xref: /titanic_52/usr/src/uts/common/fs/nfs/nfs4_dispatch.c (revision 1f03f0496b37f42bc76df041144b1cf7e47fcda4)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #include <sys/systm.h>
28 #include <sys/sdt.h>
29 #include <rpc/types.h>
30 #include <rpc/auth.h>
31 #include <rpc/auth_unix.h>
32 #include <rpc/auth_des.h>
33 #include <rpc/svc.h>
34 #include <rpc/xdr.h>
35 #include <nfs/nfs4.h>
36 #include <nfs/nfs_dispatch.h>
37 #include <nfs/nfs4_drc.h>
38 
39 #define	NFS4_MAX_MINOR_VERSION	0
40 
41 /*
42  * This is the duplicate request cache for NFSv4
43  */
44 rfs4_drc_t *nfs4_drc = NULL;
45 
46 /*
47  * The default size of the duplicate request cache
48  */
49 uint32_t nfs4_drc_max = 8 * 1024;
50 
51 /*
52  * The number of buckets we'd like to hash the
53  * replies into.. do not change this on the fly.
54  */
55 uint32_t nfs4_drc_hash = 541;
56 
57 static void rfs4_resource_err(struct svc_req *req, COMPOUND4args *argsp);
58 
59 /*
60  * Initialize a duplicate request cache.
61  */
62 rfs4_drc_t *
63 rfs4_init_drc(uint32_t drc_size, uint32_t drc_hash_size)
64 {
65 	rfs4_drc_t *drc;
66 	uint32_t   bki;
67 
68 	ASSERT(drc_size);
69 	ASSERT(drc_hash_size);
70 
71 	drc = kmem_alloc(sizeof (rfs4_drc_t), KM_SLEEP);
72 
73 	drc->max_size = drc_size;
74 	drc->in_use = 0;
75 
76 	mutex_init(&drc->lock, NULL, MUTEX_DEFAULT, NULL);
77 
78 	drc->dr_hash = drc_hash_size;
79 
80 	drc->dr_buckets = kmem_alloc(sizeof (list_t)*drc_hash_size, KM_SLEEP);
81 
82 	for (bki = 0; bki < drc_hash_size; bki++) {
83 		list_create(&drc->dr_buckets[bki], sizeof (rfs4_dupreq_t),
84 		    offsetof(rfs4_dupreq_t, dr_bkt_next));
85 	}
86 
87 	list_create(&(drc->dr_cache), sizeof (rfs4_dupreq_t),
88 	    offsetof(rfs4_dupreq_t, dr_next));
89 
90 	return (drc);
91 }
92 
93 /*
94  * Destroy a duplicate request cache.
95  */
96 void
97 rfs4_fini_drc(rfs4_drc_t *drc)
98 {
99 	rfs4_dupreq_t *drp, *drp_next;
100 
101 	ASSERT(drc);
102 
103 	/* iterate over the dr_cache and free the enties */
104 	for (drp = list_head(&(drc->dr_cache)); drp != NULL; drp = drp_next) {
105 
106 		if (drp->dr_state == NFS4_DUP_REPLAY)
107 			rfs4_compound_free(&(drp->dr_res));
108 
109 		if (drp->dr_addr.buf != NULL)
110 			kmem_free(drp->dr_addr.buf, drp->dr_addr.maxlen);
111 
112 		drp_next = list_next(&(drc->dr_cache), drp);
113 
114 		kmem_free(drp, sizeof (rfs4_dupreq_t));
115 	}
116 
117 	mutex_destroy(&drc->lock);
118 	kmem_free(drc->dr_buckets,
119 	    sizeof (list_t)*drc->dr_hash);
120 	kmem_free(drc, sizeof (rfs4_drc_t));
121 }
122 
123 /*
124  * rfs4_dr_chstate:
125  *
126  * Change the state of a rfs4_dupreq. If it's not in transition
127  * to the FREE state, return. If we are moving to the FREE state
128  * then we need to clean up the compound results and move the entry
129  * to the end of the list.
130  */
131 void
132 rfs4_dr_chstate(rfs4_dupreq_t *drp, int new_state)
133 {
134 	rfs4_drc_t *drc;
135 
136 	ASSERT(drp);
137 	ASSERT(drp->drc);
138 	ASSERT(drp->dr_bkt);
139 	ASSERT(MUTEX_HELD(&drp->drc->lock));
140 
141 	drp->dr_state = new_state;
142 
143 	if (new_state != NFS4_DUP_FREE)
144 		return;
145 
146 	drc = drp->drc;
147 
148 	/*
149 	 * Remove entry from the bucket and
150 	 * dr_cache list, free compound results.
151 	 */
152 	list_remove(drp->dr_bkt, drp);
153 	list_remove(&(drc->dr_cache), drp);
154 	rfs4_compound_free(&(drp->dr_res));
155 }
156 
157 /*
158  * rfs4_alloc_dr:
159  *
160  * Malloc a new one if we have not reached our maximum cache
161  * limit, otherwise pick an entry off the tail -- Use if it
162  * is marked as NFS4_DUP_FREE, or is an entry in the
163  * NFS4_DUP_REPLAY state.
164  */
165 rfs4_dupreq_t *
166 rfs4_alloc_dr(rfs4_drc_t *drc)
167 {
168 	rfs4_dupreq_t *drp_tail, *drp = NULL;
169 
170 	ASSERT(drc);
171 	ASSERT(MUTEX_HELD(&drc->lock));
172 
173 	/*
174 	 * Have we hit the cache limit yet ?
175 	 */
176 	if (drc->in_use < drc->max_size) {
177 		/*
178 		 * nope, so let's malloc a new one
179 		 */
180 		drp = kmem_zalloc(sizeof (rfs4_dupreq_t), KM_SLEEP);
181 		drp->drc = drc;
182 		drc->in_use++;
183 		DTRACE_PROBE1(nfss__i__drc_new, rfs4_dupreq_t *, drp);
184 		return (drp);
185 	}
186 
187 	/*
188 	 * Cache is all allocated now traverse the list
189 	 * backwards to find one we can reuse.
190 	 */
191 	for (drp_tail = list_tail(&drc->dr_cache); drp_tail != NULL;
192 	    drp_tail = list_prev(&drc->dr_cache, drp_tail)) {
193 
194 		switch (drp_tail->dr_state) {
195 
196 		case NFS4_DUP_FREE:
197 			list_remove(&(drc->dr_cache), drp_tail);
198 			DTRACE_PROBE1(nfss__i__drc_freeclaim,
199 			    rfs4_dupreq_t *, drp_tail);
200 			return (drp_tail);
201 			/* NOTREACHED */
202 
203 		case NFS4_DUP_REPLAY:
204 			/* grab it. */
205 			rfs4_dr_chstate(drp_tail, NFS4_DUP_FREE);
206 			DTRACE_PROBE1(nfss__i__drc_replayclaim,
207 			    rfs4_dupreq_t *, drp_tail);
208 			return (drp_tail);
209 			/* NOTREACHED */
210 		}
211 	}
212 	DTRACE_PROBE1(nfss__i__drc_full, rfs4_drc_t *, drc);
213 	return (NULL);
214 }
215 
216 /*
217  * rfs4_find_dr:
218  *
219  * Search for an entry in the duplicate request cache by
220  * calculating the hash index based on the XID, and examining
221  * the entries in the hash bucket. If we find a match, return.
222  * Once we have searched the bucket we call rfs4_alloc_dr() to
223  * allocate a new entry, or reuse one that is available.
224  */
225 int
226 rfs4_find_dr(struct svc_req *req, rfs4_drc_t *drc, rfs4_dupreq_t **dup)
227 {
228 
229 	uint32_t	the_xid;
230 	list_t		*dr_bkt;
231 	rfs4_dupreq_t	*drp;
232 	int		bktdex;
233 
234 	/*
235 	 * Get the XID, calculate the bucket and search to
236 	 * see if we need to replay from the cache.
237 	 */
238 	the_xid = req->rq_xprt->xp_xid;
239 	bktdex = the_xid % drc->dr_hash;
240 
241 	dr_bkt = (list_t *)
242 	    &(drc->dr_buckets[(the_xid % drc->dr_hash)]);
243 
244 	DTRACE_PROBE3(nfss__i__drc_bktdex,
245 	    int, bktdex,
246 	    uint32_t, the_xid,
247 	    list_t *, dr_bkt);
248 
249 	*dup = NULL;
250 
251 	mutex_enter(&drc->lock);
252 	/*
253 	 * Search the bucket for a matching xid and address.
254 	 */
255 	for (drp = list_head(dr_bkt); drp != NULL;
256 	    drp = list_next(dr_bkt, drp)) {
257 
258 		if (drp->dr_xid == the_xid &&
259 		    drp->dr_addr.len == req->rq_xprt->xp_rtaddr.len &&
260 		    bcmp((caddr_t)drp->dr_addr.buf,
261 		    (caddr_t)req->rq_xprt->xp_rtaddr.buf,
262 		    drp->dr_addr.len) == 0) {
263 
264 			/*
265 			 * Found a match so REPLAY the Reply
266 			 */
267 			if (drp->dr_state == NFS4_DUP_REPLAY) {
268 				rfs4_dr_chstate(drp, NFS4_DUP_INUSE);
269 				mutex_exit(&drc->lock);
270 				*dup = drp;
271 				DTRACE_PROBE1(nfss__i__drc_replay,
272 				    rfs4_dupreq_t *, drp);
273 				return (NFS4_DUP_REPLAY);
274 			}
275 
276 			/*
277 			 * This entry must be in transition, so return
278 			 * the 'pending' status.
279 			 */
280 			mutex_exit(&drc->lock);
281 			return (NFS4_DUP_PENDING);
282 		}
283 	}
284 
285 	drp = rfs4_alloc_dr(drc);
286 	mutex_exit(&drc->lock);
287 
288 	/*
289 	 * The DRC is full and all entries are in use. Upper function
290 	 * should error out this request and force the client to
291 	 * retransmit -- effectively this is a resource issue. NFSD
292 	 * threads tied up with native File System, or the cache size
293 	 * is too small for the server load.
294 	 */
295 	if (drp == NULL)
296 		return (NFS4_DUP_ERROR);
297 
298 	/*
299 	 * Init the state to NEW.
300 	 */
301 	drp->dr_state = NFS4_DUP_NEW;
302 
303 	/*
304 	 * If needed, resize the address buffer
305 	 */
306 	if (drp->dr_addr.maxlen < req->rq_xprt->xp_rtaddr.len) {
307 		if (drp->dr_addr.buf != NULL)
308 			kmem_free(drp->dr_addr.buf, drp->dr_addr.maxlen);
309 		drp->dr_addr.maxlen = req->rq_xprt->xp_rtaddr.len;
310 		drp->dr_addr.buf = kmem_alloc(drp->dr_addr.maxlen, KM_NOSLEEP);
311 		if (drp->dr_addr.buf == NULL) {
312 			/*
313 			 * If the malloc fails, mark the entry
314 			 * as free and put on the tail.
315 			 */
316 			drp->dr_addr.maxlen = 0;
317 			drp->dr_state = NFS4_DUP_FREE;
318 			mutex_enter(&drc->lock);
319 			list_insert_tail(&(drc->dr_cache), drp);
320 			mutex_exit(&drc->lock);
321 			return (NFS4_DUP_ERROR);
322 		}
323 	}
324 
325 
326 	/*
327 	 * Copy the address.
328 	 */
329 	drp->dr_addr.len = req->rq_xprt->xp_rtaddr.len;
330 
331 	bcopy((caddr_t)req->rq_xprt->xp_rtaddr.buf,
332 	    (caddr_t)drp->dr_addr.buf,
333 	    drp->dr_addr.len);
334 
335 	drp->dr_xid = the_xid;
336 	drp->dr_bkt = dr_bkt;
337 
338 	/*
339 	 * Insert at the head of the bucket and
340 	 * the drc lists..
341 	 */
342 	mutex_enter(&drc->lock);
343 	list_insert_head(&drc->dr_cache, drp);
344 	list_insert_head(dr_bkt, drp);
345 	mutex_exit(&drc->lock);
346 
347 	*dup = drp;
348 
349 	return (NFS4_DUP_NEW);
350 }
351 
352 /*
353  *
354  * This function handles the duplicate request cache,
355  * NULL_PROC and COMPOUND procedure calls for NFSv4;
356  *
357  * Passed into this function are:-
358  *
359  * 	disp	A pointer to our dispatch table entry
360  * 	req	The request to process
361  * 	xprt	The server transport handle
362  * 	ap	A pointer to the arguments
363  *
364  *
365  * When appropriate this function is responsible for inserting
366  * the reply into the duplicate cache or replaying an existing
367  * cached reply.
368  *
369  * dr_stat 	reflects the state of the duplicate request that
370  * 		has been inserted into or retrieved from the cache
371  *
372  * drp		is the duplicate request entry
373  *
374  */
375 int
376 rfs4_dispatch(struct rpcdisp *disp, struct svc_req *req,
377 		SVCXPRT *xprt, char *ap)
378 {
379 
380 	COMPOUND4res	 res_buf;
381 	COMPOUND4res	*rbp;
382 	COMPOUND4args	*cap;
383 	cred_t		*cr = NULL;
384 	int		 error = 0;
385 	int		 dis_flags = 0;
386 	int		 dr_stat = NFS4_NOT_DUP;
387 	rfs4_dupreq_t	*drp = NULL;
388 	int		 rv;
389 
390 	ASSERT(disp);
391 
392 	/*
393 	 * Short circuit the RPC_NULL proc.
394 	 */
395 	if (disp->dis_proc == rpc_null) {
396 		DTRACE_NFSV4_1(null__start, struct svc_req *, req);
397 		if (!svc_sendreply(xprt, xdr_void, NULL)) {
398 			DTRACE_NFSV4_1(null__done, struct svc_req *, req);
399 			svcerr_systemerr(xprt);
400 			return (1);
401 		}
402 		DTRACE_NFSV4_1(null__done, struct svc_req *, req);
403 		return (0);
404 	}
405 
406 	/* Only NFSv4 Compounds from this point onward */
407 
408 	rbp = &res_buf;
409 	cap = (COMPOUND4args *)ap;
410 
411 	/*
412 	 * Figure out the disposition of the whole COMPOUND
413 	 * and record it's IDEMPOTENTCY.
414 	 */
415 	rfs4_compound_flagproc(cap, &dis_flags);
416 
417 	/*
418 	 * If NON-IDEMPOTENT then we need to figure out if this
419 	 * request can be replied from the duplicate cache.
420 	 *
421 	 * If this is a new request then we need to insert the
422 	 * reply into the duplicate cache.
423 	 */
424 	if (!(dis_flags & RPC_IDEMPOTENT)) {
425 		/* look for a replay from the cache or allocate */
426 		dr_stat = rfs4_find_dr(req, nfs4_drc, &drp);
427 
428 		switch (dr_stat) {
429 
430 		case NFS4_DUP_ERROR:
431 			rfs4_resource_err(req, cap);
432 			return (1);
433 			/* NOTREACHED */
434 
435 		case NFS4_DUP_PENDING:
436 			/*
437 			 * reply has previously been inserted into the
438 			 * duplicate cache, however the reply has
439 			 * not yet been sent via svc_sendreply()
440 			 */
441 			return (1);
442 			/* NOTREACHED */
443 
444 		case NFS4_DUP_NEW:
445 			curthread->t_flag |= T_DONTPEND;
446 			/* NON-IDEMPOTENT proc call */
447 			rfs4_compound(cap, rbp, NULL, req, cr, &rv);
448 			curthread->t_flag &= ~T_DONTPEND;
449 
450 			if (rv)		/* short ckt sendreply on error */
451 				return (rv);
452 
453 			/*
454 			 * dr_res must be initialized before calling
455 			 * rfs4_dr_chstate (it frees the reply).
456 			 */
457 			drp->dr_res = res_buf;
458 			if (curthread->t_flag & T_WOULDBLOCK) {
459 				curthread->t_flag &= ~T_WOULDBLOCK;
460 				/*
461 				 * mark this entry as FREE and plop
462 				 * on the end of the cache list
463 				 */
464 				mutex_enter(&drp->drc->lock);
465 				rfs4_dr_chstate(drp, NFS4_DUP_FREE);
466 				list_insert_tail(&(drp->drc->dr_cache), drp);
467 				mutex_exit(&drp->drc->lock);
468 				return (1);
469 			}
470 			break;
471 
472 		case NFS4_DUP_REPLAY:
473 			/* replay from the cache */
474 			rbp = &(drp->dr_res);
475 			break;
476 		}
477 	} else {
478 		curthread->t_flag |= T_DONTPEND;
479 		/* IDEMPOTENT proc call */
480 		rfs4_compound(cap, rbp, NULL, req, cr, &rv);
481 		curthread->t_flag &= ~T_DONTPEND;
482 
483 		if (rv)		/* short ckt sendreply on error */
484 			return (rv);
485 
486 		if (curthread->t_flag & T_WOULDBLOCK) {
487 			curthread->t_flag &= ~T_WOULDBLOCK;
488 			return (1);
489 		}
490 	}
491 
492 	/*
493 	 * Send out the replayed reply or the 'real' one.
494 	 */
495 	if (!svc_sendreply(xprt,  xdr_COMPOUND4res_srv, (char *)rbp)) {
496 		DTRACE_PROBE2(nfss__e__dispatch_sendfail,
497 		    struct svc_req *, xprt,
498 		    char *, rbp);
499 		svcerr_systemerr(xprt);
500 		error++;
501 	}
502 
503 	/*
504 	 * If this reply was just inserted into the duplicate cache
505 	 * or it was replayed from the dup cache; (re)mark it as
506 	 * available for replay
507 	 *
508 	 * At first glance, this 'if' statement seems a little strange;
509 	 * testing for NFS4_DUP_REPLAY, and then calling...
510 	 *
511 	 *	rfs4_dr_chatate(NFS4_DUP_REPLAY)
512 	 *
513 	 * ... but notice that we are checking dr_stat, and not the
514 	 * state of the entry itself, the entry will be NFS4_DUP_INUSE,
515 	 * we do that so that we know not to prematurely reap it whilst
516 	 * we resent it to the client.
517 	 *
518 	 */
519 	if (dr_stat == NFS4_DUP_NEW || dr_stat == NFS4_DUP_REPLAY) {
520 		mutex_enter(&drp->drc->lock);
521 		rfs4_dr_chstate(drp, NFS4_DUP_REPLAY);
522 		mutex_exit(&drp->drc->lock);
523 	} else if (dr_stat == NFS4_NOT_DUP) {
524 		rfs4_compound_free(rbp);
525 	}
526 
527 	return (error);
528 }
529 
530 bool_t
531 rfs4_minorvers_mismatch(struct svc_req *req, SVCXPRT *xprt, void *args)
532 {
533 	COMPOUND4args *argsp;
534 	COMPOUND4res res_buf, *resp;
535 
536 	if (req->rq_vers != 4)
537 		return (FALSE);
538 
539 	argsp = (COMPOUND4args *)args;
540 
541 	if (argsp->minorversion <= NFS4_MAX_MINOR_VERSION)
542 		return (FALSE);
543 
544 	resp = &res_buf;
545 
546 	/*
547 	 * Form a reply tag by copying over the reqeuest tag.
548 	 */
549 	resp->tag.utf8string_val =
550 	    kmem_alloc(argsp->tag.utf8string_len, KM_SLEEP);
551 	resp->tag.utf8string_len = argsp->tag.utf8string_len;
552 	bcopy(argsp->tag.utf8string_val, resp->tag.utf8string_val,
553 	    resp->tag.utf8string_len);
554 	resp->array_len = 0;
555 	resp->array = NULL;
556 	resp->status = NFS4ERR_MINOR_VERS_MISMATCH;
557 	if (!svc_sendreply(xprt,  xdr_COMPOUND4res_srv, (char *)resp)) {
558 		DTRACE_PROBE2(nfss__e__minorvers_mismatch,
559 		    SVCXPRT *, xprt, char *, resp);
560 		svcerr_systemerr(xprt);
561 	}
562 	rfs4_compound_free(resp);
563 	return (TRUE);
564 }
565 
566 void
567 rfs4_resource_err(struct svc_req *req, COMPOUND4args *argsp)
568 {
569 	COMPOUND4res res_buf, *rbp;
570 	nfs_resop4 *resop;
571 	PUTFH4res *resp;
572 
573 	rbp = &res_buf;
574 
575 	/*
576 	 * Form a reply tag by copying over the request tag.
577 	 */
578 	rbp->tag.utf8string_val =
579 	    kmem_alloc(argsp->tag.utf8string_len, KM_SLEEP);
580 	rbp->tag.utf8string_len = argsp->tag.utf8string_len;
581 	bcopy(argsp->tag.utf8string_val, rbp->tag.utf8string_val,
582 	    rbp->tag.utf8string_len);
583 
584 	rbp->array_len = 1;
585 	rbp->array = kmem_zalloc(rbp->array_len * sizeof (nfs_resop4),
586 	    KM_SLEEP);
587 	resop = &rbp->array[0];
588 	resop->resop = argsp->array[0].argop;	/* copy first op over */
589 
590 	/* Any op will do, just need to access status field */
591 	resp = &resop->nfs_resop4_u.opputfh;
592 
593 	/*
594 	 * NFS4ERR_RESOURCE is allowed for all ops, except OP_ILLEGAL.
595 	 * Note that all op numbers in the compound array were already
596 	 * validated by the XDR decoder (xdr_COMPOUND4args_srv()).
597 	 */
598 	resp->status = (resop->resop == OP_ILLEGAL ?
599 	    NFS4ERR_OP_ILLEGAL : NFS4ERR_RESOURCE);
600 
601 	/* compound status is same as first op status */
602 	rbp->status = resp->status;
603 
604 	if (!svc_sendreply(req->rq_xprt, xdr_COMPOUND4res_srv, (char *)rbp)) {
605 		DTRACE_PROBE2(nfss__rsrc_err__sendfail,
606 		    struct svc_req *, req->rq_xprt, char *, rbp);
607 		svcerr_systemerr(req->rq_xprt);
608 	}
609 
610 	UTF8STRING_FREE(rbp->tag);
611 	kmem_free(rbp->array, rbp->array_len * sizeof (nfs_resop4));
612 }
613