1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* 27 * Copyright 1983,1984,1985,1986,1987,1988,1989 AT&T. 28 * All Rights Reserved 29 */ 30 31 #include <sys/param.h> 32 #include <sys/types.h> 33 #include <sys/systm.h> 34 #include <sys/cred.h> 35 #include <sys/time.h> 36 #include <sys/vnode.h> 37 #include <sys/vfs.h> 38 #include <sys/vfs_opreg.h> 39 #include <sys/file.h> 40 #include <sys/filio.h> 41 #include <sys/uio.h> 42 #include <sys/buf.h> 43 #include <sys/mman.h> 44 #include <sys/pathname.h> 45 #include <sys/dirent.h> 46 #include <sys/debug.h> 47 #include <sys/vmsystm.h> 48 #include <sys/fcntl.h> 49 #include <sys/flock.h> 50 #include <sys/swap.h> 51 #include <sys/errno.h> 52 #include <sys/strsubr.h> 53 #include <sys/sysmacros.h> 54 #include <sys/kmem.h> 55 #include <sys/cmn_err.h> 56 #include <sys/pathconf.h> 57 #include <sys/utsname.h> 58 #include <sys/dnlc.h> 59 #include <sys/acl.h> 60 #include <sys/systeminfo.h> 61 #include <sys/policy.h> 62 #include <sys/sdt.h> 63 #include <sys/list.h> 64 #include <sys/stat.h> 65 #include <sys/zone.h> 66 67 #include <rpc/types.h> 68 #include <rpc/auth.h> 69 #include <rpc/clnt.h> 70 71 #include <nfs/nfs.h> 72 #include <nfs/nfs_clnt.h> 73 #include <nfs/nfs_acl.h> 74 #include <nfs/lm.h> 75 #include <nfs/nfs4.h> 76 #include <nfs/nfs4_kprot.h> 77 #include <nfs/rnode4.h> 78 #include <nfs/nfs4_clnt.h> 79 80 #include <vm/hat.h> 81 #include <vm/as.h> 82 #include <vm/page.h> 83 #include <vm/pvn.h> 84 #include <vm/seg.h> 85 #include <vm/seg_map.h> 86 #include <vm/seg_kpm.h> 87 #include <vm/seg_vn.h> 88 89 #include <fs/fs_subr.h> 90 91 #include <sys/ddi.h> 92 #include <sys/int_fmtio.h> 93 94 typedef struct { 95 nfs4_ga_res_t *di_garp; 96 cred_t *di_cred; 97 hrtime_t di_time_call; 98 } dirattr_info_t; 99 100 typedef enum nfs4_acl_op { 101 NFS4_ACL_GET, 102 NFS4_ACL_SET 103 } nfs4_acl_op_t; 104 105 static struct lm_sysid *nfs4_find_sysid(mntinfo4_t *mi); 106 107 static void nfs4_update_dircaches(change_info4 *, vnode_t *, vnode_t *, 108 char *, dirattr_info_t *); 109 110 static void nfs4close_otw(rnode4_t *, cred_t *, nfs4_open_owner_t *, 111 nfs4_open_stream_t *, int *, int *, nfs4_close_type_t, 112 nfs4_error_t *, int *); 113 static int nfs4_rdwrlbn(vnode_t *, page_t *, u_offset_t, size_t, int, 114 cred_t *); 115 static int nfs4write(vnode_t *, caddr_t, u_offset_t, int, cred_t *, 116 stable_how4 *); 117 static int nfs4read(vnode_t *, caddr_t, offset_t, int, size_t *, 118 cred_t *, bool_t, struct uio *); 119 static int nfs4setattr(vnode_t *, struct vattr *, int, cred_t *, 120 vsecattr_t *); 121 static int nfs4openattr(vnode_t *, vnode_t **, int, cred_t *); 122 static int nfs4lookup(vnode_t *, char *, vnode_t **, cred_t *, int); 123 static int nfs4lookup_xattr(vnode_t *, char *, vnode_t **, int, cred_t *); 124 static int nfs4lookupvalidate_otw(vnode_t *, char *, vnode_t **, cred_t *); 125 static int nfs4lookupnew_otw(vnode_t *, char *, vnode_t **, cred_t *); 126 static int nfs4mknod(vnode_t *, char *, struct vattr *, enum vcexcl, 127 int, vnode_t **, cred_t *); 128 static int nfs4open_otw(vnode_t *, char *, struct vattr *, vnode_t **, 129 cred_t *, int, int, enum createmode4, int); 130 static int nfs4rename(vnode_t *, char *, vnode_t *, char *, cred_t *, 131 caller_context_t *); 132 static int nfs4rename_persistent_fh(vnode_t *, char *, vnode_t *, 133 vnode_t *, char *, cred_t *, nfsstat4 *); 134 static int nfs4rename_volatile_fh(vnode_t *, char *, vnode_t *, 135 vnode_t *, char *, cred_t *, nfsstat4 *); 136 static int do_nfs4readdir(vnode_t *, rddir4_cache *, cred_t *); 137 static void nfs4readdir(vnode_t *, rddir4_cache *, cred_t *); 138 static int nfs4_bio(struct buf *, stable_how4 *, cred_t *, bool_t); 139 static int nfs4_getapage(vnode_t *, u_offset_t, size_t, uint_t *, 140 page_t *[], size_t, struct seg *, caddr_t, 141 enum seg_rw, cred_t *); 142 static void nfs4_readahead(vnode_t *, u_offset_t, caddr_t, struct seg *, 143 cred_t *); 144 static int nfs4_sync_putapage(vnode_t *, page_t *, u_offset_t, size_t, 145 int, cred_t *); 146 static int nfs4_sync_pageio(vnode_t *, page_t *, u_offset_t, size_t, 147 int, cred_t *); 148 static int nfs4_commit(vnode_t *, offset4, count4, cred_t *); 149 static void nfs4_set_mod(vnode_t *); 150 static void nfs4_get_commit(vnode_t *); 151 static void nfs4_get_commit_range(vnode_t *, u_offset_t, size_t); 152 static int nfs4_putpage_commit(vnode_t *, offset_t, size_t, cred_t *); 153 static int nfs4_commit_vp(vnode_t *, u_offset_t, size_t, cred_t *, int); 154 static int nfs4_sync_commit(vnode_t *, page_t *, offset3, count3, 155 cred_t *); 156 static void do_nfs4_async_commit(vnode_t *, page_t *, offset3, count3, 157 cred_t *); 158 static int nfs4_update_attrcache(nfsstat4, nfs4_ga_res_t *, 159 hrtime_t, vnode_t *, cred_t *); 160 static int nfs4_open_non_reg_file(vnode_t **, int, cred_t *); 161 static int nfs4_safelock(vnode_t *, const struct flock64 *, cred_t *); 162 static void nfs4_register_lock_locally(vnode_t *, struct flock64 *, int, 163 u_offset_t); 164 static int nfs4_lockrelease(vnode_t *, int, offset_t, cred_t *); 165 static int nfs4_block_and_wait(clock_t *, rnode4_t *); 166 static cred_t *state_to_cred(nfs4_open_stream_t *); 167 static int vtoname(vnode_t *, char *, ssize_t); 168 static void denied_to_flk(LOCK4denied *, flock64_t *, LOCKT4args *); 169 static pid_t lo_to_pid(lock_owner4 *); 170 static void nfs4_reinstitute_local_lock_state(vnode_t *, flock64_t *, 171 cred_t *, nfs4_lock_owner_t *); 172 static void push_reinstate(vnode_t *, int, flock64_t *, cred_t *, 173 nfs4_lock_owner_t *); 174 static int open_and_get_osp(vnode_t *, cred_t *, nfs4_open_stream_t **); 175 static void nfs4_delmap_callback(struct as *, void *, uint_t); 176 static void nfs4_free_delmapcall(nfs4_delmapcall_t *); 177 static nfs4_delmapcall_t *nfs4_init_delmapcall(); 178 static int nfs4_find_and_delete_delmapcall(rnode4_t *, int *); 179 static int nfs4_is_acl_mask_valid(uint_t, nfs4_acl_op_t); 180 static int nfs4_create_getsecattr_return(vsecattr_t *, vsecattr_t *, 181 uid_t, gid_t, int); 182 183 /* 184 * Routines that implement the setting of v4 args for the misc. ops 185 */ 186 static void nfs4args_lock_free(nfs_argop4 *); 187 static void nfs4args_lockt_free(nfs_argop4 *); 188 static void nfs4args_setattr(nfs_argop4 *, vattr_t *, vsecattr_t *, 189 int, rnode4_t *, cred_t *, bitmap4, int *, 190 nfs4_stateid_types_t *); 191 static void nfs4args_setattr_free(nfs_argop4 *); 192 static int nfs4args_verify(nfs_argop4 *, vattr_t *, enum nfs_opnum4, 193 bitmap4); 194 static void nfs4args_verify_free(nfs_argop4 *); 195 static void nfs4args_write(nfs_argop4 *, stable_how4, rnode4_t *, cred_t *, 196 WRITE4args **, nfs4_stateid_types_t *); 197 198 /* 199 * These are the vnode ops functions that implement the vnode interface to 200 * the networked file system. See more comments below at nfs4_vnodeops. 201 */ 202 static int nfs4_open(vnode_t **, int, cred_t *, caller_context_t *); 203 static int nfs4_close(vnode_t *, int, int, offset_t, cred_t *, 204 caller_context_t *); 205 static int nfs4_read(vnode_t *, struct uio *, int, cred_t *, 206 caller_context_t *); 207 static int nfs4_write(vnode_t *, struct uio *, int, cred_t *, 208 caller_context_t *); 209 static int nfs4_ioctl(vnode_t *, int, intptr_t, int, cred_t *, int *, 210 caller_context_t *); 211 static int nfs4_setattr(vnode_t *, struct vattr *, int, cred_t *, 212 caller_context_t *); 213 static int nfs4_access(vnode_t *, int, int, cred_t *, caller_context_t *); 214 static int nfs4_readlink(vnode_t *, struct uio *, cred_t *, 215 caller_context_t *); 216 static int nfs4_fsync(vnode_t *, int, cred_t *, caller_context_t *); 217 static int nfs4_create(vnode_t *, char *, struct vattr *, enum vcexcl, 218 int, vnode_t **, cred_t *, int, caller_context_t *, 219 vsecattr_t *); 220 static int nfs4_remove(vnode_t *, char *, cred_t *, caller_context_t *, 221 int); 222 static int nfs4_link(vnode_t *, vnode_t *, char *, cred_t *, 223 caller_context_t *, int); 224 static int nfs4_rename(vnode_t *, char *, vnode_t *, char *, cred_t *, 225 caller_context_t *, int); 226 static int nfs4_mkdir(vnode_t *, char *, struct vattr *, vnode_t **, 227 cred_t *, caller_context_t *, int, vsecattr_t *); 228 static int nfs4_rmdir(vnode_t *, char *, vnode_t *, cred_t *, 229 caller_context_t *, int); 230 static int nfs4_symlink(vnode_t *, char *, struct vattr *, char *, 231 cred_t *, caller_context_t *, int); 232 static int nfs4_readdir(vnode_t *, struct uio *, cred_t *, int *, 233 caller_context_t *, int); 234 static int nfs4_seek(vnode_t *, offset_t, offset_t *, caller_context_t *); 235 static int nfs4_getpage(vnode_t *, offset_t, size_t, uint_t *, 236 page_t *[], size_t, struct seg *, caddr_t, 237 enum seg_rw, cred_t *, caller_context_t *); 238 static int nfs4_putpage(vnode_t *, offset_t, size_t, int, cred_t *, 239 caller_context_t *); 240 static int nfs4_map(vnode_t *, offset_t, struct as *, caddr_t *, size_t, 241 uchar_t, uchar_t, uint_t, cred_t *, caller_context_t *); 242 static int nfs4_addmap(vnode_t *, offset_t, struct as *, caddr_t, size_t, 243 uchar_t, uchar_t, uint_t, cred_t *, caller_context_t *); 244 static int nfs4_cmp(vnode_t *, vnode_t *, caller_context_t *); 245 static int nfs4_frlock(vnode_t *, int, struct flock64 *, int, offset_t, 246 struct flk_callback *, cred_t *, caller_context_t *); 247 static int nfs4_space(vnode_t *, int, struct flock64 *, int, offset_t, 248 cred_t *, caller_context_t *); 249 static int nfs4_delmap(vnode_t *, offset_t, struct as *, caddr_t, size_t, 250 uint_t, uint_t, uint_t, cred_t *, caller_context_t *); 251 static int nfs4_pageio(vnode_t *, page_t *, u_offset_t, size_t, int, 252 cred_t *, caller_context_t *); 253 static void nfs4_dispose(vnode_t *, page_t *, int, int, cred_t *, 254 caller_context_t *); 255 static int nfs4_setsecattr(vnode_t *, vsecattr_t *, int, cred_t *, 256 caller_context_t *); 257 /* 258 * These vnode ops are required to be called from outside this source file, 259 * e.g. by ephemeral mount stub vnode ops, and so may not be declared 260 * as static. 261 */ 262 int nfs4_getattr(vnode_t *, struct vattr *, int, cred_t *, 263 caller_context_t *); 264 void nfs4_inactive(vnode_t *, cred_t *, caller_context_t *); 265 int nfs4_lookup(vnode_t *, char *, vnode_t **, 266 struct pathname *, int, vnode_t *, cred_t *, 267 caller_context_t *, int *, pathname_t *); 268 int nfs4_fid(vnode_t *, fid_t *, caller_context_t *); 269 int nfs4_rwlock(vnode_t *, int, caller_context_t *); 270 void nfs4_rwunlock(vnode_t *, int, caller_context_t *); 271 int nfs4_realvp(vnode_t *, vnode_t **, caller_context_t *); 272 int nfs4_pathconf(vnode_t *, int, ulong_t *, cred_t *, 273 caller_context_t *); 274 int nfs4_getsecattr(vnode_t *, vsecattr_t *, int, cred_t *, 275 caller_context_t *); 276 int nfs4_shrlock(vnode_t *, int, struct shrlock *, int, cred_t *, 277 caller_context_t *); 278 279 /* 280 * Used for nfs4_commit_vp() to indicate if we should 281 * wait on pending writes. 282 */ 283 #define NFS4_WRITE_NOWAIT 0 284 #define NFS4_WRITE_WAIT 1 285 286 #define NFS4_BASE_WAIT_TIME 1 /* 1 second */ 287 288 /* 289 * Error flags used to pass information about certain special errors 290 * which need to be handled specially. 291 */ 292 #define NFS_EOF -98 293 #define NFS_VERF_MISMATCH -97 294 295 /* 296 * Flags used to differentiate between which operation drove the 297 * potential CLOSE OTW. (see nfs4_close_otw_if_necessary) 298 */ 299 #define NFS4_CLOSE_OP 0x1 300 #define NFS4_DELMAP_OP 0x2 301 #define NFS4_INACTIVE_OP 0x3 302 303 #define ISVDEV(t) ((t == VBLK) || (t == VCHR) || (t == VFIFO)) 304 305 /* ALIGN64 aligns the given buffer and adjust buffer size to 64 bit */ 306 #define ALIGN64(x, ptr, sz) \ 307 x = ((uintptr_t)(ptr)) & (sizeof (uint64_t) - 1); \ 308 if (x) { \ 309 x = sizeof (uint64_t) - (x); \ 310 sz -= (x); \ 311 ptr += (x); \ 312 } 313 314 #ifdef DEBUG 315 int nfs4_client_attr_debug = 0; 316 int nfs4_client_state_debug = 0; 317 int nfs4_client_shadow_debug = 0; 318 int nfs4_client_lock_debug = 0; 319 int nfs4_seqid_sync = 0; 320 int nfs4_client_map_debug = 0; 321 static int nfs4_pageio_debug = 0; 322 int nfs4_client_inactive_debug = 0; 323 int nfs4_client_recov_debug = 0; 324 int nfs4_client_failover_debug = 0; 325 int nfs4_client_call_debug = 0; 326 int nfs4_client_lookup_debug = 0; 327 int nfs4_client_zone_debug = 0; 328 int nfs4_lost_rqst_debug = 0; 329 int nfs4_rdattrerr_debug = 0; 330 int nfs4_open_stream_debug = 0; 331 332 int nfs4read_error_inject; 333 334 static int nfs4_create_misses = 0; 335 336 static int nfs4_readdir_cache_shorts = 0; 337 static int nfs4_readdir_readahead = 0; 338 339 static int nfs4_bio_do_stop = 0; 340 341 static int nfs4_lostpage = 0; /* number of times we lost original page */ 342 343 int nfs4_mmap_debug = 0; 344 345 static int nfs4_pathconf_cache_hits = 0; 346 static int nfs4_pathconf_cache_misses = 0; 347 348 int nfs4close_all_cnt; 349 int nfs4close_one_debug = 0; 350 int nfs4close_notw_debug = 0; 351 352 int denied_to_flk_debug = 0; 353 void *lockt_denied_debug; 354 355 #endif 356 357 /* 358 * How long to wait before trying again if OPEN_CONFIRM gets ETIMEDOUT 359 * or NFS4ERR_RESOURCE. 360 */ 361 static int confirm_retry_sec = 30; 362 363 static int nfs4_lookup_neg_cache = 1; 364 365 /* 366 * number of pages to read ahead 367 * optimized for 100 base-T. 368 */ 369 static int nfs4_nra = 4; 370 371 static int nfs4_do_symlink_cache = 1; 372 373 static int nfs4_pathconf_disable_cache = 0; 374 375 /* 376 * These are the vnode ops routines which implement the vnode interface to 377 * the networked file system. These routines just take their parameters, 378 * make them look networkish by putting the right info into interface structs, 379 * and then calling the appropriate remote routine(s) to do the work. 380 * 381 * Note on directory name lookup cacheing: If we detect a stale fhandle, 382 * we purge the directory cache relative to that vnode. This way, the 383 * user won't get burned by the cache repeatedly. See <nfs/rnode4.h> for 384 * more details on rnode locking. 385 */ 386 387 struct vnodeops *nfs4_vnodeops; 388 389 const fs_operation_def_t nfs4_vnodeops_template[] = { 390 VOPNAME_OPEN, { .vop_open = nfs4_open }, 391 VOPNAME_CLOSE, { .vop_close = nfs4_close }, 392 VOPNAME_READ, { .vop_read = nfs4_read }, 393 VOPNAME_WRITE, { .vop_write = nfs4_write }, 394 VOPNAME_IOCTL, { .vop_ioctl = nfs4_ioctl }, 395 VOPNAME_GETATTR, { .vop_getattr = nfs4_getattr }, 396 VOPNAME_SETATTR, { .vop_setattr = nfs4_setattr }, 397 VOPNAME_ACCESS, { .vop_access = nfs4_access }, 398 VOPNAME_LOOKUP, { .vop_lookup = nfs4_lookup }, 399 VOPNAME_CREATE, { .vop_create = nfs4_create }, 400 VOPNAME_REMOVE, { .vop_remove = nfs4_remove }, 401 VOPNAME_LINK, { .vop_link = nfs4_link }, 402 VOPNAME_RENAME, { .vop_rename = nfs4_rename }, 403 VOPNAME_MKDIR, { .vop_mkdir = nfs4_mkdir }, 404 VOPNAME_RMDIR, { .vop_rmdir = nfs4_rmdir }, 405 VOPNAME_READDIR, { .vop_readdir = nfs4_readdir }, 406 VOPNAME_SYMLINK, { .vop_symlink = nfs4_symlink }, 407 VOPNAME_READLINK, { .vop_readlink = nfs4_readlink }, 408 VOPNAME_FSYNC, { .vop_fsync = nfs4_fsync }, 409 VOPNAME_INACTIVE, { .vop_inactive = nfs4_inactive }, 410 VOPNAME_FID, { .vop_fid = nfs4_fid }, 411 VOPNAME_RWLOCK, { .vop_rwlock = nfs4_rwlock }, 412 VOPNAME_RWUNLOCK, { .vop_rwunlock = nfs4_rwunlock }, 413 VOPNAME_SEEK, { .vop_seek = nfs4_seek }, 414 VOPNAME_FRLOCK, { .vop_frlock = nfs4_frlock }, 415 VOPNAME_SPACE, { .vop_space = nfs4_space }, 416 VOPNAME_REALVP, { .vop_realvp = nfs4_realvp }, 417 VOPNAME_GETPAGE, { .vop_getpage = nfs4_getpage }, 418 VOPNAME_PUTPAGE, { .vop_putpage = nfs4_putpage }, 419 VOPNAME_MAP, { .vop_map = nfs4_map }, 420 VOPNAME_ADDMAP, { .vop_addmap = nfs4_addmap }, 421 VOPNAME_DELMAP, { .vop_delmap = nfs4_delmap }, 422 /* no separate nfs4_dump */ 423 VOPNAME_DUMP, { .vop_dump = nfs_dump }, 424 VOPNAME_PATHCONF, { .vop_pathconf = nfs4_pathconf }, 425 VOPNAME_PAGEIO, { .vop_pageio = nfs4_pageio }, 426 VOPNAME_DISPOSE, { .vop_dispose = nfs4_dispose }, 427 VOPNAME_SETSECATTR, { .vop_setsecattr = nfs4_setsecattr }, 428 VOPNAME_GETSECATTR, { .vop_getsecattr = nfs4_getsecattr }, 429 VOPNAME_SHRLOCK, { .vop_shrlock = nfs4_shrlock }, 430 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 431 NULL, NULL 432 }; 433 434 /* 435 * The following are subroutines and definitions to set args or get res 436 * for the different nfsv4 ops 437 */ 438 439 void 440 nfs4args_lookup_free(nfs_argop4 *argop, int arglen) 441 { 442 int i; 443 444 for (i = 0; i < arglen; i++) { 445 if (argop[i].argop == OP_LOOKUP) { 446 kmem_free( 447 argop[i].nfs_argop4_u.oplookup. 448 objname.utf8string_val, 449 argop[i].nfs_argop4_u.oplookup. 450 objname.utf8string_len); 451 } 452 } 453 } 454 455 static void 456 nfs4args_lock_free(nfs_argop4 *argop) 457 { 458 locker4 *locker = &argop->nfs_argop4_u.oplock.locker; 459 460 if (locker->new_lock_owner == TRUE) { 461 open_to_lock_owner4 *open_owner; 462 463 open_owner = &locker->locker4_u.open_owner; 464 if (open_owner->lock_owner.owner_val != NULL) { 465 kmem_free(open_owner->lock_owner.owner_val, 466 open_owner->lock_owner.owner_len); 467 } 468 } 469 } 470 471 static void 472 nfs4args_lockt_free(nfs_argop4 *argop) 473 { 474 lock_owner4 *lowner = &argop->nfs_argop4_u.oplockt.owner; 475 476 if (lowner->owner_val != NULL) { 477 kmem_free(lowner->owner_val, lowner->owner_len); 478 } 479 } 480 481 static void 482 nfs4args_setattr(nfs_argop4 *argop, vattr_t *vap, vsecattr_t *vsap, int flags, 483 rnode4_t *rp, cred_t *cr, bitmap4 supp, int *error, 484 nfs4_stateid_types_t *sid_types) 485 { 486 fattr4 *attr = &argop->nfs_argop4_u.opsetattr.obj_attributes; 487 mntinfo4_t *mi; 488 489 argop->argop = OP_SETATTR; 490 /* 491 * The stateid is set to 0 if client is not modifying the size 492 * and otherwise to whatever nfs4_get_stateid() returns. 493 * 494 * XXX Note: nfs4_get_stateid() returns 0 if no lockowner and/or no 495 * state struct could be found for the process/file pair. We may 496 * want to change this in the future (by OPENing the file). See 497 * bug # 4474852. 498 */ 499 if (vap->va_mask & AT_SIZE) { 500 501 ASSERT(rp != NULL); 502 mi = VTOMI4(RTOV4(rp)); 503 504 argop->nfs_argop4_u.opsetattr.stateid = 505 nfs4_get_stateid(cr, rp, curproc->p_pidp->pid_id, mi, 506 OP_SETATTR, sid_types, FALSE); 507 } else { 508 bzero(&argop->nfs_argop4_u.opsetattr.stateid, 509 sizeof (stateid4)); 510 } 511 512 *error = vattr_to_fattr4(vap, vsap, attr, flags, OP_SETATTR, supp); 513 if (*error) 514 bzero(attr, sizeof (*attr)); 515 } 516 517 static void 518 nfs4args_setattr_free(nfs_argop4 *argop) 519 { 520 nfs4_fattr4_free(&argop->nfs_argop4_u.opsetattr.obj_attributes); 521 } 522 523 static int 524 nfs4args_verify(nfs_argop4 *argop, vattr_t *vap, enum nfs_opnum4 op, 525 bitmap4 supp) 526 { 527 fattr4 *attr; 528 int error = 0; 529 530 argop->argop = op; 531 switch (op) { 532 case OP_VERIFY: 533 attr = &argop->nfs_argop4_u.opverify.obj_attributes; 534 break; 535 case OP_NVERIFY: 536 attr = &argop->nfs_argop4_u.opnverify.obj_attributes; 537 break; 538 default: 539 return (EINVAL); 540 } 541 if (!error) 542 error = vattr_to_fattr4(vap, NULL, attr, 0, op, supp); 543 if (error) 544 bzero(attr, sizeof (*attr)); 545 return (error); 546 } 547 548 static void 549 nfs4args_verify_free(nfs_argop4 *argop) 550 { 551 switch (argop->argop) { 552 case OP_VERIFY: 553 nfs4_fattr4_free(&argop->nfs_argop4_u.opverify.obj_attributes); 554 break; 555 case OP_NVERIFY: 556 nfs4_fattr4_free(&argop->nfs_argop4_u.opnverify.obj_attributes); 557 break; 558 default: 559 break; 560 } 561 } 562 563 static void 564 nfs4args_write(nfs_argop4 *argop, stable_how4 stable, rnode4_t *rp, cred_t *cr, 565 WRITE4args **wargs_pp, nfs4_stateid_types_t *sid_tp) 566 { 567 WRITE4args *wargs = &argop->nfs_argop4_u.opwrite; 568 mntinfo4_t *mi = VTOMI4(RTOV4(rp)); 569 570 argop->argop = OP_WRITE; 571 wargs->stable = stable; 572 wargs->stateid = nfs4_get_w_stateid(cr, rp, curproc->p_pidp->pid_id, 573 mi, OP_WRITE, sid_tp); 574 wargs->mblk = NULL; 575 *wargs_pp = wargs; 576 } 577 578 void 579 nfs4args_copen_free(OPEN4cargs *open_args) 580 { 581 if (open_args->owner.owner_val) { 582 kmem_free(open_args->owner.owner_val, 583 open_args->owner.owner_len); 584 } 585 if ((open_args->opentype == OPEN4_CREATE) && 586 (open_args->mode != EXCLUSIVE4)) { 587 nfs4_fattr4_free(&open_args->createhow4_u.createattrs); 588 } 589 } 590 591 /* 592 * XXX: This is referenced in modstubs.s 593 */ 594 struct vnodeops * 595 nfs4_getvnodeops(void) 596 { 597 return (nfs4_vnodeops); 598 } 599 600 /* 601 * The OPEN operation opens a regular file. 602 */ 603 /*ARGSUSED3*/ 604 static int 605 nfs4_open(vnode_t **vpp, int flag, cred_t *cr, caller_context_t *ct) 606 { 607 vnode_t *dvp = NULL; 608 rnode4_t *rp, *drp; 609 int error; 610 int just_been_created; 611 char fn[MAXNAMELEN]; 612 613 NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE, "nfs4_open: ")); 614 if (nfs_zone() != VTOMI4(*vpp)->mi_zone) 615 return (EIO); 616 rp = VTOR4(*vpp); 617 618 /* 619 * Check to see if opening something besides a regular file; 620 * if so skip the OTW call 621 */ 622 if ((*vpp)->v_type != VREG) { 623 error = nfs4_open_non_reg_file(vpp, flag, cr); 624 return (error); 625 } 626 627 /* 628 * XXX - would like a check right here to know if the file is 629 * executable or not, so as to skip OTW 630 */ 631 632 if ((error = vtodv(*vpp, &dvp, cr, TRUE)) != 0) 633 return (error); 634 635 drp = VTOR4(dvp); 636 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_READER, INTR4(dvp))) 637 return (EINTR); 638 639 if ((error = vtoname(*vpp, fn, MAXNAMELEN)) != 0) { 640 nfs_rw_exit(&drp->r_rwlock); 641 return (error); 642 } 643 644 /* 645 * See if this file has just been CREATEd. 646 * If so, clear the flag and update the dnlc, which was previously 647 * skipped in nfs4_create. 648 * XXX need better serilization on this. 649 * XXX move this into the nf4open_otw call, after we have 650 * XXX acquired the open owner seqid sync. 651 */ 652 mutex_enter(&rp->r_statev4_lock); 653 if (rp->created_v4) { 654 rp->created_v4 = 0; 655 mutex_exit(&rp->r_statev4_lock); 656 657 dnlc_update(dvp, fn, *vpp); 658 /* This is needed so we don't bump the open ref count */ 659 just_been_created = 1; 660 } else { 661 mutex_exit(&rp->r_statev4_lock); 662 just_been_created = 0; 663 } 664 665 /* 666 * If caller specified O_TRUNC/FTRUNC, then be sure to set 667 * FWRITE (to drive successful setattr(size=0) after open) 668 */ 669 if (flag & FTRUNC) 670 flag |= FWRITE; 671 672 error = nfs4open_otw(dvp, fn, NULL, vpp, cr, 0, flag, 0, 673 just_been_created); 674 675 if (!error && !((*vpp)->v_flag & VROOT)) 676 dnlc_update(dvp, fn, *vpp); 677 678 nfs_rw_exit(&drp->r_rwlock); 679 680 /* release the hold from vtodv */ 681 VN_RELE(dvp); 682 683 /* exchange the shadow for the master vnode, if needed */ 684 685 if (error == 0 && IS_SHADOW(*vpp, rp)) 686 sv_exchange(vpp); 687 688 return (error); 689 } 690 691 /* 692 * See if there's a "lost open" request to be saved and recovered. 693 */ 694 static void 695 nfs4open_save_lost_rqst(int error, nfs4_lost_rqst_t *lost_rqstp, 696 nfs4_open_owner_t *oop, cred_t *cr, vnode_t *vp, 697 vnode_t *dvp, OPEN4cargs *open_args) 698 { 699 vfs_t *vfsp; 700 char *srccfp; 701 702 vfsp = (dvp ? dvp->v_vfsp : vp->v_vfsp); 703 704 if (error != ETIMEDOUT && error != EINTR && 705 !NFS4_FRC_UNMT_ERR(error, vfsp)) { 706 lost_rqstp->lr_op = 0; 707 return; 708 } 709 710 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE, 711 "nfs4open_save_lost_rqst: error %d", error)); 712 713 lost_rqstp->lr_op = OP_OPEN; 714 715 /* 716 * The vp (if it is not NULL) and dvp are held and rele'd via 717 * the recovery code. See nfs4_save_lost_rqst. 718 */ 719 lost_rqstp->lr_vp = vp; 720 lost_rqstp->lr_dvp = dvp; 721 lost_rqstp->lr_oop = oop; 722 lost_rqstp->lr_osp = NULL; 723 lost_rqstp->lr_lop = NULL; 724 lost_rqstp->lr_cr = cr; 725 lost_rqstp->lr_flk = NULL; 726 lost_rqstp->lr_oacc = open_args->share_access; 727 lost_rqstp->lr_odeny = open_args->share_deny; 728 lost_rqstp->lr_oclaim = open_args->claim; 729 if (open_args->claim == CLAIM_DELEGATE_CUR) { 730 lost_rqstp->lr_ostateid = 731 open_args->open_claim4_u.delegate_cur_info.delegate_stateid; 732 srccfp = open_args->open_claim4_u.delegate_cur_info.cfile; 733 } else { 734 srccfp = open_args->open_claim4_u.cfile; 735 } 736 lost_rqstp->lr_ofile.utf8string_len = 0; 737 lost_rqstp->lr_ofile.utf8string_val = NULL; 738 (void) str_to_utf8(srccfp, &lost_rqstp->lr_ofile); 739 lost_rqstp->lr_putfirst = FALSE; 740 } 741 742 struct nfs4_excl_time { 743 uint32 seconds; 744 uint32 nseconds; 745 }; 746 747 /* 748 * The OPEN operation creates and/or opens a regular file 749 * 750 * ARGSUSED 751 */ 752 static int 753 nfs4open_otw(vnode_t *dvp, char *file_name, struct vattr *in_va, 754 vnode_t **vpp, cred_t *cr, int create_flag, int open_flag, 755 enum createmode4 createmode, int file_just_been_created) 756 { 757 rnode4_t *rp; 758 rnode4_t *drp = VTOR4(dvp); 759 vnode_t *vp = NULL; 760 vnode_t *vpi = *vpp; 761 bool_t needrecov = FALSE; 762 763 int doqueue = 1; 764 765 COMPOUND4args_clnt args; 766 COMPOUND4res_clnt res; 767 nfs_argop4 *argop; 768 nfs_resop4 *resop; 769 int argoplist_size; 770 int idx_open, idx_fattr; 771 772 GETFH4res *gf_res = NULL; 773 OPEN4res *op_res = NULL; 774 nfs4_ga_res_t *garp; 775 fattr4 *attr = NULL; 776 struct nfs4_excl_time verf; 777 bool_t did_excl_setup = FALSE; 778 int created_osp; 779 780 OPEN4cargs *open_args; 781 nfs4_open_owner_t *oop = NULL; 782 nfs4_open_stream_t *osp = NULL; 783 seqid4 seqid = 0; 784 bool_t retry_open = FALSE; 785 nfs4_recov_state_t recov_state; 786 nfs4_lost_rqst_t lost_rqst; 787 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 788 hrtime_t t; 789 int acc = 0; 790 cred_t *cred_otw = NULL; /* cred used to do the RPC call */ 791 cred_t *ncr = NULL; 792 793 nfs4_sharedfh_t *otw_sfh; 794 nfs4_sharedfh_t *orig_sfh; 795 int fh_differs = 0; 796 int numops, setgid_flag; 797 int num_bseqid_retry = NFS4_NUM_RETRY_BAD_SEQID + 1; 798 799 /* 800 * Make sure we properly deal with setting the right gid on 801 * a newly created file to reflect the parent's setgid bit 802 */ 803 setgid_flag = 0; 804 if (create_flag && in_va) { 805 806 /* 807 * If there is grpid mount flag used or 808 * the parent's directory has the setgid bit set 809 * _and_ the client was able to get a valid mapping 810 * for the parent dir's owner_group, we want to 811 * append NVERIFY(owner_group == dva.va_gid) and 812 * SETATTR to the CREATE compound. 813 */ 814 mutex_enter(&drp->r_statelock); 815 if ((VTOMI4(dvp)->mi_flags & MI4_GRPID || 816 drp->r_attr.va_mode & VSGID) && 817 drp->r_attr.va_gid != GID_NOBODY) { 818 in_va->va_mask |= AT_GID; 819 in_va->va_gid = drp->r_attr.va_gid; 820 setgid_flag = 1; 821 } 822 mutex_exit(&drp->r_statelock); 823 } 824 825 /* 826 * Normal/non-create compound: 827 * PUTFH(dfh) + OPEN(create) + GETFH + GETATTR(new) 828 * 829 * Open(create) compound no setgid: 830 * PUTFH(dfh) + SAVEFH + OPEN(create) + GETFH + GETATTR(new) + 831 * RESTOREFH + GETATTR 832 * 833 * Open(create) setgid: 834 * PUTFH(dfh) + OPEN(create) + GETFH + GETATTR(new) + 835 * SAVEFH + PUTFH(dfh) + GETATTR(dvp) + RESTOREFH + 836 * NVERIFY(grp) + SETATTR 837 */ 838 if (setgid_flag) { 839 numops = 10; 840 idx_open = 1; 841 idx_fattr = 3; 842 } else if (create_flag) { 843 numops = 7; 844 idx_open = 2; 845 idx_fattr = 4; 846 } else { 847 numops = 4; 848 idx_open = 1; 849 idx_fattr = 3; 850 } 851 852 args.array_len = numops; 853 argoplist_size = numops * sizeof (nfs_argop4); 854 argop = kmem_alloc(argoplist_size, KM_SLEEP); 855 856 NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE, "nfs4open_otw: " 857 "open %s open flag 0x%x cred %p", file_name, open_flag, 858 (void *)cr)); 859 860 ASSERT(nfs_zone() == VTOMI4(dvp)->mi_zone); 861 if (create_flag) { 862 /* 863 * We are to create a file. Initialize the passed in vnode 864 * pointer. 865 */ 866 vpi = NULL; 867 } else { 868 /* 869 * Check to see if the client owns a read delegation and is 870 * trying to open for write. If so, then return the delegation 871 * to avoid the server doing a cb_recall and returning DELAY. 872 * NB - we don't use the statev4_lock here because we'd have 873 * to drop the lock anyway and the result would be stale. 874 */ 875 if ((open_flag & FWRITE) && 876 VTOR4(vpi)->r_deleg_type == OPEN_DELEGATE_READ) 877 (void) nfs4delegreturn(VTOR4(vpi), NFS4_DR_REOPEN); 878 879 /* 880 * If the file has a delegation, then do an access check up 881 * front. This avoids having to an access check later after 882 * we've already done start_op, which could deadlock. 883 */ 884 if (VTOR4(vpi)->r_deleg_type != OPEN_DELEGATE_NONE) { 885 if (open_flag & FREAD && 886 nfs4_access(vpi, VREAD, 0, cr, NULL) == 0) 887 acc |= VREAD; 888 if (open_flag & FWRITE && 889 nfs4_access(vpi, VWRITE, 0, cr, NULL) == 0) 890 acc |= VWRITE; 891 } 892 } 893 894 drp = VTOR4(dvp); 895 896 recov_state.rs_flags = 0; 897 recov_state.rs_num_retry_despite_err = 0; 898 cred_otw = cr; 899 900 recov_retry: 901 fh_differs = 0; 902 nfs4_error_zinit(&e); 903 904 e.error = nfs4_start_op(VTOMI4(dvp), dvp, vpi, &recov_state); 905 if (e.error) { 906 if (ncr != NULL) 907 crfree(ncr); 908 kmem_free(argop, argoplist_size); 909 return (e.error); 910 } 911 912 args.ctag = TAG_OPEN; 913 args.array_len = numops; 914 args.array = argop; 915 916 /* putfh directory fh */ 917 argop[0].argop = OP_CPUTFH; 918 argop[0].nfs_argop4_u.opcputfh.sfh = drp->r_fh; 919 920 /* OPEN: either op 1 or op 2 depending upon create/setgid flags */ 921 argop[idx_open].argop = OP_COPEN; 922 open_args = &argop[idx_open].nfs_argop4_u.opcopen; 923 open_args->claim = CLAIM_NULL; 924 925 /* name of file */ 926 open_args->open_claim4_u.cfile = file_name; 927 open_args->owner.owner_len = 0; 928 open_args->owner.owner_val = NULL; 929 930 if (create_flag) { 931 /* CREATE a file */ 932 open_args->opentype = OPEN4_CREATE; 933 open_args->mode = createmode; 934 if (createmode == EXCLUSIVE4) { 935 if (did_excl_setup == FALSE) { 936 verf.seconds = zone_get_hostid(NULL); 937 if (verf.seconds != 0) 938 verf.nseconds = newnum(); 939 else { 940 timestruc_t now; 941 942 gethrestime(&now); 943 verf.seconds = now.tv_sec; 944 verf.nseconds = now.tv_nsec; 945 } 946 /* 947 * Since the server will use this value for the 948 * mtime, make sure that it can't overflow. Zero 949 * out the MSB. The actual value does not matter 950 * here, only its uniqeness. 951 */ 952 verf.seconds &= INT32_MAX; 953 did_excl_setup = TRUE; 954 } 955 956 /* Now copy over verifier to OPEN4args. */ 957 open_args->createhow4_u.createverf = *(uint64_t *)&verf; 958 } else { 959 int v_error; 960 bitmap4 supp_attrs; 961 servinfo4_t *svp; 962 963 attr = &open_args->createhow4_u.createattrs; 964 965 svp = drp->r_server; 966 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0); 967 supp_attrs = svp->sv_supp_attrs; 968 nfs_rw_exit(&svp->sv_lock); 969 970 /* GUARDED4 or UNCHECKED4 */ 971 v_error = vattr_to_fattr4(in_va, NULL, attr, 0, OP_OPEN, 972 supp_attrs); 973 if (v_error) { 974 bzero(attr, sizeof (*attr)); 975 nfs4args_copen_free(open_args); 976 nfs4_end_op(VTOMI4(dvp), dvp, vpi, 977 &recov_state, FALSE); 978 if (ncr != NULL) 979 crfree(ncr); 980 kmem_free(argop, argoplist_size); 981 return (v_error); 982 } 983 } 984 } else { 985 /* NO CREATE */ 986 open_args->opentype = OPEN4_NOCREATE; 987 } 988 989 if (recov_state.rs_sp != NULL) { 990 mutex_enter(&recov_state.rs_sp->s_lock); 991 open_args->owner.clientid = recov_state.rs_sp->clientid; 992 mutex_exit(&recov_state.rs_sp->s_lock); 993 } else { 994 /* XXX should we just fail here? */ 995 open_args->owner.clientid = 0; 996 } 997 998 /* 999 * This increments oop's ref count or creates a temporary 'just_created' 1000 * open owner that will become valid when this OPEN/OPEN_CONFIRM call 1001 * completes. 1002 */ 1003 mutex_enter(&VTOMI4(dvp)->mi_lock); 1004 1005 /* See if a permanent or just created open owner exists */ 1006 oop = find_open_owner_nolock(cr, NFS4_JUST_CREATED, VTOMI4(dvp)); 1007 if (!oop) { 1008 /* 1009 * This open owner does not exist so create a temporary 1010 * just created one. 1011 */ 1012 oop = create_open_owner(cr, VTOMI4(dvp)); 1013 ASSERT(oop != NULL); 1014 } 1015 mutex_exit(&VTOMI4(dvp)->mi_lock); 1016 1017 /* this length never changes, do alloc before seqid sync */ 1018 open_args->owner.owner_len = sizeof (oop->oo_name); 1019 open_args->owner.owner_val = 1020 kmem_alloc(open_args->owner.owner_len, KM_SLEEP); 1021 1022 e.error = nfs4_start_open_seqid_sync(oop, VTOMI4(dvp)); 1023 if (e.error == EAGAIN) { 1024 open_owner_rele(oop); 1025 nfs4args_copen_free(open_args); 1026 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, TRUE); 1027 if (ncr != NULL) { 1028 crfree(ncr); 1029 ncr = NULL; 1030 } 1031 goto recov_retry; 1032 } 1033 1034 /* Check to see if we need to do the OTW call */ 1035 if (!create_flag) { 1036 if (!nfs4_is_otw_open_necessary(oop, open_flag, vpi, 1037 file_just_been_created, &e.error, acc, &recov_state)) { 1038 1039 /* 1040 * The OTW open is not necessary. Either 1041 * the open can succeed without it (eg. 1042 * delegation, error == 0) or the open 1043 * must fail due to an access failure 1044 * (error != 0). In either case, tidy 1045 * up and return. 1046 */ 1047 1048 nfs4_end_open_seqid_sync(oop); 1049 open_owner_rele(oop); 1050 nfs4args_copen_free(open_args); 1051 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, FALSE); 1052 if (ncr != NULL) 1053 crfree(ncr); 1054 kmem_free(argop, argoplist_size); 1055 return (e.error); 1056 } 1057 } 1058 1059 bcopy(&oop->oo_name, open_args->owner.owner_val, 1060 open_args->owner.owner_len); 1061 1062 seqid = nfs4_get_open_seqid(oop) + 1; 1063 open_args->seqid = seqid; 1064 open_args->share_access = 0; 1065 if (open_flag & FREAD) 1066 open_args->share_access |= OPEN4_SHARE_ACCESS_READ; 1067 if (open_flag & FWRITE) 1068 open_args->share_access |= OPEN4_SHARE_ACCESS_WRITE; 1069 open_args->share_deny = OPEN4_SHARE_DENY_NONE; 1070 1071 1072 1073 /* 1074 * getfh w/sanity check for idx_open/idx_fattr 1075 */ 1076 ASSERT((idx_open + 1) == (idx_fattr - 1)); 1077 argop[idx_open + 1].argop = OP_GETFH; 1078 1079 /* getattr */ 1080 argop[idx_fattr].argop = OP_GETATTR; 1081 argop[idx_fattr].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 1082 argop[idx_fattr].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp); 1083 1084 if (setgid_flag) { 1085 vattr_t _v; 1086 servinfo4_t *svp; 1087 bitmap4 supp_attrs; 1088 1089 svp = drp->r_server; 1090 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0); 1091 supp_attrs = svp->sv_supp_attrs; 1092 nfs_rw_exit(&svp->sv_lock); 1093 1094 /* 1095 * For setgid case, we need to: 1096 * 4:savefh(new) 5:putfh(dir) 6:getattr(dir) 7:restorefh(new) 1097 */ 1098 argop[4].argop = OP_SAVEFH; 1099 1100 argop[5].argop = OP_CPUTFH; 1101 argop[5].nfs_argop4_u.opcputfh.sfh = drp->r_fh; 1102 1103 argop[6].argop = OP_GETATTR; 1104 argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 1105 argop[6].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp); 1106 1107 argop[7].argop = OP_RESTOREFH; 1108 1109 /* 1110 * nverify 1111 */ 1112 _v.va_mask = AT_GID; 1113 _v.va_gid = in_va->va_gid; 1114 if (!(e.error = nfs4args_verify(&argop[8], &_v, OP_NVERIFY, 1115 supp_attrs))) { 1116 1117 /* 1118 * setattr 1119 * 1120 * We _know_ we're not messing with AT_SIZE or 1121 * AT_XTIME, so no need for stateid or flags. 1122 * Also we specify NULL rp since we're only 1123 * interested in setting owner_group attributes. 1124 */ 1125 nfs4args_setattr(&argop[9], &_v, NULL, 0, NULL, cr, 1126 supp_attrs, &e.error, 0); 1127 if (e.error) 1128 nfs4args_verify_free(&argop[8]); 1129 } 1130 1131 if (e.error) { 1132 /* 1133 * XXX - Revisit the last argument to nfs4_end_op() 1134 * once 5020486 is fixed. 1135 */ 1136 nfs4_end_open_seqid_sync(oop); 1137 open_owner_rele(oop); 1138 nfs4args_copen_free(open_args); 1139 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, TRUE); 1140 if (ncr != NULL) 1141 crfree(ncr); 1142 kmem_free(argop, argoplist_size); 1143 return (e.error); 1144 } 1145 } else if (create_flag) { 1146 argop[1].argop = OP_SAVEFH; 1147 1148 argop[5].argop = OP_RESTOREFH; 1149 1150 argop[6].argop = OP_GETATTR; 1151 argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 1152 argop[6].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp); 1153 } 1154 1155 NFS4_DEBUG(nfs4_client_call_debug, (CE_NOTE, 1156 "nfs4open_otw: %s call, nm %s, rp %s", 1157 needrecov ? "recov" : "first", file_name, 1158 rnode4info(VTOR4(dvp)))); 1159 1160 t = gethrtime(); 1161 1162 rfs4call(VTOMI4(dvp), &args, &res, cred_otw, &doqueue, 0, &e); 1163 1164 if (!e.error && nfs4_need_to_bump_seqid(&res)) 1165 nfs4_set_open_seqid(seqid, oop, args.ctag); 1166 1167 needrecov = nfs4_needs_recovery(&e, TRUE, dvp->v_vfsp); 1168 1169 if (e.error || needrecov) { 1170 bool_t abort = FALSE; 1171 1172 if (needrecov) { 1173 nfs4_bseqid_entry_t *bsep = NULL; 1174 1175 nfs4open_save_lost_rqst(e.error, &lost_rqst, oop, 1176 cred_otw, vpi, dvp, open_args); 1177 1178 if (!e.error && res.status == NFS4ERR_BAD_SEQID) { 1179 bsep = nfs4_create_bseqid_entry(oop, NULL, 1180 vpi, 0, args.ctag, open_args->seqid); 1181 num_bseqid_retry--; 1182 } 1183 1184 abort = nfs4_start_recovery(&e, VTOMI4(dvp), dvp, vpi, 1185 NULL, lost_rqst.lr_op == OP_OPEN ? 1186 &lost_rqst : NULL, OP_OPEN, bsep); 1187 1188 if (bsep) 1189 kmem_free(bsep, sizeof (*bsep)); 1190 /* give up if we keep getting BAD_SEQID */ 1191 if (num_bseqid_retry == 0) 1192 abort = TRUE; 1193 if (abort == TRUE && e.error == 0) 1194 e.error = geterrno4(res.status); 1195 } 1196 nfs4_end_open_seqid_sync(oop); 1197 open_owner_rele(oop); 1198 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, needrecov); 1199 nfs4args_copen_free(open_args); 1200 if (setgid_flag) { 1201 nfs4args_verify_free(&argop[8]); 1202 nfs4args_setattr_free(&argop[9]); 1203 } 1204 if (!e.error) 1205 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1206 if (ncr != NULL) { 1207 crfree(ncr); 1208 ncr = NULL; 1209 } 1210 if (!needrecov || abort == TRUE || e.error == EINTR || 1211 NFS4_FRC_UNMT_ERR(e.error, dvp->v_vfsp)) { 1212 kmem_free(argop, argoplist_size); 1213 return (e.error); 1214 } 1215 goto recov_retry; 1216 } 1217 1218 /* 1219 * Will check and update lease after checking the rflag for 1220 * OPEN_CONFIRM in the successful OPEN call. 1221 */ 1222 if (res.status != NFS4_OK && res.array_len <= idx_fattr + 1) { 1223 1224 /* 1225 * XXX what if we're crossing mount points from server1:/drp 1226 * to server2:/drp/rp. 1227 */ 1228 1229 /* Signal our end of use of the open seqid */ 1230 nfs4_end_open_seqid_sync(oop); 1231 1232 /* 1233 * This will destroy the open owner if it was just created, 1234 * and no one else has put a reference on it. 1235 */ 1236 open_owner_rele(oop); 1237 if (create_flag && (createmode != EXCLUSIVE4) && 1238 res.status == NFS4ERR_BADOWNER) 1239 nfs4_log_badowner(VTOMI4(dvp), OP_OPEN); 1240 1241 e.error = geterrno4(res.status); 1242 nfs4args_copen_free(open_args); 1243 if (setgid_flag) { 1244 nfs4args_verify_free(&argop[8]); 1245 nfs4args_setattr_free(&argop[9]); 1246 } 1247 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1248 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, needrecov); 1249 /* 1250 * If the reply is NFS4ERR_ACCESS, it may be because 1251 * we are root (no root net access). If the real uid 1252 * is not root, then retry with the real uid instead. 1253 */ 1254 if (ncr != NULL) { 1255 crfree(ncr); 1256 ncr = NULL; 1257 } 1258 if (res.status == NFS4ERR_ACCESS && 1259 (ncr = crnetadjust(cred_otw)) != NULL) { 1260 cred_otw = ncr; 1261 goto recov_retry; 1262 } 1263 kmem_free(argop, argoplist_size); 1264 return (e.error); 1265 } 1266 1267 resop = &res.array[idx_open]; /* open res */ 1268 op_res = &resop->nfs_resop4_u.opopen; 1269 1270 #ifdef DEBUG 1271 /* 1272 * verify attrset bitmap 1273 */ 1274 if (create_flag && 1275 (createmode == UNCHECKED4 || createmode == GUARDED4)) { 1276 /* make sure attrset returned is what we asked for */ 1277 /* XXX Ignore this 'error' for now */ 1278 if (attr->attrmask != op_res->attrset) 1279 /* EMPTY */; 1280 } 1281 #endif 1282 1283 if (op_res->rflags & OPEN4_RESULT_LOCKTYPE_POSIX) { 1284 mutex_enter(&VTOMI4(dvp)->mi_lock); 1285 VTOMI4(dvp)->mi_flags |= MI4_POSIX_LOCK; 1286 mutex_exit(&VTOMI4(dvp)->mi_lock); 1287 } 1288 1289 resop = &res.array[idx_open + 1]; /* getfh res */ 1290 gf_res = &resop->nfs_resop4_u.opgetfh; 1291 1292 otw_sfh = sfh4_get(&gf_res->object, VTOMI4(dvp)); 1293 1294 /* 1295 * The open stateid has been updated on the server but not 1296 * on the client yet. There is a path: makenfs4node->nfs4_attr_cache-> 1297 * flush_pages->VOP_PUTPAGE->...->nfs4write where we will issue an OTW 1298 * WRITE call. That, however, will use the old stateid, so go ahead 1299 * and upate the open stateid now, before any call to makenfs4node. 1300 */ 1301 if (vpi) { 1302 nfs4_open_stream_t *tmp_osp; 1303 rnode4_t *tmp_rp = VTOR4(vpi); 1304 1305 tmp_osp = find_open_stream(oop, tmp_rp); 1306 if (tmp_osp) { 1307 tmp_osp->open_stateid = op_res->stateid; 1308 mutex_exit(&tmp_osp->os_sync_lock); 1309 open_stream_rele(tmp_osp, tmp_rp); 1310 } 1311 1312 /* 1313 * We must determine if the file handle given by the otw open 1314 * is the same as the file handle which was passed in with 1315 * *vpp. This case can be reached if the file we are trying 1316 * to open has been removed and another file has been created 1317 * having the same file name. The passed in vnode is released 1318 * later. 1319 */ 1320 orig_sfh = VTOR4(vpi)->r_fh; 1321 fh_differs = nfs4cmpfh(&orig_sfh->sfh_fh, &otw_sfh->sfh_fh); 1322 } 1323 1324 garp = &res.array[idx_fattr].nfs_resop4_u.opgetattr.ga_res; 1325 1326 if (create_flag || fh_differs) { 1327 int rnode_err = 0; 1328 1329 vp = makenfs4node(otw_sfh, garp, dvp->v_vfsp, t, cr, 1330 dvp, fn_get(VTOSV(dvp)->sv_name, file_name, otw_sfh)); 1331 1332 if (e.error) 1333 PURGE_ATTRCACHE4(vp); 1334 /* 1335 * For the newly created vp case, make sure the rnode 1336 * isn't bad before using it. 1337 */ 1338 mutex_enter(&(VTOR4(vp))->r_statelock); 1339 if (VTOR4(vp)->r_flags & R4RECOVERR) 1340 rnode_err = EIO; 1341 mutex_exit(&(VTOR4(vp))->r_statelock); 1342 1343 if (rnode_err) { 1344 nfs4_end_open_seqid_sync(oop); 1345 nfs4args_copen_free(open_args); 1346 if (setgid_flag) { 1347 nfs4args_verify_free(&argop[8]); 1348 nfs4args_setattr_free(&argop[9]); 1349 } 1350 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1351 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, 1352 needrecov); 1353 open_owner_rele(oop); 1354 VN_RELE(vp); 1355 if (ncr != NULL) 1356 crfree(ncr); 1357 sfh4_rele(&otw_sfh); 1358 kmem_free(argop, argoplist_size); 1359 return (EIO); 1360 } 1361 } else { 1362 vp = vpi; 1363 } 1364 sfh4_rele(&otw_sfh); 1365 1366 /* 1367 * It seems odd to get a full set of attrs and then not update 1368 * the object's attrcache in the non-create case. Create case uses 1369 * the attrs since makenfs4node checks to see if the attrs need to 1370 * be updated (and then updates them). The non-create case should 1371 * update attrs also. 1372 */ 1373 if (! create_flag && ! fh_differs && !e.error) { 1374 nfs4_attr_cache(vp, garp, t, cr, TRUE, NULL); 1375 } 1376 1377 nfs4_error_zinit(&e); 1378 if (op_res->rflags & OPEN4_RESULT_CONFIRM) { 1379 /* This does not do recovery for vp explicitly. */ 1380 nfs4open_confirm(vp, &seqid, &op_res->stateid, cred_otw, FALSE, 1381 &retry_open, oop, FALSE, &e, &num_bseqid_retry); 1382 1383 if (e.error || e.stat) { 1384 nfs4_end_open_seqid_sync(oop); 1385 nfs4args_copen_free(open_args); 1386 if (setgid_flag) { 1387 nfs4args_verify_free(&argop[8]); 1388 nfs4args_setattr_free(&argop[9]); 1389 } 1390 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1391 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, 1392 needrecov); 1393 open_owner_rele(oop); 1394 if (create_flag || fh_differs) { 1395 /* rele the makenfs4node */ 1396 VN_RELE(vp); 1397 } 1398 if (ncr != NULL) { 1399 crfree(ncr); 1400 ncr = NULL; 1401 } 1402 if (retry_open == TRUE) { 1403 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 1404 "nfs4open_otw: retry the open since OPEN " 1405 "CONFIRM failed with error %d stat %d", 1406 e.error, e.stat)); 1407 if (create_flag && createmode == GUARDED4) { 1408 NFS4_DEBUG(nfs4_client_recov_debug, 1409 (CE_NOTE, "nfs4open_otw: switch " 1410 "createmode from GUARDED4 to " 1411 "UNCHECKED4")); 1412 createmode = UNCHECKED4; 1413 } 1414 goto recov_retry; 1415 } 1416 if (!e.error) { 1417 if (create_flag && (createmode != EXCLUSIVE4) && 1418 e.stat == NFS4ERR_BADOWNER) 1419 nfs4_log_badowner(VTOMI4(dvp), OP_OPEN); 1420 1421 e.error = geterrno4(e.stat); 1422 } 1423 kmem_free(argop, argoplist_size); 1424 return (e.error); 1425 } 1426 } 1427 1428 rp = VTOR4(vp); 1429 1430 mutex_enter(&rp->r_statev4_lock); 1431 if (create_flag) 1432 rp->created_v4 = 1; 1433 mutex_exit(&rp->r_statev4_lock); 1434 1435 mutex_enter(&oop->oo_lock); 1436 /* Doesn't matter if 'oo_just_created' already was set as this */ 1437 oop->oo_just_created = NFS4_PERM_CREATED; 1438 if (oop->oo_cred_otw) 1439 crfree(oop->oo_cred_otw); 1440 oop->oo_cred_otw = cred_otw; 1441 crhold(oop->oo_cred_otw); 1442 mutex_exit(&oop->oo_lock); 1443 1444 /* returns with 'os_sync_lock' held */ 1445 osp = find_or_create_open_stream(oop, rp, &created_osp); 1446 if (!osp) { 1447 NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE, 1448 "nfs4open_otw: failed to create an open stream")); 1449 NFS4_DEBUG(nfs4_seqid_sync, (CE_NOTE, "nfs4open_otw: " 1450 "signal our end of use of the open seqid")); 1451 1452 nfs4_end_open_seqid_sync(oop); 1453 open_owner_rele(oop); 1454 nfs4args_copen_free(open_args); 1455 if (setgid_flag) { 1456 nfs4args_verify_free(&argop[8]); 1457 nfs4args_setattr_free(&argop[9]); 1458 } 1459 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1460 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, needrecov); 1461 if (create_flag || fh_differs) 1462 VN_RELE(vp); 1463 if (ncr != NULL) 1464 crfree(ncr); 1465 1466 kmem_free(argop, argoplist_size); 1467 return (EINVAL); 1468 1469 } 1470 1471 osp->open_stateid = op_res->stateid; 1472 1473 if (open_flag & FREAD) 1474 osp->os_share_acc_read++; 1475 if (open_flag & FWRITE) 1476 osp->os_share_acc_write++; 1477 osp->os_share_deny_none++; 1478 1479 /* 1480 * Need to reset this bitfield for the possible case where we were 1481 * going to OTW CLOSE the file, got a non-recoverable error, and before 1482 * we could retry the CLOSE, OPENed the file again. 1483 */ 1484 ASSERT(osp->os_open_owner->oo_seqid_inuse); 1485 osp->os_final_close = 0; 1486 osp->os_force_close = 0; 1487 #ifdef DEBUG 1488 if (osp->os_failed_reopen) 1489 NFS4_DEBUG(nfs4_open_stream_debug, (CE_NOTE, "nfs4open_otw:" 1490 " clearing os_failed_reopen for osp %p, cr %p, rp %s", 1491 (void *)osp, (void *)cr, rnode4info(rp))); 1492 #endif 1493 osp->os_failed_reopen = 0; 1494 1495 mutex_exit(&osp->os_sync_lock); 1496 1497 nfs4_end_open_seqid_sync(oop); 1498 1499 if (created_osp && recov_state.rs_sp != NULL) { 1500 mutex_enter(&recov_state.rs_sp->s_lock); 1501 nfs4_inc_state_ref_count_nolock(recov_state.rs_sp, VTOMI4(dvp)); 1502 mutex_exit(&recov_state.rs_sp->s_lock); 1503 } 1504 1505 /* get rid of our reference to find oop */ 1506 open_owner_rele(oop); 1507 1508 open_stream_rele(osp, rp); 1509 1510 /* accept delegation, if any */ 1511 nfs4_delegation_accept(rp, CLAIM_NULL, op_res, garp, cred_otw); 1512 1513 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, needrecov); 1514 1515 if (createmode == EXCLUSIVE4 && 1516 (in_va->va_mask & ~(AT_GID | AT_SIZE))) { 1517 NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE, "nfs4open_otw:" 1518 " EXCLUSIVE4: sending a SETATTR")); 1519 /* 1520 * If doing an exclusive create, then generate 1521 * a SETATTR to set the initial attributes. 1522 * Try to set the mtime and the atime to the 1523 * server's current time. It is somewhat 1524 * expected that these fields will be used to 1525 * store the exclusive create cookie. If not, 1526 * server implementors will need to know that 1527 * a SETATTR will follow an exclusive create 1528 * and the cookie should be destroyed if 1529 * appropriate. 1530 * 1531 * The AT_GID and AT_SIZE bits are turned off 1532 * so that the SETATTR request will not attempt 1533 * to process these. The gid will be set 1534 * separately if appropriate. The size is turned 1535 * off because it is assumed that a new file will 1536 * be created empty and if the file wasn't empty, 1537 * then the exclusive create will have failed 1538 * because the file must have existed already. 1539 * Therefore, no truncate operation is needed. 1540 */ 1541 in_va->va_mask &= ~(AT_GID | AT_SIZE); 1542 in_va->va_mask |= (AT_MTIME | AT_ATIME); 1543 1544 e.error = nfs4setattr(vp, in_va, 0, cr, NULL); 1545 if (e.error) { 1546 /* 1547 * Couldn't correct the attributes of 1548 * the newly created file and the 1549 * attributes are wrong. Remove the 1550 * file and return an error to the 1551 * application. 1552 */ 1553 /* XXX will this take care of client state ? */ 1554 NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE, 1555 "nfs4open_otw: EXCLUSIVE4: error %d on SETATTR:" 1556 " remove file", e.error)); 1557 VN_RELE(vp); 1558 (void) nfs4_remove(dvp, file_name, cr, NULL, 0); 1559 /* 1560 * Since we've reled the vnode and removed 1561 * the file we now need to return the error. 1562 * At this point we don't want to update the 1563 * dircaches, call nfs4_waitfor_purge_complete 1564 * or set vpp to vp so we need to skip these 1565 * as well. 1566 */ 1567 goto skip_update_dircaches; 1568 } 1569 } 1570 1571 /* 1572 * If we created or found the correct vnode, due to create_flag or 1573 * fh_differs being set, then update directory cache attribute, readdir 1574 * and dnlc caches. 1575 */ 1576 if (create_flag || fh_differs) { 1577 dirattr_info_t dinfo, *dinfop; 1578 1579 /* 1580 * Make sure getattr succeeded before using results. 1581 * note: op 7 is getattr(dir) for both flavors of 1582 * open(create). 1583 */ 1584 if (create_flag && res.status == NFS4_OK) { 1585 dinfo.di_time_call = t; 1586 dinfo.di_cred = cr; 1587 dinfo.di_garp = 1588 &res.array[6].nfs_resop4_u.opgetattr.ga_res; 1589 dinfop = &dinfo; 1590 } else { 1591 dinfop = NULL; 1592 } 1593 1594 nfs4_update_dircaches(&op_res->cinfo, dvp, vp, file_name, 1595 dinfop); 1596 } 1597 1598 /* 1599 * If the page cache for this file was flushed from actions 1600 * above, it was done asynchronously and if that is true, 1601 * there is a need to wait here for it to complete. This must 1602 * be done outside of start_fop/end_fop. 1603 */ 1604 (void) nfs4_waitfor_purge_complete(vp); 1605 1606 /* 1607 * It is implicit that we are in the open case (create_flag == 0) since 1608 * fh_differs can only be set to a non-zero value in the open case. 1609 */ 1610 if (fh_differs != 0 && vpi != NULL) 1611 VN_RELE(vpi); 1612 1613 /* 1614 * Be sure to set *vpp to the correct value before returning. 1615 */ 1616 *vpp = vp; 1617 1618 skip_update_dircaches: 1619 1620 nfs4args_copen_free(open_args); 1621 if (setgid_flag) { 1622 nfs4args_verify_free(&argop[8]); 1623 nfs4args_setattr_free(&argop[9]); 1624 } 1625 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1626 1627 if (ncr) 1628 crfree(ncr); 1629 kmem_free(argop, argoplist_size); 1630 return (e.error); 1631 } 1632 1633 /* 1634 * Reopen an open instance. cf. nfs4open_otw(). 1635 * 1636 * Errors are returned by the nfs4_error_t parameter. 1637 * - ep->error contains an errno value or zero. 1638 * - if it is zero, ep->stat is set to an NFS status code, if any. 1639 * If the file could not be reopened, but the caller should continue, the 1640 * file is marked dead and no error values are returned. If the caller 1641 * should stop recovering open files and start over, either the ep->error 1642 * value or ep->stat will indicate an error (either something that requires 1643 * recovery or EAGAIN). Note that some recovery (e.g., expired volatile 1644 * filehandles) may be handled silently by this routine. 1645 * - if it is EINTR, ETIMEDOUT, or NFS4_FRC_UNMT_ERR, recovery for lost state 1646 * will be started, so the caller should not do it. 1647 * 1648 * Gotos: 1649 * - kill_file : reopen failed in such a fashion to constitute marking the 1650 * file dead and setting the open stream's 'os_failed_reopen' as 1. This 1651 * is for cases where recovery is not possible. 1652 * - failed_reopen : same as above, except that the file has already been 1653 * marked dead, so no need to do it again. 1654 * - bailout : reopen failed but we are able to recover and retry the reopen - 1655 * either within this function immediately or via the calling function. 1656 */ 1657 1658 void 1659 nfs4_reopen(vnode_t *vp, nfs4_open_stream_t *osp, nfs4_error_t *ep, 1660 open_claim_type4 claim, bool_t frc_use_claim_previous, 1661 bool_t is_recov) 1662 { 1663 COMPOUND4args_clnt args; 1664 COMPOUND4res_clnt res; 1665 nfs_argop4 argop[4]; 1666 nfs_resop4 *resop; 1667 OPEN4res *op_res = NULL; 1668 OPEN4cargs *open_args; 1669 GETFH4res *gf_res; 1670 rnode4_t *rp = VTOR4(vp); 1671 int doqueue = 1; 1672 cred_t *cr = NULL, *cred_otw = NULL; 1673 nfs4_open_owner_t *oop = NULL; 1674 seqid4 seqid; 1675 nfs4_ga_res_t *garp; 1676 char fn[MAXNAMELEN]; 1677 nfs4_recov_state_t recov = {NULL, 0}; 1678 nfs4_lost_rqst_t lost_rqst; 1679 mntinfo4_t *mi = VTOMI4(vp); 1680 bool_t abort; 1681 char *failed_msg = ""; 1682 int fh_different; 1683 hrtime_t t; 1684 nfs4_bseqid_entry_t *bsep = NULL; 1685 1686 ASSERT(nfs4_consistent_type(vp)); 1687 ASSERT(nfs_zone() == mi->mi_zone); 1688 1689 nfs4_error_zinit(ep); 1690 1691 /* this is the cred used to find the open owner */ 1692 cr = state_to_cred(osp); 1693 if (cr == NULL) { 1694 failed_msg = "Couldn't reopen: no cred"; 1695 goto kill_file; 1696 } 1697 /* use this cred for OTW operations */ 1698 cred_otw = nfs4_get_otw_cred(cr, mi, osp->os_open_owner); 1699 1700 top: 1701 nfs4_error_zinit(ep); 1702 1703 if (mi->mi_vfsp->vfs_flag & VFS_UNMOUNTED) { 1704 /* File system has been unmounted, quit */ 1705 ep->error = EIO; 1706 failed_msg = "Couldn't reopen: file system has been unmounted"; 1707 goto kill_file; 1708 } 1709 1710 oop = osp->os_open_owner; 1711 1712 ASSERT(oop != NULL); 1713 if (oop == NULL) { /* be defensive in non-DEBUG */ 1714 failed_msg = "can't reopen: no open owner"; 1715 goto kill_file; 1716 } 1717 open_owner_hold(oop); 1718 1719 ep->error = nfs4_start_open_seqid_sync(oop, mi); 1720 if (ep->error) { 1721 open_owner_rele(oop); 1722 oop = NULL; 1723 goto bailout; 1724 } 1725 1726 /* 1727 * If the rnode has a delegation and the delegation has been 1728 * recovered and the server didn't request a recall and the caller 1729 * didn't specifically ask for CLAIM_PREVIOUS (nfs4frlock during 1730 * recovery) and the rnode hasn't been marked dead, then install 1731 * the delegation stateid in the open stream. Otherwise, proceed 1732 * with a CLAIM_PREVIOUS or CLAIM_NULL OPEN. 1733 */ 1734 mutex_enter(&rp->r_statev4_lock); 1735 if (rp->r_deleg_type != OPEN_DELEGATE_NONE && 1736 !rp->r_deleg_return_pending && 1737 (rp->r_deleg_needs_recovery == OPEN_DELEGATE_NONE) && 1738 !rp->r_deleg_needs_recall && 1739 claim != CLAIM_DELEGATE_CUR && !frc_use_claim_previous && 1740 !(rp->r_flags & R4RECOVERR)) { 1741 mutex_enter(&osp->os_sync_lock); 1742 osp->os_delegation = 1; 1743 osp->open_stateid = rp->r_deleg_stateid; 1744 mutex_exit(&osp->os_sync_lock); 1745 mutex_exit(&rp->r_statev4_lock); 1746 goto bailout; 1747 } 1748 mutex_exit(&rp->r_statev4_lock); 1749 1750 /* 1751 * If the file failed recovery, just quit. This failure need not 1752 * affect other reopens, so don't return an error. 1753 */ 1754 mutex_enter(&rp->r_statelock); 1755 if (rp->r_flags & R4RECOVERR) { 1756 mutex_exit(&rp->r_statelock); 1757 ep->error = 0; 1758 goto failed_reopen; 1759 } 1760 mutex_exit(&rp->r_statelock); 1761 1762 /* 1763 * argop is empty here 1764 * 1765 * PUTFH, OPEN, GETATTR 1766 */ 1767 args.ctag = TAG_REOPEN; 1768 args.array_len = 4; 1769 args.array = argop; 1770 1771 NFS4_DEBUG(nfs4_client_failover_debug, (CE_NOTE, 1772 "nfs4_reopen: file is type %d, id %s", 1773 vp->v_type, rnode4info(VTOR4(vp)))); 1774 1775 argop[0].argop = OP_CPUTFH; 1776 1777 if (claim != CLAIM_PREVIOUS) { 1778 /* 1779 * if this is a file mount then 1780 * use the mntinfo parentfh 1781 */ 1782 argop[0].nfs_argop4_u.opcputfh.sfh = 1783 (vp->v_flag & VROOT) ? mi->mi_srvparentfh : 1784 VTOSV(vp)->sv_dfh; 1785 } else { 1786 /* putfh fh to reopen */ 1787 argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh; 1788 } 1789 1790 argop[1].argop = OP_COPEN; 1791 open_args = &argop[1].nfs_argop4_u.opcopen; 1792 open_args->claim = claim; 1793 1794 if (claim == CLAIM_NULL) { 1795 1796 if ((ep->error = vtoname(vp, fn, MAXNAMELEN)) != 0) { 1797 nfs_cmn_err(ep->error, CE_WARN, "nfs4_reopen: vtoname " 1798 "failed for vp 0x%p for CLAIM_NULL with %m", 1799 (void *)vp); 1800 failed_msg = "Couldn't reopen: vtoname failed for " 1801 "CLAIM_NULL"; 1802 /* nothing allocated yet */ 1803 goto kill_file; 1804 } 1805 1806 open_args->open_claim4_u.cfile = fn; 1807 } else if (claim == CLAIM_PREVIOUS) { 1808 1809 /* 1810 * We have two cases to deal with here: 1811 * 1) We're being called to reopen files in order to satisfy 1812 * a lock operation request which requires us to explicitly 1813 * reopen files which were opened under a delegation. If 1814 * we're in recovery, we *must* use CLAIM_PREVIOUS. In 1815 * that case, frc_use_claim_previous is TRUE and we must 1816 * use the rnode's current delegation type (r_deleg_type). 1817 * 2) We're reopening files during some form of recovery. 1818 * In this case, frc_use_claim_previous is FALSE and we 1819 * use the delegation type appropriate for recovery 1820 * (r_deleg_needs_recovery). 1821 */ 1822 mutex_enter(&rp->r_statev4_lock); 1823 open_args->open_claim4_u.delegate_type = 1824 frc_use_claim_previous ? 1825 rp->r_deleg_type : 1826 rp->r_deleg_needs_recovery; 1827 mutex_exit(&rp->r_statev4_lock); 1828 1829 } else if (claim == CLAIM_DELEGATE_CUR) { 1830 1831 if ((ep->error = vtoname(vp, fn, MAXNAMELEN)) != 0) { 1832 nfs_cmn_err(ep->error, CE_WARN, "nfs4_reopen: vtoname " 1833 "failed for vp 0x%p for CLAIM_DELEGATE_CUR " 1834 "with %m", (void *)vp); 1835 failed_msg = "Couldn't reopen: vtoname failed for " 1836 "CLAIM_DELEGATE_CUR"; 1837 /* nothing allocated yet */ 1838 goto kill_file; 1839 } 1840 1841 mutex_enter(&rp->r_statev4_lock); 1842 open_args->open_claim4_u.delegate_cur_info.delegate_stateid = 1843 rp->r_deleg_stateid; 1844 mutex_exit(&rp->r_statev4_lock); 1845 1846 open_args->open_claim4_u.delegate_cur_info.cfile = fn; 1847 } 1848 open_args->opentype = OPEN4_NOCREATE; 1849 open_args->owner.clientid = mi2clientid(mi); 1850 open_args->owner.owner_len = sizeof (oop->oo_name); 1851 open_args->owner.owner_val = 1852 kmem_alloc(open_args->owner.owner_len, KM_SLEEP); 1853 bcopy(&oop->oo_name, open_args->owner.owner_val, 1854 open_args->owner.owner_len); 1855 open_args->share_access = 0; 1856 open_args->share_deny = 0; 1857 1858 mutex_enter(&osp->os_sync_lock); 1859 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, "nfs4_reopen: osp %p rp " 1860 "%p: read acc %"PRIu64" write acc %"PRIu64": open ref count %d: " 1861 "mmap read %"PRIu64" mmap write %"PRIu64" claim %d ", 1862 (void *)osp, (void *)rp, osp->os_share_acc_read, 1863 osp->os_share_acc_write, osp->os_open_ref_count, 1864 osp->os_mmap_read, osp->os_mmap_write, claim)); 1865 1866 if (osp->os_share_acc_read || osp->os_mmap_read) 1867 open_args->share_access |= OPEN4_SHARE_ACCESS_READ; 1868 if (osp->os_share_acc_write || osp->os_mmap_write) 1869 open_args->share_access |= OPEN4_SHARE_ACCESS_WRITE; 1870 if (osp->os_share_deny_read) 1871 open_args->share_deny |= OPEN4_SHARE_DENY_READ; 1872 if (osp->os_share_deny_write) 1873 open_args->share_deny |= OPEN4_SHARE_DENY_WRITE; 1874 mutex_exit(&osp->os_sync_lock); 1875 1876 seqid = nfs4_get_open_seqid(oop) + 1; 1877 open_args->seqid = seqid; 1878 1879 /* Construct the getfh part of the compound */ 1880 argop[2].argop = OP_GETFH; 1881 1882 /* Construct the getattr part of the compound */ 1883 argop[3].argop = OP_GETATTR; 1884 argop[3].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 1885 argop[3].nfs_argop4_u.opgetattr.mi = mi; 1886 1887 t = gethrtime(); 1888 1889 rfs4call(mi, &args, &res, cred_otw, &doqueue, 0, ep); 1890 1891 if (ep->error) { 1892 if (!is_recov && !frc_use_claim_previous && 1893 (ep->error == EINTR || ep->error == ETIMEDOUT || 1894 NFS4_FRC_UNMT_ERR(ep->error, vp->v_vfsp))) { 1895 nfs4open_save_lost_rqst(ep->error, &lost_rqst, oop, 1896 cred_otw, vp, NULL, open_args); 1897 abort = nfs4_start_recovery(ep, 1898 VTOMI4(vp), vp, NULL, NULL, 1899 lost_rqst.lr_op == OP_OPEN ? 1900 &lost_rqst : NULL, OP_OPEN, NULL); 1901 nfs4args_copen_free(open_args); 1902 goto bailout; 1903 } 1904 1905 nfs4args_copen_free(open_args); 1906 1907 if (ep->error == EACCES && cred_otw != cr) { 1908 crfree(cred_otw); 1909 cred_otw = cr; 1910 crhold(cred_otw); 1911 nfs4_end_open_seqid_sync(oop); 1912 open_owner_rele(oop); 1913 oop = NULL; 1914 goto top; 1915 } 1916 if (ep->error == ETIMEDOUT) 1917 goto bailout; 1918 failed_msg = "Couldn't reopen: rpc error"; 1919 goto kill_file; 1920 } 1921 1922 if (nfs4_need_to_bump_seqid(&res)) 1923 nfs4_set_open_seqid(seqid, oop, args.ctag); 1924 1925 switch (res.status) { 1926 case NFS4_OK: 1927 if (recov.rs_flags & NFS4_RS_DELAY_MSG) { 1928 mutex_enter(&rp->r_statelock); 1929 rp->r_delay_interval = 0; 1930 mutex_exit(&rp->r_statelock); 1931 } 1932 break; 1933 case NFS4ERR_BAD_SEQID: 1934 bsep = nfs4_create_bseqid_entry(oop, NULL, vp, 0, 1935 args.ctag, open_args->seqid); 1936 1937 abort = nfs4_start_recovery(ep, VTOMI4(vp), vp, NULL, 1938 NULL, lost_rqst.lr_op == OP_OPEN ? &lost_rqst : 1939 NULL, OP_OPEN, bsep); 1940 1941 nfs4args_copen_free(open_args); 1942 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1943 nfs4_end_open_seqid_sync(oop); 1944 open_owner_rele(oop); 1945 oop = NULL; 1946 kmem_free(bsep, sizeof (*bsep)); 1947 1948 goto kill_file; 1949 case NFS4ERR_NO_GRACE: 1950 nfs4args_copen_free(open_args); 1951 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1952 nfs4_end_open_seqid_sync(oop); 1953 open_owner_rele(oop); 1954 oop = NULL; 1955 if (claim == CLAIM_PREVIOUS) { 1956 /* 1957 * Retry as a plain open. We don't need to worry about 1958 * checking the changeinfo: it is acceptable for a 1959 * client to re-open a file and continue processing 1960 * (in the absence of locks). 1961 */ 1962 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 1963 "nfs4_reopen: CLAIM_PREVIOUS: NFS4ERR_NO_GRACE; " 1964 "will retry as CLAIM_NULL")); 1965 claim = CLAIM_NULL; 1966 nfs4_mi_kstat_inc_no_grace(mi); 1967 goto top; 1968 } 1969 failed_msg = 1970 "Couldn't reopen: tried reclaim outside grace period. "; 1971 goto kill_file; 1972 case NFS4ERR_GRACE: 1973 nfs4_set_grace_wait(mi); 1974 nfs4args_copen_free(open_args); 1975 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1976 nfs4_end_open_seqid_sync(oop); 1977 open_owner_rele(oop); 1978 oop = NULL; 1979 ep->error = nfs4_wait_for_grace(mi, &recov); 1980 if (ep->error != 0) 1981 goto bailout; 1982 goto top; 1983 case NFS4ERR_DELAY: 1984 nfs4_set_delay_wait(vp); 1985 nfs4args_copen_free(open_args); 1986 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1987 nfs4_end_open_seqid_sync(oop); 1988 open_owner_rele(oop); 1989 oop = NULL; 1990 ep->error = nfs4_wait_for_delay(vp, &recov); 1991 nfs4_mi_kstat_inc_delay(mi); 1992 if (ep->error != 0) 1993 goto bailout; 1994 goto top; 1995 case NFS4ERR_FHEXPIRED: 1996 /* recover filehandle and retry */ 1997 abort = nfs4_start_recovery(ep, 1998 mi, vp, NULL, NULL, NULL, OP_OPEN, NULL); 1999 nfs4args_copen_free(open_args); 2000 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 2001 nfs4_end_open_seqid_sync(oop); 2002 open_owner_rele(oop); 2003 oop = NULL; 2004 if (abort == FALSE) 2005 goto top; 2006 failed_msg = "Couldn't reopen: recovery aborted"; 2007 goto kill_file; 2008 case NFS4ERR_RESOURCE: 2009 case NFS4ERR_STALE_CLIENTID: 2010 case NFS4ERR_WRONGSEC: 2011 case NFS4ERR_EXPIRED: 2012 /* 2013 * Do not mark the file dead and let the calling 2014 * function initiate recovery. 2015 */ 2016 nfs4args_copen_free(open_args); 2017 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 2018 nfs4_end_open_seqid_sync(oop); 2019 open_owner_rele(oop); 2020 oop = NULL; 2021 goto bailout; 2022 case NFS4ERR_ACCESS: 2023 if (cred_otw != cr) { 2024 crfree(cred_otw); 2025 cred_otw = cr; 2026 crhold(cred_otw); 2027 nfs4args_copen_free(open_args); 2028 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 2029 nfs4_end_open_seqid_sync(oop); 2030 open_owner_rele(oop); 2031 oop = NULL; 2032 goto top; 2033 } 2034 /* fall through */ 2035 default: 2036 NFS4_DEBUG(nfs4_client_failover_debug, (CE_NOTE, 2037 "nfs4_reopen: r_server 0x%p, mi_curr_serv 0x%p, rnode %s", 2038 (void*)VTOR4(vp)->r_server, (void*)mi->mi_curr_serv, 2039 rnode4info(VTOR4(vp)))); 2040 failed_msg = "Couldn't reopen: NFSv4 error"; 2041 nfs4args_copen_free(open_args); 2042 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 2043 goto kill_file; 2044 } 2045 2046 resop = &res.array[1]; /* open res */ 2047 op_res = &resop->nfs_resop4_u.opopen; 2048 2049 garp = &res.array[3].nfs_resop4_u.opgetattr.ga_res; 2050 2051 /* 2052 * Check if the path we reopened really is the same 2053 * file. We could end up in a situation where the file 2054 * was removed and a new file created with the same name. 2055 */ 2056 resop = &res.array[2]; 2057 gf_res = &resop->nfs_resop4_u.opgetfh; 2058 (void) nfs_rw_enter_sig(&mi->mi_fh_lock, RW_READER, 0); 2059 fh_different = (nfs4cmpfh(&rp->r_fh->sfh_fh, &gf_res->object) != 0); 2060 if (fh_different) { 2061 if (mi->mi_fh_expire_type == FH4_PERSISTENT || 2062 mi->mi_fh_expire_type & FH4_NOEXPIRE_WITH_OPEN) { 2063 /* Oops, we don't have the same file */ 2064 if (mi->mi_fh_expire_type == FH4_PERSISTENT) 2065 failed_msg = "Couldn't reopen: Persistent " 2066 "file handle changed"; 2067 else 2068 failed_msg = "Couldn't reopen: Volatile " 2069 "(no expire on open) file handle changed"; 2070 2071 nfs4args_copen_free(open_args); 2072 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 2073 nfs_rw_exit(&mi->mi_fh_lock); 2074 goto kill_file; 2075 2076 } else { 2077 /* 2078 * We have volatile file handles that don't compare. 2079 * If the fids are the same then we assume that the 2080 * file handle expired but the rnode still refers to 2081 * the same file object. 2082 * 2083 * First check that we have fids or not. 2084 * If we don't we have a dumb server so we will 2085 * just assume every thing is ok for now. 2086 */ 2087 if (!ep->error && garp->n4g_va.va_mask & AT_NODEID && 2088 rp->r_attr.va_mask & AT_NODEID && 2089 rp->r_attr.va_nodeid != garp->n4g_va.va_nodeid) { 2090 /* 2091 * We have fids, but they don't 2092 * compare. So kill the file. 2093 */ 2094 failed_msg = 2095 "Couldn't reopen: file handle changed" 2096 " due to mismatched fids"; 2097 nfs4args_copen_free(open_args); 2098 (void) xdr_free(xdr_COMPOUND4res_clnt, 2099 (caddr_t)&res); 2100 nfs_rw_exit(&mi->mi_fh_lock); 2101 goto kill_file; 2102 } else { 2103 /* 2104 * We have volatile file handles that refers 2105 * to the same file (at least they have the 2106 * same fid) or we don't have fids so we 2107 * can't tell. :(. We'll be a kind and accepting 2108 * client so we'll update the rnode's file 2109 * handle with the otw handle. 2110 * 2111 * We need to drop mi->mi_fh_lock since 2112 * sh4_update acquires it. Since there is 2113 * only one recovery thread there is no 2114 * race. 2115 */ 2116 nfs_rw_exit(&mi->mi_fh_lock); 2117 sfh4_update(rp->r_fh, &gf_res->object); 2118 } 2119 } 2120 } else { 2121 nfs_rw_exit(&mi->mi_fh_lock); 2122 } 2123 2124 ASSERT(nfs4_consistent_type(vp)); 2125 2126 /* 2127 * If the server wanted an OPEN_CONFIRM but that fails, just start 2128 * over. Presumably if there is a persistent error it will show up 2129 * when we resend the OPEN. 2130 */ 2131 if (op_res->rflags & OPEN4_RESULT_CONFIRM) { 2132 bool_t retry_open = FALSE; 2133 2134 nfs4open_confirm(vp, &seqid, &op_res->stateid, 2135 cred_otw, is_recov, &retry_open, 2136 oop, FALSE, ep, NULL); 2137 if (ep->error || ep->stat) { 2138 nfs4args_copen_free(open_args); 2139 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 2140 nfs4_end_open_seqid_sync(oop); 2141 open_owner_rele(oop); 2142 oop = NULL; 2143 goto top; 2144 } 2145 } 2146 2147 mutex_enter(&osp->os_sync_lock); 2148 osp->open_stateid = op_res->stateid; 2149 osp->os_delegation = 0; 2150 /* 2151 * Need to reset this bitfield for the possible case where we were 2152 * going to OTW CLOSE the file, got a non-recoverable error, and before 2153 * we could retry the CLOSE, OPENed the file again. 2154 */ 2155 ASSERT(osp->os_open_owner->oo_seqid_inuse); 2156 osp->os_final_close = 0; 2157 osp->os_force_close = 0; 2158 if (claim == CLAIM_DELEGATE_CUR || claim == CLAIM_PREVIOUS) 2159 osp->os_dc_openacc = open_args->share_access; 2160 mutex_exit(&osp->os_sync_lock); 2161 2162 nfs4_end_open_seqid_sync(oop); 2163 2164 /* accept delegation, if any */ 2165 nfs4_delegation_accept(rp, claim, op_res, garp, cred_otw); 2166 2167 nfs4args_copen_free(open_args); 2168 2169 nfs4_attr_cache(vp, garp, t, cr, TRUE, NULL); 2170 2171 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 2172 2173 ASSERT(nfs4_consistent_type(vp)); 2174 2175 open_owner_rele(oop); 2176 crfree(cr); 2177 crfree(cred_otw); 2178 return; 2179 2180 kill_file: 2181 nfs4_fail_recov(vp, failed_msg, ep->error, ep->stat); 2182 failed_reopen: 2183 NFS4_DEBUG(nfs4_open_stream_debug, (CE_NOTE, 2184 "nfs4_reopen: setting os_failed_reopen for osp %p, cr %p, rp %s", 2185 (void *)osp, (void *)cr, rnode4info(rp))); 2186 mutex_enter(&osp->os_sync_lock); 2187 osp->os_failed_reopen = 1; 2188 mutex_exit(&osp->os_sync_lock); 2189 bailout: 2190 if (oop != NULL) { 2191 nfs4_end_open_seqid_sync(oop); 2192 open_owner_rele(oop); 2193 } 2194 if (cr != NULL) 2195 crfree(cr); 2196 if (cred_otw != NULL) 2197 crfree(cred_otw); 2198 } 2199 2200 /* for . and .. OPENs */ 2201 /* ARGSUSED */ 2202 static int 2203 nfs4_open_non_reg_file(vnode_t **vpp, int flag, cred_t *cr) 2204 { 2205 rnode4_t *rp; 2206 nfs4_ga_res_t gar; 2207 2208 ASSERT(nfs_zone() == VTOMI4(*vpp)->mi_zone); 2209 2210 /* 2211 * If close-to-open consistency checking is turned off or 2212 * if there is no cached data, we can avoid 2213 * the over the wire getattr. Otherwise, force a 2214 * call to the server to get fresh attributes and to 2215 * check caches. This is required for close-to-open 2216 * consistency. 2217 */ 2218 rp = VTOR4(*vpp); 2219 if (VTOMI4(*vpp)->mi_flags & MI4_NOCTO || 2220 (rp->r_dir == NULL && !nfs4_has_pages(*vpp))) 2221 return (0); 2222 2223 gar.n4g_va.va_mask = AT_ALL; 2224 return (nfs4_getattr_otw(*vpp, &gar, cr, 0)); 2225 } 2226 2227 /* 2228 * CLOSE a file 2229 */ 2230 /* ARGSUSED */ 2231 static int 2232 nfs4_close(vnode_t *vp, int flag, int count, offset_t offset, cred_t *cr, 2233 caller_context_t *ct) 2234 { 2235 rnode4_t *rp; 2236 int error = 0; 2237 int r_error = 0; 2238 int n4error = 0; 2239 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 2240 2241 /* 2242 * Remove client state for this (lockowner, file) pair. 2243 * Issue otw v4 call to have the server do the same. 2244 */ 2245 2246 rp = VTOR4(vp); 2247 2248 /* 2249 * zone_enter(2) prevents processes from changing zones with NFS files 2250 * open; if we happen to get here from the wrong zone we can't do 2251 * anything over the wire. 2252 */ 2253 if (VTOMI4(vp)->mi_zone != nfs_zone()) { 2254 /* 2255 * We could attempt to clean up locks, except we're sure 2256 * that the current process didn't acquire any locks on 2257 * the file: any attempt to lock a file belong to another zone 2258 * will fail, and one can't lock an NFS file and then change 2259 * zones, as that fails too. 2260 * 2261 * Returning an error here is the sane thing to do. A 2262 * subsequent call to VN_RELE() which translates to a 2263 * nfs4_inactive() will clean up state: if the zone of the 2264 * vnode's origin is still alive and kicking, the inactive 2265 * thread will handle the request (from the correct zone), and 2266 * everything (minus the OTW close call) should be OK. If the 2267 * zone is going away nfs4_async_inactive() will throw away 2268 * delegations, open streams and cached pages inline. 2269 */ 2270 return (EIO); 2271 } 2272 2273 /* 2274 * If we are using local locking for this filesystem, then 2275 * release all of the SYSV style record locks. Otherwise, 2276 * we are doing network locking and we need to release all 2277 * of the network locks. All of the locks held by this 2278 * process on this file are released no matter what the 2279 * incoming reference count is. 2280 */ 2281 if (VTOMI4(vp)->mi_flags & MI4_LLOCK) { 2282 cleanlocks(vp, ttoproc(curthread)->p_pid, 0); 2283 cleanshares(vp, ttoproc(curthread)->p_pid); 2284 } else 2285 e.error = nfs4_lockrelease(vp, flag, offset, cr); 2286 2287 if (e.error) { 2288 struct lm_sysid *lmsid; 2289 lmsid = nfs4_find_sysid(VTOMI4(vp)); 2290 if (lmsid == NULL) { 2291 DTRACE_PROBE2(unknown__sysid, int, e.error, 2292 vnode_t *, vp); 2293 } else { 2294 cleanlocks(vp, ttoproc(curthread)->p_pid, 2295 (lm_sysidt(lmsid) | LM_SYSID_CLIENT)); 2296 } 2297 return (e.error); 2298 } 2299 2300 if (count > 1) 2301 return (0); 2302 2303 /* 2304 * If the file has been `unlinked', then purge the 2305 * DNLC so that this vnode will get reycled quicker 2306 * and the .nfs* file on the server will get removed. 2307 */ 2308 if (rp->r_unldvp != NULL) 2309 dnlc_purge_vp(vp); 2310 2311 /* 2312 * If the file was open for write and there are pages, 2313 * do a synchronous flush and commit of all of the 2314 * dirty and uncommitted pages. 2315 */ 2316 ASSERT(!e.error); 2317 if ((flag & FWRITE) && nfs4_has_pages(vp)) 2318 error = nfs4_putpage_commit(vp, 0, 0, cr); 2319 2320 mutex_enter(&rp->r_statelock); 2321 r_error = rp->r_error; 2322 rp->r_error = 0; 2323 mutex_exit(&rp->r_statelock); 2324 2325 /* 2326 * If this file type is one for which no explicit 'open' was 2327 * done, then bail now (ie. no need for protocol 'close'). If 2328 * there was an error w/the vm subsystem, return _that_ error, 2329 * otherwise, return any errors that may've been reported via 2330 * the rnode. 2331 */ 2332 if (vp->v_type != VREG) 2333 return (error ? error : r_error); 2334 2335 /* 2336 * The sync putpage commit may have failed above, but since 2337 * we're working w/a regular file, we need to do the protocol 2338 * 'close' (nfs4close_one will figure out if an otw close is 2339 * needed or not). Report any errors _after_ doing the protocol 2340 * 'close'. 2341 */ 2342 nfs4close_one(vp, NULL, cr, flag, NULL, &e, CLOSE_NORM, 0, 0, 0); 2343 n4error = e.error ? e.error : geterrno4(e.stat); 2344 2345 /* 2346 * Error reporting prio (Hi -> Lo) 2347 * 2348 * i) nfs4_putpage_commit (error) 2349 * ii) rnode's (r_error) 2350 * iii) nfs4close_one (n4error) 2351 */ 2352 return (error ? error : (r_error ? r_error : n4error)); 2353 } 2354 2355 /* 2356 * Initialize *lost_rqstp. 2357 */ 2358 2359 static void 2360 nfs4close_save_lost_rqst(int error, nfs4_lost_rqst_t *lost_rqstp, 2361 nfs4_open_owner_t *oop, nfs4_open_stream_t *osp, cred_t *cr, 2362 vnode_t *vp) 2363 { 2364 if (error != ETIMEDOUT && error != EINTR && 2365 !NFS4_FRC_UNMT_ERR(error, vp->v_vfsp)) { 2366 lost_rqstp->lr_op = 0; 2367 return; 2368 } 2369 2370 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE, 2371 "nfs4close_save_lost_rqst: error %d", error)); 2372 2373 lost_rqstp->lr_op = OP_CLOSE; 2374 /* 2375 * The vp is held and rele'd via the recovery code. 2376 * See nfs4_save_lost_rqst. 2377 */ 2378 lost_rqstp->lr_vp = vp; 2379 lost_rqstp->lr_dvp = NULL; 2380 lost_rqstp->lr_oop = oop; 2381 lost_rqstp->lr_osp = osp; 2382 ASSERT(osp != NULL); 2383 ASSERT(mutex_owned(&osp->os_sync_lock)); 2384 osp->os_pending_close = 1; 2385 lost_rqstp->lr_lop = NULL; 2386 lost_rqstp->lr_cr = cr; 2387 lost_rqstp->lr_flk = NULL; 2388 lost_rqstp->lr_putfirst = FALSE; 2389 } 2390 2391 /* 2392 * Assumes you already have the open seqid sync grabbed as well as the 2393 * 'os_sync_lock'. Note: this will release the open seqid sync and 2394 * 'os_sync_lock' if client recovery starts. Calling functions have to 2395 * be prepared to handle this. 2396 * 2397 * 'recov' is returned as 1 if the CLOSE operation detected client recovery 2398 * was needed and was started, and that the calling function should retry 2399 * this function; otherwise it is returned as 0. 2400 * 2401 * Errors are returned via the nfs4_error_t parameter. 2402 */ 2403 static void 2404 nfs4close_otw(rnode4_t *rp, cred_t *cred_otw, nfs4_open_owner_t *oop, 2405 nfs4_open_stream_t *osp, int *recov, int *did_start_seqid_syncp, 2406 nfs4_close_type_t close_type, nfs4_error_t *ep, int *have_sync_lockp) 2407 { 2408 COMPOUND4args_clnt args; 2409 COMPOUND4res_clnt res; 2410 CLOSE4args *close_args; 2411 nfs_resop4 *resop; 2412 nfs_argop4 argop[3]; 2413 int doqueue = 1; 2414 mntinfo4_t *mi; 2415 seqid4 seqid; 2416 vnode_t *vp; 2417 bool_t needrecov = FALSE; 2418 nfs4_lost_rqst_t lost_rqst; 2419 hrtime_t t; 2420 2421 ASSERT(nfs_zone() == VTOMI4(RTOV4(rp))->mi_zone); 2422 2423 ASSERT(MUTEX_HELD(&osp->os_sync_lock)); 2424 2425 NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE, "nfs4close_otw")); 2426 2427 /* Only set this to 1 if recovery is started */ 2428 *recov = 0; 2429 2430 /* do the OTW call to close the file */ 2431 2432 if (close_type == CLOSE_RESEND) 2433 args.ctag = TAG_CLOSE_LOST; 2434 else if (close_type == CLOSE_AFTER_RESEND) 2435 args.ctag = TAG_CLOSE_UNDO; 2436 else 2437 args.ctag = TAG_CLOSE; 2438 2439 args.array_len = 3; 2440 args.array = argop; 2441 2442 vp = RTOV4(rp); 2443 2444 mi = VTOMI4(vp); 2445 2446 /* putfh target fh */ 2447 argop[0].argop = OP_CPUTFH; 2448 argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh; 2449 2450 argop[1].argop = OP_GETATTR; 2451 argop[1].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 2452 argop[1].nfs_argop4_u.opgetattr.mi = mi; 2453 2454 argop[2].argop = OP_CLOSE; 2455 close_args = &argop[2].nfs_argop4_u.opclose; 2456 2457 seqid = nfs4_get_open_seqid(oop) + 1; 2458 2459 close_args->seqid = seqid; 2460 close_args->open_stateid = osp->open_stateid; 2461 2462 NFS4_DEBUG(nfs4_client_call_debug, (CE_NOTE, 2463 "nfs4close_otw: %s call, rp %s", needrecov ? "recov" : "first", 2464 rnode4info(rp))); 2465 2466 t = gethrtime(); 2467 2468 rfs4call(mi, &args, &res, cred_otw, &doqueue, 0, ep); 2469 2470 if (!ep->error && nfs4_need_to_bump_seqid(&res)) { 2471 nfs4_set_open_seqid(seqid, oop, args.ctag); 2472 } 2473 2474 needrecov = nfs4_needs_recovery(ep, TRUE, mi->mi_vfsp); 2475 if (ep->error && !needrecov) { 2476 /* 2477 * if there was an error and no recovery is to be done 2478 * then then set up the file to flush its cache if 2479 * needed for the next caller. 2480 */ 2481 mutex_enter(&rp->r_statelock); 2482 PURGE_ATTRCACHE4_LOCKED(rp); 2483 rp->r_flags &= ~R4WRITEMODIFIED; 2484 mutex_exit(&rp->r_statelock); 2485 return; 2486 } 2487 2488 if (needrecov) { 2489 bool_t abort; 2490 nfs4_bseqid_entry_t *bsep = NULL; 2491 2492 if (close_type != CLOSE_RESEND) 2493 nfs4close_save_lost_rqst(ep->error, &lost_rqst, oop, 2494 osp, cred_otw, vp); 2495 2496 if (!ep->error && res.status == NFS4ERR_BAD_SEQID) 2497 bsep = nfs4_create_bseqid_entry(oop, NULL, vp, 2498 0, args.ctag, close_args->seqid); 2499 2500 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 2501 "nfs4close_otw: initiating recovery. error %d " 2502 "res.status %d", ep->error, res.status)); 2503 2504 /* 2505 * Drop the 'os_sync_lock' here so we don't hit 2506 * a potential recursive mutex_enter via an 2507 * 'open_stream_hold()'. 2508 */ 2509 mutex_exit(&osp->os_sync_lock); 2510 *have_sync_lockp = 0; 2511 abort = nfs4_start_recovery(ep, VTOMI4(vp), vp, NULL, NULL, 2512 (close_type != CLOSE_RESEND && 2513 lost_rqst.lr_op == OP_CLOSE) ? &lost_rqst : NULL, 2514 OP_CLOSE, bsep); 2515 2516 /* drop open seq sync, and let the calling function regrab it */ 2517 nfs4_end_open_seqid_sync(oop); 2518 *did_start_seqid_syncp = 0; 2519 2520 if (bsep) 2521 kmem_free(bsep, sizeof (*bsep)); 2522 /* 2523 * For signals, the caller wants to quit, so don't say to 2524 * retry. For forced unmount, if it's a user thread, it 2525 * wants to quit. If it's a recovery thread, the retry 2526 * will happen higher-up on the call stack. Either way, 2527 * don't say to retry. 2528 */ 2529 if (abort == FALSE && ep->error != EINTR && 2530 !NFS4_FRC_UNMT_ERR(ep->error, mi->mi_vfsp) && 2531 close_type != CLOSE_RESEND && 2532 close_type != CLOSE_AFTER_RESEND) 2533 *recov = 1; 2534 else 2535 *recov = 0; 2536 2537 if (!ep->error) 2538 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 2539 return; 2540 } 2541 2542 if (res.status) { 2543 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 2544 return; 2545 } 2546 2547 mutex_enter(&rp->r_statev4_lock); 2548 rp->created_v4 = 0; 2549 mutex_exit(&rp->r_statev4_lock); 2550 2551 resop = &res.array[2]; 2552 osp->open_stateid = resop->nfs_resop4_u.opclose.open_stateid; 2553 osp->os_valid = 0; 2554 2555 /* 2556 * This removes the reference obtained at OPEN; ie, when the 2557 * open stream structure was created. 2558 * 2559 * We don't have to worry about calling 'open_stream_rele' 2560 * since we our currently holding a reference to the open 2561 * stream which means the count cannot go to 0 with this 2562 * decrement. 2563 */ 2564 ASSERT(osp->os_ref_count >= 2); 2565 osp->os_ref_count--; 2566 2567 if (!ep->error) 2568 nfs4_attr_cache(vp, 2569 &res.array[1].nfs_resop4_u.opgetattr.ga_res, 2570 t, cred_otw, TRUE, NULL); 2571 2572 NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE, "nfs4close_otw:" 2573 " returning %d", ep->error)); 2574 2575 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 2576 } 2577 2578 /* ARGSUSED */ 2579 static int 2580 nfs4_read(vnode_t *vp, struct uio *uiop, int ioflag, cred_t *cr, 2581 caller_context_t *ct) 2582 { 2583 rnode4_t *rp; 2584 u_offset_t off; 2585 offset_t diff; 2586 uint_t on; 2587 uint_t n; 2588 caddr_t base; 2589 uint_t flags; 2590 int error; 2591 mntinfo4_t *mi; 2592 2593 rp = VTOR4(vp); 2594 2595 ASSERT(nfs_rw_lock_held(&rp->r_rwlock, RW_READER)); 2596 2597 if (IS_SHADOW(vp, rp)) 2598 vp = RTOV4(rp); 2599 2600 if (vp->v_type != VREG) 2601 return (EISDIR); 2602 2603 mi = VTOMI4(vp); 2604 2605 if (nfs_zone() != mi->mi_zone) 2606 return (EIO); 2607 2608 if (uiop->uio_resid == 0) 2609 return (0); 2610 2611 if (uiop->uio_loffset < 0 || uiop->uio_loffset + uiop->uio_resid < 0) 2612 return (EINVAL); 2613 2614 mutex_enter(&rp->r_statelock); 2615 if (rp->r_flags & R4RECOVERRP) 2616 error = (rp->r_error ? rp->r_error : EIO); 2617 else 2618 error = 0; 2619 mutex_exit(&rp->r_statelock); 2620 if (error) 2621 return (error); 2622 2623 /* 2624 * Bypass VM if caching has been disabled (e.g., locking) or if 2625 * using client-side direct I/O and the file is not mmap'd and 2626 * there are no cached pages. 2627 */ 2628 if ((vp->v_flag & VNOCACHE) || 2629 (((rp->r_flags & R4DIRECTIO) || (mi->mi_flags & MI4_DIRECTIO)) && 2630 rp->r_mapcnt == 0 && rp->r_inmap == 0 && !nfs4_has_pages(vp))) { 2631 size_t resid = 0; 2632 2633 return (nfs4read(vp, NULL, uiop->uio_loffset, 2634 uiop->uio_resid, &resid, cr, FALSE, uiop)); 2635 } 2636 2637 error = 0; 2638 2639 do { 2640 off = uiop->uio_loffset & MAXBMASK; /* mapping offset */ 2641 on = uiop->uio_loffset & MAXBOFFSET; /* Relative offset */ 2642 n = MIN(MAXBSIZE - on, uiop->uio_resid); 2643 2644 if (error = nfs4_validate_caches(vp, cr)) 2645 break; 2646 2647 mutex_enter(&rp->r_statelock); 2648 while (rp->r_flags & R4INCACHEPURGE) { 2649 if (!cv_wait_sig(&rp->r_cv, &rp->r_statelock)) { 2650 mutex_exit(&rp->r_statelock); 2651 return (EINTR); 2652 } 2653 } 2654 diff = rp->r_size - uiop->uio_loffset; 2655 mutex_exit(&rp->r_statelock); 2656 if (diff <= 0) 2657 break; 2658 if (diff < n) 2659 n = (uint_t)diff; 2660 2661 if (vpm_enable) { 2662 /* 2663 * Copy data. 2664 */ 2665 error = vpm_data_copy(vp, off + on, n, uiop, 2666 1, NULL, 0, S_READ); 2667 } else { 2668 base = segmap_getmapflt(segkmap, vp, off + on, n, 1, 2669 S_READ); 2670 2671 error = uiomove(base + on, n, UIO_READ, uiop); 2672 } 2673 2674 if (!error) { 2675 /* 2676 * If read a whole block or read to eof, 2677 * won't need this buffer again soon. 2678 */ 2679 mutex_enter(&rp->r_statelock); 2680 if (n + on == MAXBSIZE || 2681 uiop->uio_loffset == rp->r_size) 2682 flags = SM_DONTNEED; 2683 else 2684 flags = 0; 2685 mutex_exit(&rp->r_statelock); 2686 if (vpm_enable) { 2687 error = vpm_sync_pages(vp, off, n, flags); 2688 } else { 2689 error = segmap_release(segkmap, base, flags); 2690 } 2691 } else { 2692 if (vpm_enable) { 2693 (void) vpm_sync_pages(vp, off, n, 0); 2694 } else { 2695 (void) segmap_release(segkmap, base, 0); 2696 } 2697 } 2698 } while (!error && uiop->uio_resid > 0); 2699 2700 return (error); 2701 } 2702 2703 /* ARGSUSED */ 2704 static int 2705 nfs4_write(vnode_t *vp, struct uio *uiop, int ioflag, cred_t *cr, 2706 caller_context_t *ct) 2707 { 2708 rlim64_t limit = uiop->uio_llimit; 2709 rnode4_t *rp; 2710 u_offset_t off; 2711 caddr_t base; 2712 uint_t flags; 2713 int remainder; 2714 size_t n; 2715 int on; 2716 int error; 2717 int resid; 2718 u_offset_t offset; 2719 mntinfo4_t *mi; 2720 uint_t bsize; 2721 2722 rp = VTOR4(vp); 2723 2724 if (IS_SHADOW(vp, rp)) 2725 vp = RTOV4(rp); 2726 2727 if (vp->v_type != VREG) 2728 return (EISDIR); 2729 2730 mi = VTOMI4(vp); 2731 2732 if (nfs_zone() != mi->mi_zone) 2733 return (EIO); 2734 2735 if (uiop->uio_resid == 0) 2736 return (0); 2737 2738 mutex_enter(&rp->r_statelock); 2739 if (rp->r_flags & R4RECOVERRP) 2740 error = (rp->r_error ? rp->r_error : EIO); 2741 else 2742 error = 0; 2743 mutex_exit(&rp->r_statelock); 2744 if (error) 2745 return (error); 2746 2747 if (ioflag & FAPPEND) { 2748 struct vattr va; 2749 2750 /* 2751 * Must serialize if appending. 2752 */ 2753 if (nfs_rw_lock_held(&rp->r_rwlock, RW_READER)) { 2754 nfs_rw_exit(&rp->r_rwlock); 2755 if (nfs_rw_enter_sig(&rp->r_rwlock, RW_WRITER, 2756 INTR4(vp))) 2757 return (EINTR); 2758 } 2759 2760 va.va_mask = AT_SIZE; 2761 error = nfs4getattr(vp, &va, cr); 2762 if (error) 2763 return (error); 2764 uiop->uio_loffset = va.va_size; 2765 } 2766 2767 offset = uiop->uio_loffset + uiop->uio_resid; 2768 2769 if (uiop->uio_loffset < (offset_t)0 || offset < 0) 2770 return (EINVAL); 2771 2772 if (limit == RLIM64_INFINITY || limit > MAXOFFSET_T) 2773 limit = MAXOFFSET_T; 2774 2775 /* 2776 * Check to make sure that the process will not exceed 2777 * its limit on file size. It is okay to write up to 2778 * the limit, but not beyond. Thus, the write which 2779 * reaches the limit will be short and the next write 2780 * will return an error. 2781 */ 2782 remainder = 0; 2783 if (offset > uiop->uio_llimit) { 2784 remainder = offset - uiop->uio_llimit; 2785 uiop->uio_resid = uiop->uio_llimit - uiop->uio_loffset; 2786 if (uiop->uio_resid <= 0) { 2787 proc_t *p = ttoproc(curthread); 2788 2789 uiop->uio_resid += remainder; 2790 mutex_enter(&p->p_lock); 2791 (void) rctl_action(rctlproc_legacy[RLIMIT_FSIZE], 2792 p->p_rctls, p, RCA_UNSAFE_SIGINFO); 2793 mutex_exit(&p->p_lock); 2794 return (EFBIG); 2795 } 2796 } 2797 2798 /* update the change attribute, if we have a write delegation */ 2799 2800 mutex_enter(&rp->r_statev4_lock); 2801 if (rp->r_deleg_type == OPEN_DELEGATE_WRITE) 2802 rp->r_deleg_change++; 2803 2804 mutex_exit(&rp->r_statev4_lock); 2805 2806 if (nfs_rw_enter_sig(&rp->r_lkserlock, RW_READER, INTR4(vp))) 2807 return (EINTR); 2808 2809 /* 2810 * Bypass VM if caching has been disabled (e.g., locking) or if 2811 * using client-side direct I/O and the file is not mmap'd and 2812 * there are no cached pages. 2813 */ 2814 if ((vp->v_flag & VNOCACHE) || 2815 (((rp->r_flags & R4DIRECTIO) || (mi->mi_flags & MI4_DIRECTIO)) && 2816 rp->r_mapcnt == 0 && rp->r_inmap == 0 && !nfs4_has_pages(vp))) { 2817 size_t bufsize; 2818 int count; 2819 u_offset_t org_offset; 2820 stable_how4 stab_comm; 2821 nfs4_fwrite: 2822 if (rp->r_flags & R4STALE) { 2823 resid = uiop->uio_resid; 2824 offset = uiop->uio_loffset; 2825 error = rp->r_error; 2826 /* 2827 * A close may have cleared r_error, if so, 2828 * propagate ESTALE error return properly 2829 */ 2830 if (error == 0) 2831 error = ESTALE; 2832 goto bottom; 2833 } 2834 2835 bufsize = MIN(uiop->uio_resid, mi->mi_stsize); 2836 base = kmem_alloc(bufsize, KM_SLEEP); 2837 do { 2838 if (ioflag & FDSYNC) 2839 stab_comm = DATA_SYNC4; 2840 else 2841 stab_comm = FILE_SYNC4; 2842 resid = uiop->uio_resid; 2843 offset = uiop->uio_loffset; 2844 count = MIN(uiop->uio_resid, bufsize); 2845 org_offset = uiop->uio_loffset; 2846 error = uiomove(base, count, UIO_WRITE, uiop); 2847 if (!error) { 2848 error = nfs4write(vp, base, org_offset, 2849 count, cr, &stab_comm); 2850 if (!error) { 2851 mutex_enter(&rp->r_statelock); 2852 if (rp->r_size < uiop->uio_loffset) 2853 rp->r_size = uiop->uio_loffset; 2854 mutex_exit(&rp->r_statelock); 2855 } 2856 } 2857 } while (!error && uiop->uio_resid > 0); 2858 kmem_free(base, bufsize); 2859 goto bottom; 2860 } 2861 2862 bsize = vp->v_vfsp->vfs_bsize; 2863 2864 do { 2865 off = uiop->uio_loffset & MAXBMASK; /* mapping offset */ 2866 on = uiop->uio_loffset & MAXBOFFSET; /* Relative offset */ 2867 n = MIN(MAXBSIZE - on, uiop->uio_resid); 2868 2869 resid = uiop->uio_resid; 2870 offset = uiop->uio_loffset; 2871 2872 if (rp->r_flags & R4STALE) { 2873 error = rp->r_error; 2874 /* 2875 * A close may have cleared r_error, if so, 2876 * propagate ESTALE error return properly 2877 */ 2878 if (error == 0) 2879 error = ESTALE; 2880 break; 2881 } 2882 2883 /* 2884 * Don't create dirty pages faster than they 2885 * can be cleaned so that the system doesn't 2886 * get imbalanced. If the async queue is 2887 * maxed out, then wait for it to drain before 2888 * creating more dirty pages. Also, wait for 2889 * any threads doing pagewalks in the vop_getattr 2890 * entry points so that they don't block for 2891 * long periods. 2892 */ 2893 mutex_enter(&rp->r_statelock); 2894 while ((mi->mi_max_threads != 0 && 2895 rp->r_awcount > 2 * mi->mi_max_threads) || 2896 rp->r_gcount > 0) { 2897 if (INTR4(vp)) { 2898 klwp_t *lwp = ttolwp(curthread); 2899 2900 if (lwp != NULL) 2901 lwp->lwp_nostop++; 2902 if (!cv_wait_sig(&rp->r_cv, &rp->r_statelock)) { 2903 mutex_exit(&rp->r_statelock); 2904 if (lwp != NULL) 2905 lwp->lwp_nostop--; 2906 error = EINTR; 2907 goto bottom; 2908 } 2909 if (lwp != NULL) 2910 lwp->lwp_nostop--; 2911 } else 2912 cv_wait(&rp->r_cv, &rp->r_statelock); 2913 } 2914 mutex_exit(&rp->r_statelock); 2915 2916 /* 2917 * Touch the page and fault it in if it is not in core 2918 * before segmap_getmapflt or vpm_data_copy can lock it. 2919 * This is to avoid the deadlock if the buffer is mapped 2920 * to the same file through mmap which we want to write. 2921 */ 2922 uio_prefaultpages((long)n, uiop); 2923 2924 if (vpm_enable) { 2925 /* 2926 * It will use kpm mappings, so no need to 2927 * pass an address. 2928 */ 2929 error = writerp4(rp, NULL, n, uiop, 0); 2930 } else { 2931 if (segmap_kpm) { 2932 int pon = uiop->uio_loffset & PAGEOFFSET; 2933 size_t pn = MIN(PAGESIZE - pon, 2934 uiop->uio_resid); 2935 int pagecreate; 2936 2937 mutex_enter(&rp->r_statelock); 2938 pagecreate = (pon == 0) && (pn == PAGESIZE || 2939 uiop->uio_loffset + pn >= rp->r_size); 2940 mutex_exit(&rp->r_statelock); 2941 2942 base = segmap_getmapflt(segkmap, vp, off + on, 2943 pn, !pagecreate, S_WRITE); 2944 2945 error = writerp4(rp, base + pon, n, uiop, 2946 pagecreate); 2947 2948 } else { 2949 base = segmap_getmapflt(segkmap, vp, off + on, 2950 n, 0, S_READ); 2951 error = writerp4(rp, base + on, n, uiop, 0); 2952 } 2953 } 2954 2955 if (!error) { 2956 if (mi->mi_flags & MI4_NOAC) 2957 flags = SM_WRITE; 2958 else if ((uiop->uio_loffset % bsize) == 0 || 2959 IS_SWAPVP(vp)) { 2960 /* 2961 * Have written a whole block. 2962 * Start an asynchronous write 2963 * and mark the buffer to 2964 * indicate that it won't be 2965 * needed again soon. 2966 */ 2967 flags = SM_WRITE | SM_ASYNC | SM_DONTNEED; 2968 } else 2969 flags = 0; 2970 if ((ioflag & (FSYNC|FDSYNC)) || 2971 (rp->r_flags & R4OUTOFSPACE)) { 2972 flags &= ~SM_ASYNC; 2973 flags |= SM_WRITE; 2974 } 2975 if (vpm_enable) { 2976 error = vpm_sync_pages(vp, off, n, flags); 2977 } else { 2978 error = segmap_release(segkmap, base, flags); 2979 } 2980 } else { 2981 if (vpm_enable) { 2982 (void) vpm_sync_pages(vp, off, n, 0); 2983 } else { 2984 (void) segmap_release(segkmap, base, 0); 2985 } 2986 /* 2987 * In the event that we got an access error while 2988 * faulting in a page for a write-only file just 2989 * force a write. 2990 */ 2991 if (error == EACCES) 2992 goto nfs4_fwrite; 2993 } 2994 } while (!error && uiop->uio_resid > 0); 2995 2996 bottom: 2997 if (error) { 2998 uiop->uio_resid = resid + remainder; 2999 uiop->uio_loffset = offset; 3000 } else { 3001 uiop->uio_resid += remainder; 3002 3003 mutex_enter(&rp->r_statev4_lock); 3004 if (rp->r_deleg_type == OPEN_DELEGATE_WRITE) { 3005 gethrestime(&rp->r_attr.va_mtime); 3006 rp->r_attr.va_ctime = rp->r_attr.va_mtime; 3007 } 3008 mutex_exit(&rp->r_statev4_lock); 3009 } 3010 3011 nfs_rw_exit(&rp->r_lkserlock); 3012 3013 return (error); 3014 } 3015 3016 /* 3017 * Flags are composed of {B_ASYNC, B_INVAL, B_FREE, B_DONTNEED} 3018 */ 3019 static int 3020 nfs4_rdwrlbn(vnode_t *vp, page_t *pp, u_offset_t off, size_t len, 3021 int flags, cred_t *cr) 3022 { 3023 struct buf *bp; 3024 int error; 3025 page_t *savepp; 3026 uchar_t fsdata; 3027 stable_how4 stab_comm; 3028 3029 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 3030 bp = pageio_setup(pp, len, vp, flags); 3031 ASSERT(bp != NULL); 3032 3033 /* 3034 * pageio_setup should have set b_addr to 0. This 3035 * is correct since we want to do I/O on a page 3036 * boundary. bp_mapin will use this addr to calculate 3037 * an offset, and then set b_addr to the kernel virtual 3038 * address it allocated for us. 3039 */ 3040 ASSERT(bp->b_un.b_addr == 0); 3041 3042 bp->b_edev = 0; 3043 bp->b_dev = 0; 3044 bp->b_lblkno = lbtodb(off); 3045 bp->b_file = vp; 3046 bp->b_offset = (offset_t)off; 3047 bp_mapin(bp); 3048 3049 if ((flags & (B_WRITE|B_ASYNC)) == (B_WRITE|B_ASYNC) && 3050 freemem > desfree) 3051 stab_comm = UNSTABLE4; 3052 else 3053 stab_comm = FILE_SYNC4; 3054 3055 error = nfs4_bio(bp, &stab_comm, cr, FALSE); 3056 3057 bp_mapout(bp); 3058 pageio_done(bp); 3059 3060 if (stab_comm == UNSTABLE4) 3061 fsdata = C_DELAYCOMMIT; 3062 else 3063 fsdata = C_NOCOMMIT; 3064 3065 savepp = pp; 3066 do { 3067 pp->p_fsdata = fsdata; 3068 } while ((pp = pp->p_next) != savepp); 3069 3070 return (error); 3071 } 3072 3073 /* 3074 */ 3075 static int 3076 nfs4rdwr_check_osid(vnode_t *vp, nfs4_error_t *ep, cred_t *cr) 3077 { 3078 nfs4_open_owner_t *oop; 3079 nfs4_open_stream_t *osp; 3080 rnode4_t *rp = VTOR4(vp); 3081 mntinfo4_t *mi = VTOMI4(vp); 3082 int reopen_needed; 3083 3084 ASSERT(nfs_zone() == mi->mi_zone); 3085 3086 3087 oop = find_open_owner(cr, NFS4_PERM_CREATED, mi); 3088 if (!oop) 3089 return (EIO); 3090 3091 /* returns with 'os_sync_lock' held */ 3092 osp = find_open_stream(oop, rp); 3093 if (!osp) { 3094 open_owner_rele(oop); 3095 return (EIO); 3096 } 3097 3098 if (osp->os_failed_reopen) { 3099 mutex_exit(&osp->os_sync_lock); 3100 open_stream_rele(osp, rp); 3101 open_owner_rele(oop); 3102 return (EIO); 3103 } 3104 3105 /* 3106 * Determine whether a reopen is needed. If this 3107 * is a delegation open stream, then the os_delegation bit 3108 * should be set. 3109 */ 3110 3111 reopen_needed = osp->os_delegation; 3112 3113 mutex_exit(&osp->os_sync_lock); 3114 open_owner_rele(oop); 3115 3116 if (reopen_needed) { 3117 nfs4_error_zinit(ep); 3118 nfs4_reopen(vp, osp, ep, CLAIM_NULL, FALSE, FALSE); 3119 mutex_enter(&osp->os_sync_lock); 3120 if (ep->error || ep->stat || osp->os_failed_reopen) { 3121 mutex_exit(&osp->os_sync_lock); 3122 open_stream_rele(osp, rp); 3123 return (EIO); 3124 } 3125 mutex_exit(&osp->os_sync_lock); 3126 } 3127 open_stream_rele(osp, rp); 3128 3129 return (0); 3130 } 3131 3132 /* 3133 * Write to file. Writes to remote server in largest size 3134 * chunks that the server can handle. Write is synchronous. 3135 */ 3136 static int 3137 nfs4write(vnode_t *vp, caddr_t base, u_offset_t offset, int count, cred_t *cr, 3138 stable_how4 *stab_comm) 3139 { 3140 mntinfo4_t *mi; 3141 COMPOUND4args_clnt args; 3142 COMPOUND4res_clnt res; 3143 WRITE4args *wargs; 3144 WRITE4res *wres; 3145 nfs_argop4 argop[2]; 3146 nfs_resop4 *resop; 3147 int tsize; 3148 stable_how4 stable; 3149 rnode4_t *rp; 3150 int doqueue = 1; 3151 bool_t needrecov; 3152 nfs4_recov_state_t recov_state; 3153 nfs4_stateid_types_t sid_types; 3154 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 3155 int recov; 3156 3157 rp = VTOR4(vp); 3158 mi = VTOMI4(vp); 3159 3160 ASSERT(nfs_zone() == mi->mi_zone); 3161 3162 stable = *stab_comm; 3163 *stab_comm = FILE_SYNC4; 3164 3165 needrecov = FALSE; 3166 recov_state.rs_flags = 0; 3167 recov_state.rs_num_retry_despite_err = 0; 3168 nfs4_init_stateid_types(&sid_types); 3169 3170 /* Is curthread the recovery thread? */ 3171 mutex_enter(&mi->mi_lock); 3172 recov = (mi->mi_recovthread == curthread); 3173 mutex_exit(&mi->mi_lock); 3174 3175 recov_retry: 3176 args.ctag = TAG_WRITE; 3177 args.array_len = 2; 3178 args.array = argop; 3179 3180 if (!recov) { 3181 e.error = nfs4_start_fop(VTOMI4(vp), vp, NULL, OH_WRITE, 3182 &recov_state, NULL); 3183 if (e.error) 3184 return (e.error); 3185 } 3186 3187 /* 0. putfh target fh */ 3188 argop[0].argop = OP_CPUTFH; 3189 argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh; 3190 3191 /* 1. write */ 3192 nfs4args_write(&argop[1], stable, rp, cr, &wargs, &sid_types); 3193 3194 do { 3195 3196 wargs->offset = (offset4)offset; 3197 wargs->data_val = base; 3198 3199 if (mi->mi_io_kstats) { 3200 mutex_enter(&mi->mi_lock); 3201 kstat_runq_enter(KSTAT_IO_PTR(mi->mi_io_kstats)); 3202 mutex_exit(&mi->mi_lock); 3203 } 3204 3205 if ((vp->v_flag & VNOCACHE) || 3206 (rp->r_flags & R4DIRECTIO) || 3207 (mi->mi_flags & MI4_DIRECTIO)) 3208 tsize = MIN(mi->mi_stsize, count); 3209 else 3210 tsize = MIN(mi->mi_curwrite, count); 3211 wargs->data_len = (uint_t)tsize; 3212 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e); 3213 3214 if (mi->mi_io_kstats) { 3215 mutex_enter(&mi->mi_lock); 3216 kstat_runq_exit(KSTAT_IO_PTR(mi->mi_io_kstats)); 3217 mutex_exit(&mi->mi_lock); 3218 } 3219 3220 if (!recov) { 3221 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp); 3222 if (e.error && !needrecov) { 3223 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_WRITE, 3224 &recov_state, needrecov); 3225 return (e.error); 3226 } 3227 } else { 3228 if (e.error) 3229 return (e.error); 3230 } 3231 3232 /* 3233 * Do handling of OLD_STATEID outside 3234 * of the normal recovery framework. 3235 * 3236 * If write receives a BAD stateid error while using a 3237 * delegation stateid, retry using the open stateid (if it 3238 * exists). If it doesn't have an open stateid, reopen the 3239 * file first, then retry. 3240 */ 3241 if (!e.error && res.status == NFS4ERR_OLD_STATEID && 3242 sid_types.cur_sid_type != SPEC_SID) { 3243 nfs4_save_stateid(&wargs->stateid, &sid_types); 3244 if (!recov) 3245 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_WRITE, 3246 &recov_state, needrecov); 3247 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3248 goto recov_retry; 3249 } else if (e.error == 0 && res.status == NFS4ERR_BAD_STATEID && 3250 sid_types.cur_sid_type == DEL_SID) { 3251 nfs4_save_stateid(&wargs->stateid, &sid_types); 3252 mutex_enter(&rp->r_statev4_lock); 3253 rp->r_deleg_return_pending = TRUE; 3254 mutex_exit(&rp->r_statev4_lock); 3255 if (nfs4rdwr_check_osid(vp, &e, cr)) { 3256 if (!recov) 3257 nfs4_end_fop(mi, vp, NULL, OH_WRITE, 3258 &recov_state, needrecov); 3259 (void) xdr_free(xdr_COMPOUND4res_clnt, 3260 (caddr_t)&res); 3261 return (EIO); 3262 } 3263 if (!recov) 3264 nfs4_end_fop(mi, vp, NULL, OH_WRITE, 3265 &recov_state, needrecov); 3266 /* hold needed for nfs4delegreturn_thread */ 3267 VN_HOLD(vp); 3268 nfs4delegreturn_async(rp, (NFS4_DR_PUSH|NFS4_DR_REOPEN| 3269 NFS4_DR_DISCARD), FALSE); 3270 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3271 goto recov_retry; 3272 } 3273 3274 if (needrecov) { 3275 bool_t abort; 3276 3277 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 3278 "nfs4write: client got error %d, res.status %d" 3279 ", so start recovery", e.error, res.status)); 3280 3281 abort = nfs4_start_recovery(&e, 3282 VTOMI4(vp), vp, NULL, &wargs->stateid, 3283 NULL, OP_WRITE, NULL); 3284 if (!e.error) { 3285 e.error = geterrno4(res.status); 3286 (void) xdr_free(xdr_COMPOUND4res_clnt, 3287 (caddr_t)&res); 3288 } 3289 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_WRITE, 3290 &recov_state, needrecov); 3291 if (abort == FALSE) 3292 goto recov_retry; 3293 return (e.error); 3294 } 3295 3296 if (res.status) { 3297 e.error = geterrno4(res.status); 3298 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3299 if (!recov) 3300 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_WRITE, 3301 &recov_state, needrecov); 3302 return (e.error); 3303 } 3304 3305 resop = &res.array[1]; /* write res */ 3306 wres = &resop->nfs_resop4_u.opwrite; 3307 3308 if ((int)wres->count > tsize) { 3309 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3310 3311 zcmn_err(getzoneid(), CE_WARN, 3312 "nfs4write: server wrote %u, requested was %u", 3313 (int)wres->count, tsize); 3314 if (!recov) 3315 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_WRITE, 3316 &recov_state, needrecov); 3317 return (EIO); 3318 } 3319 if (wres->committed == UNSTABLE4) { 3320 *stab_comm = UNSTABLE4; 3321 if (wargs->stable == DATA_SYNC4 || 3322 wargs->stable == FILE_SYNC4) { 3323 (void) xdr_free(xdr_COMPOUND4res_clnt, 3324 (caddr_t)&res); 3325 zcmn_err(getzoneid(), CE_WARN, 3326 "nfs4write: server %s did not commit " 3327 "to stable storage", 3328 rp->r_server->sv_hostname); 3329 if (!recov) 3330 nfs4_end_fop(VTOMI4(vp), vp, NULL, 3331 OH_WRITE, &recov_state, needrecov); 3332 return (EIO); 3333 } 3334 } 3335 3336 tsize = (int)wres->count; 3337 count -= tsize; 3338 base += tsize; 3339 offset += tsize; 3340 if (mi->mi_io_kstats) { 3341 mutex_enter(&mi->mi_lock); 3342 KSTAT_IO_PTR(mi->mi_io_kstats)->writes++; 3343 KSTAT_IO_PTR(mi->mi_io_kstats)->nwritten += 3344 tsize; 3345 mutex_exit(&mi->mi_lock); 3346 } 3347 lwp_stat_update(LWP_STAT_OUBLK, 1); 3348 mutex_enter(&rp->r_statelock); 3349 if (rp->r_flags & R4HAVEVERF) { 3350 if (rp->r_writeverf != wres->writeverf) { 3351 nfs4_set_mod(vp); 3352 rp->r_writeverf = wres->writeverf; 3353 } 3354 } else { 3355 rp->r_writeverf = wres->writeverf; 3356 rp->r_flags |= R4HAVEVERF; 3357 } 3358 PURGE_ATTRCACHE4_LOCKED(rp); 3359 rp->r_flags |= R4WRITEMODIFIED; 3360 gethrestime(&rp->r_attr.va_mtime); 3361 rp->r_attr.va_ctime = rp->r_attr.va_mtime; 3362 mutex_exit(&rp->r_statelock); 3363 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3364 } while (count); 3365 3366 if (!recov) 3367 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_WRITE, &recov_state, 3368 needrecov); 3369 3370 return (e.error); 3371 } 3372 3373 /* 3374 * Read from a file. Reads data in largest chunks our interface can handle. 3375 */ 3376 static int 3377 nfs4read(vnode_t *vp, caddr_t base, offset_t offset, int count, 3378 size_t *residp, cred_t *cr, bool_t async, struct uio *uiop) 3379 { 3380 mntinfo4_t *mi; 3381 COMPOUND4args_clnt args; 3382 COMPOUND4res_clnt res; 3383 READ4args *rargs; 3384 nfs_argop4 argop[2]; 3385 int tsize; 3386 int doqueue; 3387 rnode4_t *rp; 3388 int data_len; 3389 bool_t is_eof; 3390 bool_t needrecov = FALSE; 3391 nfs4_recov_state_t recov_state; 3392 nfs4_stateid_types_t sid_types; 3393 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 3394 3395 rp = VTOR4(vp); 3396 mi = VTOMI4(vp); 3397 doqueue = 1; 3398 3399 ASSERT(nfs_zone() == mi->mi_zone); 3400 3401 args.ctag = async ? TAG_READAHEAD : TAG_READ; 3402 3403 args.array_len = 2; 3404 args.array = argop; 3405 3406 nfs4_init_stateid_types(&sid_types); 3407 3408 recov_state.rs_flags = 0; 3409 recov_state.rs_num_retry_despite_err = 0; 3410 3411 recov_retry: 3412 e.error = nfs4_start_fop(mi, vp, NULL, OH_READ, 3413 &recov_state, NULL); 3414 if (e.error) 3415 return (e.error); 3416 3417 /* putfh target fh */ 3418 argop[0].argop = OP_CPUTFH; 3419 argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh; 3420 3421 /* read */ 3422 argop[1].argop = OP_READ; 3423 rargs = &argop[1].nfs_argop4_u.opread; 3424 rargs->stateid = nfs4_get_stateid(cr, rp, curproc->p_pidp->pid_id, mi, 3425 OP_READ, &sid_types, async); 3426 3427 do { 3428 if (mi->mi_io_kstats) { 3429 mutex_enter(&mi->mi_lock); 3430 kstat_runq_enter(KSTAT_IO_PTR(mi->mi_io_kstats)); 3431 mutex_exit(&mi->mi_lock); 3432 } 3433 3434 NFS4_DEBUG(nfs4_client_call_debug, (CE_NOTE, 3435 "nfs4read: %s call, rp %s", 3436 needrecov ? "recov" : "first", 3437 rnode4info(rp))); 3438 3439 if ((vp->v_flag & VNOCACHE) || 3440 (rp->r_flags & R4DIRECTIO) || 3441 (mi->mi_flags & MI4_DIRECTIO)) 3442 tsize = MIN(mi->mi_tsize, count); 3443 else 3444 tsize = MIN(mi->mi_curread, count); 3445 3446 rargs->offset = (offset4)offset; 3447 rargs->count = (count4)tsize; 3448 rargs->res_data_val_alt = NULL; 3449 rargs->res_mblk = NULL; 3450 rargs->res_uiop = NULL; 3451 rargs->res_maxsize = 0; 3452 rargs->wlist = NULL; 3453 3454 if (uiop) 3455 rargs->res_uiop = uiop; 3456 else 3457 rargs->res_data_val_alt = base; 3458 rargs->res_maxsize = tsize; 3459 3460 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e); 3461 #ifdef DEBUG 3462 if (nfs4read_error_inject) { 3463 res.status = nfs4read_error_inject; 3464 nfs4read_error_inject = 0; 3465 } 3466 #endif 3467 3468 if (mi->mi_io_kstats) { 3469 mutex_enter(&mi->mi_lock); 3470 kstat_runq_exit(KSTAT_IO_PTR(mi->mi_io_kstats)); 3471 mutex_exit(&mi->mi_lock); 3472 } 3473 3474 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp); 3475 if (e.error != 0 && !needrecov) { 3476 nfs4_end_fop(mi, vp, NULL, OH_READ, 3477 &recov_state, needrecov); 3478 return (e.error); 3479 } 3480 3481 /* 3482 * Do proper retry for OLD and BAD stateid errors outside 3483 * of the normal recovery framework. There are two differences 3484 * between async and sync reads. The first is that we allow 3485 * retry on BAD_STATEID for async reads, but not sync reads. 3486 * The second is that we mark the file dead for a failed 3487 * attempt with a special stateid for sync reads, but just 3488 * return EIO for async reads. 3489 * 3490 * If a sync read receives a BAD stateid error while using a 3491 * delegation stateid, retry using the open stateid (if it 3492 * exists). If it doesn't have an open stateid, reopen the 3493 * file first, then retry. 3494 */ 3495 if (e.error == 0 && (res.status == NFS4ERR_OLD_STATEID || 3496 res.status == NFS4ERR_BAD_STATEID) && async) { 3497 nfs4_end_fop(mi, vp, NULL, OH_READ, 3498 &recov_state, needrecov); 3499 if (sid_types.cur_sid_type == SPEC_SID) { 3500 (void) xdr_free(xdr_COMPOUND4res_clnt, 3501 (caddr_t)&res); 3502 return (EIO); 3503 } 3504 nfs4_save_stateid(&rargs->stateid, &sid_types); 3505 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3506 goto recov_retry; 3507 } else if (e.error == 0 && res.status == NFS4ERR_OLD_STATEID && 3508 !async && sid_types.cur_sid_type != SPEC_SID) { 3509 nfs4_save_stateid(&rargs->stateid, &sid_types); 3510 nfs4_end_fop(mi, vp, NULL, OH_READ, 3511 &recov_state, needrecov); 3512 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3513 goto recov_retry; 3514 } else if (e.error == 0 && res.status == NFS4ERR_BAD_STATEID && 3515 sid_types.cur_sid_type == DEL_SID) { 3516 nfs4_save_stateid(&rargs->stateid, &sid_types); 3517 mutex_enter(&rp->r_statev4_lock); 3518 rp->r_deleg_return_pending = TRUE; 3519 mutex_exit(&rp->r_statev4_lock); 3520 if (nfs4rdwr_check_osid(vp, &e, cr)) { 3521 nfs4_end_fop(mi, vp, NULL, OH_READ, 3522 &recov_state, needrecov); 3523 (void) xdr_free(xdr_COMPOUND4res_clnt, 3524 (caddr_t)&res); 3525 return (EIO); 3526 } 3527 nfs4_end_fop(mi, vp, NULL, OH_READ, 3528 &recov_state, needrecov); 3529 /* hold needed for nfs4delegreturn_thread */ 3530 VN_HOLD(vp); 3531 nfs4delegreturn_async(rp, (NFS4_DR_PUSH|NFS4_DR_REOPEN| 3532 NFS4_DR_DISCARD), FALSE); 3533 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3534 goto recov_retry; 3535 } 3536 if (needrecov) { 3537 bool_t abort; 3538 3539 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 3540 "nfs4read: initiating recovery\n")); 3541 abort = nfs4_start_recovery(&e, 3542 mi, vp, NULL, &rargs->stateid, 3543 NULL, OP_READ, NULL); 3544 nfs4_end_fop(mi, vp, NULL, OH_READ, 3545 &recov_state, needrecov); 3546 /* 3547 * Do not retry if we got OLD_STATEID using a special 3548 * stateid. This avoids looping with a broken server. 3549 */ 3550 if (e.error == 0 && res.status == NFS4ERR_OLD_STATEID && 3551 sid_types.cur_sid_type == SPEC_SID) 3552 abort = TRUE; 3553 3554 if (abort == FALSE) { 3555 /* 3556 * Need to retry all possible stateids in 3557 * case the recovery error wasn't stateid 3558 * related or the stateids have become 3559 * stale (server reboot). 3560 */ 3561 nfs4_init_stateid_types(&sid_types); 3562 (void) xdr_free(xdr_COMPOUND4res_clnt, 3563 (caddr_t)&res); 3564 goto recov_retry; 3565 } 3566 3567 if (!e.error) { 3568 e.error = geterrno4(res.status); 3569 (void) xdr_free(xdr_COMPOUND4res_clnt, 3570 (caddr_t)&res); 3571 } 3572 return (e.error); 3573 } 3574 3575 if (res.status) { 3576 e.error = geterrno4(res.status); 3577 nfs4_end_fop(mi, vp, NULL, OH_READ, 3578 &recov_state, needrecov); 3579 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3580 return (e.error); 3581 } 3582 3583 data_len = res.array[1].nfs_resop4_u.opread.data_len; 3584 count -= data_len; 3585 if (base) 3586 base += data_len; 3587 offset += data_len; 3588 if (mi->mi_io_kstats) { 3589 mutex_enter(&mi->mi_lock); 3590 KSTAT_IO_PTR(mi->mi_io_kstats)->reads++; 3591 KSTAT_IO_PTR(mi->mi_io_kstats)->nread += data_len; 3592 mutex_exit(&mi->mi_lock); 3593 } 3594 lwp_stat_update(LWP_STAT_INBLK, 1); 3595 is_eof = res.array[1].nfs_resop4_u.opread.eof; 3596 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3597 3598 } while (count && !is_eof); 3599 3600 *residp = count; 3601 3602 nfs4_end_fop(mi, vp, NULL, OH_READ, &recov_state, needrecov); 3603 3604 return (e.error); 3605 } 3606 3607 /* ARGSUSED */ 3608 static int 3609 nfs4_ioctl(vnode_t *vp, int cmd, intptr_t arg, int flag, cred_t *cr, int *rvalp, 3610 caller_context_t *ct) 3611 { 3612 if (nfs_zone() != VTOMI4(vp)->mi_zone) 3613 return (EIO); 3614 switch (cmd) { 3615 case _FIODIRECTIO: 3616 return (nfs4_directio(vp, (int)arg, cr)); 3617 default: 3618 return (ENOTTY); 3619 } 3620 } 3621 3622 /* ARGSUSED */ 3623 int 3624 nfs4_getattr(vnode_t *vp, struct vattr *vap, int flags, cred_t *cr, 3625 caller_context_t *ct) 3626 { 3627 int error; 3628 rnode4_t *rp = VTOR4(vp); 3629 3630 if (nfs_zone() != VTOMI4(vp)->mi_zone) 3631 return (EIO); 3632 /* 3633 * If it has been specified that the return value will 3634 * just be used as a hint, and we are only being asked 3635 * for size, fsid or rdevid, then return the client's 3636 * notion of these values without checking to make sure 3637 * that the attribute cache is up to date. 3638 * The whole point is to avoid an over the wire GETATTR 3639 * call. 3640 */ 3641 if (flags & ATTR_HINT) { 3642 if (vap->va_mask == 3643 (vap->va_mask & (AT_SIZE | AT_FSID | AT_RDEV))) { 3644 mutex_enter(&rp->r_statelock); 3645 if (vap->va_mask | AT_SIZE) 3646 vap->va_size = rp->r_size; 3647 if (vap->va_mask | AT_FSID) 3648 vap->va_fsid = rp->r_attr.va_fsid; 3649 if (vap->va_mask | AT_RDEV) 3650 vap->va_rdev = rp->r_attr.va_rdev; 3651 mutex_exit(&rp->r_statelock); 3652 return (0); 3653 } 3654 } 3655 3656 /* 3657 * Only need to flush pages if asking for the mtime 3658 * and if there any dirty pages or any outstanding 3659 * asynchronous (write) requests for this file. 3660 */ 3661 if (vap->va_mask & AT_MTIME) { 3662 rp = VTOR4(vp); 3663 if (nfs4_has_pages(vp)) { 3664 mutex_enter(&rp->r_statev4_lock); 3665 if (rp->r_deleg_type != OPEN_DELEGATE_WRITE) { 3666 mutex_exit(&rp->r_statev4_lock); 3667 if (rp->r_flags & R4DIRTY || 3668 rp->r_awcount > 0) { 3669 mutex_enter(&rp->r_statelock); 3670 rp->r_gcount++; 3671 mutex_exit(&rp->r_statelock); 3672 error = 3673 nfs4_putpage(vp, (u_offset_t)0, 3674 0, 0, cr, NULL); 3675 mutex_enter(&rp->r_statelock); 3676 if (error && (error == ENOSPC || 3677 error == EDQUOT)) { 3678 if (!rp->r_error) 3679 rp->r_error = error; 3680 } 3681 if (--rp->r_gcount == 0) 3682 cv_broadcast(&rp->r_cv); 3683 mutex_exit(&rp->r_statelock); 3684 } 3685 } else { 3686 mutex_exit(&rp->r_statev4_lock); 3687 } 3688 } 3689 } 3690 return (nfs4getattr(vp, vap, cr)); 3691 } 3692 3693 int 3694 nfs4_compare_modes(mode_t from_server, mode_t on_client) 3695 { 3696 /* 3697 * If these are the only two bits cleared 3698 * on the server then return 0 (OK) else 3699 * return 1 (BAD). 3700 */ 3701 on_client &= ~(S_ISUID|S_ISGID); 3702 if (on_client == from_server) 3703 return (0); 3704 else 3705 return (1); 3706 } 3707 3708 /*ARGSUSED4*/ 3709 static int 3710 nfs4_setattr(vnode_t *vp, struct vattr *vap, int flags, cred_t *cr, 3711 caller_context_t *ct) 3712 { 3713 if (vap->va_mask & AT_NOSET) 3714 return (EINVAL); 3715 3716 if (nfs_zone() != VTOMI4(vp)->mi_zone) 3717 return (EIO); 3718 3719 /* 3720 * Don't call secpolicy_vnode_setattr, the client cannot 3721 * use its cached attributes to make security decisions 3722 * as the server may be faking mode bits or mapping uid/gid. 3723 * Always just let the server to the checking. 3724 * If we provide the ability to remove basic priviledges 3725 * to setattr (e.g. basic without chmod) then we will 3726 * need to add a check here before calling the server. 3727 */ 3728 3729 return (nfs4setattr(vp, vap, flags, cr, NULL)); 3730 } 3731 3732 /* 3733 * To replace the "guarded" version 3 setattr, we use two types of compound 3734 * setattr requests: 3735 * 1. The "normal" setattr, used when the size of the file isn't being 3736 * changed - { Putfh <fh>; Setattr; Getattr }/ 3737 * 2. If the size is changed, precede Setattr with: Getattr; Verify 3738 * with only ctime as the argument. If the server ctime differs from 3739 * what is cached on the client, the verify will fail, but we would 3740 * already have the ctime from the preceding getattr, so just set it 3741 * and retry. Thus the compound here is - { Putfh <fh>; Getattr; Verify; 3742 * Setattr; Getattr }. 3743 * 3744 * The vsecattr_t * input parameter will be non-NULL if ACLs are being set in 3745 * this setattr and NULL if they are not. 3746 */ 3747 static int 3748 nfs4setattr(vnode_t *vp, struct vattr *vap, int flags, cred_t *cr, 3749 vsecattr_t *vsap) 3750 { 3751 COMPOUND4args_clnt args; 3752 COMPOUND4res_clnt res, *resp = NULL; 3753 nfs4_ga_res_t *garp = NULL; 3754 int numops = 3; /* { Putfh; Setattr; Getattr } */ 3755 nfs_argop4 argop[5]; 3756 int verify_argop = -1; 3757 int setattr_argop = 1; 3758 nfs_resop4 *resop; 3759 vattr_t va; 3760 rnode4_t *rp; 3761 int doqueue = 1; 3762 uint_t mask = vap->va_mask; 3763 mode_t omode; 3764 vsecattr_t *vsp; 3765 timestruc_t ctime; 3766 bool_t needrecov = FALSE; 3767 nfs4_recov_state_t recov_state; 3768 nfs4_stateid_types_t sid_types; 3769 stateid4 stateid; 3770 hrtime_t t; 3771 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 3772 servinfo4_t *svp; 3773 bitmap4 supp_attrs; 3774 3775 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 3776 rp = VTOR4(vp); 3777 nfs4_init_stateid_types(&sid_types); 3778 3779 /* 3780 * Only need to flush pages if there are any pages and 3781 * if the file is marked as dirty in some fashion. The 3782 * file must be flushed so that we can accurately 3783 * determine the size of the file and the cached data 3784 * after the SETATTR returns. A file is considered to 3785 * be dirty if it is either marked with R4DIRTY, has 3786 * outstanding i/o's active, or is mmap'd. In this 3787 * last case, we can't tell whether there are dirty 3788 * pages, so we flush just to be sure. 3789 */ 3790 if (nfs4_has_pages(vp) && 3791 ((rp->r_flags & R4DIRTY) || 3792 rp->r_count > 0 || 3793 rp->r_mapcnt > 0)) { 3794 ASSERT(vp->v_type != VCHR); 3795 e.error = nfs4_putpage(vp, (offset_t)0, 0, 0, cr, NULL); 3796 if (e.error && (e.error == ENOSPC || e.error == EDQUOT)) { 3797 mutex_enter(&rp->r_statelock); 3798 if (!rp->r_error) 3799 rp->r_error = e.error; 3800 mutex_exit(&rp->r_statelock); 3801 } 3802 } 3803 3804 if (mask & AT_SIZE) { 3805 /* 3806 * Verification setattr compound for non-deleg AT_SIZE: 3807 * { Putfh; Getattr; Verify; Setattr; Getattr } 3808 * Set ctime local here (outside the do_again label) 3809 * so that subsequent retries (after failed VERIFY) 3810 * will use ctime from GETATTR results (from failed 3811 * verify compound) as VERIFY arg. 3812 * If file has delegation, then VERIFY(time_metadata) 3813 * is of little added value, so don't bother. 3814 */ 3815 mutex_enter(&rp->r_statev4_lock); 3816 if (rp->r_deleg_type == OPEN_DELEGATE_NONE || 3817 rp->r_deleg_return_pending) { 3818 numops = 5; 3819 ctime = rp->r_attr.va_ctime; 3820 } 3821 mutex_exit(&rp->r_statev4_lock); 3822 } 3823 3824 recov_state.rs_flags = 0; 3825 recov_state.rs_num_retry_despite_err = 0; 3826 3827 args.ctag = TAG_SETATTR; 3828 do_again: 3829 recov_retry: 3830 setattr_argop = numops - 2; 3831 3832 args.array = argop; 3833 args.array_len = numops; 3834 3835 e.error = nfs4_start_op(VTOMI4(vp), vp, NULL, &recov_state); 3836 if (e.error) 3837 return (e.error); 3838 3839 3840 /* putfh target fh */ 3841 argop[0].argop = OP_CPUTFH; 3842 argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh; 3843 3844 if (numops == 5) { 3845 /* 3846 * We only care about the ctime, but need to get mtime 3847 * and size for proper cache update. 3848 */ 3849 /* getattr */ 3850 argop[1].argop = OP_GETATTR; 3851 argop[1].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 3852 argop[1].nfs_argop4_u.opgetattr.mi = VTOMI4(vp); 3853 3854 /* verify - set later in loop */ 3855 verify_argop = 2; 3856 } 3857 3858 /* setattr */ 3859 svp = rp->r_server; 3860 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0); 3861 supp_attrs = svp->sv_supp_attrs; 3862 nfs_rw_exit(&svp->sv_lock); 3863 3864 nfs4args_setattr(&argop[setattr_argop], vap, vsap, flags, rp, cr, 3865 supp_attrs, &e.error, &sid_types); 3866 stateid = argop[setattr_argop].nfs_argop4_u.opsetattr.stateid; 3867 if (e.error) { 3868 /* req time field(s) overflow - return immediately */ 3869 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state, needrecov); 3870 nfs4_fattr4_free(&argop[setattr_argop].nfs_argop4_u. 3871 opsetattr.obj_attributes); 3872 return (e.error); 3873 } 3874 omode = rp->r_attr.va_mode; 3875 3876 /* getattr */ 3877 argop[numops-1].argop = OP_GETATTR; 3878 argop[numops-1].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 3879 /* 3880 * If we are setting the ACL (indicated only by vsap != NULL), request 3881 * the ACL in this getattr. The ACL returned from this getattr will be 3882 * used in updating the ACL cache. 3883 */ 3884 if (vsap != NULL) 3885 argop[numops-1].nfs_argop4_u.opgetattr.attr_request |= 3886 FATTR4_ACL_MASK; 3887 argop[numops-1].nfs_argop4_u.opgetattr.mi = VTOMI4(vp); 3888 3889 /* 3890 * setattr iterates if the object size is set and the cached ctime 3891 * does not match the file ctime. In that case, verify the ctime first. 3892 */ 3893 3894 do { 3895 if (verify_argop != -1) { 3896 /* 3897 * Verify that the ctime match before doing setattr. 3898 */ 3899 va.va_mask = AT_CTIME; 3900 va.va_ctime = ctime; 3901 svp = rp->r_server; 3902 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0); 3903 supp_attrs = svp->sv_supp_attrs; 3904 nfs_rw_exit(&svp->sv_lock); 3905 e.error = nfs4args_verify(&argop[verify_argop], &va, 3906 OP_VERIFY, supp_attrs); 3907 if (e.error) { 3908 /* req time field(s) overflow - return */ 3909 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state, 3910 needrecov); 3911 break; 3912 } 3913 } 3914 3915 doqueue = 1; 3916 3917 t = gethrtime(); 3918 3919 rfs4call(VTOMI4(vp), &args, &res, cr, &doqueue, 0, &e); 3920 3921 /* 3922 * Purge the access cache and ACL cache if changing either the 3923 * owner of the file, the group owner, or the mode. These may 3924 * change the access permissions of the file, so purge old 3925 * information and start over again. 3926 */ 3927 if (mask & (AT_UID | AT_GID | AT_MODE)) { 3928 (void) nfs4_access_purge_rp(rp); 3929 if (rp->r_secattr != NULL) { 3930 mutex_enter(&rp->r_statelock); 3931 vsp = rp->r_secattr; 3932 rp->r_secattr = NULL; 3933 mutex_exit(&rp->r_statelock); 3934 if (vsp != NULL) 3935 nfs4_acl_free_cache(vsp); 3936 } 3937 } 3938 3939 /* 3940 * If res.array_len == numops, then everything succeeded, 3941 * except for possibly the final getattr. If only the 3942 * last getattr failed, give up, and don't try recovery. 3943 */ 3944 if (res.array_len == numops) { 3945 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state, 3946 needrecov); 3947 if (! e.error) 3948 resp = &res; 3949 break; 3950 } 3951 3952 /* 3953 * if either rpc call failed or completely succeeded - done 3954 */ 3955 needrecov = nfs4_needs_recovery(&e, FALSE, vp->v_vfsp); 3956 if (e.error) { 3957 PURGE_ATTRCACHE4(vp); 3958 if (!needrecov) { 3959 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state, 3960 needrecov); 3961 break; 3962 } 3963 } 3964 3965 /* 3966 * Do proper retry for OLD_STATEID outside of the normal 3967 * recovery framework. 3968 */ 3969 if (e.error == 0 && res.status == NFS4ERR_OLD_STATEID && 3970 sid_types.cur_sid_type != SPEC_SID && 3971 sid_types.cur_sid_type != NO_SID) { 3972 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state, 3973 needrecov); 3974 nfs4_save_stateid(&stateid, &sid_types); 3975 nfs4_fattr4_free(&argop[setattr_argop].nfs_argop4_u. 3976 opsetattr.obj_attributes); 3977 if (verify_argop != -1) { 3978 nfs4args_verify_free(&argop[verify_argop]); 3979 verify_argop = -1; 3980 } 3981 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3982 goto recov_retry; 3983 } 3984 3985 if (needrecov) { 3986 bool_t abort; 3987 3988 abort = nfs4_start_recovery(&e, 3989 VTOMI4(vp), vp, NULL, NULL, NULL, 3990 OP_SETATTR, NULL); 3991 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state, 3992 needrecov); 3993 /* 3994 * Do not retry if we failed with OLD_STATEID using 3995 * a special stateid. This is done to avoid looping 3996 * with a broken server. 3997 */ 3998 if (e.error == 0 && res.status == NFS4ERR_OLD_STATEID && 3999 (sid_types.cur_sid_type == SPEC_SID || 4000 sid_types.cur_sid_type == NO_SID)) 4001 abort = TRUE; 4002 if (!e.error) { 4003 if (res.status == NFS4ERR_BADOWNER) 4004 nfs4_log_badowner(VTOMI4(vp), 4005 OP_SETATTR); 4006 4007 e.error = geterrno4(res.status); 4008 (void) xdr_free(xdr_COMPOUND4res_clnt, 4009 (caddr_t)&res); 4010 } 4011 nfs4_fattr4_free(&argop[setattr_argop].nfs_argop4_u. 4012 opsetattr.obj_attributes); 4013 if (verify_argop != -1) { 4014 nfs4args_verify_free(&argop[verify_argop]); 4015 verify_argop = -1; 4016 } 4017 if (abort == FALSE) { 4018 /* 4019 * Need to retry all possible stateids in 4020 * case the recovery error wasn't stateid 4021 * related or the stateids have become 4022 * stale (server reboot). 4023 */ 4024 nfs4_init_stateid_types(&sid_types); 4025 goto recov_retry; 4026 } 4027 return (e.error); 4028 } 4029 4030 /* 4031 * Need to call nfs4_end_op before nfs4getattr to 4032 * avoid potential nfs4_start_op deadlock. See RFE 4033 * 4777612. Calls to nfs4_invalidate_pages() and 4034 * nfs4_purge_stale_fh() might also generate over the 4035 * wire calls which my cause nfs4_start_op() deadlock. 4036 */ 4037 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state, needrecov); 4038 4039 /* 4040 * Check to update lease. 4041 */ 4042 resp = &res; 4043 if (res.status == NFS4_OK) { 4044 break; 4045 } 4046 4047 /* 4048 * Check if verify failed to see if try again 4049 */ 4050 if ((verify_argop == -1) || (res.array_len != 3)) { 4051 /* 4052 * can't continue... 4053 */ 4054 if (res.status == NFS4ERR_BADOWNER) 4055 nfs4_log_badowner(VTOMI4(vp), OP_SETATTR); 4056 4057 e.error = geterrno4(res.status); 4058 } else { 4059 /* 4060 * When the verify request fails, the client ctime is 4061 * not in sync with the server. This is the same as 4062 * the version 3 "not synchronized" error, and we 4063 * handle it in a similar manner (XXX do we need to???). 4064 * Use the ctime returned in the first getattr for 4065 * the input to the next verify. 4066 * If we couldn't get the attributes, then we give up 4067 * because we can't complete the operation as required. 4068 */ 4069 garp = &res.array[1].nfs_resop4_u.opgetattr.ga_res; 4070 } 4071 if (e.error) { 4072 PURGE_ATTRCACHE4(vp); 4073 nfs4_purge_stale_fh(e.error, vp, cr); 4074 } else { 4075 /* 4076 * retry with a new verify value 4077 */ 4078 ctime = garp->n4g_va.va_ctime; 4079 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 4080 resp = NULL; 4081 } 4082 if (!e.error) { 4083 nfs4_fattr4_free(&argop[setattr_argop].nfs_argop4_u. 4084 opsetattr.obj_attributes); 4085 if (verify_argop != -1) { 4086 nfs4args_verify_free(&argop[verify_argop]); 4087 verify_argop = -1; 4088 } 4089 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 4090 goto do_again; 4091 } 4092 } while (!e.error); 4093 4094 if (e.error) { 4095 /* 4096 * If we are here, rfs4call has an irrecoverable error - return 4097 */ 4098 nfs4_fattr4_free(&argop[setattr_argop].nfs_argop4_u. 4099 opsetattr.obj_attributes); 4100 if (verify_argop != -1) { 4101 nfs4args_verify_free(&argop[verify_argop]); 4102 verify_argop = -1; 4103 } 4104 if (resp) 4105 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp); 4106 return (e.error); 4107 } 4108 4109 4110 4111 /* 4112 * If changing the size of the file, invalidate 4113 * any local cached data which is no longer part 4114 * of the file. We also possibly invalidate the 4115 * last page in the file. We could use 4116 * pvn_vpzero(), but this would mark the page as 4117 * modified and require it to be written back to 4118 * the server for no particularly good reason. 4119 * This way, if we access it, then we bring it 4120 * back in. A read should be cheaper than a 4121 * write. 4122 */ 4123 if (mask & AT_SIZE) { 4124 nfs4_invalidate_pages(vp, (vap->va_size & PAGEMASK), cr); 4125 } 4126 4127 /* either no error or one of the postop getattr failed */ 4128 4129 /* 4130 * XXX Perform a simplified version of wcc checking. Instead of 4131 * have another getattr to get pre-op, just purge cache if 4132 * any of the ops prior to and including the getattr failed. 4133 * If the getattr succeeded then update the attrcache accordingly. 4134 */ 4135 4136 garp = NULL; 4137 if (res.status == NFS4_OK) { 4138 /* 4139 * Last getattr 4140 */ 4141 resop = &res.array[numops - 1]; 4142 garp = &resop->nfs_resop4_u.opgetattr.ga_res; 4143 } 4144 /* 4145 * In certain cases, nfs4_update_attrcache() will purge the attrcache, 4146 * rather than filling it. See the function itself for details. 4147 */ 4148 e.error = nfs4_update_attrcache(res.status, garp, t, vp, cr); 4149 if (garp != NULL) { 4150 if (garp->n4g_resbmap & FATTR4_ACL_MASK) { 4151 nfs4_acl_fill_cache(rp, &garp->n4g_vsa); 4152 vs_ace4_destroy(&garp->n4g_vsa); 4153 } else { 4154 if (vsap != NULL) { 4155 /* 4156 * The ACL was supposed to be set and to be 4157 * returned in the last getattr of this 4158 * compound, but for some reason the getattr 4159 * result doesn't contain the ACL. In this 4160 * case, purge the ACL cache. 4161 */ 4162 if (rp->r_secattr != NULL) { 4163 mutex_enter(&rp->r_statelock); 4164 vsp = rp->r_secattr; 4165 rp->r_secattr = NULL; 4166 mutex_exit(&rp->r_statelock); 4167 if (vsp != NULL) 4168 nfs4_acl_free_cache(vsp); 4169 } 4170 } 4171 } 4172 } 4173 4174 if (res.status == NFS4_OK && (mask & AT_SIZE)) { 4175 /* 4176 * Set the size, rather than relying on getting it updated 4177 * via a GETATTR. With delegations the client tries to 4178 * suppress GETATTR calls. 4179 */ 4180 mutex_enter(&rp->r_statelock); 4181 rp->r_size = vap->va_size; 4182 mutex_exit(&rp->r_statelock); 4183 } 4184 4185 /* 4186 * Can free up request args and res 4187 */ 4188 nfs4_fattr4_free(&argop[setattr_argop].nfs_argop4_u. 4189 opsetattr.obj_attributes); 4190 if (verify_argop != -1) { 4191 nfs4args_verify_free(&argop[verify_argop]); 4192 verify_argop = -1; 4193 } 4194 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 4195 4196 /* 4197 * Some servers will change the mode to clear the setuid 4198 * and setgid bits when changing the uid or gid. The 4199 * client needs to compensate appropriately. 4200 */ 4201 if (mask & (AT_UID | AT_GID)) { 4202 int terror, do_setattr; 4203 4204 do_setattr = 0; 4205 va.va_mask = AT_MODE; 4206 terror = nfs4getattr(vp, &va, cr); 4207 if (!terror && 4208 (((mask & AT_MODE) && va.va_mode != vap->va_mode) || 4209 (!(mask & AT_MODE) && va.va_mode != omode))) { 4210 va.va_mask = AT_MODE; 4211 if (mask & AT_MODE) { 4212 /* 4213 * We asked the mode to be changed and what 4214 * we just got from the server in getattr is 4215 * not what we wanted it to be, so set it now. 4216 */ 4217 va.va_mode = vap->va_mode; 4218 do_setattr = 1; 4219 } else { 4220 /* 4221 * We did not ask the mode to be changed, 4222 * Check to see that the server just cleared 4223 * I_SUID and I_GUID from it. If not then 4224 * set mode to omode with UID/GID cleared. 4225 */ 4226 if (nfs4_compare_modes(va.va_mode, omode)) { 4227 omode &= ~(S_ISUID|S_ISGID); 4228 va.va_mode = omode; 4229 do_setattr = 1; 4230 } 4231 } 4232 4233 if (do_setattr) 4234 (void) nfs4setattr(vp, &va, 0, cr, NULL); 4235 } 4236 } 4237 4238 return (e.error); 4239 } 4240 4241 /* ARGSUSED */ 4242 static int 4243 nfs4_access(vnode_t *vp, int mode, int flags, cred_t *cr, caller_context_t *ct) 4244 { 4245 COMPOUND4args_clnt args; 4246 COMPOUND4res_clnt res; 4247 int doqueue; 4248 uint32_t acc, resacc, argacc; 4249 rnode4_t *rp; 4250 cred_t *cred, *ncr, *ncrfree = NULL; 4251 nfs4_access_type_t cacc; 4252 int num_ops; 4253 nfs_argop4 argop[3]; 4254 nfs_resop4 *resop; 4255 bool_t needrecov = FALSE, do_getattr; 4256 nfs4_recov_state_t recov_state; 4257 int rpc_error; 4258 hrtime_t t; 4259 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 4260 mntinfo4_t *mi = VTOMI4(vp); 4261 4262 if (nfs_zone() != mi->mi_zone) 4263 return (EIO); 4264 4265 acc = 0; 4266 if (mode & VREAD) 4267 acc |= ACCESS4_READ; 4268 if (mode & VWRITE) { 4269 if ((vp->v_vfsp->vfs_flag & VFS_RDONLY) && !ISVDEV(vp->v_type)) 4270 return (EROFS); 4271 if (vp->v_type == VDIR) 4272 acc |= ACCESS4_DELETE; 4273 acc |= ACCESS4_MODIFY | ACCESS4_EXTEND; 4274 } 4275 if (mode & VEXEC) { 4276 if (vp->v_type == VDIR) 4277 acc |= ACCESS4_LOOKUP; 4278 else 4279 acc |= ACCESS4_EXECUTE; 4280 } 4281 4282 if (VTOR4(vp)->r_acache != NULL) { 4283 e.error = nfs4_validate_caches(vp, cr); 4284 if (e.error) 4285 return (e.error); 4286 } 4287 4288 rp = VTOR4(vp); 4289 if (vp->v_type == VDIR) 4290 argacc = ACCESS4_READ | ACCESS4_DELETE | ACCESS4_MODIFY | 4291 ACCESS4_EXTEND | ACCESS4_LOOKUP; 4292 else 4293 argacc = ACCESS4_READ | ACCESS4_MODIFY | ACCESS4_EXTEND | 4294 ACCESS4_EXECUTE; 4295 recov_state.rs_flags = 0; 4296 recov_state.rs_num_retry_despite_err = 0; 4297 4298 cred = cr; 4299 /* 4300 * ncr and ncrfree both initially 4301 * point to the memory area returned 4302 * by crnetadjust(); 4303 * ncrfree not NULL when exiting means 4304 * that we need to release it 4305 */ 4306 ncr = crnetadjust(cred); 4307 ncrfree = ncr; 4308 4309 tryagain: 4310 cacc = nfs4_access_check(rp, acc, cred); 4311 if (cacc == NFS4_ACCESS_ALLOWED) { 4312 if (ncrfree != NULL) 4313 crfree(ncrfree); 4314 return (0); 4315 } 4316 if (cacc == NFS4_ACCESS_DENIED) { 4317 /* 4318 * If the cred can be adjusted, try again 4319 * with the new cred. 4320 */ 4321 if (ncr != NULL) { 4322 cred = ncr; 4323 ncr = NULL; 4324 goto tryagain; 4325 } 4326 if (ncrfree != NULL) 4327 crfree(ncrfree); 4328 return (EACCES); 4329 } 4330 4331 recov_retry: 4332 /* 4333 * Don't take with r_statev4_lock here. r_deleg_type could 4334 * change as soon as lock is released. Since it is an int, 4335 * there is no atomicity issue. 4336 */ 4337 do_getattr = (rp->r_deleg_type == OPEN_DELEGATE_NONE); 4338 num_ops = do_getattr ? 3 : 2; 4339 4340 args.ctag = TAG_ACCESS; 4341 4342 args.array_len = num_ops; 4343 args.array = argop; 4344 4345 if (e.error = nfs4_start_fop(mi, vp, NULL, OH_ACCESS, 4346 &recov_state, NULL)) { 4347 if (ncrfree != NULL) 4348 crfree(ncrfree); 4349 return (e.error); 4350 } 4351 4352 /* putfh target fh */ 4353 argop[0].argop = OP_CPUTFH; 4354 argop[0].nfs_argop4_u.opcputfh.sfh = VTOR4(vp)->r_fh; 4355 4356 /* access */ 4357 argop[1].argop = OP_ACCESS; 4358 argop[1].nfs_argop4_u.opaccess.access = argacc; 4359 4360 /* getattr */ 4361 if (do_getattr) { 4362 argop[2].argop = OP_GETATTR; 4363 argop[2].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 4364 argop[2].nfs_argop4_u.opgetattr.mi = mi; 4365 } 4366 4367 NFS4_DEBUG(nfs4_client_call_debug, (CE_NOTE, 4368 "nfs4_access: %s call, rp %s", needrecov ? "recov" : "first", 4369 rnode4info(VTOR4(vp)))); 4370 4371 doqueue = 1; 4372 t = gethrtime(); 4373 rfs4call(VTOMI4(vp), &args, &res, cred, &doqueue, 0, &e); 4374 rpc_error = e.error; 4375 4376 needrecov = nfs4_needs_recovery(&e, FALSE, vp->v_vfsp); 4377 if (needrecov) { 4378 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 4379 "nfs4_access: initiating recovery\n")); 4380 4381 if (nfs4_start_recovery(&e, VTOMI4(vp), vp, NULL, NULL, 4382 NULL, OP_ACCESS, NULL) == FALSE) { 4383 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_ACCESS, 4384 &recov_state, needrecov); 4385 if (!e.error) 4386 (void) xdr_free(xdr_COMPOUND4res_clnt, 4387 (caddr_t)&res); 4388 goto recov_retry; 4389 } 4390 } 4391 nfs4_end_fop(mi, vp, NULL, OH_ACCESS, &recov_state, needrecov); 4392 4393 if (e.error) 4394 goto out; 4395 4396 if (res.status) { 4397 e.error = geterrno4(res.status); 4398 /* 4399 * This might generate over the wire calls throught 4400 * nfs4_invalidate_pages. Hence we need to call nfs4_end_op() 4401 * here to avoid a deadlock. 4402 */ 4403 nfs4_purge_stale_fh(e.error, vp, cr); 4404 goto out; 4405 } 4406 resop = &res.array[1]; /* access res */ 4407 4408 resacc = resop->nfs_resop4_u.opaccess.access; 4409 4410 if (do_getattr) { 4411 resop++; /* getattr res */ 4412 nfs4_attr_cache(vp, &resop->nfs_resop4_u.opgetattr.ga_res, 4413 t, cr, FALSE, NULL); 4414 } 4415 4416 if (!e.error) { 4417 nfs4_access_cache(rp, argacc, resacc, cred); 4418 /* 4419 * we just cached results with cred; if cred is the 4420 * adjusted credentials from crnetadjust, we do not want 4421 * to release them before exiting: hence setting ncrfree 4422 * to NULL 4423 */ 4424 if (cred != cr) 4425 ncrfree = NULL; 4426 /* XXX check the supported bits too? */ 4427 if ((acc & resacc) != acc) { 4428 /* 4429 * The following code implements the semantic 4430 * that a setuid root program has *at least* the 4431 * permissions of the user that is running the 4432 * program. See rfs3call() for more portions 4433 * of the implementation of this functionality. 4434 */ 4435 /* XXX-LP */ 4436 if (ncr != NULL) { 4437 (void) xdr_free(xdr_COMPOUND4res_clnt, 4438 (caddr_t)&res); 4439 cred = ncr; 4440 ncr = NULL; 4441 goto tryagain; 4442 } 4443 e.error = EACCES; 4444 } 4445 } 4446 4447 out: 4448 if (!rpc_error) 4449 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 4450 4451 if (ncrfree != NULL) 4452 crfree(ncrfree); 4453 4454 return (e.error); 4455 } 4456 4457 /* ARGSUSED */ 4458 static int 4459 nfs4_readlink(vnode_t *vp, struct uio *uiop, cred_t *cr, caller_context_t *ct) 4460 { 4461 COMPOUND4args_clnt args; 4462 COMPOUND4res_clnt res; 4463 int doqueue; 4464 rnode4_t *rp; 4465 nfs_argop4 argop[3]; 4466 nfs_resop4 *resop; 4467 READLINK4res *lr_res; 4468 nfs4_ga_res_t *garp; 4469 uint_t len; 4470 char *linkdata; 4471 bool_t needrecov = FALSE; 4472 nfs4_recov_state_t recov_state; 4473 hrtime_t t; 4474 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 4475 4476 if (nfs_zone() != VTOMI4(vp)->mi_zone) 4477 return (EIO); 4478 /* 4479 * Can't readlink anything other than a symbolic link. 4480 */ 4481 if (vp->v_type != VLNK) 4482 return (EINVAL); 4483 4484 rp = VTOR4(vp); 4485 if (nfs4_do_symlink_cache && rp->r_symlink.contents != NULL) { 4486 e.error = nfs4_validate_caches(vp, cr); 4487 if (e.error) 4488 return (e.error); 4489 mutex_enter(&rp->r_statelock); 4490 if (rp->r_symlink.contents != NULL) { 4491 e.error = uiomove(rp->r_symlink.contents, 4492 rp->r_symlink.len, UIO_READ, uiop); 4493 mutex_exit(&rp->r_statelock); 4494 return (e.error); 4495 } 4496 mutex_exit(&rp->r_statelock); 4497 } 4498 recov_state.rs_flags = 0; 4499 recov_state.rs_num_retry_despite_err = 0; 4500 4501 recov_retry: 4502 args.array_len = 3; 4503 args.array = argop; 4504 args.ctag = TAG_READLINK; 4505 4506 e.error = nfs4_start_op(VTOMI4(vp), vp, NULL, &recov_state); 4507 if (e.error) { 4508 return (e.error); 4509 } 4510 4511 /* 0. putfh symlink fh */ 4512 argop[0].argop = OP_CPUTFH; 4513 argop[0].nfs_argop4_u.opcputfh.sfh = VTOR4(vp)->r_fh; 4514 4515 /* 1. readlink */ 4516 argop[1].argop = OP_READLINK; 4517 4518 /* 2. getattr */ 4519 argop[2].argop = OP_GETATTR; 4520 argop[2].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 4521 argop[2].nfs_argop4_u.opgetattr.mi = VTOMI4(vp); 4522 4523 doqueue = 1; 4524 4525 NFS4_DEBUG(nfs4_client_call_debug, (CE_NOTE, 4526 "nfs4_readlink: %s call, rp %s", needrecov ? "recov" : "first", 4527 rnode4info(VTOR4(vp)))); 4528 4529 t = gethrtime(); 4530 4531 rfs4call(VTOMI4(vp), &args, &res, cr, &doqueue, 0, &e); 4532 4533 needrecov = nfs4_needs_recovery(&e, FALSE, vp->v_vfsp); 4534 if (needrecov) { 4535 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 4536 "nfs4_readlink: initiating recovery\n")); 4537 4538 if (nfs4_start_recovery(&e, VTOMI4(vp), vp, NULL, NULL, 4539 NULL, OP_READLINK, NULL) == FALSE) { 4540 if (!e.error) 4541 (void) xdr_free(xdr_COMPOUND4res_clnt, 4542 (caddr_t)&res); 4543 4544 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state, 4545 needrecov); 4546 goto recov_retry; 4547 } 4548 } 4549 4550 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state, needrecov); 4551 4552 if (e.error) 4553 return (e.error); 4554 4555 /* 4556 * There is an path in the code below which calls 4557 * nfs4_purge_stale_fh(), which may generate otw calls through 4558 * nfs4_invalidate_pages. Hence we need to call nfs4_end_op() 4559 * here to avoid nfs4_start_op() deadlock. 4560 */ 4561 4562 if (res.status && (res.array_len < args.array_len)) { 4563 /* 4564 * either Putfh or Link failed 4565 */ 4566 e.error = geterrno4(res.status); 4567 nfs4_purge_stale_fh(e.error, vp, cr); 4568 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 4569 return (e.error); 4570 } 4571 4572 resop = &res.array[1]; /* readlink res */ 4573 lr_res = &resop->nfs_resop4_u.opreadlink; 4574 4575 /* 4576 * treat symlink names as data 4577 */ 4578 linkdata = utf8_to_str(&lr_res->link, &len, NULL); 4579 if (linkdata != NULL) { 4580 int uio_len = len - 1; 4581 /* len includes null byte, which we won't uiomove */ 4582 e.error = uiomove(linkdata, uio_len, UIO_READ, uiop); 4583 if (nfs4_do_symlink_cache && rp->r_symlink.contents == NULL) { 4584 mutex_enter(&rp->r_statelock); 4585 if (rp->r_symlink.contents == NULL) { 4586 rp->r_symlink.contents = linkdata; 4587 rp->r_symlink.len = uio_len; 4588 rp->r_symlink.size = len; 4589 mutex_exit(&rp->r_statelock); 4590 } else { 4591 mutex_exit(&rp->r_statelock); 4592 kmem_free(linkdata, len); 4593 } 4594 } else { 4595 kmem_free(linkdata, len); 4596 } 4597 } 4598 if (res.status == NFS4_OK) { 4599 resop++; /* getattr res */ 4600 garp = &resop->nfs_resop4_u.opgetattr.ga_res; 4601 } 4602 e.error = nfs4_update_attrcache(res.status, garp, t, vp, cr); 4603 4604 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 4605 4606 /* 4607 * The over the wire error for attempting to readlink something 4608 * other than a symbolic link is ENXIO. However, we need to 4609 * return EINVAL instead of ENXIO, so we map it here. 4610 */ 4611 return (e.error == ENXIO ? EINVAL : e.error); 4612 } 4613 4614 /* 4615 * Flush local dirty pages to stable storage on the server. 4616 * 4617 * If FNODSYNC is specified, then there is nothing to do because 4618 * metadata changes are not cached on the client before being 4619 * sent to the server. 4620 */ 4621 /* ARGSUSED */ 4622 static int 4623 nfs4_fsync(vnode_t *vp, int syncflag, cred_t *cr, caller_context_t *ct) 4624 { 4625 int error; 4626 4627 if ((syncflag & FNODSYNC) || IS_SWAPVP(vp)) 4628 return (0); 4629 if (nfs_zone() != VTOMI4(vp)->mi_zone) 4630 return (EIO); 4631 error = nfs4_putpage_commit(vp, (offset_t)0, 0, cr); 4632 if (!error) 4633 error = VTOR4(vp)->r_error; 4634 return (error); 4635 } 4636 4637 /* 4638 * Weirdness: if the file was removed or the target of a rename 4639 * operation while it was open, it got renamed instead. Here we 4640 * remove the renamed file. 4641 */ 4642 /* ARGSUSED */ 4643 void 4644 nfs4_inactive(vnode_t *vp, cred_t *cr, caller_context_t *ct) 4645 { 4646 rnode4_t *rp; 4647 4648 ASSERT(vp != DNLC_NO_VNODE); 4649 4650 rp = VTOR4(vp); 4651 4652 if (IS_SHADOW(vp, rp)) { 4653 sv_inactive(vp); 4654 return; 4655 } 4656 4657 /* 4658 * If this is coming from the wrong zone, we let someone in the right 4659 * zone take care of it asynchronously. We can get here due to 4660 * VN_RELE() being called from pageout() or fsflush(). This call may 4661 * potentially turn into an expensive no-op if, for instance, v_count 4662 * gets incremented in the meantime, but it's still correct. 4663 */ 4664 if (nfs_zone() != VTOMI4(vp)->mi_zone) { 4665 nfs4_async_inactive(vp, cr); 4666 return; 4667 } 4668 4669 /* 4670 * Some of the cleanup steps might require over-the-wire 4671 * operations. Since VOP_INACTIVE can get called as a result of 4672 * other over-the-wire operations (e.g., an attribute cache update 4673 * can lead to a DNLC purge), doing those steps now would lead to a 4674 * nested call to the recovery framework, which can deadlock. So 4675 * do any over-the-wire cleanups asynchronously, in a separate 4676 * thread. 4677 */ 4678 4679 mutex_enter(&rp->r_os_lock); 4680 mutex_enter(&rp->r_statelock); 4681 mutex_enter(&rp->r_statev4_lock); 4682 4683 if (vp->v_type == VREG && list_head(&rp->r_open_streams) != NULL) { 4684 mutex_exit(&rp->r_statev4_lock); 4685 mutex_exit(&rp->r_statelock); 4686 mutex_exit(&rp->r_os_lock); 4687 nfs4_async_inactive(vp, cr); 4688 return; 4689 } 4690 4691 if (rp->r_deleg_type == OPEN_DELEGATE_READ || 4692 rp->r_deleg_type == OPEN_DELEGATE_WRITE) { 4693 mutex_exit(&rp->r_statev4_lock); 4694 mutex_exit(&rp->r_statelock); 4695 mutex_exit(&rp->r_os_lock); 4696 nfs4_async_inactive(vp, cr); 4697 return; 4698 } 4699 4700 if (rp->r_unldvp != NULL) { 4701 mutex_exit(&rp->r_statev4_lock); 4702 mutex_exit(&rp->r_statelock); 4703 mutex_exit(&rp->r_os_lock); 4704 nfs4_async_inactive(vp, cr); 4705 return; 4706 } 4707 mutex_exit(&rp->r_statev4_lock); 4708 mutex_exit(&rp->r_statelock); 4709 mutex_exit(&rp->r_os_lock); 4710 4711 rp4_addfree(rp, cr); 4712 } 4713 4714 /* 4715 * nfs4_inactive_otw - nfs4_inactive, plus over-the-wire calls to free up 4716 * various bits of state. The caller must not refer to vp after this call. 4717 */ 4718 4719 void 4720 nfs4_inactive_otw(vnode_t *vp, cred_t *cr) 4721 { 4722 rnode4_t *rp = VTOR4(vp); 4723 nfs4_recov_state_t recov_state; 4724 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 4725 vnode_t *unldvp; 4726 char *unlname; 4727 cred_t *unlcred; 4728 COMPOUND4args_clnt args; 4729 COMPOUND4res_clnt res, *resp; 4730 nfs_argop4 argop[2]; 4731 int doqueue; 4732 #ifdef DEBUG 4733 char *name; 4734 #endif 4735 4736 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 4737 ASSERT(!IS_SHADOW(vp, rp)); 4738 4739 #ifdef DEBUG 4740 name = fn_name(VTOSV(vp)->sv_name); 4741 NFS4_DEBUG(nfs4_client_inactive_debug, (CE_NOTE, "nfs4_inactive_otw: " 4742 "release vnode %s", name)); 4743 kmem_free(name, MAXNAMELEN); 4744 #endif 4745 4746 if (vp->v_type == VREG) { 4747 bool_t recov_failed = FALSE; 4748 4749 e.error = nfs4close_all(vp, cr); 4750 if (e.error) { 4751 /* Check to see if recovery failed */ 4752 mutex_enter(&(VTOMI4(vp)->mi_lock)); 4753 if (VTOMI4(vp)->mi_flags & MI4_RECOV_FAIL) 4754 recov_failed = TRUE; 4755 mutex_exit(&(VTOMI4(vp)->mi_lock)); 4756 if (!recov_failed) { 4757 mutex_enter(&rp->r_statelock); 4758 if (rp->r_flags & R4RECOVERR) 4759 recov_failed = TRUE; 4760 mutex_exit(&rp->r_statelock); 4761 } 4762 if (recov_failed) { 4763 NFS4_DEBUG(nfs4_client_recov_debug, 4764 (CE_NOTE, "nfs4_inactive_otw: " 4765 "close failed (recovery failure)")); 4766 } 4767 } 4768 } 4769 4770 redo: 4771 if (rp->r_unldvp == NULL) { 4772 rp4_addfree(rp, cr); 4773 return; 4774 } 4775 4776 /* 4777 * Save the vnode pointer for the directory where the 4778 * unlinked-open file got renamed, then set it to NULL 4779 * to prevent another thread from getting here before 4780 * we're done with the remove. While we have the 4781 * statelock, make local copies of the pertinent rnode 4782 * fields. If we weren't to do this in an atomic way, the 4783 * the unl* fields could become inconsistent with respect 4784 * to each other due to a race condition between this 4785 * code and nfs_remove(). See bug report 1034328. 4786 */ 4787 mutex_enter(&rp->r_statelock); 4788 if (rp->r_unldvp == NULL) { 4789 mutex_exit(&rp->r_statelock); 4790 rp4_addfree(rp, cr); 4791 return; 4792 } 4793 4794 unldvp = rp->r_unldvp; 4795 rp->r_unldvp = NULL; 4796 unlname = rp->r_unlname; 4797 rp->r_unlname = NULL; 4798 unlcred = rp->r_unlcred; 4799 rp->r_unlcred = NULL; 4800 mutex_exit(&rp->r_statelock); 4801 4802 /* 4803 * If there are any dirty pages left, then flush 4804 * them. This is unfortunate because they just 4805 * may get thrown away during the remove operation, 4806 * but we have to do this for correctness. 4807 */ 4808 if (nfs4_has_pages(vp) && 4809 ((rp->r_flags & R4DIRTY) || rp->r_count > 0)) { 4810 ASSERT(vp->v_type != VCHR); 4811 e.error = nfs4_putpage(vp, (u_offset_t)0, 0, 0, cr, NULL); 4812 if (e.error) { 4813 mutex_enter(&rp->r_statelock); 4814 if (!rp->r_error) 4815 rp->r_error = e.error; 4816 mutex_exit(&rp->r_statelock); 4817 } 4818 } 4819 4820 recov_state.rs_flags = 0; 4821 recov_state.rs_num_retry_despite_err = 0; 4822 recov_retry_remove: 4823 /* 4824 * Do the remove operation on the renamed file 4825 */ 4826 args.ctag = TAG_INACTIVE; 4827 4828 /* 4829 * Remove ops: putfh dir; remove 4830 */ 4831 args.array_len = 2; 4832 args.array = argop; 4833 4834 e.error = nfs4_start_op(VTOMI4(unldvp), unldvp, NULL, &recov_state); 4835 if (e.error) { 4836 kmem_free(unlname, MAXNAMELEN); 4837 crfree(unlcred); 4838 VN_RELE(unldvp); 4839 /* 4840 * Try again; this time around r_unldvp will be NULL, so we'll 4841 * just call rp4_addfree() and return. 4842 */ 4843 goto redo; 4844 } 4845 4846 /* putfh directory */ 4847 argop[0].argop = OP_CPUTFH; 4848 argop[0].nfs_argop4_u.opcputfh.sfh = VTOR4(unldvp)->r_fh; 4849 4850 /* remove */ 4851 argop[1].argop = OP_CREMOVE; 4852 argop[1].nfs_argop4_u.opcremove.ctarget = unlname; 4853 4854 doqueue = 1; 4855 resp = &res; 4856 4857 #if 0 /* notyet */ 4858 /* 4859 * Can't do this yet. We may be being called from 4860 * dnlc_purge_XXX while that routine is holding a 4861 * mutex lock to the nc_rele list. The calls to 4862 * nfs3_cache_wcc_data may result in calls to 4863 * dnlc_purge_XXX. This will result in a deadlock. 4864 */ 4865 rfs4call(VTOMI4(unldvp), &args, &res, unlcred, &doqueue, 0, &e); 4866 if (e.error) { 4867 PURGE_ATTRCACHE4(unldvp); 4868 resp = NULL; 4869 } else if (res.status) { 4870 e.error = geterrno4(res.status); 4871 PURGE_ATTRCACHE4(unldvp); 4872 /* 4873 * This code is inactive right now 4874 * but if made active there should 4875 * be a nfs4_end_op() call before 4876 * nfs4_purge_stale_fh to avoid start_op() 4877 * deadlock. See BugId: 4948726 4878 */ 4879 nfs4_purge_stale_fh(error, unldvp, cr); 4880 } else { 4881 nfs_resop4 *resop; 4882 REMOVE4res *rm_res; 4883 4884 resop = &res.array[1]; 4885 rm_res = &resop->nfs_resop4_u.opremove; 4886 /* 4887 * Update directory cache attribute, 4888 * readdir and dnlc caches. 4889 */ 4890 nfs4_update_dircaches(&rm_res->cinfo, unldvp, NULL, NULL, NULL); 4891 } 4892 #else 4893 rfs4call(VTOMI4(unldvp), &args, &res, unlcred, &doqueue, 0, &e); 4894 4895 PURGE_ATTRCACHE4(unldvp); 4896 #endif 4897 4898 if (nfs4_needs_recovery(&e, FALSE, unldvp->v_vfsp)) { 4899 if (nfs4_start_recovery(&e, VTOMI4(unldvp), unldvp, NULL, 4900 NULL, NULL, OP_REMOVE, NULL) == FALSE) { 4901 if (!e.error) 4902 (void) xdr_free(xdr_COMPOUND4res_clnt, 4903 (caddr_t)&res); 4904 nfs4_end_op(VTOMI4(unldvp), unldvp, NULL, 4905 &recov_state, TRUE); 4906 goto recov_retry_remove; 4907 } 4908 } 4909 nfs4_end_op(VTOMI4(unldvp), unldvp, NULL, &recov_state, FALSE); 4910 4911 /* 4912 * Release stuff held for the remove 4913 */ 4914 VN_RELE(unldvp); 4915 if (!e.error && resp) 4916 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp); 4917 4918 kmem_free(unlname, MAXNAMELEN); 4919 crfree(unlcred); 4920 goto redo; 4921 } 4922 4923 /* 4924 * Remote file system operations having to do with directory manipulation. 4925 */ 4926 /* ARGSUSED3 */ 4927 int 4928 nfs4_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, struct pathname *pnp, 4929 int flags, vnode_t *rdir, cred_t *cr, caller_context_t *ct, 4930 int *direntflags, pathname_t *realpnp) 4931 { 4932 int error; 4933 vnode_t *vp, *avp = NULL; 4934 rnode4_t *drp; 4935 4936 *vpp = NULL; 4937 if (nfs_zone() != VTOMI4(dvp)->mi_zone) 4938 return (EPERM); 4939 /* 4940 * if LOOKUP_XATTR, must replace dvp (object) with 4941 * object's attrdir before continuing with lookup 4942 */ 4943 if (flags & LOOKUP_XATTR) { 4944 error = nfs4lookup_xattr(dvp, nm, &avp, flags, cr); 4945 if (error) 4946 return (error); 4947 4948 dvp = avp; 4949 4950 /* 4951 * If lookup is for "", just return dvp now. The attrdir 4952 * has already been activated (from nfs4lookup_xattr), and 4953 * the caller will RELE the original dvp -- not 4954 * the attrdir. So, set vpp and return. 4955 * Currently, when the LOOKUP_XATTR flag is 4956 * passed to VOP_LOOKUP, the name is always empty, and 4957 * shortcircuiting here avoids 3 unneeded lock/unlock 4958 * pairs. 4959 * 4960 * If a non-empty name was provided, then it is the 4961 * attribute name, and it will be looked up below. 4962 */ 4963 if (*nm == '\0') { 4964 *vpp = dvp; 4965 return (0); 4966 } 4967 4968 /* 4969 * The vfs layer never sends a name when asking for the 4970 * attrdir, so we should never get here (unless of course 4971 * name is passed at some time in future -- at which time 4972 * we'll blow up here). 4973 */ 4974 ASSERT(0); 4975 } 4976 4977 drp = VTOR4(dvp); 4978 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_READER, INTR4(dvp))) 4979 return (EINTR); 4980 4981 error = nfs4lookup(dvp, nm, vpp, cr, 0); 4982 nfs_rw_exit(&drp->r_rwlock); 4983 4984 /* 4985 * If vnode is a device, create special vnode. 4986 */ 4987 if (!error && ISVDEV((*vpp)->v_type)) { 4988 vp = *vpp; 4989 *vpp = specvp(vp, vp->v_rdev, vp->v_type, cr); 4990 VN_RELE(vp); 4991 } 4992 4993 return (error); 4994 } 4995 4996 /* ARGSUSED */ 4997 static int 4998 nfs4lookup_xattr(vnode_t *dvp, char *nm, vnode_t **vpp, int flags, cred_t *cr) 4999 { 5000 int error; 5001 rnode4_t *drp; 5002 int cflag = ((flags & CREATE_XATTR_DIR) != 0); 5003 mntinfo4_t *mi; 5004 5005 mi = VTOMI4(dvp); 5006 if (!(mi->mi_vfsp->vfs_flag & VFS_XATTR) && 5007 !vfs_has_feature(mi->mi_vfsp, VFSFT_SYSATTR_VIEWS)) 5008 return (EINVAL); 5009 5010 drp = VTOR4(dvp); 5011 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_READER, INTR4(dvp))) 5012 return (EINTR); 5013 5014 mutex_enter(&drp->r_statelock); 5015 /* 5016 * If the server doesn't support xattrs just return EINVAL 5017 */ 5018 if (drp->r_xattr_dir == NFS4_XATTR_DIR_NOTSUPP) { 5019 mutex_exit(&drp->r_statelock); 5020 nfs_rw_exit(&drp->r_rwlock); 5021 return (EINVAL); 5022 } 5023 5024 /* 5025 * If there is a cached xattr directory entry, 5026 * use it as long as the attributes are valid. If the 5027 * attributes are not valid, take the simple approach and 5028 * free the cached value and re-fetch a new value. 5029 * 5030 * We don't negative entry cache for now, if we did we 5031 * would need to check if the file has changed on every 5032 * lookup. But xattrs don't exist very often and failing 5033 * an openattr is not much more expensive than and NVERIFY or GETATTR 5034 * so do an openattr over the wire for now. 5035 */ 5036 if (drp->r_xattr_dir != NULL) { 5037 if (ATTRCACHE4_VALID(dvp)) { 5038 VN_HOLD(drp->r_xattr_dir); 5039 *vpp = drp->r_xattr_dir; 5040 mutex_exit(&drp->r_statelock); 5041 nfs_rw_exit(&drp->r_rwlock); 5042 return (0); 5043 } 5044 VN_RELE(drp->r_xattr_dir); 5045 drp->r_xattr_dir = NULL; 5046 } 5047 mutex_exit(&drp->r_statelock); 5048 5049 error = nfs4openattr(dvp, vpp, cflag, cr); 5050 5051 nfs_rw_exit(&drp->r_rwlock); 5052 5053 return (error); 5054 } 5055 5056 static int 5057 nfs4lookup(vnode_t *dvp, char *nm, vnode_t **vpp, cred_t *cr, int skipdnlc) 5058 { 5059 int error; 5060 rnode4_t *drp; 5061 5062 ASSERT(nfs_zone() == VTOMI4(dvp)->mi_zone); 5063 5064 /* 5065 * If lookup is for "", just return dvp. Don't need 5066 * to send it over the wire, look it up in the dnlc, 5067 * or perform any access checks. 5068 */ 5069 if (*nm == '\0') { 5070 VN_HOLD(dvp); 5071 *vpp = dvp; 5072 return (0); 5073 } 5074 5075 /* 5076 * Can't do lookups in non-directories. 5077 */ 5078 if (dvp->v_type != VDIR) 5079 return (ENOTDIR); 5080 5081 /* 5082 * If lookup is for ".", just return dvp. Don't need 5083 * to send it over the wire or look it up in the dnlc, 5084 * just need to check access. 5085 */ 5086 if (nm[0] == '.' && nm[1] == '\0') { 5087 error = nfs4_access(dvp, VEXEC, 0, cr, NULL); 5088 if (error) 5089 return (error); 5090 VN_HOLD(dvp); 5091 *vpp = dvp; 5092 return (0); 5093 } 5094 5095 drp = VTOR4(dvp); 5096 if (!(drp->r_flags & R4LOOKUP)) { 5097 mutex_enter(&drp->r_statelock); 5098 drp->r_flags |= R4LOOKUP; 5099 mutex_exit(&drp->r_statelock); 5100 } 5101 5102 *vpp = NULL; 5103 /* 5104 * Lookup this name in the DNLC. If there is no entry 5105 * lookup over the wire. 5106 */ 5107 if (!skipdnlc) 5108 *vpp = dnlc_lookup(dvp, nm); 5109 if (*vpp == NULL) { 5110 /* 5111 * We need to go over the wire to lookup the name. 5112 */ 5113 return (nfs4lookupnew_otw(dvp, nm, vpp, cr)); 5114 } 5115 5116 /* 5117 * We hit on the dnlc 5118 */ 5119 if (*vpp != DNLC_NO_VNODE || 5120 (dvp->v_vfsp->vfs_flag & VFS_RDONLY)) { 5121 /* 5122 * But our attrs may not be valid. 5123 */ 5124 if (ATTRCACHE4_VALID(dvp)) { 5125 error = nfs4_waitfor_purge_complete(dvp); 5126 if (error) { 5127 VN_RELE(*vpp); 5128 *vpp = NULL; 5129 return (error); 5130 } 5131 5132 /* 5133 * If after the purge completes, check to make sure 5134 * our attrs are still valid. 5135 */ 5136 if (ATTRCACHE4_VALID(dvp)) { 5137 /* 5138 * If we waited for a purge we may have 5139 * lost our vnode so look it up again. 5140 */ 5141 VN_RELE(*vpp); 5142 *vpp = dnlc_lookup(dvp, nm); 5143 if (*vpp == NULL) 5144 return (nfs4lookupnew_otw(dvp, 5145 nm, vpp, cr)); 5146 5147 /* 5148 * The access cache should almost always hit 5149 */ 5150 error = nfs4_access(dvp, VEXEC, 0, cr, NULL); 5151 5152 if (error) { 5153 VN_RELE(*vpp); 5154 *vpp = NULL; 5155 return (error); 5156 } 5157 if (*vpp == DNLC_NO_VNODE) { 5158 VN_RELE(*vpp); 5159 *vpp = NULL; 5160 return (ENOENT); 5161 } 5162 return (0); 5163 } 5164 } 5165 } 5166 5167 ASSERT(*vpp != NULL); 5168 5169 /* 5170 * We may have gotten here we have one of the following cases: 5171 * 1) vpp != DNLC_NO_VNODE, our attrs have timed out so we 5172 * need to validate them. 5173 * 2) vpp == DNLC_NO_VNODE, a negative entry that we always 5174 * must validate. 5175 * 5176 * Go to the server and check if the directory has changed, if 5177 * it hasn't we are done and can use the dnlc entry. 5178 */ 5179 return (nfs4lookupvalidate_otw(dvp, nm, vpp, cr)); 5180 } 5181 5182 /* 5183 * Go to the server and check if the directory has changed, if 5184 * it hasn't we are done and can use the dnlc entry. If it 5185 * has changed we get a new copy of its attributes and check 5186 * the access for VEXEC, then relookup the filename and 5187 * get its filehandle and attributes. 5188 * 5189 * PUTFH dfh NVERIFY GETATTR ACCESS LOOKUP GETFH GETATTR 5190 * if the NVERIFY failed we must 5191 * purge the caches 5192 * cache new attributes (will set r_time_attr_inval) 5193 * cache new access 5194 * recheck VEXEC access 5195 * add name to dnlc, possibly negative 5196 * if LOOKUP succeeded 5197 * cache new attributes 5198 * else 5199 * set a new r_time_attr_inval for dvp 5200 * check to make sure we have access 5201 * 5202 * The vpp returned is the vnode passed in if the directory is valid, 5203 * a new vnode if successful lookup, or NULL on error. 5204 */ 5205 static int 5206 nfs4lookupvalidate_otw(vnode_t *dvp, char *nm, vnode_t **vpp, cred_t *cr) 5207 { 5208 COMPOUND4args_clnt args; 5209 COMPOUND4res_clnt res; 5210 fattr4 *ver_fattr; 5211 fattr4_change dchange; 5212 int32_t *ptr; 5213 int argoplist_size = 7 * sizeof (nfs_argop4); 5214 nfs_argop4 *argop; 5215 int doqueue; 5216 mntinfo4_t *mi; 5217 nfs4_recov_state_t recov_state; 5218 hrtime_t t; 5219 int isdotdot; 5220 vnode_t *nvp; 5221 nfs_fh4 *fhp; 5222 nfs4_sharedfh_t *sfhp; 5223 nfs4_access_type_t cacc; 5224 rnode4_t *nrp; 5225 rnode4_t *drp = VTOR4(dvp); 5226 nfs4_ga_res_t *garp = NULL; 5227 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 5228 5229 ASSERT(nfs_zone() == VTOMI4(dvp)->mi_zone); 5230 ASSERT(nm != NULL); 5231 ASSERT(nm[0] != '\0'); 5232 ASSERT(dvp->v_type == VDIR); 5233 ASSERT(nm[0] != '.' || nm[1] != '\0'); 5234 ASSERT(*vpp != NULL); 5235 5236 if (nm[0] == '.' && nm[1] == '.' && nm[2] == '\0') { 5237 isdotdot = 1; 5238 args.ctag = TAG_LOOKUP_VPARENT; 5239 } else { 5240 /* 5241 * If dvp were a stub, it should have triggered and caused 5242 * a mount for us to get this far. 5243 */ 5244 ASSERT(!RP_ISSTUB(VTOR4(dvp))); 5245 5246 isdotdot = 0; 5247 args.ctag = TAG_LOOKUP_VALID; 5248 } 5249 5250 mi = VTOMI4(dvp); 5251 recov_state.rs_flags = 0; 5252 recov_state.rs_num_retry_despite_err = 0; 5253 5254 nvp = NULL; 5255 5256 /* Save the original mount point security information */ 5257 (void) save_mnt_secinfo(mi->mi_curr_serv); 5258 5259 recov_retry: 5260 e.error = nfs4_start_fop(mi, dvp, NULL, OH_LOOKUP, 5261 &recov_state, NULL); 5262 if (e.error) { 5263 (void) check_mnt_secinfo(mi->mi_curr_serv, nvp); 5264 VN_RELE(*vpp); 5265 *vpp = NULL; 5266 return (e.error); 5267 } 5268 5269 argop = kmem_alloc(argoplist_size, KM_SLEEP); 5270 5271 /* PUTFH dfh NVERIFY GETATTR ACCESS LOOKUP GETFH GETATTR */ 5272 args.array_len = 7; 5273 args.array = argop; 5274 5275 /* 0. putfh file */ 5276 argop[0].argop = OP_CPUTFH; 5277 argop[0].nfs_argop4_u.opcputfh.sfh = VTOR4(dvp)->r_fh; 5278 5279 /* 1. nverify the change info */ 5280 argop[1].argop = OP_NVERIFY; 5281 ver_fattr = &argop[1].nfs_argop4_u.opnverify.obj_attributes; 5282 ver_fattr->attrmask = FATTR4_CHANGE_MASK; 5283 ver_fattr->attrlist4 = (char *)&dchange; 5284 ptr = (int32_t *)&dchange; 5285 IXDR_PUT_HYPER(ptr, VTOR4(dvp)->r_change); 5286 ver_fattr->attrlist4_len = sizeof (fattr4_change); 5287 5288 /* 2. getattr directory */ 5289 argop[2].argop = OP_GETATTR; 5290 argop[2].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 5291 argop[2].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp); 5292 5293 /* 3. access directory */ 5294 argop[3].argop = OP_ACCESS; 5295 argop[3].nfs_argop4_u.opaccess.access = ACCESS4_READ | ACCESS4_DELETE | 5296 ACCESS4_MODIFY | ACCESS4_EXTEND | ACCESS4_LOOKUP; 5297 5298 /* 4. lookup name */ 5299 if (isdotdot) { 5300 argop[4].argop = OP_LOOKUPP; 5301 } else { 5302 argop[4].argop = OP_CLOOKUP; 5303 argop[4].nfs_argop4_u.opclookup.cname = nm; 5304 } 5305 5306 /* 5. resulting file handle */ 5307 argop[5].argop = OP_GETFH; 5308 5309 /* 6. resulting file attributes */ 5310 argop[6].argop = OP_GETATTR; 5311 argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 5312 argop[6].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp); 5313 5314 doqueue = 1; 5315 t = gethrtime(); 5316 5317 rfs4call(VTOMI4(dvp), &args, &res, cr, &doqueue, 0, &e); 5318 5319 if (nfs4_needs_recovery(&e, FALSE, dvp->v_vfsp)) { 5320 /* 5321 * For WRONGSEC of a non-dotdot case, send secinfo directly 5322 * from this thread, do not go thru the recovery thread since 5323 * we need the nm information. 5324 * 5325 * Not doing dotdot case because there is no specification 5326 * for (PUTFH, SECINFO "..") yet. 5327 */ 5328 if (!isdotdot && res.status == NFS4ERR_WRONGSEC) { 5329 if ((e.error = nfs4_secinfo_vnode_otw(dvp, nm, cr))) 5330 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP, 5331 &recov_state, FALSE); 5332 else 5333 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP, 5334 &recov_state, TRUE); 5335 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 5336 kmem_free(argop, argoplist_size); 5337 if (!e.error) 5338 goto recov_retry; 5339 (void) check_mnt_secinfo(mi->mi_curr_serv, nvp); 5340 VN_RELE(*vpp); 5341 *vpp = NULL; 5342 return (e.error); 5343 } 5344 5345 if (nfs4_start_recovery(&e, mi, dvp, NULL, NULL, NULL, 5346 OP_LOOKUP, NULL) == FALSE) { 5347 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP, 5348 &recov_state, TRUE); 5349 5350 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 5351 kmem_free(argop, argoplist_size); 5352 goto recov_retry; 5353 } 5354 } 5355 5356 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP, &recov_state, FALSE); 5357 5358 if (e.error || res.array_len == 0) { 5359 /* 5360 * If e.error isn't set, then reply has no ops (or we couldn't 5361 * be here). The only legal way to reply without an op array 5362 * is via NFS4ERR_MINOR_VERS_MISMATCH. An ops array should 5363 * be in the reply for all other status values. 5364 * 5365 * For valid replies without an ops array, return ENOTSUP 5366 * (geterrno4 xlation of VERS_MISMATCH). For illegal replies, 5367 * return EIO -- don't trust status. 5368 */ 5369 if (e.error == 0) 5370 e.error = (res.status == NFS4ERR_MINOR_VERS_MISMATCH) ? 5371 ENOTSUP : EIO; 5372 VN_RELE(*vpp); 5373 *vpp = NULL; 5374 kmem_free(argop, argoplist_size); 5375 (void) check_mnt_secinfo(mi->mi_curr_serv, nvp); 5376 return (e.error); 5377 } 5378 5379 if (res.status != NFS4ERR_SAME) { 5380 e.error = geterrno4(res.status); 5381 5382 /* 5383 * The NVERIFY "failed" so the directory has changed 5384 * First make sure PUTFH succeeded and NVERIFY "failed" 5385 * cleanly. 5386 */ 5387 if ((res.array[0].nfs_resop4_u.opputfh.status != NFS4_OK) || 5388 (res.array[1].nfs_resop4_u.opnverify.status != NFS4_OK)) { 5389 nfs4_purge_stale_fh(e.error, dvp, cr); 5390 VN_RELE(*vpp); 5391 *vpp = NULL; 5392 goto exit; 5393 } 5394 5395 /* 5396 * We know the NVERIFY "failed" so we must: 5397 * purge the caches (access and indirectly dnlc if needed) 5398 */ 5399 nfs4_purge_caches(dvp, NFS4_NOPURGE_DNLC, cr, TRUE); 5400 5401 if (res.array[2].nfs_resop4_u.opgetattr.status != NFS4_OK) { 5402 nfs4_purge_stale_fh(e.error, dvp, cr); 5403 VN_RELE(*vpp); 5404 *vpp = NULL; 5405 goto exit; 5406 } 5407 5408 /* 5409 * Install new cached attributes for the directory 5410 */ 5411 nfs4_attr_cache(dvp, 5412 &res.array[2].nfs_resop4_u.opgetattr.ga_res, 5413 t, cr, FALSE, NULL); 5414 5415 if (res.array[3].nfs_resop4_u.opaccess.status != NFS4_OK) { 5416 nfs4_purge_stale_fh(e.error, dvp, cr); 5417 VN_RELE(*vpp); 5418 *vpp = NULL; 5419 e.error = geterrno4(res.status); 5420 goto exit; 5421 } 5422 5423 /* 5424 * Now we know the directory is valid, 5425 * cache new directory access 5426 */ 5427 nfs4_access_cache(drp, 5428 args.array[3].nfs_argop4_u.opaccess.access, 5429 res.array[3].nfs_resop4_u.opaccess.access, cr); 5430 5431 /* 5432 * recheck VEXEC access 5433 */ 5434 cacc = nfs4_access_check(drp, ACCESS4_LOOKUP, cr); 5435 if (cacc != NFS4_ACCESS_ALLOWED) { 5436 /* 5437 * Directory permissions might have been revoked 5438 */ 5439 if (cacc == NFS4_ACCESS_DENIED) { 5440 e.error = EACCES; 5441 VN_RELE(*vpp); 5442 *vpp = NULL; 5443 goto exit; 5444 } 5445 5446 /* 5447 * Somehow we must not have asked for enough 5448 * so try a singleton ACCESS, should never happen. 5449 */ 5450 e.error = nfs4_access(dvp, VEXEC, 0, cr, NULL); 5451 if (e.error) { 5452 VN_RELE(*vpp); 5453 *vpp = NULL; 5454 goto exit; 5455 } 5456 } 5457 5458 e.error = geterrno4(res.status); 5459 if (res.array[4].nfs_resop4_u.oplookup.status != NFS4_OK) { 5460 /* 5461 * The lookup failed, probably no entry 5462 */ 5463 if (e.error == ENOENT && nfs4_lookup_neg_cache) { 5464 dnlc_update(dvp, nm, DNLC_NO_VNODE); 5465 } else { 5466 /* 5467 * Might be some other error, so remove 5468 * the dnlc entry to make sure we start all 5469 * over again, next time. 5470 */ 5471 dnlc_remove(dvp, nm); 5472 } 5473 VN_RELE(*vpp); 5474 *vpp = NULL; 5475 goto exit; 5476 } 5477 5478 if (res.array[5].nfs_resop4_u.opgetfh.status != NFS4_OK) { 5479 /* 5480 * The file exists but we can't get its fh for 5481 * some unknown reason. Remove it from the dnlc 5482 * and error out to be safe. 5483 */ 5484 dnlc_remove(dvp, nm); 5485 VN_RELE(*vpp); 5486 *vpp = NULL; 5487 goto exit; 5488 } 5489 fhp = &res.array[5].nfs_resop4_u.opgetfh.object; 5490 if (fhp->nfs_fh4_len == 0) { 5491 /* 5492 * The file exists but a bogus fh 5493 * some unknown reason. Remove it from the dnlc 5494 * and error out to be safe. 5495 */ 5496 e.error = ENOENT; 5497 dnlc_remove(dvp, nm); 5498 VN_RELE(*vpp); 5499 *vpp = NULL; 5500 goto exit; 5501 } 5502 sfhp = sfh4_get(fhp, mi); 5503 5504 if (res.array[6].nfs_resop4_u.opgetattr.status == NFS4_OK) 5505 garp = &res.array[6].nfs_resop4_u.opgetattr.ga_res; 5506 5507 /* 5508 * Make the new rnode 5509 */ 5510 if (isdotdot) { 5511 e.error = nfs4_make_dotdot(sfhp, t, dvp, cr, &nvp, 1); 5512 if (e.error) { 5513 sfh4_rele(&sfhp); 5514 VN_RELE(*vpp); 5515 *vpp = NULL; 5516 goto exit; 5517 } 5518 /* 5519 * XXX if nfs4_make_dotdot uses an existing rnode 5520 * XXX it doesn't update the attributes. 5521 * XXX for now just save them again to save an OTW 5522 */ 5523 nfs4_attr_cache(nvp, garp, t, cr, FALSE, NULL); 5524 } else { 5525 nvp = makenfs4node(sfhp, garp, dvp->v_vfsp, t, cr, 5526 dvp, fn_get(VTOSV(dvp)->sv_name, nm, sfhp)); 5527 /* 5528 * If v_type == VNON, then garp was NULL because 5529 * the last op in the compound failed and makenfs4node 5530 * could not find the vnode for sfhp. It created 5531 * a new vnode, so we have nothing to purge here. 5532 */ 5533 if (nvp->v_type == VNON) { 5534 vattr_t vattr; 5535 5536 vattr.va_mask = AT_TYPE; 5537 /* 5538 * N.B. We've already called nfs4_end_fop above. 5539 */ 5540 e.error = nfs4getattr(nvp, &vattr, cr); 5541 if (e.error) { 5542 sfh4_rele(&sfhp); 5543 VN_RELE(*vpp); 5544 *vpp = NULL; 5545 VN_RELE(nvp); 5546 goto exit; 5547 } 5548 nvp->v_type = vattr.va_type; 5549 } 5550 } 5551 sfh4_rele(&sfhp); 5552 5553 nrp = VTOR4(nvp); 5554 mutex_enter(&nrp->r_statev4_lock); 5555 if (!nrp->created_v4) { 5556 mutex_exit(&nrp->r_statev4_lock); 5557 dnlc_update(dvp, nm, nvp); 5558 } else 5559 mutex_exit(&nrp->r_statev4_lock); 5560 5561 VN_RELE(*vpp); 5562 *vpp = nvp; 5563 } else { 5564 hrtime_t now; 5565 hrtime_t delta = 0; 5566 5567 e.error = 0; 5568 5569 /* 5570 * Because the NVERIFY "succeeded" we know that the 5571 * directory attributes are still valid 5572 * so update r_time_attr_inval 5573 */ 5574 now = gethrtime(); 5575 mutex_enter(&drp->r_statelock); 5576 if (!(mi->mi_flags & MI4_NOAC) && !(dvp->v_flag & VNOCACHE)) { 5577 delta = now - drp->r_time_attr_saved; 5578 if (delta < mi->mi_acdirmin) 5579 delta = mi->mi_acdirmin; 5580 else if (delta > mi->mi_acdirmax) 5581 delta = mi->mi_acdirmax; 5582 } 5583 drp->r_time_attr_inval = now + delta; 5584 mutex_exit(&drp->r_statelock); 5585 dnlc_update(dvp, nm, *vpp); 5586 5587 /* 5588 * Even though we have a valid directory attr cache 5589 * and dnlc entry, we may not have access. 5590 * This should almost always hit the cache. 5591 */ 5592 e.error = nfs4_access(dvp, VEXEC, 0, cr, NULL); 5593 if (e.error) { 5594 VN_RELE(*vpp); 5595 *vpp = NULL; 5596 } 5597 5598 if (*vpp == DNLC_NO_VNODE) { 5599 VN_RELE(*vpp); 5600 *vpp = NULL; 5601 e.error = ENOENT; 5602 } 5603 } 5604 5605 exit: 5606 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 5607 kmem_free(argop, argoplist_size); 5608 (void) check_mnt_secinfo(mi->mi_curr_serv, nvp); 5609 return (e.error); 5610 } 5611 5612 /* 5613 * We need to go over the wire to lookup the name, but 5614 * while we are there verify the directory has not 5615 * changed but if it has, get new attributes and check access 5616 * 5617 * PUTFH dfh SAVEFH LOOKUP nm GETFH GETATTR RESTOREFH 5618 * NVERIFY GETATTR ACCESS 5619 * 5620 * With the results: 5621 * if the NVERIFY failed we must purge the caches, add new attributes, 5622 * and cache new access. 5623 * set a new r_time_attr_inval 5624 * add name to dnlc, possibly negative 5625 * if LOOKUP succeeded 5626 * cache new attributes 5627 */ 5628 static int 5629 nfs4lookupnew_otw(vnode_t *dvp, char *nm, vnode_t **vpp, cred_t *cr) 5630 { 5631 COMPOUND4args_clnt args; 5632 COMPOUND4res_clnt res; 5633 fattr4 *ver_fattr; 5634 fattr4_change dchange; 5635 int32_t *ptr; 5636 nfs4_ga_res_t *garp = NULL; 5637 int argoplist_size = 9 * sizeof (nfs_argop4); 5638 nfs_argop4 *argop; 5639 int doqueue; 5640 mntinfo4_t *mi; 5641 nfs4_recov_state_t recov_state; 5642 hrtime_t t; 5643 int isdotdot; 5644 vnode_t *nvp; 5645 nfs_fh4 *fhp; 5646 nfs4_sharedfh_t *sfhp; 5647 nfs4_access_type_t cacc; 5648 rnode4_t *nrp; 5649 rnode4_t *drp = VTOR4(dvp); 5650 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 5651 5652 ASSERT(nfs_zone() == VTOMI4(dvp)->mi_zone); 5653 ASSERT(nm != NULL); 5654 ASSERT(nm[0] != '\0'); 5655 ASSERT(dvp->v_type == VDIR); 5656 ASSERT(nm[0] != '.' || nm[1] != '\0'); 5657 ASSERT(*vpp == NULL); 5658 5659 if (nm[0] == '.' && nm[1] == '.' && nm[2] == '\0') { 5660 isdotdot = 1; 5661 args.ctag = TAG_LOOKUP_PARENT; 5662 } else { 5663 /* 5664 * If dvp were a stub, it should have triggered and caused 5665 * a mount for us to get this far. 5666 */ 5667 ASSERT(!RP_ISSTUB(VTOR4(dvp))); 5668 5669 isdotdot = 0; 5670 args.ctag = TAG_LOOKUP; 5671 } 5672 5673 mi = VTOMI4(dvp); 5674 recov_state.rs_flags = 0; 5675 recov_state.rs_num_retry_despite_err = 0; 5676 5677 nvp = NULL; 5678 5679 /* Save the original mount point security information */ 5680 (void) save_mnt_secinfo(mi->mi_curr_serv); 5681 5682 recov_retry: 5683 e.error = nfs4_start_fop(mi, dvp, NULL, OH_LOOKUP, 5684 &recov_state, NULL); 5685 if (e.error) { 5686 (void) check_mnt_secinfo(mi->mi_curr_serv, nvp); 5687 return (e.error); 5688 } 5689 5690 argop = kmem_alloc(argoplist_size, KM_SLEEP); 5691 5692 /* PUTFH SAVEFH LOOKUP GETFH GETATTR RESTOREFH NVERIFY GETATTR ACCESS */ 5693 args.array_len = 9; 5694 args.array = argop; 5695 5696 /* 0. putfh file */ 5697 argop[0].argop = OP_CPUTFH; 5698 argop[0].nfs_argop4_u.opcputfh.sfh = VTOR4(dvp)->r_fh; 5699 5700 /* 1. savefh for the nverify */ 5701 argop[1].argop = OP_SAVEFH; 5702 5703 /* 2. lookup name */ 5704 if (isdotdot) { 5705 argop[2].argop = OP_LOOKUPP; 5706 } else { 5707 argop[2].argop = OP_CLOOKUP; 5708 argop[2].nfs_argop4_u.opclookup.cname = nm; 5709 } 5710 5711 /* 3. resulting file handle */ 5712 argop[3].argop = OP_GETFH; 5713 5714 /* 4. resulting file attributes */ 5715 argop[4].argop = OP_GETATTR; 5716 argop[4].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 5717 argop[4].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp); 5718 5719 /* 5. restorefh back the directory for the nverify */ 5720 argop[5].argop = OP_RESTOREFH; 5721 5722 /* 6. nverify the change info */ 5723 argop[6].argop = OP_NVERIFY; 5724 ver_fattr = &argop[6].nfs_argop4_u.opnverify.obj_attributes; 5725 ver_fattr->attrmask = FATTR4_CHANGE_MASK; 5726 ver_fattr->attrlist4 = (char *)&dchange; 5727 ptr = (int32_t *)&dchange; 5728 IXDR_PUT_HYPER(ptr, VTOR4(dvp)->r_change); 5729 ver_fattr->attrlist4_len = sizeof (fattr4_change); 5730 5731 /* 7. getattr directory */ 5732 argop[7].argop = OP_GETATTR; 5733 argop[7].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 5734 argop[7].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp); 5735 5736 /* 8. access directory */ 5737 argop[8].argop = OP_ACCESS; 5738 argop[8].nfs_argop4_u.opaccess.access = ACCESS4_READ | ACCESS4_DELETE | 5739 ACCESS4_MODIFY | ACCESS4_EXTEND | ACCESS4_LOOKUP; 5740 5741 doqueue = 1; 5742 t = gethrtime(); 5743 5744 rfs4call(VTOMI4(dvp), &args, &res, cr, &doqueue, 0, &e); 5745 5746 if (nfs4_needs_recovery(&e, FALSE, dvp->v_vfsp)) { 5747 /* 5748 * For WRONGSEC of a non-dotdot case, send secinfo directly 5749 * from this thread, do not go thru the recovery thread since 5750 * we need the nm information. 5751 * 5752 * Not doing dotdot case because there is no specification 5753 * for (PUTFH, SECINFO "..") yet. 5754 */ 5755 if (!isdotdot && res.status == NFS4ERR_WRONGSEC) { 5756 if ((e.error = nfs4_secinfo_vnode_otw(dvp, nm, cr))) 5757 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP, 5758 &recov_state, FALSE); 5759 else 5760 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP, 5761 &recov_state, TRUE); 5762 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 5763 kmem_free(argop, argoplist_size); 5764 if (!e.error) 5765 goto recov_retry; 5766 (void) check_mnt_secinfo(mi->mi_curr_serv, nvp); 5767 return (e.error); 5768 } 5769 5770 if (nfs4_start_recovery(&e, mi, dvp, NULL, NULL, NULL, 5771 OP_LOOKUP, NULL) == FALSE) { 5772 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP, 5773 &recov_state, TRUE); 5774 5775 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 5776 kmem_free(argop, argoplist_size); 5777 goto recov_retry; 5778 } 5779 } 5780 5781 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP, &recov_state, FALSE); 5782 5783 if (e.error || res.array_len == 0) { 5784 /* 5785 * If e.error isn't set, then reply has no ops (or we couldn't 5786 * be here). The only legal way to reply without an op array 5787 * is via NFS4ERR_MINOR_VERS_MISMATCH. An ops array should 5788 * be in the reply for all other status values. 5789 * 5790 * For valid replies without an ops array, return ENOTSUP 5791 * (geterrno4 xlation of VERS_MISMATCH). For illegal replies, 5792 * return EIO -- don't trust status. 5793 */ 5794 if (e.error == 0) 5795 e.error = (res.status == NFS4ERR_MINOR_VERS_MISMATCH) ? 5796 ENOTSUP : EIO; 5797 5798 kmem_free(argop, argoplist_size); 5799 (void) check_mnt_secinfo(mi->mi_curr_serv, nvp); 5800 return (e.error); 5801 } 5802 5803 e.error = geterrno4(res.status); 5804 5805 /* 5806 * The PUTFH and SAVEFH may have failed. 5807 */ 5808 if ((res.array[0].nfs_resop4_u.opputfh.status != NFS4_OK) || 5809 (res.array[1].nfs_resop4_u.opsavefh.status != NFS4_OK)) { 5810 nfs4_purge_stale_fh(e.error, dvp, cr); 5811 goto exit; 5812 } 5813 5814 /* 5815 * Check if the file exists, if it does delay entering 5816 * into the dnlc until after we update the directory 5817 * attributes so we don't cause it to get purged immediately. 5818 */ 5819 if (res.array[2].nfs_resop4_u.oplookup.status != NFS4_OK) { 5820 /* 5821 * The lookup failed, probably no entry 5822 */ 5823 if (e.error == ENOENT && nfs4_lookup_neg_cache) 5824 dnlc_update(dvp, nm, DNLC_NO_VNODE); 5825 goto exit; 5826 } 5827 5828 if (res.array[3].nfs_resop4_u.opgetfh.status != NFS4_OK) { 5829 /* 5830 * The file exists but we can't get its fh for 5831 * some unknown reason. Error out to be safe. 5832 */ 5833 goto exit; 5834 } 5835 5836 fhp = &res.array[3].nfs_resop4_u.opgetfh.object; 5837 if (fhp->nfs_fh4_len == 0) { 5838 /* 5839 * The file exists but a bogus fh 5840 * some unknown reason. Error out to be safe. 5841 */ 5842 e.error = EIO; 5843 goto exit; 5844 } 5845 sfhp = sfh4_get(fhp, mi); 5846 5847 if (res.array[4].nfs_resop4_u.opgetattr.status != NFS4_OK) { 5848 sfh4_rele(&sfhp); 5849 goto exit; 5850 } 5851 garp = &res.array[4].nfs_resop4_u.opgetattr.ga_res; 5852 5853 /* 5854 * The RESTOREFH may have failed 5855 */ 5856 if (res.array[5].nfs_resop4_u.oprestorefh.status != NFS4_OK) { 5857 sfh4_rele(&sfhp); 5858 e.error = EIO; 5859 goto exit; 5860 } 5861 5862 if (res.array[6].nfs_resop4_u.opnverify.status != NFS4ERR_SAME) { 5863 /* 5864 * First make sure the NVERIFY failed as we expected, 5865 * if it didn't then be conservative and error out 5866 * as we can't trust the directory. 5867 */ 5868 if (res.array[6].nfs_resop4_u.opnverify.status != NFS4_OK) { 5869 sfh4_rele(&sfhp); 5870 e.error = EIO; 5871 goto exit; 5872 } 5873 5874 /* 5875 * We know the NVERIFY "failed" so the directory has changed, 5876 * so we must: 5877 * purge the caches (access and indirectly dnlc if needed) 5878 */ 5879 nfs4_purge_caches(dvp, NFS4_NOPURGE_DNLC, cr, TRUE); 5880 5881 if (res.array[7].nfs_resop4_u.opgetattr.status != NFS4_OK) { 5882 sfh4_rele(&sfhp); 5883 goto exit; 5884 } 5885 nfs4_attr_cache(dvp, 5886 &res.array[7].nfs_resop4_u.opgetattr.ga_res, 5887 t, cr, FALSE, NULL); 5888 5889 if (res.array[8].nfs_resop4_u.opaccess.status != NFS4_OK) { 5890 nfs4_purge_stale_fh(e.error, dvp, cr); 5891 sfh4_rele(&sfhp); 5892 e.error = geterrno4(res.status); 5893 goto exit; 5894 } 5895 5896 /* 5897 * Now we know the directory is valid, 5898 * cache new directory access 5899 */ 5900 nfs4_access_cache(drp, 5901 args.array[8].nfs_argop4_u.opaccess.access, 5902 res.array[8].nfs_resop4_u.opaccess.access, cr); 5903 5904 /* 5905 * recheck VEXEC access 5906 */ 5907 cacc = nfs4_access_check(drp, ACCESS4_LOOKUP, cr); 5908 if (cacc != NFS4_ACCESS_ALLOWED) { 5909 /* 5910 * Directory permissions might have been revoked 5911 */ 5912 if (cacc == NFS4_ACCESS_DENIED) { 5913 sfh4_rele(&sfhp); 5914 e.error = EACCES; 5915 goto exit; 5916 } 5917 5918 /* 5919 * Somehow we must not have asked for enough 5920 * so try a singleton ACCESS should never happen 5921 */ 5922 e.error = nfs4_access(dvp, VEXEC, 0, cr, NULL); 5923 if (e.error) { 5924 sfh4_rele(&sfhp); 5925 goto exit; 5926 } 5927 } 5928 5929 e.error = geterrno4(res.status); 5930 } else { 5931 hrtime_t now; 5932 hrtime_t delta = 0; 5933 5934 e.error = 0; 5935 5936 /* 5937 * Because the NVERIFY "succeeded" we know that the 5938 * directory attributes are still valid 5939 * so update r_time_attr_inval 5940 */ 5941 now = gethrtime(); 5942 mutex_enter(&drp->r_statelock); 5943 if (!(mi->mi_flags & MI4_NOAC) && !(dvp->v_flag & VNOCACHE)) { 5944 delta = now - drp->r_time_attr_saved; 5945 if (delta < mi->mi_acdirmin) 5946 delta = mi->mi_acdirmin; 5947 else if (delta > mi->mi_acdirmax) 5948 delta = mi->mi_acdirmax; 5949 } 5950 drp->r_time_attr_inval = now + delta; 5951 mutex_exit(&drp->r_statelock); 5952 5953 /* 5954 * Even though we have a valid directory attr cache, 5955 * we may not have access. 5956 * This should almost always hit the cache. 5957 */ 5958 e.error = nfs4_access(dvp, VEXEC, 0, cr, NULL); 5959 if (e.error) { 5960 sfh4_rele(&sfhp); 5961 goto exit; 5962 } 5963 } 5964 5965 /* 5966 * Now we have successfully completed the lookup, if the 5967 * directory has changed we now have the valid attributes. 5968 * We also know we have directory access. 5969 * Create the new rnode and insert it in the dnlc. 5970 */ 5971 if (isdotdot) { 5972 e.error = nfs4_make_dotdot(sfhp, t, dvp, cr, &nvp, 1); 5973 if (e.error) { 5974 sfh4_rele(&sfhp); 5975 goto exit; 5976 } 5977 /* 5978 * XXX if nfs4_make_dotdot uses an existing rnode 5979 * XXX it doesn't update the attributes. 5980 * XXX for now just save them again to save an OTW 5981 */ 5982 nfs4_attr_cache(nvp, garp, t, cr, FALSE, NULL); 5983 } else { 5984 nvp = makenfs4node(sfhp, garp, dvp->v_vfsp, t, cr, 5985 dvp, fn_get(VTOSV(dvp)->sv_name, nm, sfhp)); 5986 } 5987 sfh4_rele(&sfhp); 5988 5989 nrp = VTOR4(nvp); 5990 mutex_enter(&nrp->r_statev4_lock); 5991 if (!nrp->created_v4) { 5992 mutex_exit(&nrp->r_statev4_lock); 5993 dnlc_update(dvp, nm, nvp); 5994 } else 5995 mutex_exit(&nrp->r_statev4_lock); 5996 5997 *vpp = nvp; 5998 5999 exit: 6000 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 6001 kmem_free(argop, argoplist_size); 6002 (void) check_mnt_secinfo(mi->mi_curr_serv, nvp); 6003 return (e.error); 6004 } 6005 6006 #ifdef DEBUG 6007 void 6008 nfs4lookup_dump_compound(char *where, nfs_argop4 *argbase, int argcnt) 6009 { 6010 uint_t i, len; 6011 zoneid_t zoneid = getzoneid(); 6012 char *s; 6013 6014 zcmn_err(zoneid, CE_NOTE, "%s: dumping cmpd", where); 6015 for (i = 0; i < argcnt; i++) { 6016 nfs_argop4 *op = &argbase[i]; 6017 switch (op->argop) { 6018 case OP_CPUTFH: 6019 case OP_PUTFH: 6020 zcmn_err(zoneid, CE_NOTE, "\t op %d, putfh", i); 6021 break; 6022 case OP_PUTROOTFH: 6023 zcmn_err(zoneid, CE_NOTE, "\t op %d, putrootfh", i); 6024 break; 6025 case OP_CLOOKUP: 6026 s = op->nfs_argop4_u.opclookup.cname; 6027 zcmn_err(zoneid, CE_NOTE, "\t op %d, lookup %s", i, s); 6028 break; 6029 case OP_LOOKUP: 6030 s = utf8_to_str(&op->nfs_argop4_u.oplookup.objname, 6031 &len, NULL); 6032 zcmn_err(zoneid, CE_NOTE, "\t op %d, lookup %s", i, s); 6033 kmem_free(s, len); 6034 break; 6035 case OP_LOOKUPP: 6036 zcmn_err(zoneid, CE_NOTE, "\t op %d, lookupp ..", i); 6037 break; 6038 case OP_GETFH: 6039 zcmn_err(zoneid, CE_NOTE, "\t op %d, getfh", i); 6040 break; 6041 case OP_GETATTR: 6042 zcmn_err(zoneid, CE_NOTE, "\t op %d, getattr", i); 6043 break; 6044 case OP_OPENATTR: 6045 zcmn_err(zoneid, CE_NOTE, "\t op %d, openattr", i); 6046 break; 6047 default: 6048 zcmn_err(zoneid, CE_NOTE, "\t op %d, opcode %d", i, 6049 op->argop); 6050 break; 6051 } 6052 } 6053 } 6054 #endif 6055 6056 /* 6057 * nfs4lookup_setup - constructs a multi-lookup compound request. 6058 * 6059 * Given the path "nm1/nm2/.../nmn", the following compound requests 6060 * may be created: 6061 * 6062 * Note: Getfh is not be needed because filehandle attr is mandatory, but it 6063 * is faster, for now. 6064 * 6065 * l4_getattrs indicates the type of compound requested. 6066 * 6067 * LKP4_NO_ATTRIBUTE - no attributes (used by secinfo): 6068 * 6069 * compound { Put*fh; Lookup {nm1}; Lookup {nm2}; ... Lookup {nmn} } 6070 * 6071 * total number of ops is n + 1. 6072 * 6073 * LKP4_LAST_NAMED_ATTR - multi-component path for a named 6074 * attribute: create lookups plus one OPENATTR/GETFH/GETATTR 6075 * before the last component, and only get attributes 6076 * for the last component. Note that the second-to-last 6077 * pathname component is XATTR_RPATH, which does NOT go 6078 * over-the-wire as a lookup. 6079 * 6080 * compound { Put*fh; Lookup {nm1}; Lookup {nm2}; ... Lookup {nmn-2}; 6081 * Openattr; Getfh; Getattr; Lookup {nmn}; Getfh; Getattr } 6082 * 6083 * and total number of ops is n + 5. 6084 * 6085 * LKP4_LAST_ATTRDIR - multi-component path for the hidden named 6086 * attribute directory: create lookups plus an OPENATTR 6087 * replacing the last lookup. Note that the last pathname 6088 * component is XATTR_RPATH, which does NOT go over-the-wire 6089 * as a lookup. 6090 * 6091 * compound { Put*fh; Lookup {nm1}; Lookup {nm2}; ... Getfh; Getattr; 6092 * Openattr; Getfh; Getattr } 6093 * 6094 * and total number of ops is n + 5. 6095 * 6096 * LKP4_ALL_ATTRIBUTES - create lookups and get attributes for intermediate 6097 * nodes too. 6098 * 6099 * compound { Put*fh; Lookup {nm1}; Getfh; Getattr; 6100 * Lookup {nm2}; ... Lookup {nmn}; Getfh; Getattr } 6101 * 6102 * and total number of ops is 3*n + 1. 6103 * 6104 * All cases: returns the index in the arg array of the final LOOKUP op, or 6105 * -1 if no LOOKUPs were used. 6106 */ 6107 int 6108 nfs4lookup_setup(char *nm, lookup4_param_t *lookupargp, int needgetfh) 6109 { 6110 enum lkp4_attr_setup l4_getattrs = lookupargp->l4_getattrs; 6111 nfs_argop4 *argbase, *argop; 6112 int arglen, argcnt; 6113 int n = 1; /* number of components */ 6114 int nga = 1; /* number of Getattr's in request */ 6115 char c = '\0', *s, *p; 6116 int lookup_idx = -1; 6117 int argoplist_size; 6118 6119 /* set lookuparg response result to 0 */ 6120 lookupargp->resp->status = NFS4_OK; 6121 6122 /* skip leading "/" or "." e.g. ".//./" if there is */ 6123 for (; ; nm++) { 6124 if (*nm != '/' && *nm != '.') 6125 break; 6126 6127 /* ".." is counted as 1 component */ 6128 if (*nm == '.' && *(nm + 1) != '/') 6129 break; 6130 } 6131 6132 /* 6133 * Find n = number of components - nm must be null terminated 6134 * Skip "." components. 6135 */ 6136 if (*nm != '\0') 6137 for (n = 1, s = nm; *s != '\0'; s++) { 6138 if ((*s == '/') && (*(s + 1) != '/') && 6139 (*(s + 1) != '\0') && 6140 !(*(s + 1) == '.' && (*(s + 2) == '/' || 6141 *(s + 2) == '\0'))) 6142 n++; 6143 } 6144 else 6145 n = 0; 6146 6147 /* 6148 * nga is number of components that need Getfh+Getattr 6149 */ 6150 switch (l4_getattrs) { 6151 case LKP4_NO_ATTRIBUTES: 6152 nga = 0; 6153 break; 6154 case LKP4_ALL_ATTRIBUTES: 6155 nga = n; 6156 /* 6157 * Always have at least 1 getfh, getattr pair 6158 */ 6159 if (nga == 0) 6160 nga++; 6161 break; 6162 case LKP4_LAST_ATTRDIR: 6163 case LKP4_LAST_NAMED_ATTR: 6164 nga = n+1; 6165 break; 6166 } 6167 6168 /* 6169 * If change to use the filehandle attr instead of getfh 6170 * the following line can be deleted. 6171 */ 6172 nga *= 2; 6173 6174 /* 6175 * calculate number of ops in request as 6176 * header + trailer + lookups + getattrs 6177 */ 6178 arglen = lookupargp->header_len + lookupargp->trailer_len + n + nga; 6179 6180 argoplist_size = arglen * sizeof (nfs_argop4); 6181 argop = argbase = kmem_alloc(argoplist_size, KM_SLEEP); 6182 lookupargp->argsp->array = argop; 6183 6184 argcnt = lookupargp->header_len; 6185 argop += argcnt; 6186 6187 /* 6188 * loop and create a lookup op and possibly getattr/getfh for 6189 * each component. Skip "." components. 6190 */ 6191 for (s = nm; *s != '\0'; s = p) { 6192 /* 6193 * Set up a pathname struct for each component if needed 6194 */ 6195 while (*s == '/') 6196 s++; 6197 if (*s == '\0') 6198 break; 6199 6200 for (p = s; (*p != '/') && (*p != '\0'); p++) 6201 ; 6202 c = *p; 6203 *p = '\0'; 6204 6205 if (s[0] == '.' && s[1] == '\0') { 6206 *p = c; 6207 continue; 6208 } 6209 if (l4_getattrs == LKP4_LAST_ATTRDIR && 6210 strcmp(s, XATTR_RPATH) == 0) { 6211 /* getfh XXX may not be needed in future */ 6212 argop->argop = OP_GETFH; 6213 argop++; 6214 argcnt++; 6215 6216 /* getattr */ 6217 argop->argop = OP_GETATTR; 6218 argop->nfs_argop4_u.opgetattr.attr_request = 6219 lookupargp->ga_bits; 6220 argop->nfs_argop4_u.opgetattr.mi = 6221 lookupargp->mi; 6222 argop++; 6223 argcnt++; 6224 6225 /* openattr */ 6226 argop->argop = OP_OPENATTR; 6227 } else if (l4_getattrs == LKP4_LAST_NAMED_ATTR && 6228 strcmp(s, XATTR_RPATH) == 0) { 6229 /* openattr */ 6230 argop->argop = OP_OPENATTR; 6231 argop++; 6232 argcnt++; 6233 6234 /* getfh XXX may not be needed in future */ 6235 argop->argop = OP_GETFH; 6236 argop++; 6237 argcnt++; 6238 6239 /* getattr */ 6240 argop->argop = OP_GETATTR; 6241 argop->nfs_argop4_u.opgetattr.attr_request = 6242 lookupargp->ga_bits; 6243 argop->nfs_argop4_u.opgetattr.mi = 6244 lookupargp->mi; 6245 argop++; 6246 argcnt++; 6247 *p = c; 6248 continue; 6249 } else if (s[0] == '.' && s[1] == '.' && s[2] == '\0') { 6250 /* lookupp */ 6251 argop->argop = OP_LOOKUPP; 6252 } else { 6253 /* lookup */ 6254 argop->argop = OP_LOOKUP; 6255 (void) str_to_utf8(s, 6256 &argop->nfs_argop4_u.oplookup.objname); 6257 } 6258 lookup_idx = argcnt; 6259 argop++; 6260 argcnt++; 6261 6262 *p = c; 6263 6264 if (l4_getattrs == LKP4_ALL_ATTRIBUTES) { 6265 /* getfh XXX may not be needed in future */ 6266 argop->argop = OP_GETFH; 6267 argop++; 6268 argcnt++; 6269 6270 /* getattr */ 6271 argop->argop = OP_GETATTR; 6272 argop->nfs_argop4_u.opgetattr.attr_request = 6273 lookupargp->ga_bits; 6274 argop->nfs_argop4_u.opgetattr.mi = 6275 lookupargp->mi; 6276 argop++; 6277 argcnt++; 6278 } 6279 } 6280 6281 if ((l4_getattrs != LKP4_NO_ATTRIBUTES) && 6282 ((l4_getattrs != LKP4_ALL_ATTRIBUTES) || (lookup_idx < 0))) { 6283 if (needgetfh) { 6284 /* stick in a post-lookup getfh */ 6285 argop->argop = OP_GETFH; 6286 argcnt++; 6287 argop++; 6288 } 6289 /* post-lookup getattr */ 6290 argop->argop = OP_GETATTR; 6291 argop->nfs_argop4_u.opgetattr.attr_request = 6292 lookupargp->ga_bits; 6293 argop->nfs_argop4_u.opgetattr.mi = lookupargp->mi; 6294 argcnt++; 6295 } 6296 argcnt += lookupargp->trailer_len; /* actual op count */ 6297 lookupargp->argsp->array_len = argcnt; 6298 lookupargp->arglen = arglen; 6299 6300 #ifdef DEBUG 6301 if (nfs4_client_lookup_debug) 6302 nfs4lookup_dump_compound("nfs4lookup_setup", argbase, argcnt); 6303 #endif 6304 6305 return (lookup_idx); 6306 } 6307 6308 static int 6309 nfs4openattr(vnode_t *dvp, vnode_t **avp, int cflag, cred_t *cr) 6310 { 6311 COMPOUND4args_clnt args; 6312 COMPOUND4res_clnt res; 6313 GETFH4res *gf_res = NULL; 6314 nfs_argop4 argop[4]; 6315 nfs_resop4 *resop = NULL; 6316 nfs4_sharedfh_t *sfhp; 6317 hrtime_t t; 6318 nfs4_error_t e; 6319 6320 rnode4_t *drp; 6321 int doqueue = 1; 6322 vnode_t *vp; 6323 int needrecov = 0; 6324 nfs4_recov_state_t recov_state; 6325 6326 ASSERT(nfs_zone() == VTOMI4(dvp)->mi_zone); 6327 6328 *avp = NULL; 6329 recov_state.rs_flags = 0; 6330 recov_state.rs_num_retry_despite_err = 0; 6331 6332 recov_retry: 6333 /* COMPOUND: putfh, openattr, getfh, getattr */ 6334 args.array_len = 4; 6335 args.array = argop; 6336 args.ctag = TAG_OPENATTR; 6337 6338 e.error = nfs4_start_op(VTOMI4(dvp), dvp, NULL, &recov_state); 6339 if (e.error) 6340 return (e.error); 6341 6342 drp = VTOR4(dvp); 6343 6344 /* putfh */ 6345 argop[0].argop = OP_CPUTFH; 6346 argop[0].nfs_argop4_u.opcputfh.sfh = drp->r_fh; 6347 6348 /* openattr */ 6349 argop[1].argop = OP_OPENATTR; 6350 argop[1].nfs_argop4_u.opopenattr.createdir = (cflag ? TRUE : FALSE); 6351 6352 /* getfh */ 6353 argop[2].argop = OP_GETFH; 6354 6355 /* getattr */ 6356 argop[3].argop = OP_GETATTR; 6357 argop[3].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 6358 argop[3].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp); 6359 6360 NFS4_DEBUG(nfs4_client_call_debug, (CE_NOTE, 6361 "nfs4openattr: %s call, drp %s", needrecov ? "recov" : "first", 6362 rnode4info(drp))); 6363 6364 t = gethrtime(); 6365 6366 rfs4call(VTOMI4(dvp), &args, &res, cr, &doqueue, 0, &e); 6367 6368 needrecov = nfs4_needs_recovery(&e, FALSE, dvp->v_vfsp); 6369 if (needrecov) { 6370 bool_t abort; 6371 6372 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 6373 "nfs4openattr: initiating recovery\n")); 6374 6375 abort = nfs4_start_recovery(&e, 6376 VTOMI4(dvp), dvp, NULL, NULL, NULL, 6377 OP_OPENATTR, NULL); 6378 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, needrecov); 6379 if (!e.error) { 6380 e.error = geterrno4(res.status); 6381 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 6382 } 6383 if (abort == FALSE) 6384 goto recov_retry; 6385 return (e.error); 6386 } 6387 6388 if (e.error) { 6389 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, needrecov); 6390 return (e.error); 6391 } 6392 6393 if (res.status) { 6394 /* 6395 * If OTW errro is NOTSUPP, then it should be 6396 * translated to EINVAL. All Solaris file system 6397 * implementations return EINVAL to the syscall layer 6398 * when the attrdir cannot be created due to an 6399 * implementation restriction or noxattr mount option. 6400 */ 6401 if (res.status == NFS4ERR_NOTSUPP) { 6402 mutex_enter(&drp->r_statelock); 6403 if (drp->r_xattr_dir) 6404 VN_RELE(drp->r_xattr_dir); 6405 VN_HOLD(NFS4_XATTR_DIR_NOTSUPP); 6406 drp->r_xattr_dir = NFS4_XATTR_DIR_NOTSUPP; 6407 mutex_exit(&drp->r_statelock); 6408 6409 e.error = EINVAL; 6410 } else { 6411 e.error = geterrno4(res.status); 6412 } 6413 6414 if (e.error) { 6415 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 6416 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, 6417 needrecov); 6418 return (e.error); 6419 } 6420 } 6421 6422 resop = &res.array[0]; /* putfh res */ 6423 ASSERT(resop->nfs_resop4_u.opgetfh.status == NFS4_OK); 6424 6425 resop = &res.array[1]; /* openattr res */ 6426 ASSERT(resop->nfs_resop4_u.opopenattr.status == NFS4_OK); 6427 6428 resop = &res.array[2]; /* getfh res */ 6429 gf_res = &resop->nfs_resop4_u.opgetfh; 6430 if (gf_res->object.nfs_fh4_len == 0) { 6431 *avp = NULL; 6432 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 6433 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, needrecov); 6434 return (ENOENT); 6435 } 6436 6437 sfhp = sfh4_get(&gf_res->object, VTOMI4(dvp)); 6438 vp = makenfs4node(sfhp, &res.array[3].nfs_resop4_u.opgetattr.ga_res, 6439 dvp->v_vfsp, t, cr, dvp, 6440 fn_get(VTOSV(dvp)->sv_name, XATTR_RPATH, sfhp)); 6441 sfh4_rele(&sfhp); 6442 6443 if (e.error) 6444 PURGE_ATTRCACHE4(vp); 6445 6446 mutex_enter(&vp->v_lock); 6447 vp->v_flag |= V_XATTRDIR; 6448 mutex_exit(&vp->v_lock); 6449 6450 *avp = vp; 6451 6452 mutex_enter(&drp->r_statelock); 6453 if (drp->r_xattr_dir) 6454 VN_RELE(drp->r_xattr_dir); 6455 VN_HOLD(vp); 6456 drp->r_xattr_dir = vp; 6457 6458 /* 6459 * Invalidate pathconf4 cache because r_xattr_dir is no longer 6460 * NULL. xattrs could be created at any time, and we have no 6461 * way to update pc4_xattr_exists in the base object if/when 6462 * it happens. 6463 */ 6464 drp->r_pathconf.pc4_xattr_valid = 0; 6465 6466 mutex_exit(&drp->r_statelock); 6467 6468 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, needrecov); 6469 6470 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 6471 6472 return (0); 6473 } 6474 6475 /* ARGSUSED */ 6476 static int 6477 nfs4_create(vnode_t *dvp, char *nm, struct vattr *va, enum vcexcl exclusive, 6478 int mode, vnode_t **vpp, cred_t *cr, int flags, caller_context_t *ct, 6479 vsecattr_t *vsecp) 6480 { 6481 int error; 6482 vnode_t *vp = NULL; 6483 rnode4_t *rp; 6484 struct vattr vattr; 6485 rnode4_t *drp; 6486 vnode_t *tempvp; 6487 enum createmode4 createmode; 6488 bool_t must_trunc = FALSE; 6489 int truncating = 0; 6490 6491 if (nfs_zone() != VTOMI4(dvp)->mi_zone) 6492 return (EPERM); 6493 if (exclusive == EXCL && (dvp->v_flag & V_XATTRDIR)) { 6494 return (EINVAL); 6495 } 6496 6497 /* . and .. have special meaning in the protocol, reject them. */ 6498 6499 if (nm[0] == '.' && (nm[1] == '\0' || (nm[1] == '.' && nm[2] == '\0'))) 6500 return (EISDIR); 6501 6502 drp = VTOR4(dvp); 6503 6504 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR4(dvp))) 6505 return (EINTR); 6506 6507 top: 6508 /* 6509 * We make a copy of the attributes because the caller does not 6510 * expect us to change what va points to. 6511 */ 6512 vattr = *va; 6513 6514 /* 6515 * If the pathname is "", then dvp is the root vnode of 6516 * a remote file mounted over a local directory. 6517 * All that needs to be done is access 6518 * checking and truncation. Note that we avoid doing 6519 * open w/ create because the parent directory might 6520 * be in pseudo-fs and the open would fail. 6521 */ 6522 if (*nm == '\0') { 6523 error = 0; 6524 VN_HOLD(dvp); 6525 vp = dvp; 6526 must_trunc = TRUE; 6527 } else { 6528 /* 6529 * We need to go over the wire, just to be sure whether the 6530 * file exists or not. Using the DNLC can be dangerous in 6531 * this case when making a decision regarding existence. 6532 */ 6533 error = nfs4lookup(dvp, nm, &vp, cr, 1); 6534 } 6535 6536 if (exclusive) 6537 createmode = EXCLUSIVE4; 6538 else 6539 createmode = GUARDED4; 6540 6541 /* 6542 * error would be set if the file does not exist on the 6543 * server, so lets go create it. 6544 */ 6545 if (error) { 6546 goto create_otw; 6547 } 6548 6549 /* 6550 * File does exist on the server 6551 */ 6552 if (exclusive == EXCL) 6553 error = EEXIST; 6554 else if (vp->v_type == VDIR && (mode & VWRITE)) 6555 error = EISDIR; 6556 else { 6557 /* 6558 * If vnode is a device, create special vnode. 6559 */ 6560 if (ISVDEV(vp->v_type)) { 6561 tempvp = vp; 6562 vp = specvp(vp, vp->v_rdev, vp->v_type, cr); 6563 VN_RELE(tempvp); 6564 } 6565 if (!(error = VOP_ACCESS(vp, mode, 0, cr, ct))) { 6566 if ((vattr.va_mask & AT_SIZE) && 6567 vp->v_type == VREG) { 6568 rp = VTOR4(vp); 6569 /* 6570 * Check here for large file handled 6571 * by LF-unaware process (as 6572 * ufs_create() does) 6573 */ 6574 if (!(flags & FOFFMAX)) { 6575 mutex_enter(&rp->r_statelock); 6576 if (rp->r_size > MAXOFF32_T) 6577 error = EOVERFLOW; 6578 mutex_exit(&rp->r_statelock); 6579 } 6580 6581 /* if error is set then we need to return */ 6582 if (error) { 6583 nfs_rw_exit(&drp->r_rwlock); 6584 VN_RELE(vp); 6585 return (error); 6586 } 6587 6588 if (must_trunc) { 6589 vattr.va_mask = AT_SIZE; 6590 error = nfs4setattr(vp, &vattr, 0, cr, 6591 NULL); 6592 } else { 6593 /* 6594 * we know we have a regular file that already 6595 * exists and we may end up truncating the file 6596 * as a result of the open_otw, so flush out 6597 * any dirty pages for this file first. 6598 */ 6599 if (nfs4_has_pages(vp) && 6600 ((rp->r_flags & R4DIRTY) || 6601 rp->r_count > 0 || 6602 rp->r_mapcnt > 0)) { 6603 error = nfs4_putpage(vp, 6604 (offset_t)0, 0, 0, cr, ct); 6605 if (error && (error == ENOSPC || 6606 error == EDQUOT)) { 6607 mutex_enter( 6608 &rp->r_statelock); 6609 if (!rp->r_error) 6610 rp->r_error = 6611 error; 6612 mutex_exit( 6613 &rp->r_statelock); 6614 } 6615 } 6616 vattr.va_mask = (AT_SIZE | 6617 AT_TYPE | AT_MODE); 6618 vattr.va_type = VREG; 6619 createmode = UNCHECKED4; 6620 truncating = 1; 6621 goto create_otw; 6622 } 6623 } 6624 } 6625 } 6626 nfs_rw_exit(&drp->r_rwlock); 6627 if (error) { 6628 VN_RELE(vp); 6629 } else { 6630 vnode_t *tvp; 6631 rnode4_t *trp; 6632 /* 6633 * existing file got truncated, notify. 6634 */ 6635 tvp = vp; 6636 if (vp->v_type == VREG) { 6637 trp = VTOR4(vp); 6638 if (IS_SHADOW(vp, trp)) 6639 tvp = RTOV4(trp); 6640 } 6641 vnevent_create(tvp, ct); 6642 *vpp = vp; 6643 } 6644 return (error); 6645 6646 create_otw: 6647 dnlc_remove(dvp, nm); 6648 6649 ASSERT(vattr.va_mask & AT_TYPE); 6650 6651 /* 6652 * If not a regular file let nfs4mknod() handle it. 6653 */ 6654 if (vattr.va_type != VREG) { 6655 error = nfs4mknod(dvp, nm, &vattr, exclusive, mode, vpp, cr); 6656 nfs_rw_exit(&drp->r_rwlock); 6657 return (error); 6658 } 6659 6660 /* 6661 * It _is_ a regular file. 6662 */ 6663 ASSERT(vattr.va_mask & AT_MODE); 6664 if (MANDMODE(vattr.va_mode)) { 6665 nfs_rw_exit(&drp->r_rwlock); 6666 return (EACCES); 6667 } 6668 6669 /* 6670 * If this happens to be a mknod of a regular file, then flags will 6671 * have neither FREAD or FWRITE. However, we must set at least one 6672 * for the call to nfs4open_otw. If it's open(O_CREAT) driving 6673 * nfs4_create, then either FREAD, FWRITE, or FRDWR has already been 6674 * set (based on openmode specified by app). 6675 */ 6676 if ((flags & (FREAD|FWRITE)) == 0) 6677 flags |= (FREAD|FWRITE); 6678 6679 error = nfs4open_otw(dvp, nm, &vattr, vpp, cr, 1, flags, createmode, 0); 6680 6681 if (vp != NULL) { 6682 /* if create was successful, throw away the file's pages */ 6683 if (!error && (vattr.va_mask & AT_SIZE)) 6684 nfs4_invalidate_pages(vp, (vattr.va_size & PAGEMASK), 6685 cr); 6686 /* release the lookup hold */ 6687 VN_RELE(vp); 6688 vp = NULL; 6689 } 6690 6691 /* 6692 * validate that we opened a regular file. This handles a misbehaving 6693 * server that returns an incorrect FH. 6694 */ 6695 if ((error == 0) && *vpp && (*vpp)->v_type != VREG) { 6696 error = EISDIR; 6697 VN_RELE(*vpp); 6698 } 6699 6700 /* 6701 * If this is not an exclusive create, then the CREATE 6702 * request will be made with the GUARDED mode set. This 6703 * means that the server will return EEXIST if the file 6704 * exists. The file could exist because of a retransmitted 6705 * request. In this case, we recover by starting over and 6706 * checking to see whether the file exists. This second 6707 * time through it should and a CREATE request will not be 6708 * sent. 6709 * 6710 * This handles the problem of a dangling CREATE request 6711 * which contains attributes which indicate that the file 6712 * should be truncated. This retransmitted request could 6713 * possibly truncate valid data in the file if not caught 6714 * by the duplicate request mechanism on the server or if 6715 * not caught by other means. The scenario is: 6716 * 6717 * Client transmits CREATE request with size = 0 6718 * Client times out, retransmits request. 6719 * Response to the first request arrives from the server 6720 * and the client proceeds on. 6721 * Client writes data to the file. 6722 * The server now processes retransmitted CREATE request 6723 * and truncates file. 6724 * 6725 * The use of the GUARDED CREATE request prevents this from 6726 * happening because the retransmitted CREATE would fail 6727 * with EEXIST and would not truncate the file. 6728 */ 6729 if (error == EEXIST && exclusive == NONEXCL) { 6730 #ifdef DEBUG 6731 nfs4_create_misses++; 6732 #endif 6733 goto top; 6734 } 6735 nfs_rw_exit(&drp->r_rwlock); 6736 if (truncating && !error && *vpp) { 6737 vnode_t *tvp; 6738 rnode4_t *trp; 6739 /* 6740 * existing file got truncated, notify. 6741 */ 6742 tvp = *vpp; 6743 trp = VTOR4(tvp); 6744 if (IS_SHADOW(tvp, trp)) 6745 tvp = RTOV4(trp); 6746 vnevent_create(tvp, ct); 6747 } 6748 return (error); 6749 } 6750 6751 /* 6752 * Create compound (for mkdir, mknod, symlink): 6753 * { Putfh <dfh>; Create; Getfh; Getattr } 6754 * It's okay if setattr failed to set gid - this is not considered 6755 * an error, but purge attrs in that case. 6756 */ 6757 static int 6758 call_nfs4_create_req(vnode_t *dvp, char *nm, void *data, struct vattr *va, 6759 vnode_t **vpp, cred_t *cr, nfs_ftype4 type) 6760 { 6761 int need_end_op = FALSE; 6762 COMPOUND4args_clnt args; 6763 COMPOUND4res_clnt res, *resp = NULL; 6764 nfs_argop4 *argop; 6765 nfs_resop4 *resop; 6766 int doqueue; 6767 mntinfo4_t *mi; 6768 rnode4_t *drp = VTOR4(dvp); 6769 change_info4 *cinfo; 6770 GETFH4res *gf_res; 6771 struct vattr vattr; 6772 vnode_t *vp; 6773 fattr4 *crattr; 6774 bool_t needrecov = FALSE; 6775 nfs4_recov_state_t recov_state; 6776 nfs4_sharedfh_t *sfhp = NULL; 6777 hrtime_t t; 6778 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 6779 int numops, argoplist_size, setgid_flag, idx_create, idx_fattr; 6780 dirattr_info_t dinfo, *dinfop; 6781 servinfo4_t *svp; 6782 bitmap4 supp_attrs; 6783 6784 ASSERT(type == NF4DIR || type == NF4LNK || type == NF4BLK || 6785 type == NF4CHR || type == NF4SOCK || type == NF4FIFO); 6786 6787 mi = VTOMI4(dvp); 6788 6789 /* 6790 * Make sure we properly deal with setting the right gid 6791 * on a new directory to reflect the parent's setgid bit 6792 */ 6793 setgid_flag = 0; 6794 if (type == NF4DIR) { 6795 struct vattr dva; 6796 6797 va->va_mode &= ~VSGID; 6798 dva.va_mask = AT_MODE | AT_GID; 6799 if (VOP_GETATTR(dvp, &dva, 0, cr, NULL) == 0) { 6800 6801 /* 6802 * If the parent's directory has the setgid bit set 6803 * _and_ the client was able to get a valid mapping 6804 * for the parent dir's owner_group, we want to 6805 * append NVERIFY(owner_group == dva.va_gid) and 6806 * SETTATTR to the CREATE compound. 6807 */ 6808 if (mi->mi_flags & MI4_GRPID || dva.va_mode & VSGID) { 6809 setgid_flag = 1; 6810 va->va_mode |= VSGID; 6811 if (dva.va_gid != GID_NOBODY) { 6812 va->va_mask |= AT_GID; 6813 va->va_gid = dva.va_gid; 6814 } 6815 } 6816 } 6817 } 6818 6819 /* 6820 * Create ops: 6821 * 0:putfh(dir) 1:savefh(dir) 2:create 3:getfh(new) 4:getattr(new) 6822 * 5:restorefh(dir) 6:getattr(dir) 6823 * 6824 * if (setgid) 6825 * 0:putfh(dir) 1:create 2:getfh(new) 3:getattr(new) 6826 * 4:savefh(new) 5:putfh(dir) 6:getattr(dir) 7:restorefh(new) 6827 * 8:nverify 9:setattr 6828 */ 6829 if (setgid_flag) { 6830 numops = 10; 6831 idx_create = 1; 6832 idx_fattr = 3; 6833 } else { 6834 numops = 7; 6835 idx_create = 2; 6836 idx_fattr = 4; 6837 } 6838 6839 ASSERT(nfs_zone() == mi->mi_zone); 6840 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR4(dvp))) { 6841 return (EINTR); 6842 } 6843 recov_state.rs_flags = 0; 6844 recov_state.rs_num_retry_despite_err = 0; 6845 6846 argoplist_size = numops * sizeof (nfs_argop4); 6847 argop = kmem_alloc(argoplist_size, KM_SLEEP); 6848 6849 recov_retry: 6850 if (type == NF4LNK) 6851 args.ctag = TAG_SYMLINK; 6852 else if (type == NF4DIR) 6853 args.ctag = TAG_MKDIR; 6854 else 6855 args.ctag = TAG_MKNOD; 6856 6857 args.array_len = numops; 6858 args.array = argop; 6859 6860 if (e.error = nfs4_start_op(mi, dvp, NULL, &recov_state)) { 6861 nfs_rw_exit(&drp->r_rwlock); 6862 kmem_free(argop, argoplist_size); 6863 return (e.error); 6864 } 6865 need_end_op = TRUE; 6866 6867 6868 /* 0: putfh directory */ 6869 argop[0].argop = OP_CPUTFH; 6870 argop[0].nfs_argop4_u.opcputfh.sfh = drp->r_fh; 6871 6872 /* 1/2: Create object */ 6873 argop[idx_create].argop = OP_CCREATE; 6874 argop[idx_create].nfs_argop4_u.opccreate.cname = nm; 6875 argop[idx_create].nfs_argop4_u.opccreate.type = type; 6876 if (type == NF4LNK) { 6877 /* 6878 * symlink, treat name as data 6879 */ 6880 ASSERT(data != NULL); 6881 argop[idx_create].nfs_argop4_u.opccreate.ftype4_u.clinkdata = 6882 (char *)data; 6883 } 6884 if (type == NF4BLK || type == NF4CHR) { 6885 ASSERT(data != NULL); 6886 argop[idx_create].nfs_argop4_u.opccreate.ftype4_u.devdata = 6887 *((specdata4 *)data); 6888 } 6889 6890 crattr = &argop[idx_create].nfs_argop4_u.opccreate.createattrs; 6891 6892 svp = drp->r_server; 6893 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0); 6894 supp_attrs = svp->sv_supp_attrs; 6895 nfs_rw_exit(&svp->sv_lock); 6896 6897 if (vattr_to_fattr4(va, NULL, crattr, 0, OP_CREATE, supp_attrs)) { 6898 nfs_rw_exit(&drp->r_rwlock); 6899 nfs4_end_op(mi, dvp, NULL, &recov_state, needrecov); 6900 e.error = EINVAL; 6901 kmem_free(argop, argoplist_size); 6902 return (e.error); 6903 } 6904 6905 /* 2/3: getfh fh of created object */ 6906 ASSERT(idx_create + 1 == idx_fattr - 1); 6907 argop[idx_create + 1].argop = OP_GETFH; 6908 6909 /* 3/4: getattr of new object */ 6910 argop[idx_fattr].argop = OP_GETATTR; 6911 argop[idx_fattr].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 6912 argop[idx_fattr].nfs_argop4_u.opgetattr.mi = mi; 6913 6914 if (setgid_flag) { 6915 vattr_t _v; 6916 6917 argop[4].argop = OP_SAVEFH; 6918 6919 argop[5].argop = OP_CPUTFH; 6920 argop[5].nfs_argop4_u.opcputfh.sfh = drp->r_fh; 6921 6922 argop[6].argop = OP_GETATTR; 6923 argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 6924 argop[6].nfs_argop4_u.opgetattr.mi = mi; 6925 6926 argop[7].argop = OP_RESTOREFH; 6927 6928 /* 6929 * nverify 6930 * 6931 * XXX - Revisit the last argument to nfs4_end_op() 6932 * once 5020486 is fixed. 6933 */ 6934 _v.va_mask = AT_GID; 6935 _v.va_gid = va->va_gid; 6936 if (e.error = nfs4args_verify(&argop[8], &_v, OP_NVERIFY, 6937 supp_attrs)) { 6938 nfs4_end_op(mi, dvp, *vpp, &recov_state, TRUE); 6939 nfs_rw_exit(&drp->r_rwlock); 6940 nfs4_fattr4_free(crattr); 6941 kmem_free(argop, argoplist_size); 6942 return (e.error); 6943 } 6944 6945 /* 6946 * setattr 6947 * 6948 * We _know_ we're not messing with AT_SIZE or AT_XTIME, 6949 * so no need for stateid or flags. Also we specify NULL 6950 * rp since we're only interested in setting owner_group 6951 * attributes. 6952 */ 6953 nfs4args_setattr(&argop[9], &_v, NULL, 0, NULL, cr, supp_attrs, 6954 &e.error, 0); 6955 6956 if (e.error) { 6957 nfs4_end_op(mi, dvp, *vpp, &recov_state, TRUE); 6958 nfs_rw_exit(&drp->r_rwlock); 6959 nfs4_fattr4_free(crattr); 6960 nfs4args_verify_free(&argop[8]); 6961 kmem_free(argop, argoplist_size); 6962 return (e.error); 6963 } 6964 } else { 6965 argop[1].argop = OP_SAVEFH; 6966 6967 argop[5].argop = OP_RESTOREFH; 6968 6969 argop[6].argop = OP_GETATTR; 6970 argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 6971 argop[6].nfs_argop4_u.opgetattr.mi = mi; 6972 } 6973 6974 dnlc_remove(dvp, nm); 6975 6976 doqueue = 1; 6977 t = gethrtime(); 6978 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e); 6979 6980 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp); 6981 if (e.error) { 6982 PURGE_ATTRCACHE4(dvp); 6983 if (!needrecov) 6984 goto out; 6985 } 6986 6987 if (needrecov) { 6988 if (nfs4_start_recovery(&e, mi, dvp, NULL, NULL, NULL, 6989 OP_CREATE, NULL) == FALSE) { 6990 nfs4_end_op(mi, dvp, NULL, &recov_state, 6991 needrecov); 6992 need_end_op = FALSE; 6993 nfs4_fattr4_free(crattr); 6994 if (setgid_flag) { 6995 nfs4args_verify_free(&argop[8]); 6996 nfs4args_setattr_free(&argop[9]); 6997 } 6998 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 6999 goto recov_retry; 7000 } 7001 } 7002 7003 resp = &res; 7004 7005 if (res.status != NFS4_OK && res.array_len <= idx_fattr + 1) { 7006 7007 if (res.status == NFS4ERR_BADOWNER) 7008 nfs4_log_badowner(mi, OP_CREATE); 7009 7010 e.error = geterrno4(res.status); 7011 7012 /* 7013 * This check is left over from when create was implemented 7014 * using a setattr op (instead of createattrs). If the 7015 * putfh/create/getfh failed, the error was returned. If 7016 * setattr/getattr failed, we keep going. 7017 * 7018 * It might be better to get rid of the GETFH also, and just 7019 * do PUTFH/CREATE/GETATTR since the FH attr is mandatory. 7020 * Then if any of the operations failed, we could return the 7021 * error now, and remove much of the error code below. 7022 */ 7023 if (res.array_len <= idx_fattr) { 7024 /* 7025 * Either Putfh, Create or Getfh failed. 7026 */ 7027 PURGE_ATTRCACHE4(dvp); 7028 /* 7029 * nfs4_purge_stale_fh() may generate otw calls through 7030 * nfs4_invalidate_pages. Hence the need to call 7031 * nfs4_end_op() here to avoid nfs4_start_op() deadlock. 7032 */ 7033 nfs4_end_op(mi, dvp, NULL, &recov_state, 7034 needrecov); 7035 need_end_op = FALSE; 7036 nfs4_purge_stale_fh(e.error, dvp, cr); 7037 goto out; 7038 } 7039 } 7040 7041 resop = &res.array[idx_create]; /* create res */ 7042 cinfo = &resop->nfs_resop4_u.opcreate.cinfo; 7043 7044 resop = &res.array[idx_create + 1]; /* getfh res */ 7045 gf_res = &resop->nfs_resop4_u.opgetfh; 7046 7047 sfhp = sfh4_get(&gf_res->object, mi); 7048 if (e.error) { 7049 *vpp = vp = makenfs4node(sfhp, NULL, dvp->v_vfsp, t, cr, dvp, 7050 fn_get(VTOSV(dvp)->sv_name, nm, sfhp)); 7051 if (vp->v_type == VNON) { 7052 vattr.va_mask = AT_TYPE; 7053 /* 7054 * Need to call nfs4_end_op before nfs4getattr to avoid 7055 * potential nfs4_start_op deadlock. See RFE 4777612. 7056 */ 7057 nfs4_end_op(mi, dvp, NULL, &recov_state, 7058 needrecov); 7059 need_end_op = FALSE; 7060 e.error = nfs4getattr(vp, &vattr, cr); 7061 if (e.error) { 7062 VN_RELE(vp); 7063 *vpp = NULL; 7064 goto out; 7065 } 7066 vp->v_type = vattr.va_type; 7067 } 7068 e.error = 0; 7069 } else { 7070 *vpp = vp = makenfs4node(sfhp, 7071 &res.array[idx_fattr].nfs_resop4_u.opgetattr.ga_res, 7072 dvp->v_vfsp, t, cr, 7073 dvp, fn_get(VTOSV(dvp)->sv_name, nm, sfhp)); 7074 } 7075 7076 /* 7077 * If compound succeeded, then update dir attrs 7078 */ 7079 if (res.status == NFS4_OK) { 7080 dinfo.di_garp = &res.array[6].nfs_resop4_u.opgetattr.ga_res; 7081 dinfo.di_cred = cr; 7082 dinfo.di_time_call = t; 7083 dinfop = &dinfo; 7084 } else 7085 dinfop = NULL; 7086 7087 /* Update directory cache attribute, readdir and dnlc caches */ 7088 nfs4_update_dircaches(cinfo, dvp, vp, nm, dinfop); 7089 7090 out: 7091 if (sfhp != NULL) 7092 sfh4_rele(&sfhp); 7093 nfs_rw_exit(&drp->r_rwlock); 7094 nfs4_fattr4_free(crattr); 7095 if (setgid_flag) { 7096 nfs4args_verify_free(&argop[8]); 7097 nfs4args_setattr_free(&argop[9]); 7098 } 7099 if (resp) 7100 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp); 7101 if (need_end_op) 7102 nfs4_end_op(mi, dvp, NULL, &recov_state, needrecov); 7103 7104 kmem_free(argop, argoplist_size); 7105 return (e.error); 7106 } 7107 7108 /* ARGSUSED */ 7109 static int 7110 nfs4mknod(vnode_t *dvp, char *nm, struct vattr *va, enum vcexcl exclusive, 7111 int mode, vnode_t **vpp, cred_t *cr) 7112 { 7113 int error; 7114 vnode_t *vp; 7115 nfs_ftype4 type; 7116 specdata4 spec, *specp = NULL; 7117 7118 ASSERT(nfs_zone() == VTOMI4(dvp)->mi_zone); 7119 7120 switch (va->va_type) { 7121 case VCHR: 7122 case VBLK: 7123 type = (va->va_type == VCHR) ? NF4CHR : NF4BLK; 7124 spec.specdata1 = getmajor(va->va_rdev); 7125 spec.specdata2 = getminor(va->va_rdev); 7126 specp = &spec; 7127 break; 7128 7129 case VFIFO: 7130 type = NF4FIFO; 7131 break; 7132 case VSOCK: 7133 type = NF4SOCK; 7134 break; 7135 7136 default: 7137 return (EINVAL); 7138 } 7139 7140 error = call_nfs4_create_req(dvp, nm, specp, va, &vp, cr, type); 7141 if (error) { 7142 return (error); 7143 } 7144 7145 /* 7146 * This might not be needed any more; special case to deal 7147 * with problematic v2/v3 servers. Since create was unable 7148 * to set group correctly, not sure what hope setattr has. 7149 */ 7150 if (va->va_gid != VTOR4(vp)->r_attr.va_gid) { 7151 va->va_mask = AT_GID; 7152 (void) nfs4setattr(vp, va, 0, cr, NULL); 7153 } 7154 7155 /* 7156 * If vnode is a device create special vnode 7157 */ 7158 if (ISVDEV(vp->v_type)) { 7159 *vpp = specvp(vp, vp->v_rdev, vp->v_type, cr); 7160 VN_RELE(vp); 7161 } else { 7162 *vpp = vp; 7163 } 7164 return (error); 7165 } 7166 7167 /* 7168 * Remove requires that the current fh be the target directory. 7169 * After the operation, the current fh is unchanged. 7170 * The compound op structure is: 7171 * PUTFH(targetdir), REMOVE 7172 * 7173 * Weirdness: if the vnode to be removed is open 7174 * we rename it instead of removing it and nfs_inactive 7175 * will remove the new name. 7176 */ 7177 /* ARGSUSED */ 7178 static int 7179 nfs4_remove(vnode_t *dvp, char *nm, cred_t *cr, caller_context_t *ct, int flags) 7180 { 7181 COMPOUND4args_clnt args; 7182 COMPOUND4res_clnt res, *resp = NULL; 7183 REMOVE4res *rm_res; 7184 nfs_argop4 argop[3]; 7185 nfs_resop4 *resop; 7186 vnode_t *vp; 7187 char *tmpname; 7188 int doqueue; 7189 mntinfo4_t *mi; 7190 rnode4_t *rp; 7191 rnode4_t *drp; 7192 int needrecov = 0; 7193 nfs4_recov_state_t recov_state; 7194 int isopen; 7195 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 7196 dirattr_info_t dinfo; 7197 7198 if (nfs_zone() != VTOMI4(dvp)->mi_zone) 7199 return (EPERM); 7200 drp = VTOR4(dvp); 7201 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR4(dvp))) 7202 return (EINTR); 7203 7204 e.error = nfs4lookup(dvp, nm, &vp, cr, 0); 7205 if (e.error) { 7206 nfs_rw_exit(&drp->r_rwlock); 7207 return (e.error); 7208 } 7209 7210 if (vp->v_type == VDIR) { 7211 VN_RELE(vp); 7212 nfs_rw_exit(&drp->r_rwlock); 7213 return (EISDIR); 7214 } 7215 7216 /* 7217 * First just remove the entry from the name cache, as it 7218 * is most likely the only entry for this vp. 7219 */ 7220 dnlc_remove(dvp, nm); 7221 7222 rp = VTOR4(vp); 7223 7224 /* 7225 * For regular file types, check to see if the file is open by looking 7226 * at the open streams. 7227 * For all other types, check the reference count on the vnode. Since 7228 * they are not opened OTW they never have an open stream. 7229 * 7230 * If the file is open, rename it to .nfsXXXX. 7231 */ 7232 if (vp->v_type != VREG) { 7233 /* 7234 * If the file has a v_count > 1 then there may be more than one 7235 * entry in the name cache due multiple links or an open file, 7236 * but we don't have the real reference count so flush all 7237 * possible entries. 7238 */ 7239 if (vp->v_count > 1) 7240 dnlc_purge_vp(vp); 7241 7242 /* 7243 * Now we have the real reference count. 7244 */ 7245 isopen = vp->v_count > 1; 7246 } else { 7247 mutex_enter(&rp->r_os_lock); 7248 isopen = list_head(&rp->r_open_streams) != NULL; 7249 mutex_exit(&rp->r_os_lock); 7250 } 7251 7252 mutex_enter(&rp->r_statelock); 7253 if (isopen && 7254 (rp->r_unldvp == NULL || strcmp(nm, rp->r_unlname) == 0)) { 7255 mutex_exit(&rp->r_statelock); 7256 tmpname = newname(); 7257 e.error = nfs4rename(dvp, nm, dvp, tmpname, cr, ct); 7258 if (e.error) 7259 kmem_free(tmpname, MAXNAMELEN); 7260 else { 7261 mutex_enter(&rp->r_statelock); 7262 if (rp->r_unldvp == NULL) { 7263 VN_HOLD(dvp); 7264 rp->r_unldvp = dvp; 7265 if (rp->r_unlcred != NULL) 7266 crfree(rp->r_unlcred); 7267 crhold(cr); 7268 rp->r_unlcred = cr; 7269 rp->r_unlname = tmpname; 7270 } else { 7271 kmem_free(rp->r_unlname, MAXNAMELEN); 7272 rp->r_unlname = tmpname; 7273 } 7274 mutex_exit(&rp->r_statelock); 7275 } 7276 VN_RELE(vp); 7277 nfs_rw_exit(&drp->r_rwlock); 7278 return (e.error); 7279 } 7280 /* 7281 * Actually remove the file/dir 7282 */ 7283 mutex_exit(&rp->r_statelock); 7284 7285 /* 7286 * We need to flush any dirty pages which happen to 7287 * be hanging around before removing the file. 7288 * This shouldn't happen very often since in NFSv4 7289 * we should be close to open consistent. 7290 */ 7291 if (nfs4_has_pages(vp) && 7292 ((rp->r_flags & R4DIRTY) || rp->r_count > 0)) { 7293 e.error = nfs4_putpage(vp, (u_offset_t)0, 0, 0, cr, ct); 7294 if (e.error && (e.error == ENOSPC || e.error == EDQUOT)) { 7295 mutex_enter(&rp->r_statelock); 7296 if (!rp->r_error) 7297 rp->r_error = e.error; 7298 mutex_exit(&rp->r_statelock); 7299 } 7300 } 7301 7302 mi = VTOMI4(dvp); 7303 7304 (void) nfs4delegreturn(rp, NFS4_DR_REOPEN); 7305 recov_state.rs_flags = 0; 7306 recov_state.rs_num_retry_despite_err = 0; 7307 7308 recov_retry: 7309 /* 7310 * Remove ops: putfh dir; remove 7311 */ 7312 args.ctag = TAG_REMOVE; 7313 args.array_len = 3; 7314 args.array = argop; 7315 7316 e.error = nfs4_start_op(VTOMI4(dvp), dvp, NULL, &recov_state); 7317 if (e.error) { 7318 nfs_rw_exit(&drp->r_rwlock); 7319 VN_RELE(vp); 7320 return (e.error); 7321 } 7322 7323 /* putfh directory */ 7324 argop[0].argop = OP_CPUTFH; 7325 argop[0].nfs_argop4_u.opcputfh.sfh = drp->r_fh; 7326 7327 /* remove */ 7328 argop[1].argop = OP_CREMOVE; 7329 argop[1].nfs_argop4_u.opcremove.ctarget = nm; 7330 7331 /* getattr dir */ 7332 argop[2].argop = OP_GETATTR; 7333 argop[2].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 7334 argop[2].nfs_argop4_u.opgetattr.mi = mi; 7335 7336 doqueue = 1; 7337 dinfo.di_time_call = gethrtime(); 7338 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e); 7339 7340 PURGE_ATTRCACHE4(vp); 7341 7342 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp); 7343 if (e.error) 7344 PURGE_ATTRCACHE4(dvp); 7345 7346 if (needrecov) { 7347 if (nfs4_start_recovery(&e, VTOMI4(dvp), dvp, 7348 NULL, NULL, NULL, OP_REMOVE, NULL) == FALSE) { 7349 if (!e.error) 7350 (void) xdr_free(xdr_COMPOUND4res_clnt, 7351 (caddr_t)&res); 7352 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, 7353 needrecov); 7354 goto recov_retry; 7355 } 7356 } 7357 7358 /* 7359 * Matching nfs4_end_op() for start_op() above. 7360 * There is a path in the code below which calls 7361 * nfs4_purge_stale_fh(), which may generate otw calls through 7362 * nfs4_invalidate_pages. Hence we need to call nfs4_end_op() 7363 * here to avoid nfs4_start_op() deadlock. 7364 */ 7365 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, needrecov); 7366 7367 if (!e.error) { 7368 resp = &res; 7369 7370 if (res.status) { 7371 e.error = geterrno4(res.status); 7372 PURGE_ATTRCACHE4(dvp); 7373 nfs4_purge_stale_fh(e.error, dvp, cr); 7374 } else { 7375 resop = &res.array[1]; /* remove res */ 7376 rm_res = &resop->nfs_resop4_u.opremove; 7377 7378 dinfo.di_garp = 7379 &res.array[2].nfs_resop4_u.opgetattr.ga_res; 7380 dinfo.di_cred = cr; 7381 7382 /* Update directory attr, readdir and dnlc caches */ 7383 nfs4_update_dircaches(&rm_res->cinfo, dvp, NULL, NULL, 7384 &dinfo); 7385 } 7386 } 7387 nfs_rw_exit(&drp->r_rwlock); 7388 if (resp) 7389 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp); 7390 7391 if (e.error == 0) { 7392 vnode_t *tvp; 7393 rnode4_t *trp; 7394 trp = VTOR4(vp); 7395 tvp = vp; 7396 if (IS_SHADOW(vp, trp)) 7397 tvp = RTOV4(trp); 7398 vnevent_remove(tvp, dvp, nm, ct); 7399 } 7400 VN_RELE(vp); 7401 return (e.error); 7402 } 7403 7404 /* 7405 * Link requires that the current fh be the target directory and the 7406 * saved fh be the source fh. After the operation, the current fh is unchanged. 7407 * Thus the compound op structure is: 7408 * PUTFH(file), SAVEFH, PUTFH(targetdir), LINK, RESTOREFH, 7409 * GETATTR(file) 7410 */ 7411 /* ARGSUSED */ 7412 static int 7413 nfs4_link(vnode_t *tdvp, vnode_t *svp, char *tnm, cred_t *cr, 7414 caller_context_t *ct, int flags) 7415 { 7416 COMPOUND4args_clnt args; 7417 COMPOUND4res_clnt res, *resp = NULL; 7418 LINK4res *ln_res; 7419 int argoplist_size = 7 * sizeof (nfs_argop4); 7420 nfs_argop4 *argop; 7421 nfs_resop4 *resop; 7422 vnode_t *realvp, *nvp; 7423 int doqueue; 7424 mntinfo4_t *mi; 7425 rnode4_t *tdrp; 7426 bool_t needrecov = FALSE; 7427 nfs4_recov_state_t recov_state; 7428 hrtime_t t; 7429 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 7430 dirattr_info_t dinfo; 7431 7432 ASSERT(*tnm != '\0'); 7433 ASSERT(tdvp->v_type == VDIR); 7434 ASSERT(nfs4_consistent_type(tdvp)); 7435 ASSERT(nfs4_consistent_type(svp)); 7436 7437 if (nfs_zone() != VTOMI4(tdvp)->mi_zone) 7438 return (EPERM); 7439 if (VOP_REALVP(svp, &realvp, ct) == 0) { 7440 svp = realvp; 7441 ASSERT(nfs4_consistent_type(svp)); 7442 } 7443 7444 tdrp = VTOR4(tdvp); 7445 mi = VTOMI4(svp); 7446 7447 if (!(mi->mi_flags & MI4_LINK)) { 7448 return (EOPNOTSUPP); 7449 } 7450 recov_state.rs_flags = 0; 7451 recov_state.rs_num_retry_despite_err = 0; 7452 7453 if (nfs_rw_enter_sig(&tdrp->r_rwlock, RW_WRITER, INTR4(tdvp))) 7454 return (EINTR); 7455 7456 recov_retry: 7457 argop = kmem_alloc(argoplist_size, KM_SLEEP); 7458 7459 args.ctag = TAG_LINK; 7460 7461 /* 7462 * Link ops: putfh fl; savefh; putfh tdir; link; getattr(dir); 7463 * restorefh; getattr(fl) 7464 */ 7465 args.array_len = 7; 7466 args.array = argop; 7467 7468 e.error = nfs4_start_op(VTOMI4(svp), svp, tdvp, &recov_state); 7469 if (e.error) { 7470 kmem_free(argop, argoplist_size); 7471 nfs_rw_exit(&tdrp->r_rwlock); 7472 return (e.error); 7473 } 7474 7475 /* 0. putfh file */ 7476 argop[0].argop = OP_CPUTFH; 7477 argop[0].nfs_argop4_u.opcputfh.sfh = VTOR4(svp)->r_fh; 7478 7479 /* 1. save current fh to free up the space for the dir */ 7480 argop[1].argop = OP_SAVEFH; 7481 7482 /* 2. putfh targetdir */ 7483 argop[2].argop = OP_CPUTFH; 7484 argop[2].nfs_argop4_u.opcputfh.sfh = tdrp->r_fh; 7485 7486 /* 3. link: current_fh is targetdir, saved_fh is source */ 7487 argop[3].argop = OP_CLINK; 7488 argop[3].nfs_argop4_u.opclink.cnewname = tnm; 7489 7490 /* 4. Get attributes of dir */ 7491 argop[4].argop = OP_GETATTR; 7492 argop[4].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 7493 argop[4].nfs_argop4_u.opgetattr.mi = mi; 7494 7495 /* 5. If link was successful, restore current vp to file */ 7496 argop[5].argop = OP_RESTOREFH; 7497 7498 /* 6. Get attributes of linked object */ 7499 argop[6].argop = OP_GETATTR; 7500 argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 7501 argop[6].nfs_argop4_u.opgetattr.mi = mi; 7502 7503 dnlc_remove(tdvp, tnm); 7504 7505 doqueue = 1; 7506 t = gethrtime(); 7507 7508 rfs4call(VTOMI4(svp), &args, &res, cr, &doqueue, 0, &e); 7509 7510 needrecov = nfs4_needs_recovery(&e, FALSE, svp->v_vfsp); 7511 if (e.error != 0 && !needrecov) { 7512 PURGE_ATTRCACHE4(tdvp); 7513 PURGE_ATTRCACHE4(svp); 7514 nfs4_end_op(VTOMI4(svp), svp, tdvp, &recov_state, needrecov); 7515 goto out; 7516 } 7517 7518 if (needrecov) { 7519 bool_t abort; 7520 7521 abort = nfs4_start_recovery(&e, VTOMI4(svp), svp, tdvp, 7522 NULL, NULL, OP_LINK, NULL); 7523 if (abort == FALSE) { 7524 nfs4_end_op(VTOMI4(svp), svp, tdvp, &recov_state, 7525 needrecov); 7526 kmem_free(argop, argoplist_size); 7527 if (!e.error) 7528 (void) xdr_free(xdr_COMPOUND4res_clnt, 7529 (caddr_t)&res); 7530 goto recov_retry; 7531 } else { 7532 if (e.error != 0) { 7533 PURGE_ATTRCACHE4(tdvp); 7534 PURGE_ATTRCACHE4(svp); 7535 nfs4_end_op(VTOMI4(svp), svp, tdvp, 7536 &recov_state, needrecov); 7537 goto out; 7538 } 7539 /* fall through for res.status case */ 7540 } 7541 } 7542 7543 nfs4_end_op(VTOMI4(svp), svp, tdvp, &recov_state, needrecov); 7544 7545 resp = &res; 7546 if (res.status) { 7547 /* If link succeeded, then don't return error */ 7548 e.error = geterrno4(res.status); 7549 if (res.array_len <= 4) { 7550 /* 7551 * Either Putfh, Savefh, Putfh dir, or Link failed 7552 */ 7553 PURGE_ATTRCACHE4(svp); 7554 PURGE_ATTRCACHE4(tdvp); 7555 if (e.error == EOPNOTSUPP) { 7556 mutex_enter(&mi->mi_lock); 7557 mi->mi_flags &= ~MI4_LINK; 7558 mutex_exit(&mi->mi_lock); 7559 } 7560 /* Remap EISDIR to EPERM for non-root user for SVVS */ 7561 /* XXX-LP */ 7562 if (e.error == EISDIR && crgetuid(cr) != 0) 7563 e.error = EPERM; 7564 goto out; 7565 } 7566 } 7567 7568 /* either no error or one of the postop getattr failed */ 7569 7570 /* 7571 * XXX - if LINK succeeded, but no attrs were returned for link 7572 * file, purge its cache. 7573 * 7574 * XXX Perform a simplified version of wcc checking. Instead of 7575 * have another getattr to get pre-op, just purge cache if 7576 * any of the ops prior to and including the getattr failed. 7577 * If the getattr succeeded then update the attrcache accordingly. 7578 */ 7579 7580 /* 7581 * update cache with link file postattrs. 7582 * Note: at this point resop points to link res. 7583 */ 7584 resop = &res.array[3]; /* link res */ 7585 ln_res = &resop->nfs_resop4_u.oplink; 7586 if (res.status == NFS4_OK) 7587 e.error = nfs4_update_attrcache(res.status, 7588 &res.array[6].nfs_resop4_u.opgetattr.ga_res, 7589 t, svp, cr); 7590 7591 /* 7592 * Call makenfs4node to create the new shadow vp for tnm. 7593 * We pass NULL attrs because we just cached attrs for 7594 * the src object. All we're trying to accomplish is to 7595 * to create the new shadow vnode. 7596 */ 7597 nvp = makenfs4node(VTOR4(svp)->r_fh, NULL, tdvp->v_vfsp, t, cr, 7598 tdvp, fn_get(VTOSV(tdvp)->sv_name, tnm, VTOR4(svp)->r_fh)); 7599 7600 /* Update target cache attribute, readdir and dnlc caches */ 7601 dinfo.di_garp = &res.array[4].nfs_resop4_u.opgetattr.ga_res; 7602 dinfo.di_time_call = t; 7603 dinfo.di_cred = cr; 7604 7605 nfs4_update_dircaches(&ln_res->cinfo, tdvp, nvp, tnm, &dinfo); 7606 ASSERT(nfs4_consistent_type(tdvp)); 7607 ASSERT(nfs4_consistent_type(svp)); 7608 ASSERT(nfs4_consistent_type(nvp)); 7609 VN_RELE(nvp); 7610 7611 if (!e.error) { 7612 vnode_t *tvp; 7613 rnode4_t *trp; 7614 /* 7615 * Notify the source file of this link operation. 7616 */ 7617 trp = VTOR4(svp); 7618 tvp = svp; 7619 if (IS_SHADOW(svp, trp)) 7620 tvp = RTOV4(trp); 7621 vnevent_link(tvp, ct); 7622 } 7623 out: 7624 kmem_free(argop, argoplist_size); 7625 if (resp) 7626 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp); 7627 7628 nfs_rw_exit(&tdrp->r_rwlock); 7629 7630 return (e.error); 7631 } 7632 7633 /* ARGSUSED */ 7634 static int 7635 nfs4_rename(vnode_t *odvp, char *onm, vnode_t *ndvp, char *nnm, cred_t *cr, 7636 caller_context_t *ct, int flags) 7637 { 7638 vnode_t *realvp; 7639 7640 if (nfs_zone() != VTOMI4(odvp)->mi_zone) 7641 return (EPERM); 7642 if (VOP_REALVP(ndvp, &realvp, ct) == 0) 7643 ndvp = realvp; 7644 7645 return (nfs4rename(odvp, onm, ndvp, nnm, cr, ct)); 7646 } 7647 7648 /* 7649 * nfs4rename does the real work of renaming in NFS Version 4. 7650 * 7651 * A file handle is considered volatile for renaming purposes if either 7652 * of the volatile bits are turned on. However, the compound may differ 7653 * based on the likelihood of the filehandle to change during rename. 7654 */ 7655 static int 7656 nfs4rename(vnode_t *odvp, char *onm, vnode_t *ndvp, char *nnm, cred_t *cr, 7657 caller_context_t *ct) 7658 { 7659 int error; 7660 mntinfo4_t *mi; 7661 vnode_t *nvp = NULL; 7662 vnode_t *ovp = NULL; 7663 char *tmpname = NULL; 7664 rnode4_t *rp; 7665 rnode4_t *odrp; 7666 rnode4_t *ndrp; 7667 int did_link = 0; 7668 int do_link = 1; 7669 nfsstat4 stat = NFS4_OK; 7670 7671 ASSERT(nfs_zone() == VTOMI4(odvp)->mi_zone); 7672 ASSERT(nfs4_consistent_type(odvp)); 7673 ASSERT(nfs4_consistent_type(ndvp)); 7674 7675 if (onm[0] == '.' && (onm[1] == '\0' || 7676 (onm[1] == '.' && onm[2] == '\0'))) 7677 return (EINVAL); 7678 7679 if (nnm[0] == '.' && (nnm[1] == '\0' || 7680 (nnm[1] == '.' && nnm[2] == '\0'))) 7681 return (EINVAL); 7682 7683 odrp = VTOR4(odvp); 7684 ndrp = VTOR4(ndvp); 7685 if ((intptr_t)odrp < (intptr_t)ndrp) { 7686 if (nfs_rw_enter_sig(&odrp->r_rwlock, RW_WRITER, INTR4(odvp))) 7687 return (EINTR); 7688 if (nfs_rw_enter_sig(&ndrp->r_rwlock, RW_WRITER, INTR4(ndvp))) { 7689 nfs_rw_exit(&odrp->r_rwlock); 7690 return (EINTR); 7691 } 7692 } else { 7693 if (nfs_rw_enter_sig(&ndrp->r_rwlock, RW_WRITER, INTR4(ndvp))) 7694 return (EINTR); 7695 if (nfs_rw_enter_sig(&odrp->r_rwlock, RW_WRITER, INTR4(odvp))) { 7696 nfs_rw_exit(&ndrp->r_rwlock); 7697 return (EINTR); 7698 } 7699 } 7700 7701 /* 7702 * Lookup the target file. If it exists, it needs to be 7703 * checked to see whether it is a mount point and whether 7704 * it is active (open). 7705 */ 7706 error = nfs4lookup(ndvp, nnm, &nvp, cr, 0); 7707 if (!error) { 7708 int isactive; 7709 7710 ASSERT(nfs4_consistent_type(nvp)); 7711 /* 7712 * If this file has been mounted on, then just 7713 * return busy because renaming to it would remove 7714 * the mounted file system from the name space. 7715 */ 7716 if (vn_ismntpt(nvp)) { 7717 VN_RELE(nvp); 7718 nfs_rw_exit(&odrp->r_rwlock); 7719 nfs_rw_exit(&ndrp->r_rwlock); 7720 return (EBUSY); 7721 } 7722 7723 /* 7724 * First just remove the entry from the name cache, as it 7725 * is most likely the only entry for this vp. 7726 */ 7727 dnlc_remove(ndvp, nnm); 7728 7729 rp = VTOR4(nvp); 7730 7731 if (nvp->v_type != VREG) { 7732 /* 7733 * Purge the name cache of all references to this vnode 7734 * so that we can check the reference count to infer 7735 * whether it is active or not. 7736 */ 7737 if (nvp->v_count > 1) 7738 dnlc_purge_vp(nvp); 7739 7740 isactive = nvp->v_count > 1; 7741 } else { 7742 mutex_enter(&rp->r_os_lock); 7743 isactive = list_head(&rp->r_open_streams) != NULL; 7744 mutex_exit(&rp->r_os_lock); 7745 } 7746 7747 /* 7748 * If the vnode is active and is not a directory, 7749 * arrange to rename it to a 7750 * temporary file so that it will continue to be 7751 * accessible. This implements the "unlink-open-file" 7752 * semantics for the target of a rename operation. 7753 * Before doing this though, make sure that the 7754 * source and target files are not already the same. 7755 */ 7756 if (isactive && nvp->v_type != VDIR) { 7757 /* 7758 * Lookup the source name. 7759 */ 7760 error = nfs4lookup(odvp, onm, &ovp, cr, 0); 7761 7762 /* 7763 * The source name *should* already exist. 7764 */ 7765 if (error) { 7766 VN_RELE(nvp); 7767 nfs_rw_exit(&odrp->r_rwlock); 7768 nfs_rw_exit(&ndrp->r_rwlock); 7769 return (error); 7770 } 7771 7772 ASSERT(nfs4_consistent_type(ovp)); 7773 7774 /* 7775 * Compare the two vnodes. If they are the same, 7776 * just release all held vnodes and return success. 7777 */ 7778 if (VN_CMP(ovp, nvp)) { 7779 VN_RELE(ovp); 7780 VN_RELE(nvp); 7781 nfs_rw_exit(&odrp->r_rwlock); 7782 nfs_rw_exit(&ndrp->r_rwlock); 7783 return (0); 7784 } 7785 7786 /* 7787 * Can't mix and match directories and non- 7788 * directories in rename operations. We already 7789 * know that the target is not a directory. If 7790 * the source is a directory, return an error. 7791 */ 7792 if (ovp->v_type == VDIR) { 7793 VN_RELE(ovp); 7794 VN_RELE(nvp); 7795 nfs_rw_exit(&odrp->r_rwlock); 7796 nfs_rw_exit(&ndrp->r_rwlock); 7797 return (ENOTDIR); 7798 } 7799 link_call: 7800 /* 7801 * The target file exists, is not the same as 7802 * the source file, and is active. We first 7803 * try to Link it to a temporary filename to 7804 * avoid having the server removing the file 7805 * completely (which could cause data loss to 7806 * the user's POV in the event the Rename fails 7807 * -- see bug 1165874). 7808 */ 7809 /* 7810 * The do_link and did_link booleans are 7811 * introduced in the event we get NFS4ERR_FILE_OPEN 7812 * returned for the Rename. Some servers can 7813 * not Rename over an Open file, so they return 7814 * this error. The client needs to Remove the 7815 * newly created Link and do two Renames, just 7816 * as if the server didn't support LINK. 7817 */ 7818 tmpname = newname(); 7819 error = 0; 7820 7821 if (do_link) { 7822 error = nfs4_link(ndvp, nvp, tmpname, cr, 7823 NULL, 0); 7824 } 7825 if (error == EOPNOTSUPP || !do_link) { 7826 error = nfs4_rename(ndvp, nnm, ndvp, tmpname, 7827 cr, NULL, 0); 7828 did_link = 0; 7829 } else { 7830 did_link = 1; 7831 } 7832 if (error) { 7833 kmem_free(tmpname, MAXNAMELEN); 7834 VN_RELE(ovp); 7835 VN_RELE(nvp); 7836 nfs_rw_exit(&odrp->r_rwlock); 7837 nfs_rw_exit(&ndrp->r_rwlock); 7838 return (error); 7839 } 7840 7841 mutex_enter(&rp->r_statelock); 7842 if (rp->r_unldvp == NULL) { 7843 VN_HOLD(ndvp); 7844 rp->r_unldvp = ndvp; 7845 if (rp->r_unlcred != NULL) 7846 crfree(rp->r_unlcred); 7847 crhold(cr); 7848 rp->r_unlcred = cr; 7849 rp->r_unlname = tmpname; 7850 } else { 7851 if (rp->r_unlname) 7852 kmem_free(rp->r_unlname, MAXNAMELEN); 7853 rp->r_unlname = tmpname; 7854 } 7855 mutex_exit(&rp->r_statelock); 7856 } 7857 7858 (void) nfs4delegreturn(VTOR4(nvp), NFS4_DR_PUSH|NFS4_DR_REOPEN); 7859 7860 ASSERT(nfs4_consistent_type(nvp)); 7861 } 7862 7863 if (ovp == NULL) { 7864 /* 7865 * When renaming directories to be a subdirectory of a 7866 * different parent, the dnlc entry for ".." will no 7867 * longer be valid, so it must be removed. 7868 * 7869 * We do a lookup here to determine whether we are renaming 7870 * a directory and we need to check if we are renaming 7871 * an unlinked file. This might have already been done 7872 * in previous code, so we check ovp == NULL to avoid 7873 * doing it twice. 7874 */ 7875 error = nfs4lookup(odvp, onm, &ovp, cr, 0); 7876 /* 7877 * The source name *should* already exist. 7878 */ 7879 if (error) { 7880 nfs_rw_exit(&odrp->r_rwlock); 7881 nfs_rw_exit(&ndrp->r_rwlock); 7882 if (nvp) { 7883 VN_RELE(nvp); 7884 } 7885 return (error); 7886 } 7887 ASSERT(ovp != NULL); 7888 ASSERT(nfs4_consistent_type(ovp)); 7889 } 7890 7891 /* 7892 * Is the object being renamed a dir, and if so, is 7893 * it being renamed to a child of itself? The underlying 7894 * fs should ultimately return EINVAL for this case; 7895 * however, buggy beta non-Solaris NFSv4 servers at 7896 * interop testing events have allowed this behavior, 7897 * and it caused our client to panic due to a recursive 7898 * mutex_enter in fn_move. 7899 * 7900 * The tedious locking in fn_move could be changed to 7901 * deal with this case, and the client could avoid the 7902 * panic; however, the client would just confuse itself 7903 * later and misbehave. A better way to handle the broken 7904 * server is to detect this condition and return EINVAL 7905 * without ever sending the the bogus rename to the server. 7906 * We know the rename is invalid -- just fail it now. 7907 */ 7908 if (ovp->v_type == VDIR && VN_CMP(ndvp, ovp)) { 7909 VN_RELE(ovp); 7910 nfs_rw_exit(&odrp->r_rwlock); 7911 nfs_rw_exit(&ndrp->r_rwlock); 7912 if (nvp) { 7913 VN_RELE(nvp); 7914 } 7915 return (EINVAL); 7916 } 7917 7918 (void) nfs4delegreturn(VTOR4(ovp), NFS4_DR_PUSH|NFS4_DR_REOPEN); 7919 7920 /* 7921 * If FH4_VOL_RENAME or FH4_VOLATILE_ANY bits are set, it is 7922 * possible for the filehandle to change due to the rename. 7923 * If neither of these bits is set, but FH4_VOL_MIGRATION is set, 7924 * the fh will not change because of the rename, but we still need 7925 * to update its rnode entry with the new name for 7926 * an eventual fh change due to migration. The FH4_NOEXPIRE_ON_OPEN 7927 * has no effect on these for now, but for future improvements, 7928 * we might want to use it too to simplify handling of files 7929 * that are open with that flag on. (XXX) 7930 */ 7931 mi = VTOMI4(odvp); 7932 if (NFS4_VOLATILE_FH(mi)) 7933 error = nfs4rename_volatile_fh(odvp, onm, ovp, ndvp, nnm, cr, 7934 &stat); 7935 else 7936 error = nfs4rename_persistent_fh(odvp, onm, ovp, ndvp, nnm, cr, 7937 &stat); 7938 7939 ASSERT(nfs4_consistent_type(odvp)); 7940 ASSERT(nfs4_consistent_type(ndvp)); 7941 ASSERT(nfs4_consistent_type(ovp)); 7942 7943 if (stat == NFS4ERR_FILE_OPEN && did_link) { 7944 do_link = 0; 7945 /* 7946 * Before the 'link_call' code, we did a nfs4_lookup 7947 * that puts a VN_HOLD on nvp. After the nfs4_link 7948 * call we call VN_RELE to match that hold. We need 7949 * to place an additional VN_HOLD here since we will 7950 * be hitting that VN_RELE again. 7951 */ 7952 VN_HOLD(nvp); 7953 7954 (void) nfs4_remove(ndvp, tmpname, cr, NULL, 0); 7955 7956 /* Undo the unlinked file naming stuff we just did */ 7957 mutex_enter(&rp->r_statelock); 7958 if (rp->r_unldvp) { 7959 VN_RELE(ndvp); 7960 rp->r_unldvp = NULL; 7961 if (rp->r_unlcred != NULL) 7962 crfree(rp->r_unlcred); 7963 rp->r_unlcred = NULL; 7964 /* rp->r_unlanme points to tmpname */ 7965 if (rp->r_unlname) 7966 kmem_free(rp->r_unlname, MAXNAMELEN); 7967 rp->r_unlname = NULL; 7968 } 7969 mutex_exit(&rp->r_statelock); 7970 7971 if (nvp) { 7972 VN_RELE(nvp); 7973 } 7974 goto link_call; 7975 } 7976 7977 if (error) { 7978 VN_RELE(ovp); 7979 nfs_rw_exit(&odrp->r_rwlock); 7980 nfs_rw_exit(&ndrp->r_rwlock); 7981 if (nvp) { 7982 VN_RELE(nvp); 7983 } 7984 return (error); 7985 } 7986 7987 /* 7988 * when renaming directories to be a subdirectory of a 7989 * different parent, the dnlc entry for ".." will no 7990 * longer be valid, so it must be removed 7991 */ 7992 rp = VTOR4(ovp); 7993 if (ndvp != odvp) { 7994 if (ovp->v_type == VDIR) { 7995 dnlc_remove(ovp, ".."); 7996 if (rp->r_dir != NULL) 7997 nfs4_purge_rddir_cache(ovp); 7998 } 7999 } 8000 8001 /* 8002 * If we are renaming the unlinked file, update the 8003 * r_unldvp and r_unlname as needed. 8004 */ 8005 mutex_enter(&rp->r_statelock); 8006 if (rp->r_unldvp != NULL) { 8007 if (strcmp(rp->r_unlname, onm) == 0) { 8008 (void) strncpy(rp->r_unlname, nnm, MAXNAMELEN); 8009 rp->r_unlname[MAXNAMELEN - 1] = '\0'; 8010 if (ndvp != rp->r_unldvp) { 8011 VN_RELE(rp->r_unldvp); 8012 rp->r_unldvp = ndvp; 8013 VN_HOLD(ndvp); 8014 } 8015 } 8016 } 8017 mutex_exit(&rp->r_statelock); 8018 8019 /* 8020 * Notify the rename vnevents to source vnode, and to the target 8021 * vnode if it already existed. 8022 */ 8023 if (error == 0) { 8024 vnode_t *tvp; 8025 rnode4_t *trp; 8026 /* 8027 * Notify the vnode. Each links is represented by 8028 * a different vnode, in nfsv4. 8029 */ 8030 if (nvp) { 8031 trp = VTOR4(nvp); 8032 tvp = nvp; 8033 if (IS_SHADOW(nvp, trp)) 8034 tvp = RTOV4(trp); 8035 vnevent_rename_dest(tvp, ndvp, nnm, ct); 8036 } 8037 8038 /* 8039 * if the source and destination directory are not the 8040 * same notify the destination directory. 8041 */ 8042 if (VTOR4(odvp) != VTOR4(ndvp)) { 8043 trp = VTOR4(ndvp); 8044 tvp = ndvp; 8045 if (IS_SHADOW(ndvp, trp)) 8046 tvp = RTOV4(trp); 8047 vnevent_rename_dest_dir(tvp, ct); 8048 } 8049 8050 trp = VTOR4(ovp); 8051 tvp = ovp; 8052 if (IS_SHADOW(ovp, trp)) 8053 tvp = RTOV4(trp); 8054 vnevent_rename_src(tvp, odvp, onm, ct); 8055 } 8056 8057 if (nvp) { 8058 VN_RELE(nvp); 8059 } 8060 VN_RELE(ovp); 8061 8062 nfs_rw_exit(&odrp->r_rwlock); 8063 nfs_rw_exit(&ndrp->r_rwlock); 8064 8065 return (error); 8066 } 8067 8068 /* 8069 * When the parent directory has changed, sv_dfh must be updated 8070 */ 8071 static void 8072 update_parentdir_sfh(vnode_t *vp, vnode_t *ndvp) 8073 { 8074 svnode_t *sv = VTOSV(vp); 8075 nfs4_sharedfh_t *old_dfh = sv->sv_dfh; 8076 nfs4_sharedfh_t *new_dfh = VTOR4(ndvp)->r_fh; 8077 8078 sfh4_hold(new_dfh); 8079 sv->sv_dfh = new_dfh; 8080 sfh4_rele(&old_dfh); 8081 } 8082 8083 /* 8084 * nfs4rename_persistent does the otw portion of renaming in NFS Version 4, 8085 * when it is known that the filehandle is persistent through rename. 8086 * 8087 * Rename requires that the current fh be the target directory and the 8088 * saved fh be the source directory. After the operation, the current fh 8089 * is unchanged. 8090 * The compound op structure for persistent fh rename is: 8091 * PUTFH(sourcdir), SAVEFH, PUTFH(targetdir), RENAME 8092 * Rather than bother with the directory postop args, we'll simply 8093 * update that a change occurred in the cache, so no post-op getattrs. 8094 */ 8095 static int 8096 nfs4rename_persistent_fh(vnode_t *odvp, char *onm, vnode_t *renvp, 8097 vnode_t *ndvp, char *nnm, cred_t *cr, nfsstat4 *statp) 8098 { 8099 COMPOUND4args_clnt args; 8100 COMPOUND4res_clnt res, *resp = NULL; 8101 nfs_argop4 *argop; 8102 nfs_resop4 *resop; 8103 int doqueue, argoplist_size; 8104 mntinfo4_t *mi; 8105 rnode4_t *odrp = VTOR4(odvp); 8106 rnode4_t *ndrp = VTOR4(ndvp); 8107 RENAME4res *rn_res; 8108 bool_t needrecov; 8109 nfs4_recov_state_t recov_state; 8110 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 8111 dirattr_info_t dinfo, *dinfop; 8112 8113 ASSERT(nfs_zone() == VTOMI4(odvp)->mi_zone); 8114 8115 recov_state.rs_flags = 0; 8116 recov_state.rs_num_retry_despite_err = 0; 8117 8118 /* 8119 * Rename ops: putfh sdir; savefh; putfh tdir; rename; getattr tdir 8120 * 8121 * If source/target are different dirs, then append putfh(src); getattr 8122 */ 8123 args.array_len = (odvp == ndvp) ? 5 : 7; 8124 argoplist_size = args.array_len * sizeof (nfs_argop4); 8125 args.array = argop = kmem_alloc(argoplist_size, KM_SLEEP); 8126 8127 recov_retry: 8128 *statp = NFS4_OK; 8129 8130 /* No need to Lookup the file, persistent fh */ 8131 args.ctag = TAG_RENAME; 8132 8133 mi = VTOMI4(odvp); 8134 e.error = nfs4_start_op(mi, odvp, ndvp, &recov_state); 8135 if (e.error) { 8136 kmem_free(argop, argoplist_size); 8137 return (e.error); 8138 } 8139 8140 /* 0: putfh source directory */ 8141 argop[0].argop = OP_CPUTFH; 8142 argop[0].nfs_argop4_u.opcputfh.sfh = odrp->r_fh; 8143 8144 /* 1: Save source fh to free up current for target */ 8145 argop[1].argop = OP_SAVEFH; 8146 8147 /* 2: putfh targetdir */ 8148 argop[2].argop = OP_CPUTFH; 8149 argop[2].nfs_argop4_u.opcputfh.sfh = ndrp->r_fh; 8150 8151 /* 3: current_fh is targetdir, saved_fh is sourcedir */ 8152 argop[3].argop = OP_CRENAME; 8153 argop[3].nfs_argop4_u.opcrename.coldname = onm; 8154 argop[3].nfs_argop4_u.opcrename.cnewname = nnm; 8155 8156 /* 4: getattr (targetdir) */ 8157 argop[4].argop = OP_GETATTR; 8158 argop[4].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 8159 argop[4].nfs_argop4_u.opgetattr.mi = mi; 8160 8161 if (ndvp != odvp) { 8162 8163 /* 5: putfh (sourcedir) */ 8164 argop[5].argop = OP_CPUTFH; 8165 argop[5].nfs_argop4_u.opcputfh.sfh = ndrp->r_fh; 8166 8167 /* 6: getattr (sourcedir) */ 8168 argop[6].argop = OP_GETATTR; 8169 argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 8170 argop[6].nfs_argop4_u.opgetattr.mi = mi; 8171 } 8172 8173 dnlc_remove(odvp, onm); 8174 dnlc_remove(ndvp, nnm); 8175 8176 doqueue = 1; 8177 dinfo.di_time_call = gethrtime(); 8178 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e); 8179 8180 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp); 8181 if (e.error) { 8182 PURGE_ATTRCACHE4(odvp); 8183 PURGE_ATTRCACHE4(ndvp); 8184 } else { 8185 *statp = res.status; 8186 } 8187 8188 if (needrecov) { 8189 if (nfs4_start_recovery(&e, mi, odvp, ndvp, NULL, NULL, 8190 OP_RENAME, NULL) == FALSE) { 8191 nfs4_end_op(mi, odvp, ndvp, &recov_state, needrecov); 8192 if (!e.error) 8193 (void) xdr_free(xdr_COMPOUND4res_clnt, 8194 (caddr_t)&res); 8195 goto recov_retry; 8196 } 8197 } 8198 8199 if (!e.error) { 8200 resp = &res; 8201 /* 8202 * as long as OP_RENAME 8203 */ 8204 if (res.status != NFS4_OK && res.array_len <= 4) { 8205 e.error = geterrno4(res.status); 8206 PURGE_ATTRCACHE4(odvp); 8207 PURGE_ATTRCACHE4(ndvp); 8208 /* 8209 * System V defines rename to return EEXIST, not 8210 * ENOTEMPTY if the target directory is not empty. 8211 * Over the wire, the error is NFSERR_ENOTEMPTY 8212 * which geterrno4 maps to ENOTEMPTY. 8213 */ 8214 if (e.error == ENOTEMPTY) 8215 e.error = EEXIST; 8216 } else { 8217 8218 resop = &res.array[3]; /* rename res */ 8219 rn_res = &resop->nfs_resop4_u.oprename; 8220 8221 if (res.status == NFS4_OK) { 8222 /* 8223 * Update target attribute, readdir and dnlc 8224 * caches. 8225 */ 8226 dinfo.di_garp = 8227 &res.array[4].nfs_resop4_u.opgetattr.ga_res; 8228 dinfo.di_cred = cr; 8229 dinfop = &dinfo; 8230 } else 8231 dinfop = NULL; 8232 8233 nfs4_update_dircaches(&rn_res->target_cinfo, 8234 ndvp, NULL, NULL, dinfop); 8235 8236 /* 8237 * Update source attribute, readdir and dnlc caches 8238 * 8239 */ 8240 if (ndvp != odvp) { 8241 update_parentdir_sfh(renvp, ndvp); 8242 8243 if (dinfop) 8244 dinfo.di_garp = 8245 &(res.array[6].nfs_resop4_u. 8246 opgetattr.ga_res); 8247 8248 nfs4_update_dircaches(&rn_res->source_cinfo, 8249 odvp, NULL, NULL, dinfop); 8250 } 8251 8252 fn_move(VTOSV(renvp)->sv_name, VTOSV(ndvp)->sv_name, 8253 nnm); 8254 } 8255 } 8256 8257 if (resp) 8258 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp); 8259 nfs4_end_op(mi, odvp, ndvp, &recov_state, needrecov); 8260 kmem_free(argop, argoplist_size); 8261 8262 return (e.error); 8263 } 8264 8265 /* 8266 * nfs4rename_volatile_fh does the otw part of renaming in NFS Version 4, when 8267 * it is possible for the filehandle to change due to the rename. 8268 * 8269 * The compound req in this case includes a post-rename lookup and getattr 8270 * to ensure that we have the correct fh and attributes for the object. 8271 * 8272 * Rename requires that the current fh be the target directory and the 8273 * saved fh be the source directory. After the operation, the current fh 8274 * is unchanged. 8275 * 8276 * We need the new filehandle (hence a LOOKUP and GETFH) so that we can 8277 * update the filehandle for the renamed object. We also get the old 8278 * filehandle for historical reasons; this should be taken out sometime. 8279 * This results in a rather cumbersome compound... 8280 * 8281 * PUTFH(sourcdir), SAVEFH, LOOKUP(src), GETFH(old), 8282 * PUTFH(targetdir), RENAME, LOOKUP(trgt), GETFH(new), GETATTR 8283 * 8284 */ 8285 static int 8286 nfs4rename_volatile_fh(vnode_t *odvp, char *onm, vnode_t *ovp, 8287 vnode_t *ndvp, char *nnm, cred_t *cr, nfsstat4 *statp) 8288 { 8289 COMPOUND4args_clnt args; 8290 COMPOUND4res_clnt res, *resp = NULL; 8291 int argoplist_size; 8292 nfs_argop4 *argop; 8293 nfs_resop4 *resop; 8294 int doqueue; 8295 mntinfo4_t *mi; 8296 rnode4_t *odrp = VTOR4(odvp); /* old directory */ 8297 rnode4_t *ndrp = VTOR4(ndvp); /* new directory */ 8298 rnode4_t *orp = VTOR4(ovp); /* object being renamed */ 8299 RENAME4res *rn_res; 8300 GETFH4res *ngf_res; 8301 bool_t needrecov; 8302 nfs4_recov_state_t recov_state; 8303 hrtime_t t; 8304 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 8305 dirattr_info_t dinfo, *dinfop = &dinfo; 8306 8307 ASSERT(nfs_zone() == VTOMI4(odvp)->mi_zone); 8308 8309 recov_state.rs_flags = 0; 8310 recov_state.rs_num_retry_despite_err = 0; 8311 8312 recov_retry: 8313 *statp = NFS4_OK; 8314 8315 /* 8316 * There is a window between the RPC and updating the path and 8317 * filehandle stored in the rnode. Lock out the FHEXPIRED recovery 8318 * code, so that it doesn't try to use the old path during that 8319 * window. 8320 */ 8321 mutex_enter(&orp->r_statelock); 8322 while (orp->r_flags & R4RECEXPFH) { 8323 klwp_t *lwp = ttolwp(curthread); 8324 8325 if (lwp != NULL) 8326 lwp->lwp_nostop++; 8327 if (cv_wait_sig(&orp->r_cv, &orp->r_statelock) == 0) { 8328 mutex_exit(&orp->r_statelock); 8329 if (lwp != NULL) 8330 lwp->lwp_nostop--; 8331 return (EINTR); 8332 } 8333 if (lwp != NULL) 8334 lwp->lwp_nostop--; 8335 } 8336 orp->r_flags |= R4RECEXPFH; 8337 mutex_exit(&orp->r_statelock); 8338 8339 mi = VTOMI4(odvp); 8340 8341 args.ctag = TAG_RENAME_VFH; 8342 args.array_len = (odvp == ndvp) ? 10 : 12; 8343 argoplist_size = args.array_len * sizeof (nfs_argop4); 8344 argop = kmem_alloc(argoplist_size, KM_SLEEP); 8345 8346 /* 8347 * Rename ops: 8348 * PUTFH(sourcdir), SAVEFH, LOOKUP(src), GETFH(old), 8349 * PUTFH(targetdir), RENAME, GETATTR(targetdir) 8350 * LOOKUP(trgt), GETFH(new), GETATTR, 8351 * 8352 * if (odvp != ndvp) 8353 * add putfh(sourcedir), getattr(sourcedir) } 8354 */ 8355 args.array = argop; 8356 8357 e.error = nfs4_start_fop(mi, odvp, ndvp, OH_VFH_RENAME, 8358 &recov_state, NULL); 8359 if (e.error) { 8360 kmem_free(argop, argoplist_size); 8361 mutex_enter(&orp->r_statelock); 8362 orp->r_flags &= ~R4RECEXPFH; 8363 cv_broadcast(&orp->r_cv); 8364 mutex_exit(&orp->r_statelock); 8365 return (e.error); 8366 } 8367 8368 /* 0: putfh source directory */ 8369 argop[0].argop = OP_CPUTFH; 8370 argop[0].nfs_argop4_u.opcputfh.sfh = odrp->r_fh; 8371 8372 /* 1: Save source fh to free up current for target */ 8373 argop[1].argop = OP_SAVEFH; 8374 8375 /* 2: Lookup pre-rename fh of renamed object */ 8376 argop[2].argop = OP_CLOOKUP; 8377 argop[2].nfs_argop4_u.opclookup.cname = onm; 8378 8379 /* 3: getfh fh of renamed object (before rename) */ 8380 argop[3].argop = OP_GETFH; 8381 8382 /* 4: putfh targetdir */ 8383 argop[4].argop = OP_CPUTFH; 8384 argop[4].nfs_argop4_u.opcputfh.sfh = ndrp->r_fh; 8385 8386 /* 5: current_fh is targetdir, saved_fh is sourcedir */ 8387 argop[5].argop = OP_CRENAME; 8388 argop[5].nfs_argop4_u.opcrename.coldname = onm; 8389 argop[5].nfs_argop4_u.opcrename.cnewname = nnm; 8390 8391 /* 6: getattr of target dir (post op attrs) */ 8392 argop[6].argop = OP_GETATTR; 8393 argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 8394 argop[6].nfs_argop4_u.opgetattr.mi = mi; 8395 8396 /* 7: Lookup post-rename fh of renamed object */ 8397 argop[7].argop = OP_CLOOKUP; 8398 argop[7].nfs_argop4_u.opclookup.cname = nnm; 8399 8400 /* 8: getfh fh of renamed object (after rename) */ 8401 argop[8].argop = OP_GETFH; 8402 8403 /* 9: getattr of renamed object */ 8404 argop[9].argop = OP_GETATTR; 8405 argop[9].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 8406 argop[9].nfs_argop4_u.opgetattr.mi = mi; 8407 8408 /* 8409 * If source/target dirs are different, then get new post-op 8410 * attrs for source dir also. 8411 */ 8412 if (ndvp != odvp) { 8413 /* 10: putfh (sourcedir) */ 8414 argop[10].argop = OP_CPUTFH; 8415 argop[10].nfs_argop4_u.opcputfh.sfh = ndrp->r_fh; 8416 8417 /* 11: getattr (sourcedir) */ 8418 argop[11].argop = OP_GETATTR; 8419 argop[11].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 8420 argop[11].nfs_argop4_u.opgetattr.mi = mi; 8421 } 8422 8423 dnlc_remove(odvp, onm); 8424 dnlc_remove(ndvp, nnm); 8425 8426 doqueue = 1; 8427 t = gethrtime(); 8428 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e); 8429 8430 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp); 8431 if (e.error) { 8432 PURGE_ATTRCACHE4(odvp); 8433 PURGE_ATTRCACHE4(ndvp); 8434 if (!needrecov) { 8435 nfs4_end_fop(mi, odvp, ndvp, OH_VFH_RENAME, 8436 &recov_state, needrecov); 8437 goto out; 8438 } 8439 } else { 8440 *statp = res.status; 8441 } 8442 8443 if (needrecov) { 8444 bool_t abort; 8445 8446 abort = nfs4_start_recovery(&e, mi, odvp, ndvp, NULL, NULL, 8447 OP_RENAME, NULL); 8448 if (abort == FALSE) { 8449 nfs4_end_fop(mi, odvp, ndvp, OH_VFH_RENAME, 8450 &recov_state, needrecov); 8451 kmem_free(argop, argoplist_size); 8452 if (!e.error) 8453 (void) xdr_free(xdr_COMPOUND4res_clnt, 8454 (caddr_t)&res); 8455 mutex_enter(&orp->r_statelock); 8456 orp->r_flags &= ~R4RECEXPFH; 8457 cv_broadcast(&orp->r_cv); 8458 mutex_exit(&orp->r_statelock); 8459 goto recov_retry; 8460 } else { 8461 if (e.error != 0) { 8462 nfs4_end_fop(mi, odvp, ndvp, OH_VFH_RENAME, 8463 &recov_state, needrecov); 8464 goto out; 8465 } 8466 /* fall through for res.status case */ 8467 } 8468 } 8469 8470 resp = &res; 8471 /* 8472 * If OP_RENAME (or any prev op) failed, then return an error. 8473 * OP_RENAME is index 5, so if array len <= 6 we return an error. 8474 */ 8475 if ((res.status != NFS4_OK) && (res.array_len <= 6)) { 8476 /* 8477 * Error in an op other than last Getattr 8478 */ 8479 e.error = geterrno4(res.status); 8480 PURGE_ATTRCACHE4(odvp); 8481 PURGE_ATTRCACHE4(ndvp); 8482 /* 8483 * System V defines rename to return EEXIST, not 8484 * ENOTEMPTY if the target directory is not empty. 8485 * Over the wire, the error is NFSERR_ENOTEMPTY 8486 * which geterrno4 maps to ENOTEMPTY. 8487 */ 8488 if (e.error == ENOTEMPTY) 8489 e.error = EEXIST; 8490 nfs4_end_fop(mi, odvp, ndvp, OH_VFH_RENAME, &recov_state, 8491 needrecov); 8492 goto out; 8493 } 8494 8495 /* rename results */ 8496 rn_res = &res.array[5].nfs_resop4_u.oprename; 8497 8498 if (res.status == NFS4_OK) { 8499 /* Update target attribute, readdir and dnlc caches */ 8500 dinfo.di_garp = 8501 &res.array[6].nfs_resop4_u.opgetattr.ga_res; 8502 dinfo.di_cred = cr; 8503 dinfo.di_time_call = t; 8504 } else 8505 dinfop = NULL; 8506 8507 /* Update source cache attribute, readdir and dnlc caches */ 8508 nfs4_update_dircaches(&rn_res->target_cinfo, ndvp, NULL, NULL, dinfop); 8509 8510 /* Update source cache attribute, readdir and dnlc caches */ 8511 if (ndvp != odvp) { 8512 update_parentdir_sfh(ovp, ndvp); 8513 8514 /* 8515 * If dinfop is non-NULL, then compound succeded, so 8516 * set di_garp to attrs for source dir. dinfop is only 8517 * set to NULL when compound fails. 8518 */ 8519 if (dinfop) 8520 dinfo.di_garp = 8521 &res.array[11].nfs_resop4_u.opgetattr.ga_res; 8522 nfs4_update_dircaches(&rn_res->source_cinfo, odvp, NULL, NULL, 8523 dinfop); 8524 } 8525 8526 /* 8527 * Update the rnode with the new component name and args, 8528 * and if the file handle changed, also update it with the new fh. 8529 * This is only necessary if the target object has an rnode 8530 * entry and there is no need to create one for it. 8531 */ 8532 resop = &res.array[8]; /* getfh new res */ 8533 ngf_res = &resop->nfs_resop4_u.opgetfh; 8534 8535 /* 8536 * Update the path and filehandle for the renamed object. 8537 */ 8538 nfs4rename_update(ovp, ndvp, &ngf_res->object, nnm); 8539 8540 nfs4_end_fop(mi, odvp, ndvp, OH_VFH_RENAME, &recov_state, needrecov); 8541 8542 if (res.status == NFS4_OK) { 8543 resop++; /* getattr res */ 8544 e.error = nfs4_update_attrcache(res.status, 8545 &resop->nfs_resop4_u.opgetattr.ga_res, 8546 t, ovp, cr); 8547 } 8548 8549 out: 8550 kmem_free(argop, argoplist_size); 8551 if (resp) 8552 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp); 8553 mutex_enter(&orp->r_statelock); 8554 orp->r_flags &= ~R4RECEXPFH; 8555 cv_broadcast(&orp->r_cv); 8556 mutex_exit(&orp->r_statelock); 8557 8558 return (e.error); 8559 } 8560 8561 /* ARGSUSED */ 8562 static int 8563 nfs4_mkdir(vnode_t *dvp, char *nm, struct vattr *va, vnode_t **vpp, cred_t *cr, 8564 caller_context_t *ct, int flags, vsecattr_t *vsecp) 8565 { 8566 int error; 8567 vnode_t *vp; 8568 8569 if (nfs_zone() != VTOMI4(dvp)->mi_zone) 8570 return (EPERM); 8571 /* 8572 * As ".." has special meaning and rather than send a mkdir 8573 * over the wire to just let the server freak out, we just 8574 * short circuit it here and return EEXIST 8575 */ 8576 if (nm[0] == '.' && nm[1] == '.' && nm[2] == '\0') 8577 return (EEXIST); 8578 8579 /* 8580 * Decision to get the right gid and setgid bit of the 8581 * new directory is now made in call_nfs4_create_req. 8582 */ 8583 va->va_mask |= AT_MODE; 8584 error = call_nfs4_create_req(dvp, nm, NULL, va, &vp, cr, NF4DIR); 8585 if (error) 8586 return (error); 8587 8588 *vpp = vp; 8589 return (0); 8590 } 8591 8592 8593 /* 8594 * rmdir is using the same remove v4 op as does remove. 8595 * Remove requires that the current fh be the target directory. 8596 * After the operation, the current fh is unchanged. 8597 * The compound op structure is: 8598 * PUTFH(targetdir), REMOVE 8599 */ 8600 /*ARGSUSED4*/ 8601 static int 8602 nfs4_rmdir(vnode_t *dvp, char *nm, vnode_t *cdir, cred_t *cr, 8603 caller_context_t *ct, int flags) 8604 { 8605 int need_end_op = FALSE; 8606 COMPOUND4args_clnt args; 8607 COMPOUND4res_clnt res, *resp = NULL; 8608 REMOVE4res *rm_res; 8609 nfs_argop4 argop[3]; 8610 nfs_resop4 *resop; 8611 vnode_t *vp; 8612 int doqueue; 8613 mntinfo4_t *mi; 8614 rnode4_t *drp; 8615 bool_t needrecov = FALSE; 8616 nfs4_recov_state_t recov_state; 8617 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 8618 dirattr_info_t dinfo, *dinfop; 8619 8620 if (nfs_zone() != VTOMI4(dvp)->mi_zone) 8621 return (EPERM); 8622 /* 8623 * As ".." has special meaning and rather than send a rmdir 8624 * over the wire to just let the server freak out, we just 8625 * short circuit it here and return EEXIST 8626 */ 8627 if (nm[0] == '.' && nm[1] == '.' && nm[2] == '\0') 8628 return (EEXIST); 8629 8630 drp = VTOR4(dvp); 8631 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR4(dvp))) 8632 return (EINTR); 8633 8634 /* 8635 * Attempt to prevent a rmdir(".") from succeeding. 8636 */ 8637 e.error = nfs4lookup(dvp, nm, &vp, cr, 0); 8638 if (e.error) { 8639 nfs_rw_exit(&drp->r_rwlock); 8640 return (e.error); 8641 } 8642 if (vp == cdir) { 8643 VN_RELE(vp); 8644 nfs_rw_exit(&drp->r_rwlock); 8645 return (EINVAL); 8646 } 8647 8648 /* 8649 * Since nfsv4 remove op works on both files and directories, 8650 * check that the removed object is indeed a directory. 8651 */ 8652 if (vp->v_type != VDIR) { 8653 VN_RELE(vp); 8654 nfs_rw_exit(&drp->r_rwlock); 8655 return (ENOTDIR); 8656 } 8657 8658 /* 8659 * First just remove the entry from the name cache, as it 8660 * is most likely an entry for this vp. 8661 */ 8662 dnlc_remove(dvp, nm); 8663 8664 /* 8665 * If there vnode reference count is greater than one, then 8666 * there may be additional references in the DNLC which will 8667 * need to be purged. First, trying removing the entry for 8668 * the parent directory and see if that removes the additional 8669 * reference(s). If that doesn't do it, then use dnlc_purge_vp 8670 * to completely remove any references to the directory which 8671 * might still exist in the DNLC. 8672 */ 8673 if (vp->v_count > 1) { 8674 dnlc_remove(vp, ".."); 8675 if (vp->v_count > 1) 8676 dnlc_purge_vp(vp); 8677 } 8678 8679 mi = VTOMI4(dvp); 8680 recov_state.rs_flags = 0; 8681 recov_state.rs_num_retry_despite_err = 0; 8682 8683 recov_retry: 8684 args.ctag = TAG_RMDIR; 8685 8686 /* 8687 * Rmdir ops: putfh dir; remove 8688 */ 8689 args.array_len = 3; 8690 args.array = argop; 8691 8692 e.error = nfs4_start_op(VTOMI4(dvp), dvp, NULL, &recov_state); 8693 if (e.error) { 8694 nfs_rw_exit(&drp->r_rwlock); 8695 return (e.error); 8696 } 8697 need_end_op = TRUE; 8698 8699 /* putfh directory */ 8700 argop[0].argop = OP_CPUTFH; 8701 argop[0].nfs_argop4_u.opcputfh.sfh = drp->r_fh; 8702 8703 /* remove */ 8704 argop[1].argop = OP_CREMOVE; 8705 argop[1].nfs_argop4_u.opcremove.ctarget = nm; 8706 8707 /* getattr (postop attrs for dir that contained removed dir) */ 8708 argop[2].argop = OP_GETATTR; 8709 argop[2].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 8710 argop[2].nfs_argop4_u.opgetattr.mi = mi; 8711 8712 dinfo.di_time_call = gethrtime(); 8713 doqueue = 1; 8714 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e); 8715 8716 PURGE_ATTRCACHE4(vp); 8717 8718 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp); 8719 if (e.error) { 8720 PURGE_ATTRCACHE4(dvp); 8721 } 8722 8723 if (needrecov) { 8724 if (nfs4_start_recovery(&e, VTOMI4(dvp), dvp, NULL, NULL, 8725 NULL, OP_REMOVE, NULL) == FALSE) { 8726 if (!e.error) 8727 (void) xdr_free(xdr_COMPOUND4res_clnt, 8728 (caddr_t)&res); 8729 8730 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, 8731 needrecov); 8732 need_end_op = FALSE; 8733 goto recov_retry; 8734 } 8735 } 8736 8737 if (!e.error) { 8738 resp = &res; 8739 8740 /* 8741 * Only return error if first 2 ops (OP_REMOVE or earlier) 8742 * failed. 8743 */ 8744 if (res.status != NFS4_OK && res.array_len <= 2) { 8745 e.error = geterrno4(res.status); 8746 PURGE_ATTRCACHE4(dvp); 8747 nfs4_end_op(VTOMI4(dvp), dvp, NULL, 8748 &recov_state, needrecov); 8749 need_end_op = FALSE; 8750 nfs4_purge_stale_fh(e.error, dvp, cr); 8751 /* 8752 * System V defines rmdir to return EEXIST, not 8753 * ENOTEMPTY if the directory is not empty. Over 8754 * the wire, the error is NFSERR_ENOTEMPTY which 8755 * geterrno4 maps to ENOTEMPTY. 8756 */ 8757 if (e.error == ENOTEMPTY) 8758 e.error = EEXIST; 8759 } else { 8760 resop = &res.array[1]; /* remove res */ 8761 rm_res = &resop->nfs_resop4_u.opremove; 8762 8763 if (res.status == NFS4_OK) { 8764 resop = &res.array[2]; /* dir attrs */ 8765 dinfo.di_garp = 8766 &resop->nfs_resop4_u.opgetattr.ga_res; 8767 dinfo.di_cred = cr; 8768 dinfop = &dinfo; 8769 } else 8770 dinfop = NULL; 8771 8772 /* Update dir attribute, readdir and dnlc caches */ 8773 nfs4_update_dircaches(&rm_res->cinfo, dvp, NULL, NULL, 8774 dinfop); 8775 8776 /* destroy rddir cache for dir that was removed */ 8777 if (VTOR4(vp)->r_dir != NULL) 8778 nfs4_purge_rddir_cache(vp); 8779 } 8780 } 8781 8782 if (need_end_op) 8783 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, needrecov); 8784 8785 nfs_rw_exit(&drp->r_rwlock); 8786 8787 if (resp) 8788 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp); 8789 8790 if (e.error == 0) { 8791 vnode_t *tvp; 8792 rnode4_t *trp; 8793 trp = VTOR4(vp); 8794 tvp = vp; 8795 if (IS_SHADOW(vp, trp)) 8796 tvp = RTOV4(trp); 8797 vnevent_rmdir(tvp, dvp, nm, ct); 8798 } 8799 8800 VN_RELE(vp); 8801 8802 return (e.error); 8803 } 8804 8805 /* ARGSUSED */ 8806 static int 8807 nfs4_symlink(vnode_t *dvp, char *lnm, struct vattr *tva, char *tnm, cred_t *cr, 8808 caller_context_t *ct, int flags) 8809 { 8810 int error; 8811 vnode_t *vp; 8812 rnode4_t *rp; 8813 char *contents; 8814 mntinfo4_t *mi = VTOMI4(dvp); 8815 8816 if (nfs_zone() != mi->mi_zone) 8817 return (EPERM); 8818 if (!(mi->mi_flags & MI4_SYMLINK)) 8819 return (EOPNOTSUPP); 8820 8821 error = call_nfs4_create_req(dvp, lnm, tnm, tva, &vp, cr, NF4LNK); 8822 if (error) 8823 return (error); 8824 8825 ASSERT(nfs4_consistent_type(vp)); 8826 rp = VTOR4(vp); 8827 if (nfs4_do_symlink_cache && rp->r_symlink.contents == NULL) { 8828 8829 contents = kmem_alloc(MAXPATHLEN, KM_SLEEP); 8830 8831 if (contents != NULL) { 8832 mutex_enter(&rp->r_statelock); 8833 if (rp->r_symlink.contents == NULL) { 8834 rp->r_symlink.len = strlen(tnm); 8835 bcopy(tnm, contents, rp->r_symlink.len); 8836 rp->r_symlink.contents = contents; 8837 rp->r_symlink.size = MAXPATHLEN; 8838 mutex_exit(&rp->r_statelock); 8839 } else { 8840 mutex_exit(&rp->r_statelock); 8841 kmem_free((void *)contents, MAXPATHLEN); 8842 } 8843 } 8844 } 8845 VN_RELE(vp); 8846 8847 return (error); 8848 } 8849 8850 8851 /* 8852 * Read directory entries. 8853 * There are some weird things to look out for here. The uio_loffset 8854 * field is either 0 or it is the offset returned from a previous 8855 * readdir. It is an opaque value used by the server to find the 8856 * correct directory block to read. The count field is the number 8857 * of blocks to read on the server. This is advisory only, the server 8858 * may return only one block's worth of entries. Entries may be compressed 8859 * on the server. 8860 */ 8861 /* ARGSUSED */ 8862 static int 8863 nfs4_readdir(vnode_t *vp, struct uio *uiop, cred_t *cr, int *eofp, 8864 caller_context_t *ct, int flags) 8865 { 8866 int error; 8867 uint_t count; 8868 rnode4_t *rp; 8869 rddir4_cache *rdc; 8870 rddir4_cache *rrdc; 8871 8872 if (nfs_zone() != VTOMI4(vp)->mi_zone) 8873 return (EIO); 8874 rp = VTOR4(vp); 8875 8876 ASSERT(nfs_rw_lock_held(&rp->r_rwlock, RW_READER)); 8877 8878 /* 8879 * Make sure that the directory cache is valid. 8880 */ 8881 if (rp->r_dir != NULL) { 8882 if (nfs_disable_rddir_cache != 0) { 8883 /* 8884 * Setting nfs_disable_rddir_cache in /etc/system 8885 * allows interoperability with servers that do not 8886 * properly update the attributes of directories. 8887 * Any cached information gets purged before an 8888 * access is made to it. 8889 */ 8890 nfs4_purge_rddir_cache(vp); 8891 } 8892 8893 error = nfs4_validate_caches(vp, cr); 8894 if (error) 8895 return (error); 8896 } 8897 8898 count = MIN(uiop->uio_iov->iov_len, MAXBSIZE); 8899 8900 /* 8901 * Short circuit last readdir which always returns 0 bytes. 8902 * This can be done after the directory has been read through 8903 * completely at least once. This will set r_direof which 8904 * can be used to find the value of the last cookie. 8905 */ 8906 mutex_enter(&rp->r_statelock); 8907 if (rp->r_direof != NULL && 8908 uiop->uio_loffset == rp->r_direof->nfs4_ncookie) { 8909 mutex_exit(&rp->r_statelock); 8910 #ifdef DEBUG 8911 nfs4_readdir_cache_shorts++; 8912 #endif 8913 if (eofp) 8914 *eofp = 1; 8915 return (0); 8916 } 8917 8918 /* 8919 * Look for a cache entry. Cache entries are identified 8920 * by the NFS cookie value and the byte count requested. 8921 */ 8922 rdc = rddir4_cache_lookup(rp, uiop->uio_loffset, count); 8923 8924 /* 8925 * If rdc is NULL then the lookup resulted in an unrecoverable error. 8926 */ 8927 if (rdc == NULL) { 8928 mutex_exit(&rp->r_statelock); 8929 return (EINTR); 8930 } 8931 8932 /* 8933 * Check to see if we need to fill this entry in. 8934 */ 8935 if (rdc->flags & RDDIRREQ) { 8936 rdc->flags &= ~RDDIRREQ; 8937 rdc->flags |= RDDIR; 8938 mutex_exit(&rp->r_statelock); 8939 8940 /* 8941 * Do the readdir. 8942 */ 8943 nfs4readdir(vp, rdc, cr); 8944 8945 /* 8946 * Reacquire the lock, so that we can continue 8947 */ 8948 mutex_enter(&rp->r_statelock); 8949 /* 8950 * The entry is now complete 8951 */ 8952 rdc->flags &= ~RDDIR; 8953 } 8954 8955 ASSERT(!(rdc->flags & RDDIR)); 8956 8957 /* 8958 * If an error occurred while attempting 8959 * to fill the cache entry, mark the entry invalid and 8960 * just return the error. 8961 */ 8962 if (rdc->error) { 8963 error = rdc->error; 8964 rdc->flags |= RDDIRREQ; 8965 rddir4_cache_rele(rp, rdc); 8966 mutex_exit(&rp->r_statelock); 8967 return (error); 8968 } 8969 8970 /* 8971 * The cache entry is complete and good, 8972 * copyout the dirent structs to the calling 8973 * thread. 8974 */ 8975 error = uiomove(rdc->entries, rdc->actlen, UIO_READ, uiop); 8976 8977 /* 8978 * If no error occurred during the copyout, 8979 * update the offset in the uio struct to 8980 * contain the value of the next NFS 4 cookie 8981 * and set the eof value appropriately. 8982 */ 8983 if (!error) { 8984 uiop->uio_loffset = rdc->nfs4_ncookie; 8985 if (eofp) 8986 *eofp = rdc->eof; 8987 } 8988 8989 /* 8990 * Decide whether to do readahead. Don't if we 8991 * have already read to the end of directory. 8992 */ 8993 if (rdc->eof) { 8994 /* 8995 * Make the entry the direof only if it is cached 8996 */ 8997 if (rdc->flags & RDDIRCACHED) 8998 rp->r_direof = rdc; 8999 rddir4_cache_rele(rp, rdc); 9000 mutex_exit(&rp->r_statelock); 9001 return (error); 9002 } 9003 9004 /* Determine if a readdir readahead should be done */ 9005 if (!(rp->r_flags & R4LOOKUP)) { 9006 rddir4_cache_rele(rp, rdc); 9007 mutex_exit(&rp->r_statelock); 9008 return (error); 9009 } 9010 9011 /* 9012 * Now look for a readahead entry. 9013 * 9014 * Check to see whether we found an entry for the readahead. 9015 * If so, we don't need to do anything further, so free the new 9016 * entry if one was allocated. Otherwise, allocate a new entry, add 9017 * it to the cache, and then initiate an asynchronous readdir 9018 * operation to fill it. 9019 */ 9020 rrdc = rddir4_cache_lookup(rp, rdc->nfs4_ncookie, count); 9021 9022 /* 9023 * A readdir cache entry could not be obtained for the readahead. In 9024 * this case we skip the readahead and return. 9025 */ 9026 if (rrdc == NULL) { 9027 rddir4_cache_rele(rp, rdc); 9028 mutex_exit(&rp->r_statelock); 9029 return (error); 9030 } 9031 9032 /* 9033 * Check to see if we need to fill this entry in. 9034 */ 9035 if (rrdc->flags & RDDIRREQ) { 9036 rrdc->flags &= ~RDDIRREQ; 9037 rrdc->flags |= RDDIR; 9038 rddir4_cache_rele(rp, rdc); 9039 mutex_exit(&rp->r_statelock); 9040 #ifdef DEBUG 9041 nfs4_readdir_readahead++; 9042 #endif 9043 /* 9044 * Do the readdir. 9045 */ 9046 nfs4_async_readdir(vp, rrdc, cr, do_nfs4readdir); 9047 return (error); 9048 } 9049 9050 rddir4_cache_rele(rp, rrdc); 9051 rddir4_cache_rele(rp, rdc); 9052 mutex_exit(&rp->r_statelock); 9053 return (error); 9054 } 9055 9056 static int 9057 do_nfs4readdir(vnode_t *vp, rddir4_cache *rdc, cred_t *cr) 9058 { 9059 int error; 9060 rnode4_t *rp; 9061 9062 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 9063 9064 rp = VTOR4(vp); 9065 9066 /* 9067 * Obtain the readdir results for the caller. 9068 */ 9069 nfs4readdir(vp, rdc, cr); 9070 9071 mutex_enter(&rp->r_statelock); 9072 /* 9073 * The entry is now complete 9074 */ 9075 rdc->flags &= ~RDDIR; 9076 9077 error = rdc->error; 9078 if (error) 9079 rdc->flags |= RDDIRREQ; 9080 rddir4_cache_rele(rp, rdc); 9081 mutex_exit(&rp->r_statelock); 9082 9083 return (error); 9084 } 9085 9086 /* 9087 * Read directory entries. 9088 * There are some weird things to look out for here. The uio_loffset 9089 * field is either 0 or it is the offset returned from a previous 9090 * readdir. It is an opaque value used by the server to find the 9091 * correct directory block to read. The count field is the number 9092 * of blocks to read on the server. This is advisory only, the server 9093 * may return only one block's worth of entries. Entries may be compressed 9094 * on the server. 9095 * 9096 * Generates the following compound request: 9097 * 1. If readdir offset is zero and no dnlc entry for parent exists, 9098 * must include a Lookupp as well. In this case, send: 9099 * { Putfh <fh>; Readdir; Lookupp; Getfh; Getattr } 9100 * 2. Otherwise just do: { Putfh <fh>; Readdir } 9101 * 9102 * Get complete attributes and filehandles for entries if this is the 9103 * first read of the directory. Otherwise, just get fileid's. 9104 */ 9105 static void 9106 nfs4readdir(vnode_t *vp, rddir4_cache *rdc, cred_t *cr) 9107 { 9108 COMPOUND4args_clnt args; 9109 COMPOUND4res_clnt res; 9110 READDIR4args *rargs; 9111 READDIR4res_clnt *rd_res; 9112 bitmap4 rd_bitsval; 9113 nfs_argop4 argop[5]; 9114 nfs_resop4 *resop; 9115 rnode4_t *rp = VTOR4(vp); 9116 mntinfo4_t *mi = VTOMI4(vp); 9117 int doqueue; 9118 u_longlong_t nodeid, pnodeid; /* id's of dir and its parents */ 9119 vnode_t *dvp; 9120 nfs_cookie4 cookie = (nfs_cookie4)rdc->nfs4_cookie; 9121 int num_ops, res_opcnt; 9122 bool_t needrecov = FALSE; 9123 nfs4_recov_state_t recov_state; 9124 hrtime_t t; 9125 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 9126 9127 ASSERT(nfs_zone() == mi->mi_zone); 9128 ASSERT(rdc->flags & RDDIR); 9129 ASSERT(rdc->entries == NULL); 9130 9131 /* 9132 * If rp were a stub, it should have triggered and caused 9133 * a mount for us to get this far. 9134 */ 9135 ASSERT(!RP_ISSTUB(rp)); 9136 9137 num_ops = 2; 9138 if (cookie == (nfs_cookie4)0 || cookie == (nfs_cookie4)1) { 9139 /* 9140 * Since nfsv4 readdir may not return entries for "." and "..", 9141 * the client must recreate them: 9142 * To find the correct nodeid, do the following: 9143 * For current node, get nodeid from dnlc. 9144 * - if current node is rootvp, set pnodeid to nodeid. 9145 * - else if parent is in the dnlc, get its nodeid from there. 9146 * - else add LOOKUPP+GETATTR to compound. 9147 */ 9148 nodeid = rp->r_attr.va_nodeid; 9149 if (vp->v_flag & VROOT) { 9150 pnodeid = nodeid; /* root of mount point */ 9151 } else { 9152 dvp = dnlc_lookup(vp, ".."); 9153 if (dvp != NULL && dvp != DNLC_NO_VNODE) { 9154 /* parent in dnlc cache - no need for otw */ 9155 pnodeid = VTOR4(dvp)->r_attr.va_nodeid; 9156 } else { 9157 /* 9158 * parent not in dnlc cache, 9159 * do lookupp to get its id 9160 */ 9161 num_ops = 5; 9162 pnodeid = 0; /* set later by getattr parent */ 9163 } 9164 if (dvp) 9165 VN_RELE(dvp); 9166 } 9167 } 9168 recov_state.rs_flags = 0; 9169 recov_state.rs_num_retry_despite_err = 0; 9170 9171 /* Save the original mount point security flavor */ 9172 (void) save_mnt_secinfo(mi->mi_curr_serv); 9173 9174 recov_retry: 9175 args.ctag = TAG_READDIR; 9176 9177 args.array = argop; 9178 args.array_len = num_ops; 9179 9180 if (e.error = nfs4_start_fop(VTOMI4(vp), vp, NULL, OH_READDIR, 9181 &recov_state, NULL)) { 9182 /* 9183 * If readdir a node that is a stub for a crossed mount point, 9184 * keep the original secinfo flavor for the current file 9185 * system, not the crossed one. 9186 */ 9187 (void) check_mnt_secinfo(mi->mi_curr_serv, vp); 9188 rdc->error = e.error; 9189 return; 9190 } 9191 9192 /* 9193 * Determine which attrs to request for dirents. This code 9194 * must be protected by nfs4_start/end_fop because of r_server 9195 * (which will change during failover recovery). 9196 * 9197 */ 9198 if (rp->r_flags & (R4LOOKUP | R4READDIRWATTR)) { 9199 /* 9200 * Get all vattr attrs plus filehandle and rdattr_error 9201 */ 9202 rd_bitsval = NFS4_VATTR_MASK | 9203 FATTR4_RDATTR_ERROR_MASK | 9204 FATTR4_FILEHANDLE_MASK; 9205 9206 if (rp->r_flags & R4READDIRWATTR) { 9207 mutex_enter(&rp->r_statelock); 9208 rp->r_flags &= ~R4READDIRWATTR; 9209 mutex_exit(&rp->r_statelock); 9210 } 9211 } else { 9212 servinfo4_t *svp = rp->r_server; 9213 9214 /* 9215 * Already read directory. Use readdir with 9216 * no attrs (except for mounted_on_fileid) for updates. 9217 */ 9218 rd_bitsval = FATTR4_RDATTR_ERROR_MASK; 9219 9220 /* 9221 * request mounted on fileid if supported, else request 9222 * fileid. maybe we should verify that fileid is supported 9223 * and request something else if not. 9224 */ 9225 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0); 9226 if (svp->sv_supp_attrs & FATTR4_MOUNTED_ON_FILEID_MASK) 9227 rd_bitsval |= FATTR4_MOUNTED_ON_FILEID_MASK; 9228 nfs_rw_exit(&svp->sv_lock); 9229 } 9230 9231 /* putfh directory fh */ 9232 argop[0].argop = OP_CPUTFH; 9233 argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh; 9234 9235 argop[1].argop = OP_READDIR; 9236 rargs = &argop[1].nfs_argop4_u.opreaddir; 9237 /* 9238 * 1 and 2 are reserved for client "." and ".." entry offset. 9239 * cookie 0 should be used over-the-wire to start reading at 9240 * the beginning of the directory excluding "." and "..". 9241 */ 9242 if (rdc->nfs4_cookie == 0 || 9243 rdc->nfs4_cookie == 1 || 9244 rdc->nfs4_cookie == 2) { 9245 rargs->cookie = (nfs_cookie4)0; 9246 rargs->cookieverf = 0; 9247 } else { 9248 rargs->cookie = (nfs_cookie4)rdc->nfs4_cookie; 9249 mutex_enter(&rp->r_statelock); 9250 rargs->cookieverf = rp->r_cookieverf4; 9251 mutex_exit(&rp->r_statelock); 9252 } 9253 rargs->dircount = MIN(rdc->buflen, mi->mi_tsize); 9254 rargs->maxcount = mi->mi_tsize; 9255 rargs->attr_request = rd_bitsval; 9256 rargs->rdc = rdc; 9257 rargs->dvp = vp; 9258 rargs->mi = mi; 9259 rargs->cr = cr; 9260 9261 9262 /* 9263 * If count < than the minimum required, we return no entries 9264 * and fail with EINVAL 9265 */ 9266 if (rargs->dircount < (DIRENT64_RECLEN(1) + DIRENT64_RECLEN(2))) { 9267 rdc->error = EINVAL; 9268 goto out; 9269 } 9270 9271 if (args.array_len == 5) { 9272 /* 9273 * Add lookupp and getattr for parent nodeid. 9274 */ 9275 argop[2].argop = OP_LOOKUPP; 9276 9277 argop[3].argop = OP_GETFH; 9278 9279 /* getattr parent */ 9280 argop[4].argop = OP_GETATTR; 9281 argop[4].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 9282 argop[4].nfs_argop4_u.opgetattr.mi = mi; 9283 } 9284 9285 doqueue = 1; 9286 9287 if (mi->mi_io_kstats) { 9288 mutex_enter(&mi->mi_lock); 9289 kstat_runq_enter(KSTAT_IO_PTR(mi->mi_io_kstats)); 9290 mutex_exit(&mi->mi_lock); 9291 } 9292 9293 /* capture the time of this call */ 9294 rargs->t = t = gethrtime(); 9295 9296 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e); 9297 9298 if (mi->mi_io_kstats) { 9299 mutex_enter(&mi->mi_lock); 9300 kstat_runq_exit(KSTAT_IO_PTR(mi->mi_io_kstats)); 9301 mutex_exit(&mi->mi_lock); 9302 } 9303 9304 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp); 9305 9306 /* 9307 * If RPC error occurred and it isn't an error that 9308 * triggers recovery, then go ahead and fail now. 9309 */ 9310 if (e.error != 0 && !needrecov) { 9311 rdc->error = e.error; 9312 goto out; 9313 } 9314 9315 if (needrecov) { 9316 bool_t abort; 9317 9318 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 9319 "nfs4readdir: initiating recovery.\n")); 9320 9321 abort = nfs4_start_recovery(&e, VTOMI4(vp), vp, NULL, NULL, 9322 NULL, OP_READDIR, NULL); 9323 if (abort == FALSE) { 9324 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_READDIR, 9325 &recov_state, needrecov); 9326 if (!e.error) 9327 (void) xdr_free(xdr_COMPOUND4res_clnt, 9328 (caddr_t)&res); 9329 if (rdc->entries != NULL) { 9330 kmem_free(rdc->entries, rdc->entlen); 9331 rdc->entries = NULL; 9332 } 9333 goto recov_retry; 9334 } 9335 9336 if (e.error != 0) { 9337 rdc->error = e.error; 9338 goto out; 9339 } 9340 9341 /* fall through for res.status case */ 9342 } 9343 9344 res_opcnt = res.array_len; 9345 9346 /* 9347 * If compound failed first 2 ops (PUTFH+READDIR), then return 9348 * failure here. Subsequent ops are for filling out dot-dot 9349 * dirent, and if they fail, we still want to give the caller 9350 * the dirents returned by (the successful) READDIR op, so we need 9351 * to silently ignore failure for subsequent ops (LOOKUPP+GETATTR). 9352 * 9353 * One example where PUTFH+READDIR ops would succeed but 9354 * LOOKUPP+GETATTR would fail would be a dir that has r perm 9355 * but lacks x. In this case, a POSIX server's VOP_READDIR 9356 * would succeed; however, VOP_LOOKUP(..) would fail since no 9357 * x perm. We need to come up with a non-vendor-specific way 9358 * for a POSIX server to return d_ino from dotdot's dirent if 9359 * client only requests mounted_on_fileid, and just say the 9360 * LOOKUPP succeeded and fill out the GETATTR. However, if 9361 * client requested any mandatory attrs, server would be required 9362 * to fail the GETATTR op because it can't call VOP_LOOKUP+VOP_GETATTR 9363 * for dotdot. 9364 */ 9365 9366 if (res.status) { 9367 if (res_opcnt <= 2) { 9368 e.error = geterrno4(res.status); 9369 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_READDIR, 9370 &recov_state, needrecov); 9371 nfs4_purge_stale_fh(e.error, vp, cr); 9372 rdc->error = e.error; 9373 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 9374 if (rdc->entries != NULL) { 9375 kmem_free(rdc->entries, rdc->entlen); 9376 rdc->entries = NULL; 9377 } 9378 /* 9379 * If readdir a node that is a stub for a 9380 * crossed mount point, keep the original 9381 * secinfo flavor for the current file system, 9382 * not the crossed one. 9383 */ 9384 (void) check_mnt_secinfo(mi->mi_curr_serv, vp); 9385 return; 9386 } 9387 } 9388 9389 resop = &res.array[1]; /* readdir res */ 9390 rd_res = &resop->nfs_resop4_u.opreaddirclnt; 9391 9392 mutex_enter(&rp->r_statelock); 9393 rp->r_cookieverf4 = rd_res->cookieverf; 9394 mutex_exit(&rp->r_statelock); 9395 9396 /* 9397 * For "." and ".." entries 9398 * e.g. 9399 * seek(cookie=0) -> "." entry with d_off = 1 9400 * seek(cookie=1) -> ".." entry with d_off = 2 9401 */ 9402 if (cookie == (nfs_cookie4) 0) { 9403 if (rd_res->dotp) 9404 rd_res->dotp->d_ino = nodeid; 9405 if (rd_res->dotdotp) 9406 rd_res->dotdotp->d_ino = pnodeid; 9407 } 9408 if (cookie == (nfs_cookie4) 1) { 9409 if (rd_res->dotdotp) 9410 rd_res->dotdotp->d_ino = pnodeid; 9411 } 9412 9413 9414 /* LOOKUPP+GETATTR attemped */ 9415 if (args.array_len == 5 && rd_res->dotdotp) { 9416 if (res.status == NFS4_OK && res_opcnt == 5) { 9417 nfs_fh4 *fhp; 9418 nfs4_sharedfh_t *sfhp; 9419 vnode_t *pvp; 9420 nfs4_ga_res_t *garp; 9421 9422 resop++; /* lookupp */ 9423 resop++; /* getfh */ 9424 fhp = &resop->nfs_resop4_u.opgetfh.object; 9425 9426 resop++; /* getattr of parent */ 9427 9428 /* 9429 * First, take care of finishing the 9430 * readdir results. 9431 */ 9432 garp = &resop->nfs_resop4_u.opgetattr.ga_res; 9433 /* 9434 * The d_ino of .. must be the inode number 9435 * of the mounted filesystem. 9436 */ 9437 if (garp->n4g_va.va_mask & AT_NODEID) 9438 rd_res->dotdotp->d_ino = 9439 garp->n4g_va.va_nodeid; 9440 9441 9442 /* 9443 * Next, create the ".." dnlc entry 9444 */ 9445 sfhp = sfh4_get(fhp, mi); 9446 if (!nfs4_make_dotdot(sfhp, t, vp, cr, &pvp, 0)) { 9447 dnlc_update(vp, "..", pvp); 9448 VN_RELE(pvp); 9449 } 9450 sfh4_rele(&sfhp); 9451 } 9452 } 9453 9454 if (mi->mi_io_kstats) { 9455 mutex_enter(&mi->mi_lock); 9456 KSTAT_IO_PTR(mi->mi_io_kstats)->reads++; 9457 KSTAT_IO_PTR(mi->mi_io_kstats)->nread += rdc->actlen; 9458 mutex_exit(&mi->mi_lock); 9459 } 9460 9461 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 9462 9463 out: 9464 /* 9465 * If readdir a node that is a stub for a crossed mount point, 9466 * keep the original secinfo flavor for the current file system, 9467 * not the crossed one. 9468 */ 9469 (void) check_mnt_secinfo(mi->mi_curr_serv, vp); 9470 9471 nfs4_end_fop(mi, vp, NULL, OH_READDIR, &recov_state, needrecov); 9472 } 9473 9474 9475 static int 9476 nfs4_bio(struct buf *bp, stable_how4 *stab_comm, cred_t *cr, bool_t readahead) 9477 { 9478 rnode4_t *rp = VTOR4(bp->b_vp); 9479 int count; 9480 int error; 9481 cred_t *cred_otw = NULL; 9482 offset_t offset; 9483 nfs4_open_stream_t *osp = NULL; 9484 bool_t first_time = TRUE; /* first time getting otw cred */ 9485 bool_t last_time = FALSE; /* last time getting otw cred */ 9486 9487 ASSERT(nfs_zone() == VTOMI4(bp->b_vp)->mi_zone); 9488 9489 DTRACE_IO1(start, struct buf *, bp); 9490 offset = ldbtob(bp->b_lblkno); 9491 9492 if (bp->b_flags & B_READ) { 9493 read_again: 9494 /* 9495 * Releases the osp, if it is provided. 9496 * Puts a hold on the cred_otw and the new osp (if found). 9497 */ 9498 cred_otw = nfs4_get_otw_cred_by_osp(rp, cr, &osp, 9499 &first_time, &last_time); 9500 error = bp->b_error = nfs4read(bp->b_vp, bp->b_un.b_addr, 9501 offset, bp->b_bcount, &bp->b_resid, cred_otw, 9502 readahead, NULL); 9503 crfree(cred_otw); 9504 if (!error) { 9505 if (bp->b_resid) { 9506 /* 9507 * Didn't get it all because we hit EOF, 9508 * zero all the memory beyond the EOF. 9509 */ 9510 /* bzero(rdaddr + */ 9511 bzero(bp->b_un.b_addr + 9512 bp->b_bcount - bp->b_resid, bp->b_resid); 9513 } 9514 mutex_enter(&rp->r_statelock); 9515 if (bp->b_resid == bp->b_bcount && 9516 offset >= rp->r_size) { 9517 /* 9518 * We didn't read anything at all as we are 9519 * past EOF. Return an error indicator back 9520 * but don't destroy the pages (yet). 9521 */ 9522 error = NFS_EOF; 9523 } 9524 mutex_exit(&rp->r_statelock); 9525 } else if (error == EACCES && last_time == FALSE) { 9526 goto read_again; 9527 } 9528 } else { 9529 if (!(rp->r_flags & R4STALE)) { 9530 write_again: 9531 /* 9532 * Releases the osp, if it is provided. 9533 * Puts a hold on the cred_otw and the new 9534 * osp (if found). 9535 */ 9536 cred_otw = nfs4_get_otw_cred_by_osp(rp, cr, &osp, 9537 &first_time, &last_time); 9538 mutex_enter(&rp->r_statelock); 9539 count = MIN(bp->b_bcount, rp->r_size - offset); 9540 mutex_exit(&rp->r_statelock); 9541 if (count < 0) 9542 cmn_err(CE_PANIC, "nfs4_bio: write count < 0"); 9543 #ifdef DEBUG 9544 if (count == 0) { 9545 zoneid_t zoneid = getzoneid(); 9546 9547 zcmn_err(zoneid, CE_WARN, 9548 "nfs4_bio: zero length write at %lld", 9549 offset); 9550 zcmn_err(zoneid, CE_CONT, "flags=0x%x, " 9551 "b_bcount=%ld, file size=%lld", 9552 rp->r_flags, (long)bp->b_bcount, 9553 rp->r_size); 9554 sfh4_printfhandle(VTOR4(bp->b_vp)->r_fh); 9555 if (nfs4_bio_do_stop) 9556 debug_enter("nfs4_bio"); 9557 } 9558 #endif 9559 error = nfs4write(bp->b_vp, bp->b_un.b_addr, offset, 9560 count, cred_otw, stab_comm); 9561 if (error == EACCES && last_time == FALSE) { 9562 crfree(cred_otw); 9563 goto write_again; 9564 } 9565 bp->b_error = error; 9566 if (error && error != EINTR && 9567 !(bp->b_vp->v_vfsp->vfs_flag & VFS_UNMOUNTED)) { 9568 /* 9569 * Don't print EDQUOT errors on the console. 9570 * Don't print asynchronous EACCES errors. 9571 * Don't print EFBIG errors. 9572 * Print all other write errors. 9573 */ 9574 if (error != EDQUOT && error != EFBIG && 9575 (error != EACCES || 9576 !(bp->b_flags & B_ASYNC))) 9577 nfs4_write_error(bp->b_vp, 9578 error, cred_otw); 9579 /* 9580 * Update r_error and r_flags as appropriate. 9581 * If the error was ESTALE, then mark the 9582 * rnode as not being writeable and save 9583 * the error status. Otherwise, save any 9584 * errors which occur from asynchronous 9585 * page invalidations. Any errors occurring 9586 * from other operations should be saved 9587 * by the caller. 9588 */ 9589 mutex_enter(&rp->r_statelock); 9590 if (error == ESTALE) { 9591 rp->r_flags |= R4STALE; 9592 if (!rp->r_error) 9593 rp->r_error = error; 9594 } else if (!rp->r_error && 9595 (bp->b_flags & 9596 (B_INVAL|B_FORCE|B_ASYNC)) == 9597 (B_INVAL|B_FORCE|B_ASYNC)) { 9598 rp->r_error = error; 9599 } 9600 mutex_exit(&rp->r_statelock); 9601 } 9602 crfree(cred_otw); 9603 } else { 9604 error = rp->r_error; 9605 /* 9606 * A close may have cleared r_error, if so, 9607 * propagate ESTALE error return properly 9608 */ 9609 if (error == 0) 9610 error = ESTALE; 9611 } 9612 } 9613 9614 if (error != 0 && error != NFS_EOF) 9615 bp->b_flags |= B_ERROR; 9616 9617 if (osp) 9618 open_stream_rele(osp, rp); 9619 9620 DTRACE_IO1(done, struct buf *, bp); 9621 9622 return (error); 9623 } 9624 9625 /* ARGSUSED */ 9626 int 9627 nfs4_fid(vnode_t *vp, fid_t *fidp, caller_context_t *ct) 9628 { 9629 return (EREMOTE); 9630 } 9631 9632 /* ARGSUSED2 */ 9633 int 9634 nfs4_rwlock(vnode_t *vp, int write_lock, caller_context_t *ctp) 9635 { 9636 rnode4_t *rp = VTOR4(vp); 9637 9638 if (!write_lock) { 9639 (void) nfs_rw_enter_sig(&rp->r_rwlock, RW_READER, FALSE); 9640 return (V_WRITELOCK_FALSE); 9641 } 9642 9643 if ((rp->r_flags & R4DIRECTIO) || 9644 (VTOMI4(vp)->mi_flags & MI4_DIRECTIO)) { 9645 (void) nfs_rw_enter_sig(&rp->r_rwlock, RW_READER, FALSE); 9646 if (rp->r_mapcnt == 0 && !nfs4_has_pages(vp)) 9647 return (V_WRITELOCK_FALSE); 9648 nfs_rw_exit(&rp->r_rwlock); 9649 } 9650 9651 (void) nfs_rw_enter_sig(&rp->r_rwlock, RW_WRITER, FALSE); 9652 return (V_WRITELOCK_TRUE); 9653 } 9654 9655 /* ARGSUSED */ 9656 void 9657 nfs4_rwunlock(vnode_t *vp, int write_lock, caller_context_t *ctp) 9658 { 9659 rnode4_t *rp = VTOR4(vp); 9660 9661 nfs_rw_exit(&rp->r_rwlock); 9662 } 9663 9664 /* ARGSUSED */ 9665 static int 9666 nfs4_seek(vnode_t *vp, offset_t ooff, offset_t *noffp, caller_context_t *ct) 9667 { 9668 if (nfs_zone() != VTOMI4(vp)->mi_zone) 9669 return (EIO); 9670 9671 /* 9672 * Because we stuff the readdir cookie into the offset field 9673 * someone may attempt to do an lseek with the cookie which 9674 * we want to succeed. 9675 */ 9676 if (vp->v_type == VDIR) 9677 return (0); 9678 if (*noffp < 0) 9679 return (EINVAL); 9680 return (0); 9681 } 9682 9683 9684 /* 9685 * Return all the pages from [off..off+len) in file 9686 */ 9687 /* ARGSUSED */ 9688 static int 9689 nfs4_getpage(vnode_t *vp, offset_t off, size_t len, uint_t *protp, 9690 page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr, 9691 enum seg_rw rw, cred_t *cr, caller_context_t *ct) 9692 { 9693 rnode4_t *rp; 9694 int error; 9695 mntinfo4_t *mi; 9696 9697 if (nfs_zone() != VTOMI4(vp)->mi_zone) 9698 return (EIO); 9699 rp = VTOR4(vp); 9700 if (IS_SHADOW(vp, rp)) 9701 vp = RTOV4(rp); 9702 9703 if (vp->v_flag & VNOMAP) 9704 return (ENOSYS); 9705 9706 if (protp != NULL) 9707 *protp = PROT_ALL; 9708 9709 /* 9710 * Now validate that the caches are up to date. 9711 */ 9712 if (error = nfs4_validate_caches(vp, cr)) 9713 return (error); 9714 9715 mi = VTOMI4(vp); 9716 retry: 9717 mutex_enter(&rp->r_statelock); 9718 9719 /* 9720 * Don't create dirty pages faster than they 9721 * can be cleaned so that the system doesn't 9722 * get imbalanced. If the async queue is 9723 * maxed out, then wait for it to drain before 9724 * creating more dirty pages. Also, wait for 9725 * any threads doing pagewalks in the vop_getattr 9726 * entry points so that they don't block for 9727 * long periods. 9728 */ 9729 if (rw == S_CREATE) { 9730 while ((mi->mi_max_threads != 0 && 9731 rp->r_awcount > 2 * mi->mi_max_threads) || 9732 rp->r_gcount > 0) 9733 cv_wait(&rp->r_cv, &rp->r_statelock); 9734 } 9735 9736 /* 9737 * If we are getting called as a side effect of an nfs_write() 9738 * operation the local file size might not be extended yet. 9739 * In this case we want to be able to return pages of zeroes. 9740 */ 9741 if (off + len > rp->r_size + PAGEOFFSET && seg != segkmap) { 9742 NFS4_DEBUG(nfs4_pageio_debug, 9743 (CE_NOTE, "getpage beyond EOF: off=%lld, " 9744 "len=%llu, size=%llu, attrsize =%llu", off, 9745 (u_longlong_t)len, rp->r_size, rp->r_attr.va_size)); 9746 mutex_exit(&rp->r_statelock); 9747 return (EFAULT); /* beyond EOF */ 9748 } 9749 9750 mutex_exit(&rp->r_statelock); 9751 9752 if (len <= PAGESIZE) { 9753 error = nfs4_getapage(vp, off, len, protp, pl, plsz, 9754 seg, addr, rw, cr); 9755 NFS4_DEBUG(nfs4_pageio_debug && error, 9756 (CE_NOTE, "getpage error %d; off=%lld, " 9757 "len=%lld", error, off, (u_longlong_t)len)); 9758 } else { 9759 error = pvn_getpages(nfs4_getapage, vp, off, len, protp, 9760 pl, plsz, seg, addr, rw, cr); 9761 NFS4_DEBUG(nfs4_pageio_debug && error, 9762 (CE_NOTE, "getpages error %d; off=%lld, " 9763 "len=%lld", error, off, (u_longlong_t)len)); 9764 } 9765 9766 switch (error) { 9767 case NFS_EOF: 9768 nfs4_purge_caches(vp, NFS4_NOPURGE_DNLC, cr, FALSE); 9769 goto retry; 9770 case ESTALE: 9771 nfs4_purge_stale_fh(error, vp, cr); 9772 } 9773 9774 return (error); 9775 } 9776 9777 /* 9778 * Called from pvn_getpages or nfs4_getpage to get a particular page. 9779 */ 9780 /* ARGSUSED */ 9781 static int 9782 nfs4_getapage(vnode_t *vp, u_offset_t off, size_t len, uint_t *protp, 9783 page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr, 9784 enum seg_rw rw, cred_t *cr) 9785 { 9786 rnode4_t *rp; 9787 uint_t bsize; 9788 struct buf *bp; 9789 page_t *pp; 9790 u_offset_t lbn; 9791 u_offset_t io_off; 9792 u_offset_t blkoff; 9793 u_offset_t rablkoff; 9794 size_t io_len; 9795 uint_t blksize; 9796 int error; 9797 int readahead; 9798 int readahead_issued = 0; 9799 int ra_window; /* readahead window */ 9800 page_t *pagefound; 9801 page_t *savepp; 9802 9803 if (nfs_zone() != VTOMI4(vp)->mi_zone) 9804 return (EIO); 9805 9806 rp = VTOR4(vp); 9807 ASSERT(!IS_SHADOW(vp, rp)); 9808 bsize = MAX(vp->v_vfsp->vfs_bsize, PAGESIZE); 9809 9810 reread: 9811 bp = NULL; 9812 pp = NULL; 9813 pagefound = NULL; 9814 9815 if (pl != NULL) 9816 pl[0] = NULL; 9817 9818 error = 0; 9819 lbn = off / bsize; 9820 blkoff = lbn * bsize; 9821 9822 /* 9823 * Queueing up the readahead before doing the synchronous read 9824 * results in a significant increase in read throughput because 9825 * of the increased parallelism between the async threads and 9826 * the process context. 9827 */ 9828 if ((off & ((vp->v_vfsp->vfs_bsize) - 1)) == 0 && 9829 rw != S_CREATE && 9830 !(vp->v_flag & VNOCACHE)) { 9831 mutex_enter(&rp->r_statelock); 9832 9833 /* 9834 * Calculate the number of readaheads to do. 9835 * a) No readaheads at offset = 0. 9836 * b) Do maximum(nfs4_nra) readaheads when the readahead 9837 * window is closed. 9838 * c) Do readaheads between 1 to (nfs4_nra - 1) depending 9839 * upon how far the readahead window is open or close. 9840 * d) No readaheads if rp->r_nextr is not within the scope 9841 * of the readahead window (random i/o). 9842 */ 9843 9844 if (off == 0) 9845 readahead = 0; 9846 else if (blkoff == rp->r_nextr) 9847 readahead = nfs4_nra; 9848 else if (rp->r_nextr > blkoff && 9849 ((ra_window = (rp->r_nextr - blkoff) / bsize) 9850 <= (nfs4_nra - 1))) 9851 readahead = nfs4_nra - ra_window; 9852 else 9853 readahead = 0; 9854 9855 rablkoff = rp->r_nextr; 9856 while (readahead > 0 && rablkoff + bsize < rp->r_size) { 9857 mutex_exit(&rp->r_statelock); 9858 if (nfs4_async_readahead(vp, rablkoff + bsize, 9859 addr + (rablkoff + bsize - off), 9860 seg, cr, nfs4_readahead) < 0) { 9861 mutex_enter(&rp->r_statelock); 9862 break; 9863 } 9864 readahead--; 9865 rablkoff += bsize; 9866 /* 9867 * Indicate that we did a readahead so 9868 * readahead offset is not updated 9869 * by the synchronous read below. 9870 */ 9871 readahead_issued = 1; 9872 mutex_enter(&rp->r_statelock); 9873 /* 9874 * set readahead offset to 9875 * offset of last async readahead 9876 * request. 9877 */ 9878 rp->r_nextr = rablkoff; 9879 } 9880 mutex_exit(&rp->r_statelock); 9881 } 9882 9883 again: 9884 if ((pagefound = page_exists(vp, off)) == NULL) { 9885 if (pl == NULL) { 9886 (void) nfs4_async_readahead(vp, blkoff, addr, seg, cr, 9887 nfs4_readahead); 9888 } else if (rw == S_CREATE) { 9889 /* 9890 * Block for this page is not allocated, or the offset 9891 * is beyond the current allocation size, or we're 9892 * allocating a swap slot and the page was not found, 9893 * so allocate it and return a zero page. 9894 */ 9895 if ((pp = page_create_va(vp, off, 9896 PAGESIZE, PG_WAIT, seg, addr)) == NULL) 9897 cmn_err(CE_PANIC, "nfs4_getapage: page_create"); 9898 io_len = PAGESIZE; 9899 mutex_enter(&rp->r_statelock); 9900 rp->r_nextr = off + PAGESIZE; 9901 mutex_exit(&rp->r_statelock); 9902 } else { 9903 /* 9904 * Need to go to server to get a block 9905 */ 9906 mutex_enter(&rp->r_statelock); 9907 if (blkoff < rp->r_size && 9908 blkoff + bsize > rp->r_size) { 9909 /* 9910 * If less than a block left in 9911 * file read less than a block. 9912 */ 9913 if (rp->r_size <= off) { 9914 /* 9915 * Trying to access beyond EOF, 9916 * set up to get at least one page. 9917 */ 9918 blksize = off + PAGESIZE - blkoff; 9919 } else 9920 blksize = rp->r_size - blkoff; 9921 } else if ((off == 0) || 9922 (off != rp->r_nextr && !readahead_issued)) { 9923 blksize = PAGESIZE; 9924 blkoff = off; /* block = page here */ 9925 } else 9926 blksize = bsize; 9927 mutex_exit(&rp->r_statelock); 9928 9929 pp = pvn_read_kluster(vp, off, seg, addr, &io_off, 9930 &io_len, blkoff, blksize, 0); 9931 9932 /* 9933 * Some other thread has entered the page, 9934 * so just use it. 9935 */ 9936 if (pp == NULL) 9937 goto again; 9938 9939 /* 9940 * Now round the request size up to page boundaries. 9941 * This ensures that the entire page will be 9942 * initialized to zeroes if EOF is encountered. 9943 */ 9944 io_len = ptob(btopr(io_len)); 9945 9946 bp = pageio_setup(pp, io_len, vp, B_READ); 9947 ASSERT(bp != NULL); 9948 9949 /* 9950 * pageio_setup should have set b_addr to 0. This 9951 * is correct since we want to do I/O on a page 9952 * boundary. bp_mapin will use this addr to calculate 9953 * an offset, and then set b_addr to the kernel virtual 9954 * address it allocated for us. 9955 */ 9956 ASSERT(bp->b_un.b_addr == 0); 9957 9958 bp->b_edev = 0; 9959 bp->b_dev = 0; 9960 bp->b_lblkno = lbtodb(io_off); 9961 bp->b_file = vp; 9962 bp->b_offset = (offset_t)off; 9963 bp_mapin(bp); 9964 9965 /* 9966 * If doing a write beyond what we believe is EOF, 9967 * don't bother trying to read the pages from the 9968 * server, we'll just zero the pages here. We 9969 * don't check that the rw flag is S_WRITE here 9970 * because some implementations may attempt a 9971 * read access to the buffer before copying data. 9972 */ 9973 mutex_enter(&rp->r_statelock); 9974 if (io_off >= rp->r_size && seg == segkmap) { 9975 mutex_exit(&rp->r_statelock); 9976 bzero(bp->b_un.b_addr, io_len); 9977 } else { 9978 mutex_exit(&rp->r_statelock); 9979 error = nfs4_bio(bp, NULL, cr, FALSE); 9980 } 9981 9982 /* 9983 * Unmap the buffer before freeing it. 9984 */ 9985 bp_mapout(bp); 9986 pageio_done(bp); 9987 9988 savepp = pp; 9989 do { 9990 pp->p_fsdata = C_NOCOMMIT; 9991 } while ((pp = pp->p_next) != savepp); 9992 9993 if (error == NFS_EOF) { 9994 /* 9995 * If doing a write system call just return 9996 * zeroed pages, else user tried to get pages 9997 * beyond EOF, return error. We don't check 9998 * that the rw flag is S_WRITE here because 9999 * some implementations may attempt a read 10000 * access to the buffer before copying data. 10001 */ 10002 if (seg == segkmap) 10003 error = 0; 10004 else 10005 error = EFAULT; 10006 } 10007 10008 if (!readahead_issued && !error) { 10009 mutex_enter(&rp->r_statelock); 10010 rp->r_nextr = io_off + io_len; 10011 mutex_exit(&rp->r_statelock); 10012 } 10013 } 10014 } 10015 10016 out: 10017 if (pl == NULL) 10018 return (error); 10019 10020 if (error) { 10021 if (pp != NULL) 10022 pvn_read_done(pp, B_ERROR); 10023 return (error); 10024 } 10025 10026 if (pagefound) { 10027 se_t se = (rw == S_CREATE ? SE_EXCL : SE_SHARED); 10028 10029 /* 10030 * Page exists in the cache, acquire the appropriate lock. 10031 * If this fails, start all over again. 10032 */ 10033 if ((pp = page_lookup(vp, off, se)) == NULL) { 10034 #ifdef DEBUG 10035 nfs4_lostpage++; 10036 #endif 10037 goto reread; 10038 } 10039 pl[0] = pp; 10040 pl[1] = NULL; 10041 return (0); 10042 } 10043 10044 if (pp != NULL) 10045 pvn_plist_init(pp, pl, plsz, off, io_len, rw); 10046 10047 return (error); 10048 } 10049 10050 static void 10051 nfs4_readahead(vnode_t *vp, u_offset_t blkoff, caddr_t addr, struct seg *seg, 10052 cred_t *cr) 10053 { 10054 int error; 10055 page_t *pp; 10056 u_offset_t io_off; 10057 size_t io_len; 10058 struct buf *bp; 10059 uint_t bsize, blksize; 10060 rnode4_t *rp = VTOR4(vp); 10061 page_t *savepp; 10062 10063 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 10064 10065 bsize = MAX(vp->v_vfsp->vfs_bsize, PAGESIZE); 10066 10067 mutex_enter(&rp->r_statelock); 10068 if (blkoff < rp->r_size && blkoff + bsize > rp->r_size) { 10069 /* 10070 * If less than a block left in file read less 10071 * than a block. 10072 */ 10073 blksize = rp->r_size - blkoff; 10074 } else 10075 blksize = bsize; 10076 mutex_exit(&rp->r_statelock); 10077 10078 pp = pvn_read_kluster(vp, blkoff, segkmap, addr, 10079 &io_off, &io_len, blkoff, blksize, 1); 10080 /* 10081 * The isra flag passed to the kluster function is 1, we may have 10082 * gotten a return value of NULL for a variety of reasons (# of free 10083 * pages < minfree, someone entered the page on the vnode etc). In all 10084 * cases, we want to punt on the readahead. 10085 */ 10086 if (pp == NULL) 10087 return; 10088 10089 /* 10090 * Now round the request size up to page boundaries. 10091 * This ensures that the entire page will be 10092 * initialized to zeroes if EOF is encountered. 10093 */ 10094 io_len = ptob(btopr(io_len)); 10095 10096 bp = pageio_setup(pp, io_len, vp, B_READ); 10097 ASSERT(bp != NULL); 10098 10099 /* 10100 * pageio_setup should have set b_addr to 0. This is correct since 10101 * we want to do I/O on a page boundary. bp_mapin() will use this addr 10102 * to calculate an offset, and then set b_addr to the kernel virtual 10103 * address it allocated for us. 10104 */ 10105 ASSERT(bp->b_un.b_addr == 0); 10106 10107 bp->b_edev = 0; 10108 bp->b_dev = 0; 10109 bp->b_lblkno = lbtodb(io_off); 10110 bp->b_file = vp; 10111 bp->b_offset = (offset_t)blkoff; 10112 bp_mapin(bp); 10113 10114 /* 10115 * If doing a write beyond what we believe is EOF, don't bother trying 10116 * to read the pages from the server, we'll just zero the pages here. 10117 * We don't check that the rw flag is S_WRITE here because some 10118 * implementations may attempt a read access to the buffer before 10119 * copying data. 10120 */ 10121 mutex_enter(&rp->r_statelock); 10122 if (io_off >= rp->r_size && seg == segkmap) { 10123 mutex_exit(&rp->r_statelock); 10124 bzero(bp->b_un.b_addr, io_len); 10125 error = 0; 10126 } else { 10127 mutex_exit(&rp->r_statelock); 10128 error = nfs4_bio(bp, NULL, cr, TRUE); 10129 if (error == NFS_EOF) 10130 error = 0; 10131 } 10132 10133 /* 10134 * Unmap the buffer before freeing it. 10135 */ 10136 bp_mapout(bp); 10137 pageio_done(bp); 10138 10139 savepp = pp; 10140 do { 10141 pp->p_fsdata = C_NOCOMMIT; 10142 } while ((pp = pp->p_next) != savepp); 10143 10144 pvn_read_done(pp, error ? B_READ | B_ERROR : B_READ); 10145 10146 /* 10147 * In case of error set readahead offset 10148 * to the lowest offset. 10149 * pvn_read_done() calls VN_DISPOSE to destroy the pages 10150 */ 10151 if (error && rp->r_nextr > io_off) { 10152 mutex_enter(&rp->r_statelock); 10153 if (rp->r_nextr > io_off) 10154 rp->r_nextr = io_off; 10155 mutex_exit(&rp->r_statelock); 10156 } 10157 } 10158 10159 /* 10160 * Flags are composed of {B_INVAL, B_FREE, B_DONTNEED, B_FORCE} 10161 * If len == 0, do from off to EOF. 10162 * 10163 * The normal cases should be len == 0 && off == 0 (entire vp list) or 10164 * len == MAXBSIZE (from segmap_release actions), and len == PAGESIZE 10165 * (from pageout). 10166 */ 10167 /* ARGSUSED */ 10168 static int 10169 nfs4_putpage(vnode_t *vp, offset_t off, size_t len, int flags, cred_t *cr, 10170 caller_context_t *ct) 10171 { 10172 int error; 10173 rnode4_t *rp; 10174 10175 ASSERT(cr != NULL); 10176 10177 if (!(flags & B_ASYNC) && nfs_zone() != VTOMI4(vp)->mi_zone) 10178 return (EIO); 10179 10180 rp = VTOR4(vp); 10181 if (IS_SHADOW(vp, rp)) 10182 vp = RTOV4(rp); 10183 10184 /* 10185 * XXX - Why should this check be made here? 10186 */ 10187 if (vp->v_flag & VNOMAP) 10188 return (ENOSYS); 10189 10190 if (len == 0 && !(flags & B_INVAL) && 10191 (vp->v_vfsp->vfs_flag & VFS_RDONLY)) 10192 return (0); 10193 10194 mutex_enter(&rp->r_statelock); 10195 rp->r_count++; 10196 mutex_exit(&rp->r_statelock); 10197 error = nfs4_putpages(vp, off, len, flags, cr); 10198 mutex_enter(&rp->r_statelock); 10199 rp->r_count--; 10200 cv_broadcast(&rp->r_cv); 10201 mutex_exit(&rp->r_statelock); 10202 10203 return (error); 10204 } 10205 10206 /* 10207 * Write out a single page, possibly klustering adjacent dirty pages. 10208 */ 10209 int 10210 nfs4_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp, size_t *lenp, 10211 int flags, cred_t *cr) 10212 { 10213 u_offset_t io_off; 10214 u_offset_t lbn_off; 10215 u_offset_t lbn; 10216 size_t io_len; 10217 uint_t bsize; 10218 int error; 10219 rnode4_t *rp; 10220 10221 ASSERT(!(vp->v_vfsp->vfs_flag & VFS_RDONLY)); 10222 ASSERT(pp != NULL); 10223 ASSERT(cr != NULL); 10224 ASSERT((flags & B_ASYNC) || nfs_zone() == VTOMI4(vp)->mi_zone); 10225 10226 rp = VTOR4(vp); 10227 ASSERT(rp->r_count > 0); 10228 ASSERT(!IS_SHADOW(vp, rp)); 10229 10230 bsize = MAX(vp->v_vfsp->vfs_bsize, PAGESIZE); 10231 lbn = pp->p_offset / bsize; 10232 lbn_off = lbn * bsize; 10233 10234 /* 10235 * Find a kluster that fits in one block, or in 10236 * one page if pages are bigger than blocks. If 10237 * there is less file space allocated than a whole 10238 * page, we'll shorten the i/o request below. 10239 */ 10240 pp = pvn_write_kluster(vp, pp, &io_off, &io_len, lbn_off, 10241 roundup(bsize, PAGESIZE), flags); 10242 10243 /* 10244 * pvn_write_kluster shouldn't have returned a page with offset 10245 * behind the original page we were given. Verify that. 10246 */ 10247 ASSERT((pp->p_offset / bsize) >= lbn); 10248 10249 /* 10250 * Now pp will have the list of kept dirty pages marked for 10251 * write back. It will also handle invalidation and freeing 10252 * of pages that are not dirty. Check for page length rounding 10253 * problems. 10254 */ 10255 if (io_off + io_len > lbn_off + bsize) { 10256 ASSERT((io_off + io_len) - (lbn_off + bsize) < PAGESIZE); 10257 io_len = lbn_off + bsize - io_off; 10258 } 10259 /* 10260 * The R4MODINPROGRESS flag makes sure that nfs4_bio() sees a 10261 * consistent value of r_size. R4MODINPROGRESS is set in writerp4(). 10262 * When R4MODINPROGRESS is set it indicates that a uiomove() is in 10263 * progress and the r_size has not been made consistent with the 10264 * new size of the file. When the uiomove() completes the r_size is 10265 * updated and the R4MODINPROGRESS flag is cleared. 10266 * 10267 * The R4MODINPROGRESS flag makes sure that nfs4_bio() sees a 10268 * consistent value of r_size. Without this handshaking, it is 10269 * possible that nfs4_bio() picks up the old value of r_size 10270 * before the uiomove() in writerp4() completes. This will result 10271 * in the write through nfs4_bio() being dropped. 10272 * 10273 * More precisely, there is a window between the time the uiomove() 10274 * completes and the time the r_size is updated. If a VOP_PUTPAGE() 10275 * operation intervenes in this window, the page will be picked up, 10276 * because it is dirty (it will be unlocked, unless it was 10277 * pagecreate'd). When the page is picked up as dirty, the dirty 10278 * bit is reset (pvn_getdirty()). In nfs4write(), r_size is 10279 * checked. This will still be the old size. Therefore the page will 10280 * not be written out. When segmap_release() calls VOP_PUTPAGE(), 10281 * the page will be found to be clean and the write will be dropped. 10282 */ 10283 if (rp->r_flags & R4MODINPROGRESS) { 10284 mutex_enter(&rp->r_statelock); 10285 if ((rp->r_flags & R4MODINPROGRESS) && 10286 rp->r_modaddr + MAXBSIZE > io_off && 10287 rp->r_modaddr < io_off + io_len) { 10288 page_t *plist; 10289 /* 10290 * A write is in progress for this region of the file. 10291 * If we did not detect R4MODINPROGRESS here then this 10292 * path through nfs_putapage() would eventually go to 10293 * nfs4_bio() and may not write out all of the data 10294 * in the pages. We end up losing data. So we decide 10295 * to set the modified bit on each page in the page 10296 * list and mark the rnode with R4DIRTY. This write 10297 * will be restarted at some later time. 10298 */ 10299 plist = pp; 10300 while (plist != NULL) { 10301 pp = plist; 10302 page_sub(&plist, pp); 10303 hat_setmod(pp); 10304 page_io_unlock(pp); 10305 page_unlock(pp); 10306 } 10307 rp->r_flags |= R4DIRTY; 10308 mutex_exit(&rp->r_statelock); 10309 if (offp) 10310 *offp = io_off; 10311 if (lenp) 10312 *lenp = io_len; 10313 return (0); 10314 } 10315 mutex_exit(&rp->r_statelock); 10316 } 10317 10318 if (flags & B_ASYNC) { 10319 error = nfs4_async_putapage(vp, pp, io_off, io_len, flags, cr, 10320 nfs4_sync_putapage); 10321 } else 10322 error = nfs4_sync_putapage(vp, pp, io_off, io_len, flags, cr); 10323 10324 if (offp) 10325 *offp = io_off; 10326 if (lenp) 10327 *lenp = io_len; 10328 return (error); 10329 } 10330 10331 static int 10332 nfs4_sync_putapage(vnode_t *vp, page_t *pp, u_offset_t io_off, size_t io_len, 10333 int flags, cred_t *cr) 10334 { 10335 int error; 10336 rnode4_t *rp; 10337 10338 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 10339 10340 flags |= B_WRITE; 10341 10342 error = nfs4_rdwrlbn(vp, pp, io_off, io_len, flags, cr); 10343 10344 rp = VTOR4(vp); 10345 10346 if ((error == ENOSPC || error == EDQUOT || error == EFBIG || 10347 error == EACCES) && 10348 (flags & (B_INVAL|B_FORCE)) != (B_INVAL|B_FORCE)) { 10349 if (!(rp->r_flags & R4OUTOFSPACE)) { 10350 mutex_enter(&rp->r_statelock); 10351 rp->r_flags |= R4OUTOFSPACE; 10352 mutex_exit(&rp->r_statelock); 10353 } 10354 flags |= B_ERROR; 10355 pvn_write_done(pp, flags); 10356 /* 10357 * If this was not an async thread, then try again to 10358 * write out the pages, but this time, also destroy 10359 * them whether or not the write is successful. This 10360 * will prevent memory from filling up with these 10361 * pages and destroying them is the only alternative 10362 * if they can't be written out. 10363 * 10364 * Don't do this if this is an async thread because 10365 * when the pages are unlocked in pvn_write_done, 10366 * some other thread could have come along, locked 10367 * them, and queued for an async thread. It would be 10368 * possible for all of the async threads to be tied 10369 * up waiting to lock the pages again and they would 10370 * all already be locked and waiting for an async 10371 * thread to handle them. Deadlock. 10372 */ 10373 if (!(flags & B_ASYNC)) { 10374 error = nfs4_putpage(vp, io_off, io_len, 10375 B_INVAL | B_FORCE, cr, NULL); 10376 } 10377 } else { 10378 if (error) 10379 flags |= B_ERROR; 10380 else if (rp->r_flags & R4OUTOFSPACE) { 10381 mutex_enter(&rp->r_statelock); 10382 rp->r_flags &= ~R4OUTOFSPACE; 10383 mutex_exit(&rp->r_statelock); 10384 } 10385 pvn_write_done(pp, flags); 10386 if (freemem < desfree) 10387 (void) nfs4_commit_vp(vp, (u_offset_t)0, 0, cr, 10388 NFS4_WRITE_NOWAIT); 10389 } 10390 10391 return (error); 10392 } 10393 10394 #ifdef DEBUG 10395 int nfs4_force_open_before_mmap = 0; 10396 #endif 10397 10398 /* ARGSUSED */ 10399 static int 10400 nfs4_map(vnode_t *vp, offset_t off, struct as *as, caddr_t *addrp, 10401 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr, 10402 caller_context_t *ct) 10403 { 10404 struct segvn_crargs vn_a; 10405 int error = 0; 10406 rnode4_t *rp = VTOR4(vp); 10407 mntinfo4_t *mi = VTOMI4(vp); 10408 10409 if (nfs_zone() != VTOMI4(vp)->mi_zone) 10410 return (EIO); 10411 10412 if (vp->v_flag & VNOMAP) 10413 return (ENOSYS); 10414 10415 if (off < 0 || (off + len) < 0) 10416 return (ENXIO); 10417 10418 if (vp->v_type != VREG) 10419 return (ENODEV); 10420 10421 /* 10422 * If the file is delegated to the client don't do anything. 10423 * If the file is not delegated, then validate the data cache. 10424 */ 10425 mutex_enter(&rp->r_statev4_lock); 10426 if (rp->r_deleg_type == OPEN_DELEGATE_NONE) { 10427 mutex_exit(&rp->r_statev4_lock); 10428 error = nfs4_validate_caches(vp, cr); 10429 if (error) 10430 return (error); 10431 } else { 10432 mutex_exit(&rp->r_statev4_lock); 10433 } 10434 10435 /* 10436 * Check to see if the vnode is currently marked as not cachable. 10437 * This means portions of the file are locked (through VOP_FRLOCK). 10438 * In this case the map request must be refused. We use 10439 * rp->r_lkserlock to avoid a race with concurrent lock requests. 10440 * 10441 * Atomically increment r_inmap after acquiring r_rwlock. The 10442 * idea here is to acquire r_rwlock to block read/write and 10443 * not to protect r_inmap. r_inmap will inform nfs4_read/write() 10444 * that we are in nfs4_map(). Now, r_rwlock is acquired in order 10445 * and we can prevent the deadlock that would have occurred 10446 * when nfs4_addmap() would have acquired it out of order. 10447 * 10448 * Since we are not protecting r_inmap by any lock, we do not 10449 * hold any lock when we decrement it. We atomically decrement 10450 * r_inmap after we release r_lkserlock. 10451 */ 10452 10453 if (nfs_rw_enter_sig(&rp->r_rwlock, RW_WRITER, INTR4(vp))) 10454 return (EINTR); 10455 atomic_add_int(&rp->r_inmap, 1); 10456 nfs_rw_exit(&rp->r_rwlock); 10457 10458 if (nfs_rw_enter_sig(&rp->r_lkserlock, RW_READER, INTR4(vp))) { 10459 atomic_add_int(&rp->r_inmap, -1); 10460 return (EINTR); 10461 } 10462 10463 10464 if (vp->v_flag & VNOCACHE) { 10465 error = EAGAIN; 10466 goto done; 10467 } 10468 10469 /* 10470 * Don't allow concurrent locks and mapping if mandatory locking is 10471 * enabled. 10472 */ 10473 if (flk_has_remote_locks(vp)) { 10474 struct vattr va; 10475 va.va_mask = AT_MODE; 10476 error = nfs4getattr(vp, &va, cr); 10477 if (error != 0) 10478 goto done; 10479 if (MANDLOCK(vp, va.va_mode)) { 10480 error = EAGAIN; 10481 goto done; 10482 } 10483 } 10484 10485 /* 10486 * It is possible that the rnode has a lost lock request that we 10487 * are still trying to recover, and that the request conflicts with 10488 * this map request. 10489 * 10490 * An alternative approach would be for nfs4_safemap() to consider 10491 * queued lock requests when deciding whether to set or clear 10492 * VNOCACHE. This would require the frlock code path to call 10493 * nfs4_safemap() after enqueing a lost request. 10494 */ 10495 if (nfs4_map_lost_lock_conflict(vp)) { 10496 error = EAGAIN; 10497 goto done; 10498 } 10499 10500 as_rangelock(as); 10501 error = choose_addr(as, addrp, len, off, ADDR_VACALIGN, flags); 10502 if (error != 0) { 10503 as_rangeunlock(as); 10504 goto done; 10505 } 10506 10507 if (vp->v_type == VREG) { 10508 /* 10509 * We need to retrieve the open stream 10510 */ 10511 nfs4_open_stream_t *osp = NULL; 10512 nfs4_open_owner_t *oop = NULL; 10513 10514 oop = find_open_owner(cr, NFS4_PERM_CREATED, mi); 10515 if (oop != NULL) { 10516 /* returns with 'os_sync_lock' held */ 10517 osp = find_open_stream(oop, rp); 10518 open_owner_rele(oop); 10519 } 10520 if (osp == NULL) { 10521 #ifdef DEBUG 10522 if (nfs4_force_open_before_mmap) { 10523 error = EIO; 10524 goto done; 10525 } 10526 #endif 10527 /* returns with 'os_sync_lock' held */ 10528 error = open_and_get_osp(vp, cr, &osp); 10529 if (osp == NULL) { 10530 NFS4_DEBUG(nfs4_mmap_debug, (CE_NOTE, 10531 "nfs4_map: we tried to OPEN the file " 10532 "but again no osp, so fail with EIO")); 10533 goto done; 10534 } 10535 } 10536 10537 if (osp->os_failed_reopen) { 10538 mutex_exit(&osp->os_sync_lock); 10539 open_stream_rele(osp, rp); 10540 NFS4_DEBUG(nfs4_open_stream_debug, (CE_NOTE, 10541 "nfs4_map: os_failed_reopen set on " 10542 "osp %p, cr %p, rp %s", (void *)osp, 10543 (void *)cr, rnode4info(rp))); 10544 error = EIO; 10545 goto done; 10546 } 10547 mutex_exit(&osp->os_sync_lock); 10548 open_stream_rele(osp, rp); 10549 } 10550 10551 vn_a.vp = vp; 10552 vn_a.offset = off; 10553 vn_a.type = (flags & MAP_TYPE); 10554 vn_a.prot = (uchar_t)prot; 10555 vn_a.maxprot = (uchar_t)maxprot; 10556 vn_a.flags = (flags & ~MAP_TYPE); 10557 vn_a.cred = cr; 10558 vn_a.amp = NULL; 10559 vn_a.szc = 0; 10560 vn_a.lgrp_mem_policy_flags = 0; 10561 10562 error = as_map(as, *addrp, len, segvn_create, &vn_a); 10563 as_rangeunlock(as); 10564 10565 done: 10566 nfs_rw_exit(&rp->r_lkserlock); 10567 atomic_add_int(&rp->r_inmap, -1); 10568 return (error); 10569 } 10570 10571 /* 10572 * We're most likely dealing with a kernel module that likes to READ 10573 * and mmap without OPENing the file (ie: lookup/read/mmap), so lets 10574 * officially OPEN the file to create the necessary client state 10575 * for bookkeeping of os_mmap_read/write counts. 10576 * 10577 * Since VOP_MAP only passes in a pointer to the vnode rather than 10578 * a double pointer, we can't handle the case where nfs4open_otw() 10579 * returns a different vnode than the one passed into VOP_MAP (since 10580 * VOP_DELMAP will not see the vnode nfs4open_otw used). In this case, 10581 * we return NULL and let nfs4_map() fail. Note: the only case where 10582 * this should happen is if the file got removed and replaced with the 10583 * same name on the server (in addition to the fact that we're trying 10584 * to VOP_MAP withouth VOP_OPENing the file in the first place). 10585 */ 10586 static int 10587 open_and_get_osp(vnode_t *map_vp, cred_t *cr, nfs4_open_stream_t **ospp) 10588 { 10589 rnode4_t *rp, *drp; 10590 vnode_t *dvp, *open_vp; 10591 char file_name[MAXNAMELEN]; 10592 int just_created; 10593 nfs4_open_stream_t *osp; 10594 nfs4_open_owner_t *oop; 10595 int error; 10596 10597 *ospp = NULL; 10598 open_vp = map_vp; 10599 10600 rp = VTOR4(open_vp); 10601 if ((error = vtodv(open_vp, &dvp, cr, TRUE)) != 0) 10602 return (error); 10603 drp = VTOR4(dvp); 10604 10605 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_READER, INTR4(dvp))) { 10606 VN_RELE(dvp); 10607 return (EINTR); 10608 } 10609 10610 if ((error = vtoname(open_vp, file_name, MAXNAMELEN)) != 0) { 10611 nfs_rw_exit(&drp->r_rwlock); 10612 VN_RELE(dvp); 10613 return (error); 10614 } 10615 10616 mutex_enter(&rp->r_statev4_lock); 10617 if (rp->created_v4) { 10618 rp->created_v4 = 0; 10619 mutex_exit(&rp->r_statev4_lock); 10620 10621 dnlc_update(dvp, file_name, open_vp); 10622 /* This is needed so we don't bump the open ref count */ 10623 just_created = 1; 10624 } else { 10625 mutex_exit(&rp->r_statev4_lock); 10626 just_created = 0; 10627 } 10628 10629 VN_HOLD(map_vp); 10630 10631 error = nfs4open_otw(dvp, file_name, NULL, &open_vp, cr, 0, FREAD, 0, 10632 just_created); 10633 if (error) { 10634 nfs_rw_exit(&drp->r_rwlock); 10635 VN_RELE(dvp); 10636 VN_RELE(map_vp); 10637 return (error); 10638 } 10639 10640 nfs_rw_exit(&drp->r_rwlock); 10641 VN_RELE(dvp); 10642 10643 /* 10644 * If nfs4open_otw() returned a different vnode then "undo" 10645 * the open and return failure to the caller. 10646 */ 10647 if (!VN_CMP(open_vp, map_vp)) { 10648 nfs4_error_t e; 10649 10650 NFS4_DEBUG(nfs4_mmap_debug, (CE_NOTE, "open_and_get_osp: " 10651 "open returned a different vnode")); 10652 /* 10653 * If there's an error, ignore it, 10654 * and let VOP_INACTIVE handle it. 10655 */ 10656 (void) nfs4close_one(open_vp, NULL, cr, FREAD, NULL, &e, 10657 CLOSE_NORM, 0, 0, 0); 10658 VN_RELE(map_vp); 10659 return (EIO); 10660 } 10661 10662 VN_RELE(map_vp); 10663 10664 oop = find_open_owner(cr, NFS4_PERM_CREATED, VTOMI4(open_vp)); 10665 if (!oop) { 10666 nfs4_error_t e; 10667 10668 NFS4_DEBUG(nfs4_mmap_debug, (CE_NOTE, "open_and_get_osp: " 10669 "no open owner")); 10670 /* 10671 * If there's an error, ignore it, 10672 * and let VOP_INACTIVE handle it. 10673 */ 10674 (void) nfs4close_one(open_vp, NULL, cr, FREAD, NULL, &e, 10675 CLOSE_NORM, 0, 0, 0); 10676 return (EIO); 10677 } 10678 osp = find_open_stream(oop, rp); 10679 open_owner_rele(oop); 10680 *ospp = osp; 10681 return (0); 10682 } 10683 10684 /* 10685 * Please be aware that when this function is called, the address space write 10686 * a_lock is held. Do not put over the wire calls in this function. 10687 */ 10688 /* ARGSUSED */ 10689 static int 10690 nfs4_addmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr, 10691 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr, 10692 caller_context_t *ct) 10693 { 10694 rnode4_t *rp; 10695 int error = 0; 10696 mntinfo4_t *mi; 10697 10698 mi = VTOMI4(vp); 10699 rp = VTOR4(vp); 10700 10701 if (nfs_zone() != mi->mi_zone) 10702 return (EIO); 10703 if (vp->v_flag & VNOMAP) 10704 return (ENOSYS); 10705 10706 /* 10707 * Don't need to update the open stream first, since this 10708 * mmap can't add any additional share access that isn't 10709 * already contained in the open stream (for the case where we 10710 * open/mmap/only update rp->r_mapcnt/server reboots/reopen doesn't 10711 * take into account os_mmap_read[write] counts). 10712 */ 10713 atomic_add_long((ulong_t *)&rp->r_mapcnt, btopr(len)); 10714 10715 if (vp->v_type == VREG) { 10716 /* 10717 * We need to retrieve the open stream and update the counts. 10718 * If there is no open stream here, something is wrong. 10719 */ 10720 nfs4_open_stream_t *osp = NULL; 10721 nfs4_open_owner_t *oop = NULL; 10722 10723 oop = find_open_owner(cr, NFS4_PERM_CREATED, mi); 10724 if (oop != NULL) { 10725 /* returns with 'os_sync_lock' held */ 10726 osp = find_open_stream(oop, rp); 10727 open_owner_rele(oop); 10728 } 10729 if (osp == NULL) { 10730 NFS4_DEBUG(nfs4_mmap_debug, (CE_NOTE, 10731 "nfs4_addmap: we should have an osp" 10732 "but we don't, so fail with EIO")); 10733 error = EIO; 10734 goto out; 10735 } 10736 10737 NFS4_DEBUG(nfs4_mmap_debug, (CE_NOTE, "nfs4_addmap: osp %p," 10738 " pages %ld, prot 0x%x", (void *)osp, btopr(len), prot)); 10739 10740 /* 10741 * Update the map count in the open stream. 10742 * This is necessary in the case where we 10743 * open/mmap/close/, then the server reboots, and we 10744 * attempt to reopen. If the mmap doesn't add share 10745 * access then we send an invalid reopen with 10746 * access = NONE. 10747 * 10748 * We need to specifically check each PROT_* so a mmap 10749 * call of (PROT_WRITE | PROT_EXEC) will ensure us both 10750 * read and write access. A simple comparison of prot 10751 * to ~PROT_WRITE to determine read access is insufficient 10752 * since prot can be |= with PROT_USER, etc. 10753 */ 10754 10755 /* 10756 * Unless we're MAP_SHARED, no sense in adding os_mmap_write 10757 */ 10758 if ((flags & MAP_SHARED) && (maxprot & PROT_WRITE)) 10759 osp->os_mmap_write += btopr(len); 10760 if (maxprot & PROT_READ) 10761 osp->os_mmap_read += btopr(len); 10762 if (maxprot & PROT_EXEC) 10763 osp->os_mmap_read += btopr(len); 10764 /* 10765 * Ensure that os_mmap_read gets incremented, even if 10766 * maxprot were to look like PROT_NONE. 10767 */ 10768 if (!(maxprot & PROT_READ) && !(maxprot & PROT_WRITE) && 10769 !(maxprot & PROT_EXEC)) 10770 osp->os_mmap_read += btopr(len); 10771 osp->os_mapcnt += btopr(len); 10772 mutex_exit(&osp->os_sync_lock); 10773 open_stream_rele(osp, rp); 10774 } 10775 10776 out: 10777 /* 10778 * If we got an error, then undo our 10779 * incrementing of 'r_mapcnt'. 10780 */ 10781 10782 if (error) { 10783 atomic_add_long((ulong_t *)&rp->r_mapcnt, -btopr(len)); 10784 ASSERT(rp->r_mapcnt >= 0); 10785 } 10786 return (error); 10787 } 10788 10789 /* ARGSUSED */ 10790 static int 10791 nfs4_cmp(vnode_t *vp1, vnode_t *vp2, caller_context_t *ct) 10792 { 10793 10794 return (VTOR4(vp1) == VTOR4(vp2)); 10795 } 10796 10797 /* ARGSUSED */ 10798 static int 10799 nfs4_frlock(vnode_t *vp, int cmd, struct flock64 *bfp, int flag, 10800 offset_t offset, struct flk_callback *flk_cbp, cred_t *cr, 10801 caller_context_t *ct) 10802 { 10803 int rc; 10804 u_offset_t start, end; 10805 rnode4_t *rp; 10806 int error = 0, intr = INTR4(vp); 10807 nfs4_error_t e; 10808 10809 if (nfs_zone() != VTOMI4(vp)->mi_zone) 10810 return (EIO); 10811 10812 /* check for valid cmd parameter */ 10813 if (cmd != F_GETLK && cmd != F_SETLK && cmd != F_SETLKW) 10814 return (EINVAL); 10815 10816 /* Verify l_type. */ 10817 switch (bfp->l_type) { 10818 case F_RDLCK: 10819 if (cmd != F_GETLK && !(flag & FREAD)) 10820 return (EBADF); 10821 break; 10822 case F_WRLCK: 10823 if (cmd != F_GETLK && !(flag & FWRITE)) 10824 return (EBADF); 10825 break; 10826 case F_UNLCK: 10827 intr = 0; 10828 break; 10829 10830 default: 10831 return (EINVAL); 10832 } 10833 10834 /* check the validity of the lock range */ 10835 if (rc = flk_convert_lock_data(vp, bfp, &start, &end, offset)) 10836 return (rc); 10837 if (rc = flk_check_lock_data(start, end, MAXEND)) 10838 return (rc); 10839 10840 /* 10841 * If the filesystem is mounted using local locking, pass the 10842 * request off to the local locking code. 10843 */ 10844 if (VTOMI4(vp)->mi_flags & MI4_LLOCK || vp->v_type != VREG) { 10845 if (cmd == F_SETLK || cmd == F_SETLKW) { 10846 /* 10847 * For complete safety, we should be holding 10848 * r_lkserlock. However, we can't call 10849 * nfs4_safelock and then fs_frlock while 10850 * holding r_lkserlock, so just invoke 10851 * nfs4_safelock and expect that this will 10852 * catch enough of the cases. 10853 */ 10854 if (!nfs4_safelock(vp, bfp, cr)) 10855 return (EAGAIN); 10856 } 10857 return (fs_frlock(vp, cmd, bfp, flag, offset, flk_cbp, cr, ct)); 10858 } 10859 10860 rp = VTOR4(vp); 10861 10862 /* 10863 * Check whether the given lock request can proceed, given the 10864 * current file mappings. 10865 */ 10866 if (nfs_rw_enter_sig(&rp->r_lkserlock, RW_WRITER, intr)) 10867 return (EINTR); 10868 if (cmd == F_SETLK || cmd == F_SETLKW) { 10869 if (!nfs4_safelock(vp, bfp, cr)) { 10870 rc = EAGAIN; 10871 goto done; 10872 } 10873 } 10874 10875 /* 10876 * Flush the cache after waiting for async I/O to finish. For new 10877 * locks, this is so that the process gets the latest bits from the 10878 * server. For unlocks, this is so that other clients see the 10879 * latest bits once the file has been unlocked. If currently dirty 10880 * pages can't be flushed, then don't allow a lock to be set. But 10881 * allow unlocks to succeed, to avoid having orphan locks on the 10882 * server. 10883 */ 10884 if (cmd != F_GETLK) { 10885 mutex_enter(&rp->r_statelock); 10886 while (rp->r_count > 0) { 10887 if (intr) { 10888 klwp_t *lwp = ttolwp(curthread); 10889 10890 if (lwp != NULL) 10891 lwp->lwp_nostop++; 10892 if (cv_wait_sig(&rp->r_cv, 10893 &rp->r_statelock) == 0) { 10894 if (lwp != NULL) 10895 lwp->lwp_nostop--; 10896 rc = EINTR; 10897 break; 10898 } 10899 if (lwp != NULL) 10900 lwp->lwp_nostop--; 10901 } else 10902 cv_wait(&rp->r_cv, &rp->r_statelock); 10903 } 10904 mutex_exit(&rp->r_statelock); 10905 if (rc != 0) 10906 goto done; 10907 error = nfs4_putpage(vp, (offset_t)0, 0, B_INVAL, cr, ct); 10908 if (error) { 10909 if (error == ENOSPC || error == EDQUOT) { 10910 mutex_enter(&rp->r_statelock); 10911 if (!rp->r_error) 10912 rp->r_error = error; 10913 mutex_exit(&rp->r_statelock); 10914 } 10915 if (bfp->l_type != F_UNLCK) { 10916 rc = ENOLCK; 10917 goto done; 10918 } 10919 } 10920 } 10921 10922 /* 10923 * Call the lock manager to do the real work of contacting 10924 * the server and obtaining the lock. 10925 */ 10926 nfs4frlock(NFS4_LCK_CTYPE_NORM, vp, cmd, bfp, flag, offset, 10927 cr, &e, NULL, NULL); 10928 rc = e.error; 10929 10930 if (rc == 0) 10931 nfs4_lockcompletion(vp, cmd); 10932 10933 done: 10934 nfs_rw_exit(&rp->r_lkserlock); 10935 10936 return (rc); 10937 } 10938 10939 /* 10940 * Free storage space associated with the specified vnode. The portion 10941 * to be freed is specified by bfp->l_start and bfp->l_len (already 10942 * normalized to a "whence" of 0). 10943 * 10944 * This is an experimental facility whose continued existence is not 10945 * guaranteed. Currently, we only support the special case 10946 * of l_len == 0, meaning free to end of file. 10947 */ 10948 /* ARGSUSED */ 10949 static int 10950 nfs4_space(vnode_t *vp, int cmd, struct flock64 *bfp, int flag, 10951 offset_t offset, cred_t *cr, caller_context_t *ct) 10952 { 10953 int error; 10954 10955 if (nfs_zone() != VTOMI4(vp)->mi_zone) 10956 return (EIO); 10957 ASSERT(vp->v_type == VREG); 10958 if (cmd != F_FREESP) 10959 return (EINVAL); 10960 10961 error = convoff(vp, bfp, 0, offset); 10962 if (!error) { 10963 ASSERT(bfp->l_start >= 0); 10964 if (bfp->l_len == 0) { 10965 struct vattr va; 10966 10967 va.va_mask = AT_SIZE; 10968 va.va_size = bfp->l_start; 10969 error = nfs4setattr(vp, &va, 0, cr, NULL); 10970 } else 10971 error = EINVAL; 10972 } 10973 10974 return (error); 10975 } 10976 10977 /* ARGSUSED */ 10978 int 10979 nfs4_realvp(vnode_t *vp, vnode_t **vpp, caller_context_t *ct) 10980 { 10981 rnode4_t *rp; 10982 rp = VTOR4(vp); 10983 10984 if (vp->v_type == VREG && IS_SHADOW(vp, rp)) { 10985 vp = RTOV4(rp); 10986 } 10987 *vpp = vp; 10988 return (0); 10989 } 10990 10991 /* 10992 * Setup and add an address space callback to do the work of the delmap call. 10993 * The callback will (and must be) deleted in the actual callback function. 10994 * 10995 * This is done in order to take care of the problem that we have with holding 10996 * the address space's a_lock for a long period of time (e.g. if the NFS server 10997 * is down). Callbacks will be executed in the address space code while the 10998 * a_lock is not held. Holding the address space's a_lock causes things such 10999 * as ps and fork to hang because they are trying to acquire this lock as well. 11000 */ 11001 /* ARGSUSED */ 11002 static int 11003 nfs4_delmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr, 11004 size_t len, uint_t prot, uint_t maxprot, uint_t flags, cred_t *cr, 11005 caller_context_t *ct) 11006 { 11007 int caller_found; 11008 int error; 11009 rnode4_t *rp; 11010 nfs4_delmap_args_t *dmapp; 11011 nfs4_delmapcall_t *delmap_call; 11012 11013 if (vp->v_flag & VNOMAP) 11014 return (ENOSYS); 11015 11016 /* 11017 * A process may not change zones if it has NFS pages mmap'ed 11018 * in, so we can't legitimately get here from the wrong zone. 11019 */ 11020 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 11021 11022 rp = VTOR4(vp); 11023 11024 /* 11025 * The way that the address space of this process deletes its mapping 11026 * of this file is via the following call chains: 11027 * - as_free()->SEGOP_UNMAP()/segvn_unmap()->VOP_DELMAP()/nfs4_delmap() 11028 * - as_unmap()->SEGOP_UNMAP()/segvn_unmap()->VOP_DELMAP()/nfs4_delmap() 11029 * 11030 * With the use of address space callbacks we are allowed to drop the 11031 * address space lock, a_lock, while executing the NFS operations that 11032 * need to go over the wire. Returning EAGAIN to the caller of this 11033 * function is what drives the execution of the callback that we add 11034 * below. The callback will be executed by the address space code 11035 * after dropping the a_lock. When the callback is finished, since 11036 * we dropped the a_lock, it must be re-acquired and segvn_unmap() 11037 * is called again on the same segment to finish the rest of the work 11038 * that needs to happen during unmapping. 11039 * 11040 * This action of calling back into the segment driver causes 11041 * nfs4_delmap() to get called again, but since the callback was 11042 * already executed at this point, it already did the work and there 11043 * is nothing left for us to do. 11044 * 11045 * To Summarize: 11046 * - The first time nfs4_delmap is called by the current thread is when 11047 * we add the caller associated with this delmap to the delmap caller 11048 * list, add the callback, and return EAGAIN. 11049 * - The second time in this call chain when nfs4_delmap is called we 11050 * will find this caller in the delmap caller list and realize there 11051 * is no more work to do thus removing this caller from the list and 11052 * returning the error that was set in the callback execution. 11053 */ 11054 caller_found = nfs4_find_and_delete_delmapcall(rp, &error); 11055 if (caller_found) { 11056 /* 11057 * 'error' is from the actual delmap operations. To avoid 11058 * hangs, we need to handle the return of EAGAIN differently 11059 * since this is what drives the callback execution. 11060 * In this case, we don't want to return EAGAIN and do the 11061 * callback execution because there are none to execute. 11062 */ 11063 if (error == EAGAIN) 11064 return (0); 11065 else 11066 return (error); 11067 } 11068 11069 /* current caller was not in the list */ 11070 delmap_call = nfs4_init_delmapcall(); 11071 11072 mutex_enter(&rp->r_statelock); 11073 list_insert_tail(&rp->r_indelmap, delmap_call); 11074 mutex_exit(&rp->r_statelock); 11075 11076 dmapp = kmem_alloc(sizeof (nfs4_delmap_args_t), KM_SLEEP); 11077 11078 dmapp->vp = vp; 11079 dmapp->off = off; 11080 dmapp->addr = addr; 11081 dmapp->len = len; 11082 dmapp->prot = prot; 11083 dmapp->maxprot = maxprot; 11084 dmapp->flags = flags; 11085 dmapp->cr = cr; 11086 dmapp->caller = delmap_call; 11087 11088 error = as_add_callback(as, nfs4_delmap_callback, dmapp, 11089 AS_UNMAP_EVENT, addr, len, KM_SLEEP); 11090 11091 return (error ? error : EAGAIN); 11092 } 11093 11094 static nfs4_delmapcall_t * 11095 nfs4_init_delmapcall() 11096 { 11097 nfs4_delmapcall_t *delmap_call; 11098 11099 delmap_call = kmem_alloc(sizeof (nfs4_delmapcall_t), KM_SLEEP); 11100 delmap_call->call_id = curthread; 11101 delmap_call->error = 0; 11102 11103 return (delmap_call); 11104 } 11105 11106 static void 11107 nfs4_free_delmapcall(nfs4_delmapcall_t *delmap_call) 11108 { 11109 kmem_free(delmap_call, sizeof (nfs4_delmapcall_t)); 11110 } 11111 11112 /* 11113 * Searches for the current delmap caller (based on curthread) in the list of 11114 * callers. If it is found, we remove it and free the delmap caller. 11115 * Returns: 11116 * 0 if the caller wasn't found 11117 * 1 if the caller was found, removed and freed. *errp will be set 11118 * to what the result of the delmap was. 11119 */ 11120 static int 11121 nfs4_find_and_delete_delmapcall(rnode4_t *rp, int *errp) 11122 { 11123 nfs4_delmapcall_t *delmap_call; 11124 11125 /* 11126 * If the list doesn't exist yet, we create it and return 11127 * that the caller wasn't found. No list = no callers. 11128 */ 11129 mutex_enter(&rp->r_statelock); 11130 if (!(rp->r_flags & R4DELMAPLIST)) { 11131 /* The list does not exist */ 11132 list_create(&rp->r_indelmap, sizeof (nfs4_delmapcall_t), 11133 offsetof(nfs4_delmapcall_t, call_node)); 11134 rp->r_flags |= R4DELMAPLIST; 11135 mutex_exit(&rp->r_statelock); 11136 return (0); 11137 } else { 11138 /* The list exists so search it */ 11139 for (delmap_call = list_head(&rp->r_indelmap); 11140 delmap_call != NULL; 11141 delmap_call = list_next(&rp->r_indelmap, delmap_call)) { 11142 if (delmap_call->call_id == curthread) { 11143 /* current caller is in the list */ 11144 *errp = delmap_call->error; 11145 list_remove(&rp->r_indelmap, delmap_call); 11146 mutex_exit(&rp->r_statelock); 11147 nfs4_free_delmapcall(delmap_call); 11148 return (1); 11149 } 11150 } 11151 } 11152 mutex_exit(&rp->r_statelock); 11153 return (0); 11154 } 11155 11156 /* 11157 * Remove some pages from an mmap'd vnode. Just update the 11158 * count of pages. If doing close-to-open, then flush and 11159 * commit all of the pages associated with this file. 11160 * Otherwise, start an asynchronous page flush to write out 11161 * any dirty pages. This will also associate a credential 11162 * with the rnode which can be used to write the pages. 11163 */ 11164 /* ARGSUSED */ 11165 static void 11166 nfs4_delmap_callback(struct as *as, void *arg, uint_t event) 11167 { 11168 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 11169 rnode4_t *rp; 11170 mntinfo4_t *mi; 11171 nfs4_delmap_args_t *dmapp = (nfs4_delmap_args_t *)arg; 11172 11173 rp = VTOR4(dmapp->vp); 11174 mi = VTOMI4(dmapp->vp); 11175 11176 atomic_add_long((ulong_t *)&rp->r_mapcnt, -btopr(dmapp->len)); 11177 ASSERT(rp->r_mapcnt >= 0); 11178 11179 /* 11180 * Initiate a page flush and potential commit if there are 11181 * pages, the file system was not mounted readonly, the segment 11182 * was mapped shared, and the pages themselves were writeable. 11183 */ 11184 if (nfs4_has_pages(dmapp->vp) && 11185 !(dmapp->vp->v_vfsp->vfs_flag & VFS_RDONLY) && 11186 dmapp->flags == MAP_SHARED && (dmapp->maxprot & PROT_WRITE)) { 11187 mutex_enter(&rp->r_statelock); 11188 rp->r_flags |= R4DIRTY; 11189 mutex_exit(&rp->r_statelock); 11190 e.error = nfs4_putpage_commit(dmapp->vp, dmapp->off, 11191 dmapp->len, dmapp->cr); 11192 if (!e.error) { 11193 mutex_enter(&rp->r_statelock); 11194 e.error = rp->r_error; 11195 rp->r_error = 0; 11196 mutex_exit(&rp->r_statelock); 11197 } 11198 } else 11199 e.error = 0; 11200 11201 if ((rp->r_flags & R4DIRECTIO) || (mi->mi_flags & MI4_DIRECTIO)) 11202 (void) nfs4_putpage(dmapp->vp, dmapp->off, dmapp->len, 11203 B_INVAL, dmapp->cr, NULL); 11204 11205 if (e.error) { 11206 e.stat = puterrno4(e.error); 11207 nfs4_queue_fact(RF_DELMAP_CB_ERR, mi, e.stat, 0, 11208 OP_COMMIT, FALSE, NULL, 0, dmapp->vp); 11209 dmapp->caller->error = e.error; 11210 } 11211 11212 /* Check to see if we need to close the file */ 11213 11214 if (dmapp->vp->v_type == VREG) { 11215 nfs4close_one(dmapp->vp, NULL, dmapp->cr, 0, NULL, &e, 11216 CLOSE_DELMAP, dmapp->len, dmapp->maxprot, dmapp->flags); 11217 11218 if (e.error != 0 || e.stat != NFS4_OK) { 11219 /* 11220 * Since it is possible that e.error == 0 and 11221 * e.stat != NFS4_OK (and vice versa), 11222 * we do the proper checking in order to get both 11223 * e.error and e.stat reporting the correct info. 11224 */ 11225 if (e.stat == NFS4_OK) 11226 e.stat = puterrno4(e.error); 11227 if (e.error == 0) 11228 e.error = geterrno4(e.stat); 11229 11230 nfs4_queue_fact(RF_DELMAP_CB_ERR, mi, e.stat, 0, 11231 OP_CLOSE, FALSE, NULL, 0, dmapp->vp); 11232 dmapp->caller->error = e.error; 11233 } 11234 } 11235 11236 (void) as_delete_callback(as, arg); 11237 kmem_free(dmapp, sizeof (nfs4_delmap_args_t)); 11238 } 11239 11240 11241 static uint_t 11242 fattr4_maxfilesize_to_bits(uint64_t ll) 11243 { 11244 uint_t l = 1; 11245 11246 if (ll == 0) { 11247 return (0); 11248 } 11249 11250 if (ll & 0xffffffff00000000) { 11251 l += 32; ll >>= 32; 11252 } 11253 if (ll & 0xffff0000) { 11254 l += 16; ll >>= 16; 11255 } 11256 if (ll & 0xff00) { 11257 l += 8; ll >>= 8; 11258 } 11259 if (ll & 0xf0) { 11260 l += 4; ll >>= 4; 11261 } 11262 if (ll & 0xc) { 11263 l += 2; ll >>= 2; 11264 } 11265 if (ll & 0x2) { 11266 l += 1; 11267 } 11268 return (l); 11269 } 11270 11271 static int 11272 nfs4_have_xattrs(vnode_t *vp, ulong_t *valp, cred_t *cr) 11273 { 11274 vnode_t *avp = NULL; 11275 int error; 11276 11277 if ((error = nfs4lookup_xattr(vp, "", &avp, 11278 LOOKUP_XATTR, cr)) == 0) 11279 error = do_xattr_exists_check(avp, valp, cr); 11280 if (avp) 11281 VN_RELE(avp); 11282 11283 return (error); 11284 } 11285 11286 /* ARGSUSED */ 11287 int 11288 nfs4_pathconf(vnode_t *vp, int cmd, ulong_t *valp, cred_t *cr, 11289 caller_context_t *ct) 11290 { 11291 int error; 11292 hrtime_t t; 11293 rnode4_t *rp; 11294 nfs4_ga_res_t gar; 11295 nfs4_ga_ext_res_t ger; 11296 11297 gar.n4g_ext_res = &ger; 11298 11299 if (nfs_zone() != VTOMI4(vp)->mi_zone) 11300 return (EIO); 11301 if (cmd == _PC_PATH_MAX || cmd == _PC_SYMLINK_MAX) { 11302 *valp = MAXPATHLEN; 11303 return (0); 11304 } 11305 if (cmd == _PC_ACL_ENABLED) { 11306 *valp = _ACL_ACE_ENABLED; 11307 return (0); 11308 } 11309 11310 rp = VTOR4(vp); 11311 if (cmd == _PC_XATTR_EXISTS) { 11312 /* 11313 * The existence of the xattr directory is not sufficient 11314 * for determining whether generic user attributes exists. 11315 * The attribute directory could only be a transient directory 11316 * used for Solaris sysattr support. Do a small readdir 11317 * to verify if the only entries are sysattrs or not. 11318 * 11319 * pc4_xattr_valid can be only be trusted when r_xattr_dir 11320 * is NULL. Once the xadir vp exists, we can create xattrs, 11321 * and we don't have any way to update the "base" object's 11322 * pc4_xattr_exists from the xattr or xadir. Maybe FEM 11323 * could help out. 11324 */ 11325 if (ATTRCACHE4_VALID(vp) && rp->r_pathconf.pc4_xattr_valid && 11326 rp->r_xattr_dir == NULL) { 11327 return (nfs4_have_xattrs(vp, valp, cr)); 11328 } 11329 } else { /* OLD CODE */ 11330 if (ATTRCACHE4_VALID(vp)) { 11331 mutex_enter(&rp->r_statelock); 11332 if (rp->r_pathconf.pc4_cache_valid) { 11333 error = 0; 11334 switch (cmd) { 11335 case _PC_FILESIZEBITS: 11336 *valp = 11337 rp->r_pathconf.pc4_filesizebits; 11338 break; 11339 case _PC_LINK_MAX: 11340 *valp = 11341 rp->r_pathconf.pc4_link_max; 11342 break; 11343 case _PC_NAME_MAX: 11344 *valp = 11345 rp->r_pathconf.pc4_name_max; 11346 break; 11347 case _PC_CHOWN_RESTRICTED: 11348 *valp = 11349 rp->r_pathconf.pc4_chown_restricted; 11350 break; 11351 case _PC_NO_TRUNC: 11352 *valp = 11353 rp->r_pathconf.pc4_no_trunc; 11354 break; 11355 default: 11356 error = EINVAL; 11357 break; 11358 } 11359 mutex_exit(&rp->r_statelock); 11360 #ifdef DEBUG 11361 nfs4_pathconf_cache_hits++; 11362 #endif 11363 return (error); 11364 } 11365 mutex_exit(&rp->r_statelock); 11366 } 11367 } 11368 #ifdef DEBUG 11369 nfs4_pathconf_cache_misses++; 11370 #endif 11371 11372 t = gethrtime(); 11373 11374 error = nfs4_attr_otw(vp, TAG_PATHCONF, &gar, NFS4_PATHCONF_MASK, cr); 11375 11376 if (error) { 11377 mutex_enter(&rp->r_statelock); 11378 rp->r_pathconf.pc4_cache_valid = FALSE; 11379 rp->r_pathconf.pc4_xattr_valid = FALSE; 11380 mutex_exit(&rp->r_statelock); 11381 return (error); 11382 } 11383 11384 /* interpret the max filesize */ 11385 gar.n4g_ext_res->n4g_pc4.pc4_filesizebits = 11386 fattr4_maxfilesize_to_bits(gar.n4g_ext_res->n4g_maxfilesize); 11387 11388 /* Store the attributes we just received */ 11389 nfs4_attr_cache(vp, &gar, t, cr, TRUE, NULL); 11390 11391 switch (cmd) { 11392 case _PC_FILESIZEBITS: 11393 *valp = gar.n4g_ext_res->n4g_pc4.pc4_filesizebits; 11394 break; 11395 case _PC_LINK_MAX: 11396 *valp = gar.n4g_ext_res->n4g_pc4.pc4_link_max; 11397 break; 11398 case _PC_NAME_MAX: 11399 *valp = gar.n4g_ext_res->n4g_pc4.pc4_name_max; 11400 break; 11401 case _PC_CHOWN_RESTRICTED: 11402 *valp = gar.n4g_ext_res->n4g_pc4.pc4_chown_restricted; 11403 break; 11404 case _PC_NO_TRUNC: 11405 *valp = gar.n4g_ext_res->n4g_pc4.pc4_no_trunc; 11406 break; 11407 case _PC_XATTR_EXISTS: 11408 if (gar.n4g_ext_res->n4g_pc4.pc4_xattr_exists) { 11409 if (error = nfs4_have_xattrs(vp, valp, cr)) 11410 return (error); 11411 } 11412 break; 11413 default: 11414 return (EINVAL); 11415 } 11416 11417 return (0); 11418 } 11419 11420 /* 11421 * Called by async thread to do synchronous pageio. Do the i/o, wait 11422 * for it to complete, and cleanup the page list when done. 11423 */ 11424 static int 11425 nfs4_sync_pageio(vnode_t *vp, page_t *pp, u_offset_t io_off, size_t io_len, 11426 int flags, cred_t *cr) 11427 { 11428 int error; 11429 11430 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 11431 11432 error = nfs4_rdwrlbn(vp, pp, io_off, io_len, flags, cr); 11433 if (flags & B_READ) 11434 pvn_read_done(pp, (error ? B_ERROR : 0) | flags); 11435 else 11436 pvn_write_done(pp, (error ? B_ERROR : 0) | flags); 11437 return (error); 11438 } 11439 11440 /* ARGSUSED */ 11441 static int 11442 nfs4_pageio(vnode_t *vp, page_t *pp, u_offset_t io_off, size_t io_len, 11443 int flags, cred_t *cr, caller_context_t *ct) 11444 { 11445 int error; 11446 rnode4_t *rp; 11447 11448 if (!(flags & B_ASYNC) && nfs_zone() != VTOMI4(vp)->mi_zone) 11449 return (EIO); 11450 11451 if (pp == NULL) 11452 return (EINVAL); 11453 11454 rp = VTOR4(vp); 11455 mutex_enter(&rp->r_statelock); 11456 rp->r_count++; 11457 mutex_exit(&rp->r_statelock); 11458 11459 if (flags & B_ASYNC) { 11460 error = nfs4_async_pageio(vp, pp, io_off, io_len, flags, cr, 11461 nfs4_sync_pageio); 11462 } else 11463 error = nfs4_rdwrlbn(vp, pp, io_off, io_len, flags, cr); 11464 mutex_enter(&rp->r_statelock); 11465 rp->r_count--; 11466 cv_broadcast(&rp->r_cv); 11467 mutex_exit(&rp->r_statelock); 11468 return (error); 11469 } 11470 11471 /* ARGSUSED */ 11472 static void 11473 nfs4_dispose(vnode_t *vp, page_t *pp, int fl, int dn, cred_t *cr, 11474 caller_context_t *ct) 11475 { 11476 int error; 11477 rnode4_t *rp; 11478 page_t *plist; 11479 page_t *pptr; 11480 offset3 offset; 11481 count3 len; 11482 k_sigset_t smask; 11483 11484 /* 11485 * We should get called with fl equal to either B_FREE or 11486 * B_INVAL. Any other value is illegal. 11487 * 11488 * The page that we are either supposed to free or destroy 11489 * should be exclusive locked and its io lock should not 11490 * be held. 11491 */ 11492 ASSERT(fl == B_FREE || fl == B_INVAL); 11493 ASSERT((PAGE_EXCL(pp) && !page_iolock_assert(pp)) || panicstr); 11494 11495 rp = VTOR4(vp); 11496 11497 /* 11498 * If the page doesn't need to be committed or we shouldn't 11499 * even bother attempting to commit it, then just make sure 11500 * that the p_fsdata byte is clear and then either free or 11501 * destroy the page as appropriate. 11502 */ 11503 if (pp->p_fsdata == C_NOCOMMIT || (rp->r_flags & R4STALE)) { 11504 pp->p_fsdata = C_NOCOMMIT; 11505 if (fl == B_FREE) 11506 page_free(pp, dn); 11507 else 11508 page_destroy(pp, dn); 11509 return; 11510 } 11511 11512 /* 11513 * If there is a page invalidation operation going on, then 11514 * if this is one of the pages being destroyed, then just 11515 * clear the p_fsdata byte and then either free or destroy 11516 * the page as appropriate. 11517 */ 11518 mutex_enter(&rp->r_statelock); 11519 if ((rp->r_flags & R4TRUNCATE) && pp->p_offset >= rp->r_truncaddr) { 11520 mutex_exit(&rp->r_statelock); 11521 pp->p_fsdata = C_NOCOMMIT; 11522 if (fl == B_FREE) 11523 page_free(pp, dn); 11524 else 11525 page_destroy(pp, dn); 11526 return; 11527 } 11528 11529 /* 11530 * If we are freeing this page and someone else is already 11531 * waiting to do a commit, then just unlock the page and 11532 * return. That other thread will take care of commiting 11533 * this page. The page can be freed sometime after the 11534 * commit has finished. Otherwise, if the page is marked 11535 * as delay commit, then we may be getting called from 11536 * pvn_write_done, one page at a time. This could result 11537 * in one commit per page, so we end up doing lots of small 11538 * commits instead of fewer larger commits. This is bad, 11539 * we want do as few commits as possible. 11540 */ 11541 if (fl == B_FREE) { 11542 if (rp->r_flags & R4COMMITWAIT) { 11543 page_unlock(pp); 11544 mutex_exit(&rp->r_statelock); 11545 return; 11546 } 11547 if (pp->p_fsdata == C_DELAYCOMMIT) { 11548 pp->p_fsdata = C_COMMIT; 11549 page_unlock(pp); 11550 mutex_exit(&rp->r_statelock); 11551 return; 11552 } 11553 } 11554 11555 /* 11556 * Check to see if there is a signal which would prevent an 11557 * attempt to commit the pages from being successful. If so, 11558 * then don't bother with all of the work to gather pages and 11559 * generate the unsuccessful RPC. Just return from here and 11560 * let the page be committed at some later time. 11561 */ 11562 sigintr(&smask, VTOMI4(vp)->mi_flags & MI4_INT); 11563 if (ttolwp(curthread) != NULL && ISSIG(curthread, JUSTLOOKING)) { 11564 sigunintr(&smask); 11565 page_unlock(pp); 11566 mutex_exit(&rp->r_statelock); 11567 return; 11568 } 11569 sigunintr(&smask); 11570 11571 /* 11572 * We are starting to need to commit pages, so let's try 11573 * to commit as many as possible at once to reduce the 11574 * overhead. 11575 * 11576 * Set the `commit inprogress' state bit. We must 11577 * first wait until any current one finishes. Then 11578 * we initialize the c_pages list with this page. 11579 */ 11580 while (rp->r_flags & R4COMMIT) { 11581 rp->r_flags |= R4COMMITWAIT; 11582 cv_wait(&rp->r_commit.c_cv, &rp->r_statelock); 11583 rp->r_flags &= ~R4COMMITWAIT; 11584 } 11585 rp->r_flags |= R4COMMIT; 11586 mutex_exit(&rp->r_statelock); 11587 ASSERT(rp->r_commit.c_pages == NULL); 11588 rp->r_commit.c_pages = pp; 11589 rp->r_commit.c_commbase = (offset3)pp->p_offset; 11590 rp->r_commit.c_commlen = PAGESIZE; 11591 11592 /* 11593 * Gather together all other pages which can be committed. 11594 * They will all be chained off r_commit.c_pages. 11595 */ 11596 nfs4_get_commit(vp); 11597 11598 /* 11599 * Clear the `commit inprogress' status and disconnect 11600 * the list of pages to be committed from the rnode. 11601 * At this same time, we also save the starting offset 11602 * and length of data to be committed on the server. 11603 */ 11604 plist = rp->r_commit.c_pages; 11605 rp->r_commit.c_pages = NULL; 11606 offset = rp->r_commit.c_commbase; 11607 len = rp->r_commit.c_commlen; 11608 mutex_enter(&rp->r_statelock); 11609 rp->r_flags &= ~R4COMMIT; 11610 cv_broadcast(&rp->r_commit.c_cv); 11611 mutex_exit(&rp->r_statelock); 11612 11613 if (curproc == proc_pageout || curproc == proc_fsflush || 11614 nfs_zone() != VTOMI4(vp)->mi_zone) { 11615 nfs4_async_commit(vp, plist, offset, len, 11616 cr, do_nfs4_async_commit); 11617 return; 11618 } 11619 11620 /* 11621 * Actually generate the COMMIT op over the wire operation. 11622 */ 11623 error = nfs4_commit(vp, (offset4)offset, (count4)len, cr); 11624 11625 /* 11626 * If we got an error during the commit, just unlock all 11627 * of the pages. The pages will get retransmitted to the 11628 * server during a putpage operation. 11629 */ 11630 if (error) { 11631 while (plist != NULL) { 11632 pptr = plist; 11633 page_sub(&plist, pptr); 11634 page_unlock(pptr); 11635 } 11636 return; 11637 } 11638 11639 /* 11640 * We've tried as hard as we can to commit the data to stable 11641 * storage on the server. We just unlock the rest of the pages 11642 * and clear the commit required state. They will be put 11643 * onto the tail of the cachelist if they are nolonger 11644 * mapped. 11645 */ 11646 while (plist != pp) { 11647 pptr = plist; 11648 page_sub(&plist, pptr); 11649 pptr->p_fsdata = C_NOCOMMIT; 11650 page_unlock(pptr); 11651 } 11652 11653 /* 11654 * It is possible that nfs4_commit didn't return error but 11655 * some other thread has modified the page we are going 11656 * to free/destroy. 11657 * In this case we need to rewrite the page. Do an explicit check 11658 * before attempting to free/destroy the page. If modified, needs to 11659 * be rewritten so unlock the page and return. 11660 */ 11661 if (hat_ismod(pp)) { 11662 pp->p_fsdata = C_NOCOMMIT; 11663 page_unlock(pp); 11664 return; 11665 } 11666 11667 /* 11668 * Now, as appropriate, either free or destroy the page 11669 * that we were called with. 11670 */ 11671 pp->p_fsdata = C_NOCOMMIT; 11672 if (fl == B_FREE) 11673 page_free(pp, dn); 11674 else 11675 page_destroy(pp, dn); 11676 } 11677 11678 /* 11679 * Commit requires that the current fh be the file written to. 11680 * The compound op structure is: 11681 * PUTFH(file), COMMIT 11682 */ 11683 static int 11684 nfs4_commit(vnode_t *vp, offset4 offset, count4 count, cred_t *cr) 11685 { 11686 COMPOUND4args_clnt args; 11687 COMPOUND4res_clnt res; 11688 COMMIT4res *cm_res; 11689 nfs_argop4 argop[2]; 11690 nfs_resop4 *resop; 11691 int doqueue; 11692 mntinfo4_t *mi; 11693 rnode4_t *rp; 11694 cred_t *cred_otw = NULL; 11695 bool_t needrecov = FALSE; 11696 nfs4_recov_state_t recov_state; 11697 nfs4_open_stream_t *osp = NULL; 11698 bool_t first_time = TRUE; /* first time getting OTW cred */ 11699 bool_t last_time = FALSE; /* last time getting OTW cred */ 11700 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 11701 11702 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 11703 11704 rp = VTOR4(vp); 11705 11706 mi = VTOMI4(vp); 11707 recov_state.rs_flags = 0; 11708 recov_state.rs_num_retry_despite_err = 0; 11709 get_commit_cred: 11710 /* 11711 * Releases the osp, if a valid open stream is provided. 11712 * Puts a hold on the cred_otw and the new osp (if found). 11713 */ 11714 cred_otw = nfs4_get_otw_cred_by_osp(rp, cr, &osp, 11715 &first_time, &last_time); 11716 args.ctag = TAG_COMMIT; 11717 recov_retry: 11718 /* 11719 * Commit ops: putfh file; commit 11720 */ 11721 args.array_len = 2; 11722 args.array = argop; 11723 11724 e.error = nfs4_start_fop(VTOMI4(vp), vp, NULL, OH_COMMIT, 11725 &recov_state, NULL); 11726 if (e.error) { 11727 crfree(cred_otw); 11728 if (osp != NULL) 11729 open_stream_rele(osp, rp); 11730 return (e.error); 11731 } 11732 11733 /* putfh directory */ 11734 argop[0].argop = OP_CPUTFH; 11735 argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh; 11736 11737 /* commit */ 11738 argop[1].argop = OP_COMMIT; 11739 argop[1].nfs_argop4_u.opcommit.offset = offset; 11740 argop[1].nfs_argop4_u.opcommit.count = count; 11741 11742 doqueue = 1; 11743 rfs4call(mi, &args, &res, cred_otw, &doqueue, 0, &e); 11744 11745 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp); 11746 if (!needrecov && e.error) { 11747 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_COMMIT, &recov_state, 11748 needrecov); 11749 crfree(cred_otw); 11750 if (e.error == EACCES && last_time == FALSE) 11751 goto get_commit_cred; 11752 if (osp != NULL) 11753 open_stream_rele(osp, rp); 11754 return (e.error); 11755 } 11756 11757 if (needrecov) { 11758 if (nfs4_start_recovery(&e, VTOMI4(vp), vp, NULL, NULL, 11759 NULL, OP_COMMIT, NULL) == FALSE) { 11760 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_COMMIT, 11761 &recov_state, needrecov); 11762 if (!e.error) 11763 (void) xdr_free(xdr_COMPOUND4res_clnt, 11764 (caddr_t)&res); 11765 goto recov_retry; 11766 } 11767 if (e.error) { 11768 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_COMMIT, 11769 &recov_state, needrecov); 11770 crfree(cred_otw); 11771 if (osp != NULL) 11772 open_stream_rele(osp, rp); 11773 return (e.error); 11774 } 11775 /* fall through for res.status case */ 11776 } 11777 11778 if (res.status) { 11779 e.error = geterrno4(res.status); 11780 if (e.error == EACCES && last_time == FALSE) { 11781 crfree(cred_otw); 11782 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_COMMIT, 11783 &recov_state, needrecov); 11784 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 11785 goto get_commit_cred; 11786 } 11787 /* 11788 * Can't do a nfs4_purge_stale_fh here because this 11789 * can cause a deadlock. nfs4_commit can 11790 * be called from nfs4_dispose which can be called 11791 * indirectly via pvn_vplist_dirty. nfs4_purge_stale_fh 11792 * can call back to pvn_vplist_dirty. 11793 */ 11794 if (e.error == ESTALE) { 11795 mutex_enter(&rp->r_statelock); 11796 rp->r_flags |= R4STALE; 11797 if (!rp->r_error) 11798 rp->r_error = e.error; 11799 mutex_exit(&rp->r_statelock); 11800 PURGE_ATTRCACHE4(vp); 11801 } else { 11802 mutex_enter(&rp->r_statelock); 11803 if (!rp->r_error) 11804 rp->r_error = e.error; 11805 mutex_exit(&rp->r_statelock); 11806 } 11807 } else { 11808 ASSERT(rp->r_flags & R4HAVEVERF); 11809 resop = &res.array[1]; /* commit res */ 11810 cm_res = &resop->nfs_resop4_u.opcommit; 11811 mutex_enter(&rp->r_statelock); 11812 if (cm_res->writeverf == rp->r_writeverf) { 11813 mutex_exit(&rp->r_statelock); 11814 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 11815 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_COMMIT, 11816 &recov_state, needrecov); 11817 crfree(cred_otw); 11818 if (osp != NULL) 11819 open_stream_rele(osp, rp); 11820 return (0); 11821 } 11822 nfs4_set_mod(vp); 11823 rp->r_writeverf = cm_res->writeverf; 11824 mutex_exit(&rp->r_statelock); 11825 e.error = NFS_VERF_MISMATCH; 11826 } 11827 11828 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 11829 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_COMMIT, &recov_state, needrecov); 11830 crfree(cred_otw); 11831 if (osp != NULL) 11832 open_stream_rele(osp, rp); 11833 11834 return (e.error); 11835 } 11836 11837 static void 11838 nfs4_set_mod(vnode_t *vp) 11839 { 11840 page_t *pp; 11841 kmutex_t *vphm; 11842 rnode4_t *rp; 11843 11844 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 11845 11846 /* make sure we're looking at the master vnode, not a shadow */ 11847 11848 rp = VTOR4(vp); 11849 if (IS_SHADOW(vp, rp)) 11850 vp = RTOV4(rp); 11851 11852 vphm = page_vnode_mutex(vp); 11853 mutex_enter(vphm); 11854 /* 11855 * If there are no pages associated with this vnode, then 11856 * just return. 11857 */ 11858 if ((pp = vp->v_pages) == NULL) { 11859 mutex_exit(vphm); 11860 return; 11861 } 11862 11863 do { 11864 if (pp->p_fsdata != C_NOCOMMIT) { 11865 hat_setmod(pp); 11866 pp->p_fsdata = C_NOCOMMIT; 11867 } 11868 } while ((pp = pp->p_vpnext) != vp->v_pages); 11869 mutex_exit(vphm); 11870 } 11871 11872 /* 11873 * This function is used to gather a page list of the pages which 11874 * can be committed on the server. 11875 * 11876 * The calling thread must have set R4COMMIT. This bit is used to 11877 * serialize access to the commit structure in the rnode. As long 11878 * as the thread has set R4COMMIT, then it can manipulate the commit 11879 * structure without requiring any other locks. 11880 * 11881 * When this function is called from nfs4_dispose() the page passed 11882 * into nfs4_dispose() will be SE_EXCL locked, and so this function 11883 * will skip it. This is not a problem since we initially add the 11884 * page to the r_commit page list. 11885 * 11886 */ 11887 static void 11888 nfs4_get_commit(vnode_t *vp) 11889 { 11890 rnode4_t *rp; 11891 page_t *pp; 11892 kmutex_t *vphm; 11893 11894 rp = VTOR4(vp); 11895 11896 ASSERT(rp->r_flags & R4COMMIT); 11897 11898 /* make sure we're looking at the master vnode, not a shadow */ 11899 11900 if (IS_SHADOW(vp, rp)) 11901 vp = RTOV4(rp); 11902 11903 vphm = page_vnode_mutex(vp); 11904 mutex_enter(vphm); 11905 11906 /* 11907 * If there are no pages associated with this vnode, then 11908 * just return. 11909 */ 11910 if ((pp = vp->v_pages) == NULL) { 11911 mutex_exit(vphm); 11912 return; 11913 } 11914 11915 /* 11916 * Step through all of the pages associated with this vnode 11917 * looking for pages which need to be committed. 11918 */ 11919 do { 11920 /* 11921 * First short-cut everything (without the page_lock) 11922 * and see if this page does not need to be committed 11923 * or is modified if so then we'll just skip it. 11924 */ 11925 if (pp->p_fsdata == C_NOCOMMIT || hat_ismod(pp)) 11926 continue; 11927 11928 /* 11929 * Attempt to lock the page. If we can't, then 11930 * someone else is messing with it or we have been 11931 * called from nfs4_dispose and this is the page that 11932 * nfs4_dispose was called with.. anyway just skip it. 11933 */ 11934 if (!page_trylock(pp, SE_EXCL)) 11935 continue; 11936 11937 /* 11938 * Lets check again now that we have the page lock. 11939 */ 11940 if (pp->p_fsdata == C_NOCOMMIT || hat_ismod(pp)) { 11941 page_unlock(pp); 11942 continue; 11943 } 11944 11945 /* this had better not be a free page */ 11946 ASSERT(PP_ISFREE(pp) == 0); 11947 11948 /* 11949 * The page needs to be committed and we locked it. 11950 * Update the base and length parameters and add it 11951 * to r_pages. 11952 */ 11953 if (rp->r_commit.c_pages == NULL) { 11954 rp->r_commit.c_commbase = (offset3)pp->p_offset; 11955 rp->r_commit.c_commlen = PAGESIZE; 11956 } else if (pp->p_offset < rp->r_commit.c_commbase) { 11957 rp->r_commit.c_commlen = rp->r_commit.c_commbase - 11958 (offset3)pp->p_offset + rp->r_commit.c_commlen; 11959 rp->r_commit.c_commbase = (offset3)pp->p_offset; 11960 } else if ((rp->r_commit.c_commbase + rp->r_commit.c_commlen) 11961 <= pp->p_offset) { 11962 rp->r_commit.c_commlen = (offset3)pp->p_offset - 11963 rp->r_commit.c_commbase + PAGESIZE; 11964 } 11965 page_add(&rp->r_commit.c_pages, pp); 11966 } while ((pp = pp->p_vpnext) != vp->v_pages); 11967 11968 mutex_exit(vphm); 11969 } 11970 11971 /* 11972 * This routine is used to gather together a page list of the pages 11973 * which are to be committed on the server. This routine must not 11974 * be called if the calling thread holds any locked pages. 11975 * 11976 * The calling thread must have set R4COMMIT. This bit is used to 11977 * serialize access to the commit structure in the rnode. As long 11978 * as the thread has set R4COMMIT, then it can manipulate the commit 11979 * structure without requiring any other locks. 11980 */ 11981 static void 11982 nfs4_get_commit_range(vnode_t *vp, u_offset_t soff, size_t len) 11983 { 11984 11985 rnode4_t *rp; 11986 page_t *pp; 11987 u_offset_t end; 11988 u_offset_t off; 11989 ASSERT(len != 0); 11990 rp = VTOR4(vp); 11991 ASSERT(rp->r_flags & R4COMMIT); 11992 11993 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 11994 11995 /* make sure we're looking at the master vnode, not a shadow */ 11996 11997 if (IS_SHADOW(vp, rp)) 11998 vp = RTOV4(rp); 11999 12000 /* 12001 * If there are no pages associated with this vnode, then 12002 * just return. 12003 */ 12004 if ((pp = vp->v_pages) == NULL) 12005 return; 12006 /* 12007 * Calculate the ending offset. 12008 */ 12009 end = soff + len; 12010 for (off = soff; off < end; off += PAGESIZE) { 12011 /* 12012 * Lookup each page by vp, offset. 12013 */ 12014 if ((pp = page_lookup_nowait(vp, off, SE_EXCL)) == NULL) 12015 continue; 12016 /* 12017 * If this page does not need to be committed or is 12018 * modified, then just skip it. 12019 */ 12020 if (pp->p_fsdata == C_NOCOMMIT || hat_ismod(pp)) { 12021 page_unlock(pp); 12022 continue; 12023 } 12024 12025 ASSERT(PP_ISFREE(pp) == 0); 12026 /* 12027 * The page needs to be committed and we locked it. 12028 * Update the base and length parameters and add it 12029 * to r_pages. 12030 */ 12031 if (rp->r_commit.c_pages == NULL) { 12032 rp->r_commit.c_commbase = (offset3)pp->p_offset; 12033 rp->r_commit.c_commlen = PAGESIZE; 12034 } else { 12035 rp->r_commit.c_commlen = (offset3)pp->p_offset - 12036 rp->r_commit.c_commbase + PAGESIZE; 12037 } 12038 page_add(&rp->r_commit.c_pages, pp); 12039 } 12040 } 12041 12042 /* 12043 * Called from nfs4_close(), nfs4_fsync() and nfs4_delmap(). 12044 * Flushes and commits data to the server. 12045 */ 12046 static int 12047 nfs4_putpage_commit(vnode_t *vp, offset_t poff, size_t plen, cred_t *cr) 12048 { 12049 int error; 12050 verifier4 write_verf; 12051 rnode4_t *rp = VTOR4(vp); 12052 12053 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 12054 12055 /* 12056 * Flush the data portion of the file and then commit any 12057 * portions which need to be committed. This may need to 12058 * be done twice if the server has changed state since 12059 * data was last written. The data will need to be 12060 * rewritten to the server and then a new commit done. 12061 * 12062 * In fact, this may need to be done several times if the 12063 * server is having problems and crashing while we are 12064 * attempting to do this. 12065 */ 12066 12067 top: 12068 /* 12069 * Do a flush based on the poff and plen arguments. This 12070 * will synchronously write out any modified pages in the 12071 * range specified by (poff, plen). This starts all of the 12072 * i/o operations which will be waited for in the next 12073 * call to nfs4_putpage 12074 */ 12075 12076 mutex_enter(&rp->r_statelock); 12077 write_verf = rp->r_writeverf; 12078 mutex_exit(&rp->r_statelock); 12079 12080 error = nfs4_putpage(vp, poff, plen, B_ASYNC, cr, NULL); 12081 if (error == EAGAIN) 12082 error = 0; 12083 12084 /* 12085 * Do a flush based on the poff and plen arguments. This 12086 * will synchronously write out any modified pages in the 12087 * range specified by (poff, plen) and wait until all of 12088 * the asynchronous i/o's in that range are done as well. 12089 */ 12090 if (!error) 12091 error = nfs4_putpage(vp, poff, plen, 0, cr, NULL); 12092 12093 if (error) 12094 return (error); 12095 12096 mutex_enter(&rp->r_statelock); 12097 if (rp->r_writeverf != write_verf) { 12098 mutex_exit(&rp->r_statelock); 12099 goto top; 12100 } 12101 mutex_exit(&rp->r_statelock); 12102 12103 /* 12104 * Now commit any pages which might need to be committed. 12105 * If the error, NFS_VERF_MISMATCH, is returned, then 12106 * start over with the flush operation. 12107 */ 12108 error = nfs4_commit_vp(vp, poff, plen, cr, NFS4_WRITE_WAIT); 12109 12110 if (error == NFS_VERF_MISMATCH) 12111 goto top; 12112 12113 return (error); 12114 } 12115 12116 /* 12117 * nfs4_commit_vp() will wait for other pending commits and 12118 * will either commit the whole file or a range, plen dictates 12119 * if we commit whole file. a value of zero indicates the whole 12120 * file. Called from nfs4_putpage_commit() or nfs4_sync_putapage() 12121 */ 12122 static int 12123 nfs4_commit_vp(vnode_t *vp, u_offset_t poff, size_t plen, 12124 cred_t *cr, int wait_on_writes) 12125 { 12126 rnode4_t *rp; 12127 page_t *plist; 12128 offset3 offset; 12129 count3 len; 12130 12131 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 12132 12133 rp = VTOR4(vp); 12134 12135 /* 12136 * before we gather commitable pages make 12137 * sure there are no outstanding async writes 12138 */ 12139 if (rp->r_count && wait_on_writes == NFS4_WRITE_WAIT) { 12140 mutex_enter(&rp->r_statelock); 12141 while (rp->r_count > 0) { 12142 cv_wait(&rp->r_cv, &rp->r_statelock); 12143 } 12144 mutex_exit(&rp->r_statelock); 12145 } 12146 12147 /* 12148 * Set the `commit inprogress' state bit. We must 12149 * first wait until any current one finishes. 12150 */ 12151 mutex_enter(&rp->r_statelock); 12152 while (rp->r_flags & R4COMMIT) { 12153 rp->r_flags |= R4COMMITWAIT; 12154 cv_wait(&rp->r_commit.c_cv, &rp->r_statelock); 12155 rp->r_flags &= ~R4COMMITWAIT; 12156 } 12157 rp->r_flags |= R4COMMIT; 12158 mutex_exit(&rp->r_statelock); 12159 12160 /* 12161 * Gather all of the pages which need to be 12162 * committed. 12163 */ 12164 if (plen == 0) 12165 nfs4_get_commit(vp); 12166 else 12167 nfs4_get_commit_range(vp, poff, plen); 12168 12169 /* 12170 * Clear the `commit inprogress' bit and disconnect the 12171 * page list which was gathered by nfs4_get_commit. 12172 */ 12173 plist = rp->r_commit.c_pages; 12174 rp->r_commit.c_pages = NULL; 12175 offset = rp->r_commit.c_commbase; 12176 len = rp->r_commit.c_commlen; 12177 mutex_enter(&rp->r_statelock); 12178 rp->r_flags &= ~R4COMMIT; 12179 cv_broadcast(&rp->r_commit.c_cv); 12180 mutex_exit(&rp->r_statelock); 12181 12182 /* 12183 * If any pages need to be committed, commit them and 12184 * then unlock them so that they can be freed some 12185 * time later. 12186 */ 12187 if (plist == NULL) 12188 return (0); 12189 12190 /* 12191 * No error occurred during the flush portion 12192 * of this operation, so now attempt to commit 12193 * the data to stable storage on the server. 12194 * 12195 * This will unlock all of the pages on the list. 12196 */ 12197 return (nfs4_sync_commit(vp, plist, offset, len, cr)); 12198 } 12199 12200 static int 12201 nfs4_sync_commit(vnode_t *vp, page_t *plist, offset3 offset, count3 count, 12202 cred_t *cr) 12203 { 12204 int error; 12205 page_t *pp; 12206 12207 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 12208 12209 error = nfs4_commit(vp, (offset4)offset, (count3)count, cr); 12210 12211 /* 12212 * If we got an error, then just unlock all of the pages 12213 * on the list. 12214 */ 12215 if (error) { 12216 while (plist != NULL) { 12217 pp = plist; 12218 page_sub(&plist, pp); 12219 page_unlock(pp); 12220 } 12221 return (error); 12222 } 12223 /* 12224 * We've tried as hard as we can to commit the data to stable 12225 * storage on the server. We just unlock the pages and clear 12226 * the commit required state. They will get freed later. 12227 */ 12228 while (plist != NULL) { 12229 pp = plist; 12230 page_sub(&plist, pp); 12231 pp->p_fsdata = C_NOCOMMIT; 12232 page_unlock(pp); 12233 } 12234 12235 return (error); 12236 } 12237 12238 static void 12239 do_nfs4_async_commit(vnode_t *vp, page_t *plist, offset3 offset, count3 count, 12240 cred_t *cr) 12241 { 12242 12243 (void) nfs4_sync_commit(vp, plist, offset, count, cr); 12244 } 12245 12246 /*ARGSUSED*/ 12247 static int 12248 nfs4_setsecattr(vnode_t *vp, vsecattr_t *vsecattr, int flag, cred_t *cr, 12249 caller_context_t *ct) 12250 { 12251 int error = 0; 12252 mntinfo4_t *mi; 12253 vattr_t va; 12254 vsecattr_t nfsace4_vsap; 12255 12256 mi = VTOMI4(vp); 12257 if (nfs_zone() != mi->mi_zone) 12258 return (EIO); 12259 if (mi->mi_flags & MI4_ACL) { 12260 /* if we have a delegation, return it */ 12261 if (VTOR4(vp)->r_deleg_type != OPEN_DELEGATE_NONE) 12262 (void) nfs4delegreturn(VTOR4(vp), 12263 NFS4_DR_REOPEN|NFS4_DR_PUSH); 12264 12265 error = nfs4_is_acl_mask_valid(vsecattr->vsa_mask, 12266 NFS4_ACL_SET); 12267 if (error) /* EINVAL */ 12268 return (error); 12269 12270 if (vsecattr->vsa_mask & (VSA_ACL | VSA_DFACL)) { 12271 /* 12272 * These are aclent_t type entries. 12273 */ 12274 error = vs_aent_to_ace4(vsecattr, &nfsace4_vsap, 12275 vp->v_type == VDIR, FALSE); 12276 if (error) 12277 return (error); 12278 } else { 12279 /* 12280 * These are ace_t type entries. 12281 */ 12282 error = vs_acet_to_ace4(vsecattr, &nfsace4_vsap, 12283 FALSE); 12284 if (error) 12285 return (error); 12286 } 12287 bzero(&va, sizeof (va)); 12288 error = nfs4setattr(vp, &va, flag, cr, &nfsace4_vsap); 12289 vs_ace4_destroy(&nfsace4_vsap); 12290 return (error); 12291 } 12292 return (ENOSYS); 12293 } 12294 12295 /* ARGSUSED */ 12296 int 12297 nfs4_getsecattr(vnode_t *vp, vsecattr_t *vsecattr, int flag, cred_t *cr, 12298 caller_context_t *ct) 12299 { 12300 int error; 12301 mntinfo4_t *mi; 12302 nfs4_ga_res_t gar; 12303 rnode4_t *rp = VTOR4(vp); 12304 12305 mi = VTOMI4(vp); 12306 if (nfs_zone() != mi->mi_zone) 12307 return (EIO); 12308 12309 bzero(&gar, sizeof (gar)); 12310 gar.n4g_vsa.vsa_mask = vsecattr->vsa_mask; 12311 12312 /* 12313 * vsecattr->vsa_mask holds the original acl request mask. 12314 * This is needed when determining what to return. 12315 * (See: nfs4_create_getsecattr_return()) 12316 */ 12317 error = nfs4_is_acl_mask_valid(vsecattr->vsa_mask, NFS4_ACL_GET); 12318 if (error) /* EINVAL */ 12319 return (error); 12320 12321 if (mi->mi_flags & MI4_ACL) { 12322 /* 12323 * Check if the data is cached and the cache is valid. If it 12324 * is we don't go over the wire. 12325 */ 12326 if (rp->r_secattr != NULL && ATTRCACHE4_VALID(vp)) { 12327 mutex_enter(&rp->r_statelock); 12328 if (rp->r_secattr != NULL) { 12329 error = nfs4_create_getsecattr_return( 12330 rp->r_secattr, vsecattr, rp->r_attr.va_uid, 12331 rp->r_attr.va_gid, 12332 vp->v_type == VDIR); 12333 if (!error) { /* error == 0 - Success! */ 12334 mutex_exit(&rp->r_statelock); 12335 return (error); 12336 } 12337 } 12338 mutex_exit(&rp->r_statelock); 12339 } 12340 12341 /* 12342 * The getattr otw call will always get both the acl, in 12343 * the form of a list of nfsace4's, and the number of acl 12344 * entries; independent of the value of gar.n4g_vsa.vsa_mask. 12345 */ 12346 gar.n4g_va.va_mask = AT_ALL; 12347 error = nfs4_getattr_otw(vp, &gar, cr, 1); 12348 if (error) { 12349 vs_ace4_destroy(&gar.n4g_vsa); 12350 if (error == ENOTSUP || error == EOPNOTSUPP) 12351 error = fs_fab_acl(vp, vsecattr, flag, cr, ct); 12352 return (error); 12353 } 12354 12355 if (!(gar.n4g_resbmap & FATTR4_ACL_MASK)) { 12356 /* 12357 * No error was returned, but according to the response 12358 * bitmap, neither was an acl. 12359 */ 12360 vs_ace4_destroy(&gar.n4g_vsa); 12361 error = fs_fab_acl(vp, vsecattr, flag, cr, ct); 12362 return (error); 12363 } 12364 12365 /* 12366 * Update the cache with the ACL. 12367 */ 12368 nfs4_acl_fill_cache(rp, &gar.n4g_vsa); 12369 12370 error = nfs4_create_getsecattr_return(&gar.n4g_vsa, 12371 vsecattr, gar.n4g_va.va_uid, gar.n4g_va.va_gid, 12372 vp->v_type == VDIR); 12373 vs_ace4_destroy(&gar.n4g_vsa); 12374 if ((error) && (vsecattr->vsa_mask & 12375 (VSA_ACL | VSA_ACLCNT | VSA_DFACL | VSA_DFACLCNT)) && 12376 (error != EACCES)) { 12377 error = fs_fab_acl(vp, vsecattr, flag, cr, ct); 12378 } 12379 return (error); 12380 } 12381 error = fs_fab_acl(vp, vsecattr, flag, cr, ct); 12382 return (error); 12383 } 12384 12385 /* 12386 * The function returns: 12387 * - 0 (zero) if the passed in "acl_mask" is a valid request. 12388 * - EINVAL if the passed in "acl_mask" is an invalid request. 12389 * 12390 * In the case of getting an acl (op == NFS4_ACL_GET) the mask is invalid if: 12391 * - We have a mixture of ACE and ACL requests (e.g. VSA_ACL | VSA_ACE) 12392 * 12393 * In the case of setting an acl (op == NFS4_ACL_SET) the mask is invalid if: 12394 * - We have a mixture of ACE and ACL requests (e.g. VSA_ACL | VSA_ACE) 12395 * - We have a count field set without the corresponding acl field set. (e.g. - 12396 * VSA_ACECNT is set, but VSA_ACE is not) 12397 */ 12398 static int 12399 nfs4_is_acl_mask_valid(uint_t acl_mask, nfs4_acl_op_t op) 12400 { 12401 /* Shortcut the masks that are always valid. */ 12402 if (acl_mask == (VSA_ACE | VSA_ACECNT)) 12403 return (0); 12404 if (acl_mask == (VSA_ACL | VSA_ACLCNT | VSA_DFACL | VSA_DFACLCNT)) 12405 return (0); 12406 12407 if (acl_mask & (VSA_ACE | VSA_ACECNT)) { 12408 /* 12409 * We can't have any VSA_ACL type stuff in the mask now. 12410 */ 12411 if (acl_mask & (VSA_ACL | VSA_ACLCNT | VSA_DFACL | 12412 VSA_DFACLCNT)) 12413 return (EINVAL); 12414 12415 if (op == NFS4_ACL_SET) { 12416 if ((acl_mask & VSA_ACECNT) && !(acl_mask & VSA_ACE)) 12417 return (EINVAL); 12418 } 12419 } 12420 12421 if (acl_mask & (VSA_ACL | VSA_ACLCNT | VSA_DFACL | VSA_DFACLCNT)) { 12422 /* 12423 * We can't have any VSA_ACE type stuff in the mask now. 12424 */ 12425 if (acl_mask & (VSA_ACE | VSA_ACECNT)) 12426 return (EINVAL); 12427 12428 if (op == NFS4_ACL_SET) { 12429 if ((acl_mask & VSA_ACLCNT) && !(acl_mask & VSA_ACL)) 12430 return (EINVAL); 12431 12432 if ((acl_mask & VSA_DFACLCNT) && 12433 !(acl_mask & VSA_DFACL)) 12434 return (EINVAL); 12435 } 12436 } 12437 return (0); 12438 } 12439 12440 /* 12441 * The theory behind creating the correct getsecattr return is simply this: 12442 * "Don't return anything that the caller is not expecting to have to free." 12443 */ 12444 static int 12445 nfs4_create_getsecattr_return(vsecattr_t *filled_vsap, vsecattr_t *vsap, 12446 uid_t uid, gid_t gid, int isdir) 12447 { 12448 int error = 0; 12449 /* Save the mask since the translators modify it. */ 12450 uint_t orig_mask = vsap->vsa_mask; 12451 12452 if (orig_mask & (VSA_ACE | VSA_ACECNT)) { 12453 error = vs_ace4_to_acet(filled_vsap, vsap, uid, gid, 12454 FALSE, ((orig_mask & VSA_ACE) ? FALSE : TRUE)); 12455 12456 if (error) 12457 return (error); 12458 12459 /* 12460 * If the caller only asked for the ace count (VSA_ACECNT) 12461 * don't give them the full acl (VSA_ACE), free it. 12462 */ 12463 if (!orig_mask & VSA_ACE) { 12464 if (vsap->vsa_aclentp != NULL) { 12465 kmem_free(vsap->vsa_aclentp, 12466 vsap->vsa_aclcnt * sizeof (ace_t)); 12467 vsap->vsa_aclentp = NULL; 12468 } 12469 } 12470 vsap->vsa_mask = orig_mask; 12471 12472 } else if (orig_mask & (VSA_ACL | VSA_ACLCNT | VSA_DFACL | 12473 VSA_DFACLCNT)) { 12474 error = vs_ace4_to_aent(filled_vsap, vsap, uid, gid, 12475 isdir, FALSE, 12476 ((orig_mask & (VSA_ACL | VSA_DFACL)) ? FALSE : TRUE)); 12477 12478 if (error) 12479 return (error); 12480 12481 /* 12482 * If the caller only asked for the acl count (VSA_ACLCNT) 12483 * and/or the default acl count (VSA_DFACLCNT) don't give them 12484 * the acl (VSA_ACL) or default acl (VSA_DFACL), free it. 12485 */ 12486 if (!orig_mask & VSA_ACL) { 12487 if (vsap->vsa_aclentp != NULL) { 12488 kmem_free(vsap->vsa_aclentp, 12489 vsap->vsa_aclcnt * sizeof (aclent_t)); 12490 vsap->vsa_aclentp = NULL; 12491 } 12492 } 12493 12494 if (!orig_mask & VSA_DFACL) { 12495 if (vsap->vsa_dfaclentp != NULL) { 12496 kmem_free(vsap->vsa_dfaclentp, 12497 vsap->vsa_dfaclcnt * sizeof (aclent_t)); 12498 vsap->vsa_dfaclentp = NULL; 12499 } 12500 } 12501 vsap->vsa_mask = orig_mask; 12502 } 12503 return (0); 12504 } 12505 12506 /* ARGSUSED */ 12507 int 12508 nfs4_shrlock(vnode_t *vp, int cmd, struct shrlock *shr, int flag, cred_t *cr, 12509 caller_context_t *ct) 12510 { 12511 int error; 12512 12513 if (nfs_zone() != VTOMI4(vp)->mi_zone) 12514 return (EIO); 12515 /* 12516 * check for valid cmd parameter 12517 */ 12518 if (cmd != F_SHARE && cmd != F_UNSHARE && cmd != F_HASREMOTELOCKS) 12519 return (EINVAL); 12520 12521 /* 12522 * Check access permissions 12523 */ 12524 if ((cmd & F_SHARE) && 12525 (((shr->s_access & F_RDACC) && (flag & FREAD) == 0) || 12526 (shr->s_access == F_WRACC && (flag & FWRITE) == 0))) 12527 return (EBADF); 12528 12529 /* 12530 * If the filesystem is mounted using local locking, pass the 12531 * request off to the local share code. 12532 */ 12533 if (VTOMI4(vp)->mi_flags & MI4_LLOCK) 12534 return (fs_shrlock(vp, cmd, shr, flag, cr, ct)); 12535 12536 switch (cmd) { 12537 case F_SHARE: 12538 case F_UNSHARE: 12539 /* 12540 * This will be properly implemented later, 12541 * see RFE: 4823948 . 12542 */ 12543 error = EAGAIN; 12544 break; 12545 12546 case F_HASREMOTELOCKS: 12547 /* 12548 * NFS client can't store remote locks itself 12549 */ 12550 shr->s_access = 0; 12551 error = 0; 12552 break; 12553 12554 default: 12555 error = EINVAL; 12556 break; 12557 } 12558 12559 return (error); 12560 } 12561 12562 /* 12563 * Common code called by directory ops to update the attrcache 12564 */ 12565 static int 12566 nfs4_update_attrcache(nfsstat4 status, nfs4_ga_res_t *garp, 12567 hrtime_t t, vnode_t *vp, cred_t *cr) 12568 { 12569 int error = 0; 12570 12571 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 12572 12573 if (status != NFS4_OK) { 12574 /* getattr not done or failed */ 12575 PURGE_ATTRCACHE4(vp); 12576 return (error); 12577 } 12578 12579 if (garp) { 12580 nfs4_attr_cache(vp, garp, t, cr, FALSE, NULL); 12581 } else { 12582 PURGE_ATTRCACHE4(vp); 12583 } 12584 return (error); 12585 } 12586 12587 /* 12588 * Update directory caches for directory modification ops (link, rename, etc.) 12589 * When dinfo is NULL, manage dircaches in the old way. 12590 */ 12591 static void 12592 nfs4_update_dircaches(change_info4 *cinfo, vnode_t *dvp, vnode_t *vp, char *nm, 12593 dirattr_info_t *dinfo) 12594 { 12595 rnode4_t *drp = VTOR4(dvp); 12596 12597 ASSERT(nfs_zone() == VTOMI4(dvp)->mi_zone); 12598 12599 /* Purge rddir cache for dir since it changed */ 12600 if (drp->r_dir != NULL) 12601 nfs4_purge_rddir_cache(dvp); 12602 12603 /* 12604 * If caller provided dinfo, then use it to manage dir caches. 12605 */ 12606 if (dinfo != NULL) { 12607 if (vp != NULL) { 12608 mutex_enter(&VTOR4(vp)->r_statev4_lock); 12609 if (!VTOR4(vp)->created_v4) { 12610 mutex_exit(&VTOR4(vp)->r_statev4_lock); 12611 dnlc_update(dvp, nm, vp); 12612 } else { 12613 /* 12614 * XXX don't update if the created_v4 flag is 12615 * set 12616 */ 12617 mutex_exit(&VTOR4(vp)->r_statev4_lock); 12618 NFS4_DEBUG(nfs4_client_state_debug, 12619 (CE_NOTE, "nfs4_update_dircaches: " 12620 "don't update dnlc: created_v4 flag")); 12621 } 12622 } 12623 12624 nfs4_attr_cache(dvp, dinfo->di_garp, dinfo->di_time_call, 12625 dinfo->di_cred, FALSE, cinfo); 12626 12627 return; 12628 } 12629 12630 /* 12631 * Caller didn't provide dinfo, then check change_info4 to update DNLC. 12632 * Since caller modified dir but didn't receive post-dirmod-op dir 12633 * attrs, the dir's attrs must be purged. 12634 * 12635 * XXX this check and dnlc update/purge should really be atomic, 12636 * XXX but can't use rnode statelock because it'll deadlock in 12637 * XXX dnlc_purge_vp, however, the risk is minimal even if a race 12638 * XXX does occur. 12639 * 12640 * XXX We also may want to check that atomic is true in the 12641 * XXX change_info struct. If it is not, the change_info may 12642 * XXX reflect changes by more than one clients which means that 12643 * XXX our cache may not be valid. 12644 */ 12645 PURGE_ATTRCACHE4(dvp); 12646 if (drp->r_change == cinfo->before) { 12647 /* no changes took place in the directory prior to our link */ 12648 if (vp != NULL) { 12649 mutex_enter(&VTOR4(vp)->r_statev4_lock); 12650 if (!VTOR4(vp)->created_v4) { 12651 mutex_exit(&VTOR4(vp)->r_statev4_lock); 12652 dnlc_update(dvp, nm, vp); 12653 } else { 12654 /* 12655 * XXX dont' update if the created_v4 flag 12656 * is set 12657 */ 12658 mutex_exit(&VTOR4(vp)->r_statev4_lock); 12659 NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE, 12660 "nfs4_update_dircaches: don't" 12661 " update dnlc: created_v4 flag")); 12662 } 12663 } 12664 } else { 12665 /* Another client modified directory - purge its dnlc cache */ 12666 dnlc_purge_vp(dvp); 12667 } 12668 } 12669 12670 /* 12671 * The OPEN_CONFIRM operation confirms the sequence number used in OPENing a 12672 * file. 12673 * 12674 * The 'reopening_file' boolean should be set to TRUE if we are reopening this 12675 * file (ie: client recovery) and otherwise set to FALSE. 12676 * 12677 * 'nfs4_start/end_op' should have been called by the proper (ie: not recovery 12678 * initiated) calling functions. 12679 * 12680 * 'resend' is set to TRUE if this is a OPEN_CONFIRM issued as a result 12681 * of resending a 'lost' open request. 12682 * 12683 * 'num_bseqid_retryp' makes sure we don't loop forever on a broken 12684 * server that hands out BAD_SEQID on open confirm. 12685 * 12686 * Errors are returned via the nfs4_error_t parameter. 12687 */ 12688 void 12689 nfs4open_confirm(vnode_t *vp, seqid4 *seqid, stateid4 *stateid, cred_t *cr, 12690 bool_t reopening_file, bool_t *retry_open, nfs4_open_owner_t *oop, 12691 bool_t resend, nfs4_error_t *ep, int *num_bseqid_retryp) 12692 { 12693 COMPOUND4args_clnt args; 12694 COMPOUND4res_clnt res; 12695 nfs_argop4 argop[2]; 12696 nfs_resop4 *resop; 12697 int doqueue = 1; 12698 mntinfo4_t *mi; 12699 OPEN_CONFIRM4args *open_confirm_args; 12700 int needrecov; 12701 12702 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 12703 #if DEBUG 12704 mutex_enter(&oop->oo_lock); 12705 ASSERT(oop->oo_seqid_inuse); 12706 mutex_exit(&oop->oo_lock); 12707 #endif 12708 12709 recov_retry_confirm: 12710 nfs4_error_zinit(ep); 12711 *retry_open = FALSE; 12712 12713 if (resend) 12714 args.ctag = TAG_OPEN_CONFIRM_LOST; 12715 else 12716 args.ctag = TAG_OPEN_CONFIRM; 12717 12718 args.array_len = 2; 12719 args.array = argop; 12720 12721 /* putfh target fh */ 12722 argop[0].argop = OP_CPUTFH; 12723 argop[0].nfs_argop4_u.opcputfh.sfh = VTOR4(vp)->r_fh; 12724 12725 argop[1].argop = OP_OPEN_CONFIRM; 12726 open_confirm_args = &argop[1].nfs_argop4_u.opopen_confirm; 12727 12728 (*seqid) += 1; 12729 open_confirm_args->seqid = *seqid; 12730 open_confirm_args->open_stateid = *stateid; 12731 12732 mi = VTOMI4(vp); 12733 12734 rfs4call(mi, &args, &res, cr, &doqueue, 0, ep); 12735 12736 if (!ep->error && nfs4_need_to_bump_seqid(&res)) { 12737 nfs4_set_open_seqid((*seqid), oop, args.ctag); 12738 } 12739 12740 needrecov = nfs4_needs_recovery(ep, FALSE, mi->mi_vfsp); 12741 if (!needrecov && ep->error) 12742 return; 12743 12744 if (needrecov) { 12745 bool_t abort = FALSE; 12746 12747 if (reopening_file == FALSE) { 12748 nfs4_bseqid_entry_t *bsep = NULL; 12749 12750 if (!ep->error && res.status == NFS4ERR_BAD_SEQID) 12751 bsep = nfs4_create_bseqid_entry(oop, NULL, 12752 vp, 0, args.ctag, 12753 open_confirm_args->seqid); 12754 12755 abort = nfs4_start_recovery(ep, VTOMI4(vp), vp, 12756 NULL, NULL, NULL, OP_OPEN_CONFIRM, bsep); 12757 if (bsep) { 12758 kmem_free(bsep, sizeof (*bsep)); 12759 if (num_bseqid_retryp && 12760 --(*num_bseqid_retryp) == 0) 12761 abort = TRUE; 12762 } 12763 } 12764 if ((ep->error == ETIMEDOUT || 12765 res.status == NFS4ERR_RESOURCE) && 12766 abort == FALSE && resend == FALSE) { 12767 if (!ep->error) 12768 (void) xdr_free(xdr_COMPOUND4res_clnt, 12769 (caddr_t)&res); 12770 12771 delay(SEC_TO_TICK(confirm_retry_sec)); 12772 goto recov_retry_confirm; 12773 } 12774 /* State may have changed so retry the entire OPEN op */ 12775 if (abort == FALSE) 12776 *retry_open = TRUE; 12777 else 12778 *retry_open = FALSE; 12779 if (!ep->error) 12780 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 12781 return; 12782 } 12783 12784 if (res.status) { 12785 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 12786 return; 12787 } 12788 12789 resop = &res.array[1]; /* open confirm res */ 12790 bcopy(&resop->nfs_resop4_u.opopen_confirm.open_stateid, 12791 stateid, sizeof (*stateid)); 12792 12793 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 12794 } 12795 12796 /* 12797 * Return the credentials associated with a client state object. The 12798 * caller is responsible for freeing the credentials. 12799 */ 12800 12801 static cred_t * 12802 state_to_cred(nfs4_open_stream_t *osp) 12803 { 12804 cred_t *cr; 12805 12806 /* 12807 * It's ok to not lock the open stream and open owner to get 12808 * the oo_cred since this is only written once (upon creation) 12809 * and will not change. 12810 */ 12811 cr = osp->os_open_owner->oo_cred; 12812 crhold(cr); 12813 12814 return (cr); 12815 } 12816 12817 /* 12818 * nfs4_find_sysid 12819 * 12820 * Find the sysid for the knetconfig associated with the given mi. 12821 */ 12822 static struct lm_sysid * 12823 nfs4_find_sysid(mntinfo4_t *mi) 12824 { 12825 ASSERT(nfs_zone() == mi->mi_zone); 12826 12827 /* 12828 * Switch from RDMA knconf to original mount knconf 12829 */ 12830 return (lm_get_sysid(ORIG_KNCONF(mi), &mi->mi_curr_serv->sv_addr, 12831 mi->mi_curr_serv->sv_hostname, NULL)); 12832 } 12833 12834 #ifdef DEBUG 12835 /* 12836 * Return a string version of the call type for easy reading. 12837 */ 12838 static char * 12839 nfs4frlock_get_call_type(nfs4_lock_call_type_t ctype) 12840 { 12841 switch (ctype) { 12842 case NFS4_LCK_CTYPE_NORM: 12843 return ("NORMAL"); 12844 case NFS4_LCK_CTYPE_RECLAIM: 12845 return ("RECLAIM"); 12846 case NFS4_LCK_CTYPE_RESEND: 12847 return ("RESEND"); 12848 case NFS4_LCK_CTYPE_REINSTATE: 12849 return ("REINSTATE"); 12850 default: 12851 cmn_err(CE_PANIC, "nfs4frlock_get_call_type: got illegal " 12852 "type %d", ctype); 12853 return (""); 12854 } 12855 } 12856 #endif 12857 12858 /* 12859 * Map the frlock cmd and lock type to the NFSv4 over-the-wire lock type 12860 * Unlock requests don't have an over-the-wire locktype, so we just return 12861 * something non-threatening. 12862 */ 12863 12864 static nfs_lock_type4 12865 flk_to_locktype(int cmd, int l_type) 12866 { 12867 ASSERT(l_type == F_RDLCK || l_type == F_WRLCK || l_type == F_UNLCK); 12868 12869 switch (l_type) { 12870 case F_UNLCK: 12871 return (READ_LT); 12872 case F_RDLCK: 12873 if (cmd == F_SETLK) 12874 return (READ_LT); 12875 else 12876 return (READW_LT); 12877 case F_WRLCK: 12878 if (cmd == F_SETLK) 12879 return (WRITE_LT); 12880 else 12881 return (WRITEW_LT); 12882 } 12883 panic("flk_to_locktype"); 12884 /*NOTREACHED*/ 12885 } 12886 12887 /* 12888 * Do some preliminary checks for nfs4frlock. 12889 */ 12890 static int 12891 nfs4frlock_validate_args(int cmd, flock64_t *flk, int flag, vnode_t *vp, 12892 u_offset_t offset) 12893 { 12894 int error = 0; 12895 12896 /* 12897 * If we are setting a lock, check that the file is opened 12898 * with the correct mode. 12899 */ 12900 if (cmd == F_SETLK || cmd == F_SETLKW) { 12901 if ((flk->l_type == F_RDLCK && (flag & FREAD) == 0) || 12902 (flk->l_type == F_WRLCK && (flag & FWRITE) == 0)) { 12903 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 12904 "nfs4frlock_validate_args: file was opened with " 12905 "incorrect mode")); 12906 return (EBADF); 12907 } 12908 } 12909 12910 /* Convert the offset. It may need to be restored before returning. */ 12911 if (error = convoff(vp, flk, 0, offset)) { 12912 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 12913 "nfs4frlock_validate_args: convoff => error= %d\n", 12914 error)); 12915 return (error); 12916 } 12917 12918 return (error); 12919 } 12920 12921 /* 12922 * Set the flock64's lm_sysid for nfs4frlock. 12923 */ 12924 static int 12925 nfs4frlock_get_sysid(struct lm_sysid **lspp, vnode_t *vp, flock64_t *flk) 12926 { 12927 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 12928 12929 /* Find the lm_sysid */ 12930 *lspp = nfs4_find_sysid(VTOMI4(vp)); 12931 12932 if (*lspp == NULL) { 12933 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 12934 "nfs4frlock_get_sysid: no sysid, return ENOLCK")); 12935 return (ENOLCK); 12936 } 12937 12938 flk->l_sysid = lm_sysidt(*lspp); 12939 12940 return (0); 12941 } 12942 12943 /* 12944 * Do the remaining preliminary setup for nfs4frlock. 12945 */ 12946 static void 12947 nfs4frlock_pre_setup(clock_t *tick_delayp, nfs4_recov_state_t *recov_statep, 12948 flock64_t *flk, short *whencep, vnode_t *vp, cred_t *search_cr, 12949 cred_t **cred_otw) 12950 { 12951 /* 12952 * set tick_delay to the base delay time. 12953 * (NFS4_BASE_WAIT_TIME is in secs) 12954 */ 12955 12956 *tick_delayp = drv_usectohz(NFS4_BASE_WAIT_TIME * 1000 * 1000); 12957 12958 /* 12959 * If lock is relative to EOF, we need the newest length of the 12960 * file. Therefore invalidate the ATTR_CACHE. 12961 */ 12962 12963 *whencep = flk->l_whence; 12964 12965 if (*whencep == 2) /* SEEK_END */ 12966 PURGE_ATTRCACHE4(vp); 12967 12968 recov_statep->rs_flags = 0; 12969 recov_statep->rs_num_retry_despite_err = 0; 12970 *cred_otw = nfs4_get_otw_cred(search_cr, VTOMI4(vp), NULL); 12971 } 12972 12973 /* 12974 * Initialize and allocate the data structures necessary for 12975 * the nfs4frlock call. 12976 * Allocates argsp's op array, frees up the saved_rqstpp if there is one. 12977 */ 12978 static void 12979 nfs4frlock_call_init(COMPOUND4args_clnt *argsp, COMPOUND4args_clnt **argspp, 12980 nfs_argop4 **argopp, nfs4_op_hint_t *op_hintp, flock64_t *flk, int cmd, 12981 bool_t *retry, bool_t *did_start_fop, COMPOUND4res_clnt **respp, 12982 bool_t *skip_get_err, nfs4_lost_rqst_t *lost_rqstp) 12983 { 12984 int argoplist_size; 12985 int num_ops = 2; 12986 12987 *retry = FALSE; 12988 *did_start_fop = FALSE; 12989 *skip_get_err = FALSE; 12990 lost_rqstp->lr_op = 0; 12991 argoplist_size = num_ops * sizeof (nfs_argop4); 12992 /* fill array with zero */ 12993 *argopp = kmem_zalloc(argoplist_size, KM_SLEEP); 12994 12995 *argspp = argsp; 12996 *respp = NULL; 12997 12998 argsp->array_len = num_ops; 12999 argsp->array = *argopp; 13000 13001 /* initialize in case of error; will get real value down below */ 13002 argsp->ctag = TAG_NONE; 13003 13004 if ((cmd == F_SETLK || cmd == F_SETLKW) && flk->l_type == F_UNLCK) 13005 *op_hintp = OH_LOCKU; 13006 else 13007 *op_hintp = OH_OTHER; 13008 } 13009 13010 /* 13011 * Call the nfs4_start_fop() for nfs4frlock, if necessary. Assign 13012 * the proper nfs4_server_t for this instance of nfs4frlock. 13013 * Returns 0 (success) or an errno value. 13014 */ 13015 static int 13016 nfs4frlock_start_call(nfs4_lock_call_type_t ctype, vnode_t *vp, 13017 nfs4_op_hint_t op_hint, nfs4_recov_state_t *recov_statep, 13018 bool_t *did_start_fop, bool_t *startrecovp) 13019 { 13020 int error = 0; 13021 rnode4_t *rp; 13022 13023 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 13024 13025 if (ctype == NFS4_LCK_CTYPE_NORM) { 13026 error = nfs4_start_fop(VTOMI4(vp), vp, NULL, op_hint, 13027 recov_statep, startrecovp); 13028 if (error) 13029 return (error); 13030 *did_start_fop = TRUE; 13031 } else { 13032 *did_start_fop = FALSE; 13033 *startrecovp = FALSE; 13034 } 13035 13036 if (!error) { 13037 rp = VTOR4(vp); 13038 13039 /* If the file failed recovery, just quit. */ 13040 mutex_enter(&rp->r_statelock); 13041 if (rp->r_flags & R4RECOVERR) { 13042 error = EIO; 13043 } 13044 mutex_exit(&rp->r_statelock); 13045 } 13046 13047 return (error); 13048 } 13049 13050 /* 13051 * Setup the LOCK4/LOCKU4 arguments for resending a lost lock request. A 13052 * resend nfs4frlock call is initiated by the recovery framework. 13053 * Acquires the lop and oop seqid synchronization. 13054 */ 13055 static void 13056 nfs4frlock_setup_resend_lock_args(nfs4_lost_rqst_t *resend_rqstp, 13057 COMPOUND4args_clnt *argsp, nfs_argop4 *argop, nfs4_lock_owner_t **lopp, 13058 nfs4_open_owner_t **oopp, nfs4_open_stream_t **ospp, 13059 LOCK4args **lock_argsp, LOCKU4args **locku_argsp) 13060 { 13061 mntinfo4_t *mi = VTOMI4(resend_rqstp->lr_vp); 13062 int error; 13063 13064 NFS4_DEBUG((nfs4_lost_rqst_debug || nfs4_client_lock_debug), 13065 (CE_NOTE, 13066 "nfs4frlock_setup_resend_lock_args: have lost lock to resend")); 13067 ASSERT(resend_rqstp != NULL); 13068 ASSERT(resend_rqstp->lr_op == OP_LOCK || 13069 resend_rqstp->lr_op == OP_LOCKU); 13070 13071 *oopp = resend_rqstp->lr_oop; 13072 if (resend_rqstp->lr_oop) { 13073 open_owner_hold(resend_rqstp->lr_oop); 13074 error = nfs4_start_open_seqid_sync(resend_rqstp->lr_oop, mi); 13075 ASSERT(error == 0); /* recov thread always succeeds */ 13076 } 13077 13078 /* Must resend this lost lock/locku request. */ 13079 ASSERT(resend_rqstp->lr_lop != NULL); 13080 *lopp = resend_rqstp->lr_lop; 13081 lock_owner_hold(resend_rqstp->lr_lop); 13082 error = nfs4_start_lock_seqid_sync(resend_rqstp->lr_lop, mi); 13083 ASSERT(error == 0); /* recov thread always succeeds */ 13084 13085 *ospp = resend_rqstp->lr_osp; 13086 if (*ospp) 13087 open_stream_hold(resend_rqstp->lr_osp); 13088 13089 if (resend_rqstp->lr_op == OP_LOCK) { 13090 LOCK4args *lock_args; 13091 13092 argop->argop = OP_LOCK; 13093 *lock_argsp = lock_args = &argop->nfs_argop4_u.oplock; 13094 lock_args->locktype = resend_rqstp->lr_locktype; 13095 lock_args->reclaim = 13096 (resend_rqstp->lr_ctype == NFS4_LCK_CTYPE_RECLAIM); 13097 lock_args->offset = resend_rqstp->lr_flk->l_start; 13098 lock_args->length = resend_rqstp->lr_flk->l_len; 13099 if (lock_args->length == 0) 13100 lock_args->length = ~lock_args->length; 13101 nfs4_setup_lock_args(*lopp, *oopp, *ospp, 13102 mi2clientid(mi), &lock_args->locker); 13103 13104 switch (resend_rqstp->lr_ctype) { 13105 case NFS4_LCK_CTYPE_RESEND: 13106 argsp->ctag = TAG_LOCK_RESEND; 13107 break; 13108 case NFS4_LCK_CTYPE_REINSTATE: 13109 argsp->ctag = TAG_LOCK_REINSTATE; 13110 break; 13111 case NFS4_LCK_CTYPE_RECLAIM: 13112 argsp->ctag = TAG_LOCK_RECLAIM; 13113 break; 13114 default: 13115 argsp->ctag = TAG_LOCK_UNKNOWN; 13116 break; 13117 } 13118 } else { 13119 LOCKU4args *locku_args; 13120 nfs4_lock_owner_t *lop = resend_rqstp->lr_lop; 13121 13122 argop->argop = OP_LOCKU; 13123 *locku_argsp = locku_args = &argop->nfs_argop4_u.oplocku; 13124 locku_args->locktype = READ_LT; 13125 locku_args->seqid = lop->lock_seqid + 1; 13126 mutex_enter(&lop->lo_lock); 13127 locku_args->lock_stateid = lop->lock_stateid; 13128 mutex_exit(&lop->lo_lock); 13129 locku_args->offset = resend_rqstp->lr_flk->l_start; 13130 locku_args->length = resend_rqstp->lr_flk->l_len; 13131 if (locku_args->length == 0) 13132 locku_args->length = ~locku_args->length; 13133 13134 switch (resend_rqstp->lr_ctype) { 13135 case NFS4_LCK_CTYPE_RESEND: 13136 argsp->ctag = TAG_LOCKU_RESEND; 13137 break; 13138 case NFS4_LCK_CTYPE_REINSTATE: 13139 argsp->ctag = TAG_LOCKU_REINSTATE; 13140 break; 13141 default: 13142 argsp->ctag = TAG_LOCK_UNKNOWN; 13143 break; 13144 } 13145 } 13146 } 13147 13148 /* 13149 * Setup the LOCKT4 arguments. 13150 */ 13151 static void 13152 nfs4frlock_setup_lockt_args(nfs4_lock_call_type_t ctype, nfs_argop4 *argop, 13153 LOCKT4args **lockt_argsp, COMPOUND4args_clnt *argsp, flock64_t *flk, 13154 rnode4_t *rp) 13155 { 13156 LOCKT4args *lockt_args; 13157 13158 ASSERT(nfs_zone() == VTOMI4(RTOV4(rp))->mi_zone); 13159 ASSERT(ctype == NFS4_LCK_CTYPE_NORM); 13160 argop->argop = OP_LOCKT; 13161 argsp->ctag = TAG_LOCKT; 13162 lockt_args = &argop->nfs_argop4_u.oplockt; 13163 13164 /* 13165 * The locktype will be READ_LT unless it's 13166 * a write lock. We do this because the Solaris 13167 * system call allows the combination of 13168 * F_UNLCK and F_GETLK* and so in that case the 13169 * unlock is mapped to a read. 13170 */ 13171 if (flk->l_type == F_WRLCK) 13172 lockt_args->locktype = WRITE_LT; 13173 else 13174 lockt_args->locktype = READ_LT; 13175 13176 lockt_args->owner.clientid = mi2clientid(VTOMI4(RTOV4(rp))); 13177 /* set the lock owner4 args */ 13178 nfs4_setlockowner_args(&lockt_args->owner, rp, 13179 ctype == NFS4_LCK_CTYPE_NORM ? curproc->p_pidp->pid_id : 13180 flk->l_pid); 13181 lockt_args->offset = flk->l_start; 13182 lockt_args->length = flk->l_len; 13183 if (flk->l_len == 0) 13184 lockt_args->length = ~lockt_args->length; 13185 13186 *lockt_argsp = lockt_args; 13187 } 13188 13189 /* 13190 * If the client is holding a delegation, and the open stream to be used 13191 * with this lock request is a delegation open stream, then re-open the stream. 13192 * Sets the nfs4_error_t to all zeros unless the open stream has already 13193 * failed a reopen or we couldn't find the open stream. NFS4ERR_DELAY 13194 * means the caller should retry (like a recovery retry). 13195 */ 13196 static void 13197 nfs4frlock_check_deleg(vnode_t *vp, nfs4_error_t *ep, cred_t *cr, int lt) 13198 { 13199 open_delegation_type4 dt; 13200 bool_t reopen_needed, force; 13201 nfs4_open_stream_t *osp; 13202 open_claim_type4 oclaim; 13203 rnode4_t *rp = VTOR4(vp); 13204 mntinfo4_t *mi = VTOMI4(vp); 13205 13206 ASSERT(nfs_zone() == mi->mi_zone); 13207 13208 nfs4_error_zinit(ep); 13209 13210 mutex_enter(&rp->r_statev4_lock); 13211 dt = rp->r_deleg_type; 13212 mutex_exit(&rp->r_statev4_lock); 13213 13214 if (dt != OPEN_DELEGATE_NONE) { 13215 nfs4_open_owner_t *oop; 13216 13217 oop = find_open_owner(cr, NFS4_PERM_CREATED, mi); 13218 if (!oop) { 13219 ep->stat = NFS4ERR_IO; 13220 return; 13221 } 13222 /* returns with 'os_sync_lock' held */ 13223 osp = find_open_stream(oop, rp); 13224 if (!osp) { 13225 open_owner_rele(oop); 13226 ep->stat = NFS4ERR_IO; 13227 return; 13228 } 13229 13230 if (osp->os_failed_reopen) { 13231 NFS4_DEBUG((nfs4_open_stream_debug || 13232 nfs4_client_lock_debug), (CE_NOTE, 13233 "nfs4frlock_check_deleg: os_failed_reopen set " 13234 "for osp %p, cr %p, rp %s", (void *)osp, 13235 (void *)cr, rnode4info(rp))); 13236 mutex_exit(&osp->os_sync_lock); 13237 open_stream_rele(osp, rp); 13238 open_owner_rele(oop); 13239 ep->stat = NFS4ERR_IO; 13240 return; 13241 } 13242 13243 /* 13244 * Determine whether a reopen is needed. If this 13245 * is a delegation open stream, then send the open 13246 * to the server to give visibility to the open owner. 13247 * Even if it isn't a delegation open stream, we need 13248 * to check if the previous open CLAIM_DELEGATE_CUR 13249 * was sufficient. 13250 */ 13251 13252 reopen_needed = osp->os_delegation || 13253 ((lt == F_RDLCK && 13254 !(osp->os_dc_openacc & OPEN4_SHARE_ACCESS_READ)) || 13255 (lt == F_WRLCK && 13256 !(osp->os_dc_openacc & OPEN4_SHARE_ACCESS_WRITE))); 13257 13258 mutex_exit(&osp->os_sync_lock); 13259 open_owner_rele(oop); 13260 13261 if (reopen_needed) { 13262 /* 13263 * Always use CLAIM_PREVIOUS after server reboot. 13264 * The server will reject CLAIM_DELEGATE_CUR if 13265 * it is used during the grace period. 13266 */ 13267 mutex_enter(&mi->mi_lock); 13268 if (mi->mi_recovflags & MI4R_SRV_REBOOT) { 13269 oclaim = CLAIM_PREVIOUS; 13270 force = TRUE; 13271 } else { 13272 oclaim = CLAIM_DELEGATE_CUR; 13273 force = FALSE; 13274 } 13275 mutex_exit(&mi->mi_lock); 13276 13277 nfs4_reopen(vp, osp, ep, oclaim, force, FALSE); 13278 if (ep->error == EAGAIN) { 13279 nfs4_error_zinit(ep); 13280 ep->stat = NFS4ERR_DELAY; 13281 } 13282 } 13283 open_stream_rele(osp, rp); 13284 osp = NULL; 13285 } 13286 } 13287 13288 /* 13289 * Setup the LOCKU4 arguments. 13290 * Returns errors via the nfs4_error_t. 13291 * NFS4_OK no problems. *go_otwp is TRUE if call should go 13292 * over-the-wire. The caller must release the 13293 * reference on *lopp. 13294 * NFS4ERR_DELAY caller should retry (like recovery retry) 13295 * (other) unrecoverable error. 13296 */ 13297 static void 13298 nfs4frlock_setup_locku_args(nfs4_lock_call_type_t ctype, nfs_argop4 *argop, 13299 LOCKU4args **locku_argsp, flock64_t *flk, 13300 nfs4_lock_owner_t **lopp, nfs4_error_t *ep, COMPOUND4args_clnt *argsp, 13301 vnode_t *vp, int flag, u_offset_t offset, cred_t *cr, 13302 bool_t *skip_get_err, bool_t *go_otwp) 13303 { 13304 nfs4_lock_owner_t *lop = NULL; 13305 LOCKU4args *locku_args; 13306 pid_t pid; 13307 bool_t is_spec = FALSE; 13308 rnode4_t *rp = VTOR4(vp); 13309 13310 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 13311 ASSERT(ctype == NFS4_LCK_CTYPE_NORM); 13312 13313 nfs4frlock_check_deleg(vp, ep, cr, F_UNLCK); 13314 if (ep->error || ep->stat) 13315 return; 13316 13317 argop->argop = OP_LOCKU; 13318 if (ctype == NFS4_LCK_CTYPE_REINSTATE) 13319 argsp->ctag = TAG_LOCKU_REINSTATE; 13320 else 13321 argsp->ctag = TAG_LOCKU; 13322 locku_args = &argop->nfs_argop4_u.oplocku; 13323 *locku_argsp = locku_args; 13324 13325 /* 13326 * XXX what should locku_args->locktype be? 13327 * setting to ALWAYS be READ_LT so at least 13328 * it is a valid locktype. 13329 */ 13330 13331 locku_args->locktype = READ_LT; 13332 13333 pid = ctype == NFS4_LCK_CTYPE_NORM ? curproc->p_pidp->pid_id : 13334 flk->l_pid; 13335 13336 /* 13337 * Get the lock owner stateid. If no lock owner 13338 * exists, return success. 13339 */ 13340 lop = find_lock_owner(rp, pid, LOWN_ANY); 13341 *lopp = lop; 13342 if (lop && CLNT_ISSPECIAL(&lop->lock_stateid)) 13343 is_spec = TRUE; 13344 if (!lop || is_spec) { 13345 /* 13346 * No lock owner so no locks to unlock. 13347 * Return success. If there was a failed 13348 * reclaim earlier, the lock might still be 13349 * registered with the local locking code, 13350 * so notify it of the unlock. 13351 * 13352 * If the lockowner is using a special stateid, 13353 * then the original lock request (that created 13354 * this lockowner) was never successful, so we 13355 * have no lock to undo OTW. 13356 */ 13357 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 13358 "nfs4frlock_setup_locku_args: LOCKU: no lock owner " 13359 "(%ld) so return success", (long)pid)); 13360 13361 if (ctype == NFS4_LCK_CTYPE_NORM) 13362 flk->l_pid = curproc->p_pid; 13363 nfs4_register_lock_locally(vp, flk, flag, offset); 13364 /* 13365 * Release our hold and NULL out so final_cleanup 13366 * doesn't try to end a lock seqid sync we 13367 * never started. 13368 */ 13369 if (is_spec) { 13370 lock_owner_rele(lop); 13371 *lopp = NULL; 13372 } 13373 *skip_get_err = TRUE; 13374 *go_otwp = FALSE; 13375 return; 13376 } 13377 13378 ep->error = nfs4_start_lock_seqid_sync(lop, VTOMI4(vp)); 13379 if (ep->error == EAGAIN) { 13380 lock_owner_rele(lop); 13381 *lopp = NULL; 13382 return; 13383 } 13384 13385 mutex_enter(&lop->lo_lock); 13386 locku_args->lock_stateid = lop->lock_stateid; 13387 mutex_exit(&lop->lo_lock); 13388 locku_args->seqid = lop->lock_seqid + 1; 13389 13390 /* leave the ref count on lop, rele after RPC call */ 13391 13392 locku_args->offset = flk->l_start; 13393 locku_args->length = flk->l_len; 13394 if (flk->l_len == 0) 13395 locku_args->length = ~locku_args->length; 13396 13397 *go_otwp = TRUE; 13398 } 13399 13400 /* 13401 * Setup the LOCK4 arguments. 13402 * 13403 * Returns errors via the nfs4_error_t. 13404 * NFS4_OK no problems 13405 * NFS4ERR_DELAY caller should retry (like recovery retry) 13406 * (other) unrecoverable error 13407 */ 13408 static void 13409 nfs4frlock_setup_lock_args(nfs4_lock_call_type_t ctype, LOCK4args **lock_argsp, 13410 nfs4_open_owner_t **oopp, nfs4_open_stream_t **ospp, 13411 nfs4_lock_owner_t **lopp, nfs_argop4 *argop, COMPOUND4args_clnt *argsp, 13412 flock64_t *flk, int cmd, vnode_t *vp, cred_t *cr, nfs4_error_t *ep) 13413 { 13414 LOCK4args *lock_args; 13415 nfs4_open_owner_t *oop = NULL; 13416 nfs4_open_stream_t *osp = NULL; 13417 nfs4_lock_owner_t *lop = NULL; 13418 pid_t pid; 13419 rnode4_t *rp = VTOR4(vp); 13420 13421 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 13422 13423 nfs4frlock_check_deleg(vp, ep, cr, flk->l_type); 13424 if (ep->error || ep->stat != NFS4_OK) 13425 return; 13426 13427 argop->argop = OP_LOCK; 13428 if (ctype == NFS4_LCK_CTYPE_NORM) 13429 argsp->ctag = TAG_LOCK; 13430 else if (ctype == NFS4_LCK_CTYPE_RECLAIM) 13431 argsp->ctag = TAG_RELOCK; 13432 else 13433 argsp->ctag = TAG_LOCK_REINSTATE; 13434 lock_args = &argop->nfs_argop4_u.oplock; 13435 lock_args->locktype = flk_to_locktype(cmd, flk->l_type); 13436 lock_args->reclaim = ctype == NFS4_LCK_CTYPE_RECLAIM ? 1 : 0; 13437 /* 13438 * Get the lock owner. If no lock owner exists, 13439 * create a 'temporary' one and grab the open seqid 13440 * synchronization (which puts a hold on the open 13441 * owner and open stream). 13442 * This also grabs the lock seqid synchronization. 13443 */ 13444 pid = ctype == NFS4_LCK_CTYPE_NORM ? curproc->p_pid : flk->l_pid; 13445 ep->stat = 13446 nfs4_find_or_create_lock_owner(pid, rp, cr, &oop, &osp, &lop); 13447 13448 if (ep->stat != NFS4_OK) 13449 goto out; 13450 13451 nfs4_setup_lock_args(lop, oop, osp, mi2clientid(VTOMI4(vp)), 13452 &lock_args->locker); 13453 13454 lock_args->offset = flk->l_start; 13455 lock_args->length = flk->l_len; 13456 if (flk->l_len == 0) 13457 lock_args->length = ~lock_args->length; 13458 *lock_argsp = lock_args; 13459 out: 13460 *oopp = oop; 13461 *ospp = osp; 13462 *lopp = lop; 13463 } 13464 13465 /* 13466 * After we get the reply from the server, record the proper information 13467 * for possible resend lock requests. 13468 * 13469 * Allocates memory for the saved_rqstp if we have a lost lock to save. 13470 */ 13471 static void 13472 nfs4frlock_save_lost_rqst(nfs4_lock_call_type_t ctype, int error, 13473 nfs_lock_type4 locktype, nfs4_open_owner_t *oop, 13474 nfs4_open_stream_t *osp, nfs4_lock_owner_t *lop, flock64_t *flk, 13475 nfs4_lost_rqst_t *lost_rqstp, cred_t *cr, vnode_t *vp) 13476 { 13477 bool_t unlock = (flk->l_type == F_UNLCK); 13478 13479 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 13480 ASSERT(ctype == NFS4_LCK_CTYPE_NORM || 13481 ctype == NFS4_LCK_CTYPE_REINSTATE); 13482 13483 if (error != 0 && !unlock) { 13484 NFS4_DEBUG((nfs4_lost_rqst_debug || 13485 nfs4_client_lock_debug), (CE_NOTE, 13486 "nfs4frlock_save_lost_rqst: set lo_pending_rqsts to 1 " 13487 " for lop %p", (void *)lop)); 13488 ASSERT(lop != NULL); 13489 mutex_enter(&lop->lo_lock); 13490 lop->lo_pending_rqsts = 1; 13491 mutex_exit(&lop->lo_lock); 13492 } 13493 13494 lost_rqstp->lr_putfirst = FALSE; 13495 lost_rqstp->lr_op = 0; 13496 13497 /* 13498 * For lock/locku requests, we treat EINTR as ETIMEDOUT for 13499 * recovery purposes so that the lock request that was sent 13500 * can be saved and re-issued later. Ditto for EIO from a forced 13501 * unmount. This is done to have the client's local locking state 13502 * match the v4 server's state; that is, the request was 13503 * potentially received and accepted by the server but the client 13504 * thinks it was not. 13505 */ 13506 if (error == ETIMEDOUT || error == EINTR || 13507 NFS4_FRC_UNMT_ERR(error, vp->v_vfsp)) { 13508 NFS4_DEBUG((nfs4_lost_rqst_debug || 13509 nfs4_client_lock_debug), (CE_NOTE, 13510 "nfs4frlock_save_lost_rqst: got a lost %s lock for " 13511 "lop %p oop %p osp %p", unlock ? "LOCKU" : "LOCK", 13512 (void *)lop, (void *)oop, (void *)osp)); 13513 if (unlock) 13514 lost_rqstp->lr_op = OP_LOCKU; 13515 else { 13516 lost_rqstp->lr_op = OP_LOCK; 13517 lost_rqstp->lr_locktype = locktype; 13518 } 13519 /* 13520 * Objects are held and rele'd via the recovery code. 13521 * See nfs4_save_lost_rqst. 13522 */ 13523 lost_rqstp->lr_vp = vp; 13524 lost_rqstp->lr_dvp = NULL; 13525 lost_rqstp->lr_oop = oop; 13526 lost_rqstp->lr_osp = osp; 13527 lost_rqstp->lr_lop = lop; 13528 lost_rqstp->lr_cr = cr; 13529 switch (ctype) { 13530 case NFS4_LCK_CTYPE_NORM: 13531 flk->l_pid = ttoproc(curthread)->p_pid; 13532 lost_rqstp->lr_ctype = NFS4_LCK_CTYPE_RESEND; 13533 break; 13534 case NFS4_LCK_CTYPE_REINSTATE: 13535 lost_rqstp->lr_putfirst = TRUE; 13536 lost_rqstp->lr_ctype = ctype; 13537 break; 13538 default: 13539 break; 13540 } 13541 lost_rqstp->lr_flk = flk; 13542 } 13543 } 13544 13545 /* 13546 * Update lop's seqid. Also update the seqid stored in a resend request, 13547 * if any. (Some recovery errors increment the seqid, and we may have to 13548 * send the resend request again.) 13549 */ 13550 13551 static void 13552 nfs4frlock_bump_seqid(LOCK4args *lock_args, LOCKU4args *locku_args, 13553 nfs4_open_owner_t *oop, nfs4_lock_owner_t *lop, nfs4_tag_type_t tag_type) 13554 { 13555 if (lock_args) { 13556 if (lock_args->locker.new_lock_owner == TRUE) 13557 nfs4_get_and_set_next_open_seqid(oop, tag_type); 13558 else { 13559 ASSERT(lop->lo_flags & NFS4_LOCK_SEQID_INUSE); 13560 nfs4_set_lock_seqid(lop->lock_seqid + 1, lop); 13561 } 13562 } else if (locku_args) { 13563 ASSERT(lop->lo_flags & NFS4_LOCK_SEQID_INUSE); 13564 nfs4_set_lock_seqid(lop->lock_seqid +1, lop); 13565 } 13566 } 13567 13568 /* 13569 * Calls nfs4_end_fop, drops the seqid syncs, and frees up the 13570 * COMPOUND4 args/res for calls that need to retry. 13571 * Switches the *cred_otwp to base_cr. 13572 */ 13573 static void 13574 nfs4frlock_check_access(vnode_t *vp, nfs4_op_hint_t op_hint, 13575 nfs4_recov_state_t *recov_statep, int needrecov, bool_t *did_start_fop, 13576 COMPOUND4args_clnt **argspp, COMPOUND4res_clnt **respp, int error, 13577 nfs4_lock_owner_t **lopp, nfs4_open_owner_t **oopp, 13578 nfs4_open_stream_t **ospp, cred_t *base_cr, cred_t **cred_otwp) 13579 { 13580 nfs4_open_owner_t *oop = *oopp; 13581 nfs4_open_stream_t *osp = *ospp; 13582 nfs4_lock_owner_t *lop = *lopp; 13583 nfs_argop4 *argop = (*argspp)->array; 13584 13585 if (*did_start_fop) { 13586 nfs4_end_fop(VTOMI4(vp), vp, NULL, op_hint, recov_statep, 13587 needrecov); 13588 *did_start_fop = FALSE; 13589 } 13590 ASSERT((*argspp)->array_len == 2); 13591 if (argop[1].argop == OP_LOCK) 13592 nfs4args_lock_free(&argop[1]); 13593 else if (argop[1].argop == OP_LOCKT) 13594 nfs4args_lockt_free(&argop[1]); 13595 kmem_free(argop, 2 * sizeof (nfs_argop4)); 13596 if (!error) 13597 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)*respp); 13598 *argspp = NULL; 13599 *respp = NULL; 13600 13601 if (lop) { 13602 nfs4_end_lock_seqid_sync(lop); 13603 lock_owner_rele(lop); 13604 *lopp = NULL; 13605 } 13606 13607 /* need to free up the reference on osp for lock args */ 13608 if (osp != NULL) { 13609 open_stream_rele(osp, VTOR4(vp)); 13610 *ospp = NULL; 13611 } 13612 13613 /* need to free up the reference on oop for lock args */ 13614 if (oop != NULL) { 13615 nfs4_end_open_seqid_sync(oop); 13616 open_owner_rele(oop); 13617 *oopp = NULL; 13618 } 13619 13620 crfree(*cred_otwp); 13621 *cred_otwp = base_cr; 13622 crhold(*cred_otwp); 13623 } 13624 13625 /* 13626 * Function to process the client's recovery for nfs4frlock. 13627 * Returns TRUE if we should retry the lock request; FALSE otherwise. 13628 * 13629 * Calls nfs4_end_fop, drops the seqid syncs, and frees up the 13630 * COMPOUND4 args/res for calls that need to retry. 13631 * 13632 * Note: the rp's r_lkserlock is *not* dropped during this path. 13633 */ 13634 static bool_t 13635 nfs4frlock_recovery(int needrecov, nfs4_error_t *ep, 13636 COMPOUND4args_clnt **argspp, COMPOUND4res_clnt **respp, 13637 LOCK4args *lock_args, LOCKU4args *locku_args, 13638 nfs4_open_owner_t **oopp, nfs4_open_stream_t **ospp, 13639 nfs4_lock_owner_t **lopp, rnode4_t *rp, vnode_t *vp, 13640 nfs4_recov_state_t *recov_statep, nfs4_op_hint_t op_hint, 13641 bool_t *did_start_fop, nfs4_lost_rqst_t *lost_rqstp, flock64_t *flk) 13642 { 13643 nfs4_open_owner_t *oop = *oopp; 13644 nfs4_open_stream_t *osp = *ospp; 13645 nfs4_lock_owner_t *lop = *lopp; 13646 13647 bool_t abort, retry; 13648 13649 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 13650 ASSERT((*argspp) != NULL); 13651 ASSERT((*respp) != NULL); 13652 if (lock_args || locku_args) 13653 ASSERT(lop != NULL); 13654 13655 NFS4_DEBUG((nfs4_client_lock_debug || nfs4_client_recov_debug), 13656 (CE_NOTE, "nfs4frlock_recovery: initiating recovery\n")); 13657 13658 retry = TRUE; 13659 abort = FALSE; 13660 if (needrecov) { 13661 nfs4_bseqid_entry_t *bsep = NULL; 13662 nfs_opnum4 op; 13663 13664 op = lock_args ? OP_LOCK : locku_args ? OP_LOCKU : OP_LOCKT; 13665 13666 if (!ep->error && ep->stat == NFS4ERR_BAD_SEQID) { 13667 seqid4 seqid; 13668 13669 if (lock_args) { 13670 if (lock_args->locker.new_lock_owner == TRUE) 13671 seqid = lock_args->locker.locker4_u. 13672 open_owner.open_seqid; 13673 else 13674 seqid = lock_args->locker.locker4_u. 13675 lock_owner.lock_seqid; 13676 } else if (locku_args) { 13677 seqid = locku_args->seqid; 13678 } else { 13679 seqid = 0; 13680 } 13681 13682 bsep = nfs4_create_bseqid_entry(oop, lop, vp, 13683 flk->l_pid, (*argspp)->ctag, seqid); 13684 } 13685 13686 abort = nfs4_start_recovery(ep, VTOMI4(vp), vp, NULL, NULL, 13687 (lost_rqstp && (lost_rqstp->lr_op == OP_LOCK || 13688 lost_rqstp->lr_op == OP_LOCKU)) ? lost_rqstp : 13689 NULL, op, bsep); 13690 13691 if (bsep) 13692 kmem_free(bsep, sizeof (*bsep)); 13693 } 13694 13695 /* 13696 * Return that we do not want to retry the request for 3 cases: 13697 * 1. If we received EINTR or are bailing out because of a forced 13698 * unmount, we came into this code path just for the sake of 13699 * initiating recovery, we now need to return the error. 13700 * 2. If we have aborted recovery. 13701 * 3. We received NFS4ERR_BAD_SEQID. 13702 */ 13703 if (ep->error == EINTR || NFS4_FRC_UNMT_ERR(ep->error, vp->v_vfsp) || 13704 abort == TRUE || (ep->error == 0 && ep->stat == NFS4ERR_BAD_SEQID)) 13705 retry = FALSE; 13706 13707 if (*did_start_fop == TRUE) { 13708 nfs4_end_fop(VTOMI4(vp), vp, NULL, op_hint, recov_statep, 13709 needrecov); 13710 *did_start_fop = FALSE; 13711 } 13712 13713 if (retry == TRUE) { 13714 nfs_argop4 *argop; 13715 13716 argop = (*argspp)->array; 13717 ASSERT((*argspp)->array_len == 2); 13718 13719 if (argop[1].argop == OP_LOCK) 13720 nfs4args_lock_free(&argop[1]); 13721 else if (argop[1].argop == OP_LOCKT) 13722 nfs4args_lockt_free(&argop[1]); 13723 kmem_free(argop, 2 * sizeof (nfs_argop4)); 13724 if (!ep->error) 13725 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)*respp); 13726 *respp = NULL; 13727 *argspp = NULL; 13728 } 13729 13730 if (lop != NULL) { 13731 nfs4_end_lock_seqid_sync(lop); 13732 lock_owner_rele(lop); 13733 } 13734 13735 *lopp = NULL; 13736 13737 /* need to free up the reference on osp for lock args */ 13738 if (osp != NULL) { 13739 open_stream_rele(osp, rp); 13740 *ospp = NULL; 13741 } 13742 13743 /* need to free up the reference on oop for lock args */ 13744 if (oop != NULL) { 13745 nfs4_end_open_seqid_sync(oop); 13746 open_owner_rele(oop); 13747 *oopp = NULL; 13748 } 13749 13750 return (retry); 13751 } 13752 13753 /* 13754 * Handles the successful reply from the server for nfs4frlock. 13755 */ 13756 static void 13757 nfs4frlock_results_ok(nfs4_lock_call_type_t ctype, int cmd, flock64_t *flk, 13758 vnode_t *vp, int flag, u_offset_t offset, 13759 nfs4_lost_rqst_t *resend_rqstp) 13760 { 13761 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 13762 if ((cmd == F_SETLK || cmd == F_SETLKW) && 13763 (flk->l_type == F_RDLCK || flk->l_type == F_WRLCK)) { 13764 if (ctype == NFS4_LCK_CTYPE_NORM) { 13765 flk->l_pid = ttoproc(curthread)->p_pid; 13766 /* 13767 * We do not register lost locks locally in 13768 * the 'resend' case since the user/application 13769 * doesn't think we have the lock. 13770 */ 13771 ASSERT(!resend_rqstp); 13772 nfs4_register_lock_locally(vp, flk, flag, offset); 13773 } 13774 } 13775 } 13776 13777 /* 13778 * Handle the DENIED reply from the server for nfs4frlock. 13779 * Returns TRUE if we should retry the request; FALSE otherwise. 13780 * 13781 * Calls nfs4_end_fop, drops the seqid syncs, and frees up the 13782 * COMPOUND4 args/res for calls that need to retry. Can also 13783 * drop and regrab the r_lkserlock. 13784 */ 13785 static bool_t 13786 nfs4frlock_results_denied(nfs4_lock_call_type_t ctype, LOCK4args *lock_args, 13787 LOCKT4args *lockt_args, nfs4_open_owner_t **oopp, 13788 nfs4_open_stream_t **ospp, nfs4_lock_owner_t **lopp, int cmd, 13789 vnode_t *vp, flock64_t *flk, nfs4_op_hint_t op_hint, 13790 nfs4_recov_state_t *recov_statep, int needrecov, 13791 COMPOUND4args_clnt **argspp, COMPOUND4res_clnt **respp, 13792 clock_t *tick_delayp, short *whencep, int *errorp, 13793 nfs_resop4 *resop, cred_t *cr, bool_t *did_start_fop, 13794 bool_t *skip_get_err) 13795 { 13796 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 13797 13798 if (lock_args) { 13799 nfs4_open_owner_t *oop = *oopp; 13800 nfs4_open_stream_t *osp = *ospp; 13801 nfs4_lock_owner_t *lop = *lopp; 13802 int intr; 13803 13804 /* 13805 * Blocking lock needs to sleep and retry from the request. 13806 * 13807 * Do not block and wait for 'resend' or 'reinstate' 13808 * lock requests, just return the error. 13809 * 13810 * Note: reclaim requests have cmd == F_SETLK, not F_SETLKW. 13811 */ 13812 if (cmd == F_SETLKW) { 13813 rnode4_t *rp = VTOR4(vp); 13814 nfs_argop4 *argop = (*argspp)->array; 13815 13816 ASSERT(ctype == NFS4_LCK_CTYPE_NORM); 13817 13818 nfs4_end_fop(VTOMI4(vp), vp, NULL, op_hint, 13819 recov_statep, needrecov); 13820 *did_start_fop = FALSE; 13821 ASSERT((*argspp)->array_len == 2); 13822 if (argop[1].argop == OP_LOCK) 13823 nfs4args_lock_free(&argop[1]); 13824 else if (argop[1].argop == OP_LOCKT) 13825 nfs4args_lockt_free(&argop[1]); 13826 kmem_free(argop, 2 * sizeof (nfs_argop4)); 13827 if (*respp) 13828 (void) xdr_free(xdr_COMPOUND4res_clnt, 13829 (caddr_t)*respp); 13830 *argspp = NULL; 13831 *respp = NULL; 13832 nfs4_end_lock_seqid_sync(lop); 13833 lock_owner_rele(lop); 13834 *lopp = NULL; 13835 if (osp != NULL) { 13836 open_stream_rele(osp, rp); 13837 *ospp = NULL; 13838 } 13839 if (oop != NULL) { 13840 nfs4_end_open_seqid_sync(oop); 13841 open_owner_rele(oop); 13842 *oopp = NULL; 13843 } 13844 13845 nfs_rw_exit(&rp->r_lkserlock); 13846 13847 intr = nfs4_block_and_wait(tick_delayp, rp); 13848 13849 if (intr) { 13850 (void) nfs_rw_enter_sig(&rp->r_lkserlock, 13851 RW_WRITER, FALSE); 13852 *errorp = EINTR; 13853 return (FALSE); 13854 } 13855 13856 (void) nfs_rw_enter_sig(&rp->r_lkserlock, 13857 RW_WRITER, FALSE); 13858 13859 /* 13860 * Make sure we are still safe to lock with 13861 * regards to mmapping. 13862 */ 13863 if (!nfs4_safelock(vp, flk, cr)) { 13864 *errorp = EAGAIN; 13865 return (FALSE); 13866 } 13867 13868 return (TRUE); 13869 } 13870 if (ctype == NFS4_LCK_CTYPE_NORM) 13871 *errorp = EAGAIN; 13872 *skip_get_err = TRUE; 13873 flk->l_whence = 0; 13874 *whencep = 0; 13875 return (FALSE); 13876 } else if (lockt_args) { 13877 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 13878 "nfs4frlock_results_denied: OP_LOCKT DENIED")); 13879 13880 denied_to_flk(&resop->nfs_resop4_u.oplockt.denied, 13881 flk, lockt_args); 13882 13883 /* according to NLM code */ 13884 *errorp = 0; 13885 *whencep = 0; 13886 *skip_get_err = TRUE; 13887 return (FALSE); 13888 } 13889 return (FALSE); 13890 } 13891 13892 /* 13893 * Handles all NFS4 errors besides NFS4_OK and NFS4ERR_DENIED for nfs4frlock. 13894 */ 13895 static void 13896 nfs4frlock_results_default(COMPOUND4res_clnt *resp, int *errorp) 13897 { 13898 switch (resp->status) { 13899 case NFS4ERR_ACCESS: 13900 case NFS4ERR_ADMIN_REVOKED: 13901 case NFS4ERR_BADHANDLE: 13902 case NFS4ERR_BAD_RANGE: 13903 case NFS4ERR_BAD_SEQID: 13904 case NFS4ERR_BAD_STATEID: 13905 case NFS4ERR_BADXDR: 13906 case NFS4ERR_DEADLOCK: 13907 case NFS4ERR_DELAY: 13908 case NFS4ERR_EXPIRED: 13909 case NFS4ERR_FHEXPIRED: 13910 case NFS4ERR_GRACE: 13911 case NFS4ERR_INVAL: 13912 case NFS4ERR_ISDIR: 13913 case NFS4ERR_LEASE_MOVED: 13914 case NFS4ERR_LOCK_NOTSUPP: 13915 case NFS4ERR_LOCK_RANGE: 13916 case NFS4ERR_MOVED: 13917 case NFS4ERR_NOFILEHANDLE: 13918 case NFS4ERR_NO_GRACE: 13919 case NFS4ERR_OLD_STATEID: 13920 case NFS4ERR_OPENMODE: 13921 case NFS4ERR_RECLAIM_BAD: 13922 case NFS4ERR_RECLAIM_CONFLICT: 13923 case NFS4ERR_RESOURCE: 13924 case NFS4ERR_SERVERFAULT: 13925 case NFS4ERR_STALE: 13926 case NFS4ERR_STALE_CLIENTID: 13927 case NFS4ERR_STALE_STATEID: 13928 return; 13929 default: 13930 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 13931 "nfs4frlock_results_default: got unrecognizable " 13932 "res.status %d", resp->status)); 13933 *errorp = NFS4ERR_INVAL; 13934 } 13935 } 13936 13937 /* 13938 * The lock request was successful, so update the client's state. 13939 */ 13940 static void 13941 nfs4frlock_update_state(LOCK4args *lock_args, LOCKU4args *locku_args, 13942 LOCKT4args *lockt_args, nfs_resop4 *resop, nfs4_lock_owner_t *lop, 13943 vnode_t *vp, flock64_t *flk, cred_t *cr, 13944 nfs4_lost_rqst_t *resend_rqstp) 13945 { 13946 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 13947 13948 if (lock_args) { 13949 LOCK4res *lock_res; 13950 13951 lock_res = &resop->nfs_resop4_u.oplock; 13952 /* update the stateid with server's response */ 13953 13954 if (lock_args->locker.new_lock_owner == TRUE) { 13955 mutex_enter(&lop->lo_lock); 13956 lop->lo_just_created = NFS4_PERM_CREATED; 13957 mutex_exit(&lop->lo_lock); 13958 } 13959 13960 nfs4_set_lock_stateid(lop, lock_res->LOCK4res_u.lock_stateid); 13961 13962 /* 13963 * If the lock was the result of a resending a lost 13964 * request, we've synched up the stateid and seqid 13965 * with the server, but now the server might be out of sync 13966 * with what the application thinks it has for locks. 13967 * Clean that up here. It's unclear whether we should do 13968 * this even if the filesystem has been forcibly unmounted. 13969 * For most servers, it's probably wasted effort, but 13970 * RFC3530 lets servers require that unlocks exactly match 13971 * the locks that are held. 13972 */ 13973 if (resend_rqstp != NULL && 13974 resend_rqstp->lr_ctype != NFS4_LCK_CTYPE_REINSTATE) { 13975 nfs4_reinstitute_local_lock_state(vp, flk, cr, lop); 13976 } else { 13977 flk->l_whence = 0; 13978 } 13979 } else if (locku_args) { 13980 LOCKU4res *locku_res; 13981 13982 locku_res = &resop->nfs_resop4_u.oplocku; 13983 13984 /* Update the stateid with the server's response */ 13985 nfs4_set_lock_stateid(lop, locku_res->lock_stateid); 13986 } else if (lockt_args) { 13987 /* Switch the lock type to express success, see fcntl */ 13988 flk->l_type = F_UNLCK; 13989 flk->l_whence = 0; 13990 } 13991 } 13992 13993 /* 13994 * Do final cleanup before exiting nfs4frlock. 13995 * Calls nfs4_end_fop, drops the seqid syncs, and frees up the 13996 * COMPOUND4 args/res for calls that haven't already. 13997 */ 13998 static void 13999 nfs4frlock_final_cleanup(nfs4_lock_call_type_t ctype, COMPOUND4args_clnt *argsp, 14000 COMPOUND4res_clnt *resp, vnode_t *vp, nfs4_op_hint_t op_hint, 14001 nfs4_recov_state_t *recov_statep, int needrecov, nfs4_open_owner_t *oop, 14002 nfs4_open_stream_t *osp, nfs4_lock_owner_t *lop, flock64_t *flk, 14003 short whence, u_offset_t offset, struct lm_sysid *ls, 14004 int *errorp, LOCK4args *lock_args, LOCKU4args *locku_args, 14005 bool_t did_start_fop, bool_t skip_get_err, 14006 cred_t *cred_otw, cred_t *cred) 14007 { 14008 mntinfo4_t *mi = VTOMI4(vp); 14009 rnode4_t *rp = VTOR4(vp); 14010 int error = *errorp; 14011 nfs_argop4 *argop; 14012 int do_flush_pages = 0; 14013 14014 ASSERT(nfs_zone() == mi->mi_zone); 14015 /* 14016 * The client recovery code wants the raw status information, 14017 * so don't map the NFS status code to an errno value for 14018 * non-normal call types. 14019 */ 14020 if (ctype == NFS4_LCK_CTYPE_NORM) { 14021 if (*errorp == 0 && resp != NULL && skip_get_err == FALSE) 14022 *errorp = geterrno4(resp->status); 14023 if (did_start_fop == TRUE) 14024 nfs4_end_fop(mi, vp, NULL, op_hint, recov_statep, 14025 needrecov); 14026 14027 /* 14028 * We've established a new lock on the server, so invalidate 14029 * the pages associated with the vnode to get the most up to 14030 * date pages from the server after acquiring the lock. We 14031 * want to be sure that the read operation gets the newest data. 14032 * N.B. 14033 * We used to do this in nfs4frlock_results_ok but that doesn't 14034 * work since VOP_PUTPAGE can call nfs4_commit which calls 14035 * nfs4_start_fop. We flush the pages below after calling 14036 * nfs4_end_fop above 14037 * The flush of the page cache must be done after 14038 * nfs4_end_open_seqid_sync() to avoid a 4-way hang. 14039 */ 14040 if (!error && resp && resp->status == NFS4_OK) 14041 do_flush_pages = 1; 14042 } 14043 if (argsp) { 14044 ASSERT(argsp->array_len == 2); 14045 argop = argsp->array; 14046 if (argop[1].argop == OP_LOCK) 14047 nfs4args_lock_free(&argop[1]); 14048 else if (argop[1].argop == OP_LOCKT) 14049 nfs4args_lockt_free(&argop[1]); 14050 kmem_free(argop, 2 * sizeof (nfs_argop4)); 14051 if (resp) 14052 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp); 14053 } 14054 14055 /* free the reference on the lock owner */ 14056 if (lop != NULL) { 14057 nfs4_end_lock_seqid_sync(lop); 14058 lock_owner_rele(lop); 14059 } 14060 14061 /* need to free up the reference on osp for lock args */ 14062 if (osp != NULL) 14063 open_stream_rele(osp, rp); 14064 14065 /* need to free up the reference on oop for lock args */ 14066 if (oop != NULL) { 14067 nfs4_end_open_seqid_sync(oop); 14068 open_owner_rele(oop); 14069 } 14070 14071 if (do_flush_pages) 14072 nfs4_flush_pages(vp, cred); 14073 14074 (void) convoff(vp, flk, whence, offset); 14075 14076 lm_rel_sysid(ls); 14077 14078 /* 14079 * Record debug information in the event we get EINVAL. 14080 */ 14081 mutex_enter(&mi->mi_lock); 14082 if (*errorp == EINVAL && (lock_args || locku_args) && 14083 (!(mi->mi_flags & MI4_POSIX_LOCK))) { 14084 if (!(mi->mi_flags & MI4_LOCK_DEBUG)) { 14085 zcmn_err(getzoneid(), CE_NOTE, 14086 "%s operation failed with " 14087 "EINVAL probably since the server, %s," 14088 " doesn't support POSIX style locking", 14089 lock_args ? "LOCK" : "LOCKU", 14090 mi->mi_curr_serv->sv_hostname); 14091 mi->mi_flags |= MI4_LOCK_DEBUG; 14092 } 14093 } 14094 mutex_exit(&mi->mi_lock); 14095 14096 if (cred_otw) 14097 crfree(cred_otw); 14098 } 14099 14100 /* 14101 * This calls the server and the local locking code. 14102 * 14103 * Client locks are registerred locally by oring the sysid with 14104 * LM_SYSID_CLIENT. The server registers locks locally using just the sysid. 14105 * We need to distinguish between the two to avoid collision in case one 14106 * machine is used as both client and server. 14107 * 14108 * Blocking lock requests will continually retry to acquire the lock 14109 * forever. 14110 * 14111 * The ctype is defined as follows: 14112 * NFS4_LCK_CTYPE_NORM: normal lock request. 14113 * 14114 * NFS4_LCK_CTYPE_RECLAIM: bypass the usual calls for synchronizing with client 14115 * recovery, get the pid from flk instead of curproc, and don't reregister 14116 * the lock locally. 14117 * 14118 * NFS4_LCK_CTYPE_RESEND: same as NFS4_LCK_CTYPE_RECLAIM, with the addition 14119 * that we will use the information passed in via resend_rqstp to setup the 14120 * lock/locku request. This resend is the exact same request as the 'lost 14121 * lock', and is initiated by the recovery framework. A successful resend 14122 * request can initiate one or more reinstate requests. 14123 * 14124 * NFS4_LCK_CTYPE_REINSTATE: same as NFS4_LCK_CTYPE_RESEND, except that it 14125 * does not trigger additional reinstate requests. This lock call type is 14126 * set for setting the v4 server's locking state back to match what the 14127 * client's local locking state is in the event of a received 'lost lock'. 14128 * 14129 * Errors are returned via the nfs4_error_t parameter. 14130 */ 14131 void 14132 nfs4frlock(nfs4_lock_call_type_t ctype, vnode_t *vp, int cmd, flock64_t *flk, 14133 int flag, u_offset_t offset, cred_t *cr, nfs4_error_t *ep, 14134 nfs4_lost_rqst_t *resend_rqstp, int *did_reclaimp) 14135 { 14136 COMPOUND4args_clnt args, *argsp = NULL; 14137 COMPOUND4res_clnt res, *resp = NULL; 14138 nfs_argop4 *argop; 14139 nfs_resop4 *resop; 14140 rnode4_t *rp; 14141 int doqueue = 1; 14142 clock_t tick_delay; /* delay in clock ticks */ 14143 struct lm_sysid *ls; 14144 LOCK4args *lock_args = NULL; 14145 LOCKU4args *locku_args = NULL; 14146 LOCKT4args *lockt_args = NULL; 14147 nfs4_open_owner_t *oop = NULL; 14148 nfs4_open_stream_t *osp = NULL; 14149 nfs4_lock_owner_t *lop = NULL; 14150 bool_t needrecov = FALSE; 14151 nfs4_recov_state_t recov_state; 14152 short whence; 14153 nfs4_op_hint_t op_hint; 14154 nfs4_lost_rqst_t lost_rqst; 14155 bool_t retry = FALSE; 14156 bool_t did_start_fop = FALSE; 14157 bool_t skip_get_err = FALSE; 14158 cred_t *cred_otw = NULL; 14159 bool_t recovonly; /* just queue request */ 14160 int frc_no_reclaim = 0; 14161 #ifdef DEBUG 14162 char *name; 14163 #endif 14164 14165 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 14166 14167 #ifdef DEBUG 14168 name = fn_name(VTOSV(vp)->sv_name); 14169 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, "nfs4frlock: " 14170 "%s: cmd %d, type %d, offset %llu, start %"PRIx64", " 14171 "length %"PRIu64", pid %d, sysid %d, call type %s, " 14172 "resend request %s", name, cmd, flk->l_type, offset, flk->l_start, 14173 flk->l_len, ctype == NFS4_LCK_CTYPE_NORM ? curproc->p_pid : 14174 flk->l_pid, flk->l_sysid, nfs4frlock_get_call_type(ctype), 14175 resend_rqstp ? "TRUE" : "FALSE")); 14176 kmem_free(name, MAXNAMELEN); 14177 #endif 14178 14179 nfs4_error_zinit(ep); 14180 ep->error = nfs4frlock_validate_args(cmd, flk, flag, vp, offset); 14181 if (ep->error) 14182 return; 14183 ep->error = nfs4frlock_get_sysid(&ls, vp, flk); 14184 if (ep->error) 14185 return; 14186 nfs4frlock_pre_setup(&tick_delay, &recov_state, flk, &whence, 14187 vp, cr, &cred_otw); 14188 14189 recov_retry: 14190 nfs4frlock_call_init(&args, &argsp, &argop, &op_hint, flk, cmd, 14191 &retry, &did_start_fop, &resp, &skip_get_err, &lost_rqst); 14192 rp = VTOR4(vp); 14193 14194 ep->error = nfs4frlock_start_call(ctype, vp, op_hint, &recov_state, 14195 &did_start_fop, &recovonly); 14196 14197 if (ep->error) 14198 goto out; 14199 14200 if (recovonly) { 14201 /* 14202 * Leave the request for the recovery system to deal with. 14203 */ 14204 ASSERT(ctype == NFS4_LCK_CTYPE_NORM); 14205 ASSERT(cmd != F_GETLK); 14206 ASSERT(flk->l_type == F_UNLCK); 14207 14208 nfs4_error_init(ep, EINTR); 14209 needrecov = TRUE; 14210 lop = find_lock_owner(rp, curproc->p_pid, LOWN_ANY); 14211 if (lop != NULL) { 14212 nfs4frlock_save_lost_rqst(ctype, ep->error, READ_LT, 14213 NULL, NULL, lop, flk, &lost_rqst, cr, vp); 14214 (void) nfs4_start_recovery(ep, 14215 VTOMI4(vp), vp, NULL, NULL, 14216 (lost_rqst.lr_op == OP_LOCK || 14217 lost_rqst.lr_op == OP_LOCKU) ? 14218 &lost_rqst : NULL, OP_LOCKU, NULL); 14219 lock_owner_rele(lop); 14220 lop = NULL; 14221 } 14222 flk->l_pid = curproc->p_pid; 14223 nfs4_register_lock_locally(vp, flk, flag, offset); 14224 goto out; 14225 } 14226 14227 /* putfh directory fh */ 14228 argop[0].argop = OP_CPUTFH; 14229 argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh; 14230 14231 /* 14232 * Set up the over-the-wire arguments and get references to the 14233 * open owner, etc. 14234 */ 14235 14236 if (ctype == NFS4_LCK_CTYPE_RESEND || 14237 ctype == NFS4_LCK_CTYPE_REINSTATE) { 14238 nfs4frlock_setup_resend_lock_args(resend_rqstp, argsp, 14239 &argop[1], &lop, &oop, &osp, &lock_args, &locku_args); 14240 } else { 14241 bool_t go_otw = TRUE; 14242 14243 ASSERT(resend_rqstp == NULL); 14244 14245 switch (cmd) { 14246 case F_GETLK: 14247 case F_O_GETLK: 14248 nfs4frlock_setup_lockt_args(ctype, &argop[1], 14249 &lockt_args, argsp, flk, rp); 14250 break; 14251 case F_SETLKW: 14252 case F_SETLK: 14253 if (flk->l_type == F_UNLCK) 14254 nfs4frlock_setup_locku_args(ctype, 14255 &argop[1], &locku_args, flk, 14256 &lop, ep, argsp, 14257 vp, flag, offset, cr, 14258 &skip_get_err, &go_otw); 14259 else 14260 nfs4frlock_setup_lock_args(ctype, 14261 &lock_args, &oop, &osp, &lop, &argop[1], 14262 argsp, flk, cmd, vp, cr, ep); 14263 14264 if (ep->error) 14265 goto out; 14266 14267 switch (ep->stat) { 14268 case NFS4_OK: 14269 break; 14270 case NFS4ERR_DELAY: 14271 /* recov thread never gets this error */ 14272 ASSERT(resend_rqstp == NULL); 14273 ASSERT(did_start_fop); 14274 14275 nfs4_end_fop(VTOMI4(vp), vp, NULL, op_hint, 14276 &recov_state, TRUE); 14277 did_start_fop = FALSE; 14278 if (argop[1].argop == OP_LOCK) 14279 nfs4args_lock_free(&argop[1]); 14280 else if (argop[1].argop == OP_LOCKT) 14281 nfs4args_lockt_free(&argop[1]); 14282 kmem_free(argop, 2 * sizeof (nfs_argop4)); 14283 argsp = NULL; 14284 goto recov_retry; 14285 default: 14286 ep->error = EIO; 14287 goto out; 14288 } 14289 break; 14290 default: 14291 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 14292 "nfs4_frlock: invalid cmd %d", cmd)); 14293 ep->error = EINVAL; 14294 goto out; 14295 } 14296 14297 if (!go_otw) 14298 goto out; 14299 } 14300 14301 /* XXX should we use the local reclock as a cache ? */ 14302 /* 14303 * Unregister the lock with the local locking code before 14304 * contacting the server. This avoids a potential race where 14305 * another process gets notified that it has been granted a lock 14306 * before we can unregister ourselves locally. 14307 */ 14308 if ((cmd == F_SETLK || cmd == F_SETLKW) && flk->l_type == F_UNLCK) { 14309 if (ctype == NFS4_LCK_CTYPE_NORM) 14310 flk->l_pid = ttoproc(curthread)->p_pid; 14311 nfs4_register_lock_locally(vp, flk, flag, offset); 14312 } 14313 14314 /* 14315 * Send the server the lock request. Continually loop with a delay 14316 * if get error NFS4ERR_DENIED (for blocking locks) or NFS4ERR_GRACE. 14317 */ 14318 resp = &res; 14319 14320 NFS4_DEBUG((nfs4_client_call_debug || nfs4_client_lock_debug), 14321 (CE_NOTE, 14322 "nfs4frlock: %s call, rp %s", needrecov ? "recov" : "first", 14323 rnode4info(rp))); 14324 14325 if (lock_args && frc_no_reclaim) { 14326 ASSERT(ctype == NFS4_LCK_CTYPE_RECLAIM); 14327 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 14328 "nfs4frlock: frc_no_reclaim: clearing reclaim")); 14329 lock_args->reclaim = FALSE; 14330 if (did_reclaimp) 14331 *did_reclaimp = 0; 14332 } 14333 14334 /* 14335 * Do the OTW call. 14336 */ 14337 rfs4call(VTOMI4(vp), argsp, resp, cred_otw, &doqueue, 0, ep); 14338 14339 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 14340 "nfs4frlock: error %d, status %d", ep->error, resp->status)); 14341 14342 needrecov = nfs4_needs_recovery(ep, TRUE, vp->v_vfsp); 14343 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 14344 "nfs4frlock: needrecov %d", needrecov)); 14345 14346 if (ep->error == 0 && nfs4_need_to_bump_seqid(resp)) 14347 nfs4frlock_bump_seqid(lock_args, locku_args, oop, lop, 14348 args.ctag); 14349 14350 /* 14351 * Check if one of these mutually exclusive error cases has 14352 * happened: 14353 * need to swap credentials due to access error 14354 * recovery is needed 14355 * different error (only known case is missing Kerberos ticket) 14356 */ 14357 14358 if ((ep->error == EACCES || 14359 (ep->error == 0 && resp->status == NFS4ERR_ACCESS)) && 14360 cred_otw != cr) { 14361 nfs4frlock_check_access(vp, op_hint, &recov_state, needrecov, 14362 &did_start_fop, &argsp, &resp, ep->error, &lop, &oop, &osp, 14363 cr, &cred_otw); 14364 goto recov_retry; 14365 } 14366 14367 if (needrecov) { 14368 /* 14369 * LOCKT requests don't need to recover from lost 14370 * requests since they don't create/modify state. 14371 */ 14372 if ((ep->error == EINTR || 14373 NFS4_FRC_UNMT_ERR(ep->error, vp->v_vfsp)) && 14374 lockt_args) 14375 goto out; 14376 /* 14377 * Do not attempt recovery for requests initiated by 14378 * the recovery framework. Let the framework redrive them. 14379 */ 14380 if (ctype != NFS4_LCK_CTYPE_NORM) 14381 goto out; 14382 else { 14383 ASSERT(resend_rqstp == NULL); 14384 } 14385 14386 nfs4frlock_save_lost_rqst(ctype, ep->error, 14387 flk_to_locktype(cmd, flk->l_type), 14388 oop, osp, lop, flk, &lost_rqst, cred_otw, vp); 14389 14390 retry = nfs4frlock_recovery(needrecov, ep, &argsp, 14391 &resp, lock_args, locku_args, &oop, &osp, &lop, 14392 rp, vp, &recov_state, op_hint, &did_start_fop, 14393 cmd != F_GETLK ? &lost_rqst : NULL, flk); 14394 14395 if (retry) { 14396 ASSERT(oop == NULL); 14397 ASSERT(osp == NULL); 14398 ASSERT(lop == NULL); 14399 goto recov_retry; 14400 } 14401 goto out; 14402 } 14403 14404 /* 14405 * Bail out if have reached this point with ep->error set. Can 14406 * happen if (ep->error == EACCES && !needrecov && cred_otw == cr). 14407 * This happens if Kerberos ticket has expired or has been 14408 * destroyed. 14409 */ 14410 if (ep->error != 0) 14411 goto out; 14412 14413 /* 14414 * Process the reply. 14415 */ 14416 switch (resp->status) { 14417 case NFS4_OK: 14418 resop = &resp->array[1]; 14419 nfs4frlock_results_ok(ctype, cmd, flk, vp, flag, offset, 14420 resend_rqstp); 14421 /* 14422 * Have a successful lock operation, now update state. 14423 */ 14424 nfs4frlock_update_state(lock_args, locku_args, lockt_args, 14425 resop, lop, vp, flk, cr, resend_rqstp); 14426 break; 14427 14428 case NFS4ERR_DENIED: 14429 resop = &resp->array[1]; 14430 retry = nfs4frlock_results_denied(ctype, lock_args, lockt_args, 14431 &oop, &osp, &lop, cmd, vp, flk, op_hint, 14432 &recov_state, needrecov, &argsp, &resp, 14433 &tick_delay, &whence, &ep->error, resop, cr, 14434 &did_start_fop, &skip_get_err); 14435 14436 if (retry) { 14437 ASSERT(oop == NULL); 14438 ASSERT(osp == NULL); 14439 ASSERT(lop == NULL); 14440 goto recov_retry; 14441 } 14442 break; 14443 /* 14444 * If the server won't let us reclaim, fall-back to trying to lock 14445 * the file from scratch. Code elsewhere will check the changeinfo 14446 * to ensure the file hasn't been changed. 14447 */ 14448 case NFS4ERR_NO_GRACE: 14449 if (lock_args && lock_args->reclaim == TRUE) { 14450 ASSERT(ctype == NFS4_LCK_CTYPE_RECLAIM); 14451 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 14452 "nfs4frlock: reclaim: NFS4ERR_NO_GRACE")); 14453 frc_no_reclaim = 1; 14454 /* clean up before retrying */ 14455 needrecov = 0; 14456 (void) nfs4frlock_recovery(needrecov, ep, &argsp, &resp, 14457 lock_args, locku_args, &oop, &osp, &lop, rp, vp, 14458 &recov_state, op_hint, &did_start_fop, NULL, flk); 14459 goto recov_retry; 14460 } 14461 /* FALLTHROUGH */ 14462 14463 default: 14464 nfs4frlock_results_default(resp, &ep->error); 14465 break; 14466 } 14467 out: 14468 /* 14469 * Process and cleanup from error. Make interrupted unlock 14470 * requests look successful, since they will be handled by the 14471 * client recovery code. 14472 */ 14473 nfs4frlock_final_cleanup(ctype, argsp, resp, vp, op_hint, &recov_state, 14474 needrecov, oop, osp, lop, flk, whence, offset, ls, &ep->error, 14475 lock_args, locku_args, did_start_fop, 14476 skip_get_err, cred_otw, cr); 14477 14478 if (ep->error == EINTR && flk->l_type == F_UNLCK && 14479 (cmd == F_SETLK || cmd == F_SETLKW)) 14480 ep->error = 0; 14481 } 14482 14483 /* 14484 * nfs4_safelock: 14485 * 14486 * Return non-zero if the given lock request can be handled without 14487 * violating the constraints on concurrent mapping and locking. 14488 */ 14489 14490 static int 14491 nfs4_safelock(vnode_t *vp, const struct flock64 *bfp, cred_t *cr) 14492 { 14493 rnode4_t *rp = VTOR4(vp); 14494 struct vattr va; 14495 int error; 14496 14497 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 14498 ASSERT(rp->r_mapcnt >= 0); 14499 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, "nfs4_safelock %s: " 14500 "(%"PRIx64", %"PRIx64"); mapcnt = %ld", bfp->l_type == F_WRLCK ? 14501 "write" : bfp->l_type == F_RDLCK ? "read" : "unlock", 14502 bfp->l_start, bfp->l_len, rp->r_mapcnt)); 14503 14504 if (rp->r_mapcnt == 0) 14505 return (1); /* always safe if not mapped */ 14506 14507 /* 14508 * If the file is already mapped and there are locks, then they 14509 * should be all safe locks. So adding or removing a lock is safe 14510 * as long as the new request is safe (i.e., whole-file, meaning 14511 * length and starting offset are both zero). 14512 */ 14513 14514 if (bfp->l_start != 0 || bfp->l_len != 0) { 14515 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, "nfs4_safelock: " 14516 "cannot lock a memory mapped file unless locking the " 14517 "entire file: start %"PRIx64", len %"PRIx64, 14518 bfp->l_start, bfp->l_len)); 14519 return (0); 14520 } 14521 14522 /* mandatory locking and mapping don't mix */ 14523 va.va_mask = AT_MODE; 14524 error = VOP_GETATTR(vp, &va, 0, cr, NULL); 14525 if (error != 0) { 14526 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, "nfs4_safelock: " 14527 "getattr error %d", error)); 14528 return (0); /* treat errors conservatively */ 14529 } 14530 if (MANDLOCK(vp, va.va_mode)) { 14531 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, "nfs4_safelock: " 14532 "cannot mandatory lock and mmap a file")); 14533 return (0); 14534 } 14535 14536 return (1); 14537 } 14538 14539 14540 /* 14541 * Register the lock locally within Solaris. 14542 * As the client, we "or" the sysid with LM_SYSID_CLIENT when 14543 * recording locks locally. 14544 * 14545 * This should handle conflicts/cooperation with NFS v2/v3 since all locks 14546 * are registered locally. 14547 */ 14548 void 14549 nfs4_register_lock_locally(vnode_t *vp, struct flock64 *flk, int flag, 14550 u_offset_t offset) 14551 { 14552 int oldsysid; 14553 int error; 14554 #ifdef DEBUG 14555 char *name; 14556 #endif 14557 14558 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 14559 14560 #ifdef DEBUG 14561 name = fn_name(VTOSV(vp)->sv_name); 14562 NFS4_DEBUG(nfs4_client_lock_debug, 14563 (CE_NOTE, "nfs4_register_lock_locally: %s: type %d, " 14564 "start %"PRIx64", length %"PRIx64", pid %ld, sysid %d", 14565 name, flk->l_type, flk->l_start, flk->l_len, (long)flk->l_pid, 14566 flk->l_sysid)); 14567 kmem_free(name, MAXNAMELEN); 14568 #endif 14569 14570 /* register the lock with local locking */ 14571 oldsysid = flk->l_sysid; 14572 flk->l_sysid |= LM_SYSID_CLIENT; 14573 error = reclock(vp, flk, SETFLCK, flag, offset, NULL); 14574 #ifdef DEBUG 14575 if (error != 0) { 14576 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 14577 "nfs4_register_lock_locally: could not register with" 14578 " local locking")); 14579 NFS4_DEBUG(nfs4_client_lock_debug, (CE_CONT, 14580 "error %d, vp 0x%p, pid %d, sysid 0x%x", 14581 error, (void *)vp, flk->l_pid, flk->l_sysid)); 14582 NFS4_DEBUG(nfs4_client_lock_debug, (CE_CONT, 14583 "type %d off 0x%" PRIx64 " len 0x%" PRIx64, 14584 flk->l_type, flk->l_start, flk->l_len)); 14585 (void) reclock(vp, flk, 0, flag, offset, NULL); 14586 NFS4_DEBUG(nfs4_client_lock_debug, (CE_CONT, 14587 "blocked by pid %d sysid 0x%x type %d " 14588 "off 0x%" PRIx64 " len 0x%" PRIx64, 14589 flk->l_pid, flk->l_sysid, flk->l_type, flk->l_start, 14590 flk->l_len)); 14591 } 14592 #endif 14593 flk->l_sysid = oldsysid; 14594 } 14595 14596 /* 14597 * nfs4_lockrelease: 14598 * 14599 * Release any locks on the given vnode that are held by the current 14600 * process. Also removes the lock owner (if one exists) from the rnode's 14601 * list. 14602 */ 14603 static int 14604 nfs4_lockrelease(vnode_t *vp, int flag, offset_t offset, cred_t *cr) 14605 { 14606 flock64_t ld; 14607 int ret, error; 14608 rnode4_t *rp; 14609 nfs4_lock_owner_t *lop; 14610 nfs4_recov_state_t recov_state; 14611 mntinfo4_t *mi; 14612 bool_t possible_orphan = FALSE; 14613 bool_t recovonly; 14614 14615 ASSERT((uintptr_t)vp > KERNELBASE); 14616 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 14617 14618 rp = VTOR4(vp); 14619 mi = VTOMI4(vp); 14620 14621 /* 14622 * If we have not locked anything then we can 14623 * just return since we have no work to do. 14624 */ 14625 if (rp->r_lo_head.lo_next_rnode == &rp->r_lo_head) { 14626 return (0); 14627 } 14628 14629 /* 14630 * We need to comprehend that another thread may 14631 * kick off recovery and the lock_owner we have stashed 14632 * in lop might be invalid so we should NOT cache it 14633 * locally! 14634 */ 14635 recov_state.rs_flags = 0; 14636 recov_state.rs_num_retry_despite_err = 0; 14637 error = nfs4_start_fop(mi, vp, NULL, OH_LOCKU, &recov_state, 14638 &recovonly); 14639 if (error) { 14640 mutex_enter(&rp->r_statelock); 14641 rp->r_flags |= R4LODANGLERS; 14642 mutex_exit(&rp->r_statelock); 14643 return (error); 14644 } 14645 14646 lop = find_lock_owner(rp, curproc->p_pid, LOWN_ANY); 14647 14648 /* 14649 * Check if the lock owner might have a lock (request was sent but 14650 * no response was received). Also check if there are any remote 14651 * locks on the file. (In theory we shouldn't have to make this 14652 * second check if there's no lock owner, but for now we'll be 14653 * conservative and do it anyway.) If either condition is true, 14654 * send an unlock for the entire file to the server. 14655 * 14656 * Note that no explicit synchronization is needed here. At worst, 14657 * flk_has_remote_locks() will return a false positive, in which case 14658 * the unlock call wastes time but doesn't harm correctness. 14659 */ 14660 14661 if (lop) { 14662 mutex_enter(&lop->lo_lock); 14663 possible_orphan = lop->lo_pending_rqsts; 14664 mutex_exit(&lop->lo_lock); 14665 lock_owner_rele(lop); 14666 } 14667 14668 nfs4_end_fop(mi, vp, NULL, OH_LOCKU, &recov_state, 0); 14669 14670 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 14671 "nfs4_lockrelease: possible orphan %d, remote locks %d, for " 14672 "lop %p.", possible_orphan, flk_has_remote_locks(vp), 14673 (void *)lop)); 14674 14675 if (possible_orphan || flk_has_remote_locks(vp)) { 14676 ld.l_type = F_UNLCK; /* set to unlock entire file */ 14677 ld.l_whence = 0; /* unlock from start of file */ 14678 ld.l_start = 0; 14679 ld.l_len = 0; /* do entire file */ 14680 14681 ret = VOP_FRLOCK(vp, F_SETLK, &ld, flag, offset, NULL, 14682 cr, NULL); 14683 14684 if (ret != 0) { 14685 /* 14686 * If VOP_FRLOCK fails, make sure we unregister 14687 * local locks before we continue. 14688 */ 14689 ld.l_pid = ttoproc(curthread)->p_pid; 14690 nfs4_register_lock_locally(vp, &ld, flag, offset); 14691 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 14692 "nfs4_lockrelease: lock release error on vp" 14693 " %p: error %d.\n", (void *)vp, ret)); 14694 } 14695 } 14696 14697 recov_state.rs_flags = 0; 14698 recov_state.rs_num_retry_despite_err = 0; 14699 error = nfs4_start_fop(mi, vp, NULL, OH_LOCKU, &recov_state, 14700 &recovonly); 14701 if (error) { 14702 mutex_enter(&rp->r_statelock); 14703 rp->r_flags |= R4LODANGLERS; 14704 mutex_exit(&rp->r_statelock); 14705 return (error); 14706 } 14707 14708 /* 14709 * So, here we're going to need to retrieve the lock-owner 14710 * again (in case recovery has done a switch-a-roo) and 14711 * remove it because we can. 14712 */ 14713 lop = find_lock_owner(rp, curproc->p_pid, LOWN_ANY); 14714 14715 if (lop) { 14716 nfs4_rnode_remove_lock_owner(rp, lop); 14717 lock_owner_rele(lop); 14718 } 14719 14720 nfs4_end_fop(mi, vp, NULL, OH_LOCKU, &recov_state, 0); 14721 return (0); 14722 } 14723 14724 /* 14725 * Wait for 'tick_delay' clock ticks. 14726 * Implement exponential backoff until hit the lease_time of this nfs4_server. 14727 * NOTE: lock_lease_time is in seconds. 14728 * 14729 * XXX For future improvements, should implement a waiting queue scheme. 14730 */ 14731 static int 14732 nfs4_block_and_wait(clock_t *tick_delay, rnode4_t *rp) 14733 { 14734 long milliseconds_delay; 14735 time_t lock_lease_time; 14736 14737 /* wait tick_delay clock ticks or siginteruptus */ 14738 if (delay_sig(*tick_delay)) { 14739 return (EINTR); 14740 } 14741 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, "nfs4_block_and_wait: " 14742 "reissue the lock request: blocked for %ld clock ticks: %ld " 14743 "milliseconds", *tick_delay, drv_hztousec(*tick_delay) / 1000)); 14744 14745 /* get the lease time */ 14746 lock_lease_time = r2lease_time(rp); 14747 14748 /* drv_hztousec converts ticks to microseconds */ 14749 milliseconds_delay = drv_hztousec(*tick_delay) / 1000; 14750 if (milliseconds_delay < lock_lease_time * 1000) { 14751 *tick_delay = 2 * *tick_delay; 14752 if (drv_hztousec(*tick_delay) > lock_lease_time * 1000 * 1000) 14753 *tick_delay = drv_usectohz(lock_lease_time*1000*1000); 14754 } 14755 return (0); 14756 } 14757 14758 14759 void 14760 nfs4_vnops_init(void) 14761 { 14762 } 14763 14764 void 14765 nfs4_vnops_fini(void) 14766 { 14767 } 14768 14769 /* 14770 * Return a reference to the directory (parent) vnode for a given vnode, 14771 * using the saved pathname information and the directory file handle. The 14772 * caller is responsible for disposing of the reference. 14773 * Returns zero or an errno value. 14774 * 14775 * Caller should set need_start_op to FALSE if it is the recovery 14776 * thread, or if a start_fop has already been done. Otherwise, TRUE. 14777 */ 14778 int 14779 vtodv(vnode_t *vp, vnode_t **dvpp, cred_t *cr, bool_t need_start_op) 14780 { 14781 svnode_t *svnp; 14782 vnode_t *dvp = NULL; 14783 servinfo4_t *svp; 14784 nfs4_fname_t *mfname; 14785 int error; 14786 14787 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 14788 14789 if (vp->v_flag & VROOT) { 14790 nfs4_sharedfh_t *sfh; 14791 nfs_fh4 fh; 14792 mntinfo4_t *mi; 14793 14794 ASSERT(vp->v_type == VREG); 14795 14796 mi = VTOMI4(vp); 14797 svp = mi->mi_curr_serv; 14798 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0); 14799 fh.nfs_fh4_len = svp->sv_pfhandle.fh_len; 14800 fh.nfs_fh4_val = svp->sv_pfhandle.fh_buf; 14801 sfh = sfh4_get(&fh, VTOMI4(vp)); 14802 nfs_rw_exit(&svp->sv_lock); 14803 mfname = mi->mi_fname; 14804 fn_hold(mfname); 14805 dvp = makenfs4node_by_fh(sfh, NULL, &mfname, NULL, mi, cr, 0); 14806 sfh4_rele(&sfh); 14807 14808 if (dvp->v_type == VNON) 14809 dvp->v_type = VDIR; 14810 *dvpp = dvp; 14811 return (0); 14812 } 14813 14814 svnp = VTOSV(vp); 14815 14816 if (svnp == NULL) { 14817 NFS4_DEBUG(nfs4_client_shadow_debug, (CE_NOTE, "vtodv: " 14818 "shadow node is NULL")); 14819 return (EINVAL); 14820 } 14821 14822 if (svnp->sv_name == NULL || svnp->sv_dfh == NULL) { 14823 NFS4_DEBUG(nfs4_client_shadow_debug, (CE_NOTE, "vtodv: " 14824 "shadow node name or dfh val == NULL")); 14825 return (EINVAL); 14826 } 14827 14828 error = nfs4_make_dotdot(svnp->sv_dfh, 0, vp, cr, &dvp, 14829 (int)need_start_op); 14830 if (error != 0) { 14831 NFS4_DEBUG(nfs4_client_shadow_debug, (CE_NOTE, "vtodv: " 14832 "nfs4_make_dotdot returned %d", error)); 14833 return (error); 14834 } 14835 if (!dvp) { 14836 NFS4_DEBUG(nfs4_client_shadow_debug, (CE_NOTE, "vtodv: " 14837 "nfs4_make_dotdot returned a NULL dvp")); 14838 return (EIO); 14839 } 14840 if (dvp->v_type == VNON) 14841 dvp->v_type = VDIR; 14842 ASSERT(dvp->v_type == VDIR); 14843 if (VTOR4(vp)->r_flags & R4ISXATTR) { 14844 mutex_enter(&dvp->v_lock); 14845 dvp->v_flag |= V_XATTRDIR; 14846 mutex_exit(&dvp->v_lock); 14847 } 14848 *dvpp = dvp; 14849 return (0); 14850 } 14851 14852 /* 14853 * Copy the (final) component name of vp to fnamep. maxlen is the maximum 14854 * length that fnamep can accept, including the trailing null. 14855 * Returns 0 if okay, returns an errno value if there was a problem. 14856 */ 14857 14858 int 14859 vtoname(vnode_t *vp, char *fnamep, ssize_t maxlen) 14860 { 14861 char *fn; 14862 int err = 0; 14863 servinfo4_t *svp; 14864 svnode_t *shvp; 14865 14866 /* 14867 * If the file being opened has VROOT set, then this is 14868 * a "file" mount. sv_name will not be interesting, so 14869 * go back to the servinfo4 to get the original mount 14870 * path and strip off all but the final edge. Otherwise 14871 * just return the name from the shadow vnode. 14872 */ 14873 14874 if (vp->v_flag & VROOT) { 14875 14876 svp = VTOMI4(vp)->mi_curr_serv; 14877 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0); 14878 14879 fn = strrchr(svp->sv_path, '/'); 14880 if (fn == NULL) 14881 err = EINVAL; 14882 else 14883 fn++; 14884 } else { 14885 shvp = VTOSV(vp); 14886 fn = fn_name(shvp->sv_name); 14887 } 14888 14889 if (err == 0) 14890 if (strlen(fn) < maxlen) 14891 (void) strcpy(fnamep, fn); 14892 else 14893 err = ENAMETOOLONG; 14894 14895 if (vp->v_flag & VROOT) 14896 nfs_rw_exit(&svp->sv_lock); 14897 else 14898 kmem_free(fn, MAXNAMELEN); 14899 14900 return (err); 14901 } 14902 14903 /* 14904 * Bookkeeping for a close that doesn't need to go over the wire. 14905 * *have_lockp is set to 0 if 'os_sync_lock' is released; otherwise 14906 * it is left at 1. 14907 */ 14908 void 14909 nfs4close_notw(vnode_t *vp, nfs4_open_stream_t *osp, int *have_lockp) 14910 { 14911 rnode4_t *rp; 14912 mntinfo4_t *mi; 14913 14914 mi = VTOMI4(vp); 14915 rp = VTOR4(vp); 14916 14917 NFS4_DEBUG(nfs4close_notw_debug, (CE_NOTE, "nfs4close_notw: " 14918 "rp=%p osp=%p", (void *)rp, (void *)osp)); 14919 ASSERT(nfs_zone() == mi->mi_zone); 14920 ASSERT(mutex_owned(&osp->os_sync_lock)); 14921 ASSERT(*have_lockp); 14922 14923 if (!osp->os_valid || 14924 osp->os_open_ref_count > 0 || osp->os_mapcnt > 0) { 14925 return; 14926 } 14927 14928 /* 14929 * This removes the reference obtained at OPEN; ie, 14930 * when the open stream structure was created. 14931 * 14932 * We don't have to worry about calling 'open_stream_rele' 14933 * since we our currently holding a reference to this 14934 * open stream which means the count can not go to 0 with 14935 * this decrement. 14936 */ 14937 ASSERT(osp->os_ref_count >= 2); 14938 osp->os_ref_count--; 14939 osp->os_valid = 0; 14940 mutex_exit(&osp->os_sync_lock); 14941 *have_lockp = 0; 14942 14943 nfs4_dec_state_ref_count(mi); 14944 } 14945 14946 /* 14947 * Close all remaining open streams on the rnode. These open streams 14948 * could be here because: 14949 * - The close attempted at either close or delmap failed 14950 * - Some kernel entity did VOP_OPEN but never did VOP_CLOSE 14951 * - Someone did mknod on a regular file but never opened it 14952 */ 14953 int 14954 nfs4close_all(vnode_t *vp, cred_t *cr) 14955 { 14956 nfs4_open_stream_t *osp; 14957 int error; 14958 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 14959 rnode4_t *rp; 14960 14961 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 14962 14963 error = 0; 14964 rp = VTOR4(vp); 14965 14966 /* 14967 * At this point, all we know is that the last time 14968 * someone called vn_rele, the count was 1. Since then, 14969 * the vnode could have been re-activated. We want to 14970 * loop through the open streams and close each one, but 14971 * we have to be careful since once we release the rnode 14972 * hash bucket lock, someone else is free to come in and 14973 * re-activate the rnode and add new open streams. The 14974 * strategy is take the rnode hash bucket lock, verify that 14975 * the count is still 1, grab the open stream off the 14976 * head of the list and mark it invalid, then release the 14977 * rnode hash bucket lock and proceed with that open stream. 14978 * This is ok because nfs4close_one() will acquire the proper 14979 * open/create to close/destroy synchronization for open 14980 * streams, and will ensure that if someone has reopened 14981 * the open stream after we've dropped the hash bucket lock 14982 * then we'll just simply return without destroying the 14983 * open stream. 14984 * Repeat until the list is empty. 14985 */ 14986 14987 for (;;) { 14988 14989 /* make sure vnode hasn't been reactivated */ 14990 rw_enter(&rp->r_hashq->r_lock, RW_READER); 14991 mutex_enter(&vp->v_lock); 14992 if (vp->v_count > 1) { 14993 mutex_exit(&vp->v_lock); 14994 rw_exit(&rp->r_hashq->r_lock); 14995 break; 14996 } 14997 /* 14998 * Grabbing r_os_lock before releasing v_lock prevents 14999 * a window where the rnode/open stream could get 15000 * reactivated (and os_force_close set to 0) before we 15001 * had a chance to set os_force_close to 1. 15002 */ 15003 mutex_enter(&rp->r_os_lock); 15004 mutex_exit(&vp->v_lock); 15005 15006 osp = list_head(&rp->r_open_streams); 15007 if (!osp) { 15008 /* nothing left to CLOSE OTW, so return */ 15009 mutex_exit(&rp->r_os_lock); 15010 rw_exit(&rp->r_hashq->r_lock); 15011 break; 15012 } 15013 15014 mutex_enter(&rp->r_statev4_lock); 15015 /* the file can't still be mem mapped */ 15016 ASSERT(rp->r_mapcnt == 0); 15017 if (rp->created_v4) 15018 rp->created_v4 = 0; 15019 mutex_exit(&rp->r_statev4_lock); 15020 15021 /* 15022 * Grab a ref on this open stream; nfs4close_one 15023 * will mark it as invalid 15024 */ 15025 mutex_enter(&osp->os_sync_lock); 15026 osp->os_ref_count++; 15027 osp->os_force_close = 1; 15028 mutex_exit(&osp->os_sync_lock); 15029 mutex_exit(&rp->r_os_lock); 15030 rw_exit(&rp->r_hashq->r_lock); 15031 15032 nfs4close_one(vp, osp, cr, 0, NULL, &e, CLOSE_FORCE, 0, 0, 0); 15033 15034 /* Update error if it isn't already non-zero */ 15035 if (error == 0) { 15036 if (e.error) 15037 error = e.error; 15038 else if (e.stat) 15039 error = geterrno4(e.stat); 15040 } 15041 15042 #ifdef DEBUG 15043 nfs4close_all_cnt++; 15044 #endif 15045 /* Release the ref on osp acquired above. */ 15046 open_stream_rele(osp, rp); 15047 15048 /* Proceed to the next open stream, if any */ 15049 } 15050 return (error); 15051 } 15052 15053 /* 15054 * nfs4close_one - close one open stream for a file if needed. 15055 * 15056 * "close_type" indicates which close path this is: 15057 * CLOSE_NORM: close initiated via VOP_CLOSE. 15058 * CLOSE_DELMAP: close initiated via VOP_DELMAP. 15059 * CLOSE_FORCE: close initiated via VOP_INACTIVE. This path forces 15060 * the close and release of client state for this open stream 15061 * (unless someone else has the open stream open). 15062 * CLOSE_RESEND: indicates the request is a replay of an earlier request 15063 * (e.g., due to abort because of a signal). 15064 * CLOSE_AFTER_RESEND: close initiated to "undo" a successful resent OPEN. 15065 * 15066 * CLOSE_RESEND and CLOSE_AFTER_RESEND will not attempt to retry after client 15067 * recovery. Instead, the caller is expected to deal with retries. 15068 * 15069 * The caller can either pass in the osp ('provided_osp') or not. 15070 * 15071 * 'access_bits' represents the access we are closing/downgrading. 15072 * 15073 * 'len', 'prot', and 'mmap_flags' are used for CLOSE_DELMAP. 'len' is the 15074 * number of bytes we are unmapping, 'maxprot' is the mmap protection, and 15075 * 'mmap_flags' tells us the type of sharing (MAP_PRIVATE or MAP_SHARED). 15076 * 15077 * Errors are returned via the nfs4_error_t. 15078 */ 15079 void 15080 nfs4close_one(vnode_t *vp, nfs4_open_stream_t *provided_osp, cred_t *cr, 15081 int access_bits, nfs4_lost_rqst_t *lrp, nfs4_error_t *ep, 15082 nfs4_close_type_t close_type, size_t len, uint_t maxprot, 15083 uint_t mmap_flags) 15084 { 15085 nfs4_open_owner_t *oop; 15086 nfs4_open_stream_t *osp = NULL; 15087 int retry = 0; 15088 int num_retries = NFS4_NUM_RECOV_RETRIES; 15089 rnode4_t *rp; 15090 mntinfo4_t *mi; 15091 nfs4_recov_state_t recov_state; 15092 cred_t *cred_otw = NULL; 15093 bool_t recovonly = FALSE; 15094 int isrecov; 15095 int force_close; 15096 int close_failed = 0; 15097 int did_dec_count = 0; 15098 int did_start_op = 0; 15099 int did_force_recovlock = 0; 15100 int did_start_seqid_sync = 0; 15101 int have_sync_lock = 0; 15102 15103 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 15104 15105 NFS4_DEBUG(nfs4close_one_debug, (CE_NOTE, "closing vp %p osp %p, " 15106 "lrp %p, close type %d len %ld prot %x mmap flags %x bits %x", 15107 (void *)vp, (void *)provided_osp, (void *)lrp, close_type, 15108 len, maxprot, mmap_flags, access_bits)); 15109 15110 nfs4_error_zinit(ep); 15111 rp = VTOR4(vp); 15112 mi = VTOMI4(vp); 15113 isrecov = (close_type == CLOSE_RESEND || 15114 close_type == CLOSE_AFTER_RESEND); 15115 15116 /* 15117 * First get the open owner. 15118 */ 15119 if (!provided_osp) { 15120 oop = find_open_owner(cr, NFS4_PERM_CREATED, mi); 15121 } else { 15122 oop = provided_osp->os_open_owner; 15123 ASSERT(oop != NULL); 15124 open_owner_hold(oop); 15125 } 15126 15127 if (!oop) { 15128 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 15129 "nfs4close_one: no oop, rp %p, mi %p, cr %p, osp %p, " 15130 "close type %d", (void *)rp, (void *)mi, (void *)cr, 15131 (void *)provided_osp, close_type)); 15132 ep->error = EIO; 15133 goto out; 15134 } 15135 15136 cred_otw = nfs4_get_otw_cred(cr, mi, oop); 15137 recov_retry: 15138 osp = NULL; 15139 close_failed = 0; 15140 force_close = (close_type == CLOSE_FORCE); 15141 retry = 0; 15142 did_start_op = 0; 15143 did_force_recovlock = 0; 15144 did_start_seqid_sync = 0; 15145 have_sync_lock = 0; 15146 recovonly = FALSE; 15147 recov_state.rs_flags = 0; 15148 recov_state.rs_num_retry_despite_err = 0; 15149 15150 /* 15151 * Second synchronize with recovery. 15152 */ 15153 if (!isrecov) { 15154 ep->error = nfs4_start_fop(mi, vp, NULL, OH_CLOSE, 15155 &recov_state, &recovonly); 15156 if (!ep->error) { 15157 did_start_op = 1; 15158 } else { 15159 close_failed = 1; 15160 /* 15161 * If we couldn't get start_fop, but have to 15162 * cleanup state, then at least acquire the 15163 * mi_recovlock so we can synchronize with 15164 * recovery. 15165 */ 15166 if (close_type == CLOSE_FORCE) { 15167 (void) nfs_rw_enter_sig(&mi->mi_recovlock, 15168 RW_READER, FALSE); 15169 did_force_recovlock = 1; 15170 } else 15171 goto out; 15172 } 15173 } 15174 15175 /* 15176 * We cannot attempt to get the open seqid sync if nfs4_start_fop 15177 * set 'recovonly' to TRUE since most likely this is due to 15178 * reovery being active (MI4_RECOV_ACTIV). If recovery is active, 15179 * nfs4_start_open_seqid_sync() will fail with EAGAIN asking us 15180 * to retry, causing us to loop until recovery finishes. Plus we 15181 * don't need protection over the open seqid since we're not going 15182 * OTW, hence don't need to use the seqid. 15183 */ 15184 if (recovonly == FALSE) { 15185 /* need to grab the open owner sync before 'os_sync_lock' */ 15186 ep->error = nfs4_start_open_seqid_sync(oop, mi); 15187 if (ep->error == EAGAIN) { 15188 ASSERT(!isrecov); 15189 if (did_start_op) 15190 nfs4_end_fop(mi, vp, NULL, OH_CLOSE, 15191 &recov_state, TRUE); 15192 if (did_force_recovlock) 15193 nfs_rw_exit(&mi->mi_recovlock); 15194 goto recov_retry; 15195 } 15196 did_start_seqid_sync = 1; 15197 } 15198 15199 /* 15200 * Third get an open stream and acquire 'os_sync_lock' to 15201 * sychronize the opening/creating of an open stream with the 15202 * closing/destroying of an open stream. 15203 */ 15204 if (!provided_osp) { 15205 /* returns with 'os_sync_lock' held */ 15206 osp = find_open_stream(oop, rp); 15207 if (!osp) { 15208 ep->error = EIO; 15209 goto out; 15210 } 15211 } else { 15212 osp = provided_osp; 15213 open_stream_hold(osp); 15214 mutex_enter(&osp->os_sync_lock); 15215 } 15216 have_sync_lock = 1; 15217 15218 ASSERT(oop == osp->os_open_owner); 15219 15220 /* 15221 * Fourth, do any special pre-OTW CLOSE processing 15222 * based on the specific close type. 15223 */ 15224 if ((close_type == CLOSE_NORM || close_type == CLOSE_AFTER_RESEND) && 15225 !did_dec_count) { 15226 ASSERT(osp->os_open_ref_count > 0); 15227 osp->os_open_ref_count--; 15228 did_dec_count = 1; 15229 if (osp->os_open_ref_count == 0) 15230 osp->os_final_close = 1; 15231 } 15232 15233 if (close_type == CLOSE_FORCE) { 15234 /* see if somebody reopened the open stream. */ 15235 if (!osp->os_force_close) { 15236 NFS4_DEBUG(nfs4close_one_debug, (CE_NOTE, 15237 "nfs4close_one: skip CLOSE_FORCE as osp %p " 15238 "was reopened, vp %p", (void *)osp, (void *)vp)); 15239 ep->error = 0; 15240 ep->stat = NFS4_OK; 15241 goto out; 15242 } 15243 15244 if (!osp->os_final_close && !did_dec_count) { 15245 osp->os_open_ref_count--; 15246 did_dec_count = 1; 15247 } 15248 15249 /* 15250 * We can't depend on os_open_ref_count being 0 due to the 15251 * way executables are opened (VN_RELE to match a VOP_OPEN). 15252 */ 15253 #ifdef NOTYET 15254 ASSERT(osp->os_open_ref_count == 0); 15255 #endif 15256 if (osp->os_open_ref_count != 0) { 15257 NFS4_DEBUG(nfs4close_one_debug, (CE_NOTE, 15258 "nfs4close_one: should panic here on an " 15259 "ASSERT(osp->os_open_ref_count == 0). Ignoring " 15260 "since this is probably the exec problem.")); 15261 15262 osp->os_open_ref_count = 0; 15263 } 15264 15265 /* 15266 * There is the possibility that nfs4close_one() 15267 * for close_type == CLOSE_DELMAP couldn't find the 15268 * open stream, thus couldn't decrement its os_mapcnt; 15269 * therefore we can't use this ASSERT yet. 15270 */ 15271 #ifdef NOTYET 15272 ASSERT(osp->os_mapcnt == 0); 15273 #endif 15274 osp->os_mapcnt = 0; 15275 } 15276 15277 if (close_type == CLOSE_DELMAP && !did_dec_count) { 15278 ASSERT(osp->os_mapcnt >= btopr(len)); 15279 15280 if ((mmap_flags & MAP_SHARED) && (maxprot & PROT_WRITE)) 15281 osp->os_mmap_write -= btopr(len); 15282 if (maxprot & PROT_READ) 15283 osp->os_mmap_read -= btopr(len); 15284 if (maxprot & PROT_EXEC) 15285 osp->os_mmap_read -= btopr(len); 15286 /* mirror the PROT_NONE check in nfs4_addmap() */ 15287 if (!(maxprot & PROT_READ) && !(maxprot & PROT_WRITE) && 15288 !(maxprot & PROT_EXEC)) 15289 osp->os_mmap_read -= btopr(len); 15290 osp->os_mapcnt -= btopr(len); 15291 did_dec_count = 1; 15292 } 15293 15294 if (recovonly) { 15295 nfs4_lost_rqst_t lost_rqst; 15296 15297 /* request should not already be in recovery queue */ 15298 ASSERT(lrp == NULL); 15299 nfs4_error_init(ep, EINTR); 15300 nfs4close_save_lost_rqst(ep->error, &lost_rqst, oop, 15301 osp, cred_otw, vp); 15302 mutex_exit(&osp->os_sync_lock); 15303 have_sync_lock = 0; 15304 (void) nfs4_start_recovery(ep, mi, vp, NULL, NULL, 15305 lost_rqst.lr_op == OP_CLOSE ? 15306 &lost_rqst : NULL, OP_CLOSE, NULL); 15307 close_failed = 1; 15308 force_close = 0; 15309 goto close_cleanup; 15310 } 15311 15312 /* 15313 * If a previous OTW call got NFS4ERR_BAD_SEQID, then 15314 * we stopped operating on the open owner's <old oo_name, old seqid> 15315 * space, which means we stopped operating on the open stream 15316 * too. So don't go OTW (as the seqid is likely bad, and the 15317 * stateid could be stale, potentially triggering a false 15318 * setclientid), and just clean up the client's internal state. 15319 */ 15320 if (osp->os_orig_oo_name != oop->oo_name) { 15321 NFS4_DEBUG(nfs4close_one_debug || nfs4_client_recov_debug, 15322 (CE_NOTE, "nfs4close_one: skip OTW close for osp %p " 15323 "oop %p due to bad seqid (orig oo_name %" PRIx64 " current " 15324 "oo_name %" PRIx64")", 15325 (void *)osp, (void *)oop, osp->os_orig_oo_name, 15326 oop->oo_name)); 15327 close_failed = 1; 15328 } 15329 15330 /* If the file failed recovery, just quit. */ 15331 mutex_enter(&rp->r_statelock); 15332 if (rp->r_flags & R4RECOVERR) { 15333 close_failed = 1; 15334 } 15335 mutex_exit(&rp->r_statelock); 15336 15337 /* 15338 * If the force close path failed to obtain start_fop 15339 * then skip the OTW close and just remove the state. 15340 */ 15341 if (close_failed) 15342 goto close_cleanup; 15343 15344 /* 15345 * Fifth, check to see if there are still mapped pages or other 15346 * opens using this open stream. If there are then we can't 15347 * close yet but we can see if an OPEN_DOWNGRADE is necessary. 15348 */ 15349 if (osp->os_open_ref_count > 0 || osp->os_mapcnt > 0) { 15350 nfs4_lost_rqst_t new_lost_rqst; 15351 bool_t needrecov = FALSE; 15352 cred_t *odg_cred_otw = NULL; 15353 seqid4 open_dg_seqid = 0; 15354 15355 if (osp->os_delegation) { 15356 /* 15357 * If this open stream was never OPENed OTW then we 15358 * surely can't DOWNGRADE it (especially since the 15359 * osp->open_stateid is really a delegation stateid 15360 * when os_delegation is 1). 15361 */ 15362 if (access_bits & FREAD) 15363 osp->os_share_acc_read--; 15364 if (access_bits & FWRITE) 15365 osp->os_share_acc_write--; 15366 osp->os_share_deny_none--; 15367 nfs4_error_zinit(ep); 15368 goto out; 15369 } 15370 nfs4_open_downgrade(access_bits, 0, oop, osp, vp, cr, 15371 lrp, ep, &odg_cred_otw, &open_dg_seqid); 15372 needrecov = nfs4_needs_recovery(ep, TRUE, mi->mi_vfsp); 15373 if (needrecov && !isrecov) { 15374 bool_t abort; 15375 nfs4_bseqid_entry_t *bsep = NULL; 15376 15377 if (!ep->error && ep->stat == NFS4ERR_BAD_SEQID) 15378 bsep = nfs4_create_bseqid_entry(oop, NULL, 15379 vp, 0, 15380 lrp ? TAG_OPEN_DG_LOST : TAG_OPEN_DG, 15381 open_dg_seqid); 15382 15383 nfs4open_dg_save_lost_rqst(ep->error, &new_lost_rqst, 15384 oop, osp, odg_cred_otw, vp, access_bits, 0); 15385 mutex_exit(&osp->os_sync_lock); 15386 have_sync_lock = 0; 15387 abort = nfs4_start_recovery(ep, mi, vp, NULL, NULL, 15388 new_lost_rqst.lr_op == OP_OPEN_DOWNGRADE ? 15389 &new_lost_rqst : NULL, OP_OPEN_DOWNGRADE, 15390 bsep); 15391 if (odg_cred_otw) 15392 crfree(odg_cred_otw); 15393 if (bsep) 15394 kmem_free(bsep, sizeof (*bsep)); 15395 15396 if (abort == TRUE) 15397 goto out; 15398 15399 if (did_start_seqid_sync) { 15400 nfs4_end_open_seqid_sync(oop); 15401 did_start_seqid_sync = 0; 15402 } 15403 open_stream_rele(osp, rp); 15404 15405 if (did_start_op) 15406 nfs4_end_fop(mi, vp, NULL, OH_CLOSE, 15407 &recov_state, FALSE); 15408 if (did_force_recovlock) 15409 nfs_rw_exit(&mi->mi_recovlock); 15410 15411 goto recov_retry; 15412 } else { 15413 if (odg_cred_otw) 15414 crfree(odg_cred_otw); 15415 } 15416 goto out; 15417 } 15418 15419 /* 15420 * If this open stream was created as the results of an open 15421 * while holding a delegation, then just release it; no need 15422 * to do an OTW close. Otherwise do a "normal" OTW close. 15423 */ 15424 if (osp->os_delegation) { 15425 nfs4close_notw(vp, osp, &have_sync_lock); 15426 nfs4_error_zinit(ep); 15427 goto out; 15428 } 15429 15430 /* 15431 * If this stream is not valid, we're done. 15432 */ 15433 if (!osp->os_valid) { 15434 nfs4_error_zinit(ep); 15435 goto out; 15436 } 15437 15438 /* 15439 * Last open or mmap ref has vanished, need to do an OTW close. 15440 * First check to see if a close is still necessary. 15441 */ 15442 if (osp->os_failed_reopen) { 15443 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 15444 "don't close OTW osp %p since reopen failed.", 15445 (void *)osp)); 15446 /* 15447 * Reopen of the open stream failed, hence the 15448 * stateid of the open stream is invalid/stale, and 15449 * sending this OTW would incorrectly cause another 15450 * round of recovery. In this case, we need to set 15451 * the 'os_valid' bit to 0 so another thread doesn't 15452 * come in and re-open this open stream before 15453 * this "closing" thread cleans up state (decrementing 15454 * the nfs4_server_t's state_ref_count and decrementing 15455 * the os_ref_count). 15456 */ 15457 osp->os_valid = 0; 15458 /* 15459 * This removes the reference obtained at OPEN; ie, 15460 * when the open stream structure was created. 15461 * 15462 * We don't have to worry about calling 'open_stream_rele' 15463 * since we our currently holding a reference to this 15464 * open stream which means the count can not go to 0 with 15465 * this decrement. 15466 */ 15467 ASSERT(osp->os_ref_count >= 2); 15468 osp->os_ref_count--; 15469 nfs4_error_zinit(ep); 15470 close_failed = 0; 15471 goto close_cleanup; 15472 } 15473 15474 ASSERT(osp->os_ref_count > 1); 15475 15476 /* 15477 * Sixth, try the CLOSE OTW. 15478 */ 15479 nfs4close_otw(rp, cred_otw, oop, osp, &retry, &did_start_seqid_sync, 15480 close_type, ep, &have_sync_lock); 15481 15482 if (ep->error == EINTR || NFS4_FRC_UNMT_ERR(ep->error, vp->v_vfsp)) { 15483 /* 15484 * Let the recovery thread be responsible for 15485 * removing the state for CLOSE. 15486 */ 15487 close_failed = 1; 15488 force_close = 0; 15489 retry = 0; 15490 } 15491 15492 /* See if we need to retry with a different cred */ 15493 if ((ep->error == EACCES || 15494 (ep->error == 0 && ep->stat == NFS4ERR_ACCESS)) && 15495 cred_otw != cr) { 15496 crfree(cred_otw); 15497 cred_otw = cr; 15498 crhold(cred_otw); 15499 retry = 1; 15500 } 15501 15502 if (ep->error || ep->stat) 15503 close_failed = 1; 15504 15505 if (retry && !isrecov && num_retries-- > 0) { 15506 if (have_sync_lock) { 15507 mutex_exit(&osp->os_sync_lock); 15508 have_sync_lock = 0; 15509 } 15510 if (did_start_seqid_sync) { 15511 nfs4_end_open_seqid_sync(oop); 15512 did_start_seqid_sync = 0; 15513 } 15514 open_stream_rele(osp, rp); 15515 15516 if (did_start_op) 15517 nfs4_end_fop(mi, vp, NULL, OH_CLOSE, 15518 &recov_state, FALSE); 15519 if (did_force_recovlock) 15520 nfs_rw_exit(&mi->mi_recovlock); 15521 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 15522 "nfs4close_one: need to retry the close " 15523 "operation")); 15524 goto recov_retry; 15525 } 15526 close_cleanup: 15527 /* 15528 * Seventh and lastly, process our results. 15529 */ 15530 if (close_failed && force_close) { 15531 /* 15532 * It's ok to drop and regrab the 'os_sync_lock' since 15533 * nfs4close_notw() will recheck to make sure the 15534 * "close"/removal of state should happen. 15535 */ 15536 if (!have_sync_lock) { 15537 mutex_enter(&osp->os_sync_lock); 15538 have_sync_lock = 1; 15539 } 15540 /* 15541 * This is last call, remove the ref on the open 15542 * stream created by open and clean everything up. 15543 */ 15544 osp->os_pending_close = 0; 15545 nfs4close_notw(vp, osp, &have_sync_lock); 15546 nfs4_error_zinit(ep); 15547 } 15548 15549 if (!close_failed) { 15550 if (have_sync_lock) { 15551 osp->os_pending_close = 0; 15552 mutex_exit(&osp->os_sync_lock); 15553 have_sync_lock = 0; 15554 } else { 15555 mutex_enter(&osp->os_sync_lock); 15556 osp->os_pending_close = 0; 15557 mutex_exit(&osp->os_sync_lock); 15558 } 15559 if (did_start_op && recov_state.rs_sp != NULL) { 15560 mutex_enter(&recov_state.rs_sp->s_lock); 15561 nfs4_dec_state_ref_count_nolock(recov_state.rs_sp, mi); 15562 mutex_exit(&recov_state.rs_sp->s_lock); 15563 } else { 15564 nfs4_dec_state_ref_count(mi); 15565 } 15566 nfs4_error_zinit(ep); 15567 } 15568 15569 out: 15570 if (have_sync_lock) 15571 mutex_exit(&osp->os_sync_lock); 15572 if (did_start_op) 15573 nfs4_end_fop(mi, vp, NULL, OH_CLOSE, &recov_state, 15574 recovonly ? TRUE : FALSE); 15575 if (did_force_recovlock) 15576 nfs_rw_exit(&mi->mi_recovlock); 15577 if (cred_otw) 15578 crfree(cred_otw); 15579 if (osp) 15580 open_stream_rele(osp, rp); 15581 if (oop) { 15582 if (did_start_seqid_sync) 15583 nfs4_end_open_seqid_sync(oop); 15584 open_owner_rele(oop); 15585 } 15586 } 15587 15588 /* 15589 * Convert information returned by the server in the LOCK4denied 15590 * structure to the form required by fcntl. 15591 */ 15592 static void 15593 denied_to_flk(LOCK4denied *lockt_denied, flock64_t *flk, LOCKT4args *lockt_args) 15594 { 15595 nfs4_lo_name_t *lo; 15596 15597 #ifdef DEBUG 15598 if (denied_to_flk_debug) { 15599 lockt_denied_debug = lockt_denied; 15600 debug_enter("lockt_denied"); 15601 } 15602 #endif 15603 15604 flk->l_type = lockt_denied->locktype == READ_LT ? F_RDLCK : F_WRLCK; 15605 flk->l_whence = 0; /* aka SEEK_SET */ 15606 flk->l_start = lockt_denied->offset; 15607 flk->l_len = lockt_denied->length; 15608 15609 /* 15610 * If the blocking clientid matches our client id, then we can 15611 * interpret the lockowner (since we built it). If not, then 15612 * fabricate a sysid and pid. Note that the l_sysid field 15613 * in *flk already has the local sysid. 15614 */ 15615 15616 if (lockt_denied->owner.clientid == lockt_args->owner.clientid) { 15617 15618 if (lockt_denied->owner.owner_len == sizeof (*lo)) { 15619 lo = (nfs4_lo_name_t *) 15620 lockt_denied->owner.owner_val; 15621 15622 flk->l_pid = lo->ln_pid; 15623 } else { 15624 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 15625 "denied_to_flk: bad lock owner length\n")); 15626 15627 flk->l_pid = lo_to_pid(&lockt_denied->owner); 15628 } 15629 } else { 15630 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 15631 "denied_to_flk: foreign clientid\n")); 15632 15633 /* 15634 * Construct a new sysid which should be different from 15635 * sysids of other systems. 15636 */ 15637 15638 flk->l_sysid++; 15639 flk->l_pid = lo_to_pid(&lockt_denied->owner); 15640 } 15641 } 15642 15643 static pid_t 15644 lo_to_pid(lock_owner4 *lop) 15645 { 15646 pid_t pid = 0; 15647 uchar_t *cp; 15648 int i; 15649 15650 cp = (uchar_t *)&lop->clientid; 15651 15652 for (i = 0; i < sizeof (lop->clientid); i++) 15653 pid += (pid_t)*cp++; 15654 15655 cp = (uchar_t *)lop->owner_val; 15656 15657 for (i = 0; i < lop->owner_len; i++) 15658 pid += (pid_t)*cp++; 15659 15660 return (pid); 15661 } 15662 15663 /* 15664 * Given a lock pointer, returns the length of that lock. 15665 * "end" is the last locked offset the "l_len" covers from 15666 * the start of the lock. 15667 */ 15668 static off64_t 15669 lock_to_end(flock64_t *lock) 15670 { 15671 off64_t lock_end; 15672 15673 if (lock->l_len == 0) 15674 lock_end = (off64_t)MAXEND; 15675 else 15676 lock_end = lock->l_start + lock->l_len - 1; 15677 15678 return (lock_end); 15679 } 15680 15681 /* 15682 * Given the end of a lock, it will return you the length "l_len" for that lock. 15683 */ 15684 static off64_t 15685 end_to_len(off64_t start, off64_t end) 15686 { 15687 off64_t lock_len; 15688 15689 ASSERT(end >= start); 15690 if (end == MAXEND) 15691 lock_len = 0; 15692 else 15693 lock_len = end - start + 1; 15694 15695 return (lock_len); 15696 } 15697 15698 /* 15699 * On given end for a lock it determines if it is the last locked offset 15700 * or not, if so keeps it as is, else adds one to return the length for 15701 * valid start. 15702 */ 15703 static off64_t 15704 start_check(off64_t x) 15705 { 15706 if (x == MAXEND) 15707 return (x); 15708 else 15709 return (x + 1); 15710 } 15711 15712 /* 15713 * See if these two locks overlap, and if so return 1; 15714 * otherwise, return 0. 15715 */ 15716 static int 15717 locks_intersect(flock64_t *llfp, flock64_t *curfp) 15718 { 15719 off64_t llfp_end, curfp_end; 15720 15721 llfp_end = lock_to_end(llfp); 15722 curfp_end = lock_to_end(curfp); 15723 15724 if (((llfp_end >= curfp->l_start) && 15725 (llfp->l_start <= curfp->l_start)) || 15726 ((curfp->l_start <= llfp->l_start) && (curfp_end >= llfp->l_start))) 15727 return (1); 15728 return (0); 15729 } 15730 15731 /* 15732 * Determine what the intersecting lock region is, and add that to the 15733 * 'nl_llpp' locklist in increasing order (by l_start). 15734 */ 15735 static void 15736 nfs4_add_lock_range(flock64_t *lost_flp, flock64_t *local_flp, 15737 locklist_t **nl_llpp, vnode_t *vp) 15738 { 15739 locklist_t *intersect_llp, *tmp_fllp, *cur_fllp; 15740 off64_t lost_flp_end, local_flp_end, len, start; 15741 15742 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE, "nfs4_add_lock_range:")); 15743 15744 if (!locks_intersect(lost_flp, local_flp)) 15745 return; 15746 15747 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE, "nfs4_add_lock_range: " 15748 "locks intersect")); 15749 15750 lost_flp_end = lock_to_end(lost_flp); 15751 local_flp_end = lock_to_end(local_flp); 15752 15753 /* Find the starting point of the intersecting region */ 15754 if (local_flp->l_start > lost_flp->l_start) 15755 start = local_flp->l_start; 15756 else 15757 start = lost_flp->l_start; 15758 15759 /* Find the lenght of the intersecting region */ 15760 if (lost_flp_end < local_flp_end) 15761 len = end_to_len(start, lost_flp_end); 15762 else 15763 len = end_to_len(start, local_flp_end); 15764 15765 /* 15766 * Prepare the flock structure for the intersection found and insert 15767 * it into the new list in increasing l_start order. This list contains 15768 * intersections of locks registered by the client with the local host 15769 * and the lost lock. 15770 * The lock type of this lock is the same as that of the local_flp. 15771 */ 15772 intersect_llp = (locklist_t *)kmem_alloc(sizeof (locklist_t), KM_SLEEP); 15773 intersect_llp->ll_flock.l_start = start; 15774 intersect_llp->ll_flock.l_len = len; 15775 intersect_llp->ll_flock.l_type = local_flp->l_type; 15776 intersect_llp->ll_flock.l_pid = local_flp->l_pid; 15777 intersect_llp->ll_flock.l_sysid = local_flp->l_sysid; 15778 intersect_llp->ll_flock.l_whence = 0; /* aka SEEK_SET */ 15779 intersect_llp->ll_vp = vp; 15780 15781 tmp_fllp = *nl_llpp; 15782 cur_fllp = NULL; 15783 while (tmp_fllp != NULL && tmp_fllp->ll_flock.l_start < 15784 intersect_llp->ll_flock.l_start) { 15785 cur_fllp = tmp_fllp; 15786 tmp_fllp = tmp_fllp->ll_next; 15787 } 15788 if (cur_fllp == NULL) { 15789 /* first on the list */ 15790 intersect_llp->ll_next = *nl_llpp; 15791 *nl_llpp = intersect_llp; 15792 } else { 15793 intersect_llp->ll_next = cur_fllp->ll_next; 15794 cur_fllp->ll_next = intersect_llp; 15795 } 15796 15797 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE, "nfs4_add_lock_range: " 15798 "created lock region: start %"PRIx64" end %"PRIx64" : %s\n", 15799 intersect_llp->ll_flock.l_start, 15800 intersect_llp->ll_flock.l_start + intersect_llp->ll_flock.l_len, 15801 intersect_llp->ll_flock.l_type == F_RDLCK ? "READ" : "WRITE")); 15802 } 15803 15804 /* 15805 * Our local locking current state is potentially different than 15806 * what the NFSv4 server thinks we have due to a lost lock that was 15807 * resent and then received. We need to reset our "NFSv4" locking 15808 * state to match the current local locking state for this pid since 15809 * that is what the user/application sees as what the world is. 15810 * 15811 * We cannot afford to drop the open/lock seqid sync since then we can 15812 * get confused about what the current local locking state "is" versus 15813 * "was". 15814 * 15815 * If we are unable to fix up the locks, we send SIGLOST to the affected 15816 * process. This is not done if the filesystem has been forcibly 15817 * unmounted, in case the process has already exited and a new process 15818 * exists with the same pid. 15819 */ 15820 static void 15821 nfs4_reinstitute_local_lock_state(vnode_t *vp, flock64_t *lost_flp, cred_t *cr, 15822 nfs4_lock_owner_t *lop) 15823 { 15824 locklist_t *locks, *llp, *ri_llp, *tmp_llp; 15825 mntinfo4_t *mi = VTOMI4(vp); 15826 const int cmd = F_SETLK; 15827 off64_t cur_start, llp_ll_flock_end, lost_flp_end; 15828 flock64_t ul_fl; 15829 15830 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE, 15831 "nfs4_reinstitute_local_lock_state")); 15832 15833 /* 15834 * Find active locks for this vp from the local locking code. 15835 * Scan through this list and find out the locks that intersect with 15836 * the lost lock. Once we find the lock that intersects, add the 15837 * intersection area as a new lock to a new list "ri_llp". The lock 15838 * type of the intersection region lock added to ri_llp is the same 15839 * as that found in the active lock list, "list". The intersecting 15840 * region locks are added to ri_llp in increasing l_start order. 15841 */ 15842 ASSERT(nfs_zone() == mi->mi_zone); 15843 15844 locks = flk_active_locks_for_vp(vp); 15845 ri_llp = NULL; 15846 15847 for (llp = locks; llp != NULL; llp = llp->ll_next) { 15848 ASSERT(llp->ll_vp == vp); 15849 /* 15850 * Pick locks that belong to this pid/lockowner 15851 */ 15852 if (llp->ll_flock.l_pid != lost_flp->l_pid) 15853 continue; 15854 15855 nfs4_add_lock_range(lost_flp, &llp->ll_flock, &ri_llp, vp); 15856 } 15857 15858 /* 15859 * Now we have the list of intersections with the lost lock. These are 15860 * the locks that were/are active before the server replied to the 15861 * last/lost lock. Issue these locks to the server here. Playing these 15862 * locks to the server will re-establish aur current local locking state 15863 * with the v4 server. 15864 * If we get an error, send SIGLOST to the application for that lock. 15865 */ 15866 15867 for (llp = ri_llp; llp != NULL; llp = llp->ll_next) { 15868 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE, 15869 "nfs4_reinstitute_local_lock_state: need to issue " 15870 "flock: [%"PRIx64" - %"PRIx64"] : %s", 15871 llp->ll_flock.l_start, 15872 llp->ll_flock.l_start + llp->ll_flock.l_len, 15873 llp->ll_flock.l_type == F_RDLCK ? "READ" : 15874 llp->ll_flock.l_type == F_WRLCK ? "WRITE" : "INVALID")); 15875 /* 15876 * No need to relock what we already have 15877 */ 15878 if (llp->ll_flock.l_type == lost_flp->l_type) 15879 continue; 15880 15881 push_reinstate(vp, cmd, &llp->ll_flock, cr, lop); 15882 } 15883 15884 /* 15885 * Now keeping the start of the lost lock as our reference parse the 15886 * newly created ri_llp locklist to find the ranges that we have locked 15887 * with the v4 server but not in the current local locking. We need 15888 * to unlock these ranges. 15889 * These ranges can also be reffered to as those ranges, where the lost 15890 * lock does not overlap with the locks in the ri_llp but are locked 15891 * since the server replied to the lost lock. 15892 */ 15893 cur_start = lost_flp->l_start; 15894 lost_flp_end = lock_to_end(lost_flp); 15895 15896 ul_fl.l_type = F_UNLCK; 15897 ul_fl.l_whence = 0; /* aka SEEK_SET */ 15898 ul_fl.l_sysid = lost_flp->l_sysid; 15899 ul_fl.l_pid = lost_flp->l_pid; 15900 15901 for (llp = ri_llp; llp != NULL; llp = llp->ll_next) { 15902 llp_ll_flock_end = lock_to_end(&llp->ll_flock); 15903 15904 if (llp->ll_flock.l_start <= cur_start) { 15905 cur_start = start_check(llp_ll_flock_end); 15906 continue; 15907 } 15908 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE, 15909 "nfs4_reinstitute_local_lock_state: " 15910 "UNLOCK [%"PRIx64" - %"PRIx64"]", 15911 cur_start, llp->ll_flock.l_start)); 15912 15913 ul_fl.l_start = cur_start; 15914 ul_fl.l_len = end_to_len(cur_start, 15915 (llp->ll_flock.l_start - 1)); 15916 15917 push_reinstate(vp, cmd, &ul_fl, cr, lop); 15918 cur_start = start_check(llp_ll_flock_end); 15919 } 15920 15921 /* 15922 * In the case where the lost lock ends after all intersecting locks, 15923 * unlock the last part of the lost lock range. 15924 */ 15925 if (cur_start != start_check(lost_flp_end)) { 15926 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE, 15927 "nfs4_reinstitute_local_lock_state: UNLOCK end of the " 15928 "lost lock region [%"PRIx64" - %"PRIx64"]", 15929 cur_start, lost_flp->l_start + lost_flp->l_len)); 15930 15931 ul_fl.l_start = cur_start; 15932 /* 15933 * Is it an to-EOF lock? if so unlock till the end 15934 */ 15935 if (lost_flp->l_len == 0) 15936 ul_fl.l_len = 0; 15937 else 15938 ul_fl.l_len = start_check(lost_flp_end) - cur_start; 15939 15940 push_reinstate(vp, cmd, &ul_fl, cr, lop); 15941 } 15942 15943 if (locks != NULL) 15944 flk_free_locklist(locks); 15945 15946 /* Free up our newly created locklist */ 15947 for (llp = ri_llp; llp != NULL; ) { 15948 tmp_llp = llp->ll_next; 15949 kmem_free(llp, sizeof (locklist_t)); 15950 llp = tmp_llp; 15951 } 15952 15953 /* 15954 * Now return back to the original calling nfs4frlock() 15955 * and let us naturally drop our seqid syncs. 15956 */ 15957 } 15958 15959 /* 15960 * Create a lost state record for the given lock reinstantiation request 15961 * and push it onto the lost state queue. 15962 */ 15963 static void 15964 push_reinstate(vnode_t *vp, int cmd, flock64_t *flk, cred_t *cr, 15965 nfs4_lock_owner_t *lop) 15966 { 15967 nfs4_lost_rqst_t req; 15968 nfs_lock_type4 locktype; 15969 nfs4_error_t e = { EINTR, NFS4_OK, RPC_SUCCESS }; 15970 15971 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 15972 15973 locktype = flk_to_locktype(cmd, flk->l_type); 15974 nfs4frlock_save_lost_rqst(NFS4_LCK_CTYPE_REINSTATE, EINTR, locktype, 15975 NULL, NULL, lop, flk, &req, cr, vp); 15976 (void) nfs4_start_recovery(&e, VTOMI4(vp), vp, NULL, NULL, 15977 (req.lr_op == OP_LOCK || req.lr_op == OP_LOCKU) ? 15978 &req : NULL, flk->l_type == F_UNLCK ? OP_LOCKU : OP_LOCK, 15979 NULL); 15980 } 15981