1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2013, Joyent, Inc. All rights reserved. 25 * Copyright (c) 2012 by Delphix. All rights reserved. 26 */ 27 28 /* 29 * DTrace - Dynamic Tracing for Solaris 30 * 31 * This is the implementation of the Solaris Dynamic Tracing framework 32 * (DTrace). The user-visible interface to DTrace is described at length in 33 * the "Solaris Dynamic Tracing Guide". The interfaces between the libdtrace 34 * library, the in-kernel DTrace framework, and the DTrace providers are 35 * described in the block comments in the <sys/dtrace.h> header file. The 36 * internal architecture of DTrace is described in the block comments in the 37 * <sys/dtrace_impl.h> header file. The comments contained within the DTrace 38 * implementation very much assume mastery of all of these sources; if one has 39 * an unanswered question about the implementation, one should consult them 40 * first. 41 * 42 * The functions here are ordered roughly as follows: 43 * 44 * - Probe context functions 45 * - Probe hashing functions 46 * - Non-probe context utility functions 47 * - Matching functions 48 * - Provider-to-Framework API functions 49 * - Probe management functions 50 * - DIF object functions 51 * - Format functions 52 * - Predicate functions 53 * - ECB functions 54 * - Buffer functions 55 * - Enabling functions 56 * - DOF functions 57 * - Anonymous enabling functions 58 * - Consumer state functions 59 * - Helper functions 60 * - Hook functions 61 * - Driver cookbook functions 62 * 63 * Each group of functions begins with a block comment labelled the "DTrace 64 * [Group] Functions", allowing one to find each block by searching forward 65 * on capital-f functions. 66 */ 67 #include <sys/errno.h> 68 #include <sys/stat.h> 69 #include <sys/modctl.h> 70 #include <sys/conf.h> 71 #include <sys/systm.h> 72 #include <sys/ddi.h> 73 #include <sys/sunddi.h> 74 #include <sys/cpuvar.h> 75 #include <sys/kmem.h> 76 #include <sys/strsubr.h> 77 #include <sys/sysmacros.h> 78 #include <sys/dtrace_impl.h> 79 #include <sys/atomic.h> 80 #include <sys/cmn_err.h> 81 #include <sys/mutex_impl.h> 82 #include <sys/rwlock_impl.h> 83 #include <sys/ctf_api.h> 84 #include <sys/panic.h> 85 #include <sys/priv_impl.h> 86 #include <sys/policy.h> 87 #include <sys/cred_impl.h> 88 #include <sys/procfs_isa.h> 89 #include <sys/taskq.h> 90 #include <sys/mkdev.h> 91 #include <sys/kdi.h> 92 #include <sys/zone.h> 93 #include <sys/socket.h> 94 #include <netinet/in.h> 95 #include "strtolctype.h" 96 97 /* 98 * DTrace Tunable Variables 99 * 100 * The following variables may be tuned by adding a line to /etc/system that 101 * includes both the name of the DTrace module ("dtrace") and the name of the 102 * variable. For example: 103 * 104 * set dtrace:dtrace_destructive_disallow = 1 105 * 106 * In general, the only variables that one should be tuning this way are those 107 * that affect system-wide DTrace behavior, and for which the default behavior 108 * is undesirable. Most of these variables are tunable on a per-consumer 109 * basis using DTrace options, and need not be tuned on a system-wide basis. 110 * When tuning these variables, avoid pathological values; while some attempt 111 * is made to verify the integrity of these variables, they are not considered 112 * part of the supported interface to DTrace, and they are therefore not 113 * checked comprehensively. Further, these variables should not be tuned 114 * dynamically via "mdb -kw" or other means; they should only be tuned via 115 * /etc/system. 116 */ 117 int dtrace_destructive_disallow = 0; 118 dtrace_optval_t dtrace_nonroot_maxsize = (16 * 1024 * 1024); 119 size_t dtrace_difo_maxsize = (256 * 1024); 120 dtrace_optval_t dtrace_dof_maxsize = (256 * 1024); 121 size_t dtrace_global_maxsize = (16 * 1024); 122 size_t dtrace_actions_max = (16 * 1024); 123 size_t dtrace_retain_max = 1024; 124 dtrace_optval_t dtrace_helper_actions_max = 1024; 125 dtrace_optval_t dtrace_helper_providers_max = 32; 126 dtrace_optval_t dtrace_dstate_defsize = (1 * 1024 * 1024); 127 size_t dtrace_strsize_default = 256; 128 dtrace_optval_t dtrace_cleanrate_default = 9900990; /* 101 hz */ 129 dtrace_optval_t dtrace_cleanrate_min = 200000; /* 5000 hz */ 130 dtrace_optval_t dtrace_cleanrate_max = (uint64_t)60 * NANOSEC; /* 1/minute */ 131 dtrace_optval_t dtrace_aggrate_default = NANOSEC; /* 1 hz */ 132 dtrace_optval_t dtrace_statusrate_default = NANOSEC; /* 1 hz */ 133 dtrace_optval_t dtrace_statusrate_max = (hrtime_t)10 * NANOSEC; /* 6/minute */ 134 dtrace_optval_t dtrace_switchrate_default = NANOSEC; /* 1 hz */ 135 dtrace_optval_t dtrace_nspec_default = 1; 136 dtrace_optval_t dtrace_specsize_default = 32 * 1024; 137 dtrace_optval_t dtrace_stackframes_default = 20; 138 dtrace_optval_t dtrace_ustackframes_default = 20; 139 dtrace_optval_t dtrace_jstackframes_default = 50; 140 dtrace_optval_t dtrace_jstackstrsize_default = 512; 141 int dtrace_msgdsize_max = 128; 142 hrtime_t dtrace_chill_max = 500 * (NANOSEC / MILLISEC); /* 500 ms */ 143 hrtime_t dtrace_chill_interval = NANOSEC; /* 1000 ms */ 144 int dtrace_devdepth_max = 32; 145 int dtrace_err_verbose; 146 hrtime_t dtrace_deadman_interval = NANOSEC; 147 hrtime_t dtrace_deadman_timeout = (hrtime_t)10 * NANOSEC; 148 hrtime_t dtrace_deadman_user = (hrtime_t)30 * NANOSEC; 149 hrtime_t dtrace_unregister_defunct_reap = (hrtime_t)60 * NANOSEC; 150 151 /* 152 * DTrace External Variables 153 * 154 * As dtrace(7D) is a kernel module, any DTrace variables are obviously 155 * available to DTrace consumers via the backtick (`) syntax. One of these, 156 * dtrace_zero, is made deliberately so: it is provided as a source of 157 * well-known, zero-filled memory. While this variable is not documented, 158 * it is used by some translators as an implementation detail. 159 */ 160 const char dtrace_zero[256] = { 0 }; /* zero-filled memory */ 161 162 /* 163 * DTrace Internal Variables 164 */ 165 static dev_info_t *dtrace_devi; /* device info */ 166 static vmem_t *dtrace_arena; /* probe ID arena */ 167 static vmem_t *dtrace_minor; /* minor number arena */ 168 static taskq_t *dtrace_taskq; /* task queue */ 169 static dtrace_probe_t **dtrace_probes; /* array of all probes */ 170 static int dtrace_nprobes; /* number of probes */ 171 static dtrace_provider_t *dtrace_provider; /* provider list */ 172 static dtrace_meta_t *dtrace_meta_pid; /* user-land meta provider */ 173 static int dtrace_opens; /* number of opens */ 174 static int dtrace_helpers; /* number of helpers */ 175 static int dtrace_getf; /* number of unpriv getf()s */ 176 static void *dtrace_softstate; /* softstate pointer */ 177 static dtrace_hash_t *dtrace_bymod; /* probes hashed by module */ 178 static dtrace_hash_t *dtrace_byfunc; /* probes hashed by function */ 179 static dtrace_hash_t *dtrace_byname; /* probes hashed by name */ 180 static dtrace_toxrange_t *dtrace_toxrange; /* toxic range array */ 181 static int dtrace_toxranges; /* number of toxic ranges */ 182 static int dtrace_toxranges_max; /* size of toxic range array */ 183 static dtrace_anon_t dtrace_anon; /* anonymous enabling */ 184 static kmem_cache_t *dtrace_state_cache; /* cache for dynamic state */ 185 static uint64_t dtrace_vtime_references; /* number of vtimestamp refs */ 186 static kthread_t *dtrace_panicked; /* panicking thread */ 187 static dtrace_ecb_t *dtrace_ecb_create_cache; /* cached created ECB */ 188 static dtrace_genid_t dtrace_probegen; /* current probe generation */ 189 static dtrace_helpers_t *dtrace_deferred_pid; /* deferred helper list */ 190 static dtrace_enabling_t *dtrace_retained; /* list of retained enablings */ 191 static dtrace_genid_t dtrace_retained_gen; /* current retained enab gen */ 192 static dtrace_dynvar_t dtrace_dynhash_sink; /* end of dynamic hash chains */ 193 static int dtrace_dynvar_failclean; /* dynvars failed to clean */ 194 195 /* 196 * DTrace Locking 197 * DTrace is protected by three (relatively coarse-grained) locks: 198 * 199 * (1) dtrace_lock is required to manipulate essentially any DTrace state, 200 * including enabling state, probes, ECBs, consumer state, helper state, 201 * etc. Importantly, dtrace_lock is _not_ required when in probe context; 202 * probe context is lock-free -- synchronization is handled via the 203 * dtrace_sync() cross call mechanism. 204 * 205 * (2) dtrace_provider_lock is required when manipulating provider state, or 206 * when provider state must be held constant. 207 * 208 * (3) dtrace_meta_lock is required when manipulating meta provider state, or 209 * when meta provider state must be held constant. 210 * 211 * The lock ordering between these three locks is dtrace_meta_lock before 212 * dtrace_provider_lock before dtrace_lock. (In particular, there are 213 * several places where dtrace_provider_lock is held by the framework as it 214 * calls into the providers -- which then call back into the framework, 215 * grabbing dtrace_lock.) 216 * 217 * There are two other locks in the mix: mod_lock and cpu_lock. With respect 218 * to dtrace_provider_lock and dtrace_lock, cpu_lock continues its historical 219 * role as a coarse-grained lock; it is acquired before both of these locks. 220 * With respect to dtrace_meta_lock, its behavior is stranger: cpu_lock must 221 * be acquired _between_ dtrace_meta_lock and any other DTrace locks. 222 * mod_lock is similar with respect to dtrace_provider_lock in that it must be 223 * acquired _between_ dtrace_provider_lock and dtrace_lock. 224 */ 225 static kmutex_t dtrace_lock; /* probe state lock */ 226 static kmutex_t dtrace_provider_lock; /* provider state lock */ 227 static kmutex_t dtrace_meta_lock; /* meta-provider state lock */ 228 229 /* 230 * DTrace Provider Variables 231 * 232 * These are the variables relating to DTrace as a provider (that is, the 233 * provider of the BEGIN, END, and ERROR probes). 234 */ 235 static dtrace_pattr_t dtrace_provider_attr = { 236 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON }, 237 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN }, 238 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN }, 239 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON }, 240 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON }, 241 }; 242 243 static void 244 dtrace_nullop(void) 245 {} 246 247 static int 248 dtrace_enable_nullop(void) 249 { 250 return (0); 251 } 252 253 static dtrace_pops_t dtrace_provider_ops = { 254 (void (*)(void *, const dtrace_probedesc_t *))dtrace_nullop, 255 (void (*)(void *, struct modctl *))dtrace_nullop, 256 (int (*)(void *, dtrace_id_t, void *))dtrace_enable_nullop, 257 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop, 258 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop, 259 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop, 260 NULL, 261 NULL, 262 NULL, 263 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop 264 }; 265 266 static dtrace_id_t dtrace_probeid_begin; /* special BEGIN probe */ 267 static dtrace_id_t dtrace_probeid_end; /* special END probe */ 268 dtrace_id_t dtrace_probeid_error; /* special ERROR probe */ 269 270 /* 271 * DTrace Helper Tracing Variables 272 */ 273 uint32_t dtrace_helptrace_next = 0; 274 uint32_t dtrace_helptrace_nlocals; 275 char *dtrace_helptrace_buffer; 276 int dtrace_helptrace_bufsize = 512 * 1024; 277 278 #ifdef DEBUG 279 int dtrace_helptrace_enabled = 1; 280 #else 281 int dtrace_helptrace_enabled = 0; 282 #endif 283 284 /* 285 * DTrace Error Hashing 286 * 287 * On DEBUG kernels, DTrace will track the errors that has seen in a hash 288 * table. This is very useful for checking coverage of tests that are 289 * expected to induce DIF or DOF processing errors, and may be useful for 290 * debugging problems in the DIF code generator or in DOF generation . The 291 * error hash may be examined with the ::dtrace_errhash MDB dcmd. 292 */ 293 #ifdef DEBUG 294 static dtrace_errhash_t dtrace_errhash[DTRACE_ERRHASHSZ]; 295 static const char *dtrace_errlast; 296 static kthread_t *dtrace_errthread; 297 static kmutex_t dtrace_errlock; 298 #endif 299 300 /* 301 * DTrace Macros and Constants 302 * 303 * These are various macros that are useful in various spots in the 304 * implementation, along with a few random constants that have no meaning 305 * outside of the implementation. There is no real structure to this cpp 306 * mishmash -- but is there ever? 307 */ 308 #define DTRACE_HASHSTR(hash, probe) \ 309 dtrace_hash_str(*((char **)((uintptr_t)(probe) + (hash)->dth_stroffs))) 310 311 #define DTRACE_HASHNEXT(hash, probe) \ 312 (dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_nextoffs) 313 314 #define DTRACE_HASHPREV(hash, probe) \ 315 (dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_prevoffs) 316 317 #define DTRACE_HASHEQ(hash, lhs, rhs) \ 318 (strcmp(*((char **)((uintptr_t)(lhs) + (hash)->dth_stroffs)), \ 319 *((char **)((uintptr_t)(rhs) + (hash)->dth_stroffs))) == 0) 320 321 #define DTRACE_AGGHASHSIZE_SLEW 17 322 323 #define DTRACE_V4MAPPED_OFFSET (sizeof (uint32_t) * 3) 324 325 /* 326 * The key for a thread-local variable consists of the lower 61 bits of the 327 * t_did, plus the 3 bits of the highest active interrupt above LOCK_LEVEL. 328 * We add DIF_VARIABLE_MAX to t_did to assure that the thread key is never 329 * equal to a variable identifier. This is necessary (but not sufficient) to 330 * assure that global associative arrays never collide with thread-local 331 * variables. To guarantee that they cannot collide, we must also define the 332 * order for keying dynamic variables. That order is: 333 * 334 * [ key0 ] ... [ keyn ] [ variable-key ] [ tls-key ] 335 * 336 * Because the variable-key and the tls-key are in orthogonal spaces, there is 337 * no way for a global variable key signature to match a thread-local key 338 * signature. 339 */ 340 #define DTRACE_TLS_THRKEY(where) { \ 341 uint_t intr = 0; \ 342 uint_t actv = CPU->cpu_intr_actv >> (LOCK_LEVEL + 1); \ 343 for (; actv; actv >>= 1) \ 344 intr++; \ 345 ASSERT(intr < (1 << 3)); \ 346 (where) = ((curthread->t_did + DIF_VARIABLE_MAX) & \ 347 (((uint64_t)1 << 61) - 1)) | ((uint64_t)intr << 61); \ 348 } 349 350 #define DT_BSWAP_8(x) ((x) & 0xff) 351 #define DT_BSWAP_16(x) ((DT_BSWAP_8(x) << 8) | DT_BSWAP_8((x) >> 8)) 352 #define DT_BSWAP_32(x) ((DT_BSWAP_16(x) << 16) | DT_BSWAP_16((x) >> 16)) 353 #define DT_BSWAP_64(x) ((DT_BSWAP_32(x) << 32) | DT_BSWAP_32((x) >> 32)) 354 355 #define DT_MASK_LO 0x00000000FFFFFFFFULL 356 357 #define DTRACE_STORE(type, tomax, offset, what) \ 358 *((type *)((uintptr_t)(tomax) + (uintptr_t)offset)) = (type)(what); 359 360 #ifndef __x86 361 #define DTRACE_ALIGNCHECK(addr, size, flags) \ 362 if (addr & (size - 1)) { \ 363 *flags |= CPU_DTRACE_BADALIGN; \ 364 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = addr; \ 365 return (0); \ 366 } 367 #else 368 #define DTRACE_ALIGNCHECK(addr, size, flags) 369 #endif 370 371 /* 372 * Test whether a range of memory starting at testaddr of size testsz falls 373 * within the range of memory described by addr, sz. We take care to avoid 374 * problems with overflow and underflow of the unsigned quantities, and 375 * disallow all negative sizes. Ranges of size 0 are allowed. 376 */ 377 #define DTRACE_INRANGE(testaddr, testsz, baseaddr, basesz) \ 378 ((testaddr) - (uintptr_t)(baseaddr) < (basesz) && \ 379 (testaddr) + (testsz) - (uintptr_t)(baseaddr) <= (basesz) && \ 380 (testaddr) + (testsz) >= (testaddr)) 381 382 /* 383 * Test whether alloc_sz bytes will fit in the scratch region. We isolate 384 * alloc_sz on the righthand side of the comparison in order to avoid overflow 385 * or underflow in the comparison with it. This is simpler than the INRANGE 386 * check above, because we know that the dtms_scratch_ptr is valid in the 387 * range. Allocations of size zero are allowed. 388 */ 389 #define DTRACE_INSCRATCH(mstate, alloc_sz) \ 390 ((mstate)->dtms_scratch_base + (mstate)->dtms_scratch_size - \ 391 (mstate)->dtms_scratch_ptr >= (alloc_sz)) 392 393 #define DTRACE_LOADFUNC(bits) \ 394 /*CSTYLED*/ \ 395 uint##bits##_t \ 396 dtrace_load##bits(uintptr_t addr) \ 397 { \ 398 size_t size = bits / NBBY; \ 399 /*CSTYLED*/ \ 400 uint##bits##_t rval; \ 401 int i; \ 402 volatile uint16_t *flags = (volatile uint16_t *) \ 403 &cpu_core[CPU->cpu_id].cpuc_dtrace_flags; \ 404 \ 405 DTRACE_ALIGNCHECK(addr, size, flags); \ 406 \ 407 for (i = 0; i < dtrace_toxranges; i++) { \ 408 if (addr >= dtrace_toxrange[i].dtt_limit) \ 409 continue; \ 410 \ 411 if (addr + size <= dtrace_toxrange[i].dtt_base) \ 412 continue; \ 413 \ 414 /* \ 415 * This address falls within a toxic region; return 0. \ 416 */ \ 417 *flags |= CPU_DTRACE_BADADDR; \ 418 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = addr; \ 419 return (0); \ 420 } \ 421 \ 422 *flags |= CPU_DTRACE_NOFAULT; \ 423 /*CSTYLED*/ \ 424 rval = *((volatile uint##bits##_t *)addr); \ 425 *flags &= ~CPU_DTRACE_NOFAULT; \ 426 \ 427 return (!(*flags & CPU_DTRACE_FAULT) ? rval : 0); \ 428 } 429 430 #ifdef _LP64 431 #define dtrace_loadptr dtrace_load64 432 #else 433 #define dtrace_loadptr dtrace_load32 434 #endif 435 436 #define DTRACE_DYNHASH_FREE 0 437 #define DTRACE_DYNHASH_SINK 1 438 #define DTRACE_DYNHASH_VALID 2 439 440 #define DTRACE_MATCH_FAIL -1 441 #define DTRACE_MATCH_NEXT 0 442 #define DTRACE_MATCH_DONE 1 443 #define DTRACE_ANCHORED(probe) ((probe)->dtpr_func[0] != '\0') 444 #define DTRACE_STATE_ALIGN 64 445 446 #define DTRACE_FLAGS2FLT(flags) \ 447 (((flags) & CPU_DTRACE_BADADDR) ? DTRACEFLT_BADADDR : \ 448 ((flags) & CPU_DTRACE_ILLOP) ? DTRACEFLT_ILLOP : \ 449 ((flags) & CPU_DTRACE_DIVZERO) ? DTRACEFLT_DIVZERO : \ 450 ((flags) & CPU_DTRACE_KPRIV) ? DTRACEFLT_KPRIV : \ 451 ((flags) & CPU_DTRACE_UPRIV) ? DTRACEFLT_UPRIV : \ 452 ((flags) & CPU_DTRACE_TUPOFLOW) ? DTRACEFLT_TUPOFLOW : \ 453 ((flags) & CPU_DTRACE_BADALIGN) ? DTRACEFLT_BADALIGN : \ 454 ((flags) & CPU_DTRACE_NOSCRATCH) ? DTRACEFLT_NOSCRATCH : \ 455 ((flags) & CPU_DTRACE_BADSTACK) ? DTRACEFLT_BADSTACK : \ 456 DTRACEFLT_UNKNOWN) 457 458 #define DTRACEACT_ISSTRING(act) \ 459 ((act)->dta_kind == DTRACEACT_DIFEXPR && \ 460 (act)->dta_difo->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) 461 462 static size_t dtrace_strlen(const char *, size_t); 463 static dtrace_probe_t *dtrace_probe_lookup_id(dtrace_id_t id); 464 static void dtrace_enabling_provide(dtrace_provider_t *); 465 static int dtrace_enabling_match(dtrace_enabling_t *, int *); 466 static void dtrace_enabling_matchall(void); 467 static void dtrace_enabling_reap(void); 468 static dtrace_state_t *dtrace_anon_grab(void); 469 static uint64_t dtrace_helper(int, dtrace_mstate_t *, 470 dtrace_state_t *, uint64_t, uint64_t); 471 static dtrace_helpers_t *dtrace_helpers_create(proc_t *); 472 static void dtrace_buffer_drop(dtrace_buffer_t *); 473 static int dtrace_buffer_consumed(dtrace_buffer_t *, hrtime_t when); 474 static intptr_t dtrace_buffer_reserve(dtrace_buffer_t *, size_t, size_t, 475 dtrace_state_t *, dtrace_mstate_t *); 476 static int dtrace_state_option(dtrace_state_t *, dtrace_optid_t, 477 dtrace_optval_t); 478 static int dtrace_ecb_create_enable(dtrace_probe_t *, void *); 479 static void dtrace_helper_provider_destroy(dtrace_helper_provider_t *); 480 static int dtrace_priv_proc(dtrace_state_t *, dtrace_mstate_t *); 481 static void dtrace_getf_barrier(void); 482 483 /* 484 * DTrace Probe Context Functions 485 * 486 * These functions are called from probe context. Because probe context is 487 * any context in which C may be called, arbitrarily locks may be held, 488 * interrupts may be disabled, we may be in arbitrary dispatched state, etc. 489 * As a result, functions called from probe context may only call other DTrace 490 * support functions -- they may not interact at all with the system at large. 491 * (Note that the ASSERT macro is made probe-context safe by redefining it in 492 * terms of dtrace_assfail(), a probe-context safe function.) If arbitrary 493 * loads are to be performed from probe context, they _must_ be in terms of 494 * the safe dtrace_load*() variants. 495 * 496 * Some functions in this block are not actually called from probe context; 497 * for these functions, there will be a comment above the function reading 498 * "Note: not called from probe context." 499 */ 500 void 501 dtrace_panic(const char *format, ...) 502 { 503 va_list alist; 504 505 va_start(alist, format); 506 dtrace_vpanic(format, alist); 507 va_end(alist); 508 } 509 510 int 511 dtrace_assfail(const char *a, const char *f, int l) 512 { 513 dtrace_panic("assertion failed: %s, file: %s, line: %d", a, f, l); 514 515 /* 516 * We just need something here that even the most clever compiler 517 * cannot optimize away. 518 */ 519 return (a[(uintptr_t)f]); 520 } 521 522 /* 523 * Atomically increment a specified error counter from probe context. 524 */ 525 static void 526 dtrace_error(uint32_t *counter) 527 { 528 /* 529 * Most counters stored to in probe context are per-CPU counters. 530 * However, there are some error conditions that are sufficiently 531 * arcane that they don't merit per-CPU storage. If these counters 532 * are incremented concurrently on different CPUs, scalability will be 533 * adversely affected -- but we don't expect them to be white-hot in a 534 * correctly constructed enabling... 535 */ 536 uint32_t oval, nval; 537 538 do { 539 oval = *counter; 540 541 if ((nval = oval + 1) == 0) { 542 /* 543 * If the counter would wrap, set it to 1 -- assuring 544 * that the counter is never zero when we have seen 545 * errors. (The counter must be 32-bits because we 546 * aren't guaranteed a 64-bit compare&swap operation.) 547 * To save this code both the infamy of being fingered 548 * by a priggish news story and the indignity of being 549 * the target of a neo-puritan witch trial, we're 550 * carefully avoiding any colorful description of the 551 * likelihood of this condition -- but suffice it to 552 * say that it is only slightly more likely than the 553 * overflow of predicate cache IDs, as discussed in 554 * dtrace_predicate_create(). 555 */ 556 nval = 1; 557 } 558 } while (dtrace_cas32(counter, oval, nval) != oval); 559 } 560 561 /* 562 * Use the DTRACE_LOADFUNC macro to define functions for each of loading a 563 * uint8_t, a uint16_t, a uint32_t and a uint64_t. 564 */ 565 DTRACE_LOADFUNC(8) 566 DTRACE_LOADFUNC(16) 567 DTRACE_LOADFUNC(32) 568 DTRACE_LOADFUNC(64) 569 570 static int 571 dtrace_inscratch(uintptr_t dest, size_t size, dtrace_mstate_t *mstate) 572 { 573 if (dest < mstate->dtms_scratch_base) 574 return (0); 575 576 if (dest + size < dest) 577 return (0); 578 579 if (dest + size > mstate->dtms_scratch_ptr) 580 return (0); 581 582 return (1); 583 } 584 585 static int 586 dtrace_canstore_statvar(uint64_t addr, size_t sz, 587 dtrace_statvar_t **svars, int nsvars) 588 { 589 int i; 590 591 for (i = 0; i < nsvars; i++) { 592 dtrace_statvar_t *svar = svars[i]; 593 594 if (svar == NULL || svar->dtsv_size == 0) 595 continue; 596 597 if (DTRACE_INRANGE(addr, sz, svar->dtsv_data, svar->dtsv_size)) 598 return (1); 599 } 600 601 return (0); 602 } 603 604 /* 605 * Check to see if the address is within a memory region to which a store may 606 * be issued. This includes the DTrace scratch areas, and any DTrace variable 607 * region. The caller of dtrace_canstore() is responsible for performing any 608 * alignment checks that are needed before stores are actually executed. 609 */ 610 static int 611 dtrace_canstore(uint64_t addr, size_t sz, dtrace_mstate_t *mstate, 612 dtrace_vstate_t *vstate) 613 { 614 /* 615 * First, check to see if the address is in scratch space... 616 */ 617 if (DTRACE_INRANGE(addr, sz, mstate->dtms_scratch_base, 618 mstate->dtms_scratch_size)) 619 return (1); 620 621 /* 622 * Now check to see if it's a dynamic variable. This check will pick 623 * up both thread-local variables and any global dynamically-allocated 624 * variables. 625 */ 626 if (DTRACE_INRANGE(addr, sz, vstate->dtvs_dynvars.dtds_base, 627 vstate->dtvs_dynvars.dtds_size)) { 628 dtrace_dstate_t *dstate = &vstate->dtvs_dynvars; 629 uintptr_t base = (uintptr_t)dstate->dtds_base + 630 (dstate->dtds_hashsize * sizeof (dtrace_dynhash_t)); 631 uintptr_t chunkoffs; 632 633 /* 634 * Before we assume that we can store here, we need to make 635 * sure that it isn't in our metadata -- storing to our 636 * dynamic variable metadata would corrupt our state. For 637 * the range to not include any dynamic variable metadata, 638 * it must: 639 * 640 * (1) Start above the hash table that is at the base of 641 * the dynamic variable space 642 * 643 * (2) Have a starting chunk offset that is beyond the 644 * dtrace_dynvar_t that is at the base of every chunk 645 * 646 * (3) Not span a chunk boundary 647 * 648 */ 649 if (addr < base) 650 return (0); 651 652 chunkoffs = (addr - base) % dstate->dtds_chunksize; 653 654 if (chunkoffs < sizeof (dtrace_dynvar_t)) 655 return (0); 656 657 if (chunkoffs + sz > dstate->dtds_chunksize) 658 return (0); 659 660 return (1); 661 } 662 663 /* 664 * Finally, check the static local and global variables. These checks 665 * take the longest, so we perform them last. 666 */ 667 if (dtrace_canstore_statvar(addr, sz, 668 vstate->dtvs_locals, vstate->dtvs_nlocals)) 669 return (1); 670 671 if (dtrace_canstore_statvar(addr, sz, 672 vstate->dtvs_globals, vstate->dtvs_nglobals)) 673 return (1); 674 675 return (0); 676 } 677 678 679 /* 680 * Convenience routine to check to see if the address is within a memory 681 * region in which a load may be issued given the user's privilege level; 682 * if not, it sets the appropriate error flags and loads 'addr' into the 683 * illegal value slot. 684 * 685 * DTrace subroutines (DIF_SUBR_*) should use this helper to implement 686 * appropriate memory access protection. 687 */ 688 static int 689 dtrace_canload(uint64_t addr, size_t sz, dtrace_mstate_t *mstate, 690 dtrace_vstate_t *vstate) 691 { 692 volatile uintptr_t *illval = &cpu_core[CPU->cpu_id].cpuc_dtrace_illval; 693 file_t *fp; 694 695 /* 696 * If we hold the privilege to read from kernel memory, then 697 * everything is readable. 698 */ 699 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) 700 return (1); 701 702 /* 703 * You can obviously read that which you can store. 704 */ 705 if (dtrace_canstore(addr, sz, mstate, vstate)) 706 return (1); 707 708 /* 709 * We're allowed to read from our own string table. 710 */ 711 if (DTRACE_INRANGE(addr, sz, mstate->dtms_difo->dtdo_strtab, 712 mstate->dtms_difo->dtdo_strlen)) 713 return (1); 714 715 if (vstate->dtvs_state != NULL && 716 dtrace_priv_proc(vstate->dtvs_state, mstate)) { 717 proc_t *p; 718 719 /* 720 * When we have privileges to the current process, there are 721 * several context-related kernel structures that are safe to 722 * read, even absent the privilege to read from kernel memory. 723 * These reads are safe because these structures contain only 724 * state that (1) we're permitted to read, (2) is harmless or 725 * (3) contains pointers to additional kernel state that we're 726 * not permitted to read (and as such, do not present an 727 * opportunity for privilege escalation). Finally (and 728 * critically), because of the nature of their relation with 729 * the current thread context, the memory associated with these 730 * structures cannot change over the duration of probe context, 731 * and it is therefore impossible for this memory to be 732 * deallocated and reallocated as something else while it's 733 * being operated upon. 734 */ 735 if (DTRACE_INRANGE(addr, sz, curthread, sizeof (kthread_t))) 736 return (1); 737 738 if ((p = curthread->t_procp) != NULL && DTRACE_INRANGE(addr, 739 sz, curthread->t_procp, sizeof (proc_t))) { 740 return (1); 741 } 742 743 if (curthread->t_cred != NULL && DTRACE_INRANGE(addr, sz, 744 curthread->t_cred, sizeof (cred_t))) { 745 return (1); 746 } 747 748 if (p != NULL && p->p_pidp != NULL && DTRACE_INRANGE(addr, sz, 749 &(p->p_pidp->pid_id), sizeof (pid_t))) { 750 return (1); 751 } 752 753 if (curthread->t_cpu != NULL && DTRACE_INRANGE(addr, sz, 754 curthread->t_cpu, offsetof(cpu_t, cpu_pause_thread))) { 755 return (1); 756 } 757 } 758 759 if ((fp = mstate->dtms_getf) != NULL) { 760 uintptr_t psz = sizeof (void *); 761 vnode_t *vp; 762 vnodeops_t *op; 763 764 /* 765 * When getf() returns a file_t, the enabling is implicitly 766 * granted the (transient) right to read the returned file_t 767 * as well as the v_path and v_op->vnop_name of the underlying 768 * vnode. These accesses are allowed after a successful 769 * getf() because the members that they refer to cannot change 770 * once set -- and the barrier logic in the kernel's closef() 771 * path assures that the file_t and its referenced vode_t 772 * cannot themselves be stale (that is, it impossible for 773 * either dtms_getf itself or its f_vnode member to reference 774 * freed memory). 775 */ 776 if (DTRACE_INRANGE(addr, sz, fp, sizeof (file_t))) 777 return (1); 778 779 if ((vp = fp->f_vnode) != NULL) { 780 if (DTRACE_INRANGE(addr, sz, &vp->v_path, psz)) 781 return (1); 782 783 if (vp->v_path != NULL && DTRACE_INRANGE(addr, sz, 784 vp->v_path, strlen(vp->v_path) + 1)) { 785 return (1); 786 } 787 788 if (DTRACE_INRANGE(addr, sz, &vp->v_op, psz)) 789 return (1); 790 791 if ((op = vp->v_op) != NULL && 792 DTRACE_INRANGE(addr, sz, &op->vnop_name, psz)) { 793 return (1); 794 } 795 796 if (op != NULL && op->vnop_name != NULL && 797 DTRACE_INRANGE(addr, sz, op->vnop_name, 798 strlen(op->vnop_name) + 1)) { 799 return (1); 800 } 801 } 802 } 803 804 DTRACE_CPUFLAG_SET(CPU_DTRACE_KPRIV); 805 *illval = addr; 806 return (0); 807 } 808 809 /* 810 * Convenience routine to check to see if a given string is within a memory 811 * region in which a load may be issued given the user's privilege level; 812 * this exists so that we don't need to issue unnecessary dtrace_strlen() 813 * calls in the event that the user has all privileges. 814 */ 815 static int 816 dtrace_strcanload(uint64_t addr, size_t sz, dtrace_mstate_t *mstate, 817 dtrace_vstate_t *vstate) 818 { 819 size_t strsz; 820 821 /* 822 * If we hold the privilege to read from kernel memory, then 823 * everything is readable. 824 */ 825 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) 826 return (1); 827 828 strsz = 1 + dtrace_strlen((char *)(uintptr_t)addr, sz); 829 if (dtrace_canload(addr, strsz, mstate, vstate)) 830 return (1); 831 832 return (0); 833 } 834 835 /* 836 * Convenience routine to check to see if a given variable is within a memory 837 * region in which a load may be issued given the user's privilege level. 838 */ 839 static int 840 dtrace_vcanload(void *src, dtrace_diftype_t *type, dtrace_mstate_t *mstate, 841 dtrace_vstate_t *vstate) 842 { 843 size_t sz; 844 ASSERT(type->dtdt_flags & DIF_TF_BYREF); 845 846 /* 847 * If we hold the privilege to read from kernel memory, then 848 * everything is readable. 849 */ 850 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) 851 return (1); 852 853 if (type->dtdt_kind == DIF_TYPE_STRING) 854 sz = dtrace_strlen(src, 855 vstate->dtvs_state->dts_options[DTRACEOPT_STRSIZE]) + 1; 856 else 857 sz = type->dtdt_size; 858 859 return (dtrace_canload((uintptr_t)src, sz, mstate, vstate)); 860 } 861 862 /* 863 * Convert a string to a signed integer using safe loads. 864 * 865 * NOTE: This function uses various macros from strtolctype.h to manipulate 866 * digit values, etc -- these have all been checked to ensure they make 867 * no additional function calls. 868 */ 869 static int64_t 870 dtrace_strtoll(char *input, int base, size_t limit) 871 { 872 uintptr_t pos = (uintptr_t)input; 873 int64_t val = 0; 874 int x; 875 boolean_t neg = B_FALSE; 876 char c, cc, ccc; 877 uintptr_t end = pos + limit; 878 879 /* 880 * Consume any whitespace preceding digits. 881 */ 882 while ((c = dtrace_load8(pos)) == ' ' || c == '\t') 883 pos++; 884 885 /* 886 * Handle an explicit sign if one is present. 887 */ 888 if (c == '-' || c == '+') { 889 if (c == '-') 890 neg = B_TRUE; 891 c = dtrace_load8(++pos); 892 } 893 894 /* 895 * Check for an explicit hexadecimal prefix ("0x" or "0X") and skip it 896 * if present. 897 */ 898 if (base == 16 && c == '0' && ((cc = dtrace_load8(pos + 1)) == 'x' || 899 cc == 'X') && isxdigit(ccc = dtrace_load8(pos + 2))) { 900 pos += 2; 901 c = ccc; 902 } 903 904 /* 905 * Read in contiguous digits until the first non-digit character. 906 */ 907 for (; pos < end && c != '\0' && lisalnum(c) && (x = DIGIT(c)) < base; 908 c = dtrace_load8(++pos)) 909 val = val * base + x; 910 911 return (neg ? -val : val); 912 } 913 914 /* 915 * Compare two strings using safe loads. 916 */ 917 static int 918 dtrace_strncmp(char *s1, char *s2, size_t limit) 919 { 920 uint8_t c1, c2; 921 volatile uint16_t *flags; 922 923 if (s1 == s2 || limit == 0) 924 return (0); 925 926 flags = (volatile uint16_t *)&cpu_core[CPU->cpu_id].cpuc_dtrace_flags; 927 928 do { 929 if (s1 == NULL) { 930 c1 = '\0'; 931 } else { 932 c1 = dtrace_load8((uintptr_t)s1++); 933 } 934 935 if (s2 == NULL) { 936 c2 = '\0'; 937 } else { 938 c2 = dtrace_load8((uintptr_t)s2++); 939 } 940 941 if (c1 != c2) 942 return (c1 - c2); 943 } while (--limit && c1 != '\0' && !(*flags & CPU_DTRACE_FAULT)); 944 945 return (0); 946 } 947 948 /* 949 * Compute strlen(s) for a string using safe memory accesses. The additional 950 * len parameter is used to specify a maximum length to ensure completion. 951 */ 952 static size_t 953 dtrace_strlen(const char *s, size_t lim) 954 { 955 uint_t len; 956 957 for (len = 0; len != lim; len++) { 958 if (dtrace_load8((uintptr_t)s++) == '\0') 959 break; 960 } 961 962 return (len); 963 } 964 965 /* 966 * Check if an address falls within a toxic region. 967 */ 968 static int 969 dtrace_istoxic(uintptr_t kaddr, size_t size) 970 { 971 uintptr_t taddr, tsize; 972 int i; 973 974 for (i = 0; i < dtrace_toxranges; i++) { 975 taddr = dtrace_toxrange[i].dtt_base; 976 tsize = dtrace_toxrange[i].dtt_limit - taddr; 977 978 if (kaddr - taddr < tsize) { 979 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); 980 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = kaddr; 981 return (1); 982 } 983 984 if (taddr - kaddr < size) { 985 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); 986 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = taddr; 987 return (1); 988 } 989 } 990 991 return (0); 992 } 993 994 /* 995 * Copy src to dst using safe memory accesses. The src is assumed to be unsafe 996 * memory specified by the DIF program. The dst is assumed to be safe memory 997 * that we can store to directly because it is managed by DTrace. As with 998 * standard bcopy, overlapping copies are handled properly. 999 */ 1000 static void 1001 dtrace_bcopy(const void *src, void *dst, size_t len) 1002 { 1003 if (len != 0) { 1004 uint8_t *s1 = dst; 1005 const uint8_t *s2 = src; 1006 1007 if (s1 <= s2) { 1008 do { 1009 *s1++ = dtrace_load8((uintptr_t)s2++); 1010 } while (--len != 0); 1011 } else { 1012 s2 += len; 1013 s1 += len; 1014 1015 do { 1016 *--s1 = dtrace_load8((uintptr_t)--s2); 1017 } while (--len != 0); 1018 } 1019 } 1020 } 1021 1022 /* 1023 * Copy src to dst using safe memory accesses, up to either the specified 1024 * length, or the point that a nul byte is encountered. The src is assumed to 1025 * be unsafe memory specified by the DIF program. The dst is assumed to be 1026 * safe memory that we can store to directly because it is managed by DTrace. 1027 * Unlike dtrace_bcopy(), overlapping regions are not handled. 1028 */ 1029 static void 1030 dtrace_strcpy(const void *src, void *dst, size_t len) 1031 { 1032 if (len != 0) { 1033 uint8_t *s1 = dst, c; 1034 const uint8_t *s2 = src; 1035 1036 do { 1037 *s1++ = c = dtrace_load8((uintptr_t)s2++); 1038 } while (--len != 0 && c != '\0'); 1039 } 1040 } 1041 1042 /* 1043 * Copy src to dst, deriving the size and type from the specified (BYREF) 1044 * variable type. The src is assumed to be unsafe memory specified by the DIF 1045 * program. The dst is assumed to be DTrace variable memory that is of the 1046 * specified type; we assume that we can store to directly. 1047 */ 1048 static void 1049 dtrace_vcopy(void *src, void *dst, dtrace_diftype_t *type) 1050 { 1051 ASSERT(type->dtdt_flags & DIF_TF_BYREF); 1052 1053 if (type->dtdt_kind == DIF_TYPE_STRING) { 1054 dtrace_strcpy(src, dst, type->dtdt_size); 1055 } else { 1056 dtrace_bcopy(src, dst, type->dtdt_size); 1057 } 1058 } 1059 1060 /* 1061 * Compare s1 to s2 using safe memory accesses. The s1 data is assumed to be 1062 * unsafe memory specified by the DIF program. The s2 data is assumed to be 1063 * safe memory that we can access directly because it is managed by DTrace. 1064 */ 1065 static int 1066 dtrace_bcmp(const void *s1, const void *s2, size_t len) 1067 { 1068 volatile uint16_t *flags; 1069 1070 flags = (volatile uint16_t *)&cpu_core[CPU->cpu_id].cpuc_dtrace_flags; 1071 1072 if (s1 == s2) 1073 return (0); 1074 1075 if (s1 == NULL || s2 == NULL) 1076 return (1); 1077 1078 if (s1 != s2 && len != 0) { 1079 const uint8_t *ps1 = s1; 1080 const uint8_t *ps2 = s2; 1081 1082 do { 1083 if (dtrace_load8((uintptr_t)ps1++) != *ps2++) 1084 return (1); 1085 } while (--len != 0 && !(*flags & CPU_DTRACE_FAULT)); 1086 } 1087 return (0); 1088 } 1089 1090 /* 1091 * Zero the specified region using a simple byte-by-byte loop. Note that this 1092 * is for safe DTrace-managed memory only. 1093 */ 1094 static void 1095 dtrace_bzero(void *dst, size_t len) 1096 { 1097 uchar_t *cp; 1098 1099 for (cp = dst; len != 0; len--) 1100 *cp++ = 0; 1101 } 1102 1103 static void 1104 dtrace_add_128(uint64_t *addend1, uint64_t *addend2, uint64_t *sum) 1105 { 1106 uint64_t result[2]; 1107 1108 result[0] = addend1[0] + addend2[0]; 1109 result[1] = addend1[1] + addend2[1] + 1110 (result[0] < addend1[0] || result[0] < addend2[0] ? 1 : 0); 1111 1112 sum[0] = result[0]; 1113 sum[1] = result[1]; 1114 } 1115 1116 /* 1117 * Shift the 128-bit value in a by b. If b is positive, shift left. 1118 * If b is negative, shift right. 1119 */ 1120 static void 1121 dtrace_shift_128(uint64_t *a, int b) 1122 { 1123 uint64_t mask; 1124 1125 if (b == 0) 1126 return; 1127 1128 if (b < 0) { 1129 b = -b; 1130 if (b >= 64) { 1131 a[0] = a[1] >> (b - 64); 1132 a[1] = 0; 1133 } else { 1134 a[0] >>= b; 1135 mask = 1LL << (64 - b); 1136 mask -= 1; 1137 a[0] |= ((a[1] & mask) << (64 - b)); 1138 a[1] >>= b; 1139 } 1140 } else { 1141 if (b >= 64) { 1142 a[1] = a[0] << (b - 64); 1143 a[0] = 0; 1144 } else { 1145 a[1] <<= b; 1146 mask = a[0] >> (64 - b); 1147 a[1] |= mask; 1148 a[0] <<= b; 1149 } 1150 } 1151 } 1152 1153 /* 1154 * The basic idea is to break the 2 64-bit values into 4 32-bit values, 1155 * use native multiplication on those, and then re-combine into the 1156 * resulting 128-bit value. 1157 * 1158 * (hi1 << 32 + lo1) * (hi2 << 32 + lo2) = 1159 * hi1 * hi2 << 64 + 1160 * hi1 * lo2 << 32 + 1161 * hi2 * lo1 << 32 + 1162 * lo1 * lo2 1163 */ 1164 static void 1165 dtrace_multiply_128(uint64_t factor1, uint64_t factor2, uint64_t *product) 1166 { 1167 uint64_t hi1, hi2, lo1, lo2; 1168 uint64_t tmp[2]; 1169 1170 hi1 = factor1 >> 32; 1171 hi2 = factor2 >> 32; 1172 1173 lo1 = factor1 & DT_MASK_LO; 1174 lo2 = factor2 & DT_MASK_LO; 1175 1176 product[0] = lo1 * lo2; 1177 product[1] = hi1 * hi2; 1178 1179 tmp[0] = hi1 * lo2; 1180 tmp[1] = 0; 1181 dtrace_shift_128(tmp, 32); 1182 dtrace_add_128(product, tmp, product); 1183 1184 tmp[0] = hi2 * lo1; 1185 tmp[1] = 0; 1186 dtrace_shift_128(tmp, 32); 1187 dtrace_add_128(product, tmp, product); 1188 } 1189 1190 /* 1191 * This privilege check should be used by actions and subroutines to 1192 * verify that the user credentials of the process that enabled the 1193 * invoking ECB match the target credentials 1194 */ 1195 static int 1196 dtrace_priv_proc_common_user(dtrace_state_t *state) 1197 { 1198 cred_t *cr, *s_cr = state->dts_cred.dcr_cred; 1199 1200 /* 1201 * We should always have a non-NULL state cred here, since if cred 1202 * is null (anonymous tracing), we fast-path bypass this routine. 1203 */ 1204 ASSERT(s_cr != NULL); 1205 1206 if ((cr = CRED()) != NULL && 1207 s_cr->cr_uid == cr->cr_uid && 1208 s_cr->cr_uid == cr->cr_ruid && 1209 s_cr->cr_uid == cr->cr_suid && 1210 s_cr->cr_gid == cr->cr_gid && 1211 s_cr->cr_gid == cr->cr_rgid && 1212 s_cr->cr_gid == cr->cr_sgid) 1213 return (1); 1214 1215 return (0); 1216 } 1217 1218 /* 1219 * This privilege check should be used by actions and subroutines to 1220 * verify that the zone of the process that enabled the invoking ECB 1221 * matches the target credentials 1222 */ 1223 static int 1224 dtrace_priv_proc_common_zone(dtrace_state_t *state) 1225 { 1226 cred_t *cr, *s_cr = state->dts_cred.dcr_cred; 1227 1228 /* 1229 * We should always have a non-NULL state cred here, since if cred 1230 * is null (anonymous tracing), we fast-path bypass this routine. 1231 */ 1232 ASSERT(s_cr != NULL); 1233 1234 if ((cr = CRED()) != NULL && s_cr->cr_zone == cr->cr_zone) 1235 return (1); 1236 1237 return (0); 1238 } 1239 1240 /* 1241 * This privilege check should be used by actions and subroutines to 1242 * verify that the process has not setuid or changed credentials. 1243 */ 1244 static int 1245 dtrace_priv_proc_common_nocd() 1246 { 1247 proc_t *proc; 1248 1249 if ((proc = ttoproc(curthread)) != NULL && 1250 !(proc->p_flag & SNOCD)) 1251 return (1); 1252 1253 return (0); 1254 } 1255 1256 static int 1257 dtrace_priv_proc_destructive(dtrace_state_t *state, dtrace_mstate_t *mstate) 1258 { 1259 int action = state->dts_cred.dcr_action; 1260 1261 if (!(mstate->dtms_access & DTRACE_ACCESS_PROC)) 1262 goto bad; 1263 1264 if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE) == 0) && 1265 dtrace_priv_proc_common_zone(state) == 0) 1266 goto bad; 1267 1268 if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER) == 0) && 1269 dtrace_priv_proc_common_user(state) == 0) 1270 goto bad; 1271 1272 if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG) == 0) && 1273 dtrace_priv_proc_common_nocd() == 0) 1274 goto bad; 1275 1276 return (1); 1277 1278 bad: 1279 cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV; 1280 1281 return (0); 1282 } 1283 1284 static int 1285 dtrace_priv_proc_control(dtrace_state_t *state, dtrace_mstate_t *mstate) 1286 { 1287 if (mstate->dtms_access & DTRACE_ACCESS_PROC) { 1288 if (state->dts_cred.dcr_action & DTRACE_CRA_PROC_CONTROL) 1289 return (1); 1290 1291 if (dtrace_priv_proc_common_zone(state) && 1292 dtrace_priv_proc_common_user(state) && 1293 dtrace_priv_proc_common_nocd()) 1294 return (1); 1295 } 1296 1297 cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV; 1298 1299 return (0); 1300 } 1301 1302 static int 1303 dtrace_priv_proc(dtrace_state_t *state, dtrace_mstate_t *mstate) 1304 { 1305 if ((mstate->dtms_access & DTRACE_ACCESS_PROC) && 1306 (state->dts_cred.dcr_action & DTRACE_CRA_PROC)) 1307 return (1); 1308 1309 cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV; 1310 1311 return (0); 1312 } 1313 1314 static int 1315 dtrace_priv_kernel(dtrace_state_t *state) 1316 { 1317 if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL) 1318 return (1); 1319 1320 cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV; 1321 1322 return (0); 1323 } 1324 1325 static int 1326 dtrace_priv_kernel_destructive(dtrace_state_t *state) 1327 { 1328 if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL_DESTRUCTIVE) 1329 return (1); 1330 1331 cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV; 1332 1333 return (0); 1334 } 1335 1336 /* 1337 * Determine if the dte_cond of the specified ECB allows for processing of 1338 * the current probe to continue. Note that this routine may allow continued 1339 * processing, but with access(es) stripped from the mstate's dtms_access 1340 * field. 1341 */ 1342 static int 1343 dtrace_priv_probe(dtrace_state_t *state, dtrace_mstate_t *mstate, 1344 dtrace_ecb_t *ecb) 1345 { 1346 dtrace_probe_t *probe = ecb->dte_probe; 1347 dtrace_provider_t *prov = probe->dtpr_provider; 1348 dtrace_pops_t *pops = &prov->dtpv_pops; 1349 int mode = DTRACE_MODE_NOPRIV_DROP; 1350 1351 ASSERT(ecb->dte_cond); 1352 1353 if (pops->dtps_mode != NULL) { 1354 mode = pops->dtps_mode(prov->dtpv_arg, 1355 probe->dtpr_id, probe->dtpr_arg); 1356 1357 ASSERT(mode & (DTRACE_MODE_USER | DTRACE_MODE_KERNEL)); 1358 ASSERT(mode & (DTRACE_MODE_NOPRIV_RESTRICT | 1359 DTRACE_MODE_NOPRIV_DROP)); 1360 } 1361 1362 /* 1363 * If the dte_cond bits indicate that this consumer is only allowed to 1364 * see user-mode firings of this probe, check that the probe was fired 1365 * while in a user context. If that's not the case, use the policy 1366 * specified by the provider to determine if we drop the probe or 1367 * merely restrict operation. 1368 */ 1369 if (ecb->dte_cond & DTRACE_COND_USERMODE) { 1370 ASSERT(mode != DTRACE_MODE_NOPRIV_DROP); 1371 1372 if (!(mode & DTRACE_MODE_USER)) { 1373 if (mode & DTRACE_MODE_NOPRIV_DROP) 1374 return (0); 1375 1376 mstate->dtms_access &= ~DTRACE_ACCESS_ARGS; 1377 } 1378 } 1379 1380 /* 1381 * This is more subtle than it looks. We have to be absolutely certain 1382 * that CRED() isn't going to change out from under us so it's only 1383 * legit to examine that structure if we're in constrained situations. 1384 * Currently, the only times we'll this check is if a non-super-user 1385 * has enabled the profile or syscall providers -- providers that 1386 * allow visibility of all processes. For the profile case, the check 1387 * above will ensure that we're examining a user context. 1388 */ 1389 if (ecb->dte_cond & DTRACE_COND_OWNER) { 1390 cred_t *cr; 1391 cred_t *s_cr = state->dts_cred.dcr_cred; 1392 proc_t *proc; 1393 1394 ASSERT(s_cr != NULL); 1395 1396 if ((cr = CRED()) == NULL || 1397 s_cr->cr_uid != cr->cr_uid || 1398 s_cr->cr_uid != cr->cr_ruid || 1399 s_cr->cr_uid != cr->cr_suid || 1400 s_cr->cr_gid != cr->cr_gid || 1401 s_cr->cr_gid != cr->cr_rgid || 1402 s_cr->cr_gid != cr->cr_sgid || 1403 (proc = ttoproc(curthread)) == NULL || 1404 (proc->p_flag & SNOCD)) { 1405 if (mode & DTRACE_MODE_NOPRIV_DROP) 1406 return (0); 1407 1408 mstate->dtms_access &= ~DTRACE_ACCESS_PROC; 1409 } 1410 } 1411 1412 /* 1413 * If our dte_cond is set to DTRACE_COND_ZONEOWNER and we are not 1414 * in our zone, check to see if our mode policy is to restrict rather 1415 * than to drop; if to restrict, strip away both DTRACE_ACCESS_PROC 1416 * and DTRACE_ACCESS_ARGS 1417 */ 1418 if (ecb->dte_cond & DTRACE_COND_ZONEOWNER) { 1419 cred_t *cr; 1420 cred_t *s_cr = state->dts_cred.dcr_cred; 1421 1422 ASSERT(s_cr != NULL); 1423 1424 if ((cr = CRED()) == NULL || 1425 s_cr->cr_zone->zone_id != cr->cr_zone->zone_id) { 1426 if (mode & DTRACE_MODE_NOPRIV_DROP) 1427 return (0); 1428 1429 mstate->dtms_access &= 1430 ~(DTRACE_ACCESS_PROC | DTRACE_ACCESS_ARGS); 1431 } 1432 } 1433 1434 /* 1435 * By merits of being in this code path at all, we have limited 1436 * privileges. If the provider has indicated that limited privileges 1437 * are to denote restricted operation, strip off the ability to access 1438 * arguments. 1439 */ 1440 if (mode & DTRACE_MODE_LIMITEDPRIV_RESTRICT) 1441 mstate->dtms_access &= ~DTRACE_ACCESS_ARGS; 1442 1443 return (1); 1444 } 1445 1446 /* 1447 * Note: not called from probe context. This function is called 1448 * asynchronously (and at a regular interval) from outside of probe context to 1449 * clean the dirty dynamic variable lists on all CPUs. Dynamic variable 1450 * cleaning is explained in detail in <sys/dtrace_impl.h>. 1451 */ 1452 void 1453 dtrace_dynvar_clean(dtrace_dstate_t *dstate) 1454 { 1455 dtrace_dynvar_t *dirty; 1456 dtrace_dstate_percpu_t *dcpu; 1457 dtrace_dynvar_t **rinsep; 1458 int i, j, work = 0; 1459 1460 for (i = 0; i < NCPU; i++) { 1461 dcpu = &dstate->dtds_percpu[i]; 1462 rinsep = &dcpu->dtdsc_rinsing; 1463 1464 /* 1465 * If the dirty list is NULL, there is no dirty work to do. 1466 */ 1467 if (dcpu->dtdsc_dirty == NULL) 1468 continue; 1469 1470 if (dcpu->dtdsc_rinsing != NULL) { 1471 /* 1472 * If the rinsing list is non-NULL, then it is because 1473 * this CPU was selected to accept another CPU's 1474 * dirty list -- and since that time, dirty buffers 1475 * have accumulated. This is a highly unlikely 1476 * condition, but we choose to ignore the dirty 1477 * buffers -- they'll be picked up a future cleanse. 1478 */ 1479 continue; 1480 } 1481 1482 if (dcpu->dtdsc_clean != NULL) { 1483 /* 1484 * If the clean list is non-NULL, then we're in a 1485 * situation where a CPU has done deallocations (we 1486 * have a non-NULL dirty list) but no allocations (we 1487 * also have a non-NULL clean list). We can't simply 1488 * move the dirty list into the clean list on this 1489 * CPU, yet we also don't want to allow this condition 1490 * to persist, lest a short clean list prevent a 1491 * massive dirty list from being cleaned (which in 1492 * turn could lead to otherwise avoidable dynamic 1493 * drops). To deal with this, we look for some CPU 1494 * with a NULL clean list, NULL dirty list, and NULL 1495 * rinsing list -- and then we borrow this CPU to 1496 * rinse our dirty list. 1497 */ 1498 for (j = 0; j < NCPU; j++) { 1499 dtrace_dstate_percpu_t *rinser; 1500 1501 rinser = &dstate->dtds_percpu[j]; 1502 1503 if (rinser->dtdsc_rinsing != NULL) 1504 continue; 1505 1506 if (rinser->dtdsc_dirty != NULL) 1507 continue; 1508 1509 if (rinser->dtdsc_clean != NULL) 1510 continue; 1511 1512 rinsep = &rinser->dtdsc_rinsing; 1513 break; 1514 } 1515 1516 if (j == NCPU) { 1517 /* 1518 * We were unable to find another CPU that 1519 * could accept this dirty list -- we are 1520 * therefore unable to clean it now. 1521 */ 1522 dtrace_dynvar_failclean++; 1523 continue; 1524 } 1525 } 1526 1527 work = 1; 1528 1529 /* 1530 * Atomically move the dirty list aside. 1531 */ 1532 do { 1533 dirty = dcpu->dtdsc_dirty; 1534 1535 /* 1536 * Before we zap the dirty list, set the rinsing list. 1537 * (This allows for a potential assertion in 1538 * dtrace_dynvar(): if a free dynamic variable appears 1539 * on a hash chain, either the dirty list or the 1540 * rinsing list for some CPU must be non-NULL.) 1541 */ 1542 *rinsep = dirty; 1543 dtrace_membar_producer(); 1544 } while (dtrace_casptr(&dcpu->dtdsc_dirty, 1545 dirty, NULL) != dirty); 1546 } 1547 1548 if (!work) { 1549 /* 1550 * We have no work to do; we can simply return. 1551 */ 1552 return; 1553 } 1554 1555 dtrace_sync(); 1556 1557 for (i = 0; i < NCPU; i++) { 1558 dcpu = &dstate->dtds_percpu[i]; 1559 1560 if (dcpu->dtdsc_rinsing == NULL) 1561 continue; 1562 1563 /* 1564 * We are now guaranteed that no hash chain contains a pointer 1565 * into this dirty list; we can make it clean. 1566 */ 1567 ASSERT(dcpu->dtdsc_clean == NULL); 1568 dcpu->dtdsc_clean = dcpu->dtdsc_rinsing; 1569 dcpu->dtdsc_rinsing = NULL; 1570 } 1571 1572 /* 1573 * Before we actually set the state to be DTRACE_DSTATE_CLEAN, make 1574 * sure that all CPUs have seen all of the dtdsc_clean pointers. 1575 * This prevents a race whereby a CPU incorrectly decides that 1576 * the state should be something other than DTRACE_DSTATE_CLEAN 1577 * after dtrace_dynvar_clean() has completed. 1578 */ 1579 dtrace_sync(); 1580 1581 dstate->dtds_state = DTRACE_DSTATE_CLEAN; 1582 } 1583 1584 /* 1585 * Depending on the value of the op parameter, this function looks-up, 1586 * allocates or deallocates an arbitrarily-keyed dynamic variable. If an 1587 * allocation is requested, this function will return a pointer to a 1588 * dtrace_dynvar_t corresponding to the allocated variable -- or NULL if no 1589 * variable can be allocated. If NULL is returned, the appropriate counter 1590 * will be incremented. 1591 */ 1592 dtrace_dynvar_t * 1593 dtrace_dynvar(dtrace_dstate_t *dstate, uint_t nkeys, 1594 dtrace_key_t *key, size_t dsize, dtrace_dynvar_op_t op, 1595 dtrace_mstate_t *mstate, dtrace_vstate_t *vstate) 1596 { 1597 uint64_t hashval = DTRACE_DYNHASH_VALID; 1598 dtrace_dynhash_t *hash = dstate->dtds_hash; 1599 dtrace_dynvar_t *free, *new_free, *next, *dvar, *start, *prev = NULL; 1600 processorid_t me = CPU->cpu_id, cpu = me; 1601 dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[me]; 1602 size_t bucket, ksize; 1603 size_t chunksize = dstate->dtds_chunksize; 1604 uintptr_t kdata, lock, nstate; 1605 uint_t i; 1606 1607 ASSERT(nkeys != 0); 1608 1609 /* 1610 * Hash the key. As with aggregations, we use Jenkins' "One-at-a-time" 1611 * algorithm. For the by-value portions, we perform the algorithm in 1612 * 16-bit chunks (as opposed to 8-bit chunks). This speeds things up a 1613 * bit, and seems to have only a minute effect on distribution. For 1614 * the by-reference data, we perform "One-at-a-time" iterating (safely) 1615 * over each referenced byte. It's painful to do this, but it's much 1616 * better than pathological hash distribution. The efficacy of the 1617 * hashing algorithm (and a comparison with other algorithms) may be 1618 * found by running the ::dtrace_dynstat MDB dcmd. 1619 */ 1620 for (i = 0; i < nkeys; i++) { 1621 if (key[i].dttk_size == 0) { 1622 uint64_t val = key[i].dttk_value; 1623 1624 hashval += (val >> 48) & 0xffff; 1625 hashval += (hashval << 10); 1626 hashval ^= (hashval >> 6); 1627 1628 hashval += (val >> 32) & 0xffff; 1629 hashval += (hashval << 10); 1630 hashval ^= (hashval >> 6); 1631 1632 hashval += (val >> 16) & 0xffff; 1633 hashval += (hashval << 10); 1634 hashval ^= (hashval >> 6); 1635 1636 hashval += val & 0xffff; 1637 hashval += (hashval << 10); 1638 hashval ^= (hashval >> 6); 1639 } else { 1640 /* 1641 * This is incredibly painful, but it beats the hell 1642 * out of the alternative. 1643 */ 1644 uint64_t j, size = key[i].dttk_size; 1645 uintptr_t base = (uintptr_t)key[i].dttk_value; 1646 1647 if (!dtrace_canload(base, size, mstate, vstate)) 1648 break; 1649 1650 for (j = 0; j < size; j++) { 1651 hashval += dtrace_load8(base + j); 1652 hashval += (hashval << 10); 1653 hashval ^= (hashval >> 6); 1654 } 1655 } 1656 } 1657 1658 if (DTRACE_CPUFLAG_ISSET(CPU_DTRACE_FAULT)) 1659 return (NULL); 1660 1661 hashval += (hashval << 3); 1662 hashval ^= (hashval >> 11); 1663 hashval += (hashval << 15); 1664 1665 /* 1666 * There is a remote chance (ideally, 1 in 2^31) that our hashval 1667 * comes out to be one of our two sentinel hash values. If this 1668 * actually happens, we set the hashval to be a value known to be a 1669 * non-sentinel value. 1670 */ 1671 if (hashval == DTRACE_DYNHASH_FREE || hashval == DTRACE_DYNHASH_SINK) 1672 hashval = DTRACE_DYNHASH_VALID; 1673 1674 /* 1675 * Yes, it's painful to do a divide here. If the cycle count becomes 1676 * important here, tricks can be pulled to reduce it. (However, it's 1677 * critical that hash collisions be kept to an absolute minimum; 1678 * they're much more painful than a divide.) It's better to have a 1679 * solution that generates few collisions and still keeps things 1680 * relatively simple. 1681 */ 1682 bucket = hashval % dstate->dtds_hashsize; 1683 1684 if (op == DTRACE_DYNVAR_DEALLOC) { 1685 volatile uintptr_t *lockp = &hash[bucket].dtdh_lock; 1686 1687 for (;;) { 1688 while ((lock = *lockp) & 1) 1689 continue; 1690 1691 if (dtrace_casptr((void *)lockp, 1692 (void *)lock, (void *)(lock + 1)) == (void *)lock) 1693 break; 1694 } 1695 1696 dtrace_membar_producer(); 1697 } 1698 1699 top: 1700 prev = NULL; 1701 lock = hash[bucket].dtdh_lock; 1702 1703 dtrace_membar_consumer(); 1704 1705 start = hash[bucket].dtdh_chain; 1706 ASSERT(start != NULL && (start->dtdv_hashval == DTRACE_DYNHASH_SINK || 1707 start->dtdv_hashval != DTRACE_DYNHASH_FREE || 1708 op != DTRACE_DYNVAR_DEALLOC)); 1709 1710 for (dvar = start; dvar != NULL; dvar = dvar->dtdv_next) { 1711 dtrace_tuple_t *dtuple = &dvar->dtdv_tuple; 1712 dtrace_key_t *dkey = &dtuple->dtt_key[0]; 1713 1714 if (dvar->dtdv_hashval != hashval) { 1715 if (dvar->dtdv_hashval == DTRACE_DYNHASH_SINK) { 1716 /* 1717 * We've reached the sink, and therefore the 1718 * end of the hash chain; we can kick out of 1719 * the loop knowing that we have seen a valid 1720 * snapshot of state. 1721 */ 1722 ASSERT(dvar->dtdv_next == NULL); 1723 ASSERT(dvar == &dtrace_dynhash_sink); 1724 break; 1725 } 1726 1727 if (dvar->dtdv_hashval == DTRACE_DYNHASH_FREE) { 1728 /* 1729 * We've gone off the rails: somewhere along 1730 * the line, one of the members of this hash 1731 * chain was deleted. Note that we could also 1732 * detect this by simply letting this loop run 1733 * to completion, as we would eventually hit 1734 * the end of the dirty list. However, we 1735 * want to avoid running the length of the 1736 * dirty list unnecessarily (it might be quite 1737 * long), so we catch this as early as 1738 * possible by detecting the hash marker. In 1739 * this case, we simply set dvar to NULL and 1740 * break; the conditional after the loop will 1741 * send us back to top. 1742 */ 1743 dvar = NULL; 1744 break; 1745 } 1746 1747 goto next; 1748 } 1749 1750 if (dtuple->dtt_nkeys != nkeys) 1751 goto next; 1752 1753 for (i = 0; i < nkeys; i++, dkey++) { 1754 if (dkey->dttk_size != key[i].dttk_size) 1755 goto next; /* size or type mismatch */ 1756 1757 if (dkey->dttk_size != 0) { 1758 if (dtrace_bcmp( 1759 (void *)(uintptr_t)key[i].dttk_value, 1760 (void *)(uintptr_t)dkey->dttk_value, 1761 dkey->dttk_size)) 1762 goto next; 1763 } else { 1764 if (dkey->dttk_value != key[i].dttk_value) 1765 goto next; 1766 } 1767 } 1768 1769 if (op != DTRACE_DYNVAR_DEALLOC) 1770 return (dvar); 1771 1772 ASSERT(dvar->dtdv_next == NULL || 1773 dvar->dtdv_next->dtdv_hashval != DTRACE_DYNHASH_FREE); 1774 1775 if (prev != NULL) { 1776 ASSERT(hash[bucket].dtdh_chain != dvar); 1777 ASSERT(start != dvar); 1778 ASSERT(prev->dtdv_next == dvar); 1779 prev->dtdv_next = dvar->dtdv_next; 1780 } else { 1781 if (dtrace_casptr(&hash[bucket].dtdh_chain, 1782 start, dvar->dtdv_next) != start) { 1783 /* 1784 * We have failed to atomically swing the 1785 * hash table head pointer, presumably because 1786 * of a conflicting allocation on another CPU. 1787 * We need to reread the hash chain and try 1788 * again. 1789 */ 1790 goto top; 1791 } 1792 } 1793 1794 dtrace_membar_producer(); 1795 1796 /* 1797 * Now set the hash value to indicate that it's free. 1798 */ 1799 ASSERT(hash[bucket].dtdh_chain != dvar); 1800 dvar->dtdv_hashval = DTRACE_DYNHASH_FREE; 1801 1802 dtrace_membar_producer(); 1803 1804 /* 1805 * Set the next pointer to point at the dirty list, and 1806 * atomically swing the dirty pointer to the newly freed dvar. 1807 */ 1808 do { 1809 next = dcpu->dtdsc_dirty; 1810 dvar->dtdv_next = next; 1811 } while (dtrace_casptr(&dcpu->dtdsc_dirty, next, dvar) != next); 1812 1813 /* 1814 * Finally, unlock this hash bucket. 1815 */ 1816 ASSERT(hash[bucket].dtdh_lock == lock); 1817 ASSERT(lock & 1); 1818 hash[bucket].dtdh_lock++; 1819 1820 return (NULL); 1821 next: 1822 prev = dvar; 1823 continue; 1824 } 1825 1826 if (dvar == NULL) { 1827 /* 1828 * If dvar is NULL, it is because we went off the rails: 1829 * one of the elements that we traversed in the hash chain 1830 * was deleted while we were traversing it. In this case, 1831 * we assert that we aren't doing a dealloc (deallocs lock 1832 * the hash bucket to prevent themselves from racing with 1833 * one another), and retry the hash chain traversal. 1834 */ 1835 ASSERT(op != DTRACE_DYNVAR_DEALLOC); 1836 goto top; 1837 } 1838 1839 if (op != DTRACE_DYNVAR_ALLOC) { 1840 /* 1841 * If we are not to allocate a new variable, we want to 1842 * return NULL now. Before we return, check that the value 1843 * of the lock word hasn't changed. If it has, we may have 1844 * seen an inconsistent snapshot. 1845 */ 1846 if (op == DTRACE_DYNVAR_NOALLOC) { 1847 if (hash[bucket].dtdh_lock != lock) 1848 goto top; 1849 } else { 1850 ASSERT(op == DTRACE_DYNVAR_DEALLOC); 1851 ASSERT(hash[bucket].dtdh_lock == lock); 1852 ASSERT(lock & 1); 1853 hash[bucket].dtdh_lock++; 1854 } 1855 1856 return (NULL); 1857 } 1858 1859 /* 1860 * We need to allocate a new dynamic variable. The size we need is the 1861 * size of dtrace_dynvar plus the size of nkeys dtrace_key_t's plus the 1862 * size of any auxiliary key data (rounded up to 8-byte alignment) plus 1863 * the size of any referred-to data (dsize). We then round the final 1864 * size up to the chunksize for allocation. 1865 */ 1866 for (ksize = 0, i = 0; i < nkeys; i++) 1867 ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t)); 1868 1869 /* 1870 * This should be pretty much impossible, but could happen if, say, 1871 * strange DIF specified the tuple. Ideally, this should be an 1872 * assertion and not an error condition -- but that requires that the 1873 * chunksize calculation in dtrace_difo_chunksize() be absolutely 1874 * bullet-proof. (That is, it must not be able to be fooled by 1875 * malicious DIF.) Given the lack of backwards branches in DIF, 1876 * solving this would presumably not amount to solving the Halting 1877 * Problem -- but it still seems awfully hard. 1878 */ 1879 if (sizeof (dtrace_dynvar_t) + sizeof (dtrace_key_t) * (nkeys - 1) + 1880 ksize + dsize > chunksize) { 1881 dcpu->dtdsc_drops++; 1882 return (NULL); 1883 } 1884 1885 nstate = DTRACE_DSTATE_EMPTY; 1886 1887 do { 1888 retry: 1889 free = dcpu->dtdsc_free; 1890 1891 if (free == NULL) { 1892 dtrace_dynvar_t *clean = dcpu->dtdsc_clean; 1893 void *rval; 1894 1895 if (clean == NULL) { 1896 /* 1897 * We're out of dynamic variable space on 1898 * this CPU. Unless we have tried all CPUs, 1899 * we'll try to allocate from a different 1900 * CPU. 1901 */ 1902 switch (dstate->dtds_state) { 1903 case DTRACE_DSTATE_CLEAN: { 1904 void *sp = &dstate->dtds_state; 1905 1906 if (++cpu >= NCPU) 1907 cpu = 0; 1908 1909 if (dcpu->dtdsc_dirty != NULL && 1910 nstate == DTRACE_DSTATE_EMPTY) 1911 nstate = DTRACE_DSTATE_DIRTY; 1912 1913 if (dcpu->dtdsc_rinsing != NULL) 1914 nstate = DTRACE_DSTATE_RINSING; 1915 1916 dcpu = &dstate->dtds_percpu[cpu]; 1917 1918 if (cpu != me) 1919 goto retry; 1920 1921 (void) dtrace_cas32(sp, 1922 DTRACE_DSTATE_CLEAN, nstate); 1923 1924 /* 1925 * To increment the correct bean 1926 * counter, take another lap. 1927 */ 1928 goto retry; 1929 } 1930 1931 case DTRACE_DSTATE_DIRTY: 1932 dcpu->dtdsc_dirty_drops++; 1933 break; 1934 1935 case DTRACE_DSTATE_RINSING: 1936 dcpu->dtdsc_rinsing_drops++; 1937 break; 1938 1939 case DTRACE_DSTATE_EMPTY: 1940 dcpu->dtdsc_drops++; 1941 break; 1942 } 1943 1944 DTRACE_CPUFLAG_SET(CPU_DTRACE_DROP); 1945 return (NULL); 1946 } 1947 1948 /* 1949 * The clean list appears to be non-empty. We want to 1950 * move the clean list to the free list; we start by 1951 * moving the clean pointer aside. 1952 */ 1953 if (dtrace_casptr(&dcpu->dtdsc_clean, 1954 clean, NULL) != clean) { 1955 /* 1956 * We are in one of two situations: 1957 * 1958 * (a) The clean list was switched to the 1959 * free list by another CPU. 1960 * 1961 * (b) The clean list was added to by the 1962 * cleansing cyclic. 1963 * 1964 * In either of these situations, we can 1965 * just reattempt the free list allocation. 1966 */ 1967 goto retry; 1968 } 1969 1970 ASSERT(clean->dtdv_hashval == DTRACE_DYNHASH_FREE); 1971 1972 /* 1973 * Now we'll move the clean list to our free list. 1974 * It's impossible for this to fail: the only way 1975 * the free list can be updated is through this 1976 * code path, and only one CPU can own the clean list. 1977 * Thus, it would only be possible for this to fail if 1978 * this code were racing with dtrace_dynvar_clean(). 1979 * (That is, if dtrace_dynvar_clean() updated the clean 1980 * list, and we ended up racing to update the free 1981 * list.) This race is prevented by the dtrace_sync() 1982 * in dtrace_dynvar_clean() -- which flushes the 1983 * owners of the clean lists out before resetting 1984 * the clean lists. 1985 */ 1986 dcpu = &dstate->dtds_percpu[me]; 1987 rval = dtrace_casptr(&dcpu->dtdsc_free, NULL, clean); 1988 ASSERT(rval == NULL); 1989 goto retry; 1990 } 1991 1992 dvar = free; 1993 new_free = dvar->dtdv_next; 1994 } while (dtrace_casptr(&dcpu->dtdsc_free, free, new_free) != free); 1995 1996 /* 1997 * We have now allocated a new chunk. We copy the tuple keys into the 1998 * tuple array and copy any referenced key data into the data space 1999 * following the tuple array. As we do this, we relocate dttk_value 2000 * in the final tuple to point to the key data address in the chunk. 2001 */ 2002 kdata = (uintptr_t)&dvar->dtdv_tuple.dtt_key[nkeys]; 2003 dvar->dtdv_data = (void *)(kdata + ksize); 2004 dvar->dtdv_tuple.dtt_nkeys = nkeys; 2005 2006 for (i = 0; i < nkeys; i++) { 2007 dtrace_key_t *dkey = &dvar->dtdv_tuple.dtt_key[i]; 2008 size_t kesize = key[i].dttk_size; 2009 2010 if (kesize != 0) { 2011 dtrace_bcopy( 2012 (const void *)(uintptr_t)key[i].dttk_value, 2013 (void *)kdata, kesize); 2014 dkey->dttk_value = kdata; 2015 kdata += P2ROUNDUP(kesize, sizeof (uint64_t)); 2016 } else { 2017 dkey->dttk_value = key[i].dttk_value; 2018 } 2019 2020 dkey->dttk_size = kesize; 2021 } 2022 2023 ASSERT(dvar->dtdv_hashval == DTRACE_DYNHASH_FREE); 2024 dvar->dtdv_hashval = hashval; 2025 dvar->dtdv_next = start; 2026 2027 if (dtrace_casptr(&hash[bucket].dtdh_chain, start, dvar) == start) 2028 return (dvar); 2029 2030 /* 2031 * The cas has failed. Either another CPU is adding an element to 2032 * this hash chain, or another CPU is deleting an element from this 2033 * hash chain. The simplest way to deal with both of these cases 2034 * (though not necessarily the most efficient) is to free our 2035 * allocated block and tail-call ourselves. Note that the free is 2036 * to the dirty list and _not_ to the free list. This is to prevent 2037 * races with allocators, above. 2038 */ 2039 dvar->dtdv_hashval = DTRACE_DYNHASH_FREE; 2040 2041 dtrace_membar_producer(); 2042 2043 do { 2044 free = dcpu->dtdsc_dirty; 2045 dvar->dtdv_next = free; 2046 } while (dtrace_casptr(&dcpu->dtdsc_dirty, free, dvar) != free); 2047 2048 return (dtrace_dynvar(dstate, nkeys, key, dsize, op, mstate, vstate)); 2049 } 2050 2051 /*ARGSUSED*/ 2052 static void 2053 dtrace_aggregate_min(uint64_t *oval, uint64_t nval, uint64_t arg) 2054 { 2055 if ((int64_t)nval < (int64_t)*oval) 2056 *oval = nval; 2057 } 2058 2059 /*ARGSUSED*/ 2060 static void 2061 dtrace_aggregate_max(uint64_t *oval, uint64_t nval, uint64_t arg) 2062 { 2063 if ((int64_t)nval > (int64_t)*oval) 2064 *oval = nval; 2065 } 2066 2067 static void 2068 dtrace_aggregate_quantize(uint64_t *quanta, uint64_t nval, uint64_t incr) 2069 { 2070 int i, zero = DTRACE_QUANTIZE_ZEROBUCKET; 2071 int64_t val = (int64_t)nval; 2072 2073 if (val < 0) { 2074 for (i = 0; i < zero; i++) { 2075 if (val <= DTRACE_QUANTIZE_BUCKETVAL(i)) { 2076 quanta[i] += incr; 2077 return; 2078 } 2079 } 2080 } else { 2081 for (i = zero + 1; i < DTRACE_QUANTIZE_NBUCKETS; i++) { 2082 if (val < DTRACE_QUANTIZE_BUCKETVAL(i)) { 2083 quanta[i - 1] += incr; 2084 return; 2085 } 2086 } 2087 2088 quanta[DTRACE_QUANTIZE_NBUCKETS - 1] += incr; 2089 return; 2090 } 2091 2092 ASSERT(0); 2093 } 2094 2095 static void 2096 dtrace_aggregate_lquantize(uint64_t *lquanta, uint64_t nval, uint64_t incr) 2097 { 2098 uint64_t arg = *lquanta++; 2099 int32_t base = DTRACE_LQUANTIZE_BASE(arg); 2100 uint16_t step = DTRACE_LQUANTIZE_STEP(arg); 2101 uint16_t levels = DTRACE_LQUANTIZE_LEVELS(arg); 2102 int32_t val = (int32_t)nval, level; 2103 2104 ASSERT(step != 0); 2105 ASSERT(levels != 0); 2106 2107 if (val < base) { 2108 /* 2109 * This is an underflow. 2110 */ 2111 lquanta[0] += incr; 2112 return; 2113 } 2114 2115 level = (val - base) / step; 2116 2117 if (level < levels) { 2118 lquanta[level + 1] += incr; 2119 return; 2120 } 2121 2122 /* 2123 * This is an overflow. 2124 */ 2125 lquanta[levels + 1] += incr; 2126 } 2127 2128 static int 2129 dtrace_aggregate_llquantize_bucket(uint16_t factor, uint16_t low, 2130 uint16_t high, uint16_t nsteps, int64_t value) 2131 { 2132 int64_t this = 1, last, next; 2133 int base = 1, order; 2134 2135 ASSERT(factor <= nsteps); 2136 ASSERT(nsteps % factor == 0); 2137 2138 for (order = 0; order < low; order++) 2139 this *= factor; 2140 2141 /* 2142 * If our value is less than our factor taken to the power of the 2143 * low order of magnitude, it goes into the zeroth bucket. 2144 */ 2145 if (value < (last = this)) 2146 return (0); 2147 2148 for (this *= factor; order <= high; order++) { 2149 int nbuckets = this > nsteps ? nsteps : this; 2150 2151 if ((next = this * factor) < this) { 2152 /* 2153 * We should not generally get log/linear quantizations 2154 * with a high magnitude that allows 64-bits to 2155 * overflow, but we nonetheless protect against this 2156 * by explicitly checking for overflow, and clamping 2157 * our value accordingly. 2158 */ 2159 value = this - 1; 2160 } 2161 2162 if (value < this) { 2163 /* 2164 * If our value lies within this order of magnitude, 2165 * determine its position by taking the offset within 2166 * the order of magnitude, dividing by the bucket 2167 * width, and adding to our (accumulated) base. 2168 */ 2169 return (base + (value - last) / (this / nbuckets)); 2170 } 2171 2172 base += nbuckets - (nbuckets / factor); 2173 last = this; 2174 this = next; 2175 } 2176 2177 /* 2178 * Our value is greater than or equal to our factor taken to the 2179 * power of one plus the high magnitude -- return the top bucket. 2180 */ 2181 return (base); 2182 } 2183 2184 static void 2185 dtrace_aggregate_llquantize(uint64_t *llquanta, uint64_t nval, uint64_t incr) 2186 { 2187 uint64_t arg = *llquanta++; 2188 uint16_t factor = DTRACE_LLQUANTIZE_FACTOR(arg); 2189 uint16_t low = DTRACE_LLQUANTIZE_LOW(arg); 2190 uint16_t high = DTRACE_LLQUANTIZE_HIGH(arg); 2191 uint16_t nsteps = DTRACE_LLQUANTIZE_NSTEP(arg); 2192 2193 llquanta[dtrace_aggregate_llquantize_bucket(factor, 2194 low, high, nsteps, nval)] += incr; 2195 } 2196 2197 /*ARGSUSED*/ 2198 static void 2199 dtrace_aggregate_avg(uint64_t *data, uint64_t nval, uint64_t arg) 2200 { 2201 data[0]++; 2202 data[1] += nval; 2203 } 2204 2205 /*ARGSUSED*/ 2206 static void 2207 dtrace_aggregate_stddev(uint64_t *data, uint64_t nval, uint64_t arg) 2208 { 2209 int64_t snval = (int64_t)nval; 2210 uint64_t tmp[2]; 2211 2212 data[0]++; 2213 data[1] += nval; 2214 2215 /* 2216 * What we want to say here is: 2217 * 2218 * data[2] += nval * nval; 2219 * 2220 * But given that nval is 64-bit, we could easily overflow, so 2221 * we do this as 128-bit arithmetic. 2222 */ 2223 if (snval < 0) 2224 snval = -snval; 2225 2226 dtrace_multiply_128((uint64_t)snval, (uint64_t)snval, tmp); 2227 dtrace_add_128(data + 2, tmp, data + 2); 2228 } 2229 2230 /*ARGSUSED*/ 2231 static void 2232 dtrace_aggregate_count(uint64_t *oval, uint64_t nval, uint64_t arg) 2233 { 2234 *oval = *oval + 1; 2235 } 2236 2237 /*ARGSUSED*/ 2238 static void 2239 dtrace_aggregate_sum(uint64_t *oval, uint64_t nval, uint64_t arg) 2240 { 2241 *oval += nval; 2242 } 2243 2244 /* 2245 * Aggregate given the tuple in the principal data buffer, and the aggregating 2246 * action denoted by the specified dtrace_aggregation_t. The aggregation 2247 * buffer is specified as the buf parameter. This routine does not return 2248 * failure; if there is no space in the aggregation buffer, the data will be 2249 * dropped, and a corresponding counter incremented. 2250 */ 2251 static void 2252 dtrace_aggregate(dtrace_aggregation_t *agg, dtrace_buffer_t *dbuf, 2253 intptr_t offset, dtrace_buffer_t *buf, uint64_t expr, uint64_t arg) 2254 { 2255 dtrace_recdesc_t *rec = &agg->dtag_action.dta_rec; 2256 uint32_t i, ndx, size, fsize; 2257 uint32_t align = sizeof (uint64_t) - 1; 2258 dtrace_aggbuffer_t *agb; 2259 dtrace_aggkey_t *key; 2260 uint32_t hashval = 0, limit, isstr; 2261 caddr_t tomax, data, kdata; 2262 dtrace_actkind_t action; 2263 dtrace_action_t *act; 2264 uintptr_t offs; 2265 2266 if (buf == NULL) 2267 return; 2268 2269 if (!agg->dtag_hasarg) { 2270 /* 2271 * Currently, only quantize() and lquantize() take additional 2272 * arguments, and they have the same semantics: an increment 2273 * value that defaults to 1 when not present. If additional 2274 * aggregating actions take arguments, the setting of the 2275 * default argument value will presumably have to become more 2276 * sophisticated... 2277 */ 2278 arg = 1; 2279 } 2280 2281 action = agg->dtag_action.dta_kind - DTRACEACT_AGGREGATION; 2282 size = rec->dtrd_offset - agg->dtag_base; 2283 fsize = size + rec->dtrd_size; 2284 2285 ASSERT(dbuf->dtb_tomax != NULL); 2286 data = dbuf->dtb_tomax + offset + agg->dtag_base; 2287 2288 if ((tomax = buf->dtb_tomax) == NULL) { 2289 dtrace_buffer_drop(buf); 2290 return; 2291 } 2292 2293 /* 2294 * The metastructure is always at the bottom of the buffer. 2295 */ 2296 agb = (dtrace_aggbuffer_t *)(tomax + buf->dtb_size - 2297 sizeof (dtrace_aggbuffer_t)); 2298 2299 if (buf->dtb_offset == 0) { 2300 /* 2301 * We just kludge up approximately 1/8th of the size to be 2302 * buckets. If this guess ends up being routinely 2303 * off-the-mark, we may need to dynamically readjust this 2304 * based on past performance. 2305 */ 2306 uintptr_t hashsize = (buf->dtb_size >> 3) / sizeof (uintptr_t); 2307 2308 if ((uintptr_t)agb - hashsize * sizeof (dtrace_aggkey_t *) < 2309 (uintptr_t)tomax || hashsize == 0) { 2310 /* 2311 * We've been given a ludicrously small buffer; 2312 * increment our drop count and leave. 2313 */ 2314 dtrace_buffer_drop(buf); 2315 return; 2316 } 2317 2318 /* 2319 * And now, a pathetic attempt to try to get a an odd (or 2320 * perchance, a prime) hash size for better hash distribution. 2321 */ 2322 if (hashsize > (DTRACE_AGGHASHSIZE_SLEW << 3)) 2323 hashsize -= DTRACE_AGGHASHSIZE_SLEW; 2324 2325 agb->dtagb_hashsize = hashsize; 2326 agb->dtagb_hash = (dtrace_aggkey_t **)((uintptr_t)agb - 2327 agb->dtagb_hashsize * sizeof (dtrace_aggkey_t *)); 2328 agb->dtagb_free = (uintptr_t)agb->dtagb_hash; 2329 2330 for (i = 0; i < agb->dtagb_hashsize; i++) 2331 agb->dtagb_hash[i] = NULL; 2332 } 2333 2334 ASSERT(agg->dtag_first != NULL); 2335 ASSERT(agg->dtag_first->dta_intuple); 2336 2337 /* 2338 * Calculate the hash value based on the key. Note that we _don't_ 2339 * include the aggid in the hashing (but we will store it as part of 2340 * the key). The hashing algorithm is Bob Jenkins' "One-at-a-time" 2341 * algorithm: a simple, quick algorithm that has no known funnels, and 2342 * gets good distribution in practice. The efficacy of the hashing 2343 * algorithm (and a comparison with other algorithms) may be found by 2344 * running the ::dtrace_aggstat MDB dcmd. 2345 */ 2346 for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) { 2347 i = act->dta_rec.dtrd_offset - agg->dtag_base; 2348 limit = i + act->dta_rec.dtrd_size; 2349 ASSERT(limit <= size); 2350 isstr = DTRACEACT_ISSTRING(act); 2351 2352 for (; i < limit; i++) { 2353 hashval += data[i]; 2354 hashval += (hashval << 10); 2355 hashval ^= (hashval >> 6); 2356 2357 if (isstr && data[i] == '\0') 2358 break; 2359 } 2360 } 2361 2362 hashval += (hashval << 3); 2363 hashval ^= (hashval >> 11); 2364 hashval += (hashval << 15); 2365 2366 /* 2367 * Yes, the divide here is expensive -- but it's generally the least 2368 * of the performance issues given the amount of data that we iterate 2369 * over to compute hash values, compare data, etc. 2370 */ 2371 ndx = hashval % agb->dtagb_hashsize; 2372 2373 for (key = agb->dtagb_hash[ndx]; key != NULL; key = key->dtak_next) { 2374 ASSERT((caddr_t)key >= tomax); 2375 ASSERT((caddr_t)key < tomax + buf->dtb_size); 2376 2377 if (hashval != key->dtak_hashval || key->dtak_size != size) 2378 continue; 2379 2380 kdata = key->dtak_data; 2381 ASSERT(kdata >= tomax && kdata < tomax + buf->dtb_size); 2382 2383 for (act = agg->dtag_first; act->dta_intuple; 2384 act = act->dta_next) { 2385 i = act->dta_rec.dtrd_offset - agg->dtag_base; 2386 limit = i + act->dta_rec.dtrd_size; 2387 ASSERT(limit <= size); 2388 isstr = DTRACEACT_ISSTRING(act); 2389 2390 for (; i < limit; i++) { 2391 if (kdata[i] != data[i]) 2392 goto next; 2393 2394 if (isstr && data[i] == '\0') 2395 break; 2396 } 2397 } 2398 2399 if (action != key->dtak_action) { 2400 /* 2401 * We are aggregating on the same value in the same 2402 * aggregation with two different aggregating actions. 2403 * (This should have been picked up in the compiler, 2404 * so we may be dealing with errant or devious DIF.) 2405 * This is an error condition; we indicate as much, 2406 * and return. 2407 */ 2408 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); 2409 return; 2410 } 2411 2412 /* 2413 * This is a hit: we need to apply the aggregator to 2414 * the value at this key. 2415 */ 2416 agg->dtag_aggregate((uint64_t *)(kdata + size), expr, arg); 2417 return; 2418 next: 2419 continue; 2420 } 2421 2422 /* 2423 * We didn't find it. We need to allocate some zero-filled space, 2424 * link it into the hash table appropriately, and apply the aggregator 2425 * to the (zero-filled) value. 2426 */ 2427 offs = buf->dtb_offset; 2428 while (offs & (align - 1)) 2429 offs += sizeof (uint32_t); 2430 2431 /* 2432 * If we don't have enough room to both allocate a new key _and_ 2433 * its associated data, increment the drop count and return. 2434 */ 2435 if ((uintptr_t)tomax + offs + fsize > 2436 agb->dtagb_free - sizeof (dtrace_aggkey_t)) { 2437 dtrace_buffer_drop(buf); 2438 return; 2439 } 2440 2441 /*CONSTCOND*/ 2442 ASSERT(!(sizeof (dtrace_aggkey_t) & (sizeof (uintptr_t) - 1))); 2443 key = (dtrace_aggkey_t *)(agb->dtagb_free - sizeof (dtrace_aggkey_t)); 2444 agb->dtagb_free -= sizeof (dtrace_aggkey_t); 2445 2446 key->dtak_data = kdata = tomax + offs; 2447 buf->dtb_offset = offs + fsize; 2448 2449 /* 2450 * Now copy the data across. 2451 */ 2452 *((dtrace_aggid_t *)kdata) = agg->dtag_id; 2453 2454 for (i = sizeof (dtrace_aggid_t); i < size; i++) 2455 kdata[i] = data[i]; 2456 2457 /* 2458 * Because strings are not zeroed out by default, we need to iterate 2459 * looking for actions that store strings, and we need to explicitly 2460 * pad these strings out with zeroes. 2461 */ 2462 for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) { 2463 int nul; 2464 2465 if (!DTRACEACT_ISSTRING(act)) 2466 continue; 2467 2468 i = act->dta_rec.dtrd_offset - agg->dtag_base; 2469 limit = i + act->dta_rec.dtrd_size; 2470 ASSERT(limit <= size); 2471 2472 for (nul = 0; i < limit; i++) { 2473 if (nul) { 2474 kdata[i] = '\0'; 2475 continue; 2476 } 2477 2478 if (data[i] != '\0') 2479 continue; 2480 2481 nul = 1; 2482 } 2483 } 2484 2485 for (i = size; i < fsize; i++) 2486 kdata[i] = 0; 2487 2488 key->dtak_hashval = hashval; 2489 key->dtak_size = size; 2490 key->dtak_action = action; 2491 key->dtak_next = agb->dtagb_hash[ndx]; 2492 agb->dtagb_hash[ndx] = key; 2493 2494 /* 2495 * Finally, apply the aggregator. 2496 */ 2497 *((uint64_t *)(key->dtak_data + size)) = agg->dtag_initial; 2498 agg->dtag_aggregate((uint64_t *)(key->dtak_data + size), expr, arg); 2499 } 2500 2501 /* 2502 * Given consumer state, this routine finds a speculation in the INACTIVE 2503 * state and transitions it into the ACTIVE state. If there is no speculation 2504 * in the INACTIVE state, 0 is returned. In this case, no error counter is 2505 * incremented -- it is up to the caller to take appropriate action. 2506 */ 2507 static int 2508 dtrace_speculation(dtrace_state_t *state) 2509 { 2510 int i = 0; 2511 dtrace_speculation_state_t current; 2512 uint32_t *stat = &state->dts_speculations_unavail, count; 2513 2514 while (i < state->dts_nspeculations) { 2515 dtrace_speculation_t *spec = &state->dts_speculations[i]; 2516 2517 current = spec->dtsp_state; 2518 2519 if (current != DTRACESPEC_INACTIVE) { 2520 if (current == DTRACESPEC_COMMITTINGMANY || 2521 current == DTRACESPEC_COMMITTING || 2522 current == DTRACESPEC_DISCARDING) 2523 stat = &state->dts_speculations_busy; 2524 i++; 2525 continue; 2526 } 2527 2528 if (dtrace_cas32((uint32_t *)&spec->dtsp_state, 2529 current, DTRACESPEC_ACTIVE) == current) 2530 return (i + 1); 2531 } 2532 2533 /* 2534 * We couldn't find a speculation. If we found as much as a single 2535 * busy speculation buffer, we'll attribute this failure as "busy" 2536 * instead of "unavail". 2537 */ 2538 do { 2539 count = *stat; 2540 } while (dtrace_cas32(stat, count, count + 1) != count); 2541 2542 return (0); 2543 } 2544 2545 /* 2546 * This routine commits an active speculation. If the specified speculation 2547 * is not in a valid state to perform a commit(), this routine will silently do 2548 * nothing. The state of the specified speculation is transitioned according 2549 * to the state transition diagram outlined in <sys/dtrace_impl.h> 2550 */ 2551 static void 2552 dtrace_speculation_commit(dtrace_state_t *state, processorid_t cpu, 2553 dtrace_specid_t which) 2554 { 2555 dtrace_speculation_t *spec; 2556 dtrace_buffer_t *src, *dest; 2557 uintptr_t daddr, saddr, dlimit, slimit; 2558 dtrace_speculation_state_t current, new; 2559 intptr_t offs; 2560 uint64_t timestamp; 2561 2562 if (which == 0) 2563 return; 2564 2565 if (which > state->dts_nspeculations) { 2566 cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP; 2567 return; 2568 } 2569 2570 spec = &state->dts_speculations[which - 1]; 2571 src = &spec->dtsp_buffer[cpu]; 2572 dest = &state->dts_buffer[cpu]; 2573 2574 do { 2575 current = spec->dtsp_state; 2576 2577 if (current == DTRACESPEC_COMMITTINGMANY) 2578 break; 2579 2580 switch (current) { 2581 case DTRACESPEC_INACTIVE: 2582 case DTRACESPEC_DISCARDING: 2583 return; 2584 2585 case DTRACESPEC_COMMITTING: 2586 /* 2587 * This is only possible if we are (a) commit()'ing 2588 * without having done a prior speculate() on this CPU 2589 * and (b) racing with another commit() on a different 2590 * CPU. There's nothing to do -- we just assert that 2591 * our offset is 0. 2592 */ 2593 ASSERT(src->dtb_offset == 0); 2594 return; 2595 2596 case DTRACESPEC_ACTIVE: 2597 new = DTRACESPEC_COMMITTING; 2598 break; 2599 2600 case DTRACESPEC_ACTIVEONE: 2601 /* 2602 * This speculation is active on one CPU. If our 2603 * buffer offset is non-zero, we know that the one CPU 2604 * must be us. Otherwise, we are committing on a 2605 * different CPU from the speculate(), and we must 2606 * rely on being asynchronously cleaned. 2607 */ 2608 if (src->dtb_offset != 0) { 2609 new = DTRACESPEC_COMMITTING; 2610 break; 2611 } 2612 /*FALLTHROUGH*/ 2613 2614 case DTRACESPEC_ACTIVEMANY: 2615 new = DTRACESPEC_COMMITTINGMANY; 2616 break; 2617 2618 default: 2619 ASSERT(0); 2620 } 2621 } while (dtrace_cas32((uint32_t *)&spec->dtsp_state, 2622 current, new) != current); 2623 2624 /* 2625 * We have set the state to indicate that we are committing this 2626 * speculation. Now reserve the necessary space in the destination 2627 * buffer. 2628 */ 2629 if ((offs = dtrace_buffer_reserve(dest, src->dtb_offset, 2630 sizeof (uint64_t), state, NULL)) < 0) { 2631 dtrace_buffer_drop(dest); 2632 goto out; 2633 } 2634 2635 /* 2636 * We have sufficient space to copy the speculative buffer into the 2637 * primary buffer. First, modify the speculative buffer, filling 2638 * in the timestamp of all entries with the current time. The data 2639 * must have the commit() time rather than the time it was traced, 2640 * so that all entries in the primary buffer are in timestamp order. 2641 */ 2642 timestamp = dtrace_gethrtime(); 2643 saddr = (uintptr_t)src->dtb_tomax; 2644 slimit = saddr + src->dtb_offset; 2645 while (saddr < slimit) { 2646 size_t size; 2647 dtrace_rechdr_t *dtrh = (dtrace_rechdr_t *)saddr; 2648 2649 if (dtrh->dtrh_epid == DTRACE_EPIDNONE) { 2650 saddr += sizeof (dtrace_epid_t); 2651 continue; 2652 } 2653 ASSERT3U(dtrh->dtrh_epid, <=, state->dts_necbs); 2654 size = state->dts_ecbs[dtrh->dtrh_epid - 1]->dte_size; 2655 2656 ASSERT3U(saddr + size, <=, slimit); 2657 ASSERT3U(size, >=, sizeof (dtrace_rechdr_t)); 2658 ASSERT3U(DTRACE_RECORD_LOAD_TIMESTAMP(dtrh), ==, UINT64_MAX); 2659 2660 DTRACE_RECORD_STORE_TIMESTAMP(dtrh, timestamp); 2661 2662 saddr += size; 2663 } 2664 2665 /* 2666 * Copy the buffer across. (Note that this is a 2667 * highly subobtimal bcopy(); in the unlikely event that this becomes 2668 * a serious performance issue, a high-performance DTrace-specific 2669 * bcopy() should obviously be invented.) 2670 */ 2671 daddr = (uintptr_t)dest->dtb_tomax + offs; 2672 dlimit = daddr + src->dtb_offset; 2673 saddr = (uintptr_t)src->dtb_tomax; 2674 2675 /* 2676 * First, the aligned portion. 2677 */ 2678 while (dlimit - daddr >= sizeof (uint64_t)) { 2679 *((uint64_t *)daddr) = *((uint64_t *)saddr); 2680 2681 daddr += sizeof (uint64_t); 2682 saddr += sizeof (uint64_t); 2683 } 2684 2685 /* 2686 * Now any left-over bit... 2687 */ 2688 while (dlimit - daddr) 2689 *((uint8_t *)daddr++) = *((uint8_t *)saddr++); 2690 2691 /* 2692 * Finally, commit the reserved space in the destination buffer. 2693 */ 2694 dest->dtb_offset = offs + src->dtb_offset; 2695 2696 out: 2697 /* 2698 * If we're lucky enough to be the only active CPU on this speculation 2699 * buffer, we can just set the state back to DTRACESPEC_INACTIVE. 2700 */ 2701 if (current == DTRACESPEC_ACTIVE || 2702 (current == DTRACESPEC_ACTIVEONE && new == DTRACESPEC_COMMITTING)) { 2703 uint32_t rval = dtrace_cas32((uint32_t *)&spec->dtsp_state, 2704 DTRACESPEC_COMMITTING, DTRACESPEC_INACTIVE); 2705 2706 ASSERT(rval == DTRACESPEC_COMMITTING); 2707 } 2708 2709 src->dtb_offset = 0; 2710 src->dtb_xamot_drops += src->dtb_drops; 2711 src->dtb_drops = 0; 2712 } 2713 2714 /* 2715 * This routine discards an active speculation. If the specified speculation 2716 * is not in a valid state to perform a discard(), this routine will silently 2717 * do nothing. The state of the specified speculation is transitioned 2718 * according to the state transition diagram outlined in <sys/dtrace_impl.h> 2719 */ 2720 static void 2721 dtrace_speculation_discard(dtrace_state_t *state, processorid_t cpu, 2722 dtrace_specid_t which) 2723 { 2724 dtrace_speculation_t *spec; 2725 dtrace_speculation_state_t current, new; 2726 dtrace_buffer_t *buf; 2727 2728 if (which == 0) 2729 return; 2730 2731 if (which > state->dts_nspeculations) { 2732 cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP; 2733 return; 2734 } 2735 2736 spec = &state->dts_speculations[which - 1]; 2737 buf = &spec->dtsp_buffer[cpu]; 2738 2739 do { 2740 current = spec->dtsp_state; 2741 2742 switch (current) { 2743 case DTRACESPEC_INACTIVE: 2744 case DTRACESPEC_COMMITTINGMANY: 2745 case DTRACESPEC_COMMITTING: 2746 case DTRACESPEC_DISCARDING: 2747 return; 2748 2749 case DTRACESPEC_ACTIVE: 2750 case DTRACESPEC_ACTIVEMANY: 2751 new = DTRACESPEC_DISCARDING; 2752 break; 2753 2754 case DTRACESPEC_ACTIVEONE: 2755 if (buf->dtb_offset != 0) { 2756 new = DTRACESPEC_INACTIVE; 2757 } else { 2758 new = DTRACESPEC_DISCARDING; 2759 } 2760 break; 2761 2762 default: 2763 ASSERT(0); 2764 } 2765 } while (dtrace_cas32((uint32_t *)&spec->dtsp_state, 2766 current, new) != current); 2767 2768 buf->dtb_offset = 0; 2769 buf->dtb_drops = 0; 2770 } 2771 2772 /* 2773 * Note: not called from probe context. This function is called 2774 * asynchronously from cross call context to clean any speculations that are 2775 * in the COMMITTINGMANY or DISCARDING states. These speculations may not be 2776 * transitioned back to the INACTIVE state until all CPUs have cleaned the 2777 * speculation. 2778 */ 2779 static void 2780 dtrace_speculation_clean_here(dtrace_state_t *state) 2781 { 2782 dtrace_icookie_t cookie; 2783 processorid_t cpu = CPU->cpu_id; 2784 dtrace_buffer_t *dest = &state->dts_buffer[cpu]; 2785 dtrace_specid_t i; 2786 2787 cookie = dtrace_interrupt_disable(); 2788 2789 if (dest->dtb_tomax == NULL) { 2790 dtrace_interrupt_enable(cookie); 2791 return; 2792 } 2793 2794 for (i = 0; i < state->dts_nspeculations; i++) { 2795 dtrace_speculation_t *spec = &state->dts_speculations[i]; 2796 dtrace_buffer_t *src = &spec->dtsp_buffer[cpu]; 2797 2798 if (src->dtb_tomax == NULL) 2799 continue; 2800 2801 if (spec->dtsp_state == DTRACESPEC_DISCARDING) { 2802 src->dtb_offset = 0; 2803 continue; 2804 } 2805 2806 if (spec->dtsp_state != DTRACESPEC_COMMITTINGMANY) 2807 continue; 2808 2809 if (src->dtb_offset == 0) 2810 continue; 2811 2812 dtrace_speculation_commit(state, cpu, i + 1); 2813 } 2814 2815 dtrace_interrupt_enable(cookie); 2816 } 2817 2818 /* 2819 * Note: not called from probe context. This function is called 2820 * asynchronously (and at a regular interval) to clean any speculations that 2821 * are in the COMMITTINGMANY or DISCARDING states. If it discovers that there 2822 * is work to be done, it cross calls all CPUs to perform that work; 2823 * COMMITMANY and DISCARDING speculations may not be transitioned back to the 2824 * INACTIVE state until they have been cleaned by all CPUs. 2825 */ 2826 static void 2827 dtrace_speculation_clean(dtrace_state_t *state) 2828 { 2829 int work = 0, rv; 2830 dtrace_specid_t i; 2831 2832 for (i = 0; i < state->dts_nspeculations; i++) { 2833 dtrace_speculation_t *spec = &state->dts_speculations[i]; 2834 2835 ASSERT(!spec->dtsp_cleaning); 2836 2837 if (spec->dtsp_state != DTRACESPEC_DISCARDING && 2838 spec->dtsp_state != DTRACESPEC_COMMITTINGMANY) 2839 continue; 2840 2841 work++; 2842 spec->dtsp_cleaning = 1; 2843 } 2844 2845 if (!work) 2846 return; 2847 2848 dtrace_xcall(DTRACE_CPUALL, 2849 (dtrace_xcall_t)dtrace_speculation_clean_here, state); 2850 2851 /* 2852 * We now know that all CPUs have committed or discarded their 2853 * speculation buffers, as appropriate. We can now set the state 2854 * to inactive. 2855 */ 2856 for (i = 0; i < state->dts_nspeculations; i++) { 2857 dtrace_speculation_t *spec = &state->dts_speculations[i]; 2858 dtrace_speculation_state_t current, new; 2859 2860 if (!spec->dtsp_cleaning) 2861 continue; 2862 2863 current = spec->dtsp_state; 2864 ASSERT(current == DTRACESPEC_DISCARDING || 2865 current == DTRACESPEC_COMMITTINGMANY); 2866 2867 new = DTRACESPEC_INACTIVE; 2868 2869 rv = dtrace_cas32((uint32_t *)&spec->dtsp_state, current, new); 2870 ASSERT(rv == current); 2871 spec->dtsp_cleaning = 0; 2872 } 2873 } 2874 2875 /* 2876 * Called as part of a speculate() to get the speculative buffer associated 2877 * with a given speculation. Returns NULL if the specified speculation is not 2878 * in an ACTIVE state. If the speculation is in the ACTIVEONE state -- and 2879 * the active CPU is not the specified CPU -- the speculation will be 2880 * atomically transitioned into the ACTIVEMANY state. 2881 */ 2882 static dtrace_buffer_t * 2883 dtrace_speculation_buffer(dtrace_state_t *state, processorid_t cpuid, 2884 dtrace_specid_t which) 2885 { 2886 dtrace_speculation_t *spec; 2887 dtrace_speculation_state_t current, new; 2888 dtrace_buffer_t *buf; 2889 2890 if (which == 0) 2891 return (NULL); 2892 2893 if (which > state->dts_nspeculations) { 2894 cpu_core[cpuid].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP; 2895 return (NULL); 2896 } 2897 2898 spec = &state->dts_speculations[which - 1]; 2899 buf = &spec->dtsp_buffer[cpuid]; 2900 2901 do { 2902 current = spec->dtsp_state; 2903 2904 switch (current) { 2905 case DTRACESPEC_INACTIVE: 2906 case DTRACESPEC_COMMITTINGMANY: 2907 case DTRACESPEC_DISCARDING: 2908 return (NULL); 2909 2910 case DTRACESPEC_COMMITTING: 2911 ASSERT(buf->dtb_offset == 0); 2912 return (NULL); 2913 2914 case DTRACESPEC_ACTIVEONE: 2915 /* 2916 * This speculation is currently active on one CPU. 2917 * Check the offset in the buffer; if it's non-zero, 2918 * that CPU must be us (and we leave the state alone). 2919 * If it's zero, assume that we're starting on a new 2920 * CPU -- and change the state to indicate that the 2921 * speculation is active on more than one CPU. 2922 */ 2923 if (buf->dtb_offset != 0) 2924 return (buf); 2925 2926 new = DTRACESPEC_ACTIVEMANY; 2927 break; 2928 2929 case DTRACESPEC_ACTIVEMANY: 2930 return (buf); 2931 2932 case DTRACESPEC_ACTIVE: 2933 new = DTRACESPEC_ACTIVEONE; 2934 break; 2935 2936 default: 2937 ASSERT(0); 2938 } 2939 } while (dtrace_cas32((uint32_t *)&spec->dtsp_state, 2940 current, new) != current); 2941 2942 ASSERT(new == DTRACESPEC_ACTIVEONE || new == DTRACESPEC_ACTIVEMANY); 2943 return (buf); 2944 } 2945 2946 /* 2947 * Return a string. In the event that the user lacks the privilege to access 2948 * arbitrary kernel memory, we copy the string out to scratch memory so that we 2949 * don't fail access checking. 2950 * 2951 * dtrace_dif_variable() uses this routine as a helper for various 2952 * builtin values such as 'execname' and 'probefunc.' 2953 */ 2954 uintptr_t 2955 dtrace_dif_varstr(uintptr_t addr, dtrace_state_t *state, 2956 dtrace_mstate_t *mstate) 2957 { 2958 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 2959 uintptr_t ret; 2960 size_t strsz; 2961 2962 /* 2963 * The easy case: this probe is allowed to read all of memory, so 2964 * we can just return this as a vanilla pointer. 2965 */ 2966 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) 2967 return (addr); 2968 2969 /* 2970 * This is the tougher case: we copy the string in question from 2971 * kernel memory into scratch memory and return it that way: this 2972 * ensures that we won't trip up when access checking tests the 2973 * BYREF return value. 2974 */ 2975 strsz = dtrace_strlen((char *)addr, size) + 1; 2976 2977 if (mstate->dtms_scratch_ptr + strsz > 2978 mstate->dtms_scratch_base + mstate->dtms_scratch_size) { 2979 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 2980 return (NULL); 2981 } 2982 2983 dtrace_strcpy((const void *)addr, (void *)mstate->dtms_scratch_ptr, 2984 strsz); 2985 ret = mstate->dtms_scratch_ptr; 2986 mstate->dtms_scratch_ptr += strsz; 2987 return (ret); 2988 } 2989 2990 /* 2991 * This function implements the DIF emulator's variable lookups. The emulator 2992 * passes a reserved variable identifier and optional built-in array index. 2993 */ 2994 static uint64_t 2995 dtrace_dif_variable(dtrace_mstate_t *mstate, dtrace_state_t *state, uint64_t v, 2996 uint64_t ndx) 2997 { 2998 /* 2999 * If we're accessing one of the uncached arguments, we'll turn this 3000 * into a reference in the args array. 3001 */ 3002 if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9) { 3003 ndx = v - DIF_VAR_ARG0; 3004 v = DIF_VAR_ARGS; 3005 } 3006 3007 switch (v) { 3008 case DIF_VAR_ARGS: 3009 if (!(mstate->dtms_access & DTRACE_ACCESS_ARGS)) { 3010 cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= 3011 CPU_DTRACE_KPRIV; 3012 return (0); 3013 } 3014 3015 ASSERT(mstate->dtms_present & DTRACE_MSTATE_ARGS); 3016 if (ndx >= sizeof (mstate->dtms_arg) / 3017 sizeof (mstate->dtms_arg[0])) { 3018 int aframes = mstate->dtms_probe->dtpr_aframes + 2; 3019 dtrace_provider_t *pv; 3020 uint64_t val; 3021 3022 pv = mstate->dtms_probe->dtpr_provider; 3023 if (pv->dtpv_pops.dtps_getargval != NULL) 3024 val = pv->dtpv_pops.dtps_getargval(pv->dtpv_arg, 3025 mstate->dtms_probe->dtpr_id, 3026 mstate->dtms_probe->dtpr_arg, ndx, aframes); 3027 else 3028 val = dtrace_getarg(ndx, aframes); 3029 3030 /* 3031 * This is regrettably required to keep the compiler 3032 * from tail-optimizing the call to dtrace_getarg(). 3033 * The condition always evaluates to true, but the 3034 * compiler has no way of figuring that out a priori. 3035 * (None of this would be necessary if the compiler 3036 * could be relied upon to _always_ tail-optimize 3037 * the call to dtrace_getarg() -- but it can't.) 3038 */ 3039 if (mstate->dtms_probe != NULL) 3040 return (val); 3041 3042 ASSERT(0); 3043 } 3044 3045 return (mstate->dtms_arg[ndx]); 3046 3047 case DIF_VAR_UREGS: { 3048 klwp_t *lwp; 3049 3050 if (!dtrace_priv_proc(state, mstate)) 3051 return (0); 3052 3053 if ((lwp = curthread->t_lwp) == NULL) { 3054 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); 3055 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = NULL; 3056 return (0); 3057 } 3058 3059 return (dtrace_getreg(lwp->lwp_regs, ndx)); 3060 } 3061 3062 case DIF_VAR_VMREGS: { 3063 uint64_t rval; 3064 3065 if (!dtrace_priv_kernel(state)) 3066 return (0); 3067 3068 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 3069 3070 rval = dtrace_getvmreg(ndx, 3071 &cpu_core[CPU->cpu_id].cpuc_dtrace_flags); 3072 3073 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 3074 3075 return (rval); 3076 } 3077 3078 case DIF_VAR_CURTHREAD: 3079 if (!dtrace_priv_proc(state, mstate)) 3080 return (0); 3081 return ((uint64_t)(uintptr_t)curthread); 3082 3083 case DIF_VAR_TIMESTAMP: 3084 if (!(mstate->dtms_present & DTRACE_MSTATE_TIMESTAMP)) { 3085 mstate->dtms_timestamp = dtrace_gethrtime(); 3086 mstate->dtms_present |= DTRACE_MSTATE_TIMESTAMP; 3087 } 3088 return (mstate->dtms_timestamp); 3089 3090 case DIF_VAR_VTIMESTAMP: 3091 ASSERT(dtrace_vtime_references != 0); 3092 return (curthread->t_dtrace_vtime); 3093 3094 case DIF_VAR_WALLTIMESTAMP: 3095 if (!(mstate->dtms_present & DTRACE_MSTATE_WALLTIMESTAMP)) { 3096 mstate->dtms_walltimestamp = dtrace_gethrestime(); 3097 mstate->dtms_present |= DTRACE_MSTATE_WALLTIMESTAMP; 3098 } 3099 return (mstate->dtms_walltimestamp); 3100 3101 case DIF_VAR_IPL: 3102 if (!dtrace_priv_kernel(state)) 3103 return (0); 3104 if (!(mstate->dtms_present & DTRACE_MSTATE_IPL)) { 3105 mstate->dtms_ipl = dtrace_getipl(); 3106 mstate->dtms_present |= DTRACE_MSTATE_IPL; 3107 } 3108 return (mstate->dtms_ipl); 3109 3110 case DIF_VAR_EPID: 3111 ASSERT(mstate->dtms_present & DTRACE_MSTATE_EPID); 3112 return (mstate->dtms_epid); 3113 3114 case DIF_VAR_ID: 3115 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); 3116 return (mstate->dtms_probe->dtpr_id); 3117 3118 case DIF_VAR_STACKDEPTH: 3119 if (!dtrace_priv_kernel(state)) 3120 return (0); 3121 if (!(mstate->dtms_present & DTRACE_MSTATE_STACKDEPTH)) { 3122 int aframes = mstate->dtms_probe->dtpr_aframes + 2; 3123 3124 mstate->dtms_stackdepth = dtrace_getstackdepth(aframes); 3125 mstate->dtms_present |= DTRACE_MSTATE_STACKDEPTH; 3126 } 3127 return (mstate->dtms_stackdepth); 3128 3129 case DIF_VAR_USTACKDEPTH: 3130 if (!dtrace_priv_proc(state, mstate)) 3131 return (0); 3132 if (!(mstate->dtms_present & DTRACE_MSTATE_USTACKDEPTH)) { 3133 /* 3134 * See comment in DIF_VAR_PID. 3135 */ 3136 if (DTRACE_ANCHORED(mstate->dtms_probe) && 3137 CPU_ON_INTR(CPU)) { 3138 mstate->dtms_ustackdepth = 0; 3139 } else { 3140 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 3141 mstate->dtms_ustackdepth = 3142 dtrace_getustackdepth(); 3143 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 3144 } 3145 mstate->dtms_present |= DTRACE_MSTATE_USTACKDEPTH; 3146 } 3147 return (mstate->dtms_ustackdepth); 3148 3149 case DIF_VAR_CALLER: 3150 if (!dtrace_priv_kernel(state)) 3151 return (0); 3152 if (!(mstate->dtms_present & DTRACE_MSTATE_CALLER)) { 3153 int aframes = mstate->dtms_probe->dtpr_aframes + 2; 3154 3155 if (!DTRACE_ANCHORED(mstate->dtms_probe)) { 3156 /* 3157 * If this is an unanchored probe, we are 3158 * required to go through the slow path: 3159 * dtrace_caller() only guarantees correct 3160 * results for anchored probes. 3161 */ 3162 pc_t caller[2]; 3163 3164 dtrace_getpcstack(caller, 2, aframes, 3165 (uint32_t *)(uintptr_t)mstate->dtms_arg[0]); 3166 mstate->dtms_caller = caller[1]; 3167 } else if ((mstate->dtms_caller = 3168 dtrace_caller(aframes)) == -1) { 3169 /* 3170 * We have failed to do this the quick way; 3171 * we must resort to the slower approach of 3172 * calling dtrace_getpcstack(). 3173 */ 3174 pc_t caller; 3175 3176 dtrace_getpcstack(&caller, 1, aframes, NULL); 3177 mstate->dtms_caller = caller; 3178 } 3179 3180 mstate->dtms_present |= DTRACE_MSTATE_CALLER; 3181 } 3182 return (mstate->dtms_caller); 3183 3184 case DIF_VAR_UCALLER: 3185 if (!dtrace_priv_proc(state, mstate)) 3186 return (0); 3187 3188 if (!(mstate->dtms_present & DTRACE_MSTATE_UCALLER)) { 3189 uint64_t ustack[3]; 3190 3191 /* 3192 * dtrace_getupcstack() fills in the first uint64_t 3193 * with the current PID. The second uint64_t will 3194 * be the program counter at user-level. The third 3195 * uint64_t will contain the caller, which is what 3196 * we're after. 3197 */ 3198 ustack[2] = NULL; 3199 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 3200 dtrace_getupcstack(ustack, 3); 3201 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 3202 mstate->dtms_ucaller = ustack[2]; 3203 mstate->dtms_present |= DTRACE_MSTATE_UCALLER; 3204 } 3205 3206 return (mstate->dtms_ucaller); 3207 3208 case DIF_VAR_PROBEPROV: 3209 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); 3210 return (dtrace_dif_varstr( 3211 (uintptr_t)mstate->dtms_probe->dtpr_provider->dtpv_name, 3212 state, mstate)); 3213 3214 case DIF_VAR_PROBEMOD: 3215 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); 3216 return (dtrace_dif_varstr( 3217 (uintptr_t)mstate->dtms_probe->dtpr_mod, 3218 state, mstate)); 3219 3220 case DIF_VAR_PROBEFUNC: 3221 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); 3222 return (dtrace_dif_varstr( 3223 (uintptr_t)mstate->dtms_probe->dtpr_func, 3224 state, mstate)); 3225 3226 case DIF_VAR_PROBENAME: 3227 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); 3228 return (dtrace_dif_varstr( 3229 (uintptr_t)mstate->dtms_probe->dtpr_name, 3230 state, mstate)); 3231 3232 case DIF_VAR_PID: 3233 if (!dtrace_priv_proc(state, mstate)) 3234 return (0); 3235 3236 /* 3237 * Note that we are assuming that an unanchored probe is 3238 * always due to a high-level interrupt. (And we're assuming 3239 * that there is only a single high level interrupt.) 3240 */ 3241 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3242 return (pid0.pid_id); 3243 3244 /* 3245 * It is always safe to dereference one's own t_procp pointer: 3246 * it always points to a valid, allocated proc structure. 3247 * Further, it is always safe to dereference the p_pidp member 3248 * of one's own proc structure. (These are truisms becuase 3249 * threads and processes don't clean up their own state -- 3250 * they leave that task to whomever reaps them.) 3251 */ 3252 return ((uint64_t)curthread->t_procp->p_pidp->pid_id); 3253 3254 case DIF_VAR_PPID: 3255 if (!dtrace_priv_proc(state, mstate)) 3256 return (0); 3257 3258 /* 3259 * See comment in DIF_VAR_PID. 3260 */ 3261 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3262 return (pid0.pid_id); 3263 3264 /* 3265 * It is always safe to dereference one's own t_procp pointer: 3266 * it always points to a valid, allocated proc structure. 3267 * (This is true because threads don't clean up their own 3268 * state -- they leave that task to whomever reaps them.) 3269 */ 3270 return ((uint64_t)curthread->t_procp->p_ppid); 3271 3272 case DIF_VAR_TID: 3273 /* 3274 * See comment in DIF_VAR_PID. 3275 */ 3276 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3277 return (0); 3278 3279 return ((uint64_t)curthread->t_tid); 3280 3281 case DIF_VAR_EXECNAME: 3282 if (!dtrace_priv_proc(state, mstate)) 3283 return (0); 3284 3285 /* 3286 * See comment in DIF_VAR_PID. 3287 */ 3288 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3289 return ((uint64_t)(uintptr_t)p0.p_user.u_comm); 3290 3291 /* 3292 * It is always safe to dereference one's own t_procp pointer: 3293 * it always points to a valid, allocated proc structure. 3294 * (This is true because threads don't clean up their own 3295 * state -- they leave that task to whomever reaps them.) 3296 */ 3297 return (dtrace_dif_varstr( 3298 (uintptr_t)curthread->t_procp->p_user.u_comm, 3299 state, mstate)); 3300 3301 case DIF_VAR_ZONENAME: 3302 if (!dtrace_priv_proc(state, mstate)) 3303 return (0); 3304 3305 /* 3306 * See comment in DIF_VAR_PID. 3307 */ 3308 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3309 return ((uint64_t)(uintptr_t)p0.p_zone->zone_name); 3310 3311 /* 3312 * It is always safe to dereference one's own t_procp pointer: 3313 * it always points to a valid, allocated proc structure. 3314 * (This is true because threads don't clean up their own 3315 * state -- they leave that task to whomever reaps them.) 3316 */ 3317 return (dtrace_dif_varstr( 3318 (uintptr_t)curthread->t_procp->p_zone->zone_name, 3319 state, mstate)); 3320 3321 case DIF_VAR_UID: 3322 if (!dtrace_priv_proc(state, mstate)) 3323 return (0); 3324 3325 /* 3326 * See comment in DIF_VAR_PID. 3327 */ 3328 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3329 return ((uint64_t)p0.p_cred->cr_uid); 3330 3331 /* 3332 * It is always safe to dereference one's own t_procp pointer: 3333 * it always points to a valid, allocated proc structure. 3334 * (This is true because threads don't clean up their own 3335 * state -- they leave that task to whomever reaps them.) 3336 * 3337 * Additionally, it is safe to dereference one's own process 3338 * credential, since this is never NULL after process birth. 3339 */ 3340 return ((uint64_t)curthread->t_procp->p_cred->cr_uid); 3341 3342 case DIF_VAR_GID: 3343 if (!dtrace_priv_proc(state, mstate)) 3344 return (0); 3345 3346 /* 3347 * See comment in DIF_VAR_PID. 3348 */ 3349 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3350 return ((uint64_t)p0.p_cred->cr_gid); 3351 3352 /* 3353 * It is always safe to dereference one's own t_procp pointer: 3354 * it always points to a valid, allocated proc structure. 3355 * (This is true because threads don't clean up their own 3356 * state -- they leave that task to whomever reaps them.) 3357 * 3358 * Additionally, it is safe to dereference one's own process 3359 * credential, since this is never NULL after process birth. 3360 */ 3361 return ((uint64_t)curthread->t_procp->p_cred->cr_gid); 3362 3363 case DIF_VAR_ERRNO: { 3364 klwp_t *lwp; 3365 if (!dtrace_priv_proc(state, mstate)) 3366 return (0); 3367 3368 /* 3369 * See comment in DIF_VAR_PID. 3370 */ 3371 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3372 return (0); 3373 3374 /* 3375 * It is always safe to dereference one's own t_lwp pointer in 3376 * the event that this pointer is non-NULL. (This is true 3377 * because threads and lwps don't clean up their own state -- 3378 * they leave that task to whomever reaps them.) 3379 */ 3380 if ((lwp = curthread->t_lwp) == NULL) 3381 return (0); 3382 3383 return ((uint64_t)lwp->lwp_errno); 3384 } 3385 default: 3386 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); 3387 return (0); 3388 } 3389 } 3390 3391 3392 typedef enum dtrace_json_state { 3393 DTRACE_JSON_REST = 1, 3394 DTRACE_JSON_OBJECT, 3395 DTRACE_JSON_STRING, 3396 DTRACE_JSON_STRING_ESCAPE, 3397 DTRACE_JSON_STRING_ESCAPE_UNICODE, 3398 DTRACE_JSON_COLON, 3399 DTRACE_JSON_COMMA, 3400 DTRACE_JSON_VALUE, 3401 DTRACE_JSON_IDENTIFIER, 3402 DTRACE_JSON_NUMBER, 3403 DTRACE_JSON_NUMBER_FRAC, 3404 DTRACE_JSON_NUMBER_EXP, 3405 DTRACE_JSON_COLLECT_OBJECT 3406 } dtrace_json_state_t; 3407 3408 /* 3409 * This function possesses just enough knowledge about JSON to extract a single 3410 * value from a JSON string and store it in the scratch buffer. It is able 3411 * to extract nested object values, and members of arrays by index. 3412 * 3413 * elemlist is a list of JSON keys, stored as packed NUL-terminated strings, to 3414 * be looked up as we descend into the object tree. e.g. 3415 * 3416 * foo[0].bar.baz[32] --> "foo" NUL "0" NUL "bar" NUL "baz" NUL "32" NUL 3417 * with nelems = 5. 3418 * 3419 * The run time of this function must be bounded above by strsize to limit the 3420 * amount of work done in probe context. As such, it is implemented as a 3421 * simple state machine, reading one character at a time using safe loads 3422 * until we find the requested element, hit a parsing error or run off the 3423 * end of the object or string. 3424 * 3425 * As there is no way for a subroutine to return an error without interrupting 3426 * clause execution, we simply return NULL in the event of a missing key or any 3427 * other error condition. Each NULL return in this function is commented with 3428 * the error condition it represents -- parsing or otherwise. 3429 * 3430 * The set of states for the state machine closely matches the JSON 3431 * specification (http://json.org/). Briefly: 3432 * 3433 * DTRACE_JSON_REST: 3434 * Skip whitespace until we find either a top-level Object, moving 3435 * to DTRACE_JSON_OBJECT; or an Array, moving to DTRACE_JSON_VALUE. 3436 * 3437 * DTRACE_JSON_OBJECT: 3438 * Locate the next key String in an Object. Sets a flag to denote 3439 * the next String as a key string and moves to DTRACE_JSON_STRING. 3440 * 3441 * DTRACE_JSON_COLON: 3442 * Skip whitespace until we find the colon that separates key Strings 3443 * from their values. Once found, move to DTRACE_JSON_VALUE. 3444 * 3445 * DTRACE_JSON_VALUE: 3446 * Detects the type of the next value (String, Number, Identifier, Object 3447 * or Array) and routes to the states that process that type. Here we also 3448 * deal with the element selector list if we are requested to traverse down 3449 * into the object tree. 3450 * 3451 * DTRACE_JSON_COMMA: 3452 * Skip whitespace until we find the comma that separates key-value pairs 3453 * in Objects (returning to DTRACE_JSON_OBJECT) or values in Arrays 3454 * (similarly DTRACE_JSON_VALUE). All following literal value processing 3455 * states return to this state at the end of their value, unless otherwise 3456 * noted. 3457 * 3458 * DTRACE_JSON_NUMBER, DTRACE_JSON_NUMBER_FRAC, DTRACE_JSON_NUMBER_EXP: 3459 * Processes a Number literal from the JSON, including any exponent 3460 * component that may be present. Numbers are returned as strings, which 3461 * may be passed to strtoll() if an integer is required. 3462 * 3463 * DTRACE_JSON_IDENTIFIER: 3464 * Processes a "true", "false" or "null" literal in the JSON. 3465 * 3466 * DTRACE_JSON_STRING, DTRACE_JSON_STRING_ESCAPE, 3467 * DTRACE_JSON_STRING_ESCAPE_UNICODE: 3468 * Processes a String literal from the JSON, whether the String denotes 3469 * a key, a value or part of a larger Object. Handles all escape sequences 3470 * present in the specification, including four-digit unicode characters, 3471 * but merely includes the escape sequence without converting it to the 3472 * actual escaped character. If the String is flagged as a key, we 3473 * move to DTRACE_JSON_COLON rather than DTRACE_JSON_COMMA. 3474 * 3475 * DTRACE_JSON_COLLECT_OBJECT: 3476 * This state collects an entire Object (or Array), correctly handling 3477 * embedded strings. If the full element selector list matches this nested 3478 * object, we return the Object in full as a string. If not, we use this 3479 * state to skip to the next value at this level and continue processing. 3480 * 3481 * NOTE: This function uses various macros from strtolctype.h to manipulate 3482 * digit values, etc -- these have all been checked to ensure they make 3483 * no additional function calls. 3484 */ 3485 static char * 3486 dtrace_json(uint64_t size, uintptr_t json, char *elemlist, int nelems, 3487 char *dest) 3488 { 3489 dtrace_json_state_t state = DTRACE_JSON_REST; 3490 int64_t array_elem = INT64_MIN; 3491 int64_t array_pos = 0; 3492 uint8_t escape_unicount = 0; 3493 boolean_t string_is_key = B_FALSE; 3494 boolean_t collect_object = B_FALSE; 3495 boolean_t found_key = B_FALSE; 3496 boolean_t in_array = B_FALSE; 3497 uint32_t braces = 0, brackets = 0; 3498 char *elem = elemlist; 3499 char *dd = dest; 3500 uintptr_t cur; 3501 3502 for (cur = json; cur < json + size; cur++) { 3503 char cc = dtrace_load8(cur); 3504 if (cc == '\0') 3505 return (NULL); 3506 3507 switch (state) { 3508 case DTRACE_JSON_REST: 3509 if (isspace(cc)) 3510 break; 3511 3512 if (cc == '{') { 3513 state = DTRACE_JSON_OBJECT; 3514 break; 3515 } 3516 3517 if (cc == '[') { 3518 in_array = B_TRUE; 3519 array_pos = 0; 3520 array_elem = dtrace_strtoll(elem, 10, size); 3521 found_key = array_elem == 0 ? B_TRUE : B_FALSE; 3522 state = DTRACE_JSON_VALUE; 3523 break; 3524 } 3525 3526 /* 3527 * ERROR: expected to find a top-level object or array. 3528 */ 3529 return (NULL); 3530 case DTRACE_JSON_OBJECT: 3531 if (isspace(cc)) 3532 break; 3533 3534 if (cc == '"') { 3535 state = DTRACE_JSON_STRING; 3536 string_is_key = B_TRUE; 3537 break; 3538 } 3539 3540 /* 3541 * ERROR: either the object did not start with a key 3542 * string, or we've run off the end of the object 3543 * without finding the requested key. 3544 */ 3545 return (NULL); 3546 case DTRACE_JSON_STRING: 3547 if (cc == '\\') { 3548 *dd++ = '\\'; 3549 state = DTRACE_JSON_STRING_ESCAPE; 3550 break; 3551 } 3552 3553 if (cc == '"') { 3554 if (collect_object) { 3555 /* 3556 * We don't reset the dest here, as 3557 * the string is part of a larger 3558 * object being collected. 3559 */ 3560 *dd++ = cc; 3561 collect_object = B_FALSE; 3562 state = DTRACE_JSON_COLLECT_OBJECT; 3563 break; 3564 } 3565 *dd = '\0'; 3566 dd = dest; /* reset string buffer */ 3567 if (string_is_key) { 3568 if (dtrace_strncmp(dest, elem, 3569 size) == 0) 3570 found_key = B_TRUE; 3571 } else if (found_key) { 3572 if (nelems > 1) { 3573 /* 3574 * We expected an object, not 3575 * this string. 3576 */ 3577 return (NULL); 3578 } 3579 return (dest); 3580 } 3581 state = string_is_key ? DTRACE_JSON_COLON : 3582 DTRACE_JSON_COMMA; 3583 string_is_key = B_FALSE; 3584 break; 3585 } 3586 3587 *dd++ = cc; 3588 break; 3589 case DTRACE_JSON_STRING_ESCAPE: 3590 *dd++ = cc; 3591 if (cc == 'u') { 3592 escape_unicount = 0; 3593 state = DTRACE_JSON_STRING_ESCAPE_UNICODE; 3594 } else { 3595 state = DTRACE_JSON_STRING; 3596 } 3597 break; 3598 case DTRACE_JSON_STRING_ESCAPE_UNICODE: 3599 if (!isxdigit(cc)) { 3600 /* 3601 * ERROR: invalid unicode escape, expected 3602 * four valid hexidecimal digits. 3603 */ 3604 return (NULL); 3605 } 3606 3607 *dd++ = cc; 3608 if (++escape_unicount == 4) 3609 state = DTRACE_JSON_STRING; 3610 break; 3611 case DTRACE_JSON_COLON: 3612 if (isspace(cc)) 3613 break; 3614 3615 if (cc == ':') { 3616 state = DTRACE_JSON_VALUE; 3617 break; 3618 } 3619 3620 /* 3621 * ERROR: expected a colon. 3622 */ 3623 return (NULL); 3624 case DTRACE_JSON_COMMA: 3625 if (isspace(cc)) 3626 break; 3627 3628 if (cc == ',') { 3629 if (in_array) { 3630 state = DTRACE_JSON_VALUE; 3631 if (++array_pos == array_elem) 3632 found_key = B_TRUE; 3633 } else { 3634 state = DTRACE_JSON_OBJECT; 3635 } 3636 break; 3637 } 3638 3639 /* 3640 * ERROR: either we hit an unexpected character, or 3641 * we reached the end of the object or array without 3642 * finding the requested key. 3643 */ 3644 return (NULL); 3645 case DTRACE_JSON_IDENTIFIER: 3646 if (islower(cc)) { 3647 *dd++ = cc; 3648 break; 3649 } 3650 3651 *dd = '\0'; 3652 dd = dest; /* reset string buffer */ 3653 3654 if (dtrace_strncmp(dest, "true", 5) == 0 || 3655 dtrace_strncmp(dest, "false", 6) == 0 || 3656 dtrace_strncmp(dest, "null", 5) == 0) { 3657 if (found_key) { 3658 if (nelems > 1) { 3659 /* 3660 * ERROR: We expected an object, 3661 * not this identifier. 3662 */ 3663 return (NULL); 3664 } 3665 return (dest); 3666 } else { 3667 cur--; 3668 state = DTRACE_JSON_COMMA; 3669 break; 3670 } 3671 } 3672 3673 /* 3674 * ERROR: we did not recognise the identifier as one 3675 * of those in the JSON specification. 3676 */ 3677 return (NULL); 3678 case DTRACE_JSON_NUMBER: 3679 if (cc == '.') { 3680 *dd++ = cc; 3681 state = DTRACE_JSON_NUMBER_FRAC; 3682 break; 3683 } 3684 3685 if (cc == 'x' || cc == 'X') { 3686 /* 3687 * ERROR: specification explicitly excludes 3688 * hexidecimal or octal numbers. 3689 */ 3690 return (NULL); 3691 } 3692 3693 /* FALLTHRU */ 3694 case DTRACE_JSON_NUMBER_FRAC: 3695 if (cc == 'e' || cc == 'E') { 3696 *dd++ = cc; 3697 state = DTRACE_JSON_NUMBER_EXP; 3698 break; 3699 } 3700 3701 if (cc == '+' || cc == '-') { 3702 /* 3703 * ERROR: expect sign as part of exponent only. 3704 */ 3705 return (NULL); 3706 } 3707 /* FALLTHRU */ 3708 case DTRACE_JSON_NUMBER_EXP: 3709 if (isdigit(cc) || cc == '+' || cc == '-') { 3710 *dd++ = cc; 3711 break; 3712 } 3713 3714 *dd = '\0'; 3715 dd = dest; /* reset string buffer */ 3716 if (found_key) { 3717 if (nelems > 1) { 3718 /* 3719 * ERROR: We expected an object, not 3720 * this number. 3721 */ 3722 return (NULL); 3723 } 3724 return (dest); 3725 } 3726 3727 cur--; 3728 state = DTRACE_JSON_COMMA; 3729 break; 3730 case DTRACE_JSON_VALUE: 3731 if (isspace(cc)) 3732 break; 3733 3734 if (cc == '{' || cc == '[') { 3735 if (nelems > 1 && found_key) { 3736 in_array = cc == '[' ? B_TRUE : B_FALSE; 3737 /* 3738 * If our element selector directs us 3739 * to descend into this nested object, 3740 * then move to the next selector 3741 * element in the list and restart the 3742 * state machine. 3743 */ 3744 while (*elem != '\0') 3745 elem++; 3746 elem++; /* skip the inter-element NUL */ 3747 nelems--; 3748 dd = dest; 3749 if (in_array) { 3750 state = DTRACE_JSON_VALUE; 3751 array_pos = 0; 3752 array_elem = dtrace_strtoll( 3753 elem, 10, size); 3754 found_key = array_elem == 0 ? 3755 B_TRUE : B_FALSE; 3756 } else { 3757 found_key = B_FALSE; 3758 state = DTRACE_JSON_OBJECT; 3759 } 3760 break; 3761 } 3762 3763 /* 3764 * Otherwise, we wish to either skip this 3765 * nested object or return it in full. 3766 */ 3767 if (cc == '[') 3768 brackets = 1; 3769 else 3770 braces = 1; 3771 *dd++ = cc; 3772 state = DTRACE_JSON_COLLECT_OBJECT; 3773 break; 3774 } 3775 3776 if (cc == '"') { 3777 state = DTRACE_JSON_STRING; 3778 break; 3779 } 3780 3781 if (islower(cc)) { 3782 /* 3783 * Here we deal with true, false and null. 3784 */ 3785 *dd++ = cc; 3786 state = DTRACE_JSON_IDENTIFIER; 3787 break; 3788 } 3789 3790 if (cc == '-' || isdigit(cc)) { 3791 *dd++ = cc; 3792 state = DTRACE_JSON_NUMBER; 3793 break; 3794 } 3795 3796 /* 3797 * ERROR: unexpected character at start of value. 3798 */ 3799 return (NULL); 3800 case DTRACE_JSON_COLLECT_OBJECT: 3801 if (cc == '\0') 3802 /* 3803 * ERROR: unexpected end of input. 3804 */ 3805 return (NULL); 3806 3807 *dd++ = cc; 3808 if (cc == '"') { 3809 collect_object = B_TRUE; 3810 state = DTRACE_JSON_STRING; 3811 break; 3812 } 3813 3814 if (cc == ']') { 3815 if (brackets-- == 0) { 3816 /* 3817 * ERROR: unbalanced brackets. 3818 */ 3819 return (NULL); 3820 } 3821 } else if (cc == '}') { 3822 if (braces-- == 0) { 3823 /* 3824 * ERROR: unbalanced braces. 3825 */ 3826 return (NULL); 3827 } 3828 } else if (cc == '{') { 3829 braces++; 3830 } else if (cc == '[') { 3831 brackets++; 3832 } 3833 3834 if (brackets == 0 && braces == 0) { 3835 if (found_key) { 3836 *dd = '\0'; 3837 return (dest); 3838 } 3839 dd = dest; /* reset string buffer */ 3840 state = DTRACE_JSON_COMMA; 3841 } 3842 break; 3843 } 3844 } 3845 return (NULL); 3846 } 3847 3848 /* 3849 * Emulate the execution of DTrace ID subroutines invoked by the call opcode. 3850 * Notice that we don't bother validating the proper number of arguments or 3851 * their types in the tuple stack. This isn't needed because all argument 3852 * interpretation is safe because of our load safety -- the worst that can 3853 * happen is that a bogus program can obtain bogus results. 3854 */ 3855 static void 3856 dtrace_dif_subr(uint_t subr, uint_t rd, uint64_t *regs, 3857 dtrace_key_t *tupregs, int nargs, 3858 dtrace_mstate_t *mstate, dtrace_state_t *state) 3859 { 3860 volatile uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags; 3861 volatile uintptr_t *illval = &cpu_core[CPU->cpu_id].cpuc_dtrace_illval; 3862 dtrace_vstate_t *vstate = &state->dts_vstate; 3863 3864 union { 3865 mutex_impl_t mi; 3866 uint64_t mx; 3867 } m; 3868 3869 union { 3870 krwlock_t ri; 3871 uintptr_t rw; 3872 } r; 3873 3874 switch (subr) { 3875 case DIF_SUBR_RAND: 3876 regs[rd] = (dtrace_gethrtime() * 2416 + 374441) % 1771875; 3877 break; 3878 3879 case DIF_SUBR_MUTEX_OWNED: 3880 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t), 3881 mstate, vstate)) { 3882 regs[rd] = NULL; 3883 break; 3884 } 3885 3886 m.mx = dtrace_load64(tupregs[0].dttk_value); 3887 if (MUTEX_TYPE_ADAPTIVE(&m.mi)) 3888 regs[rd] = MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER; 3889 else 3890 regs[rd] = LOCK_HELD(&m.mi.m_spin.m_spinlock); 3891 break; 3892 3893 case DIF_SUBR_MUTEX_OWNER: 3894 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t), 3895 mstate, vstate)) { 3896 regs[rd] = NULL; 3897 break; 3898 } 3899 3900 m.mx = dtrace_load64(tupregs[0].dttk_value); 3901 if (MUTEX_TYPE_ADAPTIVE(&m.mi) && 3902 MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER) 3903 regs[rd] = (uintptr_t)MUTEX_OWNER(&m.mi); 3904 else 3905 regs[rd] = 0; 3906 break; 3907 3908 case DIF_SUBR_MUTEX_TYPE_ADAPTIVE: 3909 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t), 3910 mstate, vstate)) { 3911 regs[rd] = NULL; 3912 break; 3913 } 3914 3915 m.mx = dtrace_load64(tupregs[0].dttk_value); 3916 regs[rd] = MUTEX_TYPE_ADAPTIVE(&m.mi); 3917 break; 3918 3919 case DIF_SUBR_MUTEX_TYPE_SPIN: 3920 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t), 3921 mstate, vstate)) { 3922 regs[rd] = NULL; 3923 break; 3924 } 3925 3926 m.mx = dtrace_load64(tupregs[0].dttk_value); 3927 regs[rd] = MUTEX_TYPE_SPIN(&m.mi); 3928 break; 3929 3930 case DIF_SUBR_RW_READ_HELD: { 3931 uintptr_t tmp; 3932 3933 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t), 3934 mstate, vstate)) { 3935 regs[rd] = NULL; 3936 break; 3937 } 3938 3939 r.rw = dtrace_loadptr(tupregs[0].dttk_value); 3940 regs[rd] = _RW_READ_HELD(&r.ri, tmp); 3941 break; 3942 } 3943 3944 case DIF_SUBR_RW_WRITE_HELD: 3945 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t), 3946 mstate, vstate)) { 3947 regs[rd] = NULL; 3948 break; 3949 } 3950 3951 r.rw = dtrace_loadptr(tupregs[0].dttk_value); 3952 regs[rd] = _RW_WRITE_HELD(&r.ri); 3953 break; 3954 3955 case DIF_SUBR_RW_ISWRITER: 3956 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t), 3957 mstate, vstate)) { 3958 regs[rd] = NULL; 3959 break; 3960 } 3961 3962 r.rw = dtrace_loadptr(tupregs[0].dttk_value); 3963 regs[rd] = _RW_ISWRITER(&r.ri); 3964 break; 3965 3966 case DIF_SUBR_BCOPY: { 3967 /* 3968 * We need to be sure that the destination is in the scratch 3969 * region -- no other region is allowed. 3970 */ 3971 uintptr_t src = tupregs[0].dttk_value; 3972 uintptr_t dest = tupregs[1].dttk_value; 3973 size_t size = tupregs[2].dttk_value; 3974 3975 if (!dtrace_inscratch(dest, size, mstate)) { 3976 *flags |= CPU_DTRACE_BADADDR; 3977 *illval = regs[rd]; 3978 break; 3979 } 3980 3981 if (!dtrace_canload(src, size, mstate, vstate)) { 3982 regs[rd] = NULL; 3983 break; 3984 } 3985 3986 dtrace_bcopy((void *)src, (void *)dest, size); 3987 break; 3988 } 3989 3990 case DIF_SUBR_ALLOCA: 3991 case DIF_SUBR_COPYIN: { 3992 uintptr_t dest = P2ROUNDUP(mstate->dtms_scratch_ptr, 8); 3993 uint64_t size = 3994 tupregs[subr == DIF_SUBR_ALLOCA ? 0 : 1].dttk_value; 3995 size_t scratch_size = (dest - mstate->dtms_scratch_ptr) + size; 3996 3997 /* 3998 * This action doesn't require any credential checks since 3999 * probes will not activate in user contexts to which the 4000 * enabling user does not have permissions. 4001 */ 4002 4003 /* 4004 * Rounding up the user allocation size could have overflowed 4005 * a large, bogus allocation (like -1ULL) to 0. 4006 */ 4007 if (scratch_size < size || 4008 !DTRACE_INSCRATCH(mstate, scratch_size)) { 4009 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4010 regs[rd] = NULL; 4011 break; 4012 } 4013 4014 if (subr == DIF_SUBR_COPYIN) { 4015 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4016 dtrace_copyin(tupregs[0].dttk_value, dest, size, flags); 4017 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4018 } 4019 4020 mstate->dtms_scratch_ptr += scratch_size; 4021 regs[rd] = dest; 4022 break; 4023 } 4024 4025 case DIF_SUBR_COPYINTO: { 4026 uint64_t size = tupregs[1].dttk_value; 4027 uintptr_t dest = tupregs[2].dttk_value; 4028 4029 /* 4030 * This action doesn't require any credential checks since 4031 * probes will not activate in user contexts to which the 4032 * enabling user does not have permissions. 4033 */ 4034 if (!dtrace_inscratch(dest, size, mstate)) { 4035 *flags |= CPU_DTRACE_BADADDR; 4036 *illval = regs[rd]; 4037 break; 4038 } 4039 4040 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4041 dtrace_copyin(tupregs[0].dttk_value, dest, size, flags); 4042 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4043 break; 4044 } 4045 4046 case DIF_SUBR_COPYINSTR: { 4047 uintptr_t dest = mstate->dtms_scratch_ptr; 4048 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 4049 4050 if (nargs > 1 && tupregs[1].dttk_value < size) 4051 size = tupregs[1].dttk_value + 1; 4052 4053 /* 4054 * This action doesn't require any credential checks since 4055 * probes will not activate in user contexts to which the 4056 * enabling user does not have permissions. 4057 */ 4058 if (!DTRACE_INSCRATCH(mstate, size)) { 4059 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4060 regs[rd] = NULL; 4061 break; 4062 } 4063 4064 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4065 dtrace_copyinstr(tupregs[0].dttk_value, dest, size, flags); 4066 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4067 4068 ((char *)dest)[size - 1] = '\0'; 4069 mstate->dtms_scratch_ptr += size; 4070 regs[rd] = dest; 4071 break; 4072 } 4073 4074 case DIF_SUBR_MSGSIZE: 4075 case DIF_SUBR_MSGDSIZE: { 4076 uintptr_t baddr = tupregs[0].dttk_value, daddr; 4077 uintptr_t wptr, rptr; 4078 size_t count = 0; 4079 int cont = 0; 4080 4081 while (baddr != NULL && !(*flags & CPU_DTRACE_FAULT)) { 4082 4083 if (!dtrace_canload(baddr, sizeof (mblk_t), mstate, 4084 vstate)) { 4085 regs[rd] = NULL; 4086 break; 4087 } 4088 4089 wptr = dtrace_loadptr(baddr + 4090 offsetof(mblk_t, b_wptr)); 4091 4092 rptr = dtrace_loadptr(baddr + 4093 offsetof(mblk_t, b_rptr)); 4094 4095 if (wptr < rptr) { 4096 *flags |= CPU_DTRACE_BADADDR; 4097 *illval = tupregs[0].dttk_value; 4098 break; 4099 } 4100 4101 daddr = dtrace_loadptr(baddr + 4102 offsetof(mblk_t, b_datap)); 4103 4104 baddr = dtrace_loadptr(baddr + 4105 offsetof(mblk_t, b_cont)); 4106 4107 /* 4108 * We want to prevent against denial-of-service here, 4109 * so we're only going to search the list for 4110 * dtrace_msgdsize_max mblks. 4111 */ 4112 if (cont++ > dtrace_msgdsize_max) { 4113 *flags |= CPU_DTRACE_ILLOP; 4114 break; 4115 } 4116 4117 if (subr == DIF_SUBR_MSGDSIZE) { 4118 if (dtrace_load8(daddr + 4119 offsetof(dblk_t, db_type)) != M_DATA) 4120 continue; 4121 } 4122 4123 count += wptr - rptr; 4124 } 4125 4126 if (!(*flags & CPU_DTRACE_FAULT)) 4127 regs[rd] = count; 4128 4129 break; 4130 } 4131 4132 case DIF_SUBR_PROGENYOF: { 4133 pid_t pid = tupregs[0].dttk_value; 4134 proc_t *p; 4135 int rval = 0; 4136 4137 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4138 4139 for (p = curthread->t_procp; p != NULL; p = p->p_parent) { 4140 if (p->p_pidp->pid_id == pid) { 4141 rval = 1; 4142 break; 4143 } 4144 } 4145 4146 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4147 4148 regs[rd] = rval; 4149 break; 4150 } 4151 4152 case DIF_SUBR_SPECULATION: 4153 regs[rd] = dtrace_speculation(state); 4154 break; 4155 4156 case DIF_SUBR_COPYOUT: { 4157 uintptr_t kaddr = tupregs[0].dttk_value; 4158 uintptr_t uaddr = tupregs[1].dttk_value; 4159 uint64_t size = tupregs[2].dttk_value; 4160 4161 if (!dtrace_destructive_disallow && 4162 dtrace_priv_proc_control(state, mstate) && 4163 !dtrace_istoxic(kaddr, size)) { 4164 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4165 dtrace_copyout(kaddr, uaddr, size, flags); 4166 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4167 } 4168 break; 4169 } 4170 4171 case DIF_SUBR_COPYOUTSTR: { 4172 uintptr_t kaddr = tupregs[0].dttk_value; 4173 uintptr_t uaddr = tupregs[1].dttk_value; 4174 uint64_t size = tupregs[2].dttk_value; 4175 4176 if (!dtrace_destructive_disallow && 4177 dtrace_priv_proc_control(state, mstate) && 4178 !dtrace_istoxic(kaddr, size)) { 4179 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4180 dtrace_copyoutstr(kaddr, uaddr, size, flags); 4181 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4182 } 4183 break; 4184 } 4185 4186 case DIF_SUBR_STRLEN: { 4187 size_t sz; 4188 uintptr_t addr = (uintptr_t)tupregs[0].dttk_value; 4189 sz = dtrace_strlen((char *)addr, 4190 state->dts_options[DTRACEOPT_STRSIZE]); 4191 4192 if (!dtrace_canload(addr, sz + 1, mstate, vstate)) { 4193 regs[rd] = NULL; 4194 break; 4195 } 4196 4197 regs[rd] = sz; 4198 4199 break; 4200 } 4201 4202 case DIF_SUBR_STRCHR: 4203 case DIF_SUBR_STRRCHR: { 4204 /* 4205 * We're going to iterate over the string looking for the 4206 * specified character. We will iterate until we have reached 4207 * the string length or we have found the character. If this 4208 * is DIF_SUBR_STRRCHR, we will look for the last occurrence 4209 * of the specified character instead of the first. 4210 */ 4211 uintptr_t saddr = tupregs[0].dttk_value; 4212 uintptr_t addr = tupregs[0].dttk_value; 4213 uintptr_t limit = addr + state->dts_options[DTRACEOPT_STRSIZE]; 4214 char c, target = (char)tupregs[1].dttk_value; 4215 4216 for (regs[rd] = NULL; addr < limit; addr++) { 4217 if ((c = dtrace_load8(addr)) == target) { 4218 regs[rd] = addr; 4219 4220 if (subr == DIF_SUBR_STRCHR) 4221 break; 4222 } 4223 4224 if (c == '\0') 4225 break; 4226 } 4227 4228 if (!dtrace_canload(saddr, addr - saddr, mstate, vstate)) { 4229 regs[rd] = NULL; 4230 break; 4231 } 4232 4233 break; 4234 } 4235 4236 case DIF_SUBR_STRSTR: 4237 case DIF_SUBR_INDEX: 4238 case DIF_SUBR_RINDEX: { 4239 /* 4240 * We're going to iterate over the string looking for the 4241 * specified string. We will iterate until we have reached 4242 * the string length or we have found the string. (Yes, this 4243 * is done in the most naive way possible -- but considering 4244 * that the string we're searching for is likely to be 4245 * relatively short, the complexity of Rabin-Karp or similar 4246 * hardly seems merited.) 4247 */ 4248 char *addr = (char *)(uintptr_t)tupregs[0].dttk_value; 4249 char *substr = (char *)(uintptr_t)tupregs[1].dttk_value; 4250 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 4251 size_t len = dtrace_strlen(addr, size); 4252 size_t sublen = dtrace_strlen(substr, size); 4253 char *limit = addr + len, *orig = addr; 4254 int notfound = subr == DIF_SUBR_STRSTR ? 0 : -1; 4255 int inc = 1; 4256 4257 regs[rd] = notfound; 4258 4259 if (!dtrace_canload((uintptr_t)addr, len + 1, mstate, vstate)) { 4260 regs[rd] = NULL; 4261 break; 4262 } 4263 4264 if (!dtrace_canload((uintptr_t)substr, sublen + 1, mstate, 4265 vstate)) { 4266 regs[rd] = NULL; 4267 break; 4268 } 4269 4270 /* 4271 * strstr() and index()/rindex() have similar semantics if 4272 * both strings are the empty string: strstr() returns a 4273 * pointer to the (empty) string, and index() and rindex() 4274 * both return index 0 (regardless of any position argument). 4275 */ 4276 if (sublen == 0 && len == 0) { 4277 if (subr == DIF_SUBR_STRSTR) 4278 regs[rd] = (uintptr_t)addr; 4279 else 4280 regs[rd] = 0; 4281 break; 4282 } 4283 4284 if (subr != DIF_SUBR_STRSTR) { 4285 if (subr == DIF_SUBR_RINDEX) { 4286 limit = orig - 1; 4287 addr += len; 4288 inc = -1; 4289 } 4290 4291 /* 4292 * Both index() and rindex() take an optional position 4293 * argument that denotes the starting position. 4294 */ 4295 if (nargs == 3) { 4296 int64_t pos = (int64_t)tupregs[2].dttk_value; 4297 4298 /* 4299 * If the position argument to index() is 4300 * negative, Perl implicitly clamps it at 4301 * zero. This semantic is a little surprising 4302 * given the special meaning of negative 4303 * positions to similar Perl functions like 4304 * substr(), but it appears to reflect a 4305 * notion that index() can start from a 4306 * negative index and increment its way up to 4307 * the string. Given this notion, Perl's 4308 * rindex() is at least self-consistent in 4309 * that it implicitly clamps positions greater 4310 * than the string length to be the string 4311 * length. Where Perl completely loses 4312 * coherence, however, is when the specified 4313 * substring is the empty string (""). In 4314 * this case, even if the position is 4315 * negative, rindex() returns 0 -- and even if 4316 * the position is greater than the length, 4317 * index() returns the string length. These 4318 * semantics violate the notion that index() 4319 * should never return a value less than the 4320 * specified position and that rindex() should 4321 * never return a value greater than the 4322 * specified position. (One assumes that 4323 * these semantics are artifacts of Perl's 4324 * implementation and not the results of 4325 * deliberate design -- it beggars belief that 4326 * even Larry Wall could desire such oddness.) 4327 * While in the abstract one would wish for 4328 * consistent position semantics across 4329 * substr(), index() and rindex() -- or at the 4330 * very least self-consistent position 4331 * semantics for index() and rindex() -- we 4332 * instead opt to keep with the extant Perl 4333 * semantics, in all their broken glory. (Do 4334 * we have more desire to maintain Perl's 4335 * semantics than Perl does? Probably.) 4336 */ 4337 if (subr == DIF_SUBR_RINDEX) { 4338 if (pos < 0) { 4339 if (sublen == 0) 4340 regs[rd] = 0; 4341 break; 4342 } 4343 4344 if (pos > len) 4345 pos = len; 4346 } else { 4347 if (pos < 0) 4348 pos = 0; 4349 4350 if (pos >= len) { 4351 if (sublen == 0) 4352 regs[rd] = len; 4353 break; 4354 } 4355 } 4356 4357 addr = orig + pos; 4358 } 4359 } 4360 4361 for (regs[rd] = notfound; addr != limit; addr += inc) { 4362 if (dtrace_strncmp(addr, substr, sublen) == 0) { 4363 if (subr != DIF_SUBR_STRSTR) { 4364 /* 4365 * As D index() and rindex() are 4366 * modeled on Perl (and not on awk), 4367 * we return a zero-based (and not a 4368 * one-based) index. (For you Perl 4369 * weenies: no, we're not going to add 4370 * $[ -- and shouldn't you be at a con 4371 * or something?) 4372 */ 4373 regs[rd] = (uintptr_t)(addr - orig); 4374 break; 4375 } 4376 4377 ASSERT(subr == DIF_SUBR_STRSTR); 4378 regs[rd] = (uintptr_t)addr; 4379 break; 4380 } 4381 } 4382 4383 break; 4384 } 4385 4386 case DIF_SUBR_STRTOK: { 4387 uintptr_t addr = tupregs[0].dttk_value; 4388 uintptr_t tokaddr = tupregs[1].dttk_value; 4389 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 4390 uintptr_t limit, toklimit = tokaddr + size; 4391 uint8_t c, tokmap[32]; /* 256 / 8 */ 4392 char *dest = (char *)mstate->dtms_scratch_ptr; 4393 int i; 4394 4395 /* 4396 * Check both the token buffer and (later) the input buffer, 4397 * since both could be non-scratch addresses. 4398 */ 4399 if (!dtrace_strcanload(tokaddr, size, mstate, vstate)) { 4400 regs[rd] = NULL; 4401 break; 4402 } 4403 4404 if (!DTRACE_INSCRATCH(mstate, size)) { 4405 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4406 regs[rd] = NULL; 4407 break; 4408 } 4409 4410 if (addr == NULL) { 4411 /* 4412 * If the address specified is NULL, we use our saved 4413 * strtok pointer from the mstate. Note that this 4414 * means that the saved strtok pointer is _only_ 4415 * valid within multiple enablings of the same probe -- 4416 * it behaves like an implicit clause-local variable. 4417 */ 4418 addr = mstate->dtms_strtok; 4419 } else { 4420 /* 4421 * If the user-specified address is non-NULL we must 4422 * access check it. This is the only time we have 4423 * a chance to do so, since this address may reside 4424 * in the string table of this clause-- future calls 4425 * (when we fetch addr from mstate->dtms_strtok) 4426 * would fail this access check. 4427 */ 4428 if (!dtrace_strcanload(addr, size, mstate, vstate)) { 4429 regs[rd] = NULL; 4430 break; 4431 } 4432 } 4433 4434 /* 4435 * First, zero the token map, and then process the token 4436 * string -- setting a bit in the map for every character 4437 * found in the token string. 4438 */ 4439 for (i = 0; i < sizeof (tokmap); i++) 4440 tokmap[i] = 0; 4441 4442 for (; tokaddr < toklimit; tokaddr++) { 4443 if ((c = dtrace_load8(tokaddr)) == '\0') 4444 break; 4445 4446 ASSERT((c >> 3) < sizeof (tokmap)); 4447 tokmap[c >> 3] |= (1 << (c & 0x7)); 4448 } 4449 4450 for (limit = addr + size; addr < limit; addr++) { 4451 /* 4452 * We're looking for a character that is _not_ contained 4453 * in the token string. 4454 */ 4455 if ((c = dtrace_load8(addr)) == '\0') 4456 break; 4457 4458 if (!(tokmap[c >> 3] & (1 << (c & 0x7)))) 4459 break; 4460 } 4461 4462 if (c == '\0') { 4463 /* 4464 * We reached the end of the string without finding 4465 * any character that was not in the token string. 4466 * We return NULL in this case, and we set the saved 4467 * address to NULL as well. 4468 */ 4469 regs[rd] = NULL; 4470 mstate->dtms_strtok = NULL; 4471 break; 4472 } 4473 4474 /* 4475 * From here on, we're copying into the destination string. 4476 */ 4477 for (i = 0; addr < limit && i < size - 1; addr++) { 4478 if ((c = dtrace_load8(addr)) == '\0') 4479 break; 4480 4481 if (tokmap[c >> 3] & (1 << (c & 0x7))) 4482 break; 4483 4484 ASSERT(i < size); 4485 dest[i++] = c; 4486 } 4487 4488 ASSERT(i < size); 4489 dest[i] = '\0'; 4490 regs[rd] = (uintptr_t)dest; 4491 mstate->dtms_scratch_ptr += size; 4492 mstate->dtms_strtok = addr; 4493 break; 4494 } 4495 4496 case DIF_SUBR_SUBSTR: { 4497 uintptr_t s = tupregs[0].dttk_value; 4498 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 4499 char *d = (char *)mstate->dtms_scratch_ptr; 4500 int64_t index = (int64_t)tupregs[1].dttk_value; 4501 int64_t remaining = (int64_t)tupregs[2].dttk_value; 4502 size_t len = dtrace_strlen((char *)s, size); 4503 int64_t i; 4504 4505 if (!dtrace_canload(s, len + 1, mstate, vstate)) { 4506 regs[rd] = NULL; 4507 break; 4508 } 4509 4510 if (!DTRACE_INSCRATCH(mstate, size)) { 4511 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4512 regs[rd] = NULL; 4513 break; 4514 } 4515 4516 if (nargs <= 2) 4517 remaining = (int64_t)size; 4518 4519 if (index < 0) { 4520 index += len; 4521 4522 if (index < 0 && index + remaining > 0) { 4523 remaining += index; 4524 index = 0; 4525 } 4526 } 4527 4528 if (index >= len || index < 0) { 4529 remaining = 0; 4530 } else if (remaining < 0) { 4531 remaining += len - index; 4532 } else if (index + remaining > size) { 4533 remaining = size - index; 4534 } 4535 4536 for (i = 0; i < remaining; i++) { 4537 if ((d[i] = dtrace_load8(s + index + i)) == '\0') 4538 break; 4539 } 4540 4541 d[i] = '\0'; 4542 4543 mstate->dtms_scratch_ptr += size; 4544 regs[rd] = (uintptr_t)d; 4545 break; 4546 } 4547 4548 case DIF_SUBR_JSON: { 4549 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 4550 uintptr_t json = tupregs[0].dttk_value; 4551 size_t jsonlen = dtrace_strlen((char *)json, size); 4552 uintptr_t elem = tupregs[1].dttk_value; 4553 size_t elemlen = dtrace_strlen((char *)elem, size); 4554 4555 char *dest = (char *)mstate->dtms_scratch_ptr; 4556 char *elemlist = (char *)mstate->dtms_scratch_ptr + jsonlen + 1; 4557 char *ee = elemlist; 4558 int nelems = 1; 4559 uintptr_t cur; 4560 4561 if (!dtrace_canload(json, jsonlen + 1, mstate, vstate) || 4562 !dtrace_canload(elem, elemlen + 1, mstate, vstate)) { 4563 regs[rd] = NULL; 4564 break; 4565 } 4566 4567 if (!DTRACE_INSCRATCH(mstate, jsonlen + 1 + elemlen + 1)) { 4568 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4569 regs[rd] = NULL; 4570 break; 4571 } 4572 4573 /* 4574 * Read the element selector and split it up into a packed list 4575 * of strings. 4576 */ 4577 for (cur = elem; cur < elem + elemlen; cur++) { 4578 char cc = dtrace_load8(cur); 4579 4580 if (cur == elem && cc == '[') { 4581 /* 4582 * If the first element selector key is 4583 * actually an array index then ignore the 4584 * bracket. 4585 */ 4586 continue; 4587 } 4588 4589 if (cc == ']') 4590 continue; 4591 4592 if (cc == '.' || cc == '[') { 4593 nelems++; 4594 cc = '\0'; 4595 } 4596 4597 *ee++ = cc; 4598 } 4599 *ee++ = '\0'; 4600 4601 if ((regs[rd] = (uintptr_t)dtrace_json(size, json, elemlist, 4602 nelems, dest)) != NULL) 4603 mstate->dtms_scratch_ptr += jsonlen + 1; 4604 break; 4605 } 4606 4607 case DIF_SUBR_TOUPPER: 4608 case DIF_SUBR_TOLOWER: { 4609 uintptr_t s = tupregs[0].dttk_value; 4610 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 4611 char *dest = (char *)mstate->dtms_scratch_ptr, c; 4612 size_t len = dtrace_strlen((char *)s, size); 4613 char lower, upper, convert; 4614 int64_t i; 4615 4616 if (subr == DIF_SUBR_TOUPPER) { 4617 lower = 'a'; 4618 upper = 'z'; 4619 convert = 'A'; 4620 } else { 4621 lower = 'A'; 4622 upper = 'Z'; 4623 convert = 'a'; 4624 } 4625 4626 if (!dtrace_canload(s, len + 1, mstate, vstate)) { 4627 regs[rd] = NULL; 4628 break; 4629 } 4630 4631 if (!DTRACE_INSCRATCH(mstate, size)) { 4632 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4633 regs[rd] = NULL; 4634 break; 4635 } 4636 4637 for (i = 0; i < size - 1; i++) { 4638 if ((c = dtrace_load8(s + i)) == '\0') 4639 break; 4640 4641 if (c >= lower && c <= upper) 4642 c = convert + (c - lower); 4643 4644 dest[i] = c; 4645 } 4646 4647 ASSERT(i < size); 4648 dest[i] = '\0'; 4649 regs[rd] = (uintptr_t)dest; 4650 mstate->dtms_scratch_ptr += size; 4651 break; 4652 } 4653 4654 case DIF_SUBR_GETMAJOR: 4655 #ifdef _LP64 4656 regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR64) & MAXMAJ64; 4657 #else 4658 regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR) & MAXMAJ; 4659 #endif 4660 break; 4661 4662 case DIF_SUBR_GETMINOR: 4663 #ifdef _LP64 4664 regs[rd] = tupregs[0].dttk_value & MAXMIN64; 4665 #else 4666 regs[rd] = tupregs[0].dttk_value & MAXMIN; 4667 #endif 4668 break; 4669 4670 case DIF_SUBR_DDI_PATHNAME: { 4671 /* 4672 * This one is a galactic mess. We are going to roughly 4673 * emulate ddi_pathname(), but it's made more complicated 4674 * by the fact that we (a) want to include the minor name and 4675 * (b) must proceed iteratively instead of recursively. 4676 */ 4677 uintptr_t dest = mstate->dtms_scratch_ptr; 4678 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 4679 char *start = (char *)dest, *end = start + size - 1; 4680 uintptr_t daddr = tupregs[0].dttk_value; 4681 int64_t minor = (int64_t)tupregs[1].dttk_value; 4682 char *s; 4683 int i, len, depth = 0; 4684 4685 /* 4686 * Due to all the pointer jumping we do and context we must 4687 * rely upon, we just mandate that the user must have kernel 4688 * read privileges to use this routine. 4689 */ 4690 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) == 0) { 4691 *flags |= CPU_DTRACE_KPRIV; 4692 *illval = daddr; 4693 regs[rd] = NULL; 4694 } 4695 4696 if (!DTRACE_INSCRATCH(mstate, size)) { 4697 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4698 regs[rd] = NULL; 4699 break; 4700 } 4701 4702 *end = '\0'; 4703 4704 /* 4705 * We want to have a name for the minor. In order to do this, 4706 * we need to walk the minor list from the devinfo. We want 4707 * to be sure that we don't infinitely walk a circular list, 4708 * so we check for circularity by sending a scout pointer 4709 * ahead two elements for every element that we iterate over; 4710 * if the list is circular, these will ultimately point to the 4711 * same element. You may recognize this little trick as the 4712 * answer to a stupid interview question -- one that always 4713 * seems to be asked by those who had to have it laboriously 4714 * explained to them, and who can't even concisely describe 4715 * the conditions under which one would be forced to resort to 4716 * this technique. Needless to say, those conditions are 4717 * found here -- and probably only here. Is this the only use 4718 * of this infamous trick in shipping, production code? If it 4719 * isn't, it probably should be... 4720 */ 4721 if (minor != -1) { 4722 uintptr_t maddr = dtrace_loadptr(daddr + 4723 offsetof(struct dev_info, devi_minor)); 4724 4725 uintptr_t next = offsetof(struct ddi_minor_data, next); 4726 uintptr_t name = offsetof(struct ddi_minor_data, 4727 d_minor) + offsetof(struct ddi_minor, name); 4728 uintptr_t dev = offsetof(struct ddi_minor_data, 4729 d_minor) + offsetof(struct ddi_minor, dev); 4730 uintptr_t scout; 4731 4732 if (maddr != NULL) 4733 scout = dtrace_loadptr(maddr + next); 4734 4735 while (maddr != NULL && !(*flags & CPU_DTRACE_FAULT)) { 4736 uint64_t m; 4737 #ifdef _LP64 4738 m = dtrace_load64(maddr + dev) & MAXMIN64; 4739 #else 4740 m = dtrace_load32(maddr + dev) & MAXMIN; 4741 #endif 4742 if (m != minor) { 4743 maddr = dtrace_loadptr(maddr + next); 4744 4745 if (scout == NULL) 4746 continue; 4747 4748 scout = dtrace_loadptr(scout + next); 4749 4750 if (scout == NULL) 4751 continue; 4752 4753 scout = dtrace_loadptr(scout + next); 4754 4755 if (scout == NULL) 4756 continue; 4757 4758 if (scout == maddr) { 4759 *flags |= CPU_DTRACE_ILLOP; 4760 break; 4761 } 4762 4763 continue; 4764 } 4765 4766 /* 4767 * We have the minor data. Now we need to 4768 * copy the minor's name into the end of the 4769 * pathname. 4770 */ 4771 s = (char *)dtrace_loadptr(maddr + name); 4772 len = dtrace_strlen(s, size); 4773 4774 if (*flags & CPU_DTRACE_FAULT) 4775 break; 4776 4777 if (len != 0) { 4778 if ((end -= (len + 1)) < start) 4779 break; 4780 4781 *end = ':'; 4782 } 4783 4784 for (i = 1; i <= len; i++) 4785 end[i] = dtrace_load8((uintptr_t)s++); 4786 break; 4787 } 4788 } 4789 4790 while (daddr != NULL && !(*flags & CPU_DTRACE_FAULT)) { 4791 ddi_node_state_t devi_state; 4792 4793 devi_state = dtrace_load32(daddr + 4794 offsetof(struct dev_info, devi_node_state)); 4795 4796 if (*flags & CPU_DTRACE_FAULT) 4797 break; 4798 4799 if (devi_state >= DS_INITIALIZED) { 4800 s = (char *)dtrace_loadptr(daddr + 4801 offsetof(struct dev_info, devi_addr)); 4802 len = dtrace_strlen(s, size); 4803 4804 if (*flags & CPU_DTRACE_FAULT) 4805 break; 4806 4807 if (len != 0) { 4808 if ((end -= (len + 1)) < start) 4809 break; 4810 4811 *end = '@'; 4812 } 4813 4814 for (i = 1; i <= len; i++) 4815 end[i] = dtrace_load8((uintptr_t)s++); 4816 } 4817 4818 /* 4819 * Now for the node name... 4820 */ 4821 s = (char *)dtrace_loadptr(daddr + 4822 offsetof(struct dev_info, devi_node_name)); 4823 4824 daddr = dtrace_loadptr(daddr + 4825 offsetof(struct dev_info, devi_parent)); 4826 4827 /* 4828 * If our parent is NULL (that is, if we're the root 4829 * node), we're going to use the special path 4830 * "devices". 4831 */ 4832 if (daddr == NULL) 4833 s = "devices"; 4834 4835 len = dtrace_strlen(s, size); 4836 if (*flags & CPU_DTRACE_FAULT) 4837 break; 4838 4839 if ((end -= (len + 1)) < start) 4840 break; 4841 4842 for (i = 1; i <= len; i++) 4843 end[i] = dtrace_load8((uintptr_t)s++); 4844 *end = '/'; 4845 4846 if (depth++ > dtrace_devdepth_max) { 4847 *flags |= CPU_DTRACE_ILLOP; 4848 break; 4849 } 4850 } 4851 4852 if (end < start) 4853 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4854 4855 if (daddr == NULL) { 4856 regs[rd] = (uintptr_t)end; 4857 mstate->dtms_scratch_ptr += size; 4858 } 4859 4860 break; 4861 } 4862 4863 case DIF_SUBR_STRJOIN: { 4864 char *d = (char *)mstate->dtms_scratch_ptr; 4865 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 4866 uintptr_t s1 = tupregs[0].dttk_value; 4867 uintptr_t s2 = tupregs[1].dttk_value; 4868 int i = 0; 4869 4870 if (!dtrace_strcanload(s1, size, mstate, vstate) || 4871 !dtrace_strcanload(s2, size, mstate, vstate)) { 4872 regs[rd] = NULL; 4873 break; 4874 } 4875 4876 if (!DTRACE_INSCRATCH(mstate, size)) { 4877 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4878 regs[rd] = NULL; 4879 break; 4880 } 4881 4882 for (;;) { 4883 if (i >= size) { 4884 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4885 regs[rd] = NULL; 4886 break; 4887 } 4888 4889 if ((d[i++] = dtrace_load8(s1++)) == '\0') { 4890 i--; 4891 break; 4892 } 4893 } 4894 4895 for (;;) { 4896 if (i >= size) { 4897 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4898 regs[rd] = NULL; 4899 break; 4900 } 4901 4902 if ((d[i++] = dtrace_load8(s2++)) == '\0') 4903 break; 4904 } 4905 4906 if (i < size) { 4907 mstate->dtms_scratch_ptr += i; 4908 regs[rd] = (uintptr_t)d; 4909 } 4910 4911 break; 4912 } 4913 4914 case DIF_SUBR_STRTOLL: { 4915 uintptr_t s = tupregs[0].dttk_value; 4916 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 4917 int base = 10; 4918 4919 if (nargs > 1) { 4920 if ((base = tupregs[1].dttk_value) <= 1 || 4921 base > ('z' - 'a' + 1) + ('9' - '0' + 1)) { 4922 *flags |= CPU_DTRACE_ILLOP; 4923 break; 4924 } 4925 } 4926 4927 if (!dtrace_strcanload(s, size, mstate, vstate)) { 4928 regs[rd] = INT64_MIN; 4929 break; 4930 } 4931 4932 regs[rd] = dtrace_strtoll((char *)s, base, size); 4933 break; 4934 } 4935 4936 case DIF_SUBR_LLTOSTR: { 4937 int64_t i = (int64_t)tupregs[0].dttk_value; 4938 uint64_t val, digit; 4939 uint64_t size = 65; /* enough room for 2^64 in binary */ 4940 char *end = (char *)mstate->dtms_scratch_ptr + size - 1; 4941 int base = 10; 4942 4943 if (nargs > 1) { 4944 if ((base = tupregs[1].dttk_value) <= 1 || 4945 base > ('z' - 'a' + 1) + ('9' - '0' + 1)) { 4946 *flags |= CPU_DTRACE_ILLOP; 4947 break; 4948 } 4949 } 4950 4951 val = (base == 10 && i < 0) ? i * -1 : i; 4952 4953 if (!DTRACE_INSCRATCH(mstate, size)) { 4954 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4955 regs[rd] = NULL; 4956 break; 4957 } 4958 4959 for (*end-- = '\0'; val; val /= base) { 4960 if ((digit = val % base) <= '9' - '0') { 4961 *end-- = '0' + digit; 4962 } else { 4963 *end-- = 'a' + (digit - ('9' - '0') - 1); 4964 } 4965 } 4966 4967 if (i == 0 && base == 16) 4968 *end-- = '0'; 4969 4970 if (base == 16) 4971 *end-- = 'x'; 4972 4973 if (i == 0 || base == 8 || base == 16) 4974 *end-- = '0'; 4975 4976 if (i < 0 && base == 10) 4977 *end-- = '-'; 4978 4979 regs[rd] = (uintptr_t)end + 1; 4980 mstate->dtms_scratch_ptr += size; 4981 break; 4982 } 4983 4984 case DIF_SUBR_HTONS: 4985 case DIF_SUBR_NTOHS: 4986 #ifdef _BIG_ENDIAN 4987 regs[rd] = (uint16_t)tupregs[0].dttk_value; 4988 #else 4989 regs[rd] = DT_BSWAP_16((uint16_t)tupregs[0].dttk_value); 4990 #endif 4991 break; 4992 4993 4994 case DIF_SUBR_HTONL: 4995 case DIF_SUBR_NTOHL: 4996 #ifdef _BIG_ENDIAN 4997 regs[rd] = (uint32_t)tupregs[0].dttk_value; 4998 #else 4999 regs[rd] = DT_BSWAP_32((uint32_t)tupregs[0].dttk_value); 5000 #endif 5001 break; 5002 5003 5004 case DIF_SUBR_HTONLL: 5005 case DIF_SUBR_NTOHLL: 5006 #ifdef _BIG_ENDIAN 5007 regs[rd] = (uint64_t)tupregs[0].dttk_value; 5008 #else 5009 regs[rd] = DT_BSWAP_64((uint64_t)tupregs[0].dttk_value); 5010 #endif 5011 break; 5012 5013 5014 case DIF_SUBR_DIRNAME: 5015 case DIF_SUBR_BASENAME: { 5016 char *dest = (char *)mstate->dtms_scratch_ptr; 5017 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 5018 uintptr_t src = tupregs[0].dttk_value; 5019 int i, j, len = dtrace_strlen((char *)src, size); 5020 int lastbase = -1, firstbase = -1, lastdir = -1; 5021 int start, end; 5022 5023 if (!dtrace_canload(src, len + 1, mstate, vstate)) { 5024 regs[rd] = NULL; 5025 break; 5026 } 5027 5028 if (!DTRACE_INSCRATCH(mstate, size)) { 5029 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5030 regs[rd] = NULL; 5031 break; 5032 } 5033 5034 /* 5035 * The basename and dirname for a zero-length string is 5036 * defined to be "." 5037 */ 5038 if (len == 0) { 5039 len = 1; 5040 src = (uintptr_t)"."; 5041 } 5042 5043 /* 5044 * Start from the back of the string, moving back toward the 5045 * front until we see a character that isn't a slash. That 5046 * character is the last character in the basename. 5047 */ 5048 for (i = len - 1; i >= 0; i--) { 5049 if (dtrace_load8(src + i) != '/') 5050 break; 5051 } 5052 5053 if (i >= 0) 5054 lastbase = i; 5055 5056 /* 5057 * Starting from the last character in the basename, move 5058 * towards the front until we find a slash. The character 5059 * that we processed immediately before that is the first 5060 * character in the basename. 5061 */ 5062 for (; i >= 0; i--) { 5063 if (dtrace_load8(src + i) == '/') 5064 break; 5065 } 5066 5067 if (i >= 0) 5068 firstbase = i + 1; 5069 5070 /* 5071 * Now keep going until we find a non-slash character. That 5072 * character is the last character in the dirname. 5073 */ 5074 for (; i >= 0; i--) { 5075 if (dtrace_load8(src + i) != '/') 5076 break; 5077 } 5078 5079 if (i >= 0) 5080 lastdir = i; 5081 5082 ASSERT(!(lastbase == -1 && firstbase != -1)); 5083 ASSERT(!(firstbase == -1 && lastdir != -1)); 5084 5085 if (lastbase == -1) { 5086 /* 5087 * We didn't find a non-slash character. We know that 5088 * the length is non-zero, so the whole string must be 5089 * slashes. In either the dirname or the basename 5090 * case, we return '/'. 5091 */ 5092 ASSERT(firstbase == -1); 5093 firstbase = lastbase = lastdir = 0; 5094 } 5095 5096 if (firstbase == -1) { 5097 /* 5098 * The entire string consists only of a basename 5099 * component. If we're looking for dirname, we need 5100 * to change our string to be just "."; if we're 5101 * looking for a basename, we'll just set the first 5102 * character of the basename to be 0. 5103 */ 5104 if (subr == DIF_SUBR_DIRNAME) { 5105 ASSERT(lastdir == -1); 5106 src = (uintptr_t)"."; 5107 lastdir = 0; 5108 } else { 5109 firstbase = 0; 5110 } 5111 } 5112 5113 if (subr == DIF_SUBR_DIRNAME) { 5114 if (lastdir == -1) { 5115 /* 5116 * We know that we have a slash in the name -- 5117 * or lastdir would be set to 0, above. And 5118 * because lastdir is -1, we know that this 5119 * slash must be the first character. (That 5120 * is, the full string must be of the form 5121 * "/basename".) In this case, the last 5122 * character of the directory name is 0. 5123 */ 5124 lastdir = 0; 5125 } 5126 5127 start = 0; 5128 end = lastdir; 5129 } else { 5130 ASSERT(subr == DIF_SUBR_BASENAME); 5131 ASSERT(firstbase != -1 && lastbase != -1); 5132 start = firstbase; 5133 end = lastbase; 5134 } 5135 5136 for (i = start, j = 0; i <= end && j < size - 1; i++, j++) 5137 dest[j] = dtrace_load8(src + i); 5138 5139 dest[j] = '\0'; 5140 regs[rd] = (uintptr_t)dest; 5141 mstate->dtms_scratch_ptr += size; 5142 break; 5143 } 5144 5145 case DIF_SUBR_GETF: { 5146 uintptr_t fd = tupregs[0].dttk_value; 5147 uf_info_t *finfo = &curthread->t_procp->p_user.u_finfo; 5148 file_t *fp; 5149 5150 if (!dtrace_priv_proc(state, mstate)) { 5151 regs[rd] = NULL; 5152 break; 5153 } 5154 5155 /* 5156 * This is safe because fi_nfiles only increases, and the 5157 * fi_list array is not freed when the array size doubles. 5158 * (See the comment in flist_grow() for details on the 5159 * management of the u_finfo structure.) 5160 */ 5161 fp = fd < finfo->fi_nfiles ? finfo->fi_list[fd].uf_file : NULL; 5162 5163 mstate->dtms_getf = fp; 5164 regs[rd] = (uintptr_t)fp; 5165 break; 5166 } 5167 5168 case DIF_SUBR_CLEANPATH: { 5169 char *dest = (char *)mstate->dtms_scratch_ptr, c; 5170 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 5171 uintptr_t src = tupregs[0].dttk_value; 5172 int i = 0, j = 0; 5173 zone_t *z; 5174 5175 if (!dtrace_strcanload(src, size, mstate, vstate)) { 5176 regs[rd] = NULL; 5177 break; 5178 } 5179 5180 if (!DTRACE_INSCRATCH(mstate, size)) { 5181 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5182 regs[rd] = NULL; 5183 break; 5184 } 5185 5186 /* 5187 * Move forward, loading each character. 5188 */ 5189 do { 5190 c = dtrace_load8(src + i++); 5191 next: 5192 if (j + 5 >= size) /* 5 = strlen("/..c\0") */ 5193 break; 5194 5195 if (c != '/') { 5196 dest[j++] = c; 5197 continue; 5198 } 5199 5200 c = dtrace_load8(src + i++); 5201 5202 if (c == '/') { 5203 /* 5204 * We have two slashes -- we can just advance 5205 * to the next character. 5206 */ 5207 goto next; 5208 } 5209 5210 if (c != '.') { 5211 /* 5212 * This is not "." and it's not ".." -- we can 5213 * just store the "/" and this character and 5214 * drive on. 5215 */ 5216 dest[j++] = '/'; 5217 dest[j++] = c; 5218 continue; 5219 } 5220 5221 c = dtrace_load8(src + i++); 5222 5223 if (c == '/') { 5224 /* 5225 * This is a "/./" component. We're not going 5226 * to store anything in the destination buffer; 5227 * we're just going to go to the next component. 5228 */ 5229 goto next; 5230 } 5231 5232 if (c != '.') { 5233 /* 5234 * This is not ".." -- we can just store the 5235 * "/." and this character and continue 5236 * processing. 5237 */ 5238 dest[j++] = '/'; 5239 dest[j++] = '.'; 5240 dest[j++] = c; 5241 continue; 5242 } 5243 5244 c = dtrace_load8(src + i++); 5245 5246 if (c != '/' && c != '\0') { 5247 /* 5248 * This is not ".." -- it's "..[mumble]". 5249 * We'll store the "/.." and this character 5250 * and continue processing. 5251 */ 5252 dest[j++] = '/'; 5253 dest[j++] = '.'; 5254 dest[j++] = '.'; 5255 dest[j++] = c; 5256 continue; 5257 } 5258 5259 /* 5260 * This is "/../" or "/..\0". We need to back up 5261 * our destination pointer until we find a "/". 5262 */ 5263 i--; 5264 while (j != 0 && dest[--j] != '/') 5265 continue; 5266 5267 if (c == '\0') 5268 dest[++j] = '/'; 5269 } while (c != '\0'); 5270 5271 dest[j] = '\0'; 5272 5273 if (mstate->dtms_getf != NULL && 5274 !(mstate->dtms_access & DTRACE_ACCESS_KERNEL) && 5275 (z = state->dts_cred.dcr_cred->cr_zone) != kcred->cr_zone) { 5276 /* 5277 * If we've done a getf() as a part of this ECB and we 5278 * don't have kernel access (and we're not in the global 5279 * zone), check if the path we cleaned up begins with 5280 * the zone's root path, and trim it off if so. Note 5281 * that this is an output cleanliness issue, not a 5282 * security issue: knowing one's zone root path does 5283 * not enable privilege escalation. 5284 */ 5285 if (strstr(dest, z->zone_rootpath) == dest) 5286 dest += strlen(z->zone_rootpath) - 1; 5287 } 5288 5289 regs[rd] = (uintptr_t)dest; 5290 mstate->dtms_scratch_ptr += size; 5291 break; 5292 } 5293 5294 case DIF_SUBR_INET_NTOA: 5295 case DIF_SUBR_INET_NTOA6: 5296 case DIF_SUBR_INET_NTOP: { 5297 size_t size; 5298 int af, argi, i; 5299 char *base, *end; 5300 5301 if (subr == DIF_SUBR_INET_NTOP) { 5302 af = (int)tupregs[0].dttk_value; 5303 argi = 1; 5304 } else { 5305 af = subr == DIF_SUBR_INET_NTOA ? AF_INET: AF_INET6; 5306 argi = 0; 5307 } 5308 5309 if (af == AF_INET) { 5310 ipaddr_t ip4; 5311 uint8_t *ptr8, val; 5312 5313 /* 5314 * Safely load the IPv4 address. 5315 */ 5316 ip4 = dtrace_load32(tupregs[argi].dttk_value); 5317 5318 /* 5319 * Check an IPv4 string will fit in scratch. 5320 */ 5321 size = INET_ADDRSTRLEN; 5322 if (!DTRACE_INSCRATCH(mstate, size)) { 5323 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5324 regs[rd] = NULL; 5325 break; 5326 } 5327 base = (char *)mstate->dtms_scratch_ptr; 5328 end = (char *)mstate->dtms_scratch_ptr + size - 1; 5329 5330 /* 5331 * Stringify as a dotted decimal quad. 5332 */ 5333 *end-- = '\0'; 5334 ptr8 = (uint8_t *)&ip4; 5335 for (i = 3; i >= 0; i--) { 5336 val = ptr8[i]; 5337 5338 if (val == 0) { 5339 *end-- = '0'; 5340 } else { 5341 for (; val; val /= 10) { 5342 *end-- = '0' + (val % 10); 5343 } 5344 } 5345 5346 if (i > 0) 5347 *end-- = '.'; 5348 } 5349 ASSERT(end + 1 >= base); 5350 5351 } else if (af == AF_INET6) { 5352 struct in6_addr ip6; 5353 int firstzero, tryzero, numzero, v6end; 5354 uint16_t val; 5355 const char digits[] = "0123456789abcdef"; 5356 5357 /* 5358 * Stringify using RFC 1884 convention 2 - 16 bit 5359 * hexadecimal values with a zero-run compression. 5360 * Lower case hexadecimal digits are used. 5361 * eg, fe80::214:4fff:fe0b:76c8. 5362 * The IPv4 embedded form is returned for inet_ntop, 5363 * just the IPv4 string is returned for inet_ntoa6. 5364 */ 5365 5366 /* 5367 * Safely load the IPv6 address. 5368 */ 5369 dtrace_bcopy( 5370 (void *)(uintptr_t)tupregs[argi].dttk_value, 5371 (void *)(uintptr_t)&ip6, sizeof (struct in6_addr)); 5372 5373 /* 5374 * Check an IPv6 string will fit in scratch. 5375 */ 5376 size = INET6_ADDRSTRLEN; 5377 if (!DTRACE_INSCRATCH(mstate, size)) { 5378 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5379 regs[rd] = NULL; 5380 break; 5381 } 5382 base = (char *)mstate->dtms_scratch_ptr; 5383 end = (char *)mstate->dtms_scratch_ptr + size - 1; 5384 *end-- = '\0'; 5385 5386 /* 5387 * Find the longest run of 16 bit zero values 5388 * for the single allowed zero compression - "::". 5389 */ 5390 firstzero = -1; 5391 tryzero = -1; 5392 numzero = 1; 5393 for (i = 0; i < sizeof (struct in6_addr); i++) { 5394 if (ip6._S6_un._S6_u8[i] == 0 && 5395 tryzero == -1 && i % 2 == 0) { 5396 tryzero = i; 5397 continue; 5398 } 5399 5400 if (tryzero != -1 && 5401 (ip6._S6_un._S6_u8[i] != 0 || 5402 i == sizeof (struct in6_addr) - 1)) { 5403 5404 if (i - tryzero <= numzero) { 5405 tryzero = -1; 5406 continue; 5407 } 5408 5409 firstzero = tryzero; 5410 numzero = i - i % 2 - tryzero; 5411 tryzero = -1; 5412 5413 if (ip6._S6_un._S6_u8[i] == 0 && 5414 i == sizeof (struct in6_addr) - 1) 5415 numzero += 2; 5416 } 5417 } 5418 ASSERT(firstzero + numzero <= sizeof (struct in6_addr)); 5419 5420 /* 5421 * Check for an IPv4 embedded address. 5422 */ 5423 v6end = sizeof (struct in6_addr) - 2; 5424 if (IN6_IS_ADDR_V4MAPPED(&ip6) || 5425 IN6_IS_ADDR_V4COMPAT(&ip6)) { 5426 for (i = sizeof (struct in6_addr) - 1; 5427 i >= DTRACE_V4MAPPED_OFFSET; i--) { 5428 ASSERT(end >= base); 5429 5430 val = ip6._S6_un._S6_u8[i]; 5431 5432 if (val == 0) { 5433 *end-- = '0'; 5434 } else { 5435 for (; val; val /= 10) { 5436 *end-- = '0' + val % 10; 5437 } 5438 } 5439 5440 if (i > DTRACE_V4MAPPED_OFFSET) 5441 *end-- = '.'; 5442 } 5443 5444 if (subr == DIF_SUBR_INET_NTOA6) 5445 goto inetout; 5446 5447 /* 5448 * Set v6end to skip the IPv4 address that 5449 * we have already stringified. 5450 */ 5451 v6end = 10; 5452 } 5453 5454 /* 5455 * Build the IPv6 string by working through the 5456 * address in reverse. 5457 */ 5458 for (i = v6end; i >= 0; i -= 2) { 5459 ASSERT(end >= base); 5460 5461 if (i == firstzero + numzero - 2) { 5462 *end-- = ':'; 5463 *end-- = ':'; 5464 i -= numzero - 2; 5465 continue; 5466 } 5467 5468 if (i < 14 && i != firstzero - 2) 5469 *end-- = ':'; 5470 5471 val = (ip6._S6_un._S6_u8[i] << 8) + 5472 ip6._S6_un._S6_u8[i + 1]; 5473 5474 if (val == 0) { 5475 *end-- = '0'; 5476 } else { 5477 for (; val; val /= 16) { 5478 *end-- = digits[val % 16]; 5479 } 5480 } 5481 } 5482 ASSERT(end + 1 >= base); 5483 5484 } else { 5485 /* 5486 * The user didn't use AH_INET or AH_INET6. 5487 */ 5488 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); 5489 regs[rd] = NULL; 5490 break; 5491 } 5492 5493 inetout: regs[rd] = (uintptr_t)end + 1; 5494 mstate->dtms_scratch_ptr += size; 5495 break; 5496 } 5497 5498 } 5499 } 5500 5501 /* 5502 * Emulate the execution of DTrace IR instructions specified by the given 5503 * DIF object. This function is deliberately void of assertions as all of 5504 * the necessary checks are handled by a call to dtrace_difo_validate(). 5505 */ 5506 static uint64_t 5507 dtrace_dif_emulate(dtrace_difo_t *difo, dtrace_mstate_t *mstate, 5508 dtrace_vstate_t *vstate, dtrace_state_t *state) 5509 { 5510 const dif_instr_t *text = difo->dtdo_buf; 5511 const uint_t textlen = difo->dtdo_len; 5512 const char *strtab = difo->dtdo_strtab; 5513 const uint64_t *inttab = difo->dtdo_inttab; 5514 5515 uint64_t rval = 0; 5516 dtrace_statvar_t *svar; 5517 dtrace_dstate_t *dstate = &vstate->dtvs_dynvars; 5518 dtrace_difv_t *v; 5519 volatile uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags; 5520 volatile uintptr_t *illval = &cpu_core[CPU->cpu_id].cpuc_dtrace_illval; 5521 5522 dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */ 5523 uint64_t regs[DIF_DIR_NREGS]; 5524 uint64_t *tmp; 5525 5526 uint8_t cc_n = 0, cc_z = 0, cc_v = 0, cc_c = 0; 5527 int64_t cc_r; 5528 uint_t pc = 0, id, opc; 5529 uint8_t ttop = 0; 5530 dif_instr_t instr; 5531 uint_t r1, r2, rd; 5532 5533 /* 5534 * We stash the current DIF object into the machine state: we need it 5535 * for subsequent access checking. 5536 */ 5537 mstate->dtms_difo = difo; 5538 5539 regs[DIF_REG_R0] = 0; /* %r0 is fixed at zero */ 5540 5541 while (pc < textlen && !(*flags & CPU_DTRACE_FAULT)) { 5542 opc = pc; 5543 5544 instr = text[pc++]; 5545 r1 = DIF_INSTR_R1(instr); 5546 r2 = DIF_INSTR_R2(instr); 5547 rd = DIF_INSTR_RD(instr); 5548 5549 switch (DIF_INSTR_OP(instr)) { 5550 case DIF_OP_OR: 5551 regs[rd] = regs[r1] | regs[r2]; 5552 break; 5553 case DIF_OP_XOR: 5554 regs[rd] = regs[r1] ^ regs[r2]; 5555 break; 5556 case DIF_OP_AND: 5557 regs[rd] = regs[r1] & regs[r2]; 5558 break; 5559 case DIF_OP_SLL: 5560 regs[rd] = regs[r1] << regs[r2]; 5561 break; 5562 case DIF_OP_SRL: 5563 regs[rd] = regs[r1] >> regs[r2]; 5564 break; 5565 case DIF_OP_SUB: 5566 regs[rd] = regs[r1] - regs[r2]; 5567 break; 5568 case DIF_OP_ADD: 5569 regs[rd] = regs[r1] + regs[r2]; 5570 break; 5571 case DIF_OP_MUL: 5572 regs[rd] = regs[r1] * regs[r2]; 5573 break; 5574 case DIF_OP_SDIV: 5575 if (regs[r2] == 0) { 5576 regs[rd] = 0; 5577 *flags |= CPU_DTRACE_DIVZERO; 5578 } else { 5579 regs[rd] = (int64_t)regs[r1] / 5580 (int64_t)regs[r2]; 5581 } 5582 break; 5583 5584 case DIF_OP_UDIV: 5585 if (regs[r2] == 0) { 5586 regs[rd] = 0; 5587 *flags |= CPU_DTRACE_DIVZERO; 5588 } else { 5589 regs[rd] = regs[r1] / regs[r2]; 5590 } 5591 break; 5592 5593 case DIF_OP_SREM: 5594 if (regs[r2] == 0) { 5595 regs[rd] = 0; 5596 *flags |= CPU_DTRACE_DIVZERO; 5597 } else { 5598 regs[rd] = (int64_t)regs[r1] % 5599 (int64_t)regs[r2]; 5600 } 5601 break; 5602 5603 case DIF_OP_UREM: 5604 if (regs[r2] == 0) { 5605 regs[rd] = 0; 5606 *flags |= CPU_DTRACE_DIVZERO; 5607 } else { 5608 regs[rd] = regs[r1] % regs[r2]; 5609 } 5610 break; 5611 5612 case DIF_OP_NOT: 5613 regs[rd] = ~regs[r1]; 5614 break; 5615 case DIF_OP_MOV: 5616 regs[rd] = regs[r1]; 5617 break; 5618 case DIF_OP_CMP: 5619 cc_r = regs[r1] - regs[r2]; 5620 cc_n = cc_r < 0; 5621 cc_z = cc_r == 0; 5622 cc_v = 0; 5623 cc_c = regs[r1] < regs[r2]; 5624 break; 5625 case DIF_OP_TST: 5626 cc_n = cc_v = cc_c = 0; 5627 cc_z = regs[r1] == 0; 5628 break; 5629 case DIF_OP_BA: 5630 pc = DIF_INSTR_LABEL(instr); 5631 break; 5632 case DIF_OP_BE: 5633 if (cc_z) 5634 pc = DIF_INSTR_LABEL(instr); 5635 break; 5636 case DIF_OP_BNE: 5637 if (cc_z == 0) 5638 pc = DIF_INSTR_LABEL(instr); 5639 break; 5640 case DIF_OP_BG: 5641 if ((cc_z | (cc_n ^ cc_v)) == 0) 5642 pc = DIF_INSTR_LABEL(instr); 5643 break; 5644 case DIF_OP_BGU: 5645 if ((cc_c | cc_z) == 0) 5646 pc = DIF_INSTR_LABEL(instr); 5647 break; 5648 case DIF_OP_BGE: 5649 if ((cc_n ^ cc_v) == 0) 5650 pc = DIF_INSTR_LABEL(instr); 5651 break; 5652 case DIF_OP_BGEU: 5653 if (cc_c == 0) 5654 pc = DIF_INSTR_LABEL(instr); 5655 break; 5656 case DIF_OP_BL: 5657 if (cc_n ^ cc_v) 5658 pc = DIF_INSTR_LABEL(instr); 5659 break; 5660 case DIF_OP_BLU: 5661 if (cc_c) 5662 pc = DIF_INSTR_LABEL(instr); 5663 break; 5664 case DIF_OP_BLE: 5665 if (cc_z | (cc_n ^ cc_v)) 5666 pc = DIF_INSTR_LABEL(instr); 5667 break; 5668 case DIF_OP_BLEU: 5669 if (cc_c | cc_z) 5670 pc = DIF_INSTR_LABEL(instr); 5671 break; 5672 case DIF_OP_RLDSB: 5673 if (!dtrace_canload(regs[r1], 1, mstate, vstate)) 5674 break; 5675 /*FALLTHROUGH*/ 5676 case DIF_OP_LDSB: 5677 regs[rd] = (int8_t)dtrace_load8(regs[r1]); 5678 break; 5679 case DIF_OP_RLDSH: 5680 if (!dtrace_canload(regs[r1], 2, mstate, vstate)) 5681 break; 5682 /*FALLTHROUGH*/ 5683 case DIF_OP_LDSH: 5684 regs[rd] = (int16_t)dtrace_load16(regs[r1]); 5685 break; 5686 case DIF_OP_RLDSW: 5687 if (!dtrace_canload(regs[r1], 4, mstate, vstate)) 5688 break; 5689 /*FALLTHROUGH*/ 5690 case DIF_OP_LDSW: 5691 regs[rd] = (int32_t)dtrace_load32(regs[r1]); 5692 break; 5693 case DIF_OP_RLDUB: 5694 if (!dtrace_canload(regs[r1], 1, mstate, vstate)) 5695 break; 5696 /*FALLTHROUGH*/ 5697 case DIF_OP_LDUB: 5698 regs[rd] = dtrace_load8(regs[r1]); 5699 break; 5700 case DIF_OP_RLDUH: 5701 if (!dtrace_canload(regs[r1], 2, mstate, vstate)) 5702 break; 5703 /*FALLTHROUGH*/ 5704 case DIF_OP_LDUH: 5705 regs[rd] = dtrace_load16(regs[r1]); 5706 break; 5707 case DIF_OP_RLDUW: 5708 if (!dtrace_canload(regs[r1], 4, mstate, vstate)) 5709 break; 5710 /*FALLTHROUGH*/ 5711 case DIF_OP_LDUW: 5712 regs[rd] = dtrace_load32(regs[r1]); 5713 break; 5714 case DIF_OP_RLDX: 5715 if (!dtrace_canload(regs[r1], 8, mstate, vstate)) 5716 break; 5717 /*FALLTHROUGH*/ 5718 case DIF_OP_LDX: 5719 regs[rd] = dtrace_load64(regs[r1]); 5720 break; 5721 case DIF_OP_ULDSB: 5722 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 5723 regs[rd] = (int8_t) 5724 dtrace_fuword8((void *)(uintptr_t)regs[r1]); 5725 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 5726 break; 5727 case DIF_OP_ULDSH: 5728 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 5729 regs[rd] = (int16_t) 5730 dtrace_fuword16((void *)(uintptr_t)regs[r1]); 5731 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 5732 break; 5733 case DIF_OP_ULDSW: 5734 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 5735 regs[rd] = (int32_t) 5736 dtrace_fuword32((void *)(uintptr_t)regs[r1]); 5737 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 5738 break; 5739 case DIF_OP_ULDUB: 5740 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 5741 regs[rd] = 5742 dtrace_fuword8((void *)(uintptr_t)regs[r1]); 5743 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 5744 break; 5745 case DIF_OP_ULDUH: 5746 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 5747 regs[rd] = 5748 dtrace_fuword16((void *)(uintptr_t)regs[r1]); 5749 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 5750 break; 5751 case DIF_OP_ULDUW: 5752 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 5753 regs[rd] = 5754 dtrace_fuword32((void *)(uintptr_t)regs[r1]); 5755 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 5756 break; 5757 case DIF_OP_ULDX: 5758 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 5759 regs[rd] = 5760 dtrace_fuword64((void *)(uintptr_t)regs[r1]); 5761 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 5762 break; 5763 case DIF_OP_RET: 5764 rval = regs[rd]; 5765 pc = textlen; 5766 break; 5767 case DIF_OP_NOP: 5768 break; 5769 case DIF_OP_SETX: 5770 regs[rd] = inttab[DIF_INSTR_INTEGER(instr)]; 5771 break; 5772 case DIF_OP_SETS: 5773 regs[rd] = (uint64_t)(uintptr_t) 5774 (strtab + DIF_INSTR_STRING(instr)); 5775 break; 5776 case DIF_OP_SCMP: { 5777 size_t sz = state->dts_options[DTRACEOPT_STRSIZE]; 5778 uintptr_t s1 = regs[r1]; 5779 uintptr_t s2 = regs[r2]; 5780 5781 if (s1 != NULL && 5782 !dtrace_strcanload(s1, sz, mstate, vstate)) 5783 break; 5784 if (s2 != NULL && 5785 !dtrace_strcanload(s2, sz, mstate, vstate)) 5786 break; 5787 5788 cc_r = dtrace_strncmp((char *)s1, (char *)s2, sz); 5789 5790 cc_n = cc_r < 0; 5791 cc_z = cc_r == 0; 5792 cc_v = cc_c = 0; 5793 break; 5794 } 5795 case DIF_OP_LDGA: 5796 regs[rd] = dtrace_dif_variable(mstate, state, 5797 r1, regs[r2]); 5798 break; 5799 case DIF_OP_LDGS: 5800 id = DIF_INSTR_VAR(instr); 5801 5802 if (id >= DIF_VAR_OTHER_UBASE) { 5803 uintptr_t a; 5804 5805 id -= DIF_VAR_OTHER_UBASE; 5806 svar = vstate->dtvs_globals[id]; 5807 ASSERT(svar != NULL); 5808 v = &svar->dtsv_var; 5809 5810 if (!(v->dtdv_type.dtdt_flags & DIF_TF_BYREF)) { 5811 regs[rd] = svar->dtsv_data; 5812 break; 5813 } 5814 5815 a = (uintptr_t)svar->dtsv_data; 5816 5817 if (*(uint8_t *)a == UINT8_MAX) { 5818 /* 5819 * If the 0th byte is set to UINT8_MAX 5820 * then this is to be treated as a 5821 * reference to a NULL variable. 5822 */ 5823 regs[rd] = NULL; 5824 } else { 5825 regs[rd] = a + sizeof (uint64_t); 5826 } 5827 5828 break; 5829 } 5830 5831 regs[rd] = dtrace_dif_variable(mstate, state, id, 0); 5832 break; 5833 5834 case DIF_OP_STGS: 5835 id = DIF_INSTR_VAR(instr); 5836 5837 ASSERT(id >= DIF_VAR_OTHER_UBASE); 5838 id -= DIF_VAR_OTHER_UBASE; 5839 5840 svar = vstate->dtvs_globals[id]; 5841 ASSERT(svar != NULL); 5842 v = &svar->dtsv_var; 5843 5844 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 5845 uintptr_t a = (uintptr_t)svar->dtsv_data; 5846 5847 ASSERT(a != NULL); 5848 ASSERT(svar->dtsv_size != 0); 5849 5850 if (regs[rd] == NULL) { 5851 *(uint8_t *)a = UINT8_MAX; 5852 break; 5853 } else { 5854 *(uint8_t *)a = 0; 5855 a += sizeof (uint64_t); 5856 } 5857 if (!dtrace_vcanload( 5858 (void *)(uintptr_t)regs[rd], &v->dtdv_type, 5859 mstate, vstate)) 5860 break; 5861 5862 dtrace_vcopy((void *)(uintptr_t)regs[rd], 5863 (void *)a, &v->dtdv_type); 5864 break; 5865 } 5866 5867 svar->dtsv_data = regs[rd]; 5868 break; 5869 5870 case DIF_OP_LDTA: 5871 /* 5872 * There are no DTrace built-in thread-local arrays at 5873 * present. This opcode is saved for future work. 5874 */ 5875 *flags |= CPU_DTRACE_ILLOP; 5876 regs[rd] = 0; 5877 break; 5878 5879 case DIF_OP_LDLS: 5880 id = DIF_INSTR_VAR(instr); 5881 5882 if (id < DIF_VAR_OTHER_UBASE) { 5883 /* 5884 * For now, this has no meaning. 5885 */ 5886 regs[rd] = 0; 5887 break; 5888 } 5889 5890 id -= DIF_VAR_OTHER_UBASE; 5891 5892 ASSERT(id < vstate->dtvs_nlocals); 5893 ASSERT(vstate->dtvs_locals != NULL); 5894 5895 svar = vstate->dtvs_locals[id]; 5896 ASSERT(svar != NULL); 5897 v = &svar->dtsv_var; 5898 5899 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 5900 uintptr_t a = (uintptr_t)svar->dtsv_data; 5901 size_t sz = v->dtdv_type.dtdt_size; 5902 5903 sz += sizeof (uint64_t); 5904 ASSERT(svar->dtsv_size == NCPU * sz); 5905 a += CPU->cpu_id * sz; 5906 5907 if (*(uint8_t *)a == UINT8_MAX) { 5908 /* 5909 * If the 0th byte is set to UINT8_MAX 5910 * then this is to be treated as a 5911 * reference to a NULL variable. 5912 */ 5913 regs[rd] = NULL; 5914 } else { 5915 regs[rd] = a + sizeof (uint64_t); 5916 } 5917 5918 break; 5919 } 5920 5921 ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t)); 5922 tmp = (uint64_t *)(uintptr_t)svar->dtsv_data; 5923 regs[rd] = tmp[CPU->cpu_id]; 5924 break; 5925 5926 case DIF_OP_STLS: 5927 id = DIF_INSTR_VAR(instr); 5928 5929 ASSERT(id >= DIF_VAR_OTHER_UBASE); 5930 id -= DIF_VAR_OTHER_UBASE; 5931 ASSERT(id < vstate->dtvs_nlocals); 5932 5933 ASSERT(vstate->dtvs_locals != NULL); 5934 svar = vstate->dtvs_locals[id]; 5935 ASSERT(svar != NULL); 5936 v = &svar->dtsv_var; 5937 5938 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 5939 uintptr_t a = (uintptr_t)svar->dtsv_data; 5940 size_t sz = v->dtdv_type.dtdt_size; 5941 5942 sz += sizeof (uint64_t); 5943 ASSERT(svar->dtsv_size == NCPU * sz); 5944 a += CPU->cpu_id * sz; 5945 5946 if (regs[rd] == NULL) { 5947 *(uint8_t *)a = UINT8_MAX; 5948 break; 5949 } else { 5950 *(uint8_t *)a = 0; 5951 a += sizeof (uint64_t); 5952 } 5953 5954 if (!dtrace_vcanload( 5955 (void *)(uintptr_t)regs[rd], &v->dtdv_type, 5956 mstate, vstate)) 5957 break; 5958 5959 dtrace_vcopy((void *)(uintptr_t)regs[rd], 5960 (void *)a, &v->dtdv_type); 5961 break; 5962 } 5963 5964 ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t)); 5965 tmp = (uint64_t *)(uintptr_t)svar->dtsv_data; 5966 tmp[CPU->cpu_id] = regs[rd]; 5967 break; 5968 5969 case DIF_OP_LDTS: { 5970 dtrace_dynvar_t *dvar; 5971 dtrace_key_t *key; 5972 5973 id = DIF_INSTR_VAR(instr); 5974 ASSERT(id >= DIF_VAR_OTHER_UBASE); 5975 id -= DIF_VAR_OTHER_UBASE; 5976 v = &vstate->dtvs_tlocals[id]; 5977 5978 key = &tupregs[DIF_DTR_NREGS]; 5979 key[0].dttk_value = (uint64_t)id; 5980 key[0].dttk_size = 0; 5981 DTRACE_TLS_THRKEY(key[1].dttk_value); 5982 key[1].dttk_size = 0; 5983 5984 dvar = dtrace_dynvar(dstate, 2, key, 5985 sizeof (uint64_t), DTRACE_DYNVAR_NOALLOC, 5986 mstate, vstate); 5987 5988 if (dvar == NULL) { 5989 regs[rd] = 0; 5990 break; 5991 } 5992 5993 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 5994 regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data; 5995 } else { 5996 regs[rd] = *((uint64_t *)dvar->dtdv_data); 5997 } 5998 5999 break; 6000 } 6001 6002 case DIF_OP_STTS: { 6003 dtrace_dynvar_t *dvar; 6004 dtrace_key_t *key; 6005 6006 id = DIF_INSTR_VAR(instr); 6007 ASSERT(id >= DIF_VAR_OTHER_UBASE); 6008 id -= DIF_VAR_OTHER_UBASE; 6009 6010 key = &tupregs[DIF_DTR_NREGS]; 6011 key[0].dttk_value = (uint64_t)id; 6012 key[0].dttk_size = 0; 6013 DTRACE_TLS_THRKEY(key[1].dttk_value); 6014 key[1].dttk_size = 0; 6015 v = &vstate->dtvs_tlocals[id]; 6016 6017 dvar = dtrace_dynvar(dstate, 2, key, 6018 v->dtdv_type.dtdt_size > sizeof (uint64_t) ? 6019 v->dtdv_type.dtdt_size : sizeof (uint64_t), 6020 regs[rd] ? DTRACE_DYNVAR_ALLOC : 6021 DTRACE_DYNVAR_DEALLOC, mstate, vstate); 6022 6023 /* 6024 * Given that we're storing to thread-local data, 6025 * we need to flush our predicate cache. 6026 */ 6027 curthread->t_predcache = NULL; 6028 6029 if (dvar == NULL) 6030 break; 6031 6032 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 6033 if (!dtrace_vcanload( 6034 (void *)(uintptr_t)regs[rd], 6035 &v->dtdv_type, mstate, vstate)) 6036 break; 6037 6038 dtrace_vcopy((void *)(uintptr_t)regs[rd], 6039 dvar->dtdv_data, &v->dtdv_type); 6040 } else { 6041 *((uint64_t *)dvar->dtdv_data) = regs[rd]; 6042 } 6043 6044 break; 6045 } 6046 6047 case DIF_OP_SRA: 6048 regs[rd] = (int64_t)regs[r1] >> regs[r2]; 6049 break; 6050 6051 case DIF_OP_CALL: 6052 dtrace_dif_subr(DIF_INSTR_SUBR(instr), rd, 6053 regs, tupregs, ttop, mstate, state); 6054 break; 6055 6056 case DIF_OP_PUSHTR: 6057 if (ttop == DIF_DTR_NREGS) { 6058 *flags |= CPU_DTRACE_TUPOFLOW; 6059 break; 6060 } 6061 6062 if (r1 == DIF_TYPE_STRING) { 6063 /* 6064 * If this is a string type and the size is 0, 6065 * we'll use the system-wide default string 6066 * size. Note that we are _not_ looking at 6067 * the value of the DTRACEOPT_STRSIZE option; 6068 * had this been set, we would expect to have 6069 * a non-zero size value in the "pushtr". 6070 */ 6071 tupregs[ttop].dttk_size = 6072 dtrace_strlen((char *)(uintptr_t)regs[rd], 6073 regs[r2] ? regs[r2] : 6074 dtrace_strsize_default) + 1; 6075 } else { 6076 tupregs[ttop].dttk_size = regs[r2]; 6077 } 6078 6079 tupregs[ttop++].dttk_value = regs[rd]; 6080 break; 6081 6082 case DIF_OP_PUSHTV: 6083 if (ttop == DIF_DTR_NREGS) { 6084 *flags |= CPU_DTRACE_TUPOFLOW; 6085 break; 6086 } 6087 6088 tupregs[ttop].dttk_value = regs[rd]; 6089 tupregs[ttop++].dttk_size = 0; 6090 break; 6091 6092 case DIF_OP_POPTS: 6093 if (ttop != 0) 6094 ttop--; 6095 break; 6096 6097 case DIF_OP_FLUSHTS: 6098 ttop = 0; 6099 break; 6100 6101 case DIF_OP_LDGAA: 6102 case DIF_OP_LDTAA: { 6103 dtrace_dynvar_t *dvar; 6104 dtrace_key_t *key = tupregs; 6105 uint_t nkeys = ttop; 6106 6107 id = DIF_INSTR_VAR(instr); 6108 ASSERT(id >= DIF_VAR_OTHER_UBASE); 6109 id -= DIF_VAR_OTHER_UBASE; 6110 6111 key[nkeys].dttk_value = (uint64_t)id; 6112 key[nkeys++].dttk_size = 0; 6113 6114 if (DIF_INSTR_OP(instr) == DIF_OP_LDTAA) { 6115 DTRACE_TLS_THRKEY(key[nkeys].dttk_value); 6116 key[nkeys++].dttk_size = 0; 6117 v = &vstate->dtvs_tlocals[id]; 6118 } else { 6119 v = &vstate->dtvs_globals[id]->dtsv_var; 6120 } 6121 6122 dvar = dtrace_dynvar(dstate, nkeys, key, 6123 v->dtdv_type.dtdt_size > sizeof (uint64_t) ? 6124 v->dtdv_type.dtdt_size : sizeof (uint64_t), 6125 DTRACE_DYNVAR_NOALLOC, mstate, vstate); 6126 6127 if (dvar == NULL) { 6128 regs[rd] = 0; 6129 break; 6130 } 6131 6132 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 6133 regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data; 6134 } else { 6135 regs[rd] = *((uint64_t *)dvar->dtdv_data); 6136 } 6137 6138 break; 6139 } 6140 6141 case DIF_OP_STGAA: 6142 case DIF_OP_STTAA: { 6143 dtrace_dynvar_t *dvar; 6144 dtrace_key_t *key = tupregs; 6145 uint_t nkeys = ttop; 6146 6147 id = DIF_INSTR_VAR(instr); 6148 ASSERT(id >= DIF_VAR_OTHER_UBASE); 6149 id -= DIF_VAR_OTHER_UBASE; 6150 6151 key[nkeys].dttk_value = (uint64_t)id; 6152 key[nkeys++].dttk_size = 0; 6153 6154 if (DIF_INSTR_OP(instr) == DIF_OP_STTAA) { 6155 DTRACE_TLS_THRKEY(key[nkeys].dttk_value); 6156 key[nkeys++].dttk_size = 0; 6157 v = &vstate->dtvs_tlocals[id]; 6158 } else { 6159 v = &vstate->dtvs_globals[id]->dtsv_var; 6160 } 6161 6162 dvar = dtrace_dynvar(dstate, nkeys, key, 6163 v->dtdv_type.dtdt_size > sizeof (uint64_t) ? 6164 v->dtdv_type.dtdt_size : sizeof (uint64_t), 6165 regs[rd] ? DTRACE_DYNVAR_ALLOC : 6166 DTRACE_DYNVAR_DEALLOC, mstate, vstate); 6167 6168 if (dvar == NULL) 6169 break; 6170 6171 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 6172 if (!dtrace_vcanload( 6173 (void *)(uintptr_t)regs[rd], &v->dtdv_type, 6174 mstate, vstate)) 6175 break; 6176 6177 dtrace_vcopy((void *)(uintptr_t)regs[rd], 6178 dvar->dtdv_data, &v->dtdv_type); 6179 } else { 6180 *((uint64_t *)dvar->dtdv_data) = regs[rd]; 6181 } 6182 6183 break; 6184 } 6185 6186 case DIF_OP_ALLOCS: { 6187 uintptr_t ptr = P2ROUNDUP(mstate->dtms_scratch_ptr, 8); 6188 size_t size = ptr - mstate->dtms_scratch_ptr + regs[r1]; 6189 6190 /* 6191 * Rounding up the user allocation size could have 6192 * overflowed large, bogus allocations (like -1ULL) to 6193 * 0. 6194 */ 6195 if (size < regs[r1] || 6196 !DTRACE_INSCRATCH(mstate, size)) { 6197 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 6198 regs[rd] = NULL; 6199 break; 6200 } 6201 6202 dtrace_bzero((void *) mstate->dtms_scratch_ptr, size); 6203 mstate->dtms_scratch_ptr += size; 6204 regs[rd] = ptr; 6205 break; 6206 } 6207 6208 case DIF_OP_COPYS: 6209 if (!dtrace_canstore(regs[rd], regs[r2], 6210 mstate, vstate)) { 6211 *flags |= CPU_DTRACE_BADADDR; 6212 *illval = regs[rd]; 6213 break; 6214 } 6215 6216 if (!dtrace_canload(regs[r1], regs[r2], mstate, vstate)) 6217 break; 6218 6219 dtrace_bcopy((void *)(uintptr_t)regs[r1], 6220 (void *)(uintptr_t)regs[rd], (size_t)regs[r2]); 6221 break; 6222 6223 case DIF_OP_STB: 6224 if (!dtrace_canstore(regs[rd], 1, mstate, vstate)) { 6225 *flags |= CPU_DTRACE_BADADDR; 6226 *illval = regs[rd]; 6227 break; 6228 } 6229 *((uint8_t *)(uintptr_t)regs[rd]) = (uint8_t)regs[r1]; 6230 break; 6231 6232 case DIF_OP_STH: 6233 if (!dtrace_canstore(regs[rd], 2, mstate, vstate)) { 6234 *flags |= CPU_DTRACE_BADADDR; 6235 *illval = regs[rd]; 6236 break; 6237 } 6238 if (regs[rd] & 1) { 6239 *flags |= CPU_DTRACE_BADALIGN; 6240 *illval = regs[rd]; 6241 break; 6242 } 6243 *((uint16_t *)(uintptr_t)regs[rd]) = (uint16_t)regs[r1]; 6244 break; 6245 6246 case DIF_OP_STW: 6247 if (!dtrace_canstore(regs[rd], 4, mstate, vstate)) { 6248 *flags |= CPU_DTRACE_BADADDR; 6249 *illval = regs[rd]; 6250 break; 6251 } 6252 if (regs[rd] & 3) { 6253 *flags |= CPU_DTRACE_BADALIGN; 6254 *illval = regs[rd]; 6255 break; 6256 } 6257 *((uint32_t *)(uintptr_t)regs[rd]) = (uint32_t)regs[r1]; 6258 break; 6259 6260 case DIF_OP_STX: 6261 if (!dtrace_canstore(regs[rd], 8, mstate, vstate)) { 6262 *flags |= CPU_DTRACE_BADADDR; 6263 *illval = regs[rd]; 6264 break; 6265 } 6266 if (regs[rd] & 7) { 6267 *flags |= CPU_DTRACE_BADALIGN; 6268 *illval = regs[rd]; 6269 break; 6270 } 6271 *((uint64_t *)(uintptr_t)regs[rd]) = regs[r1]; 6272 break; 6273 } 6274 } 6275 6276 if (!(*flags & CPU_DTRACE_FAULT)) 6277 return (rval); 6278 6279 mstate->dtms_fltoffs = opc * sizeof (dif_instr_t); 6280 mstate->dtms_present |= DTRACE_MSTATE_FLTOFFS; 6281 6282 return (0); 6283 } 6284 6285 static void 6286 dtrace_action_breakpoint(dtrace_ecb_t *ecb) 6287 { 6288 dtrace_probe_t *probe = ecb->dte_probe; 6289 dtrace_provider_t *prov = probe->dtpr_provider; 6290 char c[DTRACE_FULLNAMELEN + 80], *str; 6291 char *msg = "dtrace: breakpoint action at probe "; 6292 char *ecbmsg = " (ecb "; 6293 uintptr_t mask = (0xf << (sizeof (uintptr_t) * NBBY / 4)); 6294 uintptr_t val = (uintptr_t)ecb; 6295 int shift = (sizeof (uintptr_t) * NBBY) - 4, i = 0; 6296 6297 if (dtrace_destructive_disallow) 6298 return; 6299 6300 /* 6301 * It's impossible to be taking action on the NULL probe. 6302 */ 6303 ASSERT(probe != NULL); 6304 6305 /* 6306 * This is a poor man's (destitute man's?) sprintf(): we want to 6307 * print the provider name, module name, function name and name of 6308 * the probe, along with the hex address of the ECB with the breakpoint 6309 * action -- all of which we must place in the character buffer by 6310 * hand. 6311 */ 6312 while (*msg != '\0') 6313 c[i++] = *msg++; 6314 6315 for (str = prov->dtpv_name; *str != '\0'; str++) 6316 c[i++] = *str; 6317 c[i++] = ':'; 6318 6319 for (str = probe->dtpr_mod; *str != '\0'; str++) 6320 c[i++] = *str; 6321 c[i++] = ':'; 6322 6323 for (str = probe->dtpr_func; *str != '\0'; str++) 6324 c[i++] = *str; 6325 c[i++] = ':'; 6326 6327 for (str = probe->dtpr_name; *str != '\0'; str++) 6328 c[i++] = *str; 6329 6330 while (*ecbmsg != '\0') 6331 c[i++] = *ecbmsg++; 6332 6333 while (shift >= 0) { 6334 mask = (uintptr_t)0xf << shift; 6335 6336 if (val >= ((uintptr_t)1 << shift)) 6337 c[i++] = "0123456789abcdef"[(val & mask) >> shift]; 6338 shift -= 4; 6339 } 6340 6341 c[i++] = ')'; 6342 c[i] = '\0'; 6343 6344 debug_enter(c); 6345 } 6346 6347 static void 6348 dtrace_action_panic(dtrace_ecb_t *ecb) 6349 { 6350 dtrace_probe_t *probe = ecb->dte_probe; 6351 6352 /* 6353 * It's impossible to be taking action on the NULL probe. 6354 */ 6355 ASSERT(probe != NULL); 6356 6357 if (dtrace_destructive_disallow) 6358 return; 6359 6360 if (dtrace_panicked != NULL) 6361 return; 6362 6363 if (dtrace_casptr(&dtrace_panicked, NULL, curthread) != NULL) 6364 return; 6365 6366 /* 6367 * We won the right to panic. (We want to be sure that only one 6368 * thread calls panic() from dtrace_probe(), and that panic() is 6369 * called exactly once.) 6370 */ 6371 dtrace_panic("dtrace: panic action at probe %s:%s:%s:%s (ecb %p)", 6372 probe->dtpr_provider->dtpv_name, probe->dtpr_mod, 6373 probe->dtpr_func, probe->dtpr_name, (void *)ecb); 6374 } 6375 6376 static void 6377 dtrace_action_raise(uint64_t sig) 6378 { 6379 if (dtrace_destructive_disallow) 6380 return; 6381 6382 if (sig >= NSIG) { 6383 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); 6384 return; 6385 } 6386 6387 /* 6388 * raise() has a queue depth of 1 -- we ignore all subsequent 6389 * invocations of the raise() action. 6390 */ 6391 if (curthread->t_dtrace_sig == 0) 6392 curthread->t_dtrace_sig = (uint8_t)sig; 6393 6394 curthread->t_sig_check = 1; 6395 aston(curthread); 6396 } 6397 6398 static void 6399 dtrace_action_stop(void) 6400 { 6401 if (dtrace_destructive_disallow) 6402 return; 6403 6404 if (!curthread->t_dtrace_stop) { 6405 curthread->t_dtrace_stop = 1; 6406 curthread->t_sig_check = 1; 6407 aston(curthread); 6408 } 6409 } 6410 6411 static void 6412 dtrace_action_chill(dtrace_mstate_t *mstate, hrtime_t val) 6413 { 6414 hrtime_t now; 6415 volatile uint16_t *flags; 6416 cpu_t *cpu = CPU; 6417 6418 if (dtrace_destructive_disallow) 6419 return; 6420 6421 flags = (volatile uint16_t *)&cpu_core[cpu->cpu_id].cpuc_dtrace_flags; 6422 6423 now = dtrace_gethrtime(); 6424 6425 if (now - cpu->cpu_dtrace_chillmark > dtrace_chill_interval) { 6426 /* 6427 * We need to advance the mark to the current time. 6428 */ 6429 cpu->cpu_dtrace_chillmark = now; 6430 cpu->cpu_dtrace_chilled = 0; 6431 } 6432 6433 /* 6434 * Now check to see if the requested chill time would take us over 6435 * the maximum amount of time allowed in the chill interval. (Or 6436 * worse, if the calculation itself induces overflow.) 6437 */ 6438 if (cpu->cpu_dtrace_chilled + val > dtrace_chill_max || 6439 cpu->cpu_dtrace_chilled + val < cpu->cpu_dtrace_chilled) { 6440 *flags |= CPU_DTRACE_ILLOP; 6441 return; 6442 } 6443 6444 while (dtrace_gethrtime() - now < val) 6445 continue; 6446 6447 /* 6448 * Normally, we assure that the value of the variable "timestamp" does 6449 * not change within an ECB. The presence of chill() represents an 6450 * exception to this rule, however. 6451 */ 6452 mstate->dtms_present &= ~DTRACE_MSTATE_TIMESTAMP; 6453 cpu->cpu_dtrace_chilled += val; 6454 } 6455 6456 static void 6457 dtrace_action_ustack(dtrace_mstate_t *mstate, dtrace_state_t *state, 6458 uint64_t *buf, uint64_t arg) 6459 { 6460 int nframes = DTRACE_USTACK_NFRAMES(arg); 6461 int strsize = DTRACE_USTACK_STRSIZE(arg); 6462 uint64_t *pcs = &buf[1], *fps; 6463 char *str = (char *)&pcs[nframes]; 6464 int size, offs = 0, i, j; 6465 uintptr_t old = mstate->dtms_scratch_ptr, saved; 6466 uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags; 6467 char *sym; 6468 6469 /* 6470 * Should be taking a faster path if string space has not been 6471 * allocated. 6472 */ 6473 ASSERT(strsize != 0); 6474 6475 /* 6476 * We will first allocate some temporary space for the frame pointers. 6477 */ 6478 fps = (uint64_t *)P2ROUNDUP(mstate->dtms_scratch_ptr, 8); 6479 size = (uintptr_t)fps - mstate->dtms_scratch_ptr + 6480 (nframes * sizeof (uint64_t)); 6481 6482 if (!DTRACE_INSCRATCH(mstate, size)) { 6483 /* 6484 * Not enough room for our frame pointers -- need to indicate 6485 * that we ran out of scratch space. 6486 */ 6487 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 6488 return; 6489 } 6490 6491 mstate->dtms_scratch_ptr += size; 6492 saved = mstate->dtms_scratch_ptr; 6493 6494 /* 6495 * Now get a stack with both program counters and frame pointers. 6496 */ 6497 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 6498 dtrace_getufpstack(buf, fps, nframes + 1); 6499 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 6500 6501 /* 6502 * If that faulted, we're cooked. 6503 */ 6504 if (*flags & CPU_DTRACE_FAULT) 6505 goto out; 6506 6507 /* 6508 * Now we want to walk up the stack, calling the USTACK helper. For 6509 * each iteration, we restore the scratch pointer. 6510 */ 6511 for (i = 0; i < nframes; i++) { 6512 mstate->dtms_scratch_ptr = saved; 6513 6514 if (offs >= strsize) 6515 break; 6516 6517 sym = (char *)(uintptr_t)dtrace_helper( 6518 DTRACE_HELPER_ACTION_USTACK, 6519 mstate, state, pcs[i], fps[i]); 6520 6521 /* 6522 * If we faulted while running the helper, we're going to 6523 * clear the fault and null out the corresponding string. 6524 */ 6525 if (*flags & CPU_DTRACE_FAULT) { 6526 *flags &= ~CPU_DTRACE_FAULT; 6527 str[offs++] = '\0'; 6528 continue; 6529 } 6530 6531 if (sym == NULL) { 6532 str[offs++] = '\0'; 6533 continue; 6534 } 6535 6536 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 6537 6538 /* 6539 * Now copy in the string that the helper returned to us. 6540 */ 6541 for (j = 0; offs + j < strsize; j++) { 6542 if ((str[offs + j] = sym[j]) == '\0') 6543 break; 6544 } 6545 6546 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 6547 6548 offs += j + 1; 6549 } 6550 6551 if (offs >= strsize) { 6552 /* 6553 * If we didn't have room for all of the strings, we don't 6554 * abort processing -- this needn't be a fatal error -- but we 6555 * still want to increment a counter (dts_stkstroverflows) to 6556 * allow this condition to be warned about. (If this is from 6557 * a jstack() action, it is easily tuned via jstackstrsize.) 6558 */ 6559 dtrace_error(&state->dts_stkstroverflows); 6560 } 6561 6562 while (offs < strsize) 6563 str[offs++] = '\0'; 6564 6565 out: 6566 mstate->dtms_scratch_ptr = old; 6567 } 6568 6569 static void 6570 dtrace_store_by_ref(dtrace_difo_t *dp, caddr_t tomax, size_t size, 6571 size_t *valoffsp, uint64_t *valp, uint64_t end, int intuple, int dtkind) 6572 { 6573 volatile uint16_t *flags; 6574 uint64_t val = *valp; 6575 size_t valoffs = *valoffsp; 6576 6577 flags = (volatile uint16_t *)&cpu_core[CPU->cpu_id].cpuc_dtrace_flags; 6578 ASSERT(dtkind == DIF_TF_BYREF || dtkind == DIF_TF_BYUREF); 6579 6580 /* 6581 * If this is a string, we're going to only load until we find the zero 6582 * byte -- after which we'll store zero bytes. 6583 */ 6584 if (dp->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) { 6585 char c = '\0' + 1; 6586 size_t s; 6587 6588 for (s = 0; s < size; s++) { 6589 if (c != '\0' && dtkind == DIF_TF_BYREF) { 6590 c = dtrace_load8(val++); 6591 } else if (c != '\0' && dtkind == DIF_TF_BYUREF) { 6592 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 6593 c = dtrace_fuword8((void *)(uintptr_t)val++); 6594 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 6595 if (*flags & CPU_DTRACE_FAULT) 6596 break; 6597 } 6598 6599 DTRACE_STORE(uint8_t, tomax, valoffs++, c); 6600 6601 if (c == '\0' && intuple) 6602 break; 6603 } 6604 } else { 6605 uint8_t c; 6606 while (valoffs < end) { 6607 if (dtkind == DIF_TF_BYREF) { 6608 c = dtrace_load8(val++); 6609 } else if (dtkind == DIF_TF_BYUREF) { 6610 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 6611 c = dtrace_fuword8((void *)(uintptr_t)val++); 6612 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 6613 if (*flags & CPU_DTRACE_FAULT) 6614 break; 6615 } 6616 6617 DTRACE_STORE(uint8_t, tomax, 6618 valoffs++, c); 6619 } 6620 } 6621 6622 *valp = val; 6623 *valoffsp = valoffs; 6624 } 6625 6626 /* 6627 * If you're looking for the epicenter of DTrace, you just found it. This 6628 * is the function called by the provider to fire a probe -- from which all 6629 * subsequent probe-context DTrace activity emanates. 6630 */ 6631 void 6632 dtrace_probe(dtrace_id_t id, uintptr_t arg0, uintptr_t arg1, 6633 uintptr_t arg2, uintptr_t arg3, uintptr_t arg4) 6634 { 6635 processorid_t cpuid; 6636 dtrace_icookie_t cookie; 6637 dtrace_probe_t *probe; 6638 dtrace_mstate_t mstate; 6639 dtrace_ecb_t *ecb; 6640 dtrace_action_t *act; 6641 intptr_t offs; 6642 size_t size; 6643 int vtime, onintr; 6644 volatile uint16_t *flags; 6645 hrtime_t now, end; 6646 6647 /* 6648 * Kick out immediately if this CPU is still being born (in which case 6649 * curthread will be set to -1) or the current thread can't allow 6650 * probes in its current context. 6651 */ 6652 if (((uintptr_t)curthread & 1) || (curthread->t_flag & T_DONTDTRACE)) 6653 return; 6654 6655 cookie = dtrace_interrupt_disable(); 6656 probe = dtrace_probes[id - 1]; 6657 cpuid = CPU->cpu_id; 6658 onintr = CPU_ON_INTR(CPU); 6659 6660 CPU->cpu_dtrace_probes++; 6661 6662 if (!onintr && probe->dtpr_predcache != DTRACE_CACHEIDNONE && 6663 probe->dtpr_predcache == curthread->t_predcache) { 6664 /* 6665 * We have hit in the predicate cache; we know that 6666 * this predicate would evaluate to be false. 6667 */ 6668 dtrace_interrupt_enable(cookie); 6669 return; 6670 } 6671 6672 if (panic_quiesce) { 6673 /* 6674 * We don't trace anything if we're panicking. 6675 */ 6676 dtrace_interrupt_enable(cookie); 6677 return; 6678 } 6679 6680 now = dtrace_gethrtime(); 6681 vtime = dtrace_vtime_references != 0; 6682 6683 if (vtime && curthread->t_dtrace_start) 6684 curthread->t_dtrace_vtime += now - curthread->t_dtrace_start; 6685 6686 mstate.dtms_difo = NULL; 6687 mstate.dtms_probe = probe; 6688 mstate.dtms_strtok = NULL; 6689 mstate.dtms_arg[0] = arg0; 6690 mstate.dtms_arg[1] = arg1; 6691 mstate.dtms_arg[2] = arg2; 6692 mstate.dtms_arg[3] = arg3; 6693 mstate.dtms_arg[4] = arg4; 6694 6695 flags = (volatile uint16_t *)&cpu_core[cpuid].cpuc_dtrace_flags; 6696 6697 for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) { 6698 dtrace_predicate_t *pred = ecb->dte_predicate; 6699 dtrace_state_t *state = ecb->dte_state; 6700 dtrace_buffer_t *buf = &state->dts_buffer[cpuid]; 6701 dtrace_buffer_t *aggbuf = &state->dts_aggbuffer[cpuid]; 6702 dtrace_vstate_t *vstate = &state->dts_vstate; 6703 dtrace_provider_t *prov = probe->dtpr_provider; 6704 uint64_t tracememsize = 0; 6705 int committed = 0; 6706 caddr_t tomax; 6707 6708 /* 6709 * A little subtlety with the following (seemingly innocuous) 6710 * declaration of the automatic 'val': by looking at the 6711 * code, you might think that it could be declared in the 6712 * action processing loop, below. (That is, it's only used in 6713 * the action processing loop.) However, it must be declared 6714 * out of that scope because in the case of DIF expression 6715 * arguments to aggregating actions, one iteration of the 6716 * action loop will use the last iteration's value. 6717 */ 6718 #ifdef lint 6719 uint64_t val = 0; 6720 #else 6721 uint64_t val; 6722 #endif 6723 6724 mstate.dtms_present = DTRACE_MSTATE_ARGS | DTRACE_MSTATE_PROBE; 6725 mstate.dtms_access = DTRACE_ACCESS_ARGS | DTRACE_ACCESS_PROC; 6726 mstate.dtms_getf = NULL; 6727 6728 *flags &= ~CPU_DTRACE_ERROR; 6729 6730 if (prov == dtrace_provider) { 6731 /* 6732 * If dtrace itself is the provider of this probe, 6733 * we're only going to continue processing the ECB if 6734 * arg0 (the dtrace_state_t) is equal to the ECB's 6735 * creating state. (This prevents disjoint consumers 6736 * from seeing one another's metaprobes.) 6737 */ 6738 if (arg0 != (uint64_t)(uintptr_t)state) 6739 continue; 6740 } 6741 6742 if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE) { 6743 /* 6744 * We're not currently active. If our provider isn't 6745 * the dtrace pseudo provider, we're not interested. 6746 */ 6747 if (prov != dtrace_provider) 6748 continue; 6749 6750 /* 6751 * Now we must further check if we are in the BEGIN 6752 * probe. If we are, we will only continue processing 6753 * if we're still in WARMUP -- if one BEGIN enabling 6754 * has invoked the exit() action, we don't want to 6755 * evaluate subsequent BEGIN enablings. 6756 */ 6757 if (probe->dtpr_id == dtrace_probeid_begin && 6758 state->dts_activity != DTRACE_ACTIVITY_WARMUP) { 6759 ASSERT(state->dts_activity == 6760 DTRACE_ACTIVITY_DRAINING); 6761 continue; 6762 } 6763 } 6764 6765 if (ecb->dte_cond && !dtrace_priv_probe(state, &mstate, ecb)) 6766 continue; 6767 6768 if (now - state->dts_alive > dtrace_deadman_timeout) { 6769 /* 6770 * We seem to be dead. Unless we (a) have kernel 6771 * destructive permissions (b) have explicitly enabled 6772 * destructive actions and (c) destructive actions have 6773 * not been disabled, we're going to transition into 6774 * the KILLED state, from which no further processing 6775 * on this state will be performed. 6776 */ 6777 if (!dtrace_priv_kernel_destructive(state) || 6778 !state->dts_cred.dcr_destructive || 6779 dtrace_destructive_disallow) { 6780 void *activity = &state->dts_activity; 6781 dtrace_activity_t current; 6782 6783 do { 6784 current = state->dts_activity; 6785 } while (dtrace_cas32(activity, current, 6786 DTRACE_ACTIVITY_KILLED) != current); 6787 6788 continue; 6789 } 6790 } 6791 6792 if ((offs = dtrace_buffer_reserve(buf, ecb->dte_needed, 6793 ecb->dte_alignment, state, &mstate)) < 0) 6794 continue; 6795 6796 tomax = buf->dtb_tomax; 6797 ASSERT(tomax != NULL); 6798 6799 if (ecb->dte_size != 0) { 6800 dtrace_rechdr_t dtrh; 6801 if (!(mstate.dtms_present & DTRACE_MSTATE_TIMESTAMP)) { 6802 mstate.dtms_timestamp = dtrace_gethrtime(); 6803 mstate.dtms_present |= DTRACE_MSTATE_TIMESTAMP; 6804 } 6805 ASSERT3U(ecb->dte_size, >=, sizeof (dtrace_rechdr_t)); 6806 dtrh.dtrh_epid = ecb->dte_epid; 6807 DTRACE_RECORD_STORE_TIMESTAMP(&dtrh, 6808 mstate.dtms_timestamp); 6809 *((dtrace_rechdr_t *)(tomax + offs)) = dtrh; 6810 } 6811 6812 mstate.dtms_epid = ecb->dte_epid; 6813 mstate.dtms_present |= DTRACE_MSTATE_EPID; 6814 6815 if (state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) 6816 mstate.dtms_access |= DTRACE_ACCESS_KERNEL; 6817 6818 if (pred != NULL) { 6819 dtrace_difo_t *dp = pred->dtp_difo; 6820 int rval; 6821 6822 rval = dtrace_dif_emulate(dp, &mstate, vstate, state); 6823 6824 if (!(*flags & CPU_DTRACE_ERROR) && !rval) { 6825 dtrace_cacheid_t cid = probe->dtpr_predcache; 6826 6827 if (cid != DTRACE_CACHEIDNONE && !onintr) { 6828 /* 6829 * Update the predicate cache... 6830 */ 6831 ASSERT(cid == pred->dtp_cacheid); 6832 curthread->t_predcache = cid; 6833 } 6834 6835 continue; 6836 } 6837 } 6838 6839 for (act = ecb->dte_action; !(*flags & CPU_DTRACE_ERROR) && 6840 act != NULL; act = act->dta_next) { 6841 size_t valoffs; 6842 dtrace_difo_t *dp; 6843 dtrace_recdesc_t *rec = &act->dta_rec; 6844 6845 size = rec->dtrd_size; 6846 valoffs = offs + rec->dtrd_offset; 6847 6848 if (DTRACEACT_ISAGG(act->dta_kind)) { 6849 uint64_t v = 0xbad; 6850 dtrace_aggregation_t *agg; 6851 6852 agg = (dtrace_aggregation_t *)act; 6853 6854 if ((dp = act->dta_difo) != NULL) 6855 v = dtrace_dif_emulate(dp, 6856 &mstate, vstate, state); 6857 6858 if (*flags & CPU_DTRACE_ERROR) 6859 continue; 6860 6861 /* 6862 * Note that we always pass the expression 6863 * value from the previous iteration of the 6864 * action loop. This value will only be used 6865 * if there is an expression argument to the 6866 * aggregating action, denoted by the 6867 * dtag_hasarg field. 6868 */ 6869 dtrace_aggregate(agg, buf, 6870 offs, aggbuf, v, val); 6871 continue; 6872 } 6873 6874 switch (act->dta_kind) { 6875 case DTRACEACT_STOP: 6876 if (dtrace_priv_proc_destructive(state, 6877 &mstate)) 6878 dtrace_action_stop(); 6879 continue; 6880 6881 case DTRACEACT_BREAKPOINT: 6882 if (dtrace_priv_kernel_destructive(state)) 6883 dtrace_action_breakpoint(ecb); 6884 continue; 6885 6886 case DTRACEACT_PANIC: 6887 if (dtrace_priv_kernel_destructive(state)) 6888 dtrace_action_panic(ecb); 6889 continue; 6890 6891 case DTRACEACT_STACK: 6892 if (!dtrace_priv_kernel(state)) 6893 continue; 6894 6895 dtrace_getpcstack((pc_t *)(tomax + valoffs), 6896 size / sizeof (pc_t), probe->dtpr_aframes, 6897 DTRACE_ANCHORED(probe) ? NULL : 6898 (uint32_t *)arg0); 6899 6900 continue; 6901 6902 case DTRACEACT_JSTACK: 6903 case DTRACEACT_USTACK: 6904 if (!dtrace_priv_proc(state, &mstate)) 6905 continue; 6906 6907 /* 6908 * See comment in DIF_VAR_PID. 6909 */ 6910 if (DTRACE_ANCHORED(mstate.dtms_probe) && 6911 CPU_ON_INTR(CPU)) { 6912 int depth = DTRACE_USTACK_NFRAMES( 6913 rec->dtrd_arg) + 1; 6914 6915 dtrace_bzero((void *)(tomax + valoffs), 6916 DTRACE_USTACK_STRSIZE(rec->dtrd_arg) 6917 + depth * sizeof (uint64_t)); 6918 6919 continue; 6920 } 6921 6922 if (DTRACE_USTACK_STRSIZE(rec->dtrd_arg) != 0 && 6923 curproc->p_dtrace_helpers != NULL) { 6924 /* 6925 * This is the slow path -- we have 6926 * allocated string space, and we're 6927 * getting the stack of a process that 6928 * has helpers. Call into a separate 6929 * routine to perform this processing. 6930 */ 6931 dtrace_action_ustack(&mstate, state, 6932 (uint64_t *)(tomax + valoffs), 6933 rec->dtrd_arg); 6934 continue; 6935 } 6936 6937 /* 6938 * Clear the string space, since there's no 6939 * helper to do it for us. 6940 */ 6941 if (DTRACE_USTACK_STRSIZE(rec->dtrd_arg) != 0) { 6942 int depth = DTRACE_USTACK_NFRAMES( 6943 rec->dtrd_arg); 6944 size_t strsize = DTRACE_USTACK_STRSIZE( 6945 rec->dtrd_arg); 6946 uint64_t *buf = (uint64_t *)(tomax + 6947 valoffs); 6948 void *strspace = &buf[depth + 1]; 6949 6950 dtrace_bzero(strspace, 6951 MIN(depth, strsize)); 6952 } 6953 6954 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 6955 dtrace_getupcstack((uint64_t *) 6956 (tomax + valoffs), 6957 DTRACE_USTACK_NFRAMES(rec->dtrd_arg) + 1); 6958 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 6959 continue; 6960 6961 default: 6962 break; 6963 } 6964 6965 dp = act->dta_difo; 6966 ASSERT(dp != NULL); 6967 6968 val = dtrace_dif_emulate(dp, &mstate, vstate, state); 6969 6970 if (*flags & CPU_DTRACE_ERROR) 6971 continue; 6972 6973 switch (act->dta_kind) { 6974 case DTRACEACT_SPECULATE: { 6975 dtrace_rechdr_t *dtrh; 6976 6977 ASSERT(buf == &state->dts_buffer[cpuid]); 6978 buf = dtrace_speculation_buffer(state, 6979 cpuid, val); 6980 6981 if (buf == NULL) { 6982 *flags |= CPU_DTRACE_DROP; 6983 continue; 6984 } 6985 6986 offs = dtrace_buffer_reserve(buf, 6987 ecb->dte_needed, ecb->dte_alignment, 6988 state, NULL); 6989 6990 if (offs < 0) { 6991 *flags |= CPU_DTRACE_DROP; 6992 continue; 6993 } 6994 6995 tomax = buf->dtb_tomax; 6996 ASSERT(tomax != NULL); 6997 6998 if (ecb->dte_size == 0) 6999 continue; 7000 7001 ASSERT3U(ecb->dte_size, >=, 7002 sizeof (dtrace_rechdr_t)); 7003 dtrh = ((void *)(tomax + offs)); 7004 dtrh->dtrh_epid = ecb->dte_epid; 7005 /* 7006 * When the speculation is committed, all of 7007 * the records in the speculative buffer will 7008 * have their timestamps set to the commit 7009 * time. Until then, it is set to a sentinel 7010 * value, for debugability. 7011 */ 7012 DTRACE_RECORD_STORE_TIMESTAMP(dtrh, UINT64_MAX); 7013 continue; 7014 } 7015 7016 case DTRACEACT_CHILL: 7017 if (dtrace_priv_kernel_destructive(state)) 7018 dtrace_action_chill(&mstate, val); 7019 continue; 7020 7021 case DTRACEACT_RAISE: 7022 if (dtrace_priv_proc_destructive(state, 7023 &mstate)) 7024 dtrace_action_raise(val); 7025 continue; 7026 7027 case DTRACEACT_COMMIT: 7028 ASSERT(!committed); 7029 7030 /* 7031 * We need to commit our buffer state. 7032 */ 7033 if (ecb->dte_size) 7034 buf->dtb_offset = offs + ecb->dte_size; 7035 buf = &state->dts_buffer[cpuid]; 7036 dtrace_speculation_commit(state, cpuid, val); 7037 committed = 1; 7038 continue; 7039 7040 case DTRACEACT_DISCARD: 7041 dtrace_speculation_discard(state, cpuid, val); 7042 continue; 7043 7044 case DTRACEACT_DIFEXPR: 7045 case DTRACEACT_LIBACT: 7046 case DTRACEACT_PRINTF: 7047 case DTRACEACT_PRINTA: 7048 case DTRACEACT_SYSTEM: 7049 case DTRACEACT_FREOPEN: 7050 case DTRACEACT_TRACEMEM: 7051 break; 7052 7053 case DTRACEACT_TRACEMEM_DYNSIZE: 7054 tracememsize = val; 7055 break; 7056 7057 case DTRACEACT_SYM: 7058 case DTRACEACT_MOD: 7059 if (!dtrace_priv_kernel(state)) 7060 continue; 7061 break; 7062 7063 case DTRACEACT_USYM: 7064 case DTRACEACT_UMOD: 7065 case DTRACEACT_UADDR: { 7066 struct pid *pid = curthread->t_procp->p_pidp; 7067 7068 if (!dtrace_priv_proc(state, &mstate)) 7069 continue; 7070 7071 DTRACE_STORE(uint64_t, tomax, 7072 valoffs, (uint64_t)pid->pid_id); 7073 DTRACE_STORE(uint64_t, tomax, 7074 valoffs + sizeof (uint64_t), val); 7075 7076 continue; 7077 } 7078 7079 case DTRACEACT_EXIT: { 7080 /* 7081 * For the exit action, we are going to attempt 7082 * to atomically set our activity to be 7083 * draining. If this fails (either because 7084 * another CPU has beat us to the exit action, 7085 * or because our current activity is something 7086 * other than ACTIVE or WARMUP), we will 7087 * continue. This assures that the exit action 7088 * can be successfully recorded at most once 7089 * when we're in the ACTIVE state. If we're 7090 * encountering the exit() action while in 7091 * COOLDOWN, however, we want to honor the new 7092 * status code. (We know that we're the only 7093 * thread in COOLDOWN, so there is no race.) 7094 */ 7095 void *activity = &state->dts_activity; 7096 dtrace_activity_t current = state->dts_activity; 7097 7098 if (current == DTRACE_ACTIVITY_COOLDOWN) 7099 break; 7100 7101 if (current != DTRACE_ACTIVITY_WARMUP) 7102 current = DTRACE_ACTIVITY_ACTIVE; 7103 7104 if (dtrace_cas32(activity, current, 7105 DTRACE_ACTIVITY_DRAINING) != current) { 7106 *flags |= CPU_DTRACE_DROP; 7107 continue; 7108 } 7109 7110 break; 7111 } 7112 7113 default: 7114 ASSERT(0); 7115 } 7116 7117 if (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF || 7118 dp->dtdo_rtype.dtdt_flags & DIF_TF_BYUREF) { 7119 uintptr_t end = valoffs + size; 7120 7121 if (tracememsize != 0 && 7122 valoffs + tracememsize < end) { 7123 end = valoffs + tracememsize; 7124 tracememsize = 0; 7125 } 7126 7127 if (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF && 7128 !dtrace_vcanload((void *)(uintptr_t)val, 7129 &dp->dtdo_rtype, &mstate, vstate)) 7130 continue; 7131 7132 dtrace_store_by_ref(dp, tomax, size, &valoffs, 7133 &val, end, act->dta_intuple, 7134 dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF ? 7135 DIF_TF_BYREF: DIF_TF_BYUREF); 7136 continue; 7137 } 7138 7139 switch (size) { 7140 case 0: 7141 break; 7142 7143 case sizeof (uint8_t): 7144 DTRACE_STORE(uint8_t, tomax, valoffs, val); 7145 break; 7146 case sizeof (uint16_t): 7147 DTRACE_STORE(uint16_t, tomax, valoffs, val); 7148 break; 7149 case sizeof (uint32_t): 7150 DTRACE_STORE(uint32_t, tomax, valoffs, val); 7151 break; 7152 case sizeof (uint64_t): 7153 DTRACE_STORE(uint64_t, tomax, valoffs, val); 7154 break; 7155 default: 7156 /* 7157 * Any other size should have been returned by 7158 * reference, not by value. 7159 */ 7160 ASSERT(0); 7161 break; 7162 } 7163 } 7164 7165 if (*flags & CPU_DTRACE_DROP) 7166 continue; 7167 7168 if (*flags & CPU_DTRACE_FAULT) { 7169 int ndx; 7170 dtrace_action_t *err; 7171 7172 buf->dtb_errors++; 7173 7174 if (probe->dtpr_id == dtrace_probeid_error) { 7175 /* 7176 * There's nothing we can do -- we had an 7177 * error on the error probe. We bump an 7178 * error counter to at least indicate that 7179 * this condition happened. 7180 */ 7181 dtrace_error(&state->dts_dblerrors); 7182 continue; 7183 } 7184 7185 if (vtime) { 7186 /* 7187 * Before recursing on dtrace_probe(), we 7188 * need to explicitly clear out our start 7189 * time to prevent it from being accumulated 7190 * into t_dtrace_vtime. 7191 */ 7192 curthread->t_dtrace_start = 0; 7193 } 7194 7195 /* 7196 * Iterate over the actions to figure out which action 7197 * we were processing when we experienced the error. 7198 * Note that act points _past_ the faulting action; if 7199 * act is ecb->dte_action, the fault was in the 7200 * predicate, if it's ecb->dte_action->dta_next it's 7201 * in action #1, and so on. 7202 */ 7203 for (err = ecb->dte_action, ndx = 0; 7204 err != act; err = err->dta_next, ndx++) 7205 continue; 7206 7207 dtrace_probe_error(state, ecb->dte_epid, ndx, 7208 (mstate.dtms_present & DTRACE_MSTATE_FLTOFFS) ? 7209 mstate.dtms_fltoffs : -1, DTRACE_FLAGS2FLT(*flags), 7210 cpu_core[cpuid].cpuc_dtrace_illval); 7211 7212 continue; 7213 } 7214 7215 if (!committed) 7216 buf->dtb_offset = offs + ecb->dte_size; 7217 } 7218 7219 end = dtrace_gethrtime(); 7220 if (vtime) 7221 curthread->t_dtrace_start = end; 7222 7223 CPU->cpu_dtrace_nsec += end - now; 7224 7225 dtrace_interrupt_enable(cookie); 7226 } 7227 7228 /* 7229 * DTrace Probe Hashing Functions 7230 * 7231 * The functions in this section (and indeed, the functions in remaining 7232 * sections) are not _called_ from probe context. (Any exceptions to this are 7233 * marked with a "Note:".) Rather, they are called from elsewhere in the 7234 * DTrace framework to look-up probes in, add probes to and remove probes from 7235 * the DTrace probe hashes. (Each probe is hashed by each element of the 7236 * probe tuple -- allowing for fast lookups, regardless of what was 7237 * specified.) 7238 */ 7239 static uint_t 7240 dtrace_hash_str(char *p) 7241 { 7242 unsigned int g; 7243 uint_t hval = 0; 7244 7245 while (*p) { 7246 hval = (hval << 4) + *p++; 7247 if ((g = (hval & 0xf0000000)) != 0) 7248 hval ^= g >> 24; 7249 hval &= ~g; 7250 } 7251 return (hval); 7252 } 7253 7254 static dtrace_hash_t * 7255 dtrace_hash_create(uintptr_t stroffs, uintptr_t nextoffs, uintptr_t prevoffs) 7256 { 7257 dtrace_hash_t *hash = kmem_zalloc(sizeof (dtrace_hash_t), KM_SLEEP); 7258 7259 hash->dth_stroffs = stroffs; 7260 hash->dth_nextoffs = nextoffs; 7261 hash->dth_prevoffs = prevoffs; 7262 7263 hash->dth_size = 1; 7264 hash->dth_mask = hash->dth_size - 1; 7265 7266 hash->dth_tab = kmem_zalloc(hash->dth_size * 7267 sizeof (dtrace_hashbucket_t *), KM_SLEEP); 7268 7269 return (hash); 7270 } 7271 7272 static void 7273 dtrace_hash_destroy(dtrace_hash_t *hash) 7274 { 7275 #ifdef DEBUG 7276 int i; 7277 7278 for (i = 0; i < hash->dth_size; i++) 7279 ASSERT(hash->dth_tab[i] == NULL); 7280 #endif 7281 7282 kmem_free(hash->dth_tab, 7283 hash->dth_size * sizeof (dtrace_hashbucket_t *)); 7284 kmem_free(hash, sizeof (dtrace_hash_t)); 7285 } 7286 7287 static void 7288 dtrace_hash_resize(dtrace_hash_t *hash) 7289 { 7290 int size = hash->dth_size, i, ndx; 7291 int new_size = hash->dth_size << 1; 7292 int new_mask = new_size - 1; 7293 dtrace_hashbucket_t **new_tab, *bucket, *next; 7294 7295 ASSERT((new_size & new_mask) == 0); 7296 7297 new_tab = kmem_zalloc(new_size * sizeof (void *), KM_SLEEP); 7298 7299 for (i = 0; i < size; i++) { 7300 for (bucket = hash->dth_tab[i]; bucket != NULL; bucket = next) { 7301 dtrace_probe_t *probe = bucket->dthb_chain; 7302 7303 ASSERT(probe != NULL); 7304 ndx = DTRACE_HASHSTR(hash, probe) & new_mask; 7305 7306 next = bucket->dthb_next; 7307 bucket->dthb_next = new_tab[ndx]; 7308 new_tab[ndx] = bucket; 7309 } 7310 } 7311 7312 kmem_free(hash->dth_tab, hash->dth_size * sizeof (void *)); 7313 hash->dth_tab = new_tab; 7314 hash->dth_size = new_size; 7315 hash->dth_mask = new_mask; 7316 } 7317 7318 static void 7319 dtrace_hash_add(dtrace_hash_t *hash, dtrace_probe_t *new) 7320 { 7321 int hashval = DTRACE_HASHSTR(hash, new); 7322 int ndx = hashval & hash->dth_mask; 7323 dtrace_hashbucket_t *bucket = hash->dth_tab[ndx]; 7324 dtrace_probe_t **nextp, **prevp; 7325 7326 for (; bucket != NULL; bucket = bucket->dthb_next) { 7327 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, new)) 7328 goto add; 7329 } 7330 7331 if ((hash->dth_nbuckets >> 1) > hash->dth_size) { 7332 dtrace_hash_resize(hash); 7333 dtrace_hash_add(hash, new); 7334 return; 7335 } 7336 7337 bucket = kmem_zalloc(sizeof (dtrace_hashbucket_t), KM_SLEEP); 7338 bucket->dthb_next = hash->dth_tab[ndx]; 7339 hash->dth_tab[ndx] = bucket; 7340 hash->dth_nbuckets++; 7341 7342 add: 7343 nextp = DTRACE_HASHNEXT(hash, new); 7344 ASSERT(*nextp == NULL && *(DTRACE_HASHPREV(hash, new)) == NULL); 7345 *nextp = bucket->dthb_chain; 7346 7347 if (bucket->dthb_chain != NULL) { 7348 prevp = DTRACE_HASHPREV(hash, bucket->dthb_chain); 7349 ASSERT(*prevp == NULL); 7350 *prevp = new; 7351 } 7352 7353 bucket->dthb_chain = new; 7354 bucket->dthb_len++; 7355 } 7356 7357 static dtrace_probe_t * 7358 dtrace_hash_lookup(dtrace_hash_t *hash, dtrace_probe_t *template) 7359 { 7360 int hashval = DTRACE_HASHSTR(hash, template); 7361 int ndx = hashval & hash->dth_mask; 7362 dtrace_hashbucket_t *bucket = hash->dth_tab[ndx]; 7363 7364 for (; bucket != NULL; bucket = bucket->dthb_next) { 7365 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template)) 7366 return (bucket->dthb_chain); 7367 } 7368 7369 return (NULL); 7370 } 7371 7372 static int 7373 dtrace_hash_collisions(dtrace_hash_t *hash, dtrace_probe_t *template) 7374 { 7375 int hashval = DTRACE_HASHSTR(hash, template); 7376 int ndx = hashval & hash->dth_mask; 7377 dtrace_hashbucket_t *bucket = hash->dth_tab[ndx]; 7378 7379 for (; bucket != NULL; bucket = bucket->dthb_next) { 7380 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template)) 7381 return (bucket->dthb_len); 7382 } 7383 7384 return (NULL); 7385 } 7386 7387 static void 7388 dtrace_hash_remove(dtrace_hash_t *hash, dtrace_probe_t *probe) 7389 { 7390 int ndx = DTRACE_HASHSTR(hash, probe) & hash->dth_mask; 7391 dtrace_hashbucket_t *bucket = hash->dth_tab[ndx]; 7392 7393 dtrace_probe_t **prevp = DTRACE_HASHPREV(hash, probe); 7394 dtrace_probe_t **nextp = DTRACE_HASHNEXT(hash, probe); 7395 7396 /* 7397 * Find the bucket that we're removing this probe from. 7398 */ 7399 for (; bucket != NULL; bucket = bucket->dthb_next) { 7400 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, probe)) 7401 break; 7402 } 7403 7404 ASSERT(bucket != NULL); 7405 7406 if (*prevp == NULL) { 7407 if (*nextp == NULL) { 7408 /* 7409 * The removed probe was the only probe on this 7410 * bucket; we need to remove the bucket. 7411 */ 7412 dtrace_hashbucket_t *b = hash->dth_tab[ndx]; 7413 7414 ASSERT(bucket->dthb_chain == probe); 7415 ASSERT(b != NULL); 7416 7417 if (b == bucket) { 7418 hash->dth_tab[ndx] = bucket->dthb_next; 7419 } else { 7420 while (b->dthb_next != bucket) 7421 b = b->dthb_next; 7422 b->dthb_next = bucket->dthb_next; 7423 } 7424 7425 ASSERT(hash->dth_nbuckets > 0); 7426 hash->dth_nbuckets--; 7427 kmem_free(bucket, sizeof (dtrace_hashbucket_t)); 7428 return; 7429 } 7430 7431 bucket->dthb_chain = *nextp; 7432 } else { 7433 *(DTRACE_HASHNEXT(hash, *prevp)) = *nextp; 7434 } 7435 7436 if (*nextp != NULL) 7437 *(DTRACE_HASHPREV(hash, *nextp)) = *prevp; 7438 } 7439 7440 /* 7441 * DTrace Utility Functions 7442 * 7443 * These are random utility functions that are _not_ called from probe context. 7444 */ 7445 static int 7446 dtrace_badattr(const dtrace_attribute_t *a) 7447 { 7448 return (a->dtat_name > DTRACE_STABILITY_MAX || 7449 a->dtat_data > DTRACE_STABILITY_MAX || 7450 a->dtat_class > DTRACE_CLASS_MAX); 7451 } 7452 7453 /* 7454 * Return a duplicate copy of a string. If the specified string is NULL, 7455 * this function returns a zero-length string. 7456 */ 7457 static char * 7458 dtrace_strdup(const char *str) 7459 { 7460 char *new = kmem_zalloc((str != NULL ? strlen(str) : 0) + 1, KM_SLEEP); 7461 7462 if (str != NULL) 7463 (void) strcpy(new, str); 7464 7465 return (new); 7466 } 7467 7468 #define DTRACE_ISALPHA(c) \ 7469 (((c) >= 'a' && (c) <= 'z') || ((c) >= 'A' && (c) <= 'Z')) 7470 7471 static int 7472 dtrace_badname(const char *s) 7473 { 7474 char c; 7475 7476 if (s == NULL || (c = *s++) == '\0') 7477 return (0); 7478 7479 if (!DTRACE_ISALPHA(c) && c != '-' && c != '_' && c != '.') 7480 return (1); 7481 7482 while ((c = *s++) != '\0') { 7483 if (!DTRACE_ISALPHA(c) && (c < '0' || c > '9') && 7484 c != '-' && c != '_' && c != '.' && c != '`') 7485 return (1); 7486 } 7487 7488 return (0); 7489 } 7490 7491 static void 7492 dtrace_cred2priv(cred_t *cr, uint32_t *privp, uid_t *uidp, zoneid_t *zoneidp) 7493 { 7494 uint32_t priv; 7495 7496 if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) { 7497 /* 7498 * For DTRACE_PRIV_ALL, the uid and zoneid don't matter. 7499 */ 7500 priv = DTRACE_PRIV_ALL; 7501 } else { 7502 *uidp = crgetuid(cr); 7503 *zoneidp = crgetzoneid(cr); 7504 7505 priv = 0; 7506 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE)) 7507 priv |= DTRACE_PRIV_KERNEL | DTRACE_PRIV_USER; 7508 else if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE)) 7509 priv |= DTRACE_PRIV_USER; 7510 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) 7511 priv |= DTRACE_PRIV_PROC; 7512 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) 7513 priv |= DTRACE_PRIV_OWNER; 7514 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) 7515 priv |= DTRACE_PRIV_ZONEOWNER; 7516 } 7517 7518 *privp = priv; 7519 } 7520 7521 #ifdef DTRACE_ERRDEBUG 7522 static void 7523 dtrace_errdebug(const char *str) 7524 { 7525 int hval = dtrace_hash_str((char *)str) % DTRACE_ERRHASHSZ; 7526 int occupied = 0; 7527 7528 mutex_enter(&dtrace_errlock); 7529 dtrace_errlast = str; 7530 dtrace_errthread = curthread; 7531 7532 while (occupied++ < DTRACE_ERRHASHSZ) { 7533 if (dtrace_errhash[hval].dter_msg == str) { 7534 dtrace_errhash[hval].dter_count++; 7535 goto out; 7536 } 7537 7538 if (dtrace_errhash[hval].dter_msg != NULL) { 7539 hval = (hval + 1) % DTRACE_ERRHASHSZ; 7540 continue; 7541 } 7542 7543 dtrace_errhash[hval].dter_msg = str; 7544 dtrace_errhash[hval].dter_count = 1; 7545 goto out; 7546 } 7547 7548 panic("dtrace: undersized error hash"); 7549 out: 7550 mutex_exit(&dtrace_errlock); 7551 } 7552 #endif 7553 7554 /* 7555 * DTrace Matching Functions 7556 * 7557 * These functions are used to match groups of probes, given some elements of 7558 * a probe tuple, or some globbed expressions for elements of a probe tuple. 7559 */ 7560 static int 7561 dtrace_match_priv(const dtrace_probe_t *prp, uint32_t priv, uid_t uid, 7562 zoneid_t zoneid) 7563 { 7564 if (priv != DTRACE_PRIV_ALL) { 7565 uint32_t ppriv = prp->dtpr_provider->dtpv_priv.dtpp_flags; 7566 uint32_t match = priv & ppriv; 7567 7568 /* 7569 * No PRIV_DTRACE_* privileges... 7570 */ 7571 if ((priv & (DTRACE_PRIV_PROC | DTRACE_PRIV_USER | 7572 DTRACE_PRIV_KERNEL)) == 0) 7573 return (0); 7574 7575 /* 7576 * No matching bits, but there were bits to match... 7577 */ 7578 if (match == 0 && ppriv != 0) 7579 return (0); 7580 7581 /* 7582 * Need to have permissions to the process, but don't... 7583 */ 7584 if (((ppriv & ~match) & DTRACE_PRIV_OWNER) != 0 && 7585 uid != prp->dtpr_provider->dtpv_priv.dtpp_uid) { 7586 return (0); 7587 } 7588 7589 /* 7590 * Need to be in the same zone unless we possess the 7591 * privilege to examine all zones. 7592 */ 7593 if (((ppriv & ~match) & DTRACE_PRIV_ZONEOWNER) != 0 && 7594 zoneid != prp->dtpr_provider->dtpv_priv.dtpp_zoneid) { 7595 return (0); 7596 } 7597 } 7598 7599 return (1); 7600 } 7601 7602 /* 7603 * dtrace_match_probe compares a dtrace_probe_t to a pre-compiled key, which 7604 * consists of input pattern strings and an ops-vector to evaluate them. 7605 * This function returns >0 for match, 0 for no match, and <0 for error. 7606 */ 7607 static int 7608 dtrace_match_probe(const dtrace_probe_t *prp, const dtrace_probekey_t *pkp, 7609 uint32_t priv, uid_t uid, zoneid_t zoneid) 7610 { 7611 dtrace_provider_t *pvp = prp->dtpr_provider; 7612 int rv; 7613 7614 if (pvp->dtpv_defunct) 7615 return (0); 7616 7617 if ((rv = pkp->dtpk_pmatch(pvp->dtpv_name, pkp->dtpk_prov, 0)) <= 0) 7618 return (rv); 7619 7620 if ((rv = pkp->dtpk_mmatch(prp->dtpr_mod, pkp->dtpk_mod, 0)) <= 0) 7621 return (rv); 7622 7623 if ((rv = pkp->dtpk_fmatch(prp->dtpr_func, pkp->dtpk_func, 0)) <= 0) 7624 return (rv); 7625 7626 if ((rv = pkp->dtpk_nmatch(prp->dtpr_name, pkp->dtpk_name, 0)) <= 0) 7627 return (rv); 7628 7629 if (dtrace_match_priv(prp, priv, uid, zoneid) == 0) 7630 return (0); 7631 7632 return (rv); 7633 } 7634 7635 /* 7636 * dtrace_match_glob() is a safe kernel implementation of the gmatch(3GEN) 7637 * interface for matching a glob pattern 'p' to an input string 's'. Unlike 7638 * libc's version, the kernel version only applies to 8-bit ASCII strings. 7639 * In addition, all of the recursion cases except for '*' matching have been 7640 * unwound. For '*', we still implement recursive evaluation, but a depth 7641 * counter is maintained and matching is aborted if we recurse too deep. 7642 * The function returns 0 if no match, >0 if match, and <0 if recursion error. 7643 */ 7644 static int 7645 dtrace_match_glob(const char *s, const char *p, int depth) 7646 { 7647 const char *olds; 7648 char s1, c; 7649 int gs; 7650 7651 if (depth > DTRACE_PROBEKEY_MAXDEPTH) 7652 return (-1); 7653 7654 if (s == NULL) 7655 s = ""; /* treat NULL as empty string */ 7656 7657 top: 7658 olds = s; 7659 s1 = *s++; 7660 7661 if (p == NULL) 7662 return (0); 7663 7664 if ((c = *p++) == '\0') 7665 return (s1 == '\0'); 7666 7667 switch (c) { 7668 case '[': { 7669 int ok = 0, notflag = 0; 7670 char lc = '\0'; 7671 7672 if (s1 == '\0') 7673 return (0); 7674 7675 if (*p == '!') { 7676 notflag = 1; 7677 p++; 7678 } 7679 7680 if ((c = *p++) == '\0') 7681 return (0); 7682 7683 do { 7684 if (c == '-' && lc != '\0' && *p != ']') { 7685 if ((c = *p++) == '\0') 7686 return (0); 7687 if (c == '\\' && (c = *p++) == '\0') 7688 return (0); 7689 7690 if (notflag) { 7691 if (s1 < lc || s1 > c) 7692 ok++; 7693 else 7694 return (0); 7695 } else if (lc <= s1 && s1 <= c) 7696 ok++; 7697 7698 } else if (c == '\\' && (c = *p++) == '\0') 7699 return (0); 7700 7701 lc = c; /* save left-hand 'c' for next iteration */ 7702 7703 if (notflag) { 7704 if (s1 != c) 7705 ok++; 7706 else 7707 return (0); 7708 } else if (s1 == c) 7709 ok++; 7710 7711 if ((c = *p++) == '\0') 7712 return (0); 7713 7714 } while (c != ']'); 7715 7716 if (ok) 7717 goto top; 7718 7719 return (0); 7720 } 7721 7722 case '\\': 7723 if ((c = *p++) == '\0') 7724 return (0); 7725 /*FALLTHRU*/ 7726 7727 default: 7728 if (c != s1) 7729 return (0); 7730 /*FALLTHRU*/ 7731 7732 case '?': 7733 if (s1 != '\0') 7734 goto top; 7735 return (0); 7736 7737 case '*': 7738 while (*p == '*') 7739 p++; /* consecutive *'s are identical to a single one */ 7740 7741 if (*p == '\0') 7742 return (1); 7743 7744 for (s = olds; *s != '\0'; s++) { 7745 if ((gs = dtrace_match_glob(s, p, depth + 1)) != 0) 7746 return (gs); 7747 } 7748 7749 return (0); 7750 } 7751 } 7752 7753 /*ARGSUSED*/ 7754 static int 7755 dtrace_match_string(const char *s, const char *p, int depth) 7756 { 7757 return (s != NULL && strcmp(s, p) == 0); 7758 } 7759 7760 /*ARGSUSED*/ 7761 static int 7762 dtrace_match_nul(const char *s, const char *p, int depth) 7763 { 7764 return (1); /* always match the empty pattern */ 7765 } 7766 7767 /*ARGSUSED*/ 7768 static int 7769 dtrace_match_nonzero(const char *s, const char *p, int depth) 7770 { 7771 return (s != NULL && s[0] != '\0'); 7772 } 7773 7774 static int 7775 dtrace_match(const dtrace_probekey_t *pkp, uint32_t priv, uid_t uid, 7776 zoneid_t zoneid, int (*matched)(dtrace_probe_t *, void *), void *arg) 7777 { 7778 dtrace_probe_t template, *probe; 7779 dtrace_hash_t *hash = NULL; 7780 int len, rc, best = INT_MAX, nmatched = 0; 7781 dtrace_id_t i; 7782 7783 ASSERT(MUTEX_HELD(&dtrace_lock)); 7784 7785 /* 7786 * If the probe ID is specified in the key, just lookup by ID and 7787 * invoke the match callback once if a matching probe is found. 7788 */ 7789 if (pkp->dtpk_id != DTRACE_IDNONE) { 7790 if ((probe = dtrace_probe_lookup_id(pkp->dtpk_id)) != NULL && 7791 dtrace_match_probe(probe, pkp, priv, uid, zoneid) > 0) { 7792 if ((*matched)(probe, arg) == DTRACE_MATCH_FAIL) 7793 return (DTRACE_MATCH_FAIL); 7794 nmatched++; 7795 } 7796 return (nmatched); 7797 } 7798 7799 template.dtpr_mod = (char *)pkp->dtpk_mod; 7800 template.dtpr_func = (char *)pkp->dtpk_func; 7801 template.dtpr_name = (char *)pkp->dtpk_name; 7802 7803 /* 7804 * We want to find the most distinct of the module name, function 7805 * name, and name. So for each one that is not a glob pattern or 7806 * empty string, we perform a lookup in the corresponding hash and 7807 * use the hash table with the fewest collisions to do our search. 7808 */ 7809 if (pkp->dtpk_mmatch == &dtrace_match_string && 7810 (len = dtrace_hash_collisions(dtrace_bymod, &template)) < best) { 7811 best = len; 7812 hash = dtrace_bymod; 7813 } 7814 7815 if (pkp->dtpk_fmatch == &dtrace_match_string && 7816 (len = dtrace_hash_collisions(dtrace_byfunc, &template)) < best) { 7817 best = len; 7818 hash = dtrace_byfunc; 7819 } 7820 7821 if (pkp->dtpk_nmatch == &dtrace_match_string && 7822 (len = dtrace_hash_collisions(dtrace_byname, &template)) < best) { 7823 best = len; 7824 hash = dtrace_byname; 7825 } 7826 7827 /* 7828 * If we did not select a hash table, iterate over every probe and 7829 * invoke our callback for each one that matches our input probe key. 7830 */ 7831 if (hash == NULL) { 7832 for (i = 0; i < dtrace_nprobes; i++) { 7833 if ((probe = dtrace_probes[i]) == NULL || 7834 dtrace_match_probe(probe, pkp, priv, uid, 7835 zoneid) <= 0) 7836 continue; 7837 7838 nmatched++; 7839 7840 if ((rc = (*matched)(probe, arg)) != 7841 DTRACE_MATCH_NEXT) { 7842 if (rc == DTRACE_MATCH_FAIL) 7843 return (DTRACE_MATCH_FAIL); 7844 break; 7845 } 7846 } 7847 7848 return (nmatched); 7849 } 7850 7851 /* 7852 * If we selected a hash table, iterate over each probe of the same key 7853 * name and invoke the callback for every probe that matches the other 7854 * attributes of our input probe key. 7855 */ 7856 for (probe = dtrace_hash_lookup(hash, &template); probe != NULL; 7857 probe = *(DTRACE_HASHNEXT(hash, probe))) { 7858 7859 if (dtrace_match_probe(probe, pkp, priv, uid, zoneid) <= 0) 7860 continue; 7861 7862 nmatched++; 7863 7864 if ((rc = (*matched)(probe, arg)) != DTRACE_MATCH_NEXT) { 7865 if (rc == DTRACE_MATCH_FAIL) 7866 return (DTRACE_MATCH_FAIL); 7867 break; 7868 } 7869 } 7870 7871 return (nmatched); 7872 } 7873 7874 /* 7875 * Return the function pointer dtrace_probecmp() should use to compare the 7876 * specified pattern with a string. For NULL or empty patterns, we select 7877 * dtrace_match_nul(). For glob pattern strings, we use dtrace_match_glob(). 7878 * For non-empty non-glob strings, we use dtrace_match_string(). 7879 */ 7880 static dtrace_probekey_f * 7881 dtrace_probekey_func(const char *p) 7882 { 7883 char c; 7884 7885 if (p == NULL || *p == '\0') 7886 return (&dtrace_match_nul); 7887 7888 while ((c = *p++) != '\0') { 7889 if (c == '[' || c == '?' || c == '*' || c == '\\') 7890 return (&dtrace_match_glob); 7891 } 7892 7893 return (&dtrace_match_string); 7894 } 7895 7896 /* 7897 * Build a probe comparison key for use with dtrace_match_probe() from the 7898 * given probe description. By convention, a null key only matches anchored 7899 * probes: if each field is the empty string, reset dtpk_fmatch to 7900 * dtrace_match_nonzero(). 7901 */ 7902 static void 7903 dtrace_probekey(const dtrace_probedesc_t *pdp, dtrace_probekey_t *pkp) 7904 { 7905 pkp->dtpk_prov = pdp->dtpd_provider; 7906 pkp->dtpk_pmatch = dtrace_probekey_func(pdp->dtpd_provider); 7907 7908 pkp->dtpk_mod = pdp->dtpd_mod; 7909 pkp->dtpk_mmatch = dtrace_probekey_func(pdp->dtpd_mod); 7910 7911 pkp->dtpk_func = pdp->dtpd_func; 7912 pkp->dtpk_fmatch = dtrace_probekey_func(pdp->dtpd_func); 7913 7914 pkp->dtpk_name = pdp->dtpd_name; 7915 pkp->dtpk_nmatch = dtrace_probekey_func(pdp->dtpd_name); 7916 7917 pkp->dtpk_id = pdp->dtpd_id; 7918 7919 if (pkp->dtpk_id == DTRACE_IDNONE && 7920 pkp->dtpk_pmatch == &dtrace_match_nul && 7921 pkp->dtpk_mmatch == &dtrace_match_nul && 7922 pkp->dtpk_fmatch == &dtrace_match_nul && 7923 pkp->dtpk_nmatch == &dtrace_match_nul) 7924 pkp->dtpk_fmatch = &dtrace_match_nonzero; 7925 } 7926 7927 /* 7928 * DTrace Provider-to-Framework API Functions 7929 * 7930 * These functions implement much of the Provider-to-Framework API, as 7931 * described in <sys/dtrace.h>. The parts of the API not in this section are 7932 * the functions in the API for probe management (found below), and 7933 * dtrace_probe() itself (found above). 7934 */ 7935 7936 /* 7937 * Register the calling provider with the DTrace framework. This should 7938 * generally be called by DTrace providers in their attach(9E) entry point. 7939 */ 7940 int 7941 dtrace_register(const char *name, const dtrace_pattr_t *pap, uint32_t priv, 7942 cred_t *cr, const dtrace_pops_t *pops, void *arg, dtrace_provider_id_t *idp) 7943 { 7944 dtrace_provider_t *provider; 7945 7946 if (name == NULL || pap == NULL || pops == NULL || idp == NULL) { 7947 cmn_err(CE_WARN, "failed to register provider '%s': invalid " 7948 "arguments", name ? name : "<NULL>"); 7949 return (EINVAL); 7950 } 7951 7952 if (name[0] == '\0' || dtrace_badname(name)) { 7953 cmn_err(CE_WARN, "failed to register provider '%s': invalid " 7954 "provider name", name); 7955 return (EINVAL); 7956 } 7957 7958 if ((pops->dtps_provide == NULL && pops->dtps_provide_module == NULL) || 7959 pops->dtps_enable == NULL || pops->dtps_disable == NULL || 7960 pops->dtps_destroy == NULL || 7961 ((pops->dtps_resume == NULL) != (pops->dtps_suspend == NULL))) { 7962 cmn_err(CE_WARN, "failed to register provider '%s': invalid " 7963 "provider ops", name); 7964 return (EINVAL); 7965 } 7966 7967 if (dtrace_badattr(&pap->dtpa_provider) || 7968 dtrace_badattr(&pap->dtpa_mod) || 7969 dtrace_badattr(&pap->dtpa_func) || 7970 dtrace_badattr(&pap->dtpa_name) || 7971 dtrace_badattr(&pap->dtpa_args)) { 7972 cmn_err(CE_WARN, "failed to register provider '%s': invalid " 7973 "provider attributes", name); 7974 return (EINVAL); 7975 } 7976 7977 if (priv & ~DTRACE_PRIV_ALL) { 7978 cmn_err(CE_WARN, "failed to register provider '%s': invalid " 7979 "privilege attributes", name); 7980 return (EINVAL); 7981 } 7982 7983 if ((priv & DTRACE_PRIV_KERNEL) && 7984 (priv & (DTRACE_PRIV_USER | DTRACE_PRIV_OWNER)) && 7985 pops->dtps_mode == NULL) { 7986 cmn_err(CE_WARN, "failed to register provider '%s': need " 7987 "dtps_mode() op for given privilege attributes", name); 7988 return (EINVAL); 7989 } 7990 7991 provider = kmem_zalloc(sizeof (dtrace_provider_t), KM_SLEEP); 7992 provider->dtpv_name = kmem_alloc(strlen(name) + 1, KM_SLEEP); 7993 (void) strcpy(provider->dtpv_name, name); 7994 7995 provider->dtpv_attr = *pap; 7996 provider->dtpv_priv.dtpp_flags = priv; 7997 if (cr != NULL) { 7998 provider->dtpv_priv.dtpp_uid = crgetuid(cr); 7999 provider->dtpv_priv.dtpp_zoneid = crgetzoneid(cr); 8000 } 8001 provider->dtpv_pops = *pops; 8002 8003 if (pops->dtps_provide == NULL) { 8004 ASSERT(pops->dtps_provide_module != NULL); 8005 provider->dtpv_pops.dtps_provide = 8006 (void (*)(void *, const dtrace_probedesc_t *))dtrace_nullop; 8007 } 8008 8009 if (pops->dtps_provide_module == NULL) { 8010 ASSERT(pops->dtps_provide != NULL); 8011 provider->dtpv_pops.dtps_provide_module = 8012 (void (*)(void *, struct modctl *))dtrace_nullop; 8013 } 8014 8015 if (pops->dtps_suspend == NULL) { 8016 ASSERT(pops->dtps_resume == NULL); 8017 provider->dtpv_pops.dtps_suspend = 8018 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop; 8019 provider->dtpv_pops.dtps_resume = 8020 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop; 8021 } 8022 8023 provider->dtpv_arg = arg; 8024 *idp = (dtrace_provider_id_t)provider; 8025 8026 if (pops == &dtrace_provider_ops) { 8027 ASSERT(MUTEX_HELD(&dtrace_provider_lock)); 8028 ASSERT(MUTEX_HELD(&dtrace_lock)); 8029 ASSERT(dtrace_anon.dta_enabling == NULL); 8030 8031 /* 8032 * We make sure that the DTrace provider is at the head of 8033 * the provider chain. 8034 */ 8035 provider->dtpv_next = dtrace_provider; 8036 dtrace_provider = provider; 8037 return (0); 8038 } 8039 8040 mutex_enter(&dtrace_provider_lock); 8041 mutex_enter(&dtrace_lock); 8042 8043 /* 8044 * If there is at least one provider registered, we'll add this 8045 * provider after the first provider. 8046 */ 8047 if (dtrace_provider != NULL) { 8048 provider->dtpv_next = dtrace_provider->dtpv_next; 8049 dtrace_provider->dtpv_next = provider; 8050 } else { 8051 dtrace_provider = provider; 8052 } 8053 8054 if (dtrace_retained != NULL) { 8055 dtrace_enabling_provide(provider); 8056 8057 /* 8058 * Now we need to call dtrace_enabling_matchall() -- which 8059 * will acquire cpu_lock and dtrace_lock. We therefore need 8060 * to drop all of our locks before calling into it... 8061 */ 8062 mutex_exit(&dtrace_lock); 8063 mutex_exit(&dtrace_provider_lock); 8064 dtrace_enabling_matchall(); 8065 8066 return (0); 8067 } 8068 8069 mutex_exit(&dtrace_lock); 8070 mutex_exit(&dtrace_provider_lock); 8071 8072 return (0); 8073 } 8074 8075 /* 8076 * Unregister the specified provider from the DTrace framework. This should 8077 * generally be called by DTrace providers in their detach(9E) entry point. 8078 */ 8079 int 8080 dtrace_unregister(dtrace_provider_id_t id) 8081 { 8082 dtrace_provider_t *old = (dtrace_provider_t *)id; 8083 dtrace_provider_t *prev = NULL; 8084 int i, self = 0, noreap = 0; 8085 dtrace_probe_t *probe, *first = NULL; 8086 8087 if (old->dtpv_pops.dtps_enable == 8088 (int (*)(void *, dtrace_id_t, void *))dtrace_enable_nullop) { 8089 /* 8090 * If DTrace itself is the provider, we're called with locks 8091 * already held. 8092 */ 8093 ASSERT(old == dtrace_provider); 8094 ASSERT(dtrace_devi != NULL); 8095 ASSERT(MUTEX_HELD(&dtrace_provider_lock)); 8096 ASSERT(MUTEX_HELD(&dtrace_lock)); 8097 self = 1; 8098 8099 if (dtrace_provider->dtpv_next != NULL) { 8100 /* 8101 * There's another provider here; return failure. 8102 */ 8103 return (EBUSY); 8104 } 8105 } else { 8106 mutex_enter(&dtrace_provider_lock); 8107 mutex_enter(&mod_lock); 8108 mutex_enter(&dtrace_lock); 8109 } 8110 8111 /* 8112 * If anyone has /dev/dtrace open, or if there are anonymous enabled 8113 * probes, we refuse to let providers slither away, unless this 8114 * provider has already been explicitly invalidated. 8115 */ 8116 if (!old->dtpv_defunct && 8117 (dtrace_opens || (dtrace_anon.dta_state != NULL && 8118 dtrace_anon.dta_state->dts_necbs > 0))) { 8119 if (!self) { 8120 mutex_exit(&dtrace_lock); 8121 mutex_exit(&mod_lock); 8122 mutex_exit(&dtrace_provider_lock); 8123 } 8124 return (EBUSY); 8125 } 8126 8127 /* 8128 * Attempt to destroy the probes associated with this provider. 8129 */ 8130 for (i = 0; i < dtrace_nprobes; i++) { 8131 if ((probe = dtrace_probes[i]) == NULL) 8132 continue; 8133 8134 if (probe->dtpr_provider != old) 8135 continue; 8136 8137 if (probe->dtpr_ecb == NULL) 8138 continue; 8139 8140 /* 8141 * If we are trying to unregister a defunct provider, and the 8142 * provider was made defunct within the interval dictated by 8143 * dtrace_unregister_defunct_reap, we'll (asynchronously) 8144 * attempt to reap our enablings. To denote that the provider 8145 * should reattempt to unregister itself at some point in the 8146 * future, we will return a differentiable error code (EAGAIN 8147 * instead of EBUSY) in this case. 8148 */ 8149 if (dtrace_gethrtime() - old->dtpv_defunct > 8150 dtrace_unregister_defunct_reap) 8151 noreap = 1; 8152 8153 if (!self) { 8154 mutex_exit(&dtrace_lock); 8155 mutex_exit(&mod_lock); 8156 mutex_exit(&dtrace_provider_lock); 8157 } 8158 8159 if (noreap) 8160 return (EBUSY); 8161 8162 (void) taskq_dispatch(dtrace_taskq, 8163 (task_func_t *)dtrace_enabling_reap, NULL, TQ_SLEEP); 8164 8165 return (EAGAIN); 8166 } 8167 8168 /* 8169 * All of the probes for this provider are disabled; we can safely 8170 * remove all of them from their hash chains and from the probe array. 8171 */ 8172 for (i = 0; i < dtrace_nprobes; i++) { 8173 if ((probe = dtrace_probes[i]) == NULL) 8174 continue; 8175 8176 if (probe->dtpr_provider != old) 8177 continue; 8178 8179 dtrace_probes[i] = NULL; 8180 8181 dtrace_hash_remove(dtrace_bymod, probe); 8182 dtrace_hash_remove(dtrace_byfunc, probe); 8183 dtrace_hash_remove(dtrace_byname, probe); 8184 8185 if (first == NULL) { 8186 first = probe; 8187 probe->dtpr_nextmod = NULL; 8188 } else { 8189 probe->dtpr_nextmod = first; 8190 first = probe; 8191 } 8192 } 8193 8194 /* 8195 * The provider's probes have been removed from the hash chains and 8196 * from the probe array. Now issue a dtrace_sync() to be sure that 8197 * everyone has cleared out from any probe array processing. 8198 */ 8199 dtrace_sync(); 8200 8201 for (probe = first; probe != NULL; probe = first) { 8202 first = probe->dtpr_nextmod; 8203 8204 old->dtpv_pops.dtps_destroy(old->dtpv_arg, probe->dtpr_id, 8205 probe->dtpr_arg); 8206 kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1); 8207 kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1); 8208 kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1); 8209 vmem_free(dtrace_arena, (void *)(uintptr_t)(probe->dtpr_id), 1); 8210 kmem_free(probe, sizeof (dtrace_probe_t)); 8211 } 8212 8213 if ((prev = dtrace_provider) == old) { 8214 ASSERT(self || dtrace_devi == NULL); 8215 ASSERT(old->dtpv_next == NULL || dtrace_devi == NULL); 8216 dtrace_provider = old->dtpv_next; 8217 } else { 8218 while (prev != NULL && prev->dtpv_next != old) 8219 prev = prev->dtpv_next; 8220 8221 if (prev == NULL) { 8222 panic("attempt to unregister non-existent " 8223 "dtrace provider %p\n", (void *)id); 8224 } 8225 8226 prev->dtpv_next = old->dtpv_next; 8227 } 8228 8229 if (!self) { 8230 mutex_exit(&dtrace_lock); 8231 mutex_exit(&mod_lock); 8232 mutex_exit(&dtrace_provider_lock); 8233 } 8234 8235 kmem_free(old->dtpv_name, strlen(old->dtpv_name) + 1); 8236 kmem_free(old, sizeof (dtrace_provider_t)); 8237 8238 return (0); 8239 } 8240 8241 /* 8242 * Invalidate the specified provider. All subsequent probe lookups for the 8243 * specified provider will fail, but its probes will not be removed. 8244 */ 8245 void 8246 dtrace_invalidate(dtrace_provider_id_t id) 8247 { 8248 dtrace_provider_t *pvp = (dtrace_provider_t *)id; 8249 8250 ASSERT(pvp->dtpv_pops.dtps_enable != 8251 (int (*)(void *, dtrace_id_t, void *))dtrace_enable_nullop); 8252 8253 mutex_enter(&dtrace_provider_lock); 8254 mutex_enter(&dtrace_lock); 8255 8256 pvp->dtpv_defunct = dtrace_gethrtime(); 8257 8258 mutex_exit(&dtrace_lock); 8259 mutex_exit(&dtrace_provider_lock); 8260 } 8261 8262 /* 8263 * Indicate whether or not DTrace has attached. 8264 */ 8265 int 8266 dtrace_attached(void) 8267 { 8268 /* 8269 * dtrace_provider will be non-NULL iff the DTrace driver has 8270 * attached. (It's non-NULL because DTrace is always itself a 8271 * provider.) 8272 */ 8273 return (dtrace_provider != NULL); 8274 } 8275 8276 /* 8277 * Remove all the unenabled probes for the given provider. This function is 8278 * not unlike dtrace_unregister(), except that it doesn't remove the provider 8279 * -- just as many of its associated probes as it can. 8280 */ 8281 int 8282 dtrace_condense(dtrace_provider_id_t id) 8283 { 8284 dtrace_provider_t *prov = (dtrace_provider_t *)id; 8285 int i; 8286 dtrace_probe_t *probe; 8287 8288 /* 8289 * Make sure this isn't the dtrace provider itself. 8290 */ 8291 ASSERT(prov->dtpv_pops.dtps_enable != 8292 (int (*)(void *, dtrace_id_t, void *))dtrace_enable_nullop); 8293 8294 mutex_enter(&dtrace_provider_lock); 8295 mutex_enter(&dtrace_lock); 8296 8297 /* 8298 * Attempt to destroy the probes associated with this provider. 8299 */ 8300 for (i = 0; i < dtrace_nprobes; i++) { 8301 if ((probe = dtrace_probes[i]) == NULL) 8302 continue; 8303 8304 if (probe->dtpr_provider != prov) 8305 continue; 8306 8307 if (probe->dtpr_ecb != NULL) 8308 continue; 8309 8310 dtrace_probes[i] = NULL; 8311 8312 dtrace_hash_remove(dtrace_bymod, probe); 8313 dtrace_hash_remove(dtrace_byfunc, probe); 8314 dtrace_hash_remove(dtrace_byname, probe); 8315 8316 prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, i + 1, 8317 probe->dtpr_arg); 8318 kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1); 8319 kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1); 8320 kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1); 8321 kmem_free(probe, sizeof (dtrace_probe_t)); 8322 vmem_free(dtrace_arena, (void *)((uintptr_t)i + 1), 1); 8323 } 8324 8325 mutex_exit(&dtrace_lock); 8326 mutex_exit(&dtrace_provider_lock); 8327 8328 return (0); 8329 } 8330 8331 /* 8332 * DTrace Probe Management Functions 8333 * 8334 * The functions in this section perform the DTrace probe management, 8335 * including functions to create probes, look-up probes, and call into the 8336 * providers to request that probes be provided. Some of these functions are 8337 * in the Provider-to-Framework API; these functions can be identified by the 8338 * fact that they are not declared "static". 8339 */ 8340 8341 /* 8342 * Create a probe with the specified module name, function name, and name. 8343 */ 8344 dtrace_id_t 8345 dtrace_probe_create(dtrace_provider_id_t prov, const char *mod, 8346 const char *func, const char *name, int aframes, void *arg) 8347 { 8348 dtrace_probe_t *probe, **probes; 8349 dtrace_provider_t *provider = (dtrace_provider_t *)prov; 8350 dtrace_id_t id; 8351 8352 if (provider == dtrace_provider) { 8353 ASSERT(MUTEX_HELD(&dtrace_lock)); 8354 } else { 8355 mutex_enter(&dtrace_lock); 8356 } 8357 8358 id = (dtrace_id_t)(uintptr_t)vmem_alloc(dtrace_arena, 1, 8359 VM_BESTFIT | VM_SLEEP); 8360 probe = kmem_zalloc(sizeof (dtrace_probe_t), KM_SLEEP); 8361 8362 probe->dtpr_id = id; 8363 probe->dtpr_gen = dtrace_probegen++; 8364 probe->dtpr_mod = dtrace_strdup(mod); 8365 probe->dtpr_func = dtrace_strdup(func); 8366 probe->dtpr_name = dtrace_strdup(name); 8367 probe->dtpr_arg = arg; 8368 probe->dtpr_aframes = aframes; 8369 probe->dtpr_provider = provider; 8370 8371 dtrace_hash_add(dtrace_bymod, probe); 8372 dtrace_hash_add(dtrace_byfunc, probe); 8373 dtrace_hash_add(dtrace_byname, probe); 8374 8375 if (id - 1 >= dtrace_nprobes) { 8376 size_t osize = dtrace_nprobes * sizeof (dtrace_probe_t *); 8377 size_t nsize = osize << 1; 8378 8379 if (nsize == 0) { 8380 ASSERT(osize == 0); 8381 ASSERT(dtrace_probes == NULL); 8382 nsize = sizeof (dtrace_probe_t *); 8383 } 8384 8385 probes = kmem_zalloc(nsize, KM_SLEEP); 8386 8387 if (dtrace_probes == NULL) { 8388 ASSERT(osize == 0); 8389 dtrace_probes = probes; 8390 dtrace_nprobes = 1; 8391 } else { 8392 dtrace_probe_t **oprobes = dtrace_probes; 8393 8394 bcopy(oprobes, probes, osize); 8395 dtrace_membar_producer(); 8396 dtrace_probes = probes; 8397 8398 dtrace_sync(); 8399 8400 /* 8401 * All CPUs are now seeing the new probes array; we can 8402 * safely free the old array. 8403 */ 8404 kmem_free(oprobes, osize); 8405 dtrace_nprobes <<= 1; 8406 } 8407 8408 ASSERT(id - 1 < dtrace_nprobes); 8409 } 8410 8411 ASSERT(dtrace_probes[id - 1] == NULL); 8412 dtrace_probes[id - 1] = probe; 8413 8414 if (provider != dtrace_provider) 8415 mutex_exit(&dtrace_lock); 8416 8417 return (id); 8418 } 8419 8420 static dtrace_probe_t * 8421 dtrace_probe_lookup_id(dtrace_id_t id) 8422 { 8423 ASSERT(MUTEX_HELD(&dtrace_lock)); 8424 8425 if (id == 0 || id > dtrace_nprobes) 8426 return (NULL); 8427 8428 return (dtrace_probes[id - 1]); 8429 } 8430 8431 static int 8432 dtrace_probe_lookup_match(dtrace_probe_t *probe, void *arg) 8433 { 8434 *((dtrace_id_t *)arg) = probe->dtpr_id; 8435 8436 return (DTRACE_MATCH_DONE); 8437 } 8438 8439 /* 8440 * Look up a probe based on provider and one or more of module name, function 8441 * name and probe name. 8442 */ 8443 dtrace_id_t 8444 dtrace_probe_lookup(dtrace_provider_id_t prid, const char *mod, 8445 const char *func, const char *name) 8446 { 8447 dtrace_probekey_t pkey; 8448 dtrace_id_t id; 8449 int match; 8450 8451 pkey.dtpk_prov = ((dtrace_provider_t *)prid)->dtpv_name; 8452 pkey.dtpk_pmatch = &dtrace_match_string; 8453 pkey.dtpk_mod = mod; 8454 pkey.dtpk_mmatch = mod ? &dtrace_match_string : &dtrace_match_nul; 8455 pkey.dtpk_func = func; 8456 pkey.dtpk_fmatch = func ? &dtrace_match_string : &dtrace_match_nul; 8457 pkey.dtpk_name = name; 8458 pkey.dtpk_nmatch = name ? &dtrace_match_string : &dtrace_match_nul; 8459 pkey.dtpk_id = DTRACE_IDNONE; 8460 8461 mutex_enter(&dtrace_lock); 8462 match = dtrace_match(&pkey, DTRACE_PRIV_ALL, 0, 0, 8463 dtrace_probe_lookup_match, &id); 8464 mutex_exit(&dtrace_lock); 8465 8466 ASSERT(match == 1 || match == 0); 8467 return (match ? id : 0); 8468 } 8469 8470 /* 8471 * Returns the probe argument associated with the specified probe. 8472 */ 8473 void * 8474 dtrace_probe_arg(dtrace_provider_id_t id, dtrace_id_t pid) 8475 { 8476 dtrace_probe_t *probe; 8477 void *rval = NULL; 8478 8479 mutex_enter(&dtrace_lock); 8480 8481 if ((probe = dtrace_probe_lookup_id(pid)) != NULL && 8482 probe->dtpr_provider == (dtrace_provider_t *)id) 8483 rval = probe->dtpr_arg; 8484 8485 mutex_exit(&dtrace_lock); 8486 8487 return (rval); 8488 } 8489 8490 /* 8491 * Copy a probe into a probe description. 8492 */ 8493 static void 8494 dtrace_probe_description(const dtrace_probe_t *prp, dtrace_probedesc_t *pdp) 8495 { 8496 bzero(pdp, sizeof (dtrace_probedesc_t)); 8497 pdp->dtpd_id = prp->dtpr_id; 8498 8499 (void) strncpy(pdp->dtpd_provider, 8500 prp->dtpr_provider->dtpv_name, DTRACE_PROVNAMELEN - 1); 8501 8502 (void) strncpy(pdp->dtpd_mod, prp->dtpr_mod, DTRACE_MODNAMELEN - 1); 8503 (void) strncpy(pdp->dtpd_func, prp->dtpr_func, DTRACE_FUNCNAMELEN - 1); 8504 (void) strncpy(pdp->dtpd_name, prp->dtpr_name, DTRACE_NAMELEN - 1); 8505 } 8506 8507 /* 8508 * Called to indicate that a probe -- or probes -- should be provided by a 8509 * specfied provider. If the specified description is NULL, the provider will 8510 * be told to provide all of its probes. (This is done whenever a new 8511 * consumer comes along, or whenever a retained enabling is to be matched.) If 8512 * the specified description is non-NULL, the provider is given the 8513 * opportunity to dynamically provide the specified probe, allowing providers 8514 * to support the creation of probes on-the-fly. (So-called _autocreated_ 8515 * probes.) If the provider is NULL, the operations will be applied to all 8516 * providers; if the provider is non-NULL the operations will only be applied 8517 * to the specified provider. The dtrace_provider_lock must be held, and the 8518 * dtrace_lock must _not_ be held -- the provider's dtps_provide() operation 8519 * will need to grab the dtrace_lock when it reenters the framework through 8520 * dtrace_probe_lookup(), dtrace_probe_create(), etc. 8521 */ 8522 static void 8523 dtrace_probe_provide(dtrace_probedesc_t *desc, dtrace_provider_t *prv) 8524 { 8525 struct modctl *ctl; 8526 int all = 0; 8527 8528 ASSERT(MUTEX_HELD(&dtrace_provider_lock)); 8529 8530 if (prv == NULL) { 8531 all = 1; 8532 prv = dtrace_provider; 8533 } 8534 8535 do { 8536 /* 8537 * First, call the blanket provide operation. 8538 */ 8539 prv->dtpv_pops.dtps_provide(prv->dtpv_arg, desc); 8540 8541 /* 8542 * Now call the per-module provide operation. We will grab 8543 * mod_lock to prevent the list from being modified. Note 8544 * that this also prevents the mod_busy bits from changing. 8545 * (mod_busy can only be changed with mod_lock held.) 8546 */ 8547 mutex_enter(&mod_lock); 8548 8549 ctl = &modules; 8550 do { 8551 if (ctl->mod_busy || ctl->mod_mp == NULL) 8552 continue; 8553 8554 prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl); 8555 8556 } while ((ctl = ctl->mod_next) != &modules); 8557 8558 mutex_exit(&mod_lock); 8559 } while (all && (prv = prv->dtpv_next) != NULL); 8560 } 8561 8562 /* 8563 * Iterate over each probe, and call the Framework-to-Provider API function 8564 * denoted by offs. 8565 */ 8566 static void 8567 dtrace_probe_foreach(uintptr_t offs) 8568 { 8569 dtrace_provider_t *prov; 8570 void (*func)(void *, dtrace_id_t, void *); 8571 dtrace_probe_t *probe; 8572 dtrace_icookie_t cookie; 8573 int i; 8574 8575 /* 8576 * We disable interrupts to walk through the probe array. This is 8577 * safe -- the dtrace_sync() in dtrace_unregister() assures that we 8578 * won't see stale data. 8579 */ 8580 cookie = dtrace_interrupt_disable(); 8581 8582 for (i = 0; i < dtrace_nprobes; i++) { 8583 if ((probe = dtrace_probes[i]) == NULL) 8584 continue; 8585 8586 if (probe->dtpr_ecb == NULL) { 8587 /* 8588 * This probe isn't enabled -- don't call the function. 8589 */ 8590 continue; 8591 } 8592 8593 prov = probe->dtpr_provider; 8594 func = *((void(**)(void *, dtrace_id_t, void *)) 8595 ((uintptr_t)&prov->dtpv_pops + offs)); 8596 8597 func(prov->dtpv_arg, i + 1, probe->dtpr_arg); 8598 } 8599 8600 dtrace_interrupt_enable(cookie); 8601 } 8602 8603 static int 8604 dtrace_probe_enable(const dtrace_probedesc_t *desc, dtrace_enabling_t *enab) 8605 { 8606 dtrace_probekey_t pkey; 8607 uint32_t priv; 8608 uid_t uid; 8609 zoneid_t zoneid; 8610 8611 ASSERT(MUTEX_HELD(&dtrace_lock)); 8612 dtrace_ecb_create_cache = NULL; 8613 8614 if (desc == NULL) { 8615 /* 8616 * If we're passed a NULL description, we're being asked to 8617 * create an ECB with a NULL probe. 8618 */ 8619 (void) dtrace_ecb_create_enable(NULL, enab); 8620 return (0); 8621 } 8622 8623 dtrace_probekey(desc, &pkey); 8624 dtrace_cred2priv(enab->dten_vstate->dtvs_state->dts_cred.dcr_cred, 8625 &priv, &uid, &zoneid); 8626 8627 return (dtrace_match(&pkey, priv, uid, zoneid, dtrace_ecb_create_enable, 8628 enab)); 8629 } 8630 8631 /* 8632 * DTrace Helper Provider Functions 8633 */ 8634 static void 8635 dtrace_dofattr2attr(dtrace_attribute_t *attr, const dof_attr_t dofattr) 8636 { 8637 attr->dtat_name = DOF_ATTR_NAME(dofattr); 8638 attr->dtat_data = DOF_ATTR_DATA(dofattr); 8639 attr->dtat_class = DOF_ATTR_CLASS(dofattr); 8640 } 8641 8642 static void 8643 dtrace_dofprov2hprov(dtrace_helper_provdesc_t *hprov, 8644 const dof_provider_t *dofprov, char *strtab) 8645 { 8646 hprov->dthpv_provname = strtab + dofprov->dofpv_name; 8647 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_provider, 8648 dofprov->dofpv_provattr); 8649 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_mod, 8650 dofprov->dofpv_modattr); 8651 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_func, 8652 dofprov->dofpv_funcattr); 8653 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_name, 8654 dofprov->dofpv_nameattr); 8655 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_args, 8656 dofprov->dofpv_argsattr); 8657 } 8658 8659 static void 8660 dtrace_helper_provide_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid) 8661 { 8662 uintptr_t daddr = (uintptr_t)dhp->dofhp_dof; 8663 dof_hdr_t *dof = (dof_hdr_t *)daddr; 8664 dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec; 8665 dof_provider_t *provider; 8666 dof_probe_t *probe; 8667 uint32_t *off, *enoff; 8668 uint8_t *arg; 8669 char *strtab; 8670 uint_t i, nprobes; 8671 dtrace_helper_provdesc_t dhpv; 8672 dtrace_helper_probedesc_t dhpb; 8673 dtrace_meta_t *meta = dtrace_meta_pid; 8674 dtrace_mops_t *mops = &meta->dtm_mops; 8675 void *parg; 8676 8677 provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset); 8678 str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 8679 provider->dofpv_strtab * dof->dofh_secsize); 8680 prb_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 8681 provider->dofpv_probes * dof->dofh_secsize); 8682 arg_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 8683 provider->dofpv_prargs * dof->dofh_secsize); 8684 off_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 8685 provider->dofpv_proffs * dof->dofh_secsize); 8686 8687 strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset); 8688 off = (uint32_t *)(uintptr_t)(daddr + off_sec->dofs_offset); 8689 arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset); 8690 enoff = NULL; 8691 8692 /* 8693 * See dtrace_helper_provider_validate(). 8694 */ 8695 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 && 8696 provider->dofpv_prenoffs != DOF_SECT_NONE) { 8697 enoff_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 8698 provider->dofpv_prenoffs * dof->dofh_secsize); 8699 enoff = (uint32_t *)(uintptr_t)(daddr + enoff_sec->dofs_offset); 8700 } 8701 8702 nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize; 8703 8704 /* 8705 * Create the provider. 8706 */ 8707 dtrace_dofprov2hprov(&dhpv, provider, strtab); 8708 8709 if ((parg = mops->dtms_provide_pid(meta->dtm_arg, &dhpv, pid)) == NULL) 8710 return; 8711 8712 meta->dtm_count++; 8713 8714 /* 8715 * Create the probes. 8716 */ 8717 for (i = 0; i < nprobes; i++) { 8718 probe = (dof_probe_t *)(uintptr_t)(daddr + 8719 prb_sec->dofs_offset + i * prb_sec->dofs_entsize); 8720 8721 dhpb.dthpb_mod = dhp->dofhp_mod; 8722 dhpb.dthpb_func = strtab + probe->dofpr_func; 8723 dhpb.dthpb_name = strtab + probe->dofpr_name; 8724 dhpb.dthpb_base = probe->dofpr_addr; 8725 dhpb.dthpb_offs = off + probe->dofpr_offidx; 8726 dhpb.dthpb_noffs = probe->dofpr_noffs; 8727 if (enoff != NULL) { 8728 dhpb.dthpb_enoffs = enoff + probe->dofpr_enoffidx; 8729 dhpb.dthpb_nenoffs = probe->dofpr_nenoffs; 8730 } else { 8731 dhpb.dthpb_enoffs = NULL; 8732 dhpb.dthpb_nenoffs = 0; 8733 } 8734 dhpb.dthpb_args = arg + probe->dofpr_argidx; 8735 dhpb.dthpb_nargc = probe->dofpr_nargc; 8736 dhpb.dthpb_xargc = probe->dofpr_xargc; 8737 dhpb.dthpb_ntypes = strtab + probe->dofpr_nargv; 8738 dhpb.dthpb_xtypes = strtab + probe->dofpr_xargv; 8739 8740 mops->dtms_create_probe(meta->dtm_arg, parg, &dhpb); 8741 } 8742 } 8743 8744 static void 8745 dtrace_helper_provide(dof_helper_t *dhp, pid_t pid) 8746 { 8747 uintptr_t daddr = (uintptr_t)dhp->dofhp_dof; 8748 dof_hdr_t *dof = (dof_hdr_t *)daddr; 8749 int i; 8750 8751 ASSERT(MUTEX_HELD(&dtrace_meta_lock)); 8752 8753 for (i = 0; i < dof->dofh_secnum; i++) { 8754 dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr + 8755 dof->dofh_secoff + i * dof->dofh_secsize); 8756 8757 if (sec->dofs_type != DOF_SECT_PROVIDER) 8758 continue; 8759 8760 dtrace_helper_provide_one(dhp, sec, pid); 8761 } 8762 8763 /* 8764 * We may have just created probes, so we must now rematch against 8765 * any retained enablings. Note that this call will acquire both 8766 * cpu_lock and dtrace_lock; the fact that we are holding 8767 * dtrace_meta_lock now is what defines the ordering with respect to 8768 * these three locks. 8769 */ 8770 dtrace_enabling_matchall(); 8771 } 8772 8773 static void 8774 dtrace_helper_provider_remove_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid) 8775 { 8776 uintptr_t daddr = (uintptr_t)dhp->dofhp_dof; 8777 dof_hdr_t *dof = (dof_hdr_t *)daddr; 8778 dof_sec_t *str_sec; 8779 dof_provider_t *provider; 8780 char *strtab; 8781 dtrace_helper_provdesc_t dhpv; 8782 dtrace_meta_t *meta = dtrace_meta_pid; 8783 dtrace_mops_t *mops = &meta->dtm_mops; 8784 8785 provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset); 8786 str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 8787 provider->dofpv_strtab * dof->dofh_secsize); 8788 8789 strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset); 8790 8791 /* 8792 * Create the provider. 8793 */ 8794 dtrace_dofprov2hprov(&dhpv, provider, strtab); 8795 8796 mops->dtms_remove_pid(meta->dtm_arg, &dhpv, pid); 8797 8798 meta->dtm_count--; 8799 } 8800 8801 static void 8802 dtrace_helper_provider_remove(dof_helper_t *dhp, pid_t pid) 8803 { 8804 uintptr_t daddr = (uintptr_t)dhp->dofhp_dof; 8805 dof_hdr_t *dof = (dof_hdr_t *)daddr; 8806 int i; 8807 8808 ASSERT(MUTEX_HELD(&dtrace_meta_lock)); 8809 8810 for (i = 0; i < dof->dofh_secnum; i++) { 8811 dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr + 8812 dof->dofh_secoff + i * dof->dofh_secsize); 8813 8814 if (sec->dofs_type != DOF_SECT_PROVIDER) 8815 continue; 8816 8817 dtrace_helper_provider_remove_one(dhp, sec, pid); 8818 } 8819 } 8820 8821 /* 8822 * DTrace Meta Provider-to-Framework API Functions 8823 * 8824 * These functions implement the Meta Provider-to-Framework API, as described 8825 * in <sys/dtrace.h>. 8826 */ 8827 int 8828 dtrace_meta_register(const char *name, const dtrace_mops_t *mops, void *arg, 8829 dtrace_meta_provider_id_t *idp) 8830 { 8831 dtrace_meta_t *meta; 8832 dtrace_helpers_t *help, *next; 8833 int i; 8834 8835 *idp = DTRACE_METAPROVNONE; 8836 8837 /* 8838 * We strictly don't need the name, but we hold onto it for 8839 * debuggability. All hail error queues! 8840 */ 8841 if (name == NULL) { 8842 cmn_err(CE_WARN, "failed to register meta-provider: " 8843 "invalid name"); 8844 return (EINVAL); 8845 } 8846 8847 if (mops == NULL || 8848 mops->dtms_create_probe == NULL || 8849 mops->dtms_provide_pid == NULL || 8850 mops->dtms_remove_pid == NULL) { 8851 cmn_err(CE_WARN, "failed to register meta-register %s: " 8852 "invalid ops", name); 8853 return (EINVAL); 8854 } 8855 8856 meta = kmem_zalloc(sizeof (dtrace_meta_t), KM_SLEEP); 8857 meta->dtm_mops = *mops; 8858 meta->dtm_name = kmem_alloc(strlen(name) + 1, KM_SLEEP); 8859 (void) strcpy(meta->dtm_name, name); 8860 meta->dtm_arg = arg; 8861 8862 mutex_enter(&dtrace_meta_lock); 8863 mutex_enter(&dtrace_lock); 8864 8865 if (dtrace_meta_pid != NULL) { 8866 mutex_exit(&dtrace_lock); 8867 mutex_exit(&dtrace_meta_lock); 8868 cmn_err(CE_WARN, "failed to register meta-register %s: " 8869 "user-land meta-provider exists", name); 8870 kmem_free(meta->dtm_name, strlen(meta->dtm_name) + 1); 8871 kmem_free(meta, sizeof (dtrace_meta_t)); 8872 return (EINVAL); 8873 } 8874 8875 dtrace_meta_pid = meta; 8876 *idp = (dtrace_meta_provider_id_t)meta; 8877 8878 /* 8879 * If there are providers and probes ready to go, pass them 8880 * off to the new meta provider now. 8881 */ 8882 8883 help = dtrace_deferred_pid; 8884 dtrace_deferred_pid = NULL; 8885 8886 mutex_exit(&dtrace_lock); 8887 8888 while (help != NULL) { 8889 for (i = 0; i < help->dthps_nprovs; i++) { 8890 dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov, 8891 help->dthps_pid); 8892 } 8893 8894 next = help->dthps_next; 8895 help->dthps_next = NULL; 8896 help->dthps_prev = NULL; 8897 help->dthps_deferred = 0; 8898 help = next; 8899 } 8900 8901 mutex_exit(&dtrace_meta_lock); 8902 8903 return (0); 8904 } 8905 8906 int 8907 dtrace_meta_unregister(dtrace_meta_provider_id_t id) 8908 { 8909 dtrace_meta_t **pp, *old = (dtrace_meta_t *)id; 8910 8911 mutex_enter(&dtrace_meta_lock); 8912 mutex_enter(&dtrace_lock); 8913 8914 if (old == dtrace_meta_pid) { 8915 pp = &dtrace_meta_pid; 8916 } else { 8917 panic("attempt to unregister non-existent " 8918 "dtrace meta-provider %p\n", (void *)old); 8919 } 8920 8921 if (old->dtm_count != 0) { 8922 mutex_exit(&dtrace_lock); 8923 mutex_exit(&dtrace_meta_lock); 8924 return (EBUSY); 8925 } 8926 8927 *pp = NULL; 8928 8929 mutex_exit(&dtrace_lock); 8930 mutex_exit(&dtrace_meta_lock); 8931 8932 kmem_free(old->dtm_name, strlen(old->dtm_name) + 1); 8933 kmem_free(old, sizeof (dtrace_meta_t)); 8934 8935 return (0); 8936 } 8937 8938 8939 /* 8940 * DTrace DIF Object Functions 8941 */ 8942 static int 8943 dtrace_difo_err(uint_t pc, const char *format, ...) 8944 { 8945 if (dtrace_err_verbose) { 8946 va_list alist; 8947 8948 (void) uprintf("dtrace DIF object error: [%u]: ", pc); 8949 va_start(alist, format); 8950 (void) vuprintf(format, alist); 8951 va_end(alist); 8952 } 8953 8954 #ifdef DTRACE_ERRDEBUG 8955 dtrace_errdebug(format); 8956 #endif 8957 return (1); 8958 } 8959 8960 /* 8961 * Validate a DTrace DIF object by checking the IR instructions. The following 8962 * rules are currently enforced by dtrace_difo_validate(): 8963 * 8964 * 1. Each instruction must have a valid opcode 8965 * 2. Each register, string, variable, or subroutine reference must be valid 8966 * 3. No instruction can modify register %r0 (must be zero) 8967 * 4. All instruction reserved bits must be set to zero 8968 * 5. The last instruction must be a "ret" instruction 8969 * 6. All branch targets must reference a valid instruction _after_ the branch 8970 */ 8971 static int 8972 dtrace_difo_validate(dtrace_difo_t *dp, dtrace_vstate_t *vstate, uint_t nregs, 8973 cred_t *cr) 8974 { 8975 int err = 0, i; 8976 int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err; 8977 int kcheckload; 8978 uint_t pc; 8979 8980 kcheckload = cr == NULL || 8981 (vstate->dtvs_state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) == 0; 8982 8983 dp->dtdo_destructive = 0; 8984 8985 for (pc = 0; pc < dp->dtdo_len && err == 0; pc++) { 8986 dif_instr_t instr = dp->dtdo_buf[pc]; 8987 8988 uint_t r1 = DIF_INSTR_R1(instr); 8989 uint_t r2 = DIF_INSTR_R2(instr); 8990 uint_t rd = DIF_INSTR_RD(instr); 8991 uint_t rs = DIF_INSTR_RS(instr); 8992 uint_t label = DIF_INSTR_LABEL(instr); 8993 uint_t v = DIF_INSTR_VAR(instr); 8994 uint_t subr = DIF_INSTR_SUBR(instr); 8995 uint_t type = DIF_INSTR_TYPE(instr); 8996 uint_t op = DIF_INSTR_OP(instr); 8997 8998 switch (op) { 8999 case DIF_OP_OR: 9000 case DIF_OP_XOR: 9001 case DIF_OP_AND: 9002 case DIF_OP_SLL: 9003 case DIF_OP_SRL: 9004 case DIF_OP_SRA: 9005 case DIF_OP_SUB: 9006 case DIF_OP_ADD: 9007 case DIF_OP_MUL: 9008 case DIF_OP_SDIV: 9009 case DIF_OP_UDIV: 9010 case DIF_OP_SREM: 9011 case DIF_OP_UREM: 9012 case DIF_OP_COPYS: 9013 if (r1 >= nregs) 9014 err += efunc(pc, "invalid register %u\n", r1); 9015 if (r2 >= nregs) 9016 err += efunc(pc, "invalid register %u\n", r2); 9017 if (rd >= nregs) 9018 err += efunc(pc, "invalid register %u\n", rd); 9019 if (rd == 0) 9020 err += efunc(pc, "cannot write to %r0\n"); 9021 break; 9022 case DIF_OP_NOT: 9023 case DIF_OP_MOV: 9024 case DIF_OP_ALLOCS: 9025 if (r1 >= nregs) 9026 err += efunc(pc, "invalid register %u\n", r1); 9027 if (r2 != 0) 9028 err += efunc(pc, "non-zero reserved bits\n"); 9029 if (rd >= nregs) 9030 err += efunc(pc, "invalid register %u\n", rd); 9031 if (rd == 0) 9032 err += efunc(pc, "cannot write to %r0\n"); 9033 break; 9034 case DIF_OP_LDSB: 9035 case DIF_OP_LDSH: 9036 case DIF_OP_LDSW: 9037 case DIF_OP_LDUB: 9038 case DIF_OP_LDUH: 9039 case DIF_OP_LDUW: 9040 case DIF_OP_LDX: 9041 if (r1 >= nregs) 9042 err += efunc(pc, "invalid register %u\n", r1); 9043 if (r2 != 0) 9044 err += efunc(pc, "non-zero reserved bits\n"); 9045 if (rd >= nregs) 9046 err += efunc(pc, "invalid register %u\n", rd); 9047 if (rd == 0) 9048 err += efunc(pc, "cannot write to %r0\n"); 9049 if (kcheckload) 9050 dp->dtdo_buf[pc] = DIF_INSTR_LOAD(op + 9051 DIF_OP_RLDSB - DIF_OP_LDSB, r1, rd); 9052 break; 9053 case DIF_OP_RLDSB: 9054 case DIF_OP_RLDSH: 9055 case DIF_OP_RLDSW: 9056 case DIF_OP_RLDUB: 9057 case DIF_OP_RLDUH: 9058 case DIF_OP_RLDUW: 9059 case DIF_OP_RLDX: 9060 if (r1 >= nregs) 9061 err += efunc(pc, "invalid register %u\n", r1); 9062 if (r2 != 0) 9063 err += efunc(pc, "non-zero reserved bits\n"); 9064 if (rd >= nregs) 9065 err += efunc(pc, "invalid register %u\n", rd); 9066 if (rd == 0) 9067 err += efunc(pc, "cannot write to %r0\n"); 9068 break; 9069 case DIF_OP_ULDSB: 9070 case DIF_OP_ULDSH: 9071 case DIF_OP_ULDSW: 9072 case DIF_OP_ULDUB: 9073 case DIF_OP_ULDUH: 9074 case DIF_OP_ULDUW: 9075 case DIF_OP_ULDX: 9076 if (r1 >= nregs) 9077 err += efunc(pc, "invalid register %u\n", r1); 9078 if (r2 != 0) 9079 err += efunc(pc, "non-zero reserved bits\n"); 9080 if (rd >= nregs) 9081 err += efunc(pc, "invalid register %u\n", rd); 9082 if (rd == 0) 9083 err += efunc(pc, "cannot write to %r0\n"); 9084 break; 9085 case DIF_OP_STB: 9086 case DIF_OP_STH: 9087 case DIF_OP_STW: 9088 case DIF_OP_STX: 9089 if (r1 >= nregs) 9090 err += efunc(pc, "invalid register %u\n", r1); 9091 if (r2 != 0) 9092 err += efunc(pc, "non-zero reserved bits\n"); 9093 if (rd >= nregs) 9094 err += efunc(pc, "invalid register %u\n", rd); 9095 if (rd == 0) 9096 err += efunc(pc, "cannot write to 0 address\n"); 9097 break; 9098 case DIF_OP_CMP: 9099 case DIF_OP_SCMP: 9100 if (r1 >= nregs) 9101 err += efunc(pc, "invalid register %u\n", r1); 9102 if (r2 >= nregs) 9103 err += efunc(pc, "invalid register %u\n", r2); 9104 if (rd != 0) 9105 err += efunc(pc, "non-zero reserved bits\n"); 9106 break; 9107 case DIF_OP_TST: 9108 if (r1 >= nregs) 9109 err += efunc(pc, "invalid register %u\n", r1); 9110 if (r2 != 0 || rd != 0) 9111 err += efunc(pc, "non-zero reserved bits\n"); 9112 break; 9113 case DIF_OP_BA: 9114 case DIF_OP_BE: 9115 case DIF_OP_BNE: 9116 case DIF_OP_BG: 9117 case DIF_OP_BGU: 9118 case DIF_OP_BGE: 9119 case DIF_OP_BGEU: 9120 case DIF_OP_BL: 9121 case DIF_OP_BLU: 9122 case DIF_OP_BLE: 9123 case DIF_OP_BLEU: 9124 if (label >= dp->dtdo_len) { 9125 err += efunc(pc, "invalid branch target %u\n", 9126 label); 9127 } 9128 if (label <= pc) { 9129 err += efunc(pc, "backward branch to %u\n", 9130 label); 9131 } 9132 break; 9133 case DIF_OP_RET: 9134 if (r1 != 0 || r2 != 0) 9135 err += efunc(pc, "non-zero reserved bits\n"); 9136 if (rd >= nregs) 9137 err += efunc(pc, "invalid register %u\n", rd); 9138 break; 9139 case DIF_OP_NOP: 9140 case DIF_OP_POPTS: 9141 case DIF_OP_FLUSHTS: 9142 if (r1 != 0 || r2 != 0 || rd != 0) 9143 err += efunc(pc, "non-zero reserved bits\n"); 9144 break; 9145 case DIF_OP_SETX: 9146 if (DIF_INSTR_INTEGER(instr) >= dp->dtdo_intlen) { 9147 err += efunc(pc, "invalid integer ref %u\n", 9148 DIF_INSTR_INTEGER(instr)); 9149 } 9150 if (rd >= nregs) 9151 err += efunc(pc, "invalid register %u\n", rd); 9152 if (rd == 0) 9153 err += efunc(pc, "cannot write to %r0\n"); 9154 break; 9155 case DIF_OP_SETS: 9156 if (DIF_INSTR_STRING(instr) >= dp->dtdo_strlen) { 9157 err += efunc(pc, "invalid string ref %u\n", 9158 DIF_INSTR_STRING(instr)); 9159 } 9160 if (rd >= nregs) 9161 err += efunc(pc, "invalid register %u\n", rd); 9162 if (rd == 0) 9163 err += efunc(pc, "cannot write to %r0\n"); 9164 break; 9165 case DIF_OP_LDGA: 9166 case DIF_OP_LDTA: 9167 if (r1 > DIF_VAR_ARRAY_MAX) 9168 err += efunc(pc, "invalid array %u\n", r1); 9169 if (r2 >= nregs) 9170 err += efunc(pc, "invalid register %u\n", r2); 9171 if (rd >= nregs) 9172 err += efunc(pc, "invalid register %u\n", rd); 9173 if (rd == 0) 9174 err += efunc(pc, "cannot write to %r0\n"); 9175 break; 9176 case DIF_OP_LDGS: 9177 case DIF_OP_LDTS: 9178 case DIF_OP_LDLS: 9179 case DIF_OP_LDGAA: 9180 case DIF_OP_LDTAA: 9181 if (v < DIF_VAR_OTHER_MIN || v > DIF_VAR_OTHER_MAX) 9182 err += efunc(pc, "invalid variable %u\n", v); 9183 if (rd >= nregs) 9184 err += efunc(pc, "invalid register %u\n", rd); 9185 if (rd == 0) 9186 err += efunc(pc, "cannot write to %r0\n"); 9187 break; 9188 case DIF_OP_STGS: 9189 case DIF_OP_STTS: 9190 case DIF_OP_STLS: 9191 case DIF_OP_STGAA: 9192 case DIF_OP_STTAA: 9193 if (v < DIF_VAR_OTHER_UBASE || v > DIF_VAR_OTHER_MAX) 9194 err += efunc(pc, "invalid variable %u\n", v); 9195 if (rs >= nregs) 9196 err += efunc(pc, "invalid register %u\n", rd); 9197 break; 9198 case DIF_OP_CALL: 9199 if (subr > DIF_SUBR_MAX) 9200 err += efunc(pc, "invalid subr %u\n", subr); 9201 if (rd >= nregs) 9202 err += efunc(pc, "invalid register %u\n", rd); 9203 if (rd == 0) 9204 err += efunc(pc, "cannot write to %r0\n"); 9205 9206 if (subr == DIF_SUBR_COPYOUT || 9207 subr == DIF_SUBR_COPYOUTSTR) { 9208 dp->dtdo_destructive = 1; 9209 } 9210 9211 if (subr == DIF_SUBR_GETF) { 9212 /* 9213 * If we have a getf() we need to record that 9214 * in our state. Note that our state can be 9215 * NULL if this is a helper -- but in that 9216 * case, the call to getf() is itself illegal, 9217 * and will be caught (slightly later) when 9218 * the helper is validated. 9219 */ 9220 if (vstate->dtvs_state != NULL) 9221 vstate->dtvs_state->dts_getf++; 9222 } 9223 9224 break; 9225 case DIF_OP_PUSHTR: 9226 if (type != DIF_TYPE_STRING && type != DIF_TYPE_CTF) 9227 err += efunc(pc, "invalid ref type %u\n", type); 9228 if (r2 >= nregs) 9229 err += efunc(pc, "invalid register %u\n", r2); 9230 if (rs >= nregs) 9231 err += efunc(pc, "invalid register %u\n", rs); 9232 break; 9233 case DIF_OP_PUSHTV: 9234 if (type != DIF_TYPE_CTF) 9235 err += efunc(pc, "invalid val type %u\n", type); 9236 if (r2 >= nregs) 9237 err += efunc(pc, "invalid register %u\n", r2); 9238 if (rs >= nregs) 9239 err += efunc(pc, "invalid register %u\n", rs); 9240 break; 9241 default: 9242 err += efunc(pc, "invalid opcode %u\n", 9243 DIF_INSTR_OP(instr)); 9244 } 9245 } 9246 9247 if (dp->dtdo_len != 0 && 9248 DIF_INSTR_OP(dp->dtdo_buf[dp->dtdo_len - 1]) != DIF_OP_RET) { 9249 err += efunc(dp->dtdo_len - 1, 9250 "expected 'ret' as last DIF instruction\n"); 9251 } 9252 9253 if (!(dp->dtdo_rtype.dtdt_flags & (DIF_TF_BYREF | DIF_TF_BYUREF))) { 9254 /* 9255 * If we're not returning by reference, the size must be either 9256 * 0 or the size of one of the base types. 9257 */ 9258 switch (dp->dtdo_rtype.dtdt_size) { 9259 case 0: 9260 case sizeof (uint8_t): 9261 case sizeof (uint16_t): 9262 case sizeof (uint32_t): 9263 case sizeof (uint64_t): 9264 break; 9265 9266 default: 9267 err += efunc(dp->dtdo_len - 1, "bad return size\n"); 9268 } 9269 } 9270 9271 for (i = 0; i < dp->dtdo_varlen && err == 0; i++) { 9272 dtrace_difv_t *v = &dp->dtdo_vartab[i], *existing = NULL; 9273 dtrace_diftype_t *vt, *et; 9274 uint_t id, ndx; 9275 9276 if (v->dtdv_scope != DIFV_SCOPE_GLOBAL && 9277 v->dtdv_scope != DIFV_SCOPE_THREAD && 9278 v->dtdv_scope != DIFV_SCOPE_LOCAL) { 9279 err += efunc(i, "unrecognized variable scope %d\n", 9280 v->dtdv_scope); 9281 break; 9282 } 9283 9284 if (v->dtdv_kind != DIFV_KIND_ARRAY && 9285 v->dtdv_kind != DIFV_KIND_SCALAR) { 9286 err += efunc(i, "unrecognized variable type %d\n", 9287 v->dtdv_kind); 9288 break; 9289 } 9290 9291 if ((id = v->dtdv_id) > DIF_VARIABLE_MAX) { 9292 err += efunc(i, "%d exceeds variable id limit\n", id); 9293 break; 9294 } 9295 9296 if (id < DIF_VAR_OTHER_UBASE) 9297 continue; 9298 9299 /* 9300 * For user-defined variables, we need to check that this 9301 * definition is identical to any previous definition that we 9302 * encountered. 9303 */ 9304 ndx = id - DIF_VAR_OTHER_UBASE; 9305 9306 switch (v->dtdv_scope) { 9307 case DIFV_SCOPE_GLOBAL: 9308 if (ndx < vstate->dtvs_nglobals) { 9309 dtrace_statvar_t *svar; 9310 9311 if ((svar = vstate->dtvs_globals[ndx]) != NULL) 9312 existing = &svar->dtsv_var; 9313 } 9314 9315 break; 9316 9317 case DIFV_SCOPE_THREAD: 9318 if (ndx < vstate->dtvs_ntlocals) 9319 existing = &vstate->dtvs_tlocals[ndx]; 9320 break; 9321 9322 case DIFV_SCOPE_LOCAL: 9323 if (ndx < vstate->dtvs_nlocals) { 9324 dtrace_statvar_t *svar; 9325 9326 if ((svar = vstate->dtvs_locals[ndx]) != NULL) 9327 existing = &svar->dtsv_var; 9328 } 9329 9330 break; 9331 } 9332 9333 vt = &v->dtdv_type; 9334 9335 if (vt->dtdt_flags & DIF_TF_BYREF) { 9336 if (vt->dtdt_size == 0) { 9337 err += efunc(i, "zero-sized variable\n"); 9338 break; 9339 } 9340 9341 if (v->dtdv_scope == DIFV_SCOPE_GLOBAL && 9342 vt->dtdt_size > dtrace_global_maxsize) { 9343 err += efunc(i, "oversized by-ref global\n"); 9344 break; 9345 } 9346 } 9347 9348 if (existing == NULL || existing->dtdv_id == 0) 9349 continue; 9350 9351 ASSERT(existing->dtdv_id == v->dtdv_id); 9352 ASSERT(existing->dtdv_scope == v->dtdv_scope); 9353 9354 if (existing->dtdv_kind != v->dtdv_kind) 9355 err += efunc(i, "%d changed variable kind\n", id); 9356 9357 et = &existing->dtdv_type; 9358 9359 if (vt->dtdt_flags != et->dtdt_flags) { 9360 err += efunc(i, "%d changed variable type flags\n", id); 9361 break; 9362 } 9363 9364 if (vt->dtdt_size != 0 && vt->dtdt_size != et->dtdt_size) { 9365 err += efunc(i, "%d changed variable type size\n", id); 9366 break; 9367 } 9368 } 9369 9370 return (err); 9371 } 9372 9373 /* 9374 * Validate a DTrace DIF object that it is to be used as a helper. Helpers 9375 * are much more constrained than normal DIFOs. Specifically, they may 9376 * not: 9377 * 9378 * 1. Make calls to subroutines other than copyin(), copyinstr() or 9379 * miscellaneous string routines 9380 * 2. Access DTrace variables other than the args[] array, and the 9381 * curthread, pid, ppid, tid, execname, zonename, uid and gid variables. 9382 * 3. Have thread-local variables. 9383 * 4. Have dynamic variables. 9384 */ 9385 static int 9386 dtrace_difo_validate_helper(dtrace_difo_t *dp) 9387 { 9388 int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err; 9389 int err = 0; 9390 uint_t pc; 9391 9392 for (pc = 0; pc < dp->dtdo_len; pc++) { 9393 dif_instr_t instr = dp->dtdo_buf[pc]; 9394 9395 uint_t v = DIF_INSTR_VAR(instr); 9396 uint_t subr = DIF_INSTR_SUBR(instr); 9397 uint_t op = DIF_INSTR_OP(instr); 9398 9399 switch (op) { 9400 case DIF_OP_OR: 9401 case DIF_OP_XOR: 9402 case DIF_OP_AND: 9403 case DIF_OP_SLL: 9404 case DIF_OP_SRL: 9405 case DIF_OP_SRA: 9406 case DIF_OP_SUB: 9407 case DIF_OP_ADD: 9408 case DIF_OP_MUL: 9409 case DIF_OP_SDIV: 9410 case DIF_OP_UDIV: 9411 case DIF_OP_SREM: 9412 case DIF_OP_UREM: 9413 case DIF_OP_COPYS: 9414 case DIF_OP_NOT: 9415 case DIF_OP_MOV: 9416 case DIF_OP_RLDSB: 9417 case DIF_OP_RLDSH: 9418 case DIF_OP_RLDSW: 9419 case DIF_OP_RLDUB: 9420 case DIF_OP_RLDUH: 9421 case DIF_OP_RLDUW: 9422 case DIF_OP_RLDX: 9423 case DIF_OP_ULDSB: 9424 case DIF_OP_ULDSH: 9425 case DIF_OP_ULDSW: 9426 case DIF_OP_ULDUB: 9427 case DIF_OP_ULDUH: 9428 case DIF_OP_ULDUW: 9429 case DIF_OP_ULDX: 9430 case DIF_OP_STB: 9431 case DIF_OP_STH: 9432 case DIF_OP_STW: 9433 case DIF_OP_STX: 9434 case DIF_OP_ALLOCS: 9435 case DIF_OP_CMP: 9436 case DIF_OP_SCMP: 9437 case DIF_OP_TST: 9438 case DIF_OP_BA: 9439 case DIF_OP_BE: 9440 case DIF_OP_BNE: 9441 case DIF_OP_BG: 9442 case DIF_OP_BGU: 9443 case DIF_OP_BGE: 9444 case DIF_OP_BGEU: 9445 case DIF_OP_BL: 9446 case DIF_OP_BLU: 9447 case DIF_OP_BLE: 9448 case DIF_OP_BLEU: 9449 case DIF_OP_RET: 9450 case DIF_OP_NOP: 9451 case DIF_OP_POPTS: 9452 case DIF_OP_FLUSHTS: 9453 case DIF_OP_SETX: 9454 case DIF_OP_SETS: 9455 case DIF_OP_LDGA: 9456 case DIF_OP_LDLS: 9457 case DIF_OP_STGS: 9458 case DIF_OP_STLS: 9459 case DIF_OP_PUSHTR: 9460 case DIF_OP_PUSHTV: 9461 break; 9462 9463 case DIF_OP_LDGS: 9464 if (v >= DIF_VAR_OTHER_UBASE) 9465 break; 9466 9467 if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9) 9468 break; 9469 9470 if (v == DIF_VAR_CURTHREAD || v == DIF_VAR_PID || 9471 v == DIF_VAR_PPID || v == DIF_VAR_TID || 9472 v == DIF_VAR_EXECNAME || v == DIF_VAR_ZONENAME || 9473 v == DIF_VAR_UID || v == DIF_VAR_GID) 9474 break; 9475 9476 err += efunc(pc, "illegal variable %u\n", v); 9477 break; 9478 9479 case DIF_OP_LDTA: 9480 case DIF_OP_LDTS: 9481 case DIF_OP_LDGAA: 9482 case DIF_OP_LDTAA: 9483 err += efunc(pc, "illegal dynamic variable load\n"); 9484 break; 9485 9486 case DIF_OP_STTS: 9487 case DIF_OP_STGAA: 9488 case DIF_OP_STTAA: 9489 err += efunc(pc, "illegal dynamic variable store\n"); 9490 break; 9491 9492 case DIF_OP_CALL: 9493 if (subr == DIF_SUBR_ALLOCA || 9494 subr == DIF_SUBR_BCOPY || 9495 subr == DIF_SUBR_COPYIN || 9496 subr == DIF_SUBR_COPYINTO || 9497 subr == DIF_SUBR_COPYINSTR || 9498 subr == DIF_SUBR_INDEX || 9499 subr == DIF_SUBR_INET_NTOA || 9500 subr == DIF_SUBR_INET_NTOA6 || 9501 subr == DIF_SUBR_INET_NTOP || 9502 subr == DIF_SUBR_JSON || 9503 subr == DIF_SUBR_LLTOSTR || 9504 subr == DIF_SUBR_STRTOLL || 9505 subr == DIF_SUBR_RINDEX || 9506 subr == DIF_SUBR_STRCHR || 9507 subr == DIF_SUBR_STRJOIN || 9508 subr == DIF_SUBR_STRRCHR || 9509 subr == DIF_SUBR_STRSTR || 9510 subr == DIF_SUBR_HTONS || 9511 subr == DIF_SUBR_HTONL || 9512 subr == DIF_SUBR_HTONLL || 9513 subr == DIF_SUBR_NTOHS || 9514 subr == DIF_SUBR_NTOHL || 9515 subr == DIF_SUBR_NTOHLL) 9516 break; 9517 9518 err += efunc(pc, "invalid subr %u\n", subr); 9519 break; 9520 9521 default: 9522 err += efunc(pc, "invalid opcode %u\n", 9523 DIF_INSTR_OP(instr)); 9524 } 9525 } 9526 9527 return (err); 9528 } 9529 9530 /* 9531 * Returns 1 if the expression in the DIF object can be cached on a per-thread 9532 * basis; 0 if not. 9533 */ 9534 static int 9535 dtrace_difo_cacheable(dtrace_difo_t *dp) 9536 { 9537 int i; 9538 9539 if (dp == NULL) 9540 return (0); 9541 9542 for (i = 0; i < dp->dtdo_varlen; i++) { 9543 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 9544 9545 if (v->dtdv_scope != DIFV_SCOPE_GLOBAL) 9546 continue; 9547 9548 switch (v->dtdv_id) { 9549 case DIF_VAR_CURTHREAD: 9550 case DIF_VAR_PID: 9551 case DIF_VAR_TID: 9552 case DIF_VAR_EXECNAME: 9553 case DIF_VAR_ZONENAME: 9554 break; 9555 9556 default: 9557 return (0); 9558 } 9559 } 9560 9561 /* 9562 * This DIF object may be cacheable. Now we need to look for any 9563 * array loading instructions, any memory loading instructions, or 9564 * any stores to thread-local variables. 9565 */ 9566 for (i = 0; i < dp->dtdo_len; i++) { 9567 uint_t op = DIF_INSTR_OP(dp->dtdo_buf[i]); 9568 9569 if ((op >= DIF_OP_LDSB && op <= DIF_OP_LDX) || 9570 (op >= DIF_OP_ULDSB && op <= DIF_OP_ULDX) || 9571 (op >= DIF_OP_RLDSB && op <= DIF_OP_RLDX) || 9572 op == DIF_OP_LDGA || op == DIF_OP_STTS) 9573 return (0); 9574 } 9575 9576 return (1); 9577 } 9578 9579 static void 9580 dtrace_difo_hold(dtrace_difo_t *dp) 9581 { 9582 int i; 9583 9584 ASSERT(MUTEX_HELD(&dtrace_lock)); 9585 9586 dp->dtdo_refcnt++; 9587 ASSERT(dp->dtdo_refcnt != 0); 9588 9589 /* 9590 * We need to check this DIF object for references to the variable 9591 * DIF_VAR_VTIMESTAMP. 9592 */ 9593 for (i = 0; i < dp->dtdo_varlen; i++) { 9594 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 9595 9596 if (v->dtdv_id != DIF_VAR_VTIMESTAMP) 9597 continue; 9598 9599 if (dtrace_vtime_references++ == 0) 9600 dtrace_vtime_enable(); 9601 } 9602 } 9603 9604 /* 9605 * This routine calculates the dynamic variable chunksize for a given DIF 9606 * object. The calculation is not fool-proof, and can probably be tricked by 9607 * malicious DIF -- but it works for all compiler-generated DIF. Because this 9608 * calculation is likely imperfect, dtrace_dynvar() is able to gracefully fail 9609 * if a dynamic variable size exceeds the chunksize. 9610 */ 9611 static void 9612 dtrace_difo_chunksize(dtrace_difo_t *dp, dtrace_vstate_t *vstate) 9613 { 9614 uint64_t sval; 9615 dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */ 9616 const dif_instr_t *text = dp->dtdo_buf; 9617 uint_t pc, srd = 0; 9618 uint_t ttop = 0; 9619 size_t size, ksize; 9620 uint_t id, i; 9621 9622 for (pc = 0; pc < dp->dtdo_len; pc++) { 9623 dif_instr_t instr = text[pc]; 9624 uint_t op = DIF_INSTR_OP(instr); 9625 uint_t rd = DIF_INSTR_RD(instr); 9626 uint_t r1 = DIF_INSTR_R1(instr); 9627 uint_t nkeys = 0; 9628 uchar_t scope; 9629 9630 dtrace_key_t *key = tupregs; 9631 9632 switch (op) { 9633 case DIF_OP_SETX: 9634 sval = dp->dtdo_inttab[DIF_INSTR_INTEGER(instr)]; 9635 srd = rd; 9636 continue; 9637 9638 case DIF_OP_STTS: 9639 key = &tupregs[DIF_DTR_NREGS]; 9640 key[0].dttk_size = 0; 9641 key[1].dttk_size = 0; 9642 nkeys = 2; 9643 scope = DIFV_SCOPE_THREAD; 9644 break; 9645 9646 case DIF_OP_STGAA: 9647 case DIF_OP_STTAA: 9648 nkeys = ttop; 9649 9650 if (DIF_INSTR_OP(instr) == DIF_OP_STTAA) 9651 key[nkeys++].dttk_size = 0; 9652 9653 key[nkeys++].dttk_size = 0; 9654 9655 if (op == DIF_OP_STTAA) { 9656 scope = DIFV_SCOPE_THREAD; 9657 } else { 9658 scope = DIFV_SCOPE_GLOBAL; 9659 } 9660 9661 break; 9662 9663 case DIF_OP_PUSHTR: 9664 if (ttop == DIF_DTR_NREGS) 9665 return; 9666 9667 if ((srd == 0 || sval == 0) && r1 == DIF_TYPE_STRING) { 9668 /* 9669 * If the register for the size of the "pushtr" 9670 * is %r0 (or the value is 0) and the type is 9671 * a string, we'll use the system-wide default 9672 * string size. 9673 */ 9674 tupregs[ttop++].dttk_size = 9675 dtrace_strsize_default; 9676 } else { 9677 if (srd == 0) 9678 return; 9679 9680 tupregs[ttop++].dttk_size = sval; 9681 } 9682 9683 break; 9684 9685 case DIF_OP_PUSHTV: 9686 if (ttop == DIF_DTR_NREGS) 9687 return; 9688 9689 tupregs[ttop++].dttk_size = 0; 9690 break; 9691 9692 case DIF_OP_FLUSHTS: 9693 ttop = 0; 9694 break; 9695 9696 case DIF_OP_POPTS: 9697 if (ttop != 0) 9698 ttop--; 9699 break; 9700 } 9701 9702 sval = 0; 9703 srd = 0; 9704 9705 if (nkeys == 0) 9706 continue; 9707 9708 /* 9709 * We have a dynamic variable allocation; calculate its size. 9710 */ 9711 for (ksize = 0, i = 0; i < nkeys; i++) 9712 ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t)); 9713 9714 size = sizeof (dtrace_dynvar_t); 9715 size += sizeof (dtrace_key_t) * (nkeys - 1); 9716 size += ksize; 9717 9718 /* 9719 * Now we need to determine the size of the stored data. 9720 */ 9721 id = DIF_INSTR_VAR(instr); 9722 9723 for (i = 0; i < dp->dtdo_varlen; i++) { 9724 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 9725 9726 if (v->dtdv_id == id && v->dtdv_scope == scope) { 9727 size += v->dtdv_type.dtdt_size; 9728 break; 9729 } 9730 } 9731 9732 if (i == dp->dtdo_varlen) 9733 return; 9734 9735 /* 9736 * We have the size. If this is larger than the chunk size 9737 * for our dynamic variable state, reset the chunk size. 9738 */ 9739 size = P2ROUNDUP(size, sizeof (uint64_t)); 9740 9741 if (size > vstate->dtvs_dynvars.dtds_chunksize) 9742 vstate->dtvs_dynvars.dtds_chunksize = size; 9743 } 9744 } 9745 9746 static void 9747 dtrace_difo_init(dtrace_difo_t *dp, dtrace_vstate_t *vstate) 9748 { 9749 int i, oldsvars, osz, nsz, otlocals, ntlocals; 9750 uint_t id; 9751 9752 ASSERT(MUTEX_HELD(&dtrace_lock)); 9753 ASSERT(dp->dtdo_buf != NULL && dp->dtdo_len != 0); 9754 9755 for (i = 0; i < dp->dtdo_varlen; i++) { 9756 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 9757 dtrace_statvar_t *svar, ***svarp; 9758 size_t dsize = 0; 9759 uint8_t scope = v->dtdv_scope; 9760 int *np; 9761 9762 if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE) 9763 continue; 9764 9765 id -= DIF_VAR_OTHER_UBASE; 9766 9767 switch (scope) { 9768 case DIFV_SCOPE_THREAD: 9769 while (id >= (otlocals = vstate->dtvs_ntlocals)) { 9770 dtrace_difv_t *tlocals; 9771 9772 if ((ntlocals = (otlocals << 1)) == 0) 9773 ntlocals = 1; 9774 9775 osz = otlocals * sizeof (dtrace_difv_t); 9776 nsz = ntlocals * sizeof (dtrace_difv_t); 9777 9778 tlocals = kmem_zalloc(nsz, KM_SLEEP); 9779 9780 if (osz != 0) { 9781 bcopy(vstate->dtvs_tlocals, 9782 tlocals, osz); 9783 kmem_free(vstate->dtvs_tlocals, osz); 9784 } 9785 9786 vstate->dtvs_tlocals = tlocals; 9787 vstate->dtvs_ntlocals = ntlocals; 9788 } 9789 9790 vstate->dtvs_tlocals[id] = *v; 9791 continue; 9792 9793 case DIFV_SCOPE_LOCAL: 9794 np = &vstate->dtvs_nlocals; 9795 svarp = &vstate->dtvs_locals; 9796 9797 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) 9798 dsize = NCPU * (v->dtdv_type.dtdt_size + 9799 sizeof (uint64_t)); 9800 else 9801 dsize = NCPU * sizeof (uint64_t); 9802 9803 break; 9804 9805 case DIFV_SCOPE_GLOBAL: 9806 np = &vstate->dtvs_nglobals; 9807 svarp = &vstate->dtvs_globals; 9808 9809 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) 9810 dsize = v->dtdv_type.dtdt_size + 9811 sizeof (uint64_t); 9812 9813 break; 9814 9815 default: 9816 ASSERT(0); 9817 } 9818 9819 while (id >= (oldsvars = *np)) { 9820 dtrace_statvar_t **statics; 9821 int newsvars, oldsize, newsize; 9822 9823 if ((newsvars = (oldsvars << 1)) == 0) 9824 newsvars = 1; 9825 9826 oldsize = oldsvars * sizeof (dtrace_statvar_t *); 9827 newsize = newsvars * sizeof (dtrace_statvar_t *); 9828 9829 statics = kmem_zalloc(newsize, KM_SLEEP); 9830 9831 if (oldsize != 0) { 9832 bcopy(*svarp, statics, oldsize); 9833 kmem_free(*svarp, oldsize); 9834 } 9835 9836 *svarp = statics; 9837 *np = newsvars; 9838 } 9839 9840 if ((svar = (*svarp)[id]) == NULL) { 9841 svar = kmem_zalloc(sizeof (dtrace_statvar_t), KM_SLEEP); 9842 svar->dtsv_var = *v; 9843 9844 if ((svar->dtsv_size = dsize) != 0) { 9845 svar->dtsv_data = (uint64_t)(uintptr_t) 9846 kmem_zalloc(dsize, KM_SLEEP); 9847 } 9848 9849 (*svarp)[id] = svar; 9850 } 9851 9852 svar->dtsv_refcnt++; 9853 } 9854 9855 dtrace_difo_chunksize(dp, vstate); 9856 dtrace_difo_hold(dp); 9857 } 9858 9859 static dtrace_difo_t * 9860 dtrace_difo_duplicate(dtrace_difo_t *dp, dtrace_vstate_t *vstate) 9861 { 9862 dtrace_difo_t *new; 9863 size_t sz; 9864 9865 ASSERT(dp->dtdo_buf != NULL); 9866 ASSERT(dp->dtdo_refcnt != 0); 9867 9868 new = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP); 9869 9870 ASSERT(dp->dtdo_buf != NULL); 9871 sz = dp->dtdo_len * sizeof (dif_instr_t); 9872 new->dtdo_buf = kmem_alloc(sz, KM_SLEEP); 9873 bcopy(dp->dtdo_buf, new->dtdo_buf, sz); 9874 new->dtdo_len = dp->dtdo_len; 9875 9876 if (dp->dtdo_strtab != NULL) { 9877 ASSERT(dp->dtdo_strlen != 0); 9878 new->dtdo_strtab = kmem_alloc(dp->dtdo_strlen, KM_SLEEP); 9879 bcopy(dp->dtdo_strtab, new->dtdo_strtab, dp->dtdo_strlen); 9880 new->dtdo_strlen = dp->dtdo_strlen; 9881 } 9882 9883 if (dp->dtdo_inttab != NULL) { 9884 ASSERT(dp->dtdo_intlen != 0); 9885 sz = dp->dtdo_intlen * sizeof (uint64_t); 9886 new->dtdo_inttab = kmem_alloc(sz, KM_SLEEP); 9887 bcopy(dp->dtdo_inttab, new->dtdo_inttab, sz); 9888 new->dtdo_intlen = dp->dtdo_intlen; 9889 } 9890 9891 if (dp->dtdo_vartab != NULL) { 9892 ASSERT(dp->dtdo_varlen != 0); 9893 sz = dp->dtdo_varlen * sizeof (dtrace_difv_t); 9894 new->dtdo_vartab = kmem_alloc(sz, KM_SLEEP); 9895 bcopy(dp->dtdo_vartab, new->dtdo_vartab, sz); 9896 new->dtdo_varlen = dp->dtdo_varlen; 9897 } 9898 9899 dtrace_difo_init(new, vstate); 9900 return (new); 9901 } 9902 9903 static void 9904 dtrace_difo_destroy(dtrace_difo_t *dp, dtrace_vstate_t *vstate) 9905 { 9906 int i; 9907 9908 ASSERT(dp->dtdo_refcnt == 0); 9909 9910 for (i = 0; i < dp->dtdo_varlen; i++) { 9911 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 9912 dtrace_statvar_t *svar, **svarp; 9913 uint_t id; 9914 uint8_t scope = v->dtdv_scope; 9915 int *np; 9916 9917 switch (scope) { 9918 case DIFV_SCOPE_THREAD: 9919 continue; 9920 9921 case DIFV_SCOPE_LOCAL: 9922 np = &vstate->dtvs_nlocals; 9923 svarp = vstate->dtvs_locals; 9924 break; 9925 9926 case DIFV_SCOPE_GLOBAL: 9927 np = &vstate->dtvs_nglobals; 9928 svarp = vstate->dtvs_globals; 9929 break; 9930 9931 default: 9932 ASSERT(0); 9933 } 9934 9935 if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE) 9936 continue; 9937 9938 id -= DIF_VAR_OTHER_UBASE; 9939 ASSERT(id < *np); 9940 9941 svar = svarp[id]; 9942 ASSERT(svar != NULL); 9943 ASSERT(svar->dtsv_refcnt > 0); 9944 9945 if (--svar->dtsv_refcnt > 0) 9946 continue; 9947 9948 if (svar->dtsv_size != 0) { 9949 ASSERT(svar->dtsv_data != NULL); 9950 kmem_free((void *)(uintptr_t)svar->dtsv_data, 9951 svar->dtsv_size); 9952 } 9953 9954 kmem_free(svar, sizeof (dtrace_statvar_t)); 9955 svarp[id] = NULL; 9956 } 9957 9958 kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t)); 9959 kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t)); 9960 kmem_free(dp->dtdo_strtab, dp->dtdo_strlen); 9961 kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t)); 9962 9963 kmem_free(dp, sizeof (dtrace_difo_t)); 9964 } 9965 9966 static void 9967 dtrace_difo_release(dtrace_difo_t *dp, dtrace_vstate_t *vstate) 9968 { 9969 int i; 9970 9971 ASSERT(MUTEX_HELD(&dtrace_lock)); 9972 ASSERT(dp->dtdo_refcnt != 0); 9973 9974 for (i = 0; i < dp->dtdo_varlen; i++) { 9975 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 9976 9977 if (v->dtdv_id != DIF_VAR_VTIMESTAMP) 9978 continue; 9979 9980 ASSERT(dtrace_vtime_references > 0); 9981 if (--dtrace_vtime_references == 0) 9982 dtrace_vtime_disable(); 9983 } 9984 9985 if (--dp->dtdo_refcnt == 0) 9986 dtrace_difo_destroy(dp, vstate); 9987 } 9988 9989 /* 9990 * DTrace Format Functions 9991 */ 9992 static uint16_t 9993 dtrace_format_add(dtrace_state_t *state, char *str) 9994 { 9995 char *fmt, **new; 9996 uint16_t ndx, len = strlen(str) + 1; 9997 9998 fmt = kmem_zalloc(len, KM_SLEEP); 9999 bcopy(str, fmt, len); 10000 10001 for (ndx = 0; ndx < state->dts_nformats; ndx++) { 10002 if (state->dts_formats[ndx] == NULL) { 10003 state->dts_formats[ndx] = fmt; 10004 return (ndx + 1); 10005 } 10006 } 10007 10008 if (state->dts_nformats == USHRT_MAX) { 10009 /* 10010 * This is only likely if a denial-of-service attack is being 10011 * attempted. As such, it's okay to fail silently here. 10012 */ 10013 kmem_free(fmt, len); 10014 return (0); 10015 } 10016 10017 /* 10018 * For simplicity, we always resize the formats array to be exactly the 10019 * number of formats. 10020 */ 10021 ndx = state->dts_nformats++; 10022 new = kmem_alloc((ndx + 1) * sizeof (char *), KM_SLEEP); 10023 10024 if (state->dts_formats != NULL) { 10025 ASSERT(ndx != 0); 10026 bcopy(state->dts_formats, new, ndx * sizeof (char *)); 10027 kmem_free(state->dts_formats, ndx * sizeof (char *)); 10028 } 10029 10030 state->dts_formats = new; 10031 state->dts_formats[ndx] = fmt; 10032 10033 return (ndx + 1); 10034 } 10035 10036 static void 10037 dtrace_format_remove(dtrace_state_t *state, uint16_t format) 10038 { 10039 char *fmt; 10040 10041 ASSERT(state->dts_formats != NULL); 10042 ASSERT(format <= state->dts_nformats); 10043 ASSERT(state->dts_formats[format - 1] != NULL); 10044 10045 fmt = state->dts_formats[format - 1]; 10046 kmem_free(fmt, strlen(fmt) + 1); 10047 state->dts_formats[format - 1] = NULL; 10048 } 10049 10050 static void 10051 dtrace_format_destroy(dtrace_state_t *state) 10052 { 10053 int i; 10054 10055 if (state->dts_nformats == 0) { 10056 ASSERT(state->dts_formats == NULL); 10057 return; 10058 } 10059 10060 ASSERT(state->dts_formats != NULL); 10061 10062 for (i = 0; i < state->dts_nformats; i++) { 10063 char *fmt = state->dts_formats[i]; 10064 10065 if (fmt == NULL) 10066 continue; 10067 10068 kmem_free(fmt, strlen(fmt) + 1); 10069 } 10070 10071 kmem_free(state->dts_formats, state->dts_nformats * sizeof (char *)); 10072 state->dts_nformats = 0; 10073 state->dts_formats = NULL; 10074 } 10075 10076 /* 10077 * DTrace Predicate Functions 10078 */ 10079 static dtrace_predicate_t * 10080 dtrace_predicate_create(dtrace_difo_t *dp) 10081 { 10082 dtrace_predicate_t *pred; 10083 10084 ASSERT(MUTEX_HELD(&dtrace_lock)); 10085 ASSERT(dp->dtdo_refcnt != 0); 10086 10087 pred = kmem_zalloc(sizeof (dtrace_predicate_t), KM_SLEEP); 10088 pred->dtp_difo = dp; 10089 pred->dtp_refcnt = 1; 10090 10091 if (!dtrace_difo_cacheable(dp)) 10092 return (pred); 10093 10094 if (dtrace_predcache_id == DTRACE_CACHEIDNONE) { 10095 /* 10096 * This is only theoretically possible -- we have had 2^32 10097 * cacheable predicates on this machine. We cannot allow any 10098 * more predicates to become cacheable: as unlikely as it is, 10099 * there may be a thread caching a (now stale) predicate cache 10100 * ID. (N.B.: the temptation is being successfully resisted to 10101 * have this cmn_err() "Holy shit -- we executed this code!") 10102 */ 10103 return (pred); 10104 } 10105 10106 pred->dtp_cacheid = dtrace_predcache_id++; 10107 10108 return (pred); 10109 } 10110 10111 static void 10112 dtrace_predicate_hold(dtrace_predicate_t *pred) 10113 { 10114 ASSERT(MUTEX_HELD(&dtrace_lock)); 10115 ASSERT(pred->dtp_difo != NULL && pred->dtp_difo->dtdo_refcnt != 0); 10116 ASSERT(pred->dtp_refcnt > 0); 10117 10118 pred->dtp_refcnt++; 10119 } 10120 10121 static void 10122 dtrace_predicate_release(dtrace_predicate_t *pred, dtrace_vstate_t *vstate) 10123 { 10124 dtrace_difo_t *dp = pred->dtp_difo; 10125 10126 ASSERT(MUTEX_HELD(&dtrace_lock)); 10127 ASSERT(dp != NULL && dp->dtdo_refcnt != 0); 10128 ASSERT(pred->dtp_refcnt > 0); 10129 10130 if (--pred->dtp_refcnt == 0) { 10131 dtrace_difo_release(pred->dtp_difo, vstate); 10132 kmem_free(pred, sizeof (dtrace_predicate_t)); 10133 } 10134 } 10135 10136 /* 10137 * DTrace Action Description Functions 10138 */ 10139 static dtrace_actdesc_t * 10140 dtrace_actdesc_create(dtrace_actkind_t kind, uint32_t ntuple, 10141 uint64_t uarg, uint64_t arg) 10142 { 10143 dtrace_actdesc_t *act; 10144 10145 ASSERT(!DTRACEACT_ISPRINTFLIKE(kind) || (arg != NULL && 10146 arg >= KERNELBASE) || (arg == NULL && kind == DTRACEACT_PRINTA)); 10147 10148 act = kmem_zalloc(sizeof (dtrace_actdesc_t), KM_SLEEP); 10149 act->dtad_kind = kind; 10150 act->dtad_ntuple = ntuple; 10151 act->dtad_uarg = uarg; 10152 act->dtad_arg = arg; 10153 act->dtad_refcnt = 1; 10154 10155 return (act); 10156 } 10157 10158 static void 10159 dtrace_actdesc_hold(dtrace_actdesc_t *act) 10160 { 10161 ASSERT(act->dtad_refcnt >= 1); 10162 act->dtad_refcnt++; 10163 } 10164 10165 static void 10166 dtrace_actdesc_release(dtrace_actdesc_t *act, dtrace_vstate_t *vstate) 10167 { 10168 dtrace_actkind_t kind = act->dtad_kind; 10169 dtrace_difo_t *dp; 10170 10171 ASSERT(act->dtad_refcnt >= 1); 10172 10173 if (--act->dtad_refcnt != 0) 10174 return; 10175 10176 if ((dp = act->dtad_difo) != NULL) 10177 dtrace_difo_release(dp, vstate); 10178 10179 if (DTRACEACT_ISPRINTFLIKE(kind)) { 10180 char *str = (char *)(uintptr_t)act->dtad_arg; 10181 10182 ASSERT((str != NULL && (uintptr_t)str >= KERNELBASE) || 10183 (str == NULL && act->dtad_kind == DTRACEACT_PRINTA)); 10184 10185 if (str != NULL) 10186 kmem_free(str, strlen(str) + 1); 10187 } 10188 10189 kmem_free(act, sizeof (dtrace_actdesc_t)); 10190 } 10191 10192 /* 10193 * DTrace ECB Functions 10194 */ 10195 static dtrace_ecb_t * 10196 dtrace_ecb_add(dtrace_state_t *state, dtrace_probe_t *probe) 10197 { 10198 dtrace_ecb_t *ecb; 10199 dtrace_epid_t epid; 10200 10201 ASSERT(MUTEX_HELD(&dtrace_lock)); 10202 10203 ecb = kmem_zalloc(sizeof (dtrace_ecb_t), KM_SLEEP); 10204 ecb->dte_predicate = NULL; 10205 ecb->dte_probe = probe; 10206 10207 /* 10208 * The default size is the size of the default action: recording 10209 * the header. 10210 */ 10211 ecb->dte_size = ecb->dte_needed = sizeof (dtrace_rechdr_t); 10212 ecb->dte_alignment = sizeof (dtrace_epid_t); 10213 10214 epid = state->dts_epid++; 10215 10216 if (epid - 1 >= state->dts_necbs) { 10217 dtrace_ecb_t **oecbs = state->dts_ecbs, **ecbs; 10218 int necbs = state->dts_necbs << 1; 10219 10220 ASSERT(epid == state->dts_necbs + 1); 10221 10222 if (necbs == 0) { 10223 ASSERT(oecbs == NULL); 10224 necbs = 1; 10225 } 10226 10227 ecbs = kmem_zalloc(necbs * sizeof (*ecbs), KM_SLEEP); 10228 10229 if (oecbs != NULL) 10230 bcopy(oecbs, ecbs, state->dts_necbs * sizeof (*ecbs)); 10231 10232 dtrace_membar_producer(); 10233 state->dts_ecbs = ecbs; 10234 10235 if (oecbs != NULL) { 10236 /* 10237 * If this state is active, we must dtrace_sync() 10238 * before we can free the old dts_ecbs array: we're 10239 * coming in hot, and there may be active ring 10240 * buffer processing (which indexes into the dts_ecbs 10241 * array) on another CPU. 10242 */ 10243 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) 10244 dtrace_sync(); 10245 10246 kmem_free(oecbs, state->dts_necbs * sizeof (*ecbs)); 10247 } 10248 10249 dtrace_membar_producer(); 10250 state->dts_necbs = necbs; 10251 } 10252 10253 ecb->dte_state = state; 10254 10255 ASSERT(state->dts_ecbs[epid - 1] == NULL); 10256 dtrace_membar_producer(); 10257 state->dts_ecbs[(ecb->dte_epid = epid) - 1] = ecb; 10258 10259 return (ecb); 10260 } 10261 10262 static int 10263 dtrace_ecb_enable(dtrace_ecb_t *ecb) 10264 { 10265 dtrace_probe_t *probe = ecb->dte_probe; 10266 10267 ASSERT(MUTEX_HELD(&cpu_lock)); 10268 ASSERT(MUTEX_HELD(&dtrace_lock)); 10269 ASSERT(ecb->dte_next == NULL); 10270 10271 if (probe == NULL) { 10272 /* 10273 * This is the NULL probe -- there's nothing to do. 10274 */ 10275 return (0); 10276 } 10277 10278 if (probe->dtpr_ecb == NULL) { 10279 dtrace_provider_t *prov = probe->dtpr_provider; 10280 10281 /* 10282 * We're the first ECB on this probe. 10283 */ 10284 probe->dtpr_ecb = probe->dtpr_ecb_last = ecb; 10285 10286 if (ecb->dte_predicate != NULL) 10287 probe->dtpr_predcache = ecb->dte_predicate->dtp_cacheid; 10288 10289 return (prov->dtpv_pops.dtps_enable(prov->dtpv_arg, 10290 probe->dtpr_id, probe->dtpr_arg)); 10291 } else { 10292 /* 10293 * This probe is already active. Swing the last pointer to 10294 * point to the new ECB, and issue a dtrace_sync() to assure 10295 * that all CPUs have seen the change. 10296 */ 10297 ASSERT(probe->dtpr_ecb_last != NULL); 10298 probe->dtpr_ecb_last->dte_next = ecb; 10299 probe->dtpr_ecb_last = ecb; 10300 probe->dtpr_predcache = 0; 10301 10302 dtrace_sync(); 10303 return (0); 10304 } 10305 } 10306 10307 static void 10308 dtrace_ecb_resize(dtrace_ecb_t *ecb) 10309 { 10310 dtrace_action_t *act; 10311 uint32_t curneeded = UINT32_MAX; 10312 uint32_t aggbase = UINT32_MAX; 10313 10314 /* 10315 * If we record anything, we always record the dtrace_rechdr_t. (And 10316 * we always record it first.) 10317 */ 10318 ecb->dte_size = sizeof (dtrace_rechdr_t); 10319 ecb->dte_alignment = sizeof (dtrace_epid_t); 10320 10321 for (act = ecb->dte_action; act != NULL; act = act->dta_next) { 10322 dtrace_recdesc_t *rec = &act->dta_rec; 10323 ASSERT(rec->dtrd_size > 0 || rec->dtrd_alignment == 1); 10324 10325 ecb->dte_alignment = MAX(ecb->dte_alignment, 10326 rec->dtrd_alignment); 10327 10328 if (DTRACEACT_ISAGG(act->dta_kind)) { 10329 dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act; 10330 10331 ASSERT(rec->dtrd_size != 0); 10332 ASSERT(agg->dtag_first != NULL); 10333 ASSERT(act->dta_prev->dta_intuple); 10334 ASSERT(aggbase != UINT32_MAX); 10335 ASSERT(curneeded != UINT32_MAX); 10336 10337 agg->dtag_base = aggbase; 10338 10339 curneeded = P2ROUNDUP(curneeded, rec->dtrd_alignment); 10340 rec->dtrd_offset = curneeded; 10341 curneeded += rec->dtrd_size; 10342 ecb->dte_needed = MAX(ecb->dte_needed, curneeded); 10343 10344 aggbase = UINT32_MAX; 10345 curneeded = UINT32_MAX; 10346 } else if (act->dta_intuple) { 10347 if (curneeded == UINT32_MAX) { 10348 /* 10349 * This is the first record in a tuple. Align 10350 * curneeded to be at offset 4 in an 8-byte 10351 * aligned block. 10352 */ 10353 ASSERT(act->dta_prev == NULL || 10354 !act->dta_prev->dta_intuple); 10355 ASSERT3U(aggbase, ==, UINT32_MAX); 10356 curneeded = P2PHASEUP(ecb->dte_size, 10357 sizeof (uint64_t), sizeof (dtrace_aggid_t)); 10358 10359 aggbase = curneeded - sizeof (dtrace_aggid_t); 10360 ASSERT(IS_P2ALIGNED(aggbase, 10361 sizeof (uint64_t))); 10362 } 10363 curneeded = P2ROUNDUP(curneeded, rec->dtrd_alignment); 10364 rec->dtrd_offset = curneeded; 10365 curneeded += rec->dtrd_size; 10366 } else { 10367 /* tuples must be followed by an aggregation */ 10368 ASSERT(act->dta_prev == NULL || 10369 !act->dta_prev->dta_intuple); 10370 10371 ecb->dte_size = P2ROUNDUP(ecb->dte_size, 10372 rec->dtrd_alignment); 10373 rec->dtrd_offset = ecb->dte_size; 10374 ecb->dte_size += rec->dtrd_size; 10375 ecb->dte_needed = MAX(ecb->dte_needed, ecb->dte_size); 10376 } 10377 } 10378 10379 if ((act = ecb->dte_action) != NULL && 10380 !(act->dta_kind == DTRACEACT_SPECULATE && act->dta_next == NULL) && 10381 ecb->dte_size == sizeof (dtrace_rechdr_t)) { 10382 /* 10383 * If the size is still sizeof (dtrace_rechdr_t), then all 10384 * actions store no data; set the size to 0. 10385 */ 10386 ecb->dte_size = 0; 10387 } 10388 10389 ecb->dte_size = P2ROUNDUP(ecb->dte_size, sizeof (dtrace_epid_t)); 10390 ecb->dte_needed = P2ROUNDUP(ecb->dte_needed, (sizeof (dtrace_epid_t))); 10391 ecb->dte_state->dts_needed = MAX(ecb->dte_state->dts_needed, 10392 ecb->dte_needed); 10393 } 10394 10395 static dtrace_action_t * 10396 dtrace_ecb_aggregation_create(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc) 10397 { 10398 dtrace_aggregation_t *agg; 10399 size_t size = sizeof (uint64_t); 10400 int ntuple = desc->dtad_ntuple; 10401 dtrace_action_t *act; 10402 dtrace_recdesc_t *frec; 10403 dtrace_aggid_t aggid; 10404 dtrace_state_t *state = ecb->dte_state; 10405 10406 agg = kmem_zalloc(sizeof (dtrace_aggregation_t), KM_SLEEP); 10407 agg->dtag_ecb = ecb; 10408 10409 ASSERT(DTRACEACT_ISAGG(desc->dtad_kind)); 10410 10411 switch (desc->dtad_kind) { 10412 case DTRACEAGG_MIN: 10413 agg->dtag_initial = INT64_MAX; 10414 agg->dtag_aggregate = dtrace_aggregate_min; 10415 break; 10416 10417 case DTRACEAGG_MAX: 10418 agg->dtag_initial = INT64_MIN; 10419 agg->dtag_aggregate = dtrace_aggregate_max; 10420 break; 10421 10422 case DTRACEAGG_COUNT: 10423 agg->dtag_aggregate = dtrace_aggregate_count; 10424 break; 10425 10426 case DTRACEAGG_QUANTIZE: 10427 agg->dtag_aggregate = dtrace_aggregate_quantize; 10428 size = (((sizeof (uint64_t) * NBBY) - 1) * 2 + 1) * 10429 sizeof (uint64_t); 10430 break; 10431 10432 case DTRACEAGG_LQUANTIZE: { 10433 uint16_t step = DTRACE_LQUANTIZE_STEP(desc->dtad_arg); 10434 uint16_t levels = DTRACE_LQUANTIZE_LEVELS(desc->dtad_arg); 10435 10436 agg->dtag_initial = desc->dtad_arg; 10437 agg->dtag_aggregate = dtrace_aggregate_lquantize; 10438 10439 if (step == 0 || levels == 0) 10440 goto err; 10441 10442 size = levels * sizeof (uint64_t) + 3 * sizeof (uint64_t); 10443 break; 10444 } 10445 10446 case DTRACEAGG_LLQUANTIZE: { 10447 uint16_t factor = DTRACE_LLQUANTIZE_FACTOR(desc->dtad_arg); 10448 uint16_t low = DTRACE_LLQUANTIZE_LOW(desc->dtad_arg); 10449 uint16_t high = DTRACE_LLQUANTIZE_HIGH(desc->dtad_arg); 10450 uint16_t nsteps = DTRACE_LLQUANTIZE_NSTEP(desc->dtad_arg); 10451 int64_t v; 10452 10453 agg->dtag_initial = desc->dtad_arg; 10454 agg->dtag_aggregate = dtrace_aggregate_llquantize; 10455 10456 if (factor < 2 || low >= high || nsteps < factor) 10457 goto err; 10458 10459 /* 10460 * Now check that the number of steps evenly divides a power 10461 * of the factor. (This assures both integer bucket size and 10462 * linearity within each magnitude.) 10463 */ 10464 for (v = factor; v < nsteps; v *= factor) 10465 continue; 10466 10467 if ((v % nsteps) || (nsteps % factor)) 10468 goto err; 10469 10470 size = (dtrace_aggregate_llquantize_bucket(factor, 10471 low, high, nsteps, INT64_MAX) + 2) * sizeof (uint64_t); 10472 break; 10473 } 10474 10475 case DTRACEAGG_AVG: 10476 agg->dtag_aggregate = dtrace_aggregate_avg; 10477 size = sizeof (uint64_t) * 2; 10478 break; 10479 10480 case DTRACEAGG_STDDEV: 10481 agg->dtag_aggregate = dtrace_aggregate_stddev; 10482 size = sizeof (uint64_t) * 4; 10483 break; 10484 10485 case DTRACEAGG_SUM: 10486 agg->dtag_aggregate = dtrace_aggregate_sum; 10487 break; 10488 10489 default: 10490 goto err; 10491 } 10492 10493 agg->dtag_action.dta_rec.dtrd_size = size; 10494 10495 if (ntuple == 0) 10496 goto err; 10497 10498 /* 10499 * We must make sure that we have enough actions for the n-tuple. 10500 */ 10501 for (act = ecb->dte_action_last; act != NULL; act = act->dta_prev) { 10502 if (DTRACEACT_ISAGG(act->dta_kind)) 10503 break; 10504 10505 if (--ntuple == 0) { 10506 /* 10507 * This is the action with which our n-tuple begins. 10508 */ 10509 agg->dtag_first = act; 10510 goto success; 10511 } 10512 } 10513 10514 /* 10515 * This n-tuple is short by ntuple elements. Return failure. 10516 */ 10517 ASSERT(ntuple != 0); 10518 err: 10519 kmem_free(agg, sizeof (dtrace_aggregation_t)); 10520 return (NULL); 10521 10522 success: 10523 /* 10524 * If the last action in the tuple has a size of zero, it's actually 10525 * an expression argument for the aggregating action. 10526 */ 10527 ASSERT(ecb->dte_action_last != NULL); 10528 act = ecb->dte_action_last; 10529 10530 if (act->dta_kind == DTRACEACT_DIFEXPR) { 10531 ASSERT(act->dta_difo != NULL); 10532 10533 if (act->dta_difo->dtdo_rtype.dtdt_size == 0) 10534 agg->dtag_hasarg = 1; 10535 } 10536 10537 /* 10538 * We need to allocate an id for this aggregation. 10539 */ 10540 aggid = (dtrace_aggid_t)(uintptr_t)vmem_alloc(state->dts_aggid_arena, 1, 10541 VM_BESTFIT | VM_SLEEP); 10542 10543 if (aggid - 1 >= state->dts_naggregations) { 10544 dtrace_aggregation_t **oaggs = state->dts_aggregations; 10545 dtrace_aggregation_t **aggs; 10546 int naggs = state->dts_naggregations << 1; 10547 int onaggs = state->dts_naggregations; 10548 10549 ASSERT(aggid == state->dts_naggregations + 1); 10550 10551 if (naggs == 0) { 10552 ASSERT(oaggs == NULL); 10553 naggs = 1; 10554 } 10555 10556 aggs = kmem_zalloc(naggs * sizeof (*aggs), KM_SLEEP); 10557 10558 if (oaggs != NULL) { 10559 bcopy(oaggs, aggs, onaggs * sizeof (*aggs)); 10560 kmem_free(oaggs, onaggs * sizeof (*aggs)); 10561 } 10562 10563 state->dts_aggregations = aggs; 10564 state->dts_naggregations = naggs; 10565 } 10566 10567 ASSERT(state->dts_aggregations[aggid - 1] == NULL); 10568 state->dts_aggregations[(agg->dtag_id = aggid) - 1] = agg; 10569 10570 frec = &agg->dtag_first->dta_rec; 10571 if (frec->dtrd_alignment < sizeof (dtrace_aggid_t)) 10572 frec->dtrd_alignment = sizeof (dtrace_aggid_t); 10573 10574 for (act = agg->dtag_first; act != NULL; act = act->dta_next) { 10575 ASSERT(!act->dta_intuple); 10576 act->dta_intuple = 1; 10577 } 10578 10579 return (&agg->dtag_action); 10580 } 10581 10582 static void 10583 dtrace_ecb_aggregation_destroy(dtrace_ecb_t *ecb, dtrace_action_t *act) 10584 { 10585 dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act; 10586 dtrace_state_t *state = ecb->dte_state; 10587 dtrace_aggid_t aggid = agg->dtag_id; 10588 10589 ASSERT(DTRACEACT_ISAGG(act->dta_kind)); 10590 vmem_free(state->dts_aggid_arena, (void *)(uintptr_t)aggid, 1); 10591 10592 ASSERT(state->dts_aggregations[aggid - 1] == agg); 10593 state->dts_aggregations[aggid - 1] = NULL; 10594 10595 kmem_free(agg, sizeof (dtrace_aggregation_t)); 10596 } 10597 10598 static int 10599 dtrace_ecb_action_add(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc) 10600 { 10601 dtrace_action_t *action, *last; 10602 dtrace_difo_t *dp = desc->dtad_difo; 10603 uint32_t size = 0, align = sizeof (uint8_t), mask; 10604 uint16_t format = 0; 10605 dtrace_recdesc_t *rec; 10606 dtrace_state_t *state = ecb->dte_state; 10607 dtrace_optval_t *opt = state->dts_options, nframes, strsize; 10608 uint64_t arg = desc->dtad_arg; 10609 10610 ASSERT(MUTEX_HELD(&dtrace_lock)); 10611 ASSERT(ecb->dte_action == NULL || ecb->dte_action->dta_refcnt == 1); 10612 10613 if (DTRACEACT_ISAGG(desc->dtad_kind)) { 10614 /* 10615 * If this is an aggregating action, there must be neither 10616 * a speculate nor a commit on the action chain. 10617 */ 10618 dtrace_action_t *act; 10619 10620 for (act = ecb->dte_action; act != NULL; act = act->dta_next) { 10621 if (act->dta_kind == DTRACEACT_COMMIT) 10622 return (EINVAL); 10623 10624 if (act->dta_kind == DTRACEACT_SPECULATE) 10625 return (EINVAL); 10626 } 10627 10628 action = dtrace_ecb_aggregation_create(ecb, desc); 10629 10630 if (action == NULL) 10631 return (EINVAL); 10632 } else { 10633 if (DTRACEACT_ISDESTRUCTIVE(desc->dtad_kind) || 10634 (desc->dtad_kind == DTRACEACT_DIFEXPR && 10635 dp != NULL && dp->dtdo_destructive)) { 10636 state->dts_destructive = 1; 10637 } 10638 10639 switch (desc->dtad_kind) { 10640 case DTRACEACT_PRINTF: 10641 case DTRACEACT_PRINTA: 10642 case DTRACEACT_SYSTEM: 10643 case DTRACEACT_FREOPEN: 10644 case DTRACEACT_DIFEXPR: 10645 /* 10646 * We know that our arg is a string -- turn it into a 10647 * format. 10648 */ 10649 if (arg == NULL) { 10650 ASSERT(desc->dtad_kind == DTRACEACT_PRINTA || 10651 desc->dtad_kind == DTRACEACT_DIFEXPR); 10652 format = 0; 10653 } else { 10654 ASSERT(arg != NULL); 10655 ASSERT(arg > KERNELBASE); 10656 format = dtrace_format_add(state, 10657 (char *)(uintptr_t)arg); 10658 } 10659 10660 /*FALLTHROUGH*/ 10661 case DTRACEACT_LIBACT: 10662 case DTRACEACT_TRACEMEM: 10663 case DTRACEACT_TRACEMEM_DYNSIZE: 10664 if (dp == NULL) 10665 return (EINVAL); 10666 10667 if ((size = dp->dtdo_rtype.dtdt_size) != 0) 10668 break; 10669 10670 if (dp->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) { 10671 if (!(dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) 10672 return (EINVAL); 10673 10674 size = opt[DTRACEOPT_STRSIZE]; 10675 } 10676 10677 break; 10678 10679 case DTRACEACT_STACK: 10680 if ((nframes = arg) == 0) { 10681 nframes = opt[DTRACEOPT_STACKFRAMES]; 10682 ASSERT(nframes > 0); 10683 arg = nframes; 10684 } 10685 10686 size = nframes * sizeof (pc_t); 10687 break; 10688 10689 case DTRACEACT_JSTACK: 10690 if ((strsize = DTRACE_USTACK_STRSIZE(arg)) == 0) 10691 strsize = opt[DTRACEOPT_JSTACKSTRSIZE]; 10692 10693 if ((nframes = DTRACE_USTACK_NFRAMES(arg)) == 0) 10694 nframes = opt[DTRACEOPT_JSTACKFRAMES]; 10695 10696 arg = DTRACE_USTACK_ARG(nframes, strsize); 10697 10698 /*FALLTHROUGH*/ 10699 case DTRACEACT_USTACK: 10700 if (desc->dtad_kind != DTRACEACT_JSTACK && 10701 (nframes = DTRACE_USTACK_NFRAMES(arg)) == 0) { 10702 strsize = DTRACE_USTACK_STRSIZE(arg); 10703 nframes = opt[DTRACEOPT_USTACKFRAMES]; 10704 ASSERT(nframes > 0); 10705 arg = DTRACE_USTACK_ARG(nframes, strsize); 10706 } 10707 10708 /* 10709 * Save a slot for the pid. 10710 */ 10711 size = (nframes + 1) * sizeof (uint64_t); 10712 size += DTRACE_USTACK_STRSIZE(arg); 10713 size = P2ROUNDUP(size, (uint32_t)(sizeof (uintptr_t))); 10714 10715 break; 10716 10717 case DTRACEACT_SYM: 10718 case DTRACEACT_MOD: 10719 if (dp == NULL || ((size = dp->dtdo_rtype.dtdt_size) != 10720 sizeof (uint64_t)) || 10721 (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) 10722 return (EINVAL); 10723 break; 10724 10725 case DTRACEACT_USYM: 10726 case DTRACEACT_UMOD: 10727 case DTRACEACT_UADDR: 10728 if (dp == NULL || 10729 (dp->dtdo_rtype.dtdt_size != sizeof (uint64_t)) || 10730 (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) 10731 return (EINVAL); 10732 10733 /* 10734 * We have a slot for the pid, plus a slot for the 10735 * argument. To keep things simple (aligned with 10736 * bitness-neutral sizing), we store each as a 64-bit 10737 * quantity. 10738 */ 10739 size = 2 * sizeof (uint64_t); 10740 break; 10741 10742 case DTRACEACT_STOP: 10743 case DTRACEACT_BREAKPOINT: 10744 case DTRACEACT_PANIC: 10745 break; 10746 10747 case DTRACEACT_CHILL: 10748 case DTRACEACT_DISCARD: 10749 case DTRACEACT_RAISE: 10750 if (dp == NULL) 10751 return (EINVAL); 10752 break; 10753 10754 case DTRACEACT_EXIT: 10755 if (dp == NULL || 10756 (size = dp->dtdo_rtype.dtdt_size) != sizeof (int) || 10757 (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) 10758 return (EINVAL); 10759 break; 10760 10761 case DTRACEACT_SPECULATE: 10762 if (ecb->dte_size > sizeof (dtrace_rechdr_t)) 10763 return (EINVAL); 10764 10765 if (dp == NULL) 10766 return (EINVAL); 10767 10768 state->dts_speculates = 1; 10769 break; 10770 10771 case DTRACEACT_COMMIT: { 10772 dtrace_action_t *act = ecb->dte_action; 10773 10774 for (; act != NULL; act = act->dta_next) { 10775 if (act->dta_kind == DTRACEACT_COMMIT) 10776 return (EINVAL); 10777 } 10778 10779 if (dp == NULL) 10780 return (EINVAL); 10781 break; 10782 } 10783 10784 default: 10785 return (EINVAL); 10786 } 10787 10788 if (size != 0 || desc->dtad_kind == DTRACEACT_SPECULATE) { 10789 /* 10790 * If this is a data-storing action or a speculate, 10791 * we must be sure that there isn't a commit on the 10792 * action chain. 10793 */ 10794 dtrace_action_t *act = ecb->dte_action; 10795 10796 for (; act != NULL; act = act->dta_next) { 10797 if (act->dta_kind == DTRACEACT_COMMIT) 10798 return (EINVAL); 10799 } 10800 } 10801 10802 action = kmem_zalloc(sizeof (dtrace_action_t), KM_SLEEP); 10803 action->dta_rec.dtrd_size = size; 10804 } 10805 10806 action->dta_refcnt = 1; 10807 rec = &action->dta_rec; 10808 size = rec->dtrd_size; 10809 10810 for (mask = sizeof (uint64_t) - 1; size != 0 && mask > 0; mask >>= 1) { 10811 if (!(size & mask)) { 10812 align = mask + 1; 10813 break; 10814 } 10815 } 10816 10817 action->dta_kind = desc->dtad_kind; 10818 10819 if ((action->dta_difo = dp) != NULL) 10820 dtrace_difo_hold(dp); 10821 10822 rec->dtrd_action = action->dta_kind; 10823 rec->dtrd_arg = arg; 10824 rec->dtrd_uarg = desc->dtad_uarg; 10825 rec->dtrd_alignment = (uint16_t)align; 10826 rec->dtrd_format = format; 10827 10828 if ((last = ecb->dte_action_last) != NULL) { 10829 ASSERT(ecb->dte_action != NULL); 10830 action->dta_prev = last; 10831 last->dta_next = action; 10832 } else { 10833 ASSERT(ecb->dte_action == NULL); 10834 ecb->dte_action = action; 10835 } 10836 10837 ecb->dte_action_last = action; 10838 10839 return (0); 10840 } 10841 10842 static void 10843 dtrace_ecb_action_remove(dtrace_ecb_t *ecb) 10844 { 10845 dtrace_action_t *act = ecb->dte_action, *next; 10846 dtrace_vstate_t *vstate = &ecb->dte_state->dts_vstate; 10847 dtrace_difo_t *dp; 10848 uint16_t format; 10849 10850 if (act != NULL && act->dta_refcnt > 1) { 10851 ASSERT(act->dta_next == NULL || act->dta_next->dta_refcnt == 1); 10852 act->dta_refcnt--; 10853 } else { 10854 for (; act != NULL; act = next) { 10855 next = act->dta_next; 10856 ASSERT(next != NULL || act == ecb->dte_action_last); 10857 ASSERT(act->dta_refcnt == 1); 10858 10859 if ((format = act->dta_rec.dtrd_format) != 0) 10860 dtrace_format_remove(ecb->dte_state, format); 10861 10862 if ((dp = act->dta_difo) != NULL) 10863 dtrace_difo_release(dp, vstate); 10864 10865 if (DTRACEACT_ISAGG(act->dta_kind)) { 10866 dtrace_ecb_aggregation_destroy(ecb, act); 10867 } else { 10868 kmem_free(act, sizeof (dtrace_action_t)); 10869 } 10870 } 10871 } 10872 10873 ecb->dte_action = NULL; 10874 ecb->dte_action_last = NULL; 10875 ecb->dte_size = 0; 10876 } 10877 10878 static void 10879 dtrace_ecb_disable(dtrace_ecb_t *ecb) 10880 { 10881 /* 10882 * We disable the ECB by removing it from its probe. 10883 */ 10884 dtrace_ecb_t *pecb, *prev = NULL; 10885 dtrace_probe_t *probe = ecb->dte_probe; 10886 10887 ASSERT(MUTEX_HELD(&dtrace_lock)); 10888 10889 if (probe == NULL) { 10890 /* 10891 * This is the NULL probe; there is nothing to disable. 10892 */ 10893 return; 10894 } 10895 10896 for (pecb = probe->dtpr_ecb; pecb != NULL; pecb = pecb->dte_next) { 10897 if (pecb == ecb) 10898 break; 10899 prev = pecb; 10900 } 10901 10902 ASSERT(pecb != NULL); 10903 10904 if (prev == NULL) { 10905 probe->dtpr_ecb = ecb->dte_next; 10906 } else { 10907 prev->dte_next = ecb->dte_next; 10908 } 10909 10910 if (ecb == probe->dtpr_ecb_last) { 10911 ASSERT(ecb->dte_next == NULL); 10912 probe->dtpr_ecb_last = prev; 10913 } 10914 10915 /* 10916 * The ECB has been disconnected from the probe; now sync to assure 10917 * that all CPUs have seen the change before returning. 10918 */ 10919 dtrace_sync(); 10920 10921 if (probe->dtpr_ecb == NULL) { 10922 /* 10923 * That was the last ECB on the probe; clear the predicate 10924 * cache ID for the probe, disable it and sync one more time 10925 * to assure that we'll never hit it again. 10926 */ 10927 dtrace_provider_t *prov = probe->dtpr_provider; 10928 10929 ASSERT(ecb->dte_next == NULL); 10930 ASSERT(probe->dtpr_ecb_last == NULL); 10931 probe->dtpr_predcache = DTRACE_CACHEIDNONE; 10932 prov->dtpv_pops.dtps_disable(prov->dtpv_arg, 10933 probe->dtpr_id, probe->dtpr_arg); 10934 dtrace_sync(); 10935 } else { 10936 /* 10937 * There is at least one ECB remaining on the probe. If there 10938 * is _exactly_ one, set the probe's predicate cache ID to be 10939 * the predicate cache ID of the remaining ECB. 10940 */ 10941 ASSERT(probe->dtpr_ecb_last != NULL); 10942 ASSERT(probe->dtpr_predcache == DTRACE_CACHEIDNONE); 10943 10944 if (probe->dtpr_ecb == probe->dtpr_ecb_last) { 10945 dtrace_predicate_t *p = probe->dtpr_ecb->dte_predicate; 10946 10947 ASSERT(probe->dtpr_ecb->dte_next == NULL); 10948 10949 if (p != NULL) 10950 probe->dtpr_predcache = p->dtp_cacheid; 10951 } 10952 10953 ecb->dte_next = NULL; 10954 } 10955 } 10956 10957 static void 10958 dtrace_ecb_destroy(dtrace_ecb_t *ecb) 10959 { 10960 dtrace_state_t *state = ecb->dte_state; 10961 dtrace_vstate_t *vstate = &state->dts_vstate; 10962 dtrace_predicate_t *pred; 10963 dtrace_epid_t epid = ecb->dte_epid; 10964 10965 ASSERT(MUTEX_HELD(&dtrace_lock)); 10966 ASSERT(ecb->dte_next == NULL); 10967 ASSERT(ecb->dte_probe == NULL || ecb->dte_probe->dtpr_ecb != ecb); 10968 10969 if ((pred = ecb->dte_predicate) != NULL) 10970 dtrace_predicate_release(pred, vstate); 10971 10972 dtrace_ecb_action_remove(ecb); 10973 10974 ASSERT(state->dts_ecbs[epid - 1] == ecb); 10975 state->dts_ecbs[epid - 1] = NULL; 10976 10977 kmem_free(ecb, sizeof (dtrace_ecb_t)); 10978 } 10979 10980 static dtrace_ecb_t * 10981 dtrace_ecb_create(dtrace_state_t *state, dtrace_probe_t *probe, 10982 dtrace_enabling_t *enab) 10983 { 10984 dtrace_ecb_t *ecb; 10985 dtrace_predicate_t *pred; 10986 dtrace_actdesc_t *act; 10987 dtrace_provider_t *prov; 10988 dtrace_ecbdesc_t *desc = enab->dten_current; 10989 10990 ASSERT(MUTEX_HELD(&dtrace_lock)); 10991 ASSERT(state != NULL); 10992 10993 ecb = dtrace_ecb_add(state, probe); 10994 ecb->dte_uarg = desc->dted_uarg; 10995 10996 if ((pred = desc->dted_pred.dtpdd_predicate) != NULL) { 10997 dtrace_predicate_hold(pred); 10998 ecb->dte_predicate = pred; 10999 } 11000 11001 if (probe != NULL) { 11002 /* 11003 * If the provider shows more leg than the consumer is old 11004 * enough to see, we need to enable the appropriate implicit 11005 * predicate bits to prevent the ecb from activating at 11006 * revealing times. 11007 * 11008 * Providers specifying DTRACE_PRIV_USER at register time 11009 * are stating that they need the /proc-style privilege 11010 * model to be enforced, and this is what DTRACE_COND_OWNER 11011 * and DTRACE_COND_ZONEOWNER will then do at probe time. 11012 */ 11013 prov = probe->dtpr_provider; 11014 if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLPROC) && 11015 (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER)) 11016 ecb->dte_cond |= DTRACE_COND_OWNER; 11017 11018 if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLZONE) && 11019 (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER)) 11020 ecb->dte_cond |= DTRACE_COND_ZONEOWNER; 11021 11022 /* 11023 * If the provider shows us kernel innards and the user 11024 * is lacking sufficient privilege, enable the 11025 * DTRACE_COND_USERMODE implicit predicate. 11026 */ 11027 if (!(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) && 11028 (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_KERNEL)) 11029 ecb->dte_cond |= DTRACE_COND_USERMODE; 11030 } 11031 11032 if (dtrace_ecb_create_cache != NULL) { 11033 /* 11034 * If we have a cached ecb, we'll use its action list instead 11035 * of creating our own (saving both time and space). 11036 */ 11037 dtrace_ecb_t *cached = dtrace_ecb_create_cache; 11038 dtrace_action_t *act = cached->dte_action; 11039 11040 if (act != NULL) { 11041 ASSERT(act->dta_refcnt > 0); 11042 act->dta_refcnt++; 11043 ecb->dte_action = act; 11044 ecb->dte_action_last = cached->dte_action_last; 11045 ecb->dte_needed = cached->dte_needed; 11046 ecb->dte_size = cached->dte_size; 11047 ecb->dte_alignment = cached->dte_alignment; 11048 } 11049 11050 return (ecb); 11051 } 11052 11053 for (act = desc->dted_action; act != NULL; act = act->dtad_next) { 11054 if ((enab->dten_error = dtrace_ecb_action_add(ecb, act)) != 0) { 11055 dtrace_ecb_destroy(ecb); 11056 return (NULL); 11057 } 11058 } 11059 11060 dtrace_ecb_resize(ecb); 11061 11062 return (dtrace_ecb_create_cache = ecb); 11063 } 11064 11065 static int 11066 dtrace_ecb_create_enable(dtrace_probe_t *probe, void *arg) 11067 { 11068 dtrace_ecb_t *ecb; 11069 dtrace_enabling_t *enab = arg; 11070 dtrace_state_t *state = enab->dten_vstate->dtvs_state; 11071 11072 ASSERT(state != NULL); 11073 11074 if (probe != NULL && probe->dtpr_gen < enab->dten_probegen) { 11075 /* 11076 * This probe was created in a generation for which this 11077 * enabling has previously created ECBs; we don't want to 11078 * enable it again, so just kick out. 11079 */ 11080 return (DTRACE_MATCH_NEXT); 11081 } 11082 11083 if ((ecb = dtrace_ecb_create(state, probe, enab)) == NULL) 11084 return (DTRACE_MATCH_DONE); 11085 11086 if (dtrace_ecb_enable(ecb) < 0) 11087 return (DTRACE_MATCH_FAIL); 11088 11089 return (DTRACE_MATCH_NEXT); 11090 } 11091 11092 static dtrace_ecb_t * 11093 dtrace_epid2ecb(dtrace_state_t *state, dtrace_epid_t id) 11094 { 11095 dtrace_ecb_t *ecb; 11096 11097 ASSERT(MUTEX_HELD(&dtrace_lock)); 11098 11099 if (id == 0 || id > state->dts_necbs) 11100 return (NULL); 11101 11102 ASSERT(state->dts_necbs > 0 && state->dts_ecbs != NULL); 11103 ASSERT((ecb = state->dts_ecbs[id - 1]) == NULL || ecb->dte_epid == id); 11104 11105 return (state->dts_ecbs[id - 1]); 11106 } 11107 11108 static dtrace_aggregation_t * 11109 dtrace_aggid2agg(dtrace_state_t *state, dtrace_aggid_t id) 11110 { 11111 dtrace_aggregation_t *agg; 11112 11113 ASSERT(MUTEX_HELD(&dtrace_lock)); 11114 11115 if (id == 0 || id > state->dts_naggregations) 11116 return (NULL); 11117 11118 ASSERT(state->dts_naggregations > 0 && state->dts_aggregations != NULL); 11119 ASSERT((agg = state->dts_aggregations[id - 1]) == NULL || 11120 agg->dtag_id == id); 11121 11122 return (state->dts_aggregations[id - 1]); 11123 } 11124 11125 /* 11126 * DTrace Buffer Functions 11127 * 11128 * The following functions manipulate DTrace buffers. Most of these functions 11129 * are called in the context of establishing or processing consumer state; 11130 * exceptions are explicitly noted. 11131 */ 11132 11133 /* 11134 * Note: called from cross call context. This function switches the two 11135 * buffers on a given CPU. The atomicity of this operation is assured by 11136 * disabling interrupts while the actual switch takes place; the disabling of 11137 * interrupts serializes the execution with any execution of dtrace_probe() on 11138 * the same CPU. 11139 */ 11140 static void 11141 dtrace_buffer_switch(dtrace_buffer_t *buf) 11142 { 11143 caddr_t tomax = buf->dtb_tomax; 11144 caddr_t xamot = buf->dtb_xamot; 11145 dtrace_icookie_t cookie; 11146 hrtime_t now; 11147 11148 ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH)); 11149 ASSERT(!(buf->dtb_flags & DTRACEBUF_RING)); 11150 11151 cookie = dtrace_interrupt_disable(); 11152 now = dtrace_gethrtime(); 11153 buf->dtb_tomax = xamot; 11154 buf->dtb_xamot = tomax; 11155 buf->dtb_xamot_drops = buf->dtb_drops; 11156 buf->dtb_xamot_offset = buf->dtb_offset; 11157 buf->dtb_xamot_errors = buf->dtb_errors; 11158 buf->dtb_xamot_flags = buf->dtb_flags; 11159 buf->dtb_offset = 0; 11160 buf->dtb_drops = 0; 11161 buf->dtb_errors = 0; 11162 buf->dtb_flags &= ~(DTRACEBUF_ERROR | DTRACEBUF_DROPPED); 11163 buf->dtb_interval = now - buf->dtb_switched; 11164 buf->dtb_switched = now; 11165 dtrace_interrupt_enable(cookie); 11166 } 11167 11168 /* 11169 * Note: called from cross call context. This function activates a buffer 11170 * on a CPU. As with dtrace_buffer_switch(), the atomicity of the operation 11171 * is guaranteed by the disabling of interrupts. 11172 */ 11173 static void 11174 dtrace_buffer_activate(dtrace_state_t *state) 11175 { 11176 dtrace_buffer_t *buf; 11177 dtrace_icookie_t cookie = dtrace_interrupt_disable(); 11178 11179 buf = &state->dts_buffer[CPU->cpu_id]; 11180 11181 if (buf->dtb_tomax != NULL) { 11182 /* 11183 * We might like to assert that the buffer is marked inactive, 11184 * but this isn't necessarily true: the buffer for the CPU 11185 * that processes the BEGIN probe has its buffer activated 11186 * manually. In this case, we take the (harmless) action 11187 * re-clearing the bit INACTIVE bit. 11188 */ 11189 buf->dtb_flags &= ~DTRACEBUF_INACTIVE; 11190 } 11191 11192 dtrace_interrupt_enable(cookie); 11193 } 11194 11195 static int 11196 dtrace_buffer_alloc(dtrace_buffer_t *bufs, size_t size, int flags, 11197 processorid_t cpu, int *factor) 11198 { 11199 cpu_t *cp; 11200 dtrace_buffer_t *buf; 11201 int allocated = 0, desired = 0; 11202 11203 ASSERT(MUTEX_HELD(&cpu_lock)); 11204 ASSERT(MUTEX_HELD(&dtrace_lock)); 11205 11206 *factor = 1; 11207 11208 if (size > dtrace_nonroot_maxsize && 11209 !PRIV_POLICY_CHOICE(CRED(), PRIV_ALL, B_FALSE)) 11210 return (EFBIG); 11211 11212 cp = cpu_list; 11213 11214 do { 11215 if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id) 11216 continue; 11217 11218 buf = &bufs[cp->cpu_id]; 11219 11220 /* 11221 * If there is already a buffer allocated for this CPU, it 11222 * is only possible that this is a DR event. In this case, 11223 * the buffer size must match our specified size. 11224 */ 11225 if (buf->dtb_tomax != NULL) { 11226 ASSERT(buf->dtb_size == size); 11227 continue; 11228 } 11229 11230 ASSERT(buf->dtb_xamot == NULL); 11231 11232 if ((buf->dtb_tomax = kmem_zalloc(size, 11233 KM_NOSLEEP | KM_NORMALPRI)) == NULL) 11234 goto err; 11235 11236 buf->dtb_size = size; 11237 buf->dtb_flags = flags; 11238 buf->dtb_offset = 0; 11239 buf->dtb_drops = 0; 11240 11241 if (flags & DTRACEBUF_NOSWITCH) 11242 continue; 11243 11244 if ((buf->dtb_xamot = kmem_zalloc(size, 11245 KM_NOSLEEP | KM_NORMALPRI)) == NULL) 11246 goto err; 11247 } while ((cp = cp->cpu_next) != cpu_list); 11248 11249 return (0); 11250 11251 err: 11252 cp = cpu_list; 11253 11254 do { 11255 if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id) 11256 continue; 11257 11258 buf = &bufs[cp->cpu_id]; 11259 desired += 2; 11260 11261 if (buf->dtb_xamot != NULL) { 11262 ASSERT(buf->dtb_tomax != NULL); 11263 ASSERT(buf->dtb_size == size); 11264 kmem_free(buf->dtb_xamot, size); 11265 allocated++; 11266 } 11267 11268 if (buf->dtb_tomax != NULL) { 11269 ASSERT(buf->dtb_size == size); 11270 kmem_free(buf->dtb_tomax, size); 11271 allocated++; 11272 } 11273 11274 buf->dtb_tomax = NULL; 11275 buf->dtb_xamot = NULL; 11276 buf->dtb_size = 0; 11277 } while ((cp = cp->cpu_next) != cpu_list); 11278 11279 *factor = desired / (allocated > 0 ? allocated : 1); 11280 11281 return (ENOMEM); 11282 } 11283 11284 /* 11285 * Note: called from probe context. This function just increments the drop 11286 * count on a buffer. It has been made a function to allow for the 11287 * possibility of understanding the source of mysterious drop counts. (A 11288 * problem for which one may be particularly disappointed that DTrace cannot 11289 * be used to understand DTrace.) 11290 */ 11291 static void 11292 dtrace_buffer_drop(dtrace_buffer_t *buf) 11293 { 11294 buf->dtb_drops++; 11295 } 11296 11297 /* 11298 * Note: called from probe context. This function is called to reserve space 11299 * in a buffer. If mstate is non-NULL, sets the scratch base and size in the 11300 * mstate. Returns the new offset in the buffer, or a negative value if an 11301 * error has occurred. 11302 */ 11303 static intptr_t 11304 dtrace_buffer_reserve(dtrace_buffer_t *buf, size_t needed, size_t align, 11305 dtrace_state_t *state, dtrace_mstate_t *mstate) 11306 { 11307 intptr_t offs = buf->dtb_offset, soffs; 11308 intptr_t woffs; 11309 caddr_t tomax; 11310 size_t total; 11311 11312 if (buf->dtb_flags & DTRACEBUF_INACTIVE) 11313 return (-1); 11314 11315 if ((tomax = buf->dtb_tomax) == NULL) { 11316 dtrace_buffer_drop(buf); 11317 return (-1); 11318 } 11319 11320 if (!(buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL))) { 11321 while (offs & (align - 1)) { 11322 /* 11323 * Assert that our alignment is off by a number which 11324 * is itself sizeof (uint32_t) aligned. 11325 */ 11326 ASSERT(!((align - (offs & (align - 1))) & 11327 (sizeof (uint32_t) - 1))); 11328 DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE); 11329 offs += sizeof (uint32_t); 11330 } 11331 11332 if ((soffs = offs + needed) > buf->dtb_size) { 11333 dtrace_buffer_drop(buf); 11334 return (-1); 11335 } 11336 11337 if (mstate == NULL) 11338 return (offs); 11339 11340 mstate->dtms_scratch_base = (uintptr_t)tomax + soffs; 11341 mstate->dtms_scratch_size = buf->dtb_size - soffs; 11342 mstate->dtms_scratch_ptr = mstate->dtms_scratch_base; 11343 11344 return (offs); 11345 } 11346 11347 if (buf->dtb_flags & DTRACEBUF_FILL) { 11348 if (state->dts_activity != DTRACE_ACTIVITY_COOLDOWN && 11349 (buf->dtb_flags & DTRACEBUF_FULL)) 11350 return (-1); 11351 goto out; 11352 } 11353 11354 total = needed + (offs & (align - 1)); 11355 11356 /* 11357 * For a ring buffer, life is quite a bit more complicated. Before 11358 * we can store any padding, we need to adjust our wrapping offset. 11359 * (If we've never before wrapped or we're not about to, no adjustment 11360 * is required.) 11361 */ 11362 if ((buf->dtb_flags & DTRACEBUF_WRAPPED) || 11363 offs + total > buf->dtb_size) { 11364 woffs = buf->dtb_xamot_offset; 11365 11366 if (offs + total > buf->dtb_size) { 11367 /* 11368 * We can't fit in the end of the buffer. First, a 11369 * sanity check that we can fit in the buffer at all. 11370 */ 11371 if (total > buf->dtb_size) { 11372 dtrace_buffer_drop(buf); 11373 return (-1); 11374 } 11375 11376 /* 11377 * We're going to be storing at the top of the buffer, 11378 * so now we need to deal with the wrapped offset. We 11379 * only reset our wrapped offset to 0 if it is 11380 * currently greater than the current offset. If it 11381 * is less than the current offset, it is because a 11382 * previous allocation induced a wrap -- but the 11383 * allocation didn't subsequently take the space due 11384 * to an error or false predicate evaluation. In this 11385 * case, we'll just leave the wrapped offset alone: if 11386 * the wrapped offset hasn't been advanced far enough 11387 * for this allocation, it will be adjusted in the 11388 * lower loop. 11389 */ 11390 if (buf->dtb_flags & DTRACEBUF_WRAPPED) { 11391 if (woffs >= offs) 11392 woffs = 0; 11393 } else { 11394 woffs = 0; 11395 } 11396 11397 /* 11398 * Now we know that we're going to be storing to the 11399 * top of the buffer and that there is room for us 11400 * there. We need to clear the buffer from the current 11401 * offset to the end (there may be old gunk there). 11402 */ 11403 while (offs < buf->dtb_size) 11404 tomax[offs++] = 0; 11405 11406 /* 11407 * We need to set our offset to zero. And because we 11408 * are wrapping, we need to set the bit indicating as 11409 * much. We can also adjust our needed space back 11410 * down to the space required by the ECB -- we know 11411 * that the top of the buffer is aligned. 11412 */ 11413 offs = 0; 11414 total = needed; 11415 buf->dtb_flags |= DTRACEBUF_WRAPPED; 11416 } else { 11417 /* 11418 * There is room for us in the buffer, so we simply 11419 * need to check the wrapped offset. 11420 */ 11421 if (woffs < offs) { 11422 /* 11423 * The wrapped offset is less than the offset. 11424 * This can happen if we allocated buffer space 11425 * that induced a wrap, but then we didn't 11426 * subsequently take the space due to an error 11427 * or false predicate evaluation. This is 11428 * okay; we know that _this_ allocation isn't 11429 * going to induce a wrap. We still can't 11430 * reset the wrapped offset to be zero, 11431 * however: the space may have been trashed in 11432 * the previous failed probe attempt. But at 11433 * least the wrapped offset doesn't need to 11434 * be adjusted at all... 11435 */ 11436 goto out; 11437 } 11438 } 11439 11440 while (offs + total > woffs) { 11441 dtrace_epid_t epid = *(uint32_t *)(tomax + woffs); 11442 size_t size; 11443 11444 if (epid == DTRACE_EPIDNONE) { 11445 size = sizeof (uint32_t); 11446 } else { 11447 ASSERT3U(epid, <=, state->dts_necbs); 11448 ASSERT(state->dts_ecbs[epid - 1] != NULL); 11449 11450 size = state->dts_ecbs[epid - 1]->dte_size; 11451 } 11452 11453 ASSERT(woffs + size <= buf->dtb_size); 11454 ASSERT(size != 0); 11455 11456 if (woffs + size == buf->dtb_size) { 11457 /* 11458 * We've reached the end of the buffer; we want 11459 * to set the wrapped offset to 0 and break 11460 * out. However, if the offs is 0, then we're 11461 * in a strange edge-condition: the amount of 11462 * space that we want to reserve plus the size 11463 * of the record that we're overwriting is 11464 * greater than the size of the buffer. This 11465 * is problematic because if we reserve the 11466 * space but subsequently don't consume it (due 11467 * to a failed predicate or error) the wrapped 11468 * offset will be 0 -- yet the EPID at offset 0 11469 * will not be committed. This situation is 11470 * relatively easy to deal with: if we're in 11471 * this case, the buffer is indistinguishable 11472 * from one that hasn't wrapped; we need only 11473 * finish the job by clearing the wrapped bit, 11474 * explicitly setting the offset to be 0, and 11475 * zero'ing out the old data in the buffer. 11476 */ 11477 if (offs == 0) { 11478 buf->dtb_flags &= ~DTRACEBUF_WRAPPED; 11479 buf->dtb_offset = 0; 11480 woffs = total; 11481 11482 while (woffs < buf->dtb_size) 11483 tomax[woffs++] = 0; 11484 } 11485 11486 woffs = 0; 11487 break; 11488 } 11489 11490 woffs += size; 11491 } 11492 11493 /* 11494 * We have a wrapped offset. It may be that the wrapped offset 11495 * has become zero -- that's okay. 11496 */ 11497 buf->dtb_xamot_offset = woffs; 11498 } 11499 11500 out: 11501 /* 11502 * Now we can plow the buffer with any necessary padding. 11503 */ 11504 while (offs & (align - 1)) { 11505 /* 11506 * Assert that our alignment is off by a number which 11507 * is itself sizeof (uint32_t) aligned. 11508 */ 11509 ASSERT(!((align - (offs & (align - 1))) & 11510 (sizeof (uint32_t) - 1))); 11511 DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE); 11512 offs += sizeof (uint32_t); 11513 } 11514 11515 if (buf->dtb_flags & DTRACEBUF_FILL) { 11516 if (offs + needed > buf->dtb_size - state->dts_reserve) { 11517 buf->dtb_flags |= DTRACEBUF_FULL; 11518 return (-1); 11519 } 11520 } 11521 11522 if (mstate == NULL) 11523 return (offs); 11524 11525 /* 11526 * For ring buffers and fill buffers, the scratch space is always 11527 * the inactive buffer. 11528 */ 11529 mstate->dtms_scratch_base = (uintptr_t)buf->dtb_xamot; 11530 mstate->dtms_scratch_size = buf->dtb_size; 11531 mstate->dtms_scratch_ptr = mstate->dtms_scratch_base; 11532 11533 return (offs); 11534 } 11535 11536 static void 11537 dtrace_buffer_polish(dtrace_buffer_t *buf) 11538 { 11539 ASSERT(buf->dtb_flags & DTRACEBUF_RING); 11540 ASSERT(MUTEX_HELD(&dtrace_lock)); 11541 11542 if (!(buf->dtb_flags & DTRACEBUF_WRAPPED)) 11543 return; 11544 11545 /* 11546 * We need to polish the ring buffer. There are three cases: 11547 * 11548 * - The first (and presumably most common) is that there is no gap 11549 * between the buffer offset and the wrapped offset. In this case, 11550 * there is nothing in the buffer that isn't valid data; we can 11551 * mark the buffer as polished and return. 11552 * 11553 * - The second (less common than the first but still more common 11554 * than the third) is that there is a gap between the buffer offset 11555 * and the wrapped offset, and the wrapped offset is larger than the 11556 * buffer offset. This can happen because of an alignment issue, or 11557 * can happen because of a call to dtrace_buffer_reserve() that 11558 * didn't subsequently consume the buffer space. In this case, 11559 * we need to zero the data from the buffer offset to the wrapped 11560 * offset. 11561 * 11562 * - The third (and least common) is that there is a gap between the 11563 * buffer offset and the wrapped offset, but the wrapped offset is 11564 * _less_ than the buffer offset. This can only happen because a 11565 * call to dtrace_buffer_reserve() induced a wrap, but the space 11566 * was not subsequently consumed. In this case, we need to zero the 11567 * space from the offset to the end of the buffer _and_ from the 11568 * top of the buffer to the wrapped offset. 11569 */ 11570 if (buf->dtb_offset < buf->dtb_xamot_offset) { 11571 bzero(buf->dtb_tomax + buf->dtb_offset, 11572 buf->dtb_xamot_offset - buf->dtb_offset); 11573 } 11574 11575 if (buf->dtb_offset > buf->dtb_xamot_offset) { 11576 bzero(buf->dtb_tomax + buf->dtb_offset, 11577 buf->dtb_size - buf->dtb_offset); 11578 bzero(buf->dtb_tomax, buf->dtb_xamot_offset); 11579 } 11580 } 11581 11582 /* 11583 * This routine determines if data generated at the specified time has likely 11584 * been entirely consumed at user-level. This routine is called to determine 11585 * if an ECB on a defunct probe (but for an active enabling) can be safely 11586 * disabled and destroyed. 11587 */ 11588 static int 11589 dtrace_buffer_consumed(dtrace_buffer_t *bufs, hrtime_t when) 11590 { 11591 int i; 11592 11593 for (i = 0; i < NCPU; i++) { 11594 dtrace_buffer_t *buf = &bufs[i]; 11595 11596 if (buf->dtb_size == 0) 11597 continue; 11598 11599 if (buf->dtb_flags & DTRACEBUF_RING) 11600 return (0); 11601 11602 if (!buf->dtb_switched && buf->dtb_offset != 0) 11603 return (0); 11604 11605 if (buf->dtb_switched - buf->dtb_interval < when) 11606 return (0); 11607 } 11608 11609 return (1); 11610 } 11611 11612 static void 11613 dtrace_buffer_free(dtrace_buffer_t *bufs) 11614 { 11615 int i; 11616 11617 for (i = 0; i < NCPU; i++) { 11618 dtrace_buffer_t *buf = &bufs[i]; 11619 11620 if (buf->dtb_tomax == NULL) { 11621 ASSERT(buf->dtb_xamot == NULL); 11622 ASSERT(buf->dtb_size == 0); 11623 continue; 11624 } 11625 11626 if (buf->dtb_xamot != NULL) { 11627 ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH)); 11628 kmem_free(buf->dtb_xamot, buf->dtb_size); 11629 } 11630 11631 kmem_free(buf->dtb_tomax, buf->dtb_size); 11632 buf->dtb_size = 0; 11633 buf->dtb_tomax = NULL; 11634 buf->dtb_xamot = NULL; 11635 } 11636 } 11637 11638 /* 11639 * DTrace Enabling Functions 11640 */ 11641 static dtrace_enabling_t * 11642 dtrace_enabling_create(dtrace_vstate_t *vstate) 11643 { 11644 dtrace_enabling_t *enab; 11645 11646 enab = kmem_zalloc(sizeof (dtrace_enabling_t), KM_SLEEP); 11647 enab->dten_vstate = vstate; 11648 11649 return (enab); 11650 } 11651 11652 static void 11653 dtrace_enabling_add(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb) 11654 { 11655 dtrace_ecbdesc_t **ndesc; 11656 size_t osize, nsize; 11657 11658 /* 11659 * We can't add to enablings after we've enabled them, or after we've 11660 * retained them. 11661 */ 11662 ASSERT(enab->dten_probegen == 0); 11663 ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL); 11664 11665 if (enab->dten_ndesc < enab->dten_maxdesc) { 11666 enab->dten_desc[enab->dten_ndesc++] = ecb; 11667 return; 11668 } 11669 11670 osize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *); 11671 11672 if (enab->dten_maxdesc == 0) { 11673 enab->dten_maxdesc = 1; 11674 } else { 11675 enab->dten_maxdesc <<= 1; 11676 } 11677 11678 ASSERT(enab->dten_ndesc < enab->dten_maxdesc); 11679 11680 nsize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *); 11681 ndesc = kmem_zalloc(nsize, KM_SLEEP); 11682 bcopy(enab->dten_desc, ndesc, osize); 11683 kmem_free(enab->dten_desc, osize); 11684 11685 enab->dten_desc = ndesc; 11686 enab->dten_desc[enab->dten_ndesc++] = ecb; 11687 } 11688 11689 static void 11690 dtrace_enabling_addlike(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb, 11691 dtrace_probedesc_t *pd) 11692 { 11693 dtrace_ecbdesc_t *new; 11694 dtrace_predicate_t *pred; 11695 dtrace_actdesc_t *act; 11696 11697 /* 11698 * We're going to create a new ECB description that matches the 11699 * specified ECB in every way, but has the specified probe description. 11700 */ 11701 new = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP); 11702 11703 if ((pred = ecb->dted_pred.dtpdd_predicate) != NULL) 11704 dtrace_predicate_hold(pred); 11705 11706 for (act = ecb->dted_action; act != NULL; act = act->dtad_next) 11707 dtrace_actdesc_hold(act); 11708 11709 new->dted_action = ecb->dted_action; 11710 new->dted_pred = ecb->dted_pred; 11711 new->dted_probe = *pd; 11712 new->dted_uarg = ecb->dted_uarg; 11713 11714 dtrace_enabling_add(enab, new); 11715 } 11716 11717 static void 11718 dtrace_enabling_dump(dtrace_enabling_t *enab) 11719 { 11720 int i; 11721 11722 for (i = 0; i < enab->dten_ndesc; i++) { 11723 dtrace_probedesc_t *desc = &enab->dten_desc[i]->dted_probe; 11724 11725 cmn_err(CE_NOTE, "enabling probe %d (%s:%s:%s:%s)", i, 11726 desc->dtpd_provider, desc->dtpd_mod, 11727 desc->dtpd_func, desc->dtpd_name); 11728 } 11729 } 11730 11731 static void 11732 dtrace_enabling_destroy(dtrace_enabling_t *enab) 11733 { 11734 int i; 11735 dtrace_ecbdesc_t *ep; 11736 dtrace_vstate_t *vstate = enab->dten_vstate; 11737 11738 ASSERT(MUTEX_HELD(&dtrace_lock)); 11739 11740 for (i = 0; i < enab->dten_ndesc; i++) { 11741 dtrace_actdesc_t *act, *next; 11742 dtrace_predicate_t *pred; 11743 11744 ep = enab->dten_desc[i]; 11745 11746 if ((pred = ep->dted_pred.dtpdd_predicate) != NULL) 11747 dtrace_predicate_release(pred, vstate); 11748 11749 for (act = ep->dted_action; act != NULL; act = next) { 11750 next = act->dtad_next; 11751 dtrace_actdesc_release(act, vstate); 11752 } 11753 11754 kmem_free(ep, sizeof (dtrace_ecbdesc_t)); 11755 } 11756 11757 kmem_free(enab->dten_desc, 11758 enab->dten_maxdesc * sizeof (dtrace_enabling_t *)); 11759 11760 /* 11761 * If this was a retained enabling, decrement the dts_nretained count 11762 * and take it off of the dtrace_retained list. 11763 */ 11764 if (enab->dten_prev != NULL || enab->dten_next != NULL || 11765 dtrace_retained == enab) { 11766 ASSERT(enab->dten_vstate->dtvs_state != NULL); 11767 ASSERT(enab->dten_vstate->dtvs_state->dts_nretained > 0); 11768 enab->dten_vstate->dtvs_state->dts_nretained--; 11769 dtrace_retained_gen++; 11770 } 11771 11772 if (enab->dten_prev == NULL) { 11773 if (dtrace_retained == enab) { 11774 dtrace_retained = enab->dten_next; 11775 11776 if (dtrace_retained != NULL) 11777 dtrace_retained->dten_prev = NULL; 11778 } 11779 } else { 11780 ASSERT(enab != dtrace_retained); 11781 ASSERT(dtrace_retained != NULL); 11782 enab->dten_prev->dten_next = enab->dten_next; 11783 } 11784 11785 if (enab->dten_next != NULL) { 11786 ASSERT(dtrace_retained != NULL); 11787 enab->dten_next->dten_prev = enab->dten_prev; 11788 } 11789 11790 kmem_free(enab, sizeof (dtrace_enabling_t)); 11791 } 11792 11793 static int 11794 dtrace_enabling_retain(dtrace_enabling_t *enab) 11795 { 11796 dtrace_state_t *state; 11797 11798 ASSERT(MUTEX_HELD(&dtrace_lock)); 11799 ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL); 11800 ASSERT(enab->dten_vstate != NULL); 11801 11802 state = enab->dten_vstate->dtvs_state; 11803 ASSERT(state != NULL); 11804 11805 /* 11806 * We only allow each state to retain dtrace_retain_max enablings. 11807 */ 11808 if (state->dts_nretained >= dtrace_retain_max) 11809 return (ENOSPC); 11810 11811 state->dts_nretained++; 11812 dtrace_retained_gen++; 11813 11814 if (dtrace_retained == NULL) { 11815 dtrace_retained = enab; 11816 return (0); 11817 } 11818 11819 enab->dten_next = dtrace_retained; 11820 dtrace_retained->dten_prev = enab; 11821 dtrace_retained = enab; 11822 11823 return (0); 11824 } 11825 11826 static int 11827 dtrace_enabling_replicate(dtrace_state_t *state, dtrace_probedesc_t *match, 11828 dtrace_probedesc_t *create) 11829 { 11830 dtrace_enabling_t *new, *enab; 11831 int found = 0, err = ENOENT; 11832 11833 ASSERT(MUTEX_HELD(&dtrace_lock)); 11834 ASSERT(strlen(match->dtpd_provider) < DTRACE_PROVNAMELEN); 11835 ASSERT(strlen(match->dtpd_mod) < DTRACE_MODNAMELEN); 11836 ASSERT(strlen(match->dtpd_func) < DTRACE_FUNCNAMELEN); 11837 ASSERT(strlen(match->dtpd_name) < DTRACE_NAMELEN); 11838 11839 new = dtrace_enabling_create(&state->dts_vstate); 11840 11841 /* 11842 * Iterate over all retained enablings, looking for enablings that 11843 * match the specified state. 11844 */ 11845 for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) { 11846 int i; 11847 11848 /* 11849 * dtvs_state can only be NULL for helper enablings -- and 11850 * helper enablings can't be retained. 11851 */ 11852 ASSERT(enab->dten_vstate->dtvs_state != NULL); 11853 11854 if (enab->dten_vstate->dtvs_state != state) 11855 continue; 11856 11857 /* 11858 * Now iterate over each probe description; we're looking for 11859 * an exact match to the specified probe description. 11860 */ 11861 for (i = 0; i < enab->dten_ndesc; i++) { 11862 dtrace_ecbdesc_t *ep = enab->dten_desc[i]; 11863 dtrace_probedesc_t *pd = &ep->dted_probe; 11864 11865 if (strcmp(pd->dtpd_provider, match->dtpd_provider)) 11866 continue; 11867 11868 if (strcmp(pd->dtpd_mod, match->dtpd_mod)) 11869 continue; 11870 11871 if (strcmp(pd->dtpd_func, match->dtpd_func)) 11872 continue; 11873 11874 if (strcmp(pd->dtpd_name, match->dtpd_name)) 11875 continue; 11876 11877 /* 11878 * We have a winning probe! Add it to our growing 11879 * enabling. 11880 */ 11881 found = 1; 11882 dtrace_enabling_addlike(new, ep, create); 11883 } 11884 } 11885 11886 if (!found || (err = dtrace_enabling_retain(new)) != 0) { 11887 dtrace_enabling_destroy(new); 11888 return (err); 11889 } 11890 11891 return (0); 11892 } 11893 11894 static void 11895 dtrace_enabling_retract(dtrace_state_t *state) 11896 { 11897 dtrace_enabling_t *enab, *next; 11898 11899 ASSERT(MUTEX_HELD(&dtrace_lock)); 11900 11901 /* 11902 * Iterate over all retained enablings, destroy the enablings retained 11903 * for the specified state. 11904 */ 11905 for (enab = dtrace_retained; enab != NULL; enab = next) { 11906 next = enab->dten_next; 11907 11908 /* 11909 * dtvs_state can only be NULL for helper enablings -- and 11910 * helper enablings can't be retained. 11911 */ 11912 ASSERT(enab->dten_vstate->dtvs_state != NULL); 11913 11914 if (enab->dten_vstate->dtvs_state == state) { 11915 ASSERT(state->dts_nretained > 0); 11916 dtrace_enabling_destroy(enab); 11917 } 11918 } 11919 11920 ASSERT(state->dts_nretained == 0); 11921 } 11922 11923 static int 11924 dtrace_enabling_match(dtrace_enabling_t *enab, int *nmatched) 11925 { 11926 int i = 0; 11927 int total_matched = 0, matched = 0; 11928 11929 ASSERT(MUTEX_HELD(&cpu_lock)); 11930 ASSERT(MUTEX_HELD(&dtrace_lock)); 11931 11932 for (i = 0; i < enab->dten_ndesc; i++) { 11933 dtrace_ecbdesc_t *ep = enab->dten_desc[i]; 11934 11935 enab->dten_current = ep; 11936 enab->dten_error = 0; 11937 11938 /* 11939 * If a provider failed to enable a probe then get out and 11940 * let the consumer know we failed. 11941 */ 11942 if ((matched = dtrace_probe_enable(&ep->dted_probe, enab)) < 0) 11943 return (EBUSY); 11944 11945 total_matched += matched; 11946 11947 if (enab->dten_error != 0) { 11948 /* 11949 * If we get an error half-way through enabling the 11950 * probes, we kick out -- perhaps with some number of 11951 * them enabled. Leaving enabled probes enabled may 11952 * be slightly confusing for user-level, but we expect 11953 * that no one will attempt to actually drive on in 11954 * the face of such errors. If this is an anonymous 11955 * enabling (indicated with a NULL nmatched pointer), 11956 * we cmn_err() a message. We aren't expecting to 11957 * get such an error -- such as it can exist at all, 11958 * it would be a result of corrupted DOF in the driver 11959 * properties. 11960 */ 11961 if (nmatched == NULL) { 11962 cmn_err(CE_WARN, "dtrace_enabling_match() " 11963 "error on %p: %d", (void *)ep, 11964 enab->dten_error); 11965 } 11966 11967 return (enab->dten_error); 11968 } 11969 } 11970 11971 enab->dten_probegen = dtrace_probegen; 11972 if (nmatched != NULL) 11973 *nmatched = total_matched; 11974 11975 return (0); 11976 } 11977 11978 static void 11979 dtrace_enabling_matchall(void) 11980 { 11981 dtrace_enabling_t *enab; 11982 11983 mutex_enter(&cpu_lock); 11984 mutex_enter(&dtrace_lock); 11985 11986 /* 11987 * Iterate over all retained enablings to see if any probes match 11988 * against them. We only perform this operation on enablings for which 11989 * we have sufficient permissions by virtue of being in the global zone 11990 * or in the same zone as the DTrace client. Because we can be called 11991 * after dtrace_detach() has been called, we cannot assert that there 11992 * are retained enablings. We can safely load from dtrace_retained, 11993 * however: the taskq_destroy() at the end of dtrace_detach() will 11994 * block pending our completion. 11995 */ 11996 for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) { 11997 dtrace_cred_t *dcr = &enab->dten_vstate->dtvs_state->dts_cred; 11998 cred_t *cr = dcr->dcr_cred; 11999 zoneid_t zone = cr != NULL ? crgetzoneid(cr) : 0; 12000 12001 if ((dcr->dcr_visible & DTRACE_CRV_ALLZONE) || (cr != NULL && 12002 (zone == GLOBAL_ZONEID || getzoneid() == zone))) 12003 (void) dtrace_enabling_match(enab, NULL); 12004 } 12005 12006 mutex_exit(&dtrace_lock); 12007 mutex_exit(&cpu_lock); 12008 } 12009 12010 /* 12011 * If an enabling is to be enabled without having matched probes (that is, if 12012 * dtrace_state_go() is to be called on the underlying dtrace_state_t), the 12013 * enabling must be _primed_ by creating an ECB for every ECB description. 12014 * This must be done to assure that we know the number of speculations, the 12015 * number of aggregations, the minimum buffer size needed, etc. before we 12016 * transition out of DTRACE_ACTIVITY_INACTIVE. To do this without actually 12017 * enabling any probes, we create ECBs for every ECB decription, but with a 12018 * NULL probe -- which is exactly what this function does. 12019 */ 12020 static void 12021 dtrace_enabling_prime(dtrace_state_t *state) 12022 { 12023 dtrace_enabling_t *enab; 12024 int i; 12025 12026 for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) { 12027 ASSERT(enab->dten_vstate->dtvs_state != NULL); 12028 12029 if (enab->dten_vstate->dtvs_state != state) 12030 continue; 12031 12032 /* 12033 * We don't want to prime an enabling more than once, lest 12034 * we allow a malicious user to induce resource exhaustion. 12035 * (The ECBs that result from priming an enabling aren't 12036 * leaked -- but they also aren't deallocated until the 12037 * consumer state is destroyed.) 12038 */ 12039 if (enab->dten_primed) 12040 continue; 12041 12042 for (i = 0; i < enab->dten_ndesc; i++) { 12043 enab->dten_current = enab->dten_desc[i]; 12044 (void) dtrace_probe_enable(NULL, enab); 12045 } 12046 12047 enab->dten_primed = 1; 12048 } 12049 } 12050 12051 /* 12052 * Called to indicate that probes should be provided due to retained 12053 * enablings. This is implemented in terms of dtrace_probe_provide(), but it 12054 * must take an initial lap through the enabling calling the dtps_provide() 12055 * entry point explicitly to allow for autocreated probes. 12056 */ 12057 static void 12058 dtrace_enabling_provide(dtrace_provider_t *prv) 12059 { 12060 int i, all = 0; 12061 dtrace_probedesc_t desc; 12062 dtrace_genid_t gen; 12063 12064 ASSERT(MUTEX_HELD(&dtrace_lock)); 12065 ASSERT(MUTEX_HELD(&dtrace_provider_lock)); 12066 12067 if (prv == NULL) { 12068 all = 1; 12069 prv = dtrace_provider; 12070 } 12071 12072 do { 12073 dtrace_enabling_t *enab; 12074 void *parg = prv->dtpv_arg; 12075 12076 retry: 12077 gen = dtrace_retained_gen; 12078 for (enab = dtrace_retained; enab != NULL; 12079 enab = enab->dten_next) { 12080 for (i = 0; i < enab->dten_ndesc; i++) { 12081 desc = enab->dten_desc[i]->dted_probe; 12082 mutex_exit(&dtrace_lock); 12083 prv->dtpv_pops.dtps_provide(parg, &desc); 12084 mutex_enter(&dtrace_lock); 12085 /* 12086 * Process the retained enablings again if 12087 * they have changed while we weren't holding 12088 * dtrace_lock. 12089 */ 12090 if (gen != dtrace_retained_gen) 12091 goto retry; 12092 } 12093 } 12094 } while (all && (prv = prv->dtpv_next) != NULL); 12095 12096 mutex_exit(&dtrace_lock); 12097 dtrace_probe_provide(NULL, all ? NULL : prv); 12098 mutex_enter(&dtrace_lock); 12099 } 12100 12101 /* 12102 * Called to reap ECBs that are attached to probes from defunct providers. 12103 */ 12104 static void 12105 dtrace_enabling_reap(void) 12106 { 12107 dtrace_provider_t *prov; 12108 dtrace_probe_t *probe; 12109 dtrace_ecb_t *ecb; 12110 hrtime_t when; 12111 int i; 12112 12113 mutex_enter(&cpu_lock); 12114 mutex_enter(&dtrace_lock); 12115 12116 for (i = 0; i < dtrace_nprobes; i++) { 12117 if ((probe = dtrace_probes[i]) == NULL) 12118 continue; 12119 12120 if (probe->dtpr_ecb == NULL) 12121 continue; 12122 12123 prov = probe->dtpr_provider; 12124 12125 if ((when = prov->dtpv_defunct) == 0) 12126 continue; 12127 12128 /* 12129 * We have ECBs on a defunct provider: we want to reap these 12130 * ECBs to allow the provider to unregister. The destruction 12131 * of these ECBs must be done carefully: if we destroy the ECB 12132 * and the consumer later wishes to consume an EPID that 12133 * corresponds to the destroyed ECB (and if the EPID metadata 12134 * has not been previously consumed), the consumer will abort 12135 * processing on the unknown EPID. To reduce (but not, sadly, 12136 * eliminate) the possibility of this, we will only destroy an 12137 * ECB for a defunct provider if, for the state that 12138 * corresponds to the ECB: 12139 * 12140 * (a) There is no speculative tracing (which can effectively 12141 * cache an EPID for an arbitrary amount of time). 12142 * 12143 * (b) The principal buffers have been switched twice since the 12144 * provider became defunct. 12145 * 12146 * (c) The aggregation buffers are of zero size or have been 12147 * switched twice since the provider became defunct. 12148 * 12149 * We use dts_speculates to determine (a) and call a function 12150 * (dtrace_buffer_consumed()) to determine (b) and (c). Note 12151 * that as soon as we've been unable to destroy one of the ECBs 12152 * associated with the probe, we quit trying -- reaping is only 12153 * fruitful in as much as we can destroy all ECBs associated 12154 * with the defunct provider's probes. 12155 */ 12156 while ((ecb = probe->dtpr_ecb) != NULL) { 12157 dtrace_state_t *state = ecb->dte_state; 12158 dtrace_buffer_t *buf = state->dts_buffer; 12159 dtrace_buffer_t *aggbuf = state->dts_aggbuffer; 12160 12161 if (state->dts_speculates) 12162 break; 12163 12164 if (!dtrace_buffer_consumed(buf, when)) 12165 break; 12166 12167 if (!dtrace_buffer_consumed(aggbuf, when)) 12168 break; 12169 12170 dtrace_ecb_disable(ecb); 12171 ASSERT(probe->dtpr_ecb != ecb); 12172 dtrace_ecb_destroy(ecb); 12173 } 12174 } 12175 12176 mutex_exit(&dtrace_lock); 12177 mutex_exit(&cpu_lock); 12178 } 12179 12180 /* 12181 * DTrace DOF Functions 12182 */ 12183 /*ARGSUSED*/ 12184 static void 12185 dtrace_dof_error(dof_hdr_t *dof, const char *str) 12186 { 12187 if (dtrace_err_verbose) 12188 cmn_err(CE_WARN, "failed to process DOF: %s", str); 12189 12190 #ifdef DTRACE_ERRDEBUG 12191 dtrace_errdebug(str); 12192 #endif 12193 } 12194 12195 /* 12196 * Create DOF out of a currently enabled state. Right now, we only create 12197 * DOF containing the run-time options -- but this could be expanded to create 12198 * complete DOF representing the enabled state. 12199 */ 12200 static dof_hdr_t * 12201 dtrace_dof_create(dtrace_state_t *state) 12202 { 12203 dof_hdr_t *dof; 12204 dof_sec_t *sec; 12205 dof_optdesc_t *opt; 12206 int i, len = sizeof (dof_hdr_t) + 12207 roundup(sizeof (dof_sec_t), sizeof (uint64_t)) + 12208 sizeof (dof_optdesc_t) * DTRACEOPT_MAX; 12209 12210 ASSERT(MUTEX_HELD(&dtrace_lock)); 12211 12212 dof = kmem_zalloc(len, KM_SLEEP); 12213 dof->dofh_ident[DOF_ID_MAG0] = DOF_MAG_MAG0; 12214 dof->dofh_ident[DOF_ID_MAG1] = DOF_MAG_MAG1; 12215 dof->dofh_ident[DOF_ID_MAG2] = DOF_MAG_MAG2; 12216 dof->dofh_ident[DOF_ID_MAG3] = DOF_MAG_MAG3; 12217 12218 dof->dofh_ident[DOF_ID_MODEL] = DOF_MODEL_NATIVE; 12219 dof->dofh_ident[DOF_ID_ENCODING] = DOF_ENCODE_NATIVE; 12220 dof->dofh_ident[DOF_ID_VERSION] = DOF_VERSION; 12221 dof->dofh_ident[DOF_ID_DIFVERS] = DIF_VERSION; 12222 dof->dofh_ident[DOF_ID_DIFIREG] = DIF_DIR_NREGS; 12223 dof->dofh_ident[DOF_ID_DIFTREG] = DIF_DTR_NREGS; 12224 12225 dof->dofh_flags = 0; 12226 dof->dofh_hdrsize = sizeof (dof_hdr_t); 12227 dof->dofh_secsize = sizeof (dof_sec_t); 12228 dof->dofh_secnum = 1; /* only DOF_SECT_OPTDESC */ 12229 dof->dofh_secoff = sizeof (dof_hdr_t); 12230 dof->dofh_loadsz = len; 12231 dof->dofh_filesz = len; 12232 dof->dofh_pad = 0; 12233 12234 /* 12235 * Fill in the option section header... 12236 */ 12237 sec = (dof_sec_t *)((uintptr_t)dof + sizeof (dof_hdr_t)); 12238 sec->dofs_type = DOF_SECT_OPTDESC; 12239 sec->dofs_align = sizeof (uint64_t); 12240 sec->dofs_flags = DOF_SECF_LOAD; 12241 sec->dofs_entsize = sizeof (dof_optdesc_t); 12242 12243 opt = (dof_optdesc_t *)((uintptr_t)sec + 12244 roundup(sizeof (dof_sec_t), sizeof (uint64_t))); 12245 12246 sec->dofs_offset = (uintptr_t)opt - (uintptr_t)dof; 12247 sec->dofs_size = sizeof (dof_optdesc_t) * DTRACEOPT_MAX; 12248 12249 for (i = 0; i < DTRACEOPT_MAX; i++) { 12250 opt[i].dofo_option = i; 12251 opt[i].dofo_strtab = DOF_SECIDX_NONE; 12252 opt[i].dofo_value = state->dts_options[i]; 12253 } 12254 12255 return (dof); 12256 } 12257 12258 static dof_hdr_t * 12259 dtrace_dof_copyin(uintptr_t uarg, int *errp) 12260 { 12261 dof_hdr_t hdr, *dof; 12262 12263 ASSERT(!MUTEX_HELD(&dtrace_lock)); 12264 12265 /* 12266 * First, we're going to copyin() the sizeof (dof_hdr_t). 12267 */ 12268 if (copyin((void *)uarg, &hdr, sizeof (hdr)) != 0) { 12269 dtrace_dof_error(NULL, "failed to copyin DOF header"); 12270 *errp = EFAULT; 12271 return (NULL); 12272 } 12273 12274 /* 12275 * Now we'll allocate the entire DOF and copy it in -- provided 12276 * that the length isn't outrageous. 12277 */ 12278 if (hdr.dofh_loadsz >= dtrace_dof_maxsize) { 12279 dtrace_dof_error(&hdr, "load size exceeds maximum"); 12280 *errp = E2BIG; 12281 return (NULL); 12282 } 12283 12284 if (hdr.dofh_loadsz < sizeof (hdr)) { 12285 dtrace_dof_error(&hdr, "invalid load size"); 12286 *errp = EINVAL; 12287 return (NULL); 12288 } 12289 12290 dof = kmem_alloc(hdr.dofh_loadsz, KM_SLEEP); 12291 12292 if (copyin((void *)uarg, dof, hdr.dofh_loadsz) != 0 || 12293 dof->dofh_loadsz != hdr.dofh_loadsz) { 12294 kmem_free(dof, hdr.dofh_loadsz); 12295 *errp = EFAULT; 12296 return (NULL); 12297 } 12298 12299 return (dof); 12300 } 12301 12302 static dof_hdr_t * 12303 dtrace_dof_property(const char *name) 12304 { 12305 uchar_t *buf; 12306 uint64_t loadsz; 12307 unsigned int len, i; 12308 dof_hdr_t *dof; 12309 12310 /* 12311 * Unfortunately, array of values in .conf files are always (and 12312 * only) interpreted to be integer arrays. We must read our DOF 12313 * as an integer array, and then squeeze it into a byte array. 12314 */ 12315 if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, dtrace_devi, 0, 12316 (char *)name, (int **)&buf, &len) != DDI_PROP_SUCCESS) 12317 return (NULL); 12318 12319 for (i = 0; i < len; i++) 12320 buf[i] = (uchar_t)(((int *)buf)[i]); 12321 12322 if (len < sizeof (dof_hdr_t)) { 12323 ddi_prop_free(buf); 12324 dtrace_dof_error(NULL, "truncated header"); 12325 return (NULL); 12326 } 12327 12328 if (len < (loadsz = ((dof_hdr_t *)buf)->dofh_loadsz)) { 12329 ddi_prop_free(buf); 12330 dtrace_dof_error(NULL, "truncated DOF"); 12331 return (NULL); 12332 } 12333 12334 if (loadsz >= dtrace_dof_maxsize) { 12335 ddi_prop_free(buf); 12336 dtrace_dof_error(NULL, "oversized DOF"); 12337 return (NULL); 12338 } 12339 12340 dof = kmem_alloc(loadsz, KM_SLEEP); 12341 bcopy(buf, dof, loadsz); 12342 ddi_prop_free(buf); 12343 12344 return (dof); 12345 } 12346 12347 static void 12348 dtrace_dof_destroy(dof_hdr_t *dof) 12349 { 12350 kmem_free(dof, dof->dofh_loadsz); 12351 } 12352 12353 /* 12354 * Return the dof_sec_t pointer corresponding to a given section index. If the 12355 * index is not valid, dtrace_dof_error() is called and NULL is returned. If 12356 * a type other than DOF_SECT_NONE is specified, the header is checked against 12357 * this type and NULL is returned if the types do not match. 12358 */ 12359 static dof_sec_t * 12360 dtrace_dof_sect(dof_hdr_t *dof, uint32_t type, dof_secidx_t i) 12361 { 12362 dof_sec_t *sec = (dof_sec_t *)(uintptr_t) 12363 ((uintptr_t)dof + dof->dofh_secoff + i * dof->dofh_secsize); 12364 12365 if (i >= dof->dofh_secnum) { 12366 dtrace_dof_error(dof, "referenced section index is invalid"); 12367 return (NULL); 12368 } 12369 12370 if (!(sec->dofs_flags & DOF_SECF_LOAD)) { 12371 dtrace_dof_error(dof, "referenced section is not loadable"); 12372 return (NULL); 12373 } 12374 12375 if (type != DOF_SECT_NONE && type != sec->dofs_type) { 12376 dtrace_dof_error(dof, "referenced section is the wrong type"); 12377 return (NULL); 12378 } 12379 12380 return (sec); 12381 } 12382 12383 static dtrace_probedesc_t * 12384 dtrace_dof_probedesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_probedesc_t *desc) 12385 { 12386 dof_probedesc_t *probe; 12387 dof_sec_t *strtab; 12388 uintptr_t daddr = (uintptr_t)dof; 12389 uintptr_t str; 12390 size_t size; 12391 12392 if (sec->dofs_type != DOF_SECT_PROBEDESC) { 12393 dtrace_dof_error(dof, "invalid probe section"); 12394 return (NULL); 12395 } 12396 12397 if (sec->dofs_align != sizeof (dof_secidx_t)) { 12398 dtrace_dof_error(dof, "bad alignment in probe description"); 12399 return (NULL); 12400 } 12401 12402 if (sec->dofs_offset + sizeof (dof_probedesc_t) > dof->dofh_loadsz) { 12403 dtrace_dof_error(dof, "truncated probe description"); 12404 return (NULL); 12405 } 12406 12407 probe = (dof_probedesc_t *)(uintptr_t)(daddr + sec->dofs_offset); 12408 strtab = dtrace_dof_sect(dof, DOF_SECT_STRTAB, probe->dofp_strtab); 12409 12410 if (strtab == NULL) 12411 return (NULL); 12412 12413 str = daddr + strtab->dofs_offset; 12414 size = strtab->dofs_size; 12415 12416 if (probe->dofp_provider >= strtab->dofs_size) { 12417 dtrace_dof_error(dof, "corrupt probe provider"); 12418 return (NULL); 12419 } 12420 12421 (void) strncpy(desc->dtpd_provider, 12422 (char *)(str + probe->dofp_provider), 12423 MIN(DTRACE_PROVNAMELEN - 1, size - probe->dofp_provider)); 12424 12425 if (probe->dofp_mod >= strtab->dofs_size) { 12426 dtrace_dof_error(dof, "corrupt probe module"); 12427 return (NULL); 12428 } 12429 12430 (void) strncpy(desc->dtpd_mod, (char *)(str + probe->dofp_mod), 12431 MIN(DTRACE_MODNAMELEN - 1, size - probe->dofp_mod)); 12432 12433 if (probe->dofp_func >= strtab->dofs_size) { 12434 dtrace_dof_error(dof, "corrupt probe function"); 12435 return (NULL); 12436 } 12437 12438 (void) strncpy(desc->dtpd_func, (char *)(str + probe->dofp_func), 12439 MIN(DTRACE_FUNCNAMELEN - 1, size - probe->dofp_func)); 12440 12441 if (probe->dofp_name >= strtab->dofs_size) { 12442 dtrace_dof_error(dof, "corrupt probe name"); 12443 return (NULL); 12444 } 12445 12446 (void) strncpy(desc->dtpd_name, (char *)(str + probe->dofp_name), 12447 MIN(DTRACE_NAMELEN - 1, size - probe->dofp_name)); 12448 12449 return (desc); 12450 } 12451 12452 static dtrace_difo_t * 12453 dtrace_dof_difo(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate, 12454 cred_t *cr) 12455 { 12456 dtrace_difo_t *dp; 12457 size_t ttl = 0; 12458 dof_difohdr_t *dofd; 12459 uintptr_t daddr = (uintptr_t)dof; 12460 size_t max = dtrace_difo_maxsize; 12461 int i, l, n; 12462 12463 static const struct { 12464 int section; 12465 int bufoffs; 12466 int lenoffs; 12467 int entsize; 12468 int align; 12469 const char *msg; 12470 } difo[] = { 12471 { DOF_SECT_DIF, offsetof(dtrace_difo_t, dtdo_buf), 12472 offsetof(dtrace_difo_t, dtdo_len), sizeof (dif_instr_t), 12473 sizeof (dif_instr_t), "multiple DIF sections" }, 12474 12475 { DOF_SECT_INTTAB, offsetof(dtrace_difo_t, dtdo_inttab), 12476 offsetof(dtrace_difo_t, dtdo_intlen), sizeof (uint64_t), 12477 sizeof (uint64_t), "multiple integer tables" }, 12478 12479 { DOF_SECT_STRTAB, offsetof(dtrace_difo_t, dtdo_strtab), 12480 offsetof(dtrace_difo_t, dtdo_strlen), 0, 12481 sizeof (char), "multiple string tables" }, 12482 12483 { DOF_SECT_VARTAB, offsetof(dtrace_difo_t, dtdo_vartab), 12484 offsetof(dtrace_difo_t, dtdo_varlen), sizeof (dtrace_difv_t), 12485 sizeof (uint_t), "multiple variable tables" }, 12486 12487 { DOF_SECT_NONE, 0, 0, 0, NULL } 12488 }; 12489 12490 if (sec->dofs_type != DOF_SECT_DIFOHDR) { 12491 dtrace_dof_error(dof, "invalid DIFO header section"); 12492 return (NULL); 12493 } 12494 12495 if (sec->dofs_align != sizeof (dof_secidx_t)) { 12496 dtrace_dof_error(dof, "bad alignment in DIFO header"); 12497 return (NULL); 12498 } 12499 12500 if (sec->dofs_size < sizeof (dof_difohdr_t) || 12501 sec->dofs_size % sizeof (dof_secidx_t)) { 12502 dtrace_dof_error(dof, "bad size in DIFO header"); 12503 return (NULL); 12504 } 12505 12506 dofd = (dof_difohdr_t *)(uintptr_t)(daddr + sec->dofs_offset); 12507 n = (sec->dofs_size - sizeof (*dofd)) / sizeof (dof_secidx_t) + 1; 12508 12509 dp = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP); 12510 dp->dtdo_rtype = dofd->dofd_rtype; 12511 12512 for (l = 0; l < n; l++) { 12513 dof_sec_t *subsec; 12514 void **bufp; 12515 uint32_t *lenp; 12516 12517 if ((subsec = dtrace_dof_sect(dof, DOF_SECT_NONE, 12518 dofd->dofd_links[l])) == NULL) 12519 goto err; /* invalid section link */ 12520 12521 if (ttl + subsec->dofs_size > max) { 12522 dtrace_dof_error(dof, "exceeds maximum size"); 12523 goto err; 12524 } 12525 12526 ttl += subsec->dofs_size; 12527 12528 for (i = 0; difo[i].section != DOF_SECT_NONE; i++) { 12529 if (subsec->dofs_type != difo[i].section) 12530 continue; 12531 12532 if (!(subsec->dofs_flags & DOF_SECF_LOAD)) { 12533 dtrace_dof_error(dof, "section not loaded"); 12534 goto err; 12535 } 12536 12537 if (subsec->dofs_align != difo[i].align) { 12538 dtrace_dof_error(dof, "bad alignment"); 12539 goto err; 12540 } 12541 12542 bufp = (void **)((uintptr_t)dp + difo[i].bufoffs); 12543 lenp = (uint32_t *)((uintptr_t)dp + difo[i].lenoffs); 12544 12545 if (*bufp != NULL) { 12546 dtrace_dof_error(dof, difo[i].msg); 12547 goto err; 12548 } 12549 12550 if (difo[i].entsize != subsec->dofs_entsize) { 12551 dtrace_dof_error(dof, "entry size mismatch"); 12552 goto err; 12553 } 12554 12555 if (subsec->dofs_entsize != 0 && 12556 (subsec->dofs_size % subsec->dofs_entsize) != 0) { 12557 dtrace_dof_error(dof, "corrupt entry size"); 12558 goto err; 12559 } 12560 12561 *lenp = subsec->dofs_size; 12562 *bufp = kmem_alloc(subsec->dofs_size, KM_SLEEP); 12563 bcopy((char *)(uintptr_t)(daddr + subsec->dofs_offset), 12564 *bufp, subsec->dofs_size); 12565 12566 if (subsec->dofs_entsize != 0) 12567 *lenp /= subsec->dofs_entsize; 12568 12569 break; 12570 } 12571 12572 /* 12573 * If we encounter a loadable DIFO sub-section that is not 12574 * known to us, assume this is a broken program and fail. 12575 */ 12576 if (difo[i].section == DOF_SECT_NONE && 12577 (subsec->dofs_flags & DOF_SECF_LOAD)) { 12578 dtrace_dof_error(dof, "unrecognized DIFO subsection"); 12579 goto err; 12580 } 12581 } 12582 12583 if (dp->dtdo_buf == NULL) { 12584 /* 12585 * We can't have a DIF object without DIF text. 12586 */ 12587 dtrace_dof_error(dof, "missing DIF text"); 12588 goto err; 12589 } 12590 12591 /* 12592 * Before we validate the DIF object, run through the variable table 12593 * looking for the strings -- if any of their size are under, we'll set 12594 * their size to be the system-wide default string size. Note that 12595 * this should _not_ happen if the "strsize" option has been set -- 12596 * in this case, the compiler should have set the size to reflect the 12597 * setting of the option. 12598 */ 12599 for (i = 0; i < dp->dtdo_varlen; i++) { 12600 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 12601 dtrace_diftype_t *t = &v->dtdv_type; 12602 12603 if (v->dtdv_id < DIF_VAR_OTHER_UBASE) 12604 continue; 12605 12606 if (t->dtdt_kind == DIF_TYPE_STRING && t->dtdt_size == 0) 12607 t->dtdt_size = dtrace_strsize_default; 12608 } 12609 12610 if (dtrace_difo_validate(dp, vstate, DIF_DIR_NREGS, cr) != 0) 12611 goto err; 12612 12613 dtrace_difo_init(dp, vstate); 12614 return (dp); 12615 12616 err: 12617 kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t)); 12618 kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t)); 12619 kmem_free(dp->dtdo_strtab, dp->dtdo_strlen); 12620 kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t)); 12621 12622 kmem_free(dp, sizeof (dtrace_difo_t)); 12623 return (NULL); 12624 } 12625 12626 static dtrace_predicate_t * 12627 dtrace_dof_predicate(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate, 12628 cred_t *cr) 12629 { 12630 dtrace_difo_t *dp; 12631 12632 if ((dp = dtrace_dof_difo(dof, sec, vstate, cr)) == NULL) 12633 return (NULL); 12634 12635 return (dtrace_predicate_create(dp)); 12636 } 12637 12638 static dtrace_actdesc_t * 12639 dtrace_dof_actdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate, 12640 cred_t *cr) 12641 { 12642 dtrace_actdesc_t *act, *first = NULL, *last = NULL, *next; 12643 dof_actdesc_t *desc; 12644 dof_sec_t *difosec; 12645 size_t offs; 12646 uintptr_t daddr = (uintptr_t)dof; 12647 uint64_t arg; 12648 dtrace_actkind_t kind; 12649 12650 if (sec->dofs_type != DOF_SECT_ACTDESC) { 12651 dtrace_dof_error(dof, "invalid action section"); 12652 return (NULL); 12653 } 12654 12655 if (sec->dofs_offset + sizeof (dof_actdesc_t) > dof->dofh_loadsz) { 12656 dtrace_dof_error(dof, "truncated action description"); 12657 return (NULL); 12658 } 12659 12660 if (sec->dofs_align != sizeof (uint64_t)) { 12661 dtrace_dof_error(dof, "bad alignment in action description"); 12662 return (NULL); 12663 } 12664 12665 if (sec->dofs_size < sec->dofs_entsize) { 12666 dtrace_dof_error(dof, "section entry size exceeds total size"); 12667 return (NULL); 12668 } 12669 12670 if (sec->dofs_entsize != sizeof (dof_actdesc_t)) { 12671 dtrace_dof_error(dof, "bad entry size in action description"); 12672 return (NULL); 12673 } 12674 12675 if (sec->dofs_size / sec->dofs_entsize > dtrace_actions_max) { 12676 dtrace_dof_error(dof, "actions exceed dtrace_actions_max"); 12677 return (NULL); 12678 } 12679 12680 for (offs = 0; offs < sec->dofs_size; offs += sec->dofs_entsize) { 12681 desc = (dof_actdesc_t *)(daddr + 12682 (uintptr_t)sec->dofs_offset + offs); 12683 kind = (dtrace_actkind_t)desc->dofa_kind; 12684 12685 if ((DTRACEACT_ISPRINTFLIKE(kind) && 12686 (kind != DTRACEACT_PRINTA || 12687 desc->dofa_strtab != DOF_SECIDX_NONE)) || 12688 (kind == DTRACEACT_DIFEXPR && 12689 desc->dofa_strtab != DOF_SECIDX_NONE)) { 12690 dof_sec_t *strtab; 12691 char *str, *fmt; 12692 uint64_t i; 12693 12694 /* 12695 * The argument to these actions is an index into the 12696 * DOF string table. For printf()-like actions, this 12697 * is the format string. For print(), this is the 12698 * CTF type of the expression result. 12699 */ 12700 if ((strtab = dtrace_dof_sect(dof, 12701 DOF_SECT_STRTAB, desc->dofa_strtab)) == NULL) 12702 goto err; 12703 12704 str = (char *)((uintptr_t)dof + 12705 (uintptr_t)strtab->dofs_offset); 12706 12707 for (i = desc->dofa_arg; i < strtab->dofs_size; i++) { 12708 if (str[i] == '\0') 12709 break; 12710 } 12711 12712 if (i >= strtab->dofs_size) { 12713 dtrace_dof_error(dof, "bogus format string"); 12714 goto err; 12715 } 12716 12717 if (i == desc->dofa_arg) { 12718 dtrace_dof_error(dof, "empty format string"); 12719 goto err; 12720 } 12721 12722 i -= desc->dofa_arg; 12723 fmt = kmem_alloc(i + 1, KM_SLEEP); 12724 bcopy(&str[desc->dofa_arg], fmt, i + 1); 12725 arg = (uint64_t)(uintptr_t)fmt; 12726 } else { 12727 if (kind == DTRACEACT_PRINTA) { 12728 ASSERT(desc->dofa_strtab == DOF_SECIDX_NONE); 12729 arg = 0; 12730 } else { 12731 arg = desc->dofa_arg; 12732 } 12733 } 12734 12735 act = dtrace_actdesc_create(kind, desc->dofa_ntuple, 12736 desc->dofa_uarg, arg); 12737 12738 if (last != NULL) { 12739 last->dtad_next = act; 12740 } else { 12741 first = act; 12742 } 12743 12744 last = act; 12745 12746 if (desc->dofa_difo == DOF_SECIDX_NONE) 12747 continue; 12748 12749 if ((difosec = dtrace_dof_sect(dof, 12750 DOF_SECT_DIFOHDR, desc->dofa_difo)) == NULL) 12751 goto err; 12752 12753 act->dtad_difo = dtrace_dof_difo(dof, difosec, vstate, cr); 12754 12755 if (act->dtad_difo == NULL) 12756 goto err; 12757 } 12758 12759 ASSERT(first != NULL); 12760 return (first); 12761 12762 err: 12763 for (act = first; act != NULL; act = next) { 12764 next = act->dtad_next; 12765 dtrace_actdesc_release(act, vstate); 12766 } 12767 12768 return (NULL); 12769 } 12770 12771 static dtrace_ecbdesc_t * 12772 dtrace_dof_ecbdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate, 12773 cred_t *cr) 12774 { 12775 dtrace_ecbdesc_t *ep; 12776 dof_ecbdesc_t *ecb; 12777 dtrace_probedesc_t *desc; 12778 dtrace_predicate_t *pred = NULL; 12779 12780 if (sec->dofs_size < sizeof (dof_ecbdesc_t)) { 12781 dtrace_dof_error(dof, "truncated ECB description"); 12782 return (NULL); 12783 } 12784 12785 if (sec->dofs_align != sizeof (uint64_t)) { 12786 dtrace_dof_error(dof, "bad alignment in ECB description"); 12787 return (NULL); 12788 } 12789 12790 ecb = (dof_ecbdesc_t *)((uintptr_t)dof + (uintptr_t)sec->dofs_offset); 12791 sec = dtrace_dof_sect(dof, DOF_SECT_PROBEDESC, ecb->dofe_probes); 12792 12793 if (sec == NULL) 12794 return (NULL); 12795 12796 ep = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP); 12797 ep->dted_uarg = ecb->dofe_uarg; 12798 desc = &ep->dted_probe; 12799 12800 if (dtrace_dof_probedesc(dof, sec, desc) == NULL) 12801 goto err; 12802 12803 if (ecb->dofe_pred != DOF_SECIDX_NONE) { 12804 if ((sec = dtrace_dof_sect(dof, 12805 DOF_SECT_DIFOHDR, ecb->dofe_pred)) == NULL) 12806 goto err; 12807 12808 if ((pred = dtrace_dof_predicate(dof, sec, vstate, cr)) == NULL) 12809 goto err; 12810 12811 ep->dted_pred.dtpdd_predicate = pred; 12812 } 12813 12814 if (ecb->dofe_actions != DOF_SECIDX_NONE) { 12815 if ((sec = dtrace_dof_sect(dof, 12816 DOF_SECT_ACTDESC, ecb->dofe_actions)) == NULL) 12817 goto err; 12818 12819 ep->dted_action = dtrace_dof_actdesc(dof, sec, vstate, cr); 12820 12821 if (ep->dted_action == NULL) 12822 goto err; 12823 } 12824 12825 return (ep); 12826 12827 err: 12828 if (pred != NULL) 12829 dtrace_predicate_release(pred, vstate); 12830 kmem_free(ep, sizeof (dtrace_ecbdesc_t)); 12831 return (NULL); 12832 } 12833 12834 /* 12835 * Apply the relocations from the specified 'sec' (a DOF_SECT_URELHDR) to the 12836 * specified DOF. At present, this amounts to simply adding 'ubase' to the 12837 * site of any user SETX relocations to account for load object base address. 12838 * In the future, if we need other relocations, this function can be extended. 12839 */ 12840 static int 12841 dtrace_dof_relocate(dof_hdr_t *dof, dof_sec_t *sec, uint64_t ubase) 12842 { 12843 uintptr_t daddr = (uintptr_t)dof; 12844 dof_relohdr_t *dofr = 12845 (dof_relohdr_t *)(uintptr_t)(daddr + sec->dofs_offset); 12846 dof_sec_t *ss, *rs, *ts; 12847 dof_relodesc_t *r; 12848 uint_t i, n; 12849 12850 if (sec->dofs_size < sizeof (dof_relohdr_t) || 12851 sec->dofs_align != sizeof (dof_secidx_t)) { 12852 dtrace_dof_error(dof, "invalid relocation header"); 12853 return (-1); 12854 } 12855 12856 ss = dtrace_dof_sect(dof, DOF_SECT_STRTAB, dofr->dofr_strtab); 12857 rs = dtrace_dof_sect(dof, DOF_SECT_RELTAB, dofr->dofr_relsec); 12858 ts = dtrace_dof_sect(dof, DOF_SECT_NONE, dofr->dofr_tgtsec); 12859 12860 if (ss == NULL || rs == NULL || ts == NULL) 12861 return (-1); /* dtrace_dof_error() has been called already */ 12862 12863 if (rs->dofs_entsize < sizeof (dof_relodesc_t) || 12864 rs->dofs_align != sizeof (uint64_t)) { 12865 dtrace_dof_error(dof, "invalid relocation section"); 12866 return (-1); 12867 } 12868 12869 r = (dof_relodesc_t *)(uintptr_t)(daddr + rs->dofs_offset); 12870 n = rs->dofs_size / rs->dofs_entsize; 12871 12872 for (i = 0; i < n; i++) { 12873 uintptr_t taddr = daddr + ts->dofs_offset + r->dofr_offset; 12874 12875 switch (r->dofr_type) { 12876 case DOF_RELO_NONE: 12877 break; 12878 case DOF_RELO_SETX: 12879 if (r->dofr_offset >= ts->dofs_size || r->dofr_offset + 12880 sizeof (uint64_t) > ts->dofs_size) { 12881 dtrace_dof_error(dof, "bad relocation offset"); 12882 return (-1); 12883 } 12884 12885 if (!IS_P2ALIGNED(taddr, sizeof (uint64_t))) { 12886 dtrace_dof_error(dof, "misaligned setx relo"); 12887 return (-1); 12888 } 12889 12890 *(uint64_t *)taddr += ubase; 12891 break; 12892 default: 12893 dtrace_dof_error(dof, "invalid relocation type"); 12894 return (-1); 12895 } 12896 12897 r = (dof_relodesc_t *)((uintptr_t)r + rs->dofs_entsize); 12898 } 12899 12900 return (0); 12901 } 12902 12903 /* 12904 * The dof_hdr_t passed to dtrace_dof_slurp() should be a partially validated 12905 * header: it should be at the front of a memory region that is at least 12906 * sizeof (dof_hdr_t) in size -- and then at least dof_hdr.dofh_loadsz in 12907 * size. It need not be validated in any other way. 12908 */ 12909 static int 12910 dtrace_dof_slurp(dof_hdr_t *dof, dtrace_vstate_t *vstate, cred_t *cr, 12911 dtrace_enabling_t **enabp, uint64_t ubase, int noprobes) 12912 { 12913 uint64_t len = dof->dofh_loadsz, seclen; 12914 uintptr_t daddr = (uintptr_t)dof; 12915 dtrace_ecbdesc_t *ep; 12916 dtrace_enabling_t *enab; 12917 uint_t i; 12918 12919 ASSERT(MUTEX_HELD(&dtrace_lock)); 12920 ASSERT(dof->dofh_loadsz >= sizeof (dof_hdr_t)); 12921 12922 /* 12923 * Check the DOF header identification bytes. In addition to checking 12924 * valid settings, we also verify that unused bits/bytes are zeroed so 12925 * we can use them later without fear of regressing existing binaries. 12926 */ 12927 if (bcmp(&dof->dofh_ident[DOF_ID_MAG0], 12928 DOF_MAG_STRING, DOF_MAG_STRLEN) != 0) { 12929 dtrace_dof_error(dof, "DOF magic string mismatch"); 12930 return (-1); 12931 } 12932 12933 if (dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_ILP32 && 12934 dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_LP64) { 12935 dtrace_dof_error(dof, "DOF has invalid data model"); 12936 return (-1); 12937 } 12938 12939 if (dof->dofh_ident[DOF_ID_ENCODING] != DOF_ENCODE_NATIVE) { 12940 dtrace_dof_error(dof, "DOF encoding mismatch"); 12941 return (-1); 12942 } 12943 12944 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 && 12945 dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_2) { 12946 dtrace_dof_error(dof, "DOF version mismatch"); 12947 return (-1); 12948 } 12949 12950 if (dof->dofh_ident[DOF_ID_DIFVERS] != DIF_VERSION_2) { 12951 dtrace_dof_error(dof, "DOF uses unsupported instruction set"); 12952 return (-1); 12953 } 12954 12955 if (dof->dofh_ident[DOF_ID_DIFIREG] > DIF_DIR_NREGS) { 12956 dtrace_dof_error(dof, "DOF uses too many integer registers"); 12957 return (-1); 12958 } 12959 12960 if (dof->dofh_ident[DOF_ID_DIFTREG] > DIF_DTR_NREGS) { 12961 dtrace_dof_error(dof, "DOF uses too many tuple registers"); 12962 return (-1); 12963 } 12964 12965 for (i = DOF_ID_PAD; i < DOF_ID_SIZE; i++) { 12966 if (dof->dofh_ident[i] != 0) { 12967 dtrace_dof_error(dof, "DOF has invalid ident byte set"); 12968 return (-1); 12969 } 12970 } 12971 12972 if (dof->dofh_flags & ~DOF_FL_VALID) { 12973 dtrace_dof_error(dof, "DOF has invalid flag bits set"); 12974 return (-1); 12975 } 12976 12977 if (dof->dofh_secsize == 0) { 12978 dtrace_dof_error(dof, "zero section header size"); 12979 return (-1); 12980 } 12981 12982 /* 12983 * Check that the section headers don't exceed the amount of DOF 12984 * data. Note that we cast the section size and number of sections 12985 * to uint64_t's to prevent possible overflow in the multiplication. 12986 */ 12987 seclen = (uint64_t)dof->dofh_secnum * (uint64_t)dof->dofh_secsize; 12988 12989 if (dof->dofh_secoff > len || seclen > len || 12990 dof->dofh_secoff + seclen > len) { 12991 dtrace_dof_error(dof, "truncated section headers"); 12992 return (-1); 12993 } 12994 12995 if (!IS_P2ALIGNED(dof->dofh_secoff, sizeof (uint64_t))) { 12996 dtrace_dof_error(dof, "misaligned section headers"); 12997 return (-1); 12998 } 12999 13000 if (!IS_P2ALIGNED(dof->dofh_secsize, sizeof (uint64_t))) { 13001 dtrace_dof_error(dof, "misaligned section size"); 13002 return (-1); 13003 } 13004 13005 /* 13006 * Take an initial pass through the section headers to be sure that 13007 * the headers don't have stray offsets. If the 'noprobes' flag is 13008 * set, do not permit sections relating to providers, probes, or args. 13009 */ 13010 for (i = 0; i < dof->dofh_secnum; i++) { 13011 dof_sec_t *sec = (dof_sec_t *)(daddr + 13012 (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize); 13013 13014 if (noprobes) { 13015 switch (sec->dofs_type) { 13016 case DOF_SECT_PROVIDER: 13017 case DOF_SECT_PROBES: 13018 case DOF_SECT_PRARGS: 13019 case DOF_SECT_PROFFS: 13020 dtrace_dof_error(dof, "illegal sections " 13021 "for enabling"); 13022 return (-1); 13023 } 13024 } 13025 13026 if (DOF_SEC_ISLOADABLE(sec->dofs_type) && 13027 !(sec->dofs_flags & DOF_SECF_LOAD)) { 13028 dtrace_dof_error(dof, "loadable section with load " 13029 "flag unset"); 13030 return (-1); 13031 } 13032 13033 if (!(sec->dofs_flags & DOF_SECF_LOAD)) 13034 continue; /* just ignore non-loadable sections */ 13035 13036 if (sec->dofs_align & (sec->dofs_align - 1)) { 13037 dtrace_dof_error(dof, "bad section alignment"); 13038 return (-1); 13039 } 13040 13041 if (sec->dofs_offset & (sec->dofs_align - 1)) { 13042 dtrace_dof_error(dof, "misaligned section"); 13043 return (-1); 13044 } 13045 13046 if (sec->dofs_offset > len || sec->dofs_size > len || 13047 sec->dofs_offset + sec->dofs_size > len) { 13048 dtrace_dof_error(dof, "corrupt section header"); 13049 return (-1); 13050 } 13051 13052 if (sec->dofs_type == DOF_SECT_STRTAB && *((char *)daddr + 13053 sec->dofs_offset + sec->dofs_size - 1) != '\0') { 13054 dtrace_dof_error(dof, "non-terminating string table"); 13055 return (-1); 13056 } 13057 } 13058 13059 /* 13060 * Take a second pass through the sections and locate and perform any 13061 * relocations that are present. We do this after the first pass to 13062 * be sure that all sections have had their headers validated. 13063 */ 13064 for (i = 0; i < dof->dofh_secnum; i++) { 13065 dof_sec_t *sec = (dof_sec_t *)(daddr + 13066 (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize); 13067 13068 if (!(sec->dofs_flags & DOF_SECF_LOAD)) 13069 continue; /* skip sections that are not loadable */ 13070 13071 switch (sec->dofs_type) { 13072 case DOF_SECT_URELHDR: 13073 if (dtrace_dof_relocate(dof, sec, ubase) != 0) 13074 return (-1); 13075 break; 13076 } 13077 } 13078 13079 if ((enab = *enabp) == NULL) 13080 enab = *enabp = dtrace_enabling_create(vstate); 13081 13082 for (i = 0; i < dof->dofh_secnum; i++) { 13083 dof_sec_t *sec = (dof_sec_t *)(daddr + 13084 (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize); 13085 13086 if (sec->dofs_type != DOF_SECT_ECBDESC) 13087 continue; 13088 13089 if ((ep = dtrace_dof_ecbdesc(dof, sec, vstate, cr)) == NULL) { 13090 dtrace_enabling_destroy(enab); 13091 *enabp = NULL; 13092 return (-1); 13093 } 13094 13095 dtrace_enabling_add(enab, ep); 13096 } 13097 13098 return (0); 13099 } 13100 13101 /* 13102 * Process DOF for any options. This routine assumes that the DOF has been 13103 * at least processed by dtrace_dof_slurp(). 13104 */ 13105 static int 13106 dtrace_dof_options(dof_hdr_t *dof, dtrace_state_t *state) 13107 { 13108 int i, rval; 13109 uint32_t entsize; 13110 size_t offs; 13111 dof_optdesc_t *desc; 13112 13113 for (i = 0; i < dof->dofh_secnum; i++) { 13114 dof_sec_t *sec = (dof_sec_t *)((uintptr_t)dof + 13115 (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize); 13116 13117 if (sec->dofs_type != DOF_SECT_OPTDESC) 13118 continue; 13119 13120 if (sec->dofs_align != sizeof (uint64_t)) { 13121 dtrace_dof_error(dof, "bad alignment in " 13122 "option description"); 13123 return (EINVAL); 13124 } 13125 13126 if ((entsize = sec->dofs_entsize) == 0) { 13127 dtrace_dof_error(dof, "zeroed option entry size"); 13128 return (EINVAL); 13129 } 13130 13131 if (entsize < sizeof (dof_optdesc_t)) { 13132 dtrace_dof_error(dof, "bad option entry size"); 13133 return (EINVAL); 13134 } 13135 13136 for (offs = 0; offs < sec->dofs_size; offs += entsize) { 13137 desc = (dof_optdesc_t *)((uintptr_t)dof + 13138 (uintptr_t)sec->dofs_offset + offs); 13139 13140 if (desc->dofo_strtab != DOF_SECIDX_NONE) { 13141 dtrace_dof_error(dof, "non-zero option string"); 13142 return (EINVAL); 13143 } 13144 13145 if (desc->dofo_value == DTRACEOPT_UNSET) { 13146 dtrace_dof_error(dof, "unset option"); 13147 return (EINVAL); 13148 } 13149 13150 if ((rval = dtrace_state_option(state, 13151 desc->dofo_option, desc->dofo_value)) != 0) { 13152 dtrace_dof_error(dof, "rejected option"); 13153 return (rval); 13154 } 13155 } 13156 } 13157 13158 return (0); 13159 } 13160 13161 /* 13162 * DTrace Consumer State Functions 13163 */ 13164 int 13165 dtrace_dstate_init(dtrace_dstate_t *dstate, size_t size) 13166 { 13167 size_t hashsize, maxper, min, chunksize = dstate->dtds_chunksize; 13168 void *base; 13169 uintptr_t limit; 13170 dtrace_dynvar_t *dvar, *next, *start; 13171 int i; 13172 13173 ASSERT(MUTEX_HELD(&dtrace_lock)); 13174 ASSERT(dstate->dtds_base == NULL && dstate->dtds_percpu == NULL); 13175 13176 bzero(dstate, sizeof (dtrace_dstate_t)); 13177 13178 if ((dstate->dtds_chunksize = chunksize) == 0) 13179 dstate->dtds_chunksize = DTRACE_DYNVAR_CHUNKSIZE; 13180 13181 if (size < (min = dstate->dtds_chunksize + sizeof (dtrace_dynhash_t))) 13182 size = min; 13183 13184 if ((base = kmem_zalloc(size, KM_NOSLEEP | KM_NORMALPRI)) == NULL) 13185 return (ENOMEM); 13186 13187 dstate->dtds_size = size; 13188 dstate->dtds_base = base; 13189 dstate->dtds_percpu = kmem_cache_alloc(dtrace_state_cache, KM_SLEEP); 13190 bzero(dstate->dtds_percpu, NCPU * sizeof (dtrace_dstate_percpu_t)); 13191 13192 hashsize = size / (dstate->dtds_chunksize + sizeof (dtrace_dynhash_t)); 13193 13194 if (hashsize != 1 && (hashsize & 1)) 13195 hashsize--; 13196 13197 dstate->dtds_hashsize = hashsize; 13198 dstate->dtds_hash = dstate->dtds_base; 13199 13200 /* 13201 * Set all of our hash buckets to point to the single sink, and (if 13202 * it hasn't already been set), set the sink's hash value to be the 13203 * sink sentinel value. The sink is needed for dynamic variable 13204 * lookups to know that they have iterated over an entire, valid hash 13205 * chain. 13206 */ 13207 for (i = 0; i < hashsize; i++) 13208 dstate->dtds_hash[i].dtdh_chain = &dtrace_dynhash_sink; 13209 13210 if (dtrace_dynhash_sink.dtdv_hashval != DTRACE_DYNHASH_SINK) 13211 dtrace_dynhash_sink.dtdv_hashval = DTRACE_DYNHASH_SINK; 13212 13213 /* 13214 * Determine number of active CPUs. Divide free list evenly among 13215 * active CPUs. 13216 */ 13217 start = (dtrace_dynvar_t *) 13218 ((uintptr_t)base + hashsize * sizeof (dtrace_dynhash_t)); 13219 limit = (uintptr_t)base + size; 13220 13221 maxper = (limit - (uintptr_t)start) / NCPU; 13222 maxper = (maxper / dstate->dtds_chunksize) * dstate->dtds_chunksize; 13223 13224 for (i = 0; i < NCPU; i++) { 13225 dstate->dtds_percpu[i].dtdsc_free = dvar = start; 13226 13227 /* 13228 * If we don't even have enough chunks to make it once through 13229 * NCPUs, we're just going to allocate everything to the first 13230 * CPU. And if we're on the last CPU, we're going to allocate 13231 * whatever is left over. In either case, we set the limit to 13232 * be the limit of the dynamic variable space. 13233 */ 13234 if (maxper == 0 || i == NCPU - 1) { 13235 limit = (uintptr_t)base + size; 13236 start = NULL; 13237 } else { 13238 limit = (uintptr_t)start + maxper; 13239 start = (dtrace_dynvar_t *)limit; 13240 } 13241 13242 ASSERT(limit <= (uintptr_t)base + size); 13243 13244 for (;;) { 13245 next = (dtrace_dynvar_t *)((uintptr_t)dvar + 13246 dstate->dtds_chunksize); 13247 13248 if ((uintptr_t)next + dstate->dtds_chunksize >= limit) 13249 break; 13250 13251 dvar->dtdv_next = next; 13252 dvar = next; 13253 } 13254 13255 if (maxper == 0) 13256 break; 13257 } 13258 13259 return (0); 13260 } 13261 13262 void 13263 dtrace_dstate_fini(dtrace_dstate_t *dstate) 13264 { 13265 ASSERT(MUTEX_HELD(&cpu_lock)); 13266 13267 if (dstate->dtds_base == NULL) 13268 return; 13269 13270 kmem_free(dstate->dtds_base, dstate->dtds_size); 13271 kmem_cache_free(dtrace_state_cache, dstate->dtds_percpu); 13272 } 13273 13274 static void 13275 dtrace_vstate_fini(dtrace_vstate_t *vstate) 13276 { 13277 /* 13278 * Logical XOR, where are you? 13279 */ 13280 ASSERT((vstate->dtvs_nglobals == 0) ^ (vstate->dtvs_globals != NULL)); 13281 13282 if (vstate->dtvs_nglobals > 0) { 13283 kmem_free(vstate->dtvs_globals, vstate->dtvs_nglobals * 13284 sizeof (dtrace_statvar_t *)); 13285 } 13286 13287 if (vstate->dtvs_ntlocals > 0) { 13288 kmem_free(vstate->dtvs_tlocals, vstate->dtvs_ntlocals * 13289 sizeof (dtrace_difv_t)); 13290 } 13291 13292 ASSERT((vstate->dtvs_nlocals == 0) ^ (vstate->dtvs_locals != NULL)); 13293 13294 if (vstate->dtvs_nlocals > 0) { 13295 kmem_free(vstate->dtvs_locals, vstate->dtvs_nlocals * 13296 sizeof (dtrace_statvar_t *)); 13297 } 13298 } 13299 13300 static void 13301 dtrace_state_clean(dtrace_state_t *state) 13302 { 13303 if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE) 13304 return; 13305 13306 dtrace_dynvar_clean(&state->dts_vstate.dtvs_dynvars); 13307 dtrace_speculation_clean(state); 13308 } 13309 13310 static void 13311 dtrace_state_deadman(dtrace_state_t *state) 13312 { 13313 hrtime_t now; 13314 13315 dtrace_sync(); 13316 13317 now = dtrace_gethrtime(); 13318 13319 if (state != dtrace_anon.dta_state && 13320 now - state->dts_laststatus >= dtrace_deadman_user) 13321 return; 13322 13323 /* 13324 * We must be sure that dts_alive never appears to be less than the 13325 * value upon entry to dtrace_state_deadman(), and because we lack a 13326 * dtrace_cas64(), we cannot store to it atomically. We thus instead 13327 * store INT64_MAX to it, followed by a memory barrier, followed by 13328 * the new value. This assures that dts_alive never appears to be 13329 * less than its true value, regardless of the order in which the 13330 * stores to the underlying storage are issued. 13331 */ 13332 state->dts_alive = INT64_MAX; 13333 dtrace_membar_producer(); 13334 state->dts_alive = now; 13335 } 13336 13337 dtrace_state_t * 13338 dtrace_state_create(dev_t *devp, cred_t *cr) 13339 { 13340 minor_t minor; 13341 major_t major; 13342 char c[30]; 13343 dtrace_state_t *state; 13344 dtrace_optval_t *opt; 13345 int bufsize = NCPU * sizeof (dtrace_buffer_t), i; 13346 13347 ASSERT(MUTEX_HELD(&dtrace_lock)); 13348 ASSERT(MUTEX_HELD(&cpu_lock)); 13349 13350 minor = (minor_t)(uintptr_t)vmem_alloc(dtrace_minor, 1, 13351 VM_BESTFIT | VM_SLEEP); 13352 13353 if (ddi_soft_state_zalloc(dtrace_softstate, minor) != DDI_SUCCESS) { 13354 vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1); 13355 return (NULL); 13356 } 13357 13358 state = ddi_get_soft_state(dtrace_softstate, minor); 13359 state->dts_epid = DTRACE_EPIDNONE + 1; 13360 13361 (void) snprintf(c, sizeof (c), "dtrace_aggid_%d", minor); 13362 state->dts_aggid_arena = vmem_create(c, (void *)1, UINT32_MAX, 1, 13363 NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER); 13364 13365 if (devp != NULL) { 13366 major = getemajor(*devp); 13367 } else { 13368 major = ddi_driver_major(dtrace_devi); 13369 } 13370 13371 state->dts_dev = makedevice(major, minor); 13372 13373 if (devp != NULL) 13374 *devp = state->dts_dev; 13375 13376 /* 13377 * We allocate NCPU buffers. On the one hand, this can be quite 13378 * a bit of memory per instance (nearly 36K on a Starcat). On the 13379 * other hand, it saves an additional memory reference in the probe 13380 * path. 13381 */ 13382 state->dts_buffer = kmem_zalloc(bufsize, KM_SLEEP); 13383 state->dts_aggbuffer = kmem_zalloc(bufsize, KM_SLEEP); 13384 state->dts_cleaner = CYCLIC_NONE; 13385 state->dts_deadman = CYCLIC_NONE; 13386 state->dts_vstate.dtvs_state = state; 13387 13388 for (i = 0; i < DTRACEOPT_MAX; i++) 13389 state->dts_options[i] = DTRACEOPT_UNSET; 13390 13391 /* 13392 * Set the default options. 13393 */ 13394 opt = state->dts_options; 13395 opt[DTRACEOPT_BUFPOLICY] = DTRACEOPT_BUFPOLICY_SWITCH; 13396 opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_AUTO; 13397 opt[DTRACEOPT_NSPEC] = dtrace_nspec_default; 13398 opt[DTRACEOPT_SPECSIZE] = dtrace_specsize_default; 13399 opt[DTRACEOPT_CPU] = (dtrace_optval_t)DTRACE_CPUALL; 13400 opt[DTRACEOPT_STRSIZE] = dtrace_strsize_default; 13401 opt[DTRACEOPT_STACKFRAMES] = dtrace_stackframes_default; 13402 opt[DTRACEOPT_USTACKFRAMES] = dtrace_ustackframes_default; 13403 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_default; 13404 opt[DTRACEOPT_AGGRATE] = dtrace_aggrate_default; 13405 opt[DTRACEOPT_SWITCHRATE] = dtrace_switchrate_default; 13406 opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_default; 13407 opt[DTRACEOPT_JSTACKFRAMES] = dtrace_jstackframes_default; 13408 opt[DTRACEOPT_JSTACKSTRSIZE] = dtrace_jstackstrsize_default; 13409 13410 state->dts_activity = DTRACE_ACTIVITY_INACTIVE; 13411 13412 /* 13413 * Depending on the user credentials, we set flag bits which alter probe 13414 * visibility or the amount of destructiveness allowed. In the case of 13415 * actual anonymous tracing, or the possession of all privileges, all of 13416 * the normal checks are bypassed. 13417 */ 13418 if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) { 13419 state->dts_cred.dcr_visible = DTRACE_CRV_ALL; 13420 state->dts_cred.dcr_action = DTRACE_CRA_ALL; 13421 } else { 13422 /* 13423 * Set up the credentials for this instantiation. We take a 13424 * hold on the credential to prevent it from disappearing on 13425 * us; this in turn prevents the zone_t referenced by this 13426 * credential from disappearing. This means that we can 13427 * examine the credential and the zone from probe context. 13428 */ 13429 crhold(cr); 13430 state->dts_cred.dcr_cred = cr; 13431 13432 /* 13433 * CRA_PROC means "we have *some* privilege for dtrace" and 13434 * unlocks the use of variables like pid, zonename, etc. 13435 */ 13436 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE) || 13437 PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) { 13438 state->dts_cred.dcr_action |= DTRACE_CRA_PROC; 13439 } 13440 13441 /* 13442 * dtrace_user allows use of syscall and profile providers. 13443 * If the user also has proc_owner and/or proc_zone, we 13444 * extend the scope to include additional visibility and 13445 * destructive power. 13446 */ 13447 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE)) { 13448 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) { 13449 state->dts_cred.dcr_visible |= 13450 DTRACE_CRV_ALLPROC; 13451 13452 state->dts_cred.dcr_action |= 13453 DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER; 13454 } 13455 13456 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) { 13457 state->dts_cred.dcr_visible |= 13458 DTRACE_CRV_ALLZONE; 13459 13460 state->dts_cred.dcr_action |= 13461 DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE; 13462 } 13463 13464 /* 13465 * If we have all privs in whatever zone this is, 13466 * we can do destructive things to processes which 13467 * have altered credentials. 13468 */ 13469 if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE), 13470 cr->cr_zone->zone_privset)) { 13471 state->dts_cred.dcr_action |= 13472 DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG; 13473 } 13474 } 13475 13476 /* 13477 * Holding the dtrace_kernel privilege also implies that 13478 * the user has the dtrace_user privilege from a visibility 13479 * perspective. But without further privileges, some 13480 * destructive actions are not available. 13481 */ 13482 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE)) { 13483 /* 13484 * Make all probes in all zones visible. However, 13485 * this doesn't mean that all actions become available 13486 * to all zones. 13487 */ 13488 state->dts_cred.dcr_visible |= DTRACE_CRV_KERNEL | 13489 DTRACE_CRV_ALLPROC | DTRACE_CRV_ALLZONE; 13490 13491 state->dts_cred.dcr_action |= DTRACE_CRA_KERNEL | 13492 DTRACE_CRA_PROC; 13493 /* 13494 * Holding proc_owner means that destructive actions 13495 * for *this* zone are allowed. 13496 */ 13497 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) 13498 state->dts_cred.dcr_action |= 13499 DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER; 13500 13501 /* 13502 * Holding proc_zone means that destructive actions 13503 * for this user/group ID in all zones is allowed. 13504 */ 13505 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) 13506 state->dts_cred.dcr_action |= 13507 DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE; 13508 13509 /* 13510 * If we have all privs in whatever zone this is, 13511 * we can do destructive things to processes which 13512 * have altered credentials. 13513 */ 13514 if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE), 13515 cr->cr_zone->zone_privset)) { 13516 state->dts_cred.dcr_action |= 13517 DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG; 13518 } 13519 } 13520 13521 /* 13522 * Holding the dtrace_proc privilege gives control over fasttrap 13523 * and pid providers. We need to grant wider destructive 13524 * privileges in the event that the user has proc_owner and/or 13525 * proc_zone. 13526 */ 13527 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) { 13528 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) 13529 state->dts_cred.dcr_action |= 13530 DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER; 13531 13532 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) 13533 state->dts_cred.dcr_action |= 13534 DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE; 13535 } 13536 } 13537 13538 return (state); 13539 } 13540 13541 static int 13542 dtrace_state_buffer(dtrace_state_t *state, dtrace_buffer_t *buf, int which) 13543 { 13544 dtrace_optval_t *opt = state->dts_options, size; 13545 processorid_t cpu; 13546 int flags = 0, rval, factor, divisor = 1; 13547 13548 ASSERT(MUTEX_HELD(&dtrace_lock)); 13549 ASSERT(MUTEX_HELD(&cpu_lock)); 13550 ASSERT(which < DTRACEOPT_MAX); 13551 ASSERT(state->dts_activity == DTRACE_ACTIVITY_INACTIVE || 13552 (state == dtrace_anon.dta_state && 13553 state->dts_activity == DTRACE_ACTIVITY_ACTIVE)); 13554 13555 if (opt[which] == DTRACEOPT_UNSET || opt[which] == 0) 13556 return (0); 13557 13558 if (opt[DTRACEOPT_CPU] != DTRACEOPT_UNSET) 13559 cpu = opt[DTRACEOPT_CPU]; 13560 13561 if (which == DTRACEOPT_SPECSIZE) 13562 flags |= DTRACEBUF_NOSWITCH; 13563 13564 if (which == DTRACEOPT_BUFSIZE) { 13565 if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_RING) 13566 flags |= DTRACEBUF_RING; 13567 13568 if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_FILL) 13569 flags |= DTRACEBUF_FILL; 13570 13571 if (state != dtrace_anon.dta_state || 13572 state->dts_activity != DTRACE_ACTIVITY_ACTIVE) 13573 flags |= DTRACEBUF_INACTIVE; 13574 } 13575 13576 for (size = opt[which]; size >= sizeof (uint64_t); size /= divisor) { 13577 /* 13578 * The size must be 8-byte aligned. If the size is not 8-byte 13579 * aligned, drop it down by the difference. 13580 */ 13581 if (size & (sizeof (uint64_t) - 1)) 13582 size -= size & (sizeof (uint64_t) - 1); 13583 13584 if (size < state->dts_reserve) { 13585 /* 13586 * Buffers always must be large enough to accommodate 13587 * their prereserved space. We return E2BIG instead 13588 * of ENOMEM in this case to allow for user-level 13589 * software to differentiate the cases. 13590 */ 13591 return (E2BIG); 13592 } 13593 13594 rval = dtrace_buffer_alloc(buf, size, flags, cpu, &factor); 13595 13596 if (rval != ENOMEM) { 13597 opt[which] = size; 13598 return (rval); 13599 } 13600 13601 if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL) 13602 return (rval); 13603 13604 for (divisor = 2; divisor < factor; divisor <<= 1) 13605 continue; 13606 } 13607 13608 return (ENOMEM); 13609 } 13610 13611 static int 13612 dtrace_state_buffers(dtrace_state_t *state) 13613 { 13614 dtrace_speculation_t *spec = state->dts_speculations; 13615 int rval, i; 13616 13617 if ((rval = dtrace_state_buffer(state, state->dts_buffer, 13618 DTRACEOPT_BUFSIZE)) != 0) 13619 return (rval); 13620 13621 if ((rval = dtrace_state_buffer(state, state->dts_aggbuffer, 13622 DTRACEOPT_AGGSIZE)) != 0) 13623 return (rval); 13624 13625 for (i = 0; i < state->dts_nspeculations; i++) { 13626 if ((rval = dtrace_state_buffer(state, 13627 spec[i].dtsp_buffer, DTRACEOPT_SPECSIZE)) != 0) 13628 return (rval); 13629 } 13630 13631 return (0); 13632 } 13633 13634 static void 13635 dtrace_state_prereserve(dtrace_state_t *state) 13636 { 13637 dtrace_ecb_t *ecb; 13638 dtrace_probe_t *probe; 13639 13640 state->dts_reserve = 0; 13641 13642 if (state->dts_options[DTRACEOPT_BUFPOLICY] != DTRACEOPT_BUFPOLICY_FILL) 13643 return; 13644 13645 /* 13646 * If our buffer policy is a "fill" buffer policy, we need to set the 13647 * prereserved space to be the space required by the END probes. 13648 */ 13649 probe = dtrace_probes[dtrace_probeid_end - 1]; 13650 ASSERT(probe != NULL); 13651 13652 for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) { 13653 if (ecb->dte_state != state) 13654 continue; 13655 13656 state->dts_reserve += ecb->dte_needed + ecb->dte_alignment; 13657 } 13658 } 13659 13660 static int 13661 dtrace_state_go(dtrace_state_t *state, processorid_t *cpu) 13662 { 13663 dtrace_optval_t *opt = state->dts_options, sz, nspec; 13664 dtrace_speculation_t *spec; 13665 dtrace_buffer_t *buf; 13666 cyc_handler_t hdlr; 13667 cyc_time_t when; 13668 int rval = 0, i, bufsize = NCPU * sizeof (dtrace_buffer_t); 13669 dtrace_icookie_t cookie; 13670 13671 mutex_enter(&cpu_lock); 13672 mutex_enter(&dtrace_lock); 13673 13674 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) { 13675 rval = EBUSY; 13676 goto out; 13677 } 13678 13679 /* 13680 * Before we can perform any checks, we must prime all of the 13681 * retained enablings that correspond to this state. 13682 */ 13683 dtrace_enabling_prime(state); 13684 13685 if (state->dts_destructive && !state->dts_cred.dcr_destructive) { 13686 rval = EACCES; 13687 goto out; 13688 } 13689 13690 dtrace_state_prereserve(state); 13691 13692 /* 13693 * Now we want to do is try to allocate our speculations. 13694 * We do not automatically resize the number of speculations; if 13695 * this fails, we will fail the operation. 13696 */ 13697 nspec = opt[DTRACEOPT_NSPEC]; 13698 ASSERT(nspec != DTRACEOPT_UNSET); 13699 13700 if (nspec > INT_MAX) { 13701 rval = ENOMEM; 13702 goto out; 13703 } 13704 13705 spec = kmem_zalloc(nspec * sizeof (dtrace_speculation_t), 13706 KM_NOSLEEP | KM_NORMALPRI); 13707 13708 if (spec == NULL) { 13709 rval = ENOMEM; 13710 goto out; 13711 } 13712 13713 state->dts_speculations = spec; 13714 state->dts_nspeculations = (int)nspec; 13715 13716 for (i = 0; i < nspec; i++) { 13717 if ((buf = kmem_zalloc(bufsize, 13718 KM_NOSLEEP | KM_NORMALPRI)) == NULL) { 13719 rval = ENOMEM; 13720 goto err; 13721 } 13722 13723 spec[i].dtsp_buffer = buf; 13724 } 13725 13726 if (opt[DTRACEOPT_GRABANON] != DTRACEOPT_UNSET) { 13727 if (dtrace_anon.dta_state == NULL) { 13728 rval = ENOENT; 13729 goto out; 13730 } 13731 13732 if (state->dts_necbs != 0) { 13733 rval = EALREADY; 13734 goto out; 13735 } 13736 13737 state->dts_anon = dtrace_anon_grab(); 13738 ASSERT(state->dts_anon != NULL); 13739 state = state->dts_anon; 13740 13741 /* 13742 * We want "grabanon" to be set in the grabbed state, so we'll 13743 * copy that option value from the grabbing state into the 13744 * grabbed state. 13745 */ 13746 state->dts_options[DTRACEOPT_GRABANON] = 13747 opt[DTRACEOPT_GRABANON]; 13748 13749 *cpu = dtrace_anon.dta_beganon; 13750 13751 /* 13752 * If the anonymous state is active (as it almost certainly 13753 * is if the anonymous enabling ultimately matched anything), 13754 * we don't allow any further option processing -- but we 13755 * don't return failure. 13756 */ 13757 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) 13758 goto out; 13759 } 13760 13761 if (opt[DTRACEOPT_AGGSIZE] != DTRACEOPT_UNSET && 13762 opt[DTRACEOPT_AGGSIZE] != 0) { 13763 if (state->dts_aggregations == NULL) { 13764 /* 13765 * We're not going to create an aggregation buffer 13766 * because we don't have any ECBs that contain 13767 * aggregations -- set this option to 0. 13768 */ 13769 opt[DTRACEOPT_AGGSIZE] = 0; 13770 } else { 13771 /* 13772 * If we have an aggregation buffer, we must also have 13773 * a buffer to use as scratch. 13774 */ 13775 if (opt[DTRACEOPT_BUFSIZE] == DTRACEOPT_UNSET || 13776 opt[DTRACEOPT_BUFSIZE] < state->dts_needed) { 13777 opt[DTRACEOPT_BUFSIZE] = state->dts_needed; 13778 } 13779 } 13780 } 13781 13782 if (opt[DTRACEOPT_SPECSIZE] != DTRACEOPT_UNSET && 13783 opt[DTRACEOPT_SPECSIZE] != 0) { 13784 if (!state->dts_speculates) { 13785 /* 13786 * We're not going to create speculation buffers 13787 * because we don't have any ECBs that actually 13788 * speculate -- set the speculation size to 0. 13789 */ 13790 opt[DTRACEOPT_SPECSIZE] = 0; 13791 } 13792 } 13793 13794 /* 13795 * The bare minimum size for any buffer that we're actually going to 13796 * do anything to is sizeof (uint64_t). 13797 */ 13798 sz = sizeof (uint64_t); 13799 13800 if ((state->dts_needed != 0 && opt[DTRACEOPT_BUFSIZE] < sz) || 13801 (state->dts_speculates && opt[DTRACEOPT_SPECSIZE] < sz) || 13802 (state->dts_aggregations != NULL && opt[DTRACEOPT_AGGSIZE] < sz)) { 13803 /* 13804 * A buffer size has been explicitly set to 0 (or to a size 13805 * that will be adjusted to 0) and we need the space -- we 13806 * need to return failure. We return ENOSPC to differentiate 13807 * it from failing to allocate a buffer due to failure to meet 13808 * the reserve (for which we return E2BIG). 13809 */ 13810 rval = ENOSPC; 13811 goto out; 13812 } 13813 13814 if ((rval = dtrace_state_buffers(state)) != 0) 13815 goto err; 13816 13817 if ((sz = opt[DTRACEOPT_DYNVARSIZE]) == DTRACEOPT_UNSET) 13818 sz = dtrace_dstate_defsize; 13819 13820 do { 13821 rval = dtrace_dstate_init(&state->dts_vstate.dtvs_dynvars, sz); 13822 13823 if (rval == 0) 13824 break; 13825 13826 if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL) 13827 goto err; 13828 } while (sz >>= 1); 13829 13830 opt[DTRACEOPT_DYNVARSIZE] = sz; 13831 13832 if (rval != 0) 13833 goto err; 13834 13835 if (opt[DTRACEOPT_STATUSRATE] > dtrace_statusrate_max) 13836 opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_max; 13837 13838 if (opt[DTRACEOPT_CLEANRATE] == 0) 13839 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max; 13840 13841 if (opt[DTRACEOPT_CLEANRATE] < dtrace_cleanrate_min) 13842 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_min; 13843 13844 if (opt[DTRACEOPT_CLEANRATE] > dtrace_cleanrate_max) 13845 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max; 13846 13847 hdlr.cyh_func = (cyc_func_t)dtrace_state_clean; 13848 hdlr.cyh_arg = state; 13849 hdlr.cyh_level = CY_LOW_LEVEL; 13850 13851 when.cyt_when = 0; 13852 when.cyt_interval = opt[DTRACEOPT_CLEANRATE]; 13853 13854 state->dts_cleaner = cyclic_add(&hdlr, &when); 13855 13856 hdlr.cyh_func = (cyc_func_t)dtrace_state_deadman; 13857 hdlr.cyh_arg = state; 13858 hdlr.cyh_level = CY_LOW_LEVEL; 13859 13860 when.cyt_when = 0; 13861 when.cyt_interval = dtrace_deadman_interval; 13862 13863 state->dts_alive = state->dts_laststatus = dtrace_gethrtime(); 13864 state->dts_deadman = cyclic_add(&hdlr, &when); 13865 13866 state->dts_activity = DTRACE_ACTIVITY_WARMUP; 13867 13868 if (state->dts_getf != 0 && 13869 !(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL)) { 13870 /* 13871 * We don't have kernel privs but we have at least one call 13872 * to getf(); we need to bump our zone's count, and (if 13873 * this is the first enabling to have an unprivileged call 13874 * to getf()) we need to hook into closef(). 13875 */ 13876 state->dts_cred.dcr_cred->cr_zone->zone_dtrace_getf++; 13877 13878 if (dtrace_getf++ == 0) { 13879 ASSERT(dtrace_closef == NULL); 13880 dtrace_closef = dtrace_getf_barrier; 13881 } 13882 } 13883 13884 /* 13885 * Now it's time to actually fire the BEGIN probe. We need to disable 13886 * interrupts here both to record the CPU on which we fired the BEGIN 13887 * probe (the data from this CPU will be processed first at user 13888 * level) and to manually activate the buffer for this CPU. 13889 */ 13890 cookie = dtrace_interrupt_disable(); 13891 *cpu = CPU->cpu_id; 13892 ASSERT(state->dts_buffer[*cpu].dtb_flags & DTRACEBUF_INACTIVE); 13893 state->dts_buffer[*cpu].dtb_flags &= ~DTRACEBUF_INACTIVE; 13894 13895 dtrace_probe(dtrace_probeid_begin, 13896 (uint64_t)(uintptr_t)state, 0, 0, 0, 0); 13897 dtrace_interrupt_enable(cookie); 13898 /* 13899 * We may have had an exit action from a BEGIN probe; only change our 13900 * state to ACTIVE if we're still in WARMUP. 13901 */ 13902 ASSERT(state->dts_activity == DTRACE_ACTIVITY_WARMUP || 13903 state->dts_activity == DTRACE_ACTIVITY_DRAINING); 13904 13905 if (state->dts_activity == DTRACE_ACTIVITY_WARMUP) 13906 state->dts_activity = DTRACE_ACTIVITY_ACTIVE; 13907 13908 /* 13909 * Regardless of whether or not now we're in ACTIVE or DRAINING, we 13910 * want each CPU to transition its principal buffer out of the 13911 * INACTIVE state. Doing this assures that no CPU will suddenly begin 13912 * processing an ECB halfway down a probe's ECB chain; all CPUs will 13913 * atomically transition from processing none of a state's ECBs to 13914 * processing all of them. 13915 */ 13916 dtrace_xcall(DTRACE_CPUALL, 13917 (dtrace_xcall_t)dtrace_buffer_activate, state); 13918 goto out; 13919 13920 err: 13921 dtrace_buffer_free(state->dts_buffer); 13922 dtrace_buffer_free(state->dts_aggbuffer); 13923 13924 if ((nspec = state->dts_nspeculations) == 0) { 13925 ASSERT(state->dts_speculations == NULL); 13926 goto out; 13927 } 13928 13929 spec = state->dts_speculations; 13930 ASSERT(spec != NULL); 13931 13932 for (i = 0; i < state->dts_nspeculations; i++) { 13933 if ((buf = spec[i].dtsp_buffer) == NULL) 13934 break; 13935 13936 dtrace_buffer_free(buf); 13937 kmem_free(buf, bufsize); 13938 } 13939 13940 kmem_free(spec, nspec * sizeof (dtrace_speculation_t)); 13941 state->dts_nspeculations = 0; 13942 state->dts_speculations = NULL; 13943 13944 out: 13945 mutex_exit(&dtrace_lock); 13946 mutex_exit(&cpu_lock); 13947 13948 return (rval); 13949 } 13950 13951 static int 13952 dtrace_state_stop(dtrace_state_t *state, processorid_t *cpu) 13953 { 13954 dtrace_icookie_t cookie; 13955 13956 ASSERT(MUTEX_HELD(&dtrace_lock)); 13957 13958 if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE && 13959 state->dts_activity != DTRACE_ACTIVITY_DRAINING) 13960 return (EINVAL); 13961 13962 /* 13963 * We'll set the activity to DTRACE_ACTIVITY_DRAINING, and issue a sync 13964 * to be sure that every CPU has seen it. See below for the details 13965 * on why this is done. 13966 */ 13967 state->dts_activity = DTRACE_ACTIVITY_DRAINING; 13968 dtrace_sync(); 13969 13970 /* 13971 * By this point, it is impossible for any CPU to be still processing 13972 * with DTRACE_ACTIVITY_ACTIVE. We can thus set our activity to 13973 * DTRACE_ACTIVITY_COOLDOWN and know that we're not racing with any 13974 * other CPU in dtrace_buffer_reserve(). This allows dtrace_probe() 13975 * and callees to know that the activity is DTRACE_ACTIVITY_COOLDOWN 13976 * iff we're in the END probe. 13977 */ 13978 state->dts_activity = DTRACE_ACTIVITY_COOLDOWN; 13979 dtrace_sync(); 13980 ASSERT(state->dts_activity == DTRACE_ACTIVITY_COOLDOWN); 13981 13982 /* 13983 * Finally, we can release the reserve and call the END probe. We 13984 * disable interrupts across calling the END probe to allow us to 13985 * return the CPU on which we actually called the END probe. This 13986 * allows user-land to be sure that this CPU's principal buffer is 13987 * processed last. 13988 */ 13989 state->dts_reserve = 0; 13990 13991 cookie = dtrace_interrupt_disable(); 13992 *cpu = CPU->cpu_id; 13993 dtrace_probe(dtrace_probeid_end, 13994 (uint64_t)(uintptr_t)state, 0, 0, 0, 0); 13995 dtrace_interrupt_enable(cookie); 13996 13997 state->dts_activity = DTRACE_ACTIVITY_STOPPED; 13998 dtrace_sync(); 13999 14000 if (state->dts_getf != 0 && 14001 !(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL)) { 14002 /* 14003 * We don't have kernel privs but we have at least one call 14004 * to getf(); we need to lower our zone's count, and (if 14005 * this is the last enabling to have an unprivileged call 14006 * to getf()) we need to clear the closef() hook. 14007 */ 14008 ASSERT(state->dts_cred.dcr_cred->cr_zone->zone_dtrace_getf > 0); 14009 ASSERT(dtrace_closef == dtrace_getf_barrier); 14010 ASSERT(dtrace_getf > 0); 14011 14012 state->dts_cred.dcr_cred->cr_zone->zone_dtrace_getf--; 14013 14014 if (--dtrace_getf == 0) 14015 dtrace_closef = NULL; 14016 } 14017 14018 return (0); 14019 } 14020 14021 static int 14022 dtrace_state_option(dtrace_state_t *state, dtrace_optid_t option, 14023 dtrace_optval_t val) 14024 { 14025 ASSERT(MUTEX_HELD(&dtrace_lock)); 14026 14027 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) 14028 return (EBUSY); 14029 14030 if (option >= DTRACEOPT_MAX) 14031 return (EINVAL); 14032 14033 if (option != DTRACEOPT_CPU && val < 0) 14034 return (EINVAL); 14035 14036 switch (option) { 14037 case DTRACEOPT_DESTRUCTIVE: 14038 if (dtrace_destructive_disallow) 14039 return (EACCES); 14040 14041 state->dts_cred.dcr_destructive = 1; 14042 break; 14043 14044 case DTRACEOPT_BUFSIZE: 14045 case DTRACEOPT_DYNVARSIZE: 14046 case DTRACEOPT_AGGSIZE: 14047 case DTRACEOPT_SPECSIZE: 14048 case DTRACEOPT_STRSIZE: 14049 if (val < 0) 14050 return (EINVAL); 14051 14052 if (val >= LONG_MAX) { 14053 /* 14054 * If this is an otherwise negative value, set it to 14055 * the highest multiple of 128m less than LONG_MAX. 14056 * Technically, we're adjusting the size without 14057 * regard to the buffer resizing policy, but in fact, 14058 * this has no effect -- if we set the buffer size to 14059 * ~LONG_MAX and the buffer policy is ultimately set to 14060 * be "manual", the buffer allocation is guaranteed to 14061 * fail, if only because the allocation requires two 14062 * buffers. (We set the the size to the highest 14063 * multiple of 128m because it ensures that the size 14064 * will remain a multiple of a megabyte when 14065 * repeatedly halved -- all the way down to 15m.) 14066 */ 14067 val = LONG_MAX - (1 << 27) + 1; 14068 } 14069 } 14070 14071 state->dts_options[option] = val; 14072 14073 return (0); 14074 } 14075 14076 static void 14077 dtrace_state_destroy(dtrace_state_t *state) 14078 { 14079 dtrace_ecb_t *ecb; 14080 dtrace_vstate_t *vstate = &state->dts_vstate; 14081 minor_t minor = getminor(state->dts_dev); 14082 int i, bufsize = NCPU * sizeof (dtrace_buffer_t); 14083 dtrace_speculation_t *spec = state->dts_speculations; 14084 int nspec = state->dts_nspeculations; 14085 uint32_t match; 14086 14087 ASSERT(MUTEX_HELD(&dtrace_lock)); 14088 ASSERT(MUTEX_HELD(&cpu_lock)); 14089 14090 /* 14091 * First, retract any retained enablings for this state. 14092 */ 14093 dtrace_enabling_retract(state); 14094 ASSERT(state->dts_nretained == 0); 14095 14096 if (state->dts_activity == DTRACE_ACTIVITY_ACTIVE || 14097 state->dts_activity == DTRACE_ACTIVITY_DRAINING) { 14098 /* 14099 * We have managed to come into dtrace_state_destroy() on a 14100 * hot enabling -- almost certainly because of a disorderly 14101 * shutdown of a consumer. (That is, a consumer that is 14102 * exiting without having called dtrace_stop().) In this case, 14103 * we're going to set our activity to be KILLED, and then 14104 * issue a sync to be sure that everyone is out of probe 14105 * context before we start blowing away ECBs. 14106 */ 14107 state->dts_activity = DTRACE_ACTIVITY_KILLED; 14108 dtrace_sync(); 14109 } 14110 14111 /* 14112 * Release the credential hold we took in dtrace_state_create(). 14113 */ 14114 if (state->dts_cred.dcr_cred != NULL) 14115 crfree(state->dts_cred.dcr_cred); 14116 14117 /* 14118 * Now we can safely disable and destroy any enabled probes. Because 14119 * any DTRACE_PRIV_KERNEL probes may actually be slowing our progress 14120 * (especially if they're all enabled), we take two passes through the 14121 * ECBs: in the first, we disable just DTRACE_PRIV_KERNEL probes, and 14122 * in the second we disable whatever is left over. 14123 */ 14124 for (match = DTRACE_PRIV_KERNEL; ; match = 0) { 14125 for (i = 0; i < state->dts_necbs; i++) { 14126 if ((ecb = state->dts_ecbs[i]) == NULL) 14127 continue; 14128 14129 if (match && ecb->dte_probe != NULL) { 14130 dtrace_probe_t *probe = ecb->dte_probe; 14131 dtrace_provider_t *prov = probe->dtpr_provider; 14132 14133 if (!(prov->dtpv_priv.dtpp_flags & match)) 14134 continue; 14135 } 14136 14137 dtrace_ecb_disable(ecb); 14138 dtrace_ecb_destroy(ecb); 14139 } 14140 14141 if (!match) 14142 break; 14143 } 14144 14145 /* 14146 * Before we free the buffers, perform one more sync to assure that 14147 * every CPU is out of probe context. 14148 */ 14149 dtrace_sync(); 14150 14151 dtrace_buffer_free(state->dts_buffer); 14152 dtrace_buffer_free(state->dts_aggbuffer); 14153 14154 for (i = 0; i < nspec; i++) 14155 dtrace_buffer_free(spec[i].dtsp_buffer); 14156 14157 if (state->dts_cleaner != CYCLIC_NONE) 14158 cyclic_remove(state->dts_cleaner); 14159 14160 if (state->dts_deadman != CYCLIC_NONE) 14161 cyclic_remove(state->dts_deadman); 14162 14163 dtrace_dstate_fini(&vstate->dtvs_dynvars); 14164 dtrace_vstate_fini(vstate); 14165 kmem_free(state->dts_ecbs, state->dts_necbs * sizeof (dtrace_ecb_t *)); 14166 14167 if (state->dts_aggregations != NULL) { 14168 #ifdef DEBUG 14169 for (i = 0; i < state->dts_naggregations; i++) 14170 ASSERT(state->dts_aggregations[i] == NULL); 14171 #endif 14172 ASSERT(state->dts_naggregations > 0); 14173 kmem_free(state->dts_aggregations, 14174 state->dts_naggregations * sizeof (dtrace_aggregation_t *)); 14175 } 14176 14177 kmem_free(state->dts_buffer, bufsize); 14178 kmem_free(state->dts_aggbuffer, bufsize); 14179 14180 for (i = 0; i < nspec; i++) 14181 kmem_free(spec[i].dtsp_buffer, bufsize); 14182 14183 kmem_free(spec, nspec * sizeof (dtrace_speculation_t)); 14184 14185 dtrace_format_destroy(state); 14186 14187 vmem_destroy(state->dts_aggid_arena); 14188 ddi_soft_state_free(dtrace_softstate, minor); 14189 vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1); 14190 } 14191 14192 /* 14193 * DTrace Anonymous Enabling Functions 14194 */ 14195 static dtrace_state_t * 14196 dtrace_anon_grab(void) 14197 { 14198 dtrace_state_t *state; 14199 14200 ASSERT(MUTEX_HELD(&dtrace_lock)); 14201 14202 if ((state = dtrace_anon.dta_state) == NULL) { 14203 ASSERT(dtrace_anon.dta_enabling == NULL); 14204 return (NULL); 14205 } 14206 14207 ASSERT(dtrace_anon.dta_enabling != NULL); 14208 ASSERT(dtrace_retained != NULL); 14209 14210 dtrace_enabling_destroy(dtrace_anon.dta_enabling); 14211 dtrace_anon.dta_enabling = NULL; 14212 dtrace_anon.dta_state = NULL; 14213 14214 return (state); 14215 } 14216 14217 static void 14218 dtrace_anon_property(void) 14219 { 14220 int i, rv; 14221 dtrace_state_t *state; 14222 dof_hdr_t *dof; 14223 char c[32]; /* enough for "dof-data-" + digits */ 14224 14225 ASSERT(MUTEX_HELD(&dtrace_lock)); 14226 ASSERT(MUTEX_HELD(&cpu_lock)); 14227 14228 for (i = 0; ; i++) { 14229 (void) snprintf(c, sizeof (c), "dof-data-%d", i); 14230 14231 dtrace_err_verbose = 1; 14232 14233 if ((dof = dtrace_dof_property(c)) == NULL) { 14234 dtrace_err_verbose = 0; 14235 break; 14236 } 14237 14238 /* 14239 * We want to create anonymous state, so we need to transition 14240 * the kernel debugger to indicate that DTrace is active. If 14241 * this fails (e.g. because the debugger has modified text in 14242 * some way), we won't continue with the processing. 14243 */ 14244 if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) { 14245 cmn_err(CE_NOTE, "kernel debugger active; anonymous " 14246 "enabling ignored."); 14247 dtrace_dof_destroy(dof); 14248 break; 14249 } 14250 14251 /* 14252 * If we haven't allocated an anonymous state, we'll do so now. 14253 */ 14254 if ((state = dtrace_anon.dta_state) == NULL) { 14255 state = dtrace_state_create(NULL, NULL); 14256 dtrace_anon.dta_state = state; 14257 14258 if (state == NULL) { 14259 /* 14260 * This basically shouldn't happen: the only 14261 * failure mode from dtrace_state_create() is a 14262 * failure of ddi_soft_state_zalloc() that 14263 * itself should never happen. Still, the 14264 * interface allows for a failure mode, and 14265 * we want to fail as gracefully as possible: 14266 * we'll emit an error message and cease 14267 * processing anonymous state in this case. 14268 */ 14269 cmn_err(CE_WARN, "failed to create " 14270 "anonymous state"); 14271 dtrace_dof_destroy(dof); 14272 break; 14273 } 14274 } 14275 14276 rv = dtrace_dof_slurp(dof, &state->dts_vstate, CRED(), 14277 &dtrace_anon.dta_enabling, 0, B_TRUE); 14278 14279 if (rv == 0) 14280 rv = dtrace_dof_options(dof, state); 14281 14282 dtrace_err_verbose = 0; 14283 dtrace_dof_destroy(dof); 14284 14285 if (rv != 0) { 14286 /* 14287 * This is malformed DOF; chuck any anonymous state 14288 * that we created. 14289 */ 14290 ASSERT(dtrace_anon.dta_enabling == NULL); 14291 dtrace_state_destroy(state); 14292 dtrace_anon.dta_state = NULL; 14293 break; 14294 } 14295 14296 ASSERT(dtrace_anon.dta_enabling != NULL); 14297 } 14298 14299 if (dtrace_anon.dta_enabling != NULL) { 14300 int rval; 14301 14302 /* 14303 * dtrace_enabling_retain() can only fail because we are 14304 * trying to retain more enablings than are allowed -- but 14305 * we only have one anonymous enabling, and we are guaranteed 14306 * to be allowed at least one retained enabling; we assert 14307 * that dtrace_enabling_retain() returns success. 14308 */ 14309 rval = dtrace_enabling_retain(dtrace_anon.dta_enabling); 14310 ASSERT(rval == 0); 14311 14312 dtrace_enabling_dump(dtrace_anon.dta_enabling); 14313 } 14314 } 14315 14316 /* 14317 * DTrace Helper Functions 14318 */ 14319 static void 14320 dtrace_helper_trace(dtrace_helper_action_t *helper, 14321 dtrace_mstate_t *mstate, dtrace_vstate_t *vstate, int where) 14322 { 14323 uint32_t size, next, nnext, i; 14324 dtrace_helptrace_t *ent; 14325 uint16_t flags = cpu_core[CPU->cpu_id].cpuc_dtrace_flags; 14326 14327 if (!dtrace_helptrace_enabled) 14328 return; 14329 14330 ASSERT(vstate->dtvs_nlocals <= dtrace_helptrace_nlocals); 14331 14332 /* 14333 * What would a tracing framework be without its own tracing 14334 * framework? (Well, a hell of a lot simpler, for starters...) 14335 */ 14336 size = sizeof (dtrace_helptrace_t) + dtrace_helptrace_nlocals * 14337 sizeof (uint64_t) - sizeof (uint64_t); 14338 14339 /* 14340 * Iterate until we can allocate a slot in the trace buffer. 14341 */ 14342 do { 14343 next = dtrace_helptrace_next; 14344 14345 if (next + size < dtrace_helptrace_bufsize) { 14346 nnext = next + size; 14347 } else { 14348 nnext = size; 14349 } 14350 } while (dtrace_cas32(&dtrace_helptrace_next, next, nnext) != next); 14351 14352 /* 14353 * We have our slot; fill it in. 14354 */ 14355 if (nnext == size) 14356 next = 0; 14357 14358 ent = (dtrace_helptrace_t *)&dtrace_helptrace_buffer[next]; 14359 ent->dtht_helper = helper; 14360 ent->dtht_where = where; 14361 ent->dtht_nlocals = vstate->dtvs_nlocals; 14362 14363 ent->dtht_fltoffs = (mstate->dtms_present & DTRACE_MSTATE_FLTOFFS) ? 14364 mstate->dtms_fltoffs : -1; 14365 ent->dtht_fault = DTRACE_FLAGS2FLT(flags); 14366 ent->dtht_illval = cpu_core[CPU->cpu_id].cpuc_dtrace_illval; 14367 14368 for (i = 0; i < vstate->dtvs_nlocals; i++) { 14369 dtrace_statvar_t *svar; 14370 14371 if ((svar = vstate->dtvs_locals[i]) == NULL) 14372 continue; 14373 14374 ASSERT(svar->dtsv_size >= NCPU * sizeof (uint64_t)); 14375 ent->dtht_locals[i] = 14376 ((uint64_t *)(uintptr_t)svar->dtsv_data)[CPU->cpu_id]; 14377 } 14378 } 14379 14380 static uint64_t 14381 dtrace_helper(int which, dtrace_mstate_t *mstate, 14382 dtrace_state_t *state, uint64_t arg0, uint64_t arg1) 14383 { 14384 uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags; 14385 uint64_t sarg0 = mstate->dtms_arg[0]; 14386 uint64_t sarg1 = mstate->dtms_arg[1]; 14387 uint64_t rval; 14388 dtrace_helpers_t *helpers = curproc->p_dtrace_helpers; 14389 dtrace_helper_action_t *helper; 14390 dtrace_vstate_t *vstate; 14391 dtrace_difo_t *pred; 14392 int i, trace = dtrace_helptrace_enabled; 14393 14394 ASSERT(which >= 0 && which < DTRACE_NHELPER_ACTIONS); 14395 14396 if (helpers == NULL) 14397 return (0); 14398 14399 if ((helper = helpers->dthps_actions[which]) == NULL) 14400 return (0); 14401 14402 vstate = &helpers->dthps_vstate; 14403 mstate->dtms_arg[0] = arg0; 14404 mstate->dtms_arg[1] = arg1; 14405 14406 /* 14407 * Now iterate over each helper. If its predicate evaluates to 'true', 14408 * we'll call the corresponding actions. Note that the below calls 14409 * to dtrace_dif_emulate() may set faults in machine state. This is 14410 * okay: our caller (the outer dtrace_dif_emulate()) will simply plow 14411 * the stored DIF offset with its own (which is the desired behavior). 14412 * Also, note the calls to dtrace_dif_emulate() may allocate scratch 14413 * from machine state; this is okay, too. 14414 */ 14415 for (; helper != NULL; helper = helper->dtha_next) { 14416 if ((pred = helper->dtha_predicate) != NULL) { 14417 if (trace) 14418 dtrace_helper_trace(helper, mstate, vstate, 0); 14419 14420 if (!dtrace_dif_emulate(pred, mstate, vstate, state)) 14421 goto next; 14422 14423 if (*flags & CPU_DTRACE_FAULT) 14424 goto err; 14425 } 14426 14427 for (i = 0; i < helper->dtha_nactions; i++) { 14428 if (trace) 14429 dtrace_helper_trace(helper, 14430 mstate, vstate, i + 1); 14431 14432 rval = dtrace_dif_emulate(helper->dtha_actions[i], 14433 mstate, vstate, state); 14434 14435 if (*flags & CPU_DTRACE_FAULT) 14436 goto err; 14437 } 14438 14439 next: 14440 if (trace) 14441 dtrace_helper_trace(helper, mstate, vstate, 14442 DTRACE_HELPTRACE_NEXT); 14443 } 14444 14445 if (trace) 14446 dtrace_helper_trace(helper, mstate, vstate, 14447 DTRACE_HELPTRACE_DONE); 14448 14449 /* 14450 * Restore the arg0 that we saved upon entry. 14451 */ 14452 mstate->dtms_arg[0] = sarg0; 14453 mstate->dtms_arg[1] = sarg1; 14454 14455 return (rval); 14456 14457 err: 14458 if (trace) 14459 dtrace_helper_trace(helper, mstate, vstate, 14460 DTRACE_HELPTRACE_ERR); 14461 14462 /* 14463 * Restore the arg0 that we saved upon entry. 14464 */ 14465 mstate->dtms_arg[0] = sarg0; 14466 mstate->dtms_arg[1] = sarg1; 14467 14468 return (NULL); 14469 } 14470 14471 static void 14472 dtrace_helper_action_destroy(dtrace_helper_action_t *helper, 14473 dtrace_vstate_t *vstate) 14474 { 14475 int i; 14476 14477 if (helper->dtha_predicate != NULL) 14478 dtrace_difo_release(helper->dtha_predicate, vstate); 14479 14480 for (i = 0; i < helper->dtha_nactions; i++) { 14481 ASSERT(helper->dtha_actions[i] != NULL); 14482 dtrace_difo_release(helper->dtha_actions[i], vstate); 14483 } 14484 14485 kmem_free(helper->dtha_actions, 14486 helper->dtha_nactions * sizeof (dtrace_difo_t *)); 14487 kmem_free(helper, sizeof (dtrace_helper_action_t)); 14488 } 14489 14490 static int 14491 dtrace_helper_destroygen(int gen) 14492 { 14493 proc_t *p = curproc; 14494 dtrace_helpers_t *help = p->p_dtrace_helpers; 14495 dtrace_vstate_t *vstate; 14496 int i; 14497 14498 ASSERT(MUTEX_HELD(&dtrace_lock)); 14499 14500 if (help == NULL || gen > help->dthps_generation) 14501 return (EINVAL); 14502 14503 vstate = &help->dthps_vstate; 14504 14505 for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) { 14506 dtrace_helper_action_t *last = NULL, *h, *next; 14507 14508 for (h = help->dthps_actions[i]; h != NULL; h = next) { 14509 next = h->dtha_next; 14510 14511 if (h->dtha_generation == gen) { 14512 if (last != NULL) { 14513 last->dtha_next = next; 14514 } else { 14515 help->dthps_actions[i] = next; 14516 } 14517 14518 dtrace_helper_action_destroy(h, vstate); 14519 } else { 14520 last = h; 14521 } 14522 } 14523 } 14524 14525 /* 14526 * Interate until we've cleared out all helper providers with the 14527 * given generation number. 14528 */ 14529 for (;;) { 14530 dtrace_helper_provider_t *prov; 14531 14532 /* 14533 * Look for a helper provider with the right generation. We 14534 * have to start back at the beginning of the list each time 14535 * because we drop dtrace_lock. It's unlikely that we'll make 14536 * more than two passes. 14537 */ 14538 for (i = 0; i < help->dthps_nprovs; i++) { 14539 prov = help->dthps_provs[i]; 14540 14541 if (prov->dthp_generation == gen) 14542 break; 14543 } 14544 14545 /* 14546 * If there were no matches, we're done. 14547 */ 14548 if (i == help->dthps_nprovs) 14549 break; 14550 14551 /* 14552 * Move the last helper provider into this slot. 14553 */ 14554 help->dthps_nprovs--; 14555 help->dthps_provs[i] = help->dthps_provs[help->dthps_nprovs]; 14556 help->dthps_provs[help->dthps_nprovs] = NULL; 14557 14558 mutex_exit(&dtrace_lock); 14559 14560 /* 14561 * If we have a meta provider, remove this helper provider. 14562 */ 14563 mutex_enter(&dtrace_meta_lock); 14564 if (dtrace_meta_pid != NULL) { 14565 ASSERT(dtrace_deferred_pid == NULL); 14566 dtrace_helper_provider_remove(&prov->dthp_prov, 14567 p->p_pid); 14568 } 14569 mutex_exit(&dtrace_meta_lock); 14570 14571 dtrace_helper_provider_destroy(prov); 14572 14573 mutex_enter(&dtrace_lock); 14574 } 14575 14576 return (0); 14577 } 14578 14579 static int 14580 dtrace_helper_validate(dtrace_helper_action_t *helper) 14581 { 14582 int err = 0, i; 14583 dtrace_difo_t *dp; 14584 14585 if ((dp = helper->dtha_predicate) != NULL) 14586 err += dtrace_difo_validate_helper(dp); 14587 14588 for (i = 0; i < helper->dtha_nactions; i++) 14589 err += dtrace_difo_validate_helper(helper->dtha_actions[i]); 14590 14591 return (err == 0); 14592 } 14593 14594 static int 14595 dtrace_helper_action_add(int which, dtrace_ecbdesc_t *ep) 14596 { 14597 dtrace_helpers_t *help; 14598 dtrace_helper_action_t *helper, *last; 14599 dtrace_actdesc_t *act; 14600 dtrace_vstate_t *vstate; 14601 dtrace_predicate_t *pred; 14602 int count = 0, nactions = 0, i; 14603 14604 if (which < 0 || which >= DTRACE_NHELPER_ACTIONS) 14605 return (EINVAL); 14606 14607 help = curproc->p_dtrace_helpers; 14608 last = help->dthps_actions[which]; 14609 vstate = &help->dthps_vstate; 14610 14611 for (count = 0; last != NULL; last = last->dtha_next) { 14612 count++; 14613 if (last->dtha_next == NULL) 14614 break; 14615 } 14616 14617 /* 14618 * If we already have dtrace_helper_actions_max helper actions for this 14619 * helper action type, we'll refuse to add a new one. 14620 */ 14621 if (count >= dtrace_helper_actions_max) 14622 return (ENOSPC); 14623 14624 helper = kmem_zalloc(sizeof (dtrace_helper_action_t), KM_SLEEP); 14625 helper->dtha_generation = help->dthps_generation; 14626 14627 if ((pred = ep->dted_pred.dtpdd_predicate) != NULL) { 14628 ASSERT(pred->dtp_difo != NULL); 14629 dtrace_difo_hold(pred->dtp_difo); 14630 helper->dtha_predicate = pred->dtp_difo; 14631 } 14632 14633 for (act = ep->dted_action; act != NULL; act = act->dtad_next) { 14634 if (act->dtad_kind != DTRACEACT_DIFEXPR) 14635 goto err; 14636 14637 if (act->dtad_difo == NULL) 14638 goto err; 14639 14640 nactions++; 14641 } 14642 14643 helper->dtha_actions = kmem_zalloc(sizeof (dtrace_difo_t *) * 14644 (helper->dtha_nactions = nactions), KM_SLEEP); 14645 14646 for (act = ep->dted_action, i = 0; act != NULL; act = act->dtad_next) { 14647 dtrace_difo_hold(act->dtad_difo); 14648 helper->dtha_actions[i++] = act->dtad_difo; 14649 } 14650 14651 if (!dtrace_helper_validate(helper)) 14652 goto err; 14653 14654 if (last == NULL) { 14655 help->dthps_actions[which] = helper; 14656 } else { 14657 last->dtha_next = helper; 14658 } 14659 14660 if (vstate->dtvs_nlocals > dtrace_helptrace_nlocals) { 14661 dtrace_helptrace_nlocals = vstate->dtvs_nlocals; 14662 dtrace_helptrace_next = 0; 14663 } 14664 14665 return (0); 14666 err: 14667 dtrace_helper_action_destroy(helper, vstate); 14668 return (EINVAL); 14669 } 14670 14671 static void 14672 dtrace_helper_provider_register(proc_t *p, dtrace_helpers_t *help, 14673 dof_helper_t *dofhp) 14674 { 14675 ASSERT(MUTEX_NOT_HELD(&dtrace_lock)); 14676 14677 mutex_enter(&dtrace_meta_lock); 14678 mutex_enter(&dtrace_lock); 14679 14680 if (!dtrace_attached() || dtrace_meta_pid == NULL) { 14681 /* 14682 * If the dtrace module is loaded but not attached, or if 14683 * there aren't isn't a meta provider registered to deal with 14684 * these provider descriptions, we need to postpone creating 14685 * the actual providers until later. 14686 */ 14687 14688 if (help->dthps_next == NULL && help->dthps_prev == NULL && 14689 dtrace_deferred_pid != help) { 14690 help->dthps_deferred = 1; 14691 help->dthps_pid = p->p_pid; 14692 help->dthps_next = dtrace_deferred_pid; 14693 help->dthps_prev = NULL; 14694 if (dtrace_deferred_pid != NULL) 14695 dtrace_deferred_pid->dthps_prev = help; 14696 dtrace_deferred_pid = help; 14697 } 14698 14699 mutex_exit(&dtrace_lock); 14700 14701 } else if (dofhp != NULL) { 14702 /* 14703 * If the dtrace module is loaded and we have a particular 14704 * helper provider description, pass that off to the 14705 * meta provider. 14706 */ 14707 14708 mutex_exit(&dtrace_lock); 14709 14710 dtrace_helper_provide(dofhp, p->p_pid); 14711 14712 } else { 14713 /* 14714 * Otherwise, just pass all the helper provider descriptions 14715 * off to the meta provider. 14716 */ 14717 14718 int i; 14719 mutex_exit(&dtrace_lock); 14720 14721 for (i = 0; i < help->dthps_nprovs; i++) { 14722 dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov, 14723 p->p_pid); 14724 } 14725 } 14726 14727 mutex_exit(&dtrace_meta_lock); 14728 } 14729 14730 static int 14731 dtrace_helper_provider_add(dof_helper_t *dofhp, int gen) 14732 { 14733 dtrace_helpers_t *help; 14734 dtrace_helper_provider_t *hprov, **tmp_provs; 14735 uint_t tmp_maxprovs, i; 14736 14737 ASSERT(MUTEX_HELD(&dtrace_lock)); 14738 14739 help = curproc->p_dtrace_helpers; 14740 ASSERT(help != NULL); 14741 14742 /* 14743 * If we already have dtrace_helper_providers_max helper providers, 14744 * we're refuse to add a new one. 14745 */ 14746 if (help->dthps_nprovs >= dtrace_helper_providers_max) 14747 return (ENOSPC); 14748 14749 /* 14750 * Check to make sure this isn't a duplicate. 14751 */ 14752 for (i = 0; i < help->dthps_nprovs; i++) { 14753 if (dofhp->dofhp_dof == 14754 help->dthps_provs[i]->dthp_prov.dofhp_dof) 14755 return (EALREADY); 14756 } 14757 14758 hprov = kmem_zalloc(sizeof (dtrace_helper_provider_t), KM_SLEEP); 14759 hprov->dthp_prov = *dofhp; 14760 hprov->dthp_ref = 1; 14761 hprov->dthp_generation = gen; 14762 14763 /* 14764 * Allocate a bigger table for helper providers if it's already full. 14765 */ 14766 if (help->dthps_maxprovs == help->dthps_nprovs) { 14767 tmp_maxprovs = help->dthps_maxprovs; 14768 tmp_provs = help->dthps_provs; 14769 14770 if (help->dthps_maxprovs == 0) 14771 help->dthps_maxprovs = 2; 14772 else 14773 help->dthps_maxprovs *= 2; 14774 if (help->dthps_maxprovs > dtrace_helper_providers_max) 14775 help->dthps_maxprovs = dtrace_helper_providers_max; 14776 14777 ASSERT(tmp_maxprovs < help->dthps_maxprovs); 14778 14779 help->dthps_provs = kmem_zalloc(help->dthps_maxprovs * 14780 sizeof (dtrace_helper_provider_t *), KM_SLEEP); 14781 14782 if (tmp_provs != NULL) { 14783 bcopy(tmp_provs, help->dthps_provs, tmp_maxprovs * 14784 sizeof (dtrace_helper_provider_t *)); 14785 kmem_free(tmp_provs, tmp_maxprovs * 14786 sizeof (dtrace_helper_provider_t *)); 14787 } 14788 } 14789 14790 help->dthps_provs[help->dthps_nprovs] = hprov; 14791 help->dthps_nprovs++; 14792 14793 return (0); 14794 } 14795 14796 static void 14797 dtrace_helper_provider_destroy(dtrace_helper_provider_t *hprov) 14798 { 14799 mutex_enter(&dtrace_lock); 14800 14801 if (--hprov->dthp_ref == 0) { 14802 dof_hdr_t *dof; 14803 mutex_exit(&dtrace_lock); 14804 dof = (dof_hdr_t *)(uintptr_t)hprov->dthp_prov.dofhp_dof; 14805 dtrace_dof_destroy(dof); 14806 kmem_free(hprov, sizeof (dtrace_helper_provider_t)); 14807 } else { 14808 mutex_exit(&dtrace_lock); 14809 } 14810 } 14811 14812 static int 14813 dtrace_helper_provider_validate(dof_hdr_t *dof, dof_sec_t *sec) 14814 { 14815 uintptr_t daddr = (uintptr_t)dof; 14816 dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec; 14817 dof_provider_t *provider; 14818 dof_probe_t *probe; 14819 uint8_t *arg; 14820 char *strtab, *typestr; 14821 dof_stridx_t typeidx; 14822 size_t typesz; 14823 uint_t nprobes, j, k; 14824 14825 ASSERT(sec->dofs_type == DOF_SECT_PROVIDER); 14826 14827 if (sec->dofs_offset & (sizeof (uint_t) - 1)) { 14828 dtrace_dof_error(dof, "misaligned section offset"); 14829 return (-1); 14830 } 14831 14832 /* 14833 * The section needs to be large enough to contain the DOF provider 14834 * structure appropriate for the given version. 14835 */ 14836 if (sec->dofs_size < 14837 ((dof->dofh_ident[DOF_ID_VERSION] == DOF_VERSION_1) ? 14838 offsetof(dof_provider_t, dofpv_prenoffs) : 14839 sizeof (dof_provider_t))) { 14840 dtrace_dof_error(dof, "provider section too small"); 14841 return (-1); 14842 } 14843 14844 provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset); 14845 str_sec = dtrace_dof_sect(dof, DOF_SECT_STRTAB, provider->dofpv_strtab); 14846 prb_sec = dtrace_dof_sect(dof, DOF_SECT_PROBES, provider->dofpv_probes); 14847 arg_sec = dtrace_dof_sect(dof, DOF_SECT_PRARGS, provider->dofpv_prargs); 14848 off_sec = dtrace_dof_sect(dof, DOF_SECT_PROFFS, provider->dofpv_proffs); 14849 14850 if (str_sec == NULL || prb_sec == NULL || 14851 arg_sec == NULL || off_sec == NULL) 14852 return (-1); 14853 14854 enoff_sec = NULL; 14855 14856 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 && 14857 provider->dofpv_prenoffs != DOF_SECT_NONE && 14858 (enoff_sec = dtrace_dof_sect(dof, DOF_SECT_PRENOFFS, 14859 provider->dofpv_prenoffs)) == NULL) 14860 return (-1); 14861 14862 strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset); 14863 14864 if (provider->dofpv_name >= str_sec->dofs_size || 14865 strlen(strtab + provider->dofpv_name) >= DTRACE_PROVNAMELEN) { 14866 dtrace_dof_error(dof, "invalid provider name"); 14867 return (-1); 14868 } 14869 14870 if (prb_sec->dofs_entsize == 0 || 14871 prb_sec->dofs_entsize > prb_sec->dofs_size) { 14872 dtrace_dof_error(dof, "invalid entry size"); 14873 return (-1); 14874 } 14875 14876 if (prb_sec->dofs_entsize & (sizeof (uintptr_t) - 1)) { 14877 dtrace_dof_error(dof, "misaligned entry size"); 14878 return (-1); 14879 } 14880 14881 if (off_sec->dofs_entsize != sizeof (uint32_t)) { 14882 dtrace_dof_error(dof, "invalid entry size"); 14883 return (-1); 14884 } 14885 14886 if (off_sec->dofs_offset & (sizeof (uint32_t) - 1)) { 14887 dtrace_dof_error(dof, "misaligned section offset"); 14888 return (-1); 14889 } 14890 14891 if (arg_sec->dofs_entsize != sizeof (uint8_t)) { 14892 dtrace_dof_error(dof, "invalid entry size"); 14893 return (-1); 14894 } 14895 14896 arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset); 14897 14898 nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize; 14899 14900 /* 14901 * Take a pass through the probes to check for errors. 14902 */ 14903 for (j = 0; j < nprobes; j++) { 14904 probe = (dof_probe_t *)(uintptr_t)(daddr + 14905 prb_sec->dofs_offset + j * prb_sec->dofs_entsize); 14906 14907 if (probe->dofpr_func >= str_sec->dofs_size) { 14908 dtrace_dof_error(dof, "invalid function name"); 14909 return (-1); 14910 } 14911 14912 if (strlen(strtab + probe->dofpr_func) >= DTRACE_FUNCNAMELEN) { 14913 dtrace_dof_error(dof, "function name too long"); 14914 return (-1); 14915 } 14916 14917 if (probe->dofpr_name >= str_sec->dofs_size || 14918 strlen(strtab + probe->dofpr_name) >= DTRACE_NAMELEN) { 14919 dtrace_dof_error(dof, "invalid probe name"); 14920 return (-1); 14921 } 14922 14923 /* 14924 * The offset count must not wrap the index, and the offsets 14925 * must also not overflow the section's data. 14926 */ 14927 if (probe->dofpr_offidx + probe->dofpr_noffs < 14928 probe->dofpr_offidx || 14929 (probe->dofpr_offidx + probe->dofpr_noffs) * 14930 off_sec->dofs_entsize > off_sec->dofs_size) { 14931 dtrace_dof_error(dof, "invalid probe offset"); 14932 return (-1); 14933 } 14934 14935 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1) { 14936 /* 14937 * If there's no is-enabled offset section, make sure 14938 * there aren't any is-enabled offsets. Otherwise 14939 * perform the same checks as for probe offsets 14940 * (immediately above). 14941 */ 14942 if (enoff_sec == NULL) { 14943 if (probe->dofpr_enoffidx != 0 || 14944 probe->dofpr_nenoffs != 0) { 14945 dtrace_dof_error(dof, "is-enabled " 14946 "offsets with null section"); 14947 return (-1); 14948 } 14949 } else if (probe->dofpr_enoffidx + 14950 probe->dofpr_nenoffs < probe->dofpr_enoffidx || 14951 (probe->dofpr_enoffidx + probe->dofpr_nenoffs) * 14952 enoff_sec->dofs_entsize > enoff_sec->dofs_size) { 14953 dtrace_dof_error(dof, "invalid is-enabled " 14954 "offset"); 14955 return (-1); 14956 } 14957 14958 if (probe->dofpr_noffs + probe->dofpr_nenoffs == 0) { 14959 dtrace_dof_error(dof, "zero probe and " 14960 "is-enabled offsets"); 14961 return (-1); 14962 } 14963 } else if (probe->dofpr_noffs == 0) { 14964 dtrace_dof_error(dof, "zero probe offsets"); 14965 return (-1); 14966 } 14967 14968 if (probe->dofpr_argidx + probe->dofpr_xargc < 14969 probe->dofpr_argidx || 14970 (probe->dofpr_argidx + probe->dofpr_xargc) * 14971 arg_sec->dofs_entsize > arg_sec->dofs_size) { 14972 dtrace_dof_error(dof, "invalid args"); 14973 return (-1); 14974 } 14975 14976 typeidx = probe->dofpr_nargv; 14977 typestr = strtab + probe->dofpr_nargv; 14978 for (k = 0; k < probe->dofpr_nargc; k++) { 14979 if (typeidx >= str_sec->dofs_size) { 14980 dtrace_dof_error(dof, "bad " 14981 "native argument type"); 14982 return (-1); 14983 } 14984 14985 typesz = strlen(typestr) + 1; 14986 if (typesz > DTRACE_ARGTYPELEN) { 14987 dtrace_dof_error(dof, "native " 14988 "argument type too long"); 14989 return (-1); 14990 } 14991 typeidx += typesz; 14992 typestr += typesz; 14993 } 14994 14995 typeidx = probe->dofpr_xargv; 14996 typestr = strtab + probe->dofpr_xargv; 14997 for (k = 0; k < probe->dofpr_xargc; k++) { 14998 if (arg[probe->dofpr_argidx + k] > probe->dofpr_nargc) { 14999 dtrace_dof_error(dof, "bad " 15000 "native argument index"); 15001 return (-1); 15002 } 15003 15004 if (typeidx >= str_sec->dofs_size) { 15005 dtrace_dof_error(dof, "bad " 15006 "translated argument type"); 15007 return (-1); 15008 } 15009 15010 typesz = strlen(typestr) + 1; 15011 if (typesz > DTRACE_ARGTYPELEN) { 15012 dtrace_dof_error(dof, "translated argument " 15013 "type too long"); 15014 return (-1); 15015 } 15016 15017 typeidx += typesz; 15018 typestr += typesz; 15019 } 15020 } 15021 15022 return (0); 15023 } 15024 15025 static int 15026 dtrace_helper_slurp(dof_hdr_t *dof, dof_helper_t *dhp) 15027 { 15028 dtrace_helpers_t *help; 15029 dtrace_vstate_t *vstate; 15030 dtrace_enabling_t *enab = NULL; 15031 int i, gen, rv, nhelpers = 0, nprovs = 0, destroy = 1; 15032 uintptr_t daddr = (uintptr_t)dof; 15033 15034 ASSERT(MUTEX_HELD(&dtrace_lock)); 15035 15036 if ((help = curproc->p_dtrace_helpers) == NULL) 15037 help = dtrace_helpers_create(curproc); 15038 15039 vstate = &help->dthps_vstate; 15040 15041 if ((rv = dtrace_dof_slurp(dof, vstate, NULL, &enab, 15042 dhp != NULL ? dhp->dofhp_addr : 0, B_FALSE)) != 0) { 15043 dtrace_dof_destroy(dof); 15044 return (rv); 15045 } 15046 15047 /* 15048 * Look for helper providers and validate their descriptions. 15049 */ 15050 if (dhp != NULL) { 15051 for (i = 0; i < dof->dofh_secnum; i++) { 15052 dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr + 15053 dof->dofh_secoff + i * dof->dofh_secsize); 15054 15055 if (sec->dofs_type != DOF_SECT_PROVIDER) 15056 continue; 15057 15058 if (dtrace_helper_provider_validate(dof, sec) != 0) { 15059 dtrace_enabling_destroy(enab); 15060 dtrace_dof_destroy(dof); 15061 return (-1); 15062 } 15063 15064 nprovs++; 15065 } 15066 } 15067 15068 /* 15069 * Now we need to walk through the ECB descriptions in the enabling. 15070 */ 15071 for (i = 0; i < enab->dten_ndesc; i++) { 15072 dtrace_ecbdesc_t *ep = enab->dten_desc[i]; 15073 dtrace_probedesc_t *desc = &ep->dted_probe; 15074 15075 if (strcmp(desc->dtpd_provider, "dtrace") != 0) 15076 continue; 15077 15078 if (strcmp(desc->dtpd_mod, "helper") != 0) 15079 continue; 15080 15081 if (strcmp(desc->dtpd_func, "ustack") != 0) 15082 continue; 15083 15084 if ((rv = dtrace_helper_action_add(DTRACE_HELPER_ACTION_USTACK, 15085 ep)) != 0) { 15086 /* 15087 * Adding this helper action failed -- we are now going 15088 * to rip out the entire generation and return failure. 15089 */ 15090 (void) dtrace_helper_destroygen(help->dthps_generation); 15091 dtrace_enabling_destroy(enab); 15092 dtrace_dof_destroy(dof); 15093 return (-1); 15094 } 15095 15096 nhelpers++; 15097 } 15098 15099 if (nhelpers < enab->dten_ndesc) 15100 dtrace_dof_error(dof, "unmatched helpers"); 15101 15102 gen = help->dthps_generation++; 15103 dtrace_enabling_destroy(enab); 15104 15105 if (dhp != NULL && nprovs > 0) { 15106 dhp->dofhp_dof = (uint64_t)(uintptr_t)dof; 15107 if (dtrace_helper_provider_add(dhp, gen) == 0) { 15108 mutex_exit(&dtrace_lock); 15109 dtrace_helper_provider_register(curproc, help, dhp); 15110 mutex_enter(&dtrace_lock); 15111 15112 destroy = 0; 15113 } 15114 } 15115 15116 if (destroy) 15117 dtrace_dof_destroy(dof); 15118 15119 return (gen); 15120 } 15121 15122 static dtrace_helpers_t * 15123 dtrace_helpers_create(proc_t *p) 15124 { 15125 dtrace_helpers_t *help; 15126 15127 ASSERT(MUTEX_HELD(&dtrace_lock)); 15128 ASSERT(p->p_dtrace_helpers == NULL); 15129 15130 help = kmem_zalloc(sizeof (dtrace_helpers_t), KM_SLEEP); 15131 help->dthps_actions = kmem_zalloc(sizeof (dtrace_helper_action_t *) * 15132 DTRACE_NHELPER_ACTIONS, KM_SLEEP); 15133 15134 p->p_dtrace_helpers = help; 15135 dtrace_helpers++; 15136 15137 return (help); 15138 } 15139 15140 static void 15141 dtrace_helpers_destroy(void) 15142 { 15143 dtrace_helpers_t *help; 15144 dtrace_vstate_t *vstate; 15145 proc_t *p = curproc; 15146 int i; 15147 15148 mutex_enter(&dtrace_lock); 15149 15150 ASSERT(p->p_dtrace_helpers != NULL); 15151 ASSERT(dtrace_helpers > 0); 15152 15153 help = p->p_dtrace_helpers; 15154 vstate = &help->dthps_vstate; 15155 15156 /* 15157 * We're now going to lose the help from this process. 15158 */ 15159 p->p_dtrace_helpers = NULL; 15160 dtrace_sync(); 15161 15162 /* 15163 * Destory the helper actions. 15164 */ 15165 for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) { 15166 dtrace_helper_action_t *h, *next; 15167 15168 for (h = help->dthps_actions[i]; h != NULL; h = next) { 15169 next = h->dtha_next; 15170 dtrace_helper_action_destroy(h, vstate); 15171 h = next; 15172 } 15173 } 15174 15175 mutex_exit(&dtrace_lock); 15176 15177 /* 15178 * Destroy the helper providers. 15179 */ 15180 if (help->dthps_maxprovs > 0) { 15181 mutex_enter(&dtrace_meta_lock); 15182 if (dtrace_meta_pid != NULL) { 15183 ASSERT(dtrace_deferred_pid == NULL); 15184 15185 for (i = 0; i < help->dthps_nprovs; i++) { 15186 dtrace_helper_provider_remove( 15187 &help->dthps_provs[i]->dthp_prov, p->p_pid); 15188 } 15189 } else { 15190 mutex_enter(&dtrace_lock); 15191 ASSERT(help->dthps_deferred == 0 || 15192 help->dthps_next != NULL || 15193 help->dthps_prev != NULL || 15194 help == dtrace_deferred_pid); 15195 15196 /* 15197 * Remove the helper from the deferred list. 15198 */ 15199 if (help->dthps_next != NULL) 15200 help->dthps_next->dthps_prev = help->dthps_prev; 15201 if (help->dthps_prev != NULL) 15202 help->dthps_prev->dthps_next = help->dthps_next; 15203 if (dtrace_deferred_pid == help) { 15204 dtrace_deferred_pid = help->dthps_next; 15205 ASSERT(help->dthps_prev == NULL); 15206 } 15207 15208 mutex_exit(&dtrace_lock); 15209 } 15210 15211 mutex_exit(&dtrace_meta_lock); 15212 15213 for (i = 0; i < help->dthps_nprovs; i++) { 15214 dtrace_helper_provider_destroy(help->dthps_provs[i]); 15215 } 15216 15217 kmem_free(help->dthps_provs, help->dthps_maxprovs * 15218 sizeof (dtrace_helper_provider_t *)); 15219 } 15220 15221 mutex_enter(&dtrace_lock); 15222 15223 dtrace_vstate_fini(&help->dthps_vstate); 15224 kmem_free(help->dthps_actions, 15225 sizeof (dtrace_helper_action_t *) * DTRACE_NHELPER_ACTIONS); 15226 kmem_free(help, sizeof (dtrace_helpers_t)); 15227 15228 --dtrace_helpers; 15229 mutex_exit(&dtrace_lock); 15230 } 15231 15232 static void 15233 dtrace_helpers_duplicate(proc_t *from, proc_t *to) 15234 { 15235 dtrace_helpers_t *help, *newhelp; 15236 dtrace_helper_action_t *helper, *new, *last; 15237 dtrace_difo_t *dp; 15238 dtrace_vstate_t *vstate; 15239 int i, j, sz, hasprovs = 0; 15240 15241 mutex_enter(&dtrace_lock); 15242 ASSERT(from->p_dtrace_helpers != NULL); 15243 ASSERT(dtrace_helpers > 0); 15244 15245 help = from->p_dtrace_helpers; 15246 newhelp = dtrace_helpers_create(to); 15247 ASSERT(to->p_dtrace_helpers != NULL); 15248 15249 newhelp->dthps_generation = help->dthps_generation; 15250 vstate = &newhelp->dthps_vstate; 15251 15252 /* 15253 * Duplicate the helper actions. 15254 */ 15255 for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) { 15256 if ((helper = help->dthps_actions[i]) == NULL) 15257 continue; 15258 15259 for (last = NULL; helper != NULL; helper = helper->dtha_next) { 15260 new = kmem_zalloc(sizeof (dtrace_helper_action_t), 15261 KM_SLEEP); 15262 new->dtha_generation = helper->dtha_generation; 15263 15264 if ((dp = helper->dtha_predicate) != NULL) { 15265 dp = dtrace_difo_duplicate(dp, vstate); 15266 new->dtha_predicate = dp; 15267 } 15268 15269 new->dtha_nactions = helper->dtha_nactions; 15270 sz = sizeof (dtrace_difo_t *) * new->dtha_nactions; 15271 new->dtha_actions = kmem_alloc(sz, KM_SLEEP); 15272 15273 for (j = 0; j < new->dtha_nactions; j++) { 15274 dtrace_difo_t *dp = helper->dtha_actions[j]; 15275 15276 ASSERT(dp != NULL); 15277 dp = dtrace_difo_duplicate(dp, vstate); 15278 new->dtha_actions[j] = dp; 15279 } 15280 15281 if (last != NULL) { 15282 last->dtha_next = new; 15283 } else { 15284 newhelp->dthps_actions[i] = new; 15285 } 15286 15287 last = new; 15288 } 15289 } 15290 15291 /* 15292 * Duplicate the helper providers and register them with the 15293 * DTrace framework. 15294 */ 15295 if (help->dthps_nprovs > 0) { 15296 newhelp->dthps_nprovs = help->dthps_nprovs; 15297 newhelp->dthps_maxprovs = help->dthps_nprovs; 15298 newhelp->dthps_provs = kmem_alloc(newhelp->dthps_nprovs * 15299 sizeof (dtrace_helper_provider_t *), KM_SLEEP); 15300 for (i = 0; i < newhelp->dthps_nprovs; i++) { 15301 newhelp->dthps_provs[i] = help->dthps_provs[i]; 15302 newhelp->dthps_provs[i]->dthp_ref++; 15303 } 15304 15305 hasprovs = 1; 15306 } 15307 15308 mutex_exit(&dtrace_lock); 15309 15310 if (hasprovs) 15311 dtrace_helper_provider_register(to, newhelp, NULL); 15312 } 15313 15314 /* 15315 * DTrace Hook Functions 15316 */ 15317 static void 15318 dtrace_module_loaded(struct modctl *ctl) 15319 { 15320 dtrace_provider_t *prv; 15321 15322 mutex_enter(&dtrace_provider_lock); 15323 mutex_enter(&mod_lock); 15324 15325 ASSERT(ctl->mod_busy); 15326 15327 /* 15328 * We're going to call each providers per-module provide operation 15329 * specifying only this module. 15330 */ 15331 for (prv = dtrace_provider; prv != NULL; prv = prv->dtpv_next) 15332 prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl); 15333 15334 mutex_exit(&mod_lock); 15335 mutex_exit(&dtrace_provider_lock); 15336 15337 /* 15338 * If we have any retained enablings, we need to match against them. 15339 * Enabling probes requires that cpu_lock be held, and we cannot hold 15340 * cpu_lock here -- it is legal for cpu_lock to be held when loading a 15341 * module. (In particular, this happens when loading scheduling 15342 * classes.) So if we have any retained enablings, we need to dispatch 15343 * our task queue to do the match for us. 15344 */ 15345 mutex_enter(&dtrace_lock); 15346 15347 if (dtrace_retained == NULL) { 15348 mutex_exit(&dtrace_lock); 15349 return; 15350 } 15351 15352 (void) taskq_dispatch(dtrace_taskq, 15353 (task_func_t *)dtrace_enabling_matchall, NULL, TQ_SLEEP); 15354 15355 mutex_exit(&dtrace_lock); 15356 15357 /* 15358 * And now, for a little heuristic sleaze: in general, we want to 15359 * match modules as soon as they load. However, we cannot guarantee 15360 * this, because it would lead us to the lock ordering violation 15361 * outlined above. The common case, of course, is that cpu_lock is 15362 * _not_ held -- so we delay here for a clock tick, hoping that that's 15363 * long enough for the task queue to do its work. If it's not, it's 15364 * not a serious problem -- it just means that the module that we 15365 * just loaded may not be immediately instrumentable. 15366 */ 15367 delay(1); 15368 } 15369 15370 static void 15371 dtrace_module_unloaded(struct modctl *ctl) 15372 { 15373 dtrace_probe_t template, *probe, *first, *next; 15374 dtrace_provider_t *prov; 15375 15376 template.dtpr_mod = ctl->mod_modname; 15377 15378 mutex_enter(&dtrace_provider_lock); 15379 mutex_enter(&mod_lock); 15380 mutex_enter(&dtrace_lock); 15381 15382 if (dtrace_bymod == NULL) { 15383 /* 15384 * The DTrace module is loaded (obviously) but not attached; 15385 * we don't have any work to do. 15386 */ 15387 mutex_exit(&dtrace_provider_lock); 15388 mutex_exit(&mod_lock); 15389 mutex_exit(&dtrace_lock); 15390 return; 15391 } 15392 15393 for (probe = first = dtrace_hash_lookup(dtrace_bymod, &template); 15394 probe != NULL; probe = probe->dtpr_nextmod) { 15395 if (probe->dtpr_ecb != NULL) { 15396 mutex_exit(&dtrace_provider_lock); 15397 mutex_exit(&mod_lock); 15398 mutex_exit(&dtrace_lock); 15399 15400 /* 15401 * This shouldn't _actually_ be possible -- we're 15402 * unloading a module that has an enabled probe in it. 15403 * (It's normally up to the provider to make sure that 15404 * this can't happen.) However, because dtps_enable() 15405 * doesn't have a failure mode, there can be an 15406 * enable/unload race. Upshot: we don't want to 15407 * assert, but we're not going to disable the 15408 * probe, either. 15409 */ 15410 if (dtrace_err_verbose) { 15411 cmn_err(CE_WARN, "unloaded module '%s' had " 15412 "enabled probes", ctl->mod_modname); 15413 } 15414 15415 return; 15416 } 15417 } 15418 15419 probe = first; 15420 15421 for (first = NULL; probe != NULL; probe = next) { 15422 ASSERT(dtrace_probes[probe->dtpr_id - 1] == probe); 15423 15424 dtrace_probes[probe->dtpr_id - 1] = NULL; 15425 15426 next = probe->dtpr_nextmod; 15427 dtrace_hash_remove(dtrace_bymod, probe); 15428 dtrace_hash_remove(dtrace_byfunc, probe); 15429 dtrace_hash_remove(dtrace_byname, probe); 15430 15431 if (first == NULL) { 15432 first = probe; 15433 probe->dtpr_nextmod = NULL; 15434 } else { 15435 probe->dtpr_nextmod = first; 15436 first = probe; 15437 } 15438 } 15439 15440 /* 15441 * We've removed all of the module's probes from the hash chains and 15442 * from the probe array. Now issue a dtrace_sync() to be sure that 15443 * everyone has cleared out from any probe array processing. 15444 */ 15445 dtrace_sync(); 15446 15447 for (probe = first; probe != NULL; probe = first) { 15448 first = probe->dtpr_nextmod; 15449 prov = probe->dtpr_provider; 15450 prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, probe->dtpr_id, 15451 probe->dtpr_arg); 15452 kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1); 15453 kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1); 15454 kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1); 15455 vmem_free(dtrace_arena, (void *)(uintptr_t)probe->dtpr_id, 1); 15456 kmem_free(probe, sizeof (dtrace_probe_t)); 15457 } 15458 15459 mutex_exit(&dtrace_lock); 15460 mutex_exit(&mod_lock); 15461 mutex_exit(&dtrace_provider_lock); 15462 } 15463 15464 void 15465 dtrace_suspend(void) 15466 { 15467 dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_suspend)); 15468 } 15469 15470 void 15471 dtrace_resume(void) 15472 { 15473 dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_resume)); 15474 } 15475 15476 static int 15477 dtrace_cpu_setup(cpu_setup_t what, processorid_t cpu) 15478 { 15479 ASSERT(MUTEX_HELD(&cpu_lock)); 15480 mutex_enter(&dtrace_lock); 15481 15482 switch (what) { 15483 case CPU_CONFIG: { 15484 dtrace_state_t *state; 15485 dtrace_optval_t *opt, rs, c; 15486 15487 /* 15488 * For now, we only allocate a new buffer for anonymous state. 15489 */ 15490 if ((state = dtrace_anon.dta_state) == NULL) 15491 break; 15492 15493 if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE) 15494 break; 15495 15496 opt = state->dts_options; 15497 c = opt[DTRACEOPT_CPU]; 15498 15499 if (c != DTRACE_CPUALL && c != DTRACEOPT_UNSET && c != cpu) 15500 break; 15501 15502 /* 15503 * Regardless of what the actual policy is, we're going to 15504 * temporarily set our resize policy to be manual. We're 15505 * also going to temporarily set our CPU option to denote 15506 * the newly configured CPU. 15507 */ 15508 rs = opt[DTRACEOPT_BUFRESIZE]; 15509 opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_MANUAL; 15510 opt[DTRACEOPT_CPU] = (dtrace_optval_t)cpu; 15511 15512 (void) dtrace_state_buffers(state); 15513 15514 opt[DTRACEOPT_BUFRESIZE] = rs; 15515 opt[DTRACEOPT_CPU] = c; 15516 15517 break; 15518 } 15519 15520 case CPU_UNCONFIG: 15521 /* 15522 * We don't free the buffer in the CPU_UNCONFIG case. (The 15523 * buffer will be freed when the consumer exits.) 15524 */ 15525 break; 15526 15527 default: 15528 break; 15529 } 15530 15531 mutex_exit(&dtrace_lock); 15532 return (0); 15533 } 15534 15535 static void 15536 dtrace_cpu_setup_initial(processorid_t cpu) 15537 { 15538 (void) dtrace_cpu_setup(CPU_CONFIG, cpu); 15539 } 15540 15541 static void 15542 dtrace_toxrange_add(uintptr_t base, uintptr_t limit) 15543 { 15544 if (dtrace_toxranges >= dtrace_toxranges_max) { 15545 int osize, nsize; 15546 dtrace_toxrange_t *range; 15547 15548 osize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t); 15549 15550 if (osize == 0) { 15551 ASSERT(dtrace_toxrange == NULL); 15552 ASSERT(dtrace_toxranges_max == 0); 15553 dtrace_toxranges_max = 1; 15554 } else { 15555 dtrace_toxranges_max <<= 1; 15556 } 15557 15558 nsize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t); 15559 range = kmem_zalloc(nsize, KM_SLEEP); 15560 15561 if (dtrace_toxrange != NULL) { 15562 ASSERT(osize != 0); 15563 bcopy(dtrace_toxrange, range, osize); 15564 kmem_free(dtrace_toxrange, osize); 15565 } 15566 15567 dtrace_toxrange = range; 15568 } 15569 15570 ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_base == NULL); 15571 ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_limit == NULL); 15572 15573 dtrace_toxrange[dtrace_toxranges].dtt_base = base; 15574 dtrace_toxrange[dtrace_toxranges].dtt_limit = limit; 15575 dtrace_toxranges++; 15576 } 15577 15578 static void 15579 dtrace_getf_barrier() 15580 { 15581 /* 15582 * When we have unprivileged (that is, non-DTRACE_CRV_KERNEL) enablings 15583 * that contain calls to getf(), this routine will be called on every 15584 * closef() before either the underlying vnode is released or the 15585 * file_t itself is freed. By the time we are here, it is essential 15586 * that the file_t can no longer be accessed from a call to getf() 15587 * in probe context -- that assures that a dtrace_sync() can be used 15588 * to clear out any enablings referring to the old structures. 15589 */ 15590 if (curthread->t_procp->p_zone->zone_dtrace_getf != 0 || 15591 kcred->cr_zone->zone_dtrace_getf != 0) 15592 dtrace_sync(); 15593 } 15594 15595 /* 15596 * DTrace Driver Cookbook Functions 15597 */ 15598 /*ARGSUSED*/ 15599 static int 15600 dtrace_attach(dev_info_t *devi, ddi_attach_cmd_t cmd) 15601 { 15602 dtrace_provider_id_t id; 15603 dtrace_state_t *state = NULL; 15604 dtrace_enabling_t *enab; 15605 15606 mutex_enter(&cpu_lock); 15607 mutex_enter(&dtrace_provider_lock); 15608 mutex_enter(&dtrace_lock); 15609 15610 if (ddi_soft_state_init(&dtrace_softstate, 15611 sizeof (dtrace_state_t), 0) != 0) { 15612 cmn_err(CE_NOTE, "/dev/dtrace failed to initialize soft state"); 15613 mutex_exit(&cpu_lock); 15614 mutex_exit(&dtrace_provider_lock); 15615 mutex_exit(&dtrace_lock); 15616 return (DDI_FAILURE); 15617 } 15618 15619 if (ddi_create_minor_node(devi, DTRACEMNR_DTRACE, S_IFCHR, 15620 DTRACEMNRN_DTRACE, DDI_PSEUDO, NULL) == DDI_FAILURE || 15621 ddi_create_minor_node(devi, DTRACEMNR_HELPER, S_IFCHR, 15622 DTRACEMNRN_HELPER, DDI_PSEUDO, NULL) == DDI_FAILURE) { 15623 cmn_err(CE_NOTE, "/dev/dtrace couldn't create minor nodes"); 15624 ddi_remove_minor_node(devi, NULL); 15625 ddi_soft_state_fini(&dtrace_softstate); 15626 mutex_exit(&cpu_lock); 15627 mutex_exit(&dtrace_provider_lock); 15628 mutex_exit(&dtrace_lock); 15629 return (DDI_FAILURE); 15630 } 15631 15632 ddi_report_dev(devi); 15633 dtrace_devi = devi; 15634 15635 dtrace_modload = dtrace_module_loaded; 15636 dtrace_modunload = dtrace_module_unloaded; 15637 dtrace_cpu_init = dtrace_cpu_setup_initial; 15638 dtrace_helpers_cleanup = dtrace_helpers_destroy; 15639 dtrace_helpers_fork = dtrace_helpers_duplicate; 15640 dtrace_cpustart_init = dtrace_suspend; 15641 dtrace_cpustart_fini = dtrace_resume; 15642 dtrace_debugger_init = dtrace_suspend; 15643 dtrace_debugger_fini = dtrace_resume; 15644 15645 register_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL); 15646 15647 ASSERT(MUTEX_HELD(&cpu_lock)); 15648 15649 dtrace_arena = vmem_create("dtrace", (void *)1, UINT32_MAX, 1, 15650 NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER); 15651 dtrace_minor = vmem_create("dtrace_minor", (void *)DTRACEMNRN_CLONE, 15652 UINT32_MAX - DTRACEMNRN_CLONE, 1, NULL, NULL, NULL, 0, 15653 VM_SLEEP | VMC_IDENTIFIER); 15654 dtrace_taskq = taskq_create("dtrace_taskq", 1, maxclsyspri, 15655 1, INT_MAX, 0); 15656 15657 dtrace_state_cache = kmem_cache_create("dtrace_state_cache", 15658 sizeof (dtrace_dstate_percpu_t) * NCPU, DTRACE_STATE_ALIGN, 15659 NULL, NULL, NULL, NULL, NULL, 0); 15660 15661 ASSERT(MUTEX_HELD(&cpu_lock)); 15662 dtrace_bymod = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_mod), 15663 offsetof(dtrace_probe_t, dtpr_nextmod), 15664 offsetof(dtrace_probe_t, dtpr_prevmod)); 15665 15666 dtrace_byfunc = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_func), 15667 offsetof(dtrace_probe_t, dtpr_nextfunc), 15668 offsetof(dtrace_probe_t, dtpr_prevfunc)); 15669 15670 dtrace_byname = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_name), 15671 offsetof(dtrace_probe_t, dtpr_nextname), 15672 offsetof(dtrace_probe_t, dtpr_prevname)); 15673 15674 if (dtrace_retain_max < 1) { 15675 cmn_err(CE_WARN, "illegal value (%lu) for dtrace_retain_max; " 15676 "setting to 1", dtrace_retain_max); 15677 dtrace_retain_max = 1; 15678 } 15679 15680 /* 15681 * Now discover our toxic ranges. 15682 */ 15683 dtrace_toxic_ranges(dtrace_toxrange_add); 15684 15685 /* 15686 * Before we register ourselves as a provider to our own framework, 15687 * we would like to assert that dtrace_provider is NULL -- but that's 15688 * not true if we were loaded as a dependency of a DTrace provider. 15689 * Once we've registered, we can assert that dtrace_provider is our 15690 * pseudo provider. 15691 */ 15692 (void) dtrace_register("dtrace", &dtrace_provider_attr, 15693 DTRACE_PRIV_NONE, 0, &dtrace_provider_ops, NULL, &id); 15694 15695 ASSERT(dtrace_provider != NULL); 15696 ASSERT((dtrace_provider_id_t)dtrace_provider == id); 15697 15698 dtrace_probeid_begin = dtrace_probe_create((dtrace_provider_id_t) 15699 dtrace_provider, NULL, NULL, "BEGIN", 0, NULL); 15700 dtrace_probeid_end = dtrace_probe_create((dtrace_provider_id_t) 15701 dtrace_provider, NULL, NULL, "END", 0, NULL); 15702 dtrace_probeid_error = dtrace_probe_create((dtrace_provider_id_t) 15703 dtrace_provider, NULL, NULL, "ERROR", 1, NULL); 15704 15705 dtrace_anon_property(); 15706 mutex_exit(&cpu_lock); 15707 15708 /* 15709 * If DTrace helper tracing is enabled, we need to allocate the 15710 * trace buffer and initialize the values. 15711 */ 15712 if (dtrace_helptrace_enabled) { 15713 ASSERT(dtrace_helptrace_buffer == NULL); 15714 dtrace_helptrace_buffer = 15715 kmem_zalloc(dtrace_helptrace_bufsize, KM_SLEEP); 15716 dtrace_helptrace_next = 0; 15717 } 15718 15719 /* 15720 * If there are already providers, we must ask them to provide their 15721 * probes, and then match any anonymous enabling against them. Note 15722 * that there should be no other retained enablings at this time: 15723 * the only retained enablings at this time should be the anonymous 15724 * enabling. 15725 */ 15726 if (dtrace_anon.dta_enabling != NULL) { 15727 ASSERT(dtrace_retained == dtrace_anon.dta_enabling); 15728 15729 dtrace_enabling_provide(NULL); 15730 state = dtrace_anon.dta_state; 15731 15732 /* 15733 * We couldn't hold cpu_lock across the above call to 15734 * dtrace_enabling_provide(), but we must hold it to actually 15735 * enable the probes. We have to drop all of our locks, pick 15736 * up cpu_lock, and regain our locks before matching the 15737 * retained anonymous enabling. 15738 */ 15739 mutex_exit(&dtrace_lock); 15740 mutex_exit(&dtrace_provider_lock); 15741 15742 mutex_enter(&cpu_lock); 15743 mutex_enter(&dtrace_provider_lock); 15744 mutex_enter(&dtrace_lock); 15745 15746 if ((enab = dtrace_anon.dta_enabling) != NULL) 15747 (void) dtrace_enabling_match(enab, NULL); 15748 15749 mutex_exit(&cpu_lock); 15750 } 15751 15752 mutex_exit(&dtrace_lock); 15753 mutex_exit(&dtrace_provider_lock); 15754 15755 if (state != NULL) { 15756 /* 15757 * If we created any anonymous state, set it going now. 15758 */ 15759 (void) dtrace_state_go(state, &dtrace_anon.dta_beganon); 15760 } 15761 15762 return (DDI_SUCCESS); 15763 } 15764 15765 /*ARGSUSED*/ 15766 static int 15767 dtrace_open(dev_t *devp, int flag, int otyp, cred_t *cred_p) 15768 { 15769 dtrace_state_t *state; 15770 uint32_t priv; 15771 uid_t uid; 15772 zoneid_t zoneid; 15773 15774 if (getminor(*devp) == DTRACEMNRN_HELPER) 15775 return (0); 15776 15777 /* 15778 * If this wasn't an open with the "helper" minor, then it must be 15779 * the "dtrace" minor. 15780 */ 15781 if (getminor(*devp) != DTRACEMNRN_DTRACE) 15782 return (ENXIO); 15783 15784 /* 15785 * If no DTRACE_PRIV_* bits are set in the credential, then the 15786 * caller lacks sufficient permission to do anything with DTrace. 15787 */ 15788 dtrace_cred2priv(cred_p, &priv, &uid, &zoneid); 15789 if (priv == DTRACE_PRIV_NONE) 15790 return (EACCES); 15791 15792 /* 15793 * Ask all providers to provide all their probes. 15794 */ 15795 mutex_enter(&dtrace_provider_lock); 15796 dtrace_probe_provide(NULL, NULL); 15797 mutex_exit(&dtrace_provider_lock); 15798 15799 mutex_enter(&cpu_lock); 15800 mutex_enter(&dtrace_lock); 15801 dtrace_opens++; 15802 dtrace_membar_producer(); 15803 15804 /* 15805 * If the kernel debugger is active (that is, if the kernel debugger 15806 * modified text in some way), we won't allow the open. 15807 */ 15808 if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) { 15809 dtrace_opens--; 15810 mutex_exit(&cpu_lock); 15811 mutex_exit(&dtrace_lock); 15812 return (EBUSY); 15813 } 15814 15815 state = dtrace_state_create(devp, cred_p); 15816 mutex_exit(&cpu_lock); 15817 15818 if (state == NULL) { 15819 if (--dtrace_opens == 0 && dtrace_anon.dta_enabling == NULL) 15820 (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE); 15821 mutex_exit(&dtrace_lock); 15822 return (EAGAIN); 15823 } 15824 15825 mutex_exit(&dtrace_lock); 15826 15827 return (0); 15828 } 15829 15830 /*ARGSUSED*/ 15831 static int 15832 dtrace_close(dev_t dev, int flag, int otyp, cred_t *cred_p) 15833 { 15834 minor_t minor = getminor(dev); 15835 dtrace_state_t *state; 15836 15837 if (minor == DTRACEMNRN_HELPER) 15838 return (0); 15839 15840 state = ddi_get_soft_state(dtrace_softstate, minor); 15841 15842 mutex_enter(&cpu_lock); 15843 mutex_enter(&dtrace_lock); 15844 15845 if (state->dts_anon) { 15846 /* 15847 * There is anonymous state. Destroy that first. 15848 */ 15849 ASSERT(dtrace_anon.dta_state == NULL); 15850 dtrace_state_destroy(state->dts_anon); 15851 } 15852 15853 dtrace_state_destroy(state); 15854 ASSERT(dtrace_opens > 0); 15855 15856 /* 15857 * Only relinquish control of the kernel debugger interface when there 15858 * are no consumers and no anonymous enablings. 15859 */ 15860 if (--dtrace_opens == 0 && dtrace_anon.dta_enabling == NULL) 15861 (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE); 15862 15863 mutex_exit(&dtrace_lock); 15864 mutex_exit(&cpu_lock); 15865 15866 return (0); 15867 } 15868 15869 /*ARGSUSED*/ 15870 static int 15871 dtrace_ioctl_helper(int cmd, intptr_t arg, int *rv) 15872 { 15873 int rval; 15874 dof_helper_t help, *dhp = NULL; 15875 15876 switch (cmd) { 15877 case DTRACEHIOC_ADDDOF: 15878 if (copyin((void *)arg, &help, sizeof (help)) != 0) { 15879 dtrace_dof_error(NULL, "failed to copyin DOF helper"); 15880 return (EFAULT); 15881 } 15882 15883 dhp = &help; 15884 arg = (intptr_t)help.dofhp_dof; 15885 /*FALLTHROUGH*/ 15886 15887 case DTRACEHIOC_ADD: { 15888 dof_hdr_t *dof = dtrace_dof_copyin(arg, &rval); 15889 15890 if (dof == NULL) 15891 return (rval); 15892 15893 mutex_enter(&dtrace_lock); 15894 15895 /* 15896 * dtrace_helper_slurp() takes responsibility for the dof -- 15897 * it may free it now or it may save it and free it later. 15898 */ 15899 if ((rval = dtrace_helper_slurp(dof, dhp)) != -1) { 15900 *rv = rval; 15901 rval = 0; 15902 } else { 15903 rval = EINVAL; 15904 } 15905 15906 mutex_exit(&dtrace_lock); 15907 return (rval); 15908 } 15909 15910 case DTRACEHIOC_REMOVE: { 15911 mutex_enter(&dtrace_lock); 15912 rval = dtrace_helper_destroygen(arg); 15913 mutex_exit(&dtrace_lock); 15914 15915 return (rval); 15916 } 15917 15918 default: 15919 break; 15920 } 15921 15922 return (ENOTTY); 15923 } 15924 15925 /*ARGSUSED*/ 15926 static int 15927 dtrace_ioctl(dev_t dev, int cmd, intptr_t arg, int md, cred_t *cr, int *rv) 15928 { 15929 minor_t minor = getminor(dev); 15930 dtrace_state_t *state; 15931 int rval; 15932 15933 if (minor == DTRACEMNRN_HELPER) 15934 return (dtrace_ioctl_helper(cmd, arg, rv)); 15935 15936 state = ddi_get_soft_state(dtrace_softstate, minor); 15937 15938 if (state->dts_anon) { 15939 ASSERT(dtrace_anon.dta_state == NULL); 15940 state = state->dts_anon; 15941 } 15942 15943 switch (cmd) { 15944 case DTRACEIOC_PROVIDER: { 15945 dtrace_providerdesc_t pvd; 15946 dtrace_provider_t *pvp; 15947 15948 if (copyin((void *)arg, &pvd, sizeof (pvd)) != 0) 15949 return (EFAULT); 15950 15951 pvd.dtvd_name[DTRACE_PROVNAMELEN - 1] = '\0'; 15952 mutex_enter(&dtrace_provider_lock); 15953 15954 for (pvp = dtrace_provider; pvp != NULL; pvp = pvp->dtpv_next) { 15955 if (strcmp(pvp->dtpv_name, pvd.dtvd_name) == 0) 15956 break; 15957 } 15958 15959 mutex_exit(&dtrace_provider_lock); 15960 15961 if (pvp == NULL) 15962 return (ESRCH); 15963 15964 bcopy(&pvp->dtpv_priv, &pvd.dtvd_priv, sizeof (dtrace_ppriv_t)); 15965 bcopy(&pvp->dtpv_attr, &pvd.dtvd_attr, sizeof (dtrace_pattr_t)); 15966 if (copyout(&pvd, (void *)arg, sizeof (pvd)) != 0) 15967 return (EFAULT); 15968 15969 return (0); 15970 } 15971 15972 case DTRACEIOC_EPROBE: { 15973 dtrace_eprobedesc_t epdesc; 15974 dtrace_ecb_t *ecb; 15975 dtrace_action_t *act; 15976 void *buf; 15977 size_t size; 15978 uintptr_t dest; 15979 int nrecs; 15980 15981 if (copyin((void *)arg, &epdesc, sizeof (epdesc)) != 0) 15982 return (EFAULT); 15983 15984 mutex_enter(&dtrace_lock); 15985 15986 if ((ecb = dtrace_epid2ecb(state, epdesc.dtepd_epid)) == NULL) { 15987 mutex_exit(&dtrace_lock); 15988 return (EINVAL); 15989 } 15990 15991 if (ecb->dte_probe == NULL) { 15992 mutex_exit(&dtrace_lock); 15993 return (EINVAL); 15994 } 15995 15996 epdesc.dtepd_probeid = ecb->dte_probe->dtpr_id; 15997 epdesc.dtepd_uarg = ecb->dte_uarg; 15998 epdesc.dtepd_size = ecb->dte_size; 15999 16000 nrecs = epdesc.dtepd_nrecs; 16001 epdesc.dtepd_nrecs = 0; 16002 for (act = ecb->dte_action; act != NULL; act = act->dta_next) { 16003 if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple) 16004 continue; 16005 16006 epdesc.dtepd_nrecs++; 16007 } 16008 16009 /* 16010 * Now that we have the size, we need to allocate a temporary 16011 * buffer in which to store the complete description. We need 16012 * the temporary buffer to be able to drop dtrace_lock() 16013 * across the copyout(), below. 16014 */ 16015 size = sizeof (dtrace_eprobedesc_t) + 16016 (epdesc.dtepd_nrecs * sizeof (dtrace_recdesc_t)); 16017 16018 buf = kmem_alloc(size, KM_SLEEP); 16019 dest = (uintptr_t)buf; 16020 16021 bcopy(&epdesc, (void *)dest, sizeof (epdesc)); 16022 dest += offsetof(dtrace_eprobedesc_t, dtepd_rec[0]); 16023 16024 for (act = ecb->dte_action; act != NULL; act = act->dta_next) { 16025 if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple) 16026 continue; 16027 16028 if (nrecs-- == 0) 16029 break; 16030 16031 bcopy(&act->dta_rec, (void *)dest, 16032 sizeof (dtrace_recdesc_t)); 16033 dest += sizeof (dtrace_recdesc_t); 16034 } 16035 16036 mutex_exit(&dtrace_lock); 16037 16038 if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) { 16039 kmem_free(buf, size); 16040 return (EFAULT); 16041 } 16042 16043 kmem_free(buf, size); 16044 return (0); 16045 } 16046 16047 case DTRACEIOC_AGGDESC: { 16048 dtrace_aggdesc_t aggdesc; 16049 dtrace_action_t *act; 16050 dtrace_aggregation_t *agg; 16051 int nrecs; 16052 uint32_t offs; 16053 dtrace_recdesc_t *lrec; 16054 void *buf; 16055 size_t size; 16056 uintptr_t dest; 16057 16058 if (copyin((void *)arg, &aggdesc, sizeof (aggdesc)) != 0) 16059 return (EFAULT); 16060 16061 mutex_enter(&dtrace_lock); 16062 16063 if ((agg = dtrace_aggid2agg(state, aggdesc.dtagd_id)) == NULL) { 16064 mutex_exit(&dtrace_lock); 16065 return (EINVAL); 16066 } 16067 16068 aggdesc.dtagd_epid = agg->dtag_ecb->dte_epid; 16069 16070 nrecs = aggdesc.dtagd_nrecs; 16071 aggdesc.dtagd_nrecs = 0; 16072 16073 offs = agg->dtag_base; 16074 lrec = &agg->dtag_action.dta_rec; 16075 aggdesc.dtagd_size = lrec->dtrd_offset + lrec->dtrd_size - offs; 16076 16077 for (act = agg->dtag_first; ; act = act->dta_next) { 16078 ASSERT(act->dta_intuple || 16079 DTRACEACT_ISAGG(act->dta_kind)); 16080 16081 /* 16082 * If this action has a record size of zero, it 16083 * denotes an argument to the aggregating action. 16084 * Because the presence of this record doesn't (or 16085 * shouldn't) affect the way the data is interpreted, 16086 * we don't copy it out to save user-level the 16087 * confusion of dealing with a zero-length record. 16088 */ 16089 if (act->dta_rec.dtrd_size == 0) { 16090 ASSERT(agg->dtag_hasarg); 16091 continue; 16092 } 16093 16094 aggdesc.dtagd_nrecs++; 16095 16096 if (act == &agg->dtag_action) 16097 break; 16098 } 16099 16100 /* 16101 * Now that we have the size, we need to allocate a temporary 16102 * buffer in which to store the complete description. We need 16103 * the temporary buffer to be able to drop dtrace_lock() 16104 * across the copyout(), below. 16105 */ 16106 size = sizeof (dtrace_aggdesc_t) + 16107 (aggdesc.dtagd_nrecs * sizeof (dtrace_recdesc_t)); 16108 16109 buf = kmem_alloc(size, KM_SLEEP); 16110 dest = (uintptr_t)buf; 16111 16112 bcopy(&aggdesc, (void *)dest, sizeof (aggdesc)); 16113 dest += offsetof(dtrace_aggdesc_t, dtagd_rec[0]); 16114 16115 for (act = agg->dtag_first; ; act = act->dta_next) { 16116 dtrace_recdesc_t rec = act->dta_rec; 16117 16118 /* 16119 * See the comment in the above loop for why we pass 16120 * over zero-length records. 16121 */ 16122 if (rec.dtrd_size == 0) { 16123 ASSERT(agg->dtag_hasarg); 16124 continue; 16125 } 16126 16127 if (nrecs-- == 0) 16128 break; 16129 16130 rec.dtrd_offset -= offs; 16131 bcopy(&rec, (void *)dest, sizeof (rec)); 16132 dest += sizeof (dtrace_recdesc_t); 16133 16134 if (act == &agg->dtag_action) 16135 break; 16136 } 16137 16138 mutex_exit(&dtrace_lock); 16139 16140 if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) { 16141 kmem_free(buf, size); 16142 return (EFAULT); 16143 } 16144 16145 kmem_free(buf, size); 16146 return (0); 16147 } 16148 16149 case DTRACEIOC_ENABLE: { 16150 dof_hdr_t *dof; 16151 dtrace_enabling_t *enab = NULL; 16152 dtrace_vstate_t *vstate; 16153 int err = 0; 16154 16155 *rv = 0; 16156 16157 /* 16158 * If a NULL argument has been passed, we take this as our 16159 * cue to reevaluate our enablings. 16160 */ 16161 if (arg == NULL) { 16162 dtrace_enabling_matchall(); 16163 16164 return (0); 16165 } 16166 16167 if ((dof = dtrace_dof_copyin(arg, &rval)) == NULL) 16168 return (rval); 16169 16170 mutex_enter(&cpu_lock); 16171 mutex_enter(&dtrace_lock); 16172 vstate = &state->dts_vstate; 16173 16174 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) { 16175 mutex_exit(&dtrace_lock); 16176 mutex_exit(&cpu_lock); 16177 dtrace_dof_destroy(dof); 16178 return (EBUSY); 16179 } 16180 16181 if (dtrace_dof_slurp(dof, vstate, cr, &enab, 0, B_TRUE) != 0) { 16182 mutex_exit(&dtrace_lock); 16183 mutex_exit(&cpu_lock); 16184 dtrace_dof_destroy(dof); 16185 return (EINVAL); 16186 } 16187 16188 if ((rval = dtrace_dof_options(dof, state)) != 0) { 16189 dtrace_enabling_destroy(enab); 16190 mutex_exit(&dtrace_lock); 16191 mutex_exit(&cpu_lock); 16192 dtrace_dof_destroy(dof); 16193 return (rval); 16194 } 16195 16196 if ((err = dtrace_enabling_match(enab, rv)) == 0) { 16197 err = dtrace_enabling_retain(enab); 16198 } else { 16199 dtrace_enabling_destroy(enab); 16200 } 16201 16202 mutex_exit(&cpu_lock); 16203 mutex_exit(&dtrace_lock); 16204 dtrace_dof_destroy(dof); 16205 16206 return (err); 16207 } 16208 16209 case DTRACEIOC_REPLICATE: { 16210 dtrace_repldesc_t desc; 16211 dtrace_probedesc_t *match = &desc.dtrpd_match; 16212 dtrace_probedesc_t *create = &desc.dtrpd_create; 16213 int err; 16214 16215 if (copyin((void *)arg, &desc, sizeof (desc)) != 0) 16216 return (EFAULT); 16217 16218 match->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0'; 16219 match->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0'; 16220 match->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0'; 16221 match->dtpd_name[DTRACE_NAMELEN - 1] = '\0'; 16222 16223 create->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0'; 16224 create->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0'; 16225 create->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0'; 16226 create->dtpd_name[DTRACE_NAMELEN - 1] = '\0'; 16227 16228 mutex_enter(&dtrace_lock); 16229 err = dtrace_enabling_replicate(state, match, create); 16230 mutex_exit(&dtrace_lock); 16231 16232 return (err); 16233 } 16234 16235 case DTRACEIOC_PROBEMATCH: 16236 case DTRACEIOC_PROBES: { 16237 dtrace_probe_t *probe = NULL; 16238 dtrace_probedesc_t desc; 16239 dtrace_probekey_t pkey; 16240 dtrace_id_t i; 16241 int m = 0; 16242 uint32_t priv; 16243 uid_t uid; 16244 zoneid_t zoneid; 16245 16246 if (copyin((void *)arg, &desc, sizeof (desc)) != 0) 16247 return (EFAULT); 16248 16249 desc.dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0'; 16250 desc.dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0'; 16251 desc.dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0'; 16252 desc.dtpd_name[DTRACE_NAMELEN - 1] = '\0'; 16253 16254 /* 16255 * Before we attempt to match this probe, we want to give 16256 * all providers the opportunity to provide it. 16257 */ 16258 if (desc.dtpd_id == DTRACE_IDNONE) { 16259 mutex_enter(&dtrace_provider_lock); 16260 dtrace_probe_provide(&desc, NULL); 16261 mutex_exit(&dtrace_provider_lock); 16262 desc.dtpd_id++; 16263 } 16264 16265 if (cmd == DTRACEIOC_PROBEMATCH) { 16266 dtrace_probekey(&desc, &pkey); 16267 pkey.dtpk_id = DTRACE_IDNONE; 16268 } 16269 16270 dtrace_cred2priv(cr, &priv, &uid, &zoneid); 16271 16272 mutex_enter(&dtrace_lock); 16273 16274 if (cmd == DTRACEIOC_PROBEMATCH) { 16275 for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) { 16276 if ((probe = dtrace_probes[i - 1]) != NULL && 16277 (m = dtrace_match_probe(probe, &pkey, 16278 priv, uid, zoneid)) != 0) 16279 break; 16280 } 16281 16282 if (m < 0) { 16283 mutex_exit(&dtrace_lock); 16284 return (EINVAL); 16285 } 16286 16287 } else { 16288 for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) { 16289 if ((probe = dtrace_probes[i - 1]) != NULL && 16290 dtrace_match_priv(probe, priv, uid, zoneid)) 16291 break; 16292 } 16293 } 16294 16295 if (probe == NULL) { 16296 mutex_exit(&dtrace_lock); 16297 return (ESRCH); 16298 } 16299 16300 dtrace_probe_description(probe, &desc); 16301 mutex_exit(&dtrace_lock); 16302 16303 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0) 16304 return (EFAULT); 16305 16306 return (0); 16307 } 16308 16309 case DTRACEIOC_PROBEARG: { 16310 dtrace_argdesc_t desc; 16311 dtrace_probe_t *probe; 16312 dtrace_provider_t *prov; 16313 16314 if (copyin((void *)arg, &desc, sizeof (desc)) != 0) 16315 return (EFAULT); 16316 16317 if (desc.dtargd_id == DTRACE_IDNONE) 16318 return (EINVAL); 16319 16320 if (desc.dtargd_ndx == DTRACE_ARGNONE) 16321 return (EINVAL); 16322 16323 mutex_enter(&dtrace_provider_lock); 16324 mutex_enter(&mod_lock); 16325 mutex_enter(&dtrace_lock); 16326 16327 if (desc.dtargd_id > dtrace_nprobes) { 16328 mutex_exit(&dtrace_lock); 16329 mutex_exit(&mod_lock); 16330 mutex_exit(&dtrace_provider_lock); 16331 return (EINVAL); 16332 } 16333 16334 if ((probe = dtrace_probes[desc.dtargd_id - 1]) == NULL) { 16335 mutex_exit(&dtrace_lock); 16336 mutex_exit(&mod_lock); 16337 mutex_exit(&dtrace_provider_lock); 16338 return (EINVAL); 16339 } 16340 16341 mutex_exit(&dtrace_lock); 16342 16343 prov = probe->dtpr_provider; 16344 16345 if (prov->dtpv_pops.dtps_getargdesc == NULL) { 16346 /* 16347 * There isn't any typed information for this probe. 16348 * Set the argument number to DTRACE_ARGNONE. 16349 */ 16350 desc.dtargd_ndx = DTRACE_ARGNONE; 16351 } else { 16352 desc.dtargd_native[0] = '\0'; 16353 desc.dtargd_xlate[0] = '\0'; 16354 desc.dtargd_mapping = desc.dtargd_ndx; 16355 16356 prov->dtpv_pops.dtps_getargdesc(prov->dtpv_arg, 16357 probe->dtpr_id, probe->dtpr_arg, &desc); 16358 } 16359 16360 mutex_exit(&mod_lock); 16361 mutex_exit(&dtrace_provider_lock); 16362 16363 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0) 16364 return (EFAULT); 16365 16366 return (0); 16367 } 16368 16369 case DTRACEIOC_GO: { 16370 processorid_t cpuid; 16371 rval = dtrace_state_go(state, &cpuid); 16372 16373 if (rval != 0) 16374 return (rval); 16375 16376 if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0) 16377 return (EFAULT); 16378 16379 return (0); 16380 } 16381 16382 case DTRACEIOC_STOP: { 16383 processorid_t cpuid; 16384 16385 mutex_enter(&dtrace_lock); 16386 rval = dtrace_state_stop(state, &cpuid); 16387 mutex_exit(&dtrace_lock); 16388 16389 if (rval != 0) 16390 return (rval); 16391 16392 if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0) 16393 return (EFAULT); 16394 16395 return (0); 16396 } 16397 16398 case DTRACEIOC_DOFGET: { 16399 dof_hdr_t hdr, *dof; 16400 uint64_t len; 16401 16402 if (copyin((void *)arg, &hdr, sizeof (hdr)) != 0) 16403 return (EFAULT); 16404 16405 mutex_enter(&dtrace_lock); 16406 dof = dtrace_dof_create(state); 16407 mutex_exit(&dtrace_lock); 16408 16409 len = MIN(hdr.dofh_loadsz, dof->dofh_loadsz); 16410 rval = copyout(dof, (void *)arg, len); 16411 dtrace_dof_destroy(dof); 16412 16413 return (rval == 0 ? 0 : EFAULT); 16414 } 16415 16416 case DTRACEIOC_AGGSNAP: 16417 case DTRACEIOC_BUFSNAP: { 16418 dtrace_bufdesc_t desc; 16419 caddr_t cached; 16420 dtrace_buffer_t *buf; 16421 16422 if (copyin((void *)arg, &desc, sizeof (desc)) != 0) 16423 return (EFAULT); 16424 16425 if (desc.dtbd_cpu < 0 || desc.dtbd_cpu >= NCPU) 16426 return (EINVAL); 16427 16428 mutex_enter(&dtrace_lock); 16429 16430 if (cmd == DTRACEIOC_BUFSNAP) { 16431 buf = &state->dts_buffer[desc.dtbd_cpu]; 16432 } else { 16433 buf = &state->dts_aggbuffer[desc.dtbd_cpu]; 16434 } 16435 16436 if (buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL)) { 16437 size_t sz = buf->dtb_offset; 16438 16439 if (state->dts_activity != DTRACE_ACTIVITY_STOPPED) { 16440 mutex_exit(&dtrace_lock); 16441 return (EBUSY); 16442 } 16443 16444 /* 16445 * If this buffer has already been consumed, we're 16446 * going to indicate that there's nothing left here 16447 * to consume. 16448 */ 16449 if (buf->dtb_flags & DTRACEBUF_CONSUMED) { 16450 mutex_exit(&dtrace_lock); 16451 16452 desc.dtbd_size = 0; 16453 desc.dtbd_drops = 0; 16454 desc.dtbd_errors = 0; 16455 desc.dtbd_oldest = 0; 16456 sz = sizeof (desc); 16457 16458 if (copyout(&desc, (void *)arg, sz) != 0) 16459 return (EFAULT); 16460 16461 return (0); 16462 } 16463 16464 /* 16465 * If this is a ring buffer that has wrapped, we want 16466 * to copy the whole thing out. 16467 */ 16468 if (buf->dtb_flags & DTRACEBUF_WRAPPED) { 16469 dtrace_buffer_polish(buf); 16470 sz = buf->dtb_size; 16471 } 16472 16473 if (copyout(buf->dtb_tomax, desc.dtbd_data, sz) != 0) { 16474 mutex_exit(&dtrace_lock); 16475 return (EFAULT); 16476 } 16477 16478 desc.dtbd_size = sz; 16479 desc.dtbd_drops = buf->dtb_drops; 16480 desc.dtbd_errors = buf->dtb_errors; 16481 desc.dtbd_oldest = buf->dtb_xamot_offset; 16482 desc.dtbd_timestamp = dtrace_gethrtime(); 16483 16484 mutex_exit(&dtrace_lock); 16485 16486 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0) 16487 return (EFAULT); 16488 16489 buf->dtb_flags |= DTRACEBUF_CONSUMED; 16490 16491 return (0); 16492 } 16493 16494 if (buf->dtb_tomax == NULL) { 16495 ASSERT(buf->dtb_xamot == NULL); 16496 mutex_exit(&dtrace_lock); 16497 return (ENOENT); 16498 } 16499 16500 cached = buf->dtb_tomax; 16501 ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH)); 16502 16503 dtrace_xcall(desc.dtbd_cpu, 16504 (dtrace_xcall_t)dtrace_buffer_switch, buf); 16505 16506 state->dts_errors += buf->dtb_xamot_errors; 16507 16508 /* 16509 * If the buffers did not actually switch, then the cross call 16510 * did not take place -- presumably because the given CPU is 16511 * not in the ready set. If this is the case, we'll return 16512 * ENOENT. 16513 */ 16514 if (buf->dtb_tomax == cached) { 16515 ASSERT(buf->dtb_xamot != cached); 16516 mutex_exit(&dtrace_lock); 16517 return (ENOENT); 16518 } 16519 16520 ASSERT(cached == buf->dtb_xamot); 16521 16522 /* 16523 * We have our snapshot; now copy it out. 16524 */ 16525 if (copyout(buf->dtb_xamot, desc.dtbd_data, 16526 buf->dtb_xamot_offset) != 0) { 16527 mutex_exit(&dtrace_lock); 16528 return (EFAULT); 16529 } 16530 16531 desc.dtbd_size = buf->dtb_xamot_offset; 16532 desc.dtbd_drops = buf->dtb_xamot_drops; 16533 desc.dtbd_errors = buf->dtb_xamot_errors; 16534 desc.dtbd_oldest = 0; 16535 desc.dtbd_timestamp = buf->dtb_switched; 16536 16537 mutex_exit(&dtrace_lock); 16538 16539 /* 16540 * Finally, copy out the buffer description. 16541 */ 16542 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0) 16543 return (EFAULT); 16544 16545 return (0); 16546 } 16547 16548 case DTRACEIOC_CONF: { 16549 dtrace_conf_t conf; 16550 16551 bzero(&conf, sizeof (conf)); 16552 conf.dtc_difversion = DIF_VERSION; 16553 conf.dtc_difintregs = DIF_DIR_NREGS; 16554 conf.dtc_diftupregs = DIF_DTR_NREGS; 16555 conf.dtc_ctfmodel = CTF_MODEL_NATIVE; 16556 16557 if (copyout(&conf, (void *)arg, sizeof (conf)) != 0) 16558 return (EFAULT); 16559 16560 return (0); 16561 } 16562 16563 case DTRACEIOC_STATUS: { 16564 dtrace_status_t stat; 16565 dtrace_dstate_t *dstate; 16566 int i, j; 16567 uint64_t nerrs; 16568 16569 /* 16570 * See the comment in dtrace_state_deadman() for the reason 16571 * for setting dts_laststatus to INT64_MAX before setting 16572 * it to the correct value. 16573 */ 16574 state->dts_laststatus = INT64_MAX; 16575 dtrace_membar_producer(); 16576 state->dts_laststatus = dtrace_gethrtime(); 16577 16578 bzero(&stat, sizeof (stat)); 16579 16580 mutex_enter(&dtrace_lock); 16581 16582 if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE) { 16583 mutex_exit(&dtrace_lock); 16584 return (ENOENT); 16585 } 16586 16587 if (state->dts_activity == DTRACE_ACTIVITY_DRAINING) 16588 stat.dtst_exiting = 1; 16589 16590 nerrs = state->dts_errors; 16591 dstate = &state->dts_vstate.dtvs_dynvars; 16592 16593 for (i = 0; i < NCPU; i++) { 16594 dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[i]; 16595 16596 stat.dtst_dyndrops += dcpu->dtdsc_drops; 16597 stat.dtst_dyndrops_dirty += dcpu->dtdsc_dirty_drops; 16598 stat.dtst_dyndrops_rinsing += dcpu->dtdsc_rinsing_drops; 16599 16600 if (state->dts_buffer[i].dtb_flags & DTRACEBUF_FULL) 16601 stat.dtst_filled++; 16602 16603 nerrs += state->dts_buffer[i].dtb_errors; 16604 16605 for (j = 0; j < state->dts_nspeculations; j++) { 16606 dtrace_speculation_t *spec; 16607 dtrace_buffer_t *buf; 16608 16609 spec = &state->dts_speculations[j]; 16610 buf = &spec->dtsp_buffer[i]; 16611 stat.dtst_specdrops += buf->dtb_xamot_drops; 16612 } 16613 } 16614 16615 stat.dtst_specdrops_busy = state->dts_speculations_busy; 16616 stat.dtst_specdrops_unavail = state->dts_speculations_unavail; 16617 stat.dtst_stkstroverflows = state->dts_stkstroverflows; 16618 stat.dtst_dblerrors = state->dts_dblerrors; 16619 stat.dtst_killed = 16620 (state->dts_activity == DTRACE_ACTIVITY_KILLED); 16621 stat.dtst_errors = nerrs; 16622 16623 mutex_exit(&dtrace_lock); 16624 16625 if (copyout(&stat, (void *)arg, sizeof (stat)) != 0) 16626 return (EFAULT); 16627 16628 return (0); 16629 } 16630 16631 case DTRACEIOC_FORMAT: { 16632 dtrace_fmtdesc_t fmt; 16633 char *str; 16634 int len; 16635 16636 if (copyin((void *)arg, &fmt, sizeof (fmt)) != 0) 16637 return (EFAULT); 16638 16639 mutex_enter(&dtrace_lock); 16640 16641 if (fmt.dtfd_format == 0 || 16642 fmt.dtfd_format > state->dts_nformats) { 16643 mutex_exit(&dtrace_lock); 16644 return (EINVAL); 16645 } 16646 16647 /* 16648 * Format strings are allocated contiguously and they are 16649 * never freed; if a format index is less than the number 16650 * of formats, we can assert that the format map is non-NULL 16651 * and that the format for the specified index is non-NULL. 16652 */ 16653 ASSERT(state->dts_formats != NULL); 16654 str = state->dts_formats[fmt.dtfd_format - 1]; 16655 ASSERT(str != NULL); 16656 16657 len = strlen(str) + 1; 16658 16659 if (len > fmt.dtfd_length) { 16660 fmt.dtfd_length = len; 16661 16662 if (copyout(&fmt, (void *)arg, sizeof (fmt)) != 0) { 16663 mutex_exit(&dtrace_lock); 16664 return (EINVAL); 16665 } 16666 } else { 16667 if (copyout(str, fmt.dtfd_string, len) != 0) { 16668 mutex_exit(&dtrace_lock); 16669 return (EINVAL); 16670 } 16671 } 16672 16673 mutex_exit(&dtrace_lock); 16674 return (0); 16675 } 16676 16677 default: 16678 break; 16679 } 16680 16681 return (ENOTTY); 16682 } 16683 16684 /*ARGSUSED*/ 16685 static int 16686 dtrace_detach(dev_info_t *dip, ddi_detach_cmd_t cmd) 16687 { 16688 dtrace_state_t *state; 16689 16690 switch (cmd) { 16691 case DDI_DETACH: 16692 break; 16693 16694 case DDI_SUSPEND: 16695 return (DDI_SUCCESS); 16696 16697 default: 16698 return (DDI_FAILURE); 16699 } 16700 16701 mutex_enter(&cpu_lock); 16702 mutex_enter(&dtrace_provider_lock); 16703 mutex_enter(&dtrace_lock); 16704 16705 ASSERT(dtrace_opens == 0); 16706 16707 if (dtrace_helpers > 0) { 16708 mutex_exit(&dtrace_provider_lock); 16709 mutex_exit(&dtrace_lock); 16710 mutex_exit(&cpu_lock); 16711 return (DDI_FAILURE); 16712 } 16713 16714 if (dtrace_unregister((dtrace_provider_id_t)dtrace_provider) != 0) { 16715 mutex_exit(&dtrace_provider_lock); 16716 mutex_exit(&dtrace_lock); 16717 mutex_exit(&cpu_lock); 16718 return (DDI_FAILURE); 16719 } 16720 16721 dtrace_provider = NULL; 16722 16723 if ((state = dtrace_anon_grab()) != NULL) { 16724 /* 16725 * If there were ECBs on this state, the provider should 16726 * have not been allowed to detach; assert that there is 16727 * none. 16728 */ 16729 ASSERT(state->dts_necbs == 0); 16730 dtrace_state_destroy(state); 16731 16732 /* 16733 * If we're being detached with anonymous state, we need to 16734 * indicate to the kernel debugger that DTrace is now inactive. 16735 */ 16736 (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE); 16737 } 16738 16739 bzero(&dtrace_anon, sizeof (dtrace_anon_t)); 16740 unregister_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL); 16741 dtrace_cpu_init = NULL; 16742 dtrace_helpers_cleanup = NULL; 16743 dtrace_helpers_fork = NULL; 16744 dtrace_cpustart_init = NULL; 16745 dtrace_cpustart_fini = NULL; 16746 dtrace_debugger_init = NULL; 16747 dtrace_debugger_fini = NULL; 16748 dtrace_modload = NULL; 16749 dtrace_modunload = NULL; 16750 16751 ASSERT(dtrace_getf == 0); 16752 ASSERT(dtrace_closef == NULL); 16753 16754 mutex_exit(&cpu_lock); 16755 16756 if (dtrace_helptrace_enabled) { 16757 kmem_free(dtrace_helptrace_buffer, dtrace_helptrace_bufsize); 16758 dtrace_helptrace_buffer = NULL; 16759 } 16760 16761 kmem_free(dtrace_probes, dtrace_nprobes * sizeof (dtrace_probe_t *)); 16762 dtrace_probes = NULL; 16763 dtrace_nprobes = 0; 16764 16765 dtrace_hash_destroy(dtrace_bymod); 16766 dtrace_hash_destroy(dtrace_byfunc); 16767 dtrace_hash_destroy(dtrace_byname); 16768 dtrace_bymod = NULL; 16769 dtrace_byfunc = NULL; 16770 dtrace_byname = NULL; 16771 16772 kmem_cache_destroy(dtrace_state_cache); 16773 vmem_destroy(dtrace_minor); 16774 vmem_destroy(dtrace_arena); 16775 16776 if (dtrace_toxrange != NULL) { 16777 kmem_free(dtrace_toxrange, 16778 dtrace_toxranges_max * sizeof (dtrace_toxrange_t)); 16779 dtrace_toxrange = NULL; 16780 dtrace_toxranges = 0; 16781 dtrace_toxranges_max = 0; 16782 } 16783 16784 ddi_remove_minor_node(dtrace_devi, NULL); 16785 dtrace_devi = NULL; 16786 16787 ddi_soft_state_fini(&dtrace_softstate); 16788 16789 ASSERT(dtrace_vtime_references == 0); 16790 ASSERT(dtrace_opens == 0); 16791 ASSERT(dtrace_retained == NULL); 16792 16793 mutex_exit(&dtrace_lock); 16794 mutex_exit(&dtrace_provider_lock); 16795 16796 /* 16797 * We don't destroy the task queue until after we have dropped our 16798 * locks (taskq_destroy() may block on running tasks). To prevent 16799 * attempting to do work after we have effectively detached but before 16800 * the task queue has been destroyed, all tasks dispatched via the 16801 * task queue must check that DTrace is still attached before 16802 * performing any operation. 16803 */ 16804 taskq_destroy(dtrace_taskq); 16805 dtrace_taskq = NULL; 16806 16807 return (DDI_SUCCESS); 16808 } 16809 16810 /*ARGSUSED*/ 16811 static int 16812 dtrace_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result) 16813 { 16814 int error; 16815 16816 switch (infocmd) { 16817 case DDI_INFO_DEVT2DEVINFO: 16818 *result = (void *)dtrace_devi; 16819 error = DDI_SUCCESS; 16820 break; 16821 case DDI_INFO_DEVT2INSTANCE: 16822 *result = (void *)0; 16823 error = DDI_SUCCESS; 16824 break; 16825 default: 16826 error = DDI_FAILURE; 16827 } 16828 return (error); 16829 } 16830 16831 static struct cb_ops dtrace_cb_ops = { 16832 dtrace_open, /* open */ 16833 dtrace_close, /* close */ 16834 nulldev, /* strategy */ 16835 nulldev, /* print */ 16836 nodev, /* dump */ 16837 nodev, /* read */ 16838 nodev, /* write */ 16839 dtrace_ioctl, /* ioctl */ 16840 nodev, /* devmap */ 16841 nodev, /* mmap */ 16842 nodev, /* segmap */ 16843 nochpoll, /* poll */ 16844 ddi_prop_op, /* cb_prop_op */ 16845 0, /* streamtab */ 16846 D_NEW | D_MP /* Driver compatibility flag */ 16847 }; 16848 16849 static struct dev_ops dtrace_ops = { 16850 DEVO_REV, /* devo_rev */ 16851 0, /* refcnt */ 16852 dtrace_info, /* get_dev_info */ 16853 nulldev, /* identify */ 16854 nulldev, /* probe */ 16855 dtrace_attach, /* attach */ 16856 dtrace_detach, /* detach */ 16857 nodev, /* reset */ 16858 &dtrace_cb_ops, /* driver operations */ 16859 NULL, /* bus operations */ 16860 nodev, /* dev power */ 16861 ddi_quiesce_not_needed, /* quiesce */ 16862 }; 16863 16864 static struct modldrv modldrv = { 16865 &mod_driverops, /* module type (this is a pseudo driver) */ 16866 "Dynamic Tracing", /* name of module */ 16867 &dtrace_ops, /* driver ops */ 16868 }; 16869 16870 static struct modlinkage modlinkage = { 16871 MODREV_1, 16872 (void *)&modldrv, 16873 NULL 16874 }; 16875 16876 int 16877 _init(void) 16878 { 16879 return (mod_install(&modlinkage)); 16880 } 16881 16882 int 16883 _info(struct modinfo *modinfop) 16884 { 16885 return (mod_info(&modlinkage, modinfop)); 16886 } 16887 16888 int 16889 _fini(void) 16890 { 16891 return (mod_remove(&modlinkage)); 16892 } 16893