1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */ 27 /* All Rights Reserved */ 28 29 30 #pragma ident "%Z%%M% %I% %E% SMI" /* from S5R4 1.28 */ 31 32 /* 33 * This file supports the vfs operations for the NAMEFS file system. 34 */ 35 36 #include <sys/types.h> 37 #include <sys/param.h> 38 #include <sys/systm.h> 39 #include <sys/debug.h> 40 #include <sys/errno.h> 41 #include <sys/kmem.h> 42 #include <sys/inline.h> 43 #include <sys/file.h> 44 #include <sys/proc.h> 45 #include <sys/stat.h> 46 #include <sys/statvfs.h> 47 #include <sys/mount.h> 48 #include <sys/sysmacros.h> 49 #include <sys/var.h> 50 #include <sys/vfs.h> 51 #include <sys/vfs_opreg.h> 52 #include <sys/vnode.h> 53 #include <sys/mode.h> 54 #include <sys/pcb.h> 55 #include <sys/signal.h> 56 #include <sys/user.h> 57 #include <sys/uio.h> 58 #include <sys/cred.h> 59 #include <sys/fs/namenode.h> 60 #include <sys/stream.h> 61 #include <sys/strsubr.h> 62 #include <sys/cmn_err.h> 63 #include <sys/modctl.h> 64 #include <fs/fs_subr.h> 65 #include <sys/policy.h> 66 #include <sys/vmem.h> 67 #include <sys/fs/sdev_impl.h> 68 69 #define NM_INOQUANT (64 * 1024) 70 71 /* 72 * Define global data structures. 73 */ 74 dev_t namedev; 75 int namefstype; 76 struct namenode *nm_filevp_hash[NM_FILEVP_HASH_SIZE]; 77 struct vfs namevfs; 78 kmutex_t ntable_lock; 79 80 static vmem_t *nm_inoarena; /* vmem arena to allocate inode no's from */ 81 static kmutex_t nm_inolock; 82 83 /* 84 * Functions to allocate node id's starting from 1. Based on vmem routines. 85 * The vmem arena is extended in NM_INOQUANT chunks. 86 */ 87 uint64_t 88 namenodeno_alloc(void) 89 { 90 uint64_t nno; 91 92 mutex_enter(&nm_inolock); 93 nno = (uint64_t)(uintptr_t) 94 vmem_alloc(nm_inoarena, 1, VM_NOSLEEP + VM_FIRSTFIT); 95 if (nno == 0) { 96 (void) vmem_add(nm_inoarena, (void *)(vmem_size(nm_inoarena, 97 VMEM_ALLOC | VMEM_FREE) + 1), NM_INOQUANT, VM_SLEEP); 98 nno = (uint64_t)(uintptr_t) 99 vmem_alloc(nm_inoarena, 1, VM_SLEEP + VM_FIRSTFIT); 100 ASSERT(nno != 0); 101 } 102 mutex_exit(&nm_inolock); 103 ASSERT32(nno <= ULONG_MAX); 104 return (nno); 105 } 106 107 static void 108 namenodeno_init(void) 109 { 110 nm_inoarena = vmem_create("namefs_inodes", (void *)1, NM_INOQUANT, 1, 111 NULL, NULL, NULL, 1, VM_SLEEP); 112 mutex_init(&nm_inolock, NULL, MUTEX_DEFAULT, NULL); 113 } 114 115 void 116 namenodeno_free(uint64_t nn) 117 { 118 void *vaddr = (void *)(uintptr_t)nn; 119 120 ASSERT32((uint64_t)(uintptr_t)vaddr == nn); 121 122 mutex_enter(&nm_inolock); 123 vmem_free(nm_inoarena, vaddr, 1); 124 mutex_exit(&nm_inolock); 125 } 126 127 /* 128 * Insert a namenode into the nm_filevp_hash table. 129 * 130 * Each link has a unique namenode with a unique nm_mountvp field. 131 * The nm_filevp field of the namenode need not be unique, since a 132 * file descriptor may be mounted to multiple nodes at the same time. 133 * We hash on nm_filevp since that's what discriminates the searches 134 * in namefind() and nm_unmountall(). 135 */ 136 void 137 nameinsert(struct namenode *nodep) 138 { 139 struct namenode **bucket; 140 141 ASSERT(MUTEX_HELD(&ntable_lock)); 142 143 bucket = NM_FILEVP_HASH(nodep->nm_filevp); 144 nodep->nm_nextp = *bucket; 145 *bucket = nodep; 146 } 147 148 /* 149 * Remove a namenode from the hash table, if present. 150 */ 151 void 152 nameremove(struct namenode *nodep) 153 { 154 struct namenode *np, **npp; 155 156 ASSERT(MUTEX_HELD(&ntable_lock)); 157 158 for (npp = NM_FILEVP_HASH(nodep->nm_filevp); (np = *npp) != NULL; 159 npp = &np->nm_nextp) { 160 if (np == nodep) { 161 *npp = np->nm_nextp; 162 return; 163 } 164 } 165 } 166 167 /* 168 * Search for a namenode that has a nm_filevp == vp and nm_mountpt == mnt. 169 * If mnt is NULL, return the first link with nm_filevp of vp. 170 * Returns namenode pointer on success, NULL on failure. 171 */ 172 struct namenode * 173 namefind(vnode_t *vp, vnode_t *mnt) 174 { 175 struct namenode *np; 176 177 ASSERT(MUTEX_HELD(&ntable_lock)); 178 for (np = *NM_FILEVP_HASH(vp); np != NULL; np = np->nm_nextp) 179 if (np->nm_filevp == vp && 180 (mnt == NULL || np->nm_mountpt == mnt)) 181 break; 182 return (np); 183 } 184 185 /* 186 * Force the unmouting of a file descriptor from ALL of the nodes 187 * that it was mounted to. 188 * At the present time, the only usage for this routine is in the 189 * event one end of a pipe was mounted. At the time the unmounted 190 * end gets closed down, the mounted end is forced to be unmounted. 191 * 192 * This routine searches the namenode hash list for all namenodes 193 * that have a nm_filevp field equal to vp. Each time one is found, 194 * the dounmount() routine is called. This causes the nm_unmount() 195 * routine to be called and thus, the file descriptor is unmounted 196 * from the node. 197 * 198 * At the start of this routine, the reference count for vp is 199 * incremented to protect the vnode from being released in the 200 * event the mount was the only thing keeping the vnode active. 201 * If that is the case, the VOP_CLOSE operation is applied to 202 * the vnode, prior to it being released. 203 */ 204 static int 205 nm_umountall(vnode_t *vp, cred_t *crp) 206 { 207 vfs_t *vfsp; 208 struct namenode *nodep; 209 int error = 0; 210 int realerr = 0; 211 212 /* 213 * For each namenode that is associated with the file: 214 * If the v_vfsp field is not namevfs, dounmount it. Otherwise, 215 * it was created in nm_open() and will be released in time. 216 * The following loop replicates some code from nm_find. That 217 * routine can't be used as is since the list isn't strictly 218 * consumed as it is traversed. 219 */ 220 mutex_enter(&ntable_lock); 221 nodep = *NM_FILEVP_HASH(vp); 222 while (nodep) { 223 if (nodep->nm_filevp == vp && 224 (vfsp = NMTOV(nodep)->v_vfsp) != NULL && vfsp != &namevfs) { 225 226 /* 227 * If the vn_vfswlock fails, skip the vfs since 228 * somebody else may be unmounting it. 229 */ 230 if (vn_vfswlock(vfsp->vfs_vnodecovered)) { 231 realerr = EBUSY; 232 nodep = nodep->nm_nextp; 233 continue; 234 } 235 236 /* 237 * Can't hold ntable_lock across call to do_unmount 238 * because nm_unmount tries to acquire it. This means 239 * there is a window where another mount of vp can 240 * happen so it is possible that after nm_unmountall 241 * there are still some mounts. This situation existed 242 * without MT locking because dounmount can sleep 243 * so another mount could happen during that time. 244 * This situation is unlikely and doesn't really cause 245 * any problems. 246 */ 247 mutex_exit(&ntable_lock); 248 if ((error = dounmount(vfsp, 0, crp)) != 0) 249 realerr = error; 250 mutex_enter(&ntable_lock); 251 /* 252 * Since we dropped the ntable_lock, we 253 * have to start over from the beginning. 254 * If for some reasons dounmount() fails, 255 * start from beginning means that we will keep on 256 * trying unless another thread unmounts it for us. 257 */ 258 nodep = *NM_FILEVP_HASH(vp); 259 } else 260 nodep = nodep->nm_nextp; 261 } 262 mutex_exit(&ntable_lock); 263 return (realerr); 264 } 265 266 /* 267 * Force the unmouting of a file descriptor from ALL of the nodes 268 * that it was mounted to. XXX: fifo_close() calls this routine. 269 * 270 * nm_umountall() may return EBUSY. 271 * nm_unmountall() will keep on trying until it succeeds. 272 */ 273 int 274 nm_unmountall(vnode_t *vp, cred_t *crp) 275 { 276 int error; 277 278 /* 279 * Nm_umuontall() returns only if it succeeds or 280 * return with error EBUSY. If EBUSY, that means 281 * it cannot acquire the lock on the covered vnode, 282 * and we will keep on trying. 283 */ 284 for (;;) { 285 error = nm_umountall(vp, crp); 286 if (error != EBUSY) 287 break; 288 delay(1); /* yield cpu briefly, then try again */ 289 } 290 return (error); 291 } 292 293 /* 294 * Mount a file descriptor onto the node in the file system. 295 * Create a new vnode, update the attributes with info from the 296 * file descriptor and the mount point. The mask, mode, uid, gid, 297 * atime, mtime and ctime are taken from the mountpt. Link count is 298 * set to one, the file system id is namedev and nodeid is unique 299 * for each mounted object. Other attributes are taken from mount point. 300 * Make sure user is owner (or root) with write permissions on mount point. 301 * Hash the new vnode and return 0. 302 * Upon entry to this routine, the file descriptor is in the 303 * fd field of a struct namefd. Copy that structure from user 304 * space and retrieve the file descriptor. 305 */ 306 static int 307 nm_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *crp) 308 { 309 struct namefd namefdp; 310 struct vnode *filevp; /* file descriptor vnode */ 311 struct file *fp; 312 struct vnode *newvp; /* vnode representing this mount */ 313 struct vnode *rvp; /* realvp (if any) for the mountpt */ 314 struct namenode *nodep; /* namenode for this mount */ 315 struct vattr filevattr; /* attributes of file dec. */ 316 struct vattr *vattrp; /* attributes of this mount */ 317 char *resource_name; 318 char *resource_nodetype; 319 statvfs64_t *svfsp; 320 int error = 0; 321 322 /* 323 * Get the file descriptor from user space. 324 * Make sure the file descriptor is valid and has an 325 * associated file pointer. 326 * If so, extract the vnode from the file pointer. 327 */ 328 if (uap->datalen != sizeof (struct namefd)) 329 return (EINVAL); 330 331 if (copyin(uap->dataptr, &namefdp, uap->datalen)) 332 return (EFAULT); 333 334 if ((fp = getf(namefdp.fd)) == NULL) 335 return (EBADF); 336 337 /* 338 * If the mount point already has something mounted 339 * on it, disallow this mount. (This restriction may 340 * be removed in a later release). 341 * Or unmount has completed but the namefs ROOT vnode 342 * count has not decremented to zero, disallow this mount. 343 */ 344 mutex_enter(&mvp->v_lock); 345 if ((mvp->v_flag & VROOT) || (mvp->v_vfsp == &namevfs)) { 346 mutex_exit(&mvp->v_lock); 347 releasef(namefdp.fd); 348 return (EBUSY); 349 } 350 mutex_exit(&mvp->v_lock); 351 352 /* 353 * Cannot allow users to fattach() in /dev/pts. 354 * First, there is no need for doing so and secondly 355 * we cannot allow arbitrary users to park on a 356 * /dev/pts node. 357 */ 358 rvp = NULLVP; 359 if (vn_matchops(mvp, spec_getvnodeops()) && 360 VOP_REALVP(mvp, &rvp, NULL) == 0 && rvp && 361 vn_matchops(rvp, devpts_getvnodeops())) { 362 releasef(namefdp.fd); 363 return (ENOTSUP); 364 } 365 366 filevp = fp->f_vnode; 367 if (filevp->v_type == VDIR || filevp->v_type == VPORT) { 368 releasef(namefdp.fd); 369 return (EINVAL); 370 } 371 372 /* 373 * If the fd being mounted refers to neither a door nor a stream, 374 * make sure the caller is privileged. 375 */ 376 if (filevp->v_type != VDOOR && filevp->v_stream == NULL) { 377 if (secpolicy_fs_mount(crp, filevp, vfsp) != 0) { 378 /* fd is neither a stream nor a door */ 379 releasef(namefdp.fd); 380 return (EINVAL); 381 } 382 } 383 384 /* 385 * Make sure the file descriptor is not the root of some 386 * file system. 387 * If it's not, create a reference and allocate a namenode 388 * to represent this mount request. 389 */ 390 if (filevp->v_flag & VROOT) { 391 releasef(namefdp.fd); 392 return (EBUSY); 393 } 394 395 nodep = kmem_zalloc(sizeof (struct namenode), KM_SLEEP); 396 397 mutex_init(&nodep->nm_lock, NULL, MUTEX_DEFAULT, NULL); 398 vattrp = &nodep->nm_vattr; 399 vattrp->va_mask = AT_ALL; 400 if (error = VOP_GETATTR(mvp, vattrp, 0, crp, NULL)) 401 goto out; 402 403 filevattr.va_mask = AT_ALL; 404 if (error = VOP_GETATTR(filevp, &filevattr, 0, crp, NULL)) 405 goto out; 406 /* 407 * Make sure the user is the owner of the mount point 408 * or has sufficient privileges. 409 */ 410 if (error = secpolicy_vnode_owner(crp, vattrp->va_uid)) 411 goto out; 412 413 /* 414 * Make sure the user has write permissions on the 415 * mount point (or has sufficient privileges). 416 */ 417 if (!(vattrp->va_mode & VWRITE) && 418 secpolicy_vnode_access(crp, mvp, vattrp->va_uid, VWRITE) != 0) { 419 error = EACCES; 420 goto out; 421 } 422 423 /* 424 * If the file descriptor has file/record locking, don't 425 * allow the mount to succeed. 426 */ 427 if (vn_has_flocks(filevp)) { 428 error = EACCES; 429 goto out; 430 } 431 432 /* 433 * Initialize the namenode. 434 */ 435 if (filevp->v_stream) { 436 struct stdata *stp = filevp->v_stream; 437 mutex_enter(&stp->sd_lock); 438 stp->sd_flag |= STRMOUNT; 439 mutex_exit(&stp->sd_lock); 440 } 441 nodep->nm_filevp = filevp; 442 mutex_enter(&fp->f_tlock); 443 fp->f_count++; 444 mutex_exit(&fp->f_tlock); 445 446 releasef(namefdp.fd); 447 nodep->nm_filep = fp; 448 nodep->nm_mountpt = mvp; 449 450 /* 451 * The attributes for the mounted file descriptor were initialized 452 * above by applying VOP_GETATTR to the mount point. Some of 453 * the fields of the attributes structure will be overwritten 454 * by the attributes from the file descriptor. 455 */ 456 vattrp->va_type = filevattr.va_type; 457 vattrp->va_fsid = namedev; 458 vattrp->va_nodeid = namenodeno_alloc(); 459 vattrp->va_nlink = 1; 460 vattrp->va_size = filevattr.va_size; 461 vattrp->va_rdev = filevattr.va_rdev; 462 vattrp->va_blksize = filevattr.va_blksize; 463 vattrp->va_nblocks = filevattr.va_nblocks; 464 vattrp->va_seq = 0; 465 466 /* 467 * Initialize new vnode structure for the mounted file descriptor. 468 */ 469 nodep->nm_vnode = vn_alloc(KM_SLEEP); 470 newvp = NMTOV(nodep); 471 472 newvp->v_flag = filevp->v_flag | VROOT | VNOMAP | VNOSWAP; 473 vn_setops(newvp, nm_vnodeops); 474 newvp->v_vfsp = vfsp; 475 newvp->v_stream = filevp->v_stream; 476 newvp->v_type = filevp->v_type; 477 newvp->v_rdev = filevp->v_rdev; 478 newvp->v_data = (caddr_t)nodep; 479 VFS_HOLD(vfsp); 480 vn_exists(newvp); 481 482 /* 483 * Initialize the vfs structure. 484 */ 485 vfsp->vfs_vnodecovered = NULL; 486 vfsp->vfs_flag |= VFS_UNLINKABLE; 487 vfsp->vfs_bsize = 1024; 488 vfsp->vfs_fstype = namefstype; 489 vfs_make_fsid(&vfsp->vfs_fsid, namedev, namefstype); 490 vfsp->vfs_data = (caddr_t)nodep; 491 vfsp->vfs_dev = namedev; 492 vfsp->vfs_bcount = 0; 493 494 /* 495 * Set the name we mounted from. 496 */ 497 switch (filevp->v_type) { 498 case VPROC: /* VOP_GETATTR() translates this to VREG */ 499 case VREG: resource_nodetype = "file"; break; 500 case VDIR: resource_nodetype = "directory"; break; 501 case VBLK: resource_nodetype = "device"; break; 502 case VCHR: resource_nodetype = "device"; break; 503 case VLNK: resource_nodetype = "link"; break; 504 case VFIFO: resource_nodetype = "fifo"; break; 505 case VDOOR: resource_nodetype = "door"; break; 506 case VSOCK: resource_nodetype = "socket"; break; 507 default: resource_nodetype = "resource"; break; 508 } 509 510 #define RESOURCE_NAME_SZ 128 /* Maximum length of the resource name */ 511 resource_name = kmem_alloc(RESOURCE_NAME_SZ, KM_SLEEP); 512 svfsp = kmem_alloc(sizeof (statvfs64_t), KM_SLEEP); 513 514 error = VFS_STATVFS(filevp->v_vfsp, svfsp); 515 if (error == 0) { 516 (void) snprintf(resource_name, RESOURCE_NAME_SZ, 517 "unspecified_%s_%s", svfsp->f_basetype, resource_nodetype); 518 } else { 519 (void) snprintf(resource_name, RESOURCE_NAME_SZ, 520 "unspecified_%s", resource_nodetype); 521 } 522 523 vfs_setresource(vfsp, resource_name); 524 525 kmem_free(svfsp, sizeof (statvfs64_t)); 526 kmem_free(resource_name, RESOURCE_NAME_SZ); 527 #undef RESOURCE_NAME_SZ 528 529 /* 530 * Insert the namenode. 531 */ 532 mutex_enter(&ntable_lock); 533 nameinsert(nodep); 534 mutex_exit(&ntable_lock); 535 return (0); 536 out: 537 releasef(namefdp.fd); 538 kmem_free(nodep, sizeof (struct namenode)); 539 return (error); 540 } 541 542 /* 543 * Unmount a file descriptor from a node in the file system. 544 * If the user is not the owner of the file and is not privileged, 545 * the request is denied. 546 * Otherwise, remove the namenode from the hash list. 547 * If the mounted file descriptor was that of a stream and this 548 * was the last mount of the stream, turn off the STRMOUNT flag. 549 * If the rootvp is referenced other than through the mount, 550 * nm_inactive will clean up. 551 */ 552 static int 553 nm_unmount(vfs_t *vfsp, int flag, cred_t *crp) 554 { 555 struct namenode *nodep = (struct namenode *)vfsp->vfs_data; 556 vnode_t *vp, *thisvp; 557 struct file *fp = NULL; 558 559 ASSERT((nodep->nm_flag & NMNMNT) == 0); 560 561 /* 562 * forced unmount is not supported by this file system 563 * and thus, ENOTSUP, is being returned. 564 */ 565 if (flag & MS_FORCE) { 566 return (ENOTSUP); 567 } 568 569 vp = nodep->nm_filevp; 570 mutex_enter(&nodep->nm_lock); 571 if (secpolicy_vnode_owner(crp, nodep->nm_vattr.va_uid) != 0) { 572 mutex_exit(&nodep->nm_lock); 573 return (EPERM); 574 } 575 576 mutex_exit(&nodep->nm_lock); 577 578 mutex_enter(&ntable_lock); 579 nameremove(nodep); 580 thisvp = NMTOV(nodep); 581 mutex_enter(&thisvp->v_lock); 582 if (thisvp->v_count-- == 1) { 583 fp = nodep->nm_filep; 584 mutex_exit(&thisvp->v_lock); 585 vn_invalid(thisvp); 586 vn_free(thisvp); 587 VFS_RELE(vfsp); 588 namenodeno_free(nodep->nm_vattr.va_nodeid); 589 kmem_free(nodep, sizeof (struct namenode)); 590 } else { 591 thisvp->v_flag &= ~VROOT; 592 mutex_exit(&thisvp->v_lock); 593 } 594 if (namefind(vp, NULLVP) == NULL && vp->v_stream) { 595 struct stdata *stp = vp->v_stream; 596 mutex_enter(&stp->sd_lock); 597 stp->sd_flag &= ~STRMOUNT; 598 mutex_exit(&stp->sd_lock); 599 } 600 mutex_exit(&ntable_lock); 601 if (fp != NULL) 602 (void) closef(fp); 603 return (0); 604 } 605 606 /* 607 * Create a reference to the root of a mounted file descriptor. 608 * This routine is called from lookupname() in the event a path 609 * is being searched that has a mounted file descriptor in it. 610 */ 611 static int 612 nm_root(vfs_t *vfsp, vnode_t **vpp) 613 { 614 struct namenode *nodep = (struct namenode *)vfsp->vfs_data; 615 struct vnode *vp = NMTOV(nodep); 616 617 VN_HOLD(vp); 618 *vpp = vp; 619 return (0); 620 } 621 622 /* 623 * Return in sp the status of this file system. 624 */ 625 static int 626 nm_statvfs(vfs_t *vfsp, struct statvfs64 *sp) 627 { 628 dev32_t d32; 629 630 bzero(sp, sizeof (*sp)); 631 sp->f_bsize = 1024; 632 sp->f_frsize = 1024; 633 (void) cmpldev(&d32, vfsp->vfs_dev); 634 sp->f_fsid = d32; 635 (void) strcpy(sp->f_basetype, vfssw[vfsp->vfs_fstype].vsw_name); 636 sp->f_flag = vf_to_stf(vfsp->vfs_flag); 637 return (0); 638 } 639 640 /* 641 * Since this file system has no disk blocks of its own, apply 642 * the VOP_FSYNC operation on the mounted file descriptor. 643 */ 644 static int 645 nm_sync(vfs_t *vfsp, short flag, cred_t *crp) 646 { 647 struct namenode *nodep; 648 649 if (vfsp == NULL) 650 return (0); 651 652 nodep = (struct namenode *)vfsp->vfs_data; 653 if (flag & SYNC_CLOSE) 654 return (nm_umountall(nodep->nm_filevp, crp)); 655 656 return (VOP_FSYNC(nodep->nm_filevp, FSYNC, crp, NULL)); 657 } 658 659 /* 660 * File system initialization routine. Save the file system type, 661 * establish a file system device number and initialize nm_filevp_hash[]. 662 */ 663 int 664 nameinit(int fstype, char *name) 665 { 666 static const fs_operation_def_t nm_vfsops_template[] = { 667 VFSNAME_MOUNT, { .vfs_mount = nm_mount }, 668 VFSNAME_UNMOUNT, { .vfs_unmount = nm_unmount }, 669 VFSNAME_ROOT, { .vfs_root = nm_root }, 670 VFSNAME_STATVFS, { .vfs_statvfs = nm_statvfs }, 671 VFSNAME_SYNC, { .vfs_sync = nm_sync }, 672 NULL, NULL 673 }; 674 static const fs_operation_def_t nm_dummy_vfsops_template[] = { 675 VFSNAME_STATVFS, { .vfs_statvfs = nm_statvfs }, 676 VFSNAME_SYNC, { .vfs_sync = nm_sync }, 677 NULL, NULL 678 }; 679 int error; 680 int dev; 681 vfsops_t *namefs_vfsops; 682 vfsops_t *dummy_vfsops; 683 684 error = vfs_setfsops(fstype, nm_vfsops_template, &namefs_vfsops); 685 if (error != 0) { 686 cmn_err(CE_WARN, "nameinit: bad vfs ops template"); 687 return (error); 688 } 689 690 error = vfs_makefsops(nm_dummy_vfsops_template, &dummy_vfsops); 691 if (error != 0) { 692 (void) vfs_freevfsops_by_type(fstype); 693 cmn_err(CE_WARN, "nameinit: bad dummy vfs ops template"); 694 return (error); 695 } 696 697 error = vn_make_ops(name, nm_vnodeops_template, &nm_vnodeops); 698 if (error != 0) { 699 (void) vfs_freevfsops_by_type(fstype); 700 vfs_freevfsops(dummy_vfsops); 701 cmn_err(CE_WARN, "nameinit: bad vnode ops template"); 702 return (error); 703 } 704 705 namefstype = fstype; 706 707 if ((dev = getudev()) == (major_t)-1) { 708 cmn_err(CE_WARN, "nameinit: can't get unique device"); 709 dev = 0; 710 } 711 mutex_init(&ntable_lock, NULL, MUTEX_DEFAULT, NULL); 712 namedev = makedevice(dev, 0); 713 bzero(nm_filevp_hash, sizeof (nm_filevp_hash)); 714 vfs_setops(&namevfs, dummy_vfsops); 715 namevfs.vfs_vnodecovered = NULL; 716 namevfs.vfs_bsize = 1024; 717 namevfs.vfs_fstype = namefstype; 718 vfs_make_fsid(&namevfs.vfs_fsid, namedev, namefstype); 719 namevfs.vfs_dev = namedev; 720 return (0); 721 } 722 723 static mntopts_t nm_mntopts = { 724 NULL, 725 0 726 }; 727 728 static vfsdef_t vfw = { 729 VFSDEF_VERSION, 730 "namefs", 731 nameinit, 732 VSW_HASPROTO, 733 &nm_mntopts 734 }; 735 736 /* 737 * Module linkage information for the kernel. 738 */ 739 static struct modlfs modlfs = { 740 &mod_fsops, "filesystem for namefs", &vfw 741 }; 742 743 static struct modlinkage modlinkage = { 744 MODREV_1, (void *)&modlfs, NULL 745 }; 746 747 int 748 _init(void) 749 { 750 namenodeno_init(); 751 return (mod_install(&modlinkage)); 752 } 753 754 int 755 _fini(void) 756 { 757 return (EBUSY); 758 } 759 760 int 761 _info(struct modinfo *modinfop) 762 { 763 return (mod_info(&modlinkage, modinfop)); 764 } 765