xref: /titanic_52/usr/src/uts/common/exec/elf/elf.c (revision 5633e4f8e97f7c73a0a130a449ccfd2c034561ce)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 1989, 2010, Oracle and/or its affiliates. All rights reserved.
24  */
25 
26 /*	Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T	*/
27 /*	  All Rights Reserved  	*/
28 
29 #include <sys/types.h>
30 #include <sys/param.h>
31 #include <sys/thread.h>
32 #include <sys/sysmacros.h>
33 #include <sys/signal.h>
34 #include <sys/cred.h>
35 #include <sys/user.h>
36 #include <sys/errno.h>
37 #include <sys/vnode.h>
38 #include <sys/mman.h>
39 #include <sys/kmem.h>
40 #include <sys/proc.h>
41 #include <sys/pathname.h>
42 #include <sys/cmn_err.h>
43 #include <sys/systm.h>
44 #include <sys/elf.h>
45 #include <sys/vmsystm.h>
46 #include <sys/debug.h>
47 #include <sys/auxv.h>
48 #include <sys/exec.h>
49 #include <sys/prsystm.h>
50 #include <vm/as.h>
51 #include <vm/rm.h>
52 #include <vm/seg.h>
53 #include <vm/seg_vn.h>
54 #include <sys/modctl.h>
55 #include <sys/systeminfo.h>
56 #include <sys/vmparam.h>
57 #include <sys/machelf.h>
58 #include <sys/shm_impl.h>
59 #include <sys/archsystm.h>
60 #include <sys/fasttrap.h>
61 #include <sys/brand.h>
62 #include "elf_impl.h"
63 #include <sys/sdt.h>
64 
65 extern int at_flags;
66 
67 #define	ORIGIN_STR	"ORIGIN"
68 #define	ORIGIN_STR_SIZE	6
69 
70 static int getelfhead(vnode_t *, cred_t *, Ehdr *, int *, int *, int *);
71 static int getelfphdr(vnode_t *, cred_t *, const Ehdr *, int, caddr_t *,
72     ssize_t *);
73 static int getelfshdr(vnode_t *, cred_t *, const Ehdr *, int, int, caddr_t *,
74     ssize_t *, caddr_t *, ssize_t *);
75 static size_t elfsize(Ehdr *, int, caddr_t, uintptr_t *);
76 static int mapelfexec(vnode_t *, Ehdr *, int, caddr_t,
77     Phdr **, Phdr **, Phdr **, Phdr **, Phdr *,
78     caddr_t *, caddr_t *, intptr_t *, intptr_t *, size_t, long *, size_t *);
79 
80 typedef enum {
81 	STR_CTF,
82 	STR_SYMTAB,
83 	STR_DYNSYM,
84 	STR_STRTAB,
85 	STR_DYNSTR,
86 	STR_SHSTRTAB,
87 	STR_NUM
88 } shstrtype_t;
89 
90 static const char *shstrtab_data[] = {
91 	".SUNW_ctf",
92 	".symtab",
93 	".dynsym",
94 	".strtab",
95 	".dynstr",
96 	".shstrtab"
97 };
98 
99 typedef struct shstrtab {
100 	int	sst_ndx[STR_NUM];
101 	int	sst_cur;
102 } shstrtab_t;
103 
104 static void
105 shstrtab_init(shstrtab_t *s)
106 {
107 	bzero(&s->sst_ndx, sizeof (s->sst_ndx));
108 	s->sst_cur = 1;
109 }
110 
111 static int
112 shstrtab_ndx(shstrtab_t *s, shstrtype_t type)
113 {
114 	int ret;
115 
116 	if ((ret = s->sst_ndx[type]) != 0)
117 		return (ret);
118 
119 	ret = s->sst_ndx[type] = s->sst_cur;
120 	s->sst_cur += strlen(shstrtab_data[type]) + 1;
121 
122 	return (ret);
123 }
124 
125 static size_t
126 shstrtab_size(const shstrtab_t *s)
127 {
128 	return (s->sst_cur);
129 }
130 
131 static void
132 shstrtab_dump(const shstrtab_t *s, char *buf)
133 {
134 	int i, ndx;
135 
136 	*buf = '\0';
137 	for (i = 0; i < STR_NUM; i++) {
138 		if ((ndx = s->sst_ndx[i]) != 0)
139 			(void) strcpy(buf + ndx, shstrtab_data[i]);
140 	}
141 }
142 
143 static int
144 dtrace_safe_phdr(Phdr *phdrp, struct uarg *args, uintptr_t base)
145 {
146 	ASSERT(phdrp->p_type == PT_SUNWDTRACE);
147 
148 	/*
149 	 * See the comment in fasttrap.h for information on how to safely
150 	 * update this program header.
151 	 */
152 	if (phdrp->p_memsz < PT_SUNWDTRACE_SIZE ||
153 	    (phdrp->p_flags & (PF_R | PF_W | PF_X)) != (PF_R | PF_W | PF_X))
154 		return (-1);
155 
156 	args->thrptr = phdrp->p_vaddr + base;
157 
158 	return (0);
159 }
160 
161 /*
162  * Map in the executable pointed to by vp. Returns 0 on success.
163  */
164 int
165 mapexec_brand(vnode_t *vp, uarg_t *args, Ehdr *ehdr, Addr *uphdr_vaddr,
166     intptr_t *voffset, caddr_t exec_file, int *interp, caddr_t *bssbase,
167     caddr_t *brkbase, size_t *brksize, uintptr_t *lddatap)
168 {
169 	size_t		len;
170 	struct vattr	vat;
171 	caddr_t		phdrbase = NULL;
172 	ssize_t		phdrsize;
173 	int		nshdrs, shstrndx, nphdrs;
174 	int		error = 0;
175 	Phdr		*uphdr = NULL;
176 	Phdr		*junk = NULL;
177 	Phdr		*dynphdr = NULL;
178 	Phdr		*dtrphdr = NULL;
179 	uintptr_t	lddata;
180 	long		execsz;
181 	intptr_t	minaddr;
182 
183 	if (lddatap != NULL)
184 		*lddatap = NULL;
185 
186 	if (error = execpermissions(vp, &vat, args)) {
187 		uprintf("%s: Cannot execute %s\n", exec_file, args->pathname);
188 		return (error);
189 	}
190 
191 	if ((error = getelfhead(vp, CRED(), ehdr, &nshdrs, &shstrndx,
192 	    &nphdrs)) != 0 ||
193 	    (error = getelfphdr(vp, CRED(), ehdr, nphdrs, &phdrbase,
194 	    &phdrsize)) != 0) {
195 		uprintf("%s: Cannot read %s\n", exec_file, args->pathname);
196 		return (error);
197 	}
198 
199 	if ((len = elfsize(ehdr, nphdrs, phdrbase, &lddata)) == 0) {
200 		uprintf("%s: Nothing to load in %s", exec_file, args->pathname);
201 		kmem_free(phdrbase, phdrsize);
202 		return (ENOEXEC);
203 	}
204 	if (lddatap != NULL)
205 		*lddatap = lddata;
206 
207 	if (error = mapelfexec(vp, ehdr, nphdrs, phdrbase, &uphdr, &dynphdr,
208 	    &junk, &dtrphdr, NULL, bssbase, brkbase, voffset, &minaddr,
209 	    len, &execsz, brksize)) {
210 		uprintf("%s: Cannot map %s\n", exec_file, args->pathname);
211 		kmem_free(phdrbase, phdrsize);
212 		return (error);
213 	}
214 
215 	/*
216 	 * Inform our caller if the executable needs an interpreter.
217 	 */
218 	*interp = (dynphdr == NULL) ? 0 : 1;
219 
220 	/*
221 	 * If this is a statically linked executable, voffset should indicate
222 	 * the address of the executable itself (it normally holds the address
223 	 * of the interpreter).
224 	 */
225 	if (ehdr->e_type == ET_EXEC && *interp == 0)
226 		*voffset = minaddr;
227 
228 	if (uphdr != NULL) {
229 		*uphdr_vaddr = uphdr->p_vaddr;
230 	} else {
231 		*uphdr_vaddr = (Addr)-1;
232 	}
233 
234 	kmem_free(phdrbase, phdrsize);
235 	return (error);
236 }
237 
238 /*ARGSUSED*/
239 int
240 elfexec(vnode_t *vp, execa_t *uap, uarg_t *args, intpdata_t *idatap,
241     int level, long *execsz, int setid, caddr_t exec_file, cred_t *cred,
242     int brand_action)
243 {
244 	caddr_t		phdrbase = NULL;
245 	caddr_t 	bssbase = 0;
246 	caddr_t 	brkbase = 0;
247 	size_t		brksize = 0;
248 	ssize_t		dlnsize;
249 	aux_entry_t	*aux;
250 	int		error;
251 	ssize_t		resid;
252 	int		fd = -1;
253 	intptr_t	voffset;
254 	Phdr		*dyphdr = NULL;
255 	Phdr		*stphdr = NULL;
256 	Phdr		*uphdr = NULL;
257 	Phdr		*junk = NULL;
258 	size_t		len;
259 	ssize_t		phdrsize;
260 	int		postfixsize = 0;
261 	int		i, hsize;
262 	Phdr		*phdrp;
263 	Phdr		*dataphdrp = NULL;
264 	Phdr		*dtrphdr;
265 	Phdr		*capphdr = NULL;
266 	Cap		*cap = NULL;
267 	ssize_t		capsize;
268 	int		hasu = 0;
269 	int		hasauxv = 0;
270 	int		hasdy = 0;
271 	int		branded = 0;
272 
273 	struct proc *p = ttoproc(curthread);
274 	struct user *up = PTOU(p);
275 	struct bigwad {
276 		Ehdr	ehdr;
277 		aux_entry_t	elfargs[__KERN_NAUXV_IMPL];
278 		char		dl_name[MAXPATHLEN];
279 		char		pathbuf[MAXPATHLEN];
280 		struct vattr	vattr;
281 		struct execenv	exenv;
282 	} *bigwad;	/* kmem_alloc this behemoth so we don't blow stack */
283 	Ehdr		*ehdrp;
284 	int		nshdrs, shstrndx, nphdrs;
285 	char		*dlnp;
286 	char		*pathbufp;
287 	rlim64_t	limit;
288 	rlim64_t	roundlimit;
289 
290 	ASSERT(p->p_model == DATAMODEL_ILP32 || p->p_model == DATAMODEL_LP64);
291 
292 	bigwad = kmem_alloc(sizeof (struct bigwad), KM_SLEEP);
293 	ehdrp = &bigwad->ehdr;
294 	dlnp = bigwad->dl_name;
295 	pathbufp = bigwad->pathbuf;
296 
297 	/*
298 	 * Obtain ELF and program header information.
299 	 */
300 	if ((error = getelfhead(vp, CRED(), ehdrp, &nshdrs, &shstrndx,
301 	    &nphdrs)) != 0 ||
302 	    (error = getelfphdr(vp, CRED(), ehdrp, nphdrs, &phdrbase,
303 	    &phdrsize)) != 0)
304 		goto out;
305 
306 	/*
307 	 * Prevent executing an ELF file that has no entry point.
308 	 */
309 	if (ehdrp->e_entry == 0) {
310 		uprintf("%s: Bad entry point\n", exec_file);
311 		goto bad;
312 	}
313 
314 	/*
315 	 * Put data model that we're exec-ing to into the args passed to
316 	 * exec_args(), so it will know what it is copying to on new stack.
317 	 * Now that we know whether we are exec-ing a 32-bit or 64-bit
318 	 * executable, we can set execsz with the appropriate NCARGS.
319 	 */
320 #ifdef	_LP64
321 	if (ehdrp->e_ident[EI_CLASS] == ELFCLASS32) {
322 		args->to_model = DATAMODEL_ILP32;
323 		*execsz = btopr(SINCR) + btopr(SSIZE) + btopr(NCARGS32-1);
324 	} else {
325 		args->to_model = DATAMODEL_LP64;
326 		args->stk_prot &= ~PROT_EXEC;
327 #if defined(__i386) || defined(__amd64)
328 		args->dat_prot &= ~PROT_EXEC;
329 #endif
330 		*execsz = btopr(SINCR) + btopr(SSIZE) + btopr(NCARGS64-1);
331 	}
332 #else	/* _LP64 */
333 	args->to_model = DATAMODEL_ILP32;
334 	*execsz = btopr(SINCR) + btopr(SSIZE) + btopr(NCARGS-1);
335 #endif	/* _LP64 */
336 
337 	/*
338 	 * We delay invoking the brand callback until we've figured out
339 	 * what kind of elf binary we're trying to run, 32-bit or 64-bit.
340 	 * We do this because now the brand library can just check
341 	 * args->to_model to see if the target is 32-bit or 64-bit without
342 	 * having do duplicate all the code above.
343 	 */
344 	if ((level < 2) &&
345 	    (brand_action != EBA_NATIVE) && (PROC_IS_BRANDED(p))) {
346 		error = BROP(p)->b_elfexec(vp, uap, args,
347 		    idatap, level + 1, execsz, setid, exec_file, cred,
348 		    brand_action);
349 		goto out;
350 	}
351 
352 	/*
353 	 * Determine aux size now so that stack can be built
354 	 * in one shot (except actual copyout of aux image),
355 	 * determine any non-default stack protections,
356 	 * and still have this code be machine independent.
357 	 */
358 	hsize = ehdrp->e_phentsize;
359 	phdrp = (Phdr *)phdrbase;
360 	for (i = nphdrs; i > 0; i--) {
361 		switch (phdrp->p_type) {
362 		case PT_INTERP:
363 			hasauxv = hasdy = 1;
364 			break;
365 		case PT_PHDR:
366 			hasu = 1;
367 			break;
368 		case PT_SUNWSTACK:
369 			args->stk_prot = PROT_USER;
370 			if (phdrp->p_flags & PF_R)
371 				args->stk_prot |= PROT_READ;
372 			if (phdrp->p_flags & PF_W)
373 				args->stk_prot |= PROT_WRITE;
374 			if (phdrp->p_flags & PF_X)
375 				args->stk_prot |= PROT_EXEC;
376 			break;
377 		case PT_LOAD:
378 			dataphdrp = phdrp;
379 			break;
380 		case PT_SUNWCAP:
381 			capphdr = phdrp;
382 			break;
383 		}
384 		phdrp = (Phdr *)((caddr_t)phdrp + hsize);
385 	}
386 
387 	if (ehdrp->e_type != ET_EXEC) {
388 		dataphdrp = NULL;
389 		hasauxv = 1;
390 	}
391 
392 	/* Copy BSS permissions to args->dat_prot */
393 	if (dataphdrp != NULL) {
394 		args->dat_prot = PROT_USER;
395 		if (dataphdrp->p_flags & PF_R)
396 			args->dat_prot |= PROT_READ;
397 		if (dataphdrp->p_flags & PF_W)
398 			args->dat_prot |= PROT_WRITE;
399 		if (dataphdrp->p_flags & PF_X)
400 			args->dat_prot |= PROT_EXEC;
401 	}
402 
403 	/*
404 	 * If a auxvector will be required - reserve the space for
405 	 * it now.  This may be increased by exec_args if there are
406 	 * ISA-specific types (included in __KERN_NAUXV_IMPL).
407 	 */
408 	if (hasauxv) {
409 		/*
410 		 * If a AUX vector is being built - the base AUX
411 		 * entries are:
412 		 *
413 		 *	AT_BASE
414 		 *	AT_FLAGS
415 		 *	AT_PAGESZ
416 		 *	AT_SUN_LDSECURE
417 		 *	AT_SUN_HWCAP
418 		 *	AT_SUN_PLATFORM
419 		 *	AT_SUN_EXECNAME
420 		 *	AT_NULL
421 		 *
422 		 * total == 8
423 		 */
424 		if (hasdy && hasu) {
425 			/*
426 			 * Has PT_INTERP & PT_PHDR - the auxvectors that
427 			 * will be built are:
428 			 *
429 			 *	AT_PHDR
430 			 *	AT_PHENT
431 			 *	AT_PHNUM
432 			 *	AT_ENTRY
433 			 *	AT_LDDATA
434 			 *
435 			 * total = 5
436 			 */
437 			args->auxsize = (8 + 5) * sizeof (aux_entry_t);
438 		} else if (hasdy) {
439 			/*
440 			 * Has PT_INTERP but no PT_PHDR
441 			 *
442 			 *	AT_EXECFD
443 			 *	AT_LDDATA
444 			 *
445 			 * total = 2
446 			 */
447 			args->auxsize = (8 + 2) * sizeof (aux_entry_t);
448 		} else {
449 			args->auxsize = 8 * sizeof (aux_entry_t);
450 		}
451 	} else {
452 		args->auxsize = 0;
453 	}
454 
455 	/*
456 	 * If this binary is using an emulator, we need to add an
457 	 * AT_SUN_EMULATOR aux entry.
458 	 */
459 	if (args->emulator != NULL)
460 		args->auxsize += sizeof (aux_entry_t);
461 
462 	if ((brand_action != EBA_NATIVE) && (PROC_IS_BRANDED(p))) {
463 		branded = 1;
464 		/*
465 		 * We will be adding 4 entries to the aux vectors.  One for
466 		 * the the brandname and 3 for the brand specific aux vectors.
467 		 */
468 		args->auxsize += 4 * sizeof (aux_entry_t);
469 	}
470 
471 	/* Hardware/Software capabilities */
472 	if (capphdr != NULL &&
473 	    (capsize = capphdr->p_filesz) > 0 &&
474 	    capsize <= 16 * sizeof (*cap)) {
475 		int ncaps = capsize / sizeof (*cap);
476 		Cap *cp;
477 
478 		cap = kmem_alloc(capsize, KM_SLEEP);
479 		if ((error = vn_rdwr(UIO_READ, vp, (caddr_t)cap,
480 		    capsize, (offset_t)capphdr->p_offset,
481 		    UIO_SYSSPACE, 0, (rlim64_t)0, CRED(), &resid)) != 0) {
482 			uprintf("%s: Cannot read capabilities section\n",
483 			    exec_file);
484 			goto out;
485 		}
486 		for (cp = cap; cp < cap + ncaps; cp++) {
487 			if (cp->c_tag == CA_SUNW_SF_1 &&
488 			    (cp->c_un.c_val & SF1_SUNW_ADDR32)) {
489 				if (args->to_model == DATAMODEL_LP64)
490 					args->addr32 = 1;
491 				break;
492 			}
493 		}
494 	}
495 
496 	aux = bigwad->elfargs;
497 	/*
498 	 * Move args to the user's stack.
499 	 */
500 	if ((error = exec_args(uap, args, idatap, (void **)&aux)) != 0) {
501 		if (error == -1) {
502 			error = ENOEXEC;
503 			goto bad;
504 		}
505 		goto out;
506 	}
507 	/* we're single threaded after this point */
508 
509 	/*
510 	 * If this is an ET_DYN executable (shared object),
511 	 * determine its memory size so that mapelfexec() can load it.
512 	 */
513 	if (ehdrp->e_type == ET_DYN)
514 		len = elfsize(ehdrp, nphdrs, phdrbase, NULL);
515 	else
516 		len = 0;
517 
518 	dtrphdr = NULL;
519 
520 	if ((error = mapelfexec(vp, ehdrp, nphdrs, phdrbase, &uphdr, &dyphdr,
521 	    &stphdr, &dtrphdr, dataphdrp, &bssbase, &brkbase, &voffset, NULL,
522 	    len, execsz, &brksize)) != 0)
523 		goto bad;
524 
525 	if (uphdr != NULL && dyphdr == NULL)
526 		goto bad;
527 
528 	if (dtrphdr != NULL && dtrace_safe_phdr(dtrphdr, args, voffset) != 0) {
529 		uprintf("%s: Bad DTrace phdr in %s\n", exec_file, exec_file);
530 		goto bad;
531 	}
532 
533 	if (dyphdr != NULL) {
534 		size_t		len;
535 		uintptr_t	lddata;
536 		char		*p;
537 		struct vnode	*nvp;
538 
539 		dlnsize = dyphdr->p_filesz;
540 
541 		if (dlnsize > MAXPATHLEN || dlnsize <= 0)
542 			goto bad;
543 
544 		/*
545 		 * Read in "interpreter" pathname.
546 		 */
547 		if ((error = vn_rdwr(UIO_READ, vp, dlnp, dyphdr->p_filesz,
548 		    (offset_t)dyphdr->p_offset, UIO_SYSSPACE, 0, (rlim64_t)0,
549 		    CRED(), &resid)) != 0) {
550 			uprintf("%s: Cannot obtain interpreter pathname\n",
551 			    exec_file);
552 			goto bad;
553 		}
554 
555 		if (resid != 0 || dlnp[dlnsize - 1] != '\0')
556 			goto bad;
557 
558 		/*
559 		 * Search for '$ORIGIN' token in interpreter path.
560 		 * If found, expand it.
561 		 */
562 		for (p = dlnp; p = strchr(p, '$'); ) {
563 			uint_t	len, curlen;
564 			char	*_ptr;
565 
566 			if (strncmp(++p, ORIGIN_STR, ORIGIN_STR_SIZE))
567 				continue;
568 
569 			curlen = 0;
570 			len = p - dlnp - 1;
571 			if (len) {
572 				bcopy(dlnp, pathbufp, len);
573 				curlen += len;
574 			}
575 			if (_ptr = strrchr(args->pathname, '/')) {
576 				len = _ptr - args->pathname;
577 				if ((curlen + len) > MAXPATHLEN)
578 					break;
579 
580 				bcopy(args->pathname, &pathbufp[curlen], len);
581 				curlen += len;
582 			} else {
583 				/*
584 				 * executable is a basename found in the
585 				 * current directory.  So - just substitue
586 				 * '.' for ORIGIN.
587 				 */
588 				pathbufp[curlen] = '.';
589 				curlen++;
590 			}
591 			p += ORIGIN_STR_SIZE;
592 			len = strlen(p);
593 
594 			if ((curlen + len) > MAXPATHLEN)
595 				break;
596 			bcopy(p, &pathbufp[curlen], len);
597 			curlen += len;
598 			pathbufp[curlen++] = '\0';
599 			bcopy(pathbufp, dlnp, curlen);
600 		}
601 
602 		/*
603 		 * /usr/lib/ld.so.1 is known to be a symlink to /lib/ld.so.1
604 		 * (and /usr/lib/64/ld.so.1 is a symlink to /lib/64/ld.so.1).
605 		 * Just in case /usr is not mounted, change it now.
606 		 */
607 		if (strcmp(dlnp, USR_LIB_RTLD) == 0)
608 			dlnp += 4;
609 		error = lookupname(dlnp, UIO_SYSSPACE, FOLLOW, NULLVPP, &nvp);
610 		if (error && dlnp != bigwad->dl_name) {
611 			/* new kernel, old user-level */
612 			error = lookupname(dlnp -= 4, UIO_SYSSPACE, FOLLOW,
613 			    NULLVPP, &nvp);
614 		}
615 		if (error) {
616 			uprintf("%s: Cannot find %s\n", exec_file, dlnp);
617 			goto bad;
618 		}
619 
620 		/*
621 		 * Setup the "aux" vector.
622 		 */
623 		if (uphdr) {
624 			if (ehdrp->e_type == ET_DYN) {
625 				/* don't use the first page */
626 				bigwad->exenv.ex_brkbase = (caddr_t)PAGESIZE;
627 				bigwad->exenv.ex_bssbase = (caddr_t)PAGESIZE;
628 			} else {
629 				bigwad->exenv.ex_bssbase = bssbase;
630 				bigwad->exenv.ex_brkbase = brkbase;
631 			}
632 			bigwad->exenv.ex_brksize = brksize;
633 			bigwad->exenv.ex_magic = elfmagic;
634 			bigwad->exenv.ex_vp = vp;
635 			setexecenv(&bigwad->exenv);
636 
637 			ADDAUX(aux, AT_PHDR, uphdr->p_vaddr + voffset)
638 			ADDAUX(aux, AT_PHENT, ehdrp->e_phentsize)
639 			ADDAUX(aux, AT_PHNUM, nphdrs)
640 			ADDAUX(aux, AT_ENTRY, ehdrp->e_entry + voffset)
641 		} else {
642 			if ((error = execopen(&vp, &fd)) != 0) {
643 				VN_RELE(nvp);
644 				goto bad;
645 			}
646 
647 			ADDAUX(aux, AT_EXECFD, fd)
648 		}
649 
650 		if ((error = execpermissions(nvp, &bigwad->vattr, args)) != 0) {
651 			VN_RELE(nvp);
652 			uprintf("%s: Cannot execute %s\n", exec_file, dlnp);
653 			goto bad;
654 		}
655 
656 		/*
657 		 * Now obtain the ELF header along with the entire program
658 		 * header contained in "nvp".
659 		 */
660 		kmem_free(phdrbase, phdrsize);
661 		phdrbase = NULL;
662 		if ((error = getelfhead(nvp, CRED(), ehdrp, &nshdrs,
663 		    &shstrndx, &nphdrs)) != 0 ||
664 		    (error = getelfphdr(nvp, CRED(), ehdrp, nphdrs, &phdrbase,
665 		    &phdrsize)) != 0) {
666 			VN_RELE(nvp);
667 			uprintf("%s: Cannot read %s\n", exec_file, dlnp);
668 			goto bad;
669 		}
670 
671 		/*
672 		 * Determine memory size of the "interpreter's" loadable
673 		 * sections.  This size is then used to obtain the virtual
674 		 * address of a hole, in the user's address space, large
675 		 * enough to map the "interpreter".
676 		 */
677 		if ((len = elfsize(ehdrp, nphdrs, phdrbase, &lddata)) == 0) {
678 			VN_RELE(nvp);
679 			uprintf("%s: Nothing to load in %s\n", exec_file, dlnp);
680 			goto bad;
681 		}
682 
683 		dtrphdr = NULL;
684 
685 		error = mapelfexec(nvp, ehdrp, nphdrs, phdrbase, &junk, &junk,
686 		    &junk, &dtrphdr, NULL, NULL, NULL, &voffset, NULL, len,
687 		    execsz, NULL);
688 		if (error || junk != NULL) {
689 			VN_RELE(nvp);
690 			uprintf("%s: Cannot map %s\n", exec_file, dlnp);
691 			goto bad;
692 		}
693 
694 		/*
695 		 * We use the DTrace program header to initialize the
696 		 * architecture-specific user per-LWP location. The dtrace
697 		 * fasttrap provider requires ready access to per-LWP scratch
698 		 * space. We assume that there is only one such program header
699 		 * in the interpreter.
700 		 */
701 		if (dtrphdr != NULL &&
702 		    dtrace_safe_phdr(dtrphdr, args, voffset) != 0) {
703 			VN_RELE(nvp);
704 			uprintf("%s: Bad DTrace phdr in %s\n", exec_file, dlnp);
705 			goto bad;
706 		}
707 
708 		VN_RELE(nvp);
709 		ADDAUX(aux, AT_SUN_LDDATA, voffset + lddata)
710 	}
711 
712 	if (hasauxv) {
713 		int auxf = AF_SUN_HWCAPVERIFY;
714 		/*
715 		 * Note: AT_SUN_PLATFORM was filled in via exec_args()
716 		 */
717 		ADDAUX(aux, AT_BASE, voffset)
718 		ADDAUX(aux, AT_FLAGS, at_flags)
719 		ADDAUX(aux, AT_PAGESZ, PAGESIZE)
720 		/*
721 		 * Linker flags. (security)
722 		 * p_flag not yet set at this time.
723 		 * We rely on gexec() to provide us with the information.
724 		 * If the application is set-uid but this is not reflected
725 		 * in a mismatch between real/effective uids/gids, then
726 		 * don't treat this as a set-uid exec.  So we care about
727 		 * the EXECSETID_UGIDS flag but not the ...SETID flag.
728 		 */
729 		if ((setid &= ~EXECSETID_SETID) != 0)
730 			auxf |= AF_SUN_SETUGID;
731 
732 		/*
733 		 * If we're running a native process from within a branded
734 		 * zone under pfexec then we clear the AF_SUN_SETUGID flag so
735 		 * that the native ld.so.1 is able to link with the native
736 		 * libraries instead of using the brand libraries that are
737 		 * installed in the zone.  We only do this for processes
738 		 * which we trust because we see they are already running
739 		 * under pfexec (where uid != euid).  This prevents a
740 		 * malicious user within the zone from crafting a wrapper to
741 		 * run native suid commands with unsecure libraries interposed.
742 		 */
743 		if ((brand_action == EBA_NATIVE) && (PROC_IS_BRANDED(p) &&
744 		    (setid &= ~EXECSETID_SETID) != 0))
745 			auxf &= ~AF_SUN_SETUGID;
746 
747 		/*
748 		 * Record the user addr of the auxflags aux vector entry
749 		 * since brands may optionally want to manipulate this field.
750 		 */
751 		args->auxp_auxflags =
752 		    (char *)((char *)args->stackend +
753 		    ((char *)&aux->a_type -
754 		    (char *)bigwad->elfargs));
755 		ADDAUX(aux, AT_SUN_AUXFLAGS, auxf);
756 		/*
757 		 * Hardware capability flag word (performance hints)
758 		 * Used for choosing faster library routines.
759 		 * (Potentially different between 32-bit and 64-bit ABIs)
760 		 */
761 #if defined(_LP64)
762 		if (args->to_model == DATAMODEL_NATIVE)
763 			ADDAUX(aux, AT_SUN_HWCAP, auxv_hwcap)
764 		else
765 			ADDAUX(aux, AT_SUN_HWCAP, auxv_hwcap32)
766 #else
767 		ADDAUX(aux, AT_SUN_HWCAP, auxv_hwcap)
768 #endif
769 		if (branded) {
770 			/*
771 			 * Reserve space for the brand-private aux vectors,
772 			 * and record the user addr of that space.
773 			 */
774 			args->auxp_brand =
775 			    (char *)((char *)args->stackend +
776 			    ((char *)&aux->a_type -
777 			    (char *)bigwad->elfargs));
778 			ADDAUX(aux, AT_SUN_BRAND_AUX1, 0)
779 			ADDAUX(aux, AT_SUN_BRAND_AUX2, 0)
780 			ADDAUX(aux, AT_SUN_BRAND_AUX3, 0)
781 		}
782 
783 		ADDAUX(aux, AT_NULL, 0)
784 		postfixsize = (char *)aux - (char *)bigwad->elfargs;
785 		ASSERT(postfixsize == args->auxsize);
786 		ASSERT(postfixsize <= __KERN_NAUXV_IMPL * sizeof (aux_entry_t));
787 	}
788 
789 	/*
790 	 * For the 64-bit kernel, the limit is big enough that rounding it up
791 	 * to a page can overflow the 64-bit limit, so we check for btopr()
792 	 * overflowing here by comparing it with the unrounded limit in pages.
793 	 * If it hasn't overflowed, compare the exec size with the rounded up
794 	 * limit in pages.  Otherwise, just compare with the unrounded limit.
795 	 */
796 	limit = btop(p->p_vmem_ctl);
797 	roundlimit = btopr(p->p_vmem_ctl);
798 	if ((roundlimit > limit && *execsz > roundlimit) ||
799 	    (roundlimit < limit && *execsz > limit)) {
800 		mutex_enter(&p->p_lock);
801 		(void) rctl_action(rctlproc_legacy[RLIMIT_VMEM], p->p_rctls, p,
802 		    RCA_SAFE);
803 		mutex_exit(&p->p_lock);
804 		error = ENOMEM;
805 		goto bad;
806 	}
807 
808 	bzero(up->u_auxv, sizeof (up->u_auxv));
809 	if (postfixsize) {
810 		int num_auxv;
811 
812 		/*
813 		 * Copy the aux vector to the user stack.
814 		 */
815 		error = execpoststack(args, bigwad->elfargs, postfixsize);
816 		if (error)
817 			goto bad;
818 
819 		/*
820 		 * Copy auxv to the process's user structure for use by /proc.
821 		 * If this is a branded process, the brand's exec routine will
822 		 * copy it's private entries to the user structure later. It
823 		 * relies on the fact that the blank entries are at the end.
824 		 */
825 		num_auxv = postfixsize / sizeof (aux_entry_t);
826 		ASSERT(num_auxv <= sizeof (up->u_auxv) / sizeof (auxv_t));
827 		aux = bigwad->elfargs;
828 		for (i = 0; i < num_auxv; i++) {
829 			up->u_auxv[i].a_type = aux[i].a_type;
830 			up->u_auxv[i].a_un.a_val = (aux_val_t)aux[i].a_un.a_val;
831 		}
832 	}
833 
834 	/*
835 	 * Pass back the starting address so we can set the program counter.
836 	 */
837 	args->entry = (uintptr_t)(ehdrp->e_entry + voffset);
838 
839 	if (!uphdr) {
840 		if (ehdrp->e_type == ET_DYN) {
841 			/*
842 			 * If we are executing a shared library which doesn't
843 			 * have a interpreter (probably ld.so.1) then
844 			 * we don't set the brkbase now.  Instead we
845 			 * delay it's setting until the first call
846 			 * via grow.c::brk().  This permits ld.so.1 to
847 			 * initialize brkbase to the tail of the executable it
848 			 * loads (which is where it needs to be).
849 			 */
850 			bigwad->exenv.ex_brkbase = (caddr_t)0;
851 			bigwad->exenv.ex_bssbase = (caddr_t)0;
852 			bigwad->exenv.ex_brksize = 0;
853 		} else {
854 			bigwad->exenv.ex_brkbase = brkbase;
855 			bigwad->exenv.ex_bssbase = bssbase;
856 			bigwad->exenv.ex_brksize = brksize;
857 		}
858 		bigwad->exenv.ex_magic = elfmagic;
859 		bigwad->exenv.ex_vp = vp;
860 		setexecenv(&bigwad->exenv);
861 	}
862 
863 	ASSERT(error == 0);
864 	goto out;
865 
866 bad:
867 	if (fd != -1)		/* did we open the a.out yet */
868 		(void) execclose(fd);
869 
870 	psignal(p, SIGKILL);
871 
872 	if (error == 0)
873 		error = ENOEXEC;
874 out:
875 	if (phdrbase != NULL)
876 		kmem_free(phdrbase, phdrsize);
877 	if (cap != NULL)
878 		kmem_free(cap, capsize);
879 	kmem_free(bigwad, sizeof (struct bigwad));
880 	return (error);
881 }
882 
883 /*
884  * Compute the memory size requirement for the ELF file.
885  */
886 static size_t
887 elfsize(Ehdr *ehdrp, int nphdrs, caddr_t phdrbase, uintptr_t *lddata)
888 {
889 	size_t	len;
890 	Phdr	*phdrp = (Phdr *)phdrbase;
891 	int	hsize = ehdrp->e_phentsize;
892 	int	first = 1;
893 	int	dfirst = 1;	/* first data segment */
894 	uintptr_t loaddr = 0;
895 	uintptr_t hiaddr = 0;
896 	uintptr_t lo, hi;
897 	int	i;
898 
899 	for (i = nphdrs; i > 0; i--) {
900 		if (phdrp->p_type == PT_LOAD) {
901 			lo = phdrp->p_vaddr;
902 			hi = lo + phdrp->p_memsz;
903 			if (first) {
904 				loaddr = lo;
905 				hiaddr = hi;
906 				first = 0;
907 			} else {
908 				if (loaddr > lo)
909 					loaddr = lo;
910 				if (hiaddr < hi)
911 					hiaddr = hi;
912 			}
913 
914 			/*
915 			 * save the address of the first data segment
916 			 * of a object - used for the AT_SUNW_LDDATA
917 			 * aux entry.
918 			 */
919 			if ((lddata != NULL) && dfirst &&
920 			    (phdrp->p_flags & PF_W)) {
921 				*lddata = lo;
922 				dfirst = 0;
923 			}
924 		}
925 		phdrp = (Phdr *)((caddr_t)phdrp + hsize);
926 	}
927 
928 	len = hiaddr - (loaddr & PAGEMASK);
929 	len = roundup(len, PAGESIZE);
930 
931 	return (len);
932 }
933 
934 /*
935  * Read in the ELF header and program header table.
936  * SUSV3 requires:
937  *	ENOEXEC	File format is not recognized
938  *	EINVAL	Format recognized but execution not supported
939  */
940 static int
941 getelfhead(vnode_t *vp, cred_t *credp, Ehdr *ehdr, int *nshdrs, int *shstrndx,
942     int *nphdrs)
943 {
944 	int error;
945 	ssize_t resid;
946 
947 	/*
948 	 * We got here by the first two bytes in ident,
949 	 * now read the entire ELF header.
950 	 */
951 	if ((error = vn_rdwr(UIO_READ, vp, (caddr_t)ehdr,
952 	    sizeof (Ehdr), (offset_t)0, UIO_SYSSPACE, 0,
953 	    (rlim64_t)0, credp, &resid)) != 0)
954 		return (error);
955 
956 	/*
957 	 * Since a separate version is compiled for handling 32-bit and
958 	 * 64-bit ELF executables on a 64-bit kernel, the 64-bit version
959 	 * doesn't need to be able to deal with 32-bit ELF files.
960 	 */
961 	if (resid != 0 ||
962 	    ehdr->e_ident[EI_MAG2] != ELFMAG2 ||
963 	    ehdr->e_ident[EI_MAG3] != ELFMAG3)
964 		return (ENOEXEC);
965 
966 	if ((ehdr->e_type != ET_EXEC && ehdr->e_type != ET_DYN) ||
967 #if defined(_ILP32) || defined(_ELF32_COMPAT)
968 	    ehdr->e_ident[EI_CLASS] != ELFCLASS32 ||
969 #else
970 	    ehdr->e_ident[EI_CLASS] != ELFCLASS64 ||
971 #endif
972 	    !elfheadcheck(ehdr->e_ident[EI_DATA], ehdr->e_machine,
973 	    ehdr->e_flags))
974 		return (EINVAL);
975 
976 	*nshdrs = ehdr->e_shnum;
977 	*shstrndx = ehdr->e_shstrndx;
978 	*nphdrs = ehdr->e_phnum;
979 
980 	/*
981 	 * If e_shnum, e_shstrndx, or e_phnum is its sentinel value, we need
982 	 * to read in the section header at index zero to acces the true
983 	 * values for those fields.
984 	 */
985 	if ((*nshdrs == 0 && ehdr->e_shoff != 0) ||
986 	    *shstrndx == SHN_XINDEX || *nphdrs == PN_XNUM) {
987 		Shdr shdr;
988 
989 		if (ehdr->e_shoff == 0)
990 			return (EINVAL);
991 
992 		if ((error = vn_rdwr(UIO_READ, vp, (caddr_t)&shdr,
993 		    sizeof (shdr), (offset_t)ehdr->e_shoff, UIO_SYSSPACE, 0,
994 		    (rlim64_t)0, credp, &resid)) != 0)
995 			return (error);
996 
997 		if (*nshdrs == 0)
998 			*nshdrs = shdr.sh_size;
999 		if (*shstrndx == SHN_XINDEX)
1000 			*shstrndx = shdr.sh_link;
1001 		if (*nphdrs == PN_XNUM && shdr.sh_info != 0)
1002 			*nphdrs = shdr.sh_info;
1003 	}
1004 
1005 	return (0);
1006 }
1007 
1008 #ifdef _ELF32_COMPAT
1009 extern size_t elf_nphdr_max;
1010 #else
1011 size_t elf_nphdr_max = 1000;
1012 #endif
1013 
1014 static int
1015 getelfphdr(vnode_t *vp, cred_t *credp, const Ehdr *ehdr, int nphdrs,
1016     caddr_t *phbasep, ssize_t *phsizep)
1017 {
1018 	ssize_t resid, minsize;
1019 	int err;
1020 
1021 	/*
1022 	 * Since we're going to be using e_phentsize to iterate down the
1023 	 * array of program headers, it must be 8-byte aligned or else
1024 	 * a we might cause a misaligned access. We use all members through
1025 	 * p_flags on 32-bit ELF files and p_memsz on 64-bit ELF files so
1026 	 * e_phentsize must be at least large enough to include those
1027 	 * members.
1028 	 */
1029 #if !defined(_LP64) || defined(_ELF32_COMPAT)
1030 	minsize = offsetof(Phdr, p_flags) + sizeof (((Phdr *)NULL)->p_flags);
1031 #else
1032 	minsize = offsetof(Phdr, p_memsz) + sizeof (((Phdr *)NULL)->p_memsz);
1033 #endif
1034 	if (ehdr->e_phentsize < minsize || (ehdr->e_phentsize & 3))
1035 		return (EINVAL);
1036 
1037 	*phsizep = nphdrs * ehdr->e_phentsize;
1038 
1039 	if (*phsizep > sizeof (Phdr) * elf_nphdr_max) {
1040 		if ((*phbasep = kmem_alloc(*phsizep, KM_NOSLEEP)) == NULL)
1041 			return (ENOMEM);
1042 	} else {
1043 		*phbasep = kmem_alloc(*phsizep, KM_SLEEP);
1044 	}
1045 
1046 	if ((err = vn_rdwr(UIO_READ, vp, *phbasep, *phsizep,
1047 	    (offset_t)ehdr->e_phoff, UIO_SYSSPACE, 0, (rlim64_t)0,
1048 	    credp, &resid)) != 0) {
1049 		kmem_free(*phbasep, *phsizep);
1050 		*phbasep = NULL;
1051 		return (err);
1052 	}
1053 
1054 	return (0);
1055 }
1056 
1057 #ifdef _ELF32_COMPAT
1058 extern size_t elf_nshdr_max;
1059 extern size_t elf_shstrtab_max;
1060 #else
1061 size_t elf_nshdr_max = 10000;
1062 size_t elf_shstrtab_max = 100 * 1024;
1063 #endif
1064 
1065 
1066 static int
1067 getelfshdr(vnode_t *vp, cred_t *credp, const Ehdr *ehdr,
1068     int nshdrs, int shstrndx, caddr_t *shbasep, ssize_t *shsizep,
1069     char **shstrbasep, ssize_t *shstrsizep)
1070 {
1071 	ssize_t resid, minsize;
1072 	int err;
1073 	Shdr *shdr;
1074 
1075 	/*
1076 	 * Since we're going to be using e_shentsize to iterate down the
1077 	 * array of section headers, it must be 8-byte aligned or else
1078 	 * a we might cause a misaligned access. We use all members through
1079 	 * sh_entsize (on both 32- and 64-bit ELF files) so e_shentsize
1080 	 * must be at least large enough to include that member. The index
1081 	 * of the string table section must also be valid.
1082 	 */
1083 	minsize = offsetof(Shdr, sh_entsize) + sizeof (shdr->sh_entsize);
1084 	if (ehdr->e_shentsize < minsize || (ehdr->e_shentsize & 3) ||
1085 	    shstrndx >= nshdrs)
1086 		return (EINVAL);
1087 
1088 	*shsizep = nshdrs * ehdr->e_shentsize;
1089 
1090 	if (*shsizep > sizeof (Shdr) * elf_nshdr_max) {
1091 		if ((*shbasep = kmem_alloc(*shsizep, KM_NOSLEEP)) == NULL)
1092 			return (ENOMEM);
1093 	} else {
1094 		*shbasep = kmem_alloc(*shsizep, KM_SLEEP);
1095 	}
1096 
1097 	if ((err = vn_rdwr(UIO_READ, vp, *shbasep, *shsizep,
1098 	    (offset_t)ehdr->e_shoff, UIO_SYSSPACE, 0, (rlim64_t)0,
1099 	    credp, &resid)) != 0) {
1100 		kmem_free(*shbasep, *shsizep);
1101 		return (err);
1102 	}
1103 
1104 	/*
1105 	 * Pull the section string table out of the vnode; fail if the size
1106 	 * is zero.
1107 	 */
1108 	shdr = (Shdr *)(*shbasep + shstrndx * ehdr->e_shentsize);
1109 	if ((*shstrsizep = shdr->sh_size) == 0) {
1110 		kmem_free(*shbasep, *shsizep);
1111 		return (EINVAL);
1112 	}
1113 
1114 	if (*shstrsizep > elf_shstrtab_max) {
1115 		if ((*shstrbasep = kmem_alloc(*shstrsizep,
1116 		    KM_NOSLEEP)) == NULL) {
1117 			kmem_free(*shbasep, *shsizep);
1118 			return (ENOMEM);
1119 		}
1120 	} else {
1121 		*shstrbasep = kmem_alloc(*shstrsizep, KM_SLEEP);
1122 	}
1123 
1124 	if ((err = vn_rdwr(UIO_READ, vp, *shstrbasep, *shstrsizep,
1125 	    (offset_t)shdr->sh_offset, UIO_SYSSPACE, 0, (rlim64_t)0,
1126 	    credp, &resid)) != 0) {
1127 		kmem_free(*shbasep, *shsizep);
1128 		kmem_free(*shstrbasep, *shstrsizep);
1129 		return (err);
1130 	}
1131 
1132 	/*
1133 	 * Make sure the strtab is null-terminated to make sure we
1134 	 * don't run off the end of the table.
1135 	 */
1136 	(*shstrbasep)[*shstrsizep - 1] = '\0';
1137 
1138 	return (0);
1139 }
1140 
1141 static int
1142 mapelfexec(
1143 	vnode_t *vp,
1144 	Ehdr *ehdr,
1145 	int nphdrs,
1146 	caddr_t phdrbase,
1147 	Phdr **uphdr,
1148 	Phdr **dyphdr,
1149 	Phdr **stphdr,
1150 	Phdr **dtphdr,
1151 	Phdr *dataphdrp,
1152 	caddr_t *bssbase,
1153 	caddr_t *brkbase,
1154 	intptr_t *voffset,
1155 	intptr_t *minaddr,
1156 	size_t len,
1157 	long *execsz,
1158 	size_t *brksize)
1159 {
1160 	Phdr *phdr;
1161 	int i, prot, error;
1162 	caddr_t addr = NULL;
1163 	size_t zfodsz;
1164 	int ptload = 0;
1165 	int page;
1166 	off_t offset;
1167 	int hsize = ehdr->e_phentsize;
1168 	caddr_t mintmp = (caddr_t)-1;
1169 	extern int use_brk_lpg;
1170 
1171 	if (ehdr->e_type == ET_DYN) {
1172 		/*
1173 		 * Obtain the virtual address of a hole in the
1174 		 * address space to map the "interpreter".
1175 		 */
1176 		map_addr(&addr, len, (offset_t)0, 1, 0);
1177 		if (addr == NULL)
1178 			return (ENOMEM);
1179 		*voffset = (intptr_t)addr;
1180 
1181 		/*
1182 		 * Calculate the minimum vaddr so it can be subtracted out.
1183 		 * According to the ELF specification, since PT_LOAD sections
1184 		 * must be sorted by increasing p_vaddr values, this is
1185 		 * guaranteed to be the first PT_LOAD section.
1186 		 */
1187 		phdr = (Phdr *)phdrbase;
1188 		for (i = nphdrs; i > 0; i--) {
1189 			if (phdr->p_type == PT_LOAD) {
1190 				*voffset -= (uintptr_t)phdr->p_vaddr;
1191 				break;
1192 			}
1193 			phdr = (Phdr *)((caddr_t)phdr + hsize);
1194 		}
1195 
1196 	} else {
1197 		*voffset = 0;
1198 	}
1199 	phdr = (Phdr *)phdrbase;
1200 	for (i = nphdrs; i > 0; i--) {
1201 		switch (phdr->p_type) {
1202 		case PT_LOAD:
1203 			if ((*dyphdr != NULL) && (*uphdr == NULL))
1204 				return (0);
1205 
1206 			ptload = 1;
1207 			prot = PROT_USER;
1208 			if (phdr->p_flags & PF_R)
1209 				prot |= PROT_READ;
1210 			if (phdr->p_flags & PF_W)
1211 				prot |= PROT_WRITE;
1212 			if (phdr->p_flags & PF_X)
1213 				prot |= PROT_EXEC;
1214 
1215 			addr = (caddr_t)((uintptr_t)phdr->p_vaddr + *voffset);
1216 
1217 			/*
1218 			 * Keep track of the segment with the lowest starting
1219 			 * address.
1220 			 */
1221 			if (addr < mintmp)
1222 				mintmp = addr;
1223 
1224 			zfodsz = (size_t)phdr->p_memsz - phdr->p_filesz;
1225 
1226 			offset = phdr->p_offset;
1227 			if (((uintptr_t)offset & PAGEOFFSET) ==
1228 			    ((uintptr_t)addr & PAGEOFFSET) &&
1229 			    (!(vp->v_flag & VNOMAP))) {
1230 				page = 1;
1231 			} else {
1232 				page = 0;
1233 			}
1234 
1235 			/*
1236 			 * Set the heap pagesize for OOB when the bss size
1237 			 * is known and use_brk_lpg is not 0.
1238 			 */
1239 			if (brksize != NULL && use_brk_lpg &&
1240 			    zfodsz != 0 && phdr == dataphdrp &&
1241 			    (prot & PROT_WRITE)) {
1242 				size_t tlen = P2NPHASE((uintptr_t)addr +
1243 				    phdr->p_filesz, PAGESIZE);
1244 
1245 				if (zfodsz > tlen) {
1246 					curproc->p_brkpageszc =
1247 					    page_szc(map_pgsz(MAPPGSZ_HEAP,
1248 					    curproc, addr + phdr->p_filesz +
1249 					    tlen, zfodsz - tlen, 0));
1250 				}
1251 			}
1252 
1253 			if (curproc->p_brkpageszc != 0 && phdr == dataphdrp &&
1254 			    (prot & PROT_WRITE)) {
1255 				uint_t	szc = curproc->p_brkpageszc;
1256 				size_t pgsz = page_get_pagesize(szc);
1257 				caddr_t ebss = addr + phdr->p_memsz;
1258 				size_t extra_zfodsz;
1259 
1260 				ASSERT(pgsz > PAGESIZE);
1261 
1262 				extra_zfodsz = P2NPHASE((uintptr_t)ebss, pgsz);
1263 
1264 				if (error = execmap(vp, addr, phdr->p_filesz,
1265 				    zfodsz + extra_zfodsz, phdr->p_offset,
1266 				    prot, page, szc))
1267 					goto bad;
1268 				if (brksize != NULL)
1269 					*brksize = extra_zfodsz;
1270 			} else {
1271 				if (error = execmap(vp, addr, phdr->p_filesz,
1272 				    zfodsz, phdr->p_offset, prot, page, 0))
1273 					goto bad;
1274 			}
1275 
1276 			if (bssbase != NULL && addr >= *bssbase &&
1277 			    phdr == dataphdrp) {
1278 				*bssbase = addr + phdr->p_filesz;
1279 			}
1280 			if (brkbase != NULL && addr >= *brkbase) {
1281 				*brkbase = addr + phdr->p_memsz;
1282 			}
1283 
1284 			*execsz += btopr(phdr->p_memsz);
1285 			break;
1286 
1287 		case PT_INTERP:
1288 			if (ptload)
1289 				goto bad;
1290 			*dyphdr = phdr;
1291 			break;
1292 
1293 		case PT_SHLIB:
1294 			*stphdr = phdr;
1295 			break;
1296 
1297 		case PT_PHDR:
1298 			if (ptload)
1299 				goto bad;
1300 			*uphdr = phdr;
1301 			break;
1302 
1303 		case PT_NULL:
1304 		case PT_DYNAMIC:
1305 		case PT_NOTE:
1306 			break;
1307 
1308 		case PT_SUNWDTRACE:
1309 			if (dtphdr != NULL)
1310 				*dtphdr = phdr;
1311 			break;
1312 
1313 		default:
1314 			break;
1315 		}
1316 		phdr = (Phdr *)((caddr_t)phdr + hsize);
1317 	}
1318 
1319 	if (minaddr != NULL) {
1320 		ASSERT(mintmp != (caddr_t)-1);
1321 		*minaddr = (intptr_t)mintmp;
1322 	}
1323 
1324 	return (0);
1325 bad:
1326 	if (error == 0)
1327 		error = EINVAL;
1328 	return (error);
1329 }
1330 
1331 int
1332 elfnote(vnode_t *vp, offset_t *offsetp, int type, int descsz, void *desc,
1333     rlim64_t rlimit, cred_t *credp)
1334 {
1335 	Note note;
1336 	int error;
1337 
1338 	bzero(&note, sizeof (note));
1339 	bcopy("CORE", note.name, 4);
1340 	note.nhdr.n_type = type;
1341 	/*
1342 	 * The System V ABI states that n_namesz must be the length of the
1343 	 * string that follows the Nhdr structure including the terminating
1344 	 * null. The ABI also specifies that sufficient padding should be
1345 	 * included so that the description that follows the name string
1346 	 * begins on a 4- or 8-byte boundary for 32- and 64-bit binaries
1347 	 * respectively. However, since this change was not made correctly
1348 	 * at the time of the 64-bit port, both 32- and 64-bit binaries
1349 	 * descriptions are only guaranteed to begin on a 4-byte boundary.
1350 	 */
1351 	note.nhdr.n_namesz = 5;
1352 	note.nhdr.n_descsz = roundup(descsz, sizeof (Word));
1353 
1354 	if (error = core_write(vp, UIO_SYSSPACE, *offsetp, &note,
1355 	    sizeof (note), rlimit, credp))
1356 		return (error);
1357 
1358 	*offsetp += sizeof (note);
1359 
1360 	if (error = core_write(vp, UIO_SYSSPACE, *offsetp, desc,
1361 	    note.nhdr.n_descsz, rlimit, credp))
1362 		return (error);
1363 
1364 	*offsetp += note.nhdr.n_descsz;
1365 	return (0);
1366 }
1367 
1368 /*
1369  * Copy the section data from one vnode to the section of another vnode.
1370  */
1371 static void
1372 copy_scn(Shdr *src, vnode_t *src_vp, Shdr *dst, vnode_t *dst_vp, Off *doffset,
1373     void *buf, size_t size, cred_t *credp, rlim64_t rlimit)
1374 {
1375 	ssize_t resid;
1376 	size_t len, n = src->sh_size;
1377 	offset_t off = 0;
1378 
1379 	while (n != 0) {
1380 		len = MIN(size, n);
1381 		if (vn_rdwr(UIO_READ, src_vp, buf, len, src->sh_offset + off,
1382 		    UIO_SYSSPACE, 0, (rlim64_t)0, credp, &resid) != 0 ||
1383 		    resid >= len ||
1384 		    core_write(dst_vp, UIO_SYSSPACE, *doffset + off,
1385 		    buf, len - resid, rlimit, credp) != 0) {
1386 			dst->sh_size = 0;
1387 			dst->sh_offset = 0;
1388 			return;
1389 		}
1390 
1391 		ASSERT(n >= len - resid);
1392 
1393 		n -= len - resid;
1394 		off += len - resid;
1395 	}
1396 
1397 	*doffset += src->sh_size;
1398 }
1399 
1400 #ifdef _ELF32_COMPAT
1401 extern size_t elf_datasz_max;
1402 #else
1403 size_t elf_datasz_max = 1 * 1024 * 1024;
1404 #endif
1405 
1406 /*
1407  * This function processes mappings that correspond to load objects to
1408  * examine their respective sections for elfcore(). It's called once with
1409  * v set to NULL to count the number of sections that we're going to need
1410  * and then again with v set to some allocated buffer that we fill in with
1411  * all the section data.
1412  */
1413 static int
1414 process_scns(core_content_t content, proc_t *p, cred_t *credp, vnode_t *vp,
1415     Shdr *v, int nv, rlim64_t rlimit, Off *doffsetp, int *nshdrsp)
1416 {
1417 	vnode_t *lastvp = NULL;
1418 	struct seg *seg;
1419 	int i, j;
1420 	void *data = NULL;
1421 	size_t datasz = 0;
1422 	shstrtab_t shstrtab;
1423 	struct as *as = p->p_as;
1424 	int error = 0;
1425 
1426 	if (v != NULL)
1427 		shstrtab_init(&shstrtab);
1428 
1429 	i = 1;
1430 	for (seg = AS_SEGFIRST(as); seg != NULL; seg = AS_SEGNEXT(as, seg)) {
1431 		uint_t prot;
1432 		vnode_t *mvp;
1433 		void *tmp = NULL;
1434 		caddr_t saddr = seg->s_base;
1435 		caddr_t naddr;
1436 		caddr_t eaddr;
1437 		size_t segsize;
1438 
1439 		Ehdr ehdr;
1440 		int nshdrs, shstrndx, nphdrs;
1441 		caddr_t shbase;
1442 		ssize_t shsize;
1443 		char *shstrbase;
1444 		ssize_t shstrsize;
1445 
1446 		Shdr *shdr;
1447 		const char *name;
1448 		size_t sz;
1449 		uintptr_t off;
1450 
1451 		int ctf_ndx = 0;
1452 		int symtab_ndx = 0;
1453 
1454 		/*
1455 		 * Since we're just looking for text segments of load
1456 		 * objects, we only care about the protection bits; we don't
1457 		 * care about the actual size of the segment so we use the
1458 		 * reserved size. If the segment's size is zero, there's
1459 		 * something fishy going on so we ignore this segment.
1460 		 */
1461 		if (seg->s_ops != &segvn_ops ||
1462 		    SEGOP_GETVP(seg, seg->s_base, &mvp) != 0 ||
1463 		    mvp == lastvp || mvp == NULL || mvp->v_type != VREG ||
1464 		    (segsize = pr_getsegsize(seg, 1)) == 0)
1465 			continue;
1466 
1467 		eaddr = saddr + segsize;
1468 		prot = pr_getprot(seg, 1, &tmp, &saddr, &naddr, eaddr);
1469 		pr_getprot_done(&tmp);
1470 
1471 		/*
1472 		 * Skip this segment unless the protection bits look like
1473 		 * what we'd expect for a text segment.
1474 		 */
1475 		if ((prot & (PROT_WRITE | PROT_EXEC)) != PROT_EXEC)
1476 			continue;
1477 
1478 		if (getelfhead(mvp, credp, &ehdr, &nshdrs, &shstrndx,
1479 		    &nphdrs) != 0 ||
1480 		    getelfshdr(mvp, credp, &ehdr, nshdrs, shstrndx,
1481 		    &shbase, &shsize, &shstrbase, &shstrsize) != 0)
1482 			continue;
1483 
1484 		off = ehdr.e_shentsize;
1485 		for (j = 1; j < nshdrs; j++, off += ehdr.e_shentsize) {
1486 			Shdr *symtab = NULL, *strtab;
1487 
1488 			shdr = (Shdr *)(shbase + off);
1489 
1490 			if (shdr->sh_name >= shstrsize)
1491 				continue;
1492 
1493 			name = shstrbase + shdr->sh_name;
1494 
1495 			if (strcmp(name, shstrtab_data[STR_CTF]) == 0) {
1496 				if ((content & CC_CONTENT_CTF) == 0 ||
1497 				    ctf_ndx != 0)
1498 					continue;
1499 
1500 				if (shdr->sh_link > 0 &&
1501 				    shdr->sh_link < nshdrs) {
1502 					symtab = (Shdr *)(shbase +
1503 					    shdr->sh_link * ehdr.e_shentsize);
1504 				}
1505 
1506 				if (v != NULL && i < nv - 1) {
1507 					if (shdr->sh_size > datasz &&
1508 					    shdr->sh_size <= elf_datasz_max) {
1509 						if (data != NULL)
1510 							kmem_free(data, datasz);
1511 
1512 						datasz = shdr->sh_size;
1513 						data = kmem_alloc(datasz,
1514 						    KM_SLEEP);
1515 					}
1516 
1517 					v[i].sh_name = shstrtab_ndx(&shstrtab,
1518 					    STR_CTF);
1519 					v[i].sh_addr = (Addr)(uintptr_t)saddr;
1520 					v[i].sh_type = SHT_PROGBITS;
1521 					v[i].sh_addralign = 4;
1522 					*doffsetp = roundup(*doffsetp,
1523 					    v[i].sh_addralign);
1524 					v[i].sh_offset = *doffsetp;
1525 					v[i].sh_size = shdr->sh_size;
1526 					if (symtab == NULL)  {
1527 						v[i].sh_link = 0;
1528 					} else if (symtab->sh_type ==
1529 					    SHT_SYMTAB &&
1530 					    symtab_ndx != 0) {
1531 						v[i].sh_link =
1532 						    symtab_ndx;
1533 					} else {
1534 						v[i].sh_link = i + 1;
1535 					}
1536 
1537 					copy_scn(shdr, mvp, &v[i], vp,
1538 					    doffsetp, data, datasz, credp,
1539 					    rlimit);
1540 				}
1541 
1542 				ctf_ndx = i++;
1543 
1544 				/*
1545 				 * We've already dumped the symtab.
1546 				 */
1547 				if (symtab != NULL &&
1548 				    symtab->sh_type == SHT_SYMTAB &&
1549 				    symtab_ndx != 0)
1550 					continue;
1551 
1552 			} else if (strcmp(name,
1553 			    shstrtab_data[STR_SYMTAB]) == 0) {
1554 				if ((content & CC_CONTENT_SYMTAB) == 0 ||
1555 				    symtab != 0)
1556 					continue;
1557 
1558 				symtab = shdr;
1559 			}
1560 
1561 			if (symtab != NULL) {
1562 				if ((symtab->sh_type != SHT_DYNSYM &&
1563 				    symtab->sh_type != SHT_SYMTAB) ||
1564 				    symtab->sh_link == 0 ||
1565 				    symtab->sh_link >= nshdrs)
1566 					continue;
1567 
1568 				strtab = (Shdr *)(shbase +
1569 				    symtab->sh_link * ehdr.e_shentsize);
1570 
1571 				if (strtab->sh_type != SHT_STRTAB)
1572 					continue;
1573 
1574 				if (v != NULL && i < nv - 2) {
1575 					sz = MAX(symtab->sh_size,
1576 					    strtab->sh_size);
1577 					if (sz > datasz &&
1578 					    sz <= elf_datasz_max) {
1579 						if (data != NULL)
1580 							kmem_free(data, datasz);
1581 
1582 						datasz = sz;
1583 						data = kmem_alloc(datasz,
1584 						    KM_SLEEP);
1585 					}
1586 
1587 					if (symtab->sh_type == SHT_DYNSYM) {
1588 						v[i].sh_name = shstrtab_ndx(
1589 						    &shstrtab, STR_DYNSYM);
1590 						v[i + 1].sh_name = shstrtab_ndx(
1591 						    &shstrtab, STR_DYNSTR);
1592 					} else {
1593 						v[i].sh_name = shstrtab_ndx(
1594 						    &shstrtab, STR_SYMTAB);
1595 						v[i + 1].sh_name = shstrtab_ndx(
1596 						    &shstrtab, STR_STRTAB);
1597 					}
1598 
1599 					v[i].sh_type = symtab->sh_type;
1600 					v[i].sh_addr = symtab->sh_addr;
1601 					if (ehdr.e_type == ET_DYN ||
1602 					    v[i].sh_addr == 0)
1603 						v[i].sh_addr +=
1604 						    (Addr)(uintptr_t)saddr;
1605 					v[i].sh_addralign =
1606 					    symtab->sh_addralign;
1607 					*doffsetp = roundup(*doffsetp,
1608 					    v[i].sh_addralign);
1609 					v[i].sh_offset = *doffsetp;
1610 					v[i].sh_size = symtab->sh_size;
1611 					v[i].sh_link = i + 1;
1612 					v[i].sh_entsize = symtab->sh_entsize;
1613 					v[i].sh_info = symtab->sh_info;
1614 
1615 					copy_scn(symtab, mvp, &v[i], vp,
1616 					    doffsetp, data, datasz, credp,
1617 					    rlimit);
1618 
1619 					v[i + 1].sh_type = SHT_STRTAB;
1620 					v[i + 1].sh_flags = SHF_STRINGS;
1621 					v[i + 1].sh_addr = symtab->sh_addr;
1622 					if (ehdr.e_type == ET_DYN ||
1623 					    v[i + 1].sh_addr == 0)
1624 						v[i + 1].sh_addr +=
1625 						    (Addr)(uintptr_t)saddr;
1626 					v[i + 1].sh_addralign =
1627 					    strtab->sh_addralign;
1628 					*doffsetp = roundup(*doffsetp,
1629 					    v[i + 1].sh_addralign);
1630 					v[i + 1].sh_offset = *doffsetp;
1631 					v[i + 1].sh_size = strtab->sh_size;
1632 
1633 					copy_scn(strtab, mvp, &v[i + 1], vp,
1634 					    doffsetp, data, datasz, credp,
1635 					    rlimit);
1636 				}
1637 
1638 				if (symtab->sh_type == SHT_SYMTAB)
1639 					symtab_ndx = i;
1640 				i += 2;
1641 			}
1642 		}
1643 
1644 		kmem_free(shstrbase, shstrsize);
1645 		kmem_free(shbase, shsize);
1646 
1647 		lastvp = mvp;
1648 	}
1649 
1650 	if (v == NULL) {
1651 		if (i == 1)
1652 			*nshdrsp = 0;
1653 		else
1654 			*nshdrsp = i + 1;
1655 		goto done;
1656 	}
1657 
1658 	if (i != nv - 1) {
1659 		cmn_err(CE_WARN, "elfcore: core dump failed for "
1660 		    "process %d; address space is changing", p->p_pid);
1661 		error = EIO;
1662 		goto done;
1663 	}
1664 
1665 	v[i].sh_name = shstrtab_ndx(&shstrtab, STR_SHSTRTAB);
1666 	v[i].sh_size = shstrtab_size(&shstrtab);
1667 	v[i].sh_addralign = 1;
1668 	*doffsetp = roundup(*doffsetp, v[i].sh_addralign);
1669 	v[i].sh_offset = *doffsetp;
1670 	v[i].sh_flags = SHF_STRINGS;
1671 	v[i].sh_type = SHT_STRTAB;
1672 
1673 	if (v[i].sh_size > datasz) {
1674 		if (data != NULL)
1675 			kmem_free(data, datasz);
1676 
1677 		datasz = v[i].sh_size;
1678 		data = kmem_alloc(datasz,
1679 		    KM_SLEEP);
1680 	}
1681 
1682 	shstrtab_dump(&shstrtab, data);
1683 
1684 	if ((error = core_write(vp, UIO_SYSSPACE, *doffsetp,
1685 	    data, v[i].sh_size, rlimit, credp)) != 0)
1686 		goto done;
1687 
1688 	*doffsetp += v[i].sh_size;
1689 
1690 done:
1691 	if (data != NULL)
1692 		kmem_free(data, datasz);
1693 
1694 	return (error);
1695 }
1696 
1697 int
1698 elfcore(vnode_t *vp, proc_t *p, cred_t *credp, rlim64_t rlimit, int sig,
1699     core_content_t content)
1700 {
1701 	offset_t poffset, soffset;
1702 	Off doffset;
1703 	int error, i, nphdrs, nshdrs;
1704 	int overflow = 0;
1705 	struct seg *seg;
1706 	struct as *as = p->p_as;
1707 	union {
1708 		Ehdr ehdr;
1709 		Phdr phdr[1];
1710 		Shdr shdr[1];
1711 	} *bigwad;
1712 	size_t bigsize;
1713 	size_t phdrsz, shdrsz;
1714 	Ehdr *ehdr;
1715 	Phdr *v;
1716 	caddr_t brkbase;
1717 	size_t brksize;
1718 	caddr_t stkbase;
1719 	size_t stksize;
1720 	int ntries = 0;
1721 
1722 top:
1723 	/*
1724 	 * Make sure we have everything we need (registers, etc.).
1725 	 * All other lwps have already stopped and are in an orderly state.
1726 	 */
1727 	ASSERT(p == ttoproc(curthread));
1728 	prstop(0, 0);
1729 
1730 	AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER);
1731 	nphdrs = prnsegs(as, 0) + 2;		/* two CORE note sections */
1732 
1733 	/*
1734 	 * Count the number of section headers we're going to need.
1735 	 */
1736 	nshdrs = 0;
1737 	if (content & (CC_CONTENT_CTF | CC_CONTENT_SYMTAB)) {
1738 		(void) process_scns(content, p, credp, NULL, NULL, NULL, 0,
1739 		    NULL, &nshdrs);
1740 	}
1741 	AS_LOCK_EXIT(as, &as->a_lock);
1742 
1743 	ASSERT(nshdrs == 0 || nshdrs > 1);
1744 
1745 	/*
1746 	 * The core file contents may required zero section headers, but if
1747 	 * we overflow the 16 bits allotted to the program header count in
1748 	 * the ELF header, we'll need that program header at index zero.
1749 	 */
1750 	if (nshdrs == 0 && nphdrs >= PN_XNUM)
1751 		nshdrs = 1;
1752 
1753 	phdrsz = nphdrs * sizeof (Phdr);
1754 	shdrsz = nshdrs * sizeof (Shdr);
1755 
1756 	bigsize = MAX(sizeof (*bigwad), MAX(phdrsz, shdrsz));
1757 	bigwad = kmem_alloc(bigsize, KM_SLEEP);
1758 
1759 	ehdr = &bigwad->ehdr;
1760 	bzero(ehdr, sizeof (*ehdr));
1761 
1762 	ehdr->e_ident[EI_MAG0] = ELFMAG0;
1763 	ehdr->e_ident[EI_MAG1] = ELFMAG1;
1764 	ehdr->e_ident[EI_MAG2] = ELFMAG2;
1765 	ehdr->e_ident[EI_MAG3] = ELFMAG3;
1766 	ehdr->e_ident[EI_CLASS] = ELFCLASS;
1767 	ehdr->e_type = ET_CORE;
1768 
1769 #if !defined(_LP64) || defined(_ELF32_COMPAT)
1770 
1771 #if defined(__sparc)
1772 	ehdr->e_ident[EI_DATA] = ELFDATA2MSB;
1773 	ehdr->e_machine = EM_SPARC;
1774 #elif defined(__i386) || defined(__i386_COMPAT)
1775 	ehdr->e_ident[EI_DATA] = ELFDATA2LSB;
1776 	ehdr->e_machine = EM_386;
1777 #else
1778 #error "no recognized machine type is defined"
1779 #endif
1780 
1781 #else	/* !defined(_LP64) || defined(_ELF32_COMPAT) */
1782 
1783 #if defined(__sparc)
1784 	ehdr->e_ident[EI_DATA] = ELFDATA2MSB;
1785 	ehdr->e_machine = EM_SPARCV9;
1786 #elif defined(__amd64)
1787 	ehdr->e_ident[EI_DATA] = ELFDATA2LSB;
1788 	ehdr->e_machine = EM_AMD64;
1789 #else
1790 #error "no recognized 64-bit machine type is defined"
1791 #endif
1792 
1793 #endif	/* !defined(_LP64) || defined(_ELF32_COMPAT) */
1794 
1795 	/*
1796 	 * If the count of program headers or section headers or the index
1797 	 * of the section string table can't fit in the mere 16 bits
1798 	 * shortsightedly allotted to them in the ELF header, we use the
1799 	 * extended formats and put the real values in the section header
1800 	 * as index 0.
1801 	 */
1802 	ehdr->e_version = EV_CURRENT;
1803 	ehdr->e_ehsize = sizeof (Ehdr);
1804 
1805 	if (nphdrs >= PN_XNUM)
1806 		ehdr->e_phnum = PN_XNUM;
1807 	else
1808 		ehdr->e_phnum = (unsigned short)nphdrs;
1809 
1810 	ehdr->e_phoff = sizeof (Ehdr);
1811 	ehdr->e_phentsize = sizeof (Phdr);
1812 
1813 	if (nshdrs > 0) {
1814 		if (nshdrs >= SHN_LORESERVE)
1815 			ehdr->e_shnum = 0;
1816 		else
1817 			ehdr->e_shnum = (unsigned short)nshdrs;
1818 
1819 		if (nshdrs - 1 >= SHN_LORESERVE)
1820 			ehdr->e_shstrndx = SHN_XINDEX;
1821 		else
1822 			ehdr->e_shstrndx = (unsigned short)(nshdrs - 1);
1823 
1824 		ehdr->e_shoff = ehdr->e_phoff + ehdr->e_phentsize * nphdrs;
1825 		ehdr->e_shentsize = sizeof (Shdr);
1826 	}
1827 
1828 	if (error = core_write(vp, UIO_SYSSPACE, (offset_t)0, ehdr,
1829 	    sizeof (Ehdr), rlimit, credp))
1830 		goto done;
1831 
1832 	poffset = sizeof (Ehdr);
1833 	soffset = sizeof (Ehdr) + phdrsz;
1834 	doffset = sizeof (Ehdr) + phdrsz + shdrsz;
1835 
1836 	v = &bigwad->phdr[0];
1837 	bzero(v, phdrsz);
1838 
1839 	setup_old_note_header(&v[0], p);
1840 	v[0].p_offset = doffset = roundup(doffset, sizeof (Word));
1841 	doffset += v[0].p_filesz;
1842 
1843 	setup_note_header(&v[1], p);
1844 	v[1].p_offset = doffset = roundup(doffset, sizeof (Word));
1845 	doffset += v[1].p_filesz;
1846 
1847 	mutex_enter(&p->p_lock);
1848 
1849 	brkbase = p->p_brkbase;
1850 	brksize = p->p_brksize;
1851 
1852 	stkbase = p->p_usrstack - p->p_stksize;
1853 	stksize = p->p_stksize;
1854 
1855 	mutex_exit(&p->p_lock);
1856 
1857 	AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER);
1858 	i = 2;
1859 	for (seg = AS_SEGFIRST(as); seg != NULL; seg = AS_SEGNEXT(as, seg)) {
1860 		caddr_t eaddr = seg->s_base + pr_getsegsize(seg, 0);
1861 		caddr_t saddr, naddr;
1862 		void *tmp = NULL;
1863 		extern struct seg_ops segspt_shmops;
1864 
1865 		for (saddr = seg->s_base; saddr < eaddr; saddr = naddr) {
1866 			uint_t prot;
1867 			size_t size;
1868 			int type;
1869 			vnode_t *mvp;
1870 
1871 			prot = pr_getprot(seg, 0, &tmp, &saddr, &naddr, eaddr);
1872 			prot &= PROT_READ | PROT_WRITE | PROT_EXEC;
1873 			if ((size = (size_t)(naddr - saddr)) == 0)
1874 				continue;
1875 			if (i == nphdrs) {
1876 				overflow++;
1877 				continue;
1878 			}
1879 			v[i].p_type = PT_LOAD;
1880 			v[i].p_vaddr = (Addr)(uintptr_t)saddr;
1881 			v[i].p_memsz = size;
1882 			if (prot & PROT_READ)
1883 				v[i].p_flags |= PF_R;
1884 			if (prot & PROT_WRITE)
1885 				v[i].p_flags |= PF_W;
1886 			if (prot & PROT_EXEC)
1887 				v[i].p_flags |= PF_X;
1888 
1889 			/*
1890 			 * Figure out which mappings to include in the core.
1891 			 */
1892 			type = SEGOP_GETTYPE(seg, saddr);
1893 
1894 			if (saddr == stkbase && size == stksize) {
1895 				if (!(content & CC_CONTENT_STACK))
1896 					goto exclude;
1897 
1898 			} else if (saddr == brkbase && size == brksize) {
1899 				if (!(content & CC_CONTENT_HEAP))
1900 					goto exclude;
1901 
1902 			} else if (seg->s_ops == &segspt_shmops) {
1903 				if (type & MAP_NORESERVE) {
1904 					if (!(content & CC_CONTENT_DISM))
1905 						goto exclude;
1906 				} else {
1907 					if (!(content & CC_CONTENT_ISM))
1908 						goto exclude;
1909 				}
1910 
1911 			} else if (seg->s_ops != &segvn_ops) {
1912 				goto exclude;
1913 
1914 			} else if (type & MAP_SHARED) {
1915 				if (shmgetid(p, saddr) != SHMID_NONE) {
1916 					if (!(content & CC_CONTENT_SHM))
1917 						goto exclude;
1918 
1919 				} else if (SEGOP_GETVP(seg, seg->s_base,
1920 				    &mvp) != 0 || mvp == NULL ||
1921 				    mvp->v_type != VREG) {
1922 					if (!(content & CC_CONTENT_SHANON))
1923 						goto exclude;
1924 
1925 				} else {
1926 					if (!(content & CC_CONTENT_SHFILE))
1927 						goto exclude;
1928 				}
1929 
1930 			} else if (SEGOP_GETVP(seg, seg->s_base, &mvp) != 0 ||
1931 			    mvp == NULL || mvp->v_type != VREG) {
1932 				if (!(content & CC_CONTENT_ANON))
1933 					goto exclude;
1934 
1935 			} else if (prot == (PROT_READ | PROT_EXEC)) {
1936 				if (!(content & CC_CONTENT_TEXT))
1937 					goto exclude;
1938 
1939 			} else if (prot == PROT_READ) {
1940 				if (!(content & CC_CONTENT_RODATA))
1941 					goto exclude;
1942 
1943 			} else {
1944 				if (!(content & CC_CONTENT_DATA))
1945 					goto exclude;
1946 			}
1947 
1948 			doffset = roundup(doffset, sizeof (Word));
1949 			v[i].p_offset = doffset;
1950 			v[i].p_filesz = size;
1951 			doffset += size;
1952 exclude:
1953 			i++;
1954 		}
1955 		ASSERT(tmp == NULL);
1956 	}
1957 	AS_LOCK_EXIT(as, &as->a_lock);
1958 
1959 	if (overflow || i != nphdrs) {
1960 		if (ntries++ == 0) {
1961 			kmem_free(bigwad, bigsize);
1962 			overflow = 0;
1963 			goto top;
1964 		}
1965 		cmn_err(CE_WARN, "elfcore: core dump failed for "
1966 		    "process %d; address space is changing", p->p_pid);
1967 		error = EIO;
1968 		goto done;
1969 	}
1970 
1971 	if ((error = core_write(vp, UIO_SYSSPACE, poffset,
1972 	    v, phdrsz, rlimit, credp)) != 0)
1973 		goto done;
1974 
1975 	if ((error = write_old_elfnotes(p, sig, vp, v[0].p_offset, rlimit,
1976 	    credp)) != 0)
1977 		goto done;
1978 
1979 	if ((error = write_elfnotes(p, sig, vp, v[1].p_offset, rlimit,
1980 	    credp, content)) != 0)
1981 		goto done;
1982 
1983 	for (i = 2; i < nphdrs; i++) {
1984 		if (v[i].p_filesz == 0)
1985 			continue;
1986 
1987 		/*
1988 		 * If dumping out this segment fails, rather than failing
1989 		 * the core dump entirely, we reset the size of the mapping
1990 		 * to zero to indicate that the data is absent from the core
1991 		 * file and or in the PF_SUNW_FAILURE flag to differentiate
1992 		 * this from mappings that were excluded due to the core file
1993 		 * content settings.
1994 		 */
1995 		if ((error = core_seg(p, vp, v[i].p_offset,
1996 		    (caddr_t)(uintptr_t)v[i].p_vaddr, v[i].p_filesz,
1997 		    rlimit, credp)) != 0) {
1998 
1999 			/*
2000 			 * Since the space reserved for the segment is now
2001 			 * unused, we stash the errno in the first four
2002 			 * bytes. This undocumented interface will let us
2003 			 * understand the nature of the failure.
2004 			 */
2005 			(void) core_write(vp, UIO_SYSSPACE, v[i].p_offset,
2006 			    &error, sizeof (error), rlimit, credp);
2007 
2008 			v[i].p_filesz = 0;
2009 			v[i].p_flags |= PF_SUNW_FAILURE;
2010 			if ((error = core_write(vp, UIO_SYSSPACE,
2011 			    poffset + sizeof (v[i]) * i, &v[i], sizeof (v[i]),
2012 			    rlimit, credp)) != 0)
2013 				goto done;
2014 		}
2015 	}
2016 
2017 	if (nshdrs > 0) {
2018 		bzero(&bigwad->shdr[0], shdrsz);
2019 
2020 		if (nshdrs >= SHN_LORESERVE)
2021 			bigwad->shdr[0].sh_size = nshdrs;
2022 
2023 		if (nshdrs - 1 >= SHN_LORESERVE)
2024 			bigwad->shdr[0].sh_link = nshdrs - 1;
2025 
2026 		if (nphdrs >= PN_XNUM)
2027 			bigwad->shdr[0].sh_info = nphdrs;
2028 
2029 		if (nshdrs > 1) {
2030 			AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER);
2031 			if ((error = process_scns(content, p, credp, vp,
2032 			    &bigwad->shdr[0], nshdrs, rlimit, &doffset,
2033 			    NULL)) != 0) {
2034 				AS_LOCK_EXIT(as, &as->a_lock);
2035 				goto done;
2036 			}
2037 			AS_LOCK_EXIT(as, &as->a_lock);
2038 		}
2039 
2040 		if ((error = core_write(vp, UIO_SYSSPACE, soffset,
2041 		    &bigwad->shdr[0], shdrsz, rlimit, credp)) != 0)
2042 			goto done;
2043 	}
2044 
2045 done:
2046 	kmem_free(bigwad, bigsize);
2047 	return (error);
2048 }
2049 
2050 #ifndef	_ELF32_COMPAT
2051 
2052 static struct execsw esw = {
2053 #ifdef	_LP64
2054 	elf64magicstr,
2055 #else	/* _LP64 */
2056 	elf32magicstr,
2057 #endif	/* _LP64 */
2058 	0,
2059 	5,
2060 	elfexec,
2061 	elfcore
2062 };
2063 
2064 static struct modlexec modlexec = {
2065 	&mod_execops, "exec module for elf", &esw
2066 };
2067 
2068 #ifdef	_LP64
2069 extern int elf32exec(vnode_t *vp, execa_t *uap, uarg_t *args,
2070 			intpdata_t *idatap, int level, long *execsz,
2071 			int setid, caddr_t exec_file, cred_t *cred,
2072 			int brand_action);
2073 extern int elf32core(vnode_t *vp, proc_t *p, cred_t *credp,
2074 			rlim64_t rlimit, int sig, core_content_t content);
2075 
2076 static struct execsw esw32 = {
2077 	elf32magicstr,
2078 	0,
2079 	5,
2080 	elf32exec,
2081 	elf32core
2082 };
2083 
2084 static struct modlexec modlexec32 = {
2085 	&mod_execops, "32-bit exec module for elf", &esw32
2086 };
2087 #endif	/* _LP64 */
2088 
2089 static struct modlinkage modlinkage = {
2090 	MODREV_1,
2091 	(void *)&modlexec,
2092 #ifdef	_LP64
2093 	(void *)&modlexec32,
2094 #endif	/* _LP64 */
2095 	NULL
2096 };
2097 
2098 int
2099 _init(void)
2100 {
2101 	return (mod_install(&modlinkage));
2102 }
2103 
2104 int
2105 _fini(void)
2106 {
2107 	return (mod_remove(&modlinkage));
2108 }
2109 
2110 int
2111 _info(struct modinfo *modinfop)
2112 {
2113 	return (mod_info(&modlinkage, modinfop));
2114 }
2115 
2116 #endif	/* !_ELF32_COMPAT */
2117