphm); 11845 return; 11846 } 11847 11848 do { 11849 if (pp->p_fsdata != C_NOCOMMIT) { 11850 hat_setmod(pp); 11851 pp->p_fsdata = C_NOCOMMIT; 11852 } 11853 } while ((pp = pp->p_vpnext) != vp->v_pages); 11854 mutex_exit(vphm); 11855 } 11856 11857 /* 11858 * This function is used to gather a page list of the pages which 11859 * can be committed on the server. 11860 * 11861 * The calling thread must have set R4COMMIT. This bit is used to 11862 * serialize access to the commit structure in the rnode. As long 11863 * as the thread has set R4COMMIT, then it can manipulate the commit 11864 * structure without requiring any other locks. 11865 * 11866 * When this function is called from nfs4_dispose() the page passed 11867 * into nfs4_dispose() will be SE_EXCL locked, and so this function 11868 * will skip it. This is not a problem since we initially add the 11869 * page to the r_commit page list. 11870 * 11871 */ 11872 static void 11873 nfs4_get_commit(vnode_t *vp) 11874 { 11875 rnode4_t *rp; 11876 page_t *pp; 11877 kmutex_t *vphm; 11878 11879 rp = VTOR4(vp); 11880 11881 ASSERT(rp->r_flags & R4COMMIT); 11882 11883 /* make sure we're looking at the master vnode, not a shadow */ 11884 11885 if (IS_SHADOW(vp, rp)) 11886 vp = RTOV4(rp); 11887 11888 vphm = page_vnode_mutex(vp); 11889 mutex_enter(vphm); 11890 11891 /* 11892 * If there are no pages associated with this vnode, then 11893 * just return. 11894 */ 11895 if ((pp = vp->v_pages) == NULL) { 11896 mutex_exit(vphm); 11897 return; 11898 } 11899 11900 /* 11901 * Step through all of the pages associated with this vnode 11902 * looking for pages which need to be committed. 11903 */ 11904 do { 11905 /* 11906 * First short-cut everything (without the page_lock) 11907 * and see if this page does not need to be committed 11908 * or is modified if so then we'll just skip it. 11909 */ 11910 if (pp->p_fsdata == C_NOCOMMIT || hat_ismod(pp)) 11911 continue; 11912 11913 /* 11914 * Attempt to lock the page. If we can't, then 11915 * someone else is messing with it or we have been 11916 * called from nfs4_dispose and this is the page that 11917 * nfs4_dispose was called with.. anyway just skip it. 11918 */ 11919 if (!page_trylock(pp, SE_EXCL)) 11920 continue; 11921 11922 /* 11923 * Lets check again now that we have the page lock. 11924 */ 11925 if (pp->p_fsdata == C_NOCOMMIT || hat_ismod(pp)) { 11926 page_unlock(pp); 11927 continue; 11928 } 11929 11930 /* this had better not be a free page */ 11931 ASSERT(PP_ISFREE(pp) == 0); 11932 11933 /* 11934 * The page needs to be committed and we locked it. 11935 * Update the base and length parameters and add it 11936 * to r_pages. 11937 */ 11938 if (rp->r_commit.c_pages == NULL) { 11939 rp->r_commit.c_commbase = (offset3)pp->p_offset; 11940 rp->r_commit.c_commlen = PAGESIZE; 11941 } else if (pp->p_offset < rp->r_commit.c_commbase) { 11942 rp->r_commit.c_commlen = rp->r_commit.c_commbase - 11943 (offset3)pp->p_offset + rp->r_commit.c_commlen; 11944 rp->r_commit.c_commbase = (offset3)pp->p_offset; 11945 } else if ((rp->r_commit.c_commbase + rp->r_commit.c_commlen) 11946 <= pp->p_offset) { 11947 rp->r_commit.c_commlen = (offset3)pp->p_offset - 11948 rp->r_commit.c_commbase + PAGESIZE; 11949 } 11950 page_add(&rp->r_commit.c_pages, pp); 11951 } while ((pp = pp->p_vpnext) != vp->v_pages); 11952 11953 mutex_exit(vphm); 11954 } 11955 11956 /* 11957 * This routine is used to gather together a page list of the pages 11958 * which are to be committed on the server. This routine must not 11959 * be called if the calling thread holds any locked pages. 11960 * 11961 * The calling thread must have set R4COMMIT. This bit is used to 11962 * serialize access to the commit structure in the rnode. As long 11963 * as the thread has set R4COMMIT, then it can manipulate the commit 11964 * structure without requiring any other locks. 11965 */ 11966 static void 11967 nfs4_get_commit_range(vnode_t *vp, u_offset_t soff, size_t len) 11968 { 11969 11970 rnode4_t *rp; 11971 page_t *pp; 11972 u_offset_t end; 11973 u_offset_t off; 11974 ASSERT(len != 0); 11975 rp = VTOR4(vp); 11976 ASSERT(rp->r_flags & R4COMMIT); 11977 11978 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 11979 11980 /* make sure we're looking at the master vnode, not a shadow */ 11981 11982 if (IS_SHADOW(vp, rp)) 11983 vp = RTOV4(rp); 11984 11985 /* 11986 * If there are no pages associated with this vnode, then 11987 * just return. 11988 */ 11989 if ((pp = vp->v_pages) == NULL) 11990 return; 11991 /* 11992 * Calculate the ending offset. 11993 */ 11994 end = soff + len; 11995 for (off = soff; off < end; off += PAGESIZE) { 11996 /* 11997 * Lookup each page by vp, offset. 11998 */ 11999 if ((pp = page_lookup_nowait(vp, off, SE_EXCL)) == NULL) 12000 continue; 12001 /* 12002 * If this page does not need to be committed or is 12003 * modified, then just skip it. 12004 */ 12005 if (pp->p_fsdata == C_NOCOMMIT || hat_ismod(pp)) { 12006 page_unlock(pp); 12007 continue; 12008 } 12009 12010 ASSERT(PP_ISFREE(pp) == 0); 12011 /* 12012 * The page needs to be committed and we locked it. 12013 * Update the base and length parameters and add it 12014 * to r_pages. 12015 */ 12016 if (rp->r_commit.c_pages == NULL) { 12017 rp->r_commit.c_commbase = (offset3)pp->p_offset; 12018 rp->r_commit.c_commlen = PAGESIZE; 12019 } else { 12020 rp->r_commit.c_commlen = (offset3)pp->p_offset - 12021 rp->r_commit.c_commbase + PAGESIZE; 12022 } 12023 page_add(&rp->r_commit.c_pages, pp); 12024 } 12025 } 12026 12027 /* 12028 * Called from nfs4_close(), nfs4_fsync() and nfs4_delmap(). 12029 * Flushes and commits data to the server. 12030 */ 12031 static int 12032 nfs4_putpage_commit(vnode_t *vp, offset_t poff, size_t plen, cred_t *cr) 12033 { 12034 int error; 12035 verifier4 write_verf; 12036 rnode4_t *rp = VTOR4(vp); 12037 12038 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 12039 12040 /* 12041 * Flush the data portion of the file and then commit any 12042 * portions which need to be committed. This may need to 12043 * be done twice if the server has changed state since 12044 * data was last written. The data will need to be 12045 * rewritten to the server and then a new commit done. 12046 * 12047 * In fact, this may need to be done several times if the 12048 * server is having problems and crashing while we are 12049 * attempting to do this. 12050 */ 12051 12052 top: 12053 /* 12054 * Do a flush based on the poff and plen arguments. This 12055 * will synchronously write out any modified pages in the 12056 * range specified by (poff, plen). This starts all of the 12057 * i/o operations which will be waited for in the next 12058 * call to nfs4_putpage 12059 */ 12060 12061 mutex_enter(&rp->r_statelock); 12062 write_verf = rp->r_writeverf; 12063 mutex_exit(&rp->r_statelock); 12064 12065 error = nfs4_putpage(vp, poff, plen, B_ASYNC, cr, NULL); 12066 if (error == EAGAIN) 12067 error = 0; 12068 12069 /* 12070 * Do a flush based on the poff and plen arguments. This 12071 * will synchronously write out any modified pages in the 12072 * range specified by (poff, plen) and wait until all of 12073 * the asynchronous i/o's in that range are done as well. 12074 */ 12075 if (!error) 12076 error = nfs4_putpage(vp, poff, plen, 0, cr, NULL); 12077 12078 if (error) 12079 return (error); 12080 12081 mutex_enter(&rp->r_statelock); 12082 if (rp->r_writeverf != write_verf) { 12083 mutex_exit(&rp->r_statelock); 12084 goto top; 12085 } 12086 mutex_exit(&rp->r_statelock); 12087 12088 /* 12089 * Now commit any pages which might need to be committed. 12090 * If the error, NFS_VERF_MISMATCH, is returned, then 12091 * start over with the flush operation. 12092 */ 12093 error = nfs4_commit_vp(vp, poff, plen, cr, NFS4_WRITE_WAIT); 12094 12095 if (error == NFS_VERF_MISMATCH) 12096 goto top; 12097 12098 return (error); 12099 } 12100 12101 /* 12102 * nfs4_commit_vp() will wait for other pending commits and 12103 * will either commit the whole file or a range, plen dictates 12104 * if we commit whole file. a value of zero indicates the whole 12105 * file. Called from nfs4_putpage_commit() or nfs4_sync_putapage() 12106 */ 12107 static int 12108 nfs4_commit_vp(vnode_t *vp, u_offset_t poff, size_t plen, 12109 cred_t *cr, int wait_on_writes) 12110 { 12111 rnode4_t *rp; 12112 page_t *plist; 12113 offset3 offset; 12114 count3 len; 12115 12116 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 12117 12118 rp = VTOR4(vp); 12119 12120 /* 12121 * before we gather commitable pages make 12122 * sure there are no outstanding async writes 12123 */ 12124 if (rp->r_count && wait_on_writes == NFS4_WRITE_WAIT) { 12125 mutex_enter(&rp->r_statelock); 12126 while (rp->r_count > 0) { 12127 cv_wait(&rp->r_cv, &rp->r_statelock); 12128 } 12129 mutex_exit(&rp->r_statelock); 12130 } 12131 12132 /* 12133 * Set the `commit inprogress' state bit. We must 12134 * first wait until any current one finishes. 12135 */ 12136 mutex_enter(&rp->r_statelock); 12137 while (rp->r_flags & R4COMMIT) { 12138 rp->r_flags |= R4COMMITWAIT; 12139 cv_wait(&rp->r_commit.c_cv, &rp->r_statelock); 12140 rp->r_flags &= ~R4COMMITWAIT; 12141 } 12142 rp->r_flags |= R4COMMIT; 12143 mutex_exit(&rp->r_statelock); 12144 12145 /* 12146 * Gather all of the pages which need to be 12147 * committed. 12148 */ 12149 if (plen == 0) 12150 nfs4_get_commit(vp); 12151 else 12152 nfs4_get_commit_range(vp, poff, plen); 12153 12154 /* 12155 * Clear the `commit inprogress' bit and disconnect the 12156 * page list which was gathered by nfs4_get_commit. 12157 */ 12158 plist = rp->r_commit.c_pages; 12159 rp->r_commit.c_pages = NULL; 12160 offset = rp->r_commit.c_commbase; 12161 len = rp->r_commit.c_commlen; 12162 mutex_enter(&rp->r_statelock); 12163 rp->r_flags &= ~R4COMMIT; 12164 cv_broadcast(&rp->r_commit.c_cv); 12165 mutex_exit(&rp->r_statelock); 12166 12167 /* 12168 * If any pages need to be committed, commit them and 12169 * then unlock them so that they can be freed some 12170 * time later. 12171 */ 12172 if (plist == NULL) 12173 return (0); 12174 12175 /* 12176 * No error occurred during the flush portion 12177 * of this operation, so now attempt to commit 12178 * the data to stable storage on the server. 12179 * 12180 * This will unlock all of the pages on the list. 12181 */ 12182 return (nfs4_sync_commit(vp, plist, offset, len, cr)); 12183 } 12184 12185 static int 12186 nfs4_sync_commit(vnode_t *vp, page_t *plist, offset3 offset, count3 count, 12187 cred_t *cr) 12188 { 12189 int error; 12190 page_t *pp; 12191 12192 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 12193 12194 error = nfs4_commit(vp, (offset4)offset, (count3)count, cr); 12195 12196 /* 12197 * If we got an error, then just unlock all of the pages 12198 * on the list. 12199 */ 12200 if (error) { 12201 while (plist != NULL) { 12202 pp = plist; 12203 page_sub(&plist, pp); 12204 page_unlock(pp); 12205 } 12206 return (error); 12207 } 12208 /* 12209 * We've tried as hard as we can to commit the data to stable 12210 * storage on the server. We just unlock the pages and clear 12211 * the commit required state. They will get freed later. 12212 */ 12213 while (plist != NULL) { 12214 pp = plist; 12215 page_sub(&plist, pp); 12216 pp->p_fsdata = C_NOCOMMIT; 12217 page_unlock(pp); 12218 } 12219 12220 return (error); 12221 } 12222 12223 static void 12224 do_nfs4_async_commit(vnode_t *vp, page_t *plist, offset3 offset, count3 count, 12225 cred_t *cr) 12226 { 12227 12228 (void) nfs4_sync_commit(vp, plist, offset, count, cr); 12229 } 12230 12231 /*ARGSUSED*/ 12232 static int 12233 nfs4_setsecattr(vnode_t *vp, vsecattr_t *vsecattr, int flag, cred_t *cr, 12234 caller_context_t *ct) 12235 { 12236 int error = 0; 12237 mntinfo4_t *mi; 12238 vattr_t va; 12239 vsecattr_t nfsace4_vsap; 12240 12241 mi = VTOMI4(vp); 12242 if (nfs_zone() != mi->mi_zone) 12243 return (EIO); 12244 if (mi->mi_flags & MI4_ACL) { 12245 /* if we have a delegation, return it */ 12246 if (VTOR4(vp)->r_deleg_type != OPEN_DELEGATE_NONE) 12247 (void) nfs4delegreturn(VTOR4(vp), 12248 NFS4_DR_REOPEN|NFS4_DR_PUSH); 12249 12250 error = nfs4_is_acl_mask_valid(vsecattr->vsa_mask, 12251 NFS4_ACL_SET); 12252 if (error) /* EINVAL */ 12253 return (error); 12254 12255 if (vsecattr->vsa_mask & (VSA_ACL | VSA_DFACL)) { 12256 /* 12257 * These are aclent_t type entries. 12258 */ 12259 error = vs_aent_to_ace4(vsecattr, &nfsace4_vsap, 12260 vp->v_type == VDIR, FALSE); 12261 if (error) 12262 return (error); 12263 } else { 12264 /* 12265 * These are ace_t type entries. 12266 */ 12267 error = vs_acet_to_ace4(vsecattr, &nfsace4_vsap, 12268 FALSE); 12269 if (error) 12270 return (error); 12271 } 12272 bzero(&va, sizeof (va)); 12273 error = nfs4setattr(vp, &va, flag, cr, &nfsace4_vsap); 12274 vs_ace4_destroy(&nfsace4_vsap); 12275 return (error); 12276 } 12277 return (ENOSYS); 12278 } 12279 12280 /* ARGSUSED */ 12281 int 12282 nfs4_getsecattr(vnode_t *vp, vsecattr_t *vsecattr, int flag, cred_t *cr, 12283 caller_context_t *ct) 12284 { 12285 int error; 12286 mntinfo4_t *mi; 12287 nfs4_ga_res_t gar; 12288 rnode4_t *rp = VTOR4(vp); 12289 12290 mi = VTOMI4(vp); 12291 if (nfs_zone() != mi->mi_zone) 12292 return (EIO); 12293 12294 bzero(&gar, sizeof (gar)); 12295 gar.n4g_vsa.vsa_mask = vsecattr->vsa_mask; 12296 12297 /* 12298 * vsecattr->vsa_mask holds the original acl request mask. 12299 * This is needed when determining what to return. 12300 * (See: nfs4_create_getsecattr_return()) 12301 */ 12302 error = nfs4_is_acl_mask_valid(vsecattr->vsa_mask, NFS4_ACL_GET); 12303 if (error) /* EINVAL */ 12304 return (error); 12305 12306 if (mi->mi_flags & MI4_ACL) { 12307 /* 12308 * Check if the data is cached and the cache is valid. If it 12309 * is we don't go over the wire. 12310 */ 12311 if (rp->r_secattr != NULL && ATTRCACHE4_VALID(vp)) { 12312 mutex_enter(&rp->r_statelock); 12313 if (rp->r_secattr != NULL) { 12314 error = nfs4_create_getsecattr_return( 12315 rp->r_secattr, vsecattr, rp->r_attr.va_uid, 12316 rp->r_attr.va_gid, 12317 vp->v_type == VDIR); 12318 if (!error) { /* error == 0 - Success! */ 12319 mutex_exit(&rp->r_statelock); 12320 return (error); 12321 } 12322 } 12323 mutex_exit(&rp->r_statelock); 12324 } 12325 12326 /* 12327 * The getattr otw call will always get both the acl, in 12328 * the form of a list of nfsace4's, and the number of acl 12329 * entries; independent of the value of gar.n4g_vsa.vsa_mask. 12330 */ 12331 gar.n4g_va.va_mask = AT_ALL; 12332 error = nfs4_getattr_otw(vp, &gar, cr, 1); 12333 if (error) { 12334 vs_ace4_destroy(&gar.n4g_vsa); 12335 if (error == ENOTSUP || error == EOPNOTSUPP) 12336 error = fs_fab_acl(vp, vsecattr, flag, cr, ct); 12337 return (error); 12338 } 12339 12340 if (!(gar.n4g_resbmap & FATTR4_ACL_MASK)) { 12341 /* 12342 * No error was returned, but according to the response 12343 * bitmap, neither was an acl. 12344 */ 12345 vs_ace4_destroy(&gar.n4g_vsa); 12346 error = fs_fab_acl(vp, vsecattr, flag, cr, ct); 12347 return (error); 12348 } 12349 12350 /* 12351 * Update the cache with the ACL. 12352 */ 12353 nfs4_acl_fill_cache(rp, &gar.n4g_vsa); 12354 12355 error = nfs4_create_getsecattr_return(&gar.n4g_vsa, 12356 vsecattr, gar.n4g_va.va_uid, gar.n4g_va.va_gid, 12357 vp->v_type == VDIR); 12358 vs_ace4_destroy(&gar.n4g_vsa); 12359 if ((error) && (vsecattr->vsa_mask & 12360 (VSA_ACL | VSA_ACLCNT | VSA_DFACL | VSA_DFACLCNT)) && 12361 (error != EACCES)) { 12362 error = fs_fab_acl(vp, vsecattr, flag, cr, ct); 12363 } 12364 return (error); 12365 } 12366 error = fs_fab_acl(vp, vsecattr, flag, cr, ct); 12367 return (error); 12368 } 12369 12370 /* 12371 * The function returns: 12372 * - 0 (zero) if the passed in "acl_mask" is a valid request. 12373 * - EINVAL if the passed in "acl_mask" is an invalid request. 12374 * 12375 * In the case of getting an acl (op == NFS4_ACL_GET) the mask is invalid if: 12376 * - We have a mixture of ACE and ACL requests (e.g. VSA_ACL | VSA_ACE) 12377 * 12378 * In the case of setting an acl (op == NFS4_ACL_SET) the mask is invalid if: 12379 * - We have a mixture of ACE and ACL requests (e.g. VSA_ACL | VSA_ACE) 12380 * - We have a count field set without the corresponding acl field set. (e.g. - 12381 * VSA_ACECNT is set, but VSA_ACE is not) 12382 */ 12383 static int 12384 nfs4_is_acl_mask_valid(uint_t acl_mask, nfs4_acl_op_t op) 12385 { 12386 /* Shortcut the masks that are always valid. */ 12387 if (acl_mask == (VSA_ACE | VSA_ACECNT)) 12388 return (0); 12389 if (acl_mask == (VSA_ACL | VSA_ACLCNT | VSA_DFACL | VSA_DFACLCNT)) 12390 return (0); 12391 12392 if (acl_mask & (VSA_ACE | VSA_ACECNT)) { 12393 /* 12394 * We can't have any VSA_ACL type stuff in the mask now. 12395 */ 12396 if (acl_mask & (VSA_ACL | VSA_ACLCNT | VSA_DFACL | 12397 VSA_DFACLCNT)) 12398 return (EINVAL); 12399 12400 if (op == NFS4_ACL_SET) { 12401 if ((acl_mask & VSA_ACECNT) && !(acl_mask & VSA_ACE)) 12402 return (EINVAL); 12403 } 12404 } 12405 12406 if (acl_mask & (VSA_ACL | VSA_ACLCNT | VSA_DFACL | VSA_DFACLCNT)) { 12407 /* 12408 * We can't have any VSA_ACE type stuff in the mask now. 12409 */ 12410 if (acl_mask & (VSA_ACE | VSA_ACECNT)) 12411 return (EINVAL); 12412 12413 if (op == NFS4_ACL_SET) { 12414 if ((acl_mask & VSA_ACLCNT) && !(acl_mask & VSA_ACL)) 12415 return (EINVAL); 12416 12417 if ((acl_mask & VSA_DFACLCNT) && 12418 !(acl_mask & VSA_DFACL)) 12419 return (EINVAL); 12420 } 12421 } 12422 return (0); 12423 } 12424 12425 /* 12426 * The theory behind creating the correct getsecattr return is simply this: 12427 * "Don't return anything that the caller is not expecting to have to free." 12428 */ 12429 static int 12430 nfs4_create_getsecattr_return(vsecattr_t *filled_vsap, vsecattr_t *vsap, 12431 uid_t uid, gid_t gid, int isdir) 12432 { 12433 int error = 0; 12434 /* Save the mask since the translators modify it. */ 12435 uint_t orig_mask = vsap->vsa_mask; 12436 12437 if (orig_mask & (VSA_ACE | VSA_ACECNT)) { 12438 error = vs_ace4_to_acet(filled_vsap, vsap, uid, gid, 12439 FALSE, ((orig_mask & VSA_ACE) ? FALSE : TRUE)); 12440 12441 if (error) 12442 return (error); 12443 12444 /* 12445 * If the caller only asked for the ace count (VSA_ACECNT) 12446 * don't give them the full acl (VSA_ACE), free it. 12447 */ 12448 if (!orig_mask & VSA_ACE) { 12449 if (vsap->vsa_aclentp != NULL) { 12450 kmem_free(vsap->vsa_aclentp, 12451 vsap->vsa_aclcnt * sizeof (ace_t)); 12452 vsap->vsa_aclentp = NULL; 12453 } 12454 } 12455 vsap->vsa_mask = orig_mask; 12456 12457 } else if (orig_mask & (VSA_ACL | VSA_ACLCNT | VSA_DFACL | 12458 VSA_DFACLCNT)) { 12459 error = vs_ace4_to_aent(filled_vsap, vsap, uid, gid, 12460 isdir, FALSE, 12461 ((orig_mask & (VSA_ACL | VSA_DFACL)) ? FALSE : TRUE)); 12462 12463 if (error) 12464 return (error); 12465 12466 /* 12467 * If the caller only asked for the acl count (VSA_ACLCNT) 12468 * and/or the default acl count (VSA_DFACLCNT) don't give them 12469 * the acl (VSA_ACL) or default acl (VSA_DFACL), free it. 12470 */ 12471 if (!orig_mask & VSA_ACL) { 12472 if (vsap->vsa_aclentp != NULL) { 12473 kmem_free(vsap->vsa_aclentp, 12474 vsap->vsa_aclcnt * sizeof (aclent_t)); 12475 vsap->vsa_aclentp = NULL; 12476 } 12477 } 12478 12479 if (!orig_mask & VSA_DFACL) { 12480 if (vsap->vsa_dfaclentp != NULL) { 12481 kmem_free(vsap->vsa_dfaclentp, 12482 vsap->vsa_dfaclcnt * sizeof (aclent_t)); 12483 vsap->vsa_dfaclentp = NULL; 12484 } 12485 } 12486 vsap->vsa_mask = orig_mask; 12487 } 12488 return (0); 12489 } 12490 12491 /* ARGSUSED */ 12492 int 12493 nfs4_shrlock(vnode_t *vp, int cmd, struct shrlock *shr, int flag, cred_t *cr, 12494 caller_context_t *ct) 12495 { 12496 int error; 12497 12498 if (nfs_zone() != VTOMI4(vp)->mi_zone) 12499 return (EIO); 12500 /* 12501 * check for valid cmd parameter 12502 */ 12503 if (cmd != F_SHARE && cmd != F_UNSHARE && cmd != F_HASREMOTELOCKS) 12504 return (EINVAL); 12505 12506 /* 12507 * Check access permissions 12508 */ 12509 if ((cmd & F_SHARE) && 12510 (((shr->s_access & F_RDACC) && (flag & FREAD) == 0) || 12511 (shr->s_access == F_WRACC && (flag & FWRITE) == 0))) 12512 return (EBADF); 12513 12514 /* 12515 * If the filesystem is mounted using local locking, pass the 12516 * request off to the local share code. 12517 */ 12518 if (VTOMI4(vp)->mi_flags & MI4_LLOCK) 12519 return (fs_shrlock(vp, cmd, shr, flag, cr, ct)); 12520 12521 switch (cmd) { 12522 case F_SHARE: 12523 case F_UNSHARE: 12524 /* 12525 * This will be properly implemented later, 12526 * see RFE: 4823948 . 12527 */ 12528 error = EAGAIN; 12529 break; 12530 12531 case F_HASREMOTELOCKS: 12532 /* 12533 * NFS client can't store remote locks itself 12534 */ 12535 shr->s_access = 0; 12536 error = 0; 12537 break; 12538 12539 default: 12540 error = EINVAL; 12541 break; 12542 } 12543 12544 return (error); 12545 } 12546 12547 /* 12548 * Common code called by directory ops to update the attrcache 12549 */ 12550 static int 12551 nfs4_update_attrcache(nfsstat4 status, nfs4_ga_res_t *garp, 12552 hrtime_t t, vnode_t *vp, cred_t *cr) 12553 { 12554 int error = 0; 12555 12556 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 12557 12558 if (status != NFS4_OK) { 12559 /* getattr not done or failed */ 12560 PURGE_ATTRCACHE4(vp); 12561 return (error); 12562 } 12563 12564 if (garp) { 12565 nfs4_attr_cache(vp, garp, t, cr, FALSE, NULL); 12566 } else { 12567 PURGE_ATTRCACHE4(vp); 12568 } 12569 return (error); 12570 } 12571 12572 /* 12573 * Update directory caches for directory modification ops (link, rename, etc.) 12574 * When dinfo is NULL, manage dircaches in the old way. 12575 */ 12576 static void 12577 nfs4_update_dircaches(change_info4 *cinfo, vnode_t *dvp, vnode_t *vp, char *nm, 12578 dirattr_info_t *dinfo) 12579 { 12580 rnode4_t *drp = VTOR4(dvp); 12581 12582 ASSERT(nfs_zone() == VTOMI4(dvp)->mi_zone); 12583 12584 /* Purge rddir cache for dir since it changed */ 12585 if (drp->r_dir != NULL) 12586 nfs4_purge_rddir_cache(dvp); 12587 12588 /* 12589 * If caller provided dinfo, then use it to manage dir caches. 12590 */ 12591 if (dinfo != NULL) { 12592 if (vp != NULL) { 12593 mutex_enter(&VTOR4(vp)->r_statev4_lock); 12594 if (!VTOR4(vp)->created_v4) { 12595 mutex_exit(&VTOR4(vp)->r_statev4_lock); 12596 dnlc_update(dvp, nm, vp); 12597 } else { 12598 /* 12599 * XXX don't update if the created_v4 flag is 12600 * set 12601 */ 12602 mutex_exit(&VTOR4(vp)->r_statev4_lock); 12603 NFS4_DEBUG(nfs4_client_state_debug, 12604 (CE_NOTE, "nfs4_update_dircaches: " 12605 "don't update dnlc: created_v4 flag")); 12606 } 12607 } 12608 12609 nfs4_attr_cache(dvp, dinfo->di_garp, dinfo->di_time_call, 12610 dinfo->di_cred, FALSE, cinfo); 12611 12612 return; 12613 } 12614 12615 /* 12616 * Caller didn't provide dinfo, then check change_info4 to update DNLC. 12617 * Since caller modified dir but didn't receive post-dirmod-op dir 12618 * attrs, the dir's attrs must be purged. 12619 * 12620 * XXX this check and dnlc update/purge should really be atomic, 12621 * XXX but can't use rnode statelock because it'll deadlock in 12622 * XXX dnlc_purge_vp, however, the risk is minimal even if a race 12623 * XXX does occur. 12624 * 12625 * XXX We also may want to check that atomic is true in the 12626 * XXX change_info struct. If it is not, the change_info may 12627 * XXX reflect changes by more than one clients which means that 12628 * XXX our cache may not be valid. 12629 */ 12630 PURGE_ATTRCACHE4(dvp); 12631 if (drp->r_change == cinfo->before) { 12632 /* no changes took place in the directory prior to our link */ 12633 if (vp != NULL) { 12634 mutex_enter(&VTOR4(vp)->r_statev4_lock); 12635 if (!VTOR4(vp)->created_v4) { 12636 mutex_exit(&VTOR4(vp)->r_statev4_lock); 12637 dnlc_update(dvp, nm, vp); 12638 } else { 12639 /* 12640 * XXX dont' update if the created_v4 flag 12641 * is set 12642 */ 12643 mutex_exit(&VTOR4(vp)->r_statev4_lock); 12644 NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE, 12645 "nfs4_update_dircaches: don't" 12646 " update dnlc: created_v4 flag")); 12647 } 12648 } 12649 } else { 12650 /* Another client modified directory - purge its dnlc cache */ 12651 dnlc_purge_vp(dvp); 12652 } 12653 } 12654 12655 /* 12656 * The OPEN_CONFIRM operation confirms the sequence number used in OPENing a 12657 * file. 12658 * 12659 * The 'reopening_file' boolean should be set to TRUE if we are reopening this 12660 * file (ie: client recovery) and otherwise set to FALSE. 12661 * 12662 * 'nfs4_start/end_op' should have been called by the proper (ie: not recovery 12663 * initiated) calling functions. 12664 * 12665 * 'resend' is set to TRUE if this is a OPEN_CONFIRM issued as a result 12666 * of resending a 'lost' open request. 12667 * 12668 * 'num_bseqid_retryp' makes sure we don't loop forever on a broken 12669 * server that hands out BAD_SEQID on open confirm. 12670 * 12671 * Errors are returned via the nfs4_error_t parameter. 12672 */ 12673 void 12674 nfs4open_confirm(vnode_t *vp, seqid4 *seqid, stateid4 *stateid, cred_t *cr, 12675 bool_t reopening_file, bool_t *retry_open, nfs4_open_owner_t *oop, 12676 bool_t resend, nfs4_error_t *ep, int *num_bseqid_retryp) 12677 { 12678 COMPOUND4args_clnt args; 12679 COMPOUND4res_clnt res; 12680 nfs_argop4 argop[2]; 12681 nfs_resop4 *resop; 12682 int doqueue = 1; 12683 mntinfo4_t *mi; 12684 OPEN_CONFIRM4args *open_confirm_args; 12685 int needrecov; 12686 12687 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 12688 #if DEBUG 12689 mutex_enter(&oop->oo_lock); 12690 ASSERT(oop->oo_seqid_inuse); 12691 mutex_exit(&oop->oo_lock); 12692 #endif 12693 12694 recov_retry_confirm: 12695 nfs4_error_zinit(ep); 12696 *retry_open = FALSE; 12697 12698 if (resend) 12699 args.ctag = TAG_OPEN_CONFIRM_LOST; 12700 else 12701 args.ctag = TAG_OPEN_CONFIRM; 12702 12703 args.array_len = 2; 12704 args.array = argop; 12705 12706 /* putfh target fh */ 12707 argop[0].argop = OP_CPUTFH; 12708 argop[0].nfs_argop4_u.opcputfh.sfh = VTOR4(vp)->r_fh; 12709 12710 argop[1].argop = OP_OPEN_CONFIRM; 12711 open_confirm_args = &argop[1].nfs_argop4_u.opopen_confirm; 12712 12713 (*seqid) += 1; 12714 open_confirm_args->seqid = *seqid; 12715 open_confirm_args->open_stateid = *stateid; 12716 12717 mi = VTOMI4(vp); 12718 12719 rfs4call(mi, &args, &res, cr, &doqueue, 0, ep); 12720 12721 if (!ep->error && nfs4_need_to_bump_seqid(&res)) { 12722 nfs4_set_open_seqid((*seqid), oop, args.ctag); 12723 } 12724 12725 needrecov = nfs4_needs_recovery(ep, FALSE, mi->mi_vfsp); 12726 if (!needrecov && ep->error) 12727 return; 12728 12729 if (needrecov) { 12730 bool_t abort = FALSE; 12731 12732 if (reopening_file == FALSE) { 12733 nfs4_bseqid_entry_t *bsep = NULL; 12734 12735 if (!ep->error && res.status == NFS4ERR_BAD_SEQID) 12736 bsep = nfs4_create_bseqid_entry(oop, NULL, 12737 vp, 0, args.ctag, 12738 open_confirm_args->seqid); 12739 12740 abort = nfs4_start_recovery(ep, VTOMI4(vp), vp, 12741 NULL, NULL, NULL, OP_OPEN_CONFIRM, bsep); 12742 if (bsep) { 12743 kmem_free(bsep, sizeof (*bsep)); 12744 if (num_bseqid_retryp && 12745 --(*num_bseqid_retryp) == 0) 12746 abort = TRUE; 12747 } 12748 } 12749 if ((ep->error == ETIMEDOUT || 12750 res.status == NFS4ERR_RESOURCE) && 12751 abort == FALSE && resend == FALSE) { 12752 if (!ep->error) 12753 (void) xdr_free(xdr_COMPOUND4res_clnt, 12754 (caddr_t)&res); 12755 12756 delay(SEC_TO_TICK(confirm_retry_sec)); 12757 goto recov_retry_confirm; 12758 } 12759 /* State may have changed so retry the entire OPEN op */ 12760 if (abort == FALSE) 12761 *retry_open = TRUE; 12762 else 12763 *retry_open = FALSE; 12764 if (!ep->error) 12765 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 12766 return; 12767 } 12768 12769 if (res.status) { 12770 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 12771 return; 12772 } 12773 12774 resop = &res.array[1]; /* open confirm res */ 12775 bcopy(&resop->nfs_resop4_u.opopen_confirm.open_stateid, 12776 stateid, sizeof (*stateid)); 12777 12778 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 12779 } 12780 12781 /* 12782 * Return the credentials associated with a client state object. The 12783 * caller is responsible for freeing the credentials. 12784 */ 12785 12786 static cred_t * 12787 state_to_cred(nfs4_open_stream_t *osp) 12788 { 12789 cred_t *cr; 12790 12791 /* 12792 * It's ok to not lock the open stream and open owner to get 12793 * the oo_cred since this is only written once (upon creation) 12794 * and will not change. 12795 */ 12796 cr = osp->os_open_owner->oo_cred; 12797 crhold(cr); 12798 12799 return (cr); 12800 } 12801 12802 /* 12803 * nfs4_find_sysid 12804 * 12805 * Find the sysid for the knetconfig associated with the given mi. 12806 */ 12807 static struct lm_sysid * 12808 nfs4_find_sysid(mntinfo4_t *mi) 12809 { 12810 ASSERT(nfs_zone() == mi->mi_zone); 12811 12812 /* 12813 * Switch from RDMA knconf to original mount knconf 12814 */ 12815 return (lm_get_sysid(ORIG_KNCONF(mi), &mi->mi_curr_serv->sv_addr, 12816 mi->mi_curr_serv->sv_hostname, NULL)); 12817 } 12818 12819 #ifdef DEBUG 12820 /* 12821 * Return a string version of the call type for easy reading. 12822 */ 12823 static char * 12824 nfs4frlock_get_call_type(nfs4_lock_call_type_t ctype) 12825 { 12826 switch (ctype) { 12827 case NFS4_LCK_CTYPE_NORM: 12828 return ("NORMAL"); 12829 case NFS4_LCK_CTYPE_RECLAIM: 12830 return ("RECLAIM"); 12831 case NFS4_LCK_CTYPE_RESEND: 12832 return ("RESEND"); 12833 case NFS4_LCK_CTYPE_REINSTATE: 12834 return ("REINSTATE"); 12835 default: 12836 cmn_err(CE_PANIC, "nfs4frlock_get_call_type: got illegal " 12837 "type %d", ctype); 12838 return (""); 12839 } 12840 } 12841 #endif 12842 12843 /* 12844 * Map the frlock cmd and lock type to the NFSv4 over-the-wire lock type 12845 * Unlock requests don't have an over-the-wire locktype, so we just return 12846 * something non-threatening. 12847 */ 12848 12849 static nfs_lock_type4 12850 flk_to_locktype(int cmd, int l_type) 12851 { 12852 ASSERT(l_type == F_RDLCK || l_type == F_WRLCK || l_type == F_UNLCK); 12853 12854 switch (l_type) { 12855 case F_UNLCK: 12856 return (READ_LT); 12857 case F_RDLCK: 12858 if (cmd == F_SETLK) 12859 return (READ_LT); 12860 else 12861 return (READW_LT); 12862 case F_WRLCK: 12863 if (cmd == F_SETLK) 12864 return (WRITE_LT); 12865 else 12866 return (WRITEW_LT); 12867 } 12868 panic("flk_to_locktype"); 12869 /*NOTREACHED*/ 12870 } 12871 12872 /* 12873 * Do some preliminary checks for nfs4frlock. 12874 */ 12875 static int 12876 nfs4frlock_validate_args(int cmd, flock64_t *flk, int flag, vnode_t *vp, 12877 u_offset_t offset) 12878 { 12879 int error = 0; 12880 12881 /* 12882 * If we are setting a lock, check that the file is opened 12883 * with the correct mode. 12884 */ 12885 if (cmd == F_SETLK || cmd == F_SETLKW) { 12886 if ((flk->l_type == F_RDLCK && (flag & FREAD) == 0) || 12887 (flk->l_type == F_WRLCK && (flag & FWRITE) == 0)) { 12888 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 12889 "nfs4frlock_validate_args: file was opened with " 12890 "incorrect mode")); 12891 return (EBADF); 12892 } 12893 } 12894 12895 /* Convert the offset. It may need to be restored before returning. */ 12896 if (error = convoff(vp, flk, 0, offset)) { 12897 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 12898 "nfs4frlock_validate_args: convoff => error= %d\n", 12899 error)); 12900 return (error); 12901 } 12902 12903 return (error); 12904 } 12905 12906 /* 12907 * Set the flock64's lm_sysid for nfs4frlock. 12908 */ 12909 static int 12910 nfs4frlock_get_sysid(struct lm_sysid **lspp, vnode_t *vp, flock64_t *flk) 12911 { 12912 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 12913 12914 /* Find the lm_sysid */ 12915 *lspp = nfs4_find_sysid(VTOMI4(vp)); 12916 12917 if (*lspp == NULL) { 12918 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 12919 "nfs4frlock_get_sysid: no sysid, return ENOLCK")); 12920 return (ENOLCK); 12921 } 12922 12923 flk->l_sysid = lm_sysidt(*lspp); 12924 12925 return (0); 12926 } 12927 12928 /* 12929 * Do the remaining preliminary setup for nfs4frlock. 12930 */ 12931 static void 12932 nfs4frlock_pre_setup(clock_t *tick_delayp, nfs4_recov_state_t *recov_statep, 12933 flock64_t *flk, short *whencep, vnode_t *vp, cred_t *search_cr, 12934 cred_t **cred_otw) 12935 { 12936 /* 12937 * set tick_delay to the base delay time. 12938 * (NFS4_BASE_WAIT_TIME is in secs) 12939 */ 12940 12941 *tick_delayp = drv_usectohz(NFS4_BASE_WAIT_TIME * 1000 * 1000); 12942 12943 /* 12944 * If lock is relative to EOF, we need the newest length of the 12945 * file. Therefore invalidate the ATTR_CACHE. 12946 */ 12947 12948 *whencep = flk->l_whence; 12949 12950 if (*whencep == 2) /* SEEK_END */ 12951 PURGE_ATTRCACHE4(vp); 12952 12953 recov_statep->rs_flags = 0; 12954 recov_statep->rs_num_retry_despite_err = 0; 12955 *cred_otw = nfs4_get_otw_cred(search_cr, VTOMI4(vp), NULL); 12956 } 12957 12958 /* 12959 * Initialize and allocate the data structures necessary for 12960 * the nfs4frlock call. 12961 * Allocates argsp's op array, frees up the saved_rqstpp if there is one. 12962 */ 12963 static void 12964 nfs4frlock_call_init(COMPOUND4args_clnt *argsp, COMPOUND4args_clnt **argspp, 12965 nfs_argop4 **argopp, nfs4_op_hint_t *op_hintp, flock64_t *flk, int cmd, 12966 bool_t *retry, bool_t *did_start_fop, COMPOUND4res_clnt **respp, 12967 bool_t *skip_get_err, nfs4_lost_rqst_t *lost_rqstp) 12968 { 12969 int argoplist_size; 12970 int num_ops = 2; 12971 12972 *retry = FALSE; 12973 *did_start_fop = FALSE; 12974 *skip_get_err = FALSE; 12975 lost_rqstp->lr_op = 0; 12976 argoplist_size = num_ops * sizeof (nfs_argop4); 12977 /* fill array with zero */ 12978 *argopp = kmem_zalloc(argoplist_size, KM_SLEEP); 12979 12980 *argspp = argsp; 12981 *respp = NULL; 12982 12983 argsp->array_len = num_ops; 12984 argsp->array = *argopp; 12985 12986 /* initialize in case of error; will get real value down below */ 12987 argsp->ctag = TAG_NONE; 12988 12989 if ((cmd == F_SETLK || cmd == F_SETLKW) && flk->l_type == F_UNLCK) 12990 *op_hintp = OH_LOCKU; 12991 else 12992 *op_hintp = OH_OTHER; 12993 } 12994 12995 /* 12996 * Call the nfs4_start_fop() for nfs4frlock, if necessary. Assign 12997 * the proper nfs4_server_t for this instance of nfs4frlock. 12998 * Returns 0 (success) or an errno value. 12999 */ 13000 static int 13001 nfs4frlock_start_call(nfs4_lock_call_type_t ctype, vnode_t *vp, 13002 nfs4_op_hint_t op_hint, nfs4_recov_state_t *recov_statep, 13003 bool_t *did_start_fop, bool_t *startrecovp) 13004 { 13005 int error = 0; 13006 rnode4_t *rp; 13007 13008 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 13009 13010 if (ctype == NFS4_LCK_CTYPE_NORM) { 13011 error = nfs4_start_fop(VTOMI4(vp), vp, NULL, op_hint, 13012 recov_statep, startrecovp); 13013 if (error) 13014 return (error); 13015 *did_start_fop = TRUE; 13016 } else { 13017 *did_start_fop = FALSE; 13018 *startrecovp = FALSE; 13019 } 13020 13021 if (!error) { 13022 rp = VTOR4(vp); 13023 13024 /* If the file failed recovery, just quit. */ 13025 mutex_enter(&rp->r_statelock); 13026 if (rp->r_flags & R4RECOVERR) { 13027 error = EIO; 13028 } 13029 mutex_exit(&rp->r_statelock); 13030 } 13031 13032 return (error); 13033 } 13034 13035 /* 13036 * Setup the LOCK4/LOCKU4 arguments for resending a lost lock request. A 13037 * resend nfs4frlock call is initiated by the recovery framework. 13038 * Acquires the lop and oop seqid synchronization. 13039 */ 13040 static void 13041 nfs4frlock_setup_resend_lock_args(nfs4_lost_rqst_t *resend_rqstp, 13042 COMPOUND4args_clnt *argsp, nfs_argop4 *argop, nfs4_lock_owner_t **lopp, 13043 nfs4_open_owner_t **oopp, nfs4_open_stream_t **ospp, 13044 LOCK4args **lock_argsp, LOCKU4args **locku_argsp) 13045 { 13046 mntinfo4_t *mi = VTOMI4(resend_rqstp->lr_vp); 13047 int error; 13048 13049 NFS4_DEBUG((nfs4_lost_rqst_debug || nfs4_client_lock_debug), 13050 (CE_NOTE, 13051 "nfs4frlock_setup_resend_lock_args: have lost lock to resend")); 13052 ASSERT(resend_rqstp != NULL); 13053 ASSERT(resend_rqstp->lr_op == OP_LOCK || 13054 resend_rqstp->lr_op == OP_LOCKU); 13055 13056 *oopp = resend_rqstp->lr_oop; 13057 if (resend_rqstp->lr_oop) { 13058 open_owner_hold(resend_rqstp->lr_oop); 13059 error = nfs4_start_open_seqid_sync(resend_rqstp->lr_oop, mi); 13060 ASSERT(error == 0); /* recov thread always succeeds */ 13061 } 13062 13063 /* Must resend this lost lock/locku request. */ 13064 ASSERT(resend_rqstp->lr_lop != NULL); 13065 *lopp = resend_rqstp->lr_lop; 13066 lock_owner_hold(resend_rqstp->lr_lop); 13067 error = nfs4_start_lock_seqid_sync(resend_rqstp->lr_lop, mi); 13068 ASSERT(error == 0); /* recov thread always succeeds */ 13069 13070 *ospp = resend_rqstp->lr_osp; 13071 if (*ospp) 13072 open_stream_hold(resend_rqstp->lr_osp); 13073 13074 if (resend_rqstp->lr_op == OP_LOCK) { 13075 LOCK4args *lock_args; 13076 13077 argop->argop = OP_LOCK; 13078 *lock_argsp = lock_args = &argop->nfs_argop4_u.oplock; 13079 lock_args->locktype = resend_rqstp->lr_locktype; 13080 lock_args->reclaim = 13081 (resend_rqstp->lr_ctype == NFS4_LCK_CTYPE_RECLAIM); 13082 lock_args->offset = resend_rqstp->lr_flk->l_start; 13083 lock_args->length = resend_rqstp->lr_flk->l_len; 13084 if (lock_args->length == 0) 13085 lock_args->length = ~lock_args->length; 13086 nfs4_setup_lock_args(*lopp, *oopp, *ospp, 13087 mi2clientid(mi), &lock_args->locker); 13088 13089 switch (resend_rqstp->lr_ctype) { 13090 case NFS4_LCK_CTYPE_RESEND: 13091 argsp->ctag = TAG_LOCK_RESEND; 13092 break; 13093 case NFS4_LCK_CTYPE_REINSTATE: 13094 argsp->ctag = TAG_LOCK_REINSTATE; 13095 break; 13096 case NFS4_LCK_CTYPE_RECLAIM: 13097 argsp->ctag = TAG_LOCK_RECLAIM; 13098 break; 13099 default: 13100 argsp->ctag = TAG_LOCK_UNKNOWN; 13101 break; 13102 } 13103 } else { 13104 LOCKU4args *locku_args; 13105 nfs4_lock_owner_t *lop = resend_rqstp->lr_lop; 13106 13107 argop->argop = OP_LOCKU; 13108 *locku_argsp = locku_args = &argop->nfs_argop4_u.oplocku; 13109 locku_args->locktype = READ_LT; 13110 locku_args->seqid = lop->lock_seqid + 1; 13111 mutex_enter(&lop->lo_lock); 13112 locku_args->lock_stateid = lop->lock_stateid; 13113 mutex_exit(&lop->lo_lock); 13114 locku_args->offset = resend_rqstp->lr_flk->l_start; 13115 locku_args->length = resend_rqstp->lr_flk->l_len; 13116 if (locku_args->length == 0) 13117 locku_args->length = ~locku_args->length; 13118 13119 switch (resend_rqstp->lr_ctype) { 13120 case NFS4_LCK_CTYPE_RESEND: 13121 argsp->ctag = TAG_LOCKU_RESEND; 13122 break; 13123 case NFS4_LCK_CTYPE_REINSTATE: 13124 argsp->ctag = TAG_LOCKU_REINSTATE; 13125 break; 13126 default: 13127 argsp->ctag = TAG_LOCK_UNKNOWN; 13128 break; 13129 } 13130 } 13131 } 13132 13133 /* 13134 * Setup the LOCKT4 arguments. 13135 */ 13136 static void 13137 nfs4frlock_setup_lockt_args(nfs4_lock_call_type_t ctype, nfs_argop4 *argop, 13138 LOCKT4args **lockt_argsp, COMPOUND4args_clnt *argsp, flock64_t *flk, 13139 rnode4_t *rp) 13140 { 13141 LOCKT4args *lockt_args; 13142 13143 ASSERT(nfs_zone() == VTOMI4(RTOV4(rp))->mi_zone); 13144 ASSERT(ctype == NFS4_LCK_CTYPE_NORM); 13145 argop->argop = OP_LOCKT; 13146 argsp->ctag = TAG_LOCKT; 13147 lockt_args = &argop->nfs_argop4_u.oplockt; 13148 13149 /* 13150 * The locktype will be READ_LT unless it's 13151 * a write lock. We do this because the Solaris 13152 * system call allows the combination of 13153 * F_UNLCK and F_GETLK* and so in that case the 13154 * unlock is mapped to a read. 13155 */ 13156 if (flk->l_type == F_WRLCK) 13157 lockt_args->locktype = WRITE_LT; 13158 else 13159 lockt_args->locktype = READ_LT; 13160 13161 lockt_args->owner.clientid = mi2clientid(VTOMI4(RTOV4(rp))); 13162 /* set the lock owner4 args */ 13163 nfs4_setlockowner_args(&lockt_args->owner, rp, 13164 ctype == NFS4_LCK_CTYPE_NORM ? curproc->p_pidp->pid_id : 13165 flk->l_pid); 13166 lockt_args->offset = flk->l_start; 13167 lockt_args->length = flk->l_len; 13168 if (flk->l_len == 0) 13169 lockt_args->length = ~lockt_args->length; 13170 13171 *lockt_argsp = lockt_args; 13172 } 13173 13174 /* 13175 * If the client is holding a delegation, and the open stream to be used 13176 * with this lock request is a delegation open stream, then re-open the stream. 13177 * Sets the nfs4_error_t to all zeros unless the open stream has already 13178 * failed a reopen or we couldn't find the open stream. NFS4ERR_DELAY 13179 * means the caller should retry (like a recovery retry). 13180 */ 13181 static void 13182 nfs4frlock_check_deleg(vnode_t *vp, nfs4_error_t *ep, cred_t *cr, int lt) 13183 { 13184 open_delegation_type4 dt; 13185 bool_t reopen_needed, force; 13186 nfs4_open_stream_t *osp; 13187 open_claim_type4 oclaim; 13188 rnode4_t *rp = VTOR4(vp); 13189 mntinfo4_t *mi = VTOMI4(vp); 13190 13191 ASSERT(nfs_zone() == mi->mi_zone); 13192 13193 nfs4_error_zinit(ep); 13194 13195 mutex_enter(&rp->r_statev4_lock); 13196 dt = rp->r_deleg_type; 13197 mutex_exit(&rp->r_statev4_lock); 13198 13199 if (dt != OPEN_DELEGATE_NONE) { 13200 nfs4_open_owner_t *oop; 13201 13202 oop = find_open_owner(cr, NFS4_PERM_CREATED, mi); 13203 if (!oop) { 13204 ep->stat = NFS4ERR_IO; 13205 return; 13206 } 13207 /* returns with 'os_sync_lock' held */ 13208 osp = find_open_stream(oop, rp); 13209 if (!osp) { 13210 open_owner_rele(oop); 13211 ep->stat = NFS4ERR_IO; 13212 return; 13213 } 13214 13215 if (osp->os_failed_reopen) { 13216 NFS4_DEBUG((nfs4_open_stream_debug || 13217 nfs4_client_lock_debug), (CE_NOTE, 13218 "nfs4frlock_check_deleg: os_failed_reopen set " 13219 "for osp %p, cr %p, rp %s", (void *)osp, 13220 (void *)cr, rnode4info(rp))); 13221 mutex_exit(&osp->os_sync_lock); 13222 open_stream_rele(osp, rp); 13223 open_owner_rele(oop); 13224 ep->stat = NFS4ERR_IO; 13225 return; 13226 } 13227 13228 /* 13229 * Determine whether a reopen is needed. If this 13230 * is a delegation open stream, then send the open 13231 * to the server to give visibility to the open owner. 13232 * Even if it isn't a delegation open stream, we need 13233 * to check if the previous open CLAIM_DELEGATE_CUR 13234 * was sufficient. 13235 */ 13236 13237 reopen_needed = osp->os_delegation || 13238 ((lt == F_RDLCK && 13239 !(osp->os_dc_openacc & OPEN4_SHARE_ACCESS_READ)) || 13240 (lt == F_WRLCK && 13241 !(osp->os_dc_openacc & OPEN4_SHARE_ACCESS_WRITE))); 13242 13243 mutex_exit(&osp->os_sync_lock); 13244 open_owner_rele(oop); 13245 13246 if (reopen_needed) { 13247 /* 13248 * Always use CLAIM_PREVIOUS after server reboot. 13249 * The server will reject CLAIM_DELEGATE_CUR if 13250 * it is used during the grace period. 13251 */ 13252 mutex_enter(&mi->mi_lock); 13253 if (mi->mi_recovflags & MI4R_SRV_REBOOT) { 13254 oclaim = CLAIM_PREVIOUS; 13255 force = TRUE; 13256 } else { 13257 oclaim = CLAIM_DELEGATE_CUR; 13258 force = FALSE; 13259 } 13260 mutex_exit(&mi->mi_lock); 13261 13262 nfs4_reopen(vp, osp, ep, oclaim, force, FALSE); 13263 if (ep->error == EAGAIN) { 13264 nfs4_error_zinit(ep); 13265 ep->stat = NFS4ERR_DELAY; 13266 } 13267 } 13268 open_stream_rele(osp, rp); 13269 osp = NULL; 13270 } 13271 } 13272 13273 /* 13274 * Setup the LOCKU4 arguments. 13275 * Returns errors via the nfs4_error_t. 13276 * NFS4_OK no problems. *go_otwp is TRUE if call should go 13277 * over-the-wire. The caller must release the 13278 * reference on *lopp. 13279 * NFS4ERR_DELAY caller should retry (like recovery retry) 13280 * (other) unrecoverable error. 13281 */ 13282 static void 13283 nfs4frlock_setup_locku_args(nfs4_lock_call_type_t ctype, nfs_argop4 *argop, 13284 LOCKU4args **locku_argsp, flock64_t *flk, 13285 nfs4_lock_owner_t **lopp, nfs4_error_t *ep, COMPOUND4args_clnt *argsp, 13286 vnode_t *vp, int flag, u_offset_t offset, cred_t *cr, 13287 bool_t *skip_get_err, bool_t *go_otwp) 13288 { 13289 nfs4_lock_owner_t *lop = NULL; 13290 LOCKU4args *locku_args; 13291 pid_t pid; 13292 bool_t is_spec = FALSE; 13293 rnode4_t *rp = VTOR4(vp); 13294 13295 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 13296 ASSERT(ctype == NFS4_LCK_CTYPE_NORM); 13297 13298 nfs4frlock_check_deleg(vp, ep, cr, F_UNLCK); 13299 if (ep->error || ep->stat) 13300 return; 13301 13302 argop->argop = OP_LOCKU; 13303 if (ctype == NFS4_LCK_CTYPE_REINSTATE) 13304 argsp->ctag = TAG_LOCKU_REINSTATE; 13305 else 13306 argsp->ctag = TAG_LOCKU; 13307 locku_args = &argop->nfs_argop4_u.oplocku; 13308 *locku_argsp = locku_args; 13309 13310 /* 13311 * XXX what should locku_args->locktype be? 13312 * setting to ALWAYS be READ_LT so at least 13313 * it is a valid locktype. 13314 */ 13315 13316 locku_args->locktype = READ_LT; 13317 13318 pid = ctype == NFS4_LCK_CTYPE_NORM ? curproc->p_pidp->pid_id : 13319 flk->l_pid; 13320 13321 /* 13322 * Get the lock owner stateid. If no lock owner 13323 * exists, return success. 13324 */ 13325 lop = find_lock_owner(rp, pid, LOWN_ANY); 13326 *lopp = lop; 13327 if (lop && CLNT_ISSPECIAL(&lop->lock_stateid)) 13328 is_spec = TRUE; 13329 if (!lop || is_spec) { 13330 /* 13331 * No lock owner so no locks to unlock. 13332 * Return success. If there was a failed 13333 * reclaim earlier, the lock might still be 13334 * registered with the local locking code, 13335 * so notify it of the unlock. 13336 * 13337 * If the lockowner is using a special stateid, 13338 * then the original lock request (that created 13339 * this lockowner) was never successful, so we 13340 * have no lock to undo OTW. 13341 */ 13342 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 13343 "nfs4frlock_setup_locku_args: LOCKU: no lock owner " 13344 "(%ld) so return success", (long)pid)); 13345 13346 if (ctype == NFS4_LCK_CTYPE_NORM) 13347 flk->l_pid = curproc->p_pid; 13348 nfs4_register_lock_locally(vp, flk, flag, offset); 13349 /* 13350 * Release our hold and NULL out so final_cleanup 13351 * doesn't try to end a lock seqid sync we 13352 * never started. 13353 */ 13354 if (is_spec) { 13355 lock_owner_rele(lop); 13356 *lopp = NULL; 13357 } 13358 *skip_get_err = TRUE; 13359 *go_otwp = FALSE; 13360 return; 13361 } 13362 13363 ep->error = nfs4_start_lock_seqid_sync(lop, VTOMI4(vp)); 13364 if (ep->error == EAGAIN) { 13365 lock_owner_rele(lop); 13366 *lopp = NULL; 13367 return; 13368 } 13369 13370 mutex_enter(&lop->lo_lock); 13371 locku_args->lock_stateid = lop->lock_stateid; 13372 mutex_exit(&lop->lo_lock); 13373 locku_args->seqid = lop->lock_seqid + 1; 13374 13375 /* leave the ref count on lop, rele after RPC call */ 13376 13377 locku_args->offset = flk->l_start; 13378 locku_args->length = flk->l_len; 13379 if (flk->l_len == 0) 13380 locku_args->length = ~locku_args->length; 13381 13382 *go_otwp = TRUE; 13383 } 13384 13385 /* 13386 * Setup the LOCK4 arguments. 13387 * 13388 * Returns errors via the nfs4_error_t. 13389 * NFS4_OK no problems 13390 * NFS4ERR_DELAY caller should retry (like recovery retry) 13391 * (other) unrecoverable error 13392 */ 13393 static void 13394 nfs4frlock_setup_lock_args(nfs4_lock_call_type_t ctype, LOCK4args **lock_argsp, 13395 nfs4_open_owner_t **oopp, nfs4_open_stream_t **ospp, 13396 nfs4_lock_owner_t **lopp, nfs_argop4 *argop, COMPOUND4args_clnt *argsp, 13397 flock64_t *flk, int cmd, vnode_t *vp, cred_t *cr, nfs4_error_t *ep) 13398 { 13399 LOCK4args *lock_args; 13400 nfs4_open_owner_t *oop = NULL; 13401 nfs4_open_stream_t *osp = NULL; 13402 nfs4_lock_owner_t *lop = NULL; 13403 pid_t pid; 13404 rnode4_t *rp = VTOR4(vp); 13405 13406 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 13407 13408 nfs4frlock_check_deleg(vp, ep, cr, flk->l_type); 13409 if (ep->error || ep->stat != NFS4_OK) 13410 return; 13411 13412 argop->argop = OP_LOCK; 13413 if (ctype == NFS4_LCK_CTYPE_NORM) 13414 argsp->ctag = TAG_LOCK; 13415 else if (ctype == NFS4_LCK_CTYPE_RECLAIM) 13416 argsp->ctag = TAG_RELOCK; 13417 else 13418 argsp->ctag = TAG_LOCK_REINSTATE; 13419 lock_args = &argop->nfs_argop4_u.oplock; 13420 lock_args->locktype = flk_to_locktype(cmd, flk->l_type); 13421 lock_args->reclaim = ctype == NFS4_LCK_CTYPE_RECLAIM ? 1 : 0; 13422 /* 13423 * Get the lock owner. If no lock owner exists, 13424 * create a 'temporary' one and grab the open seqid 13425 * synchronization (which puts a hold on the open 13426 * owner and open stream). 13427 * This also grabs the lock seqid synchronization. 13428 */ 13429 pid = ctype == NFS4_LCK_CTYPE_NORM ? curproc->p_pid : flk->l_pid; 13430 ep->stat = 13431 nfs4_find_or_create_lock_owner(pid, rp, cr, &oop, &osp, &lop); 13432 13433 if (ep->stat != NFS4_OK) 13434 goto out; 13435 13436 nfs4_setup_lock_args(lop, oop, osp, mi2clientid(VTOMI4(vp)), 13437 &lock_args->locker); 13438 13439 lock_args->offset = flk->l_start; 13440 lock_args->length = flk->l_len; 13441 if (flk->l_len == 0) 13442 lock_args->length = ~lock_args->length; 13443 *lock_argsp = lock_args; 13444 out: 13445 *oopp = oop; 13446 *ospp = osp; 13447 *lopp = lop; 13448 } 13449 13450 /* 13451 * After we get the reply from the server, record the proper information 13452 * for possible resend lock requests. 13453 * 13454 * Allocates memory for the saved_rqstp if we have a lost lock to save. 13455 */ 13456 static void 13457 nfs4frlock_save_lost_rqst(nfs4_lock_call_type_t ctype, int error, 13458 nfs_lock_type4 locktype, nfs4_open_owner_t *oop, 13459 nfs4_open_stream_t *osp, nfs4_lock_owner_t *lop, flock64_t *flk, 13460 nfs4_lost_rqst_t *lost_rqstp, cred_t *cr, vnode_t *vp) 13461 { 13462 bool_t unlock = (flk->l_type == F_UNLCK); 13463 13464 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 13465 ASSERT(ctype == NFS4_LCK_CTYPE_NORM || 13466 ctype == NFS4_LCK_CTYPE_REINSTATE); 13467 13468 if (error != 0 && !unlock) { 13469 NFS4_DEBUG((nfs4_lost_rqst_debug || 13470 nfs4_client_lock_debug), (CE_NOTE, 13471 "nfs4frlock_save_lost_rqst: set lo_pending_rqsts to 1 " 13472 " for lop %p", (void *)lop)); 13473 ASSERT(lop != NULL); 13474 mutex_enter(&lop->lo_lock); 13475 lop->lo_pending_rqsts = 1; 13476 mutex_exit(&lop->lo_lock); 13477 } 13478 13479 lost_rqstp->lr_putfirst = FALSE; 13480 lost_rqstp->lr_op = 0; 13481 13482 /* 13483 * For lock/locku requests, we treat EINTR as ETIMEDOUT for 13484 * recovery purposes so that the lock request that was sent 13485 * can be saved and re-issued later. Ditto for EIO from a forced 13486 * unmount. This is done to have the client's local locking state 13487 * match the v4 server's state; that is, the request was 13488 * potentially received and accepted by the server but the client 13489 * thinks it was not. 13490 */ 13491 if (error == ETIMEDOUT || error == EINTR || 13492 NFS4_FRC_UNMT_ERR(error, vp->v_vfsp)) { 13493 NFS4_DEBUG((nfs4_lost_rqst_debug || 13494 nfs4_client_lock_debug), (CE_NOTE, 13495 "nfs4frlock_save_lost_rqst: got a lost %s lock for " 13496 "lop %p oop %p osp %p", unlock ? "LOCKU" : "LOCK", 13497 (void *)lop, (void *)oop, (void *)osp)); 13498 if (unlock) 13499 lost_rqstp->lr_op = OP_LOCKU; 13500 else { 13501 lost_rqstp->lr_op = OP_LOCK; 13502 lost_rqstp->lr_locktype = locktype; 13503 } 13504 /* 13505 * Objects are held and rele'd via the recovery code. 13506 * See nfs4_save_lost_rqst. 13507 */ 13508 lost_rqstp->lr_vp = vp; 13509 lost_rqstp->lr_dvp = NULL; 13510 lost_rqstp->lr_oop = oop; 13511 lost_rqstp->lr_osp = osp; 13512 lost_rqstp->lr_lop = lop; 13513 lost_rqstp->lr_cr = cr; 13514 switch (ctype) { 13515 case NFS4_LCK_CTYPE_NORM: 13516 flk->l_pid = ttoproc(curthread)->p_pid; 13517 lost_rqstp->lr_ctype = NFS4_LCK_CTYPE_RESEND; 13518 break; 13519 case NFS4_LCK_CTYPE_REINSTATE: 13520 lost_rqstp->lr_putfirst = TRUE; 13521 lost_rqstp->lr_ctype = ctype; 13522 break; 13523 default: 13524 break; 13525 } 13526 lost_rqstp->lr_flk = flk; 13527 } 13528 } 13529 13530 /* 13531 * Update lop's seqid. Also update the seqid stored in a resend request, 13532 * if any. (Some recovery errors increment the seqid, and we may have to 13533 * send the resend request again.) 13534 */ 13535 13536 static void 13537 nfs4frlock_bump_seqid(LOCK4args *lock_args, LOCKU4args *locku_args, 13538 nfs4_open_owner_t *oop, nfs4_lock_owner_t *lop, nfs4_tag_type_t tag_type) 13539 { 13540 if (lock_args) { 13541 if (lock_args->locker.new_lock_owner == TRUE) 13542 nfs4_get_and_set_next_open_seqid(oop, tag_type); 13543 else { 13544 ASSERT(lop->lo_flags & NFS4_LOCK_SEQID_INUSE); 13545 nfs4_set_lock_seqid(lop->lock_seqid + 1, lop); 13546 } 13547 } else if (locku_args) { 13548 ASSERT(lop->lo_flags & NFS4_LOCK_SEQID_INUSE); 13549 nfs4_set_lock_seqid(lop->lock_seqid +1, lop); 13550 } 13551 } 13552 13553 /* 13554 * Calls nfs4_end_fop, drops the seqid syncs, and frees up the 13555 * COMPOUND4 args/res for calls that need to retry. 13556 * Switches the *cred_otwp to base_cr. 13557 */ 13558 static void 13559 nfs4frlock_check_access(vnode_t *vp, nfs4_op_hint_t op_hint, 13560 nfs4_recov_state_t *recov_statep, int needrecov, bool_t *did_start_fop, 13561 COMPOUND4args_clnt **argspp, COMPOUND4res_clnt **respp, int error, 13562 nfs4_lock_owner_t **lopp, nfs4_open_owner_t **oopp, 13563 nfs4_open_stream_t **ospp, cred_t *base_cr, cred_t **cred_otwp) 13564 { 13565 nfs4_open_owner_t *oop = *oopp; 13566 nfs4_open_stream_t *osp = *ospp; 13567 nfs4_lock_owner_t *lop = *lopp; 13568 nfs_argop4 *argop = (*argspp)->array; 13569 13570 if (*did_start_fop) { 13571 nfs4_end_fop(VTOMI4(vp), vp, NULL, op_hint, recov_statep, 13572 needrecov); 13573 *did_start_fop = FALSE; 13574 } 13575 ASSERT((*argspp)->array_len == 2); 13576 if (argop[1].argop == OP_LOCK) 13577 nfs4args_lock_free(&argop[1]); 13578 else if (argop[1].argop == OP_LOCKT) 13579 nfs4args_lockt_free(&argop[1]); 13580 kmem_free(argop, 2 * sizeof (nfs_argop4)); 13581 if (!error) 13582 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)*respp); 13583 *argspp = NULL; 13584 *respp = NULL; 13585 13586 if (lop) { 13587 nfs4_end_lock_seqid_sync(lop); 13588 lock_owner_rele(lop); 13589 *lopp = NULL; 13590 } 13591 13592 /* need to free up the reference on osp for lock args */ 13593 if (osp != NULL) { 13594 open_stream_rele(osp, VTOR4(vp)); 13595 *ospp = NULL; 13596 } 13597 13598 /* need to free up the reference on oop for lock args */ 13599 if (oop != NULL) { 13600 nfs4_end_open_seqid_sync(oop); 13601 open_owner_rele(oop); 13602 *oopp = NULL; 13603 } 13604 13605 crfree(*cred_otwp); 13606 *cred_otwp = base_cr; 13607 crhold(*cred_otwp); 13608 } 13609 13610 /* 13611 * Function to process the client's recovery for nfs4frlock. 13612 * Returns TRUE if we should retry the lock request; FALSE otherwise. 13613 * 13614 * Calls nfs4_end_fop, drops the seqid syncs, and frees up the 13615 * COMPOUND4 args/res for calls that need to retry. 13616 * 13617 * Note: the rp's r_lkserlock is *not* dropped during this path. 13618 */ 13619 static bool_t 13620 nfs4frlock_recovery(int needrecov, nfs4_error_t *ep, 13621 COMPOUND4args_clnt **argspp, COMPOUND4res_clnt **respp, 13622 LOCK4args *lock_args, LOCKU4args *locku_args, 13623 nfs4_open_owner_t **oopp, nfs4_open_stream_t **ospp, 13624 nfs4_lock_owner_t **lopp, rnode4_t *rp, vnode_t *vp, 13625 nfs4_recov_state_t *recov_statep, nfs4_op_hint_t op_hint, 13626 bool_t *did_start_fop, nfs4_lost_rqst_t *lost_rqstp, flock64_t *flk) 13627 { 13628 nfs4_open_owner_t *oop = *oopp; 13629 nfs4_open_stream_t *osp = *ospp; 13630 nfs4_lock_owner_t *lop = *lopp; 13631 13632 bool_t abort, retry; 13633 13634 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 13635 ASSERT((*argspp) != NULL); 13636 ASSERT((*respp) != NULL); 13637 if (lock_args || locku_args) 13638 ASSERT(lop != NULL); 13639 13640 NFS4_DEBUG((nfs4_client_lock_debug || nfs4_client_recov_debug), 13641 (CE_NOTE, "nfs4frlock_recovery: initiating recovery\n")); 13642 13643 retry = TRUE; 13644 abort = FALSE; 13645 if (needrecov) { 13646 nfs4_bseqid_entry_t *bsep = NULL; 13647 nfs_opnum4 op; 13648 13649 op = lock_args ? OP_LOCK : locku_args ? OP_LOCKU : OP_LOCKT; 13650 13651 if (!ep->error && ep->stat == NFS4ERR_BAD_SEQID) { 13652 seqid4 seqid; 13653 13654 if (lock_args) { 13655 if (lock_args->locker.new_lock_owner == TRUE) 13656 seqid = lock_args->locker.locker4_u. 13657 open_owner.open_seqid; 13658 else 13659 seqid = lock_args->locker.locker4_u. 13660 lock_owner.lock_seqid; 13661 } else if (locku_args) { 13662 seqid = locku_args->seqid; 13663 } else { 13664 seqid = 0; 13665 } 13666 13667 bsep = nfs4_create_bseqid_entry(oop, lop, vp, 13668 flk->l_pid, (*argspp)->ctag, seqid); 13669 } 13670 13671 abort = nfs4_start_recovery(ep, VTOMI4(vp), vp, NULL, NULL, 13672 (lost_rqstp && (lost_rqstp->lr_op == OP_LOCK || 13673 lost_rqstp->lr_op == OP_LOCKU)) ? lost_rqstp : 13674 NULL, op, bsep); 13675 13676 if (bsep) 13677 kmem_free(bsep, sizeof (*bsep)); 13678 } 13679 13680 /* 13681 * Return that we do not want to retry the request for 3 cases: 13682 * 1. If we received EINTR or are bailing out because of a forced 13683 * unmount, we came into this code path just for the sake of 13684 * initiating recovery, we now need to return the error. 13685 * 2. If we have aborted recovery. 13686 * 3. We received NFS4ERR_BAD_SEQID. 13687 */ 13688 if (ep->error == EINTR || NFS4_FRC_UNMT_ERR(ep->error, vp->v_vfsp) || 13689 abort == TRUE || (ep->error == 0 && ep->stat == NFS4ERR_BAD_SEQID)) 13690 retry = FALSE; 13691 13692 if (*did_start_fop == TRUE) { 13693 nfs4_end_fop(VTOMI4(vp), vp, NULL, op_hint, recov_statep, 13694 needrecov); 13695 *did_start_fop = FALSE; 13696 } 13697 13698 if (retry == TRUE) { 13699 nfs_argop4 *argop; 13700 13701 argop = (*argspp)->array; 13702 ASSERT((*argspp)->array_len == 2); 13703 13704 if (argop[1].argop == OP_LOCK) 13705 nfs4args_lock_free(&argop[1]); 13706 else if (argop[1].argop == OP_LOCKT) 13707 nfs4args_lockt_free(&argop[1]); 13708 kmem_free(argop, 2 * sizeof (nfs_argop4)); 13709 if (!ep->error) 13710 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)*respp); 13711 *respp = NULL; 13712 *argspp = NULL; 13713 } 13714 13715 if (lop != NULL) { 13716 nfs4_end_lock_seqid_sync(lop); 13717 lock_owner_rele(lop); 13718 } 13719 13720 *lopp = NULL; 13721 13722 /* need to free up the reference on osp for lock args */ 13723 if (osp != NULL) { 13724 open_stream_rele(osp, rp); 13725 *ospp = NULL; 13726 } 13727 13728 /* need to free up the reference on oop for lock args */ 13729 if (oop != NULL) { 13730 nfs4_end_open_seqid_sync(oop); 13731 open_owner_rele(oop); 13732 *oopp = NULL; 13733 } 13734 13735 return (retry); 13736 } 13737 13738 /* 13739 * Handles the successful reply from the server for nfs4frlock. 13740 */ 13741 static void 13742 nfs4frlock_results_ok(nfs4_lock_call_type_t ctype, int cmd, flock64_t *flk, 13743 vnode_t *vp, int flag, u_offset_t offset, 13744 nfs4_lost_rqst_t *resend_rqstp) 13745 { 13746 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 13747 if ((cmd == F_SETLK || cmd == F_SETLKW) && 13748 (flk->l_type == F_RDLCK || flk->l_type == F_WRLCK)) { 13749 if (ctype == NFS4_LCK_CTYPE_NORM) { 13750 flk->l_pid = ttoproc(curthread)->p_pid; 13751 /* 13752 * We do not register lost locks locally in 13753 * the 'resend' case since the user/application 13754 * doesn't think we have the lock. 13755 */ 13756 ASSERT(!resend_rqstp); 13757 nfs4_register_lock_locally(vp, flk, flag, offset); 13758 } 13759 } 13760 } 13761 13762 /* 13763 * Handle the DENIED reply from the server for nfs4frlock. 13764 * Returns TRUE if we should retry the request; FALSE otherwise. 13765 * 13766 * Calls nfs4_end_fop, drops the seqid syncs, and frees up the 13767 * COMPOUND4 args/res for calls that need to retry. Can also 13768 * drop and regrab the r_lkserlock. 13769 */ 13770 static bool_t 13771 nfs4frlock_results_denied(nfs4_lock_call_type_t ctype, LOCK4args *lock_args, 13772 LOCKT4args *lockt_args, nfs4_open_owner_t **oopp, 13773 nfs4_open_stream_t **ospp, nfs4_lock_owner_t **lopp, int cmd, 13774 vnode_t *vp, flock64_t *flk, nfs4_op_hint_t op_hint, 13775 nfs4_recov_state_t *recov_statep, int needrecov, 13776 COMPOUND4args_clnt **argspp, COMPOUND4res_clnt **respp, 13777 clock_t *tick_delayp, short *whencep, int *errorp, 13778 nfs_resop4 *resop, cred_t *cr, bool_t *did_start_fop, 13779 bool_t *skip_get_err) 13780 { 13781 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 13782 13783 if (lock_args) { 13784 nfs4_open_owner_t *oop = *oopp; 13785 nfs4_open_stream_t *osp = *ospp; 13786 nfs4_lock_owner_t *lop = *lopp; 13787 int intr; 13788 13789 /* 13790 * Blocking lock needs to sleep and retry from the request. 13791 * 13792 * Do not block and wait for 'resend' or 'reinstate' 13793 * lock requests, just return the error. 13794 * 13795 * Note: reclaim requests have cmd == F_SETLK, not F_SETLKW. 13796 */ 13797 if (cmd == F_SETLKW) { 13798 rnode4_t *rp = VTOR4(vp); 13799 nfs_argop4 *argop = (*argspp)->array; 13800 13801 ASSERT(ctype == NFS4_LCK_CTYPE_NORM); 13802 13803 nfs4_end_fop(VTOMI4(vp), vp, NULL, op_hint, 13804 recov_statep, needrecov); 13805 *did_start_fop = FALSE; 13806 ASSERT((*argspp)->array_len == 2); 13807 if (argop[1].argop == OP_LOCK) 13808 nfs4args_lock_free(&argop[1]); 13809 else if (argop[1].argop == OP_LOCKT) 13810 nfs4args_lockt_free(&argop[1]); 13811 kmem_free(argop, 2 * sizeof (nfs_argop4)); 13812 if (*respp) 13813 (void) xdr_free(xdr_COMPOUND4res_clnt, 13814 (caddr_t)*respp); 13815 *argspp = NULL; 13816 *respp = NULL; 13817 nfs4_end_lock_seqid_sync(lop); 13818 lock_owner_rele(lop); 13819 *lopp = NULL; 13820 if (osp != NULL) { 13821 open_stream_rele(osp, rp); 13822 *ospp = NULL; 13823 } 13824 if (oop != NULL) { 13825 nfs4_end_open_seqid_sync(oop); 13826 open_owner_rele(oop); 13827 *oopp = NULL; 13828 } 13829 13830 nfs_rw_exit(&rp->r_lkserlock); 13831 13832 intr = nfs4_block_and_wait(tick_delayp, rp); 13833 13834 if (intr) { 13835 (void) nfs_rw_enter_sig(&rp->r_lkserlock, 13836 RW_WRITER, FALSE); 13837 *errorp = EINTR; 13838 return (FALSE); 13839 } 13840 13841 (void) nfs_rw_enter_sig(&rp->r_lkserlock, 13842 RW_WRITER, FALSE); 13843 13844 /* 13845 * Make sure we are still safe to lock with 13846 * regards to mmapping. 13847 */ 13848 if (!nfs4_safelock(vp, flk, cr)) { 13849 *errorp = EAGAIN; 13850 return (FALSE); 13851 } 13852 13853 return (TRUE); 13854 } 13855 if (ctype == NFS4_LCK_CTYPE_NORM) 13856 *errorp = EAGAIN; 13857 *skip_get_err = TRUE; 13858 flk->l_whence = 0; 13859 *whencep = 0; 13860 return (FALSE); 13861 } else if (lockt_args) { 13862 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 13863 "nfs4frlock_results_denied: OP_LOCKT DENIED")); 13864 13865 denied_to_flk(&resop->nfs_resop4_u.oplockt.denied, 13866 flk, lockt_args); 13867 13868 /* according to NLM code */ 13869 *errorp = 0; 13870 *whencep = 0; 13871 *skip_get_err = TRUE; 13872 return (FALSE); 13873 } 13874 return (FALSE); 13875 } 13876 13877 /* 13878 * Handles all NFS4 errors besides NFS4_OK and NFS4ERR_DENIED for nfs4frlock. 13879 */ 13880 static void 13881 nfs4frlock_results_default(COMPOUND4res_clnt *resp, int *errorp) 13882 { 13883 switch (resp->status) { 13884 case NFS4ERR_ACCESS: 13885 case NFS4ERR_ADMIN_REVOKED: 13886 case NFS4ERR_BADHANDLE: 13887 case NFS4ERR_BAD_RANGE: 13888 case NFS4ERR_BAD_SEQID: 13889 case NFS4ERR_BAD_STATEID: 13890 case NFS4ERR_BADXDR: 13891 case NFS4ERR_DEADLOCK: 13892 case NFS4ERR_DELAY: 13893 case NFS4ERR_EXPIRED: 13894 case NFS4ERR_FHEXPIRED: 13895 case NFS4ERR_GRACE: 13896 case NFS4ERR_INVAL: 13897 case NFS4ERR_ISDIR: 13898 case NFS4ERR_LEASE_MOVED: 13899 case NFS4ERR_LOCK_NOTSUPP: 13900 case NFS4ERR_LOCK_RANGE: 13901 case NFS4ERR_MOVED: 13902 case NFS4ERR_NOFILEHANDLE: 13903 case NFS4ERR_NO_GRACE: 13904 case NFS4ERR_OLD_STATEID: 13905 case NFS4ERR_OPENMODE: 13906 case NFS4ERR_RECLAIM_BAD: 13907 case NFS4ERR_RECLAIM_CONFLICT: 13908 case NFS4ERR_RESOURCE: 13909 case NFS4ERR_SERVERFAULT: 13910 case NFS4ERR_STALE: 13911 case NFS4ERR_STALE_CLIENTID: 13912 case NFS4ERR_STALE_STATEID: 13913 return; 13914 default: 13915 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 13916 "nfs4frlock_results_default: got unrecognizable " 13917 "res.status %d", resp->status)); 13918 *errorp = NFS4ERR_INVAL; 13919 } 13920 } 13921 13922 /* 13923 * The lock request was successful, so update the client's state. 13924 */ 13925 static void 13926 nfs4frlock_update_state(LOCK4args *lock_args, LOCKU4args *locku_args, 13927 LOCKT4args *lockt_args, nfs_resop4 *resop, nfs4_lock_owner_t *lop, 13928 vnode_t *vp, flock64_t *flk, cred_t *cr, 13929 nfs4_lost_rqst_t *resend_rqstp) 13930 { 13931 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 13932 13933 if (lock_args) { 13934 LOCK4res *lock_res; 13935 13936 lock_res = &resop->nfs_resop4_u.oplock; 13937 /* update the stateid with server's response */ 13938 13939 if (lock_args->locker.new_lock_owner == TRUE) { 13940 mutex_enter(&lop->lo_lock); 13941 lop->lo_just_created = NFS4_PERM_CREATED; 13942 mutex_exit(&lop->lo_lock); 13943 } 13944 13945 nfs4_set_lock_stateid(lop, lock_res->LOCK4res_u.lock_stateid); 13946 13947 /* 13948 * If the lock was the result of a resending a lost 13949 * request, we've synched up the stateid and seqid 13950 * with the server, but now the server might be out of sync 13951 * with what the application thinks it has for locks. 13952 * Clean that up here. It's unclear whether we should do 13953 * this even if the filesystem has been forcibly unmounted. 13954 * For most servers, it's probably wasted effort, but 13955 * RFC3530 lets servers require that unlocks exactly match 13956 * the locks that are held. 13957 */ 13958 if (resend_rqstp != NULL && 13959 resend_rqstp->lr_ctype != NFS4_LCK_CTYPE_REINSTATE) { 13960 nfs4_reinstitute_local_lock_state(vp, flk, cr, lop); 13961 } else { 13962 flk->l_whence = 0; 13963 } 13964 } else if (locku_args) { 13965 LOCKU4res *locku_res; 13966 13967 locku_res = &resop->nfs_resop4_u.oplocku; 13968 13969 /* Update the stateid with the server's response */ 13970 nfs4_set_lock_stateid(lop, locku_res->lock_stateid); 13971 } else if (lockt_args) { 13972 /* Switch the lock type to express success, see fcntl */ 13973 flk->l_type = F_UNLCK; 13974 flk->l_whence = 0; 13975 } 13976 } 13977 13978 /* 13979 * Do final cleanup before exiting nfs4frlock. 13980 * Calls nfs4_end_fop, drops the seqid syncs, and frees up the 13981 * COMPOUND4 args/res for calls that haven't already. 13982 */ 13983 static void 13984 nfs4frlock_final_cleanup(nfs4_lock_call_type_t ctype, COMPOUND4args_clnt *argsp, 13985 COMPOUND4res_clnt *resp, vnode_t *vp, nfs4_op_hint_t op_hint, 13986 nfs4_recov_state_t *recov_statep, int needrecov, nfs4_open_owner_t *oop, 13987 nfs4_open_stream_t *osp, nfs4_lock_owner_t *lop, flock64_t *flk, 13988 short whence, u_offset_t offset, struct lm_sysid *ls, 13989 int *errorp, LOCK4args *lock_args, LOCKU4args *locku_args, 13990 bool_t did_start_fop, bool_t skip_get_err, 13991 cred_t *cred_otw, cred_t *cred) 13992 { 13993 mntinfo4_t *mi = VTOMI4(vp); 13994 rnode4_t *rp = VTOR4(vp); 13995 int error = *errorp; 13996 nfs_argop4 *argop; 13997 int do_flush_pages = 0; 13998 13999 ASSERT(nfs_zone() == mi->mi_zone); 14000 /* 14001 * The client recovery code wants the raw status information, 14002 * so don't map the NFS status code to an errno value for 14003 * non-normal call types. 14004 */ 14005 if (ctype == NFS4_LCK_CTYPE_NORM) { 14006 if (*errorp == 0 && resp != NULL && skip_get_err == FALSE) 14007 *errorp = geterrno4(resp->status); 14008 if (did_start_fop == TRUE) 14009 nfs4_end_fop(mi, vp, NULL, op_hint, recov_statep, 14010 needrecov); 14011 14012 /* 14013 * We've established a new lock on the server, so invalidate 14014 * the pages associated with the vnode to get the most up to 14015 * date pages from the server after acquiring the lock. We 14016 * want to be sure that the read operation gets the newest data. 14017 * N.B. 14018 * We used to do this in nfs4frlock_results_ok but that doesn't 14019 * work since VOP_PUTPAGE can call nfs4_commit which calls 14020 * nfs4_start_fop. We flush the pages below after calling 14021 * nfs4_end_fop above 14022 * The flush of the page cache must be done after 14023 * nfs4_end_open_seqid_sync() to avoid a 4-way hang. 14024 */ 14025 if (!error && resp && resp->status == NFS4_OK) 14026 do_flush_pages = 1; 14027 } 14028 if (argsp) { 14029 ASSERT(argsp->array_len == 2); 14030 argop = argsp->array; 14031 if (argop[1].argop == OP_LOCK) 14032 nfs4args_lock_free(&argop[1]); 14033 else if (argop[1].argop == OP_LOCKT) 14034 nfs4args_lockt_free(&argop[1]); 14035 kmem_free(argop, 2 * sizeof (nfs_argop4)); 14036 if (resp) 14037 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp); 14038 } 14039 14040 /* free the reference on the lock owner */ 14041 if (lop != NULL) { 14042 nfs4_end_lock_seqid_sync(lop); 14043 lock_owner_rele(lop); 14044 } 14045 14046 /* need to free up the reference on osp for lock args */ 14047 if (osp != NULL) 14048 open_stream_rele(osp, rp); 14049 14050 /* need to free up the reference on oop for lock args */ 14051 if (oop != NULL) { 14052 nfs4_end_open_seqid_sync(oop); 14053 open_owner_rele(oop); 14054 } 14055 14056 if (do_flush_pages) 14057 nfs4_flush_pages(vp, cred); 14058 14059 (void) convoff(vp, flk, whence, offset); 14060 14061 lm_rel_sysid(ls); 14062 14063 /* 14064 * Record debug information in the event we get EINVAL. 14065 */ 14066 mutex_enter(&mi->mi_lock); 14067 if (*errorp == EINVAL && (lock_args || locku_args) && 14068 (!(mi->mi_flags & MI4_POSIX_LOCK))) { 14069 if (!(mi->mi_flags & MI4_LOCK_DEBUG)) { 14070 zcmn_err(getzoneid(), CE_NOTE, 14071 "%s operation failed with " 14072 "EINVAL probably since the server, %s," 14073 " doesn't support POSIX style locking", 14074 lock_args ? "LOCK" : "LOCKU", 14075 mi->mi_curr_serv->sv_hostname); 14076 mi->mi_flags |= MI4_LOCK_DEBUG; 14077 } 14078 } 14079 mutex_exit(&mi->mi_lock); 14080 14081 if (cred_otw) 14082 crfree(cred_otw); 14083 } 14084 14085 /* 14086 * This calls the server and the local locking code. 14087 * 14088 * Client locks are registerred locally by oring the sysid with 14089 * LM_SYSID_CLIENT. The server registers locks locally using just the sysid. 14090 * We need to distinguish between the two to avoid collision in case one 14091 * machine is used as both client and server. 14092 * 14093 * Blocking lock requests will continually retry to acquire the lock 14094 * forever. 14095 * 14096 * The ctype is defined as follows: 14097 * NFS4_LCK_CTYPE_NORM: normal lock request. 14098 * 14099 * NFS4_LCK_CTYPE_RECLAIM: bypass the usual calls for synchronizing with client 14100 * recovery, get the pid from flk instead of curproc, and don't reregister 14101 * the lock locally. 14102 * 14103 * NFS4_LCK_CTYPE_RESEND: same as NFS4_LCK_CTYPE_RECLAIM, with the addition 14104 * that we will use the information passed in via resend_rqstp to setup the 14105 * lock/locku request. This resend is the exact same request as the 'lost 14106 * lock', and is initiated by the recovery framework. A successful resend 14107 * request can initiate one or more reinstate requests. 14108 * 14109 * NFS4_LCK_CTYPE_REINSTATE: same as NFS4_LCK_CTYPE_RESEND, except that it 14110 * does not trigger additional reinstate requests. This lock call type is 14111 * set for setting the v4 server's locking state back to match what the 14112 * client's local locking state is in the event of a received 'lost lock'. 14113 * 14114 * Errors are returned via the nfs4_error_t parameter. 14115 */ 14116 void 14117 nfs4frlock(nfs4_lock_call_type_t ctype, vnode_t *vp, int cmd, flock64_t *flk, 14118 int flag, u_offset_t offset, cred_t *cr, nfs4_error_t *ep, 14119 nfs4_lost_rqst_t *resend_rqstp, int *did_reclaimp) 14120 { 14121 COMPOUND4args_clnt args, *argsp = NULL; 14122 COMPOUND4res_clnt res, *resp = NULL; 14123 nfs_argop4 *argop; 14124 nfs_resop4 *resop; 14125 rnode4_t *rp; 14126 int doqueue = 1; 14127 clock_t tick_delay; /* delay in clock ticks */ 14128 struct lm_sysid *ls; 14129 LOCK4args *lock_args = NULL; 14130 LOCKU4args *locku_args = NULL; 14131 LOCKT4args *lockt_args = NULL; 14132 nfs4_open_owner_t *oop = NULL; 14133 nfs4_open_stream_t *osp = NULL; 14134 nfs4_lock_owner_t *lop = NULL; 14135 bool_t needrecov = FALSE; 14136 nfs4_recov_state_t recov_state; 14137 short whence; 14138 nfs4_op_hint_t op_hint; 14139 nfs4_lost_rqst_t lost_rqst; 14140 bool_t retry = FALSE; 14141 bool_t did_start_fop = FALSE; 14142 bool_t skip_get_err = FALSE; 14143 cred_t *cred_otw = NULL; 14144 bool_t recovonly; /* just queue request */ 14145 int frc_no_reclaim = 0; 14146 #ifdef DEBUG 14147 char *name; 14148 #endif 14149 14150 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 14151 14152 #ifdef DEBUG 14153 name = fn_name(VTOSV(vp)->sv_name); 14154 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, "nfs4frlock: " 14155 "%s: cmd %d, type %d, offset %llu, start %"PRIx64", " 14156 "length %"PRIu64", pid %d, sysid %d, call type %s, " 14157 "resend request %s", name, cmd, flk->l_type, offset, flk->l_start, 14158 flk->l_len, ctype == NFS4_LCK_CTYPE_NORM ? curproc->p_pid : 14159 flk->l_pid, flk->l_sysid, nfs4frlock_get_call_type(ctype), 14160 resend_rqstp ? "TRUE" : "FALSE")); 14161 kmem_free(name, MAXNAMELEN); 14162 #endif 14163 14164 nfs4_error_zinit(ep); 14165 ep->error = nfs4frlock_validate_args(cmd, flk, flag, vp, offset); 14166 if (ep->error) 14167 return; 14168 ep->error = nfs4frlock_get_sysid(&ls, vp, flk); 14169 if (ep->error) 14170 return; 14171 nfs4frlock_pre_setup(&tick_delay, &recov_state, flk, &whence, 14172 vp, cr, &cred_otw); 14173 14174 recov_retry: 14175 nfs4frlock_call_init(&args, &argsp, &argop, &op_hint, flk, cmd, 14176 &retry, &did_start_fop, &resp, &skip_get_err, &lost_rqst); 14177 rp = VTOR4(vp); 14178 14179 ep->error = nfs4frlock_start_call(ctype, vp, op_hint, &recov_state, 14180 &did_start_fop, &recovonly); 14181 14182 if (ep->error) 14183 goto out; 14184 14185 if (recovonly) { 14186 /* 14187 * Leave the request for the recovery system to deal with. 14188 */ 14189 ASSERT(ctype == NFS4_LCK_CTYPE_NORM); 14190 ASSERT(cmd != F_GETLK); 14191 ASSERT(flk->l_type == F_UNLCK); 14192 14193 nfs4_error_init(ep, EINTR); 14194 needrecov = TRUE; 14195 lop = find_lock_owner(rp, curproc->p_pid, LOWN_ANY); 14196 if (lop != NULL) { 14197 nfs4frlock_save_lost_rqst(ctype, ep->error, READ_LT, 14198 NULL, NULL, lop, flk, &lost_rqst, cr, vp); 14199 (void) nfs4_start_recovery(ep, 14200 VTOMI4(vp), vp, NULL, NULL, 14201 (lost_rqst.lr_op == OP_LOCK || 14202 lost_rqst.lr_op == OP_LOCKU) ? 14203 &lost_rqst : NULL, OP_LOCKU, NULL); 14204 lock_owner_rele(lop); 14205 lop = NULL; 14206 } 14207 flk->l_pid = curproc->p_pid; 14208 nfs4_register_lock_locally(vp, flk, flag, offset); 14209 goto out; 14210 } 14211 14212 /* putfh directory fh */ 14213 argop[0].argop = OP_CPUTFH; 14214 argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh; 14215 14216 /* 14217 * Set up the over-the-wire arguments and get references to the 14218 * open owner, etc. 14219 */ 14220 14221 if (ctype == NFS4_LCK_CTYPE_RESEND || 14222 ctype == NFS4_LCK_CTYPE_REINSTATE) { 14223 nfs4frlock_setup_resend_lock_args(resend_rqstp, argsp, 14224 &argop[1], &lop, &oop, &osp, &lock_args, &locku_args); 14225 } else { 14226 bool_t go_otw = TRUE; 14227 14228 ASSERT(resend_rqstp == NULL); 14229 14230 switch (cmd) { 14231 case F_GETLK: 14232 case F_O_GETLK: 14233 nfs4frlock_setup_lockt_args(ctype, &argop[1], 14234 &lockt_args, argsp, flk, rp); 14235 break; 14236 case F_SETLKW: 14237 case F_SETLK: 14238 if (flk->l_type == F_UNLCK) 14239 nfs4frlock_setup_locku_args(ctype, 14240 &argop[1], &locku_args, flk, 14241 &lop, ep, argsp, 14242 vp, flag, offset, cr, 14243 &skip_get_err, &go_otw); 14244 else 14245 nfs4frlock_setup_lock_args(ctype, 14246 &lock_args, &oop, &osp, &lop, &argop[1], 14247 argsp, flk, cmd, vp, cr, ep); 14248 14249 if (ep->error) 14250 goto out; 14251 14252 switch (ep->stat) { 14253 case NFS4_OK: 14254 break; 14255 case NFS4ERR_DELAY: 14256 /* recov thread never gets this error */ 14257 ASSERT(resend_rqstp == NULL); 14258 ASSERT(did_start_fop); 14259 14260 nfs4_end_fop(VTOMI4(vp), vp, NULL, op_hint, 14261 &recov_state, TRUE); 14262 did_start_fop = FALSE; 14263 if (argop[1].argop == OP_LOCK) 14264 nfs4args_lock_free(&argop[1]); 14265 else if (argop[1].argop == OP_LOCKT) 14266 nfs4args_lockt_free(&argop[1]); 14267 kmem_free(argop, 2 * sizeof (nfs_argop4)); 14268 argsp = NULL; 14269 goto recov_retry; 14270 default: 14271 ep->error = EIO; 14272 goto out; 14273 } 14274 break; 14275 default: 14276 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 14277 "nfs4_frlock: invalid cmd %d", cmd)); 14278 ep->error = EINVAL; 14279 goto out; 14280 } 14281 14282 if (!go_otw) 14283 goto out; 14284 } 14285 14286 /* XXX should we use the local reclock as a cache ? */ 14287 /* 14288 * Unregister the lock with the local locking code before 14289 * contacting the server. This avoids a potential race where 14290 * another process gets notified that it has been granted a lock 14291 * before we can unregister ourselves locally. 14292 */ 14293 if ((cmd == F_SETLK || cmd == F_SETLKW) && flk->l_type == F_UNLCK) { 14294 if (ctype == NFS4_LCK_CTYPE_NORM) 14295 flk->l_pid = ttoproc(curthread)->p_pid; 14296 nfs4_register_lock_locally(vp, flk, flag, offset); 14297 } 14298 14299 /* 14300 * Send the server the lock request. Continually loop with a delay 14301 * if get error NFS4ERR_DENIED (for blocking locks) or NFS4ERR_GRACE. 14302 */ 14303 resp = &res; 14304 14305 NFS4_DEBUG((nfs4_client_call_debug || nfs4_client_lock_debug), 14306 (CE_NOTE, 14307 "nfs4frlock: %s call, rp %s", needrecov ? "recov" : "first", 14308 rnode4info(rp))); 14309 14310 if (lock_args && frc_no_reclaim) { 14311 ASSERT(ctype == NFS4_LCK_CTYPE_RECLAIM); 14312 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 14313 "nfs4frlock: frc_no_reclaim: clearing reclaim")); 14314 lock_args->reclaim = FALSE; 14315 if (did_reclaimp) 14316 *did_reclaimp = 0; 14317 } 14318 14319 /* 14320 * Do the OTW call. 14321 */ 14322 rfs4call(VTOMI4(vp), argsp, resp, cred_otw, &doqueue, 0, ep); 14323 14324 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 14325 "nfs4frlock: error %d, status %d", ep->error, resp->status)); 14326 14327 needrecov = nfs4_needs_recovery(ep, TRUE, vp->v_vfsp); 14328 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 14329 "nfs4frlock: needrecov %d", needrecov)); 14330 14331 if (ep->error == 0 && nfs4_need_to_bump_seqid(resp)) 14332 nfs4frlock_bump_seqid(lock_args, locku_args, oop, lop, 14333 args.ctag); 14334 14335 /* 14336 * Check if one of these mutually exclusive error cases has 14337 * happened: 14338 * need to swap credentials due to access error 14339 * recovery is needed 14340 * different error (only known case is missing Kerberos ticket) 14341 */ 14342 14343 if ((ep->error == EACCES || 14344 (ep->error == 0 && resp->status == NFS4ERR_ACCESS)) && 14345 cred_otw != cr) { 14346 nfs4frlock_check_access(vp, op_hint, &recov_state, needrecov, 14347 &did_start_fop, &argsp, &resp, ep->error, &lop, &oop, &osp, 14348 cr, &cred_otw); 14349 goto recov_retry; 14350 } 14351 14352 if (needrecov) { 14353 /* 14354 * LOCKT requests don't need to recover from lost 14355 * requests since they don't create/modify state. 14356 */ 14357 if ((ep->error == EINTR || 14358 NFS4_FRC_UNMT_ERR(ep->error, vp->v_vfsp)) && 14359 lockt_args) 14360 goto out; 14361 /* 14362 * Do not attempt recovery for requests initiated by 14363 * the recovery framework. Let the framework redrive them. 14364 */ 14365 if (ctype != NFS4_LCK_CTYPE_NORM) 14366 goto out; 14367 else { 14368 ASSERT(resend_rqstp == NULL); 14369 } 14370 14371 nfs4frlock_save_lost_rqst(ctype, ep->error, 14372 flk_to_locktype(cmd, flk->l_type), 14373 oop, osp, lop, flk, &lost_rqst, cred_otw, vp); 14374 14375 retry = nfs4frlock_recovery(needrecov, ep, &argsp, 14376 &resp, lock_args, locku_args, &oop, &osp, &lop, 14377 rp, vp, &recov_state, op_hint, &did_start_fop, 14378 cmd != F_GETLK ? &lost_rqst : NULL, flk); 14379 14380 if (retry) { 14381 ASSERT(oop == NULL); 14382 ASSERT(osp == NULL); 14383 ASSERT(lop == NULL); 14384 goto recov_retry; 14385 } 14386 goto out; 14387 } 14388 14389 /* 14390 * Bail out if have reached this point with ep->error set. Can 14391 * happen if (ep->error == EACCES && !needrecov && cred_otw == cr). 14392 * This happens if Kerberos ticket has expired or has been 14393 * destroyed. 14394 */ 14395 if (ep->error != 0) 14396 goto out; 14397 14398 /* 14399 * Process the reply. 14400 */ 14401 switch (resp->status) { 14402 case NFS4_OK: 14403 resop = &resp->array[1]; 14404 nfs4frlock_results_ok(ctype, cmd, flk, vp, flag, offset, 14405 resend_rqstp); 14406 /* 14407 * Have a successful lock operation, now update state. 14408 */ 14409 nfs4frlock_update_state(lock_args, locku_args, lockt_args, 14410 resop, lop, vp, flk, cr, resend_rqstp); 14411 break; 14412 14413 case NFS4ERR_DENIED: 14414 resop = &resp->array[1]; 14415 retry = nfs4frlock_results_denied(ctype, lock_args, lockt_args, 14416 &oop, &osp, &lop, cmd, vp, flk, op_hint, 14417 &recov_state, needrecov, &argsp, &resp, 14418 &tick_delay, &whence, &ep->error, resop, cr, 14419 &did_start_fop, &skip_get_err); 14420 14421 if (retry) { 14422 ASSERT(oop == NULL); 14423 ASSERT(osp == NULL); 14424 ASSERT(lop == NULL); 14425 goto recov_retry; 14426 } 14427 break; 14428 /* 14429 * If the server won't let us reclaim, fall-back to trying to lock 14430 * the file from scratch. Code elsewhere will check the changeinfo 14431 * to ensure the file hasn't been changed. 14432 */ 14433 case NFS4ERR_NO_GRACE: 14434 if (lock_args && lock_args->reclaim == TRUE) { 14435 ASSERT(ctype == NFS4_LCK_CTYPE_RECLAIM); 14436 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 14437 "nfs4frlock: reclaim: NFS4ERR_NO_GRACE")); 14438 frc_no_reclaim = 1; 14439 /* clean up before retrying */ 14440 needrecov = 0; 14441 (void) nfs4frlock_recovery(needrecov, ep, &argsp, &resp, 14442 lock_args, locku_args, &oop, &osp, &lop, rp, vp, 14443 &recov_state, op_hint, &did_start_fop, NULL, flk); 14444 goto recov_retry; 14445 } 14446 /* FALLTHROUGH */ 14447 14448 default: 14449 nfs4frlock_results_default(resp, &ep->error); 14450 break; 14451 } 14452 out: 14453 /* 14454 * Process and cleanup from error. Make interrupted unlock 14455 * requests look successful, since they will be handled by the 14456 * client recovery code. 14457 */ 14458 nfs4frlock_final_cleanup(ctype, argsp, resp, vp, op_hint, &recov_state, 14459 needrecov, oop, osp, lop, flk, whence, offset, ls, &ep->error, 14460 lock_args, locku_args, did_start_fop, 14461 skip_get_err, cred_otw, cr); 14462 14463 if (ep->error == EINTR && flk->l_type == F_UNLCK && 14464 (cmd == F_SETLK || cmd == F_SETLKW)) 14465 ep->error = 0; 14466 } 14467 14468 /* 14469 * nfs4_safelock: 14470 * 14471 * Return non-zero if the given lock request can be handled without 14472 * violating the constraints on concurrent mapping and locking. 14473 */ 14474 14475 static int 14476 nfs4_safelock(vnode_t *vp, const struct flock64 *bfp, cred_t *cr) 14477 { 14478 rnode4_t *rp = VTOR4(vp); 14479 struct vattr va; 14480 int error; 14481 14482 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 14483 ASSERT(rp->r_mapcnt >= 0); 14484 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, "nfs4_safelock %s: " 14485 "(%"PRIx64", %"PRIx64"); mapcnt = %ld", bfp->l_type == F_WRLCK ? 14486 "write" : bfp->l_type == F_RDLCK ? "read" : "unlock", 14487 bfp->l_start, bfp->l_len, rp->r_mapcnt)); 14488 14489 if (rp->r_mapcnt == 0) 14490 return (1); /* always safe if not mapped */ 14491 14492 /* 14493 * If the file is already mapped and there are locks, then they 14494 * should be all safe locks. So adding or removing a lock is safe 14495 * as long as the new request is safe (i.e., whole-file, meaning 14496 * length and starting offset are both zero). 14497 */ 14498 14499 if (bfp->l_start != 0 || bfp->l_len != 0) { 14500 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, "nfs4_safelock: " 14501 "cannot lock a memory mapped file unless locking the " 14502 "entire file: start %"PRIx64", len %"PRIx64, 14503 bfp->l_start, bfp->l_len)); 14504 return (0); 14505 } 14506 14507 /* mandatory locking and mapping don't mix */ 14508 va.va_mask = AT_MODE; 14509 error = VOP_GETATTR(vp, &va, 0, cr, NULL); 14510 if (error != 0) { 14511 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, "nfs4_safelock: " 14512 "getattr error %d", error)); 14513 return (0); /* treat errors conservatively */ 14514 } 14515 if (MANDLOCK(vp, va.va_mode)) { 14516 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, "nfs4_safelock: " 14517 "cannot mandatory lock and mmap a file")); 14518 return (0); 14519 } 14520 14521 return (1); 14522 } 14523 14524 14525 /* 14526 * Register the lock locally within Solaris. 14527 * As the client, we "or" the sysid with LM_SYSID_CLIENT when 14528 * recording locks locally. 14529 * 14530 * This should handle conflicts/cooperation with NFS v2/v3 since all locks 14531 * are registered locally. 14532 */ 14533 void 14534 nfs4_register_lock_locally(vnode_t *vp, struct flock64 *flk, int flag, 14535 u_offset_t offset) 14536 { 14537 int oldsysid; 14538 int error; 14539 #ifdef DEBUG 14540 char *name; 14541 #endif 14542 14543 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 14544 14545 #ifdef DEBUG 14546 name = fn_name(VTOSV(vp)->sv_name); 14547 NFS4_DEBUG(nfs4_client_lock_debug, 14548 (CE_NOTE, "nfs4_register_lock_locally: %s: type %d, " 14549 "start %"PRIx64", length %"PRIx64", pid %ld, sysid %d", 14550 name, flk->l_type, flk->l_start, flk->l_len, (long)flk->l_pid, 14551 flk->l_sysid)); 14552 kmem_free(name, MAXNAMELEN); 14553 #endif 14554 14555 /* register the lock with local locking */ 14556 oldsysid = flk->l_sysid; 14557 flk->l_sysid |= LM_SYSID_CLIENT; 14558 error = reclock(vp, flk, SETFLCK, flag, offset, NULL); 14559 #ifdef DEBUG 14560 if (error != 0) { 14561 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 14562 "nfs4_register_lock_locally: could not register with" 14563 " local locking")); 14564 NFS4_DEBUG(nfs4_client_lock_debug, (CE_CONT, 14565 "error %d, vp 0x%p, pid %d, sysid 0x%x", 14566 error, (void *)vp, flk->l_pid, flk->l_sysid)); 14567 NFS4_DEBUG(nfs4_client_lock_debug, (CE_CONT, 14568 "type %d off 0x%" PRIx64 " len 0x%" PRIx64, 14569 flk->l_type, flk->l_start, flk->l_len)); 14570 (void) reclock(vp, flk, 0, flag, offset, NULL); 14571 NFS4_DEBUG(nfs4_client_lock_debug, (CE_CONT, 14572 "blocked by pid %d sysid 0x%x type %d " 14573 "off 0x%" PRIx64 " len 0x%" PRIx64, 14574 flk->l_pid, flk->l_sysid, flk->l_type, flk->l_start, 14575 flk->l_len)); 14576 } 14577 #endif 14578 flk->l_sysid = oldsysid; 14579 } 14580 14581 /* 14582 * nfs4_lockrelease: 14583 * 14584 * Release any locks on the given vnode that are held by the current 14585 * process. Also removes the lock owner (if one exists) from the rnode's 14586 * list. 14587 */ 14588 static int 14589 nfs4_lockrelease(vnode_t *vp, int flag, offset_t offset, cred_t *cr) 14590 { 14591 flock64_t ld; 14592 int ret, error; 14593 rnode4_t *rp; 14594 nfs4_lock_owner_t *lop; 14595 nfs4_recov_state_t recov_state; 14596 mntinfo4_t *mi; 14597 bool_t possible_orphan = FALSE; 14598 bool_t recovonly; 14599 14600 ASSERT((uintptr_t)vp > KERNELBASE); 14601 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 14602 14603 rp = VTOR4(vp); 14604 mi = VTOMI4(vp); 14605 14606 /* 14607 * If we have not locked anything then we can 14608 * just return since we have no work to do. 14609 */ 14610 if (rp->r_lo_head.lo_next_rnode == &rp->r_lo_head) { 14611 return (0); 14612 } 14613 14614 /* 14615 * We need to comprehend that another thread may 14616 * kick off recovery and the lock_owner we have stashed 14617 * in lop might be invalid so we should NOT cache it 14618 * locally! 14619 */ 14620 recov_state.rs_flags = 0; 14621 recov_state.rs_num_retry_despite_err = 0; 14622 error = nfs4_start_fop(mi, vp, NULL, OH_LOCKU, &recov_state, 14623 &recovonly); 14624 if (error) { 14625 mutex_enter(&rp->r_statelock); 14626 rp->r_flags |= R4LODANGLERS; 14627 mutex_exit(&rp->r_statelock); 14628 return (error); 14629 } 14630 14631 lop = find_lock_owner(rp, curproc->p_pid, LOWN_ANY); 14632 14633 /* 14634 * Check if the lock owner might have a lock (request was sent but 14635 * no response was received). Also check if there are any remote 14636 * locks on the file. (In theory we shouldn't have to make this 14637 * second check if there's no lock owner, but for now we'll be 14638 * conservative and do it anyway.) If either condition is true, 14639 * send an unlock for the entire file to the server. 14640 * 14641 * Note that no explicit synchronization is needed here. At worst, 14642 * flk_has_remote_locks() will return a false positive, in which case 14643 * the unlock call wastes time but doesn't harm correctness. 14644 */ 14645 14646 if (lop) { 14647 mutex_enter(&lop->lo_lock); 14648 possible_orphan = lop->lo_pending_rqsts; 14649 mutex_exit(&lop->lo_lock); 14650 lock_owner_rele(lop); 14651 } 14652 14653 nfs4_end_fop(mi, vp, NULL, OH_LOCKU, &recov_state, 0); 14654 14655 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 14656 "nfs4_lockrelease: possible orphan %d, remote locks %d, for " 14657 "lop %p.", possible_orphan, flk_has_remote_locks(vp), 14658 (void *)lop)); 14659 14660 if (possible_orphan || flk_has_remote_locks(vp)) { 14661 ld.l_type = F_UNLCK; /* set to unlock entire file */ 14662 ld.l_whence = 0; /* unlock from start of file */ 14663 ld.l_start = 0; 14664 ld.l_len = 0; /* do entire file */ 14665 14666 ret = VOP_FRLOCK(vp, F_SETLK, &ld, flag, offset, NULL, 14667 cr, NULL); 14668 14669 if (ret != 0) { 14670 /* 14671 * If VOP_FRLOCK fails, make sure we unregister 14672 * local locks before we continue. 14673 */ 14674 ld.l_pid = ttoproc(curthread)->p_pid; 14675 nfs4_register_lock_locally(vp, &ld, flag, offset); 14676 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 14677 "nfs4_lockrelease: lock release error on vp" 14678 " %p: error %d.\n", (void *)vp, ret)); 14679 } 14680 } 14681 14682 recov_state.rs_flags = 0; 14683 recov_state.rs_num_retry_despite_err = 0; 14684 error = nfs4_start_fop(mi, vp, NULL, OH_LOCKU, &recov_state, 14685 &recovonly); 14686 if (error) { 14687 mutex_enter(&rp->r_statelock); 14688 rp->r_flags |= R4LODANGLERS; 14689 mutex_exit(&rp->r_statelock); 14690 return (error); 14691 } 14692 14693 /* 14694 * So, here we're going to need to retrieve the lock-owner 14695 * again (in case recovery has done a switch-a-roo) and 14696 * remove it because we can. 14697 */ 14698 lop = find_lock_owner(rp, curproc->p_pid, LOWN_ANY); 14699 14700 if (lop) { 14701 nfs4_rnode_remove_lock_owner(rp, lop); 14702 lock_owner_rele(lop); 14703 } 14704 14705 nfs4_end_fop(mi, vp, NULL, OH_LOCKU, &recov_state, 0); 14706 return (0); 14707 } 14708 14709 /* 14710 * Wait for 'tick_delay' clock ticks. 14711 * Implement exponential backoff until hit the lease_time of this nfs4_server. 14712 * NOTE: lock_lease_time is in seconds. 14713 * 14714 * XXX For future improvements, should implement a waiting queue scheme. 14715 */ 14716 static int 14717 nfs4_block_and_wait(clock_t *tick_delay, rnode4_t *rp) 14718 { 14719 long milliseconds_delay; 14720 time_t lock_lease_time; 14721 14722 /* wait tick_delay clock ticks or siginteruptus */ 14723 if (delay_sig(*tick_delay)) { 14724 return (EINTR); 14725 } 14726 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, "nfs4_block_and_wait: " 14727 "reissue the lock request: blocked for %ld clock ticks: %ld " 14728 "milliseconds", *tick_delay, drv_hztousec(*tick_delay) / 1000)); 14729 14730 /* get the lease time */ 14731 lock_lease_time = r2lease_time(rp); 14732 14733 /* drv_hztousec converts ticks to microseconds */ 14734 milliseconds_delay = drv_hztousec(*tick_delay) / 1000; 14735 if (milliseconds_delay < lock_lease_time * 1000) { 14736 *tick_delay = 2 * *tick_delay; 14737 if (drv_hztousec(*tick_delay) > lock_lease_time * 1000 * 1000) 14738 *tick_delay = drv_usectohz(lock_lease_time*1000*1000); 14739 } 14740 return (0); 14741 } 14742 14743 14744 void 14745 nfs4_vnops_init(void) 14746 { 14747 } 14748 14749 void 14750 nfs4_vnops_fini(void) 14751 { 14752 } 14753 14754 /* 14755 * Return a reference to the directory (parent) vnode for a given vnode, 14756 * using the saved pathname information and the directory file handle. The 14757 * caller is responsible for disposing of the reference. 14758 * Returns zero or an errno value. 14759 * 14760 * Caller should set need_start_op to FALSE if it is the recovery 14761 * thread, or if a start_fop has already been done. Otherwise, TRUE. 14762 */ 14763 int 14764 vtodv(vnode_t *vp, vnode_t **dvpp, cred_t *cr, bool_t need_start_op) 14765 { 14766 svnode_t *svnp; 14767 vnode_t *dvp = NULL; 14768 servinfo4_t *svp; 14769 nfs4_fname_t *mfname; 14770 int error; 14771 14772 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 14773 14774 if (vp->v_flag & VROOT) { 14775 nfs4_sharedfh_t *sfh; 14776 nfs_fh4 fh; 14777 mntinfo4_t *mi; 14778 14779 ASSERT(vp->v_type == VREG); 14780 14781 mi = VTOMI4(vp); 14782 svp = mi->mi_curr_serv; 14783 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0); 14784 fh.nfs_fh4_len = svp->sv_pfhandle.fh_len; 14785 fh.nfs_fh4_val = svp->sv_pfhandle.fh_buf; 14786 sfh = sfh4_get(&fh, VTOMI4(vp)); 14787 nfs_rw_exit(&svp->sv_lock); 14788 mfname = mi->mi_fname; 14789 fn_hold(mfname); 14790 dvp = makenfs4node_by_fh(sfh, NULL, &mfname, NULL, mi, cr, 0); 14791 sfh4_rele(&sfh); 14792 14793 if (dvp->v_type == VNON) 14794 dvp->v_type = VDIR; 14795 *dvpp = dvp; 14796 return (0); 14797 } 14798 14799 svnp = VTOSV(vp); 14800 14801 if (svnp == NULL) { 14802 NFS4_DEBUG(nfs4_client_shadow_debug, (CE_NOTE, "vtodv: " 14803 "shadow node is NULL")); 14804 return (EINVAL); 14805 } 14806 14807 if (svnp->sv_name == NULL || svnp->sv_dfh == NULL) { 14808 NFS4_DEBUG(nfs4_client_shadow_debug, (CE_NOTE, "vtodv: " 14809 "shadow node name or dfh val == NULL")); 14810 return (EINVAL); 14811 } 14812 14813 error = nfs4_make_dotdot(svnp->sv_dfh, 0, vp, cr, &dvp, 14814 (int)need_start_op); 14815 if (error != 0) { 14816 NFS4_DEBUG(nfs4_client_shadow_debug, (CE_NOTE, "vtodv: " 14817 "nfs4_make_dotdot returned %d", error)); 14818 return (error); 14819 } 14820 if (!dvp) { 14821 NFS4_DEBUG(nfs4_client_shadow_debug, (CE_NOTE, "vtodv: " 14822 "nfs4_make_dotdot returned a NULL dvp")); 14823 return (EIO); 14824 } 14825 if (dvp->v_type == VNON) 14826 dvp->v_type = VDIR; 14827 ASSERT(dvp->v_type == VDIR); 14828 if (VTOR4(vp)->r_flags & R4ISXATTR) { 14829 mutex_enter(&dvp->v_lock); 14830 dvp->v_flag |= V_XATTRDIR; 14831 mutex_exit(&dvp->v_lock); 14832 } 14833 *dvpp = dvp; 14834 return (0); 14835 } 14836 14837 /* 14838 * Copy the (final) component name of vp to fnamep. maxlen is the maximum 14839 * length that fnamep can accept, including the trailing null. 14840 * Returns 0 if okay, returns an errno value if there was a problem. 14841 */ 14842 14843 int 14844 vtoname(vnode_t *vp, char *fnamep, ssize_t maxlen) 14845 { 14846 char *fn; 14847 int err = 0; 14848 servinfo4_t *svp; 14849 svnode_t *shvp; 14850 14851 /* 14852 * If the file being opened has VROOT set, then this is 14853 * a "file" mount. sv_name will not be interesting, so 14854 * go back to the servinfo4 to get the original mount 14855 * path and strip off all but the final edge. Otherwise 14856 * just return the name from the shadow vnode. 14857 */ 14858 14859 if (vp->v_flag & VROOT) { 14860 14861 svp = VTOMI4(vp)->mi_curr_serv; 14862 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0); 14863 14864 fn = strrchr(svp->sv_path, '/'); 14865 if (fn == NULL) 14866 err = EINVAL; 14867 else 14868 fn++; 14869 } else { 14870 shvp = VTOSV(vp); 14871 fn = fn_name(shvp->sv_name); 14872 } 14873 14874 if (err == 0) 14875 if (strlen(fn) < maxlen) 14876 (void) strcpy(fnamep, fn); 14877 else 14878 err = ENAMETOOLONG; 14879 14880 if (vp->v_flag & VROOT) 14881 nfs_rw_exit(&svp->sv_lock); 14882 else 14883 kmem_free(fn, MAXNAMELEN); 14884 14885 return (err); 14886 } 14887 14888 /* 14889 * Bookkeeping for a close that doesn't need to go over the wire. 14890 * *have_lockp is set to 0 if 'os_sync_lock' is released; otherwise 14891 * it is left at 1. 14892 */ 14893 void 14894 nfs4close_notw(vnode_t *vp, nfs4_open_stream_t *osp, int *have_lockp) 14895 { 14896 rnode4_t *rp; 14897 mntinfo4_t *mi; 14898 14899 mi = VTOMI4(vp); 14900 rp = VTOR4(vp); 14901 14902 NFS4_DEBUG(nfs4close_notw_debug, (CE_NOTE, "nfs4close_notw: " 14903 "rp=%p osp=%p", (void *)rp, (void *)osp)); 14904 ASSERT(nfs_zone() == mi->mi_zone); 14905 ASSERT(mutex_owned(&osp->os_sync_lock)); 14906 ASSERT(*have_lockp); 14907 14908 if (!osp->os_valid || 14909 osp->os_open_ref_count > 0 || osp->os_mapcnt > 0) { 14910 return; 14911 } 14912 14913 /* 14914 * This removes the reference obtained at OPEN; ie, 14915 * when the open stream structure was created. 14916 * 14917 * We don't have to worry about calling 'open_stream_rele' 14918 * since we our currently holding a reference to this 14919 * open stream which means the count can not go to 0 with 14920 * this decrement. 14921 */ 14922 ASSERT(osp->os_ref_count >= 2); 14923 osp->os_ref_count--; 14924 osp->os_valid = 0; 14925 mutex_exit(&osp->os_sync_lock); 14926 *have_lockp = 0; 14927 14928 nfs4_dec_state_ref_count(mi); 14929 } 14930 14931 /* 14932 * Close all remaining open streams on the rnode. These open streams 14933 * could be here because: 14934 * - The close attempted at either close or delmap failed 14935 * - Some kernel entity did VOP_OPEN but never did VOP_CLOSE 14936 * - Someone did mknod on a regular file but never opened it 14937 */ 14938 int 14939 nfs4close_all(vnode_t *vp, cred_t *cr) 14940 { 14941 nfs4_open_stream_t *osp; 14942 int error; 14943 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 14944 rnode4_t *rp; 14945 14946 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 14947 14948 error = 0; 14949 rp = VTOR4(vp); 14950 14951 /* 14952 * At this point, all we know is that the last time 14953 * someone called vn_rele, the count was 1. Since then, 14954 * the vnode could have been re-activated. We want to 14955 * loop through the open streams and close each one, but 14956 * we have to be careful since once we release the rnode 14957 * hash bucket lock, someone else is free to come in and 14958 * re-activate the rnode and add new open streams. The 14959 * strategy is take the rnode hash bucket lock, verify that 14960 * the count is still 1, grab the open stream off the 14961 * head of the list and mark it invalid, then release the 14962 * rnode hash bucket lock and proceed with that open stream. 14963 * This is ok because nfs4close_one() will acquire the proper 14964 * open/create to close/destroy synchronization for open 14965 * streams, and will ensure that if someone has reopened 14966 * the open stream after we've dropped the hash bucket lock 14967 * then we'll just simply return without destroying the 14968 * open stream. 14969 * Repeat until the list is empty. 14970 */ 14971 14972 for (;;) { 14973 14974 /* make sure vnode hasn't been reactivated */ 14975 rw_enter(&rp->r_hashq->r_lock, RW_READER); 14976 mutex_enter(&vp->v_lock); 14977 if (vp->v_count > 1) { 14978 mutex_exit(&vp->v_lock); 14979 rw_exit(&rp->r_hashq->r_lock); 14980 break; 14981 } 14982 /* 14983 * Grabbing r_os_lock before releasing v_lock prevents 14984 * a window where the rnode/open stream could get 14985 * reactivated (and os_force_close set to 0) before we 14986 * had a chance to set os_force_close to 1. 14987 */ 14988 mutex_enter(&rp->r_os_lock); 14989 mutex_exit(&vp->v_lock); 14990 14991 osp = list_head(&rp->r_open_streams); 14992 if (!osp) { 14993 /* nothing left to CLOSE OTW, so return */ 14994 mutex_exit(&rp->r_os_lock); 14995 rw_exit(&rp->r_hashq->r_lock); 14996 break; 14997 } 14998 14999 mutex_enter(&rp->r_statev4_lock); 15000 /* the file can't still be mem mapped */ 15001 ASSERT(rp->r_mapcnt == 0); 15002 if (rp->created_v4) 15003 rp->created_v4 = 0; 15004 mutex_exit(&rp->r_statev4_lock); 15005 15006 /* 15007 * Grab a ref on this open stream; nfs4close_one 15008 * will mark it as invalid 15009 */ 15010 mutex_enter(&osp->os_sync_lock); 15011 osp->os_ref_count++; 15012 osp->os_force_close = 1; 15013 mutex_exit(&osp->os_sync_lock); 15014 mutex_exit(&rp->r_os_lock); 15015 rw_exit(&rp->r_hashq->r_lock); 15016 15017 nfs4close_one(vp, osp, cr, 0, NULL, &e, CLOSE_FORCE, 0, 0, 0); 15018 15019 /* Update error if it isn't already non-zero */ 15020 if (error == 0) { 15021 if (e.error) 15022 error = e.error; 15023 else if (e.stat) 15024 error = geterrno4(e.stat); 15025 } 15026 15027 #ifdef DEBUG 15028 nfs4close_all_cnt++; 15029 #endif 15030 /* Release the ref on osp acquired above. */ 15031 open_stream_rele(osp, rp); 15032 15033 /* Proceed to the next open stream, if any */ 15034 } 15035 return (error); 15036 } 15037 15038 /* 15039 * nfs4close_one - close one open stream for a file if needed. 15040 * 15041 * "close_type" indicates which close path this is: 15042 * CLOSE_NORM: close initiated via VOP_CLOSE. 15043 * CLOSE_DELMAP: close initiated via VOP_DELMAP. 15044 * CLOSE_FORCE: close initiated via VOP_INACTIVE. This path forces 15045 * the close and release of client state for this open stream 15046 * (unless someone else has the open stream open). 15047 * CLOSE_RESEND: indicates the request is a replay of an earlier request 15048 * (e.g., due to abort because of a signal). 15049 * CLOSE_AFTER_RESEND: close initiated to "undo" a successful resent OPEN. 15050 * 15051 * CLOSE_RESEND and CLOSE_AFTER_RESEND will not attempt to retry after client 15052 * recovery. Instead, the caller is expected to deal with retries. 15053 * 15054 * The caller can either pass in the osp ('provided_osp') or not. 15055 * 15056 * 'access_bits' represents the access we are closing/downgrading. 15057 * 15058 * 'len', 'prot', and 'mmap_flags' are used for CLOSE_DELMAP. 'len' is the 15059 * number of bytes we are unmapping, 'maxprot' is the mmap protection, and 15060 * 'mmap_flags' tells us the type of sharing (MAP_PRIVATE or MAP_SHARED). 15061 * 15062 * Errors are returned via the nfs4_error_t. 15063 */ 15064 void 15065 nfs4close_one(vnode_t *vp, nfs4_open_stream_t *provided_osp, cred_t *cr, 15066 int access_bits, nfs4_lost_rqst_t *lrp, nfs4_error_t *ep, 15067 nfs4_close_type_t close_type, size_t len, uint_t maxprot, 15068 uint_t mmap_flags) 15069 { 15070 nfs4_open_owner_t *oop; 15071 nfs4_open_stream_t *osp = NULL; 15072 int retry = 0; 15073 int num_retries = NFS4_NUM_RECOV_RETRIES; 15074 rnode4_t *rp; 15075 mntinfo4_t *mi; 15076 nfs4_recov_state_t recov_state; 15077 cred_t *cred_otw = NULL; 15078 bool_t recovonly = FALSE; 15079 int isrecov; 15080 int force_close; 15081 int close_failed = 0; 15082 int did_dec_count = 0; 15083 int did_start_op = 0; 15084 int did_force_recovlock = 0; 15085 int did_start_seqid_sync = 0; 15086 int have_sync_lock = 0; 15087 15088 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 15089 15090 NFS4_DEBUG(nfs4close_one_debug, (CE_NOTE, "closing vp %p osp %p, " 15091 "lrp %p, close type %d len %ld prot %x mmap flags %x bits %x", 15092 (void *)vp, (void *)provided_osp, (void *)lrp, close_type, 15093 len, maxprot, mmap_flags, access_bits)); 15094 15095 nfs4_error_zinit(ep); 15096 rp = VTOR4(vp); 15097 mi = VTOMI4(vp); 15098 isrecov = (close_type == CLOSE_RESEND || 15099 close_type == CLOSE_AFTER_RESEND); 15100 15101 /* 15102 * First get the open owner. 15103 */ 15104 if (!provided_osp) { 15105 oop = find_open_owner(cr, NFS4_PERM_CREATED, mi); 15106 } else { 15107 oop = provided_osp->os_open_owner; 15108 ASSERT(oop != NULL); 15109 open_owner_hold(oop); 15110 } 15111 15112 if (!oop) { 15113 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 15114 "nfs4close_one: no oop, rp %p, mi %p, cr %p, osp %p, " 15115 "close type %d", (void *)rp, (void *)mi, (void *)cr, 15116 (void *)provided_osp, close_type)); 15117 ep->error = EIO; 15118 goto out; 15119 } 15120 15121 cred_otw = nfs4_get_otw_cred(cr, mi, oop); 15122 recov_retry: 15123 osp = NULL; 15124 close_failed = 0; 15125 force_close = (close_type == CLOSE_FORCE); 15126 retry = 0; 15127 did_start_op = 0; 15128 did_force_recovlock = 0; 15129 did_start_seqid_sync = 0; 15130 have_sync_lock = 0; 15131 recovonly = FALSE; 15132 recov_state.rs_flags = 0; 15133 recov_state.rs_num_retry_despite_err = 0; 15134 15135 /* 15136 * Second synchronize with recovery. 15137 */ 15138 if (!isrecov) { 15139 ep->error = nfs4_start_fop(mi, vp, NULL, OH_CLOSE, 15140 &recov_state, &recovonly); 15141 if (!ep->error) { 15142 did_start_op = 1; 15143 } else { 15144 close_failed = 1; 15145 /* 15146 * If we couldn't get start_fop, but have to 15147 * cleanup state, then at least acquire the 15148 * mi_recovlock so we can synchronize with 15149 * recovery. 15150 */ 15151 if (close_type == CLOSE_FORCE) { 15152 (void) nfs_rw_enter_sig(&mi->mi_recovlock, 15153 RW_READER, FALSE); 15154 did_force_recovlock = 1; 15155 } else 15156 goto out; 15157 } 15158 } 15159 15160 /* 15161 * We cannot attempt to get the open seqid sync if nfs4_start_fop 15162 * set 'recovonly' to TRUE since most likely this is due to 15163 * reovery being active (MI4_RECOV_ACTIV). If recovery is active, 15164 * nfs4_start_open_seqid_sync() will fail with EAGAIN asking us 15165 * to retry, causing us to loop until recovery finishes. Plus we 15166 * don't need protection over the open seqid since we're not going 15167 * OTW, hence don't need to use the seqid. 15168 */ 15169 if (recovonly == FALSE) { 15170 /* need to grab the open owner sync before 'os_sync_lock' */ 15171 ep->error = nfs4_start_open_seqid_sync(oop, mi); 15172 if (ep->error == EAGAIN) { 15173 ASSERT(!isrecov); 15174 if (did_start_op) 15175 nfs4_end_fop(mi, vp, NULL, OH_CLOSE, 15176 &recov_state, TRUE); 15177 if (did_force_recovlock) 15178 nfs_rw_exit(&mi->mi_recovlock); 15179 goto recov_retry; 15180 } 15181 did_start_seqid_sync = 1; 15182 } 15183 15184 /* 15185 * Third get an open stream and acquire 'os_sync_lock' to 15186 * sychronize the opening/creating of an open stream with the 15187 * closing/destroying of an open stream. 15188 */ 15189 if (!provided_osp) { 15190 /* returns with 'os_sync_lock' held */ 15191 osp = find_open_stream(oop, rp); 15192 if (!osp) { 15193 ep->error = EIO; 15194 goto out; 15195 } 15196 } else { 15197 osp = provided_osp; 15198 open_stream_hold(osp); 15199 mutex_enter(&osp->os_sync_lock); 15200 } 15201 have_sync_lock = 1; 15202 15203 ASSERT(oop == osp->os_open_owner); 15204 15205 /* 15206 * Fourth, do any special pre-OTW CLOSE processing 15207 * based on the specific close type. 15208 */ 15209 if ((close_type == CLOSE_NORM || close_type == CLOSE_AFTER_RESEND) && 15210 !did_dec_count) { 15211 ASSERT(osp->os_open_ref_count > 0); 15212 osp->os_open_ref_count--; 15213 did_dec_count = 1; 15214 if (osp->os_open_ref_count == 0) 15215 osp->os_final_close = 1; 15216 } 15217 15218 if (close_type == CLOSE_FORCE) { 15219 /* see if somebody reopened the open stream. */ 15220 if (!osp->os_force_close) { 15221 NFS4_DEBUG(nfs4close_one_debug, (CE_NOTE, 15222 "nfs4close_one: skip CLOSE_FORCE as osp %p " 15223 "was reopened, vp %p", (void *)osp, (void *)vp)); 15224 ep->error = 0; 15225 ep->stat = NFS4_OK; 15226 goto out; 15227 } 15228 15229 if (!osp->os_final_close && !did_dec_count) { 15230 osp->os_open_ref_count--; 15231 did_dec_count = 1; 15232 } 15233 15234 /* 15235 * We can't depend on os_open_ref_count being 0 due to the 15236 * way executables are opened (VN_RELE to match a VOP_OPEN). 15237 */ 15238 #ifdef NOTYET 15239 ASSERT(osp->os_open_ref_count == 0); 15240 #endif 15241 if (osp->os_open_ref_count != 0) { 15242 NFS4_DEBUG(nfs4close_one_debug, (CE_NOTE, 15243 "nfs4close_one: should panic here on an " 15244 "ASSERT(osp->os_open_ref_count == 0). Ignoring " 15245 "since this is probably the exec problem.")); 15246 15247 osp->os_open_ref_count = 0; 15248 } 15249 15250 /* 15251 * There is the possibility that nfs4close_one() 15252 * for close_type == CLOSE_DELMAP couldn't find the 15253 * open stream, thus couldn't decrement its os_mapcnt; 15254 * therefore we can't use this ASSERT yet. 15255 */ 15256 #ifdef NOTYET 15257 ASSERT(osp->os_mapcnt == 0); 15258 #endif 15259 osp->os_mapcnt = 0; 15260 } 15261 15262 if (close_type == CLOSE_DELMAP && !did_dec_count) { 15263 ASSERT(osp->os_mapcnt >= btopr(len)); 15264 15265 if ((mmap_flags & MAP_SHARED) && (maxprot & PROT_WRITE)) 15266 osp->os_mmap_write -= btopr(len); 15267 if (maxprot & PROT_READ) 15268 osp->os_mmap_read -= btopr(len); 15269 if (maxprot & PROT_EXEC) 15270 osp->os_mmap_read -= btopr(len); 15271 /* mirror the PROT_NONE check in nfs4_addmap() */ 15272 if (!(maxprot & PROT_READ) && !(maxprot & PROT_WRITE) && 15273 !(maxprot & PROT_EXEC)) 15274 osp->os_mmap_read -= btopr(len); 15275 osp->os_mapcnt -= btopr(len); 15276 did_dec_count = 1; 15277 } 15278 15279 if (recovonly) { 15280 nfs4_lost_rqst_t lost_rqst; 15281 15282 /* request should not already be in recovery queue */ 15283 ASSERT(lrp == NULL); 15284 nfs4_error_init(ep, EINTR); 15285 nfs4close_save_lost_rqst(ep->error, &lost_rqst, oop, 15286 osp, cred_otw, vp); 15287 mutex_exit(&osp->os_sync_lock); 15288 have_sync_lock = 0; 15289 (void) nfs4_start_recovery(ep, mi, vp, NULL, NULL, 15290 lost_rqst.lr_op == OP_CLOSE ? 15291 &lost_rqst : NULL, OP_CLOSE, NULL); 15292 close_failed = 1; 15293 force_close = 0; 15294 goto close_cleanup; 15295 } 15296 15297 /* 15298 * If a previous OTW call got NFS4ERR_BAD_SEQID, then 15299 * we stopped operating on the open owner's <old oo_name, old seqid> 15300 * space, which means we stopped operating on the open stream 15301 * too. So don't go OTW (as the seqid is likely bad, and the 15302 * stateid could be stale, potentially triggering a false 15303 * setclientid), and just clean up the client's internal state. 15304 */ 15305 if (osp->os_orig_oo_name != oop->oo_name) { 15306 NFS4_DEBUG(nfs4close_one_debug || nfs4_client_recov_debug, 15307 (CE_NOTE, "nfs4close_one: skip OTW close for osp %p " 15308 "oop %p due to bad seqid (orig oo_name %" PRIx64 " current " 15309 "oo_name %" PRIx64")", 15310 (void *)osp, (void *)oop, osp->os_orig_oo_name, 15311 oop->oo_name)); 15312 close_failed = 1; 15313 } 15314 15315 /* If the file failed recovery, just quit. */ 15316 mutex_enter(&rp->r_statelock); 15317 if (rp->r_flags & R4RECOVERR) { 15318 close_failed = 1; 15319 } 15320 mutex_exit(&rp->r_statelock); 15321 15322 /* 15323 * If the force close path failed to obtain start_fop 15324 * then skip the OTW close and just remove the state. 15325 */ 15326 if (close_failed) 15327 goto close_cleanup; 15328 15329 /* 15330 * Fifth, check to see if there are still mapped pages or other 15331 * opens using this open stream. If there are then we can't 15332 * close yet but we can see if an OPEN_DOWNGRADE is necessary. 15333 */ 15334 if (osp->os_open_ref_count > 0 || osp->os_mapcnt > 0) { 15335 nfs4_lost_rqst_t new_lost_rqst; 15336 bool_t needrecov = FALSE; 15337 cred_t *odg_cred_otw = NULL; 15338 seqid4 open_dg_seqid = 0; 15339 15340 if (osp->os_delegation) { 15341 /* 15342 * If this open stream was never OPENed OTW then we 15343 * surely can't DOWNGRADE it (especially since the 15344 * osp->open_stateid is really a delegation stateid 15345 * when os_delegation is 1). 15346 */ 15347 if (access_bits & FREAD) 15348 osp->os_share_acc_read--; 15349 if (access_bits & FWRITE) 15350 osp->os_share_acc_write--; 15351 osp->os_share_deny_none--; 15352 nfs4_error_zinit(ep); 15353 goto out; 15354 } 15355 nfs4_open_downgrade(access_bits, 0, oop, osp, vp, cr, 15356 lrp, ep, &odg_cred_otw, &open_dg_seqid); 15357 needrecov = nfs4_needs_recovery(ep, TRUE, mi->mi_vfsp); 15358 if (needrecov && !isrecov) { 15359 bool_t abort; 15360 nfs4_bseqid_entry_t *bsep = NULL; 15361 15362 if (!ep->error && ep->stat == NFS4ERR_BAD_SEQID) 15363 bsep = nfs4_create_bseqid_entry(oop, NULL, 15364 vp, 0, 15365 lrp ? TAG_OPEN_DG_LOST : TAG_OPEN_DG, 15366 open_dg_seqid); 15367 15368 nfs4open_dg_save_lost_rqst(ep->error, &new_lost_rqst, 15369 oop, osp, odg_cred_otw, vp, access_bits, 0); 15370 mutex_exit(&osp->os_sync_lock); 15371 have_sync_lock = 0; 15372 abort = nfs4_start_recovery(ep, mi, vp, NULL, NULL, 15373 new_lost_rqst.lr_op == OP_OPEN_DOWNGRADE ? 15374 &new_lost_rqst : NULL, OP_OPEN_DOWNGRADE, 15375 bsep); 15376 if (odg_cred_otw) 15377 crfree(odg_cred_otw); 15378 if (bsep) 15379 kmem_free(bsep, sizeof (*bsep)); 15380 15381 if (abort == TRUE) 15382 goto out; 15383 15384 if (did_start_seqid_sync) { 15385 nfs4_end_open_seqid_sync(oop); 15386 did_start_seqid_sync = 0; 15387 } 15388 open_stream_rele(osp, rp); 15389 15390 if (did_start_op) 15391 nfs4_end_fop(mi, vp, NULL, OH_CLOSE, 15392 &recov_state, FALSE); 15393 if (did_force_recovlock) 15394 nfs_rw_exit(&mi->mi_recovlock); 15395 15396 goto recov_retry; 15397 } else { 15398 if (odg_cred_otw) 15399 crfree(odg_cred_otw); 15400 } 15401 goto out; 15402 } 15403 15404 /* 15405 * If this open stream was created as the results of an open 15406 * while holding a delegation, then just release it; no need 15407 * to do an OTW close. Otherwise do a "normal" OTW close. 15408 */ 15409 if (osp->os_delegation) { 15410 nfs4close_notw(vp, osp, &have_sync_lock); 15411 nfs4_error_zinit(ep); 15412 goto out; 15413 } 15414 15415 /* 15416 * If this stream is not valid, we're done. 15417 */ 15418 if (!osp->os_valid) { 15419 nfs4_error_zinit(ep); 15420 goto out; 15421 } 15422 15423 /* 15424 * Last open or mmap ref has vanished, need to do an OTW close. 15425 * First check to see if a close is still necessary. 15426 */ 15427 if (osp->os_failed_reopen) { 15428 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 15429 "don't close OTW osp %p since reopen failed.", 15430 (void *)osp)); 15431 /* 15432 * Reopen of the open stream failed, hence the 15433 * stateid of the open stream is invalid/stale, and 15434 * sending this OTW would incorrectly cause another 15435 * round of recovery. In this case, we need to set 15436 * the 'os_valid' bit to 0 so another thread doesn't 15437 * come in and re-open this open stream before 15438 * this "closing" thread cleans up state (decrementing 15439 * the nfs4_server_t's state_ref_count and decrementing 15440 * the os_ref_count). 15441 */ 15442 osp->os_valid = 0; 15443 /* 15444 * This removes the reference obtained at OPEN; ie, 15445 * when the open stream structure was created. 15446 * 15447 * We don't have to worry about calling 'open_stream_rele' 15448 * since we our currently holding a reference to this 15449 * open stream which means the count can not go to 0 with 15450 * this decrement. 15451 */ 15452 ASSERT(osp->os_ref_count >= 2); 15453 osp->os_ref_count--; 15454 nfs4_error_zinit(ep); 15455 close_failed = 0; 15456 goto close_cleanup; 15457 } 15458 15459 ASSERT(osp->os_ref_count > 1); 15460 15461 /* 15462 * Sixth, try the CLOSE OTW. 15463 */ 15464 nfs4close_otw(rp, cred_otw, oop, osp, &retry, &did_start_seqid_sync, 15465 close_type, ep, &have_sync_lock); 15466 15467 if (ep->error == EINTR || NFS4_FRC_UNMT_ERR(ep->error, vp->v_vfsp)) { 15468 /* 15469 * Let the recovery thread be responsible for 15470 * removing the state for CLOSE. 15471 */ 15472 close_failed = 1; 15473 force_close = 0; 15474 retry = 0; 15475 } 15476 15477 /* See if we need to retry with a different cred */ 15478 if ((ep->error == EACCES || 15479 (ep->error == 0 && ep->stat == NFS4ERR_ACCESS)) && 15480 cred_otw != cr) { 15481 crfree(cred_otw); 15482 cred_otw = cr; 15483 crhold(cred_otw); 15484 retry = 1; 15485 } 15486 15487 if (ep->error || ep->stat) 15488 close_failed = 1; 15489 15490 if (retry && !isrecov && num_retries-- > 0) { 15491 if (have_sync_lock) { 15492 mutex_exit(&osp->os_sync_lock); 15493 have_sync_lock = 0; 15494 } 15495 if (did_start_seqid_sync) { 15496 nfs4_end_open_seqid_sync(oop); 15497 did_start_seqid_sync = 0; 15498 } 15499 open_stream_rele(osp, rp); 15500 15501 if (did_start_op) 15502 nfs4_end_fop(mi, vp, NULL, OH_CLOSE, 15503 &recov_state, FALSE); 15504 if (did_force_recovlock) 15505 nfs_rw_exit(&mi->mi_recovlock); 15506 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 15507 "nfs4close_one: need to retry the close " 15508 "operation")); 15509 goto recov_retry; 15510 } 15511 close_cleanup: 15512 /* 15513 * Seventh and lastly, process our results. 15514 */ 15515 if (close_failed && force_close) { 15516 /* 15517 * It's ok to drop and regrab the 'os_sync_lock' since 15518 * nfs4close_notw() will recheck to make sure the 15519 * "close"/removal of state should happen. 15520 */ 15521 if (!have_sync_lock) { 15522 mutex_enter(&osp->os_sync_lock); 15523 have_sync_lock = 1; 15524 } 15525 /* 15526 * This is last call, remove the ref on the open 15527 * stream created by open and clean everything up. 15528 */ 15529 osp->os_pending_close = 0; 15530 nfs4close_notw(vp, osp, &have_sync_lock); 15531 nfs4_error_zinit(ep); 15532 } 15533 15534 if (!close_failed) { 15535 if (have_sync_lock) { 15536 osp->os_pending_close = 0; 15537 mutex_exit(&osp->os_sync_lock); 15538 have_sync_lock = 0; 15539 } else { 15540 mutex_enter(&osp->os_sync_lock); 15541 osp->os_pending_close = 0; 15542 mutex_exit(&osp->os_sync_lock); 15543 } 15544 if (did_start_op && recov_state.rs_sp != NULL) { 15545 mutex_enter(&recov_state.rs_sp->s_lock); 15546 nfs4_dec_state_ref_count_nolock(recov_state.rs_sp, mi); 15547 mutex_exit(&recov_state.rs_sp->s_lock); 15548 } else { 15549 nfs4_dec_state_ref_count(mi); 15550 } 15551 nfs4_error_zinit(ep); 15552 } 15553 15554 out: 15555 if (have_sync_lock) 15556 mutex_exit(&osp->os_sync_lock); 15557 if (did_start_op) 15558 nfs4_end_fop(mi, vp, NULL, OH_CLOSE, &recov_state, 15559 recovonly ? TRUE : FALSE); 15560 if (did_force_recovlock) 15561 nfs_rw_exit(&mi->mi_recovlock); 15562 if (cred_otw) 15563 crfree(cred_otw); 15564 if (osp) 15565 open_stream_rele(osp, rp); 15566 if (oop) { 15567 if (did_start_seqid_sync) 15568 nfs4_end_open_seqid_sync(oop); 15569 open_owner_rele(oop); 15570 } 15571 } 15572 15573 /* 15574 * Convert information returned by the server in the LOCK4denied 15575 * structure to the form required by fcntl. 15576 */ 15577 static void 15578 denied_to_flk(LOCK4denied *lockt_denied, flock64_t *flk, LOCKT4args *lockt_args) 15579 { 15580 nfs4_lo_name_t *lo; 15581 15582 #ifdef DEBUG 15583 if (denied_to_flk_debug) { 15584 lockt_denied_debug = lockt_denied; 15585 debug_enter("lockt_denied"); 15586 } 15587 #endif 15588 15589 flk->l_type = lockt_denied->locktype == READ_LT ? F_RDLCK : F_WRLCK; 15590 flk->l_whence = 0; /* aka SEEK_SET */ 15591 flk->l_start = lockt_denied->offset; 15592 flk->l_len = lockt_denied->length; 15593 15594 /* 15595 * If the blocking clientid matches our client id, then we can 15596 * interpret the lockowner (since we built it). If not, then 15597 * fabricate a sysid and pid. Note that the l_sysid field 15598 * in *flk already has the local sysid. 15599 */ 15600 15601 if (lockt_denied->owner.clientid == lockt_args->owner.clientid) { 15602 15603 if (lockt_denied->owner.owner_len == sizeof (*lo)) { 15604 lo = (nfs4_lo_name_t *) 15605 lockt_denied->owner.owner_val; 15606 15607 flk->l_pid = lo->ln_pid; 15608 } else { 15609 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 15610 "denied_to_flk: bad lock owner length\n")); 15611 15612 flk->l_pid = lo_to_pid(&lockt_denied->owner); 15613 } 15614 } else { 15615 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 15616 "denied_to_flk: foreign clientid\n")); 15617 15618 /* 15619 * Construct a new sysid which should be different from 15620 * sysids of other systems. 15621 */ 15622 15623 flk->l_sysid++; 15624 flk->l_pid = lo_to_pid(&lockt_denied->owner); 15625 } 15626 } 15627 15628 static pid_t 15629 lo_to_pid(lock_owner4 *lop) 15630 { 15631 pid_t pid = 0; 15632 uchar_t *cp; 15633 int i; 15634 15635 cp = (uchar_t *)&lop->clientid; 15636 15637 for (i = 0; i < sizeof (lop->clientid); i++) 15638 pid += (pid_t)*cp++; 15639 15640 cp = (uchar_t *)lop->owner_val; 15641 15642 for (i = 0; i < lop->owner_len; i++) 15643 pid += (pid_t)*cp++; 15644 15645 return (pid); 15646 } 15647 15648 /* 15649 * Given a lock pointer, returns the length of that lock. 15650 * "end" is the last locked offset the "l_len" covers from 15651 * the start of the lock. 15652 */ 15653 static off64_t 15654 lock_to_end(flock64_t *lock) 15655 { 15656 off64_t lock_end; 15657 15658 if (lock->l_len == 0) 15659 lock_end = (off64_t)MAXEND; 15660 else 15661 lock_end = lock->l_start + lock->l_len - 1; 15662 15663 return (lock_end); 15664 } 15665 15666 /* 15667 * Given the end of a lock, it will return you the length "l_len" for that lock. 15668 */ 15669 static off64_t 15670 end_to_len(off64_t start, off64_t end) 15671 { 15672 off64_t lock_len; 15673 15674 ASSERT(end >= start); 15675 if (end == MAXEND) 15676 lock_len = 0; 15677 else 15678 lock_len = end - start + 1; 15679 15680 return (lock_len); 15681 } 15682 15683 /* 15684 * On given end for a lock it determines if it is the last locked offset 15685 * or not, if so keeps it as is, else adds one to return the length for 15686 * valid start. 15687 */ 15688 static off64_t 15689 start_check(off64_t x) 15690 { 15691 if (x == MAXEND) 15692 return (x); 15693 else 15694 return (x + 1); 15695 } 15696 15697 /* 15698 * See if these two locks overlap, and if so return 1; 15699 * otherwise, return 0. 15700 */ 15701 static int 15702 locks_intersect(flock64_t *llfp, flock64_t *curfp) 15703 { 15704 off64_t llfp_end, curfp_end; 15705 15706 llfp_end = lock_to_end(llfp); 15707 curfp_end = lock_to_end(curfp); 15708 15709 if (((llfp_end >= curfp->l_start) && 15710 (llfp->l_start <= curfp->l_start)) || 15711 ((curfp->l_start <= llfp->l_start) && (curfp_end >= llfp->l_start))) 15712 return (1); 15713 return (0); 15714 } 15715 15716 /* 15717 * Determine what the intersecting lock region is, and add that to the 15718 * 'nl_llpp' locklist in increasing order (by l_start). 15719 */ 15720 static void 15721 nfs4_add_lock_range(flock64_t *lost_flp, flock64_t *local_flp, 15722 locklist_t **nl_llpp, vnode_t *vp) 15723 { 15724 locklist_t *intersect_llp, *tmp_fllp, *cur_fllp; 15725 off64_t lost_flp_end, local_flp_end, len, start; 15726 15727 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE, "nfs4_add_lock_range:")); 15728 15729 if (!locks_intersect(lost_flp, local_flp)) 15730 return; 15731 15732 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE, "nfs4_add_lock_range: " 15733 "locks intersect")); 15734 15735 lost_flp_end = lock_to_end(lost_flp); 15736 local_flp_end = lock_to_end(local_flp); 15737 15738 /* Find the starting point of the intersecting region */ 15739 if (local_flp->l_start > lost_flp->l_start) 15740 start = local_flp->l_start; 15741 else 15742 start = lost_flp->l_start; 15743 15744 /* Find the lenght of the intersecting region */ 15745 if (lost_flp_end < local_flp_end) 15746 len = end_to_len(start, lost_flp_end); 15747 else 15748 len = end_to_len(start, local_flp_end); 15749 15750 /* 15751 * Prepare the flock structure for the intersection found and insert 15752 * it into the new list in increasing l_start order. This list contains 15753 * intersections of locks registered by the client with the local host 15754 * and the lost lock. 15755 * The lock type of this lock is the same as that of the local_flp. 15756 */ 15757 intersect_llp = (locklist_t *)kmem_alloc(sizeof (locklist_t), KM_SLEEP); 15758 intersect_llp->ll_flock.l_start = start; 15759 intersect_llp->ll_flock.l_len = len; 15760 intersect_llp->ll_flock.l_type = local_flp->l_type; 15761 intersect_llp->ll_flock.l_pid = local_flp->l_pid; 15762 intersect_llp->ll_flock.l_sysid = local_flp->l_sysid; 15763 intersect_llp->ll_flock.l_whence = 0; /* aka SEEK_SET */ 15764 intersect_llp->ll_vp = vp; 15765 15766 tmp_fllp = *nl_llpp; 15767 cur_fllp = NULL; 15768 while (tmp_fllp != NULL && tmp_fllp->ll_flock.l_start < 15769 intersect_llp->ll_flock.l_start) { 15770 cur_fllp = tmp_fllp; 15771 tmp_fllp = tmp_fllp->ll_next; 15772 } 15773 if (cur_fllp == NULL) { 15774 /* first on the list */ 15775 intersect_llp->ll_next = *nl_llpp; 15776 *nl_llpp = intersect_llp; 15777 } else { 15778 intersect_llp->ll_next = cur_fllp->ll_next; 15779 cur_fllp->ll_next = intersect_llp; 15780 } 15781 15782 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE, "nfs4_add_lock_range: " 15783 "created lock region: start %"PRIx64" end %"PRIx64" : %s\n", 15784 intersect_llp->ll_flock.l_start, 15785 intersect_llp->ll_flock.l_start + intersect_llp->ll_flock.l_len, 15786 intersect_llp->ll_flock.l_type == F_RDLCK ? "READ" : "WRITE")); 15787 } 15788 15789 /* 15790 * Our local locking current state is potentially different than 15791 * what the NFSv4 server thinks we have due to a lost lock that was 15792 * resent and then received. We need to reset our "NFSv4" locking 15793 * state to match the current local locking state for this pid since 15794 * that is what the user/application sees as what the world is. 15795 * 15796 * We cannot afford to drop the open/lock seqid sync since then we can 15797 * get confused about what the current local locking state "is" versus 15798 * "was". 15799 * 15800 * If we are unable to fix up the locks, we send SIGLOST to the affected 15801 * process. This is not done if the filesystem has been forcibly 15802 * unmounted, in case the process has already exited and a new process 15803 * exists with the same pid. 15804 */ 15805 static void 15806 nfs4_reinstitute_local_lock_state(vnode_t *vp, flock64_t *lost_flp, cred_t *cr, 15807 nfs4_lock_owner_t *lop) 15808 { 15809 locklist_t *locks, *llp, *ri_llp, *tmp_llp; 15810 mntinfo4_t *mi = VTOMI4(vp); 15811 const int cmd = F_SETLK; 15812 off64_t cur_start, llp_ll_flock_end, lost_flp_end; 15813 flock64_t ul_fl; 15814 15815 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE, 15816 "nfs4_reinstitute_local_lock_state")); 15817 15818 /* 15819 * Find active locks for this vp from the local locking code. 15820 * Scan through this list and find out the locks that intersect with 15821 * the lost lock. Once we find the lock that intersects, add the 15822 * intersection area as a new lock to a new list "ri_llp". The lock 15823 * type of the intersection region lock added to ri_llp is the same 15824 * as that found in the active lock list, "list". The intersecting 15825 * region locks are added to ri_llp in increasing l_start order. 15826 */ 15827 ASSERT(nfs_zone() == mi->mi_zone); 15828 15829 locks = flk_active_locks_for_vp(vp); 15830 ri_llp = NULL; 15831 15832 for (llp = locks; llp != NULL; llp = llp->ll_next) { 15833 ASSERT(llp->ll_vp == vp); 15834 /* 15835 * Pick locks that belong to this pid/lockowner 15836 */ 15837 if (llp->ll_flock.l_pid != lost_flp->l_pid) 15838 continue; 15839 15840 nfs4_add_lock_range(lost_flp, &llp->ll_flock, &ri_llp, vp); 15841 } 15842 15843 /* 15844 * Now we have the list of intersections with the lost lock. These are 15845 * the locks that were/are active before the server replied to the 15846 * last/lost lock. Issue these locks to the server here. Playing these 15847 * locks to the server will re-establish aur current local locking state 15848 * with the v4 server. 15849 * If we get an error, send SIGLOST to the application for that lock. 15850 */ 15851 15852 for (llp = ri_llp; llp != NULL; llp = llp->ll_next) { 15853 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE, 15854 "nfs4_reinstitute_local_lock_state: need to issue " 15855 "flock: [%"PRIx64" - %"PRIx64"] : %s", 15856 llp->ll_flock.l_start, 15857 llp->ll_flock.l_start + llp->ll_flock.l_len, 15858 llp->ll_flock.l_type == F_RDLCK ? "READ" : 15859 llp->ll_flock.l_type == F_WRLCK ? "WRITE" : "INVALID")); 15860 /* 15861 * No need to relock what we already have 15862 */ 15863 if (llp->ll_flock.l_type == lost_flp->l_type) 15864 continue; 15865 15866 push_reinstate(vp, cmd, &llp->ll_flock, cr, lop); 15867 } 15868 15869 /* 15870 * Now keeping the start of the lost lock as our reference parse the 15871 * newly created ri_llp locklist to find the ranges that we have locked 15872 * with the v4 server but not in the current local locking. We need 15873 * to unlock these ranges. 15874 * These ranges can also be reffered to as those ranges, where the lost 15875 * lock does not overlap with the locks in the ri_llp but are locked 15876 * since the server replied to the lost lock. 15877 */ 15878 cur_start = lost_flp->l_start; 15879 lost_flp_end = lock_to_end(lost_flp); 15880 15881 ul_fl.l_type = F_UNLCK; 15882 ul_fl.l_whence = 0; /* aka SEEK_SET */ 15883 ul_fl.l_sysid = lost_flp->l_sysid; 15884 ul_fl.l_pid = lost_flp->l_pid; 15885 15886 for (llp = ri_llp; llp != NULL; llp = llp->ll_next) { 15887 llp_ll_flock_end = lock_to_end(&llp->ll_flock); 15888 15889 if (llp->ll_flock.l_start <= cur_start) { 15890 cur_start = start_check(llp_ll_flock_end); 15891 continue; 15892 } 15893 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE, 15894 "nfs4_reinstitute_local_lock_state: " 15895 "UNLOCK [%"PRIx64" - %"PRIx64"]", 15896 cur_start, llp->ll_flock.l_start)); 15897 15898 ul_fl.l_start = cur_start; 15899 ul_fl.l_len = end_to_len(cur_start, 15900 (llp->ll_flock.l_start - 1)); 15901 15902 push_reinstate(vp, cmd, &ul_fl, cr, lop); 15903 cur_start = start_check(llp_ll_flock_end); 15904 } 15905 15906 /* 15907 * In the case where the lost lock ends after all intersecting locks, 15908 * unlock the last part of the lost lock range. 15909 */ 15910 if (cur_start != start_check(lost_flp_end)) { 15911 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE, 15912 "nfs4_reinstitute_local_lock_state: UNLOCK end of the " 15913 "lost lock region [%"PRIx64" - %"PRIx64"]", 15914 cur_start, lost_flp->l_start + lost_flp->l_len)); 15915 15916 ul_fl.l_start = cur_start; 15917 /* 15918 * Is it an to-EOF lock? if so unlock till the end 15919 */ 15920 if (lost_flp->l_len == 0) 15921 ul_fl.l_len = 0; 15922 else 15923 ul_fl.l_len = start_check(lost_flp_end) - cur_start; 15924 15925 push_reinstate(vp, cmd, &ul_fl, cr, lop); 15926 } 15927 15928 if (locks != NULL) 15929 flk_free_locklist(locks); 15930 15931 /* Free up our newly created locklist */ 15932 for (llp = ri_llp; llp != NULL; ) { 15933 tmp_llp = llp->ll_next; 15934 kmem_free(llp, sizeof (locklist_t)); 15935 llp = tmp_llp; 15936 } 15937 15938 /* 15939 * Now return back to the original calling nfs4frlock() 15940 * and let us naturally drop our seqid syncs. 15941 */ 15942 } 15943 15944 /* 15945 * Create a lost state record for the given lock reinstantiation request 15946 * and push it onto the lost state queue. 15947 */ 15948 static void 15949 push_reinstate(vnode_t *vp, int cmd, flock64_t *flk, cred_t *cr, 15950 nfs4_lock_owner_t *lop) 15951 { 15952 nfs4_lost_rqst_t req; 15953 nfs_lock_type4 locktype; 15954 nfs4_error_t e = { EINTR, NFS4_OK, RPC_SUCCESS }; 15955 15956 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 15957 15958 locktype = flk_to_locktype(cmd, flk->l_type); 15959 nfs4frlock_save_lost_rqst(NFS4_LCK_CTYPE_REINSTATE, EINTR, locktype, 15960 NULL, NULL, lop, flk, &req, cr, vp); 15961 (void) nfs4_start_recovery(&e, VTOMI4(vp), vp, NULL, NULL, 15962 (req.lr_op == OP_LOCK || req.lr_op == OP_LOCKU) ? 15963 &req : NULL, flk->l_type == F_UNLCK ? OP_LOCKU : OP_LOCK, 15964 NULL); 15965 } 15966