1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License, Version 1.0 only 6 * (the "License"). You may not use this file except in compliance 7 * with the License. 8 * 9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 10 * or http://www.opensolaris.org/os/licensing. 11 * See the License for the specific language governing permissions 12 * and limitations under the License. 13 * 14 * When distributing Covered Code, include this CDDL HEADER in each 15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 16 * If applicable, add the following below this CDDL HEADER, with the 17 * fields enclosed by brackets "[]" replaced with your own identifying 18 * information: Portions Copyright [yyyy] [name of copyright owner] 19 * 20 * CDDL HEADER END 21 */ 22 /* 23 * Copyright 2004 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 /* 28 * Copyright (c) 1983,1984,1985,1986,1987,1988,1989 AT&T. 29 * All rights reserved. 30 */ 31 32 #pragma ident "%Z%%M% %I% %E% SMI" 33 34 #include <sys/param.h> 35 #include <sys/types.h> 36 #include <sys/systm.h> 37 #include <sys/cred.h> 38 #include <sys/vfs.h> 39 #include <sys/vnode.h> 40 #include <sys/pathname.h> 41 #include <sys/sysmacros.h> 42 #include <sys/kmem.h> 43 #include <sys/mkdev.h> 44 #include <sys/mount.h> 45 #include <sys/mntent.h> 46 #include <sys/statvfs.h> 47 #include <sys/errno.h> 48 #include <sys/debug.h> 49 #include <sys/cmn_err.h> 50 #include <sys/utsname.h> 51 #include <sys/bootconf.h> 52 #include <sys/modctl.h> 53 #include <sys/acl.h> 54 #include <sys/flock.h> 55 #include <sys/policy.h> 56 #include <sys/zone.h> 57 #include <sys/class.h> 58 #include <sys/socket.h> 59 #include <sys/netconfig.h> 60 61 #include <rpc/types.h> 62 #include <rpc/auth.h> 63 #include <rpc/clnt.h> 64 65 #include <nfs/nfs.h> 66 #include <nfs/nfs_clnt.h> 67 #include <nfs/rnode.h> 68 #include <nfs/mount.h> 69 #include <nfs/nfs_acl.h> 70 71 #include <fs/fs_subr.h> 72 73 /* 74 * From rpcsec module (common/rpcsec). 75 */ 76 extern int sec_clnt_loadinfo(struct sec_data *, struct sec_data **, model_t); 77 extern void sec_clnt_freeinfo(struct sec_data *); 78 79 /* 80 * The order and contents of this structure must be kept in sync with that of 81 * rfsreqcnt_v3_tmpl in nfs_stats.c 82 */ 83 static char *rfsnames_v3[] = { 84 "null", "getattr", "setattr", "lookup", "access", "readlink", "read", 85 "write", "create", "mkdir", "symlink", "mknod", "remove", "rmdir", 86 "rename", "link", "readdir", "readdirplus", "fsstat", "fsinfo", 87 "pathconf", "commit" 88 }; 89 90 /* 91 * This table maps from NFS protocol number into call type. 92 * Zero means a "Lookup" type call 93 * One means a "Read" type call 94 * Two means a "Write" type call 95 * This is used to select a default time-out. 96 */ 97 static uchar_t call_type_v3[] = { 98 0, 0, 1, 0, 0, 0, 1, 99 2, 2, 2, 2, 2, 2, 2, 100 2, 2, 1, 2, 0, 0, 0, 101 2 }; 102 103 /* 104 * Similar table, but to determine which timer to use 105 * (only real reads and writes!) 106 */ 107 static uchar_t timer_type_v3[] = { 108 0, 0, 0, 0, 0, 0, 1, 109 2, 0, 0, 0, 0, 0, 0, 110 0, 0, 1, 1, 0, 0, 0, 111 0 }; 112 113 /* 114 * This table maps from NFS protocol number into a call type 115 * for the semisoft mount option. 116 * Zero means do not repeat operation. 117 * One means repeat. 118 */ 119 static uchar_t ss_call_type_v3[] = { 120 0, 0, 1, 0, 0, 0, 0, 121 1, 1, 1, 1, 1, 1, 1, 122 1, 1, 0, 0, 0, 0, 0, 123 1 }; 124 125 /* 126 * nfs3 vfs operations. 127 */ 128 static int nfs3_mount(vfs_t *, vnode_t *, struct mounta *, cred_t *); 129 static int nfs3_unmount(vfs_t *, int, cred_t *); 130 static int nfs3_root(vfs_t *, vnode_t **); 131 static int nfs3_statvfs(vfs_t *, struct statvfs64 *); 132 static int nfs3_sync(vfs_t *, short, cred_t *); 133 static int nfs3_vget(vfs_t *, vnode_t **, fid_t *); 134 static int nfs3_mountroot(vfs_t *, whymountroot_t); 135 static void nfs3_freevfs(vfs_t *); 136 137 static int nfs3rootvp(vnode_t **, vfs_t *, struct servinfo *, 138 int, cred_t *, zone_t *); 139 140 /* 141 * Initialize the vfs structure 142 */ 143 144 static int nfs3fstyp; 145 vfsops_t *nfs3_vfsops; 146 147 /* 148 * Debug variable to check for rdma based 149 * transport startup and cleanup. Controlled 150 * through /etc/system. Off by default. 151 */ 152 extern int rdma_debug; 153 154 int 155 nfs3init(int fstyp, char *name) 156 { 157 static const fs_operation_def_t nfs3_vfsops_template[] = { 158 VFSNAME_MOUNT, nfs3_mount, 159 VFSNAME_UNMOUNT, nfs3_unmount, 160 VFSNAME_ROOT, nfs3_root, 161 VFSNAME_STATVFS, nfs3_statvfs, 162 VFSNAME_SYNC, (fs_generic_func_p) nfs3_sync, 163 VFSNAME_VGET, nfs3_vget, 164 VFSNAME_MOUNTROOT, nfs3_mountroot, 165 VFSNAME_FREEVFS, (fs_generic_func_p)nfs3_freevfs, 166 NULL, NULL 167 }; 168 int error; 169 170 error = vfs_setfsops(fstyp, nfs3_vfsops_template, &nfs3_vfsops); 171 if (error != 0) { 172 zcmn_err(GLOBAL_ZONEID, CE_WARN, 173 "nfs3init: bad vfs ops template"); 174 return (error); 175 } 176 177 error = vn_make_ops(name, nfs3_vnodeops_template, &nfs3_vnodeops); 178 if (error != 0) { 179 (void) vfs_freevfsops_by_type(fstyp); 180 zcmn_err(GLOBAL_ZONEID, CE_WARN, 181 "nfs3init: bad vnode ops template"); 182 return (error); 183 } 184 185 nfs3fstyp = fstyp; 186 187 return (0); 188 } 189 190 void 191 nfs3fini(void) 192 { 193 } 194 195 /* 196 * nfs mount vfsop 197 * Set up mount info record and attach it to vfs struct. 198 */ 199 static int 200 nfs3_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr) 201 { 202 char *data = uap->dataptr; 203 int error; 204 vnode_t *rtvp; /* the server's root */ 205 mntinfo_t *mi; /* mount info, pointed at by vfs */ 206 size_t hlen; /* length of hostname */ 207 size_t nlen; /* length of netname */ 208 char netname[SYS_NMLN]; /* server's netname */ 209 struct netbuf addr; /* server's address */ 210 struct netbuf syncaddr; /* AUTH_DES time sync addr */ 211 struct knetconfig *knconf; /* transport knetconfig structure */ 212 struct knetconfig *rdma_knconf; /* rdma transport structure */ 213 rnode_t *rp; 214 struct servinfo *svp; /* nfs server info */ 215 struct servinfo *svp_tail = NULL; /* previous nfs server info */ 216 struct servinfo *svp_head; /* first nfs server info */ 217 struct servinfo *svp_2ndlast; /* 2nd last in server info list */ 218 struct sec_data *secdata; /* security data */ 219 STRUCT_DECL(nfs_args, args); /* nfs mount arguments */ 220 STRUCT_DECL(knetconfig, knconf_tmp); 221 STRUCT_DECL(netbuf, addr_tmp); 222 int flags, addr_type; 223 char *p, *pf; 224 zone_t *zone = curproc->p_zone; 225 226 if ((error = secpolicy_fs_mount(cr, mvp, vfsp)) != 0) 227 return (EPERM); 228 229 if (mvp->v_type != VDIR) 230 return (ENOTDIR); 231 232 /* 233 * get arguments 234 * 235 * nfs_args is now versioned and is extensible, so 236 * uap->datalen might be different from sizeof (args) 237 * in a compatible situation. 238 */ 239 more: 240 STRUCT_INIT(args, get_udatamodel()); 241 bzero(STRUCT_BUF(args), SIZEOF_STRUCT(nfs_args, DATAMODEL_NATIVE)); 242 if (copyin(data, STRUCT_BUF(args), MIN(uap->datalen, 243 STRUCT_SIZE(args)))) 244 return (EFAULT); 245 246 flags = STRUCT_FGET(args, flags); 247 248 if (uap->flags & MS_REMOUNT) { 249 size_t n; 250 char name[FSTYPSZ]; 251 252 if (uap->flags & MS_SYSSPACE) 253 error = copystr(uap->fstype, name, FSTYPSZ, &n); 254 else 255 error = copyinstr(uap->fstype, name, FSTYPSZ, &n); 256 257 if (error) { 258 if (error == ENAMETOOLONG) 259 return (EINVAL); 260 return (error); 261 } 262 263 /* 264 * This check is to ensure that the request is a 265 * genuine nfs remount request. 266 */ 267 268 if (strncmp(name, "nfs", 3) != 0) 269 return (EINVAL); 270 271 /* 272 * If the request changes the locking type, disallow the 273 * remount, 274 * because it's questionable whether we can transfer the 275 * locking state correctly. 276 */ 277 278 if ((mi = VFTOMI(vfsp)) != NULL) { 279 uint_t new_mi_llock; 280 uint_t old_mi_llock; 281 282 new_mi_llock = (flags & NFSMNT_LLOCK) ? 1 : 0; 283 old_mi_llock = (mi->mi_flags & MI_LLOCK) ? 1 : 0; 284 if (old_mi_llock != new_mi_llock) 285 return (EBUSY); 286 } 287 return (0); 288 } 289 290 mutex_enter(&mvp->v_lock); 291 if (!(uap->flags & MS_OVERLAY) && 292 (mvp->v_count != 1 || (mvp->v_flag & VROOT))) { 293 mutex_exit(&mvp->v_lock); 294 return (EBUSY); 295 } 296 mutex_exit(&mvp->v_lock); 297 298 /* make sure things are zeroed for errout: */ 299 rtvp = NULL; 300 mi = NULL; 301 addr.buf = NULL; 302 syncaddr.buf = NULL; 303 secdata = NULL; 304 305 /* 306 * A valid knetconfig structure is required. 307 */ 308 if (!(flags & NFSMNT_KNCONF)) 309 return (EINVAL); 310 311 /* 312 * Allocate a servinfo struct. 313 */ 314 svp = kmem_zalloc(sizeof (*svp), KM_SLEEP); 315 mutex_init(&svp->sv_lock, NULL, MUTEX_DEFAULT, NULL); 316 if (svp_tail) { 317 svp_2ndlast = svp_tail; 318 svp_tail->sv_next = svp; 319 } else { 320 svp_head = svp; 321 svp_2ndlast = svp; 322 } 323 324 svp_tail = svp; 325 326 /* 327 * Allocate space for a knetconfig structure and 328 * its strings and copy in from user-land. 329 */ 330 knconf = kmem_zalloc(sizeof (*knconf), KM_SLEEP); 331 svp->sv_knconf = knconf; 332 STRUCT_INIT(knconf_tmp, get_udatamodel()); 333 if (copyin(STRUCT_FGETP(args, knconf), STRUCT_BUF(knconf_tmp), 334 STRUCT_SIZE(knconf_tmp))) { 335 sv_free(svp_head); 336 return (EFAULT); 337 } 338 339 knconf->knc_semantics = STRUCT_FGET(knconf_tmp, knc_semantics); 340 knconf->knc_protofmly = STRUCT_FGETP(knconf_tmp, knc_protofmly); 341 knconf->knc_proto = STRUCT_FGETP(knconf_tmp, knc_proto); 342 if (get_udatamodel() != DATAMODEL_LP64) { 343 knconf->knc_rdev = expldev(STRUCT_FGET(knconf_tmp, knc_rdev)); 344 } else { 345 knconf->knc_rdev = STRUCT_FGET(knconf_tmp, knc_rdev); 346 } 347 348 pf = kmem_alloc(KNC_STRSIZE, KM_SLEEP); 349 p = kmem_alloc(KNC_STRSIZE, KM_SLEEP); 350 error = copyinstr(knconf->knc_protofmly, pf, KNC_STRSIZE, NULL); 351 if (error) { 352 kmem_free(pf, KNC_STRSIZE); 353 kmem_free(p, KNC_STRSIZE); 354 sv_free(svp_head); 355 return (error); 356 } 357 error = copyinstr(knconf->knc_proto, p, KNC_STRSIZE, NULL); 358 if (error) { 359 kmem_free(pf, KNC_STRSIZE); 360 kmem_free(p, KNC_STRSIZE); 361 sv_free(svp_head); 362 return (error); 363 } 364 knconf->knc_protofmly = pf; 365 knconf->knc_proto = p; 366 367 /* 368 * Get server address 369 */ 370 STRUCT_INIT(addr_tmp, get_udatamodel()); 371 if (copyin(STRUCT_FGETP(args, addr), STRUCT_BUF(addr_tmp), 372 STRUCT_SIZE(addr_tmp))) { 373 addr.buf = NULL; 374 error = EFAULT; 375 } else { 376 char *userbufptr; 377 378 userbufptr = addr.buf = STRUCT_FGETP(addr_tmp, buf); 379 addr.len = STRUCT_FGET(addr_tmp, len); 380 addr.buf = kmem_alloc(addr.len, KM_SLEEP); 381 addr.maxlen = addr.len; 382 if (copyin(userbufptr, addr.buf, addr.len)) 383 error = EFAULT; 384 } 385 svp->sv_addr = addr; 386 if (error) 387 goto errout; 388 389 /* 390 * Get the root fhandle 391 */ 392 if (copyin(STRUCT_FGETP(args, fh), &svp->sv_fhandle, 393 sizeof (svp->sv_fhandle))) { 394 error = EFAULT; 395 goto errout; 396 } 397 398 /* 399 * Check the root fhandle length 400 */ 401 if (svp->sv_fhandle.fh_len > NFS3_FHSIZE) { 402 error = EINVAL; 403 #ifdef DEBUG 404 zcmn_err(getzoneid(), CE_WARN, 405 "nfs3_mount: got an invalid fhandle. fh_len = %d", 406 svp->sv_fhandle.fh_len); 407 svp->sv_fhandle.fh_len = NFS_FHANDLE_LEN; 408 nfs_printfhandle(&svp->sv_fhandle); 409 #endif 410 goto errout; 411 } 412 413 /* 414 * Get server's hostname 415 */ 416 if (flags & NFSMNT_HOSTNAME) { 417 error = copyinstr(STRUCT_FGETP(args, hostname), 418 netname, sizeof (netname), &hlen); 419 if (error) 420 goto errout; 421 } else { 422 char *p = "unknown-host"; 423 hlen = strlen(p) + 1; 424 (void) strcpy(netname, p); 425 } 426 svp->sv_hostnamelen = hlen; 427 svp->sv_hostname = kmem_alloc(svp->sv_hostnamelen, KM_SLEEP); 428 (void) strcpy(svp->sv_hostname, netname); 429 430 /* 431 * RDMA MOUNT SUPPORT FOR NFS v3: 432 * Establish, is it possible to use RDMA, if so overload the 433 * knconf with rdma specific knconf and free the orignal. 434 */ 435 if ((flags & NFSMNT_TRYRDMA) || (flags & NFSMNT_DORDMA)) { 436 /* 437 * Determine the addr type for RDMA, IPv4 or v6. 438 */ 439 if (strcmp(svp->sv_knconf->knc_protofmly, NC_INET) == 0) 440 addr_type = AF_INET; 441 else if (strcmp(svp->sv_knconf->knc_protofmly, NC_INET6) == 0) 442 addr_type = AF_INET6; 443 444 if (rdma_reachable(addr_type, &svp->sv_addr, 445 &rdma_knconf) == 0) { 446 /* 447 * If successful, hijack the orignal knconf and 448 * replace with a new one, depending on the flags. 449 */ 450 svp->sv_origknconf = svp->sv_knconf; 451 svp->sv_knconf = rdma_knconf; 452 knconf = rdma_knconf; 453 } else { 454 if (flags & NFSMNT_TRYRDMA) { 455 #ifdef DEBUG 456 if (rdma_debug) 457 zcmn_err(getzoneid(), CE_WARN, 458 "no RDMA onboard, revert\n"); 459 #endif 460 } 461 462 if (flags & NFSMNT_DORDMA) { 463 /* 464 * If proto=rdma is specified and no RDMA 465 * path to this server is avialable then 466 * ditch this server. 467 * This is not included in the mountable 468 * server list or the replica list. 469 * Check if more servers are specified; 470 * Failover case, otherwise bail out of mount. 471 */ 472 if (STRUCT_FGET(args, nfs_args_ext) == 473 NFS_ARGS_EXTB && STRUCT_FGETP(args, 474 nfs_ext_u.nfs_extB.next) != NULL) { 475 if (uap->flags & MS_RDONLY && 476 !(flags & NFSMNT_SOFT)) { 477 data = (char *) 478 STRUCT_FGETP(args, 479 nfs_ext_u.nfs_extB.next); 480 if (svp_head->sv_next == NULL) { 481 svp_tail = NULL; 482 svp_2ndlast = NULL; 483 sv_free(svp_head); 484 goto more; 485 } else { 486 svp_tail = svp_2ndlast; 487 svp_2ndlast->sv_next = 488 NULL; 489 sv_free(svp); 490 goto more; 491 } 492 } 493 } else { 494 /* 495 * This is the last server specified 496 * in the nfs_args list passed down 497 * and its not rdma capable. 498 */ 499 if (svp_head->sv_next == NULL) { 500 /* 501 * Is this the only one 502 */ 503 error = EINVAL; 504 #ifdef DEBUG 505 if (rdma_debug) 506 zcmn_err(getzoneid(), 507 CE_WARN, 508 "No RDMA srv"); 509 #endif 510 goto errout; 511 } else { 512 /* 513 * There is list, since some 514 * servers specified before 515 * this passed all requirements 516 */ 517 svp_tail = svp_2ndlast; 518 svp_2ndlast->sv_next = NULL; 519 sv_free(svp); 520 goto proceed; 521 } 522 } 523 } 524 } 525 } 526 527 /* 528 * Get the extention data which has the new security data structure. 529 */ 530 if (flags & NFSMNT_NEWARGS) { 531 switch (STRUCT_FGET(args, nfs_args_ext)) { 532 case NFS_ARGS_EXTA: 533 case NFS_ARGS_EXTB: 534 /* 535 * Indicating the application is using the new 536 * sec_data structure to pass in the security 537 * data. 538 */ 539 if (STRUCT_FGETP(args, 540 nfs_ext_u.nfs_extA.secdata) == NULL) { 541 error = EINVAL; 542 } else { 543 error = sec_clnt_loadinfo( 544 (struct sec_data *)STRUCT_FGETP(args, 545 nfs_ext_u.nfs_extA.secdata), 546 &secdata, get_udatamodel()); 547 } 548 break; 549 550 default: 551 error = EINVAL; 552 break; 553 } 554 } else if (flags & NFSMNT_SECURE) { 555 /* 556 * Keep this for backward compatibility to support 557 * NFSMNT_SECURE/NFSMNT_RPCTIMESYNC flags. 558 */ 559 if (STRUCT_FGETP(args, syncaddr) == NULL) { 560 error = EINVAL; 561 } else { 562 /* 563 * get time sync address. 564 */ 565 if (copyin(STRUCT_FGETP(args, syncaddr), &addr_tmp, 566 STRUCT_SIZE(addr_tmp))) { 567 syncaddr.buf = NULL; 568 error = EFAULT; 569 } else { 570 char *userbufptr; 571 572 userbufptr = syncaddr.buf = 573 STRUCT_FGETP(addr_tmp, buf); 574 syncaddr.len = 575 STRUCT_FGET(addr_tmp, len); 576 syncaddr.buf = kmem_alloc(syncaddr.len, 577 KM_SLEEP); 578 syncaddr.maxlen = syncaddr.len; 579 580 if (copyin(userbufptr, syncaddr.buf, 581 syncaddr.len)) 582 error = EFAULT; 583 } 584 585 /* 586 * get server's netname 587 */ 588 if (!error) { 589 error = copyinstr(STRUCT_FGETP(args, netname), 590 netname, sizeof (netname), &nlen); 591 netname[nlen] = '\0'; 592 } 593 594 if (error && syncaddr.buf != NULL) { 595 kmem_free(syncaddr.buf, syncaddr.len); 596 syncaddr.buf = NULL; 597 } 598 } 599 600 /* 601 * Move security related data to the sec_data structure. 602 */ 603 if (!error) { 604 dh_k4_clntdata_t *data; 605 char *pf, *p; 606 607 secdata = kmem_alloc(sizeof (*secdata), KM_SLEEP); 608 if (flags & NFSMNT_RPCTIMESYNC) 609 secdata->flags |= AUTH_F_RPCTIMESYNC; 610 data = kmem_alloc(sizeof (*data), KM_SLEEP); 611 data->syncaddr = syncaddr; 612 613 /* 614 * duplicate the knconf information for the 615 * new opaque data. 616 */ 617 data->knconf = kmem_alloc(sizeof (*knconf), KM_SLEEP); 618 *data->knconf = *knconf; 619 pf = kmem_alloc(KNC_STRSIZE, KM_SLEEP); 620 p = kmem_alloc(KNC_STRSIZE, KM_SLEEP); 621 bcopy(knconf->knc_protofmly, pf, KNC_STRSIZE); 622 bcopy(knconf->knc_proto, pf, KNC_STRSIZE); 623 data->knconf->knc_protofmly = pf; 624 data->knconf->knc_proto = p; 625 626 /* move server netname to the sec_data structure */ 627 if (nlen != 0) { 628 data->netname = kmem_alloc(nlen, KM_SLEEP); 629 bcopy(netname, data->netname, nlen); 630 data->netnamelen = (int)nlen; 631 } 632 secdata->secmod = secdata->rpcflavor = AUTH_DES; 633 secdata->data = (caddr_t)data; 634 } 635 } else { 636 secdata = kmem_alloc(sizeof (*secdata), KM_SLEEP); 637 secdata->secmod = secdata->rpcflavor = AUTH_UNIX; 638 secdata->data = NULL; 639 } 640 svp->sv_secdata = secdata; 641 if (error) 642 goto errout; 643 644 /* 645 * See bug 1180236. 646 * If mount secure failed, we will fall back to AUTH_NONE 647 * and try again. nfs3rootvp() will turn this back off. 648 * 649 * The NFS Version 3 mount uses the FSINFO and GETATTR 650 * procedures. The server should not care if these procedures 651 * have the proper security flavor, so if mount retries using 652 * AUTH_NONE that does not require a credential setup for root 653 * then the automounter would work without requiring root to be 654 * keylogged into AUTH_DES. 655 */ 656 if (secdata->rpcflavor != AUTH_UNIX && 657 secdata->rpcflavor != AUTH_LOOPBACK) 658 secdata->flags |= AUTH_F_TRYNONE; 659 660 /* 661 * Failover support: 662 * 663 * We may have a linked list of nfs_args structures, 664 * which means the user is looking for failover. If 665 * the mount is either not "read-only" or "soft", 666 * we want to bail out with EINVAL. 667 */ 668 if (STRUCT_FGET(args, nfs_args_ext) == NFS_ARGS_EXTB && 669 STRUCT_FGETP(args, nfs_ext_u.nfs_extB.next) != NULL) { 670 if (uap->flags & MS_RDONLY && !(flags & NFSMNT_SOFT)) { 671 data = (char *)STRUCT_FGETP(args, 672 nfs_ext_u.nfs_extB.next); 673 goto more; 674 } 675 error = EINVAL; 676 goto errout; 677 } 678 679 /* 680 * Determine the zone we're being mounted into. 681 */ 682 if (getzoneid() == GLOBAL_ZONEID) { 683 zone_t *mntzone; 684 685 mntzone = zone_find_by_path(refstr_value(vfsp->vfs_mntpt)); 686 ASSERT(mntzone != NULL); 687 zone_rele(mntzone); 688 if (mntzone != zone) { 689 error = EBUSY; 690 goto errout; 691 } 692 } 693 694 /* 695 * Stop the mount from going any further if the zone is going away. 696 */ 697 if (zone_status_get(zone) >= ZONE_IS_SHUTTING_DOWN) { 698 error = EBUSY; 699 goto errout; 700 } 701 702 /* 703 * Get root vnode. 704 */ 705 proceed: 706 error = nfs3rootvp(&rtvp, vfsp, svp_head, flags, cr, zone); 707 708 if (error) 709 goto errout; 710 711 /* 712 * Set option fields in the mount info record 713 */ 714 mi = VTOMI(rtvp); 715 716 if (svp_head->sv_next) 717 mi->mi_flags |= MI_LLOCK; 718 719 error = nfs_setopts(rtvp, get_udatamodel(), STRUCT_BUF(args)); 720 721 errout: 722 if (error) { 723 if (rtvp != NULL) { 724 rp = VTOR(rtvp); 725 if (rp->r_flags & RHASHED) 726 rp_rmhash(rp); 727 } 728 sv_free(svp_head); 729 if (mi != NULL) { 730 nfs_async_stop(vfsp); 731 nfs_async_manager_stop(vfsp); 732 if (mi->mi_io_kstats) { 733 kstat_delete(mi->mi_io_kstats); 734 mi->mi_io_kstats = NULL; 735 } 736 if (mi->mi_ro_kstats) { 737 kstat_delete(mi->mi_ro_kstats); 738 mi->mi_ro_kstats = NULL; 739 } 740 nfs_free_mi(mi); 741 } 742 } 743 744 if (rtvp != NULL) 745 VN_RELE(rtvp); 746 747 return (error); 748 } 749 750 static int nfs3_dynamic = 0; /* global variable to enable dynamic retrans. */ 751 static ushort_t nfs3_max_threads = 8; /* max number of active async threads */ 752 static uint_t nfs3_bsize = 32 * 1024; /* client `block' size */ 753 static uint_t nfs3_async_clusters = 1; /* # of reqs from each async queue */ 754 static uint_t nfs3_cots_timeo = NFS_COTS_TIMEO; 755 756 static int 757 nfs3rootvp(vnode_t **rtvpp, vfs_t *vfsp, struct servinfo *svp, 758 int flags, cred_t *cr, zone_t *zone) 759 { 760 vnode_t *rtvp; 761 mntinfo_t *mi; 762 dev_t nfs_dev; 763 struct vattr va; 764 struct FSINFO3args args; 765 struct FSINFO3res res; 766 int error; 767 int douprintf; 768 rnode_t *rp; 769 int i; 770 uint_t max_transfer_size; 771 struct nfs_stats *nfsstatsp; 772 cred_t *lcr = NULL, *tcr = cr; 773 774 nfsstatsp = zone_getspecific(nfsstat_zone_key, curproc->p_zone); 775 ASSERT(nfsstatsp != NULL); 776 777 ASSERT(curproc->p_zone == zone); 778 /* 779 * Create a mount record and link it to the vfs struct. 780 */ 781 mi = kmem_zalloc(sizeof (*mi), KM_SLEEP); 782 mutex_init(&mi->mi_lock, NULL, MUTEX_DEFAULT, NULL); 783 mi->mi_flags = MI_ACL | MI_EXTATTR; 784 if (!(flags & NFSMNT_SOFT)) 785 mi->mi_flags |= MI_HARD; 786 if ((flags & NFSMNT_SEMISOFT)) 787 mi->mi_flags |= MI_SEMISOFT; 788 if ((flags & NFSMNT_NOPRINT)) 789 mi->mi_flags |= MI_NOPRINT; 790 if (flags & NFSMNT_INT) 791 mi->mi_flags |= MI_INT; 792 mi->mi_retrans = NFS_RETRIES; 793 if (svp->sv_knconf->knc_semantics == NC_TPI_COTS_ORD || 794 svp->sv_knconf->knc_semantics == NC_TPI_COTS) 795 mi->mi_timeo = nfs3_cots_timeo; 796 else 797 mi->mi_timeo = NFS_TIMEO; 798 mi->mi_prog = NFS_PROGRAM; 799 mi->mi_vers = NFS_V3; 800 mi->mi_rfsnames = rfsnames_v3; 801 mi->mi_reqs = nfsstatsp->nfs_stats_v3.rfsreqcnt_ptr; 802 mi->mi_call_type = call_type_v3; 803 mi->mi_ss_call_type = ss_call_type_v3; 804 mi->mi_timer_type = timer_type_v3; 805 mi->mi_aclnames = aclnames_v3; 806 mi->mi_aclreqs = nfsstatsp->nfs_stats_v3.aclreqcnt_ptr; 807 mi->mi_acl_call_type = acl_call_type_v3; 808 mi->mi_acl_ss_call_type = acl_ss_call_type_v3; 809 mi->mi_acl_timer_type = acl_timer_type_v3; 810 cv_init(&mi->mi_failover_cv, NULL, CV_DEFAULT, NULL); 811 mi->mi_servers = svp; 812 mi->mi_curr_serv = svp; 813 mi->mi_acregmin = SEC2HR(ACREGMIN); 814 mi->mi_acregmax = SEC2HR(ACREGMAX); 815 mi->mi_acdirmin = SEC2HR(ACDIRMIN); 816 mi->mi_acdirmax = SEC2HR(ACDIRMAX); 817 818 if (nfs3_dynamic) 819 mi->mi_flags |= MI_DYNAMIC; 820 821 if (flags & NFSMNT_DIRECTIO) 822 mi->mi_flags |= MI_DIRECTIO; 823 824 /* 825 * Make a vfs struct for nfs. We do this here instead of below 826 * because rtvp needs a vfs before we can do a getattr on it. 827 * 828 * Assign a unique device id to the mount 829 */ 830 mutex_enter(&nfs_minor_lock); 831 do { 832 nfs_minor = (nfs_minor + 1) & MAXMIN32; 833 nfs_dev = makedevice(nfs_major, nfs_minor); 834 } while (vfs_devismounted(nfs_dev)); 835 mutex_exit(&nfs_minor_lock); 836 837 vfsp->vfs_dev = nfs_dev; 838 vfs_make_fsid(&vfsp->vfs_fsid, nfs_dev, nfs3fstyp); 839 vfsp->vfs_data = (caddr_t)mi; 840 vfsp->vfs_fstype = nfsfstyp; 841 842 /* 843 * Verify that nfs3_bsize tuneable is set to an 844 * acceptable value. It be a multiple of PAGESIZE or 845 * file corruption can occur. 846 */ 847 if (nfs3_bsize & PAGEOFFSET) 848 nfs3_bsize &= PAGEMASK; 849 if (nfs3_bsize < PAGESIZE) 850 nfs3_bsize = PAGESIZE; 851 vfsp->vfs_bsize = nfs3_bsize; 852 853 /* 854 * Initialize fields used to support async putpage operations. 855 */ 856 for (i = 0; i < NFS_ASYNC_TYPES; i++) 857 mi->mi_async_clusters[i] = nfs3_async_clusters; 858 mi->mi_async_init_clusters = nfs3_async_clusters; 859 mi->mi_async_curr = &mi->mi_async_reqs[0]; 860 mi->mi_max_threads = nfs3_max_threads; 861 mutex_init(&mi->mi_async_lock, NULL, MUTEX_DEFAULT, NULL); 862 cv_init(&mi->mi_async_reqs_cv, NULL, CV_DEFAULT, NULL); 863 cv_init(&mi->mi_async_work_cv, NULL, CV_DEFAULT, NULL); 864 cv_init(&mi->mi_async_cv, NULL, CV_DEFAULT, NULL); 865 866 mi->mi_vfsp = vfsp; 867 zone_hold(mi->mi_zone = zone); 868 nfs_mi_zonelist_add(mi); 869 870 /* 871 * Make the root vnode, use it to get attributes, 872 * then remake it with the attributes. 873 */ 874 rtvp = makenfs3node((nfs_fh3 *)&svp->sv_fhandle, 875 NULL, vfsp, gethrtime(), cr, NULL, NULL); 876 877 /* 878 * Make the FSINFO calls, primarily at this point to 879 * determine the transfer size. For client failover, 880 * we'll want this to be the minimum bid from any 881 * server, so that we don't overrun stated limits. 882 * 883 * While we're looping, we'll turn off AUTH_F_TRYNONE, 884 * which is only for the mount operation. 885 */ 886 887 mi->mi_tsize = nfs3_tsize(svp->sv_knconf); 888 mi->mi_stsize = mi->mi_tsize; 889 890 mi->mi_curread = nfs3_bsize; 891 mi->mi_curwrite = mi->mi_curread; 892 893 /* 894 * If the uid is set then set the creds for secure mounts 895 * by proxy processes such as automountd. 896 */ 897 if (svp->sv_secdata->uid != 0 && 898 svp->sv_secdata->rpcflavor == RPCSEC_GSS) { 899 lcr = crdup(cr); 900 (void) crsetugid(lcr, svp->sv_secdata->uid, crgetgid(cr)); 901 tcr = lcr; 902 } 903 904 for (svp = mi->mi_servers; svp != NULL; svp = svp->sv_next) { 905 douprintf = 1; 906 mi->mi_curr_serv = svp; 907 max_transfer_size = nfs3_tsize(svp->sv_knconf); 908 mi->mi_tsize = MIN(max_transfer_size, mi->mi_tsize); 909 mi->mi_stsize = MIN(max_transfer_size, mi->mi_stsize); 910 mi->mi_curread = MIN(max_transfer_size, mi->mi_curread); 911 mi->mi_curwrite = MIN(max_transfer_size, mi->mi_curwrite); 912 args.fsroot = *(nfs_fh3 *)&svp->sv_fhandle; 913 914 error = rfs3call(mi, NFSPROC3_FSINFO, 915 xdr_nfs_fh3, (caddr_t)&args, 916 xdr_FSINFO3res, (caddr_t)&res, tcr, 917 &douprintf, &res.status, 0, NULL); 918 if (error) 919 goto bad; 920 error = geterrno3(res.status); 921 if (error) 922 goto bad; 923 924 /* get type of root node */ 925 if (res.resok.obj_attributes.attributes) { 926 if (res.resok.obj_attributes.attr.type < NF3REG || 927 res.resok.obj_attributes.attr.type > NF3FIFO) { 928 #ifdef DEBUG 929 zcmn_err(getzoneid(), CE_WARN, 930 "NFS3 server %s returned a bad file type for root", 931 svp->sv_hostname); 932 #else 933 zcmn_err(getzoneid(), CE_WARN, 934 "NFS server %s returned a bad file type for root", 935 svp->sv_hostname); 936 #endif 937 error = EINVAL; 938 goto bad; 939 } else { 940 if (rtvp->v_type != VNON && 941 rtvp->v_type != nf3_to_vt[res.resok.obj_attributes.attr.type]) { 942 #ifdef DEBUG 943 zcmn_err(getzoneid(), CE_WARN, 944 "NFS3 server %s returned a different file type for root", 945 svp->sv_hostname); 946 #else 947 zcmn_err(getzoneid(), CE_WARN, 948 "NFS server %s returned a different file type for root", 949 svp->sv_hostname); 950 #endif 951 error = EINVAL; 952 goto bad; 953 } 954 rtvp->v_type = 955 nf3_to_vt[res.resok.obj_attributes.attr.type]; 956 } 957 } 958 959 if (res.resok.rtmax != 0) { 960 mi->mi_tsize = MIN(res.resok.rtmax, mi->mi_tsize); 961 if (res.resok.rtpref != 0) { 962 mi->mi_curread = MIN(res.resok.rtpref, 963 mi->mi_curread); 964 } else { 965 mi->mi_curread = MIN(res.resok.rtmax, 966 mi->mi_curread); 967 } 968 } else if (res.resok.rtpref != 0) { 969 mi->mi_tsize = MIN(res.resok.rtpref, mi->mi_tsize); 970 mi->mi_curread = MIN(res.resok.rtpref, mi->mi_curread); 971 } else { 972 #ifdef DEBUG 973 zcmn_err(getzoneid(), CE_WARN, 974 "NFS3 server %s returned 0 for read transfer sizes", 975 svp->sv_hostname); 976 #else 977 zcmn_err(getzoneid(), CE_WARN, 978 "NFS server %s returned 0 for read transfer sizes", 979 svp->sv_hostname); 980 #endif 981 error = EIO; 982 goto bad; 983 } 984 if (res.resok.wtmax != 0) { 985 mi->mi_stsize = MIN(res.resok.wtmax, mi->mi_stsize); 986 if (res.resok.wtpref != 0) { 987 mi->mi_curwrite = MIN(res.resok.wtpref, 988 mi->mi_curwrite); 989 } else { 990 mi->mi_curwrite = MIN(res.resok.wtmax, 991 mi->mi_curwrite); 992 } 993 } else if (res.resok.wtpref != 0) { 994 mi->mi_stsize = MIN(res.resok.wtpref, mi->mi_stsize); 995 mi->mi_curwrite = MIN(res.resok.wtpref, 996 mi->mi_curwrite); 997 } else { 998 #ifdef DEBUG 999 zcmn_err(getzoneid(), CE_WARN, 1000 "NFS3 server %s returned 0 for write transfer sizes", 1001 svp->sv_hostname); 1002 #else 1003 zcmn_err(getzoneid(), CE_WARN, 1004 "NFS server %s returned 0 for write transfer sizes", 1005 svp->sv_hostname); 1006 #endif 1007 error = EIO; 1008 goto bad; 1009 } 1010 1011 /* 1012 * These signal the ability of the server to create 1013 * hard links and symbolic links, so they really 1014 * aren't relevant if there is more than one server. 1015 * We'll set them here, though it probably looks odd. 1016 */ 1017 if (res.resok.properties & FSF3_LINK) 1018 mi->mi_flags |= MI_LINK; 1019 if (res.resok.properties & FSF3_SYMLINK) 1020 mi->mi_flags |= MI_SYMLINK; 1021 1022 /* Pick up smallest non-zero maxfilesize value */ 1023 if (res.resok.maxfilesize) { 1024 if (mi->mi_maxfilesize) { 1025 mi->mi_maxfilesize = MIN(mi->mi_maxfilesize, 1026 res.resok.maxfilesize); 1027 } else 1028 mi->mi_maxfilesize = res.resok.maxfilesize; 1029 } 1030 1031 /* 1032 * AUTH_F_TRYNONE is only for the mount operation, 1033 * so turn it back off. 1034 */ 1035 svp->sv_secdata->flags &= ~AUTH_F_TRYNONE; 1036 } 1037 mi->mi_curr_serv = mi->mi_servers; 1038 1039 /* 1040 * Start the thread responsible for handling async worker threads. 1041 */ 1042 VFS_HOLD(vfsp); /* add reference for thread */ 1043 mi->mi_manager_thread = zthread_create(NULL, 0, nfs_async_manager, 1044 vfsp, 0, minclsyspri); 1045 ASSERT(mi->mi_manager_thread != NULL); 1046 1047 /* 1048 * Initialize kstats 1049 */ 1050 nfs_mnt_kstat_init(vfsp); 1051 1052 /* If we didn't get a type, get one now */ 1053 if (rtvp->v_type == VNON) { 1054 va.va_mask = AT_ALL; 1055 1056 error = nfs3getattr(rtvp, &va, tcr); 1057 if (error) 1058 goto bad; 1059 rtvp->v_type = va.va_type; 1060 } 1061 1062 mi->mi_type = rtvp->v_type; 1063 1064 *rtvpp = rtvp; 1065 if (lcr != NULL) 1066 crfree(lcr); 1067 1068 return (0); 1069 bad: 1070 /* 1071 * An error occurred somewhere, need to clean up... 1072 * We need to release our reference to the root vnode and 1073 * destroy the mntinfo struct that we just created. 1074 */ 1075 if (lcr != NULL) 1076 crfree(lcr); 1077 rp = VTOR(rtvp); 1078 if (rp->r_flags & RHASHED) 1079 rp_rmhash(rp); 1080 VN_RELE(rtvp); 1081 nfs_async_stop(vfsp); 1082 nfs_async_manager_stop(vfsp); 1083 if (mi->mi_io_kstats) { 1084 kstat_delete(mi->mi_io_kstats); 1085 mi->mi_io_kstats = NULL; 1086 } 1087 if (mi->mi_ro_kstats) { 1088 kstat_delete(mi->mi_ro_kstats); 1089 mi->mi_ro_kstats = NULL; 1090 } 1091 nfs_free_mi(mi); 1092 *rtvpp = NULL; 1093 return (error); 1094 } 1095 1096 /* 1097 * vfs operations 1098 */ 1099 static int 1100 nfs3_unmount(vfs_t *vfsp, int flag, cred_t *cr) 1101 { 1102 mntinfo_t *mi; 1103 ushort_t omax; 1104 1105 if (secpolicy_fs_unmount(cr, vfsp) != 0) 1106 return (EPERM); 1107 1108 mi = VFTOMI(vfsp); 1109 if (flag & MS_FORCE) { 1110 vfsp->vfs_flag |= VFS_UNMOUNTED; 1111 /* 1112 * We need to stop the manager thread explicitly; the worker 1113 * threads can time out and exit on their own. 1114 */ 1115 nfs_async_manager_stop(vfsp); 1116 destroy_rtable(vfsp, cr); 1117 if (mi->mi_io_kstats) { 1118 kstat_delete(mi->mi_io_kstats); 1119 mi->mi_io_kstats = NULL; 1120 } 1121 if (mi->mi_ro_kstats) { 1122 kstat_delete(mi->mi_ro_kstats); 1123 mi->mi_ro_kstats = NULL; 1124 } 1125 return (0); 1126 } 1127 /* 1128 * Wait until all asynchronous putpage operations on 1129 * this file system are complete before flushing rnodes 1130 * from the cache. 1131 */ 1132 omax = mi->mi_max_threads; 1133 if (nfs_async_stop_sig(vfsp)) { 1134 return (EINTR); 1135 } 1136 rflush(vfsp, cr); 1137 /* 1138 * If there are any active vnodes on this file system, 1139 * then the file system is busy and can't be umounted. 1140 */ 1141 if (check_rtable(vfsp)) { 1142 mutex_enter(&mi->mi_async_lock); 1143 mi->mi_max_threads = omax; 1144 mutex_exit(&mi->mi_async_lock); 1145 return (EBUSY); 1146 } 1147 /* 1148 * The unmount can't fail from now on; stop the worker thread manager. 1149 */ 1150 nfs_async_manager_stop(vfsp); 1151 /* 1152 * Destroy all rnodes belonging to this file system from the 1153 * rnode hash queues and purge any resources allocated to 1154 * them. 1155 */ 1156 destroy_rtable(vfsp, cr); 1157 if (mi->mi_io_kstats) { 1158 kstat_delete(mi->mi_io_kstats); 1159 mi->mi_io_kstats = NULL; 1160 } 1161 if (mi->mi_ro_kstats) { 1162 kstat_delete(mi->mi_ro_kstats); 1163 mi->mi_ro_kstats = NULL; 1164 } 1165 return (0); 1166 } 1167 1168 /* 1169 * find root of nfs 1170 */ 1171 static int 1172 nfs3_root(vfs_t *vfsp, vnode_t **vpp) 1173 { 1174 mntinfo_t *mi; 1175 vnode_t *vp; 1176 servinfo_t *svp; 1177 1178 mi = VFTOMI(vfsp); 1179 1180 if (curproc->p_zone != mi->mi_zone) 1181 return (EPERM); 1182 1183 svp = mi->mi_curr_serv; 1184 if (svp && (svp->sv_flags & SV_ROOT_STALE)) { 1185 mutex_enter(&svp->sv_lock); 1186 svp->sv_flags &= ~SV_ROOT_STALE; 1187 mutex_exit(&svp->sv_lock); 1188 return (ENOENT); 1189 } 1190 1191 vp = makenfs3node((nfs_fh3 *)&mi->mi_curr_serv->sv_fhandle, 1192 NULL, vfsp, gethrtime(), CRED(), NULL, NULL); 1193 1194 if (VTOR(vp)->r_flags & RSTALE) { 1195 VN_RELE(vp); 1196 return (ENOENT); 1197 } 1198 1199 ASSERT(vp->v_type == VNON || vp->v_type == mi->mi_type); 1200 1201 vp->v_type = mi->mi_type; 1202 1203 *vpp = vp; 1204 1205 return (0); 1206 } 1207 1208 /* 1209 * Get file system statistics. 1210 */ 1211 static int 1212 nfs3_statvfs(vfs_t *vfsp, struct statvfs64 *sbp) 1213 { 1214 int error; 1215 struct mntinfo *mi; 1216 struct FSSTAT3args args; 1217 struct FSSTAT3res res; 1218 int douprintf; 1219 failinfo_t fi; 1220 vnode_t *vp; 1221 cred_t *cr; 1222 hrtime_t t; 1223 1224 mi = VFTOMI(vfsp); 1225 if (curproc->p_zone != mi->mi_zone) 1226 return (EPERM); 1227 error = nfs3_root(vfsp, &vp); 1228 if (error) 1229 return (error); 1230 1231 cr = CRED(); 1232 1233 args.fsroot = *VTOFH3(vp); 1234 fi.vp = vp; 1235 fi.fhp = (caddr_t)&args.fsroot; 1236 fi.copyproc = nfs3copyfh; 1237 fi.lookupproc = nfs3lookup; 1238 fi.xattrdirproc = acl_getxattrdir3; 1239 1240 douprintf = 1; 1241 1242 t = gethrtime(); 1243 1244 error = rfs3call(mi, NFSPROC3_FSSTAT, 1245 xdr_nfs_fh3, (caddr_t)&args, 1246 xdr_FSSTAT3res, (caddr_t)&res, cr, 1247 &douprintf, &res.status, 0, &fi); 1248 1249 if (error) { 1250 VN_RELE(vp); 1251 return (error); 1252 } 1253 1254 error = geterrno3(res.status); 1255 if (!error) { 1256 nfs3_cache_post_op_attr(vp, &res.resok.obj_attributes, t, cr); 1257 sbp->f_bsize = MAXBSIZE; 1258 sbp->f_frsize = DEV_BSIZE; 1259 /* 1260 * Allow -1 fields to pass through unconverted. These 1261 * indicate "don't know" fields. 1262 */ 1263 if (res.resok.tbytes == (size3)-1) 1264 sbp->f_blocks = (fsblkcnt64_t)res.resok.tbytes; 1265 else { 1266 sbp->f_blocks = (fsblkcnt64_t) 1267 (res.resok.tbytes / DEV_BSIZE); 1268 } 1269 if (res.resok.fbytes == (size3)-1) 1270 sbp->f_bfree = (fsblkcnt64_t)res.resok.fbytes; 1271 else { 1272 sbp->f_bfree = (fsblkcnt64_t) 1273 (res.resok.fbytes / DEV_BSIZE); 1274 } 1275 if (res.resok.abytes == (size3)-1) 1276 sbp->f_bavail = (fsblkcnt64_t)res.resok.abytes; 1277 else { 1278 sbp->f_bavail = (fsblkcnt64_t) 1279 (res.resok.abytes / DEV_BSIZE); 1280 } 1281 sbp->f_files = (fsfilcnt64_t)res.resok.tfiles; 1282 sbp->f_ffree = (fsfilcnt64_t)res.resok.ffiles; 1283 sbp->f_favail = (fsfilcnt64_t)res.resok.afiles; 1284 sbp->f_fsid = (unsigned long)vfsp->vfs_fsid.val[0]; 1285 (void) strncpy(sbp->f_basetype, 1286 vfssw[vfsp->vfs_fstype].vsw_name, FSTYPSZ); 1287 sbp->f_flag = vf_to_stf(vfsp->vfs_flag); 1288 sbp->f_namemax = (ulong_t)-1; 1289 } else { 1290 nfs3_cache_post_op_attr(vp, &res.resfail.obj_attributes, t, cr); 1291 PURGE_STALE_FH(error, vp, cr); 1292 } 1293 1294 VN_RELE(vp); 1295 1296 return (error); 1297 } 1298 1299 static kmutex_t nfs3_syncbusy; 1300 1301 /* 1302 * Flush dirty nfs files for file system vfsp. 1303 * If vfsp == NULL, all nfs files are flushed. 1304 */ 1305 /* ARGSUSED */ 1306 static int 1307 nfs3_sync(vfs_t *vfsp, short flag, cred_t *cr) 1308 { 1309 /* 1310 * Cross-zone calls are OK here, since this translates to a 1311 * VOP_PUTPAGE(B_ASYNC), which gets picked up by the right zone. 1312 */ 1313 if (!(flag & SYNC_ATTR) && mutex_tryenter(&nfs3_syncbusy) != 0) { 1314 rflush(vfsp, cr); 1315 mutex_exit(&nfs3_syncbusy); 1316 } 1317 return (0); 1318 } 1319 1320 /* ARGSUSED */ 1321 static int 1322 nfs3_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp) 1323 { 1324 int error; 1325 nfs_fh3 fh; 1326 vnode_t *vp; 1327 struct vattr va; 1328 1329 if (fidp->fid_len > NFS3_FHSIZE) { 1330 *vpp = NULL; 1331 return (ESTALE); 1332 } 1333 1334 if (curproc->p_zone != VFTOMI(vfsp)->mi_zone) 1335 return (EPERM); 1336 fh.fh3_length = fidp->fid_len; 1337 bcopy(fidp->fid_data, fh.fh3_u.data, fh.fh3_length); 1338 1339 vp = makenfs3node(&fh, NULL, vfsp, gethrtime(), CRED(), NULL, NULL); 1340 1341 if (VTOR(vp)->r_flags & RSTALE) { 1342 VN_RELE(vp); 1343 *vpp = NULL; 1344 return (ENOENT); 1345 } 1346 1347 if (vp->v_type == VNON) { 1348 va.va_mask = AT_ALL; 1349 error = nfs3getattr(vp, &va, CRED()); 1350 if (error) { 1351 VN_RELE(vp); 1352 *vpp = NULL; 1353 return (error); 1354 } 1355 vp->v_type = va.va_type; 1356 } 1357 1358 *vpp = vp; 1359 1360 return (0); 1361 } 1362 1363 /* ARGSUSED */ 1364 static int 1365 nfs3_mountroot(vfs_t *vfsp, whymountroot_t why) 1366 { 1367 vnode_t *rtvp; 1368 char root_hostname[SYS_NMLN+1]; 1369 struct servinfo *svp; 1370 int error; 1371 int vfsflags; 1372 size_t size; 1373 char *root_path; 1374 struct pathname pn; 1375 char *name; 1376 cred_t *cr; 1377 struct nfs_args args; /* nfs mount arguments */ 1378 static char token[10]; 1379 1380 bzero(&args, sizeof (args)); 1381 1382 /* do this BEFORE getfile which causes xid stamps to be initialized */ 1383 clkset(-1L); /* hack for now - until we get time svc? */ 1384 1385 if (why == ROOT_REMOUNT) { 1386 /* 1387 * Shouldn't happen. 1388 */ 1389 panic("nfs3_mountroot: why == ROOT_REMOUNT"); 1390 } 1391 1392 if (why == ROOT_UNMOUNT) { 1393 /* 1394 * Nothing to do for NFS. 1395 */ 1396 return (0); 1397 } 1398 1399 /* 1400 * why == ROOT_INIT 1401 */ 1402 1403 name = token; 1404 *name = 0; 1405 getfsname("root", name, sizeof (token)); 1406 1407 pn_alloc(&pn); 1408 root_path = pn.pn_path; 1409 1410 svp = kmem_zalloc(sizeof (*svp), KM_SLEEP); 1411 svp->sv_knconf = kmem_zalloc(sizeof (*svp->sv_knconf), KM_SLEEP); 1412 svp->sv_knconf->knc_protofmly = kmem_alloc(KNC_STRSIZE, KM_SLEEP); 1413 svp->sv_knconf->knc_proto = kmem_alloc(KNC_STRSIZE, KM_SLEEP); 1414 1415 /* 1416 * Get server address 1417 * Get the root fhandle 1418 * Get server's transport 1419 * Get server's hostname 1420 * Get options 1421 */ 1422 args.addr = &svp->sv_addr; 1423 args.fh = (char *)&svp->sv_fhandle; 1424 args.knconf = svp->sv_knconf; 1425 args.hostname = root_hostname; 1426 vfsflags = 0; 1427 if (error = mount_root(*name ? name : "root", root_path, NFS_V3, 1428 &args, &vfsflags)) { 1429 if (error == EPROTONOSUPPORT) 1430 nfs_cmn_err(error, CE_WARN, "nfs3_mountroot: " 1431 "mount_root failed: server doesn't support NFS V3"); 1432 else 1433 nfs_cmn_err(error, CE_WARN, 1434 "nfs3_mountroot: mount_root failed: %m"); 1435 sv_free(svp); 1436 pn_free(&pn); 1437 return (error); 1438 } 1439 svp->sv_hostnamelen = (int)(strlen(root_hostname) + 1); 1440 svp->sv_hostname = kmem_alloc(svp->sv_hostnamelen, KM_SLEEP); 1441 (void) strcpy(svp->sv_hostname, root_hostname); 1442 1443 /* 1444 * Force root partition to always be mounted with AUTH_UNIX for now 1445 */ 1446 svp->sv_secdata = kmem_alloc(sizeof (*svp->sv_secdata), KM_SLEEP); 1447 svp->sv_secdata->secmod = AUTH_UNIX; 1448 svp->sv_secdata->rpcflavor = AUTH_UNIX; 1449 svp->sv_secdata->data = NULL; 1450 1451 cr = crgetcred(); 1452 rtvp = NULL; 1453 1454 error = nfs3rootvp(&rtvp, vfsp, svp, args.flags, cr, global_zone); 1455 1456 crfree(cr); 1457 1458 if (error) { 1459 pn_free(&pn); 1460 goto errout; 1461 } 1462 1463 error = nfs_setopts(rtvp, DATAMODEL_NATIVE, &args); 1464 if (error) { 1465 nfs_cmn_err(error, CE_WARN, 1466 "nfs3_mountroot: invalid root mount options"); 1467 pn_free(&pn); 1468 goto errout; 1469 } 1470 1471 (void) vfs_lock_wait(vfsp); 1472 vfs_add(NULL, vfsp, vfsflags); 1473 vfs_unlock(vfsp); 1474 1475 size = strlen(svp->sv_hostname); 1476 (void) strcpy(rootfs.bo_name, svp->sv_hostname); 1477 rootfs.bo_name[size] = ':'; 1478 (void) strcpy(&rootfs.bo_name[size + 1], root_path); 1479 1480 pn_free(&pn); 1481 1482 errout: 1483 if (error) { 1484 sv_free(svp); 1485 nfs_async_stop(vfsp); 1486 nfs_async_manager_stop(vfsp); 1487 } 1488 1489 if (rtvp != NULL) 1490 VN_RELE(rtvp); 1491 1492 return (error); 1493 } 1494 1495 /* 1496 * Initialization routine for VFS routines. Should only be called once 1497 */ 1498 int 1499 nfs3_vfsinit(void) 1500 { 1501 mutex_init(&nfs3_syncbusy, NULL, MUTEX_DEFAULT, NULL); 1502 return (0); 1503 } 1504 1505 void 1506 nfs3_vfsfini(void) 1507 { 1508 mutex_destroy(&nfs3_syncbusy); 1509 } 1510 1511 void 1512 nfs3_freevfs(vfs_t *vfsp) 1513 { 1514 mntinfo_t *mi; 1515 servinfo_t *svp; 1516 1517 /* free up the resources */ 1518 mi = VFTOMI(vfsp); 1519 svp = mi->mi_servers; 1520 mi->mi_servers = mi->mi_curr_serv = NULL; 1521 sv_free(svp); 1522 1523 /* 1524 * By this time we should have already deleted the 1525 * mi kstats in the unmount code. If they are still around 1526 * somethings wrong 1527 */ 1528 ASSERT(mi->mi_io_kstats == NULL); 1529 nfs_free_mi(mi); 1530 } 1531