xref: /titanic_52/usr/src/uts/common/fs/dnlc.c (revision db2bae3047e71d795bde12e3baa621f4b6cc8930)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 /*	Copyright (c) 1983, 1984, 1985, 1986, 1987, 1988, 1989 AT&T	*/
27 /*	  All Rights Reserved  	*/
28 
29 /*
30  * University Copyright- Copyright (c) 1982, 1986, 1988
31  * The Regents of the University of California
32  * All Rights Reserved
33  *
34  * University Acknowledgment- Portions of this document are derived from
35  * software developed by the University of California, Berkeley, and its
36  * contributors.
37  */
38 
39 #pragma ident	"%Z%%M%	%I%	%E% SMI"
40 
41 #include <sys/types.h>
42 #include <sys/systm.h>
43 #include <sys/param.h>
44 #include <sys/t_lock.h>
45 #include <sys/systm.h>
46 #include <sys/vfs.h>
47 #include <sys/vnode.h>
48 #include <sys/dnlc.h>
49 #include <sys/kmem.h>
50 #include <sys/cmn_err.h>
51 #include <sys/vtrace.h>
52 #include <sys/bitmap.h>
53 #include <sys/var.h>
54 #include <sys/sysmacros.h>
55 #include <sys/kstat.h>
56 #include <sys/atomic.h>
57 #include <sys/taskq.h>
58 
59 /*
60  * Directory name lookup cache.
61  * Based on code originally done by Robert Elz at Melbourne.
62  *
63  * Names found by directory scans are retained in a cache
64  * for future reference.  Each hash chain is ordered by LRU
65  * Cache is indexed by hash value obtained from (vp, name)
66  * where the vp refers to the directory containing the name.
67  */
68 
69 /*
70  * We want to be able to identify files that are referenced only by the DNLC.
71  * When adding a reference from the DNLC, call VN_HOLD_DNLC instead of VN_HOLD,
72  * since multiple DNLC references should only be counted once in v_count. This
73  * file contains only two(2) calls to VN_HOLD, renamed VN_HOLD_CALLER in the
74  * hope that no one will mistakenly add a VN_HOLD to this file. (Unfortunately
75  * it is not possible to #undef VN_HOLD and retain VN_HOLD_CALLER. Ideally a
76  * Makefile rule would grep uncommented C tokens to check that VN_HOLD is
77  * referenced only once in this file, to define VN_HOLD_CALLER.)
78  */
79 #define	VN_HOLD_CALLER	VN_HOLD
80 #define	VN_HOLD_DNLC(vp)	{	\
81 	mutex_enter(&(vp)->v_lock);	\
82 	if ((vp)->v_count_dnlc == 0)	\
83 		(vp)->v_count++;	\
84 	(vp)->v_count_dnlc++;		\
85 	mutex_exit(&(vp)->v_lock);	\
86 }
87 #define	VN_RELE_DNLC(vp)	{	\
88 	vn_rele_dnlc(vp);		\
89 }
90 
91 /*
92  * Tunable nc_hashavelen is the average length desired for this chain, from
93  * which the size of the nc_hash table is derived at create time.
94  */
95 #define	NC_HASHAVELEN_DEFAULT	4
96 int nc_hashavelen = NC_HASHAVELEN_DEFAULT;
97 
98 /*
99  * NC_MOVETOFRONT is the move-to-front threshold: if the hash lookup
100  * depth exceeds this value, we move the looked-up entry to the front of
101  * its hash chain.  The idea is to make sure that the most frequently
102  * accessed entries are found most quickly (by keeping them near the
103  * front of their hash chains).
104  */
105 #define	NC_MOVETOFRONT	2
106 
107 /*
108  *
109  * DNLC_MAX_RELE is used to size an array on the stack when releasing
110  * vnodes. This array is used rather than calling VN_RELE() inline because
111  * all dnlc locks must be dropped by that time in order to avoid a
112  * possible deadlock. This deadlock occurs when the dnlc holds the last
113  * reference to the vnode and so the VOP_INACTIVE vector is called which
114  * can in turn call back into the dnlc. A global array was used but had
115  * many problems:
116  *	1) Actually doesn't have an upper bound on the array size as
117  *	   entries can be added after starting the purge.
118  *	2) The locking scheme causes a hang.
119  *	3) Caused serialisation on the global lock.
120  *	4) The array was often unnecessarily huge.
121  *
122  * Note the current value 8 allows up to 4 cache entries (to be purged
123  * from each hash chain), before having to cycle around and retry.
124  * This ought to be ample given that nc_hashavelen is typically very small.
125  */
126 #define	DNLC_MAX_RELE	8 /* must be even */
127 
128 /*
129  * Hash table of name cache entries for fast lookup, dynamically
130  * allocated at startup.
131  */
132 nc_hash_t *nc_hash;
133 
134 /*
135  * Rotors. Used to select entries on a round-robin basis.
136  */
137 static nc_hash_t *dnlc_purge_fs1_rotor;
138 static nc_hash_t *dnlc_free_rotor;
139 
140 /*
141  * # of dnlc entries (uninitialized)
142  *
143  * the initial value was chosen as being
144  * a random string of bits, probably not
145  * normally chosen by a systems administrator
146  */
147 int ncsize = -1;
148 volatile uint32_t dnlc_nentries = 0;	/* current num of name cache entries */
149 static int nc_hashsz;			/* size of hash table */
150 static int nc_hashmask;			/* size of hash table minus 1 */
151 
152 /*
153  * The dnlc_reduce_cache() taskq queue is activated when there are
154  * ncsize name cache entries and if no parameter is provided, it reduces
155  * the size down to dnlc_nentries_low_water, which is by default one
156  * hundreth less (or 99%) of ncsize.
157  *
158  * If a parameter is provided to dnlc_reduce_cache(), then we reduce
159  * the size down based on ncsize_onepercent - where ncsize_onepercent
160  * is 1% of ncsize; however, we never let dnlc_reduce_cache() reduce
161  * the size below 3% of ncsize (ncsize_min_percent).
162  */
163 #define	DNLC_LOW_WATER_DIVISOR_DEFAULT 100
164 uint_t dnlc_low_water_divisor = DNLC_LOW_WATER_DIVISOR_DEFAULT;
165 uint_t dnlc_nentries_low_water;
166 int dnlc_reduce_idle = 1; /* no locking needed */
167 uint_t ncsize_onepercent;
168 uint_t ncsize_min_percent;
169 
170 /*
171  * If dnlc_nentries hits dnlc_max_nentries (twice ncsize)
172  * then this means the dnlc_reduce_cache() taskq is failing to
173  * keep up. In this case we refuse to add new entries to the dnlc
174  * until the taskq catches up.
175  */
176 uint_t dnlc_max_nentries; /* twice ncsize */
177 uint64_t dnlc_max_nentries_cnt = 0; /* statistic on times we failed */
178 
179 /*
180  * Tunable to define when we should just remove items from
181  * the end of the chain.
182  */
183 #define	DNLC_LONG_CHAIN 8
184 uint_t dnlc_long_chain = DNLC_LONG_CHAIN;
185 
186 /*
187  * ncstats has been deprecated, due to the integer size of the counters
188  * which can easily overflow in the dnlc.
189  * It is maintained (at some expense) for compatability.
190  * The preferred interface is the kstat accessible nc_stats below.
191  */
192 struct ncstats ncstats;
193 
194 struct nc_stats ncs = {
195 	{ "hits",			KSTAT_DATA_UINT64 },
196 	{ "misses",			KSTAT_DATA_UINT64 },
197 	{ "negative_cache_hits",	KSTAT_DATA_UINT64 },
198 	{ "enters",			KSTAT_DATA_UINT64 },
199 	{ "double_enters",		KSTAT_DATA_UINT64 },
200 	{ "purge_total_entries",	KSTAT_DATA_UINT64 },
201 	{ "purge_all",			KSTAT_DATA_UINT64 },
202 	{ "purge_vp",			KSTAT_DATA_UINT64 },
203 	{ "purge_vfs",			KSTAT_DATA_UINT64 },
204 	{ "purge_fs1",			KSTAT_DATA_UINT64 },
205 	{ "pick_free",			KSTAT_DATA_UINT64 },
206 	{ "pick_heuristic",		KSTAT_DATA_UINT64 },
207 	{ "pick_last",			KSTAT_DATA_UINT64 },
208 
209 	/* directory caching stats */
210 
211 	{ "dir_hits",			KSTAT_DATA_UINT64 },
212 	{ "dir_misses",			KSTAT_DATA_UINT64 },
213 	{ "dir_cached_current",		KSTAT_DATA_UINT64 },
214 	{ "dir_entries_cached_current",	KSTAT_DATA_UINT64 },
215 	{ "dir_cached_total",		KSTAT_DATA_UINT64 },
216 	{ "dir_start_no_memory",	KSTAT_DATA_UINT64 },
217 	{ "dir_add_no_memory",		KSTAT_DATA_UINT64 },
218 	{ "dir_add_abort",		KSTAT_DATA_UINT64 },
219 	{ "dir_add_max",		KSTAT_DATA_UINT64 },
220 	{ "dir_remove_entry_fail",	KSTAT_DATA_UINT64 },
221 	{ "dir_remove_space_fail",	KSTAT_DATA_UINT64 },
222 	{ "dir_update_fail",		KSTAT_DATA_UINT64 },
223 	{ "dir_fini_purge",		KSTAT_DATA_UINT64 },
224 	{ "dir_reclaim_last",		KSTAT_DATA_UINT64 },
225 	{ "dir_reclaim_any",		KSTAT_DATA_UINT64 },
226 };
227 
228 static int doingcache = 1;
229 
230 vnode_t negative_cache_vnode;
231 
232 /*
233  * Insert entry at the front of the queue
234  */
235 #define	nc_inshash(ncp, hp) \
236 { \
237 	(ncp)->hash_next = (hp)->hash_next; \
238 	(ncp)->hash_prev = (ncache_t *)(hp); \
239 	(hp)->hash_next->hash_prev = (ncp); \
240 	(hp)->hash_next = (ncp); \
241 }
242 
243 /*
244  * Remove entry from hash queue
245  */
246 #define	nc_rmhash(ncp) \
247 { \
248 	(ncp)->hash_prev->hash_next = (ncp)->hash_next; \
249 	(ncp)->hash_next->hash_prev = (ncp)->hash_prev; \
250 	(ncp)->hash_prev = NULL; \
251 	(ncp)->hash_next = NULL; \
252 }
253 
254 /*
255  * Free an entry.
256  */
257 #define	dnlc_free(ncp) \
258 { \
259 	kmem_free((ncp), sizeof (ncache_t) + (ncp)->namlen); \
260 	atomic_add_32(&dnlc_nentries, -1); \
261 }
262 
263 
264 /*
265  * Cached directory info.
266  * ======================
267  */
268 
269 /*
270  * Cached directory free space hash function.
271  * Needs the free space handle and the dcp to get the hash table size
272  * Returns the hash index.
273  */
274 #define	DDFHASH(handle, dcp) ((handle >> 2) & (dcp)->dc_fhash_mask)
275 
276 /*
277  * Cached directory name entry hash function.
278  * Uses the name and returns in the input arguments the hash and the name
279  * length.
280  */
281 #define	DNLC_DIR_HASH(name, hash, namelen)			\
282 	{							\
283 		char Xc, *Xcp;					\
284 		hash = *name;					\
285 		for (Xcp = (name + 1); (Xc = *Xcp) != 0; Xcp++)	\
286 			hash = (hash << 4) + hash + Xc;		\
287 		ASSERT((Xcp - (name)) <= ((1 << NBBY) - 1));	\
288 		namelen = Xcp - (name);				\
289 	}
290 
291 /* special dircache_t pointer to indicate error should be returned */
292 /*
293  * The anchor directory cache pointer can contain 3 types of values,
294  * 1) NULL: No directory cache
295  * 2) DC_RET_LOW_MEM (-1): There was a directory cache that found to be
296  *    too big or a memory shortage occurred. This value remains in the
297  *    pointer until a dnlc_dir_start() which returns the a DNOMEM error.
298  *    This is kludgy but efficient and only visible in this source file.
299  * 3) A valid cache pointer.
300  */
301 #define	DC_RET_LOW_MEM (dircache_t *)1
302 #define	VALID_DIR_CACHE(dcp) ((dircache_t *)(dcp) > DC_RET_LOW_MEM)
303 
304 /* Tunables */
305 uint_t dnlc_dir_enable = 1; /* disable caching directories by setting to 0 */
306 uint_t dnlc_dir_min_size = 40; /* min no of directory entries before caching */
307 uint_t dnlc_dir_max_size = UINT_MAX; /* ditto maximum */
308 uint_t dnlc_dir_hash_size_shift = 3; /* 8 entries per hash bucket */
309 uint_t dnlc_dir_min_reclaim =  350000; /* approx 1MB of dcentrys */
310 /*
311  * dnlc_dir_hash_resize_shift determines when the hash tables
312  * get re-adjusted due to growth or shrinkage
313  * - currently 2 indicating that there can be at most 4
314  * times or at least one quarter the number of entries
315  * before hash table readjustment. Note that with
316  * dnlc_dir_hash_size_shift above set at 3 this would
317  * mean readjustment would occur if the average number
318  * of entries went above 32 or below 2
319  */
320 uint_t dnlc_dir_hash_resize_shift = 2; /* readjust rate */
321 
322 static kmem_cache_t *dnlc_dir_space_cache; /* free space entry cache */
323 static dchead_t dc_head; /* anchor of cached directories */
324 
325 /* Prototypes */
326 static ncache_t *dnlc_get(uchar_t namlen);
327 static ncache_t *dnlc_search(vnode_t *dp, char *name, uchar_t namlen, int hash);
328 static void dnlc_dir_reclaim(void *unused);
329 static void dnlc_dir_abort(dircache_t *dcp);
330 static void dnlc_dir_adjust_fhash(dircache_t *dcp);
331 static void dnlc_dir_adjust_nhash(dircache_t *dcp);
332 static void do_dnlc_reduce_cache(void *);
333 
334 
335 /*
336  * Initialize the directory cache.
337  */
338 void
339 dnlc_init()
340 {
341 	nc_hash_t *hp;
342 	kstat_t *ksp;
343 	int i;
344 
345 	/*
346 	 * Set up the size of the dnlc (ncsize) and its low water mark.
347 	 */
348 	if (ncsize == -1) {
349 		/* calculate a reasonable size for the low water */
350 		dnlc_nentries_low_water = 4 * (v.v_proc + maxusers) + 320;
351 		ncsize = dnlc_nentries_low_water +
352 		    (dnlc_nentries_low_water / dnlc_low_water_divisor);
353 	} else {
354 		/* don't change the user specified ncsize */
355 		dnlc_nentries_low_water =
356 		    ncsize - (ncsize / dnlc_low_water_divisor);
357 	}
358 	if (ncsize <= 0) {
359 		doingcache = 0;
360 		dnlc_dir_enable = 0; /* also disable directory caching */
361 		ncsize = 0;
362 		cmn_err(CE_NOTE, "name cache (dnlc) disabled");
363 		return;
364 	}
365 	dnlc_max_nentries = ncsize * 2;
366 	ncsize_onepercent = ncsize / 100;
367 	ncsize_min_percent = ncsize_onepercent * 3;
368 
369 	/*
370 	 * Initialise the hash table.
371 	 * Compute hash size rounding to the next power of two.
372 	 */
373 	nc_hashsz = ncsize / nc_hashavelen;
374 	nc_hashsz = 1 << highbit(nc_hashsz);
375 	nc_hashmask = nc_hashsz - 1;
376 	nc_hash = kmem_zalloc(nc_hashsz * sizeof (*nc_hash), KM_SLEEP);
377 	for (i = 0; i < nc_hashsz; i++) {
378 		hp = (nc_hash_t *)&nc_hash[i];
379 		mutex_init(&hp->hash_lock, NULL, MUTEX_DEFAULT, NULL);
380 		hp->hash_next = (ncache_t *)hp;
381 		hp->hash_prev = (ncache_t *)hp;
382 	}
383 
384 	/*
385 	 * Initialize rotors
386 	 */
387 	dnlc_free_rotor = dnlc_purge_fs1_rotor = &nc_hash[0];
388 
389 	/*
390 	 * Set up the directory caching to use kmem_cache_alloc
391 	 * for its free space entries so that we can get a callback
392 	 * when the system is short on memory, to allow us to free
393 	 * up some memory. we don't use the constructor/deconstructor
394 	 * functions.
395 	 */
396 	dnlc_dir_space_cache = kmem_cache_create("dnlc_space_cache",
397 	    sizeof (dcfree_t), 0, NULL, NULL, dnlc_dir_reclaim, NULL,
398 	    NULL, 0);
399 
400 	/*
401 	 * Initialise the head of the cached directory structures
402 	 */
403 	mutex_init(&dc_head.dch_lock, NULL, MUTEX_DEFAULT, NULL);
404 	dc_head.dch_next = (dircache_t *)&dc_head;
405 	dc_head.dch_prev = (dircache_t *)&dc_head;
406 
407 	/*
408 	 * Initialise the reference count of the negative cache vnode to 1
409 	 * so that it never goes away (VOP_INACTIVE isn't called on it).
410 	 */
411 	negative_cache_vnode.v_count = 1;
412 	negative_cache_vnode.v_count_dnlc = 0;
413 
414 	/*
415 	 * Initialise kstats - both the old compatability raw kind and
416 	 * the more extensive named stats.
417 	 */
418 	ksp = kstat_create("unix", 0, "ncstats", "misc", KSTAT_TYPE_RAW,
419 	    sizeof (struct ncstats), KSTAT_FLAG_VIRTUAL);
420 	if (ksp) {
421 		ksp->ks_data = (void *) &ncstats;
422 		kstat_install(ksp);
423 	}
424 	ksp = kstat_create("unix", 0, "dnlcstats", "misc", KSTAT_TYPE_NAMED,
425 	    sizeof (ncs) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL);
426 	if (ksp) {
427 		ksp->ks_data = (void *) &ncs;
428 		kstat_install(ksp);
429 	}
430 }
431 
432 /*
433  * Add a name to the directory cache.
434  */
435 void
436 dnlc_enter(vnode_t *dp, char *name, vnode_t *vp)
437 {
438 	ncache_t *ncp;
439 	nc_hash_t *hp;
440 	uchar_t namlen;
441 	int hash;
442 
443 	TRACE_0(TR_FAC_NFS, TR_DNLC_ENTER_START, "dnlc_enter_start:");
444 
445 	if (!doingcache) {
446 		TRACE_2(TR_FAC_NFS, TR_DNLC_ENTER_END,
447 		    "dnlc_enter_end:(%S) %d", "not caching", 0);
448 		return;
449 	}
450 
451 	/*
452 	 * Get a new dnlc entry. Assume the entry won't be in the cache
453 	 * and initialize it now
454 	 */
455 	DNLCHASH(name, dp, hash, namlen);
456 	if ((ncp = dnlc_get(namlen)) == NULL)
457 		return;
458 	ncp->dp = dp;
459 	VN_HOLD_DNLC(dp);
460 	ncp->vp = vp;
461 	VN_HOLD_DNLC(vp);
462 	bcopy(name, ncp->name, namlen + 1); /* name and null */
463 	ncp->hash = hash;
464 	hp = &nc_hash[hash & nc_hashmask];
465 
466 	mutex_enter(&hp->hash_lock);
467 	if (dnlc_search(dp, name, namlen, hash) != NULL) {
468 		mutex_exit(&hp->hash_lock);
469 		ncstats.dbl_enters++;
470 		ncs.ncs_dbl_enters.value.ui64++;
471 		VN_RELE_DNLC(dp);
472 		VN_RELE_DNLC(vp);
473 		dnlc_free(ncp);		/* crfree done here */
474 		TRACE_2(TR_FAC_NFS, TR_DNLC_ENTER_END,
475 		    "dnlc_enter_end:(%S) %d", "dbl enter", ncstats.dbl_enters);
476 		return;
477 	}
478 	/*
479 	 * Insert back into the hash chain.
480 	 */
481 	nc_inshash(ncp, hp);
482 	mutex_exit(&hp->hash_lock);
483 	ncstats.enters++;
484 	ncs.ncs_enters.value.ui64++;
485 	TRACE_2(TR_FAC_NFS, TR_DNLC_ENTER_END,
486 	    "dnlc_enter_end:(%S) %d", "done", ncstats.enters);
487 }
488 
489 /*
490  * Add a name to the directory cache.
491  *
492  * This function is basically identical with
493  * dnlc_enter().  The difference is that when the
494  * desired dnlc entry is found, the vnode in the
495  * ncache is compared with the vnode passed in.
496  *
497  * If they are not equal then the ncache is
498  * updated with the passed in vnode.  Otherwise
499  * it just frees up the newly allocated dnlc entry.
500  */
501 void
502 dnlc_update(vnode_t *dp, char *name, vnode_t *vp)
503 {
504 	ncache_t *ncp;
505 	ncache_t *tcp;
506 	vnode_t *tvp;
507 	nc_hash_t *hp;
508 	int hash;
509 	uchar_t namlen;
510 
511 	TRACE_0(TR_FAC_NFS, TR_DNLC_ENTER_START, "dnlc_update_start:");
512 
513 	if (!doingcache) {
514 		TRACE_2(TR_FAC_NFS, TR_DNLC_ENTER_END,
515 		    "dnlc_update_end:(%S) %d", "not caching", 0);
516 		return;
517 	}
518 
519 	/*
520 	 * Get a new dnlc entry and initialize it now.
521 	 * If we fail to get a new entry, call dnlc_remove() to purge
522 	 * any existing dnlc entry including negative cache (DNLC_NO_VNODE)
523 	 * entry.
524 	 * Failure to clear an existing entry could result in false dnlc
525 	 * lookup (negative/stale entry).
526 	 */
527 	DNLCHASH(name, dp, hash, namlen);
528 	if ((ncp = dnlc_get(namlen)) == NULL) {
529 		dnlc_remove(dp, name);
530 		return;
531 	}
532 	ncp->dp = dp;
533 	VN_HOLD_DNLC(dp);
534 	ncp->vp = vp;
535 	VN_HOLD_DNLC(vp);
536 	bcopy(name, ncp->name, namlen + 1); /* name and null */
537 	ncp->hash = hash;
538 	hp = &nc_hash[hash & nc_hashmask];
539 
540 	mutex_enter(&hp->hash_lock);
541 	if ((tcp = dnlc_search(dp, name, namlen, hash)) != NULL) {
542 		if (tcp->vp != vp) {
543 			tvp = tcp->vp;
544 			tcp->vp = vp;
545 			mutex_exit(&hp->hash_lock);
546 			VN_RELE_DNLC(tvp);
547 			ncstats.enters++;
548 			ncs.ncs_enters.value.ui64++;
549 			TRACE_2(TR_FAC_NFS, TR_DNLC_ENTER_END,
550 			    "dnlc_update_end:(%S) %d", "done", ncstats.enters);
551 		} else {
552 			mutex_exit(&hp->hash_lock);
553 			VN_RELE_DNLC(vp);
554 			ncstats.dbl_enters++;
555 			ncs.ncs_dbl_enters.value.ui64++;
556 			TRACE_2(TR_FAC_NFS, TR_DNLC_ENTER_END,
557 			    "dnlc_update_end:(%S) %d",
558 			    "dbl enter", ncstats.dbl_enters);
559 		}
560 		VN_RELE_DNLC(dp);
561 		dnlc_free(ncp);		/* crfree done here */
562 		return;
563 	}
564 	/*
565 	 * insert the new entry, since it is not in dnlc yet
566 	 */
567 	nc_inshash(ncp, hp);
568 	mutex_exit(&hp->hash_lock);
569 	ncstats.enters++;
570 	ncs.ncs_enters.value.ui64++;
571 	TRACE_2(TR_FAC_NFS, TR_DNLC_ENTER_END,
572 	    "dnlc_update_end:(%S) %d", "done", ncstats.enters);
573 }
574 
575 /*
576  * Look up a name in the directory name cache.
577  *
578  * Return a doubly-held vnode if found: one hold so that it may
579  * remain in the cache for other users, the other hold so that
580  * the cache is not re-cycled and the identity of the vnode is
581  * lost before the caller can use the vnode.
582  */
583 vnode_t *
584 dnlc_lookup(vnode_t *dp, char *name)
585 {
586 	ncache_t *ncp;
587 	nc_hash_t *hp;
588 	vnode_t *vp;
589 	int hash, depth;
590 	uchar_t namlen;
591 
592 	TRACE_2(TR_FAC_NFS, TR_DNLC_LOOKUP_START,
593 	    "dnlc_lookup_start:dp %x name %s", dp, name);
594 
595 	if (!doingcache) {
596 		TRACE_4(TR_FAC_NFS, TR_DNLC_LOOKUP_END,
597 		    "dnlc_lookup_end:%S %d vp %x name %s",
598 		    "not_caching", 0, NULL, name);
599 		return (NULL);
600 	}
601 
602 	DNLCHASH(name, dp, hash, namlen);
603 	depth = 1;
604 	hp = &nc_hash[hash & nc_hashmask];
605 	mutex_enter(&hp->hash_lock);
606 
607 	for (ncp = hp->hash_next; ncp != (ncache_t *)hp;
608 	    ncp = ncp->hash_next) {
609 		if (ncp->hash == hash &&	/* fast signature check */
610 		    ncp->dp == dp &&
611 		    ncp->namlen == namlen &&
612 		    bcmp(ncp->name, name, namlen) == 0) {
613 			/*
614 			 * Move this entry to the head of its hash chain
615 			 * if it's not already close.
616 			 */
617 			if (depth > NC_MOVETOFRONT) {
618 				ncache_t *next = ncp->hash_next;
619 				ncache_t *prev = ncp->hash_prev;
620 
621 				prev->hash_next = next;
622 				next->hash_prev = prev;
623 				ncp->hash_next = next = hp->hash_next;
624 				ncp->hash_prev = (ncache_t *)hp;
625 				next->hash_prev = ncp;
626 				hp->hash_next = ncp;
627 
628 				ncstats.move_to_front++;
629 			}
630 
631 			/*
632 			 * Put a hold on the vnode now so its identity
633 			 * can't change before the caller has a chance to
634 			 * put a hold on it.
635 			 */
636 			vp = ncp->vp;
637 			VN_HOLD_CALLER(vp); /* VN_HOLD 1 of 2 in this file */
638 			mutex_exit(&hp->hash_lock);
639 			ncstats.hits++;
640 			ncs.ncs_hits.value.ui64++;
641 			if (vp == DNLC_NO_VNODE) {
642 				ncs.ncs_neg_hits.value.ui64++;
643 			}
644 			TRACE_4(TR_FAC_NFS, TR_DNLC_LOOKUP_END,
645 			    "dnlc_lookup_end:%S %d vp %x name %s", "hit",
646 			    ncstats.hits, vp, name);
647 			return (vp);
648 		}
649 		depth++;
650 	}
651 
652 	mutex_exit(&hp->hash_lock);
653 	ncstats.misses++;
654 	ncs.ncs_misses.value.ui64++;
655 	TRACE_4(TR_FAC_NFS, TR_DNLC_LOOKUP_END,
656 	    "dnlc_lookup_end:%S %d vp %x name %s", "miss", ncstats.misses,
657 	    NULL, name);
658 	return (NULL);
659 }
660 
661 /*
662  * Remove an entry in the directory name cache.
663  */
664 void
665 dnlc_remove(vnode_t *dp, char *name)
666 {
667 	ncache_t *ncp;
668 	nc_hash_t *hp;
669 	uchar_t namlen;
670 	int hash;
671 
672 	if (!doingcache)
673 		return;
674 	DNLCHASH(name, dp, hash, namlen);
675 	hp = &nc_hash[hash & nc_hashmask];
676 
677 	mutex_enter(&hp->hash_lock);
678 	if (ncp = dnlc_search(dp, name, namlen, hash)) {
679 		/*
680 		 * Free up the entry
681 		 */
682 		nc_rmhash(ncp);
683 		mutex_exit(&hp->hash_lock);
684 		VN_RELE_DNLC(ncp->vp);
685 		VN_RELE_DNLC(ncp->dp);
686 		dnlc_free(ncp);
687 		return;
688 	}
689 	mutex_exit(&hp->hash_lock);
690 }
691 
692 /*
693  * Purge the entire cache.
694  */
695 void
696 dnlc_purge()
697 {
698 	nc_hash_t *nch;
699 	ncache_t *ncp;
700 	int index;
701 	int i;
702 	vnode_t *nc_rele[DNLC_MAX_RELE];
703 
704 	if (!doingcache)
705 		return;
706 
707 	ncstats.purges++;
708 	ncs.ncs_purge_all.value.ui64++;
709 
710 	for (nch = nc_hash; nch < &nc_hash[nc_hashsz]; nch++) {
711 		index = 0;
712 		mutex_enter(&nch->hash_lock);
713 		ncp = nch->hash_next;
714 		while (ncp != (ncache_t *)nch) {
715 			ncache_t *np;
716 
717 			np = ncp->hash_next;
718 			nc_rele[index++] = ncp->vp;
719 			nc_rele[index++] = ncp->dp;
720 
721 			nc_rmhash(ncp);
722 			dnlc_free(ncp);
723 			ncp = np;
724 			ncs.ncs_purge_total.value.ui64++;
725 			if (index == DNLC_MAX_RELE)
726 				break;
727 		}
728 		mutex_exit(&nch->hash_lock);
729 
730 		/* Release holds on all the vnodes now that we have no locks */
731 		for (i = 0; i < index; i++) {
732 			VN_RELE_DNLC(nc_rele[i]);
733 		}
734 		if (ncp != (ncache_t *)nch) {
735 			nch--; /* Do current hash chain again */
736 		}
737 	}
738 }
739 
740 /*
741  * Purge any cache entries referencing a vnode. Exit as soon as the dnlc
742  * reference count goes to zero (the caller still holds a reference).
743  */
744 void
745 dnlc_purge_vp(vnode_t *vp)
746 {
747 	nc_hash_t *nch;
748 	ncache_t *ncp;
749 	int index;
750 	vnode_t *nc_rele[DNLC_MAX_RELE];
751 
752 	ASSERT(vp->v_count > 0);
753 	if (vp->v_count_dnlc == 0) {
754 		return;
755 	}
756 
757 	if (!doingcache)
758 		return;
759 
760 	ncstats.purges++;
761 	ncs.ncs_purge_vp.value.ui64++;
762 
763 	for (nch = nc_hash; nch < &nc_hash[nc_hashsz]; nch++) {
764 		index = 0;
765 		mutex_enter(&nch->hash_lock);
766 		ncp = nch->hash_next;
767 		while (ncp != (ncache_t *)nch) {
768 			ncache_t *np;
769 
770 			np = ncp->hash_next;
771 			if (ncp->dp == vp || ncp->vp == vp) {
772 				nc_rele[index++] = ncp->vp;
773 				nc_rele[index++] = ncp->dp;
774 				nc_rmhash(ncp);
775 				dnlc_free(ncp);
776 				ncs.ncs_purge_total.value.ui64++;
777 				if (index == DNLC_MAX_RELE) {
778 					ncp = np;
779 					break;
780 				}
781 			}
782 			ncp = np;
783 		}
784 		mutex_exit(&nch->hash_lock);
785 
786 		/* Release holds on all the vnodes now that we have no locks */
787 		while (index) {
788 			VN_RELE_DNLC(nc_rele[--index]);
789 		}
790 
791 		if (vp->v_count_dnlc == 0) {
792 			return;
793 		}
794 
795 		if (ncp != (ncache_t *)nch) {
796 			nch--; /* Do current hash chain again */
797 		}
798 	}
799 }
800 
801 /*
802  * Purge cache entries referencing a vfsp.  Caller supplies a count
803  * of entries to purge; up to that many will be freed.  A count of
804  * zero indicates that all such entries should be purged.  Returns
805  * the number of entries that were purged.
806  */
807 int
808 dnlc_purge_vfsp(vfs_t *vfsp, int count)
809 {
810 	nc_hash_t *nch;
811 	ncache_t *ncp;
812 	int n = 0;
813 	int index;
814 	int i;
815 	vnode_t *nc_rele[DNLC_MAX_RELE];
816 
817 	if (!doingcache)
818 		return (0);
819 
820 	ncstats.purges++;
821 	ncs.ncs_purge_vfs.value.ui64++;
822 
823 	for (nch = nc_hash; nch < &nc_hash[nc_hashsz]; nch++) {
824 		index = 0;
825 		mutex_enter(&nch->hash_lock);
826 		ncp = nch->hash_next;
827 		while (ncp != (ncache_t *)nch) {
828 			ncache_t *np;
829 
830 			np = ncp->hash_next;
831 			ASSERT(ncp->dp != NULL);
832 			ASSERT(ncp->vp != NULL);
833 			if ((ncp->dp->v_vfsp == vfsp) ||
834 			    (ncp->vp->v_vfsp == vfsp)) {
835 				n++;
836 				nc_rele[index++] = ncp->vp;
837 				nc_rele[index++] = ncp->dp;
838 				nc_rmhash(ncp);
839 				dnlc_free(ncp);
840 				ncs.ncs_purge_total.value.ui64++;
841 				if (index == DNLC_MAX_RELE) {
842 					ncp = np;
843 					break;
844 				}
845 				if (count != 0 && n >= count) {
846 					break;
847 				}
848 			}
849 			ncp = np;
850 		}
851 		mutex_exit(&nch->hash_lock);
852 		/* Release holds on all the vnodes now that we have no locks */
853 		for (i = 0; i < index; i++) {
854 			VN_RELE_DNLC(nc_rele[i]);
855 		}
856 		if (count != 0 && n >= count) {
857 			return (n);
858 		}
859 		if (ncp != (ncache_t *)nch) {
860 			nch--; /* Do current hash chain again */
861 		}
862 	}
863 	return (n);
864 }
865 
866 /*
867  * Purge 1 entry from the dnlc that is part of the filesystem(s)
868  * represented by 'vop'. The purpose of this routine is to allow
869  * users of the dnlc to free a vnode that is being held by the dnlc.
870  *
871  * If we find a vnode that we release which will result in
872  * freeing the underlying vnode (count was 1), return 1, 0
873  * if no appropriate vnodes found.
874  *
875  * Note, vop is not the 'right' identifier for a filesystem.
876  */
877 int
878 dnlc_fs_purge1(vnodeops_t *vop)
879 {
880 	nc_hash_t *end;
881 	nc_hash_t *hp;
882 	ncache_t *ncp;
883 	vnode_t *vp;
884 
885 	if (!doingcache)
886 		return (0);
887 
888 	ncs.ncs_purge_fs1.value.ui64++;
889 
890 	/*
891 	 * Scan the dnlc entries looking for a likely candidate.
892 	 */
893 	hp = end = dnlc_purge_fs1_rotor;
894 
895 	do {
896 		if (++hp == &nc_hash[nc_hashsz])
897 			hp = nc_hash;
898 		dnlc_purge_fs1_rotor = hp;
899 		if (hp->hash_next == (ncache_t *)hp)
900 			continue;
901 		mutex_enter(&hp->hash_lock);
902 		for (ncp = hp->hash_prev;
903 		    ncp != (ncache_t *)hp;
904 		    ncp = ncp->hash_prev) {
905 			vp = ncp->vp;
906 			if (!vn_has_cached_data(vp) && (vp->v_count == 1) &&
907 			    vn_matchops(vp, vop))
908 				break;
909 		}
910 		if (ncp != (ncache_t *)hp) {
911 			nc_rmhash(ncp);
912 			mutex_exit(&hp->hash_lock);
913 			VN_RELE_DNLC(ncp->dp);
914 			VN_RELE_DNLC(vp)
915 			dnlc_free(ncp);
916 			ncs.ncs_purge_total.value.ui64++;
917 			return (1);
918 		}
919 		mutex_exit(&hp->hash_lock);
920 	} while (hp != end);
921 	return (0);
922 }
923 
924 /*
925  * Perform a reverse lookup in the DNLC.  This will find the first occurrence of
926  * the vnode.  If successful, it will return the vnode of the parent, and the
927  * name of the entry in the given buffer.  If it cannot be found, or the buffer
928  * is too small, then it will return NULL.  Note that this is a highly
929  * inefficient function, since the DNLC is constructed solely for forward
930  * lookups.
931  */
932 vnode_t *
933 dnlc_reverse_lookup(vnode_t *vp, char *buf, size_t buflen)
934 {
935 	nc_hash_t *nch;
936 	ncache_t *ncp;
937 	vnode_t *pvp;
938 
939 	if (!doingcache)
940 		return (NULL);
941 
942 	for (nch = nc_hash; nch < &nc_hash[nc_hashsz]; nch++) {
943 		mutex_enter(&nch->hash_lock);
944 		ncp = nch->hash_next;
945 		while (ncp != (ncache_t *)nch) {
946 			/*
947 			 * We ignore '..' entries since it can create
948 			 * confusion and infinite loops.
949 			 */
950 			if (ncp->vp == vp && !(ncp->namlen == 2 &&
951 			    0 == bcmp(ncp->name, "..", 2)) &&
952 			    ncp->namlen < buflen) {
953 				bcopy(ncp->name, buf, ncp->namlen);
954 				buf[ncp->namlen] = '\0';
955 				pvp = ncp->dp;
956 				/* VN_HOLD 2 of 2 in this file */
957 				VN_HOLD_CALLER(pvp);
958 				mutex_exit(&nch->hash_lock);
959 				return (pvp);
960 			}
961 			ncp = ncp->hash_next;
962 		}
963 		mutex_exit(&nch->hash_lock);
964 	}
965 
966 	return (NULL);
967 }
968 /*
969  * Utility routine to search for a cache entry. Return the
970  * ncache entry if found, NULL otherwise.
971  */
972 static ncache_t *
973 dnlc_search(vnode_t *dp, char *name, uchar_t namlen, int hash)
974 {
975 	nc_hash_t *hp;
976 	ncache_t *ncp;
977 
978 	hp = &nc_hash[hash & nc_hashmask];
979 
980 	for (ncp = hp->hash_next; ncp != (ncache_t *)hp; ncp = ncp->hash_next) {
981 		if (ncp->hash == hash &&
982 		    ncp->dp == dp &&
983 		    ncp->namlen == namlen &&
984 		    bcmp(ncp->name, name, namlen) == 0)
985 			return (ncp);
986 	}
987 	return (NULL);
988 }
989 
990 #if ((1 << NBBY) - 1) < (MAXNAMELEN - 1)
991 #error ncache_t name length representation is too small
992 #endif
993 
994 void
995 dnlc_reduce_cache(void *reduce_percent)
996 {
997 	if (dnlc_reduce_idle && (dnlc_nentries >= ncsize || reduce_percent)) {
998 		dnlc_reduce_idle = 0;
999 		if ((taskq_dispatch(system_taskq, do_dnlc_reduce_cache,
1000 		    reduce_percent, TQ_NOSLEEP)) == NULL)
1001 			dnlc_reduce_idle = 1;
1002 	}
1003 }
1004 
1005 /*
1006  * Get a new name cache entry.
1007  * If the dnlc_reduce_cache() taskq isn't keeping up with demand, or memory
1008  * is short then just return NULL. If we're over ncsize then kick off a
1009  * thread to free some in use entries down to dnlc_nentries_low_water.
1010  * Caller must initialise all fields except namlen.
1011  * Component names are defined to be less than MAXNAMELEN
1012  * which includes a null.
1013  */
1014 static ncache_t *
1015 dnlc_get(uchar_t namlen)
1016 {
1017 	ncache_t *ncp;
1018 
1019 	if (dnlc_nentries > dnlc_max_nentries) {
1020 		dnlc_max_nentries_cnt++; /* keep a statistic */
1021 		return (NULL);
1022 	}
1023 	ncp = kmem_alloc(sizeof (ncache_t) + namlen, KM_NOSLEEP);
1024 	if (ncp == NULL) {
1025 		return (NULL);
1026 	}
1027 	ncp->namlen = namlen;
1028 	atomic_add_32(&dnlc_nentries, 1);
1029 	dnlc_reduce_cache(NULL);
1030 	return (ncp);
1031 }
1032 
1033 /*
1034  * Taskq routine to free up name cache entries to reduce the
1035  * cache size to the low water mark if "reduce_percent" is not provided.
1036  * If "reduce_percent" is provided, reduce cache size by
1037  * (ncsize_onepercent * reduce_percent).
1038  */
1039 /*ARGSUSED*/
1040 static void
1041 do_dnlc_reduce_cache(void *reduce_percent)
1042 {
1043 	nc_hash_t *hp = dnlc_free_rotor, *start_hp = hp;
1044 	vnode_t *vp;
1045 	ncache_t *ncp;
1046 	int cnt;
1047 	uint_t low_water = dnlc_nentries_low_water;
1048 
1049 	if (reduce_percent) {
1050 		uint_t reduce_cnt;
1051 
1052 		/*
1053 		 * Never try to reduce the current number
1054 		 * of cache entries below 3% of ncsize.
1055 		 */
1056 		if (dnlc_nentries <= ncsize_min_percent) {
1057 			dnlc_reduce_idle = 1;
1058 			return;
1059 		}
1060 		reduce_cnt = ncsize_onepercent *
1061 		    (uint_t)(uintptr_t)reduce_percent;
1062 
1063 		if (reduce_cnt > dnlc_nentries ||
1064 		    dnlc_nentries - reduce_cnt < ncsize_min_percent)
1065 			low_water = ncsize_min_percent;
1066 		else
1067 			low_water = dnlc_nentries - reduce_cnt;
1068 	}
1069 
1070 	do {
1071 		/*
1072 		 * Find the first non empty hash queue without locking.
1073 		 * Only look at each hash queue once to avoid an infinite loop.
1074 		 */
1075 		do {
1076 			if (++hp == &nc_hash[nc_hashsz])
1077 				hp = nc_hash;
1078 		} while (hp->hash_next == (ncache_t *)hp && hp != start_hp);
1079 
1080 		/* return if all hash queues are empty. */
1081 		if (hp->hash_next == (ncache_t *)hp) {
1082 			dnlc_reduce_idle = 1;
1083 			return;
1084 		}
1085 
1086 		mutex_enter(&hp->hash_lock);
1087 		for (cnt = 0, ncp = hp->hash_prev; ncp != (ncache_t *)hp;
1088 		    ncp = ncp->hash_prev, cnt++) {
1089 			vp = ncp->vp;
1090 			/*
1091 			 * A name cache entry with a reference count
1092 			 * of one is only referenced by the dnlc.
1093 			 * Also negative cache entries are purged first.
1094 			 */
1095 			if (!vn_has_cached_data(vp) &&
1096 			    ((vp->v_count == 1) || (vp == DNLC_NO_VNODE))) {
1097 				ncs.ncs_pick_heur.value.ui64++;
1098 				goto found;
1099 			}
1100 			/*
1101 			 * Remove from the end of the chain if the
1102 			 * chain is too long
1103 			 */
1104 			if (cnt > dnlc_long_chain) {
1105 				ncp = hp->hash_prev;
1106 				ncs.ncs_pick_last.value.ui64++;
1107 				vp = ncp->vp;
1108 				goto found;
1109 			}
1110 		}
1111 		/* check for race and continue */
1112 		if (hp->hash_next == (ncache_t *)hp) {
1113 			mutex_exit(&hp->hash_lock);
1114 			continue;
1115 		}
1116 
1117 		ncp = hp->hash_prev; /* pick the last one in the hash queue */
1118 		ncs.ncs_pick_last.value.ui64++;
1119 		vp = ncp->vp;
1120 found:
1121 		/*
1122 		 * Remove from hash chain.
1123 		 */
1124 		nc_rmhash(ncp);
1125 		mutex_exit(&hp->hash_lock);
1126 		VN_RELE_DNLC(vp);
1127 		VN_RELE_DNLC(ncp->dp);
1128 		dnlc_free(ncp);
1129 	} while (dnlc_nentries > low_water);
1130 
1131 	dnlc_free_rotor = hp;
1132 	dnlc_reduce_idle = 1;
1133 }
1134 
1135 /*
1136  * Directory caching routines
1137  * ==========================
1138  *
1139  * See dnlc.h for details of the interfaces below.
1140  */
1141 
1142 /*
1143  * Lookup up an entry in a complete or partial directory cache.
1144  */
1145 dcret_t
1146 dnlc_dir_lookup(dcanchor_t *dcap, char *name, uint64_t *handle)
1147 {
1148 	dircache_t *dcp;
1149 	dcentry_t *dep;
1150 	int hash;
1151 	int ret;
1152 	uchar_t namlen;
1153 
1154 	/*
1155 	 * can test without lock as we are only a cache
1156 	 */
1157 	if (!VALID_DIR_CACHE(dcap->dca_dircache)) {
1158 		ncs.ncs_dir_misses.value.ui64++;
1159 		return (DNOCACHE);
1160 	}
1161 
1162 	if (!dnlc_dir_enable) {
1163 		return (DNOCACHE);
1164 	}
1165 
1166 	mutex_enter(&dcap->dca_lock);
1167 	dcp = (dircache_t *)dcap->dca_dircache;
1168 	if (VALID_DIR_CACHE(dcp)) {
1169 		dcp->dc_actime = lbolt64;
1170 		DNLC_DIR_HASH(name, hash, namlen);
1171 		dep = dcp->dc_namehash[hash & dcp->dc_nhash_mask];
1172 		while (dep != NULL) {
1173 			if ((dep->de_hash == hash) &&
1174 			    (namlen == dep->de_namelen) &&
1175 			    bcmp(dep->de_name, name, namlen) == 0) {
1176 				*handle = dep->de_handle;
1177 				mutex_exit(&dcap->dca_lock);
1178 				ncs.ncs_dir_hits.value.ui64++;
1179 				return (DFOUND);
1180 			}
1181 			dep = dep->de_next;
1182 		}
1183 		if (dcp->dc_complete) {
1184 			ret = DNOENT;
1185 		} else {
1186 			ret = DNOCACHE;
1187 		}
1188 		mutex_exit(&dcap->dca_lock);
1189 		return (ret);
1190 	} else {
1191 		mutex_exit(&dcap->dca_lock);
1192 		ncs.ncs_dir_misses.value.ui64++;
1193 		return (DNOCACHE);
1194 	}
1195 }
1196 
1197 /*
1198  * Start a new directory cache. An estimate of the number of
1199  * entries is provided to as a quick check to ensure the directory
1200  * is cacheable.
1201  */
1202 dcret_t
1203 dnlc_dir_start(dcanchor_t *dcap, uint_t num_entries)
1204 {
1205 	dircache_t *dcp;
1206 
1207 	if (!dnlc_dir_enable ||
1208 	    (num_entries < dnlc_dir_min_size)) {
1209 		return (DNOCACHE);
1210 	}
1211 
1212 	if (num_entries > dnlc_dir_max_size) {
1213 		return (DTOOBIG);
1214 	}
1215 
1216 	mutex_enter(&dc_head.dch_lock);
1217 	mutex_enter(&dcap->dca_lock);
1218 
1219 	if (dcap->dca_dircache == DC_RET_LOW_MEM) {
1220 		dcap->dca_dircache = NULL;
1221 		mutex_exit(&dcap->dca_lock);
1222 		mutex_exit(&dc_head.dch_lock);
1223 		return (DNOMEM);
1224 	}
1225 
1226 	/*
1227 	 * Check if there's currently a cache.
1228 	 * This probably only occurs on a race.
1229 	 */
1230 	if (dcap->dca_dircache != NULL) {
1231 		mutex_exit(&dcap->dca_lock);
1232 		mutex_exit(&dc_head.dch_lock);
1233 		return (DNOCACHE);
1234 	}
1235 
1236 	/*
1237 	 * Allocate the dircache struct, entry and free space hash tables.
1238 	 * These tables are initially just one entry but dynamically resize
1239 	 * when entries and free space are added or removed.
1240 	 */
1241 	if ((dcp = kmem_zalloc(sizeof (dircache_t), KM_NOSLEEP)) == NULL) {
1242 		goto error;
1243 	}
1244 	if ((dcp->dc_namehash = kmem_zalloc(sizeof (dcentry_t *),
1245 	    KM_NOSLEEP)) == NULL) {
1246 		goto error;
1247 	}
1248 	if ((dcp->dc_freehash = kmem_zalloc(sizeof (dcfree_t *),
1249 	    KM_NOSLEEP)) == NULL) {
1250 		goto error;
1251 	}
1252 
1253 	dcp->dc_anchor = dcap; /* set back pointer to anchor */
1254 	dcap->dca_dircache = dcp;
1255 
1256 	/* add into head of global chain */
1257 	dcp->dc_next = dc_head.dch_next;
1258 	dcp->dc_prev = (dircache_t *)&dc_head;
1259 	dcp->dc_next->dc_prev = dcp;
1260 	dc_head.dch_next = dcp;
1261 
1262 	mutex_exit(&dcap->dca_lock);
1263 	mutex_exit(&dc_head.dch_lock);
1264 	ncs.ncs_cur_dirs.value.ui64++;
1265 	ncs.ncs_dirs_cached.value.ui64++;
1266 	return (DOK);
1267 error:
1268 	if (dcp != NULL) {
1269 		if (dcp->dc_namehash) {
1270 			kmem_free(dcp->dc_namehash, sizeof (dcentry_t *));
1271 		}
1272 		kmem_free(dcp, sizeof (dircache_t));
1273 	}
1274 	/*
1275 	 * Must also kmem_free dcp->dc_freehash if more error cases are added
1276 	 */
1277 	mutex_exit(&dcap->dca_lock);
1278 	mutex_exit(&dc_head.dch_lock);
1279 	ncs.ncs_dir_start_nm.value.ui64++;
1280 	return (DNOCACHE);
1281 }
1282 
1283 /*
1284  * Add a directopry entry to a partial or complete directory cache.
1285  */
1286 dcret_t
1287 dnlc_dir_add_entry(dcanchor_t *dcap, char *name, uint64_t handle)
1288 {
1289 	dircache_t *dcp;
1290 	dcentry_t **hp, *dep;
1291 	int hash;
1292 	uint_t capacity;
1293 	uchar_t namlen;
1294 
1295 	/*
1296 	 * Allocate the dcentry struct, including the variable
1297 	 * size name. Note, the null terminator is not copied.
1298 	 *
1299 	 * We do this outside the lock to avoid possible deadlock if
1300 	 * dnlc_dir_reclaim() is called as a result of memory shortage.
1301 	 */
1302 	DNLC_DIR_HASH(name, hash, namlen);
1303 	dep = kmem_alloc(sizeof (dcentry_t) - 1 + namlen, KM_NOSLEEP);
1304 	if (dep == NULL) {
1305 #ifdef DEBUG
1306 		/*
1307 		 * The kmem allocator generates random failures for
1308 		 * KM_NOSLEEP calls (see KMEM_RANDOM_ALLOCATION_FAILURE)
1309 		 * So try again before we blow away a perfectly good cache.
1310 		 * This is done not to cover an error but purely for
1311 		 * performance running a debug kernel.
1312 		 * This random error only occurs in debug mode.
1313 		 */
1314 		dep = kmem_alloc(sizeof (dcentry_t) - 1 + namlen, KM_NOSLEEP);
1315 		if (dep != NULL)
1316 			goto ok;
1317 #endif
1318 		ncs.ncs_dir_add_nm.value.ui64++;
1319 		/*
1320 		 * Free a directory cache. This may be the one we are
1321 		 * called with.
1322 		 */
1323 		dnlc_dir_reclaim(NULL);
1324 		dep = kmem_alloc(sizeof (dcentry_t) - 1 + namlen, KM_NOSLEEP);
1325 		if (dep == NULL) {
1326 			/*
1327 			 * still no memory, better delete this cache
1328 			 */
1329 			mutex_enter(&dcap->dca_lock);
1330 			dcp = (dircache_t *)dcap->dca_dircache;
1331 			if (VALID_DIR_CACHE(dcp)) {
1332 				dnlc_dir_abort(dcp);
1333 				dcap->dca_dircache = DC_RET_LOW_MEM;
1334 			}
1335 			mutex_exit(&dcap->dca_lock);
1336 			ncs.ncs_dir_addabort.value.ui64++;
1337 			return (DNOCACHE);
1338 		}
1339 		/*
1340 		 * fall through as if the 1st kmem_alloc had worked
1341 		 */
1342 	}
1343 #ifdef DEBUG
1344 ok:
1345 #endif
1346 	mutex_enter(&dcap->dca_lock);
1347 	dcp = (dircache_t *)dcap->dca_dircache;
1348 	if (VALID_DIR_CACHE(dcp)) {
1349 		/*
1350 		 * If the total number of entries goes above the max
1351 		 * then free this cache
1352 		 */
1353 		if ((dcp->dc_num_entries + dcp->dc_num_free) >
1354 		    dnlc_dir_max_size) {
1355 			mutex_exit(&dcap->dca_lock);
1356 			dnlc_dir_purge(dcap);
1357 			kmem_free(dep, sizeof (dcentry_t) - 1 + namlen);
1358 			ncs.ncs_dir_add_max.value.ui64++;
1359 			return (DTOOBIG);
1360 		}
1361 		dcp->dc_num_entries++;
1362 		capacity = (dcp->dc_nhash_mask + 1) << dnlc_dir_hash_size_shift;
1363 		if (dcp->dc_num_entries >=
1364 		    (capacity << dnlc_dir_hash_resize_shift)) {
1365 			dnlc_dir_adjust_nhash(dcp);
1366 		}
1367 		hp = &dcp->dc_namehash[hash & dcp->dc_nhash_mask];
1368 
1369 		/*
1370 		 * Initialise and chain in new entry
1371 		 */
1372 		dep->de_handle = handle;
1373 		dep->de_hash = hash;
1374 		/*
1375 		 * Note de_namelen is a uchar_t to conserve space
1376 		 * and alignment padding. The max length of any
1377 		 * pathname component is defined as MAXNAMELEN
1378 		 * which is 256 (including the terminating null).
1379 		 * So provided this doesn't change, we don't include the null,
1380 		 * we always use bcmp to compare strings, and we don't
1381 		 * start storing full names, then we are ok.
1382 		 * The space savings is worth it.
1383 		 */
1384 		dep->de_namelen = namlen;
1385 		bcopy(name, dep->de_name, namlen);
1386 		dep->de_next = *hp;
1387 		*hp = dep;
1388 		dcp->dc_actime = lbolt64;
1389 		mutex_exit(&dcap->dca_lock);
1390 		ncs.ncs_dir_num_ents.value.ui64++;
1391 		return (DOK);
1392 	} else {
1393 		mutex_exit(&dcap->dca_lock);
1394 		kmem_free(dep, sizeof (dcentry_t) - 1 + namlen);
1395 		return (DNOCACHE);
1396 	}
1397 }
1398 
1399 /*
1400  * Add free space to a partial or complete directory cache.
1401  */
1402 dcret_t
1403 dnlc_dir_add_space(dcanchor_t *dcap, uint_t len, uint64_t handle)
1404 {
1405 	dircache_t *dcp;
1406 	dcfree_t *dfp, **hp;
1407 	uint_t capacity;
1408 
1409 	/*
1410 	 * We kmem_alloc outside the lock to avoid possible deadlock if
1411 	 * dnlc_dir_reclaim() is called as a result of memory shortage.
1412 	 */
1413 	dfp = kmem_cache_alloc(dnlc_dir_space_cache, KM_NOSLEEP);
1414 	if (dfp == NULL) {
1415 #ifdef DEBUG
1416 		/*
1417 		 * The kmem allocator generates random failures for
1418 		 * KM_NOSLEEP calls (see KMEM_RANDOM_ALLOCATION_FAILURE)
1419 		 * So try again before we blow away a perfectly good cache.
1420 		 * This random error only occurs in debug mode
1421 		 */
1422 		dfp = kmem_cache_alloc(dnlc_dir_space_cache, KM_NOSLEEP);
1423 		if (dfp != NULL)
1424 			goto ok;
1425 #endif
1426 		ncs.ncs_dir_add_nm.value.ui64++;
1427 		/*
1428 		 * Free a directory cache. This may be the one we are
1429 		 * called with.
1430 		 */
1431 		dnlc_dir_reclaim(NULL);
1432 		dfp = kmem_cache_alloc(dnlc_dir_space_cache, KM_NOSLEEP);
1433 		if (dfp == NULL) {
1434 			/*
1435 			 * still no memory, better delete this cache
1436 			 */
1437 			mutex_enter(&dcap->dca_lock);
1438 			dcp = (dircache_t *)dcap->dca_dircache;
1439 			if (VALID_DIR_CACHE(dcp)) {
1440 				dnlc_dir_abort(dcp);
1441 				dcap->dca_dircache = DC_RET_LOW_MEM;
1442 			}
1443 			mutex_exit(&dcap->dca_lock);
1444 			ncs.ncs_dir_addabort.value.ui64++;
1445 			return (DNOCACHE);
1446 		}
1447 		/*
1448 		 * fall through as if the 1st kmem_alloc had worked
1449 		 */
1450 	}
1451 
1452 #ifdef DEBUG
1453 ok:
1454 #endif
1455 	mutex_enter(&dcap->dca_lock);
1456 	dcp = (dircache_t *)dcap->dca_dircache;
1457 	if (VALID_DIR_CACHE(dcp)) {
1458 		if ((dcp->dc_num_entries + dcp->dc_num_free) >
1459 		    dnlc_dir_max_size) {
1460 			mutex_exit(&dcap->dca_lock);
1461 			dnlc_dir_purge(dcap);
1462 			kmem_cache_free(dnlc_dir_space_cache, dfp);
1463 			ncs.ncs_dir_add_max.value.ui64++;
1464 			return (DTOOBIG);
1465 		}
1466 		dcp->dc_num_free++;
1467 		capacity = (dcp->dc_fhash_mask + 1) << dnlc_dir_hash_size_shift;
1468 		if (dcp->dc_num_free >=
1469 		    (capacity << dnlc_dir_hash_resize_shift)) {
1470 			dnlc_dir_adjust_fhash(dcp);
1471 		}
1472 		/*
1473 		 * Initialise and chain a new entry
1474 		 */
1475 		dfp->df_handle = handle;
1476 		dfp->df_len = len;
1477 		dcp->dc_actime = lbolt64;
1478 		hp = &(dcp->dc_freehash[DDFHASH(handle, dcp)]);
1479 		dfp->df_next = *hp;
1480 		*hp = dfp;
1481 		mutex_exit(&dcap->dca_lock);
1482 		ncs.ncs_dir_num_ents.value.ui64++;
1483 		return (DOK);
1484 	} else {
1485 		mutex_exit(&dcap->dca_lock);
1486 		kmem_cache_free(dnlc_dir_space_cache, dfp);
1487 		return (DNOCACHE);
1488 	}
1489 }
1490 
1491 /*
1492  * Mark a directory cache as complete.
1493  */
1494 void
1495 dnlc_dir_complete(dcanchor_t *dcap)
1496 {
1497 	dircache_t *dcp;
1498 
1499 	mutex_enter(&dcap->dca_lock);
1500 	dcp = (dircache_t *)dcap->dca_dircache;
1501 	if (VALID_DIR_CACHE(dcp)) {
1502 		dcp->dc_complete = B_TRUE;
1503 	}
1504 	mutex_exit(&dcap->dca_lock);
1505 }
1506 
1507 /*
1508  * Internal routine to delete a partial or full directory cache.
1509  * No additional locking needed.
1510  */
1511 static void
1512 dnlc_dir_abort(dircache_t *dcp)
1513 {
1514 	dcentry_t *dep, *nhp;
1515 	dcfree_t *fep, *fhp;
1516 	uint_t nhtsize = dcp->dc_nhash_mask + 1; /* name hash table size */
1517 	uint_t fhtsize = dcp->dc_fhash_mask + 1; /* free hash table size */
1518 	uint_t i;
1519 
1520 	/*
1521 	 * Free up the cached name entries and hash table
1522 	 */
1523 	for (i = 0; i < nhtsize; i++) { /* for each hash bucket */
1524 		nhp = dcp->dc_namehash[i];
1525 		while (nhp != NULL) { /* for each chained entry */
1526 			dep = nhp->de_next;
1527 			kmem_free(nhp, sizeof (dcentry_t) - 1 +
1528 			    nhp->de_namelen);
1529 			nhp = dep;
1530 		}
1531 	}
1532 	kmem_free(dcp->dc_namehash, sizeof (dcentry_t *) * nhtsize);
1533 
1534 	/*
1535 	 * Free up the free space entries and hash table
1536 	 */
1537 	for (i = 0; i < fhtsize; i++) { /* for each hash bucket */
1538 		fhp = dcp->dc_freehash[i];
1539 		while (fhp != NULL) { /* for each chained entry */
1540 			fep = fhp->df_next;
1541 			kmem_cache_free(dnlc_dir_space_cache, fhp);
1542 			fhp = fep;
1543 		}
1544 	}
1545 	kmem_free(dcp->dc_freehash, sizeof (dcfree_t *) * fhtsize);
1546 
1547 	/*
1548 	 * Finally free the directory cache structure itself
1549 	 */
1550 	ncs.ncs_dir_num_ents.value.ui64 -= (dcp->dc_num_entries +
1551 	    dcp->dc_num_free);
1552 	kmem_free(dcp, sizeof (dircache_t));
1553 	ncs.ncs_cur_dirs.value.ui64--;
1554 }
1555 
1556 /*
1557  * Remove a partial or complete directory cache
1558  */
1559 void
1560 dnlc_dir_purge(dcanchor_t *dcap)
1561 {
1562 	dircache_t *dcp;
1563 
1564 	mutex_enter(&dc_head.dch_lock);
1565 	mutex_enter(&dcap->dca_lock);
1566 	dcp = (dircache_t *)dcap->dca_dircache;
1567 	if (!VALID_DIR_CACHE(dcp)) {
1568 		mutex_exit(&dcap->dca_lock);
1569 		mutex_exit(&dc_head.dch_lock);
1570 		return;
1571 	}
1572 	dcap->dca_dircache = NULL;
1573 	/*
1574 	 * Unchain from global list
1575 	 */
1576 	dcp->dc_prev->dc_next = dcp->dc_next;
1577 	dcp->dc_next->dc_prev = dcp->dc_prev;
1578 	mutex_exit(&dcap->dca_lock);
1579 	mutex_exit(&dc_head.dch_lock);
1580 	dnlc_dir_abort(dcp);
1581 }
1582 
1583 /*
1584  * Remove an entry from a complete or partial directory cache.
1585  * Return the handle if it's non null.
1586  */
1587 dcret_t
1588 dnlc_dir_rem_entry(dcanchor_t *dcap, char *name, uint64_t *handlep)
1589 {
1590 	dircache_t *dcp;
1591 	dcentry_t **prevpp, *te;
1592 	uint_t capacity;
1593 	int hash;
1594 	int ret;
1595 	uchar_t namlen;
1596 
1597 	if (!dnlc_dir_enable) {
1598 		return (DNOCACHE);
1599 	}
1600 
1601 	mutex_enter(&dcap->dca_lock);
1602 	dcp = (dircache_t *)dcap->dca_dircache;
1603 	if (VALID_DIR_CACHE(dcp)) {
1604 		dcp->dc_actime = lbolt64;
1605 		if (dcp->dc_nhash_mask > 0) { /* ie not minimum */
1606 			capacity = (dcp->dc_nhash_mask + 1) <<
1607 			    dnlc_dir_hash_size_shift;
1608 			if (dcp->dc_num_entries <=
1609 			    (capacity >> dnlc_dir_hash_resize_shift)) {
1610 				dnlc_dir_adjust_nhash(dcp);
1611 			}
1612 		}
1613 		DNLC_DIR_HASH(name, hash, namlen);
1614 		prevpp = &dcp->dc_namehash[hash & dcp->dc_nhash_mask];
1615 		while (*prevpp != NULL) {
1616 			if (((*prevpp)->de_hash == hash) &&
1617 			    (namlen == (*prevpp)->de_namelen) &&
1618 			    bcmp((*prevpp)->de_name, name, namlen) == 0) {
1619 				if (handlep != NULL) {
1620 					*handlep = (*prevpp)->de_handle;
1621 				}
1622 				te = *prevpp;
1623 				*prevpp = (*prevpp)->de_next;
1624 				kmem_free(te, sizeof (dcentry_t) - 1 +
1625 				    te->de_namelen);
1626 
1627 				/*
1628 				 * If the total number of entries
1629 				 * falls below half the minimum number
1630 				 * of entries then free this cache.
1631 				 */
1632 				if (--dcp->dc_num_entries <
1633 				    (dnlc_dir_min_size >> 1)) {
1634 					mutex_exit(&dcap->dca_lock);
1635 					dnlc_dir_purge(dcap);
1636 				} else {
1637 					mutex_exit(&dcap->dca_lock);
1638 				}
1639 				ncs.ncs_dir_num_ents.value.ui64--;
1640 				return (DFOUND);
1641 			}
1642 			prevpp = &((*prevpp)->de_next);
1643 		}
1644 		if (dcp->dc_complete) {
1645 			ncs.ncs_dir_reme_fai.value.ui64++;
1646 			ret = DNOENT;
1647 		} else {
1648 			ret = DNOCACHE;
1649 		}
1650 		mutex_exit(&dcap->dca_lock);
1651 		return (ret);
1652 	} else {
1653 		mutex_exit(&dcap->dca_lock);
1654 		return (DNOCACHE);
1655 	}
1656 }
1657 
1658 
1659 /*
1660  * Remove free space of at least the given length from a complete
1661  * or partial directory cache.
1662  */
1663 dcret_t
1664 dnlc_dir_rem_space_by_len(dcanchor_t *dcap, uint_t len, uint64_t *handlep)
1665 {
1666 	dircache_t *dcp;
1667 	dcfree_t **prevpp, *tfp;
1668 	uint_t fhtsize; /* free hash table size */
1669 	uint_t i;
1670 	uint_t capacity;
1671 	int ret;
1672 
1673 	if (!dnlc_dir_enable) {
1674 		return (DNOCACHE);
1675 	}
1676 
1677 	mutex_enter(&dcap->dca_lock);
1678 	dcp = (dircache_t *)dcap->dca_dircache;
1679 	if (VALID_DIR_CACHE(dcp)) {
1680 		dcp->dc_actime = lbolt64;
1681 		if (dcp->dc_fhash_mask > 0) { /* ie not minimum */
1682 			capacity = (dcp->dc_fhash_mask + 1) <<
1683 			    dnlc_dir_hash_size_shift;
1684 			if (dcp->dc_num_free <=
1685 			    (capacity >> dnlc_dir_hash_resize_shift)) {
1686 				dnlc_dir_adjust_fhash(dcp);
1687 			}
1688 		}
1689 		/*
1690 		 * Search for an entry of the appropriate size
1691 		 * on a first fit basis.
1692 		 */
1693 		fhtsize = dcp->dc_fhash_mask + 1;
1694 		for (i = 0; i < fhtsize; i++) { /* for each hash bucket */
1695 			prevpp = &(dcp->dc_freehash[i]);
1696 			while (*prevpp != NULL) {
1697 				if ((*prevpp)->df_len >= len) {
1698 					*handlep = (*prevpp)->df_handle;
1699 					tfp = *prevpp;
1700 					*prevpp = (*prevpp)->df_next;
1701 					dcp->dc_num_free--;
1702 					mutex_exit(&dcap->dca_lock);
1703 					kmem_cache_free(dnlc_dir_space_cache,
1704 					    tfp);
1705 					ncs.ncs_dir_num_ents.value.ui64--;
1706 					return (DFOUND);
1707 				}
1708 				prevpp = &((*prevpp)->df_next);
1709 			}
1710 		}
1711 		if (dcp->dc_complete) {
1712 			ret = DNOENT;
1713 		} else {
1714 			ret = DNOCACHE;
1715 		}
1716 		mutex_exit(&dcap->dca_lock);
1717 		return (ret);
1718 	} else {
1719 		mutex_exit(&dcap->dca_lock);
1720 		return (DNOCACHE);
1721 	}
1722 }
1723 
1724 /*
1725  * Remove free space with the given handle from a complete or partial
1726  * directory cache.
1727  */
1728 dcret_t
1729 dnlc_dir_rem_space_by_handle(dcanchor_t *dcap, uint64_t handle)
1730 {
1731 	dircache_t *dcp;
1732 	dcfree_t **prevpp, *tfp;
1733 	uint_t capacity;
1734 	int ret;
1735 
1736 	if (!dnlc_dir_enable) {
1737 		return (DNOCACHE);
1738 	}
1739 
1740 	mutex_enter(&dcap->dca_lock);
1741 	dcp = (dircache_t *)dcap->dca_dircache;
1742 	if (VALID_DIR_CACHE(dcp)) {
1743 		dcp->dc_actime = lbolt64;
1744 		if (dcp->dc_fhash_mask > 0) { /* ie not minimum */
1745 			capacity = (dcp->dc_fhash_mask + 1) <<
1746 			    dnlc_dir_hash_size_shift;
1747 			if (dcp->dc_num_free <=
1748 			    (capacity >> dnlc_dir_hash_resize_shift)) {
1749 				dnlc_dir_adjust_fhash(dcp);
1750 			}
1751 		}
1752 
1753 		/*
1754 		 * search for the exact entry
1755 		 */
1756 		prevpp = &(dcp->dc_freehash[DDFHASH(handle, dcp)]);
1757 		while (*prevpp != NULL) {
1758 			if ((*prevpp)->df_handle == handle) {
1759 				tfp = *prevpp;
1760 				*prevpp = (*prevpp)->df_next;
1761 				dcp->dc_num_free--;
1762 				mutex_exit(&dcap->dca_lock);
1763 				kmem_cache_free(dnlc_dir_space_cache, tfp);
1764 				ncs.ncs_dir_num_ents.value.ui64--;
1765 				return (DFOUND);
1766 			}
1767 			prevpp = &((*prevpp)->df_next);
1768 		}
1769 		if (dcp->dc_complete) {
1770 			ncs.ncs_dir_rems_fai.value.ui64++;
1771 			ret = DNOENT;
1772 		} else {
1773 			ret = DNOCACHE;
1774 		}
1775 		mutex_exit(&dcap->dca_lock);
1776 		return (ret);
1777 	} else {
1778 		mutex_exit(&dcap->dca_lock);
1779 		return (DNOCACHE);
1780 	}
1781 }
1782 
1783 /*
1784  * Update the handle of an directory cache entry.
1785  */
1786 dcret_t
1787 dnlc_dir_update(dcanchor_t *dcap, char *name, uint64_t handle)
1788 {
1789 	dircache_t *dcp;
1790 	dcentry_t *dep;
1791 	int hash;
1792 	int ret;
1793 	uchar_t namlen;
1794 
1795 	if (!dnlc_dir_enable) {
1796 		return (DNOCACHE);
1797 	}
1798 
1799 	mutex_enter(&dcap->dca_lock);
1800 	dcp = (dircache_t *)dcap->dca_dircache;
1801 	if (VALID_DIR_CACHE(dcp)) {
1802 		dcp->dc_actime = lbolt64;
1803 		DNLC_DIR_HASH(name, hash, namlen);
1804 		dep = dcp->dc_namehash[hash & dcp->dc_nhash_mask];
1805 		while (dep != NULL) {
1806 			if ((dep->de_hash == hash) &&
1807 			    (namlen == dep->de_namelen) &&
1808 			    bcmp(dep->de_name, name, namlen) == 0) {
1809 				dep->de_handle = handle;
1810 				mutex_exit(&dcap->dca_lock);
1811 				return (DFOUND);
1812 			}
1813 			dep = dep->de_next;
1814 		}
1815 		if (dcp->dc_complete) {
1816 			ncs.ncs_dir_upd_fail.value.ui64++;
1817 			ret = DNOENT;
1818 		} else {
1819 			ret = DNOCACHE;
1820 		}
1821 		mutex_exit(&dcap->dca_lock);
1822 		return (ret);
1823 	} else {
1824 		mutex_exit(&dcap->dca_lock);
1825 		return (DNOCACHE);
1826 	}
1827 }
1828 
1829 void
1830 dnlc_dir_fini(dcanchor_t *dcap)
1831 {
1832 	dircache_t *dcp;
1833 
1834 	mutex_enter(&dc_head.dch_lock);
1835 	mutex_enter(&dcap->dca_lock);
1836 	dcp = (dircache_t *)dcap->dca_dircache;
1837 	if (VALID_DIR_CACHE(dcp)) {
1838 		/*
1839 		 * Unchain from global list
1840 		 */
1841 		ncs.ncs_dir_finipurg.value.ui64++;
1842 		dcp->dc_prev->dc_next = dcp->dc_next;
1843 		dcp->dc_next->dc_prev = dcp->dc_prev;
1844 	} else {
1845 		dcp = NULL;
1846 	}
1847 	dcap->dca_dircache = NULL;
1848 	mutex_exit(&dcap->dca_lock);
1849 	mutex_exit(&dc_head.dch_lock);
1850 	mutex_destroy(&dcap->dca_lock);
1851 	if (dcp) {
1852 		dnlc_dir_abort(dcp);
1853 	}
1854 }
1855 
1856 /*
1857  * Reclaim callback for dnlc directory caching.
1858  * Invoked by the kernel memory allocator when memory gets tight.
1859  * This is a pretty serious condition and can lead easily lead to system
1860  * hangs if not enough space is returned.
1861  *
1862  * Deciding which directory (or directories) to purge is tricky.
1863  * Purging everything is an overkill, but purging just the oldest used
1864  * was found to lead to hangs. The largest cached directories use the
1865  * most memory, but take the most effort to rebuild, whereas the smaller
1866  * ones have little value and give back little space. So what to do?
1867  *
1868  * The current policy is to continue purging the oldest used directories
1869  * until at least dnlc_dir_min_reclaim directory entries have been purged.
1870  */
1871 /*ARGSUSED*/
1872 static void
1873 dnlc_dir_reclaim(void *unused)
1874 {
1875 	dircache_t *dcp, *oldest;
1876 	uint_t dirent_cnt = 0;
1877 
1878 	mutex_enter(&dc_head.dch_lock);
1879 	while (dirent_cnt < dnlc_dir_min_reclaim) {
1880 		dcp = dc_head.dch_next;
1881 		oldest = NULL;
1882 		while (dcp != (dircache_t *)&dc_head) {
1883 			if (oldest == NULL) {
1884 				oldest = dcp;
1885 			} else {
1886 				if (dcp->dc_actime < oldest->dc_actime) {
1887 					oldest = dcp;
1888 				}
1889 			}
1890 			dcp = dcp->dc_next;
1891 		}
1892 		if (oldest == NULL) {
1893 			/* nothing to delete */
1894 			mutex_exit(&dc_head.dch_lock);
1895 			return;
1896 		}
1897 		/*
1898 		 * remove from directory chain and purge
1899 		 */
1900 		oldest->dc_prev->dc_next = oldest->dc_next;
1901 		oldest->dc_next->dc_prev = oldest->dc_prev;
1902 		mutex_enter(&oldest->dc_anchor->dca_lock);
1903 		/*
1904 		 * If this was the last entry then it must be too large.
1905 		 * Mark it as such by saving a special dircache_t
1906 		 * pointer (DC_RET_LOW_MEM) in the anchor. The error DNOMEM
1907 		 * will be presented to the caller of dnlc_dir_start()
1908 		 */
1909 		if (oldest->dc_next == oldest->dc_prev) {
1910 			oldest->dc_anchor->dca_dircache = DC_RET_LOW_MEM;
1911 			ncs.ncs_dir_rec_last.value.ui64++;
1912 		} else {
1913 			oldest->dc_anchor->dca_dircache = NULL;
1914 			ncs.ncs_dir_recl_any.value.ui64++;
1915 		}
1916 		mutex_exit(&oldest->dc_anchor->dca_lock);
1917 		dirent_cnt += oldest->dc_num_entries;
1918 		dnlc_dir_abort(oldest);
1919 	}
1920 	mutex_exit(&dc_head.dch_lock);
1921 }
1922 
1923 /*
1924  * Dynamically grow or shrink the size of the name hash table
1925  */
1926 static void
1927 dnlc_dir_adjust_nhash(dircache_t *dcp)
1928 {
1929 	dcentry_t **newhash, *dep, **nhp, *tep;
1930 	uint_t newsize;
1931 	uint_t oldsize;
1932 	uint_t newsizemask;
1933 	int i;
1934 
1935 	/*
1936 	 * Allocate new hash table
1937 	 */
1938 	newsize = dcp->dc_num_entries >> dnlc_dir_hash_size_shift;
1939 	newhash = kmem_zalloc(sizeof (dcentry_t *) * newsize, KM_NOSLEEP);
1940 	if (newhash == NULL) {
1941 		/*
1942 		 * System is short on memory just return
1943 		 * Note, the old hash table is still usable.
1944 		 * This return is unlikely to repeatedy occur, because
1945 		 * either some other directory caches will be reclaimed
1946 		 * due to memory shortage, thus freeing memory, or this
1947 		 * directory cahe will be reclaimed.
1948 		 */
1949 		return;
1950 	}
1951 	oldsize = dcp->dc_nhash_mask + 1;
1952 	dcp->dc_nhash_mask = newsizemask = newsize - 1;
1953 
1954 	/*
1955 	 * Move entries from the old table to the new
1956 	 */
1957 	for (i = 0; i < oldsize; i++) { /* for each hash bucket */
1958 		dep = dcp->dc_namehash[i];
1959 		while (dep != NULL) { /* for each chained entry */
1960 			tep = dep;
1961 			dep = dep->de_next;
1962 			nhp = &newhash[tep->de_hash & newsizemask];
1963 			tep->de_next = *nhp;
1964 			*nhp = tep;
1965 		}
1966 	}
1967 
1968 	/*
1969 	 * delete old hash table and set new one in place
1970 	 */
1971 	kmem_free(dcp->dc_namehash, sizeof (dcentry_t *) * oldsize);
1972 	dcp->dc_namehash = newhash;
1973 }
1974 
1975 /*
1976  * Dynamically grow or shrink the size of the free space hash table
1977  */
1978 static void
1979 dnlc_dir_adjust_fhash(dircache_t *dcp)
1980 {
1981 	dcfree_t **newhash, *dfp, **nhp, *tfp;
1982 	uint_t newsize;
1983 	uint_t oldsize;
1984 	int i;
1985 
1986 	/*
1987 	 * Allocate new hash table
1988 	 */
1989 	newsize = dcp->dc_num_free >> dnlc_dir_hash_size_shift;
1990 	newhash = kmem_zalloc(sizeof (dcfree_t *) * newsize, KM_NOSLEEP);
1991 	if (newhash == NULL) {
1992 		/*
1993 		 * System is short on memory just return
1994 		 * Note, the old hash table is still usable.
1995 		 * This return is unlikely to repeatedy occur, because
1996 		 * either some other directory caches will be reclaimed
1997 		 * due to memory shortage, thus freeing memory, or this
1998 		 * directory cahe will be reclaimed.
1999 		 */
2000 		return;
2001 	}
2002 	oldsize = dcp->dc_fhash_mask + 1;
2003 	dcp->dc_fhash_mask = newsize - 1;
2004 
2005 	/*
2006 	 * Move entries from the old table to the new
2007 	 */
2008 	for (i = 0; i < oldsize; i++) { /* for each hash bucket */
2009 		dfp = dcp->dc_freehash[i];
2010 		while (dfp != NULL) { /* for each chained entry */
2011 			tfp = dfp;
2012 			dfp = dfp->df_next;
2013 			nhp = &newhash[DDFHASH(tfp->df_handle, dcp)];
2014 			tfp->df_next = *nhp;
2015 			*nhp = tfp;
2016 		}
2017 	}
2018 
2019 	/*
2020 	 * delete old hash table and set new one in place
2021 	 */
2022 	kmem_free(dcp->dc_freehash, sizeof (dcfree_t *) * oldsize);
2023 	dcp->dc_freehash = newhash;
2024 }
2025