xref: /titanic_52/usr/src/uts/common/fs/nfs/nfs4_subr.c (revision bdfc6d18da790deeec2e0eb09c625902defe2498)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License, Version 1.0 only
6  * (the "License").  You may not use this file except in compliance
7  * with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or http://www.opensolaris.org/os/licensing.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 /*
23  * Copyright 2005 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 /*
28  *  	Copyright (c) 1983,1984,1985,1986,1987,1988,1989  AT&T.
29  *	All Rights Reserved
30  */
31 
32 #pragma ident	"%Z%%M%	%I%	%E% SMI"
33 
34 #include <sys/param.h>
35 #include <sys/types.h>
36 #include <sys/systm.h>
37 #include <sys/cmn_err.h>
38 #include <sys/vtrace.h>
39 #include <sys/session.h>
40 #include <sys/thread.h>
41 #include <sys/dnlc.h>
42 #include <sys/cred.h>
43 #include <sys/list.h>
44 #include <sys/sdt.h>
45 
46 #include <rpc/types.h>
47 #include <rpc/xdr.h>
48 
49 #include <nfs/nfs.h>
50 
51 #include <nfs/nfs_clnt.h>
52 
53 #include <nfs/nfs4.h>
54 #include <nfs/rnode4.h>
55 #include <nfs/nfs4_clnt.h>
56 
57 /*
58  * client side statistics
59  */
60 static const struct clstat4 clstat4_tmpl = {
61 	{ "calls",	KSTAT_DATA_UINT64 },
62 	{ "badcalls",	KSTAT_DATA_UINT64 },
63 	{ "clgets",	KSTAT_DATA_UINT64 },
64 	{ "cltoomany",	KSTAT_DATA_UINT64 },
65 #ifdef DEBUG
66 	{ "clalloc",	KSTAT_DATA_UINT64 },
67 	{ "noresponse",	KSTAT_DATA_UINT64 },
68 	{ "failover",	KSTAT_DATA_UINT64 },
69 	{ "remap",	KSTAT_DATA_UINT64 },
70 #endif
71 };
72 
73 #ifdef DEBUG
74 struct clstat4_debug clstat4_debug = {
75 	{ "nrnode",	KSTAT_DATA_UINT64 },
76 	{ "access",	KSTAT_DATA_UINT64 },
77 	{ "dirent",	KSTAT_DATA_UINT64 },
78 	{ "dirents",	KSTAT_DATA_UINT64 },
79 	{ "reclaim",	KSTAT_DATA_UINT64 },
80 	{ "clreclaim",	KSTAT_DATA_UINT64 },
81 	{ "f_reclaim",	KSTAT_DATA_UINT64 },
82 	{ "a_reclaim",	KSTAT_DATA_UINT64 },
83 	{ "r_reclaim",	KSTAT_DATA_UINT64 },
84 	{ "r_path",	KSTAT_DATA_UINT64 },
85 };
86 #endif
87 
88 /*
89  * We keep a global list of per-zone client data, so we can clean up all zones
90  * if we get low on memory.
91  */
92 static list_t nfs4_clnt_list;
93 static kmutex_t nfs4_clnt_list_lock;
94 static zone_key_t nfs4clnt_zone_key;
95 
96 static struct kmem_cache *chtab4_cache;
97 
98 #ifdef DEBUG
99 static int nfs4_rfscall_debug;
100 static int nfs4_try_failover_any;
101 int nfs4_utf8_debug = 0;
102 #endif
103 
104 /*
105  * NFSv4 readdir cache implementation
106  */
107 typedef struct rddir4_cache_impl {
108 	rddir4_cache	rc;		/* readdir cache element */
109 	kmutex_t	lock;		/* lock protects count */
110 	uint_t		count;		/* reference count */
111 	avl_node_t	tree;		/* AVL tree link */
112 } rddir4_cache_impl;
113 
114 static int rddir4_cache_compar(const void *, const void *);
115 static void rddir4_cache_free(rddir4_cache_impl *);
116 static rddir4_cache *rddir4_cache_alloc(int);
117 static void rddir4_cache_hold(rddir4_cache *);
118 static int try_failover(enum clnt_stat);
119 
120 static int nfs4_readdir_cache_hits = 0;
121 static int nfs4_readdir_cache_waits = 0;
122 static int nfs4_readdir_cache_misses = 0;
123 
124 /*
125  * Shared nfs4 functions
126  */
127 
128 /*
129  * Copy an nfs_fh4.  The destination storage (to->nfs_fh4_val) must already
130  * be allocated.
131  */
132 
133 void
134 nfs_fh4_copy(nfs_fh4 *from, nfs_fh4 *to)
135 {
136 	to->nfs_fh4_len = from->nfs_fh4_len;
137 	bcopy(from->nfs_fh4_val, to->nfs_fh4_val, to->nfs_fh4_len);
138 }
139 
140 /*
141  * nfs4cmpfh - compare 2 filehandles.
142  * Returns 0 if the two nfsv4 filehandles are the same, -1 if the first is
143  * "less" than the second, +1 if the first is "greater" than the second.
144  */
145 
146 int
147 nfs4cmpfh(const nfs_fh4 *fh4p1, const nfs_fh4 *fh4p2)
148 {
149 	const char *c1, *c2;
150 
151 	if (fh4p1->nfs_fh4_len < fh4p2->nfs_fh4_len)
152 		return (-1);
153 	if (fh4p1->nfs_fh4_len > fh4p2->nfs_fh4_len)
154 		return (1);
155 	for (c1 = fh4p1->nfs_fh4_val, c2 = fh4p2->nfs_fh4_val;
156 	    c1 < fh4p1->nfs_fh4_val + fh4p1->nfs_fh4_len;
157 	    c1++, c2++) {
158 		if (*c1 < *c2)
159 			return (-1);
160 		if (*c1 > *c2)
161 			return (1);
162 	}
163 
164 	return (0);
165 }
166 
167 /*
168  * Compare two v4 filehandles.  Return zero if they're the same, non-zero
169  * if they're not.  Like nfs4cmpfh(), but different filehandle
170  * representation, and doesn't provide information about greater than or
171  * less than.
172  */
173 
174 int
175 nfs4cmpfhandle(nfs4_fhandle_t *fh1, nfs4_fhandle_t *fh2)
176 {
177 	if (fh1->fh_len == fh2->fh_len)
178 		return (bcmp(fh1->fh_buf, fh2->fh_buf, fh1->fh_len));
179 
180 	return (1);
181 }
182 
183 int
184 stateid4_cmp(stateid4 *s1, stateid4 *s2)
185 {
186 	if (bcmp(s1, s2, sizeof (stateid4)) == 0)
187 		return (1);
188 	else
189 		return (0);
190 }
191 
192 nfsstat4
193 puterrno4(int error)
194 {
195 	switch (error) {
196 	case 0:
197 		return (NFS4_OK);
198 	case EPERM:
199 		return (NFS4ERR_PERM);
200 	case ENOENT:
201 		return (NFS4ERR_NOENT);
202 	case EINTR:
203 		return (NFS4ERR_IO);
204 	case EIO:
205 		return (NFS4ERR_IO);
206 	case ENXIO:
207 		return (NFS4ERR_NXIO);
208 	case ENOMEM:
209 		return (NFS4ERR_RESOURCE);
210 	case EACCES:
211 		return (NFS4ERR_ACCESS);
212 	case EBUSY:
213 		return (NFS4ERR_IO);
214 	case EEXIST:
215 		return (NFS4ERR_EXIST);
216 	case EXDEV:
217 		return (NFS4ERR_XDEV);
218 	case ENODEV:
219 		return (NFS4ERR_IO);
220 	case ENOTDIR:
221 		return (NFS4ERR_NOTDIR);
222 	case EISDIR:
223 		return (NFS4ERR_ISDIR);
224 	case EINVAL:
225 		return (NFS4ERR_INVAL);
226 	case EMFILE:
227 		return (NFS4ERR_RESOURCE);
228 	case EFBIG:
229 		return (NFS4ERR_FBIG);
230 	case ENOSPC:
231 		return (NFS4ERR_NOSPC);
232 	case EROFS:
233 		return (NFS4ERR_ROFS);
234 	case EMLINK:
235 		return (NFS4ERR_MLINK);
236 	case EDEADLK:
237 		return (NFS4ERR_DEADLOCK);
238 	case ENOLCK:
239 		return (NFS4ERR_DENIED);
240 	case EREMOTE:
241 		return (NFS4ERR_SERVERFAULT);
242 	case ENOTSUP:
243 		return (NFS4ERR_NOTSUPP);
244 	case EDQUOT:
245 		return (NFS4ERR_DQUOT);
246 	case ENAMETOOLONG:
247 		return (NFS4ERR_NAMETOOLONG);
248 	case EOVERFLOW:
249 		return (NFS4ERR_INVAL);
250 	case ENOSYS:
251 		return (NFS4ERR_NOTSUPP);
252 	case ENOTEMPTY:
253 		return (NFS4ERR_NOTEMPTY);
254 	case EOPNOTSUPP:
255 		return (NFS4ERR_NOTSUPP);
256 	case ESTALE:
257 		return (NFS4ERR_STALE);
258 	case EAGAIN:
259 		if (curthread->t_flag & T_WOULDBLOCK) {
260 			curthread->t_flag &= ~T_WOULDBLOCK;
261 			return (NFS4ERR_DELAY);
262 		}
263 		return (NFS4ERR_LOCKED);
264 	default:
265 		return ((enum nfsstat4)error);
266 	}
267 }
268 
269 int
270 geterrno4(enum nfsstat4 status)
271 {
272 	switch (status) {
273 	case NFS4_OK:
274 		return (0);
275 	case NFS4ERR_PERM:
276 		return (EPERM);
277 	case NFS4ERR_NOENT:
278 		return (ENOENT);
279 	case NFS4ERR_IO:
280 		return (EIO);
281 	case NFS4ERR_NXIO:
282 		return (ENXIO);
283 	case NFS4ERR_ACCESS:
284 		return (EACCES);
285 	case NFS4ERR_EXIST:
286 		return (EEXIST);
287 	case NFS4ERR_XDEV:
288 		return (EXDEV);
289 	case NFS4ERR_NOTDIR:
290 		return (ENOTDIR);
291 	case NFS4ERR_ISDIR:
292 		return (EISDIR);
293 	case NFS4ERR_INVAL:
294 		return (EINVAL);
295 	case NFS4ERR_FBIG:
296 		return (EFBIG);
297 	case NFS4ERR_NOSPC:
298 		return (ENOSPC);
299 	case NFS4ERR_ROFS:
300 		return (EROFS);
301 	case NFS4ERR_MLINK:
302 		return (EMLINK);
303 	case NFS4ERR_NAMETOOLONG:
304 		return (ENAMETOOLONG);
305 	case NFS4ERR_NOTEMPTY:
306 		return (ENOTEMPTY);
307 	case NFS4ERR_DQUOT:
308 		return (EDQUOT);
309 	case NFS4ERR_STALE:
310 		return (ESTALE);
311 	case NFS4ERR_BADHANDLE:
312 		return (ESTALE);
313 	case NFS4ERR_BAD_COOKIE:
314 		return (EINVAL);
315 	case NFS4ERR_NOTSUPP:
316 		return (EOPNOTSUPP);
317 	case NFS4ERR_TOOSMALL:
318 		return (EINVAL);
319 	case NFS4ERR_SERVERFAULT:
320 		return (EIO);
321 	case NFS4ERR_BADTYPE:
322 		return (EINVAL);
323 	case NFS4ERR_DELAY:
324 		return (ENXIO);
325 	case NFS4ERR_SAME:
326 		return (EPROTO);
327 	case NFS4ERR_DENIED:
328 		return (ENOLCK);
329 	case NFS4ERR_EXPIRED:
330 		return (EPROTO);
331 	case NFS4ERR_LOCKED:
332 		return (EACCES);
333 	case NFS4ERR_GRACE:
334 		return (EAGAIN);
335 	case NFS4ERR_FHEXPIRED:	/* if got here, failed to get a new fh */
336 		return (ESTALE);
337 	case NFS4ERR_SHARE_DENIED:
338 		return (EACCES);
339 	case NFS4ERR_WRONGSEC:
340 		return (EPERM);
341 	case NFS4ERR_CLID_INUSE:
342 		return (EAGAIN);
343 	case NFS4ERR_RESOURCE:
344 		return (EAGAIN);
345 	case NFS4ERR_MOVED:
346 		return (EPROTO);
347 	case NFS4ERR_NOFILEHANDLE:
348 		return (EIO);
349 	case NFS4ERR_MINOR_VERS_MISMATCH:
350 		return (ENOTSUP);
351 	case NFS4ERR_STALE_CLIENTID:
352 		return (EIO);
353 	case NFS4ERR_STALE_STATEID:
354 		return (EIO);
355 	case NFS4ERR_OLD_STATEID:
356 		return (EIO);
357 	case NFS4ERR_BAD_STATEID:
358 		return (EIO);
359 	case NFS4ERR_BAD_SEQID:
360 		return (EIO);
361 	case NFS4ERR_NOT_SAME:
362 		return (EPROTO);
363 	case NFS4ERR_LOCK_RANGE:
364 		return (EPROTO);
365 	case NFS4ERR_SYMLINK:
366 		return (EPROTO);
367 	case NFS4ERR_RESTOREFH:
368 		return (EPROTO);
369 	case NFS4ERR_LEASE_MOVED:
370 		return (EPROTO);
371 	case NFS4ERR_ATTRNOTSUPP:
372 		return (ENOTSUP);
373 	case NFS4ERR_NO_GRACE:
374 		return (EPROTO);
375 	case NFS4ERR_RECLAIM_BAD:
376 		return (EPROTO);
377 	case NFS4ERR_RECLAIM_CONFLICT:
378 		return (EPROTO);
379 	case NFS4ERR_BADXDR:
380 		return (EINVAL);
381 	case NFS4ERR_LOCKS_HELD:
382 		return (EIO);
383 	case NFS4ERR_OPENMODE:
384 		return (EACCES);
385 	case NFS4ERR_BADOWNER:
386 		/*
387 		 * Client and server are in different DNS domains
388 		 * and the NFSMAPID_DOMAIN in /etc/default/nfs
389 		 * doesn't match.  No good answer here.  Return
390 		 * EACCESS, which translates to "permission denied".
391 		 */
392 		return (EACCES);
393 	case NFS4ERR_BADCHAR:
394 		return (EINVAL);
395 	case NFS4ERR_BADNAME:
396 		return (EINVAL);
397 	case NFS4ERR_BAD_RANGE:
398 		return (EIO);
399 	case NFS4ERR_LOCK_NOTSUPP:
400 		return (ENOTSUP);
401 	case NFS4ERR_OP_ILLEGAL:
402 		return (EINVAL);
403 	case NFS4ERR_DEADLOCK:
404 		return (EDEADLK);
405 	case NFS4ERR_FILE_OPEN:
406 		return (EACCES);
407 	case NFS4ERR_ADMIN_REVOKED:
408 		return (EPROTO);
409 	case NFS4ERR_CB_PATH_DOWN:
410 		return (EPROTO);
411 	default:
412 #ifdef DEBUG
413 		zcmn_err(getzoneid(), CE_WARN, "geterrno4: got status %d",
414 		    status);
415 #endif
416 		return ((int)status);
417 	}
418 }
419 
420 void
421 nfs4_log_badowner(mntinfo4_t *mi, nfs_opnum4 op)
422 {
423 	nfs4_server_t *server;
424 
425 	/*
426 	 * Return if already printed/queued a msg
427 	 * for this mount point.
428 	 */
429 	if (mi->mi_flags & MI4_BADOWNER_DEBUG)
430 		return;
431 	/*
432 	 * Happens once per client <-> server pair.
433 	 */
434 	if (nfs_rw_enter_sig(&mi->mi_recovlock, RW_READER,
435 		mi->mi_flags & MI4_INT))
436 		return;
437 
438 	server = find_nfs4_server(mi);
439 	if (server == NULL) {
440 		nfs_rw_exit(&mi->mi_recovlock);
441 		return;
442 	}
443 
444 	if (!(server->s_flags & N4S_BADOWNER_DEBUG)) {
445 		zcmn_err(mi->mi_zone->zone_id, CE_WARN,
446 		    "!NFSMAPID_DOMAIN does not match"
447 		    " the server: %s domain.\n"
448 		    "Please check configuration",
449 		    mi->mi_curr_serv->sv_hostname);
450 		server->s_flags |= N4S_BADOWNER_DEBUG;
451 	}
452 	mutex_exit(&server->s_lock);
453 	nfs4_server_rele(server);
454 	nfs_rw_exit(&mi->mi_recovlock);
455 
456 	/*
457 	 * Happens once per mntinfo4_t.
458 	 * This error is deemed as one of the recovery facts "RF_BADOWNER",
459 	 * queue this in the mesg queue for this mount_info. This message
460 	 * is not printed, meaning its absent from id_to_dump_solo_fact()
461 	 * but its there for inspection if the queue is ever dumped/inspected.
462 	 */
463 	mutex_enter(&mi->mi_lock);
464 	if (!(mi->mi_flags & MI4_BADOWNER_DEBUG)) {
465 		nfs4_queue_fact(RF_BADOWNER, mi, NFS4ERR_BADOWNER, 0, op,
466 		    FALSE, NULL, 0, NULL);
467 		mi->mi_flags |= MI4_BADOWNER_DEBUG;
468 	}
469 	mutex_exit(&mi->mi_lock);
470 }
471 
472 
473 
474 int
475 nfs4_time_ntov(nfstime4 *ntime, timestruc_t *vatime)
476 {
477 	int64_t sec;
478 	int32_t nsec;
479 
480 	/*
481 	 * Here check that the nfsv4 time is valid for the system.
482 	 * nfsv4 time value is a signed 64-bit, and the system time
483 	 * may be either int64_t or int32_t (depends on the kernel),
484 	 * so if the kernel is 32-bit, the nfsv4 time value may not fit.
485 	 */
486 #ifndef _LP64
487 	if (! NFS4_TIME_OK(ntime->seconds)) {
488 		return (EOVERFLOW);
489 	}
490 #endif
491 
492 	if (ntime->seconds < 0) {
493 		sec = ntime->seconds + 1;
494 		nsec = -1000000000 + ntime->nseconds;
495 	} else {
496 		sec = ntime->seconds;
497 		nsec = ntime->nseconds;
498 	}
499 
500 	vatime->tv_sec = sec;
501 	vatime->tv_nsec = nsec;
502 
503 	return (0);
504 }
505 
506 int
507 nfs4_time_vton(timestruc_t *vatime, nfstime4 *ntime)
508 {
509 	int64_t sec;
510 	uint32_t nsec;
511 
512 	/*
513 	 * nfsv4 time value is a signed 64-bit, and the system time
514 	 * may be either int64_t or int32_t (depends on the kernel),
515 	 * so all system time values will fit.
516 	 */
517 	if (vatime->tv_nsec >= 0) {
518 		sec = vatime->tv_sec;
519 		nsec = vatime->tv_nsec;
520 	} else {
521 		sec = vatime->tv_sec - 1;
522 		nsec = 1000000000 + vatime->tv_nsec;
523 	}
524 	ntime->seconds = sec;
525 	ntime->nseconds = nsec;
526 
527 	return (0);
528 }
529 
530 /*
531  * Converts a utf8 string to a valid null terminated filename string.
532  *
533  * XXX - Not actually translating the UTF-8 string as per RFC 2279.
534  *	 For now, just validate that the UTF-8 string off the wire
535  *	 does not have characters that will freak out UFS, and leave
536  *	 it at that.
537  */
538 char *
539 utf8_to_fn(utf8string *u8s, uint_t *lenp, char *s)
540 {
541 	ASSERT(lenp != NULL);
542 
543 	if (u8s == NULL || u8s->utf8string_len <= 0 ||
544 					u8s->utf8string_val == NULL)
545 		return (NULL);
546 
547 	/*
548 	 * Check for obvious illegal filename chars
549 	 */
550 	if (utf8_strchr(u8s, '/') != NULL) {
551 #ifdef DEBUG
552 		if (nfs4_utf8_debug) {
553 			char *path;
554 			int len = u8s->utf8string_len;
555 
556 			path = kmem_alloc(len + 1, KM_SLEEP);
557 			bcopy(u8s->utf8string_val, path, len);
558 			path[len] = '\0';
559 
560 			zcmn_err(getzoneid(), CE_WARN,
561 			    "Invalid UTF-8 filename: %s", path);
562 
563 			kmem_free(path, len + 1);
564 		}
565 #endif
566 		return (NULL);
567 	}
568 
569 	return (utf8_to_str(u8s, lenp, s));
570 }
571 
572 /*
573  * Converts a utf8 string to a C string.
574  * kmem_allocs a new string if not supplied
575  */
576 char *
577 utf8_to_str(utf8string *str, uint_t *lenp, char *s)
578 {
579 	char	*sp;
580 	char	*u8p;
581 	int	len;
582 	int	 i;
583 
584 	ASSERT(lenp != NULL);
585 
586 	if (str == NULL)
587 		return (NULL);
588 
589 	u8p = str->utf8string_val;
590 	len = str->utf8string_len;
591 	if (len <= 0 || u8p == NULL) {
592 		if (s)
593 			*s = '\0';
594 		return (NULL);
595 	}
596 
597 	sp = s;
598 	if (sp == NULL)
599 		sp = kmem_alloc(len + 1, KM_SLEEP);
600 
601 	/*
602 	 * At least check for embedded nulls
603 	 */
604 	for (i = 0; i < len; i++) {
605 		sp[i] = u8p[i];
606 		if (u8p[i] == '\0') {
607 #ifdef	DEBUG
608 			zcmn_err(getzoneid(), CE_WARN,
609 			    "Embedded NULL in UTF-8 string");
610 #endif
611 			if (s == NULL)
612 				kmem_free(sp, len + 1);
613 			return (NULL);
614 		}
615 	}
616 	sp[len] = '\0';
617 	*lenp = len + 1;
618 
619 	return (sp);
620 }
621 
622 /*
623  * str_to_utf8 - converts a null-terminated C string to a utf8 string
624  */
625 utf8string *
626 str_to_utf8(char *nm, utf8string *str)
627 {
628 	int len;
629 
630 	if (str == NULL)
631 		return (NULL);
632 
633 	if (nm == NULL || *nm == '\0') {
634 		str->utf8string_len = 0;
635 		str->utf8string_val = NULL;
636 	}
637 
638 	len = strlen(nm);
639 
640 	str->utf8string_val = kmem_alloc(len, KM_SLEEP);
641 	str->utf8string_len = len;
642 	bcopy(nm, str->utf8string_val, len);
643 
644 	return (str);
645 }
646 
647 utf8string *
648 utf8_copy(utf8string *src, utf8string *dest)
649 {
650 	if (src == NULL)
651 		return (NULL);
652 	if (dest == NULL)
653 		return (NULL);
654 
655 	if (src->utf8string_len > 0) {
656 		dest->utf8string_val = kmem_alloc(src->utf8string_len,
657 			KM_SLEEP);
658 		bcopy(src->utf8string_val, dest->utf8string_val,
659 			src->utf8string_len);
660 		dest->utf8string_len = src->utf8string_len;
661 	} else {
662 		dest->utf8string_val = NULL;
663 		dest->utf8string_len = 0;
664 	}
665 
666 	return (dest);
667 }
668 
669 int
670 utf8_compare(const utf8string *a, const utf8string *b)
671 {
672 	int mlen, cmp;
673 	int alen, blen;
674 	char *aval, *bval;
675 
676 	if ((a == NULL) && (b == NULL))
677 		return (0);
678 	else if (a == NULL)
679 		return (-1);
680 	else if (b == NULL)
681 		return (1);
682 
683 	alen = a->utf8string_len;
684 	blen = b->utf8string_len;
685 	aval = a->utf8string_val;
686 	bval = b->utf8string_val;
687 
688 	if (((alen == 0) || (aval == NULL)) &&
689 	    ((blen == 0) || (bval == NULL)))
690 		return (0);
691 	else if ((alen == 0) || (aval == NULL))
692 		return (-1);
693 	else if ((blen == 0) || (bval == NULL))
694 		return (1);
695 
696 	mlen = MIN(alen, blen);
697 	cmp = strncmp(aval, bval, mlen);
698 
699 	if ((cmp == 0) && (alen == blen))
700 		return (0);
701 	else if ((cmp == 0) && (alen < blen))
702 		return (-1);
703 	else if (cmp == 0)
704 		return (1);
705 	else if (cmp < 0)
706 		return (-1);
707 	return (1);
708 }
709 
710 /*
711  * utf8_dir_verify - checks that the utf8 string is valid
712  */
713 int
714 utf8_dir_verify(utf8string *str)
715 {
716 	char *nm;
717 	int len;
718 
719 	if (str == NULL)
720 		return (0);
721 
722 	nm = str->utf8string_val;
723 	len = str->utf8string_len;
724 	if (nm == NULL || len == 0) {
725 		return (0);
726 	}
727 
728 	if (len == 1 && nm[0] == '.')
729 		return (0);
730 	if (len == 2 && nm[0] == '.' && nm[1] == '.')
731 		return (0);
732 
733 	if (utf8_strchr(str, '/') != NULL)
734 		return (0);
735 
736 	if (utf8_strchr(str, '\0') != NULL)
737 		return (0);
738 
739 	return (1);
740 }
741 
742 /*
743  * from rpcsec module (common/rpcsec)
744  */
745 extern int sec_clnt_geth(CLIENT *, struct sec_data *, cred_t *, AUTH **);
746 extern void sec_clnt_freeh(AUTH *);
747 extern void sec_clnt_freeinfo(struct sec_data *);
748 
749 /*
750  * authget() gets an auth handle based on the security
751  * information from the servinfo in mountinfo.
752  * The auth handle is stored in ch_client->cl_auth.
753  *
754  * First security flavor of choice is to use sv_secdata
755  * which is initiated by the client. If that fails, get
756  * secinfo from the server and then select one from the
757  * server secinfo list .
758  *
759  * For RPCSEC_GSS flavor, upon success, a secure context is
760  * established between client and server.
761  */
762 int
763 authget(servinfo4_t *svp, CLIENT *ch_client, cred_t *cr)
764 {
765 	int error, i;
766 
767 	/*
768 	 * SV4_TRYSECINFO indicates to try the secinfo list from
769 	 * sv_secinfo until a successful one is reached. Point
770 	 * sv_currsec to the selected security mechanism for
771 	 * later sessions.
772 	 */
773 	(void) nfs_rw_enter_sig(&svp->sv_lock, RW_WRITER, 0);
774 	if ((svp->sv_flags & SV4_TRYSECINFO) && svp->sv_secinfo) {
775 		for (i = svp->sv_secinfo->index; i < svp->sv_secinfo->count;
776 								i++) {
777 			if (!(error = sec_clnt_geth(ch_client,
778 				&svp->sv_secinfo->sdata[i],
779 				cr, &ch_client->cl_auth))) {
780 
781 				svp->sv_currsec = &svp->sv_secinfo->sdata[i];
782 				svp->sv_secinfo->index = i;
783 				/* done */
784 				svp->sv_flags &= ~SV4_TRYSECINFO;
785 				break;
786 			}
787 
788 			/*
789 			 * Allow the caller retry with the security flavor
790 			 * pointed by svp->sv_secinfo->index when
791 			 * ETIMEDOUT/ECONNRESET occurs.
792 			 */
793 			if (error == ETIMEDOUT || error == ECONNRESET) {
794 				svp->sv_secinfo->index = i;
795 				break;
796 			}
797 		}
798 	} else {
799 		/* sv_currsec points to one of the entries in sv_secinfo */
800 		if (svp->sv_currsec) {
801 			error = sec_clnt_geth(ch_client, svp->sv_currsec, cr,
802 				&ch_client->cl_auth);
803 		} else {
804 			/* If it's null, use sv_secdata. */
805 			error = sec_clnt_geth(ch_client, svp->sv_secdata, cr,
806 				&ch_client->cl_auth);
807 		}
808 	}
809 	nfs_rw_exit(&svp->sv_lock);
810 
811 	return (error);
812 }
813 
814 /*
815  * Common handle get program for NFS, NFS ACL, and NFS AUTH client.
816  */
817 int
818 clget4(clinfo_t *ci, servinfo4_t *svp, cred_t *cr, CLIENT **newcl,
819     struct chtab **chp, struct nfs4_clnt *nfscl)
820 {
821 	struct chhead *ch, *newch;
822 	struct chhead **plistp;
823 	struct chtab *cp;
824 	int error;
825 	k_sigset_t smask;
826 
827 	if (newcl == NULL || chp == NULL || ci == NULL)
828 		return (EINVAL);
829 
830 	*newcl = NULL;
831 	*chp = NULL;
832 
833 	/*
834 	 * Find an unused handle or create one
835 	 */
836 	newch = NULL;
837 	nfscl->nfscl_stat.clgets.value.ui64++;
838 top:
839 	/*
840 	 * Find the correct entry in the cache to check for free
841 	 * client handles.  The search is based on the RPC program
842 	 * number, program version number, dev_t for the transport
843 	 * device, and the protocol family.
844 	 */
845 	mutex_enter(&nfscl->nfscl_chtable4_lock);
846 	plistp = &nfscl->nfscl_chtable4;
847 	for (ch = nfscl->nfscl_chtable4; ch != NULL; ch = ch->ch_next) {
848 		if (ch->ch_prog == ci->cl_prog &&
849 		    ch->ch_vers == ci->cl_vers &&
850 		    ch->ch_dev == svp->sv_knconf->knc_rdev &&
851 		    (strcmp(ch->ch_protofmly,
852 			svp->sv_knconf->knc_protofmly) == 0))
853 			break;
854 		plistp = &ch->ch_next;
855 	}
856 
857 	/*
858 	 * If we didn't find a cache entry for this quadruple, then
859 	 * create one.  If we don't have one already preallocated,
860 	 * then drop the cache lock, create one, and then start over.
861 	 * If we did have a preallocated entry, then just add it to
862 	 * the front of the list.
863 	 */
864 	if (ch == NULL) {
865 		if (newch == NULL) {
866 			mutex_exit(&nfscl->nfscl_chtable4_lock);
867 			newch = kmem_alloc(sizeof (*newch), KM_SLEEP);
868 			newch->ch_timesused = 0;
869 			newch->ch_prog = ci->cl_prog;
870 			newch->ch_vers = ci->cl_vers;
871 			newch->ch_dev = svp->sv_knconf->knc_rdev;
872 			newch->ch_protofmly = kmem_alloc(
873 			    strlen(svp->sv_knconf->knc_protofmly) + 1,
874 			    KM_SLEEP);
875 			(void) strcpy(newch->ch_protofmly,
876 			    svp->sv_knconf->knc_protofmly);
877 			newch->ch_list = NULL;
878 			goto top;
879 		}
880 		ch = newch;
881 		newch = NULL;
882 		ch->ch_next = nfscl->nfscl_chtable4;
883 		nfscl->nfscl_chtable4 = ch;
884 	/*
885 	 * We found a cache entry, but if it isn't on the front of the
886 	 * list, then move it to the front of the list to try to take
887 	 * advantage of locality of operations.
888 	 */
889 	} else if (ch != nfscl->nfscl_chtable4) {
890 		*plistp = ch->ch_next;
891 		ch->ch_next = nfscl->nfscl_chtable4;
892 		nfscl->nfscl_chtable4 = ch;
893 	}
894 
895 	/*
896 	 * If there was a free client handle cached, then remove it
897 	 * from the list, init it, and use it.
898 	 */
899 	if (ch->ch_list != NULL) {
900 		cp = ch->ch_list;
901 		ch->ch_list = cp->ch_list;
902 		mutex_exit(&nfscl->nfscl_chtable4_lock);
903 		if (newch != NULL) {
904 			kmem_free(newch->ch_protofmly,
905 			    strlen(newch->ch_protofmly) + 1);
906 			kmem_free(newch, sizeof (*newch));
907 		}
908 		(void) clnt_tli_kinit(cp->ch_client, svp->sv_knconf,
909 		    &svp->sv_addr, ci->cl_readsize, ci->cl_retrans, cr);
910 
911 		/*
912 		 * Get an auth handle.
913 		 */
914 		error = authget(svp, cp->ch_client, cr);
915 		if (error || cp->ch_client->cl_auth == NULL) {
916 			CLNT_DESTROY(cp->ch_client);
917 			kmem_cache_free(chtab4_cache, cp);
918 			return ((error != 0) ? error : EINTR);
919 		}
920 		ch->ch_timesused++;
921 		*newcl = cp->ch_client;
922 		*chp = cp;
923 		return (0);
924 	}
925 
926 	/*
927 	 * There weren't any free client handles which fit, so allocate
928 	 * a new one and use that.
929 	 */
930 #ifdef DEBUG
931 	atomic_add_64(&nfscl->nfscl_stat.clalloc.value.ui64, 1);
932 #endif
933 	mutex_exit(&nfscl->nfscl_chtable4_lock);
934 
935 	nfscl->nfscl_stat.cltoomany.value.ui64++;
936 	if (newch != NULL) {
937 		kmem_free(newch->ch_protofmly, strlen(newch->ch_protofmly) + 1);
938 		kmem_free(newch, sizeof (*newch));
939 	}
940 
941 	cp = kmem_cache_alloc(chtab4_cache, KM_SLEEP);
942 	cp->ch_head = ch;
943 
944 	sigintr(&smask, (int)ci->cl_flags & MI4_INT);
945 	error = clnt_tli_kcreate(svp->sv_knconf, &svp->sv_addr, ci->cl_prog,
946 	    ci->cl_vers, ci->cl_readsize, ci->cl_retrans, cr, &cp->ch_client);
947 	sigunintr(&smask);
948 
949 	if (error != 0) {
950 		kmem_cache_free(chtab4_cache, cp);
951 #ifdef DEBUG
952 		atomic_add_64(&nfscl->nfscl_stat.clalloc.value.ui64, -1);
953 #endif
954 		/*
955 		 * Warning is unnecessary if error is EINTR.
956 		 */
957 		if (error != EINTR) {
958 			nfs_cmn_err(error, CE_WARN,
959 			    "clget: couldn't create handle: %m\n");
960 		}
961 		return (error);
962 	}
963 	(void) CLNT_CONTROL(cp->ch_client, CLSET_PROGRESS, NULL);
964 	auth_destroy(cp->ch_client->cl_auth);
965 
966 	/*
967 	 * Get an auth handle.
968 	 */
969 	error = authget(svp, cp->ch_client, cr);
970 	if (error || cp->ch_client->cl_auth == NULL) {
971 		CLNT_DESTROY(cp->ch_client);
972 		kmem_cache_free(chtab4_cache, cp);
973 #ifdef DEBUG
974 		atomic_add_64(&nfscl->nfscl_stat.clalloc.value.ui64, -1);
975 #endif
976 		return ((error != 0) ? error : EINTR);
977 	}
978 	ch->ch_timesused++;
979 	*newcl = cp->ch_client;
980 	ASSERT(cp->ch_client->cl_nosignal == FALSE);
981 	*chp = cp;
982 	return (0);
983 }
984 
985 static int
986 nfs_clget4(mntinfo4_t *mi, servinfo4_t *svp, cred_t *cr, CLIENT **newcl,
987     struct chtab **chp, struct nfs4_clnt *nfscl)
988 {
989 	clinfo_t ci;
990 	bool_t is_recov;
991 	int firstcall, error = 0;
992 
993 	/*
994 	 * Set read buffer size to rsize
995 	 * and add room for RPC headers.
996 	 */
997 	ci.cl_readsize = mi->mi_tsize;
998 	if (ci.cl_readsize != 0)
999 		ci.cl_readsize += (RPC_MAXDATASIZE - NFS_MAXDATA);
1000 
1001 	/*
1002 	 * If soft mount and server is down just try once.
1003 	 * meaning: do not retransmit.
1004 	 */
1005 	if (!(mi->mi_flags & MI4_HARD) && (mi->mi_flags & MI4_DOWN))
1006 		ci.cl_retrans = 0;
1007 	else
1008 		ci.cl_retrans = mi->mi_retrans;
1009 
1010 	ci.cl_prog = mi->mi_prog;
1011 	ci.cl_vers = mi->mi_vers;
1012 	ci.cl_flags = mi->mi_flags;
1013 
1014 	/*
1015 	 * clget4 calls authget() to get an auth handle. For RPCSEC_GSS
1016 	 * security flavor, the client tries to establish a security context
1017 	 * by contacting the server. If the connection is timed out or reset,
1018 	 * e.g. server reboot, we will try again.
1019 	 */
1020 	is_recov = (curthread == mi->mi_recovthread);
1021 	firstcall = 1;
1022 
1023 	do {
1024 		error = clget4(&ci, svp, cr, newcl, chp, nfscl);
1025 
1026 		if (error == 0)
1027 			break;
1028 
1029 		/*
1030 		 * For forced unmount and zone shutdown, bail out but
1031 		 * let the recovery thread do one more transmission.
1032 		 */
1033 		if ((FS_OR_ZONE_GONE4(mi->mi_vfsp)) &&
1034 		    (!is_recov || !firstcall)) {
1035 			error = EIO;
1036 			break;
1037 		}
1038 
1039 		/* do not retry for soft mount */
1040 		if (!(mi->mi_flags & MI4_HARD))
1041 			break;
1042 
1043 		/* let the caller deal with the failover case */
1044 		if (FAILOVER_MOUNT4(mi))
1045 			break;
1046 
1047 		firstcall = 0;
1048 
1049 	} while (error == ETIMEDOUT || error == ECONNRESET);
1050 
1051 	return (error);
1052 }
1053 
1054 void
1055 clfree4(CLIENT *cl, struct chtab *cp, struct nfs4_clnt *nfscl)
1056 {
1057 	if (cl->cl_auth != NULL) {
1058 		sec_clnt_freeh(cl->cl_auth);
1059 		cl->cl_auth = NULL;
1060 	}
1061 
1062 	/*
1063 	 * Timestamp this cache entry so that we know when it was last
1064 	 * used.
1065 	 */
1066 	cp->ch_freed = gethrestime_sec();
1067 
1068 	/*
1069 	 * Add the free client handle to the front of the list.
1070 	 * This way, the list will be sorted in youngest to oldest
1071 	 * order.
1072 	 */
1073 	mutex_enter(&nfscl->nfscl_chtable4_lock);
1074 	cp->ch_list = cp->ch_head->ch_list;
1075 	cp->ch_head->ch_list = cp;
1076 	mutex_exit(&nfscl->nfscl_chtable4_lock);
1077 }
1078 
1079 #define	CL_HOLDTIME	60	/* time to hold client handles */
1080 
1081 static void
1082 clreclaim4_zone(struct nfs4_clnt *nfscl, uint_t cl_holdtime)
1083 {
1084 	struct chhead *ch;
1085 	struct chtab *cp;	/* list of objects that can be reclaimed */
1086 	struct chtab *cpe;
1087 	struct chtab *cpl;
1088 	struct chtab **cpp;
1089 #ifdef DEBUG
1090 	int n = 0;
1091 	clstat4_debug.clreclaim.value.ui64++;
1092 #endif
1093 
1094 	/*
1095 	 * Need to reclaim some memory, so step through the cache
1096 	 * looking through the lists for entries which can be freed.
1097 	 */
1098 	cp = NULL;
1099 
1100 	mutex_enter(&nfscl->nfscl_chtable4_lock);
1101 
1102 	/*
1103 	 * Here we step through each non-NULL quadruple and start to
1104 	 * construct the reclaim list pointed to by cp.  Note that
1105 	 * cp will contain all eligible chtab entries.  When this traversal
1106 	 * completes, chtab entries from the last quadruple will be at the
1107 	 * front of cp and entries from previously inspected quadruples have
1108 	 * been appended to the rear of cp.
1109 	 */
1110 	for (ch = nfscl->nfscl_chtable4; ch != NULL; ch = ch->ch_next) {
1111 		if (ch->ch_list == NULL)
1112 			continue;
1113 		/*
1114 		 * Search each list for entries older then
1115 		 * cl_holdtime seconds.  The lists are maintained
1116 		 * in youngest to oldest order so that when the
1117 		 * first entry is found which is old enough, then
1118 		 * all of the rest of the entries on the list will
1119 		 * be old enough as well.
1120 		 */
1121 		cpl = ch->ch_list;
1122 		cpp = &ch->ch_list;
1123 		while (cpl != NULL &&
1124 			cpl->ch_freed + cl_holdtime > gethrestime_sec()) {
1125 			cpp = &cpl->ch_list;
1126 			cpl = cpl->ch_list;
1127 		}
1128 		if (cpl != NULL) {
1129 			*cpp = NULL;
1130 			if (cp != NULL) {
1131 				cpe = cpl;
1132 				while (cpe->ch_list != NULL)
1133 					cpe = cpe->ch_list;
1134 				cpe->ch_list = cp;
1135 			}
1136 			cp = cpl;
1137 		}
1138 	}
1139 
1140 	mutex_exit(&nfscl->nfscl_chtable4_lock);
1141 
1142 	/*
1143 	 * If cp is empty, then there is nothing to reclaim here.
1144 	 */
1145 	if (cp == NULL)
1146 		return;
1147 
1148 	/*
1149 	 * Step through the list of entries to free, destroying each client
1150 	 * handle and kmem_free'ing the memory for each entry.
1151 	 */
1152 	while (cp != NULL) {
1153 #ifdef DEBUG
1154 		n++;
1155 #endif
1156 		CLNT_DESTROY(cp->ch_client);
1157 		cpl = cp->ch_list;
1158 		kmem_cache_free(chtab4_cache, cp);
1159 		cp = cpl;
1160 	}
1161 
1162 #ifdef DEBUG
1163 	/*
1164 	 * Update clalloc so that nfsstat shows the current number
1165 	 * of allocated client handles.
1166 	 */
1167 	atomic_add_64(&nfscl->nfscl_stat.clalloc.value.ui64, -n);
1168 #endif
1169 }
1170 
1171 /* ARGSUSED */
1172 static void
1173 clreclaim4(void *all)
1174 {
1175 	struct nfs4_clnt *nfscl;
1176 
1177 	/*
1178 	 * The system is low on memory; go through and try to reclaim some from
1179 	 * every zone on the system.
1180 	 */
1181 	mutex_enter(&nfs4_clnt_list_lock);
1182 	nfscl = list_head(&nfs4_clnt_list);
1183 	for (; nfscl != NULL; nfscl = list_next(&nfs4_clnt_list, nfscl))
1184 		clreclaim4_zone(nfscl, CL_HOLDTIME);
1185 	mutex_exit(&nfs4_clnt_list_lock);
1186 }
1187 
1188 /*
1189  * Minimum time-out values indexed by call type
1190  * These units are in "eights" of a second to avoid multiplies
1191  */
1192 static unsigned int minimum_timeo[] = {
1193 	6, 7, 10
1194 };
1195 
1196 #define	SHORTWAIT	(NFS_COTS_TIMEO / 10)
1197 
1198 /*
1199  * Back off for retransmission timeout, MAXTIMO is in hz of a sec
1200  */
1201 #define	MAXTIMO	(20*hz)
1202 #define	backoff(tim)	(((tim) < MAXTIMO) ? dobackoff(tim) : (tim))
1203 #define	dobackoff(tim)	((((tim) << 1) > MAXTIMO) ? MAXTIMO : ((tim) << 1))
1204 
1205 static int
1206 nfs4_rfscall(mntinfo4_t *mi, rpcproc_t which, xdrproc_t xdrargs, caddr_t argsp,
1207     xdrproc_t xdrres, caddr_t resp, cred_t *cr, int *doqueue,
1208     enum clnt_stat *rpc_statusp, int flags, struct nfs4_clnt *nfscl)
1209 {
1210 	CLIENT *client;
1211 	struct chtab *ch;
1212 	struct rpc_err rpcerr;
1213 	enum clnt_stat status;
1214 	int error;
1215 	struct timeval wait;
1216 	int timeo;		/* in units of hz */
1217 	bool_t tryagain, is_recov;
1218 	k_sigset_t smask;
1219 	servinfo4_t *svp;
1220 #ifdef DEBUG
1221 	char *bufp;
1222 #endif
1223 	int firstcall;
1224 
1225 	rpcerr.re_status = RPC_SUCCESS;
1226 
1227 	/*
1228 	 * If we know that we are rebooting then let's
1229 	 * not bother with doing any over the wireness.
1230 	 */
1231 	mutex_enter(&mi->mi_lock);
1232 	if (mi->mi_flags & MI4_SHUTDOWN) {
1233 		mutex_exit(&mi->mi_lock);
1234 		return (EIO);
1235 	}
1236 	mutex_exit(&mi->mi_lock);
1237 
1238 	/*
1239 	 * clget() calls clnt_tli_kinit() which clears the xid, so we
1240 	 * are guaranteed to reprocess the retry as a new request.
1241 	 */
1242 	svp = mi->mi_curr_serv;
1243 	rpcerr.re_errno = nfs_clget4(mi, svp, cr, &client, &ch, nfscl);
1244 	if (rpcerr.re_errno != 0)
1245 		return (rpcerr.re_errno);
1246 
1247 	timeo = (mi->mi_timeo * hz) / 10;
1248 
1249 	/*
1250 	 * If hard mounted fs, retry call forever unless hard error
1251 	 * occurs.
1252 	 *
1253 	 * For forced unmount, let the recovery thread through but return
1254 	 * an error for all others.  This is so that user processes can
1255 	 * exit quickly.  The recovery thread bails out after one
1256 	 * transmission so that it can tell if it needs to continue.
1257 	 *
1258 	 * For zone shutdown, behave as above to encourage quick
1259 	 * process exit, but also fail quickly when servers have
1260 	 * timed out before and reduce the timeouts.
1261 	 */
1262 	is_recov = (curthread == mi->mi_recovthread);
1263 	firstcall = 1;
1264 	do {
1265 		tryagain = FALSE;
1266 
1267 		NFS4_DEBUG(nfs4_rfscall_debug, (CE_NOTE,
1268 			"nfs4_rfscall: vfs_flag=0x%x, %s",
1269 			mi->mi_vfsp->vfs_flag,
1270 			is_recov ? "recov thread" : "not recov thread"));
1271 
1272 		/*
1273 		 * It's possible while we're retrying the admin
1274 		 * decided to reboot.
1275 		 */
1276 		mutex_enter(&mi->mi_lock);
1277 		if (mi->mi_flags & MI4_SHUTDOWN) {
1278 			mutex_exit(&mi->mi_lock);
1279 			clfree4(client, ch, nfscl);
1280 			return (EIO);
1281 		}
1282 		mutex_exit(&mi->mi_lock);
1283 
1284 		if ((mi->mi_vfsp->vfs_flag & VFS_UNMOUNTED) &&
1285 		    (!is_recov || !firstcall)) {
1286 			clfree4(client, ch, nfscl);
1287 			return (EIO);
1288 		}
1289 
1290 		if (zone_status_get(curproc->p_zone) >= ZONE_IS_SHUTTING_DOWN) {
1291 			mutex_enter(&mi->mi_lock);
1292 			if ((mi->mi_flags & MI4_TIMEDOUT) ||
1293 			    !is_recov || !firstcall) {
1294 				mutex_exit(&mi->mi_lock);
1295 				clfree4(client, ch, nfscl);
1296 				return (EIO);
1297 			}
1298 			mutex_exit(&mi->mi_lock);
1299 			timeo = (MIN(mi->mi_timeo, SHORTWAIT) * hz) / 10;
1300 		}
1301 
1302 		firstcall = 0;
1303 		TICK_TO_TIMEVAL(timeo, &wait);
1304 
1305 		/*
1306 		 * Mask out all signals except SIGHUP, SIGINT, SIGQUIT
1307 		 * and SIGTERM. (Preserving the existing masks).
1308 		 * Mask out SIGINT if mount option nointr is specified.
1309 		 */
1310 		sigintr(&smask, (int)mi->mi_flags & MI4_INT);
1311 		if (!(mi->mi_flags & MI4_INT))
1312 			client->cl_nosignal = TRUE;
1313 
1314 		/*
1315 		 * If there is a current signal, then don't bother
1316 		 * even trying to send out the request because we
1317 		 * won't be able to block waiting for the response.
1318 		 * Simply assume RPC_INTR and get on with it.
1319 		 */
1320 		if (ttolwp(curthread) != NULL && ISSIG(curthread, JUSTLOOKING))
1321 			status = RPC_INTR;
1322 		else {
1323 			status = CLNT_CALL(client, which, xdrargs, argsp,
1324 			    xdrres, resp, wait);
1325 		}
1326 
1327 		if (!(mi->mi_flags & MI4_INT))
1328 			client->cl_nosignal = FALSE;
1329 		/*
1330 		 * restore original signal mask
1331 		 */
1332 		sigunintr(&smask);
1333 
1334 		switch (status) {
1335 		case RPC_SUCCESS:
1336 			break;
1337 
1338 		case RPC_INTR:
1339 			/*
1340 			 * There is no way to recover from this error,
1341 			 * even if mount option nointr is specified.
1342 			 * SIGKILL, for example, cannot be blocked.
1343 			 */
1344 			rpcerr.re_status = RPC_INTR;
1345 			rpcerr.re_errno = EINTR;
1346 			break;
1347 
1348 		case RPC_UDERROR:
1349 			/*
1350 			 * If the NFS server is local (vold) and
1351 			 * it goes away then we get RPC_UDERROR.
1352 			 * This is a retryable error, so we would
1353 			 * loop, so check to see if the specific
1354 			 * error was ECONNRESET, indicating that
1355 			 * target did not exist at all.  If so,
1356 			 * return with RPC_PROGUNAVAIL and
1357 			 * ECONNRESET to indicate why.
1358 			 */
1359 			CLNT_GETERR(client, &rpcerr);
1360 			if (rpcerr.re_errno == ECONNRESET) {
1361 				rpcerr.re_status = RPC_PROGUNAVAIL;
1362 				rpcerr.re_errno = ECONNRESET;
1363 				break;
1364 			}
1365 			/*FALLTHROUGH*/
1366 
1367 		default:		/* probably RPC_TIMEDOUT */
1368 
1369 			if (IS_UNRECOVERABLE_RPC(status))
1370 				break;
1371 
1372 			/*
1373 			 * increment server not responding count
1374 			 */
1375 			mutex_enter(&mi->mi_lock);
1376 			mi->mi_noresponse++;
1377 			mutex_exit(&mi->mi_lock);
1378 #ifdef DEBUG
1379 			nfscl->nfscl_stat.noresponse.value.ui64++;
1380 #endif
1381 			/*
1382 			 * On zone shutdown, mark server dead and move on.
1383 			 */
1384 			if (zone_status_get(curproc->p_zone) >=
1385 			    ZONE_IS_SHUTTING_DOWN) {
1386 				mutex_enter(&mi->mi_lock);
1387 				mi->mi_flags |= MI4_TIMEDOUT;
1388 				mutex_exit(&mi->mi_lock);
1389 				clfree4(client, ch, nfscl);
1390 				return (EIO);
1391 			}
1392 
1393 			/*
1394 			 * NFS client failover support:
1395 			 * return and let the caller take care of
1396 			 * failover.  We only return for failover mounts
1397 			 * because otherwise we want the "not responding"
1398 			 * message, the timer updates, etc.
1399 			 */
1400 			if (mi->mi_vers == 4 && FAILOVER_MOUNT4(mi) &&
1401 			    (error = try_failover(status)) != 0) {
1402 				clfree4(client, ch, nfscl);
1403 				*rpc_statusp = status;
1404 				return (error);
1405 			}
1406 
1407 			if (flags & RFSCALL_SOFT)
1408 				break;
1409 
1410 			tryagain = TRUE;
1411 
1412 			/*
1413 			 * The call is in progress (over COTS).
1414 			 * Try the CLNT_CALL again, but don't
1415 			 * print a noisy error message.
1416 			 */
1417 			if (status == RPC_INPROGRESS)
1418 				break;
1419 
1420 			timeo = backoff(timeo);
1421 			mutex_enter(&mi->mi_lock);
1422 			if (!(mi->mi_flags & MI4_PRINTED)) {
1423 				mi->mi_flags |= MI4_PRINTED;
1424 				mutex_exit(&mi->mi_lock);
1425 				nfs4_queue_fact(RF_SRV_NOT_RESPOND, mi, 0, 0, 0,
1426 				    FALSE, NULL, 0, NULL);
1427 			} else
1428 				mutex_exit(&mi->mi_lock);
1429 
1430 			if (*doqueue && curproc->p_sessp->s_vp != NULL) {
1431 				*doqueue = 0;
1432 				if (!(mi->mi_flags & MI4_NOPRINT))
1433 					nfs4_queue_fact(RF_SRV_NOT_RESPOND, mi,
1434 					    0, 0, 0, FALSE, NULL, 0, NULL);
1435 			}
1436 		}
1437 	} while (tryagain);
1438 
1439 	DTRACE_PROBE2(nfs4__rfscall_debug, enum clnt_stat, status,
1440 			int, rpcerr.re_errno);
1441 
1442 	if (status != RPC_SUCCESS) {
1443 		zoneid_t zoneid = mi->mi_zone->zone_id;
1444 
1445 		/*
1446 		 * Let soft mounts use the timed out message.
1447 		 */
1448 		if (status == RPC_INPROGRESS)
1449 			status = RPC_TIMEDOUT;
1450 		nfscl->nfscl_stat.badcalls.value.ui64++;
1451 		if (status != RPC_INTR) {
1452 			mutex_enter(&mi->mi_lock);
1453 			mi->mi_flags |= MI4_DOWN;
1454 			mutex_exit(&mi->mi_lock);
1455 			CLNT_GETERR(client, &rpcerr);
1456 #ifdef DEBUG
1457 			bufp = clnt_sperror(client, svp->sv_hostname);
1458 			zprintf(zoneid, "NFS%d %s failed for %s\n",
1459 			    mi->mi_vers, mi->mi_rfsnames[which], bufp);
1460 			if (curproc->p_sessp->s_vp != NULL) {
1461 				if (!(mi->mi_flags & MI4_NOPRINT)) {
1462 					uprintf("NFS%d %s failed for %s\n",
1463 					    mi->mi_vers, mi->mi_rfsnames[which],
1464 					    bufp);
1465 				}
1466 			}
1467 			kmem_free(bufp, MAXPATHLEN);
1468 #else
1469 			zprintf(zoneid,
1470 			    "NFS %s failed for server %s: error %d (%s)\n",
1471 			    mi->mi_rfsnames[which], svp->sv_hostname,
1472 			    status, clnt_sperrno(status));
1473 			if (curproc->p_sessp->s_vp != NULL) {
1474 				if (!(mi->mi_flags & MI4_NOPRINT)) {
1475 					uprintf(
1476 				"NFS %s failed for server %s: error %d (%s)\n",
1477 					    mi->mi_rfsnames[which],
1478 					    svp->sv_hostname, status,
1479 					    clnt_sperrno(status));
1480 				}
1481 			}
1482 #endif
1483 			/*
1484 			 * when CLNT_CALL() fails with RPC_AUTHERROR,
1485 			 * re_errno is set appropriately depending on
1486 			 * the authentication error
1487 			 */
1488 			if (status == RPC_VERSMISMATCH ||
1489 			    status == RPC_PROGVERSMISMATCH)
1490 				rpcerr.re_errno = EIO;
1491 		}
1492 	} else {
1493 		/*
1494 		 * Test the value of mi_down and mi_printed without
1495 		 * holding the mi_lock mutex.  If they are both zero,
1496 		 * then it is okay to skip the down and printed
1497 		 * processing.  This saves on a mutex_enter and
1498 		 * mutex_exit pair for a normal, successful RPC.
1499 		 * This was just complete overhead.
1500 		 */
1501 		if (mi->mi_flags & (MI4_DOWN | MI4_PRINTED)) {
1502 			mutex_enter(&mi->mi_lock);
1503 			mi->mi_flags &= ~MI4_DOWN;
1504 			if (mi->mi_flags & MI4_PRINTED) {
1505 				mi->mi_flags &= ~MI4_PRINTED;
1506 				mutex_exit(&mi->mi_lock);
1507 				if (!(mi->mi_vfsp->vfs_flag & VFS_UNMOUNTED))
1508 					nfs4_queue_fact(RF_SRV_OK, mi, 0, 0,
1509 					    0, FALSE, NULL, 0, NULL);
1510 			} else
1511 				mutex_exit(&mi->mi_lock);
1512 		}
1513 
1514 		if (*doqueue == 0) {
1515 			if (!(mi->mi_flags & MI4_NOPRINT) &&
1516 			    !(mi->mi_vfsp->vfs_flag & VFS_UNMOUNTED))
1517 				nfs4_queue_fact(RF_SRV_OK, mi, 0, 0, 0,
1518 				    FALSE, NULL, 0, NULL);
1519 
1520 			*doqueue = 1;
1521 		}
1522 	}
1523 
1524 	clfree4(client, ch, nfscl);
1525 
1526 	ASSERT(rpcerr.re_status == RPC_SUCCESS || rpcerr.re_errno != 0);
1527 
1528 	TRACE_1(TR_FAC_NFS, TR_RFSCALL_END, "nfs4_rfscall_end:errno %d",
1529 	    rpcerr.re_errno);
1530 
1531 	*rpc_statusp = status;
1532 	return (rpcerr.re_errno);
1533 }
1534 
1535 /*
1536  * rfs4call - general wrapper for RPC calls initiated by the client
1537  */
1538 void
1539 rfs4call(mntinfo4_t *mi, COMPOUND4args_clnt *argsp, COMPOUND4res_clnt *resp,
1540 	cred_t *cr, int *doqueue, int flags, nfs4_error_t *ep)
1541 {
1542 	int i, error;
1543 	enum clnt_stat rpc_status = NFS4_OK;
1544 	int num_resops;
1545 	struct nfs4_clnt *nfscl;
1546 
1547 	ASSERT(curproc->p_zone == mi->mi_zone);
1548 	nfscl = zone_getspecific(nfs4clnt_zone_key, curproc->p_zone);
1549 	ASSERT(nfscl != NULL);
1550 
1551 	nfscl->nfscl_stat.calls.value.ui64++;
1552 	mi->mi_reqs[NFSPROC4_COMPOUND].value.ui64++;
1553 
1554 	/* Set up the results struct for XDR usage */
1555 	resp->argsp = argsp;
1556 	resp->array = NULL;
1557 	resp->status = 0;
1558 	resp->decode_len = 0;
1559 
1560 	error = nfs4_rfscall(mi, NFSPROC4_COMPOUND,
1561 		xdr_COMPOUND4args_clnt, (caddr_t)argsp,
1562 		xdr_COMPOUND4res_clnt, (caddr_t)resp, cr,
1563 		doqueue, &rpc_status, flags, nfscl);
1564 
1565 	/* Return now if it was an RPC error */
1566 	if (error) {
1567 		ep->error = error;
1568 		ep->stat = resp->status;
1569 		ep->rpc_status = rpc_status;
1570 		return;
1571 	}
1572 
1573 	/* else we'll count the processed operations */
1574 	num_resops = resp->decode_len;
1575 	for (i = 0; i < num_resops; i++) {
1576 		/*
1577 		 * Count the individual operations
1578 		 * processed by the server.
1579 		 */
1580 		if (resp->array[i].resop >= NFSPROC4_NULL &&
1581 		    resp->array[i].resop <= OP_WRITE)
1582 			mi->mi_reqs[resp->array[i].resop].value.ui64++;
1583 	}
1584 
1585 	ep->error = 0;
1586 	ep->stat = resp->status;
1587 	ep->rpc_status = rpc_status;
1588 }
1589 
1590 /*
1591  * nfs4rename_update - updates stored state after a rename.  Currently this
1592  * is the path of the object and anything under it, and the filehandle of
1593  * the renamed object.
1594  */
1595 void
1596 nfs4rename_update(vnode_t *renvp, vnode_t *ndvp, nfs_fh4 *nfh4p, char *nnm)
1597 {
1598 	sfh4_update(VTOR4(renvp)->r_fh, nfh4p);
1599 	fn_move(VTOSV(renvp)->sv_name, VTOSV(ndvp)->sv_name, nnm);
1600 }
1601 
1602 /*
1603  * Routine to look up the filehandle for the given path and rootvp.
1604  *
1605  * Return values:
1606  * - success: returns zero and *statp is set to NFS4_OK, and *fhp is
1607  *   updated.
1608  * - error: return value (errno value) and/or *statp is set appropriately.
1609  */
1610 #define	RML_ORDINARY	1
1611 #define	RML_NAMED_ATTR	2
1612 #define	RML_ATTRDIR	3
1613 
1614 static void
1615 remap_lookup(nfs4_fname_t *fname, vnode_t *rootvp,
1616 	int filetype, cred_t *cr,
1617 	nfs_fh4 *fhp, nfs4_ga_res_t *garp,	/* fh, attrs for object */
1618 	nfs_fh4 *pfhp, nfs4_ga_res_t *pgarp,	/* fh, attrs for parent */
1619 	nfs4_error_t *ep)
1620 {
1621 	COMPOUND4args_clnt args;
1622 	COMPOUND4res_clnt res;
1623 	nfs_argop4 *argop;
1624 	nfs_resop4 *resop;
1625 	int num_argops;
1626 	lookup4_param_t lookuparg;
1627 	nfs_fh4 *tmpfhp;
1628 	int doqueue = 1;
1629 	char *path;
1630 	mntinfo4_t *mi;
1631 
1632 	ASSERT(fname != NULL);
1633 	ASSERT(rootvp->v_type == VDIR);
1634 
1635 	mi = VTOMI4(rootvp);
1636 	path = fn_path(fname);
1637 	switch (filetype) {
1638 	case RML_NAMED_ATTR:
1639 		lookuparg.l4_getattrs = LKP4_LAST_NAMED_ATTR;
1640 		args.ctag = TAG_REMAP_LOOKUP_NA;
1641 		break;
1642 	case RML_ATTRDIR:
1643 		lookuparg.l4_getattrs = LKP4_LAST_ATTRDIR;
1644 		args.ctag = TAG_REMAP_LOOKUP_AD;
1645 		break;
1646 	case RML_ORDINARY:
1647 		lookuparg.l4_getattrs = LKP4_ALL_ATTRIBUTES;
1648 		args.ctag = TAG_REMAP_LOOKUP;
1649 		break;
1650 	default:
1651 		ep->error = EINVAL;
1652 		return;
1653 	}
1654 	lookuparg.argsp = &args;
1655 	lookuparg.resp = &res;
1656 	lookuparg.header_len = 1;	/* Putfh */
1657 	lookuparg.trailer_len = 0;
1658 	lookuparg.ga_bits = NFS4_VATTR_MASK;
1659 	lookuparg.mi = VTOMI4(rootvp);
1660 
1661 	(void) nfs4lookup_setup(path, &lookuparg, 1);
1662 
1663 	/* 0: putfh directory */
1664 	argop = args.array;
1665 	argop[0].argop = OP_CPUTFH;
1666 	argop[0].nfs_argop4_u.opcputfh.sfh = VTOR4(rootvp)->r_fh;
1667 
1668 	num_argops = args.array_len;
1669 
1670 	rfs4call(mi, &args, &res, cr, &doqueue, RFSCALL_SOFT, ep);
1671 
1672 	if (ep->error || res.status != NFS4_OK)
1673 		goto exit;
1674 
1675 	/* get the object filehandle */
1676 	resop = &res.array[res.array_len - 2];
1677 	if (resop->resop != OP_GETFH) {
1678 		nfs4_queue_event(RE_FAIL_REMAP_OP, mi, NULL,
1679 		    0, NULL, NULL, 0, NULL, 0, TAG_NONE, TAG_NONE, 0, 0);
1680 		ep->stat = NFS4ERR_SERVERFAULT;
1681 		goto exit;
1682 	}
1683 	tmpfhp = &resop->nfs_resop4_u.opgetfh.object;
1684 	if (tmpfhp->nfs_fh4_len > NFS4_FHSIZE) {
1685 		nfs4_queue_event(RE_FAIL_REMAP_LEN, mi, NULL,
1686 		    tmpfhp->nfs_fh4_len, NULL, NULL, 0, NULL, 0, TAG_NONE,
1687 		    TAG_NONE, 0, 0);
1688 		ep->stat = NFS4ERR_SERVERFAULT;
1689 		goto exit;
1690 	}
1691 	fhp->nfs_fh4_val = kmem_alloc(tmpfhp->nfs_fh4_len, KM_SLEEP);
1692 	nfs_fh4_copy(tmpfhp, fhp);
1693 
1694 	/* get the object attributes */
1695 	resop = &res.array[res.array_len - 1];
1696 	if (garp && resop->resop == OP_GETATTR)
1697 		*garp = resop->nfs_resop4_u.opgetattr.ga_res;
1698 
1699 	/* See if there are enough fields in the response for parent info */
1700 	if ((int)res.array_len - 5 <= 0)
1701 		goto exit;
1702 
1703 	/* get the parent filehandle */
1704 	resop = &res.array[res.array_len - 5];
1705 	if (resop->resop != OP_GETFH) {
1706 		nfs4_queue_event(RE_FAIL_REMAP_OP, mi, NULL,
1707 		    0, NULL, NULL, 0, NULL, 0, TAG_NONE, TAG_NONE, 0, 0);
1708 		ep->stat = NFS4ERR_SERVERFAULT;
1709 		goto exit;
1710 	}
1711 	tmpfhp = &resop->nfs_resop4_u.opgetfh.object;
1712 	if (tmpfhp->nfs_fh4_len > NFS4_FHSIZE) {
1713 		nfs4_queue_event(RE_FAIL_REMAP_LEN, mi, NULL,
1714 		    tmpfhp->nfs_fh4_len, NULL, NULL, 0, NULL, 0, TAG_NONE,
1715 		    TAG_NONE, 0, 0);
1716 		ep->stat = NFS4ERR_SERVERFAULT;
1717 		goto exit;
1718 	}
1719 	pfhp->nfs_fh4_val = kmem_alloc(tmpfhp->nfs_fh4_len, KM_SLEEP);
1720 	nfs_fh4_copy(tmpfhp, pfhp);
1721 
1722 	/* get the parent attributes */
1723 	resop = &res.array[res.array_len - 4];
1724 	if (pgarp && resop->resop == OP_GETATTR)
1725 		*pgarp = resop->nfs_resop4_u.opgetattr.ga_res;
1726 
1727 exit:
1728 	/*
1729 	 * It is too hard to remember where all the OP_LOOKUPs are
1730 	 */
1731 	nfs4args_lookup_free(argop, num_argops);
1732 	kmem_free(argop, lookuparg.arglen * sizeof (nfs_argop4));
1733 
1734 	if (!ep->error)
1735 		(void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
1736 	kmem_free(path, strlen(path)+1);
1737 }
1738 
1739 /*
1740  * NFS client failover / volatile filehandle support
1741  *
1742  * Recover the filehandle for the given rnode.
1743  *
1744  * Errors are returned via the nfs4_error_t parameter.
1745  */
1746 
1747 void
1748 nfs4_remap_file(mntinfo4_t *mi, vnode_t *vp, int flags, nfs4_error_t *ep)
1749 {
1750 	rnode4_t *rp = VTOR4(vp);
1751 	vnode_t *rootvp = NULL;
1752 	vnode_t *dvp = NULL;
1753 	cred_t *cr, *cred_otw;
1754 	nfs4_ga_res_t gar, pgar;
1755 	nfs_fh4 newfh = {0, NULL}, newpfh = {0, NULL};
1756 	int filetype = RML_ORDINARY;
1757 	nfs4_recov_state_t recov = {NULL, 0, 0};
1758 	int badfhcount = 0;
1759 	nfs4_open_stream_t *osp = NULL;
1760 	bool_t first_time = TRUE;	/* first time getting OTW cred */
1761 	bool_t last_time = FALSE;	/* last time getting OTW cred */
1762 
1763 	NFS4_DEBUG(nfs4_client_failover_debug, (CE_NOTE,
1764 	    "nfs4_remap_file: remapping %s", rnode4info(rp)));
1765 	ASSERT(nfs4_consistent_type(vp));
1766 
1767 	if (vp->v_flag & VROOT) {
1768 		nfs4_remap_root(mi, ep, flags);
1769 		return;
1770 	}
1771 
1772 	/*
1773 	 * Given the root fh, use the path stored in
1774 	 * the rnode to find the fh for the new server.
1775 	 */
1776 	ep->error = VFS_ROOT(mi->mi_vfsp, &rootvp);
1777 	if (ep->error != 0)
1778 		return;
1779 
1780 	cr = curthread->t_cred;
1781 	ASSERT(cr != NULL);
1782 get_remap_cred:
1783 	/*
1784 	 * Releases the osp, if it is provided.
1785 	 * Puts a hold on the cred_otw and the new osp (if found).
1786 	 */
1787 	cred_otw = nfs4_get_otw_cred_by_osp(rp, cr, &osp,
1788 		&first_time, &last_time);
1789 	ASSERT(cred_otw != NULL);
1790 
1791 	if (rp->r_flags & R4ISXATTR) {
1792 		filetype = RML_NAMED_ATTR;
1793 		(void) vtodv(vp, &dvp, cred_otw, FALSE);
1794 	}
1795 
1796 	if (vp->v_flag & V_XATTRDIR) {
1797 		filetype = RML_ATTRDIR;
1798 	}
1799 
1800 	if (filetype == RML_ORDINARY && rootvp->v_type == VREG) {
1801 		/* file mount, doesn't need a remap */
1802 		goto done;
1803 	}
1804 
1805 again:
1806 	remap_lookup(rp->r_svnode.sv_name, rootvp, filetype, cred_otw,
1807 			&newfh, &gar, &newpfh, &pgar, ep);
1808 
1809 	NFS4_DEBUG(nfs4_client_failover_debug, (CE_NOTE,
1810 	    "nfs4_remap_file: remap_lookup returned %d/%d",
1811 	    ep->error, ep->stat));
1812 
1813 	if (last_time == FALSE && ep->error == EACCES) {
1814 		crfree(cred_otw);
1815 		if (dvp != NULL)
1816 			VN_RELE(dvp);
1817 		goto get_remap_cred;
1818 	}
1819 	if (ep->error != 0)
1820 		goto done;
1821 
1822 	switch (ep->stat) {
1823 	case NFS4_OK:
1824 		badfhcount = 0;
1825 		if (recov.rs_flags & NFS4_RS_DELAY_MSG) {
1826 			mutex_enter(&rp->r_statelock);
1827 			rp->r_delay_interval = 0;
1828 			mutex_exit(&rp->r_statelock);
1829 			uprintf("NFS File Available..\n");
1830 		}
1831 		break;
1832 	case NFS4ERR_FHEXPIRED:
1833 	case NFS4ERR_BADHANDLE:
1834 		/*
1835 		 * If we ran into filehandle problems, we should try to
1836 		 * remap the root vnode first and hope life gets better.
1837 		 * But we need to avoid loops.
1838 		 */
1839 		if (badfhcount++ > 0)
1840 			goto done;
1841 		if (newfh.nfs_fh4_len != 0) {
1842 			kmem_free(newfh.nfs_fh4_val, newfh.nfs_fh4_len);
1843 			newfh.nfs_fh4_len = 0;
1844 		}
1845 		if (newpfh.nfs_fh4_len != 0) {
1846 			kmem_free(newpfh.nfs_fh4_val, newpfh.nfs_fh4_len);
1847 			newpfh.nfs_fh4_len = 0;
1848 		}
1849 		/* relative path - remap rootvp then retry */
1850 		VN_RELE(rootvp);
1851 		rootvp = NULL;
1852 		nfs4_remap_root(mi, ep, flags);
1853 		if (ep->error != 0 || ep->stat != NFS4_OK)
1854 			goto done;
1855 		ep->error = VFS_ROOT(mi->mi_vfsp, &rootvp);
1856 		if (ep->error != 0)
1857 			goto done;
1858 		goto again;
1859 	case NFS4ERR_DELAY:
1860 		badfhcount = 0;
1861 		nfs4_set_delay_wait(vp);
1862 		ep->error = nfs4_wait_for_delay(vp, &recov);
1863 		if (ep->error != 0)
1864 			goto done;
1865 		goto again;
1866 	case NFS4ERR_ACCESS:
1867 		/* get new cred, try again */
1868 		if (last_time == TRUE)
1869 			goto done;
1870 		if (dvp != NULL)
1871 			VN_RELE(dvp);
1872 		crfree(cred_otw);
1873 		goto get_remap_cred;
1874 	default:
1875 		goto done;
1876 	}
1877 
1878 	/*
1879 	 * Check on the new and old rnodes before updating;
1880 	 * if the vnode type or size changes, issue a warning
1881 	 * and mark the file dead.
1882 	 */
1883 	mutex_enter(&rp->r_statelock);
1884 	if (flags & NFS4_REMAP_CKATTRS) {
1885 		if (vp->v_type != gar.n4g_va.va_type ||
1886 			(vp->v_type != VDIR &&
1887 			rp->r_size != gar.n4g_va.va_size)) {
1888 			NFS4_DEBUG(nfs4_client_failover_debug, (CE_NOTE,
1889 			    "nfs4_remap_file: size %d vs. %d, type %d vs. %d",
1890 			    (int)rp->r_size, (int)gar.n4g_va.va_size,
1891 			    vp->v_type, gar.n4g_va.va_type));
1892 			mutex_exit(&rp->r_statelock);
1893 			nfs4_queue_event(RE_FILE_DIFF, mi,
1894 			    rp->r_server->sv_hostname, 0, vp, NULL, 0, NULL, 0,
1895 			    TAG_NONE, TAG_NONE, 0, 0);
1896 			nfs4_fail_recov(vp, NULL, 0, NFS4_OK);
1897 			goto done;
1898 		}
1899 	}
1900 	ASSERT(gar.n4g_va.va_type != VNON);
1901 	rp->r_server = mi->mi_curr_serv;
1902 
1903 	if (gar.n4g_fsid_valid) {
1904 		(void) nfs_rw_enter_sig(&rp->r_server->sv_lock, RW_READER, 0);
1905 		rp->r_srv_fsid = gar.n4g_fsid;
1906 		if (FATTR4_FSID_EQ(&gar.n4g_fsid, &rp->r_server->sv_fsid))
1907 			rp->r_flags &= ~R4SRVSTUB;
1908 		else
1909 			rp->r_flags |= R4SRVSTUB;
1910 		nfs_rw_exit(&rp->r_server->sv_lock);
1911 #ifdef DEBUG
1912 	} else {
1913 		NFS4_DEBUG(nfs4_client_failover_debug, (CE_NOTE,
1914 			"remap_file: fsid attr not provided by server.  rp=%p",
1915 			(void *)rp));
1916 #endif
1917 	}
1918 	mutex_exit(&rp->r_statelock);
1919 	nfs4_attrcache_noinval(vp, &gar, gethrtime()); /* force update */
1920 	sfh4_update(rp->r_fh, &newfh);
1921 	ASSERT(nfs4_consistent_type(vp));
1922 
1923 	/*
1924 	 * If we got parent info, use it to update the parent
1925 	 */
1926 	if (newpfh.nfs_fh4_len != 0) {
1927 		if (rp->r_svnode.sv_dfh != NULL)
1928 			sfh4_update(rp->r_svnode.sv_dfh, &newpfh);
1929 		if (dvp != NULL) {
1930 			/* force update of attrs */
1931 			nfs4_attrcache_noinval(dvp, &pgar, gethrtime());
1932 		}
1933 	}
1934 done:
1935 	if (newfh.nfs_fh4_len != 0)
1936 		kmem_free(newfh.nfs_fh4_val, newfh.nfs_fh4_len);
1937 	if (newpfh.nfs_fh4_len != 0)
1938 		kmem_free(newpfh.nfs_fh4_val, newpfh.nfs_fh4_len);
1939 	if (cred_otw != NULL)
1940 		crfree(cred_otw);
1941 	if (rootvp != NULL)
1942 		VN_RELE(rootvp);
1943 	if (dvp != NULL)
1944 		VN_RELE(dvp);
1945 	if (osp != NULL)
1946 		open_stream_rele(osp, rp);
1947 }
1948 
1949 /*
1950  * Client-side failover support: remap the filehandle for vp if it appears
1951  * necessary.  errors are returned via the nfs4_error_t parameter; though,
1952  * if there is a problem, we will just try again later.
1953  */
1954 
1955 void
1956 nfs4_check_remap(mntinfo4_t *mi, vnode_t *vp, int flags, nfs4_error_t *ep)
1957 {
1958 	if (vp == NULL)
1959 		return;
1960 
1961 	if (!(vp->v_vfsp->vfs_flag & VFS_RDONLY))
1962 		return;
1963 
1964 	if (VTOR4(vp)->r_server == mi->mi_curr_serv)
1965 		return;
1966 
1967 	nfs4_remap_file(mi, vp, flags, ep);
1968 }
1969 
1970 /*
1971  * nfs4_make_dotdot() - find or create a parent vnode of a non-root node.
1972  *
1973  * Our caller has a filehandle for ".." relative to a particular
1974  * directory object.  We want to find or create a parent vnode
1975  * with that filehandle and return it.  We can of course create
1976  * a vnode from this filehandle, but we need to also make sure
1977  * that if ".." is a regular file (i.e. dvp is a V_XATTRDIR)
1978  * that we have a parent FH for future reopens as well.  If
1979  * we have a remap failure, we won't be able to reopen this
1980  * file, but we won't treat that as fatal because a reopen
1981  * is at least unlikely.  Someday nfs4_reopen() should look
1982  * for a missing parent FH and try a remap to recover from it.
1983  *
1984  * need_start_op argument indicates whether this function should
1985  * do a start_op before calling remap_lookup().  This should
1986  * be FALSE, if you are the recovery thread or in an op; otherwise,
1987  * set it to TRUE.
1988  */
1989 int
1990 nfs4_make_dotdot(nfs4_sharedfh_t *fhp, hrtime_t t, vnode_t *dvp,
1991     cred_t *cr, vnode_t **vpp, int need_start_op)
1992 {
1993 	mntinfo4_t *mi = VTOMI4(dvp);
1994 	nfs4_fname_t *np = NULL, *pnp = NULL;
1995 	vnode_t *vp = NULL, *rootvp = NULL;
1996 	rnode4_t *rp;
1997 	nfs_fh4 newfh = {0, NULL}, newpfh = {0, NULL};
1998 	nfs4_ga_res_t gar, pgar;
1999 	vattr_t va, pva;
2000 	nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS };
2001 	nfs4_sharedfh_t *sfh = NULL, *psfh = NULL;
2002 	nfs4_recov_state_t recov_state;
2003 
2004 #ifdef DEBUG
2005 	/*
2006 	 * ensure need_start_op is correct
2007 	 */
2008 	{
2009 		int no_need_start_op = (tsd_get(nfs4_tsd_key) ||
2010 		    (curthread == mi->mi_recovthread));
2011 		/* C needs a ^^ operator! */
2012 		ASSERT(((need_start_op) && (!no_need_start_op)) ||
2013 		    ((! need_start_op) && (no_need_start_op)));
2014 	}
2015 #endif
2016 	ASSERT(VTOMI4(dvp)->mi_zone == curproc->p_zone);
2017 
2018 	NFS4_DEBUG(nfs4_client_shadow_debug, (CE_NOTE,
2019 	    "nfs4_make_dotdot: called with fhp %p, dvp %s", (void *)fhp,
2020 	    rnode4info(VTOR4(dvp))));
2021 
2022 	/*
2023 	 * rootvp might be needed eventually. Holding it now will
2024 	 * ensure that r4find_unlocked() will find it, if ".." is the root.
2025 	 */
2026 	e.error = VFS_ROOT(mi->mi_vfsp, &rootvp);
2027 	if (e.error != 0)
2028 		goto out;
2029 	rp = r4find_unlocked(fhp, mi->mi_vfsp);
2030 	if (rp != NULL) {
2031 		*vpp = RTOV4(rp);
2032 		VN_RELE(rootvp);
2033 		return (0);
2034 	}
2035 
2036 	/*
2037 	 * Since we don't have the rnode, we have to go over the wire.
2038 	 * remap_lookup() can get all of the filehandles and attributes
2039 	 * we need in one operation.
2040 	 */
2041 	np = fn_parent(VTOSV(dvp)->sv_name);
2042 	ASSERT(np != NULL);
2043 
2044 	recov_state.rs_flags = 0;
2045 	recov_state.rs_num_retry_despite_err = 0;
2046 recov_retry:
2047 	if (need_start_op) {
2048 		e.error = nfs4_start_fop(mi, rootvp, NULL, OH_LOOKUP,
2049 		    &recov_state, NULL);
2050 		if (e.error != 0) {
2051 			goto out;
2052 		}
2053 	}
2054 	va.va_type = VNON;
2055 	pva.va_type = VNON;
2056 	remap_lookup(np, rootvp, RML_ORDINARY, cr,
2057 	    &newfh, &gar, &newpfh, &pgar, &e);
2058 	if (nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp)) {
2059 		if (need_start_op) {
2060 			bool_t abort;
2061 
2062 			abort = nfs4_start_recovery(&e, mi,
2063 			    rootvp, NULL, NULL, NULL, OP_LOOKUP, NULL);
2064 			if (abort) {
2065 				nfs4_end_fop(mi, rootvp, NULL, OH_LOOKUP,
2066 				    &recov_state, FALSE);
2067 				if (e.error == 0)
2068 					e.error = EIO;
2069 				goto out;
2070 			}
2071 			nfs4_end_fop(mi, rootvp, NULL, OH_LOOKUP,
2072 			    &recov_state, TRUE);
2073 			goto recov_retry;
2074 		}
2075 		if (e.error == 0)
2076 			e.error = EIO;
2077 		goto out;
2078 	}
2079 
2080 	if (!e.error) {
2081 		va = gar.n4g_va;
2082 		pva = pgar.n4g_va;
2083 	}
2084 
2085 	if ((e.error != 0) ||
2086 	    (va.va_type != VDIR)) {
2087 		if (e.error == 0)
2088 			e.error = EIO;
2089 		goto out;
2090 	}
2091 
2092 	if (e.stat != NFS4_OK) {
2093 		e.error = EIO;
2094 		goto out;
2095 	}
2096 
2097 	/*
2098 	 * It is possible for remap_lookup() to return with no error,
2099 	 * but without providing the parent filehandle and attrs.
2100 	 */
2101 	if (pva.va_type != VDIR) {
2102 		/*
2103 		 * Call remap_lookup() again, this time with the
2104 		 * newpfh and pgar args in the first position.
2105 		 */
2106 		pnp = fn_parent(np);
2107 		if (pnp != NULL) {
2108 			remap_lookup(pnp, rootvp, RML_ORDINARY, cr,
2109 			    &newpfh, &pgar, NULL, NULL, &e);
2110 			if (nfs4_needs_recovery(&e, FALSE,
2111 			    mi->mi_vfsp)) {
2112 				if (need_start_op) {
2113 					bool_t abort;
2114 
2115 					abort = nfs4_start_recovery(&e, mi,
2116 					    rootvp, NULL, NULL, NULL,
2117 					    OP_LOOKUP, NULL);
2118 					if (abort) {
2119 						nfs4_end_fop(mi, rootvp, NULL,
2120 						    OH_LOOKUP, &recov_state,
2121 						    FALSE);
2122 						if (e.error == 0)
2123 							e.error = EIO;
2124 						goto out;
2125 					}
2126 					nfs4_end_fop(mi, rootvp, NULL,
2127 					    OH_LOOKUP, &recov_state, TRUE);
2128 					goto recov_retry;
2129 				}
2130 				if (e.error == 0)
2131 					e.error = EIO;
2132 				goto out;
2133 			}
2134 
2135 			if (e.stat != NFS4_OK) {
2136 				e.error = EIO;
2137 				goto out;
2138 			}
2139 		}
2140 		if ((pnp == NULL) ||
2141 		    (e.error != 0) ||
2142 		    (pva.va_type == VNON)) {
2143 			if (need_start_op)
2144 				nfs4_end_fop(mi, rootvp, NULL, OH_LOOKUP,
2145 				    &recov_state, FALSE);
2146 			if (e.error == 0)
2147 				e.error = EIO;
2148 			goto out;
2149 		}
2150 	}
2151 	ASSERT(newpfh.nfs_fh4_len != 0);
2152 	if (need_start_op)
2153 		nfs4_end_fop(mi, rootvp, NULL, OH_LOOKUP, &recov_state, FALSE);
2154 	psfh = sfh4_get(&newpfh, mi);
2155 
2156 	sfh = sfh4_get(&newfh, mi);
2157 	vp = makenfs4node_by_fh(sfh, psfh, &np, &gar, mi, cr, t);
2158 
2159 out:
2160 	if (np != NULL)
2161 		fn_rele(&np);
2162 	if (pnp != NULL)
2163 		fn_rele(&pnp);
2164 	if (newfh.nfs_fh4_len != 0)
2165 		kmem_free(newfh.nfs_fh4_val, newfh.nfs_fh4_len);
2166 	if (newpfh.nfs_fh4_len != 0)
2167 		kmem_free(newpfh.nfs_fh4_val, newpfh.nfs_fh4_len);
2168 	if (sfh != NULL)
2169 		sfh4_rele(&sfh);
2170 	if (psfh != NULL)
2171 		sfh4_rele(&psfh);
2172 	if (rootvp != NULL)
2173 		VN_RELE(rootvp);
2174 	*vpp = vp;
2175 	return (e.error);
2176 }
2177 
2178 #ifdef DEBUG
2179 size_t r_path_memuse = 0;
2180 #endif
2181 
2182 /*
2183  * NFS client failover support
2184  *
2185  * sv4_free() frees the malloc'd portion of a "servinfo_t".
2186  */
2187 void
2188 sv4_free(servinfo4_t *svp)
2189 {
2190 	servinfo4_t *next;
2191 	struct knetconfig *knconf;
2192 
2193 	while (svp != NULL) {
2194 		next = svp->sv_next;
2195 		if (svp->sv_dhsec)
2196 			sec_clnt_freeinfo(svp->sv_dhsec);
2197 		if (svp->sv_secdata)
2198 			sec_clnt_freeinfo(svp->sv_secdata);
2199 		if (svp->sv_save_secinfo &&
2200 				svp->sv_save_secinfo != svp->sv_secinfo)
2201 			secinfo_free(svp->sv_save_secinfo);
2202 		if (svp->sv_secinfo)
2203 			secinfo_free(svp->sv_secinfo);
2204 		if (svp->sv_hostname && svp->sv_hostnamelen > 0)
2205 			kmem_free(svp->sv_hostname, svp->sv_hostnamelen);
2206 		knconf = svp->sv_knconf;
2207 		if (knconf != NULL) {
2208 			if (knconf->knc_protofmly != NULL)
2209 				kmem_free(knconf->knc_protofmly, KNC_STRSIZE);
2210 			if (knconf->knc_proto != NULL)
2211 				kmem_free(knconf->knc_proto, KNC_STRSIZE);
2212 			kmem_free(knconf, sizeof (*knconf));
2213 		}
2214 		knconf = svp->sv_origknconf;
2215 		if (knconf != NULL) {
2216 			if (knconf->knc_protofmly != NULL)
2217 				kmem_free(knconf->knc_protofmly, KNC_STRSIZE);
2218 			if (knconf->knc_proto != NULL)
2219 				kmem_free(knconf->knc_proto, KNC_STRSIZE);
2220 			kmem_free(knconf, sizeof (*knconf));
2221 		}
2222 		if (svp->sv_addr.buf != NULL && svp->sv_addr.maxlen != 0)
2223 			kmem_free(svp->sv_addr.buf, svp->sv_addr.maxlen);
2224 		if (svp->sv_path != NULL) {
2225 			kmem_free(svp->sv_path, svp->sv_pathlen);
2226 		}
2227 		nfs_rw_destroy(&svp->sv_lock);
2228 		kmem_free(svp, sizeof (*svp));
2229 		svp = next;
2230 	}
2231 }
2232 
2233 void
2234 nfs4_printfhandle(nfs4_fhandle_t *fhp)
2235 {
2236 	int *ip;
2237 	char *buf;
2238 	size_t bufsize;
2239 	char *cp;
2240 
2241 	/*
2242 	 * 13 == "(file handle:"
2243 	 * maximum of NFS_FHANDLE / sizeof (*ip) elements in fh_buf times
2244 	 *	1 == ' '
2245 	 *	8 == maximum strlen of "%x"
2246 	 * 3 == ")\n\0"
2247 	 */
2248 	bufsize = 13 + ((NFS_FHANDLE_LEN / sizeof (*ip)) * (1 + 8)) + 3;
2249 	buf = kmem_alloc(bufsize, KM_NOSLEEP);
2250 	if (buf == NULL)
2251 		return;
2252 
2253 	cp = buf;
2254 	(void) strcpy(cp, "(file handle:");
2255 	while (*cp != '\0')
2256 		cp++;
2257 	for (ip = (int *)fhp->fh_buf;
2258 	    ip < (int *)&fhp->fh_buf[fhp->fh_len];
2259 	    ip++) {
2260 		(void) sprintf(cp, " %x", *ip);
2261 		while (*cp != '\0')
2262 			cp++;
2263 	}
2264 	(void) strcpy(cp, ")\n");
2265 
2266 	zcmn_err(getzoneid(), CE_CONT, "%s", buf);
2267 
2268 	kmem_free(buf, bufsize);
2269 }
2270 
2271 /*
2272  * The NFSv4 readdir cache subsystem.
2273  *
2274  * We provide a set of interfaces to allow the rest of the system to utilize
2275  * a caching mechanism while encapsulating the details of the actual
2276  * implementation.  This should allow for better maintainability and
2277  * extensibilty by consolidating the implementation details in one location.
2278  */
2279 
2280 /*
2281  * Comparator used by AVL routines.
2282  */
2283 static int
2284 rddir4_cache_compar(const void *x, const void *y)
2285 {
2286 	rddir4_cache_impl *ai = (rddir4_cache_impl *)x;
2287 	rddir4_cache_impl *bi = (rddir4_cache_impl *)y;
2288 	rddir4_cache *a = &ai->rc;
2289 	rddir4_cache *b = &bi->rc;
2290 
2291 	if (a->nfs4_cookie == b->nfs4_cookie) {
2292 		if (a->buflen == b->buflen)
2293 			return (0);
2294 		if (a->buflen < b->buflen)
2295 			return (-1);
2296 		return (1);
2297 	}
2298 
2299 	if (a->nfs4_cookie < b->nfs4_cookie)
2300 			return (-1);
2301 
2302 	return (1);
2303 }
2304 
2305 /*
2306  * Allocate an opaque handle for the readdir cache.
2307  */
2308 void
2309 rddir4_cache_create(rnode4_t *rp)
2310 {
2311 	ASSERT(rp->r_dir == NULL);
2312 
2313 	rp->r_dir = kmem_alloc(sizeof (avl_tree_t), KM_SLEEP);
2314 
2315 	avl_create(rp->r_dir, rddir4_cache_compar, sizeof (rddir4_cache_impl),
2316 			offsetof(rddir4_cache_impl, tree));
2317 }
2318 
2319 /*
2320  *  Purge the cache of all cached readdir responses.
2321  */
2322 void
2323 rddir4_cache_purge(rnode4_t *rp)
2324 {
2325 	rddir4_cache_impl	*rdip;
2326 	rddir4_cache_impl	*nrdip;
2327 
2328 	ASSERT(MUTEX_HELD(&rp->r_statelock));
2329 
2330 	if (rp->r_dir == NULL)
2331 		return;
2332 
2333 	rdip = avl_first(rp->r_dir);
2334 
2335 	while (rdip != NULL) {
2336 		nrdip = AVL_NEXT(rp->r_dir, rdip);
2337 		avl_remove(rp->r_dir, rdip);
2338 		rdip->rc.flags &= ~RDDIRCACHED;
2339 		rddir4_cache_rele(rp, &rdip->rc);
2340 		rdip = nrdip;
2341 	}
2342 	ASSERT(avl_numnodes(rp->r_dir) == 0);
2343 }
2344 
2345 /*
2346  * Destroy the readdir cache.
2347  */
2348 void
2349 rddir4_cache_destroy(rnode4_t *rp)
2350 {
2351 	ASSERT(MUTEX_HELD(&rp->r_statelock));
2352 	if (rp->r_dir == NULL)
2353 		return;
2354 
2355 	rddir4_cache_purge(rp);
2356 	avl_destroy(rp->r_dir);
2357 	kmem_free(rp->r_dir, sizeof (avl_tree_t));
2358 	rp->r_dir = NULL;
2359 }
2360 
2361 /*
2362  * Locate a readdir response from the readdir cache.
2363  *
2364  * Return values:
2365  *
2366  * NULL - If there is an unrecoverable situation like the operation may have
2367  *	  been interrupted.
2368  *
2369  * rddir4_cache * - A pointer to a rddir4_cache is returned to the caller.
2370  *		    The flags are set approprately, such that the caller knows
2371  *		    what state the entry is in.
2372  */
2373 rddir4_cache *
2374 rddir4_cache_lookup(rnode4_t *rp, offset_t cookie, int count)
2375 {
2376 	rddir4_cache_impl	*rdip = NULL;
2377 	rddir4_cache_impl	srdip;
2378 	rddir4_cache		*srdc;
2379 	rddir4_cache		*rdc = NULL;
2380 	rddir4_cache		*nrdc = NULL;
2381 	avl_index_t		where;
2382 
2383 top:
2384 	ASSERT(nfs_rw_lock_held(&rp->r_rwlock, RW_READER));
2385 	ASSERT(MUTEX_HELD(&rp->r_statelock));
2386 	/*
2387 	 * Check to see if the readdir cache has been disabled.  If so, then
2388 	 * simply allocate an rddir4_cache entry and return it, since caching
2389 	 * operations do not apply.
2390 	 */
2391 	if (rp->r_dir == NULL) {
2392 		if (nrdc == NULL) {
2393 			/*
2394 			 * Drop the lock because we are doing a sleeping
2395 			 * allocation.
2396 			 */
2397 			mutex_exit(&rp->r_statelock);
2398 			rdc = rddir4_cache_alloc(KM_SLEEP);
2399 			rdc->nfs4_cookie = cookie;
2400 			rdc->buflen = count;
2401 			mutex_enter(&rp->r_statelock);
2402 			return (rdc);
2403 		}
2404 		return (nrdc);
2405 	}
2406 
2407 	srdc = &srdip.rc;
2408 	srdc->nfs4_cookie = cookie;
2409 	srdc->buflen = count;
2410 
2411 	rdip = avl_find(rp->r_dir, &srdip, &where);
2412 
2413 	/*
2414 	 * If we didn't find an entry then create one and insert it
2415 	 * into the cache.
2416 	 */
2417 	if (rdip == NULL) {
2418 		/*
2419 		 * Check for the case where we have made a second pass through
2420 		 * the cache due to a lockless allocation.  If we find that no
2421 		 * thread has already inserted this entry, do the insert now
2422 		 * and return.
2423 		 */
2424 		if (nrdc != NULL) {
2425 			avl_insert(rp->r_dir, nrdc->data, where);
2426 			nrdc->flags |= RDDIRCACHED;
2427 			rddir4_cache_hold(nrdc);
2428 			return (nrdc);
2429 		}
2430 
2431 #ifdef DEBUG
2432 		nfs4_readdir_cache_misses++;
2433 #endif
2434 		/*
2435 		 * First, try to allocate an entry without sleeping.  If that
2436 		 * fails then drop the lock and do a sleeping allocation.
2437 		 */
2438 		nrdc = rddir4_cache_alloc(KM_NOSLEEP);
2439 		if (nrdc != NULL) {
2440 			nrdc->nfs4_cookie = cookie;
2441 			nrdc->buflen = count;
2442 			avl_insert(rp->r_dir, nrdc->data, where);
2443 			nrdc->flags |= RDDIRCACHED;
2444 			rddir4_cache_hold(nrdc);
2445 			return (nrdc);
2446 		}
2447 
2448 		/*
2449 		 * Drop the lock and do a sleeping allocation.	We incur
2450 		 * additional overhead by having to search the cache again,
2451 		 * but this case should be rare.
2452 		 */
2453 		mutex_exit(&rp->r_statelock);
2454 		nrdc = rddir4_cache_alloc(KM_SLEEP);
2455 		nrdc->nfs4_cookie = cookie;
2456 		nrdc->buflen = count;
2457 		mutex_enter(&rp->r_statelock);
2458 		/*
2459 		 * We need to take another pass through the cache
2460 		 * since we dropped our lock to perform the alloc.
2461 		 * Another thread may have come by and inserted the
2462 		 * entry we are interested in.
2463 		 */
2464 		goto top;
2465 	}
2466 
2467 	/*
2468 	 * Check to see if we need to free our entry.  This can happen if
2469 	 * another thread came along beat us to the insert.  We can
2470 	 * safely call rddir4_cache_free directly because no other thread
2471 	 * would have a reference to this entry.
2472 	 */
2473 	if (nrdc != NULL)
2474 		rddir4_cache_free((rddir4_cache_impl *)nrdc->data);
2475 
2476 #ifdef DEBUG
2477 	nfs4_readdir_cache_hits++;
2478 #endif
2479 	/*
2480 	 * Found something.  Make sure it's ready to return.
2481 	 */
2482 	rdc = &rdip->rc;
2483 	rddir4_cache_hold(rdc);
2484 	/*
2485 	 * If the cache entry is in the process of being filled in, wait
2486 	 * until this completes.  The RDDIRWAIT bit is set to indicate that
2487 	 * someone is waiting and when the thread currently filling the entry
2488 	 * is done, it should do a cv_broadcast to wakeup all of the threads
2489 	 * waiting for it to finish. If the thread wakes up to find that
2490 	 * someone new is now trying to complete the the entry, go back
2491 	 * to sleep.
2492 	 */
2493 	while (rdc->flags & RDDIR) {
2494 		/*
2495 		 * The entry is not complete.
2496 		 */
2497 		nfs_rw_exit(&rp->r_rwlock);
2498 		rdc->flags |= RDDIRWAIT;
2499 #ifdef DEBUG
2500 		nfs4_readdir_cache_waits++;
2501 #endif
2502 		while (rdc->flags & RDDIRWAIT) {
2503 			if (!cv_wait_sig(&rdc->cv, &rp->r_statelock)) {
2504 				/*
2505 				 * We got interrupted, probably the user
2506 				 * typed ^C or an alarm fired.  We free the
2507 				 * new entry if we allocated one.
2508 				 */
2509 				rddir4_cache_rele(rp, rdc);
2510 				mutex_exit(&rp->r_statelock);
2511 				(void) nfs_rw_enter_sig(&rp->r_rwlock,
2512 					RW_READER, FALSE);
2513 				mutex_enter(&rp->r_statelock);
2514 				return (NULL);
2515 			}
2516 		}
2517 		mutex_exit(&rp->r_statelock);
2518 		(void) nfs_rw_enter_sig(&rp->r_rwlock,
2519 			RW_READER, FALSE);
2520 		mutex_enter(&rp->r_statelock);
2521 	}
2522 
2523 	/*
2524 	 * The entry we were waiting on may have been purged from
2525 	 * the cache and should no longer be used, release it and
2526 	 * start over.
2527 	 */
2528 	if (!(rdc->flags & RDDIRCACHED)) {
2529 		rddir4_cache_rele(rp, rdc);
2530 		goto top;
2531 	}
2532 
2533 	/*
2534 	 * The entry is completed.  Return it.
2535 	 */
2536 	return (rdc);
2537 }
2538 
2539 /*
2540  * Allocate a cache element and return it.  Can return NULL if memory is
2541  * low.
2542  */
2543 static rddir4_cache *
2544 rddir4_cache_alloc(int flags)
2545 {
2546 	rddir4_cache_impl	*rdip = NULL;
2547 	rddir4_cache		*rc = NULL;
2548 
2549 	rdip = kmem_alloc(sizeof (rddir4_cache_impl), flags);
2550 
2551 	if (rdip != NULL) {
2552 		rc = &rdip->rc;
2553 		rc->data = (void *)rdip;
2554 		rc->nfs4_cookie = 0;
2555 		rc->nfs4_ncookie = 0;
2556 		rc->entries = NULL;
2557 		rc->eof = 0;
2558 		rc->entlen = 0;
2559 		rc->buflen = 0;
2560 		rc->actlen = 0;
2561 		/*
2562 		 * A readdir is required so set the flag.
2563 		 */
2564 		rc->flags = RDDIRREQ;
2565 		cv_init(&rc->cv, NULL, CV_DEFAULT, NULL);
2566 		rc->error = 0;
2567 		mutex_init(&rdip->lock, NULL, MUTEX_DEFAULT, NULL);
2568 		rdip->count = 1;
2569 #ifdef DEBUG
2570 		atomic_add_64(&clstat4_debug.dirent.value.ui64, 1);
2571 #endif
2572 	}
2573 	return (rc);
2574 }
2575 
2576 /*
2577  * Increment the reference count to this cache element.
2578  */
2579 static void
2580 rddir4_cache_hold(rddir4_cache *rc)
2581 {
2582 	rddir4_cache_impl *rdip = (rddir4_cache_impl *)rc->data;
2583 
2584 	mutex_enter(&rdip->lock);
2585 	rdip->count++;
2586 	mutex_exit(&rdip->lock);
2587 }
2588 
2589 /*
2590  * Release a reference to this cache element.  If the count is zero then
2591  * free the element.
2592  */
2593 void
2594 rddir4_cache_rele(rnode4_t *rp, rddir4_cache *rdc)
2595 {
2596 	rddir4_cache_impl *rdip = (rddir4_cache_impl *)rdc->data;
2597 
2598 	ASSERT(MUTEX_HELD(&rp->r_statelock));
2599 
2600 	/*
2601 	 * Check to see if we have any waiters.  If so, we can wake them
2602 	 * so that they can proceed.
2603 	 */
2604 	if (rdc->flags & RDDIRWAIT) {
2605 		rdc->flags &= ~RDDIRWAIT;
2606 		cv_broadcast(&rdc->cv);
2607 	}
2608 
2609 	mutex_enter(&rdip->lock);
2610 	ASSERT(rdip->count > 0);
2611 	if (--rdip->count == 0) {
2612 		mutex_exit(&rdip->lock);
2613 		rddir4_cache_free(rdip);
2614 	} else
2615 		mutex_exit(&rdip->lock);
2616 }
2617 
2618 /*
2619  * Free a cache element.
2620  */
2621 static void
2622 rddir4_cache_free(rddir4_cache_impl *rdip)
2623 {
2624 	rddir4_cache *rc = &rdip->rc;
2625 
2626 #ifdef DEBUG
2627 	atomic_add_64(&clstat4_debug.dirent.value.ui64, -1);
2628 #endif
2629 	if (rc->entries != NULL)
2630 		kmem_free(rc->entries, rc->buflen);
2631 	cv_destroy(&rc->cv);
2632 	mutex_destroy(&rdip->lock);
2633 	kmem_free(rdip, sizeof (*rdip));
2634 }
2635 
2636 /*
2637  * Snapshot callback for nfs:0:nfs4_client as registered with the kstat
2638  * framework.
2639  */
2640 static int
2641 cl4_snapshot(kstat_t *ksp, void *buf, int rw)
2642 {
2643 	ksp->ks_snaptime = gethrtime();
2644 	if (rw == KSTAT_WRITE) {
2645 		bcopy(buf, ksp->ks_private, sizeof (clstat4_tmpl));
2646 #ifdef DEBUG
2647 		/*
2648 		 * Currently only the global zone can write to kstats, but we
2649 		 * add the check just for paranoia.
2650 		 */
2651 		if (INGLOBALZONE(curproc))
2652 		    bcopy((char *)buf + sizeof (clstat4_tmpl), &clstat4_debug,
2653 			    sizeof (clstat4_debug));
2654 #endif
2655 	} else {
2656 		bcopy(ksp->ks_private, buf, sizeof (clstat4_tmpl));
2657 #ifdef DEBUG
2658 		/*
2659 		 * If we're displaying the "global" debug kstat values, we
2660 		 * display them as-is to all zones since in fact they apply to
2661 		 * the system as a whole.
2662 		 */
2663 		bcopy(&clstat4_debug, (char *)buf + sizeof (clstat4_tmpl),
2664 		    sizeof (clstat4_debug));
2665 #endif
2666 	}
2667 	return (0);
2668 }
2669 
2670 
2671 
2672 /*
2673  * Zone support
2674  */
2675 static void *
2676 clinit4_zone(zoneid_t zoneid)
2677 {
2678 	kstat_t *nfs4_client_kstat;
2679 	struct nfs4_clnt *nfscl;
2680 	uint_t ndata;
2681 
2682 	nfscl = kmem_alloc(sizeof (*nfscl), KM_SLEEP);
2683 	mutex_init(&nfscl->nfscl_chtable4_lock, NULL, MUTEX_DEFAULT, NULL);
2684 	nfscl->nfscl_chtable4 = NULL;
2685 	nfscl->nfscl_zoneid = zoneid;
2686 
2687 	bcopy(&clstat4_tmpl, &nfscl->nfscl_stat, sizeof (clstat4_tmpl));
2688 	ndata = sizeof (clstat4_tmpl) / sizeof (kstat_named_t);
2689 #ifdef DEBUG
2690 	ndata += sizeof (clstat4_debug) / sizeof (kstat_named_t);
2691 #endif
2692 	if ((nfs4_client_kstat = kstat_create_zone("nfs", 0, "nfs4_client",
2693 	    "misc", KSTAT_TYPE_NAMED, ndata,
2694 	    KSTAT_FLAG_VIRTUAL | KSTAT_FLAG_WRITABLE, zoneid)) != NULL) {
2695 		nfs4_client_kstat->ks_private = &nfscl->nfscl_stat;
2696 		nfs4_client_kstat->ks_snapshot = cl4_snapshot;
2697 		kstat_install(nfs4_client_kstat);
2698 	}
2699 	mutex_enter(&nfs4_clnt_list_lock);
2700 	list_insert_head(&nfs4_clnt_list, nfscl);
2701 	mutex_exit(&nfs4_clnt_list_lock);
2702 	return (nfscl);
2703 }
2704 
2705 /*ARGSUSED*/
2706 static void
2707 clfini4_zone(zoneid_t zoneid, void *arg)
2708 {
2709 	struct nfs4_clnt *nfscl = arg;
2710 	chhead_t *chp, *next;
2711 
2712 	if (nfscl == NULL)
2713 		return;
2714 	mutex_enter(&nfs4_clnt_list_lock);
2715 	list_remove(&nfs4_clnt_list, nfscl);
2716 	mutex_exit(&nfs4_clnt_list_lock);
2717 	clreclaim4_zone(nfscl, 0);
2718 	for (chp = nfscl->nfscl_chtable4; chp != NULL; chp = next) {
2719 		ASSERT(chp->ch_list == NULL);
2720 		kmem_free(chp->ch_protofmly, strlen(chp->ch_protofmly) + 1);
2721 		next = chp->ch_next;
2722 		kmem_free(chp, sizeof (*chp));
2723 	}
2724 	kstat_delete_byname_zone("nfs", 0, "nfs4_client", zoneid);
2725 	mutex_destroy(&nfscl->nfscl_chtable4_lock);
2726 	kmem_free(nfscl, sizeof (*nfscl));
2727 }
2728 
2729 /*
2730  * Called by endpnt_destructor to make sure the client handles are
2731  * cleaned up before the RPC endpoints.  This becomes a no-op if
2732  * clfini_zone (above) is called first.  This function is needed
2733  * (rather than relying on clfini_zone to clean up) because the ZSD
2734  * callbacks have no ordering mechanism, so we have no way to ensure
2735  * that clfini_zone is called before endpnt_destructor.
2736  */
2737 void
2738 clcleanup4_zone(zoneid_t zoneid)
2739 {
2740 	struct nfs4_clnt *nfscl;
2741 
2742 	mutex_enter(&nfs4_clnt_list_lock);
2743 	nfscl = list_head(&nfs4_clnt_list);
2744 	for (; nfscl != NULL; nfscl = list_next(&nfs4_clnt_list, nfscl)) {
2745 		if (nfscl->nfscl_zoneid == zoneid) {
2746 			clreclaim4_zone(nfscl, 0);
2747 			break;
2748 		}
2749 	}
2750 	mutex_exit(&nfs4_clnt_list_lock);
2751 }
2752 
2753 int
2754 nfs4_subr_init(void)
2755 {
2756 	/*
2757 	 * Allocate and initialize the client handle cache
2758 	 */
2759 	chtab4_cache = kmem_cache_create("client_handle4_cache",
2760 		sizeof (struct chtab), 0, NULL, NULL, clreclaim4, NULL,
2761 		NULL, 0);
2762 
2763 	/*
2764 	 * Initialize the list of per-zone client handles (and associated data).
2765 	 * This needs to be done before we call zone_key_create().
2766 	 */
2767 	list_create(&nfs4_clnt_list, sizeof (struct nfs4_clnt),
2768 	    offsetof(struct nfs4_clnt, nfscl_node));
2769 
2770 	/*
2771 	 * Initialize the zone_key for per-zone client handle lists.
2772 	 */
2773 	zone_key_create(&nfs4clnt_zone_key, clinit4_zone, NULL, clfini4_zone);
2774 
2775 	if (nfs4err_delay_time == 0)
2776 		nfs4err_delay_time = NFS4ERR_DELAY_TIME;
2777 
2778 	return (0);
2779 }
2780 
2781 int
2782 nfs4_subr_fini(void)
2783 {
2784 	/*
2785 	 * Deallocate the client handle cache
2786 	 */
2787 	kmem_cache_destroy(chtab4_cache);
2788 
2789 	/*
2790 	 * Destroy the zone_key
2791 	 */
2792 	(void) zone_key_delete(nfs4clnt_zone_key);
2793 
2794 	return (0);
2795 }
2796 /*
2797  * Set or Clear direct I/O flag
2798  * VOP_RWLOCK() is held for write access to prevent a race condition
2799  * which would occur if a process is in the middle of a write when
2800  * directio flag gets set. It is possible that all pages may not get flushed.
2801  *
2802  * This is a copy of nfs_directio, changes here may need to be made
2803  * there and vice versa.
2804  */
2805 
2806 int
2807 nfs4_directio(vnode_t *vp, int cmd, cred_t *cr)
2808 {
2809 	int	error = 0;
2810 	rnode4_t *rp;
2811 
2812 	rp = VTOR4(vp);
2813 
2814 	if (cmd == DIRECTIO_ON) {
2815 
2816 		if (rp->r_flags & R4DIRECTIO)
2817 			return (0);
2818 
2819 		/*
2820 		 * Flush the page cache.
2821 		 */
2822 
2823 		(void) VOP_RWLOCK(vp, V_WRITELOCK_TRUE, NULL);
2824 
2825 		if (rp->r_flags & R4DIRECTIO) {
2826 			VOP_RWUNLOCK(vp, V_WRITELOCK_TRUE, NULL);
2827 			return (0);
2828 		}
2829 
2830 		if (nfs4_has_pages(vp) &&
2831 		    ((rp->r_flags & R4DIRTY) || rp->r_awcount > 0)) {
2832 			error = VOP_PUTPAGE(vp, (offset_t)0, (uint_t)0,
2833 			    B_INVAL, cr);
2834 			if (error) {
2835 				if (error == ENOSPC || error == EDQUOT) {
2836 					mutex_enter(&rp->r_statelock);
2837 					if (!rp->r_error)
2838 						rp->r_error = error;
2839 					mutex_exit(&rp->r_statelock);
2840 				}
2841 				VOP_RWUNLOCK(vp, V_WRITELOCK_TRUE, NULL);
2842 				return (error);
2843 			}
2844 		}
2845 
2846 		mutex_enter(&rp->r_statelock);
2847 		rp->r_flags |= R4DIRECTIO;
2848 		mutex_exit(&rp->r_statelock);
2849 		VOP_RWUNLOCK(vp, V_WRITELOCK_TRUE, NULL);
2850 		return (0);
2851 	}
2852 
2853 	if (cmd == DIRECTIO_OFF) {
2854 		mutex_enter(&rp->r_statelock);
2855 		rp->r_flags &= ~R4DIRECTIO;	/* disable direct mode */
2856 		mutex_exit(&rp->r_statelock);
2857 		return (0);
2858 	}
2859 
2860 	return (EINVAL);
2861 }
2862 
2863 /*
2864  * Return TRUE if the file has any pages.  Always go back to
2865  * the master vnode to check v_pages since none of the shadows
2866  * can have pages.
2867  */
2868 
2869 bool_t
2870 nfs4_has_pages(vnode_t *vp)
2871 {
2872 	rnode4_t *rp;
2873 
2874 	rp = VTOR4(vp);
2875 	if (IS_SHADOW(vp, rp))
2876 		vp = RTOV4(rp);	/* RTOV4 always gives the master */
2877 
2878 	return (vn_has_cached_data(vp));
2879 }
2880 
2881 /*
2882  * This table is used to determine whether the client should attempt
2883  * failover based on the clnt_stat value returned by CLNT_CALL.  The
2884  * clnt_stat is used as an index into the table.  If
2885  * the error value that corresponds to the clnt_stat value in the
2886  * table is non-zero, then that is the error to be returned AND
2887  * that signals that failover should be attempted.
2888  *
2889  * Special note: If the RPC_ values change, then direct indexing of the
2890  * table is no longer valid, but having the RPC_ values in the table
2891  * allow the functions to detect the change and issue a warning.
2892  * In this case, the code will always attempt failover as a defensive
2893  * measure.
2894  */
2895 
2896 static struct try_failover_tab {
2897 	enum clnt_stat	cstat;
2898 	int		error;
2899 } try_failover_table [] = {
2900 
2901 	RPC_SUCCESS,		0,
2902 	RPC_CANTENCODEARGS,	0,
2903 	RPC_CANTDECODERES,	0,
2904 	RPC_CANTSEND,		ECOMM,
2905 	RPC_CANTRECV,		ECOMM,
2906 	RPC_TIMEDOUT,		ETIMEDOUT,
2907 	RPC_VERSMISMATCH,	0,
2908 	RPC_AUTHERROR,		0,
2909 	RPC_PROGUNAVAIL,	0,
2910 	RPC_PROGVERSMISMATCH,	0,
2911 	RPC_PROCUNAVAIL,	0,
2912 	RPC_CANTDECODEARGS,	0,
2913 	RPC_SYSTEMERROR,	ENOSR,
2914 	RPC_UNKNOWNHOST,	EHOSTUNREACH,
2915 	RPC_RPCBFAILURE,	ENETUNREACH,
2916 	RPC_PROGNOTREGISTERED,	ECONNREFUSED,
2917 	RPC_FAILED,		ETIMEDOUT,
2918 	RPC_UNKNOWNPROTO,	EHOSTUNREACH,
2919 	RPC_INTR,		0,
2920 	RPC_UNKNOWNADDR,	EHOSTUNREACH,
2921 	RPC_TLIERROR,		0,
2922 	RPC_NOBROADCAST,	EHOSTUNREACH,
2923 	RPC_N2AXLATEFAILURE,	ECONNREFUSED,
2924 	RPC_UDERROR,		0,
2925 	RPC_INPROGRESS,		0,
2926 	RPC_STALERACHANDLE,	EINVAL,
2927 	RPC_CANTCONNECT,	ECONNREFUSED,
2928 	RPC_XPRTFAILED,		ECONNABORTED,
2929 	RPC_CANTCREATESTREAM,	ECONNREFUSED,
2930 	RPC_CANTSTORE,		ENOBUFS
2931 };
2932 
2933 /*
2934  * nfs4_try_failover - determine whether the client should
2935  * attempt failover based on the values stored in the nfs4_error_t.
2936  */
2937 int
2938 nfs4_try_failover(nfs4_error_t *ep)
2939 {
2940 	if (ep->error == ETIMEDOUT || ep->stat == NFS4ERR_RESOURCE)
2941 		return (TRUE);
2942 
2943 	if (ep->error && ep->rpc_status != RPC_SUCCESS)
2944 		return (try_failover(ep->rpc_status) != 0 ? TRUE : FALSE);
2945 
2946 	return (FALSE);
2947 }
2948 
2949 /*
2950  * try_failover - internal version of nfs4_try_failover, called
2951  * only by rfscall and aclcall.  Determine if failover is warranted
2952  * based on the clnt_stat and return the error number if it is.
2953  */
2954 static int
2955 try_failover(enum clnt_stat rpc_status)
2956 {
2957 	int err = 0;
2958 
2959 	if (rpc_status == RPC_SUCCESS)
2960 		return (0);
2961 
2962 #ifdef	DEBUG
2963 	if (rpc_status != 0 && nfs4_try_failover_any) {
2964 		err = ETIMEDOUT;
2965 		goto done;
2966 	}
2967 #endif
2968 	/*
2969 	 * The rpc status is used as an index into the table.
2970 	 * If the rpc status is outside of the range of the
2971 	 * table or if the rpc error numbers have been changed
2972 	 * since the table was constructed, then print a warning
2973 	 * (DEBUG only) and try failover anyway.  Otherwise, just
2974 	 * grab the resulting error number out of the table.
2975 	 */
2976 	if (rpc_status < RPC_SUCCESS || rpc_status >=
2977 	    sizeof (try_failover_table)/sizeof (try_failover_table[0]) ||
2978 	    try_failover_table[rpc_status].cstat != rpc_status) {
2979 
2980 		err = ETIMEDOUT;
2981 #ifdef	DEBUG
2982 		cmn_err(CE_NOTE, "try_failover: unexpected rpc error %d",
2983 			rpc_status);
2984 #endif
2985 	} else
2986 		err = try_failover_table[rpc_status].error;
2987 
2988 done:
2989 	if (rpc_status)
2990 		NFS4_DEBUG(nfs4_client_failover_debug, (CE_NOTE,
2991 			"nfs4_try_failover: %strying failover on error %d",
2992 			err ? "" : "NOT ", rpc_status));
2993 
2994 	return (err);
2995 }
2996 
2997 void
2998 nfs4_error_zinit(nfs4_error_t *ep)
2999 {
3000 	ep->error = 0;
3001 	ep->stat = NFS4_OK;
3002 	ep->rpc_status = RPC_SUCCESS;
3003 }
3004 
3005 void
3006 nfs4_error_init(nfs4_error_t *ep, int error)
3007 {
3008 	ep->error = error;
3009 	ep->stat = NFS4_OK;
3010 	ep->rpc_status = RPC_SUCCESS;
3011 }
3012 
3013 
3014 #ifdef DEBUG
3015 
3016 /*
3017  * Return a 16-bit hash for filehandle, stateid, clientid, owner.
3018  * use the same algorithm as for NFS v3.
3019  *
3020  */
3021 int
3022 hash16(void *p, int len)
3023 {
3024 	int i, rem;
3025 	uint_t *wp;
3026 	uint_t key = 0;
3027 
3028 	/* protect against non word aligned */
3029 	if ((rem = len & 3) != 0)
3030 		len &= ~3;
3031 
3032 	for (i = 0, wp = (uint_t *)p; i < len; i += 4, wp++) {
3033 		key ^= (*wp >> 16) ^ *wp;
3034 	}
3035 
3036 	/* hash left-over bytes */
3037 	for (i = 0; i < rem; i++)
3038 		key ^= *((uchar_t *)p + i);
3039 
3040 	return (key & 0xffff);
3041 }
3042 
3043 /*
3044  * rnode4info - return filehandle and path information for an rnode.
3045  * XXX MT issues: uses a single static buffer, no locking of path.
3046  */
3047 char *
3048 rnode4info(rnode4_t *rp)
3049 {
3050 	static char buf[80];
3051 	nfs4_fhandle_t fhandle;
3052 	char *path;
3053 	char *type;
3054 
3055 	if (rp == NULL)
3056 		return ("null");
3057 	if (rp->r_flags & R4ISXATTR)
3058 		type = "attr";
3059 	else if (RTOV4(rp)->v_flag & V_XATTRDIR)
3060 		type = "attrdir";
3061 	else if (RTOV4(rp)->v_flag & VROOT)
3062 		type = "root";
3063 	else if (RTOV4(rp)->v_type == VDIR)
3064 		type = "dir";
3065 	else if (RTOV4(rp)->v_type == VREG)
3066 		type = "file";
3067 	else
3068 		type = "other";
3069 	sfh4_copyval(rp->r_fh, &fhandle);
3070 	path = fn_path(rp->r_svnode.sv_name);
3071 	(void) snprintf(buf, 80, "$%p[%s], type=%s, flags=%04X, FH=%04X\n",
3072 	    (void *)rp, path, type, rp->r_flags,
3073 	    hash16((void *)&fhandle.fh_buf, fhandle.fh_len));
3074 	kmem_free(path, strlen(path)+1);
3075 	return (buf);
3076 }
3077 #endif
3078