xref: /titanic_52/usr/src/uts/common/dtrace/dtrace.c (revision a386cc11a86ecb60f5a48078d22c1500e2ad003e)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2013, Joyent, Inc. All rights reserved.
25  * Copyright (c) 2012 by Delphix. All rights reserved.
26  */
27 
28 /*
29  * DTrace - Dynamic Tracing for Solaris
30  *
31  * This is the implementation of the Solaris Dynamic Tracing framework
32  * (DTrace).  The user-visible interface to DTrace is described at length in
33  * the "Solaris Dynamic Tracing Guide".  The interfaces between the libdtrace
34  * library, the in-kernel DTrace framework, and the DTrace providers are
35  * described in the block comments in the <sys/dtrace.h> header file.  The
36  * internal architecture of DTrace is described in the block comments in the
37  * <sys/dtrace_impl.h> header file.  The comments contained within the DTrace
38  * implementation very much assume mastery of all of these sources; if one has
39  * an unanswered question about the implementation, one should consult them
40  * first.
41  *
42  * The functions here are ordered roughly as follows:
43  *
44  *   - Probe context functions
45  *   - Probe hashing functions
46  *   - Non-probe context utility functions
47  *   - Matching functions
48  *   - Provider-to-Framework API functions
49  *   - Probe management functions
50  *   - DIF object functions
51  *   - Format functions
52  *   - Predicate functions
53  *   - ECB functions
54  *   - Buffer functions
55  *   - Enabling functions
56  *   - DOF functions
57  *   - Anonymous enabling functions
58  *   - Consumer state functions
59  *   - Helper functions
60  *   - Hook functions
61  *   - Driver cookbook functions
62  *
63  * Each group of functions begins with a block comment labelled the "DTrace
64  * [Group] Functions", allowing one to find each block by searching forward
65  * on capital-f functions.
66  */
67 #include <sys/errno.h>
68 #include <sys/stat.h>
69 #include <sys/modctl.h>
70 #include <sys/conf.h>
71 #include <sys/systm.h>
72 #include <sys/ddi.h>
73 #include <sys/sunddi.h>
74 #include <sys/cpuvar.h>
75 #include <sys/kmem.h>
76 #include <sys/strsubr.h>
77 #include <sys/sysmacros.h>
78 #include <sys/dtrace_impl.h>
79 #include <sys/atomic.h>
80 #include <sys/cmn_err.h>
81 #include <sys/mutex_impl.h>
82 #include <sys/rwlock_impl.h>
83 #include <sys/ctf_api.h>
84 #include <sys/panic.h>
85 #include <sys/priv_impl.h>
86 #include <sys/policy.h>
87 #include <sys/cred_impl.h>
88 #include <sys/procfs_isa.h>
89 #include <sys/taskq.h>
90 #include <sys/mkdev.h>
91 #include <sys/kdi.h>
92 #include <sys/zone.h>
93 #include <sys/socket.h>
94 #include <netinet/in.h>
95 #include "strtolctype.h"
96 
97 /*
98  * DTrace Tunable Variables
99  *
100  * The following variables may be tuned by adding a line to /etc/system that
101  * includes both the name of the DTrace module ("dtrace") and the name of the
102  * variable.  For example:
103  *
104  *   set dtrace:dtrace_destructive_disallow = 1
105  *
106  * In general, the only variables that one should be tuning this way are those
107  * that affect system-wide DTrace behavior, and for which the default behavior
108  * is undesirable.  Most of these variables are tunable on a per-consumer
109  * basis using DTrace options, and need not be tuned on a system-wide basis.
110  * When tuning these variables, avoid pathological values; while some attempt
111  * is made to verify the integrity of these variables, they are not considered
112  * part of the supported interface to DTrace, and they are therefore not
113  * checked comprehensively.  Further, these variables should not be tuned
114  * dynamically via "mdb -kw" or other means; they should only be tuned via
115  * /etc/system.
116  */
117 int		dtrace_destructive_disallow = 0;
118 dtrace_optval_t	dtrace_nonroot_maxsize = (16 * 1024 * 1024);
119 size_t		dtrace_difo_maxsize = (256 * 1024);
120 dtrace_optval_t	dtrace_dof_maxsize = (256 * 1024);
121 size_t		dtrace_global_maxsize = (16 * 1024);
122 size_t		dtrace_actions_max = (16 * 1024);
123 size_t		dtrace_retain_max = 1024;
124 dtrace_optval_t	dtrace_helper_actions_max = 1024;
125 dtrace_optval_t	dtrace_helper_providers_max = 32;
126 dtrace_optval_t	dtrace_dstate_defsize = (1 * 1024 * 1024);
127 size_t		dtrace_strsize_default = 256;
128 dtrace_optval_t	dtrace_cleanrate_default = 9900990;		/* 101 hz */
129 dtrace_optval_t	dtrace_cleanrate_min = 200000;			/* 5000 hz */
130 dtrace_optval_t	dtrace_cleanrate_max = (uint64_t)60 * NANOSEC;	/* 1/minute */
131 dtrace_optval_t	dtrace_aggrate_default = NANOSEC;		/* 1 hz */
132 dtrace_optval_t	dtrace_statusrate_default = NANOSEC;		/* 1 hz */
133 dtrace_optval_t dtrace_statusrate_max = (hrtime_t)10 * NANOSEC;	 /* 6/minute */
134 dtrace_optval_t	dtrace_switchrate_default = NANOSEC;		/* 1 hz */
135 dtrace_optval_t	dtrace_nspec_default = 1;
136 dtrace_optval_t	dtrace_specsize_default = 32 * 1024;
137 dtrace_optval_t dtrace_stackframes_default = 20;
138 dtrace_optval_t dtrace_ustackframes_default = 20;
139 dtrace_optval_t dtrace_jstackframes_default = 50;
140 dtrace_optval_t dtrace_jstackstrsize_default = 512;
141 int		dtrace_msgdsize_max = 128;
142 hrtime_t	dtrace_chill_max = 500 * (NANOSEC / MILLISEC);	/* 500 ms */
143 hrtime_t	dtrace_chill_interval = NANOSEC;		/* 1000 ms */
144 int		dtrace_devdepth_max = 32;
145 int		dtrace_err_verbose;
146 hrtime_t	dtrace_deadman_interval = NANOSEC;
147 hrtime_t	dtrace_deadman_timeout = (hrtime_t)10 * NANOSEC;
148 hrtime_t	dtrace_deadman_user = (hrtime_t)30 * NANOSEC;
149 hrtime_t	dtrace_unregister_defunct_reap = (hrtime_t)60 * NANOSEC;
150 
151 /*
152  * DTrace External Variables
153  *
154  * As dtrace(7D) is a kernel module, any DTrace variables are obviously
155  * available to DTrace consumers via the backtick (`) syntax.  One of these,
156  * dtrace_zero, is made deliberately so:  it is provided as a source of
157  * well-known, zero-filled memory.  While this variable is not documented,
158  * it is used by some translators as an implementation detail.
159  */
160 const char	dtrace_zero[256] = { 0 };	/* zero-filled memory */
161 
162 /*
163  * DTrace Internal Variables
164  */
165 static dev_info_t	*dtrace_devi;		/* device info */
166 static vmem_t		*dtrace_arena;		/* probe ID arena */
167 static vmem_t		*dtrace_minor;		/* minor number arena */
168 static taskq_t		*dtrace_taskq;		/* task queue */
169 static dtrace_probe_t	**dtrace_probes;	/* array of all probes */
170 static int		dtrace_nprobes;		/* number of probes */
171 static dtrace_provider_t *dtrace_provider;	/* provider list */
172 static dtrace_meta_t	*dtrace_meta_pid;	/* user-land meta provider */
173 static int		dtrace_opens;		/* number of opens */
174 static int		dtrace_helpers;		/* number of helpers */
175 static int		dtrace_getf;		/* number of unpriv getf()s */
176 static void		*dtrace_softstate;	/* softstate pointer */
177 static dtrace_hash_t	*dtrace_bymod;		/* probes hashed by module */
178 static dtrace_hash_t	*dtrace_byfunc;		/* probes hashed by function */
179 static dtrace_hash_t	*dtrace_byname;		/* probes hashed by name */
180 static dtrace_toxrange_t *dtrace_toxrange;	/* toxic range array */
181 static int		dtrace_toxranges;	/* number of toxic ranges */
182 static int		dtrace_toxranges_max;	/* size of toxic range array */
183 static dtrace_anon_t	dtrace_anon;		/* anonymous enabling */
184 static kmem_cache_t	*dtrace_state_cache;	/* cache for dynamic state */
185 static uint64_t		dtrace_vtime_references; /* number of vtimestamp refs */
186 static kthread_t	*dtrace_panicked;	/* panicking thread */
187 static dtrace_ecb_t	*dtrace_ecb_create_cache; /* cached created ECB */
188 static dtrace_genid_t	dtrace_probegen;	/* current probe generation */
189 static dtrace_helpers_t *dtrace_deferred_pid;	/* deferred helper list */
190 static dtrace_enabling_t *dtrace_retained;	/* list of retained enablings */
191 static dtrace_genid_t	dtrace_retained_gen;	/* current retained enab gen */
192 static dtrace_dynvar_t	dtrace_dynhash_sink;	/* end of dynamic hash chains */
193 static int		dtrace_dynvar_failclean; /* dynvars failed to clean */
194 
195 /*
196  * DTrace Locking
197  * DTrace is protected by three (relatively coarse-grained) locks:
198  *
199  * (1) dtrace_lock is required to manipulate essentially any DTrace state,
200  *     including enabling state, probes, ECBs, consumer state, helper state,
201  *     etc.  Importantly, dtrace_lock is _not_ required when in probe context;
202  *     probe context is lock-free -- synchronization is handled via the
203  *     dtrace_sync() cross call mechanism.
204  *
205  * (2) dtrace_provider_lock is required when manipulating provider state, or
206  *     when provider state must be held constant.
207  *
208  * (3) dtrace_meta_lock is required when manipulating meta provider state, or
209  *     when meta provider state must be held constant.
210  *
211  * The lock ordering between these three locks is dtrace_meta_lock before
212  * dtrace_provider_lock before dtrace_lock.  (In particular, there are
213  * several places where dtrace_provider_lock is held by the framework as it
214  * calls into the providers -- which then call back into the framework,
215  * grabbing dtrace_lock.)
216  *
217  * There are two other locks in the mix:  mod_lock and cpu_lock.  With respect
218  * to dtrace_provider_lock and dtrace_lock, cpu_lock continues its historical
219  * role as a coarse-grained lock; it is acquired before both of these locks.
220  * With respect to dtrace_meta_lock, its behavior is stranger:  cpu_lock must
221  * be acquired _between_ dtrace_meta_lock and any other DTrace locks.
222  * mod_lock is similar with respect to dtrace_provider_lock in that it must be
223  * acquired _between_ dtrace_provider_lock and dtrace_lock.
224  */
225 static kmutex_t		dtrace_lock;		/* probe state lock */
226 static kmutex_t		dtrace_provider_lock;	/* provider state lock */
227 static kmutex_t		dtrace_meta_lock;	/* meta-provider state lock */
228 
229 /*
230  * DTrace Provider Variables
231  *
232  * These are the variables relating to DTrace as a provider (that is, the
233  * provider of the BEGIN, END, and ERROR probes).
234  */
235 static dtrace_pattr_t	dtrace_provider_attr = {
236 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
237 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN },
238 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN },
239 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
240 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
241 };
242 
243 static void
244 dtrace_nullop(void)
245 {}
246 
247 static int
248 dtrace_enable_nullop(void)
249 {
250 	return (0);
251 }
252 
253 static dtrace_pops_t	dtrace_provider_ops = {
254 	(void (*)(void *, const dtrace_probedesc_t *))dtrace_nullop,
255 	(void (*)(void *, struct modctl *))dtrace_nullop,
256 	(int (*)(void *, dtrace_id_t, void *))dtrace_enable_nullop,
257 	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
258 	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
259 	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
260 	NULL,
261 	NULL,
262 	NULL,
263 	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop
264 };
265 
266 static dtrace_id_t	dtrace_probeid_begin;	/* special BEGIN probe */
267 static dtrace_id_t	dtrace_probeid_end;	/* special END probe */
268 dtrace_id_t		dtrace_probeid_error;	/* special ERROR probe */
269 
270 /*
271  * DTrace Helper Tracing Variables
272  */
273 uint32_t dtrace_helptrace_next = 0;
274 uint32_t dtrace_helptrace_nlocals;
275 char	*dtrace_helptrace_buffer;
276 int	dtrace_helptrace_bufsize = 512 * 1024;
277 
278 #ifdef DEBUG
279 int	dtrace_helptrace_enabled = 1;
280 #else
281 int	dtrace_helptrace_enabled = 0;
282 #endif
283 
284 /*
285  * DTrace Error Hashing
286  *
287  * On DEBUG kernels, DTrace will track the errors that has seen in a hash
288  * table.  This is very useful for checking coverage of tests that are
289  * expected to induce DIF or DOF processing errors, and may be useful for
290  * debugging problems in the DIF code generator or in DOF generation .  The
291  * error hash may be examined with the ::dtrace_errhash MDB dcmd.
292  */
293 #ifdef DEBUG
294 static dtrace_errhash_t	dtrace_errhash[DTRACE_ERRHASHSZ];
295 static const char *dtrace_errlast;
296 static kthread_t *dtrace_errthread;
297 static kmutex_t dtrace_errlock;
298 #endif
299 
300 /*
301  * DTrace Macros and Constants
302  *
303  * These are various macros that are useful in various spots in the
304  * implementation, along with a few random constants that have no meaning
305  * outside of the implementation.  There is no real structure to this cpp
306  * mishmash -- but is there ever?
307  */
308 #define	DTRACE_HASHSTR(hash, probe)	\
309 	dtrace_hash_str(*((char **)((uintptr_t)(probe) + (hash)->dth_stroffs)))
310 
311 #define	DTRACE_HASHNEXT(hash, probe)	\
312 	(dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_nextoffs)
313 
314 #define	DTRACE_HASHPREV(hash, probe)	\
315 	(dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_prevoffs)
316 
317 #define	DTRACE_HASHEQ(hash, lhs, rhs)	\
318 	(strcmp(*((char **)((uintptr_t)(lhs) + (hash)->dth_stroffs)), \
319 	    *((char **)((uintptr_t)(rhs) + (hash)->dth_stroffs))) == 0)
320 
321 #define	DTRACE_AGGHASHSIZE_SLEW		17
322 
323 #define	DTRACE_V4MAPPED_OFFSET		(sizeof (uint32_t) * 3)
324 
325 /*
326  * The key for a thread-local variable consists of the lower 61 bits of the
327  * t_did, plus the 3 bits of the highest active interrupt above LOCK_LEVEL.
328  * We add DIF_VARIABLE_MAX to t_did to assure that the thread key is never
329  * equal to a variable identifier.  This is necessary (but not sufficient) to
330  * assure that global associative arrays never collide with thread-local
331  * variables.  To guarantee that they cannot collide, we must also define the
332  * order for keying dynamic variables.  That order is:
333  *
334  *   [ key0 ] ... [ keyn ] [ variable-key ] [ tls-key ]
335  *
336  * Because the variable-key and the tls-key are in orthogonal spaces, there is
337  * no way for a global variable key signature to match a thread-local key
338  * signature.
339  */
340 #define	DTRACE_TLS_THRKEY(where) { \
341 	uint_t intr = 0; \
342 	uint_t actv = CPU->cpu_intr_actv >> (LOCK_LEVEL + 1); \
343 	for (; actv; actv >>= 1) \
344 		intr++; \
345 	ASSERT(intr < (1 << 3)); \
346 	(where) = ((curthread->t_did + DIF_VARIABLE_MAX) & \
347 	    (((uint64_t)1 << 61) - 1)) | ((uint64_t)intr << 61); \
348 }
349 
350 #define	DT_BSWAP_8(x)	((x) & 0xff)
351 #define	DT_BSWAP_16(x)	((DT_BSWAP_8(x) << 8) | DT_BSWAP_8((x) >> 8))
352 #define	DT_BSWAP_32(x)	((DT_BSWAP_16(x) << 16) | DT_BSWAP_16((x) >> 16))
353 #define	DT_BSWAP_64(x)	((DT_BSWAP_32(x) << 32) | DT_BSWAP_32((x) >> 32))
354 
355 #define	DT_MASK_LO 0x00000000FFFFFFFFULL
356 
357 #define	DTRACE_STORE(type, tomax, offset, what) \
358 	*((type *)((uintptr_t)(tomax) + (uintptr_t)offset)) = (type)(what);
359 
360 #ifndef __x86
361 #define	DTRACE_ALIGNCHECK(addr, size, flags)				\
362 	if (addr & (size - 1)) {					\
363 		*flags |= CPU_DTRACE_BADALIGN;				\
364 		cpu_core[CPU->cpu_id].cpuc_dtrace_illval = addr;	\
365 		return (0);						\
366 	}
367 #else
368 #define	DTRACE_ALIGNCHECK(addr, size, flags)
369 #endif
370 
371 /*
372  * Test whether a range of memory starting at testaddr of size testsz falls
373  * within the range of memory described by addr, sz.  We take care to avoid
374  * problems with overflow and underflow of the unsigned quantities, and
375  * disallow all negative sizes.  Ranges of size 0 are allowed.
376  */
377 #define	DTRACE_INRANGE(testaddr, testsz, baseaddr, basesz) \
378 	((testaddr) - (uintptr_t)(baseaddr) < (basesz) && \
379 	(testaddr) + (testsz) - (uintptr_t)(baseaddr) <= (basesz) && \
380 	(testaddr) + (testsz) >= (testaddr))
381 
382 /*
383  * Test whether alloc_sz bytes will fit in the scratch region.  We isolate
384  * alloc_sz on the righthand side of the comparison in order to avoid overflow
385  * or underflow in the comparison with it.  This is simpler than the INRANGE
386  * check above, because we know that the dtms_scratch_ptr is valid in the
387  * range.  Allocations of size zero are allowed.
388  */
389 #define	DTRACE_INSCRATCH(mstate, alloc_sz) \
390 	((mstate)->dtms_scratch_base + (mstate)->dtms_scratch_size - \
391 	(mstate)->dtms_scratch_ptr >= (alloc_sz))
392 
393 #define	DTRACE_LOADFUNC(bits)						\
394 /*CSTYLED*/								\
395 uint##bits##_t								\
396 dtrace_load##bits(uintptr_t addr)					\
397 {									\
398 	size_t size = bits / NBBY;					\
399 	/*CSTYLED*/							\
400 	uint##bits##_t rval;						\
401 	int i;								\
402 	volatile uint16_t *flags = (volatile uint16_t *)		\
403 	    &cpu_core[CPU->cpu_id].cpuc_dtrace_flags;			\
404 									\
405 	DTRACE_ALIGNCHECK(addr, size, flags);				\
406 									\
407 	for (i = 0; i < dtrace_toxranges; i++) {			\
408 		if (addr >= dtrace_toxrange[i].dtt_limit)		\
409 			continue;					\
410 									\
411 		if (addr + size <= dtrace_toxrange[i].dtt_base)		\
412 			continue;					\
413 									\
414 		/*							\
415 		 * This address falls within a toxic region; return 0.	\
416 		 */							\
417 		*flags |= CPU_DTRACE_BADADDR;				\
418 		cpu_core[CPU->cpu_id].cpuc_dtrace_illval = addr;	\
419 		return (0);						\
420 	}								\
421 									\
422 	*flags |= CPU_DTRACE_NOFAULT;					\
423 	/*CSTYLED*/							\
424 	rval = *((volatile uint##bits##_t *)addr);			\
425 	*flags &= ~CPU_DTRACE_NOFAULT;					\
426 									\
427 	return (!(*flags & CPU_DTRACE_FAULT) ? rval : 0);		\
428 }
429 
430 #ifdef _LP64
431 #define	dtrace_loadptr	dtrace_load64
432 #else
433 #define	dtrace_loadptr	dtrace_load32
434 #endif
435 
436 #define	DTRACE_DYNHASH_FREE	0
437 #define	DTRACE_DYNHASH_SINK	1
438 #define	DTRACE_DYNHASH_VALID	2
439 
440 #define	DTRACE_MATCH_FAIL	-1
441 #define	DTRACE_MATCH_NEXT	0
442 #define	DTRACE_MATCH_DONE	1
443 #define	DTRACE_ANCHORED(probe)	((probe)->dtpr_func[0] != '\0')
444 #define	DTRACE_STATE_ALIGN	64
445 
446 #define	DTRACE_FLAGS2FLT(flags)						\
447 	(((flags) & CPU_DTRACE_BADADDR) ? DTRACEFLT_BADADDR :		\
448 	((flags) & CPU_DTRACE_ILLOP) ? DTRACEFLT_ILLOP :		\
449 	((flags) & CPU_DTRACE_DIVZERO) ? DTRACEFLT_DIVZERO :		\
450 	((flags) & CPU_DTRACE_KPRIV) ? DTRACEFLT_KPRIV :		\
451 	((flags) & CPU_DTRACE_UPRIV) ? DTRACEFLT_UPRIV :		\
452 	((flags) & CPU_DTRACE_TUPOFLOW) ?  DTRACEFLT_TUPOFLOW :		\
453 	((flags) & CPU_DTRACE_BADALIGN) ?  DTRACEFLT_BADALIGN :		\
454 	((flags) & CPU_DTRACE_NOSCRATCH) ?  DTRACEFLT_NOSCRATCH :	\
455 	((flags) & CPU_DTRACE_BADSTACK) ?  DTRACEFLT_BADSTACK :		\
456 	DTRACEFLT_UNKNOWN)
457 
458 #define	DTRACEACT_ISSTRING(act)						\
459 	((act)->dta_kind == DTRACEACT_DIFEXPR &&			\
460 	(act)->dta_difo->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING)
461 
462 static size_t dtrace_strlen(const char *, size_t);
463 static dtrace_probe_t *dtrace_probe_lookup_id(dtrace_id_t id);
464 static void dtrace_enabling_provide(dtrace_provider_t *);
465 static int dtrace_enabling_match(dtrace_enabling_t *, int *);
466 static void dtrace_enabling_matchall(void);
467 static void dtrace_enabling_reap(void);
468 static dtrace_state_t *dtrace_anon_grab(void);
469 static uint64_t dtrace_helper(int, dtrace_mstate_t *,
470     dtrace_state_t *, uint64_t, uint64_t);
471 static dtrace_helpers_t *dtrace_helpers_create(proc_t *);
472 static void dtrace_buffer_drop(dtrace_buffer_t *);
473 static int dtrace_buffer_consumed(dtrace_buffer_t *, hrtime_t when);
474 static intptr_t dtrace_buffer_reserve(dtrace_buffer_t *, size_t, size_t,
475     dtrace_state_t *, dtrace_mstate_t *);
476 static int dtrace_state_option(dtrace_state_t *, dtrace_optid_t,
477     dtrace_optval_t);
478 static int dtrace_ecb_create_enable(dtrace_probe_t *, void *);
479 static void dtrace_helper_provider_destroy(dtrace_helper_provider_t *);
480 static int dtrace_priv_proc(dtrace_state_t *, dtrace_mstate_t *);
481 static void dtrace_getf_barrier(void);
482 
483 /*
484  * DTrace Probe Context Functions
485  *
486  * These functions are called from probe context.  Because probe context is
487  * any context in which C may be called, arbitrarily locks may be held,
488  * interrupts may be disabled, we may be in arbitrary dispatched state, etc.
489  * As a result, functions called from probe context may only call other DTrace
490  * support functions -- they may not interact at all with the system at large.
491  * (Note that the ASSERT macro is made probe-context safe by redefining it in
492  * terms of dtrace_assfail(), a probe-context safe function.) If arbitrary
493  * loads are to be performed from probe context, they _must_ be in terms of
494  * the safe dtrace_load*() variants.
495  *
496  * Some functions in this block are not actually called from probe context;
497  * for these functions, there will be a comment above the function reading
498  * "Note:  not called from probe context."
499  */
500 void
501 dtrace_panic(const char *format, ...)
502 {
503 	va_list alist;
504 
505 	va_start(alist, format);
506 	dtrace_vpanic(format, alist);
507 	va_end(alist);
508 }
509 
510 int
511 dtrace_assfail(const char *a, const char *f, int l)
512 {
513 	dtrace_panic("assertion failed: %s, file: %s, line: %d", a, f, l);
514 
515 	/*
516 	 * We just need something here that even the most clever compiler
517 	 * cannot optimize away.
518 	 */
519 	return (a[(uintptr_t)f]);
520 }
521 
522 /*
523  * Atomically increment a specified error counter from probe context.
524  */
525 static void
526 dtrace_error(uint32_t *counter)
527 {
528 	/*
529 	 * Most counters stored to in probe context are per-CPU counters.
530 	 * However, there are some error conditions that are sufficiently
531 	 * arcane that they don't merit per-CPU storage.  If these counters
532 	 * are incremented concurrently on different CPUs, scalability will be
533 	 * adversely affected -- but we don't expect them to be white-hot in a
534 	 * correctly constructed enabling...
535 	 */
536 	uint32_t oval, nval;
537 
538 	do {
539 		oval = *counter;
540 
541 		if ((nval = oval + 1) == 0) {
542 			/*
543 			 * If the counter would wrap, set it to 1 -- assuring
544 			 * that the counter is never zero when we have seen
545 			 * errors.  (The counter must be 32-bits because we
546 			 * aren't guaranteed a 64-bit compare&swap operation.)
547 			 * To save this code both the infamy of being fingered
548 			 * by a priggish news story and the indignity of being
549 			 * the target of a neo-puritan witch trial, we're
550 			 * carefully avoiding any colorful description of the
551 			 * likelihood of this condition -- but suffice it to
552 			 * say that it is only slightly more likely than the
553 			 * overflow of predicate cache IDs, as discussed in
554 			 * dtrace_predicate_create().
555 			 */
556 			nval = 1;
557 		}
558 	} while (dtrace_cas32(counter, oval, nval) != oval);
559 }
560 
561 /*
562  * Use the DTRACE_LOADFUNC macro to define functions for each of loading a
563  * uint8_t, a uint16_t, a uint32_t and a uint64_t.
564  */
565 DTRACE_LOADFUNC(8)
566 DTRACE_LOADFUNC(16)
567 DTRACE_LOADFUNC(32)
568 DTRACE_LOADFUNC(64)
569 
570 static int
571 dtrace_inscratch(uintptr_t dest, size_t size, dtrace_mstate_t *mstate)
572 {
573 	if (dest < mstate->dtms_scratch_base)
574 		return (0);
575 
576 	if (dest + size < dest)
577 		return (0);
578 
579 	if (dest + size > mstate->dtms_scratch_ptr)
580 		return (0);
581 
582 	return (1);
583 }
584 
585 static int
586 dtrace_canstore_statvar(uint64_t addr, size_t sz,
587     dtrace_statvar_t **svars, int nsvars)
588 {
589 	int i;
590 
591 	for (i = 0; i < nsvars; i++) {
592 		dtrace_statvar_t *svar = svars[i];
593 
594 		if (svar == NULL || svar->dtsv_size == 0)
595 			continue;
596 
597 		if (DTRACE_INRANGE(addr, sz, svar->dtsv_data, svar->dtsv_size))
598 			return (1);
599 	}
600 
601 	return (0);
602 }
603 
604 /*
605  * Check to see if the address is within a memory region to which a store may
606  * be issued.  This includes the DTrace scratch areas, and any DTrace variable
607  * region.  The caller of dtrace_canstore() is responsible for performing any
608  * alignment checks that are needed before stores are actually executed.
609  */
610 static int
611 dtrace_canstore(uint64_t addr, size_t sz, dtrace_mstate_t *mstate,
612     dtrace_vstate_t *vstate)
613 {
614 	/*
615 	 * First, check to see if the address is in scratch space...
616 	 */
617 	if (DTRACE_INRANGE(addr, sz, mstate->dtms_scratch_base,
618 	    mstate->dtms_scratch_size))
619 		return (1);
620 
621 	/*
622 	 * Now check to see if it's a dynamic variable.  This check will pick
623 	 * up both thread-local variables and any global dynamically-allocated
624 	 * variables.
625 	 */
626 	if (DTRACE_INRANGE(addr, sz, vstate->dtvs_dynvars.dtds_base,
627 	    vstate->dtvs_dynvars.dtds_size)) {
628 		dtrace_dstate_t *dstate = &vstate->dtvs_dynvars;
629 		uintptr_t base = (uintptr_t)dstate->dtds_base +
630 		    (dstate->dtds_hashsize * sizeof (dtrace_dynhash_t));
631 		uintptr_t chunkoffs;
632 
633 		/*
634 		 * Before we assume that we can store here, we need to make
635 		 * sure that it isn't in our metadata -- storing to our
636 		 * dynamic variable metadata would corrupt our state.  For
637 		 * the range to not include any dynamic variable metadata,
638 		 * it must:
639 		 *
640 		 *	(1) Start above the hash table that is at the base of
641 		 *	the dynamic variable space
642 		 *
643 		 *	(2) Have a starting chunk offset that is beyond the
644 		 *	dtrace_dynvar_t that is at the base of every chunk
645 		 *
646 		 *	(3) Not span a chunk boundary
647 		 *
648 		 */
649 		if (addr < base)
650 			return (0);
651 
652 		chunkoffs = (addr - base) % dstate->dtds_chunksize;
653 
654 		if (chunkoffs < sizeof (dtrace_dynvar_t))
655 			return (0);
656 
657 		if (chunkoffs + sz > dstate->dtds_chunksize)
658 			return (0);
659 
660 		return (1);
661 	}
662 
663 	/*
664 	 * Finally, check the static local and global variables.  These checks
665 	 * take the longest, so we perform them last.
666 	 */
667 	if (dtrace_canstore_statvar(addr, sz,
668 	    vstate->dtvs_locals, vstate->dtvs_nlocals))
669 		return (1);
670 
671 	if (dtrace_canstore_statvar(addr, sz,
672 	    vstate->dtvs_globals, vstate->dtvs_nglobals))
673 		return (1);
674 
675 	return (0);
676 }
677 
678 
679 /*
680  * Convenience routine to check to see if the address is within a memory
681  * region in which a load may be issued given the user's privilege level;
682  * if not, it sets the appropriate error flags and loads 'addr' into the
683  * illegal value slot.
684  *
685  * DTrace subroutines (DIF_SUBR_*) should use this helper to implement
686  * appropriate memory access protection.
687  */
688 static int
689 dtrace_canload(uint64_t addr, size_t sz, dtrace_mstate_t *mstate,
690     dtrace_vstate_t *vstate)
691 {
692 	volatile uintptr_t *illval = &cpu_core[CPU->cpu_id].cpuc_dtrace_illval;
693 	file_t *fp;
694 
695 	/*
696 	 * If we hold the privilege to read from kernel memory, then
697 	 * everything is readable.
698 	 */
699 	if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
700 		return (1);
701 
702 	/*
703 	 * You can obviously read that which you can store.
704 	 */
705 	if (dtrace_canstore(addr, sz, mstate, vstate))
706 		return (1);
707 
708 	/*
709 	 * We're allowed to read from our own string table.
710 	 */
711 	if (DTRACE_INRANGE(addr, sz, mstate->dtms_difo->dtdo_strtab,
712 	    mstate->dtms_difo->dtdo_strlen))
713 		return (1);
714 
715 	if (vstate->dtvs_state != NULL &&
716 	    dtrace_priv_proc(vstate->dtvs_state, mstate)) {
717 		proc_t *p;
718 
719 		/*
720 		 * When we have privileges to the current process, there are
721 		 * several context-related kernel structures that are safe to
722 		 * read, even absent the privilege to read from kernel memory.
723 		 * These reads are safe because these structures contain only
724 		 * state that (1) we're permitted to read, (2) is harmless or
725 		 * (3) contains pointers to additional kernel state that we're
726 		 * not permitted to read (and as such, do not present an
727 		 * opportunity for privilege escalation).  Finally (and
728 		 * critically), because of the nature of their relation with
729 		 * the current thread context, the memory associated with these
730 		 * structures cannot change over the duration of probe context,
731 		 * and it is therefore impossible for this memory to be
732 		 * deallocated and reallocated as something else while it's
733 		 * being operated upon.
734 		 */
735 		if (DTRACE_INRANGE(addr, sz, curthread, sizeof (kthread_t)))
736 			return (1);
737 
738 		if ((p = curthread->t_procp) != NULL && DTRACE_INRANGE(addr,
739 		    sz, curthread->t_procp, sizeof (proc_t))) {
740 			return (1);
741 		}
742 
743 		if (curthread->t_cred != NULL && DTRACE_INRANGE(addr, sz,
744 		    curthread->t_cred, sizeof (cred_t))) {
745 			return (1);
746 		}
747 
748 		if (p != NULL && p->p_pidp != NULL && DTRACE_INRANGE(addr, sz,
749 		    &(p->p_pidp->pid_id), sizeof (pid_t))) {
750 			return (1);
751 		}
752 
753 		if (curthread->t_cpu != NULL && DTRACE_INRANGE(addr, sz,
754 		    curthread->t_cpu, offsetof(cpu_t, cpu_pause_thread))) {
755 			return (1);
756 		}
757 	}
758 
759 	if ((fp = mstate->dtms_getf) != NULL) {
760 		uintptr_t psz = sizeof (void *);
761 		vnode_t *vp;
762 		vnodeops_t *op;
763 
764 		/*
765 		 * When getf() returns a file_t, the enabling is implicitly
766 		 * granted the (transient) right to read the returned file_t
767 		 * as well as the v_path and v_op->vnop_name of the underlying
768 		 * vnode.  These accesses are allowed after a successful
769 		 * getf() because the members that they refer to cannot change
770 		 * once set -- and the barrier logic in the kernel's closef()
771 		 * path assures that the file_t and its referenced vode_t
772 		 * cannot themselves be stale (that is, it impossible for
773 		 * either dtms_getf itself or its f_vnode member to reference
774 		 * freed memory).
775 		 */
776 		if (DTRACE_INRANGE(addr, sz, fp, sizeof (file_t)))
777 			return (1);
778 
779 		if ((vp = fp->f_vnode) != NULL) {
780 			if (DTRACE_INRANGE(addr, sz, &vp->v_path, psz))
781 				return (1);
782 
783 			if (vp->v_path != NULL && DTRACE_INRANGE(addr, sz,
784 			    vp->v_path, strlen(vp->v_path) + 1)) {
785 				return (1);
786 			}
787 
788 			if (DTRACE_INRANGE(addr, sz, &vp->v_op, psz))
789 				return (1);
790 
791 			if ((op = vp->v_op) != NULL &&
792 			    DTRACE_INRANGE(addr, sz, &op->vnop_name, psz)) {
793 				return (1);
794 			}
795 
796 			if (op != NULL && op->vnop_name != NULL &&
797 			    DTRACE_INRANGE(addr, sz, op->vnop_name,
798 			    strlen(op->vnop_name) + 1)) {
799 				return (1);
800 			}
801 		}
802 	}
803 
804 	DTRACE_CPUFLAG_SET(CPU_DTRACE_KPRIV);
805 	*illval = addr;
806 	return (0);
807 }
808 
809 /*
810  * Convenience routine to check to see if a given string is within a memory
811  * region in which a load may be issued given the user's privilege level;
812  * this exists so that we don't need to issue unnecessary dtrace_strlen()
813  * calls in the event that the user has all privileges.
814  */
815 static int
816 dtrace_strcanload(uint64_t addr, size_t sz, dtrace_mstate_t *mstate,
817     dtrace_vstate_t *vstate)
818 {
819 	size_t strsz;
820 
821 	/*
822 	 * If we hold the privilege to read from kernel memory, then
823 	 * everything is readable.
824 	 */
825 	if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
826 		return (1);
827 
828 	strsz = 1 + dtrace_strlen((char *)(uintptr_t)addr, sz);
829 	if (dtrace_canload(addr, strsz, mstate, vstate))
830 		return (1);
831 
832 	return (0);
833 }
834 
835 /*
836  * Convenience routine to check to see if a given variable is within a memory
837  * region in which a load may be issued given the user's privilege level.
838  */
839 static int
840 dtrace_vcanload(void *src, dtrace_diftype_t *type, dtrace_mstate_t *mstate,
841     dtrace_vstate_t *vstate)
842 {
843 	size_t sz;
844 	ASSERT(type->dtdt_flags & DIF_TF_BYREF);
845 
846 	/*
847 	 * If we hold the privilege to read from kernel memory, then
848 	 * everything is readable.
849 	 */
850 	if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
851 		return (1);
852 
853 	if (type->dtdt_kind == DIF_TYPE_STRING)
854 		sz = dtrace_strlen(src,
855 		    vstate->dtvs_state->dts_options[DTRACEOPT_STRSIZE]) + 1;
856 	else
857 		sz = type->dtdt_size;
858 
859 	return (dtrace_canload((uintptr_t)src, sz, mstate, vstate));
860 }
861 
862 /*
863  * Convert a string to a signed integer using safe loads.
864  *
865  * NOTE: This function uses various macros from strtolctype.h to manipulate
866  * digit values, etc -- these have all been checked to ensure they make
867  * no additional function calls.
868  */
869 static int64_t
870 dtrace_strtoll(char *input, int base, size_t limit)
871 {
872 	uintptr_t pos = (uintptr_t)input;
873 	int64_t val = 0;
874 	int x;
875 	boolean_t neg = B_FALSE;
876 	char c, cc, ccc;
877 	uintptr_t end = pos + limit;
878 
879 	/*
880 	 * Consume any whitespace preceding digits.
881 	 */
882 	while ((c = dtrace_load8(pos)) == ' ' || c == '\t')
883 		pos++;
884 
885 	/*
886 	 * Handle an explicit sign if one is present.
887 	 */
888 	if (c == '-' || c == '+') {
889 		if (c == '-')
890 			neg = B_TRUE;
891 		c = dtrace_load8(++pos);
892 	}
893 
894 	/*
895 	 * Check for an explicit hexadecimal prefix ("0x" or "0X") and skip it
896 	 * if present.
897 	 */
898 	if (base == 16 && c == '0' && ((cc = dtrace_load8(pos + 1)) == 'x' ||
899 	    cc == 'X') && isxdigit(ccc = dtrace_load8(pos + 2))) {
900 		pos += 2;
901 		c = ccc;
902 	}
903 
904 	/*
905 	 * Read in contiguous digits until the first non-digit character.
906 	 */
907 	for (; pos < end && c != '\0' && lisalnum(c) && (x = DIGIT(c)) < base;
908 	    c = dtrace_load8(++pos))
909 		val = val * base + x;
910 
911 	return (neg ? -val : val);
912 }
913 
914 /*
915  * Compare two strings using safe loads.
916  */
917 static int
918 dtrace_strncmp(char *s1, char *s2, size_t limit)
919 {
920 	uint8_t c1, c2;
921 	volatile uint16_t *flags;
922 
923 	if (s1 == s2 || limit == 0)
924 		return (0);
925 
926 	flags = (volatile uint16_t *)&cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
927 
928 	do {
929 		if (s1 == NULL) {
930 			c1 = '\0';
931 		} else {
932 			c1 = dtrace_load8((uintptr_t)s1++);
933 		}
934 
935 		if (s2 == NULL) {
936 			c2 = '\0';
937 		} else {
938 			c2 = dtrace_load8((uintptr_t)s2++);
939 		}
940 
941 		if (c1 != c2)
942 			return (c1 - c2);
943 	} while (--limit && c1 != '\0' && !(*flags & CPU_DTRACE_FAULT));
944 
945 	return (0);
946 }
947 
948 /*
949  * Compute strlen(s) for a string using safe memory accesses.  The additional
950  * len parameter is used to specify a maximum length to ensure completion.
951  */
952 static size_t
953 dtrace_strlen(const char *s, size_t lim)
954 {
955 	uint_t len;
956 
957 	for (len = 0; len != lim; len++) {
958 		if (dtrace_load8((uintptr_t)s++) == '\0')
959 			break;
960 	}
961 
962 	return (len);
963 }
964 
965 /*
966  * Check if an address falls within a toxic region.
967  */
968 static int
969 dtrace_istoxic(uintptr_t kaddr, size_t size)
970 {
971 	uintptr_t taddr, tsize;
972 	int i;
973 
974 	for (i = 0; i < dtrace_toxranges; i++) {
975 		taddr = dtrace_toxrange[i].dtt_base;
976 		tsize = dtrace_toxrange[i].dtt_limit - taddr;
977 
978 		if (kaddr - taddr < tsize) {
979 			DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
980 			cpu_core[CPU->cpu_id].cpuc_dtrace_illval = kaddr;
981 			return (1);
982 		}
983 
984 		if (taddr - kaddr < size) {
985 			DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
986 			cpu_core[CPU->cpu_id].cpuc_dtrace_illval = taddr;
987 			return (1);
988 		}
989 	}
990 
991 	return (0);
992 }
993 
994 /*
995  * Copy src to dst using safe memory accesses.  The src is assumed to be unsafe
996  * memory specified by the DIF program.  The dst is assumed to be safe memory
997  * that we can store to directly because it is managed by DTrace.  As with
998  * standard bcopy, overlapping copies are handled properly.
999  */
1000 static void
1001 dtrace_bcopy(const void *src, void *dst, size_t len)
1002 {
1003 	if (len != 0) {
1004 		uint8_t *s1 = dst;
1005 		const uint8_t *s2 = src;
1006 
1007 		if (s1 <= s2) {
1008 			do {
1009 				*s1++ = dtrace_load8((uintptr_t)s2++);
1010 			} while (--len != 0);
1011 		} else {
1012 			s2 += len;
1013 			s1 += len;
1014 
1015 			do {
1016 				*--s1 = dtrace_load8((uintptr_t)--s2);
1017 			} while (--len != 0);
1018 		}
1019 	}
1020 }
1021 
1022 /*
1023  * Copy src to dst using safe memory accesses, up to either the specified
1024  * length, or the point that a nul byte is encountered.  The src is assumed to
1025  * be unsafe memory specified by the DIF program.  The dst is assumed to be
1026  * safe memory that we can store to directly because it is managed by DTrace.
1027  * Unlike dtrace_bcopy(), overlapping regions are not handled.
1028  */
1029 static void
1030 dtrace_strcpy(const void *src, void *dst, size_t len)
1031 {
1032 	if (len != 0) {
1033 		uint8_t *s1 = dst, c;
1034 		const uint8_t *s2 = src;
1035 
1036 		do {
1037 			*s1++ = c = dtrace_load8((uintptr_t)s2++);
1038 		} while (--len != 0 && c != '\0');
1039 	}
1040 }
1041 
1042 /*
1043  * Copy src to dst, deriving the size and type from the specified (BYREF)
1044  * variable type.  The src is assumed to be unsafe memory specified by the DIF
1045  * program.  The dst is assumed to be DTrace variable memory that is of the
1046  * specified type; we assume that we can store to directly.
1047  */
1048 static void
1049 dtrace_vcopy(void *src, void *dst, dtrace_diftype_t *type)
1050 {
1051 	ASSERT(type->dtdt_flags & DIF_TF_BYREF);
1052 
1053 	if (type->dtdt_kind == DIF_TYPE_STRING) {
1054 		dtrace_strcpy(src, dst, type->dtdt_size);
1055 	} else {
1056 		dtrace_bcopy(src, dst, type->dtdt_size);
1057 	}
1058 }
1059 
1060 /*
1061  * Compare s1 to s2 using safe memory accesses.  The s1 data is assumed to be
1062  * unsafe memory specified by the DIF program.  The s2 data is assumed to be
1063  * safe memory that we can access directly because it is managed by DTrace.
1064  */
1065 static int
1066 dtrace_bcmp(const void *s1, const void *s2, size_t len)
1067 {
1068 	volatile uint16_t *flags;
1069 
1070 	flags = (volatile uint16_t *)&cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
1071 
1072 	if (s1 == s2)
1073 		return (0);
1074 
1075 	if (s1 == NULL || s2 == NULL)
1076 		return (1);
1077 
1078 	if (s1 != s2 && len != 0) {
1079 		const uint8_t *ps1 = s1;
1080 		const uint8_t *ps2 = s2;
1081 
1082 		do {
1083 			if (dtrace_load8((uintptr_t)ps1++) != *ps2++)
1084 				return (1);
1085 		} while (--len != 0 && !(*flags & CPU_DTRACE_FAULT));
1086 	}
1087 	return (0);
1088 }
1089 
1090 /*
1091  * Zero the specified region using a simple byte-by-byte loop.  Note that this
1092  * is for safe DTrace-managed memory only.
1093  */
1094 static void
1095 dtrace_bzero(void *dst, size_t len)
1096 {
1097 	uchar_t *cp;
1098 
1099 	for (cp = dst; len != 0; len--)
1100 		*cp++ = 0;
1101 }
1102 
1103 static void
1104 dtrace_add_128(uint64_t *addend1, uint64_t *addend2, uint64_t *sum)
1105 {
1106 	uint64_t result[2];
1107 
1108 	result[0] = addend1[0] + addend2[0];
1109 	result[1] = addend1[1] + addend2[1] +
1110 	    (result[0] < addend1[0] || result[0] < addend2[0] ? 1 : 0);
1111 
1112 	sum[0] = result[0];
1113 	sum[1] = result[1];
1114 }
1115 
1116 /*
1117  * Shift the 128-bit value in a by b. If b is positive, shift left.
1118  * If b is negative, shift right.
1119  */
1120 static void
1121 dtrace_shift_128(uint64_t *a, int b)
1122 {
1123 	uint64_t mask;
1124 
1125 	if (b == 0)
1126 		return;
1127 
1128 	if (b < 0) {
1129 		b = -b;
1130 		if (b >= 64) {
1131 			a[0] = a[1] >> (b - 64);
1132 			a[1] = 0;
1133 		} else {
1134 			a[0] >>= b;
1135 			mask = 1LL << (64 - b);
1136 			mask -= 1;
1137 			a[0] |= ((a[1] & mask) << (64 - b));
1138 			a[1] >>= b;
1139 		}
1140 	} else {
1141 		if (b >= 64) {
1142 			a[1] = a[0] << (b - 64);
1143 			a[0] = 0;
1144 		} else {
1145 			a[1] <<= b;
1146 			mask = a[0] >> (64 - b);
1147 			a[1] |= mask;
1148 			a[0] <<= b;
1149 		}
1150 	}
1151 }
1152 
1153 /*
1154  * The basic idea is to break the 2 64-bit values into 4 32-bit values,
1155  * use native multiplication on those, and then re-combine into the
1156  * resulting 128-bit value.
1157  *
1158  * (hi1 << 32 + lo1) * (hi2 << 32 + lo2) =
1159  *     hi1 * hi2 << 64 +
1160  *     hi1 * lo2 << 32 +
1161  *     hi2 * lo1 << 32 +
1162  *     lo1 * lo2
1163  */
1164 static void
1165 dtrace_multiply_128(uint64_t factor1, uint64_t factor2, uint64_t *product)
1166 {
1167 	uint64_t hi1, hi2, lo1, lo2;
1168 	uint64_t tmp[2];
1169 
1170 	hi1 = factor1 >> 32;
1171 	hi2 = factor2 >> 32;
1172 
1173 	lo1 = factor1 & DT_MASK_LO;
1174 	lo2 = factor2 & DT_MASK_LO;
1175 
1176 	product[0] = lo1 * lo2;
1177 	product[1] = hi1 * hi2;
1178 
1179 	tmp[0] = hi1 * lo2;
1180 	tmp[1] = 0;
1181 	dtrace_shift_128(tmp, 32);
1182 	dtrace_add_128(product, tmp, product);
1183 
1184 	tmp[0] = hi2 * lo1;
1185 	tmp[1] = 0;
1186 	dtrace_shift_128(tmp, 32);
1187 	dtrace_add_128(product, tmp, product);
1188 }
1189 
1190 /*
1191  * This privilege check should be used by actions and subroutines to
1192  * verify that the user credentials of the process that enabled the
1193  * invoking ECB match the target credentials
1194  */
1195 static int
1196 dtrace_priv_proc_common_user(dtrace_state_t *state)
1197 {
1198 	cred_t *cr, *s_cr = state->dts_cred.dcr_cred;
1199 
1200 	/*
1201 	 * We should always have a non-NULL state cred here, since if cred
1202 	 * is null (anonymous tracing), we fast-path bypass this routine.
1203 	 */
1204 	ASSERT(s_cr != NULL);
1205 
1206 	if ((cr = CRED()) != NULL &&
1207 	    s_cr->cr_uid == cr->cr_uid &&
1208 	    s_cr->cr_uid == cr->cr_ruid &&
1209 	    s_cr->cr_uid == cr->cr_suid &&
1210 	    s_cr->cr_gid == cr->cr_gid &&
1211 	    s_cr->cr_gid == cr->cr_rgid &&
1212 	    s_cr->cr_gid == cr->cr_sgid)
1213 		return (1);
1214 
1215 	return (0);
1216 }
1217 
1218 /*
1219  * This privilege check should be used by actions and subroutines to
1220  * verify that the zone of the process that enabled the invoking ECB
1221  * matches the target credentials
1222  */
1223 static int
1224 dtrace_priv_proc_common_zone(dtrace_state_t *state)
1225 {
1226 	cred_t *cr, *s_cr = state->dts_cred.dcr_cred;
1227 
1228 	/*
1229 	 * We should always have a non-NULL state cred here, since if cred
1230 	 * is null (anonymous tracing), we fast-path bypass this routine.
1231 	 */
1232 	ASSERT(s_cr != NULL);
1233 
1234 	if ((cr = CRED()) != NULL && s_cr->cr_zone == cr->cr_zone)
1235 		return (1);
1236 
1237 	return (0);
1238 }
1239 
1240 /*
1241  * This privilege check should be used by actions and subroutines to
1242  * verify that the process has not setuid or changed credentials.
1243  */
1244 static int
1245 dtrace_priv_proc_common_nocd()
1246 {
1247 	proc_t *proc;
1248 
1249 	if ((proc = ttoproc(curthread)) != NULL &&
1250 	    !(proc->p_flag & SNOCD))
1251 		return (1);
1252 
1253 	return (0);
1254 }
1255 
1256 static int
1257 dtrace_priv_proc_destructive(dtrace_state_t *state, dtrace_mstate_t *mstate)
1258 {
1259 	int action = state->dts_cred.dcr_action;
1260 
1261 	if (!(mstate->dtms_access & DTRACE_ACCESS_PROC))
1262 		goto bad;
1263 
1264 	if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE) == 0) &&
1265 	    dtrace_priv_proc_common_zone(state) == 0)
1266 		goto bad;
1267 
1268 	if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER) == 0) &&
1269 	    dtrace_priv_proc_common_user(state) == 0)
1270 		goto bad;
1271 
1272 	if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG) == 0) &&
1273 	    dtrace_priv_proc_common_nocd() == 0)
1274 		goto bad;
1275 
1276 	return (1);
1277 
1278 bad:
1279 	cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
1280 
1281 	return (0);
1282 }
1283 
1284 static int
1285 dtrace_priv_proc_control(dtrace_state_t *state, dtrace_mstate_t *mstate)
1286 {
1287 	if (mstate->dtms_access & DTRACE_ACCESS_PROC) {
1288 		if (state->dts_cred.dcr_action & DTRACE_CRA_PROC_CONTROL)
1289 			return (1);
1290 
1291 		if (dtrace_priv_proc_common_zone(state) &&
1292 		    dtrace_priv_proc_common_user(state) &&
1293 		    dtrace_priv_proc_common_nocd())
1294 			return (1);
1295 	}
1296 
1297 	cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
1298 
1299 	return (0);
1300 }
1301 
1302 static int
1303 dtrace_priv_proc(dtrace_state_t *state, dtrace_mstate_t *mstate)
1304 {
1305 	if ((mstate->dtms_access & DTRACE_ACCESS_PROC) &&
1306 	    (state->dts_cred.dcr_action & DTRACE_CRA_PROC))
1307 		return (1);
1308 
1309 	cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
1310 
1311 	return (0);
1312 }
1313 
1314 static int
1315 dtrace_priv_kernel(dtrace_state_t *state)
1316 {
1317 	if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL)
1318 		return (1);
1319 
1320 	cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV;
1321 
1322 	return (0);
1323 }
1324 
1325 static int
1326 dtrace_priv_kernel_destructive(dtrace_state_t *state)
1327 {
1328 	if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL_DESTRUCTIVE)
1329 		return (1);
1330 
1331 	cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV;
1332 
1333 	return (0);
1334 }
1335 
1336 /*
1337  * Determine if the dte_cond of the specified ECB allows for processing of
1338  * the current probe to continue.  Note that this routine may allow continued
1339  * processing, but with access(es) stripped from the mstate's dtms_access
1340  * field.
1341  */
1342 static int
1343 dtrace_priv_probe(dtrace_state_t *state, dtrace_mstate_t *mstate,
1344     dtrace_ecb_t *ecb)
1345 {
1346 	dtrace_probe_t *probe = ecb->dte_probe;
1347 	dtrace_provider_t *prov = probe->dtpr_provider;
1348 	dtrace_pops_t *pops = &prov->dtpv_pops;
1349 	int mode = DTRACE_MODE_NOPRIV_DROP;
1350 
1351 	ASSERT(ecb->dte_cond);
1352 
1353 	if (pops->dtps_mode != NULL) {
1354 		mode = pops->dtps_mode(prov->dtpv_arg,
1355 		    probe->dtpr_id, probe->dtpr_arg);
1356 
1357 		ASSERT(mode & (DTRACE_MODE_USER | DTRACE_MODE_KERNEL));
1358 		ASSERT(mode & (DTRACE_MODE_NOPRIV_RESTRICT |
1359 		    DTRACE_MODE_NOPRIV_DROP));
1360 	}
1361 
1362 	/*
1363 	 * If the dte_cond bits indicate that this consumer is only allowed to
1364 	 * see user-mode firings of this probe, check that the probe was fired
1365 	 * while in a user context.  If that's not the case, use the policy
1366 	 * specified by the provider to determine if we drop the probe or
1367 	 * merely restrict operation.
1368 	 */
1369 	if (ecb->dte_cond & DTRACE_COND_USERMODE) {
1370 		ASSERT(mode != DTRACE_MODE_NOPRIV_DROP);
1371 
1372 		if (!(mode & DTRACE_MODE_USER)) {
1373 			if (mode & DTRACE_MODE_NOPRIV_DROP)
1374 				return (0);
1375 
1376 			mstate->dtms_access &= ~DTRACE_ACCESS_ARGS;
1377 		}
1378 	}
1379 
1380 	/*
1381 	 * This is more subtle than it looks. We have to be absolutely certain
1382 	 * that CRED() isn't going to change out from under us so it's only
1383 	 * legit to examine that structure if we're in constrained situations.
1384 	 * Currently, the only times we'll this check is if a non-super-user
1385 	 * has enabled the profile or syscall providers -- providers that
1386 	 * allow visibility of all processes. For the profile case, the check
1387 	 * above will ensure that we're examining a user context.
1388 	 */
1389 	if (ecb->dte_cond & DTRACE_COND_OWNER) {
1390 		cred_t *cr;
1391 		cred_t *s_cr = state->dts_cred.dcr_cred;
1392 		proc_t *proc;
1393 
1394 		ASSERT(s_cr != NULL);
1395 
1396 		if ((cr = CRED()) == NULL ||
1397 		    s_cr->cr_uid != cr->cr_uid ||
1398 		    s_cr->cr_uid != cr->cr_ruid ||
1399 		    s_cr->cr_uid != cr->cr_suid ||
1400 		    s_cr->cr_gid != cr->cr_gid ||
1401 		    s_cr->cr_gid != cr->cr_rgid ||
1402 		    s_cr->cr_gid != cr->cr_sgid ||
1403 		    (proc = ttoproc(curthread)) == NULL ||
1404 		    (proc->p_flag & SNOCD)) {
1405 			if (mode & DTRACE_MODE_NOPRIV_DROP)
1406 				return (0);
1407 
1408 			mstate->dtms_access &= ~DTRACE_ACCESS_PROC;
1409 		}
1410 	}
1411 
1412 	/*
1413 	 * If our dte_cond is set to DTRACE_COND_ZONEOWNER and we are not
1414 	 * in our zone, check to see if our mode policy is to restrict rather
1415 	 * than to drop; if to restrict, strip away both DTRACE_ACCESS_PROC
1416 	 * and DTRACE_ACCESS_ARGS
1417 	 */
1418 	if (ecb->dte_cond & DTRACE_COND_ZONEOWNER) {
1419 		cred_t *cr;
1420 		cred_t *s_cr = state->dts_cred.dcr_cred;
1421 
1422 		ASSERT(s_cr != NULL);
1423 
1424 		if ((cr = CRED()) == NULL ||
1425 		    s_cr->cr_zone->zone_id != cr->cr_zone->zone_id) {
1426 			if (mode & DTRACE_MODE_NOPRIV_DROP)
1427 				return (0);
1428 
1429 			mstate->dtms_access &=
1430 			    ~(DTRACE_ACCESS_PROC | DTRACE_ACCESS_ARGS);
1431 		}
1432 	}
1433 
1434 	/*
1435 	 * By merits of being in this code path at all, we have limited
1436 	 * privileges.  If the provider has indicated that limited privileges
1437 	 * are to denote restricted operation, strip off the ability to access
1438 	 * arguments.
1439 	 */
1440 	if (mode & DTRACE_MODE_LIMITEDPRIV_RESTRICT)
1441 		mstate->dtms_access &= ~DTRACE_ACCESS_ARGS;
1442 
1443 	return (1);
1444 }
1445 
1446 /*
1447  * Note:  not called from probe context.  This function is called
1448  * asynchronously (and at a regular interval) from outside of probe context to
1449  * clean the dirty dynamic variable lists on all CPUs.  Dynamic variable
1450  * cleaning is explained in detail in <sys/dtrace_impl.h>.
1451  */
1452 void
1453 dtrace_dynvar_clean(dtrace_dstate_t *dstate)
1454 {
1455 	dtrace_dynvar_t *dirty;
1456 	dtrace_dstate_percpu_t *dcpu;
1457 	dtrace_dynvar_t **rinsep;
1458 	int i, j, work = 0;
1459 
1460 	for (i = 0; i < NCPU; i++) {
1461 		dcpu = &dstate->dtds_percpu[i];
1462 		rinsep = &dcpu->dtdsc_rinsing;
1463 
1464 		/*
1465 		 * If the dirty list is NULL, there is no dirty work to do.
1466 		 */
1467 		if (dcpu->dtdsc_dirty == NULL)
1468 			continue;
1469 
1470 		if (dcpu->dtdsc_rinsing != NULL) {
1471 			/*
1472 			 * If the rinsing list is non-NULL, then it is because
1473 			 * this CPU was selected to accept another CPU's
1474 			 * dirty list -- and since that time, dirty buffers
1475 			 * have accumulated.  This is a highly unlikely
1476 			 * condition, but we choose to ignore the dirty
1477 			 * buffers -- they'll be picked up a future cleanse.
1478 			 */
1479 			continue;
1480 		}
1481 
1482 		if (dcpu->dtdsc_clean != NULL) {
1483 			/*
1484 			 * If the clean list is non-NULL, then we're in a
1485 			 * situation where a CPU has done deallocations (we
1486 			 * have a non-NULL dirty list) but no allocations (we
1487 			 * also have a non-NULL clean list).  We can't simply
1488 			 * move the dirty list into the clean list on this
1489 			 * CPU, yet we also don't want to allow this condition
1490 			 * to persist, lest a short clean list prevent a
1491 			 * massive dirty list from being cleaned (which in
1492 			 * turn could lead to otherwise avoidable dynamic
1493 			 * drops).  To deal with this, we look for some CPU
1494 			 * with a NULL clean list, NULL dirty list, and NULL
1495 			 * rinsing list -- and then we borrow this CPU to
1496 			 * rinse our dirty list.
1497 			 */
1498 			for (j = 0; j < NCPU; j++) {
1499 				dtrace_dstate_percpu_t *rinser;
1500 
1501 				rinser = &dstate->dtds_percpu[j];
1502 
1503 				if (rinser->dtdsc_rinsing != NULL)
1504 					continue;
1505 
1506 				if (rinser->dtdsc_dirty != NULL)
1507 					continue;
1508 
1509 				if (rinser->dtdsc_clean != NULL)
1510 					continue;
1511 
1512 				rinsep = &rinser->dtdsc_rinsing;
1513 				break;
1514 			}
1515 
1516 			if (j == NCPU) {
1517 				/*
1518 				 * We were unable to find another CPU that
1519 				 * could accept this dirty list -- we are
1520 				 * therefore unable to clean it now.
1521 				 */
1522 				dtrace_dynvar_failclean++;
1523 				continue;
1524 			}
1525 		}
1526 
1527 		work = 1;
1528 
1529 		/*
1530 		 * Atomically move the dirty list aside.
1531 		 */
1532 		do {
1533 			dirty = dcpu->dtdsc_dirty;
1534 
1535 			/*
1536 			 * Before we zap the dirty list, set the rinsing list.
1537 			 * (This allows for a potential assertion in
1538 			 * dtrace_dynvar():  if a free dynamic variable appears
1539 			 * on a hash chain, either the dirty list or the
1540 			 * rinsing list for some CPU must be non-NULL.)
1541 			 */
1542 			*rinsep = dirty;
1543 			dtrace_membar_producer();
1544 		} while (dtrace_casptr(&dcpu->dtdsc_dirty,
1545 		    dirty, NULL) != dirty);
1546 	}
1547 
1548 	if (!work) {
1549 		/*
1550 		 * We have no work to do; we can simply return.
1551 		 */
1552 		return;
1553 	}
1554 
1555 	dtrace_sync();
1556 
1557 	for (i = 0; i < NCPU; i++) {
1558 		dcpu = &dstate->dtds_percpu[i];
1559 
1560 		if (dcpu->dtdsc_rinsing == NULL)
1561 			continue;
1562 
1563 		/*
1564 		 * We are now guaranteed that no hash chain contains a pointer
1565 		 * into this dirty list; we can make it clean.
1566 		 */
1567 		ASSERT(dcpu->dtdsc_clean == NULL);
1568 		dcpu->dtdsc_clean = dcpu->dtdsc_rinsing;
1569 		dcpu->dtdsc_rinsing = NULL;
1570 	}
1571 
1572 	/*
1573 	 * Before we actually set the state to be DTRACE_DSTATE_CLEAN, make
1574 	 * sure that all CPUs have seen all of the dtdsc_clean pointers.
1575 	 * This prevents a race whereby a CPU incorrectly decides that
1576 	 * the state should be something other than DTRACE_DSTATE_CLEAN
1577 	 * after dtrace_dynvar_clean() has completed.
1578 	 */
1579 	dtrace_sync();
1580 
1581 	dstate->dtds_state = DTRACE_DSTATE_CLEAN;
1582 }
1583 
1584 /*
1585  * Depending on the value of the op parameter, this function looks-up,
1586  * allocates or deallocates an arbitrarily-keyed dynamic variable.  If an
1587  * allocation is requested, this function will return a pointer to a
1588  * dtrace_dynvar_t corresponding to the allocated variable -- or NULL if no
1589  * variable can be allocated.  If NULL is returned, the appropriate counter
1590  * will be incremented.
1591  */
1592 dtrace_dynvar_t *
1593 dtrace_dynvar(dtrace_dstate_t *dstate, uint_t nkeys,
1594     dtrace_key_t *key, size_t dsize, dtrace_dynvar_op_t op,
1595     dtrace_mstate_t *mstate, dtrace_vstate_t *vstate)
1596 {
1597 	uint64_t hashval = DTRACE_DYNHASH_VALID;
1598 	dtrace_dynhash_t *hash = dstate->dtds_hash;
1599 	dtrace_dynvar_t *free, *new_free, *next, *dvar, *start, *prev = NULL;
1600 	processorid_t me = CPU->cpu_id, cpu = me;
1601 	dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[me];
1602 	size_t bucket, ksize;
1603 	size_t chunksize = dstate->dtds_chunksize;
1604 	uintptr_t kdata, lock, nstate;
1605 	uint_t i;
1606 
1607 	ASSERT(nkeys != 0);
1608 
1609 	/*
1610 	 * Hash the key.  As with aggregations, we use Jenkins' "One-at-a-time"
1611 	 * algorithm.  For the by-value portions, we perform the algorithm in
1612 	 * 16-bit chunks (as opposed to 8-bit chunks).  This speeds things up a
1613 	 * bit, and seems to have only a minute effect on distribution.  For
1614 	 * the by-reference data, we perform "One-at-a-time" iterating (safely)
1615 	 * over each referenced byte.  It's painful to do this, but it's much
1616 	 * better than pathological hash distribution.  The efficacy of the
1617 	 * hashing algorithm (and a comparison with other algorithms) may be
1618 	 * found by running the ::dtrace_dynstat MDB dcmd.
1619 	 */
1620 	for (i = 0; i < nkeys; i++) {
1621 		if (key[i].dttk_size == 0) {
1622 			uint64_t val = key[i].dttk_value;
1623 
1624 			hashval += (val >> 48) & 0xffff;
1625 			hashval += (hashval << 10);
1626 			hashval ^= (hashval >> 6);
1627 
1628 			hashval += (val >> 32) & 0xffff;
1629 			hashval += (hashval << 10);
1630 			hashval ^= (hashval >> 6);
1631 
1632 			hashval += (val >> 16) & 0xffff;
1633 			hashval += (hashval << 10);
1634 			hashval ^= (hashval >> 6);
1635 
1636 			hashval += val & 0xffff;
1637 			hashval += (hashval << 10);
1638 			hashval ^= (hashval >> 6);
1639 		} else {
1640 			/*
1641 			 * This is incredibly painful, but it beats the hell
1642 			 * out of the alternative.
1643 			 */
1644 			uint64_t j, size = key[i].dttk_size;
1645 			uintptr_t base = (uintptr_t)key[i].dttk_value;
1646 
1647 			if (!dtrace_canload(base, size, mstate, vstate))
1648 				break;
1649 
1650 			for (j = 0; j < size; j++) {
1651 				hashval += dtrace_load8(base + j);
1652 				hashval += (hashval << 10);
1653 				hashval ^= (hashval >> 6);
1654 			}
1655 		}
1656 	}
1657 
1658 	if (DTRACE_CPUFLAG_ISSET(CPU_DTRACE_FAULT))
1659 		return (NULL);
1660 
1661 	hashval += (hashval << 3);
1662 	hashval ^= (hashval >> 11);
1663 	hashval += (hashval << 15);
1664 
1665 	/*
1666 	 * There is a remote chance (ideally, 1 in 2^31) that our hashval
1667 	 * comes out to be one of our two sentinel hash values.  If this
1668 	 * actually happens, we set the hashval to be a value known to be a
1669 	 * non-sentinel value.
1670 	 */
1671 	if (hashval == DTRACE_DYNHASH_FREE || hashval == DTRACE_DYNHASH_SINK)
1672 		hashval = DTRACE_DYNHASH_VALID;
1673 
1674 	/*
1675 	 * Yes, it's painful to do a divide here.  If the cycle count becomes
1676 	 * important here, tricks can be pulled to reduce it.  (However, it's
1677 	 * critical that hash collisions be kept to an absolute minimum;
1678 	 * they're much more painful than a divide.)  It's better to have a
1679 	 * solution that generates few collisions and still keeps things
1680 	 * relatively simple.
1681 	 */
1682 	bucket = hashval % dstate->dtds_hashsize;
1683 
1684 	if (op == DTRACE_DYNVAR_DEALLOC) {
1685 		volatile uintptr_t *lockp = &hash[bucket].dtdh_lock;
1686 
1687 		for (;;) {
1688 			while ((lock = *lockp) & 1)
1689 				continue;
1690 
1691 			if (dtrace_casptr((void *)lockp,
1692 			    (void *)lock, (void *)(lock + 1)) == (void *)lock)
1693 				break;
1694 		}
1695 
1696 		dtrace_membar_producer();
1697 	}
1698 
1699 top:
1700 	prev = NULL;
1701 	lock = hash[bucket].dtdh_lock;
1702 
1703 	dtrace_membar_consumer();
1704 
1705 	start = hash[bucket].dtdh_chain;
1706 	ASSERT(start != NULL && (start->dtdv_hashval == DTRACE_DYNHASH_SINK ||
1707 	    start->dtdv_hashval != DTRACE_DYNHASH_FREE ||
1708 	    op != DTRACE_DYNVAR_DEALLOC));
1709 
1710 	for (dvar = start; dvar != NULL; dvar = dvar->dtdv_next) {
1711 		dtrace_tuple_t *dtuple = &dvar->dtdv_tuple;
1712 		dtrace_key_t *dkey = &dtuple->dtt_key[0];
1713 
1714 		if (dvar->dtdv_hashval != hashval) {
1715 			if (dvar->dtdv_hashval == DTRACE_DYNHASH_SINK) {
1716 				/*
1717 				 * We've reached the sink, and therefore the
1718 				 * end of the hash chain; we can kick out of
1719 				 * the loop knowing that we have seen a valid
1720 				 * snapshot of state.
1721 				 */
1722 				ASSERT(dvar->dtdv_next == NULL);
1723 				ASSERT(dvar == &dtrace_dynhash_sink);
1724 				break;
1725 			}
1726 
1727 			if (dvar->dtdv_hashval == DTRACE_DYNHASH_FREE) {
1728 				/*
1729 				 * We've gone off the rails:  somewhere along
1730 				 * the line, one of the members of this hash
1731 				 * chain was deleted.  Note that we could also
1732 				 * detect this by simply letting this loop run
1733 				 * to completion, as we would eventually hit
1734 				 * the end of the dirty list.  However, we
1735 				 * want to avoid running the length of the
1736 				 * dirty list unnecessarily (it might be quite
1737 				 * long), so we catch this as early as
1738 				 * possible by detecting the hash marker.  In
1739 				 * this case, we simply set dvar to NULL and
1740 				 * break; the conditional after the loop will
1741 				 * send us back to top.
1742 				 */
1743 				dvar = NULL;
1744 				break;
1745 			}
1746 
1747 			goto next;
1748 		}
1749 
1750 		if (dtuple->dtt_nkeys != nkeys)
1751 			goto next;
1752 
1753 		for (i = 0; i < nkeys; i++, dkey++) {
1754 			if (dkey->dttk_size != key[i].dttk_size)
1755 				goto next; /* size or type mismatch */
1756 
1757 			if (dkey->dttk_size != 0) {
1758 				if (dtrace_bcmp(
1759 				    (void *)(uintptr_t)key[i].dttk_value,
1760 				    (void *)(uintptr_t)dkey->dttk_value,
1761 				    dkey->dttk_size))
1762 					goto next;
1763 			} else {
1764 				if (dkey->dttk_value != key[i].dttk_value)
1765 					goto next;
1766 			}
1767 		}
1768 
1769 		if (op != DTRACE_DYNVAR_DEALLOC)
1770 			return (dvar);
1771 
1772 		ASSERT(dvar->dtdv_next == NULL ||
1773 		    dvar->dtdv_next->dtdv_hashval != DTRACE_DYNHASH_FREE);
1774 
1775 		if (prev != NULL) {
1776 			ASSERT(hash[bucket].dtdh_chain != dvar);
1777 			ASSERT(start != dvar);
1778 			ASSERT(prev->dtdv_next == dvar);
1779 			prev->dtdv_next = dvar->dtdv_next;
1780 		} else {
1781 			if (dtrace_casptr(&hash[bucket].dtdh_chain,
1782 			    start, dvar->dtdv_next) != start) {
1783 				/*
1784 				 * We have failed to atomically swing the
1785 				 * hash table head pointer, presumably because
1786 				 * of a conflicting allocation on another CPU.
1787 				 * We need to reread the hash chain and try
1788 				 * again.
1789 				 */
1790 				goto top;
1791 			}
1792 		}
1793 
1794 		dtrace_membar_producer();
1795 
1796 		/*
1797 		 * Now set the hash value to indicate that it's free.
1798 		 */
1799 		ASSERT(hash[bucket].dtdh_chain != dvar);
1800 		dvar->dtdv_hashval = DTRACE_DYNHASH_FREE;
1801 
1802 		dtrace_membar_producer();
1803 
1804 		/*
1805 		 * Set the next pointer to point at the dirty list, and
1806 		 * atomically swing the dirty pointer to the newly freed dvar.
1807 		 */
1808 		do {
1809 			next = dcpu->dtdsc_dirty;
1810 			dvar->dtdv_next = next;
1811 		} while (dtrace_casptr(&dcpu->dtdsc_dirty, next, dvar) != next);
1812 
1813 		/*
1814 		 * Finally, unlock this hash bucket.
1815 		 */
1816 		ASSERT(hash[bucket].dtdh_lock == lock);
1817 		ASSERT(lock & 1);
1818 		hash[bucket].dtdh_lock++;
1819 
1820 		return (NULL);
1821 next:
1822 		prev = dvar;
1823 		continue;
1824 	}
1825 
1826 	if (dvar == NULL) {
1827 		/*
1828 		 * If dvar is NULL, it is because we went off the rails:
1829 		 * one of the elements that we traversed in the hash chain
1830 		 * was deleted while we were traversing it.  In this case,
1831 		 * we assert that we aren't doing a dealloc (deallocs lock
1832 		 * the hash bucket to prevent themselves from racing with
1833 		 * one another), and retry the hash chain traversal.
1834 		 */
1835 		ASSERT(op != DTRACE_DYNVAR_DEALLOC);
1836 		goto top;
1837 	}
1838 
1839 	if (op != DTRACE_DYNVAR_ALLOC) {
1840 		/*
1841 		 * If we are not to allocate a new variable, we want to
1842 		 * return NULL now.  Before we return, check that the value
1843 		 * of the lock word hasn't changed.  If it has, we may have
1844 		 * seen an inconsistent snapshot.
1845 		 */
1846 		if (op == DTRACE_DYNVAR_NOALLOC) {
1847 			if (hash[bucket].dtdh_lock != lock)
1848 				goto top;
1849 		} else {
1850 			ASSERT(op == DTRACE_DYNVAR_DEALLOC);
1851 			ASSERT(hash[bucket].dtdh_lock == lock);
1852 			ASSERT(lock & 1);
1853 			hash[bucket].dtdh_lock++;
1854 		}
1855 
1856 		return (NULL);
1857 	}
1858 
1859 	/*
1860 	 * We need to allocate a new dynamic variable.  The size we need is the
1861 	 * size of dtrace_dynvar plus the size of nkeys dtrace_key_t's plus the
1862 	 * size of any auxiliary key data (rounded up to 8-byte alignment) plus
1863 	 * the size of any referred-to data (dsize).  We then round the final
1864 	 * size up to the chunksize for allocation.
1865 	 */
1866 	for (ksize = 0, i = 0; i < nkeys; i++)
1867 		ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t));
1868 
1869 	/*
1870 	 * This should be pretty much impossible, but could happen if, say,
1871 	 * strange DIF specified the tuple.  Ideally, this should be an
1872 	 * assertion and not an error condition -- but that requires that the
1873 	 * chunksize calculation in dtrace_difo_chunksize() be absolutely
1874 	 * bullet-proof.  (That is, it must not be able to be fooled by
1875 	 * malicious DIF.)  Given the lack of backwards branches in DIF,
1876 	 * solving this would presumably not amount to solving the Halting
1877 	 * Problem -- but it still seems awfully hard.
1878 	 */
1879 	if (sizeof (dtrace_dynvar_t) + sizeof (dtrace_key_t) * (nkeys - 1) +
1880 	    ksize + dsize > chunksize) {
1881 		dcpu->dtdsc_drops++;
1882 		return (NULL);
1883 	}
1884 
1885 	nstate = DTRACE_DSTATE_EMPTY;
1886 
1887 	do {
1888 retry:
1889 		free = dcpu->dtdsc_free;
1890 
1891 		if (free == NULL) {
1892 			dtrace_dynvar_t *clean = dcpu->dtdsc_clean;
1893 			void *rval;
1894 
1895 			if (clean == NULL) {
1896 				/*
1897 				 * We're out of dynamic variable space on
1898 				 * this CPU.  Unless we have tried all CPUs,
1899 				 * we'll try to allocate from a different
1900 				 * CPU.
1901 				 */
1902 				switch (dstate->dtds_state) {
1903 				case DTRACE_DSTATE_CLEAN: {
1904 					void *sp = &dstate->dtds_state;
1905 
1906 					if (++cpu >= NCPU)
1907 						cpu = 0;
1908 
1909 					if (dcpu->dtdsc_dirty != NULL &&
1910 					    nstate == DTRACE_DSTATE_EMPTY)
1911 						nstate = DTRACE_DSTATE_DIRTY;
1912 
1913 					if (dcpu->dtdsc_rinsing != NULL)
1914 						nstate = DTRACE_DSTATE_RINSING;
1915 
1916 					dcpu = &dstate->dtds_percpu[cpu];
1917 
1918 					if (cpu != me)
1919 						goto retry;
1920 
1921 					(void) dtrace_cas32(sp,
1922 					    DTRACE_DSTATE_CLEAN, nstate);
1923 
1924 					/*
1925 					 * To increment the correct bean
1926 					 * counter, take another lap.
1927 					 */
1928 					goto retry;
1929 				}
1930 
1931 				case DTRACE_DSTATE_DIRTY:
1932 					dcpu->dtdsc_dirty_drops++;
1933 					break;
1934 
1935 				case DTRACE_DSTATE_RINSING:
1936 					dcpu->dtdsc_rinsing_drops++;
1937 					break;
1938 
1939 				case DTRACE_DSTATE_EMPTY:
1940 					dcpu->dtdsc_drops++;
1941 					break;
1942 				}
1943 
1944 				DTRACE_CPUFLAG_SET(CPU_DTRACE_DROP);
1945 				return (NULL);
1946 			}
1947 
1948 			/*
1949 			 * The clean list appears to be non-empty.  We want to
1950 			 * move the clean list to the free list; we start by
1951 			 * moving the clean pointer aside.
1952 			 */
1953 			if (dtrace_casptr(&dcpu->dtdsc_clean,
1954 			    clean, NULL) != clean) {
1955 				/*
1956 				 * We are in one of two situations:
1957 				 *
1958 				 *  (a)	The clean list was switched to the
1959 				 *	free list by another CPU.
1960 				 *
1961 				 *  (b)	The clean list was added to by the
1962 				 *	cleansing cyclic.
1963 				 *
1964 				 * In either of these situations, we can
1965 				 * just reattempt the free list allocation.
1966 				 */
1967 				goto retry;
1968 			}
1969 
1970 			ASSERT(clean->dtdv_hashval == DTRACE_DYNHASH_FREE);
1971 
1972 			/*
1973 			 * Now we'll move the clean list to our free list.
1974 			 * It's impossible for this to fail:  the only way
1975 			 * the free list can be updated is through this
1976 			 * code path, and only one CPU can own the clean list.
1977 			 * Thus, it would only be possible for this to fail if
1978 			 * this code were racing with dtrace_dynvar_clean().
1979 			 * (That is, if dtrace_dynvar_clean() updated the clean
1980 			 * list, and we ended up racing to update the free
1981 			 * list.)  This race is prevented by the dtrace_sync()
1982 			 * in dtrace_dynvar_clean() -- which flushes the
1983 			 * owners of the clean lists out before resetting
1984 			 * the clean lists.
1985 			 */
1986 			dcpu = &dstate->dtds_percpu[me];
1987 			rval = dtrace_casptr(&dcpu->dtdsc_free, NULL, clean);
1988 			ASSERT(rval == NULL);
1989 			goto retry;
1990 		}
1991 
1992 		dvar = free;
1993 		new_free = dvar->dtdv_next;
1994 	} while (dtrace_casptr(&dcpu->dtdsc_free, free, new_free) != free);
1995 
1996 	/*
1997 	 * We have now allocated a new chunk.  We copy the tuple keys into the
1998 	 * tuple array and copy any referenced key data into the data space
1999 	 * following the tuple array.  As we do this, we relocate dttk_value
2000 	 * in the final tuple to point to the key data address in the chunk.
2001 	 */
2002 	kdata = (uintptr_t)&dvar->dtdv_tuple.dtt_key[nkeys];
2003 	dvar->dtdv_data = (void *)(kdata + ksize);
2004 	dvar->dtdv_tuple.dtt_nkeys = nkeys;
2005 
2006 	for (i = 0; i < nkeys; i++) {
2007 		dtrace_key_t *dkey = &dvar->dtdv_tuple.dtt_key[i];
2008 		size_t kesize = key[i].dttk_size;
2009 
2010 		if (kesize != 0) {
2011 			dtrace_bcopy(
2012 			    (const void *)(uintptr_t)key[i].dttk_value,
2013 			    (void *)kdata, kesize);
2014 			dkey->dttk_value = kdata;
2015 			kdata += P2ROUNDUP(kesize, sizeof (uint64_t));
2016 		} else {
2017 			dkey->dttk_value = key[i].dttk_value;
2018 		}
2019 
2020 		dkey->dttk_size = kesize;
2021 	}
2022 
2023 	ASSERT(dvar->dtdv_hashval == DTRACE_DYNHASH_FREE);
2024 	dvar->dtdv_hashval = hashval;
2025 	dvar->dtdv_next = start;
2026 
2027 	if (dtrace_casptr(&hash[bucket].dtdh_chain, start, dvar) == start)
2028 		return (dvar);
2029 
2030 	/*
2031 	 * The cas has failed.  Either another CPU is adding an element to
2032 	 * this hash chain, or another CPU is deleting an element from this
2033 	 * hash chain.  The simplest way to deal with both of these cases
2034 	 * (though not necessarily the most efficient) is to free our
2035 	 * allocated block and tail-call ourselves.  Note that the free is
2036 	 * to the dirty list and _not_ to the free list.  This is to prevent
2037 	 * races with allocators, above.
2038 	 */
2039 	dvar->dtdv_hashval = DTRACE_DYNHASH_FREE;
2040 
2041 	dtrace_membar_producer();
2042 
2043 	do {
2044 		free = dcpu->dtdsc_dirty;
2045 		dvar->dtdv_next = free;
2046 	} while (dtrace_casptr(&dcpu->dtdsc_dirty, free, dvar) != free);
2047 
2048 	return (dtrace_dynvar(dstate, nkeys, key, dsize, op, mstate, vstate));
2049 }
2050 
2051 /*ARGSUSED*/
2052 static void
2053 dtrace_aggregate_min(uint64_t *oval, uint64_t nval, uint64_t arg)
2054 {
2055 	if ((int64_t)nval < (int64_t)*oval)
2056 		*oval = nval;
2057 }
2058 
2059 /*ARGSUSED*/
2060 static void
2061 dtrace_aggregate_max(uint64_t *oval, uint64_t nval, uint64_t arg)
2062 {
2063 	if ((int64_t)nval > (int64_t)*oval)
2064 		*oval = nval;
2065 }
2066 
2067 static void
2068 dtrace_aggregate_quantize(uint64_t *quanta, uint64_t nval, uint64_t incr)
2069 {
2070 	int i, zero = DTRACE_QUANTIZE_ZEROBUCKET;
2071 	int64_t val = (int64_t)nval;
2072 
2073 	if (val < 0) {
2074 		for (i = 0; i < zero; i++) {
2075 			if (val <= DTRACE_QUANTIZE_BUCKETVAL(i)) {
2076 				quanta[i] += incr;
2077 				return;
2078 			}
2079 		}
2080 	} else {
2081 		for (i = zero + 1; i < DTRACE_QUANTIZE_NBUCKETS; i++) {
2082 			if (val < DTRACE_QUANTIZE_BUCKETVAL(i)) {
2083 				quanta[i - 1] += incr;
2084 				return;
2085 			}
2086 		}
2087 
2088 		quanta[DTRACE_QUANTIZE_NBUCKETS - 1] += incr;
2089 		return;
2090 	}
2091 
2092 	ASSERT(0);
2093 }
2094 
2095 static void
2096 dtrace_aggregate_lquantize(uint64_t *lquanta, uint64_t nval, uint64_t incr)
2097 {
2098 	uint64_t arg = *lquanta++;
2099 	int32_t base = DTRACE_LQUANTIZE_BASE(arg);
2100 	uint16_t step = DTRACE_LQUANTIZE_STEP(arg);
2101 	uint16_t levels = DTRACE_LQUANTIZE_LEVELS(arg);
2102 	int32_t val = (int32_t)nval, level;
2103 
2104 	ASSERT(step != 0);
2105 	ASSERT(levels != 0);
2106 
2107 	if (val < base) {
2108 		/*
2109 		 * This is an underflow.
2110 		 */
2111 		lquanta[0] += incr;
2112 		return;
2113 	}
2114 
2115 	level = (val - base) / step;
2116 
2117 	if (level < levels) {
2118 		lquanta[level + 1] += incr;
2119 		return;
2120 	}
2121 
2122 	/*
2123 	 * This is an overflow.
2124 	 */
2125 	lquanta[levels + 1] += incr;
2126 }
2127 
2128 static int
2129 dtrace_aggregate_llquantize_bucket(uint16_t factor, uint16_t low,
2130     uint16_t high, uint16_t nsteps, int64_t value)
2131 {
2132 	int64_t this = 1, last, next;
2133 	int base = 1, order;
2134 
2135 	ASSERT(factor <= nsteps);
2136 	ASSERT(nsteps % factor == 0);
2137 
2138 	for (order = 0; order < low; order++)
2139 		this *= factor;
2140 
2141 	/*
2142 	 * If our value is less than our factor taken to the power of the
2143 	 * low order of magnitude, it goes into the zeroth bucket.
2144 	 */
2145 	if (value < (last = this))
2146 		return (0);
2147 
2148 	for (this *= factor; order <= high; order++) {
2149 		int nbuckets = this > nsteps ? nsteps : this;
2150 
2151 		if ((next = this * factor) < this) {
2152 			/*
2153 			 * We should not generally get log/linear quantizations
2154 			 * with a high magnitude that allows 64-bits to
2155 			 * overflow, but we nonetheless protect against this
2156 			 * by explicitly checking for overflow, and clamping
2157 			 * our value accordingly.
2158 			 */
2159 			value = this - 1;
2160 		}
2161 
2162 		if (value < this) {
2163 			/*
2164 			 * If our value lies within this order of magnitude,
2165 			 * determine its position by taking the offset within
2166 			 * the order of magnitude, dividing by the bucket
2167 			 * width, and adding to our (accumulated) base.
2168 			 */
2169 			return (base + (value - last) / (this / nbuckets));
2170 		}
2171 
2172 		base += nbuckets - (nbuckets / factor);
2173 		last = this;
2174 		this = next;
2175 	}
2176 
2177 	/*
2178 	 * Our value is greater than or equal to our factor taken to the
2179 	 * power of one plus the high magnitude -- return the top bucket.
2180 	 */
2181 	return (base);
2182 }
2183 
2184 static void
2185 dtrace_aggregate_llquantize(uint64_t *llquanta, uint64_t nval, uint64_t incr)
2186 {
2187 	uint64_t arg = *llquanta++;
2188 	uint16_t factor = DTRACE_LLQUANTIZE_FACTOR(arg);
2189 	uint16_t low = DTRACE_LLQUANTIZE_LOW(arg);
2190 	uint16_t high = DTRACE_LLQUANTIZE_HIGH(arg);
2191 	uint16_t nsteps = DTRACE_LLQUANTIZE_NSTEP(arg);
2192 
2193 	llquanta[dtrace_aggregate_llquantize_bucket(factor,
2194 	    low, high, nsteps, nval)] += incr;
2195 }
2196 
2197 /*ARGSUSED*/
2198 static void
2199 dtrace_aggregate_avg(uint64_t *data, uint64_t nval, uint64_t arg)
2200 {
2201 	data[0]++;
2202 	data[1] += nval;
2203 }
2204 
2205 /*ARGSUSED*/
2206 static void
2207 dtrace_aggregate_stddev(uint64_t *data, uint64_t nval, uint64_t arg)
2208 {
2209 	int64_t snval = (int64_t)nval;
2210 	uint64_t tmp[2];
2211 
2212 	data[0]++;
2213 	data[1] += nval;
2214 
2215 	/*
2216 	 * What we want to say here is:
2217 	 *
2218 	 * data[2] += nval * nval;
2219 	 *
2220 	 * But given that nval is 64-bit, we could easily overflow, so
2221 	 * we do this as 128-bit arithmetic.
2222 	 */
2223 	if (snval < 0)
2224 		snval = -snval;
2225 
2226 	dtrace_multiply_128((uint64_t)snval, (uint64_t)snval, tmp);
2227 	dtrace_add_128(data + 2, tmp, data + 2);
2228 }
2229 
2230 /*ARGSUSED*/
2231 static void
2232 dtrace_aggregate_count(uint64_t *oval, uint64_t nval, uint64_t arg)
2233 {
2234 	*oval = *oval + 1;
2235 }
2236 
2237 /*ARGSUSED*/
2238 static void
2239 dtrace_aggregate_sum(uint64_t *oval, uint64_t nval, uint64_t arg)
2240 {
2241 	*oval += nval;
2242 }
2243 
2244 /*
2245  * Aggregate given the tuple in the principal data buffer, and the aggregating
2246  * action denoted by the specified dtrace_aggregation_t.  The aggregation
2247  * buffer is specified as the buf parameter.  This routine does not return
2248  * failure; if there is no space in the aggregation buffer, the data will be
2249  * dropped, and a corresponding counter incremented.
2250  */
2251 static void
2252 dtrace_aggregate(dtrace_aggregation_t *agg, dtrace_buffer_t *dbuf,
2253     intptr_t offset, dtrace_buffer_t *buf, uint64_t expr, uint64_t arg)
2254 {
2255 	dtrace_recdesc_t *rec = &agg->dtag_action.dta_rec;
2256 	uint32_t i, ndx, size, fsize;
2257 	uint32_t align = sizeof (uint64_t) - 1;
2258 	dtrace_aggbuffer_t *agb;
2259 	dtrace_aggkey_t *key;
2260 	uint32_t hashval = 0, limit, isstr;
2261 	caddr_t tomax, data, kdata;
2262 	dtrace_actkind_t action;
2263 	dtrace_action_t *act;
2264 	uintptr_t offs;
2265 
2266 	if (buf == NULL)
2267 		return;
2268 
2269 	if (!agg->dtag_hasarg) {
2270 		/*
2271 		 * Currently, only quantize() and lquantize() take additional
2272 		 * arguments, and they have the same semantics:  an increment
2273 		 * value that defaults to 1 when not present.  If additional
2274 		 * aggregating actions take arguments, the setting of the
2275 		 * default argument value will presumably have to become more
2276 		 * sophisticated...
2277 		 */
2278 		arg = 1;
2279 	}
2280 
2281 	action = agg->dtag_action.dta_kind - DTRACEACT_AGGREGATION;
2282 	size = rec->dtrd_offset - agg->dtag_base;
2283 	fsize = size + rec->dtrd_size;
2284 
2285 	ASSERT(dbuf->dtb_tomax != NULL);
2286 	data = dbuf->dtb_tomax + offset + agg->dtag_base;
2287 
2288 	if ((tomax = buf->dtb_tomax) == NULL) {
2289 		dtrace_buffer_drop(buf);
2290 		return;
2291 	}
2292 
2293 	/*
2294 	 * The metastructure is always at the bottom of the buffer.
2295 	 */
2296 	agb = (dtrace_aggbuffer_t *)(tomax + buf->dtb_size -
2297 	    sizeof (dtrace_aggbuffer_t));
2298 
2299 	if (buf->dtb_offset == 0) {
2300 		/*
2301 		 * We just kludge up approximately 1/8th of the size to be
2302 		 * buckets.  If this guess ends up being routinely
2303 		 * off-the-mark, we may need to dynamically readjust this
2304 		 * based on past performance.
2305 		 */
2306 		uintptr_t hashsize = (buf->dtb_size >> 3) / sizeof (uintptr_t);
2307 
2308 		if ((uintptr_t)agb - hashsize * sizeof (dtrace_aggkey_t *) <
2309 		    (uintptr_t)tomax || hashsize == 0) {
2310 			/*
2311 			 * We've been given a ludicrously small buffer;
2312 			 * increment our drop count and leave.
2313 			 */
2314 			dtrace_buffer_drop(buf);
2315 			return;
2316 		}
2317 
2318 		/*
2319 		 * And now, a pathetic attempt to try to get a an odd (or
2320 		 * perchance, a prime) hash size for better hash distribution.
2321 		 */
2322 		if (hashsize > (DTRACE_AGGHASHSIZE_SLEW << 3))
2323 			hashsize -= DTRACE_AGGHASHSIZE_SLEW;
2324 
2325 		agb->dtagb_hashsize = hashsize;
2326 		agb->dtagb_hash = (dtrace_aggkey_t **)((uintptr_t)agb -
2327 		    agb->dtagb_hashsize * sizeof (dtrace_aggkey_t *));
2328 		agb->dtagb_free = (uintptr_t)agb->dtagb_hash;
2329 
2330 		for (i = 0; i < agb->dtagb_hashsize; i++)
2331 			agb->dtagb_hash[i] = NULL;
2332 	}
2333 
2334 	ASSERT(agg->dtag_first != NULL);
2335 	ASSERT(agg->dtag_first->dta_intuple);
2336 
2337 	/*
2338 	 * Calculate the hash value based on the key.  Note that we _don't_
2339 	 * include the aggid in the hashing (but we will store it as part of
2340 	 * the key).  The hashing algorithm is Bob Jenkins' "One-at-a-time"
2341 	 * algorithm: a simple, quick algorithm that has no known funnels, and
2342 	 * gets good distribution in practice.  The efficacy of the hashing
2343 	 * algorithm (and a comparison with other algorithms) may be found by
2344 	 * running the ::dtrace_aggstat MDB dcmd.
2345 	 */
2346 	for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) {
2347 		i = act->dta_rec.dtrd_offset - agg->dtag_base;
2348 		limit = i + act->dta_rec.dtrd_size;
2349 		ASSERT(limit <= size);
2350 		isstr = DTRACEACT_ISSTRING(act);
2351 
2352 		for (; i < limit; i++) {
2353 			hashval += data[i];
2354 			hashval += (hashval << 10);
2355 			hashval ^= (hashval >> 6);
2356 
2357 			if (isstr && data[i] == '\0')
2358 				break;
2359 		}
2360 	}
2361 
2362 	hashval += (hashval << 3);
2363 	hashval ^= (hashval >> 11);
2364 	hashval += (hashval << 15);
2365 
2366 	/*
2367 	 * Yes, the divide here is expensive -- but it's generally the least
2368 	 * of the performance issues given the amount of data that we iterate
2369 	 * over to compute hash values, compare data, etc.
2370 	 */
2371 	ndx = hashval % agb->dtagb_hashsize;
2372 
2373 	for (key = agb->dtagb_hash[ndx]; key != NULL; key = key->dtak_next) {
2374 		ASSERT((caddr_t)key >= tomax);
2375 		ASSERT((caddr_t)key < tomax + buf->dtb_size);
2376 
2377 		if (hashval != key->dtak_hashval || key->dtak_size != size)
2378 			continue;
2379 
2380 		kdata = key->dtak_data;
2381 		ASSERT(kdata >= tomax && kdata < tomax + buf->dtb_size);
2382 
2383 		for (act = agg->dtag_first; act->dta_intuple;
2384 		    act = act->dta_next) {
2385 			i = act->dta_rec.dtrd_offset - agg->dtag_base;
2386 			limit = i + act->dta_rec.dtrd_size;
2387 			ASSERT(limit <= size);
2388 			isstr = DTRACEACT_ISSTRING(act);
2389 
2390 			for (; i < limit; i++) {
2391 				if (kdata[i] != data[i])
2392 					goto next;
2393 
2394 				if (isstr && data[i] == '\0')
2395 					break;
2396 			}
2397 		}
2398 
2399 		if (action != key->dtak_action) {
2400 			/*
2401 			 * We are aggregating on the same value in the same
2402 			 * aggregation with two different aggregating actions.
2403 			 * (This should have been picked up in the compiler,
2404 			 * so we may be dealing with errant or devious DIF.)
2405 			 * This is an error condition; we indicate as much,
2406 			 * and return.
2407 			 */
2408 			DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
2409 			return;
2410 		}
2411 
2412 		/*
2413 		 * This is a hit:  we need to apply the aggregator to
2414 		 * the value at this key.
2415 		 */
2416 		agg->dtag_aggregate((uint64_t *)(kdata + size), expr, arg);
2417 		return;
2418 next:
2419 		continue;
2420 	}
2421 
2422 	/*
2423 	 * We didn't find it.  We need to allocate some zero-filled space,
2424 	 * link it into the hash table appropriately, and apply the aggregator
2425 	 * to the (zero-filled) value.
2426 	 */
2427 	offs = buf->dtb_offset;
2428 	while (offs & (align - 1))
2429 		offs += sizeof (uint32_t);
2430 
2431 	/*
2432 	 * If we don't have enough room to both allocate a new key _and_
2433 	 * its associated data, increment the drop count and return.
2434 	 */
2435 	if ((uintptr_t)tomax + offs + fsize >
2436 	    agb->dtagb_free - sizeof (dtrace_aggkey_t)) {
2437 		dtrace_buffer_drop(buf);
2438 		return;
2439 	}
2440 
2441 	/*CONSTCOND*/
2442 	ASSERT(!(sizeof (dtrace_aggkey_t) & (sizeof (uintptr_t) - 1)));
2443 	key = (dtrace_aggkey_t *)(agb->dtagb_free - sizeof (dtrace_aggkey_t));
2444 	agb->dtagb_free -= sizeof (dtrace_aggkey_t);
2445 
2446 	key->dtak_data = kdata = tomax + offs;
2447 	buf->dtb_offset = offs + fsize;
2448 
2449 	/*
2450 	 * Now copy the data across.
2451 	 */
2452 	*((dtrace_aggid_t *)kdata) = agg->dtag_id;
2453 
2454 	for (i = sizeof (dtrace_aggid_t); i < size; i++)
2455 		kdata[i] = data[i];
2456 
2457 	/*
2458 	 * Because strings are not zeroed out by default, we need to iterate
2459 	 * looking for actions that store strings, and we need to explicitly
2460 	 * pad these strings out with zeroes.
2461 	 */
2462 	for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) {
2463 		int nul;
2464 
2465 		if (!DTRACEACT_ISSTRING(act))
2466 			continue;
2467 
2468 		i = act->dta_rec.dtrd_offset - agg->dtag_base;
2469 		limit = i + act->dta_rec.dtrd_size;
2470 		ASSERT(limit <= size);
2471 
2472 		for (nul = 0; i < limit; i++) {
2473 			if (nul) {
2474 				kdata[i] = '\0';
2475 				continue;
2476 			}
2477 
2478 			if (data[i] != '\0')
2479 				continue;
2480 
2481 			nul = 1;
2482 		}
2483 	}
2484 
2485 	for (i = size; i < fsize; i++)
2486 		kdata[i] = 0;
2487 
2488 	key->dtak_hashval = hashval;
2489 	key->dtak_size = size;
2490 	key->dtak_action = action;
2491 	key->dtak_next = agb->dtagb_hash[ndx];
2492 	agb->dtagb_hash[ndx] = key;
2493 
2494 	/*
2495 	 * Finally, apply the aggregator.
2496 	 */
2497 	*((uint64_t *)(key->dtak_data + size)) = agg->dtag_initial;
2498 	agg->dtag_aggregate((uint64_t *)(key->dtak_data + size), expr, arg);
2499 }
2500 
2501 /*
2502  * Given consumer state, this routine finds a speculation in the INACTIVE
2503  * state and transitions it into the ACTIVE state.  If there is no speculation
2504  * in the INACTIVE state, 0 is returned.  In this case, no error counter is
2505  * incremented -- it is up to the caller to take appropriate action.
2506  */
2507 static int
2508 dtrace_speculation(dtrace_state_t *state)
2509 {
2510 	int i = 0;
2511 	dtrace_speculation_state_t current;
2512 	uint32_t *stat = &state->dts_speculations_unavail, count;
2513 
2514 	while (i < state->dts_nspeculations) {
2515 		dtrace_speculation_t *spec = &state->dts_speculations[i];
2516 
2517 		current = spec->dtsp_state;
2518 
2519 		if (current != DTRACESPEC_INACTIVE) {
2520 			if (current == DTRACESPEC_COMMITTINGMANY ||
2521 			    current == DTRACESPEC_COMMITTING ||
2522 			    current == DTRACESPEC_DISCARDING)
2523 				stat = &state->dts_speculations_busy;
2524 			i++;
2525 			continue;
2526 		}
2527 
2528 		if (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2529 		    current, DTRACESPEC_ACTIVE) == current)
2530 			return (i + 1);
2531 	}
2532 
2533 	/*
2534 	 * We couldn't find a speculation.  If we found as much as a single
2535 	 * busy speculation buffer, we'll attribute this failure as "busy"
2536 	 * instead of "unavail".
2537 	 */
2538 	do {
2539 		count = *stat;
2540 	} while (dtrace_cas32(stat, count, count + 1) != count);
2541 
2542 	return (0);
2543 }
2544 
2545 /*
2546  * This routine commits an active speculation.  If the specified speculation
2547  * is not in a valid state to perform a commit(), this routine will silently do
2548  * nothing.  The state of the specified speculation is transitioned according
2549  * to the state transition diagram outlined in <sys/dtrace_impl.h>
2550  */
2551 static void
2552 dtrace_speculation_commit(dtrace_state_t *state, processorid_t cpu,
2553     dtrace_specid_t which)
2554 {
2555 	dtrace_speculation_t *spec;
2556 	dtrace_buffer_t *src, *dest;
2557 	uintptr_t daddr, saddr, dlimit, slimit;
2558 	dtrace_speculation_state_t current, new;
2559 	intptr_t offs;
2560 	uint64_t timestamp;
2561 
2562 	if (which == 0)
2563 		return;
2564 
2565 	if (which > state->dts_nspeculations) {
2566 		cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
2567 		return;
2568 	}
2569 
2570 	spec = &state->dts_speculations[which - 1];
2571 	src = &spec->dtsp_buffer[cpu];
2572 	dest = &state->dts_buffer[cpu];
2573 
2574 	do {
2575 		current = spec->dtsp_state;
2576 
2577 		if (current == DTRACESPEC_COMMITTINGMANY)
2578 			break;
2579 
2580 		switch (current) {
2581 		case DTRACESPEC_INACTIVE:
2582 		case DTRACESPEC_DISCARDING:
2583 			return;
2584 
2585 		case DTRACESPEC_COMMITTING:
2586 			/*
2587 			 * This is only possible if we are (a) commit()'ing
2588 			 * without having done a prior speculate() on this CPU
2589 			 * and (b) racing with another commit() on a different
2590 			 * CPU.  There's nothing to do -- we just assert that
2591 			 * our offset is 0.
2592 			 */
2593 			ASSERT(src->dtb_offset == 0);
2594 			return;
2595 
2596 		case DTRACESPEC_ACTIVE:
2597 			new = DTRACESPEC_COMMITTING;
2598 			break;
2599 
2600 		case DTRACESPEC_ACTIVEONE:
2601 			/*
2602 			 * This speculation is active on one CPU.  If our
2603 			 * buffer offset is non-zero, we know that the one CPU
2604 			 * must be us.  Otherwise, we are committing on a
2605 			 * different CPU from the speculate(), and we must
2606 			 * rely on being asynchronously cleaned.
2607 			 */
2608 			if (src->dtb_offset != 0) {
2609 				new = DTRACESPEC_COMMITTING;
2610 				break;
2611 			}
2612 			/*FALLTHROUGH*/
2613 
2614 		case DTRACESPEC_ACTIVEMANY:
2615 			new = DTRACESPEC_COMMITTINGMANY;
2616 			break;
2617 
2618 		default:
2619 			ASSERT(0);
2620 		}
2621 	} while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2622 	    current, new) != current);
2623 
2624 	/*
2625 	 * We have set the state to indicate that we are committing this
2626 	 * speculation.  Now reserve the necessary space in the destination
2627 	 * buffer.
2628 	 */
2629 	if ((offs = dtrace_buffer_reserve(dest, src->dtb_offset,
2630 	    sizeof (uint64_t), state, NULL)) < 0) {
2631 		dtrace_buffer_drop(dest);
2632 		goto out;
2633 	}
2634 
2635 	/*
2636 	 * We have sufficient space to copy the speculative buffer into the
2637 	 * primary buffer.  First, modify the speculative buffer, filling
2638 	 * in the timestamp of all entries with the current time.  The data
2639 	 * must have the commit() time rather than the time it was traced,
2640 	 * so that all entries in the primary buffer are in timestamp order.
2641 	 */
2642 	timestamp = dtrace_gethrtime();
2643 	saddr = (uintptr_t)src->dtb_tomax;
2644 	slimit = saddr + src->dtb_offset;
2645 	while (saddr < slimit) {
2646 		size_t size;
2647 		dtrace_rechdr_t *dtrh = (dtrace_rechdr_t *)saddr;
2648 
2649 		if (dtrh->dtrh_epid == DTRACE_EPIDNONE) {
2650 			saddr += sizeof (dtrace_epid_t);
2651 			continue;
2652 		}
2653 		ASSERT3U(dtrh->dtrh_epid, <=, state->dts_necbs);
2654 		size = state->dts_ecbs[dtrh->dtrh_epid - 1]->dte_size;
2655 
2656 		ASSERT3U(saddr + size, <=, slimit);
2657 		ASSERT3U(size, >=, sizeof (dtrace_rechdr_t));
2658 		ASSERT3U(DTRACE_RECORD_LOAD_TIMESTAMP(dtrh), ==, UINT64_MAX);
2659 
2660 		DTRACE_RECORD_STORE_TIMESTAMP(dtrh, timestamp);
2661 
2662 		saddr += size;
2663 	}
2664 
2665 	/*
2666 	 * Copy the buffer across.  (Note that this is a
2667 	 * highly subobtimal bcopy(); in the unlikely event that this becomes
2668 	 * a serious performance issue, a high-performance DTrace-specific
2669 	 * bcopy() should obviously be invented.)
2670 	 */
2671 	daddr = (uintptr_t)dest->dtb_tomax + offs;
2672 	dlimit = daddr + src->dtb_offset;
2673 	saddr = (uintptr_t)src->dtb_tomax;
2674 
2675 	/*
2676 	 * First, the aligned portion.
2677 	 */
2678 	while (dlimit - daddr >= sizeof (uint64_t)) {
2679 		*((uint64_t *)daddr) = *((uint64_t *)saddr);
2680 
2681 		daddr += sizeof (uint64_t);
2682 		saddr += sizeof (uint64_t);
2683 	}
2684 
2685 	/*
2686 	 * Now any left-over bit...
2687 	 */
2688 	while (dlimit - daddr)
2689 		*((uint8_t *)daddr++) = *((uint8_t *)saddr++);
2690 
2691 	/*
2692 	 * Finally, commit the reserved space in the destination buffer.
2693 	 */
2694 	dest->dtb_offset = offs + src->dtb_offset;
2695 
2696 out:
2697 	/*
2698 	 * If we're lucky enough to be the only active CPU on this speculation
2699 	 * buffer, we can just set the state back to DTRACESPEC_INACTIVE.
2700 	 */
2701 	if (current == DTRACESPEC_ACTIVE ||
2702 	    (current == DTRACESPEC_ACTIVEONE && new == DTRACESPEC_COMMITTING)) {
2703 		uint32_t rval = dtrace_cas32((uint32_t *)&spec->dtsp_state,
2704 		    DTRACESPEC_COMMITTING, DTRACESPEC_INACTIVE);
2705 
2706 		ASSERT(rval == DTRACESPEC_COMMITTING);
2707 	}
2708 
2709 	src->dtb_offset = 0;
2710 	src->dtb_xamot_drops += src->dtb_drops;
2711 	src->dtb_drops = 0;
2712 }
2713 
2714 /*
2715  * This routine discards an active speculation.  If the specified speculation
2716  * is not in a valid state to perform a discard(), this routine will silently
2717  * do nothing.  The state of the specified speculation is transitioned
2718  * according to the state transition diagram outlined in <sys/dtrace_impl.h>
2719  */
2720 static void
2721 dtrace_speculation_discard(dtrace_state_t *state, processorid_t cpu,
2722     dtrace_specid_t which)
2723 {
2724 	dtrace_speculation_t *spec;
2725 	dtrace_speculation_state_t current, new;
2726 	dtrace_buffer_t *buf;
2727 
2728 	if (which == 0)
2729 		return;
2730 
2731 	if (which > state->dts_nspeculations) {
2732 		cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
2733 		return;
2734 	}
2735 
2736 	spec = &state->dts_speculations[which - 1];
2737 	buf = &spec->dtsp_buffer[cpu];
2738 
2739 	do {
2740 		current = spec->dtsp_state;
2741 
2742 		switch (current) {
2743 		case DTRACESPEC_INACTIVE:
2744 		case DTRACESPEC_COMMITTINGMANY:
2745 		case DTRACESPEC_COMMITTING:
2746 		case DTRACESPEC_DISCARDING:
2747 			return;
2748 
2749 		case DTRACESPEC_ACTIVE:
2750 		case DTRACESPEC_ACTIVEMANY:
2751 			new = DTRACESPEC_DISCARDING;
2752 			break;
2753 
2754 		case DTRACESPEC_ACTIVEONE:
2755 			if (buf->dtb_offset != 0) {
2756 				new = DTRACESPEC_INACTIVE;
2757 			} else {
2758 				new = DTRACESPEC_DISCARDING;
2759 			}
2760 			break;
2761 
2762 		default:
2763 			ASSERT(0);
2764 		}
2765 	} while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2766 	    current, new) != current);
2767 
2768 	buf->dtb_offset = 0;
2769 	buf->dtb_drops = 0;
2770 }
2771 
2772 /*
2773  * Note:  not called from probe context.  This function is called
2774  * asynchronously from cross call context to clean any speculations that are
2775  * in the COMMITTINGMANY or DISCARDING states.  These speculations may not be
2776  * transitioned back to the INACTIVE state until all CPUs have cleaned the
2777  * speculation.
2778  */
2779 static void
2780 dtrace_speculation_clean_here(dtrace_state_t *state)
2781 {
2782 	dtrace_icookie_t cookie;
2783 	processorid_t cpu = CPU->cpu_id;
2784 	dtrace_buffer_t *dest = &state->dts_buffer[cpu];
2785 	dtrace_specid_t i;
2786 
2787 	cookie = dtrace_interrupt_disable();
2788 
2789 	if (dest->dtb_tomax == NULL) {
2790 		dtrace_interrupt_enable(cookie);
2791 		return;
2792 	}
2793 
2794 	for (i = 0; i < state->dts_nspeculations; i++) {
2795 		dtrace_speculation_t *spec = &state->dts_speculations[i];
2796 		dtrace_buffer_t *src = &spec->dtsp_buffer[cpu];
2797 
2798 		if (src->dtb_tomax == NULL)
2799 			continue;
2800 
2801 		if (spec->dtsp_state == DTRACESPEC_DISCARDING) {
2802 			src->dtb_offset = 0;
2803 			continue;
2804 		}
2805 
2806 		if (spec->dtsp_state != DTRACESPEC_COMMITTINGMANY)
2807 			continue;
2808 
2809 		if (src->dtb_offset == 0)
2810 			continue;
2811 
2812 		dtrace_speculation_commit(state, cpu, i + 1);
2813 	}
2814 
2815 	dtrace_interrupt_enable(cookie);
2816 }
2817 
2818 /*
2819  * Note:  not called from probe context.  This function is called
2820  * asynchronously (and at a regular interval) to clean any speculations that
2821  * are in the COMMITTINGMANY or DISCARDING states.  If it discovers that there
2822  * is work to be done, it cross calls all CPUs to perform that work;
2823  * COMMITMANY and DISCARDING speculations may not be transitioned back to the
2824  * INACTIVE state until they have been cleaned by all CPUs.
2825  */
2826 static void
2827 dtrace_speculation_clean(dtrace_state_t *state)
2828 {
2829 	int work = 0, rv;
2830 	dtrace_specid_t i;
2831 
2832 	for (i = 0; i < state->dts_nspeculations; i++) {
2833 		dtrace_speculation_t *spec = &state->dts_speculations[i];
2834 
2835 		ASSERT(!spec->dtsp_cleaning);
2836 
2837 		if (spec->dtsp_state != DTRACESPEC_DISCARDING &&
2838 		    spec->dtsp_state != DTRACESPEC_COMMITTINGMANY)
2839 			continue;
2840 
2841 		work++;
2842 		spec->dtsp_cleaning = 1;
2843 	}
2844 
2845 	if (!work)
2846 		return;
2847 
2848 	dtrace_xcall(DTRACE_CPUALL,
2849 	    (dtrace_xcall_t)dtrace_speculation_clean_here, state);
2850 
2851 	/*
2852 	 * We now know that all CPUs have committed or discarded their
2853 	 * speculation buffers, as appropriate.  We can now set the state
2854 	 * to inactive.
2855 	 */
2856 	for (i = 0; i < state->dts_nspeculations; i++) {
2857 		dtrace_speculation_t *spec = &state->dts_speculations[i];
2858 		dtrace_speculation_state_t current, new;
2859 
2860 		if (!spec->dtsp_cleaning)
2861 			continue;
2862 
2863 		current = spec->dtsp_state;
2864 		ASSERT(current == DTRACESPEC_DISCARDING ||
2865 		    current == DTRACESPEC_COMMITTINGMANY);
2866 
2867 		new = DTRACESPEC_INACTIVE;
2868 
2869 		rv = dtrace_cas32((uint32_t *)&spec->dtsp_state, current, new);
2870 		ASSERT(rv == current);
2871 		spec->dtsp_cleaning = 0;
2872 	}
2873 }
2874 
2875 /*
2876  * Called as part of a speculate() to get the speculative buffer associated
2877  * with a given speculation.  Returns NULL if the specified speculation is not
2878  * in an ACTIVE state.  If the speculation is in the ACTIVEONE state -- and
2879  * the active CPU is not the specified CPU -- the speculation will be
2880  * atomically transitioned into the ACTIVEMANY state.
2881  */
2882 static dtrace_buffer_t *
2883 dtrace_speculation_buffer(dtrace_state_t *state, processorid_t cpuid,
2884     dtrace_specid_t which)
2885 {
2886 	dtrace_speculation_t *spec;
2887 	dtrace_speculation_state_t current, new;
2888 	dtrace_buffer_t *buf;
2889 
2890 	if (which == 0)
2891 		return (NULL);
2892 
2893 	if (which > state->dts_nspeculations) {
2894 		cpu_core[cpuid].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
2895 		return (NULL);
2896 	}
2897 
2898 	spec = &state->dts_speculations[which - 1];
2899 	buf = &spec->dtsp_buffer[cpuid];
2900 
2901 	do {
2902 		current = spec->dtsp_state;
2903 
2904 		switch (current) {
2905 		case DTRACESPEC_INACTIVE:
2906 		case DTRACESPEC_COMMITTINGMANY:
2907 		case DTRACESPEC_DISCARDING:
2908 			return (NULL);
2909 
2910 		case DTRACESPEC_COMMITTING:
2911 			ASSERT(buf->dtb_offset == 0);
2912 			return (NULL);
2913 
2914 		case DTRACESPEC_ACTIVEONE:
2915 			/*
2916 			 * This speculation is currently active on one CPU.
2917 			 * Check the offset in the buffer; if it's non-zero,
2918 			 * that CPU must be us (and we leave the state alone).
2919 			 * If it's zero, assume that we're starting on a new
2920 			 * CPU -- and change the state to indicate that the
2921 			 * speculation is active on more than one CPU.
2922 			 */
2923 			if (buf->dtb_offset != 0)
2924 				return (buf);
2925 
2926 			new = DTRACESPEC_ACTIVEMANY;
2927 			break;
2928 
2929 		case DTRACESPEC_ACTIVEMANY:
2930 			return (buf);
2931 
2932 		case DTRACESPEC_ACTIVE:
2933 			new = DTRACESPEC_ACTIVEONE;
2934 			break;
2935 
2936 		default:
2937 			ASSERT(0);
2938 		}
2939 	} while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2940 	    current, new) != current);
2941 
2942 	ASSERT(new == DTRACESPEC_ACTIVEONE || new == DTRACESPEC_ACTIVEMANY);
2943 	return (buf);
2944 }
2945 
2946 /*
2947  * Return a string.  In the event that the user lacks the privilege to access
2948  * arbitrary kernel memory, we copy the string out to scratch memory so that we
2949  * don't fail access checking.
2950  *
2951  * dtrace_dif_variable() uses this routine as a helper for various
2952  * builtin values such as 'execname' and 'probefunc.'
2953  */
2954 uintptr_t
2955 dtrace_dif_varstr(uintptr_t addr, dtrace_state_t *state,
2956     dtrace_mstate_t *mstate)
2957 {
2958 	uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
2959 	uintptr_t ret;
2960 	size_t strsz;
2961 
2962 	/*
2963 	 * The easy case: this probe is allowed to read all of memory, so
2964 	 * we can just return this as a vanilla pointer.
2965 	 */
2966 	if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
2967 		return (addr);
2968 
2969 	/*
2970 	 * This is the tougher case: we copy the string in question from
2971 	 * kernel memory into scratch memory and return it that way: this
2972 	 * ensures that we won't trip up when access checking tests the
2973 	 * BYREF return value.
2974 	 */
2975 	strsz = dtrace_strlen((char *)addr, size) + 1;
2976 
2977 	if (mstate->dtms_scratch_ptr + strsz >
2978 	    mstate->dtms_scratch_base + mstate->dtms_scratch_size) {
2979 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
2980 		return (NULL);
2981 	}
2982 
2983 	dtrace_strcpy((const void *)addr, (void *)mstate->dtms_scratch_ptr,
2984 	    strsz);
2985 	ret = mstate->dtms_scratch_ptr;
2986 	mstate->dtms_scratch_ptr += strsz;
2987 	return (ret);
2988 }
2989 
2990 /*
2991  * This function implements the DIF emulator's variable lookups.  The emulator
2992  * passes a reserved variable identifier and optional built-in array index.
2993  */
2994 static uint64_t
2995 dtrace_dif_variable(dtrace_mstate_t *mstate, dtrace_state_t *state, uint64_t v,
2996     uint64_t ndx)
2997 {
2998 	/*
2999 	 * If we're accessing one of the uncached arguments, we'll turn this
3000 	 * into a reference in the args array.
3001 	 */
3002 	if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9) {
3003 		ndx = v - DIF_VAR_ARG0;
3004 		v = DIF_VAR_ARGS;
3005 	}
3006 
3007 	switch (v) {
3008 	case DIF_VAR_ARGS:
3009 		if (!(mstate->dtms_access & DTRACE_ACCESS_ARGS)) {
3010 			cpu_core[CPU->cpu_id].cpuc_dtrace_flags |=
3011 			    CPU_DTRACE_KPRIV;
3012 			return (0);
3013 		}
3014 
3015 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_ARGS);
3016 		if (ndx >= sizeof (mstate->dtms_arg) /
3017 		    sizeof (mstate->dtms_arg[0])) {
3018 			int aframes = mstate->dtms_probe->dtpr_aframes + 2;
3019 			dtrace_provider_t *pv;
3020 			uint64_t val;
3021 
3022 			pv = mstate->dtms_probe->dtpr_provider;
3023 			if (pv->dtpv_pops.dtps_getargval != NULL)
3024 				val = pv->dtpv_pops.dtps_getargval(pv->dtpv_arg,
3025 				    mstate->dtms_probe->dtpr_id,
3026 				    mstate->dtms_probe->dtpr_arg, ndx, aframes);
3027 			else
3028 				val = dtrace_getarg(ndx, aframes);
3029 
3030 			/*
3031 			 * This is regrettably required to keep the compiler
3032 			 * from tail-optimizing the call to dtrace_getarg().
3033 			 * The condition always evaluates to true, but the
3034 			 * compiler has no way of figuring that out a priori.
3035 			 * (None of this would be necessary if the compiler
3036 			 * could be relied upon to _always_ tail-optimize
3037 			 * the call to dtrace_getarg() -- but it can't.)
3038 			 */
3039 			if (mstate->dtms_probe != NULL)
3040 				return (val);
3041 
3042 			ASSERT(0);
3043 		}
3044 
3045 		return (mstate->dtms_arg[ndx]);
3046 
3047 	case DIF_VAR_UREGS: {
3048 		klwp_t *lwp;
3049 
3050 		if (!dtrace_priv_proc(state, mstate))
3051 			return (0);
3052 
3053 		if ((lwp = curthread->t_lwp) == NULL) {
3054 			DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
3055 			cpu_core[CPU->cpu_id].cpuc_dtrace_illval = NULL;
3056 			return (0);
3057 		}
3058 
3059 		return (dtrace_getreg(lwp->lwp_regs, ndx));
3060 	}
3061 
3062 	case DIF_VAR_VMREGS: {
3063 		uint64_t rval;
3064 
3065 		if (!dtrace_priv_kernel(state))
3066 			return (0);
3067 
3068 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3069 
3070 		rval = dtrace_getvmreg(ndx,
3071 		    &cpu_core[CPU->cpu_id].cpuc_dtrace_flags);
3072 
3073 		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3074 
3075 		return (rval);
3076 	}
3077 
3078 	case DIF_VAR_CURTHREAD:
3079 		if (!dtrace_priv_proc(state, mstate))
3080 			return (0);
3081 		return ((uint64_t)(uintptr_t)curthread);
3082 
3083 	case DIF_VAR_TIMESTAMP:
3084 		if (!(mstate->dtms_present & DTRACE_MSTATE_TIMESTAMP)) {
3085 			mstate->dtms_timestamp = dtrace_gethrtime();
3086 			mstate->dtms_present |= DTRACE_MSTATE_TIMESTAMP;
3087 		}
3088 		return (mstate->dtms_timestamp);
3089 
3090 	case DIF_VAR_VTIMESTAMP:
3091 		ASSERT(dtrace_vtime_references != 0);
3092 		return (curthread->t_dtrace_vtime);
3093 
3094 	case DIF_VAR_WALLTIMESTAMP:
3095 		if (!(mstate->dtms_present & DTRACE_MSTATE_WALLTIMESTAMP)) {
3096 			mstate->dtms_walltimestamp = dtrace_gethrestime();
3097 			mstate->dtms_present |= DTRACE_MSTATE_WALLTIMESTAMP;
3098 		}
3099 		return (mstate->dtms_walltimestamp);
3100 
3101 	case DIF_VAR_IPL:
3102 		if (!dtrace_priv_kernel(state))
3103 			return (0);
3104 		if (!(mstate->dtms_present & DTRACE_MSTATE_IPL)) {
3105 			mstate->dtms_ipl = dtrace_getipl();
3106 			mstate->dtms_present |= DTRACE_MSTATE_IPL;
3107 		}
3108 		return (mstate->dtms_ipl);
3109 
3110 	case DIF_VAR_EPID:
3111 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_EPID);
3112 		return (mstate->dtms_epid);
3113 
3114 	case DIF_VAR_ID:
3115 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3116 		return (mstate->dtms_probe->dtpr_id);
3117 
3118 	case DIF_VAR_STACKDEPTH:
3119 		if (!dtrace_priv_kernel(state))
3120 			return (0);
3121 		if (!(mstate->dtms_present & DTRACE_MSTATE_STACKDEPTH)) {
3122 			int aframes = mstate->dtms_probe->dtpr_aframes + 2;
3123 
3124 			mstate->dtms_stackdepth = dtrace_getstackdepth(aframes);
3125 			mstate->dtms_present |= DTRACE_MSTATE_STACKDEPTH;
3126 		}
3127 		return (mstate->dtms_stackdepth);
3128 
3129 	case DIF_VAR_USTACKDEPTH:
3130 		if (!dtrace_priv_proc(state, mstate))
3131 			return (0);
3132 		if (!(mstate->dtms_present & DTRACE_MSTATE_USTACKDEPTH)) {
3133 			/*
3134 			 * See comment in DIF_VAR_PID.
3135 			 */
3136 			if (DTRACE_ANCHORED(mstate->dtms_probe) &&
3137 			    CPU_ON_INTR(CPU)) {
3138 				mstate->dtms_ustackdepth = 0;
3139 			} else {
3140 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3141 				mstate->dtms_ustackdepth =
3142 				    dtrace_getustackdepth();
3143 				DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3144 			}
3145 			mstate->dtms_present |= DTRACE_MSTATE_USTACKDEPTH;
3146 		}
3147 		return (mstate->dtms_ustackdepth);
3148 
3149 	case DIF_VAR_CALLER:
3150 		if (!dtrace_priv_kernel(state))
3151 			return (0);
3152 		if (!(mstate->dtms_present & DTRACE_MSTATE_CALLER)) {
3153 			int aframes = mstate->dtms_probe->dtpr_aframes + 2;
3154 
3155 			if (!DTRACE_ANCHORED(mstate->dtms_probe)) {
3156 				/*
3157 				 * If this is an unanchored probe, we are
3158 				 * required to go through the slow path:
3159 				 * dtrace_caller() only guarantees correct
3160 				 * results for anchored probes.
3161 				 */
3162 				pc_t caller[2];
3163 
3164 				dtrace_getpcstack(caller, 2, aframes,
3165 				    (uint32_t *)(uintptr_t)mstate->dtms_arg[0]);
3166 				mstate->dtms_caller = caller[1];
3167 			} else if ((mstate->dtms_caller =
3168 			    dtrace_caller(aframes)) == -1) {
3169 				/*
3170 				 * We have failed to do this the quick way;
3171 				 * we must resort to the slower approach of
3172 				 * calling dtrace_getpcstack().
3173 				 */
3174 				pc_t caller;
3175 
3176 				dtrace_getpcstack(&caller, 1, aframes, NULL);
3177 				mstate->dtms_caller = caller;
3178 			}
3179 
3180 			mstate->dtms_present |= DTRACE_MSTATE_CALLER;
3181 		}
3182 		return (mstate->dtms_caller);
3183 
3184 	case DIF_VAR_UCALLER:
3185 		if (!dtrace_priv_proc(state, mstate))
3186 			return (0);
3187 
3188 		if (!(mstate->dtms_present & DTRACE_MSTATE_UCALLER)) {
3189 			uint64_t ustack[3];
3190 
3191 			/*
3192 			 * dtrace_getupcstack() fills in the first uint64_t
3193 			 * with the current PID.  The second uint64_t will
3194 			 * be the program counter at user-level.  The third
3195 			 * uint64_t will contain the caller, which is what
3196 			 * we're after.
3197 			 */
3198 			ustack[2] = NULL;
3199 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3200 			dtrace_getupcstack(ustack, 3);
3201 			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3202 			mstate->dtms_ucaller = ustack[2];
3203 			mstate->dtms_present |= DTRACE_MSTATE_UCALLER;
3204 		}
3205 
3206 		return (mstate->dtms_ucaller);
3207 
3208 	case DIF_VAR_PROBEPROV:
3209 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3210 		return (dtrace_dif_varstr(
3211 		    (uintptr_t)mstate->dtms_probe->dtpr_provider->dtpv_name,
3212 		    state, mstate));
3213 
3214 	case DIF_VAR_PROBEMOD:
3215 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3216 		return (dtrace_dif_varstr(
3217 		    (uintptr_t)mstate->dtms_probe->dtpr_mod,
3218 		    state, mstate));
3219 
3220 	case DIF_VAR_PROBEFUNC:
3221 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3222 		return (dtrace_dif_varstr(
3223 		    (uintptr_t)mstate->dtms_probe->dtpr_func,
3224 		    state, mstate));
3225 
3226 	case DIF_VAR_PROBENAME:
3227 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3228 		return (dtrace_dif_varstr(
3229 		    (uintptr_t)mstate->dtms_probe->dtpr_name,
3230 		    state, mstate));
3231 
3232 	case DIF_VAR_PID:
3233 		if (!dtrace_priv_proc(state, mstate))
3234 			return (0);
3235 
3236 		/*
3237 		 * Note that we are assuming that an unanchored probe is
3238 		 * always due to a high-level interrupt.  (And we're assuming
3239 		 * that there is only a single high level interrupt.)
3240 		 */
3241 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3242 			return (pid0.pid_id);
3243 
3244 		/*
3245 		 * It is always safe to dereference one's own t_procp pointer:
3246 		 * it always points to a valid, allocated proc structure.
3247 		 * Further, it is always safe to dereference the p_pidp member
3248 		 * of one's own proc structure.  (These are truisms becuase
3249 		 * threads and processes don't clean up their own state --
3250 		 * they leave that task to whomever reaps them.)
3251 		 */
3252 		return ((uint64_t)curthread->t_procp->p_pidp->pid_id);
3253 
3254 	case DIF_VAR_PPID:
3255 		if (!dtrace_priv_proc(state, mstate))
3256 			return (0);
3257 
3258 		/*
3259 		 * See comment in DIF_VAR_PID.
3260 		 */
3261 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3262 			return (pid0.pid_id);
3263 
3264 		/*
3265 		 * It is always safe to dereference one's own t_procp pointer:
3266 		 * it always points to a valid, allocated proc structure.
3267 		 * (This is true because threads don't clean up their own
3268 		 * state -- they leave that task to whomever reaps them.)
3269 		 */
3270 		return ((uint64_t)curthread->t_procp->p_ppid);
3271 
3272 	case DIF_VAR_TID:
3273 		/*
3274 		 * See comment in DIF_VAR_PID.
3275 		 */
3276 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3277 			return (0);
3278 
3279 		return ((uint64_t)curthread->t_tid);
3280 
3281 	case DIF_VAR_EXECNAME:
3282 		if (!dtrace_priv_proc(state, mstate))
3283 			return (0);
3284 
3285 		/*
3286 		 * See comment in DIF_VAR_PID.
3287 		 */
3288 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3289 			return ((uint64_t)(uintptr_t)p0.p_user.u_comm);
3290 
3291 		/*
3292 		 * It is always safe to dereference one's own t_procp pointer:
3293 		 * it always points to a valid, allocated proc structure.
3294 		 * (This is true because threads don't clean up their own
3295 		 * state -- they leave that task to whomever reaps them.)
3296 		 */
3297 		return (dtrace_dif_varstr(
3298 		    (uintptr_t)curthread->t_procp->p_user.u_comm,
3299 		    state, mstate));
3300 
3301 	case DIF_VAR_ZONENAME:
3302 		if (!dtrace_priv_proc(state, mstate))
3303 			return (0);
3304 
3305 		/*
3306 		 * See comment in DIF_VAR_PID.
3307 		 */
3308 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3309 			return ((uint64_t)(uintptr_t)p0.p_zone->zone_name);
3310 
3311 		/*
3312 		 * It is always safe to dereference one's own t_procp pointer:
3313 		 * it always points to a valid, allocated proc structure.
3314 		 * (This is true because threads don't clean up their own
3315 		 * state -- they leave that task to whomever reaps them.)
3316 		 */
3317 		return (dtrace_dif_varstr(
3318 		    (uintptr_t)curthread->t_procp->p_zone->zone_name,
3319 		    state, mstate));
3320 
3321 	case DIF_VAR_UID:
3322 		if (!dtrace_priv_proc(state, mstate))
3323 			return (0);
3324 
3325 		/*
3326 		 * See comment in DIF_VAR_PID.
3327 		 */
3328 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3329 			return ((uint64_t)p0.p_cred->cr_uid);
3330 
3331 		/*
3332 		 * It is always safe to dereference one's own t_procp pointer:
3333 		 * it always points to a valid, allocated proc structure.
3334 		 * (This is true because threads don't clean up their own
3335 		 * state -- they leave that task to whomever reaps them.)
3336 		 *
3337 		 * Additionally, it is safe to dereference one's own process
3338 		 * credential, since this is never NULL after process birth.
3339 		 */
3340 		return ((uint64_t)curthread->t_procp->p_cred->cr_uid);
3341 
3342 	case DIF_VAR_GID:
3343 		if (!dtrace_priv_proc(state, mstate))
3344 			return (0);
3345 
3346 		/*
3347 		 * See comment in DIF_VAR_PID.
3348 		 */
3349 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3350 			return ((uint64_t)p0.p_cred->cr_gid);
3351 
3352 		/*
3353 		 * It is always safe to dereference one's own t_procp pointer:
3354 		 * it always points to a valid, allocated proc structure.
3355 		 * (This is true because threads don't clean up their own
3356 		 * state -- they leave that task to whomever reaps them.)
3357 		 *
3358 		 * Additionally, it is safe to dereference one's own process
3359 		 * credential, since this is never NULL after process birth.
3360 		 */
3361 		return ((uint64_t)curthread->t_procp->p_cred->cr_gid);
3362 
3363 	case DIF_VAR_ERRNO: {
3364 		klwp_t *lwp;
3365 		if (!dtrace_priv_proc(state, mstate))
3366 			return (0);
3367 
3368 		/*
3369 		 * See comment in DIF_VAR_PID.
3370 		 */
3371 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3372 			return (0);
3373 
3374 		/*
3375 		 * It is always safe to dereference one's own t_lwp pointer in
3376 		 * the event that this pointer is non-NULL.  (This is true
3377 		 * because threads and lwps don't clean up their own state --
3378 		 * they leave that task to whomever reaps them.)
3379 		 */
3380 		if ((lwp = curthread->t_lwp) == NULL)
3381 			return (0);
3382 
3383 		return ((uint64_t)lwp->lwp_errno);
3384 	}
3385 	default:
3386 		DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
3387 		return (0);
3388 	}
3389 }
3390 
3391 
3392 typedef enum dtrace_json_state {
3393 	DTRACE_JSON_REST = 1,
3394 	DTRACE_JSON_OBJECT,
3395 	DTRACE_JSON_STRING,
3396 	DTRACE_JSON_STRING_ESCAPE,
3397 	DTRACE_JSON_STRING_ESCAPE_UNICODE,
3398 	DTRACE_JSON_COLON,
3399 	DTRACE_JSON_COMMA,
3400 	DTRACE_JSON_VALUE,
3401 	DTRACE_JSON_IDENTIFIER,
3402 	DTRACE_JSON_NUMBER,
3403 	DTRACE_JSON_NUMBER_FRAC,
3404 	DTRACE_JSON_NUMBER_EXP,
3405 	DTRACE_JSON_COLLECT_OBJECT
3406 } dtrace_json_state_t;
3407 
3408 /*
3409  * This function possesses just enough knowledge about JSON to extract a single
3410  * value from a JSON string and store it in the scratch buffer.  It is able
3411  * to extract nested object values, and members of arrays by index.
3412  *
3413  * elemlist is a list of JSON keys, stored as packed NUL-terminated strings, to
3414  * be looked up as we descend into the object tree.  e.g.
3415  *
3416  *    foo[0].bar.baz[32] --> "foo" NUL "0" NUL "bar" NUL "baz" NUL "32" NUL
3417  *       with nelems = 5.
3418  *
3419  * The run time of this function must be bounded above by strsize to limit the
3420  * amount of work done in probe context.  As such, it is implemented as a
3421  * simple state machine, reading one character at a time using safe loads
3422  * until we find the requested element, hit a parsing error or run off the
3423  * end of the object or string.
3424  *
3425  * As there is no way for a subroutine to return an error without interrupting
3426  * clause execution, we simply return NULL in the event of a missing key or any
3427  * other error condition.  Each NULL return in this function is commented with
3428  * the error condition it represents -- parsing or otherwise.
3429  *
3430  * The set of states for the state machine closely matches the JSON
3431  * specification (http://json.org/).  Briefly:
3432  *
3433  *   DTRACE_JSON_REST:
3434  *     Skip whitespace until we find either a top-level Object, moving
3435  *     to DTRACE_JSON_OBJECT; or an Array, moving to DTRACE_JSON_VALUE.
3436  *
3437  *   DTRACE_JSON_OBJECT:
3438  *     Locate the next key String in an Object.  Sets a flag to denote
3439  *     the next String as a key string and moves to DTRACE_JSON_STRING.
3440  *
3441  *   DTRACE_JSON_COLON:
3442  *     Skip whitespace until we find the colon that separates key Strings
3443  *     from their values.  Once found, move to DTRACE_JSON_VALUE.
3444  *
3445  *   DTRACE_JSON_VALUE:
3446  *     Detects the type of the next value (String, Number, Identifier, Object
3447  *     or Array) and routes to the states that process that type.  Here we also
3448  *     deal with the element selector list if we are requested to traverse down
3449  *     into the object tree.
3450  *
3451  *   DTRACE_JSON_COMMA:
3452  *     Skip whitespace until we find the comma that separates key-value pairs
3453  *     in Objects (returning to DTRACE_JSON_OBJECT) or values in Arrays
3454  *     (similarly DTRACE_JSON_VALUE).  All following literal value processing
3455  *     states return to this state at the end of their value, unless otherwise
3456  *     noted.
3457  *
3458  *   DTRACE_JSON_NUMBER, DTRACE_JSON_NUMBER_FRAC, DTRACE_JSON_NUMBER_EXP:
3459  *     Processes a Number literal from the JSON, including any exponent
3460  *     component that may be present.  Numbers are returned as strings, which
3461  *     may be passed to strtoll() if an integer is required.
3462  *
3463  *   DTRACE_JSON_IDENTIFIER:
3464  *     Processes a "true", "false" or "null" literal in the JSON.
3465  *
3466  *   DTRACE_JSON_STRING, DTRACE_JSON_STRING_ESCAPE,
3467  *   DTRACE_JSON_STRING_ESCAPE_UNICODE:
3468  *     Processes a String literal from the JSON, whether the String denotes
3469  *     a key, a value or part of a larger Object.  Handles all escape sequences
3470  *     present in the specification, including four-digit unicode characters,
3471  *     but merely includes the escape sequence without converting it to the
3472  *     actual escaped character.  If the String is flagged as a key, we
3473  *     move to DTRACE_JSON_COLON rather than DTRACE_JSON_COMMA.
3474  *
3475  *   DTRACE_JSON_COLLECT_OBJECT:
3476  *     This state collects an entire Object (or Array), correctly handling
3477  *     embedded strings.  If the full element selector list matches this nested
3478  *     object, we return the Object in full as a string.  If not, we use this
3479  *     state to skip to the next value at this level and continue processing.
3480  *
3481  * NOTE: This function uses various macros from strtolctype.h to manipulate
3482  * digit values, etc -- these have all been checked to ensure they make
3483  * no additional function calls.
3484  */
3485 static char *
3486 dtrace_json(uint64_t size, uintptr_t json, char *elemlist, int nelems,
3487     char *dest)
3488 {
3489 	dtrace_json_state_t state = DTRACE_JSON_REST;
3490 	int64_t array_elem = INT64_MIN;
3491 	int64_t array_pos = 0;
3492 	uint8_t escape_unicount = 0;
3493 	boolean_t string_is_key = B_FALSE;
3494 	boolean_t collect_object = B_FALSE;
3495 	boolean_t found_key = B_FALSE;
3496 	boolean_t in_array = B_FALSE;
3497 	uint32_t braces = 0, brackets = 0;
3498 	char *elem = elemlist;
3499 	char *dd = dest;
3500 	uintptr_t cur;
3501 
3502 	for (cur = json; cur < json + size; cur++) {
3503 		char cc = dtrace_load8(cur);
3504 		if (cc == '\0')
3505 			return (NULL);
3506 
3507 		switch (state) {
3508 		case DTRACE_JSON_REST:
3509 			if (isspace(cc))
3510 				break;
3511 
3512 			if (cc == '{') {
3513 				state = DTRACE_JSON_OBJECT;
3514 				break;
3515 			}
3516 
3517 			if (cc == '[') {
3518 				in_array = B_TRUE;
3519 				array_pos = 0;
3520 				array_elem = dtrace_strtoll(elem, 10, size);
3521 				found_key = array_elem == 0 ? B_TRUE : B_FALSE;
3522 				state = DTRACE_JSON_VALUE;
3523 				break;
3524 			}
3525 
3526 			/*
3527 			 * ERROR: expected to find a top-level object or array.
3528 			 */
3529 			return (NULL);
3530 		case DTRACE_JSON_OBJECT:
3531 			if (isspace(cc))
3532 				break;
3533 
3534 			if (cc == '"') {
3535 				state = DTRACE_JSON_STRING;
3536 				string_is_key = B_TRUE;
3537 				break;
3538 			}
3539 
3540 			/*
3541 			 * ERROR: either the object did not start with a key
3542 			 * string, or we've run off the end of the object
3543 			 * without finding the requested key.
3544 			 */
3545 			return (NULL);
3546 		case DTRACE_JSON_STRING:
3547 			if (cc == '\\') {
3548 				*dd++ = '\\';
3549 				state = DTRACE_JSON_STRING_ESCAPE;
3550 				break;
3551 			}
3552 
3553 			if (cc == '"') {
3554 				if (collect_object) {
3555 					/*
3556 					 * We don't reset the dest here, as
3557 					 * the string is part of a larger
3558 					 * object being collected.
3559 					 */
3560 					*dd++ = cc;
3561 					collect_object = B_FALSE;
3562 					state = DTRACE_JSON_COLLECT_OBJECT;
3563 					break;
3564 				}
3565 				*dd = '\0';
3566 				dd = dest; /* reset string buffer */
3567 				if (string_is_key) {
3568 					if (dtrace_strncmp(dest, elem,
3569 					    size) == 0)
3570 						found_key = B_TRUE;
3571 				} else if (found_key) {
3572 					if (nelems > 1) {
3573 						/*
3574 						 * We expected an object, not
3575 						 * this string.
3576 						 */
3577 						return (NULL);
3578 					}
3579 					return (dest);
3580 				}
3581 				state = string_is_key ? DTRACE_JSON_COLON :
3582 				    DTRACE_JSON_COMMA;
3583 				string_is_key = B_FALSE;
3584 				break;
3585 			}
3586 
3587 			*dd++ = cc;
3588 			break;
3589 		case DTRACE_JSON_STRING_ESCAPE:
3590 			*dd++ = cc;
3591 			if (cc == 'u') {
3592 				escape_unicount = 0;
3593 				state = DTRACE_JSON_STRING_ESCAPE_UNICODE;
3594 			} else {
3595 				state = DTRACE_JSON_STRING;
3596 			}
3597 			break;
3598 		case DTRACE_JSON_STRING_ESCAPE_UNICODE:
3599 			if (!isxdigit(cc)) {
3600 				/*
3601 				 * ERROR: invalid unicode escape, expected
3602 				 * four valid hexidecimal digits.
3603 				 */
3604 				return (NULL);
3605 			}
3606 
3607 			*dd++ = cc;
3608 			if (++escape_unicount == 4)
3609 				state = DTRACE_JSON_STRING;
3610 			break;
3611 		case DTRACE_JSON_COLON:
3612 			if (isspace(cc))
3613 				break;
3614 
3615 			if (cc == ':') {
3616 				state = DTRACE_JSON_VALUE;
3617 				break;
3618 			}
3619 
3620 			/*
3621 			 * ERROR: expected a colon.
3622 			 */
3623 			return (NULL);
3624 		case DTRACE_JSON_COMMA:
3625 			if (isspace(cc))
3626 				break;
3627 
3628 			if (cc == ',') {
3629 				if (in_array) {
3630 					state = DTRACE_JSON_VALUE;
3631 					if (++array_pos == array_elem)
3632 						found_key = B_TRUE;
3633 				} else {
3634 					state = DTRACE_JSON_OBJECT;
3635 				}
3636 				break;
3637 			}
3638 
3639 			/*
3640 			 * ERROR: either we hit an unexpected character, or
3641 			 * we reached the end of the object or array without
3642 			 * finding the requested key.
3643 			 */
3644 			return (NULL);
3645 		case DTRACE_JSON_IDENTIFIER:
3646 			if (islower(cc)) {
3647 				*dd++ = cc;
3648 				break;
3649 			}
3650 
3651 			*dd = '\0';
3652 			dd = dest; /* reset string buffer */
3653 
3654 			if (dtrace_strncmp(dest, "true", 5) == 0 ||
3655 			    dtrace_strncmp(dest, "false", 6) == 0 ||
3656 			    dtrace_strncmp(dest, "null", 5) == 0) {
3657 				if (found_key) {
3658 					if (nelems > 1) {
3659 						/*
3660 						 * ERROR: We expected an object,
3661 						 * not this identifier.
3662 						 */
3663 						return (NULL);
3664 					}
3665 					return (dest);
3666 				} else {
3667 					cur--;
3668 					state = DTRACE_JSON_COMMA;
3669 					break;
3670 				}
3671 			}
3672 
3673 			/*
3674 			 * ERROR: we did not recognise the identifier as one
3675 			 * of those in the JSON specification.
3676 			 */
3677 			return (NULL);
3678 		case DTRACE_JSON_NUMBER:
3679 			if (cc == '.') {
3680 				*dd++ = cc;
3681 				state = DTRACE_JSON_NUMBER_FRAC;
3682 				break;
3683 			}
3684 
3685 			if (cc == 'x' || cc == 'X') {
3686 				/*
3687 				 * ERROR: specification explicitly excludes
3688 				 * hexidecimal or octal numbers.
3689 				 */
3690 				return (NULL);
3691 			}
3692 
3693 			/* FALLTHRU */
3694 		case DTRACE_JSON_NUMBER_FRAC:
3695 			if (cc == 'e' || cc == 'E') {
3696 				*dd++ = cc;
3697 				state = DTRACE_JSON_NUMBER_EXP;
3698 				break;
3699 			}
3700 
3701 			if (cc == '+' || cc == '-') {
3702 				/*
3703 				 * ERROR: expect sign as part of exponent only.
3704 				 */
3705 				return (NULL);
3706 			}
3707 			/* FALLTHRU */
3708 		case DTRACE_JSON_NUMBER_EXP:
3709 			if (isdigit(cc) || cc == '+' || cc == '-') {
3710 				*dd++ = cc;
3711 				break;
3712 			}
3713 
3714 			*dd = '\0';
3715 			dd = dest; /* reset string buffer */
3716 			if (found_key) {
3717 				if (nelems > 1) {
3718 					/*
3719 					 * ERROR: We expected an object, not
3720 					 * this number.
3721 					 */
3722 					return (NULL);
3723 				}
3724 				return (dest);
3725 			}
3726 
3727 			cur--;
3728 			state = DTRACE_JSON_COMMA;
3729 			break;
3730 		case DTRACE_JSON_VALUE:
3731 			if (isspace(cc))
3732 				break;
3733 
3734 			if (cc == '{' || cc == '[') {
3735 				if (nelems > 1 && found_key) {
3736 					in_array = cc == '[' ? B_TRUE : B_FALSE;
3737 					/*
3738 					 * If our element selector directs us
3739 					 * to descend into this nested object,
3740 					 * then move to the next selector
3741 					 * element in the list and restart the
3742 					 * state machine.
3743 					 */
3744 					while (*elem != '\0')
3745 						elem++;
3746 					elem++; /* skip the inter-element NUL */
3747 					nelems--;
3748 					dd = dest;
3749 					if (in_array) {
3750 						state = DTRACE_JSON_VALUE;
3751 						array_pos = 0;
3752 						array_elem = dtrace_strtoll(
3753 						    elem, 10, size);
3754 						found_key = array_elem == 0 ?
3755 						    B_TRUE : B_FALSE;
3756 					} else {
3757 						found_key = B_FALSE;
3758 						state = DTRACE_JSON_OBJECT;
3759 					}
3760 					break;
3761 				}
3762 
3763 				/*
3764 				 * Otherwise, we wish to either skip this
3765 				 * nested object or return it in full.
3766 				 */
3767 				if (cc == '[')
3768 					brackets = 1;
3769 				else
3770 					braces = 1;
3771 				*dd++ = cc;
3772 				state = DTRACE_JSON_COLLECT_OBJECT;
3773 				break;
3774 			}
3775 
3776 			if (cc == '"') {
3777 				state = DTRACE_JSON_STRING;
3778 				break;
3779 			}
3780 
3781 			if (islower(cc)) {
3782 				/*
3783 				 * Here we deal with true, false and null.
3784 				 */
3785 				*dd++ = cc;
3786 				state = DTRACE_JSON_IDENTIFIER;
3787 				break;
3788 			}
3789 
3790 			if (cc == '-' || isdigit(cc)) {
3791 				*dd++ = cc;
3792 				state = DTRACE_JSON_NUMBER;
3793 				break;
3794 			}
3795 
3796 			/*
3797 			 * ERROR: unexpected character at start of value.
3798 			 */
3799 			return (NULL);
3800 		case DTRACE_JSON_COLLECT_OBJECT:
3801 			if (cc == '\0')
3802 				/*
3803 				 * ERROR: unexpected end of input.
3804 				 */
3805 				return (NULL);
3806 
3807 			*dd++ = cc;
3808 			if (cc == '"') {
3809 				collect_object = B_TRUE;
3810 				state = DTRACE_JSON_STRING;
3811 				break;
3812 			}
3813 
3814 			if (cc == ']') {
3815 				if (brackets-- == 0) {
3816 					/*
3817 					 * ERROR: unbalanced brackets.
3818 					 */
3819 					return (NULL);
3820 				}
3821 			} else if (cc == '}') {
3822 				if (braces-- == 0) {
3823 					/*
3824 					 * ERROR: unbalanced braces.
3825 					 */
3826 					return (NULL);
3827 				}
3828 			} else if (cc == '{') {
3829 				braces++;
3830 			} else if (cc == '[') {
3831 				brackets++;
3832 			}
3833 
3834 			if (brackets == 0 && braces == 0) {
3835 				if (found_key) {
3836 					*dd = '\0';
3837 					return (dest);
3838 				}
3839 				dd = dest; /* reset string buffer */
3840 				state = DTRACE_JSON_COMMA;
3841 			}
3842 			break;
3843 		}
3844 	}
3845 	return (NULL);
3846 }
3847 
3848 /*
3849  * Emulate the execution of DTrace ID subroutines invoked by the call opcode.
3850  * Notice that we don't bother validating the proper number of arguments or
3851  * their types in the tuple stack.  This isn't needed because all argument
3852  * interpretation is safe because of our load safety -- the worst that can
3853  * happen is that a bogus program can obtain bogus results.
3854  */
3855 static void
3856 dtrace_dif_subr(uint_t subr, uint_t rd, uint64_t *regs,
3857     dtrace_key_t *tupregs, int nargs,
3858     dtrace_mstate_t *mstate, dtrace_state_t *state)
3859 {
3860 	volatile uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
3861 	volatile uintptr_t *illval = &cpu_core[CPU->cpu_id].cpuc_dtrace_illval;
3862 	dtrace_vstate_t *vstate = &state->dts_vstate;
3863 
3864 	union {
3865 		mutex_impl_t mi;
3866 		uint64_t mx;
3867 	} m;
3868 
3869 	union {
3870 		krwlock_t ri;
3871 		uintptr_t rw;
3872 	} r;
3873 
3874 	switch (subr) {
3875 	case DIF_SUBR_RAND:
3876 		regs[rd] = (dtrace_gethrtime() * 2416 + 374441) % 1771875;
3877 		break;
3878 
3879 	case DIF_SUBR_MUTEX_OWNED:
3880 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
3881 		    mstate, vstate)) {
3882 			regs[rd] = NULL;
3883 			break;
3884 		}
3885 
3886 		m.mx = dtrace_load64(tupregs[0].dttk_value);
3887 		if (MUTEX_TYPE_ADAPTIVE(&m.mi))
3888 			regs[rd] = MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER;
3889 		else
3890 			regs[rd] = LOCK_HELD(&m.mi.m_spin.m_spinlock);
3891 		break;
3892 
3893 	case DIF_SUBR_MUTEX_OWNER:
3894 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
3895 		    mstate, vstate)) {
3896 			regs[rd] = NULL;
3897 			break;
3898 		}
3899 
3900 		m.mx = dtrace_load64(tupregs[0].dttk_value);
3901 		if (MUTEX_TYPE_ADAPTIVE(&m.mi) &&
3902 		    MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER)
3903 			regs[rd] = (uintptr_t)MUTEX_OWNER(&m.mi);
3904 		else
3905 			regs[rd] = 0;
3906 		break;
3907 
3908 	case DIF_SUBR_MUTEX_TYPE_ADAPTIVE:
3909 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
3910 		    mstate, vstate)) {
3911 			regs[rd] = NULL;
3912 			break;
3913 		}
3914 
3915 		m.mx = dtrace_load64(tupregs[0].dttk_value);
3916 		regs[rd] = MUTEX_TYPE_ADAPTIVE(&m.mi);
3917 		break;
3918 
3919 	case DIF_SUBR_MUTEX_TYPE_SPIN:
3920 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
3921 		    mstate, vstate)) {
3922 			regs[rd] = NULL;
3923 			break;
3924 		}
3925 
3926 		m.mx = dtrace_load64(tupregs[0].dttk_value);
3927 		regs[rd] = MUTEX_TYPE_SPIN(&m.mi);
3928 		break;
3929 
3930 	case DIF_SUBR_RW_READ_HELD: {
3931 		uintptr_t tmp;
3932 
3933 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t),
3934 		    mstate, vstate)) {
3935 			regs[rd] = NULL;
3936 			break;
3937 		}
3938 
3939 		r.rw = dtrace_loadptr(tupregs[0].dttk_value);
3940 		regs[rd] = _RW_READ_HELD(&r.ri, tmp);
3941 		break;
3942 	}
3943 
3944 	case DIF_SUBR_RW_WRITE_HELD:
3945 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t),
3946 		    mstate, vstate)) {
3947 			regs[rd] = NULL;
3948 			break;
3949 		}
3950 
3951 		r.rw = dtrace_loadptr(tupregs[0].dttk_value);
3952 		regs[rd] = _RW_WRITE_HELD(&r.ri);
3953 		break;
3954 
3955 	case DIF_SUBR_RW_ISWRITER:
3956 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t),
3957 		    mstate, vstate)) {
3958 			regs[rd] = NULL;
3959 			break;
3960 		}
3961 
3962 		r.rw = dtrace_loadptr(tupregs[0].dttk_value);
3963 		regs[rd] = _RW_ISWRITER(&r.ri);
3964 		break;
3965 
3966 	case DIF_SUBR_BCOPY: {
3967 		/*
3968 		 * We need to be sure that the destination is in the scratch
3969 		 * region -- no other region is allowed.
3970 		 */
3971 		uintptr_t src = tupregs[0].dttk_value;
3972 		uintptr_t dest = tupregs[1].dttk_value;
3973 		size_t size = tupregs[2].dttk_value;
3974 
3975 		if (!dtrace_inscratch(dest, size, mstate)) {
3976 			*flags |= CPU_DTRACE_BADADDR;
3977 			*illval = regs[rd];
3978 			break;
3979 		}
3980 
3981 		if (!dtrace_canload(src, size, mstate, vstate)) {
3982 			regs[rd] = NULL;
3983 			break;
3984 		}
3985 
3986 		dtrace_bcopy((void *)src, (void *)dest, size);
3987 		break;
3988 	}
3989 
3990 	case DIF_SUBR_ALLOCA:
3991 	case DIF_SUBR_COPYIN: {
3992 		uintptr_t dest = P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
3993 		uint64_t size =
3994 		    tupregs[subr == DIF_SUBR_ALLOCA ? 0 : 1].dttk_value;
3995 		size_t scratch_size = (dest - mstate->dtms_scratch_ptr) + size;
3996 
3997 		/*
3998 		 * This action doesn't require any credential checks since
3999 		 * probes will not activate in user contexts to which the
4000 		 * enabling user does not have permissions.
4001 		 */
4002 
4003 		/*
4004 		 * Rounding up the user allocation size could have overflowed
4005 		 * a large, bogus allocation (like -1ULL) to 0.
4006 		 */
4007 		if (scratch_size < size ||
4008 		    !DTRACE_INSCRATCH(mstate, scratch_size)) {
4009 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4010 			regs[rd] = NULL;
4011 			break;
4012 		}
4013 
4014 		if (subr == DIF_SUBR_COPYIN) {
4015 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4016 			dtrace_copyin(tupregs[0].dttk_value, dest, size, flags);
4017 			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4018 		}
4019 
4020 		mstate->dtms_scratch_ptr += scratch_size;
4021 		regs[rd] = dest;
4022 		break;
4023 	}
4024 
4025 	case DIF_SUBR_COPYINTO: {
4026 		uint64_t size = tupregs[1].dttk_value;
4027 		uintptr_t dest = tupregs[2].dttk_value;
4028 
4029 		/*
4030 		 * This action doesn't require any credential checks since
4031 		 * probes will not activate in user contexts to which the
4032 		 * enabling user does not have permissions.
4033 		 */
4034 		if (!dtrace_inscratch(dest, size, mstate)) {
4035 			*flags |= CPU_DTRACE_BADADDR;
4036 			*illval = regs[rd];
4037 			break;
4038 		}
4039 
4040 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4041 		dtrace_copyin(tupregs[0].dttk_value, dest, size, flags);
4042 		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4043 		break;
4044 	}
4045 
4046 	case DIF_SUBR_COPYINSTR: {
4047 		uintptr_t dest = mstate->dtms_scratch_ptr;
4048 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4049 
4050 		if (nargs > 1 && tupregs[1].dttk_value < size)
4051 			size = tupregs[1].dttk_value + 1;
4052 
4053 		/*
4054 		 * This action doesn't require any credential checks since
4055 		 * probes will not activate in user contexts to which the
4056 		 * enabling user does not have permissions.
4057 		 */
4058 		if (!DTRACE_INSCRATCH(mstate, size)) {
4059 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4060 			regs[rd] = NULL;
4061 			break;
4062 		}
4063 
4064 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4065 		dtrace_copyinstr(tupregs[0].dttk_value, dest, size, flags);
4066 		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4067 
4068 		((char *)dest)[size - 1] = '\0';
4069 		mstate->dtms_scratch_ptr += size;
4070 		regs[rd] = dest;
4071 		break;
4072 	}
4073 
4074 	case DIF_SUBR_MSGSIZE:
4075 	case DIF_SUBR_MSGDSIZE: {
4076 		uintptr_t baddr = tupregs[0].dttk_value, daddr;
4077 		uintptr_t wptr, rptr;
4078 		size_t count = 0;
4079 		int cont = 0;
4080 
4081 		while (baddr != NULL && !(*flags & CPU_DTRACE_FAULT)) {
4082 
4083 			if (!dtrace_canload(baddr, sizeof (mblk_t), mstate,
4084 			    vstate)) {
4085 				regs[rd] = NULL;
4086 				break;
4087 			}
4088 
4089 			wptr = dtrace_loadptr(baddr +
4090 			    offsetof(mblk_t, b_wptr));
4091 
4092 			rptr = dtrace_loadptr(baddr +
4093 			    offsetof(mblk_t, b_rptr));
4094 
4095 			if (wptr < rptr) {
4096 				*flags |= CPU_DTRACE_BADADDR;
4097 				*illval = tupregs[0].dttk_value;
4098 				break;
4099 			}
4100 
4101 			daddr = dtrace_loadptr(baddr +
4102 			    offsetof(mblk_t, b_datap));
4103 
4104 			baddr = dtrace_loadptr(baddr +
4105 			    offsetof(mblk_t, b_cont));
4106 
4107 			/*
4108 			 * We want to prevent against denial-of-service here,
4109 			 * so we're only going to search the list for
4110 			 * dtrace_msgdsize_max mblks.
4111 			 */
4112 			if (cont++ > dtrace_msgdsize_max) {
4113 				*flags |= CPU_DTRACE_ILLOP;
4114 				break;
4115 			}
4116 
4117 			if (subr == DIF_SUBR_MSGDSIZE) {
4118 				if (dtrace_load8(daddr +
4119 				    offsetof(dblk_t, db_type)) != M_DATA)
4120 					continue;
4121 			}
4122 
4123 			count += wptr - rptr;
4124 		}
4125 
4126 		if (!(*flags & CPU_DTRACE_FAULT))
4127 			regs[rd] = count;
4128 
4129 		break;
4130 	}
4131 
4132 	case DIF_SUBR_PROGENYOF: {
4133 		pid_t pid = tupregs[0].dttk_value;
4134 		proc_t *p;
4135 		int rval = 0;
4136 
4137 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4138 
4139 		for (p = curthread->t_procp; p != NULL; p = p->p_parent) {
4140 			if (p->p_pidp->pid_id == pid) {
4141 				rval = 1;
4142 				break;
4143 			}
4144 		}
4145 
4146 		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4147 
4148 		regs[rd] = rval;
4149 		break;
4150 	}
4151 
4152 	case DIF_SUBR_SPECULATION:
4153 		regs[rd] = dtrace_speculation(state);
4154 		break;
4155 
4156 	case DIF_SUBR_COPYOUT: {
4157 		uintptr_t kaddr = tupregs[0].dttk_value;
4158 		uintptr_t uaddr = tupregs[1].dttk_value;
4159 		uint64_t size = tupregs[2].dttk_value;
4160 
4161 		if (!dtrace_destructive_disallow &&
4162 		    dtrace_priv_proc_control(state, mstate) &&
4163 		    !dtrace_istoxic(kaddr, size)) {
4164 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4165 			dtrace_copyout(kaddr, uaddr, size, flags);
4166 			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4167 		}
4168 		break;
4169 	}
4170 
4171 	case DIF_SUBR_COPYOUTSTR: {
4172 		uintptr_t kaddr = tupregs[0].dttk_value;
4173 		uintptr_t uaddr = tupregs[1].dttk_value;
4174 		uint64_t size = tupregs[2].dttk_value;
4175 
4176 		if (!dtrace_destructive_disallow &&
4177 		    dtrace_priv_proc_control(state, mstate) &&
4178 		    !dtrace_istoxic(kaddr, size)) {
4179 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4180 			dtrace_copyoutstr(kaddr, uaddr, size, flags);
4181 			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4182 		}
4183 		break;
4184 	}
4185 
4186 	case DIF_SUBR_STRLEN: {
4187 		size_t sz;
4188 		uintptr_t addr = (uintptr_t)tupregs[0].dttk_value;
4189 		sz = dtrace_strlen((char *)addr,
4190 		    state->dts_options[DTRACEOPT_STRSIZE]);
4191 
4192 		if (!dtrace_canload(addr, sz + 1, mstate, vstate)) {
4193 			regs[rd] = NULL;
4194 			break;
4195 		}
4196 
4197 		regs[rd] = sz;
4198 
4199 		break;
4200 	}
4201 
4202 	case DIF_SUBR_STRCHR:
4203 	case DIF_SUBR_STRRCHR: {
4204 		/*
4205 		 * We're going to iterate over the string looking for the
4206 		 * specified character.  We will iterate until we have reached
4207 		 * the string length or we have found the character.  If this
4208 		 * is DIF_SUBR_STRRCHR, we will look for the last occurrence
4209 		 * of the specified character instead of the first.
4210 		 */
4211 		uintptr_t saddr = tupregs[0].dttk_value;
4212 		uintptr_t addr = tupregs[0].dttk_value;
4213 		uintptr_t limit = addr + state->dts_options[DTRACEOPT_STRSIZE];
4214 		char c, target = (char)tupregs[1].dttk_value;
4215 
4216 		for (regs[rd] = NULL; addr < limit; addr++) {
4217 			if ((c = dtrace_load8(addr)) == target) {
4218 				regs[rd] = addr;
4219 
4220 				if (subr == DIF_SUBR_STRCHR)
4221 					break;
4222 			}
4223 
4224 			if (c == '\0')
4225 				break;
4226 		}
4227 
4228 		if (!dtrace_canload(saddr, addr - saddr, mstate, vstate)) {
4229 			regs[rd] = NULL;
4230 			break;
4231 		}
4232 
4233 		break;
4234 	}
4235 
4236 	case DIF_SUBR_STRSTR:
4237 	case DIF_SUBR_INDEX:
4238 	case DIF_SUBR_RINDEX: {
4239 		/*
4240 		 * We're going to iterate over the string looking for the
4241 		 * specified string.  We will iterate until we have reached
4242 		 * the string length or we have found the string.  (Yes, this
4243 		 * is done in the most naive way possible -- but considering
4244 		 * that the string we're searching for is likely to be
4245 		 * relatively short, the complexity of Rabin-Karp or similar
4246 		 * hardly seems merited.)
4247 		 */
4248 		char *addr = (char *)(uintptr_t)tupregs[0].dttk_value;
4249 		char *substr = (char *)(uintptr_t)tupregs[1].dttk_value;
4250 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4251 		size_t len = dtrace_strlen(addr, size);
4252 		size_t sublen = dtrace_strlen(substr, size);
4253 		char *limit = addr + len, *orig = addr;
4254 		int notfound = subr == DIF_SUBR_STRSTR ? 0 : -1;
4255 		int inc = 1;
4256 
4257 		regs[rd] = notfound;
4258 
4259 		if (!dtrace_canload((uintptr_t)addr, len + 1, mstate, vstate)) {
4260 			regs[rd] = NULL;
4261 			break;
4262 		}
4263 
4264 		if (!dtrace_canload((uintptr_t)substr, sublen + 1, mstate,
4265 		    vstate)) {
4266 			regs[rd] = NULL;
4267 			break;
4268 		}
4269 
4270 		/*
4271 		 * strstr() and index()/rindex() have similar semantics if
4272 		 * both strings are the empty string: strstr() returns a
4273 		 * pointer to the (empty) string, and index() and rindex()
4274 		 * both return index 0 (regardless of any position argument).
4275 		 */
4276 		if (sublen == 0 && len == 0) {
4277 			if (subr == DIF_SUBR_STRSTR)
4278 				regs[rd] = (uintptr_t)addr;
4279 			else
4280 				regs[rd] = 0;
4281 			break;
4282 		}
4283 
4284 		if (subr != DIF_SUBR_STRSTR) {
4285 			if (subr == DIF_SUBR_RINDEX) {
4286 				limit = orig - 1;
4287 				addr += len;
4288 				inc = -1;
4289 			}
4290 
4291 			/*
4292 			 * Both index() and rindex() take an optional position
4293 			 * argument that denotes the starting position.
4294 			 */
4295 			if (nargs == 3) {
4296 				int64_t pos = (int64_t)tupregs[2].dttk_value;
4297 
4298 				/*
4299 				 * If the position argument to index() is
4300 				 * negative, Perl implicitly clamps it at
4301 				 * zero.  This semantic is a little surprising
4302 				 * given the special meaning of negative
4303 				 * positions to similar Perl functions like
4304 				 * substr(), but it appears to reflect a
4305 				 * notion that index() can start from a
4306 				 * negative index and increment its way up to
4307 				 * the string.  Given this notion, Perl's
4308 				 * rindex() is at least self-consistent in
4309 				 * that it implicitly clamps positions greater
4310 				 * than the string length to be the string
4311 				 * length.  Where Perl completely loses
4312 				 * coherence, however, is when the specified
4313 				 * substring is the empty string ("").  In
4314 				 * this case, even if the position is
4315 				 * negative, rindex() returns 0 -- and even if
4316 				 * the position is greater than the length,
4317 				 * index() returns the string length.  These
4318 				 * semantics violate the notion that index()
4319 				 * should never return a value less than the
4320 				 * specified position and that rindex() should
4321 				 * never return a value greater than the
4322 				 * specified position.  (One assumes that
4323 				 * these semantics are artifacts of Perl's
4324 				 * implementation and not the results of
4325 				 * deliberate design -- it beggars belief that
4326 				 * even Larry Wall could desire such oddness.)
4327 				 * While in the abstract one would wish for
4328 				 * consistent position semantics across
4329 				 * substr(), index() and rindex() -- or at the
4330 				 * very least self-consistent position
4331 				 * semantics for index() and rindex() -- we
4332 				 * instead opt to keep with the extant Perl
4333 				 * semantics, in all their broken glory.  (Do
4334 				 * we have more desire to maintain Perl's
4335 				 * semantics than Perl does?  Probably.)
4336 				 */
4337 				if (subr == DIF_SUBR_RINDEX) {
4338 					if (pos < 0) {
4339 						if (sublen == 0)
4340 							regs[rd] = 0;
4341 						break;
4342 					}
4343 
4344 					if (pos > len)
4345 						pos = len;
4346 				} else {
4347 					if (pos < 0)
4348 						pos = 0;
4349 
4350 					if (pos >= len) {
4351 						if (sublen == 0)
4352 							regs[rd] = len;
4353 						break;
4354 					}
4355 				}
4356 
4357 				addr = orig + pos;
4358 			}
4359 		}
4360 
4361 		for (regs[rd] = notfound; addr != limit; addr += inc) {
4362 			if (dtrace_strncmp(addr, substr, sublen) == 0) {
4363 				if (subr != DIF_SUBR_STRSTR) {
4364 					/*
4365 					 * As D index() and rindex() are
4366 					 * modeled on Perl (and not on awk),
4367 					 * we return a zero-based (and not a
4368 					 * one-based) index.  (For you Perl
4369 					 * weenies: no, we're not going to add
4370 					 * $[ -- and shouldn't you be at a con
4371 					 * or something?)
4372 					 */
4373 					regs[rd] = (uintptr_t)(addr - orig);
4374 					break;
4375 				}
4376 
4377 				ASSERT(subr == DIF_SUBR_STRSTR);
4378 				regs[rd] = (uintptr_t)addr;
4379 				break;
4380 			}
4381 		}
4382 
4383 		break;
4384 	}
4385 
4386 	case DIF_SUBR_STRTOK: {
4387 		uintptr_t addr = tupregs[0].dttk_value;
4388 		uintptr_t tokaddr = tupregs[1].dttk_value;
4389 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4390 		uintptr_t limit, toklimit = tokaddr + size;
4391 		uint8_t c, tokmap[32];	 /* 256 / 8 */
4392 		char *dest = (char *)mstate->dtms_scratch_ptr;
4393 		int i;
4394 
4395 		/*
4396 		 * Check both the token buffer and (later) the input buffer,
4397 		 * since both could be non-scratch addresses.
4398 		 */
4399 		if (!dtrace_strcanload(tokaddr, size, mstate, vstate)) {
4400 			regs[rd] = NULL;
4401 			break;
4402 		}
4403 
4404 		if (!DTRACE_INSCRATCH(mstate, size)) {
4405 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4406 			regs[rd] = NULL;
4407 			break;
4408 		}
4409 
4410 		if (addr == NULL) {
4411 			/*
4412 			 * If the address specified is NULL, we use our saved
4413 			 * strtok pointer from the mstate.  Note that this
4414 			 * means that the saved strtok pointer is _only_
4415 			 * valid within multiple enablings of the same probe --
4416 			 * it behaves like an implicit clause-local variable.
4417 			 */
4418 			addr = mstate->dtms_strtok;
4419 		} else {
4420 			/*
4421 			 * If the user-specified address is non-NULL we must
4422 			 * access check it.  This is the only time we have
4423 			 * a chance to do so, since this address may reside
4424 			 * in the string table of this clause-- future calls
4425 			 * (when we fetch addr from mstate->dtms_strtok)
4426 			 * would fail this access check.
4427 			 */
4428 			if (!dtrace_strcanload(addr, size, mstate, vstate)) {
4429 				regs[rd] = NULL;
4430 				break;
4431 			}
4432 		}
4433 
4434 		/*
4435 		 * First, zero the token map, and then process the token
4436 		 * string -- setting a bit in the map for every character
4437 		 * found in the token string.
4438 		 */
4439 		for (i = 0; i < sizeof (tokmap); i++)
4440 			tokmap[i] = 0;
4441 
4442 		for (; tokaddr < toklimit; tokaddr++) {
4443 			if ((c = dtrace_load8(tokaddr)) == '\0')
4444 				break;
4445 
4446 			ASSERT((c >> 3) < sizeof (tokmap));
4447 			tokmap[c >> 3] |= (1 << (c & 0x7));
4448 		}
4449 
4450 		for (limit = addr + size; addr < limit; addr++) {
4451 			/*
4452 			 * We're looking for a character that is _not_ contained
4453 			 * in the token string.
4454 			 */
4455 			if ((c = dtrace_load8(addr)) == '\0')
4456 				break;
4457 
4458 			if (!(tokmap[c >> 3] & (1 << (c & 0x7))))
4459 				break;
4460 		}
4461 
4462 		if (c == '\0') {
4463 			/*
4464 			 * We reached the end of the string without finding
4465 			 * any character that was not in the token string.
4466 			 * We return NULL in this case, and we set the saved
4467 			 * address to NULL as well.
4468 			 */
4469 			regs[rd] = NULL;
4470 			mstate->dtms_strtok = NULL;
4471 			break;
4472 		}
4473 
4474 		/*
4475 		 * From here on, we're copying into the destination string.
4476 		 */
4477 		for (i = 0; addr < limit && i < size - 1; addr++) {
4478 			if ((c = dtrace_load8(addr)) == '\0')
4479 				break;
4480 
4481 			if (tokmap[c >> 3] & (1 << (c & 0x7)))
4482 				break;
4483 
4484 			ASSERT(i < size);
4485 			dest[i++] = c;
4486 		}
4487 
4488 		ASSERT(i < size);
4489 		dest[i] = '\0';
4490 		regs[rd] = (uintptr_t)dest;
4491 		mstate->dtms_scratch_ptr += size;
4492 		mstate->dtms_strtok = addr;
4493 		break;
4494 	}
4495 
4496 	case DIF_SUBR_SUBSTR: {
4497 		uintptr_t s = tupregs[0].dttk_value;
4498 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4499 		char *d = (char *)mstate->dtms_scratch_ptr;
4500 		int64_t index = (int64_t)tupregs[1].dttk_value;
4501 		int64_t remaining = (int64_t)tupregs[2].dttk_value;
4502 		size_t len = dtrace_strlen((char *)s, size);
4503 		int64_t i;
4504 
4505 		if (!dtrace_canload(s, len + 1, mstate, vstate)) {
4506 			regs[rd] = NULL;
4507 			break;
4508 		}
4509 
4510 		if (!DTRACE_INSCRATCH(mstate, size)) {
4511 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4512 			regs[rd] = NULL;
4513 			break;
4514 		}
4515 
4516 		if (nargs <= 2)
4517 			remaining = (int64_t)size;
4518 
4519 		if (index < 0) {
4520 			index += len;
4521 
4522 			if (index < 0 && index + remaining > 0) {
4523 				remaining += index;
4524 				index = 0;
4525 			}
4526 		}
4527 
4528 		if (index >= len || index < 0) {
4529 			remaining = 0;
4530 		} else if (remaining < 0) {
4531 			remaining += len - index;
4532 		} else if (index + remaining > size) {
4533 			remaining = size - index;
4534 		}
4535 
4536 		for (i = 0; i < remaining; i++) {
4537 			if ((d[i] = dtrace_load8(s + index + i)) == '\0')
4538 				break;
4539 		}
4540 
4541 		d[i] = '\0';
4542 
4543 		mstate->dtms_scratch_ptr += size;
4544 		regs[rd] = (uintptr_t)d;
4545 		break;
4546 	}
4547 
4548 	case DIF_SUBR_JSON: {
4549 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4550 		uintptr_t json = tupregs[0].dttk_value;
4551 		size_t jsonlen = dtrace_strlen((char *)json, size);
4552 		uintptr_t elem = tupregs[1].dttk_value;
4553 		size_t elemlen = dtrace_strlen((char *)elem, size);
4554 
4555 		char *dest = (char *)mstate->dtms_scratch_ptr;
4556 		char *elemlist = (char *)mstate->dtms_scratch_ptr + jsonlen + 1;
4557 		char *ee = elemlist;
4558 		int nelems = 1;
4559 		uintptr_t cur;
4560 
4561 		if (!dtrace_canload(json, jsonlen + 1, mstate, vstate) ||
4562 		    !dtrace_canload(elem, elemlen + 1, mstate, vstate)) {
4563 			regs[rd] = NULL;
4564 			break;
4565 		}
4566 
4567 		if (!DTRACE_INSCRATCH(mstate, jsonlen + 1 + elemlen + 1)) {
4568 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4569 			regs[rd] = NULL;
4570 			break;
4571 		}
4572 
4573 		/*
4574 		 * Read the element selector and split it up into a packed list
4575 		 * of strings.
4576 		 */
4577 		for (cur = elem; cur < elem + elemlen; cur++) {
4578 			char cc = dtrace_load8(cur);
4579 
4580 			if (cur == elem && cc == '[') {
4581 				/*
4582 				 * If the first element selector key is
4583 				 * actually an array index then ignore the
4584 				 * bracket.
4585 				 */
4586 				continue;
4587 			}
4588 
4589 			if (cc == ']')
4590 				continue;
4591 
4592 			if (cc == '.' || cc == '[') {
4593 				nelems++;
4594 				cc = '\0';
4595 			}
4596 
4597 			*ee++ = cc;
4598 		}
4599 		*ee++ = '\0';
4600 
4601 		if ((regs[rd] = (uintptr_t)dtrace_json(size, json, elemlist,
4602 		    nelems, dest)) != NULL)
4603 			mstate->dtms_scratch_ptr += jsonlen + 1;
4604 		break;
4605 	}
4606 
4607 	case DIF_SUBR_TOUPPER:
4608 	case DIF_SUBR_TOLOWER: {
4609 		uintptr_t s = tupregs[0].dttk_value;
4610 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4611 		char *dest = (char *)mstate->dtms_scratch_ptr, c;
4612 		size_t len = dtrace_strlen((char *)s, size);
4613 		char lower, upper, convert;
4614 		int64_t i;
4615 
4616 		if (subr == DIF_SUBR_TOUPPER) {
4617 			lower = 'a';
4618 			upper = 'z';
4619 			convert = 'A';
4620 		} else {
4621 			lower = 'A';
4622 			upper = 'Z';
4623 			convert = 'a';
4624 		}
4625 
4626 		if (!dtrace_canload(s, len + 1, mstate, vstate)) {
4627 			regs[rd] = NULL;
4628 			break;
4629 		}
4630 
4631 		if (!DTRACE_INSCRATCH(mstate, size)) {
4632 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4633 			regs[rd] = NULL;
4634 			break;
4635 		}
4636 
4637 		for (i = 0; i < size - 1; i++) {
4638 			if ((c = dtrace_load8(s + i)) == '\0')
4639 				break;
4640 
4641 			if (c >= lower && c <= upper)
4642 				c = convert + (c - lower);
4643 
4644 			dest[i] = c;
4645 		}
4646 
4647 		ASSERT(i < size);
4648 		dest[i] = '\0';
4649 		regs[rd] = (uintptr_t)dest;
4650 		mstate->dtms_scratch_ptr += size;
4651 		break;
4652 	}
4653 
4654 case DIF_SUBR_GETMAJOR:
4655 #ifdef _LP64
4656 		regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR64) & MAXMAJ64;
4657 #else
4658 		regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR) & MAXMAJ;
4659 #endif
4660 		break;
4661 
4662 	case DIF_SUBR_GETMINOR:
4663 #ifdef _LP64
4664 		regs[rd] = tupregs[0].dttk_value & MAXMIN64;
4665 #else
4666 		regs[rd] = tupregs[0].dttk_value & MAXMIN;
4667 #endif
4668 		break;
4669 
4670 	case DIF_SUBR_DDI_PATHNAME: {
4671 		/*
4672 		 * This one is a galactic mess.  We are going to roughly
4673 		 * emulate ddi_pathname(), but it's made more complicated
4674 		 * by the fact that we (a) want to include the minor name and
4675 		 * (b) must proceed iteratively instead of recursively.
4676 		 */
4677 		uintptr_t dest = mstate->dtms_scratch_ptr;
4678 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4679 		char *start = (char *)dest, *end = start + size - 1;
4680 		uintptr_t daddr = tupregs[0].dttk_value;
4681 		int64_t minor = (int64_t)tupregs[1].dttk_value;
4682 		char *s;
4683 		int i, len, depth = 0;
4684 
4685 		/*
4686 		 * Due to all the pointer jumping we do and context we must
4687 		 * rely upon, we just mandate that the user must have kernel
4688 		 * read privileges to use this routine.
4689 		 */
4690 		if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) == 0) {
4691 			*flags |= CPU_DTRACE_KPRIV;
4692 			*illval = daddr;
4693 			regs[rd] = NULL;
4694 		}
4695 
4696 		if (!DTRACE_INSCRATCH(mstate, size)) {
4697 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4698 			regs[rd] = NULL;
4699 			break;
4700 		}
4701 
4702 		*end = '\0';
4703 
4704 		/*
4705 		 * We want to have a name for the minor.  In order to do this,
4706 		 * we need to walk the minor list from the devinfo.  We want
4707 		 * to be sure that we don't infinitely walk a circular list,
4708 		 * so we check for circularity by sending a scout pointer
4709 		 * ahead two elements for every element that we iterate over;
4710 		 * if the list is circular, these will ultimately point to the
4711 		 * same element.  You may recognize this little trick as the
4712 		 * answer to a stupid interview question -- one that always
4713 		 * seems to be asked by those who had to have it laboriously
4714 		 * explained to them, and who can't even concisely describe
4715 		 * the conditions under which one would be forced to resort to
4716 		 * this technique.  Needless to say, those conditions are
4717 		 * found here -- and probably only here.  Is this the only use
4718 		 * of this infamous trick in shipping, production code?  If it
4719 		 * isn't, it probably should be...
4720 		 */
4721 		if (minor != -1) {
4722 			uintptr_t maddr = dtrace_loadptr(daddr +
4723 			    offsetof(struct dev_info, devi_minor));
4724 
4725 			uintptr_t next = offsetof(struct ddi_minor_data, next);
4726 			uintptr_t name = offsetof(struct ddi_minor_data,
4727 			    d_minor) + offsetof(struct ddi_minor, name);
4728 			uintptr_t dev = offsetof(struct ddi_minor_data,
4729 			    d_minor) + offsetof(struct ddi_minor, dev);
4730 			uintptr_t scout;
4731 
4732 			if (maddr != NULL)
4733 				scout = dtrace_loadptr(maddr + next);
4734 
4735 			while (maddr != NULL && !(*flags & CPU_DTRACE_FAULT)) {
4736 				uint64_t m;
4737 #ifdef _LP64
4738 				m = dtrace_load64(maddr + dev) & MAXMIN64;
4739 #else
4740 				m = dtrace_load32(maddr + dev) & MAXMIN;
4741 #endif
4742 				if (m != minor) {
4743 					maddr = dtrace_loadptr(maddr + next);
4744 
4745 					if (scout == NULL)
4746 						continue;
4747 
4748 					scout = dtrace_loadptr(scout + next);
4749 
4750 					if (scout == NULL)
4751 						continue;
4752 
4753 					scout = dtrace_loadptr(scout + next);
4754 
4755 					if (scout == NULL)
4756 						continue;
4757 
4758 					if (scout == maddr) {
4759 						*flags |= CPU_DTRACE_ILLOP;
4760 						break;
4761 					}
4762 
4763 					continue;
4764 				}
4765 
4766 				/*
4767 				 * We have the minor data.  Now we need to
4768 				 * copy the minor's name into the end of the
4769 				 * pathname.
4770 				 */
4771 				s = (char *)dtrace_loadptr(maddr + name);
4772 				len = dtrace_strlen(s, size);
4773 
4774 				if (*flags & CPU_DTRACE_FAULT)
4775 					break;
4776 
4777 				if (len != 0) {
4778 					if ((end -= (len + 1)) < start)
4779 						break;
4780 
4781 					*end = ':';
4782 				}
4783 
4784 				for (i = 1; i <= len; i++)
4785 					end[i] = dtrace_load8((uintptr_t)s++);
4786 				break;
4787 			}
4788 		}
4789 
4790 		while (daddr != NULL && !(*flags & CPU_DTRACE_FAULT)) {
4791 			ddi_node_state_t devi_state;
4792 
4793 			devi_state = dtrace_load32(daddr +
4794 			    offsetof(struct dev_info, devi_node_state));
4795 
4796 			if (*flags & CPU_DTRACE_FAULT)
4797 				break;
4798 
4799 			if (devi_state >= DS_INITIALIZED) {
4800 				s = (char *)dtrace_loadptr(daddr +
4801 				    offsetof(struct dev_info, devi_addr));
4802 				len = dtrace_strlen(s, size);
4803 
4804 				if (*flags & CPU_DTRACE_FAULT)
4805 					break;
4806 
4807 				if (len != 0) {
4808 					if ((end -= (len + 1)) < start)
4809 						break;
4810 
4811 					*end = '@';
4812 				}
4813 
4814 				for (i = 1; i <= len; i++)
4815 					end[i] = dtrace_load8((uintptr_t)s++);
4816 			}
4817 
4818 			/*
4819 			 * Now for the node name...
4820 			 */
4821 			s = (char *)dtrace_loadptr(daddr +
4822 			    offsetof(struct dev_info, devi_node_name));
4823 
4824 			daddr = dtrace_loadptr(daddr +
4825 			    offsetof(struct dev_info, devi_parent));
4826 
4827 			/*
4828 			 * If our parent is NULL (that is, if we're the root
4829 			 * node), we're going to use the special path
4830 			 * "devices".
4831 			 */
4832 			if (daddr == NULL)
4833 				s = "devices";
4834 
4835 			len = dtrace_strlen(s, size);
4836 			if (*flags & CPU_DTRACE_FAULT)
4837 				break;
4838 
4839 			if ((end -= (len + 1)) < start)
4840 				break;
4841 
4842 			for (i = 1; i <= len; i++)
4843 				end[i] = dtrace_load8((uintptr_t)s++);
4844 			*end = '/';
4845 
4846 			if (depth++ > dtrace_devdepth_max) {
4847 				*flags |= CPU_DTRACE_ILLOP;
4848 				break;
4849 			}
4850 		}
4851 
4852 		if (end < start)
4853 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4854 
4855 		if (daddr == NULL) {
4856 			regs[rd] = (uintptr_t)end;
4857 			mstate->dtms_scratch_ptr += size;
4858 		}
4859 
4860 		break;
4861 	}
4862 
4863 	case DIF_SUBR_STRJOIN: {
4864 		char *d = (char *)mstate->dtms_scratch_ptr;
4865 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4866 		uintptr_t s1 = tupregs[0].dttk_value;
4867 		uintptr_t s2 = tupregs[1].dttk_value;
4868 		int i = 0;
4869 
4870 		if (!dtrace_strcanload(s1, size, mstate, vstate) ||
4871 		    !dtrace_strcanload(s2, size, mstate, vstate)) {
4872 			regs[rd] = NULL;
4873 			break;
4874 		}
4875 
4876 		if (!DTRACE_INSCRATCH(mstate, size)) {
4877 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4878 			regs[rd] = NULL;
4879 			break;
4880 		}
4881 
4882 		for (;;) {
4883 			if (i >= size) {
4884 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4885 				regs[rd] = NULL;
4886 				break;
4887 			}
4888 
4889 			if ((d[i++] = dtrace_load8(s1++)) == '\0') {
4890 				i--;
4891 				break;
4892 			}
4893 		}
4894 
4895 		for (;;) {
4896 			if (i >= size) {
4897 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4898 				regs[rd] = NULL;
4899 				break;
4900 			}
4901 
4902 			if ((d[i++] = dtrace_load8(s2++)) == '\0')
4903 				break;
4904 		}
4905 
4906 		if (i < size) {
4907 			mstate->dtms_scratch_ptr += i;
4908 			regs[rd] = (uintptr_t)d;
4909 		}
4910 
4911 		break;
4912 	}
4913 
4914 	case DIF_SUBR_STRTOLL: {
4915 		uintptr_t s = tupregs[0].dttk_value;
4916 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4917 		int base = 10;
4918 
4919 		if (nargs > 1) {
4920 			if ((base = tupregs[1].dttk_value) <= 1 ||
4921 			    base > ('z' - 'a' + 1) + ('9' - '0' + 1)) {
4922 				*flags |= CPU_DTRACE_ILLOP;
4923 				break;
4924 			}
4925 		}
4926 
4927 		if (!dtrace_strcanload(s, size, mstate, vstate)) {
4928 			regs[rd] = INT64_MIN;
4929 			break;
4930 		}
4931 
4932 		regs[rd] = dtrace_strtoll((char *)s, base, size);
4933 		break;
4934 	}
4935 
4936 	case DIF_SUBR_LLTOSTR: {
4937 		int64_t i = (int64_t)tupregs[0].dttk_value;
4938 		uint64_t val, digit;
4939 		uint64_t size = 65;	/* enough room for 2^64 in binary */
4940 		char *end = (char *)mstate->dtms_scratch_ptr + size - 1;
4941 		int base = 10;
4942 
4943 		if (nargs > 1) {
4944 			if ((base = tupregs[1].dttk_value) <= 1 ||
4945 			    base > ('z' - 'a' + 1) + ('9' - '0' + 1)) {
4946 				*flags |= CPU_DTRACE_ILLOP;
4947 				break;
4948 			}
4949 		}
4950 
4951 		val = (base == 10 && i < 0) ? i * -1 : i;
4952 
4953 		if (!DTRACE_INSCRATCH(mstate, size)) {
4954 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4955 			regs[rd] = NULL;
4956 			break;
4957 		}
4958 
4959 		for (*end-- = '\0'; val; val /= base) {
4960 			if ((digit = val % base) <= '9' - '0') {
4961 				*end-- = '0' + digit;
4962 			} else {
4963 				*end-- = 'a' + (digit - ('9' - '0') - 1);
4964 			}
4965 		}
4966 
4967 		if (i == 0 && base == 16)
4968 			*end-- = '0';
4969 
4970 		if (base == 16)
4971 			*end-- = 'x';
4972 
4973 		if (i == 0 || base == 8 || base == 16)
4974 			*end-- = '0';
4975 
4976 		if (i < 0 && base == 10)
4977 			*end-- = '-';
4978 
4979 		regs[rd] = (uintptr_t)end + 1;
4980 		mstate->dtms_scratch_ptr += size;
4981 		break;
4982 	}
4983 
4984 	case DIF_SUBR_HTONS:
4985 	case DIF_SUBR_NTOHS:
4986 #ifdef _BIG_ENDIAN
4987 		regs[rd] = (uint16_t)tupregs[0].dttk_value;
4988 #else
4989 		regs[rd] = DT_BSWAP_16((uint16_t)tupregs[0].dttk_value);
4990 #endif
4991 		break;
4992 
4993 
4994 	case DIF_SUBR_HTONL:
4995 	case DIF_SUBR_NTOHL:
4996 #ifdef _BIG_ENDIAN
4997 		regs[rd] = (uint32_t)tupregs[0].dttk_value;
4998 #else
4999 		regs[rd] = DT_BSWAP_32((uint32_t)tupregs[0].dttk_value);
5000 #endif
5001 		break;
5002 
5003 
5004 	case DIF_SUBR_HTONLL:
5005 	case DIF_SUBR_NTOHLL:
5006 #ifdef _BIG_ENDIAN
5007 		regs[rd] = (uint64_t)tupregs[0].dttk_value;
5008 #else
5009 		regs[rd] = DT_BSWAP_64((uint64_t)tupregs[0].dttk_value);
5010 #endif
5011 		break;
5012 
5013 
5014 	case DIF_SUBR_DIRNAME:
5015 	case DIF_SUBR_BASENAME: {
5016 		char *dest = (char *)mstate->dtms_scratch_ptr;
5017 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
5018 		uintptr_t src = tupregs[0].dttk_value;
5019 		int i, j, len = dtrace_strlen((char *)src, size);
5020 		int lastbase = -1, firstbase = -1, lastdir = -1;
5021 		int start, end;
5022 
5023 		if (!dtrace_canload(src, len + 1, mstate, vstate)) {
5024 			regs[rd] = NULL;
5025 			break;
5026 		}
5027 
5028 		if (!DTRACE_INSCRATCH(mstate, size)) {
5029 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5030 			regs[rd] = NULL;
5031 			break;
5032 		}
5033 
5034 		/*
5035 		 * The basename and dirname for a zero-length string is
5036 		 * defined to be "."
5037 		 */
5038 		if (len == 0) {
5039 			len = 1;
5040 			src = (uintptr_t)".";
5041 		}
5042 
5043 		/*
5044 		 * Start from the back of the string, moving back toward the
5045 		 * front until we see a character that isn't a slash.  That
5046 		 * character is the last character in the basename.
5047 		 */
5048 		for (i = len - 1; i >= 0; i--) {
5049 			if (dtrace_load8(src + i) != '/')
5050 				break;
5051 		}
5052 
5053 		if (i >= 0)
5054 			lastbase = i;
5055 
5056 		/*
5057 		 * Starting from the last character in the basename, move
5058 		 * towards the front until we find a slash.  The character
5059 		 * that we processed immediately before that is the first
5060 		 * character in the basename.
5061 		 */
5062 		for (; i >= 0; i--) {
5063 			if (dtrace_load8(src + i) == '/')
5064 				break;
5065 		}
5066 
5067 		if (i >= 0)
5068 			firstbase = i + 1;
5069 
5070 		/*
5071 		 * Now keep going until we find a non-slash character.  That
5072 		 * character is the last character in the dirname.
5073 		 */
5074 		for (; i >= 0; i--) {
5075 			if (dtrace_load8(src + i) != '/')
5076 				break;
5077 		}
5078 
5079 		if (i >= 0)
5080 			lastdir = i;
5081 
5082 		ASSERT(!(lastbase == -1 && firstbase != -1));
5083 		ASSERT(!(firstbase == -1 && lastdir != -1));
5084 
5085 		if (lastbase == -1) {
5086 			/*
5087 			 * We didn't find a non-slash character.  We know that
5088 			 * the length is non-zero, so the whole string must be
5089 			 * slashes.  In either the dirname or the basename
5090 			 * case, we return '/'.
5091 			 */
5092 			ASSERT(firstbase == -1);
5093 			firstbase = lastbase = lastdir = 0;
5094 		}
5095 
5096 		if (firstbase == -1) {
5097 			/*
5098 			 * The entire string consists only of a basename
5099 			 * component.  If we're looking for dirname, we need
5100 			 * to change our string to be just "."; if we're
5101 			 * looking for a basename, we'll just set the first
5102 			 * character of the basename to be 0.
5103 			 */
5104 			if (subr == DIF_SUBR_DIRNAME) {
5105 				ASSERT(lastdir == -1);
5106 				src = (uintptr_t)".";
5107 				lastdir = 0;
5108 			} else {
5109 				firstbase = 0;
5110 			}
5111 		}
5112 
5113 		if (subr == DIF_SUBR_DIRNAME) {
5114 			if (lastdir == -1) {
5115 				/*
5116 				 * We know that we have a slash in the name --
5117 				 * or lastdir would be set to 0, above.  And
5118 				 * because lastdir is -1, we know that this
5119 				 * slash must be the first character.  (That
5120 				 * is, the full string must be of the form
5121 				 * "/basename".)  In this case, the last
5122 				 * character of the directory name is 0.
5123 				 */
5124 				lastdir = 0;
5125 			}
5126 
5127 			start = 0;
5128 			end = lastdir;
5129 		} else {
5130 			ASSERT(subr == DIF_SUBR_BASENAME);
5131 			ASSERT(firstbase != -1 && lastbase != -1);
5132 			start = firstbase;
5133 			end = lastbase;
5134 		}
5135 
5136 		for (i = start, j = 0; i <= end && j < size - 1; i++, j++)
5137 			dest[j] = dtrace_load8(src + i);
5138 
5139 		dest[j] = '\0';
5140 		regs[rd] = (uintptr_t)dest;
5141 		mstate->dtms_scratch_ptr += size;
5142 		break;
5143 	}
5144 
5145 	case DIF_SUBR_GETF: {
5146 		uintptr_t fd = tupregs[0].dttk_value;
5147 		uf_info_t *finfo = &curthread->t_procp->p_user.u_finfo;
5148 		file_t *fp;
5149 
5150 		if (!dtrace_priv_proc(state, mstate)) {
5151 			regs[rd] = NULL;
5152 			break;
5153 		}
5154 
5155 		/*
5156 		 * This is safe because fi_nfiles only increases, and the
5157 		 * fi_list array is not freed when the array size doubles.
5158 		 * (See the comment in flist_grow() for details on the
5159 		 * management of the u_finfo structure.)
5160 		 */
5161 		fp = fd < finfo->fi_nfiles ? finfo->fi_list[fd].uf_file : NULL;
5162 
5163 		mstate->dtms_getf = fp;
5164 		regs[rd] = (uintptr_t)fp;
5165 		break;
5166 	}
5167 
5168 	case DIF_SUBR_CLEANPATH: {
5169 		char *dest = (char *)mstate->dtms_scratch_ptr, c;
5170 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
5171 		uintptr_t src = tupregs[0].dttk_value;
5172 		int i = 0, j = 0;
5173 		zone_t *z;
5174 
5175 		if (!dtrace_strcanload(src, size, mstate, vstate)) {
5176 			regs[rd] = NULL;
5177 			break;
5178 		}
5179 
5180 		if (!DTRACE_INSCRATCH(mstate, size)) {
5181 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5182 			regs[rd] = NULL;
5183 			break;
5184 		}
5185 
5186 		/*
5187 		 * Move forward, loading each character.
5188 		 */
5189 		do {
5190 			c = dtrace_load8(src + i++);
5191 next:
5192 			if (j + 5 >= size)	/* 5 = strlen("/..c\0") */
5193 				break;
5194 
5195 			if (c != '/') {
5196 				dest[j++] = c;
5197 				continue;
5198 			}
5199 
5200 			c = dtrace_load8(src + i++);
5201 
5202 			if (c == '/') {
5203 				/*
5204 				 * We have two slashes -- we can just advance
5205 				 * to the next character.
5206 				 */
5207 				goto next;
5208 			}
5209 
5210 			if (c != '.') {
5211 				/*
5212 				 * This is not "." and it's not ".." -- we can
5213 				 * just store the "/" and this character and
5214 				 * drive on.
5215 				 */
5216 				dest[j++] = '/';
5217 				dest[j++] = c;
5218 				continue;
5219 			}
5220 
5221 			c = dtrace_load8(src + i++);
5222 
5223 			if (c == '/') {
5224 				/*
5225 				 * This is a "/./" component.  We're not going
5226 				 * to store anything in the destination buffer;
5227 				 * we're just going to go to the next component.
5228 				 */
5229 				goto next;
5230 			}
5231 
5232 			if (c != '.') {
5233 				/*
5234 				 * This is not ".." -- we can just store the
5235 				 * "/." and this character and continue
5236 				 * processing.
5237 				 */
5238 				dest[j++] = '/';
5239 				dest[j++] = '.';
5240 				dest[j++] = c;
5241 				continue;
5242 			}
5243 
5244 			c = dtrace_load8(src + i++);
5245 
5246 			if (c != '/' && c != '\0') {
5247 				/*
5248 				 * This is not ".." -- it's "..[mumble]".
5249 				 * We'll store the "/.." and this character
5250 				 * and continue processing.
5251 				 */
5252 				dest[j++] = '/';
5253 				dest[j++] = '.';
5254 				dest[j++] = '.';
5255 				dest[j++] = c;
5256 				continue;
5257 			}
5258 
5259 			/*
5260 			 * This is "/../" or "/..\0".  We need to back up
5261 			 * our destination pointer until we find a "/".
5262 			 */
5263 			i--;
5264 			while (j != 0 && dest[--j] != '/')
5265 				continue;
5266 
5267 			if (c == '\0')
5268 				dest[++j] = '/';
5269 		} while (c != '\0');
5270 
5271 		dest[j] = '\0';
5272 
5273 		if (mstate->dtms_getf != NULL &&
5274 		    !(mstate->dtms_access & DTRACE_ACCESS_KERNEL) &&
5275 		    (z = state->dts_cred.dcr_cred->cr_zone) != kcred->cr_zone) {
5276 			/*
5277 			 * If we've done a getf() as a part of this ECB and we
5278 			 * don't have kernel access (and we're not in the global
5279 			 * zone), check if the path we cleaned up begins with
5280 			 * the zone's root path, and trim it off if so.  Note
5281 			 * that this is an output cleanliness issue, not a
5282 			 * security issue: knowing one's zone root path does
5283 			 * not enable privilege escalation.
5284 			 */
5285 			if (strstr(dest, z->zone_rootpath) == dest)
5286 				dest += strlen(z->zone_rootpath) - 1;
5287 		}
5288 
5289 		regs[rd] = (uintptr_t)dest;
5290 		mstate->dtms_scratch_ptr += size;
5291 		break;
5292 	}
5293 
5294 	case DIF_SUBR_INET_NTOA:
5295 	case DIF_SUBR_INET_NTOA6:
5296 	case DIF_SUBR_INET_NTOP: {
5297 		size_t size;
5298 		int af, argi, i;
5299 		char *base, *end;
5300 
5301 		if (subr == DIF_SUBR_INET_NTOP) {
5302 			af = (int)tupregs[0].dttk_value;
5303 			argi = 1;
5304 		} else {
5305 			af = subr == DIF_SUBR_INET_NTOA ? AF_INET: AF_INET6;
5306 			argi = 0;
5307 		}
5308 
5309 		if (af == AF_INET) {
5310 			ipaddr_t ip4;
5311 			uint8_t *ptr8, val;
5312 
5313 			/*
5314 			 * Safely load the IPv4 address.
5315 			 */
5316 			ip4 = dtrace_load32(tupregs[argi].dttk_value);
5317 
5318 			/*
5319 			 * Check an IPv4 string will fit in scratch.
5320 			 */
5321 			size = INET_ADDRSTRLEN;
5322 			if (!DTRACE_INSCRATCH(mstate, size)) {
5323 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5324 				regs[rd] = NULL;
5325 				break;
5326 			}
5327 			base = (char *)mstate->dtms_scratch_ptr;
5328 			end = (char *)mstate->dtms_scratch_ptr + size - 1;
5329 
5330 			/*
5331 			 * Stringify as a dotted decimal quad.
5332 			 */
5333 			*end-- = '\0';
5334 			ptr8 = (uint8_t *)&ip4;
5335 			for (i = 3; i >= 0; i--) {
5336 				val = ptr8[i];
5337 
5338 				if (val == 0) {
5339 					*end-- = '0';
5340 				} else {
5341 					for (; val; val /= 10) {
5342 						*end-- = '0' + (val % 10);
5343 					}
5344 				}
5345 
5346 				if (i > 0)
5347 					*end-- = '.';
5348 			}
5349 			ASSERT(end + 1 >= base);
5350 
5351 		} else if (af == AF_INET6) {
5352 			struct in6_addr ip6;
5353 			int firstzero, tryzero, numzero, v6end;
5354 			uint16_t val;
5355 			const char digits[] = "0123456789abcdef";
5356 
5357 			/*
5358 			 * Stringify using RFC 1884 convention 2 - 16 bit
5359 			 * hexadecimal values with a zero-run compression.
5360 			 * Lower case hexadecimal digits are used.
5361 			 * 	eg, fe80::214:4fff:fe0b:76c8.
5362 			 * The IPv4 embedded form is returned for inet_ntop,
5363 			 * just the IPv4 string is returned for inet_ntoa6.
5364 			 */
5365 
5366 			/*
5367 			 * Safely load the IPv6 address.
5368 			 */
5369 			dtrace_bcopy(
5370 			    (void *)(uintptr_t)tupregs[argi].dttk_value,
5371 			    (void *)(uintptr_t)&ip6, sizeof (struct in6_addr));
5372 
5373 			/*
5374 			 * Check an IPv6 string will fit in scratch.
5375 			 */
5376 			size = INET6_ADDRSTRLEN;
5377 			if (!DTRACE_INSCRATCH(mstate, size)) {
5378 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5379 				regs[rd] = NULL;
5380 				break;
5381 			}
5382 			base = (char *)mstate->dtms_scratch_ptr;
5383 			end = (char *)mstate->dtms_scratch_ptr + size - 1;
5384 			*end-- = '\0';
5385 
5386 			/*
5387 			 * Find the longest run of 16 bit zero values
5388 			 * for the single allowed zero compression - "::".
5389 			 */
5390 			firstzero = -1;
5391 			tryzero = -1;
5392 			numzero = 1;
5393 			for (i = 0; i < sizeof (struct in6_addr); i++) {
5394 				if (ip6._S6_un._S6_u8[i] == 0 &&
5395 				    tryzero == -1 && i % 2 == 0) {
5396 					tryzero = i;
5397 					continue;
5398 				}
5399 
5400 				if (tryzero != -1 &&
5401 				    (ip6._S6_un._S6_u8[i] != 0 ||
5402 				    i == sizeof (struct in6_addr) - 1)) {
5403 
5404 					if (i - tryzero <= numzero) {
5405 						tryzero = -1;
5406 						continue;
5407 					}
5408 
5409 					firstzero = tryzero;
5410 					numzero = i - i % 2 - tryzero;
5411 					tryzero = -1;
5412 
5413 					if (ip6._S6_un._S6_u8[i] == 0 &&
5414 					    i == sizeof (struct in6_addr) - 1)
5415 						numzero += 2;
5416 				}
5417 			}
5418 			ASSERT(firstzero + numzero <= sizeof (struct in6_addr));
5419 
5420 			/*
5421 			 * Check for an IPv4 embedded address.
5422 			 */
5423 			v6end = sizeof (struct in6_addr) - 2;
5424 			if (IN6_IS_ADDR_V4MAPPED(&ip6) ||
5425 			    IN6_IS_ADDR_V4COMPAT(&ip6)) {
5426 				for (i = sizeof (struct in6_addr) - 1;
5427 				    i >= DTRACE_V4MAPPED_OFFSET; i--) {
5428 					ASSERT(end >= base);
5429 
5430 					val = ip6._S6_un._S6_u8[i];
5431 
5432 					if (val == 0) {
5433 						*end-- = '0';
5434 					} else {
5435 						for (; val; val /= 10) {
5436 							*end-- = '0' + val % 10;
5437 						}
5438 					}
5439 
5440 					if (i > DTRACE_V4MAPPED_OFFSET)
5441 						*end-- = '.';
5442 				}
5443 
5444 				if (subr == DIF_SUBR_INET_NTOA6)
5445 					goto inetout;
5446 
5447 				/*
5448 				 * Set v6end to skip the IPv4 address that
5449 				 * we have already stringified.
5450 				 */
5451 				v6end = 10;
5452 			}
5453 
5454 			/*
5455 			 * Build the IPv6 string by working through the
5456 			 * address in reverse.
5457 			 */
5458 			for (i = v6end; i >= 0; i -= 2) {
5459 				ASSERT(end >= base);
5460 
5461 				if (i == firstzero + numzero - 2) {
5462 					*end-- = ':';
5463 					*end-- = ':';
5464 					i -= numzero - 2;
5465 					continue;
5466 				}
5467 
5468 				if (i < 14 && i != firstzero - 2)
5469 					*end-- = ':';
5470 
5471 				val = (ip6._S6_un._S6_u8[i] << 8) +
5472 				    ip6._S6_un._S6_u8[i + 1];
5473 
5474 				if (val == 0) {
5475 					*end-- = '0';
5476 				} else {
5477 					for (; val; val /= 16) {
5478 						*end-- = digits[val % 16];
5479 					}
5480 				}
5481 			}
5482 			ASSERT(end + 1 >= base);
5483 
5484 		} else {
5485 			/*
5486 			 * The user didn't use AH_INET or AH_INET6.
5487 			 */
5488 			DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
5489 			regs[rd] = NULL;
5490 			break;
5491 		}
5492 
5493 inetout:	regs[rd] = (uintptr_t)end + 1;
5494 		mstate->dtms_scratch_ptr += size;
5495 		break;
5496 	}
5497 
5498 	}
5499 }
5500 
5501 /*
5502  * Emulate the execution of DTrace IR instructions specified by the given
5503  * DIF object.  This function is deliberately void of assertions as all of
5504  * the necessary checks are handled by a call to dtrace_difo_validate().
5505  */
5506 static uint64_t
5507 dtrace_dif_emulate(dtrace_difo_t *difo, dtrace_mstate_t *mstate,
5508     dtrace_vstate_t *vstate, dtrace_state_t *state)
5509 {
5510 	const dif_instr_t *text = difo->dtdo_buf;
5511 	const uint_t textlen = difo->dtdo_len;
5512 	const char *strtab = difo->dtdo_strtab;
5513 	const uint64_t *inttab = difo->dtdo_inttab;
5514 
5515 	uint64_t rval = 0;
5516 	dtrace_statvar_t *svar;
5517 	dtrace_dstate_t *dstate = &vstate->dtvs_dynvars;
5518 	dtrace_difv_t *v;
5519 	volatile uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
5520 	volatile uintptr_t *illval = &cpu_core[CPU->cpu_id].cpuc_dtrace_illval;
5521 
5522 	dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */
5523 	uint64_t regs[DIF_DIR_NREGS];
5524 	uint64_t *tmp;
5525 
5526 	uint8_t cc_n = 0, cc_z = 0, cc_v = 0, cc_c = 0;
5527 	int64_t cc_r;
5528 	uint_t pc = 0, id, opc;
5529 	uint8_t ttop = 0;
5530 	dif_instr_t instr;
5531 	uint_t r1, r2, rd;
5532 
5533 	/*
5534 	 * We stash the current DIF object into the machine state: we need it
5535 	 * for subsequent access checking.
5536 	 */
5537 	mstate->dtms_difo = difo;
5538 
5539 	regs[DIF_REG_R0] = 0; 		/* %r0 is fixed at zero */
5540 
5541 	while (pc < textlen && !(*flags & CPU_DTRACE_FAULT)) {
5542 		opc = pc;
5543 
5544 		instr = text[pc++];
5545 		r1 = DIF_INSTR_R1(instr);
5546 		r2 = DIF_INSTR_R2(instr);
5547 		rd = DIF_INSTR_RD(instr);
5548 
5549 		switch (DIF_INSTR_OP(instr)) {
5550 		case DIF_OP_OR:
5551 			regs[rd] = regs[r1] | regs[r2];
5552 			break;
5553 		case DIF_OP_XOR:
5554 			regs[rd] = regs[r1] ^ regs[r2];
5555 			break;
5556 		case DIF_OP_AND:
5557 			regs[rd] = regs[r1] & regs[r2];
5558 			break;
5559 		case DIF_OP_SLL:
5560 			regs[rd] = regs[r1] << regs[r2];
5561 			break;
5562 		case DIF_OP_SRL:
5563 			regs[rd] = regs[r1] >> regs[r2];
5564 			break;
5565 		case DIF_OP_SUB:
5566 			regs[rd] = regs[r1] - regs[r2];
5567 			break;
5568 		case DIF_OP_ADD:
5569 			regs[rd] = regs[r1] + regs[r2];
5570 			break;
5571 		case DIF_OP_MUL:
5572 			regs[rd] = regs[r1] * regs[r2];
5573 			break;
5574 		case DIF_OP_SDIV:
5575 			if (regs[r2] == 0) {
5576 				regs[rd] = 0;
5577 				*flags |= CPU_DTRACE_DIVZERO;
5578 			} else {
5579 				regs[rd] = (int64_t)regs[r1] /
5580 				    (int64_t)regs[r2];
5581 			}
5582 			break;
5583 
5584 		case DIF_OP_UDIV:
5585 			if (regs[r2] == 0) {
5586 				regs[rd] = 0;
5587 				*flags |= CPU_DTRACE_DIVZERO;
5588 			} else {
5589 				regs[rd] = regs[r1] / regs[r2];
5590 			}
5591 			break;
5592 
5593 		case DIF_OP_SREM:
5594 			if (regs[r2] == 0) {
5595 				regs[rd] = 0;
5596 				*flags |= CPU_DTRACE_DIVZERO;
5597 			} else {
5598 				regs[rd] = (int64_t)regs[r1] %
5599 				    (int64_t)regs[r2];
5600 			}
5601 			break;
5602 
5603 		case DIF_OP_UREM:
5604 			if (regs[r2] == 0) {
5605 				regs[rd] = 0;
5606 				*flags |= CPU_DTRACE_DIVZERO;
5607 			} else {
5608 				regs[rd] = regs[r1] % regs[r2];
5609 			}
5610 			break;
5611 
5612 		case DIF_OP_NOT:
5613 			regs[rd] = ~regs[r1];
5614 			break;
5615 		case DIF_OP_MOV:
5616 			regs[rd] = regs[r1];
5617 			break;
5618 		case DIF_OP_CMP:
5619 			cc_r = regs[r1] - regs[r2];
5620 			cc_n = cc_r < 0;
5621 			cc_z = cc_r == 0;
5622 			cc_v = 0;
5623 			cc_c = regs[r1] < regs[r2];
5624 			break;
5625 		case DIF_OP_TST:
5626 			cc_n = cc_v = cc_c = 0;
5627 			cc_z = regs[r1] == 0;
5628 			break;
5629 		case DIF_OP_BA:
5630 			pc = DIF_INSTR_LABEL(instr);
5631 			break;
5632 		case DIF_OP_BE:
5633 			if (cc_z)
5634 				pc = DIF_INSTR_LABEL(instr);
5635 			break;
5636 		case DIF_OP_BNE:
5637 			if (cc_z == 0)
5638 				pc = DIF_INSTR_LABEL(instr);
5639 			break;
5640 		case DIF_OP_BG:
5641 			if ((cc_z | (cc_n ^ cc_v)) == 0)
5642 				pc = DIF_INSTR_LABEL(instr);
5643 			break;
5644 		case DIF_OP_BGU:
5645 			if ((cc_c | cc_z) == 0)
5646 				pc = DIF_INSTR_LABEL(instr);
5647 			break;
5648 		case DIF_OP_BGE:
5649 			if ((cc_n ^ cc_v) == 0)
5650 				pc = DIF_INSTR_LABEL(instr);
5651 			break;
5652 		case DIF_OP_BGEU:
5653 			if (cc_c == 0)
5654 				pc = DIF_INSTR_LABEL(instr);
5655 			break;
5656 		case DIF_OP_BL:
5657 			if (cc_n ^ cc_v)
5658 				pc = DIF_INSTR_LABEL(instr);
5659 			break;
5660 		case DIF_OP_BLU:
5661 			if (cc_c)
5662 				pc = DIF_INSTR_LABEL(instr);
5663 			break;
5664 		case DIF_OP_BLE:
5665 			if (cc_z | (cc_n ^ cc_v))
5666 				pc = DIF_INSTR_LABEL(instr);
5667 			break;
5668 		case DIF_OP_BLEU:
5669 			if (cc_c | cc_z)
5670 				pc = DIF_INSTR_LABEL(instr);
5671 			break;
5672 		case DIF_OP_RLDSB:
5673 			if (!dtrace_canload(regs[r1], 1, mstate, vstate))
5674 				break;
5675 			/*FALLTHROUGH*/
5676 		case DIF_OP_LDSB:
5677 			regs[rd] = (int8_t)dtrace_load8(regs[r1]);
5678 			break;
5679 		case DIF_OP_RLDSH:
5680 			if (!dtrace_canload(regs[r1], 2, mstate, vstate))
5681 				break;
5682 			/*FALLTHROUGH*/
5683 		case DIF_OP_LDSH:
5684 			regs[rd] = (int16_t)dtrace_load16(regs[r1]);
5685 			break;
5686 		case DIF_OP_RLDSW:
5687 			if (!dtrace_canload(regs[r1], 4, mstate, vstate))
5688 				break;
5689 			/*FALLTHROUGH*/
5690 		case DIF_OP_LDSW:
5691 			regs[rd] = (int32_t)dtrace_load32(regs[r1]);
5692 			break;
5693 		case DIF_OP_RLDUB:
5694 			if (!dtrace_canload(regs[r1], 1, mstate, vstate))
5695 				break;
5696 			/*FALLTHROUGH*/
5697 		case DIF_OP_LDUB:
5698 			regs[rd] = dtrace_load8(regs[r1]);
5699 			break;
5700 		case DIF_OP_RLDUH:
5701 			if (!dtrace_canload(regs[r1], 2, mstate, vstate))
5702 				break;
5703 			/*FALLTHROUGH*/
5704 		case DIF_OP_LDUH:
5705 			regs[rd] = dtrace_load16(regs[r1]);
5706 			break;
5707 		case DIF_OP_RLDUW:
5708 			if (!dtrace_canload(regs[r1], 4, mstate, vstate))
5709 				break;
5710 			/*FALLTHROUGH*/
5711 		case DIF_OP_LDUW:
5712 			regs[rd] = dtrace_load32(regs[r1]);
5713 			break;
5714 		case DIF_OP_RLDX:
5715 			if (!dtrace_canload(regs[r1], 8, mstate, vstate))
5716 				break;
5717 			/*FALLTHROUGH*/
5718 		case DIF_OP_LDX:
5719 			regs[rd] = dtrace_load64(regs[r1]);
5720 			break;
5721 		case DIF_OP_ULDSB:
5722 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
5723 			regs[rd] = (int8_t)
5724 			    dtrace_fuword8((void *)(uintptr_t)regs[r1]);
5725 			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
5726 			break;
5727 		case DIF_OP_ULDSH:
5728 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
5729 			regs[rd] = (int16_t)
5730 			    dtrace_fuword16((void *)(uintptr_t)regs[r1]);
5731 			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
5732 			break;
5733 		case DIF_OP_ULDSW:
5734 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
5735 			regs[rd] = (int32_t)
5736 			    dtrace_fuword32((void *)(uintptr_t)regs[r1]);
5737 			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
5738 			break;
5739 		case DIF_OP_ULDUB:
5740 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
5741 			regs[rd] =
5742 			    dtrace_fuword8((void *)(uintptr_t)regs[r1]);
5743 			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
5744 			break;
5745 		case DIF_OP_ULDUH:
5746 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
5747 			regs[rd] =
5748 			    dtrace_fuword16((void *)(uintptr_t)regs[r1]);
5749 			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
5750 			break;
5751 		case DIF_OP_ULDUW:
5752 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
5753 			regs[rd] =
5754 			    dtrace_fuword32((void *)(uintptr_t)regs[r1]);
5755 			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
5756 			break;
5757 		case DIF_OP_ULDX:
5758 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
5759 			regs[rd] =
5760 			    dtrace_fuword64((void *)(uintptr_t)regs[r1]);
5761 			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
5762 			break;
5763 		case DIF_OP_RET:
5764 			rval = regs[rd];
5765 			pc = textlen;
5766 			break;
5767 		case DIF_OP_NOP:
5768 			break;
5769 		case DIF_OP_SETX:
5770 			regs[rd] = inttab[DIF_INSTR_INTEGER(instr)];
5771 			break;
5772 		case DIF_OP_SETS:
5773 			regs[rd] = (uint64_t)(uintptr_t)
5774 			    (strtab + DIF_INSTR_STRING(instr));
5775 			break;
5776 		case DIF_OP_SCMP: {
5777 			size_t sz = state->dts_options[DTRACEOPT_STRSIZE];
5778 			uintptr_t s1 = regs[r1];
5779 			uintptr_t s2 = regs[r2];
5780 
5781 			if (s1 != NULL &&
5782 			    !dtrace_strcanload(s1, sz, mstate, vstate))
5783 				break;
5784 			if (s2 != NULL &&
5785 			    !dtrace_strcanload(s2, sz, mstate, vstate))
5786 				break;
5787 
5788 			cc_r = dtrace_strncmp((char *)s1, (char *)s2, sz);
5789 
5790 			cc_n = cc_r < 0;
5791 			cc_z = cc_r == 0;
5792 			cc_v = cc_c = 0;
5793 			break;
5794 		}
5795 		case DIF_OP_LDGA:
5796 			regs[rd] = dtrace_dif_variable(mstate, state,
5797 			    r1, regs[r2]);
5798 			break;
5799 		case DIF_OP_LDGS:
5800 			id = DIF_INSTR_VAR(instr);
5801 
5802 			if (id >= DIF_VAR_OTHER_UBASE) {
5803 				uintptr_t a;
5804 
5805 				id -= DIF_VAR_OTHER_UBASE;
5806 				svar = vstate->dtvs_globals[id];
5807 				ASSERT(svar != NULL);
5808 				v = &svar->dtsv_var;
5809 
5810 				if (!(v->dtdv_type.dtdt_flags & DIF_TF_BYREF)) {
5811 					regs[rd] = svar->dtsv_data;
5812 					break;
5813 				}
5814 
5815 				a = (uintptr_t)svar->dtsv_data;
5816 
5817 				if (*(uint8_t *)a == UINT8_MAX) {
5818 					/*
5819 					 * If the 0th byte is set to UINT8_MAX
5820 					 * then this is to be treated as a
5821 					 * reference to a NULL variable.
5822 					 */
5823 					regs[rd] = NULL;
5824 				} else {
5825 					regs[rd] = a + sizeof (uint64_t);
5826 				}
5827 
5828 				break;
5829 			}
5830 
5831 			regs[rd] = dtrace_dif_variable(mstate, state, id, 0);
5832 			break;
5833 
5834 		case DIF_OP_STGS:
5835 			id = DIF_INSTR_VAR(instr);
5836 
5837 			ASSERT(id >= DIF_VAR_OTHER_UBASE);
5838 			id -= DIF_VAR_OTHER_UBASE;
5839 
5840 			svar = vstate->dtvs_globals[id];
5841 			ASSERT(svar != NULL);
5842 			v = &svar->dtsv_var;
5843 
5844 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5845 				uintptr_t a = (uintptr_t)svar->dtsv_data;
5846 
5847 				ASSERT(a != NULL);
5848 				ASSERT(svar->dtsv_size != 0);
5849 
5850 				if (regs[rd] == NULL) {
5851 					*(uint8_t *)a = UINT8_MAX;
5852 					break;
5853 				} else {
5854 					*(uint8_t *)a = 0;
5855 					a += sizeof (uint64_t);
5856 				}
5857 				if (!dtrace_vcanload(
5858 				    (void *)(uintptr_t)regs[rd], &v->dtdv_type,
5859 				    mstate, vstate))
5860 					break;
5861 
5862 				dtrace_vcopy((void *)(uintptr_t)regs[rd],
5863 				    (void *)a, &v->dtdv_type);
5864 				break;
5865 			}
5866 
5867 			svar->dtsv_data = regs[rd];
5868 			break;
5869 
5870 		case DIF_OP_LDTA:
5871 			/*
5872 			 * There are no DTrace built-in thread-local arrays at
5873 			 * present.  This opcode is saved for future work.
5874 			 */
5875 			*flags |= CPU_DTRACE_ILLOP;
5876 			regs[rd] = 0;
5877 			break;
5878 
5879 		case DIF_OP_LDLS:
5880 			id = DIF_INSTR_VAR(instr);
5881 
5882 			if (id < DIF_VAR_OTHER_UBASE) {
5883 				/*
5884 				 * For now, this has no meaning.
5885 				 */
5886 				regs[rd] = 0;
5887 				break;
5888 			}
5889 
5890 			id -= DIF_VAR_OTHER_UBASE;
5891 
5892 			ASSERT(id < vstate->dtvs_nlocals);
5893 			ASSERT(vstate->dtvs_locals != NULL);
5894 
5895 			svar = vstate->dtvs_locals[id];
5896 			ASSERT(svar != NULL);
5897 			v = &svar->dtsv_var;
5898 
5899 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5900 				uintptr_t a = (uintptr_t)svar->dtsv_data;
5901 				size_t sz = v->dtdv_type.dtdt_size;
5902 
5903 				sz += sizeof (uint64_t);
5904 				ASSERT(svar->dtsv_size == NCPU * sz);
5905 				a += CPU->cpu_id * sz;
5906 
5907 				if (*(uint8_t *)a == UINT8_MAX) {
5908 					/*
5909 					 * If the 0th byte is set to UINT8_MAX
5910 					 * then this is to be treated as a
5911 					 * reference to a NULL variable.
5912 					 */
5913 					regs[rd] = NULL;
5914 				} else {
5915 					regs[rd] = a + sizeof (uint64_t);
5916 				}
5917 
5918 				break;
5919 			}
5920 
5921 			ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t));
5922 			tmp = (uint64_t *)(uintptr_t)svar->dtsv_data;
5923 			regs[rd] = tmp[CPU->cpu_id];
5924 			break;
5925 
5926 		case DIF_OP_STLS:
5927 			id = DIF_INSTR_VAR(instr);
5928 
5929 			ASSERT(id >= DIF_VAR_OTHER_UBASE);
5930 			id -= DIF_VAR_OTHER_UBASE;
5931 			ASSERT(id < vstate->dtvs_nlocals);
5932 
5933 			ASSERT(vstate->dtvs_locals != NULL);
5934 			svar = vstate->dtvs_locals[id];
5935 			ASSERT(svar != NULL);
5936 			v = &svar->dtsv_var;
5937 
5938 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5939 				uintptr_t a = (uintptr_t)svar->dtsv_data;
5940 				size_t sz = v->dtdv_type.dtdt_size;
5941 
5942 				sz += sizeof (uint64_t);
5943 				ASSERT(svar->dtsv_size == NCPU * sz);
5944 				a += CPU->cpu_id * sz;
5945 
5946 				if (regs[rd] == NULL) {
5947 					*(uint8_t *)a = UINT8_MAX;
5948 					break;
5949 				} else {
5950 					*(uint8_t *)a = 0;
5951 					a += sizeof (uint64_t);
5952 				}
5953 
5954 				if (!dtrace_vcanload(
5955 				    (void *)(uintptr_t)regs[rd], &v->dtdv_type,
5956 				    mstate, vstate))
5957 					break;
5958 
5959 				dtrace_vcopy((void *)(uintptr_t)regs[rd],
5960 				    (void *)a, &v->dtdv_type);
5961 				break;
5962 			}
5963 
5964 			ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t));
5965 			tmp = (uint64_t *)(uintptr_t)svar->dtsv_data;
5966 			tmp[CPU->cpu_id] = regs[rd];
5967 			break;
5968 
5969 		case DIF_OP_LDTS: {
5970 			dtrace_dynvar_t *dvar;
5971 			dtrace_key_t *key;
5972 
5973 			id = DIF_INSTR_VAR(instr);
5974 			ASSERT(id >= DIF_VAR_OTHER_UBASE);
5975 			id -= DIF_VAR_OTHER_UBASE;
5976 			v = &vstate->dtvs_tlocals[id];
5977 
5978 			key = &tupregs[DIF_DTR_NREGS];
5979 			key[0].dttk_value = (uint64_t)id;
5980 			key[0].dttk_size = 0;
5981 			DTRACE_TLS_THRKEY(key[1].dttk_value);
5982 			key[1].dttk_size = 0;
5983 
5984 			dvar = dtrace_dynvar(dstate, 2, key,
5985 			    sizeof (uint64_t), DTRACE_DYNVAR_NOALLOC,
5986 			    mstate, vstate);
5987 
5988 			if (dvar == NULL) {
5989 				regs[rd] = 0;
5990 				break;
5991 			}
5992 
5993 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5994 				regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data;
5995 			} else {
5996 				regs[rd] = *((uint64_t *)dvar->dtdv_data);
5997 			}
5998 
5999 			break;
6000 		}
6001 
6002 		case DIF_OP_STTS: {
6003 			dtrace_dynvar_t *dvar;
6004 			dtrace_key_t *key;
6005 
6006 			id = DIF_INSTR_VAR(instr);
6007 			ASSERT(id >= DIF_VAR_OTHER_UBASE);
6008 			id -= DIF_VAR_OTHER_UBASE;
6009 
6010 			key = &tupregs[DIF_DTR_NREGS];
6011 			key[0].dttk_value = (uint64_t)id;
6012 			key[0].dttk_size = 0;
6013 			DTRACE_TLS_THRKEY(key[1].dttk_value);
6014 			key[1].dttk_size = 0;
6015 			v = &vstate->dtvs_tlocals[id];
6016 
6017 			dvar = dtrace_dynvar(dstate, 2, key,
6018 			    v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
6019 			    v->dtdv_type.dtdt_size : sizeof (uint64_t),
6020 			    regs[rd] ? DTRACE_DYNVAR_ALLOC :
6021 			    DTRACE_DYNVAR_DEALLOC, mstate, vstate);
6022 
6023 			/*
6024 			 * Given that we're storing to thread-local data,
6025 			 * we need to flush our predicate cache.
6026 			 */
6027 			curthread->t_predcache = NULL;
6028 
6029 			if (dvar == NULL)
6030 				break;
6031 
6032 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
6033 				if (!dtrace_vcanload(
6034 				    (void *)(uintptr_t)regs[rd],
6035 				    &v->dtdv_type, mstate, vstate))
6036 					break;
6037 
6038 				dtrace_vcopy((void *)(uintptr_t)regs[rd],
6039 				    dvar->dtdv_data, &v->dtdv_type);
6040 			} else {
6041 				*((uint64_t *)dvar->dtdv_data) = regs[rd];
6042 			}
6043 
6044 			break;
6045 		}
6046 
6047 		case DIF_OP_SRA:
6048 			regs[rd] = (int64_t)regs[r1] >> regs[r2];
6049 			break;
6050 
6051 		case DIF_OP_CALL:
6052 			dtrace_dif_subr(DIF_INSTR_SUBR(instr), rd,
6053 			    regs, tupregs, ttop, mstate, state);
6054 			break;
6055 
6056 		case DIF_OP_PUSHTR:
6057 			if (ttop == DIF_DTR_NREGS) {
6058 				*flags |= CPU_DTRACE_TUPOFLOW;
6059 				break;
6060 			}
6061 
6062 			if (r1 == DIF_TYPE_STRING) {
6063 				/*
6064 				 * If this is a string type and the size is 0,
6065 				 * we'll use the system-wide default string
6066 				 * size.  Note that we are _not_ looking at
6067 				 * the value of the DTRACEOPT_STRSIZE option;
6068 				 * had this been set, we would expect to have
6069 				 * a non-zero size value in the "pushtr".
6070 				 */
6071 				tupregs[ttop].dttk_size =
6072 				    dtrace_strlen((char *)(uintptr_t)regs[rd],
6073 				    regs[r2] ? regs[r2] :
6074 				    dtrace_strsize_default) + 1;
6075 			} else {
6076 				tupregs[ttop].dttk_size = regs[r2];
6077 			}
6078 
6079 			tupregs[ttop++].dttk_value = regs[rd];
6080 			break;
6081 
6082 		case DIF_OP_PUSHTV:
6083 			if (ttop == DIF_DTR_NREGS) {
6084 				*flags |= CPU_DTRACE_TUPOFLOW;
6085 				break;
6086 			}
6087 
6088 			tupregs[ttop].dttk_value = regs[rd];
6089 			tupregs[ttop++].dttk_size = 0;
6090 			break;
6091 
6092 		case DIF_OP_POPTS:
6093 			if (ttop != 0)
6094 				ttop--;
6095 			break;
6096 
6097 		case DIF_OP_FLUSHTS:
6098 			ttop = 0;
6099 			break;
6100 
6101 		case DIF_OP_LDGAA:
6102 		case DIF_OP_LDTAA: {
6103 			dtrace_dynvar_t *dvar;
6104 			dtrace_key_t *key = tupregs;
6105 			uint_t nkeys = ttop;
6106 
6107 			id = DIF_INSTR_VAR(instr);
6108 			ASSERT(id >= DIF_VAR_OTHER_UBASE);
6109 			id -= DIF_VAR_OTHER_UBASE;
6110 
6111 			key[nkeys].dttk_value = (uint64_t)id;
6112 			key[nkeys++].dttk_size = 0;
6113 
6114 			if (DIF_INSTR_OP(instr) == DIF_OP_LDTAA) {
6115 				DTRACE_TLS_THRKEY(key[nkeys].dttk_value);
6116 				key[nkeys++].dttk_size = 0;
6117 				v = &vstate->dtvs_tlocals[id];
6118 			} else {
6119 				v = &vstate->dtvs_globals[id]->dtsv_var;
6120 			}
6121 
6122 			dvar = dtrace_dynvar(dstate, nkeys, key,
6123 			    v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
6124 			    v->dtdv_type.dtdt_size : sizeof (uint64_t),
6125 			    DTRACE_DYNVAR_NOALLOC, mstate, vstate);
6126 
6127 			if (dvar == NULL) {
6128 				regs[rd] = 0;
6129 				break;
6130 			}
6131 
6132 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
6133 				regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data;
6134 			} else {
6135 				regs[rd] = *((uint64_t *)dvar->dtdv_data);
6136 			}
6137 
6138 			break;
6139 		}
6140 
6141 		case DIF_OP_STGAA:
6142 		case DIF_OP_STTAA: {
6143 			dtrace_dynvar_t *dvar;
6144 			dtrace_key_t *key = tupregs;
6145 			uint_t nkeys = ttop;
6146 
6147 			id = DIF_INSTR_VAR(instr);
6148 			ASSERT(id >= DIF_VAR_OTHER_UBASE);
6149 			id -= DIF_VAR_OTHER_UBASE;
6150 
6151 			key[nkeys].dttk_value = (uint64_t)id;
6152 			key[nkeys++].dttk_size = 0;
6153 
6154 			if (DIF_INSTR_OP(instr) == DIF_OP_STTAA) {
6155 				DTRACE_TLS_THRKEY(key[nkeys].dttk_value);
6156 				key[nkeys++].dttk_size = 0;
6157 				v = &vstate->dtvs_tlocals[id];
6158 			} else {
6159 				v = &vstate->dtvs_globals[id]->dtsv_var;
6160 			}
6161 
6162 			dvar = dtrace_dynvar(dstate, nkeys, key,
6163 			    v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
6164 			    v->dtdv_type.dtdt_size : sizeof (uint64_t),
6165 			    regs[rd] ? DTRACE_DYNVAR_ALLOC :
6166 			    DTRACE_DYNVAR_DEALLOC, mstate, vstate);
6167 
6168 			if (dvar == NULL)
6169 				break;
6170 
6171 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
6172 				if (!dtrace_vcanload(
6173 				    (void *)(uintptr_t)regs[rd], &v->dtdv_type,
6174 				    mstate, vstate))
6175 					break;
6176 
6177 				dtrace_vcopy((void *)(uintptr_t)regs[rd],
6178 				    dvar->dtdv_data, &v->dtdv_type);
6179 			} else {
6180 				*((uint64_t *)dvar->dtdv_data) = regs[rd];
6181 			}
6182 
6183 			break;
6184 		}
6185 
6186 		case DIF_OP_ALLOCS: {
6187 			uintptr_t ptr = P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
6188 			size_t size = ptr - mstate->dtms_scratch_ptr + regs[r1];
6189 
6190 			/*
6191 			 * Rounding up the user allocation size could have
6192 			 * overflowed large, bogus allocations (like -1ULL) to
6193 			 * 0.
6194 			 */
6195 			if (size < regs[r1] ||
6196 			    !DTRACE_INSCRATCH(mstate, size)) {
6197 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
6198 				regs[rd] = NULL;
6199 				break;
6200 			}
6201 
6202 			dtrace_bzero((void *) mstate->dtms_scratch_ptr, size);
6203 			mstate->dtms_scratch_ptr += size;
6204 			regs[rd] = ptr;
6205 			break;
6206 		}
6207 
6208 		case DIF_OP_COPYS:
6209 			if (!dtrace_canstore(regs[rd], regs[r2],
6210 			    mstate, vstate)) {
6211 				*flags |= CPU_DTRACE_BADADDR;
6212 				*illval = regs[rd];
6213 				break;
6214 			}
6215 
6216 			if (!dtrace_canload(regs[r1], regs[r2], mstate, vstate))
6217 				break;
6218 
6219 			dtrace_bcopy((void *)(uintptr_t)regs[r1],
6220 			    (void *)(uintptr_t)regs[rd], (size_t)regs[r2]);
6221 			break;
6222 
6223 		case DIF_OP_STB:
6224 			if (!dtrace_canstore(regs[rd], 1, mstate, vstate)) {
6225 				*flags |= CPU_DTRACE_BADADDR;
6226 				*illval = regs[rd];
6227 				break;
6228 			}
6229 			*((uint8_t *)(uintptr_t)regs[rd]) = (uint8_t)regs[r1];
6230 			break;
6231 
6232 		case DIF_OP_STH:
6233 			if (!dtrace_canstore(regs[rd], 2, mstate, vstate)) {
6234 				*flags |= CPU_DTRACE_BADADDR;
6235 				*illval = regs[rd];
6236 				break;
6237 			}
6238 			if (regs[rd] & 1) {
6239 				*flags |= CPU_DTRACE_BADALIGN;
6240 				*illval = regs[rd];
6241 				break;
6242 			}
6243 			*((uint16_t *)(uintptr_t)regs[rd]) = (uint16_t)regs[r1];
6244 			break;
6245 
6246 		case DIF_OP_STW:
6247 			if (!dtrace_canstore(regs[rd], 4, mstate, vstate)) {
6248 				*flags |= CPU_DTRACE_BADADDR;
6249 				*illval = regs[rd];
6250 				break;
6251 			}
6252 			if (regs[rd] & 3) {
6253 				*flags |= CPU_DTRACE_BADALIGN;
6254 				*illval = regs[rd];
6255 				break;
6256 			}
6257 			*((uint32_t *)(uintptr_t)regs[rd]) = (uint32_t)regs[r1];
6258 			break;
6259 
6260 		case DIF_OP_STX:
6261 			if (!dtrace_canstore(regs[rd], 8, mstate, vstate)) {
6262 				*flags |= CPU_DTRACE_BADADDR;
6263 				*illval = regs[rd];
6264 				break;
6265 			}
6266 			if (regs[rd] & 7) {
6267 				*flags |= CPU_DTRACE_BADALIGN;
6268 				*illval = regs[rd];
6269 				break;
6270 			}
6271 			*((uint64_t *)(uintptr_t)regs[rd]) = regs[r1];
6272 			break;
6273 		}
6274 	}
6275 
6276 	if (!(*flags & CPU_DTRACE_FAULT))
6277 		return (rval);
6278 
6279 	mstate->dtms_fltoffs = opc * sizeof (dif_instr_t);
6280 	mstate->dtms_present |= DTRACE_MSTATE_FLTOFFS;
6281 
6282 	return (0);
6283 }
6284 
6285 static void
6286 dtrace_action_breakpoint(dtrace_ecb_t *ecb)
6287 {
6288 	dtrace_probe_t *probe = ecb->dte_probe;
6289 	dtrace_provider_t *prov = probe->dtpr_provider;
6290 	char c[DTRACE_FULLNAMELEN + 80], *str;
6291 	char *msg = "dtrace: breakpoint action at probe ";
6292 	char *ecbmsg = " (ecb ";
6293 	uintptr_t mask = (0xf << (sizeof (uintptr_t) * NBBY / 4));
6294 	uintptr_t val = (uintptr_t)ecb;
6295 	int shift = (sizeof (uintptr_t) * NBBY) - 4, i = 0;
6296 
6297 	if (dtrace_destructive_disallow)
6298 		return;
6299 
6300 	/*
6301 	 * It's impossible to be taking action on the NULL probe.
6302 	 */
6303 	ASSERT(probe != NULL);
6304 
6305 	/*
6306 	 * This is a poor man's (destitute man's?) sprintf():  we want to
6307 	 * print the provider name, module name, function name and name of
6308 	 * the probe, along with the hex address of the ECB with the breakpoint
6309 	 * action -- all of which we must place in the character buffer by
6310 	 * hand.
6311 	 */
6312 	while (*msg != '\0')
6313 		c[i++] = *msg++;
6314 
6315 	for (str = prov->dtpv_name; *str != '\0'; str++)
6316 		c[i++] = *str;
6317 	c[i++] = ':';
6318 
6319 	for (str = probe->dtpr_mod; *str != '\0'; str++)
6320 		c[i++] = *str;
6321 	c[i++] = ':';
6322 
6323 	for (str = probe->dtpr_func; *str != '\0'; str++)
6324 		c[i++] = *str;
6325 	c[i++] = ':';
6326 
6327 	for (str = probe->dtpr_name; *str != '\0'; str++)
6328 		c[i++] = *str;
6329 
6330 	while (*ecbmsg != '\0')
6331 		c[i++] = *ecbmsg++;
6332 
6333 	while (shift >= 0) {
6334 		mask = (uintptr_t)0xf << shift;
6335 
6336 		if (val >= ((uintptr_t)1 << shift))
6337 			c[i++] = "0123456789abcdef"[(val & mask) >> shift];
6338 		shift -= 4;
6339 	}
6340 
6341 	c[i++] = ')';
6342 	c[i] = '\0';
6343 
6344 	debug_enter(c);
6345 }
6346 
6347 static void
6348 dtrace_action_panic(dtrace_ecb_t *ecb)
6349 {
6350 	dtrace_probe_t *probe = ecb->dte_probe;
6351 
6352 	/*
6353 	 * It's impossible to be taking action on the NULL probe.
6354 	 */
6355 	ASSERT(probe != NULL);
6356 
6357 	if (dtrace_destructive_disallow)
6358 		return;
6359 
6360 	if (dtrace_panicked != NULL)
6361 		return;
6362 
6363 	if (dtrace_casptr(&dtrace_panicked, NULL, curthread) != NULL)
6364 		return;
6365 
6366 	/*
6367 	 * We won the right to panic.  (We want to be sure that only one
6368 	 * thread calls panic() from dtrace_probe(), and that panic() is
6369 	 * called exactly once.)
6370 	 */
6371 	dtrace_panic("dtrace: panic action at probe %s:%s:%s:%s (ecb %p)",
6372 	    probe->dtpr_provider->dtpv_name, probe->dtpr_mod,
6373 	    probe->dtpr_func, probe->dtpr_name, (void *)ecb);
6374 }
6375 
6376 static void
6377 dtrace_action_raise(uint64_t sig)
6378 {
6379 	if (dtrace_destructive_disallow)
6380 		return;
6381 
6382 	if (sig >= NSIG) {
6383 		DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
6384 		return;
6385 	}
6386 
6387 	/*
6388 	 * raise() has a queue depth of 1 -- we ignore all subsequent
6389 	 * invocations of the raise() action.
6390 	 */
6391 	if (curthread->t_dtrace_sig == 0)
6392 		curthread->t_dtrace_sig = (uint8_t)sig;
6393 
6394 	curthread->t_sig_check = 1;
6395 	aston(curthread);
6396 }
6397 
6398 static void
6399 dtrace_action_stop(void)
6400 {
6401 	if (dtrace_destructive_disallow)
6402 		return;
6403 
6404 	if (!curthread->t_dtrace_stop) {
6405 		curthread->t_dtrace_stop = 1;
6406 		curthread->t_sig_check = 1;
6407 		aston(curthread);
6408 	}
6409 }
6410 
6411 static void
6412 dtrace_action_chill(dtrace_mstate_t *mstate, hrtime_t val)
6413 {
6414 	hrtime_t now;
6415 	volatile uint16_t *flags;
6416 	cpu_t *cpu = CPU;
6417 
6418 	if (dtrace_destructive_disallow)
6419 		return;
6420 
6421 	flags = (volatile uint16_t *)&cpu_core[cpu->cpu_id].cpuc_dtrace_flags;
6422 
6423 	now = dtrace_gethrtime();
6424 
6425 	if (now - cpu->cpu_dtrace_chillmark > dtrace_chill_interval) {
6426 		/*
6427 		 * We need to advance the mark to the current time.
6428 		 */
6429 		cpu->cpu_dtrace_chillmark = now;
6430 		cpu->cpu_dtrace_chilled = 0;
6431 	}
6432 
6433 	/*
6434 	 * Now check to see if the requested chill time would take us over
6435 	 * the maximum amount of time allowed in the chill interval.  (Or
6436 	 * worse, if the calculation itself induces overflow.)
6437 	 */
6438 	if (cpu->cpu_dtrace_chilled + val > dtrace_chill_max ||
6439 	    cpu->cpu_dtrace_chilled + val < cpu->cpu_dtrace_chilled) {
6440 		*flags |= CPU_DTRACE_ILLOP;
6441 		return;
6442 	}
6443 
6444 	while (dtrace_gethrtime() - now < val)
6445 		continue;
6446 
6447 	/*
6448 	 * Normally, we assure that the value of the variable "timestamp" does
6449 	 * not change within an ECB.  The presence of chill() represents an
6450 	 * exception to this rule, however.
6451 	 */
6452 	mstate->dtms_present &= ~DTRACE_MSTATE_TIMESTAMP;
6453 	cpu->cpu_dtrace_chilled += val;
6454 }
6455 
6456 static void
6457 dtrace_action_ustack(dtrace_mstate_t *mstate, dtrace_state_t *state,
6458     uint64_t *buf, uint64_t arg)
6459 {
6460 	int nframes = DTRACE_USTACK_NFRAMES(arg);
6461 	int strsize = DTRACE_USTACK_STRSIZE(arg);
6462 	uint64_t *pcs = &buf[1], *fps;
6463 	char *str = (char *)&pcs[nframes];
6464 	int size, offs = 0, i, j;
6465 	uintptr_t old = mstate->dtms_scratch_ptr, saved;
6466 	uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
6467 	char *sym;
6468 
6469 	/*
6470 	 * Should be taking a faster path if string space has not been
6471 	 * allocated.
6472 	 */
6473 	ASSERT(strsize != 0);
6474 
6475 	/*
6476 	 * We will first allocate some temporary space for the frame pointers.
6477 	 */
6478 	fps = (uint64_t *)P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
6479 	size = (uintptr_t)fps - mstate->dtms_scratch_ptr +
6480 	    (nframes * sizeof (uint64_t));
6481 
6482 	if (!DTRACE_INSCRATCH(mstate, size)) {
6483 		/*
6484 		 * Not enough room for our frame pointers -- need to indicate
6485 		 * that we ran out of scratch space.
6486 		 */
6487 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
6488 		return;
6489 	}
6490 
6491 	mstate->dtms_scratch_ptr += size;
6492 	saved = mstate->dtms_scratch_ptr;
6493 
6494 	/*
6495 	 * Now get a stack with both program counters and frame pointers.
6496 	 */
6497 	DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6498 	dtrace_getufpstack(buf, fps, nframes + 1);
6499 	DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6500 
6501 	/*
6502 	 * If that faulted, we're cooked.
6503 	 */
6504 	if (*flags & CPU_DTRACE_FAULT)
6505 		goto out;
6506 
6507 	/*
6508 	 * Now we want to walk up the stack, calling the USTACK helper.  For
6509 	 * each iteration, we restore the scratch pointer.
6510 	 */
6511 	for (i = 0; i < nframes; i++) {
6512 		mstate->dtms_scratch_ptr = saved;
6513 
6514 		if (offs >= strsize)
6515 			break;
6516 
6517 		sym = (char *)(uintptr_t)dtrace_helper(
6518 		    DTRACE_HELPER_ACTION_USTACK,
6519 		    mstate, state, pcs[i], fps[i]);
6520 
6521 		/*
6522 		 * If we faulted while running the helper, we're going to
6523 		 * clear the fault and null out the corresponding string.
6524 		 */
6525 		if (*flags & CPU_DTRACE_FAULT) {
6526 			*flags &= ~CPU_DTRACE_FAULT;
6527 			str[offs++] = '\0';
6528 			continue;
6529 		}
6530 
6531 		if (sym == NULL) {
6532 			str[offs++] = '\0';
6533 			continue;
6534 		}
6535 
6536 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6537 
6538 		/*
6539 		 * Now copy in the string that the helper returned to us.
6540 		 */
6541 		for (j = 0; offs + j < strsize; j++) {
6542 			if ((str[offs + j] = sym[j]) == '\0')
6543 				break;
6544 		}
6545 
6546 		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6547 
6548 		offs += j + 1;
6549 	}
6550 
6551 	if (offs >= strsize) {
6552 		/*
6553 		 * If we didn't have room for all of the strings, we don't
6554 		 * abort processing -- this needn't be a fatal error -- but we
6555 		 * still want to increment a counter (dts_stkstroverflows) to
6556 		 * allow this condition to be warned about.  (If this is from
6557 		 * a jstack() action, it is easily tuned via jstackstrsize.)
6558 		 */
6559 		dtrace_error(&state->dts_stkstroverflows);
6560 	}
6561 
6562 	while (offs < strsize)
6563 		str[offs++] = '\0';
6564 
6565 out:
6566 	mstate->dtms_scratch_ptr = old;
6567 }
6568 
6569 static void
6570 dtrace_store_by_ref(dtrace_difo_t *dp, caddr_t tomax, size_t size,
6571     size_t *valoffsp, uint64_t *valp, uint64_t end, int intuple, int dtkind)
6572 {
6573 	volatile uint16_t *flags;
6574 	uint64_t val = *valp;
6575 	size_t valoffs = *valoffsp;
6576 
6577 	flags = (volatile uint16_t *)&cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
6578 	ASSERT(dtkind == DIF_TF_BYREF || dtkind == DIF_TF_BYUREF);
6579 
6580 	/*
6581 	 * If this is a string, we're going to only load until we find the zero
6582 	 * byte -- after which we'll store zero bytes.
6583 	 */
6584 	if (dp->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) {
6585 		char c = '\0' + 1;
6586 		size_t s;
6587 
6588 		for (s = 0; s < size; s++) {
6589 			if (c != '\0' && dtkind == DIF_TF_BYREF) {
6590 				c = dtrace_load8(val++);
6591 			} else if (c != '\0' && dtkind == DIF_TF_BYUREF) {
6592 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6593 				c = dtrace_fuword8((void *)(uintptr_t)val++);
6594 				DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6595 				if (*flags & CPU_DTRACE_FAULT)
6596 					break;
6597 			}
6598 
6599 			DTRACE_STORE(uint8_t, tomax, valoffs++, c);
6600 
6601 			if (c == '\0' && intuple)
6602 				break;
6603 		}
6604 	} else {
6605 		uint8_t c;
6606 		while (valoffs < end) {
6607 			if (dtkind == DIF_TF_BYREF) {
6608 				c = dtrace_load8(val++);
6609 			} else if (dtkind == DIF_TF_BYUREF) {
6610 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6611 				c = dtrace_fuword8((void *)(uintptr_t)val++);
6612 				DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6613 				if (*flags & CPU_DTRACE_FAULT)
6614 					break;
6615 			}
6616 
6617 			DTRACE_STORE(uint8_t, tomax,
6618 			    valoffs++, c);
6619 		}
6620 	}
6621 
6622 	*valp = val;
6623 	*valoffsp = valoffs;
6624 }
6625 
6626 /*
6627  * If you're looking for the epicenter of DTrace, you just found it.  This
6628  * is the function called by the provider to fire a probe -- from which all
6629  * subsequent probe-context DTrace activity emanates.
6630  */
6631 void
6632 dtrace_probe(dtrace_id_t id, uintptr_t arg0, uintptr_t arg1,
6633     uintptr_t arg2, uintptr_t arg3, uintptr_t arg4)
6634 {
6635 	processorid_t cpuid;
6636 	dtrace_icookie_t cookie;
6637 	dtrace_probe_t *probe;
6638 	dtrace_mstate_t mstate;
6639 	dtrace_ecb_t *ecb;
6640 	dtrace_action_t *act;
6641 	intptr_t offs;
6642 	size_t size;
6643 	int vtime, onintr;
6644 	volatile uint16_t *flags;
6645 	hrtime_t now, end;
6646 
6647 	/*
6648 	 * Kick out immediately if this CPU is still being born (in which case
6649 	 * curthread will be set to -1) or the current thread can't allow
6650 	 * probes in its current context.
6651 	 */
6652 	if (((uintptr_t)curthread & 1) || (curthread->t_flag & T_DONTDTRACE))
6653 		return;
6654 
6655 	cookie = dtrace_interrupt_disable();
6656 	probe = dtrace_probes[id - 1];
6657 	cpuid = CPU->cpu_id;
6658 	onintr = CPU_ON_INTR(CPU);
6659 
6660 	CPU->cpu_dtrace_probes++;
6661 
6662 	if (!onintr && probe->dtpr_predcache != DTRACE_CACHEIDNONE &&
6663 	    probe->dtpr_predcache == curthread->t_predcache) {
6664 		/*
6665 		 * We have hit in the predicate cache; we know that
6666 		 * this predicate would evaluate to be false.
6667 		 */
6668 		dtrace_interrupt_enable(cookie);
6669 		return;
6670 	}
6671 
6672 	if (panic_quiesce) {
6673 		/*
6674 		 * We don't trace anything if we're panicking.
6675 		 */
6676 		dtrace_interrupt_enable(cookie);
6677 		return;
6678 	}
6679 
6680 	now = dtrace_gethrtime();
6681 	vtime = dtrace_vtime_references != 0;
6682 
6683 	if (vtime && curthread->t_dtrace_start)
6684 		curthread->t_dtrace_vtime += now - curthread->t_dtrace_start;
6685 
6686 	mstate.dtms_difo = NULL;
6687 	mstate.dtms_probe = probe;
6688 	mstate.dtms_strtok = NULL;
6689 	mstate.dtms_arg[0] = arg0;
6690 	mstate.dtms_arg[1] = arg1;
6691 	mstate.dtms_arg[2] = arg2;
6692 	mstate.dtms_arg[3] = arg3;
6693 	mstate.dtms_arg[4] = arg4;
6694 
6695 	flags = (volatile uint16_t *)&cpu_core[cpuid].cpuc_dtrace_flags;
6696 
6697 	for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) {
6698 		dtrace_predicate_t *pred = ecb->dte_predicate;
6699 		dtrace_state_t *state = ecb->dte_state;
6700 		dtrace_buffer_t *buf = &state->dts_buffer[cpuid];
6701 		dtrace_buffer_t *aggbuf = &state->dts_aggbuffer[cpuid];
6702 		dtrace_vstate_t *vstate = &state->dts_vstate;
6703 		dtrace_provider_t *prov = probe->dtpr_provider;
6704 		uint64_t tracememsize = 0;
6705 		int committed = 0;
6706 		caddr_t tomax;
6707 
6708 		/*
6709 		 * A little subtlety with the following (seemingly innocuous)
6710 		 * declaration of the automatic 'val':  by looking at the
6711 		 * code, you might think that it could be declared in the
6712 		 * action processing loop, below.  (That is, it's only used in
6713 		 * the action processing loop.)  However, it must be declared
6714 		 * out of that scope because in the case of DIF expression
6715 		 * arguments to aggregating actions, one iteration of the
6716 		 * action loop will use the last iteration's value.
6717 		 */
6718 #ifdef lint
6719 		uint64_t val = 0;
6720 #else
6721 		uint64_t val;
6722 #endif
6723 
6724 		mstate.dtms_present = DTRACE_MSTATE_ARGS | DTRACE_MSTATE_PROBE;
6725 		mstate.dtms_access = DTRACE_ACCESS_ARGS | DTRACE_ACCESS_PROC;
6726 		mstate.dtms_getf = NULL;
6727 
6728 		*flags &= ~CPU_DTRACE_ERROR;
6729 
6730 		if (prov == dtrace_provider) {
6731 			/*
6732 			 * If dtrace itself is the provider of this probe,
6733 			 * we're only going to continue processing the ECB if
6734 			 * arg0 (the dtrace_state_t) is equal to the ECB's
6735 			 * creating state.  (This prevents disjoint consumers
6736 			 * from seeing one another's metaprobes.)
6737 			 */
6738 			if (arg0 != (uint64_t)(uintptr_t)state)
6739 				continue;
6740 		}
6741 
6742 		if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE) {
6743 			/*
6744 			 * We're not currently active.  If our provider isn't
6745 			 * the dtrace pseudo provider, we're not interested.
6746 			 */
6747 			if (prov != dtrace_provider)
6748 				continue;
6749 
6750 			/*
6751 			 * Now we must further check if we are in the BEGIN
6752 			 * probe.  If we are, we will only continue processing
6753 			 * if we're still in WARMUP -- if one BEGIN enabling
6754 			 * has invoked the exit() action, we don't want to
6755 			 * evaluate subsequent BEGIN enablings.
6756 			 */
6757 			if (probe->dtpr_id == dtrace_probeid_begin &&
6758 			    state->dts_activity != DTRACE_ACTIVITY_WARMUP) {
6759 				ASSERT(state->dts_activity ==
6760 				    DTRACE_ACTIVITY_DRAINING);
6761 				continue;
6762 			}
6763 		}
6764 
6765 		if (ecb->dte_cond && !dtrace_priv_probe(state, &mstate, ecb))
6766 			continue;
6767 
6768 		if (now - state->dts_alive > dtrace_deadman_timeout) {
6769 			/*
6770 			 * We seem to be dead.  Unless we (a) have kernel
6771 			 * destructive permissions (b) have explicitly enabled
6772 			 * destructive actions and (c) destructive actions have
6773 			 * not been disabled, we're going to transition into
6774 			 * the KILLED state, from which no further processing
6775 			 * on this state will be performed.
6776 			 */
6777 			if (!dtrace_priv_kernel_destructive(state) ||
6778 			    !state->dts_cred.dcr_destructive ||
6779 			    dtrace_destructive_disallow) {
6780 				void *activity = &state->dts_activity;
6781 				dtrace_activity_t current;
6782 
6783 				do {
6784 					current = state->dts_activity;
6785 				} while (dtrace_cas32(activity, current,
6786 				    DTRACE_ACTIVITY_KILLED) != current);
6787 
6788 				continue;
6789 			}
6790 		}
6791 
6792 		if ((offs = dtrace_buffer_reserve(buf, ecb->dte_needed,
6793 		    ecb->dte_alignment, state, &mstate)) < 0)
6794 			continue;
6795 
6796 		tomax = buf->dtb_tomax;
6797 		ASSERT(tomax != NULL);
6798 
6799 		if (ecb->dte_size != 0) {
6800 			dtrace_rechdr_t dtrh;
6801 			if (!(mstate.dtms_present & DTRACE_MSTATE_TIMESTAMP)) {
6802 				mstate.dtms_timestamp = dtrace_gethrtime();
6803 				mstate.dtms_present |= DTRACE_MSTATE_TIMESTAMP;
6804 			}
6805 			ASSERT3U(ecb->dte_size, >=, sizeof (dtrace_rechdr_t));
6806 			dtrh.dtrh_epid = ecb->dte_epid;
6807 			DTRACE_RECORD_STORE_TIMESTAMP(&dtrh,
6808 			    mstate.dtms_timestamp);
6809 			*((dtrace_rechdr_t *)(tomax + offs)) = dtrh;
6810 		}
6811 
6812 		mstate.dtms_epid = ecb->dte_epid;
6813 		mstate.dtms_present |= DTRACE_MSTATE_EPID;
6814 
6815 		if (state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL)
6816 			mstate.dtms_access |= DTRACE_ACCESS_KERNEL;
6817 
6818 		if (pred != NULL) {
6819 			dtrace_difo_t *dp = pred->dtp_difo;
6820 			int rval;
6821 
6822 			rval = dtrace_dif_emulate(dp, &mstate, vstate, state);
6823 
6824 			if (!(*flags & CPU_DTRACE_ERROR) && !rval) {
6825 				dtrace_cacheid_t cid = probe->dtpr_predcache;
6826 
6827 				if (cid != DTRACE_CACHEIDNONE && !onintr) {
6828 					/*
6829 					 * Update the predicate cache...
6830 					 */
6831 					ASSERT(cid == pred->dtp_cacheid);
6832 					curthread->t_predcache = cid;
6833 				}
6834 
6835 				continue;
6836 			}
6837 		}
6838 
6839 		for (act = ecb->dte_action; !(*flags & CPU_DTRACE_ERROR) &&
6840 		    act != NULL; act = act->dta_next) {
6841 			size_t valoffs;
6842 			dtrace_difo_t *dp;
6843 			dtrace_recdesc_t *rec = &act->dta_rec;
6844 
6845 			size = rec->dtrd_size;
6846 			valoffs = offs + rec->dtrd_offset;
6847 
6848 			if (DTRACEACT_ISAGG(act->dta_kind)) {
6849 				uint64_t v = 0xbad;
6850 				dtrace_aggregation_t *agg;
6851 
6852 				agg = (dtrace_aggregation_t *)act;
6853 
6854 				if ((dp = act->dta_difo) != NULL)
6855 					v = dtrace_dif_emulate(dp,
6856 					    &mstate, vstate, state);
6857 
6858 				if (*flags & CPU_DTRACE_ERROR)
6859 					continue;
6860 
6861 				/*
6862 				 * Note that we always pass the expression
6863 				 * value from the previous iteration of the
6864 				 * action loop.  This value will only be used
6865 				 * if there is an expression argument to the
6866 				 * aggregating action, denoted by the
6867 				 * dtag_hasarg field.
6868 				 */
6869 				dtrace_aggregate(agg, buf,
6870 				    offs, aggbuf, v, val);
6871 				continue;
6872 			}
6873 
6874 			switch (act->dta_kind) {
6875 			case DTRACEACT_STOP:
6876 				if (dtrace_priv_proc_destructive(state,
6877 				    &mstate))
6878 					dtrace_action_stop();
6879 				continue;
6880 
6881 			case DTRACEACT_BREAKPOINT:
6882 				if (dtrace_priv_kernel_destructive(state))
6883 					dtrace_action_breakpoint(ecb);
6884 				continue;
6885 
6886 			case DTRACEACT_PANIC:
6887 				if (dtrace_priv_kernel_destructive(state))
6888 					dtrace_action_panic(ecb);
6889 				continue;
6890 
6891 			case DTRACEACT_STACK:
6892 				if (!dtrace_priv_kernel(state))
6893 					continue;
6894 
6895 				dtrace_getpcstack((pc_t *)(tomax + valoffs),
6896 				    size / sizeof (pc_t), probe->dtpr_aframes,
6897 				    DTRACE_ANCHORED(probe) ? NULL :
6898 				    (uint32_t *)arg0);
6899 
6900 				continue;
6901 
6902 			case DTRACEACT_JSTACK:
6903 			case DTRACEACT_USTACK:
6904 				if (!dtrace_priv_proc(state, &mstate))
6905 					continue;
6906 
6907 				/*
6908 				 * See comment in DIF_VAR_PID.
6909 				 */
6910 				if (DTRACE_ANCHORED(mstate.dtms_probe) &&
6911 				    CPU_ON_INTR(CPU)) {
6912 					int depth = DTRACE_USTACK_NFRAMES(
6913 					    rec->dtrd_arg) + 1;
6914 
6915 					dtrace_bzero((void *)(tomax + valoffs),
6916 					    DTRACE_USTACK_STRSIZE(rec->dtrd_arg)
6917 					    + depth * sizeof (uint64_t));
6918 
6919 					continue;
6920 				}
6921 
6922 				if (DTRACE_USTACK_STRSIZE(rec->dtrd_arg) != 0 &&
6923 				    curproc->p_dtrace_helpers != NULL) {
6924 					/*
6925 					 * This is the slow path -- we have
6926 					 * allocated string space, and we're
6927 					 * getting the stack of a process that
6928 					 * has helpers.  Call into a separate
6929 					 * routine to perform this processing.
6930 					 */
6931 					dtrace_action_ustack(&mstate, state,
6932 					    (uint64_t *)(tomax + valoffs),
6933 					    rec->dtrd_arg);
6934 					continue;
6935 				}
6936 
6937 				/*
6938 				 * Clear the string space, since there's no
6939 				 * helper to do it for us.
6940 				 */
6941 				if (DTRACE_USTACK_STRSIZE(rec->dtrd_arg) != 0) {
6942 					int depth = DTRACE_USTACK_NFRAMES(
6943 					    rec->dtrd_arg);
6944 					size_t strsize = DTRACE_USTACK_STRSIZE(
6945 					    rec->dtrd_arg);
6946 					uint64_t *buf = (uint64_t *)(tomax +
6947 					    valoffs);
6948 					void *strspace = &buf[depth + 1];
6949 
6950 					dtrace_bzero(strspace,
6951 					    MIN(depth, strsize));
6952 				}
6953 
6954 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6955 				dtrace_getupcstack((uint64_t *)
6956 				    (tomax + valoffs),
6957 				    DTRACE_USTACK_NFRAMES(rec->dtrd_arg) + 1);
6958 				DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6959 				continue;
6960 
6961 			default:
6962 				break;
6963 			}
6964 
6965 			dp = act->dta_difo;
6966 			ASSERT(dp != NULL);
6967 
6968 			val = dtrace_dif_emulate(dp, &mstate, vstate, state);
6969 
6970 			if (*flags & CPU_DTRACE_ERROR)
6971 				continue;
6972 
6973 			switch (act->dta_kind) {
6974 			case DTRACEACT_SPECULATE: {
6975 				dtrace_rechdr_t *dtrh;
6976 
6977 				ASSERT(buf == &state->dts_buffer[cpuid]);
6978 				buf = dtrace_speculation_buffer(state,
6979 				    cpuid, val);
6980 
6981 				if (buf == NULL) {
6982 					*flags |= CPU_DTRACE_DROP;
6983 					continue;
6984 				}
6985 
6986 				offs = dtrace_buffer_reserve(buf,
6987 				    ecb->dte_needed, ecb->dte_alignment,
6988 				    state, NULL);
6989 
6990 				if (offs < 0) {
6991 					*flags |= CPU_DTRACE_DROP;
6992 					continue;
6993 				}
6994 
6995 				tomax = buf->dtb_tomax;
6996 				ASSERT(tomax != NULL);
6997 
6998 				if (ecb->dte_size == 0)
6999 					continue;
7000 
7001 				ASSERT3U(ecb->dte_size, >=,
7002 				    sizeof (dtrace_rechdr_t));
7003 				dtrh = ((void *)(tomax + offs));
7004 				dtrh->dtrh_epid = ecb->dte_epid;
7005 				/*
7006 				 * When the speculation is committed, all of
7007 				 * the records in the speculative buffer will
7008 				 * have their timestamps set to the commit
7009 				 * time.  Until then, it is set to a sentinel
7010 				 * value, for debugability.
7011 				 */
7012 				DTRACE_RECORD_STORE_TIMESTAMP(dtrh, UINT64_MAX);
7013 				continue;
7014 			}
7015 
7016 			case DTRACEACT_CHILL:
7017 				if (dtrace_priv_kernel_destructive(state))
7018 					dtrace_action_chill(&mstate, val);
7019 				continue;
7020 
7021 			case DTRACEACT_RAISE:
7022 				if (dtrace_priv_proc_destructive(state,
7023 				    &mstate))
7024 					dtrace_action_raise(val);
7025 				continue;
7026 
7027 			case DTRACEACT_COMMIT:
7028 				ASSERT(!committed);
7029 
7030 				/*
7031 				 * We need to commit our buffer state.
7032 				 */
7033 				if (ecb->dte_size)
7034 					buf->dtb_offset = offs + ecb->dte_size;
7035 				buf = &state->dts_buffer[cpuid];
7036 				dtrace_speculation_commit(state, cpuid, val);
7037 				committed = 1;
7038 				continue;
7039 
7040 			case DTRACEACT_DISCARD:
7041 				dtrace_speculation_discard(state, cpuid, val);
7042 				continue;
7043 
7044 			case DTRACEACT_DIFEXPR:
7045 			case DTRACEACT_LIBACT:
7046 			case DTRACEACT_PRINTF:
7047 			case DTRACEACT_PRINTA:
7048 			case DTRACEACT_SYSTEM:
7049 			case DTRACEACT_FREOPEN:
7050 			case DTRACEACT_TRACEMEM:
7051 				break;
7052 
7053 			case DTRACEACT_TRACEMEM_DYNSIZE:
7054 				tracememsize = val;
7055 				break;
7056 
7057 			case DTRACEACT_SYM:
7058 			case DTRACEACT_MOD:
7059 				if (!dtrace_priv_kernel(state))
7060 					continue;
7061 				break;
7062 
7063 			case DTRACEACT_USYM:
7064 			case DTRACEACT_UMOD:
7065 			case DTRACEACT_UADDR: {
7066 				struct pid *pid = curthread->t_procp->p_pidp;
7067 
7068 				if (!dtrace_priv_proc(state, &mstate))
7069 					continue;
7070 
7071 				DTRACE_STORE(uint64_t, tomax,
7072 				    valoffs, (uint64_t)pid->pid_id);
7073 				DTRACE_STORE(uint64_t, tomax,
7074 				    valoffs + sizeof (uint64_t), val);
7075 
7076 				continue;
7077 			}
7078 
7079 			case DTRACEACT_EXIT: {
7080 				/*
7081 				 * For the exit action, we are going to attempt
7082 				 * to atomically set our activity to be
7083 				 * draining.  If this fails (either because
7084 				 * another CPU has beat us to the exit action,
7085 				 * or because our current activity is something
7086 				 * other than ACTIVE or WARMUP), we will
7087 				 * continue.  This assures that the exit action
7088 				 * can be successfully recorded at most once
7089 				 * when we're in the ACTIVE state.  If we're
7090 				 * encountering the exit() action while in
7091 				 * COOLDOWN, however, we want to honor the new
7092 				 * status code.  (We know that we're the only
7093 				 * thread in COOLDOWN, so there is no race.)
7094 				 */
7095 				void *activity = &state->dts_activity;
7096 				dtrace_activity_t current = state->dts_activity;
7097 
7098 				if (current == DTRACE_ACTIVITY_COOLDOWN)
7099 					break;
7100 
7101 				if (current != DTRACE_ACTIVITY_WARMUP)
7102 					current = DTRACE_ACTIVITY_ACTIVE;
7103 
7104 				if (dtrace_cas32(activity, current,
7105 				    DTRACE_ACTIVITY_DRAINING) != current) {
7106 					*flags |= CPU_DTRACE_DROP;
7107 					continue;
7108 				}
7109 
7110 				break;
7111 			}
7112 
7113 			default:
7114 				ASSERT(0);
7115 			}
7116 
7117 			if (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF ||
7118 			    dp->dtdo_rtype.dtdt_flags & DIF_TF_BYUREF) {
7119 				uintptr_t end = valoffs + size;
7120 
7121 				if (tracememsize != 0 &&
7122 				    valoffs + tracememsize < end) {
7123 					end = valoffs + tracememsize;
7124 					tracememsize = 0;
7125 				}
7126 
7127 				if (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF &&
7128 				    !dtrace_vcanload((void *)(uintptr_t)val,
7129 				    &dp->dtdo_rtype, &mstate, vstate))
7130 					continue;
7131 
7132 				dtrace_store_by_ref(dp, tomax, size, &valoffs,
7133 				    &val, end, act->dta_intuple,
7134 				    dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF ?
7135 				    DIF_TF_BYREF: DIF_TF_BYUREF);
7136 				continue;
7137 			}
7138 
7139 			switch (size) {
7140 			case 0:
7141 				break;
7142 
7143 			case sizeof (uint8_t):
7144 				DTRACE_STORE(uint8_t, tomax, valoffs, val);
7145 				break;
7146 			case sizeof (uint16_t):
7147 				DTRACE_STORE(uint16_t, tomax, valoffs, val);
7148 				break;
7149 			case sizeof (uint32_t):
7150 				DTRACE_STORE(uint32_t, tomax, valoffs, val);
7151 				break;
7152 			case sizeof (uint64_t):
7153 				DTRACE_STORE(uint64_t, tomax, valoffs, val);
7154 				break;
7155 			default:
7156 				/*
7157 				 * Any other size should have been returned by
7158 				 * reference, not by value.
7159 				 */
7160 				ASSERT(0);
7161 				break;
7162 			}
7163 		}
7164 
7165 		if (*flags & CPU_DTRACE_DROP)
7166 			continue;
7167 
7168 		if (*flags & CPU_DTRACE_FAULT) {
7169 			int ndx;
7170 			dtrace_action_t *err;
7171 
7172 			buf->dtb_errors++;
7173 
7174 			if (probe->dtpr_id == dtrace_probeid_error) {
7175 				/*
7176 				 * There's nothing we can do -- we had an
7177 				 * error on the error probe.  We bump an
7178 				 * error counter to at least indicate that
7179 				 * this condition happened.
7180 				 */
7181 				dtrace_error(&state->dts_dblerrors);
7182 				continue;
7183 			}
7184 
7185 			if (vtime) {
7186 				/*
7187 				 * Before recursing on dtrace_probe(), we
7188 				 * need to explicitly clear out our start
7189 				 * time to prevent it from being accumulated
7190 				 * into t_dtrace_vtime.
7191 				 */
7192 				curthread->t_dtrace_start = 0;
7193 			}
7194 
7195 			/*
7196 			 * Iterate over the actions to figure out which action
7197 			 * we were processing when we experienced the error.
7198 			 * Note that act points _past_ the faulting action; if
7199 			 * act is ecb->dte_action, the fault was in the
7200 			 * predicate, if it's ecb->dte_action->dta_next it's
7201 			 * in action #1, and so on.
7202 			 */
7203 			for (err = ecb->dte_action, ndx = 0;
7204 			    err != act; err = err->dta_next, ndx++)
7205 				continue;
7206 
7207 			dtrace_probe_error(state, ecb->dte_epid, ndx,
7208 			    (mstate.dtms_present & DTRACE_MSTATE_FLTOFFS) ?
7209 			    mstate.dtms_fltoffs : -1, DTRACE_FLAGS2FLT(*flags),
7210 			    cpu_core[cpuid].cpuc_dtrace_illval);
7211 
7212 			continue;
7213 		}
7214 
7215 		if (!committed)
7216 			buf->dtb_offset = offs + ecb->dte_size;
7217 	}
7218 
7219 	end = dtrace_gethrtime();
7220 	if (vtime)
7221 		curthread->t_dtrace_start = end;
7222 
7223 	CPU->cpu_dtrace_nsec += end - now;
7224 
7225 	dtrace_interrupt_enable(cookie);
7226 }
7227 
7228 /*
7229  * DTrace Probe Hashing Functions
7230  *
7231  * The functions in this section (and indeed, the functions in remaining
7232  * sections) are not _called_ from probe context.  (Any exceptions to this are
7233  * marked with a "Note:".)  Rather, they are called from elsewhere in the
7234  * DTrace framework to look-up probes in, add probes to and remove probes from
7235  * the DTrace probe hashes.  (Each probe is hashed by each element of the
7236  * probe tuple -- allowing for fast lookups, regardless of what was
7237  * specified.)
7238  */
7239 static uint_t
7240 dtrace_hash_str(char *p)
7241 {
7242 	unsigned int g;
7243 	uint_t hval = 0;
7244 
7245 	while (*p) {
7246 		hval = (hval << 4) + *p++;
7247 		if ((g = (hval & 0xf0000000)) != 0)
7248 			hval ^= g >> 24;
7249 		hval &= ~g;
7250 	}
7251 	return (hval);
7252 }
7253 
7254 static dtrace_hash_t *
7255 dtrace_hash_create(uintptr_t stroffs, uintptr_t nextoffs, uintptr_t prevoffs)
7256 {
7257 	dtrace_hash_t *hash = kmem_zalloc(sizeof (dtrace_hash_t), KM_SLEEP);
7258 
7259 	hash->dth_stroffs = stroffs;
7260 	hash->dth_nextoffs = nextoffs;
7261 	hash->dth_prevoffs = prevoffs;
7262 
7263 	hash->dth_size = 1;
7264 	hash->dth_mask = hash->dth_size - 1;
7265 
7266 	hash->dth_tab = kmem_zalloc(hash->dth_size *
7267 	    sizeof (dtrace_hashbucket_t *), KM_SLEEP);
7268 
7269 	return (hash);
7270 }
7271 
7272 static void
7273 dtrace_hash_destroy(dtrace_hash_t *hash)
7274 {
7275 #ifdef DEBUG
7276 	int i;
7277 
7278 	for (i = 0; i < hash->dth_size; i++)
7279 		ASSERT(hash->dth_tab[i] == NULL);
7280 #endif
7281 
7282 	kmem_free(hash->dth_tab,
7283 	    hash->dth_size * sizeof (dtrace_hashbucket_t *));
7284 	kmem_free(hash, sizeof (dtrace_hash_t));
7285 }
7286 
7287 static void
7288 dtrace_hash_resize(dtrace_hash_t *hash)
7289 {
7290 	int size = hash->dth_size, i, ndx;
7291 	int new_size = hash->dth_size << 1;
7292 	int new_mask = new_size - 1;
7293 	dtrace_hashbucket_t **new_tab, *bucket, *next;
7294 
7295 	ASSERT((new_size & new_mask) == 0);
7296 
7297 	new_tab = kmem_zalloc(new_size * sizeof (void *), KM_SLEEP);
7298 
7299 	for (i = 0; i < size; i++) {
7300 		for (bucket = hash->dth_tab[i]; bucket != NULL; bucket = next) {
7301 			dtrace_probe_t *probe = bucket->dthb_chain;
7302 
7303 			ASSERT(probe != NULL);
7304 			ndx = DTRACE_HASHSTR(hash, probe) & new_mask;
7305 
7306 			next = bucket->dthb_next;
7307 			bucket->dthb_next = new_tab[ndx];
7308 			new_tab[ndx] = bucket;
7309 		}
7310 	}
7311 
7312 	kmem_free(hash->dth_tab, hash->dth_size * sizeof (void *));
7313 	hash->dth_tab = new_tab;
7314 	hash->dth_size = new_size;
7315 	hash->dth_mask = new_mask;
7316 }
7317 
7318 static void
7319 dtrace_hash_add(dtrace_hash_t *hash, dtrace_probe_t *new)
7320 {
7321 	int hashval = DTRACE_HASHSTR(hash, new);
7322 	int ndx = hashval & hash->dth_mask;
7323 	dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
7324 	dtrace_probe_t **nextp, **prevp;
7325 
7326 	for (; bucket != NULL; bucket = bucket->dthb_next) {
7327 		if (DTRACE_HASHEQ(hash, bucket->dthb_chain, new))
7328 			goto add;
7329 	}
7330 
7331 	if ((hash->dth_nbuckets >> 1) > hash->dth_size) {
7332 		dtrace_hash_resize(hash);
7333 		dtrace_hash_add(hash, new);
7334 		return;
7335 	}
7336 
7337 	bucket = kmem_zalloc(sizeof (dtrace_hashbucket_t), KM_SLEEP);
7338 	bucket->dthb_next = hash->dth_tab[ndx];
7339 	hash->dth_tab[ndx] = bucket;
7340 	hash->dth_nbuckets++;
7341 
7342 add:
7343 	nextp = DTRACE_HASHNEXT(hash, new);
7344 	ASSERT(*nextp == NULL && *(DTRACE_HASHPREV(hash, new)) == NULL);
7345 	*nextp = bucket->dthb_chain;
7346 
7347 	if (bucket->dthb_chain != NULL) {
7348 		prevp = DTRACE_HASHPREV(hash, bucket->dthb_chain);
7349 		ASSERT(*prevp == NULL);
7350 		*prevp = new;
7351 	}
7352 
7353 	bucket->dthb_chain = new;
7354 	bucket->dthb_len++;
7355 }
7356 
7357 static dtrace_probe_t *
7358 dtrace_hash_lookup(dtrace_hash_t *hash, dtrace_probe_t *template)
7359 {
7360 	int hashval = DTRACE_HASHSTR(hash, template);
7361 	int ndx = hashval & hash->dth_mask;
7362 	dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
7363 
7364 	for (; bucket != NULL; bucket = bucket->dthb_next) {
7365 		if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template))
7366 			return (bucket->dthb_chain);
7367 	}
7368 
7369 	return (NULL);
7370 }
7371 
7372 static int
7373 dtrace_hash_collisions(dtrace_hash_t *hash, dtrace_probe_t *template)
7374 {
7375 	int hashval = DTRACE_HASHSTR(hash, template);
7376 	int ndx = hashval & hash->dth_mask;
7377 	dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
7378 
7379 	for (; bucket != NULL; bucket = bucket->dthb_next) {
7380 		if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template))
7381 			return (bucket->dthb_len);
7382 	}
7383 
7384 	return (NULL);
7385 }
7386 
7387 static void
7388 dtrace_hash_remove(dtrace_hash_t *hash, dtrace_probe_t *probe)
7389 {
7390 	int ndx = DTRACE_HASHSTR(hash, probe) & hash->dth_mask;
7391 	dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
7392 
7393 	dtrace_probe_t **prevp = DTRACE_HASHPREV(hash, probe);
7394 	dtrace_probe_t **nextp = DTRACE_HASHNEXT(hash, probe);
7395 
7396 	/*
7397 	 * Find the bucket that we're removing this probe from.
7398 	 */
7399 	for (; bucket != NULL; bucket = bucket->dthb_next) {
7400 		if (DTRACE_HASHEQ(hash, bucket->dthb_chain, probe))
7401 			break;
7402 	}
7403 
7404 	ASSERT(bucket != NULL);
7405 
7406 	if (*prevp == NULL) {
7407 		if (*nextp == NULL) {
7408 			/*
7409 			 * The removed probe was the only probe on this
7410 			 * bucket; we need to remove the bucket.
7411 			 */
7412 			dtrace_hashbucket_t *b = hash->dth_tab[ndx];
7413 
7414 			ASSERT(bucket->dthb_chain == probe);
7415 			ASSERT(b != NULL);
7416 
7417 			if (b == bucket) {
7418 				hash->dth_tab[ndx] = bucket->dthb_next;
7419 			} else {
7420 				while (b->dthb_next != bucket)
7421 					b = b->dthb_next;
7422 				b->dthb_next = bucket->dthb_next;
7423 			}
7424 
7425 			ASSERT(hash->dth_nbuckets > 0);
7426 			hash->dth_nbuckets--;
7427 			kmem_free(bucket, sizeof (dtrace_hashbucket_t));
7428 			return;
7429 		}
7430 
7431 		bucket->dthb_chain = *nextp;
7432 	} else {
7433 		*(DTRACE_HASHNEXT(hash, *prevp)) = *nextp;
7434 	}
7435 
7436 	if (*nextp != NULL)
7437 		*(DTRACE_HASHPREV(hash, *nextp)) = *prevp;
7438 }
7439 
7440 /*
7441  * DTrace Utility Functions
7442  *
7443  * These are random utility functions that are _not_ called from probe context.
7444  */
7445 static int
7446 dtrace_badattr(const dtrace_attribute_t *a)
7447 {
7448 	return (a->dtat_name > DTRACE_STABILITY_MAX ||
7449 	    a->dtat_data > DTRACE_STABILITY_MAX ||
7450 	    a->dtat_class > DTRACE_CLASS_MAX);
7451 }
7452 
7453 /*
7454  * Return a duplicate copy of a string.  If the specified string is NULL,
7455  * this function returns a zero-length string.
7456  */
7457 static char *
7458 dtrace_strdup(const char *str)
7459 {
7460 	char *new = kmem_zalloc((str != NULL ? strlen(str) : 0) + 1, KM_SLEEP);
7461 
7462 	if (str != NULL)
7463 		(void) strcpy(new, str);
7464 
7465 	return (new);
7466 }
7467 
7468 #define	DTRACE_ISALPHA(c)	\
7469 	(((c) >= 'a' && (c) <= 'z') || ((c) >= 'A' && (c) <= 'Z'))
7470 
7471 static int
7472 dtrace_badname(const char *s)
7473 {
7474 	char c;
7475 
7476 	if (s == NULL || (c = *s++) == '\0')
7477 		return (0);
7478 
7479 	if (!DTRACE_ISALPHA(c) && c != '-' && c != '_' && c != '.')
7480 		return (1);
7481 
7482 	while ((c = *s++) != '\0') {
7483 		if (!DTRACE_ISALPHA(c) && (c < '0' || c > '9') &&
7484 		    c != '-' && c != '_' && c != '.' && c != '`')
7485 			return (1);
7486 	}
7487 
7488 	return (0);
7489 }
7490 
7491 static void
7492 dtrace_cred2priv(cred_t *cr, uint32_t *privp, uid_t *uidp, zoneid_t *zoneidp)
7493 {
7494 	uint32_t priv;
7495 
7496 	if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) {
7497 		/*
7498 		 * For DTRACE_PRIV_ALL, the uid and zoneid don't matter.
7499 		 */
7500 		priv = DTRACE_PRIV_ALL;
7501 	} else {
7502 		*uidp = crgetuid(cr);
7503 		*zoneidp = crgetzoneid(cr);
7504 
7505 		priv = 0;
7506 		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE))
7507 			priv |= DTRACE_PRIV_KERNEL | DTRACE_PRIV_USER;
7508 		else if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE))
7509 			priv |= DTRACE_PRIV_USER;
7510 		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE))
7511 			priv |= DTRACE_PRIV_PROC;
7512 		if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
7513 			priv |= DTRACE_PRIV_OWNER;
7514 		if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
7515 			priv |= DTRACE_PRIV_ZONEOWNER;
7516 	}
7517 
7518 	*privp = priv;
7519 }
7520 
7521 #ifdef DTRACE_ERRDEBUG
7522 static void
7523 dtrace_errdebug(const char *str)
7524 {
7525 	int hval = dtrace_hash_str((char *)str) % DTRACE_ERRHASHSZ;
7526 	int occupied = 0;
7527 
7528 	mutex_enter(&dtrace_errlock);
7529 	dtrace_errlast = str;
7530 	dtrace_errthread = curthread;
7531 
7532 	while (occupied++ < DTRACE_ERRHASHSZ) {
7533 		if (dtrace_errhash[hval].dter_msg == str) {
7534 			dtrace_errhash[hval].dter_count++;
7535 			goto out;
7536 		}
7537 
7538 		if (dtrace_errhash[hval].dter_msg != NULL) {
7539 			hval = (hval + 1) % DTRACE_ERRHASHSZ;
7540 			continue;
7541 		}
7542 
7543 		dtrace_errhash[hval].dter_msg = str;
7544 		dtrace_errhash[hval].dter_count = 1;
7545 		goto out;
7546 	}
7547 
7548 	panic("dtrace: undersized error hash");
7549 out:
7550 	mutex_exit(&dtrace_errlock);
7551 }
7552 #endif
7553 
7554 /*
7555  * DTrace Matching Functions
7556  *
7557  * These functions are used to match groups of probes, given some elements of
7558  * a probe tuple, or some globbed expressions for elements of a probe tuple.
7559  */
7560 static int
7561 dtrace_match_priv(const dtrace_probe_t *prp, uint32_t priv, uid_t uid,
7562     zoneid_t zoneid)
7563 {
7564 	if (priv != DTRACE_PRIV_ALL) {
7565 		uint32_t ppriv = prp->dtpr_provider->dtpv_priv.dtpp_flags;
7566 		uint32_t match = priv & ppriv;
7567 
7568 		/*
7569 		 * No PRIV_DTRACE_* privileges...
7570 		 */
7571 		if ((priv & (DTRACE_PRIV_PROC | DTRACE_PRIV_USER |
7572 		    DTRACE_PRIV_KERNEL)) == 0)
7573 			return (0);
7574 
7575 		/*
7576 		 * No matching bits, but there were bits to match...
7577 		 */
7578 		if (match == 0 && ppriv != 0)
7579 			return (0);
7580 
7581 		/*
7582 		 * Need to have permissions to the process, but don't...
7583 		 */
7584 		if (((ppriv & ~match) & DTRACE_PRIV_OWNER) != 0 &&
7585 		    uid != prp->dtpr_provider->dtpv_priv.dtpp_uid) {
7586 			return (0);
7587 		}
7588 
7589 		/*
7590 		 * Need to be in the same zone unless we possess the
7591 		 * privilege to examine all zones.
7592 		 */
7593 		if (((ppriv & ~match) & DTRACE_PRIV_ZONEOWNER) != 0 &&
7594 		    zoneid != prp->dtpr_provider->dtpv_priv.dtpp_zoneid) {
7595 			return (0);
7596 		}
7597 	}
7598 
7599 	return (1);
7600 }
7601 
7602 /*
7603  * dtrace_match_probe compares a dtrace_probe_t to a pre-compiled key, which
7604  * consists of input pattern strings and an ops-vector to evaluate them.
7605  * This function returns >0 for match, 0 for no match, and <0 for error.
7606  */
7607 static int
7608 dtrace_match_probe(const dtrace_probe_t *prp, const dtrace_probekey_t *pkp,
7609     uint32_t priv, uid_t uid, zoneid_t zoneid)
7610 {
7611 	dtrace_provider_t *pvp = prp->dtpr_provider;
7612 	int rv;
7613 
7614 	if (pvp->dtpv_defunct)
7615 		return (0);
7616 
7617 	if ((rv = pkp->dtpk_pmatch(pvp->dtpv_name, pkp->dtpk_prov, 0)) <= 0)
7618 		return (rv);
7619 
7620 	if ((rv = pkp->dtpk_mmatch(prp->dtpr_mod, pkp->dtpk_mod, 0)) <= 0)
7621 		return (rv);
7622 
7623 	if ((rv = pkp->dtpk_fmatch(prp->dtpr_func, pkp->dtpk_func, 0)) <= 0)
7624 		return (rv);
7625 
7626 	if ((rv = pkp->dtpk_nmatch(prp->dtpr_name, pkp->dtpk_name, 0)) <= 0)
7627 		return (rv);
7628 
7629 	if (dtrace_match_priv(prp, priv, uid, zoneid) == 0)
7630 		return (0);
7631 
7632 	return (rv);
7633 }
7634 
7635 /*
7636  * dtrace_match_glob() is a safe kernel implementation of the gmatch(3GEN)
7637  * interface for matching a glob pattern 'p' to an input string 's'.  Unlike
7638  * libc's version, the kernel version only applies to 8-bit ASCII strings.
7639  * In addition, all of the recursion cases except for '*' matching have been
7640  * unwound.  For '*', we still implement recursive evaluation, but a depth
7641  * counter is maintained and matching is aborted if we recurse too deep.
7642  * The function returns 0 if no match, >0 if match, and <0 if recursion error.
7643  */
7644 static int
7645 dtrace_match_glob(const char *s, const char *p, int depth)
7646 {
7647 	const char *olds;
7648 	char s1, c;
7649 	int gs;
7650 
7651 	if (depth > DTRACE_PROBEKEY_MAXDEPTH)
7652 		return (-1);
7653 
7654 	if (s == NULL)
7655 		s = ""; /* treat NULL as empty string */
7656 
7657 top:
7658 	olds = s;
7659 	s1 = *s++;
7660 
7661 	if (p == NULL)
7662 		return (0);
7663 
7664 	if ((c = *p++) == '\0')
7665 		return (s1 == '\0');
7666 
7667 	switch (c) {
7668 	case '[': {
7669 		int ok = 0, notflag = 0;
7670 		char lc = '\0';
7671 
7672 		if (s1 == '\0')
7673 			return (0);
7674 
7675 		if (*p == '!') {
7676 			notflag = 1;
7677 			p++;
7678 		}
7679 
7680 		if ((c = *p++) == '\0')
7681 			return (0);
7682 
7683 		do {
7684 			if (c == '-' && lc != '\0' && *p != ']') {
7685 				if ((c = *p++) == '\0')
7686 					return (0);
7687 				if (c == '\\' && (c = *p++) == '\0')
7688 					return (0);
7689 
7690 				if (notflag) {
7691 					if (s1 < lc || s1 > c)
7692 						ok++;
7693 					else
7694 						return (0);
7695 				} else if (lc <= s1 && s1 <= c)
7696 					ok++;
7697 
7698 			} else if (c == '\\' && (c = *p++) == '\0')
7699 				return (0);
7700 
7701 			lc = c; /* save left-hand 'c' for next iteration */
7702 
7703 			if (notflag) {
7704 				if (s1 != c)
7705 					ok++;
7706 				else
7707 					return (0);
7708 			} else if (s1 == c)
7709 				ok++;
7710 
7711 			if ((c = *p++) == '\0')
7712 				return (0);
7713 
7714 		} while (c != ']');
7715 
7716 		if (ok)
7717 			goto top;
7718 
7719 		return (0);
7720 	}
7721 
7722 	case '\\':
7723 		if ((c = *p++) == '\0')
7724 			return (0);
7725 		/*FALLTHRU*/
7726 
7727 	default:
7728 		if (c != s1)
7729 			return (0);
7730 		/*FALLTHRU*/
7731 
7732 	case '?':
7733 		if (s1 != '\0')
7734 			goto top;
7735 		return (0);
7736 
7737 	case '*':
7738 		while (*p == '*')
7739 			p++; /* consecutive *'s are identical to a single one */
7740 
7741 		if (*p == '\0')
7742 			return (1);
7743 
7744 		for (s = olds; *s != '\0'; s++) {
7745 			if ((gs = dtrace_match_glob(s, p, depth + 1)) != 0)
7746 				return (gs);
7747 		}
7748 
7749 		return (0);
7750 	}
7751 }
7752 
7753 /*ARGSUSED*/
7754 static int
7755 dtrace_match_string(const char *s, const char *p, int depth)
7756 {
7757 	return (s != NULL && strcmp(s, p) == 0);
7758 }
7759 
7760 /*ARGSUSED*/
7761 static int
7762 dtrace_match_nul(const char *s, const char *p, int depth)
7763 {
7764 	return (1); /* always match the empty pattern */
7765 }
7766 
7767 /*ARGSUSED*/
7768 static int
7769 dtrace_match_nonzero(const char *s, const char *p, int depth)
7770 {
7771 	return (s != NULL && s[0] != '\0');
7772 }
7773 
7774 static int
7775 dtrace_match(const dtrace_probekey_t *pkp, uint32_t priv, uid_t uid,
7776     zoneid_t zoneid, int (*matched)(dtrace_probe_t *, void *), void *arg)
7777 {
7778 	dtrace_probe_t template, *probe;
7779 	dtrace_hash_t *hash = NULL;
7780 	int len, rc, best = INT_MAX, nmatched = 0;
7781 	dtrace_id_t i;
7782 
7783 	ASSERT(MUTEX_HELD(&dtrace_lock));
7784 
7785 	/*
7786 	 * If the probe ID is specified in the key, just lookup by ID and
7787 	 * invoke the match callback once if a matching probe is found.
7788 	 */
7789 	if (pkp->dtpk_id != DTRACE_IDNONE) {
7790 		if ((probe = dtrace_probe_lookup_id(pkp->dtpk_id)) != NULL &&
7791 		    dtrace_match_probe(probe, pkp, priv, uid, zoneid) > 0) {
7792 			if ((*matched)(probe, arg) == DTRACE_MATCH_FAIL)
7793 				return (DTRACE_MATCH_FAIL);
7794 			nmatched++;
7795 		}
7796 		return (nmatched);
7797 	}
7798 
7799 	template.dtpr_mod = (char *)pkp->dtpk_mod;
7800 	template.dtpr_func = (char *)pkp->dtpk_func;
7801 	template.dtpr_name = (char *)pkp->dtpk_name;
7802 
7803 	/*
7804 	 * We want to find the most distinct of the module name, function
7805 	 * name, and name.  So for each one that is not a glob pattern or
7806 	 * empty string, we perform a lookup in the corresponding hash and
7807 	 * use the hash table with the fewest collisions to do our search.
7808 	 */
7809 	if (pkp->dtpk_mmatch == &dtrace_match_string &&
7810 	    (len = dtrace_hash_collisions(dtrace_bymod, &template)) < best) {
7811 		best = len;
7812 		hash = dtrace_bymod;
7813 	}
7814 
7815 	if (pkp->dtpk_fmatch == &dtrace_match_string &&
7816 	    (len = dtrace_hash_collisions(dtrace_byfunc, &template)) < best) {
7817 		best = len;
7818 		hash = dtrace_byfunc;
7819 	}
7820 
7821 	if (pkp->dtpk_nmatch == &dtrace_match_string &&
7822 	    (len = dtrace_hash_collisions(dtrace_byname, &template)) < best) {
7823 		best = len;
7824 		hash = dtrace_byname;
7825 	}
7826 
7827 	/*
7828 	 * If we did not select a hash table, iterate over every probe and
7829 	 * invoke our callback for each one that matches our input probe key.
7830 	 */
7831 	if (hash == NULL) {
7832 		for (i = 0; i < dtrace_nprobes; i++) {
7833 			if ((probe = dtrace_probes[i]) == NULL ||
7834 			    dtrace_match_probe(probe, pkp, priv, uid,
7835 			    zoneid) <= 0)
7836 				continue;
7837 
7838 			nmatched++;
7839 
7840 			if ((rc = (*matched)(probe, arg)) !=
7841 			    DTRACE_MATCH_NEXT) {
7842 				if (rc == DTRACE_MATCH_FAIL)
7843 					return (DTRACE_MATCH_FAIL);
7844 				break;
7845 			}
7846 		}
7847 
7848 		return (nmatched);
7849 	}
7850 
7851 	/*
7852 	 * If we selected a hash table, iterate over each probe of the same key
7853 	 * name and invoke the callback for every probe that matches the other
7854 	 * attributes of our input probe key.
7855 	 */
7856 	for (probe = dtrace_hash_lookup(hash, &template); probe != NULL;
7857 	    probe = *(DTRACE_HASHNEXT(hash, probe))) {
7858 
7859 		if (dtrace_match_probe(probe, pkp, priv, uid, zoneid) <= 0)
7860 			continue;
7861 
7862 		nmatched++;
7863 
7864 		if ((rc = (*matched)(probe, arg)) != DTRACE_MATCH_NEXT) {
7865 			if (rc == DTRACE_MATCH_FAIL)
7866 				return (DTRACE_MATCH_FAIL);
7867 			break;
7868 		}
7869 	}
7870 
7871 	return (nmatched);
7872 }
7873 
7874 /*
7875  * Return the function pointer dtrace_probecmp() should use to compare the
7876  * specified pattern with a string.  For NULL or empty patterns, we select
7877  * dtrace_match_nul().  For glob pattern strings, we use dtrace_match_glob().
7878  * For non-empty non-glob strings, we use dtrace_match_string().
7879  */
7880 static dtrace_probekey_f *
7881 dtrace_probekey_func(const char *p)
7882 {
7883 	char c;
7884 
7885 	if (p == NULL || *p == '\0')
7886 		return (&dtrace_match_nul);
7887 
7888 	while ((c = *p++) != '\0') {
7889 		if (c == '[' || c == '?' || c == '*' || c == '\\')
7890 			return (&dtrace_match_glob);
7891 	}
7892 
7893 	return (&dtrace_match_string);
7894 }
7895 
7896 /*
7897  * Build a probe comparison key for use with dtrace_match_probe() from the
7898  * given probe description.  By convention, a null key only matches anchored
7899  * probes: if each field is the empty string, reset dtpk_fmatch to
7900  * dtrace_match_nonzero().
7901  */
7902 static void
7903 dtrace_probekey(const dtrace_probedesc_t *pdp, dtrace_probekey_t *pkp)
7904 {
7905 	pkp->dtpk_prov = pdp->dtpd_provider;
7906 	pkp->dtpk_pmatch = dtrace_probekey_func(pdp->dtpd_provider);
7907 
7908 	pkp->dtpk_mod = pdp->dtpd_mod;
7909 	pkp->dtpk_mmatch = dtrace_probekey_func(pdp->dtpd_mod);
7910 
7911 	pkp->dtpk_func = pdp->dtpd_func;
7912 	pkp->dtpk_fmatch = dtrace_probekey_func(pdp->dtpd_func);
7913 
7914 	pkp->dtpk_name = pdp->dtpd_name;
7915 	pkp->dtpk_nmatch = dtrace_probekey_func(pdp->dtpd_name);
7916 
7917 	pkp->dtpk_id = pdp->dtpd_id;
7918 
7919 	if (pkp->dtpk_id == DTRACE_IDNONE &&
7920 	    pkp->dtpk_pmatch == &dtrace_match_nul &&
7921 	    pkp->dtpk_mmatch == &dtrace_match_nul &&
7922 	    pkp->dtpk_fmatch == &dtrace_match_nul &&
7923 	    pkp->dtpk_nmatch == &dtrace_match_nul)
7924 		pkp->dtpk_fmatch = &dtrace_match_nonzero;
7925 }
7926 
7927 /*
7928  * DTrace Provider-to-Framework API Functions
7929  *
7930  * These functions implement much of the Provider-to-Framework API, as
7931  * described in <sys/dtrace.h>.  The parts of the API not in this section are
7932  * the functions in the API for probe management (found below), and
7933  * dtrace_probe() itself (found above).
7934  */
7935 
7936 /*
7937  * Register the calling provider with the DTrace framework.  This should
7938  * generally be called by DTrace providers in their attach(9E) entry point.
7939  */
7940 int
7941 dtrace_register(const char *name, const dtrace_pattr_t *pap, uint32_t priv,
7942     cred_t *cr, const dtrace_pops_t *pops, void *arg, dtrace_provider_id_t *idp)
7943 {
7944 	dtrace_provider_t *provider;
7945 
7946 	if (name == NULL || pap == NULL || pops == NULL || idp == NULL) {
7947 		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
7948 		    "arguments", name ? name : "<NULL>");
7949 		return (EINVAL);
7950 	}
7951 
7952 	if (name[0] == '\0' || dtrace_badname(name)) {
7953 		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
7954 		    "provider name", name);
7955 		return (EINVAL);
7956 	}
7957 
7958 	if ((pops->dtps_provide == NULL && pops->dtps_provide_module == NULL) ||
7959 	    pops->dtps_enable == NULL || pops->dtps_disable == NULL ||
7960 	    pops->dtps_destroy == NULL ||
7961 	    ((pops->dtps_resume == NULL) != (pops->dtps_suspend == NULL))) {
7962 		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
7963 		    "provider ops", name);
7964 		return (EINVAL);
7965 	}
7966 
7967 	if (dtrace_badattr(&pap->dtpa_provider) ||
7968 	    dtrace_badattr(&pap->dtpa_mod) ||
7969 	    dtrace_badattr(&pap->dtpa_func) ||
7970 	    dtrace_badattr(&pap->dtpa_name) ||
7971 	    dtrace_badattr(&pap->dtpa_args)) {
7972 		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
7973 		    "provider attributes", name);
7974 		return (EINVAL);
7975 	}
7976 
7977 	if (priv & ~DTRACE_PRIV_ALL) {
7978 		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
7979 		    "privilege attributes", name);
7980 		return (EINVAL);
7981 	}
7982 
7983 	if ((priv & DTRACE_PRIV_KERNEL) &&
7984 	    (priv & (DTRACE_PRIV_USER | DTRACE_PRIV_OWNER)) &&
7985 	    pops->dtps_mode == NULL) {
7986 		cmn_err(CE_WARN, "failed to register provider '%s': need "
7987 		    "dtps_mode() op for given privilege attributes", name);
7988 		return (EINVAL);
7989 	}
7990 
7991 	provider = kmem_zalloc(sizeof (dtrace_provider_t), KM_SLEEP);
7992 	provider->dtpv_name = kmem_alloc(strlen(name) + 1, KM_SLEEP);
7993 	(void) strcpy(provider->dtpv_name, name);
7994 
7995 	provider->dtpv_attr = *pap;
7996 	provider->dtpv_priv.dtpp_flags = priv;
7997 	if (cr != NULL) {
7998 		provider->dtpv_priv.dtpp_uid = crgetuid(cr);
7999 		provider->dtpv_priv.dtpp_zoneid = crgetzoneid(cr);
8000 	}
8001 	provider->dtpv_pops = *pops;
8002 
8003 	if (pops->dtps_provide == NULL) {
8004 		ASSERT(pops->dtps_provide_module != NULL);
8005 		provider->dtpv_pops.dtps_provide =
8006 		    (void (*)(void *, const dtrace_probedesc_t *))dtrace_nullop;
8007 	}
8008 
8009 	if (pops->dtps_provide_module == NULL) {
8010 		ASSERT(pops->dtps_provide != NULL);
8011 		provider->dtpv_pops.dtps_provide_module =
8012 		    (void (*)(void *, struct modctl *))dtrace_nullop;
8013 	}
8014 
8015 	if (pops->dtps_suspend == NULL) {
8016 		ASSERT(pops->dtps_resume == NULL);
8017 		provider->dtpv_pops.dtps_suspend =
8018 		    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop;
8019 		provider->dtpv_pops.dtps_resume =
8020 		    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop;
8021 	}
8022 
8023 	provider->dtpv_arg = arg;
8024 	*idp = (dtrace_provider_id_t)provider;
8025 
8026 	if (pops == &dtrace_provider_ops) {
8027 		ASSERT(MUTEX_HELD(&dtrace_provider_lock));
8028 		ASSERT(MUTEX_HELD(&dtrace_lock));
8029 		ASSERT(dtrace_anon.dta_enabling == NULL);
8030 
8031 		/*
8032 		 * We make sure that the DTrace provider is at the head of
8033 		 * the provider chain.
8034 		 */
8035 		provider->dtpv_next = dtrace_provider;
8036 		dtrace_provider = provider;
8037 		return (0);
8038 	}
8039 
8040 	mutex_enter(&dtrace_provider_lock);
8041 	mutex_enter(&dtrace_lock);
8042 
8043 	/*
8044 	 * If there is at least one provider registered, we'll add this
8045 	 * provider after the first provider.
8046 	 */
8047 	if (dtrace_provider != NULL) {
8048 		provider->dtpv_next = dtrace_provider->dtpv_next;
8049 		dtrace_provider->dtpv_next = provider;
8050 	} else {
8051 		dtrace_provider = provider;
8052 	}
8053 
8054 	if (dtrace_retained != NULL) {
8055 		dtrace_enabling_provide(provider);
8056 
8057 		/*
8058 		 * Now we need to call dtrace_enabling_matchall() -- which
8059 		 * will acquire cpu_lock and dtrace_lock.  We therefore need
8060 		 * to drop all of our locks before calling into it...
8061 		 */
8062 		mutex_exit(&dtrace_lock);
8063 		mutex_exit(&dtrace_provider_lock);
8064 		dtrace_enabling_matchall();
8065 
8066 		return (0);
8067 	}
8068 
8069 	mutex_exit(&dtrace_lock);
8070 	mutex_exit(&dtrace_provider_lock);
8071 
8072 	return (0);
8073 }
8074 
8075 /*
8076  * Unregister the specified provider from the DTrace framework.  This should
8077  * generally be called by DTrace providers in their detach(9E) entry point.
8078  */
8079 int
8080 dtrace_unregister(dtrace_provider_id_t id)
8081 {
8082 	dtrace_provider_t *old = (dtrace_provider_t *)id;
8083 	dtrace_provider_t *prev = NULL;
8084 	int i, self = 0, noreap = 0;
8085 	dtrace_probe_t *probe, *first = NULL;
8086 
8087 	if (old->dtpv_pops.dtps_enable ==
8088 	    (int (*)(void *, dtrace_id_t, void *))dtrace_enable_nullop) {
8089 		/*
8090 		 * If DTrace itself is the provider, we're called with locks
8091 		 * already held.
8092 		 */
8093 		ASSERT(old == dtrace_provider);
8094 		ASSERT(dtrace_devi != NULL);
8095 		ASSERT(MUTEX_HELD(&dtrace_provider_lock));
8096 		ASSERT(MUTEX_HELD(&dtrace_lock));
8097 		self = 1;
8098 
8099 		if (dtrace_provider->dtpv_next != NULL) {
8100 			/*
8101 			 * There's another provider here; return failure.
8102 			 */
8103 			return (EBUSY);
8104 		}
8105 	} else {
8106 		mutex_enter(&dtrace_provider_lock);
8107 		mutex_enter(&mod_lock);
8108 		mutex_enter(&dtrace_lock);
8109 	}
8110 
8111 	/*
8112 	 * If anyone has /dev/dtrace open, or if there are anonymous enabled
8113 	 * probes, we refuse to let providers slither away, unless this
8114 	 * provider has already been explicitly invalidated.
8115 	 */
8116 	if (!old->dtpv_defunct &&
8117 	    (dtrace_opens || (dtrace_anon.dta_state != NULL &&
8118 	    dtrace_anon.dta_state->dts_necbs > 0))) {
8119 		if (!self) {
8120 			mutex_exit(&dtrace_lock);
8121 			mutex_exit(&mod_lock);
8122 			mutex_exit(&dtrace_provider_lock);
8123 		}
8124 		return (EBUSY);
8125 	}
8126 
8127 	/*
8128 	 * Attempt to destroy the probes associated with this provider.
8129 	 */
8130 	for (i = 0; i < dtrace_nprobes; i++) {
8131 		if ((probe = dtrace_probes[i]) == NULL)
8132 			continue;
8133 
8134 		if (probe->dtpr_provider != old)
8135 			continue;
8136 
8137 		if (probe->dtpr_ecb == NULL)
8138 			continue;
8139 
8140 		/*
8141 		 * If we are trying to unregister a defunct provider, and the
8142 		 * provider was made defunct within the interval dictated by
8143 		 * dtrace_unregister_defunct_reap, we'll (asynchronously)
8144 		 * attempt to reap our enablings.  To denote that the provider
8145 		 * should reattempt to unregister itself at some point in the
8146 		 * future, we will return a differentiable error code (EAGAIN
8147 		 * instead of EBUSY) in this case.
8148 		 */
8149 		if (dtrace_gethrtime() - old->dtpv_defunct >
8150 		    dtrace_unregister_defunct_reap)
8151 			noreap = 1;
8152 
8153 		if (!self) {
8154 			mutex_exit(&dtrace_lock);
8155 			mutex_exit(&mod_lock);
8156 			mutex_exit(&dtrace_provider_lock);
8157 		}
8158 
8159 		if (noreap)
8160 			return (EBUSY);
8161 
8162 		(void) taskq_dispatch(dtrace_taskq,
8163 		    (task_func_t *)dtrace_enabling_reap, NULL, TQ_SLEEP);
8164 
8165 		return (EAGAIN);
8166 	}
8167 
8168 	/*
8169 	 * All of the probes for this provider are disabled; we can safely
8170 	 * remove all of them from their hash chains and from the probe array.
8171 	 */
8172 	for (i = 0; i < dtrace_nprobes; i++) {
8173 		if ((probe = dtrace_probes[i]) == NULL)
8174 			continue;
8175 
8176 		if (probe->dtpr_provider != old)
8177 			continue;
8178 
8179 		dtrace_probes[i] = NULL;
8180 
8181 		dtrace_hash_remove(dtrace_bymod, probe);
8182 		dtrace_hash_remove(dtrace_byfunc, probe);
8183 		dtrace_hash_remove(dtrace_byname, probe);
8184 
8185 		if (first == NULL) {
8186 			first = probe;
8187 			probe->dtpr_nextmod = NULL;
8188 		} else {
8189 			probe->dtpr_nextmod = first;
8190 			first = probe;
8191 		}
8192 	}
8193 
8194 	/*
8195 	 * The provider's probes have been removed from the hash chains and
8196 	 * from the probe array.  Now issue a dtrace_sync() to be sure that
8197 	 * everyone has cleared out from any probe array processing.
8198 	 */
8199 	dtrace_sync();
8200 
8201 	for (probe = first; probe != NULL; probe = first) {
8202 		first = probe->dtpr_nextmod;
8203 
8204 		old->dtpv_pops.dtps_destroy(old->dtpv_arg, probe->dtpr_id,
8205 		    probe->dtpr_arg);
8206 		kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
8207 		kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
8208 		kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
8209 		vmem_free(dtrace_arena, (void *)(uintptr_t)(probe->dtpr_id), 1);
8210 		kmem_free(probe, sizeof (dtrace_probe_t));
8211 	}
8212 
8213 	if ((prev = dtrace_provider) == old) {
8214 		ASSERT(self || dtrace_devi == NULL);
8215 		ASSERT(old->dtpv_next == NULL || dtrace_devi == NULL);
8216 		dtrace_provider = old->dtpv_next;
8217 	} else {
8218 		while (prev != NULL && prev->dtpv_next != old)
8219 			prev = prev->dtpv_next;
8220 
8221 		if (prev == NULL) {
8222 			panic("attempt to unregister non-existent "
8223 			    "dtrace provider %p\n", (void *)id);
8224 		}
8225 
8226 		prev->dtpv_next = old->dtpv_next;
8227 	}
8228 
8229 	if (!self) {
8230 		mutex_exit(&dtrace_lock);
8231 		mutex_exit(&mod_lock);
8232 		mutex_exit(&dtrace_provider_lock);
8233 	}
8234 
8235 	kmem_free(old->dtpv_name, strlen(old->dtpv_name) + 1);
8236 	kmem_free(old, sizeof (dtrace_provider_t));
8237 
8238 	return (0);
8239 }
8240 
8241 /*
8242  * Invalidate the specified provider.  All subsequent probe lookups for the
8243  * specified provider will fail, but its probes will not be removed.
8244  */
8245 void
8246 dtrace_invalidate(dtrace_provider_id_t id)
8247 {
8248 	dtrace_provider_t *pvp = (dtrace_provider_t *)id;
8249 
8250 	ASSERT(pvp->dtpv_pops.dtps_enable !=
8251 	    (int (*)(void *, dtrace_id_t, void *))dtrace_enable_nullop);
8252 
8253 	mutex_enter(&dtrace_provider_lock);
8254 	mutex_enter(&dtrace_lock);
8255 
8256 	pvp->dtpv_defunct = dtrace_gethrtime();
8257 
8258 	mutex_exit(&dtrace_lock);
8259 	mutex_exit(&dtrace_provider_lock);
8260 }
8261 
8262 /*
8263  * Indicate whether or not DTrace has attached.
8264  */
8265 int
8266 dtrace_attached(void)
8267 {
8268 	/*
8269 	 * dtrace_provider will be non-NULL iff the DTrace driver has
8270 	 * attached.  (It's non-NULL because DTrace is always itself a
8271 	 * provider.)
8272 	 */
8273 	return (dtrace_provider != NULL);
8274 }
8275 
8276 /*
8277  * Remove all the unenabled probes for the given provider.  This function is
8278  * not unlike dtrace_unregister(), except that it doesn't remove the provider
8279  * -- just as many of its associated probes as it can.
8280  */
8281 int
8282 dtrace_condense(dtrace_provider_id_t id)
8283 {
8284 	dtrace_provider_t *prov = (dtrace_provider_t *)id;
8285 	int i;
8286 	dtrace_probe_t *probe;
8287 
8288 	/*
8289 	 * Make sure this isn't the dtrace provider itself.
8290 	 */
8291 	ASSERT(prov->dtpv_pops.dtps_enable !=
8292 	    (int (*)(void *, dtrace_id_t, void *))dtrace_enable_nullop);
8293 
8294 	mutex_enter(&dtrace_provider_lock);
8295 	mutex_enter(&dtrace_lock);
8296 
8297 	/*
8298 	 * Attempt to destroy the probes associated with this provider.
8299 	 */
8300 	for (i = 0; i < dtrace_nprobes; i++) {
8301 		if ((probe = dtrace_probes[i]) == NULL)
8302 			continue;
8303 
8304 		if (probe->dtpr_provider != prov)
8305 			continue;
8306 
8307 		if (probe->dtpr_ecb != NULL)
8308 			continue;
8309 
8310 		dtrace_probes[i] = NULL;
8311 
8312 		dtrace_hash_remove(dtrace_bymod, probe);
8313 		dtrace_hash_remove(dtrace_byfunc, probe);
8314 		dtrace_hash_remove(dtrace_byname, probe);
8315 
8316 		prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, i + 1,
8317 		    probe->dtpr_arg);
8318 		kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
8319 		kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
8320 		kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
8321 		kmem_free(probe, sizeof (dtrace_probe_t));
8322 		vmem_free(dtrace_arena, (void *)((uintptr_t)i + 1), 1);
8323 	}
8324 
8325 	mutex_exit(&dtrace_lock);
8326 	mutex_exit(&dtrace_provider_lock);
8327 
8328 	return (0);
8329 }
8330 
8331 /*
8332  * DTrace Probe Management Functions
8333  *
8334  * The functions in this section perform the DTrace probe management,
8335  * including functions to create probes, look-up probes, and call into the
8336  * providers to request that probes be provided.  Some of these functions are
8337  * in the Provider-to-Framework API; these functions can be identified by the
8338  * fact that they are not declared "static".
8339  */
8340 
8341 /*
8342  * Create a probe with the specified module name, function name, and name.
8343  */
8344 dtrace_id_t
8345 dtrace_probe_create(dtrace_provider_id_t prov, const char *mod,
8346     const char *func, const char *name, int aframes, void *arg)
8347 {
8348 	dtrace_probe_t *probe, **probes;
8349 	dtrace_provider_t *provider = (dtrace_provider_t *)prov;
8350 	dtrace_id_t id;
8351 
8352 	if (provider == dtrace_provider) {
8353 		ASSERT(MUTEX_HELD(&dtrace_lock));
8354 	} else {
8355 		mutex_enter(&dtrace_lock);
8356 	}
8357 
8358 	id = (dtrace_id_t)(uintptr_t)vmem_alloc(dtrace_arena, 1,
8359 	    VM_BESTFIT | VM_SLEEP);
8360 	probe = kmem_zalloc(sizeof (dtrace_probe_t), KM_SLEEP);
8361 
8362 	probe->dtpr_id = id;
8363 	probe->dtpr_gen = dtrace_probegen++;
8364 	probe->dtpr_mod = dtrace_strdup(mod);
8365 	probe->dtpr_func = dtrace_strdup(func);
8366 	probe->dtpr_name = dtrace_strdup(name);
8367 	probe->dtpr_arg = arg;
8368 	probe->dtpr_aframes = aframes;
8369 	probe->dtpr_provider = provider;
8370 
8371 	dtrace_hash_add(dtrace_bymod, probe);
8372 	dtrace_hash_add(dtrace_byfunc, probe);
8373 	dtrace_hash_add(dtrace_byname, probe);
8374 
8375 	if (id - 1 >= dtrace_nprobes) {
8376 		size_t osize = dtrace_nprobes * sizeof (dtrace_probe_t *);
8377 		size_t nsize = osize << 1;
8378 
8379 		if (nsize == 0) {
8380 			ASSERT(osize == 0);
8381 			ASSERT(dtrace_probes == NULL);
8382 			nsize = sizeof (dtrace_probe_t *);
8383 		}
8384 
8385 		probes = kmem_zalloc(nsize, KM_SLEEP);
8386 
8387 		if (dtrace_probes == NULL) {
8388 			ASSERT(osize == 0);
8389 			dtrace_probes = probes;
8390 			dtrace_nprobes = 1;
8391 		} else {
8392 			dtrace_probe_t **oprobes = dtrace_probes;
8393 
8394 			bcopy(oprobes, probes, osize);
8395 			dtrace_membar_producer();
8396 			dtrace_probes = probes;
8397 
8398 			dtrace_sync();
8399 
8400 			/*
8401 			 * All CPUs are now seeing the new probes array; we can
8402 			 * safely free the old array.
8403 			 */
8404 			kmem_free(oprobes, osize);
8405 			dtrace_nprobes <<= 1;
8406 		}
8407 
8408 		ASSERT(id - 1 < dtrace_nprobes);
8409 	}
8410 
8411 	ASSERT(dtrace_probes[id - 1] == NULL);
8412 	dtrace_probes[id - 1] = probe;
8413 
8414 	if (provider != dtrace_provider)
8415 		mutex_exit(&dtrace_lock);
8416 
8417 	return (id);
8418 }
8419 
8420 static dtrace_probe_t *
8421 dtrace_probe_lookup_id(dtrace_id_t id)
8422 {
8423 	ASSERT(MUTEX_HELD(&dtrace_lock));
8424 
8425 	if (id == 0 || id > dtrace_nprobes)
8426 		return (NULL);
8427 
8428 	return (dtrace_probes[id - 1]);
8429 }
8430 
8431 static int
8432 dtrace_probe_lookup_match(dtrace_probe_t *probe, void *arg)
8433 {
8434 	*((dtrace_id_t *)arg) = probe->dtpr_id;
8435 
8436 	return (DTRACE_MATCH_DONE);
8437 }
8438 
8439 /*
8440  * Look up a probe based on provider and one or more of module name, function
8441  * name and probe name.
8442  */
8443 dtrace_id_t
8444 dtrace_probe_lookup(dtrace_provider_id_t prid, const char *mod,
8445     const char *func, const char *name)
8446 {
8447 	dtrace_probekey_t pkey;
8448 	dtrace_id_t id;
8449 	int match;
8450 
8451 	pkey.dtpk_prov = ((dtrace_provider_t *)prid)->dtpv_name;
8452 	pkey.dtpk_pmatch = &dtrace_match_string;
8453 	pkey.dtpk_mod = mod;
8454 	pkey.dtpk_mmatch = mod ? &dtrace_match_string : &dtrace_match_nul;
8455 	pkey.dtpk_func = func;
8456 	pkey.dtpk_fmatch = func ? &dtrace_match_string : &dtrace_match_nul;
8457 	pkey.dtpk_name = name;
8458 	pkey.dtpk_nmatch = name ? &dtrace_match_string : &dtrace_match_nul;
8459 	pkey.dtpk_id = DTRACE_IDNONE;
8460 
8461 	mutex_enter(&dtrace_lock);
8462 	match = dtrace_match(&pkey, DTRACE_PRIV_ALL, 0, 0,
8463 	    dtrace_probe_lookup_match, &id);
8464 	mutex_exit(&dtrace_lock);
8465 
8466 	ASSERT(match == 1 || match == 0);
8467 	return (match ? id : 0);
8468 }
8469 
8470 /*
8471  * Returns the probe argument associated with the specified probe.
8472  */
8473 void *
8474 dtrace_probe_arg(dtrace_provider_id_t id, dtrace_id_t pid)
8475 {
8476 	dtrace_probe_t *probe;
8477 	void *rval = NULL;
8478 
8479 	mutex_enter(&dtrace_lock);
8480 
8481 	if ((probe = dtrace_probe_lookup_id(pid)) != NULL &&
8482 	    probe->dtpr_provider == (dtrace_provider_t *)id)
8483 		rval = probe->dtpr_arg;
8484 
8485 	mutex_exit(&dtrace_lock);
8486 
8487 	return (rval);
8488 }
8489 
8490 /*
8491  * Copy a probe into a probe description.
8492  */
8493 static void
8494 dtrace_probe_description(const dtrace_probe_t *prp, dtrace_probedesc_t *pdp)
8495 {
8496 	bzero(pdp, sizeof (dtrace_probedesc_t));
8497 	pdp->dtpd_id = prp->dtpr_id;
8498 
8499 	(void) strncpy(pdp->dtpd_provider,
8500 	    prp->dtpr_provider->dtpv_name, DTRACE_PROVNAMELEN - 1);
8501 
8502 	(void) strncpy(pdp->dtpd_mod, prp->dtpr_mod, DTRACE_MODNAMELEN - 1);
8503 	(void) strncpy(pdp->dtpd_func, prp->dtpr_func, DTRACE_FUNCNAMELEN - 1);
8504 	(void) strncpy(pdp->dtpd_name, prp->dtpr_name, DTRACE_NAMELEN - 1);
8505 }
8506 
8507 /*
8508  * Called to indicate that a probe -- or probes -- should be provided by a
8509  * specfied provider.  If the specified description is NULL, the provider will
8510  * be told to provide all of its probes.  (This is done whenever a new
8511  * consumer comes along, or whenever a retained enabling is to be matched.) If
8512  * the specified description is non-NULL, the provider is given the
8513  * opportunity to dynamically provide the specified probe, allowing providers
8514  * to support the creation of probes on-the-fly.  (So-called _autocreated_
8515  * probes.)  If the provider is NULL, the operations will be applied to all
8516  * providers; if the provider is non-NULL the operations will only be applied
8517  * to the specified provider.  The dtrace_provider_lock must be held, and the
8518  * dtrace_lock must _not_ be held -- the provider's dtps_provide() operation
8519  * will need to grab the dtrace_lock when it reenters the framework through
8520  * dtrace_probe_lookup(), dtrace_probe_create(), etc.
8521  */
8522 static void
8523 dtrace_probe_provide(dtrace_probedesc_t *desc, dtrace_provider_t *prv)
8524 {
8525 	struct modctl *ctl;
8526 	int all = 0;
8527 
8528 	ASSERT(MUTEX_HELD(&dtrace_provider_lock));
8529 
8530 	if (prv == NULL) {
8531 		all = 1;
8532 		prv = dtrace_provider;
8533 	}
8534 
8535 	do {
8536 		/*
8537 		 * First, call the blanket provide operation.
8538 		 */
8539 		prv->dtpv_pops.dtps_provide(prv->dtpv_arg, desc);
8540 
8541 		/*
8542 		 * Now call the per-module provide operation.  We will grab
8543 		 * mod_lock to prevent the list from being modified.  Note
8544 		 * that this also prevents the mod_busy bits from changing.
8545 		 * (mod_busy can only be changed with mod_lock held.)
8546 		 */
8547 		mutex_enter(&mod_lock);
8548 
8549 		ctl = &modules;
8550 		do {
8551 			if (ctl->mod_busy || ctl->mod_mp == NULL)
8552 				continue;
8553 
8554 			prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl);
8555 
8556 		} while ((ctl = ctl->mod_next) != &modules);
8557 
8558 		mutex_exit(&mod_lock);
8559 	} while (all && (prv = prv->dtpv_next) != NULL);
8560 }
8561 
8562 /*
8563  * Iterate over each probe, and call the Framework-to-Provider API function
8564  * denoted by offs.
8565  */
8566 static void
8567 dtrace_probe_foreach(uintptr_t offs)
8568 {
8569 	dtrace_provider_t *prov;
8570 	void (*func)(void *, dtrace_id_t, void *);
8571 	dtrace_probe_t *probe;
8572 	dtrace_icookie_t cookie;
8573 	int i;
8574 
8575 	/*
8576 	 * We disable interrupts to walk through the probe array.  This is
8577 	 * safe -- the dtrace_sync() in dtrace_unregister() assures that we
8578 	 * won't see stale data.
8579 	 */
8580 	cookie = dtrace_interrupt_disable();
8581 
8582 	for (i = 0; i < dtrace_nprobes; i++) {
8583 		if ((probe = dtrace_probes[i]) == NULL)
8584 			continue;
8585 
8586 		if (probe->dtpr_ecb == NULL) {
8587 			/*
8588 			 * This probe isn't enabled -- don't call the function.
8589 			 */
8590 			continue;
8591 		}
8592 
8593 		prov = probe->dtpr_provider;
8594 		func = *((void(**)(void *, dtrace_id_t, void *))
8595 		    ((uintptr_t)&prov->dtpv_pops + offs));
8596 
8597 		func(prov->dtpv_arg, i + 1, probe->dtpr_arg);
8598 	}
8599 
8600 	dtrace_interrupt_enable(cookie);
8601 }
8602 
8603 static int
8604 dtrace_probe_enable(const dtrace_probedesc_t *desc, dtrace_enabling_t *enab)
8605 {
8606 	dtrace_probekey_t pkey;
8607 	uint32_t priv;
8608 	uid_t uid;
8609 	zoneid_t zoneid;
8610 
8611 	ASSERT(MUTEX_HELD(&dtrace_lock));
8612 	dtrace_ecb_create_cache = NULL;
8613 
8614 	if (desc == NULL) {
8615 		/*
8616 		 * If we're passed a NULL description, we're being asked to
8617 		 * create an ECB with a NULL probe.
8618 		 */
8619 		(void) dtrace_ecb_create_enable(NULL, enab);
8620 		return (0);
8621 	}
8622 
8623 	dtrace_probekey(desc, &pkey);
8624 	dtrace_cred2priv(enab->dten_vstate->dtvs_state->dts_cred.dcr_cred,
8625 	    &priv, &uid, &zoneid);
8626 
8627 	return (dtrace_match(&pkey, priv, uid, zoneid, dtrace_ecb_create_enable,
8628 	    enab));
8629 }
8630 
8631 /*
8632  * DTrace Helper Provider Functions
8633  */
8634 static void
8635 dtrace_dofattr2attr(dtrace_attribute_t *attr, const dof_attr_t dofattr)
8636 {
8637 	attr->dtat_name = DOF_ATTR_NAME(dofattr);
8638 	attr->dtat_data = DOF_ATTR_DATA(dofattr);
8639 	attr->dtat_class = DOF_ATTR_CLASS(dofattr);
8640 }
8641 
8642 static void
8643 dtrace_dofprov2hprov(dtrace_helper_provdesc_t *hprov,
8644     const dof_provider_t *dofprov, char *strtab)
8645 {
8646 	hprov->dthpv_provname = strtab + dofprov->dofpv_name;
8647 	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_provider,
8648 	    dofprov->dofpv_provattr);
8649 	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_mod,
8650 	    dofprov->dofpv_modattr);
8651 	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_func,
8652 	    dofprov->dofpv_funcattr);
8653 	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_name,
8654 	    dofprov->dofpv_nameattr);
8655 	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_args,
8656 	    dofprov->dofpv_argsattr);
8657 }
8658 
8659 static void
8660 dtrace_helper_provide_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid)
8661 {
8662 	uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
8663 	dof_hdr_t *dof = (dof_hdr_t *)daddr;
8664 	dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec;
8665 	dof_provider_t *provider;
8666 	dof_probe_t *probe;
8667 	uint32_t *off, *enoff;
8668 	uint8_t *arg;
8669 	char *strtab;
8670 	uint_t i, nprobes;
8671 	dtrace_helper_provdesc_t dhpv;
8672 	dtrace_helper_probedesc_t dhpb;
8673 	dtrace_meta_t *meta = dtrace_meta_pid;
8674 	dtrace_mops_t *mops = &meta->dtm_mops;
8675 	void *parg;
8676 
8677 	provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
8678 	str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8679 	    provider->dofpv_strtab * dof->dofh_secsize);
8680 	prb_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8681 	    provider->dofpv_probes * dof->dofh_secsize);
8682 	arg_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8683 	    provider->dofpv_prargs * dof->dofh_secsize);
8684 	off_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8685 	    provider->dofpv_proffs * dof->dofh_secsize);
8686 
8687 	strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
8688 	off = (uint32_t *)(uintptr_t)(daddr + off_sec->dofs_offset);
8689 	arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset);
8690 	enoff = NULL;
8691 
8692 	/*
8693 	 * See dtrace_helper_provider_validate().
8694 	 */
8695 	if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 &&
8696 	    provider->dofpv_prenoffs != DOF_SECT_NONE) {
8697 		enoff_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8698 		    provider->dofpv_prenoffs * dof->dofh_secsize);
8699 		enoff = (uint32_t *)(uintptr_t)(daddr + enoff_sec->dofs_offset);
8700 	}
8701 
8702 	nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize;
8703 
8704 	/*
8705 	 * Create the provider.
8706 	 */
8707 	dtrace_dofprov2hprov(&dhpv, provider, strtab);
8708 
8709 	if ((parg = mops->dtms_provide_pid(meta->dtm_arg, &dhpv, pid)) == NULL)
8710 		return;
8711 
8712 	meta->dtm_count++;
8713 
8714 	/*
8715 	 * Create the probes.
8716 	 */
8717 	for (i = 0; i < nprobes; i++) {
8718 		probe = (dof_probe_t *)(uintptr_t)(daddr +
8719 		    prb_sec->dofs_offset + i * prb_sec->dofs_entsize);
8720 
8721 		dhpb.dthpb_mod = dhp->dofhp_mod;
8722 		dhpb.dthpb_func = strtab + probe->dofpr_func;
8723 		dhpb.dthpb_name = strtab + probe->dofpr_name;
8724 		dhpb.dthpb_base = probe->dofpr_addr;
8725 		dhpb.dthpb_offs = off + probe->dofpr_offidx;
8726 		dhpb.dthpb_noffs = probe->dofpr_noffs;
8727 		if (enoff != NULL) {
8728 			dhpb.dthpb_enoffs = enoff + probe->dofpr_enoffidx;
8729 			dhpb.dthpb_nenoffs = probe->dofpr_nenoffs;
8730 		} else {
8731 			dhpb.dthpb_enoffs = NULL;
8732 			dhpb.dthpb_nenoffs = 0;
8733 		}
8734 		dhpb.dthpb_args = arg + probe->dofpr_argidx;
8735 		dhpb.dthpb_nargc = probe->dofpr_nargc;
8736 		dhpb.dthpb_xargc = probe->dofpr_xargc;
8737 		dhpb.dthpb_ntypes = strtab + probe->dofpr_nargv;
8738 		dhpb.dthpb_xtypes = strtab + probe->dofpr_xargv;
8739 
8740 		mops->dtms_create_probe(meta->dtm_arg, parg, &dhpb);
8741 	}
8742 }
8743 
8744 static void
8745 dtrace_helper_provide(dof_helper_t *dhp, pid_t pid)
8746 {
8747 	uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
8748 	dof_hdr_t *dof = (dof_hdr_t *)daddr;
8749 	int i;
8750 
8751 	ASSERT(MUTEX_HELD(&dtrace_meta_lock));
8752 
8753 	for (i = 0; i < dof->dofh_secnum; i++) {
8754 		dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
8755 		    dof->dofh_secoff + i * dof->dofh_secsize);
8756 
8757 		if (sec->dofs_type != DOF_SECT_PROVIDER)
8758 			continue;
8759 
8760 		dtrace_helper_provide_one(dhp, sec, pid);
8761 	}
8762 
8763 	/*
8764 	 * We may have just created probes, so we must now rematch against
8765 	 * any retained enablings.  Note that this call will acquire both
8766 	 * cpu_lock and dtrace_lock; the fact that we are holding
8767 	 * dtrace_meta_lock now is what defines the ordering with respect to
8768 	 * these three locks.
8769 	 */
8770 	dtrace_enabling_matchall();
8771 }
8772 
8773 static void
8774 dtrace_helper_provider_remove_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid)
8775 {
8776 	uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
8777 	dof_hdr_t *dof = (dof_hdr_t *)daddr;
8778 	dof_sec_t *str_sec;
8779 	dof_provider_t *provider;
8780 	char *strtab;
8781 	dtrace_helper_provdesc_t dhpv;
8782 	dtrace_meta_t *meta = dtrace_meta_pid;
8783 	dtrace_mops_t *mops = &meta->dtm_mops;
8784 
8785 	provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
8786 	str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8787 	    provider->dofpv_strtab * dof->dofh_secsize);
8788 
8789 	strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
8790 
8791 	/*
8792 	 * Create the provider.
8793 	 */
8794 	dtrace_dofprov2hprov(&dhpv, provider, strtab);
8795 
8796 	mops->dtms_remove_pid(meta->dtm_arg, &dhpv, pid);
8797 
8798 	meta->dtm_count--;
8799 }
8800 
8801 static void
8802 dtrace_helper_provider_remove(dof_helper_t *dhp, pid_t pid)
8803 {
8804 	uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
8805 	dof_hdr_t *dof = (dof_hdr_t *)daddr;
8806 	int i;
8807 
8808 	ASSERT(MUTEX_HELD(&dtrace_meta_lock));
8809 
8810 	for (i = 0; i < dof->dofh_secnum; i++) {
8811 		dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
8812 		    dof->dofh_secoff + i * dof->dofh_secsize);
8813 
8814 		if (sec->dofs_type != DOF_SECT_PROVIDER)
8815 			continue;
8816 
8817 		dtrace_helper_provider_remove_one(dhp, sec, pid);
8818 	}
8819 }
8820 
8821 /*
8822  * DTrace Meta Provider-to-Framework API Functions
8823  *
8824  * These functions implement the Meta Provider-to-Framework API, as described
8825  * in <sys/dtrace.h>.
8826  */
8827 int
8828 dtrace_meta_register(const char *name, const dtrace_mops_t *mops, void *arg,
8829     dtrace_meta_provider_id_t *idp)
8830 {
8831 	dtrace_meta_t *meta;
8832 	dtrace_helpers_t *help, *next;
8833 	int i;
8834 
8835 	*idp = DTRACE_METAPROVNONE;
8836 
8837 	/*
8838 	 * We strictly don't need the name, but we hold onto it for
8839 	 * debuggability. All hail error queues!
8840 	 */
8841 	if (name == NULL) {
8842 		cmn_err(CE_WARN, "failed to register meta-provider: "
8843 		    "invalid name");
8844 		return (EINVAL);
8845 	}
8846 
8847 	if (mops == NULL ||
8848 	    mops->dtms_create_probe == NULL ||
8849 	    mops->dtms_provide_pid == NULL ||
8850 	    mops->dtms_remove_pid == NULL) {
8851 		cmn_err(CE_WARN, "failed to register meta-register %s: "
8852 		    "invalid ops", name);
8853 		return (EINVAL);
8854 	}
8855 
8856 	meta = kmem_zalloc(sizeof (dtrace_meta_t), KM_SLEEP);
8857 	meta->dtm_mops = *mops;
8858 	meta->dtm_name = kmem_alloc(strlen(name) + 1, KM_SLEEP);
8859 	(void) strcpy(meta->dtm_name, name);
8860 	meta->dtm_arg = arg;
8861 
8862 	mutex_enter(&dtrace_meta_lock);
8863 	mutex_enter(&dtrace_lock);
8864 
8865 	if (dtrace_meta_pid != NULL) {
8866 		mutex_exit(&dtrace_lock);
8867 		mutex_exit(&dtrace_meta_lock);
8868 		cmn_err(CE_WARN, "failed to register meta-register %s: "
8869 		    "user-land meta-provider exists", name);
8870 		kmem_free(meta->dtm_name, strlen(meta->dtm_name) + 1);
8871 		kmem_free(meta, sizeof (dtrace_meta_t));
8872 		return (EINVAL);
8873 	}
8874 
8875 	dtrace_meta_pid = meta;
8876 	*idp = (dtrace_meta_provider_id_t)meta;
8877 
8878 	/*
8879 	 * If there are providers and probes ready to go, pass them
8880 	 * off to the new meta provider now.
8881 	 */
8882 
8883 	help = dtrace_deferred_pid;
8884 	dtrace_deferred_pid = NULL;
8885 
8886 	mutex_exit(&dtrace_lock);
8887 
8888 	while (help != NULL) {
8889 		for (i = 0; i < help->dthps_nprovs; i++) {
8890 			dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov,
8891 			    help->dthps_pid);
8892 		}
8893 
8894 		next = help->dthps_next;
8895 		help->dthps_next = NULL;
8896 		help->dthps_prev = NULL;
8897 		help->dthps_deferred = 0;
8898 		help = next;
8899 	}
8900 
8901 	mutex_exit(&dtrace_meta_lock);
8902 
8903 	return (0);
8904 }
8905 
8906 int
8907 dtrace_meta_unregister(dtrace_meta_provider_id_t id)
8908 {
8909 	dtrace_meta_t **pp, *old = (dtrace_meta_t *)id;
8910 
8911 	mutex_enter(&dtrace_meta_lock);
8912 	mutex_enter(&dtrace_lock);
8913 
8914 	if (old == dtrace_meta_pid) {
8915 		pp = &dtrace_meta_pid;
8916 	} else {
8917 		panic("attempt to unregister non-existent "
8918 		    "dtrace meta-provider %p\n", (void *)old);
8919 	}
8920 
8921 	if (old->dtm_count != 0) {
8922 		mutex_exit(&dtrace_lock);
8923 		mutex_exit(&dtrace_meta_lock);
8924 		return (EBUSY);
8925 	}
8926 
8927 	*pp = NULL;
8928 
8929 	mutex_exit(&dtrace_lock);
8930 	mutex_exit(&dtrace_meta_lock);
8931 
8932 	kmem_free(old->dtm_name, strlen(old->dtm_name) + 1);
8933 	kmem_free(old, sizeof (dtrace_meta_t));
8934 
8935 	return (0);
8936 }
8937 
8938 
8939 /*
8940  * DTrace DIF Object Functions
8941  */
8942 static int
8943 dtrace_difo_err(uint_t pc, const char *format, ...)
8944 {
8945 	if (dtrace_err_verbose) {
8946 		va_list alist;
8947 
8948 		(void) uprintf("dtrace DIF object error: [%u]: ", pc);
8949 		va_start(alist, format);
8950 		(void) vuprintf(format, alist);
8951 		va_end(alist);
8952 	}
8953 
8954 #ifdef DTRACE_ERRDEBUG
8955 	dtrace_errdebug(format);
8956 #endif
8957 	return (1);
8958 }
8959 
8960 /*
8961  * Validate a DTrace DIF object by checking the IR instructions.  The following
8962  * rules are currently enforced by dtrace_difo_validate():
8963  *
8964  * 1. Each instruction must have a valid opcode
8965  * 2. Each register, string, variable, or subroutine reference must be valid
8966  * 3. No instruction can modify register %r0 (must be zero)
8967  * 4. All instruction reserved bits must be set to zero
8968  * 5. The last instruction must be a "ret" instruction
8969  * 6. All branch targets must reference a valid instruction _after_ the branch
8970  */
8971 static int
8972 dtrace_difo_validate(dtrace_difo_t *dp, dtrace_vstate_t *vstate, uint_t nregs,
8973     cred_t *cr)
8974 {
8975 	int err = 0, i;
8976 	int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err;
8977 	int kcheckload;
8978 	uint_t pc;
8979 
8980 	kcheckload = cr == NULL ||
8981 	    (vstate->dtvs_state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) == 0;
8982 
8983 	dp->dtdo_destructive = 0;
8984 
8985 	for (pc = 0; pc < dp->dtdo_len && err == 0; pc++) {
8986 		dif_instr_t instr = dp->dtdo_buf[pc];
8987 
8988 		uint_t r1 = DIF_INSTR_R1(instr);
8989 		uint_t r2 = DIF_INSTR_R2(instr);
8990 		uint_t rd = DIF_INSTR_RD(instr);
8991 		uint_t rs = DIF_INSTR_RS(instr);
8992 		uint_t label = DIF_INSTR_LABEL(instr);
8993 		uint_t v = DIF_INSTR_VAR(instr);
8994 		uint_t subr = DIF_INSTR_SUBR(instr);
8995 		uint_t type = DIF_INSTR_TYPE(instr);
8996 		uint_t op = DIF_INSTR_OP(instr);
8997 
8998 		switch (op) {
8999 		case DIF_OP_OR:
9000 		case DIF_OP_XOR:
9001 		case DIF_OP_AND:
9002 		case DIF_OP_SLL:
9003 		case DIF_OP_SRL:
9004 		case DIF_OP_SRA:
9005 		case DIF_OP_SUB:
9006 		case DIF_OP_ADD:
9007 		case DIF_OP_MUL:
9008 		case DIF_OP_SDIV:
9009 		case DIF_OP_UDIV:
9010 		case DIF_OP_SREM:
9011 		case DIF_OP_UREM:
9012 		case DIF_OP_COPYS:
9013 			if (r1 >= nregs)
9014 				err += efunc(pc, "invalid register %u\n", r1);
9015 			if (r2 >= nregs)
9016 				err += efunc(pc, "invalid register %u\n", r2);
9017 			if (rd >= nregs)
9018 				err += efunc(pc, "invalid register %u\n", rd);
9019 			if (rd == 0)
9020 				err += efunc(pc, "cannot write to %r0\n");
9021 			break;
9022 		case DIF_OP_NOT:
9023 		case DIF_OP_MOV:
9024 		case DIF_OP_ALLOCS:
9025 			if (r1 >= nregs)
9026 				err += efunc(pc, "invalid register %u\n", r1);
9027 			if (r2 != 0)
9028 				err += efunc(pc, "non-zero reserved bits\n");
9029 			if (rd >= nregs)
9030 				err += efunc(pc, "invalid register %u\n", rd);
9031 			if (rd == 0)
9032 				err += efunc(pc, "cannot write to %r0\n");
9033 			break;
9034 		case DIF_OP_LDSB:
9035 		case DIF_OP_LDSH:
9036 		case DIF_OP_LDSW:
9037 		case DIF_OP_LDUB:
9038 		case DIF_OP_LDUH:
9039 		case DIF_OP_LDUW:
9040 		case DIF_OP_LDX:
9041 			if (r1 >= nregs)
9042 				err += efunc(pc, "invalid register %u\n", r1);
9043 			if (r2 != 0)
9044 				err += efunc(pc, "non-zero reserved bits\n");
9045 			if (rd >= nregs)
9046 				err += efunc(pc, "invalid register %u\n", rd);
9047 			if (rd == 0)
9048 				err += efunc(pc, "cannot write to %r0\n");
9049 			if (kcheckload)
9050 				dp->dtdo_buf[pc] = DIF_INSTR_LOAD(op +
9051 				    DIF_OP_RLDSB - DIF_OP_LDSB, r1, rd);
9052 			break;
9053 		case DIF_OP_RLDSB:
9054 		case DIF_OP_RLDSH:
9055 		case DIF_OP_RLDSW:
9056 		case DIF_OP_RLDUB:
9057 		case DIF_OP_RLDUH:
9058 		case DIF_OP_RLDUW:
9059 		case DIF_OP_RLDX:
9060 			if (r1 >= nregs)
9061 				err += efunc(pc, "invalid register %u\n", r1);
9062 			if (r2 != 0)
9063 				err += efunc(pc, "non-zero reserved bits\n");
9064 			if (rd >= nregs)
9065 				err += efunc(pc, "invalid register %u\n", rd);
9066 			if (rd == 0)
9067 				err += efunc(pc, "cannot write to %r0\n");
9068 			break;
9069 		case DIF_OP_ULDSB:
9070 		case DIF_OP_ULDSH:
9071 		case DIF_OP_ULDSW:
9072 		case DIF_OP_ULDUB:
9073 		case DIF_OP_ULDUH:
9074 		case DIF_OP_ULDUW:
9075 		case DIF_OP_ULDX:
9076 			if (r1 >= nregs)
9077 				err += efunc(pc, "invalid register %u\n", r1);
9078 			if (r2 != 0)
9079 				err += efunc(pc, "non-zero reserved bits\n");
9080 			if (rd >= nregs)
9081 				err += efunc(pc, "invalid register %u\n", rd);
9082 			if (rd == 0)
9083 				err += efunc(pc, "cannot write to %r0\n");
9084 			break;
9085 		case DIF_OP_STB:
9086 		case DIF_OP_STH:
9087 		case DIF_OP_STW:
9088 		case DIF_OP_STX:
9089 			if (r1 >= nregs)
9090 				err += efunc(pc, "invalid register %u\n", r1);
9091 			if (r2 != 0)
9092 				err += efunc(pc, "non-zero reserved bits\n");
9093 			if (rd >= nregs)
9094 				err += efunc(pc, "invalid register %u\n", rd);
9095 			if (rd == 0)
9096 				err += efunc(pc, "cannot write to 0 address\n");
9097 			break;
9098 		case DIF_OP_CMP:
9099 		case DIF_OP_SCMP:
9100 			if (r1 >= nregs)
9101 				err += efunc(pc, "invalid register %u\n", r1);
9102 			if (r2 >= nregs)
9103 				err += efunc(pc, "invalid register %u\n", r2);
9104 			if (rd != 0)
9105 				err += efunc(pc, "non-zero reserved bits\n");
9106 			break;
9107 		case DIF_OP_TST:
9108 			if (r1 >= nregs)
9109 				err += efunc(pc, "invalid register %u\n", r1);
9110 			if (r2 != 0 || rd != 0)
9111 				err += efunc(pc, "non-zero reserved bits\n");
9112 			break;
9113 		case DIF_OP_BA:
9114 		case DIF_OP_BE:
9115 		case DIF_OP_BNE:
9116 		case DIF_OP_BG:
9117 		case DIF_OP_BGU:
9118 		case DIF_OP_BGE:
9119 		case DIF_OP_BGEU:
9120 		case DIF_OP_BL:
9121 		case DIF_OP_BLU:
9122 		case DIF_OP_BLE:
9123 		case DIF_OP_BLEU:
9124 			if (label >= dp->dtdo_len) {
9125 				err += efunc(pc, "invalid branch target %u\n",
9126 				    label);
9127 			}
9128 			if (label <= pc) {
9129 				err += efunc(pc, "backward branch to %u\n",
9130 				    label);
9131 			}
9132 			break;
9133 		case DIF_OP_RET:
9134 			if (r1 != 0 || r2 != 0)
9135 				err += efunc(pc, "non-zero reserved bits\n");
9136 			if (rd >= nregs)
9137 				err += efunc(pc, "invalid register %u\n", rd);
9138 			break;
9139 		case DIF_OP_NOP:
9140 		case DIF_OP_POPTS:
9141 		case DIF_OP_FLUSHTS:
9142 			if (r1 != 0 || r2 != 0 || rd != 0)
9143 				err += efunc(pc, "non-zero reserved bits\n");
9144 			break;
9145 		case DIF_OP_SETX:
9146 			if (DIF_INSTR_INTEGER(instr) >= dp->dtdo_intlen) {
9147 				err += efunc(pc, "invalid integer ref %u\n",
9148 				    DIF_INSTR_INTEGER(instr));
9149 			}
9150 			if (rd >= nregs)
9151 				err += efunc(pc, "invalid register %u\n", rd);
9152 			if (rd == 0)
9153 				err += efunc(pc, "cannot write to %r0\n");
9154 			break;
9155 		case DIF_OP_SETS:
9156 			if (DIF_INSTR_STRING(instr) >= dp->dtdo_strlen) {
9157 				err += efunc(pc, "invalid string ref %u\n",
9158 				    DIF_INSTR_STRING(instr));
9159 			}
9160 			if (rd >= nregs)
9161 				err += efunc(pc, "invalid register %u\n", rd);
9162 			if (rd == 0)
9163 				err += efunc(pc, "cannot write to %r0\n");
9164 			break;
9165 		case DIF_OP_LDGA:
9166 		case DIF_OP_LDTA:
9167 			if (r1 > DIF_VAR_ARRAY_MAX)
9168 				err += efunc(pc, "invalid array %u\n", r1);
9169 			if (r2 >= nregs)
9170 				err += efunc(pc, "invalid register %u\n", r2);
9171 			if (rd >= nregs)
9172 				err += efunc(pc, "invalid register %u\n", rd);
9173 			if (rd == 0)
9174 				err += efunc(pc, "cannot write to %r0\n");
9175 			break;
9176 		case DIF_OP_LDGS:
9177 		case DIF_OP_LDTS:
9178 		case DIF_OP_LDLS:
9179 		case DIF_OP_LDGAA:
9180 		case DIF_OP_LDTAA:
9181 			if (v < DIF_VAR_OTHER_MIN || v > DIF_VAR_OTHER_MAX)
9182 				err += efunc(pc, "invalid variable %u\n", v);
9183 			if (rd >= nregs)
9184 				err += efunc(pc, "invalid register %u\n", rd);
9185 			if (rd == 0)
9186 				err += efunc(pc, "cannot write to %r0\n");
9187 			break;
9188 		case DIF_OP_STGS:
9189 		case DIF_OP_STTS:
9190 		case DIF_OP_STLS:
9191 		case DIF_OP_STGAA:
9192 		case DIF_OP_STTAA:
9193 			if (v < DIF_VAR_OTHER_UBASE || v > DIF_VAR_OTHER_MAX)
9194 				err += efunc(pc, "invalid variable %u\n", v);
9195 			if (rs >= nregs)
9196 				err += efunc(pc, "invalid register %u\n", rd);
9197 			break;
9198 		case DIF_OP_CALL:
9199 			if (subr > DIF_SUBR_MAX)
9200 				err += efunc(pc, "invalid subr %u\n", subr);
9201 			if (rd >= nregs)
9202 				err += efunc(pc, "invalid register %u\n", rd);
9203 			if (rd == 0)
9204 				err += efunc(pc, "cannot write to %r0\n");
9205 
9206 			if (subr == DIF_SUBR_COPYOUT ||
9207 			    subr == DIF_SUBR_COPYOUTSTR) {
9208 				dp->dtdo_destructive = 1;
9209 			}
9210 
9211 			if (subr == DIF_SUBR_GETF) {
9212 				/*
9213 				 * If we have a getf() we need to record that
9214 				 * in our state.  Note that our state can be
9215 				 * NULL if this is a helper -- but in that
9216 				 * case, the call to getf() is itself illegal,
9217 				 * and will be caught (slightly later) when
9218 				 * the helper is validated.
9219 				 */
9220 				if (vstate->dtvs_state != NULL)
9221 					vstate->dtvs_state->dts_getf++;
9222 			}
9223 
9224 			break;
9225 		case DIF_OP_PUSHTR:
9226 			if (type != DIF_TYPE_STRING && type != DIF_TYPE_CTF)
9227 				err += efunc(pc, "invalid ref type %u\n", type);
9228 			if (r2 >= nregs)
9229 				err += efunc(pc, "invalid register %u\n", r2);
9230 			if (rs >= nregs)
9231 				err += efunc(pc, "invalid register %u\n", rs);
9232 			break;
9233 		case DIF_OP_PUSHTV:
9234 			if (type != DIF_TYPE_CTF)
9235 				err += efunc(pc, "invalid val type %u\n", type);
9236 			if (r2 >= nregs)
9237 				err += efunc(pc, "invalid register %u\n", r2);
9238 			if (rs >= nregs)
9239 				err += efunc(pc, "invalid register %u\n", rs);
9240 			break;
9241 		default:
9242 			err += efunc(pc, "invalid opcode %u\n",
9243 			    DIF_INSTR_OP(instr));
9244 		}
9245 	}
9246 
9247 	if (dp->dtdo_len != 0 &&
9248 	    DIF_INSTR_OP(dp->dtdo_buf[dp->dtdo_len - 1]) != DIF_OP_RET) {
9249 		err += efunc(dp->dtdo_len - 1,
9250 		    "expected 'ret' as last DIF instruction\n");
9251 	}
9252 
9253 	if (!(dp->dtdo_rtype.dtdt_flags & (DIF_TF_BYREF | DIF_TF_BYUREF))) {
9254 		/*
9255 		 * If we're not returning by reference, the size must be either
9256 		 * 0 or the size of one of the base types.
9257 		 */
9258 		switch (dp->dtdo_rtype.dtdt_size) {
9259 		case 0:
9260 		case sizeof (uint8_t):
9261 		case sizeof (uint16_t):
9262 		case sizeof (uint32_t):
9263 		case sizeof (uint64_t):
9264 			break;
9265 
9266 		default:
9267 			err += efunc(dp->dtdo_len - 1, "bad return size\n");
9268 		}
9269 	}
9270 
9271 	for (i = 0; i < dp->dtdo_varlen && err == 0; i++) {
9272 		dtrace_difv_t *v = &dp->dtdo_vartab[i], *existing = NULL;
9273 		dtrace_diftype_t *vt, *et;
9274 		uint_t id, ndx;
9275 
9276 		if (v->dtdv_scope != DIFV_SCOPE_GLOBAL &&
9277 		    v->dtdv_scope != DIFV_SCOPE_THREAD &&
9278 		    v->dtdv_scope != DIFV_SCOPE_LOCAL) {
9279 			err += efunc(i, "unrecognized variable scope %d\n",
9280 			    v->dtdv_scope);
9281 			break;
9282 		}
9283 
9284 		if (v->dtdv_kind != DIFV_KIND_ARRAY &&
9285 		    v->dtdv_kind != DIFV_KIND_SCALAR) {
9286 			err += efunc(i, "unrecognized variable type %d\n",
9287 			    v->dtdv_kind);
9288 			break;
9289 		}
9290 
9291 		if ((id = v->dtdv_id) > DIF_VARIABLE_MAX) {
9292 			err += efunc(i, "%d exceeds variable id limit\n", id);
9293 			break;
9294 		}
9295 
9296 		if (id < DIF_VAR_OTHER_UBASE)
9297 			continue;
9298 
9299 		/*
9300 		 * For user-defined variables, we need to check that this
9301 		 * definition is identical to any previous definition that we
9302 		 * encountered.
9303 		 */
9304 		ndx = id - DIF_VAR_OTHER_UBASE;
9305 
9306 		switch (v->dtdv_scope) {
9307 		case DIFV_SCOPE_GLOBAL:
9308 			if (ndx < vstate->dtvs_nglobals) {
9309 				dtrace_statvar_t *svar;
9310 
9311 				if ((svar = vstate->dtvs_globals[ndx]) != NULL)
9312 					existing = &svar->dtsv_var;
9313 			}
9314 
9315 			break;
9316 
9317 		case DIFV_SCOPE_THREAD:
9318 			if (ndx < vstate->dtvs_ntlocals)
9319 				existing = &vstate->dtvs_tlocals[ndx];
9320 			break;
9321 
9322 		case DIFV_SCOPE_LOCAL:
9323 			if (ndx < vstate->dtvs_nlocals) {
9324 				dtrace_statvar_t *svar;
9325 
9326 				if ((svar = vstate->dtvs_locals[ndx]) != NULL)
9327 					existing = &svar->dtsv_var;
9328 			}
9329 
9330 			break;
9331 		}
9332 
9333 		vt = &v->dtdv_type;
9334 
9335 		if (vt->dtdt_flags & DIF_TF_BYREF) {
9336 			if (vt->dtdt_size == 0) {
9337 				err += efunc(i, "zero-sized variable\n");
9338 				break;
9339 			}
9340 
9341 			if (v->dtdv_scope == DIFV_SCOPE_GLOBAL &&
9342 			    vt->dtdt_size > dtrace_global_maxsize) {
9343 				err += efunc(i, "oversized by-ref global\n");
9344 				break;
9345 			}
9346 		}
9347 
9348 		if (existing == NULL || existing->dtdv_id == 0)
9349 			continue;
9350 
9351 		ASSERT(existing->dtdv_id == v->dtdv_id);
9352 		ASSERT(existing->dtdv_scope == v->dtdv_scope);
9353 
9354 		if (existing->dtdv_kind != v->dtdv_kind)
9355 			err += efunc(i, "%d changed variable kind\n", id);
9356 
9357 		et = &existing->dtdv_type;
9358 
9359 		if (vt->dtdt_flags != et->dtdt_flags) {
9360 			err += efunc(i, "%d changed variable type flags\n", id);
9361 			break;
9362 		}
9363 
9364 		if (vt->dtdt_size != 0 && vt->dtdt_size != et->dtdt_size) {
9365 			err += efunc(i, "%d changed variable type size\n", id);
9366 			break;
9367 		}
9368 	}
9369 
9370 	return (err);
9371 }
9372 
9373 /*
9374  * Validate a DTrace DIF object that it is to be used as a helper.  Helpers
9375  * are much more constrained than normal DIFOs.  Specifically, they may
9376  * not:
9377  *
9378  * 1. Make calls to subroutines other than copyin(), copyinstr() or
9379  *    miscellaneous string routines
9380  * 2. Access DTrace variables other than the args[] array, and the
9381  *    curthread, pid, ppid, tid, execname, zonename, uid and gid variables.
9382  * 3. Have thread-local variables.
9383  * 4. Have dynamic variables.
9384  */
9385 static int
9386 dtrace_difo_validate_helper(dtrace_difo_t *dp)
9387 {
9388 	int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err;
9389 	int err = 0;
9390 	uint_t pc;
9391 
9392 	for (pc = 0; pc < dp->dtdo_len; pc++) {
9393 		dif_instr_t instr = dp->dtdo_buf[pc];
9394 
9395 		uint_t v = DIF_INSTR_VAR(instr);
9396 		uint_t subr = DIF_INSTR_SUBR(instr);
9397 		uint_t op = DIF_INSTR_OP(instr);
9398 
9399 		switch (op) {
9400 		case DIF_OP_OR:
9401 		case DIF_OP_XOR:
9402 		case DIF_OP_AND:
9403 		case DIF_OP_SLL:
9404 		case DIF_OP_SRL:
9405 		case DIF_OP_SRA:
9406 		case DIF_OP_SUB:
9407 		case DIF_OP_ADD:
9408 		case DIF_OP_MUL:
9409 		case DIF_OP_SDIV:
9410 		case DIF_OP_UDIV:
9411 		case DIF_OP_SREM:
9412 		case DIF_OP_UREM:
9413 		case DIF_OP_COPYS:
9414 		case DIF_OP_NOT:
9415 		case DIF_OP_MOV:
9416 		case DIF_OP_RLDSB:
9417 		case DIF_OP_RLDSH:
9418 		case DIF_OP_RLDSW:
9419 		case DIF_OP_RLDUB:
9420 		case DIF_OP_RLDUH:
9421 		case DIF_OP_RLDUW:
9422 		case DIF_OP_RLDX:
9423 		case DIF_OP_ULDSB:
9424 		case DIF_OP_ULDSH:
9425 		case DIF_OP_ULDSW:
9426 		case DIF_OP_ULDUB:
9427 		case DIF_OP_ULDUH:
9428 		case DIF_OP_ULDUW:
9429 		case DIF_OP_ULDX:
9430 		case DIF_OP_STB:
9431 		case DIF_OP_STH:
9432 		case DIF_OP_STW:
9433 		case DIF_OP_STX:
9434 		case DIF_OP_ALLOCS:
9435 		case DIF_OP_CMP:
9436 		case DIF_OP_SCMP:
9437 		case DIF_OP_TST:
9438 		case DIF_OP_BA:
9439 		case DIF_OP_BE:
9440 		case DIF_OP_BNE:
9441 		case DIF_OP_BG:
9442 		case DIF_OP_BGU:
9443 		case DIF_OP_BGE:
9444 		case DIF_OP_BGEU:
9445 		case DIF_OP_BL:
9446 		case DIF_OP_BLU:
9447 		case DIF_OP_BLE:
9448 		case DIF_OP_BLEU:
9449 		case DIF_OP_RET:
9450 		case DIF_OP_NOP:
9451 		case DIF_OP_POPTS:
9452 		case DIF_OP_FLUSHTS:
9453 		case DIF_OP_SETX:
9454 		case DIF_OP_SETS:
9455 		case DIF_OP_LDGA:
9456 		case DIF_OP_LDLS:
9457 		case DIF_OP_STGS:
9458 		case DIF_OP_STLS:
9459 		case DIF_OP_PUSHTR:
9460 		case DIF_OP_PUSHTV:
9461 			break;
9462 
9463 		case DIF_OP_LDGS:
9464 			if (v >= DIF_VAR_OTHER_UBASE)
9465 				break;
9466 
9467 			if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9)
9468 				break;
9469 
9470 			if (v == DIF_VAR_CURTHREAD || v == DIF_VAR_PID ||
9471 			    v == DIF_VAR_PPID || v == DIF_VAR_TID ||
9472 			    v == DIF_VAR_EXECNAME || v == DIF_VAR_ZONENAME ||
9473 			    v == DIF_VAR_UID || v == DIF_VAR_GID)
9474 				break;
9475 
9476 			err += efunc(pc, "illegal variable %u\n", v);
9477 			break;
9478 
9479 		case DIF_OP_LDTA:
9480 		case DIF_OP_LDTS:
9481 		case DIF_OP_LDGAA:
9482 		case DIF_OP_LDTAA:
9483 			err += efunc(pc, "illegal dynamic variable load\n");
9484 			break;
9485 
9486 		case DIF_OP_STTS:
9487 		case DIF_OP_STGAA:
9488 		case DIF_OP_STTAA:
9489 			err += efunc(pc, "illegal dynamic variable store\n");
9490 			break;
9491 
9492 		case DIF_OP_CALL:
9493 			if (subr == DIF_SUBR_ALLOCA ||
9494 			    subr == DIF_SUBR_BCOPY ||
9495 			    subr == DIF_SUBR_COPYIN ||
9496 			    subr == DIF_SUBR_COPYINTO ||
9497 			    subr == DIF_SUBR_COPYINSTR ||
9498 			    subr == DIF_SUBR_INDEX ||
9499 			    subr == DIF_SUBR_INET_NTOA ||
9500 			    subr == DIF_SUBR_INET_NTOA6 ||
9501 			    subr == DIF_SUBR_INET_NTOP ||
9502 			    subr == DIF_SUBR_JSON ||
9503 			    subr == DIF_SUBR_LLTOSTR ||
9504 			    subr == DIF_SUBR_STRTOLL ||
9505 			    subr == DIF_SUBR_RINDEX ||
9506 			    subr == DIF_SUBR_STRCHR ||
9507 			    subr == DIF_SUBR_STRJOIN ||
9508 			    subr == DIF_SUBR_STRRCHR ||
9509 			    subr == DIF_SUBR_STRSTR ||
9510 			    subr == DIF_SUBR_HTONS ||
9511 			    subr == DIF_SUBR_HTONL ||
9512 			    subr == DIF_SUBR_HTONLL ||
9513 			    subr == DIF_SUBR_NTOHS ||
9514 			    subr == DIF_SUBR_NTOHL ||
9515 			    subr == DIF_SUBR_NTOHLL)
9516 				break;
9517 
9518 			err += efunc(pc, "invalid subr %u\n", subr);
9519 			break;
9520 
9521 		default:
9522 			err += efunc(pc, "invalid opcode %u\n",
9523 			    DIF_INSTR_OP(instr));
9524 		}
9525 	}
9526 
9527 	return (err);
9528 }
9529 
9530 /*
9531  * Returns 1 if the expression in the DIF object can be cached on a per-thread
9532  * basis; 0 if not.
9533  */
9534 static int
9535 dtrace_difo_cacheable(dtrace_difo_t *dp)
9536 {
9537 	int i;
9538 
9539 	if (dp == NULL)
9540 		return (0);
9541 
9542 	for (i = 0; i < dp->dtdo_varlen; i++) {
9543 		dtrace_difv_t *v = &dp->dtdo_vartab[i];
9544 
9545 		if (v->dtdv_scope != DIFV_SCOPE_GLOBAL)
9546 			continue;
9547 
9548 		switch (v->dtdv_id) {
9549 		case DIF_VAR_CURTHREAD:
9550 		case DIF_VAR_PID:
9551 		case DIF_VAR_TID:
9552 		case DIF_VAR_EXECNAME:
9553 		case DIF_VAR_ZONENAME:
9554 			break;
9555 
9556 		default:
9557 			return (0);
9558 		}
9559 	}
9560 
9561 	/*
9562 	 * This DIF object may be cacheable.  Now we need to look for any
9563 	 * array loading instructions, any memory loading instructions, or
9564 	 * any stores to thread-local variables.
9565 	 */
9566 	for (i = 0; i < dp->dtdo_len; i++) {
9567 		uint_t op = DIF_INSTR_OP(dp->dtdo_buf[i]);
9568 
9569 		if ((op >= DIF_OP_LDSB && op <= DIF_OP_LDX) ||
9570 		    (op >= DIF_OP_ULDSB && op <= DIF_OP_ULDX) ||
9571 		    (op >= DIF_OP_RLDSB && op <= DIF_OP_RLDX) ||
9572 		    op == DIF_OP_LDGA || op == DIF_OP_STTS)
9573 			return (0);
9574 	}
9575 
9576 	return (1);
9577 }
9578 
9579 static void
9580 dtrace_difo_hold(dtrace_difo_t *dp)
9581 {
9582 	int i;
9583 
9584 	ASSERT(MUTEX_HELD(&dtrace_lock));
9585 
9586 	dp->dtdo_refcnt++;
9587 	ASSERT(dp->dtdo_refcnt != 0);
9588 
9589 	/*
9590 	 * We need to check this DIF object for references to the variable
9591 	 * DIF_VAR_VTIMESTAMP.
9592 	 */
9593 	for (i = 0; i < dp->dtdo_varlen; i++) {
9594 		dtrace_difv_t *v = &dp->dtdo_vartab[i];
9595 
9596 		if (v->dtdv_id != DIF_VAR_VTIMESTAMP)
9597 			continue;
9598 
9599 		if (dtrace_vtime_references++ == 0)
9600 			dtrace_vtime_enable();
9601 	}
9602 }
9603 
9604 /*
9605  * This routine calculates the dynamic variable chunksize for a given DIF
9606  * object.  The calculation is not fool-proof, and can probably be tricked by
9607  * malicious DIF -- but it works for all compiler-generated DIF.  Because this
9608  * calculation is likely imperfect, dtrace_dynvar() is able to gracefully fail
9609  * if a dynamic variable size exceeds the chunksize.
9610  */
9611 static void
9612 dtrace_difo_chunksize(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
9613 {
9614 	uint64_t sval;
9615 	dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */
9616 	const dif_instr_t *text = dp->dtdo_buf;
9617 	uint_t pc, srd = 0;
9618 	uint_t ttop = 0;
9619 	size_t size, ksize;
9620 	uint_t id, i;
9621 
9622 	for (pc = 0; pc < dp->dtdo_len; pc++) {
9623 		dif_instr_t instr = text[pc];
9624 		uint_t op = DIF_INSTR_OP(instr);
9625 		uint_t rd = DIF_INSTR_RD(instr);
9626 		uint_t r1 = DIF_INSTR_R1(instr);
9627 		uint_t nkeys = 0;
9628 		uchar_t scope;
9629 
9630 		dtrace_key_t *key = tupregs;
9631 
9632 		switch (op) {
9633 		case DIF_OP_SETX:
9634 			sval = dp->dtdo_inttab[DIF_INSTR_INTEGER(instr)];
9635 			srd = rd;
9636 			continue;
9637 
9638 		case DIF_OP_STTS:
9639 			key = &tupregs[DIF_DTR_NREGS];
9640 			key[0].dttk_size = 0;
9641 			key[1].dttk_size = 0;
9642 			nkeys = 2;
9643 			scope = DIFV_SCOPE_THREAD;
9644 			break;
9645 
9646 		case DIF_OP_STGAA:
9647 		case DIF_OP_STTAA:
9648 			nkeys = ttop;
9649 
9650 			if (DIF_INSTR_OP(instr) == DIF_OP_STTAA)
9651 				key[nkeys++].dttk_size = 0;
9652 
9653 			key[nkeys++].dttk_size = 0;
9654 
9655 			if (op == DIF_OP_STTAA) {
9656 				scope = DIFV_SCOPE_THREAD;
9657 			} else {
9658 				scope = DIFV_SCOPE_GLOBAL;
9659 			}
9660 
9661 			break;
9662 
9663 		case DIF_OP_PUSHTR:
9664 			if (ttop == DIF_DTR_NREGS)
9665 				return;
9666 
9667 			if ((srd == 0 || sval == 0) && r1 == DIF_TYPE_STRING) {
9668 				/*
9669 				 * If the register for the size of the "pushtr"
9670 				 * is %r0 (or the value is 0) and the type is
9671 				 * a string, we'll use the system-wide default
9672 				 * string size.
9673 				 */
9674 				tupregs[ttop++].dttk_size =
9675 				    dtrace_strsize_default;
9676 			} else {
9677 				if (srd == 0)
9678 					return;
9679 
9680 				tupregs[ttop++].dttk_size = sval;
9681 			}
9682 
9683 			break;
9684 
9685 		case DIF_OP_PUSHTV:
9686 			if (ttop == DIF_DTR_NREGS)
9687 				return;
9688 
9689 			tupregs[ttop++].dttk_size = 0;
9690 			break;
9691 
9692 		case DIF_OP_FLUSHTS:
9693 			ttop = 0;
9694 			break;
9695 
9696 		case DIF_OP_POPTS:
9697 			if (ttop != 0)
9698 				ttop--;
9699 			break;
9700 		}
9701 
9702 		sval = 0;
9703 		srd = 0;
9704 
9705 		if (nkeys == 0)
9706 			continue;
9707 
9708 		/*
9709 		 * We have a dynamic variable allocation; calculate its size.
9710 		 */
9711 		for (ksize = 0, i = 0; i < nkeys; i++)
9712 			ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t));
9713 
9714 		size = sizeof (dtrace_dynvar_t);
9715 		size += sizeof (dtrace_key_t) * (nkeys - 1);
9716 		size += ksize;
9717 
9718 		/*
9719 		 * Now we need to determine the size of the stored data.
9720 		 */
9721 		id = DIF_INSTR_VAR(instr);
9722 
9723 		for (i = 0; i < dp->dtdo_varlen; i++) {
9724 			dtrace_difv_t *v = &dp->dtdo_vartab[i];
9725 
9726 			if (v->dtdv_id == id && v->dtdv_scope == scope) {
9727 				size += v->dtdv_type.dtdt_size;
9728 				break;
9729 			}
9730 		}
9731 
9732 		if (i == dp->dtdo_varlen)
9733 			return;
9734 
9735 		/*
9736 		 * We have the size.  If this is larger than the chunk size
9737 		 * for our dynamic variable state, reset the chunk size.
9738 		 */
9739 		size = P2ROUNDUP(size, sizeof (uint64_t));
9740 
9741 		if (size > vstate->dtvs_dynvars.dtds_chunksize)
9742 			vstate->dtvs_dynvars.dtds_chunksize = size;
9743 	}
9744 }
9745 
9746 static void
9747 dtrace_difo_init(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
9748 {
9749 	int i, oldsvars, osz, nsz, otlocals, ntlocals;
9750 	uint_t id;
9751 
9752 	ASSERT(MUTEX_HELD(&dtrace_lock));
9753 	ASSERT(dp->dtdo_buf != NULL && dp->dtdo_len != 0);
9754 
9755 	for (i = 0; i < dp->dtdo_varlen; i++) {
9756 		dtrace_difv_t *v = &dp->dtdo_vartab[i];
9757 		dtrace_statvar_t *svar, ***svarp;
9758 		size_t dsize = 0;
9759 		uint8_t scope = v->dtdv_scope;
9760 		int *np;
9761 
9762 		if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE)
9763 			continue;
9764 
9765 		id -= DIF_VAR_OTHER_UBASE;
9766 
9767 		switch (scope) {
9768 		case DIFV_SCOPE_THREAD:
9769 			while (id >= (otlocals = vstate->dtvs_ntlocals)) {
9770 				dtrace_difv_t *tlocals;
9771 
9772 				if ((ntlocals = (otlocals << 1)) == 0)
9773 					ntlocals = 1;
9774 
9775 				osz = otlocals * sizeof (dtrace_difv_t);
9776 				nsz = ntlocals * sizeof (dtrace_difv_t);
9777 
9778 				tlocals = kmem_zalloc(nsz, KM_SLEEP);
9779 
9780 				if (osz != 0) {
9781 					bcopy(vstate->dtvs_tlocals,
9782 					    tlocals, osz);
9783 					kmem_free(vstate->dtvs_tlocals, osz);
9784 				}
9785 
9786 				vstate->dtvs_tlocals = tlocals;
9787 				vstate->dtvs_ntlocals = ntlocals;
9788 			}
9789 
9790 			vstate->dtvs_tlocals[id] = *v;
9791 			continue;
9792 
9793 		case DIFV_SCOPE_LOCAL:
9794 			np = &vstate->dtvs_nlocals;
9795 			svarp = &vstate->dtvs_locals;
9796 
9797 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF)
9798 				dsize = NCPU * (v->dtdv_type.dtdt_size +
9799 				    sizeof (uint64_t));
9800 			else
9801 				dsize = NCPU * sizeof (uint64_t);
9802 
9803 			break;
9804 
9805 		case DIFV_SCOPE_GLOBAL:
9806 			np = &vstate->dtvs_nglobals;
9807 			svarp = &vstate->dtvs_globals;
9808 
9809 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF)
9810 				dsize = v->dtdv_type.dtdt_size +
9811 				    sizeof (uint64_t);
9812 
9813 			break;
9814 
9815 		default:
9816 			ASSERT(0);
9817 		}
9818 
9819 		while (id >= (oldsvars = *np)) {
9820 			dtrace_statvar_t **statics;
9821 			int newsvars, oldsize, newsize;
9822 
9823 			if ((newsvars = (oldsvars << 1)) == 0)
9824 				newsvars = 1;
9825 
9826 			oldsize = oldsvars * sizeof (dtrace_statvar_t *);
9827 			newsize = newsvars * sizeof (dtrace_statvar_t *);
9828 
9829 			statics = kmem_zalloc(newsize, KM_SLEEP);
9830 
9831 			if (oldsize != 0) {
9832 				bcopy(*svarp, statics, oldsize);
9833 				kmem_free(*svarp, oldsize);
9834 			}
9835 
9836 			*svarp = statics;
9837 			*np = newsvars;
9838 		}
9839 
9840 		if ((svar = (*svarp)[id]) == NULL) {
9841 			svar = kmem_zalloc(sizeof (dtrace_statvar_t), KM_SLEEP);
9842 			svar->dtsv_var = *v;
9843 
9844 			if ((svar->dtsv_size = dsize) != 0) {
9845 				svar->dtsv_data = (uint64_t)(uintptr_t)
9846 				    kmem_zalloc(dsize, KM_SLEEP);
9847 			}
9848 
9849 			(*svarp)[id] = svar;
9850 		}
9851 
9852 		svar->dtsv_refcnt++;
9853 	}
9854 
9855 	dtrace_difo_chunksize(dp, vstate);
9856 	dtrace_difo_hold(dp);
9857 }
9858 
9859 static dtrace_difo_t *
9860 dtrace_difo_duplicate(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
9861 {
9862 	dtrace_difo_t *new;
9863 	size_t sz;
9864 
9865 	ASSERT(dp->dtdo_buf != NULL);
9866 	ASSERT(dp->dtdo_refcnt != 0);
9867 
9868 	new = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP);
9869 
9870 	ASSERT(dp->dtdo_buf != NULL);
9871 	sz = dp->dtdo_len * sizeof (dif_instr_t);
9872 	new->dtdo_buf = kmem_alloc(sz, KM_SLEEP);
9873 	bcopy(dp->dtdo_buf, new->dtdo_buf, sz);
9874 	new->dtdo_len = dp->dtdo_len;
9875 
9876 	if (dp->dtdo_strtab != NULL) {
9877 		ASSERT(dp->dtdo_strlen != 0);
9878 		new->dtdo_strtab = kmem_alloc(dp->dtdo_strlen, KM_SLEEP);
9879 		bcopy(dp->dtdo_strtab, new->dtdo_strtab, dp->dtdo_strlen);
9880 		new->dtdo_strlen = dp->dtdo_strlen;
9881 	}
9882 
9883 	if (dp->dtdo_inttab != NULL) {
9884 		ASSERT(dp->dtdo_intlen != 0);
9885 		sz = dp->dtdo_intlen * sizeof (uint64_t);
9886 		new->dtdo_inttab = kmem_alloc(sz, KM_SLEEP);
9887 		bcopy(dp->dtdo_inttab, new->dtdo_inttab, sz);
9888 		new->dtdo_intlen = dp->dtdo_intlen;
9889 	}
9890 
9891 	if (dp->dtdo_vartab != NULL) {
9892 		ASSERT(dp->dtdo_varlen != 0);
9893 		sz = dp->dtdo_varlen * sizeof (dtrace_difv_t);
9894 		new->dtdo_vartab = kmem_alloc(sz, KM_SLEEP);
9895 		bcopy(dp->dtdo_vartab, new->dtdo_vartab, sz);
9896 		new->dtdo_varlen = dp->dtdo_varlen;
9897 	}
9898 
9899 	dtrace_difo_init(new, vstate);
9900 	return (new);
9901 }
9902 
9903 static void
9904 dtrace_difo_destroy(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
9905 {
9906 	int i;
9907 
9908 	ASSERT(dp->dtdo_refcnt == 0);
9909 
9910 	for (i = 0; i < dp->dtdo_varlen; i++) {
9911 		dtrace_difv_t *v = &dp->dtdo_vartab[i];
9912 		dtrace_statvar_t *svar, **svarp;
9913 		uint_t id;
9914 		uint8_t scope = v->dtdv_scope;
9915 		int *np;
9916 
9917 		switch (scope) {
9918 		case DIFV_SCOPE_THREAD:
9919 			continue;
9920 
9921 		case DIFV_SCOPE_LOCAL:
9922 			np = &vstate->dtvs_nlocals;
9923 			svarp = vstate->dtvs_locals;
9924 			break;
9925 
9926 		case DIFV_SCOPE_GLOBAL:
9927 			np = &vstate->dtvs_nglobals;
9928 			svarp = vstate->dtvs_globals;
9929 			break;
9930 
9931 		default:
9932 			ASSERT(0);
9933 		}
9934 
9935 		if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE)
9936 			continue;
9937 
9938 		id -= DIF_VAR_OTHER_UBASE;
9939 		ASSERT(id < *np);
9940 
9941 		svar = svarp[id];
9942 		ASSERT(svar != NULL);
9943 		ASSERT(svar->dtsv_refcnt > 0);
9944 
9945 		if (--svar->dtsv_refcnt > 0)
9946 			continue;
9947 
9948 		if (svar->dtsv_size != 0) {
9949 			ASSERT(svar->dtsv_data != NULL);
9950 			kmem_free((void *)(uintptr_t)svar->dtsv_data,
9951 			    svar->dtsv_size);
9952 		}
9953 
9954 		kmem_free(svar, sizeof (dtrace_statvar_t));
9955 		svarp[id] = NULL;
9956 	}
9957 
9958 	kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t));
9959 	kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t));
9960 	kmem_free(dp->dtdo_strtab, dp->dtdo_strlen);
9961 	kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t));
9962 
9963 	kmem_free(dp, sizeof (dtrace_difo_t));
9964 }
9965 
9966 static void
9967 dtrace_difo_release(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
9968 {
9969 	int i;
9970 
9971 	ASSERT(MUTEX_HELD(&dtrace_lock));
9972 	ASSERT(dp->dtdo_refcnt != 0);
9973 
9974 	for (i = 0; i < dp->dtdo_varlen; i++) {
9975 		dtrace_difv_t *v = &dp->dtdo_vartab[i];
9976 
9977 		if (v->dtdv_id != DIF_VAR_VTIMESTAMP)
9978 			continue;
9979 
9980 		ASSERT(dtrace_vtime_references > 0);
9981 		if (--dtrace_vtime_references == 0)
9982 			dtrace_vtime_disable();
9983 	}
9984 
9985 	if (--dp->dtdo_refcnt == 0)
9986 		dtrace_difo_destroy(dp, vstate);
9987 }
9988 
9989 /*
9990  * DTrace Format Functions
9991  */
9992 static uint16_t
9993 dtrace_format_add(dtrace_state_t *state, char *str)
9994 {
9995 	char *fmt, **new;
9996 	uint16_t ndx, len = strlen(str) + 1;
9997 
9998 	fmt = kmem_zalloc(len, KM_SLEEP);
9999 	bcopy(str, fmt, len);
10000 
10001 	for (ndx = 0; ndx < state->dts_nformats; ndx++) {
10002 		if (state->dts_formats[ndx] == NULL) {
10003 			state->dts_formats[ndx] = fmt;
10004 			return (ndx + 1);
10005 		}
10006 	}
10007 
10008 	if (state->dts_nformats == USHRT_MAX) {
10009 		/*
10010 		 * This is only likely if a denial-of-service attack is being
10011 		 * attempted.  As such, it's okay to fail silently here.
10012 		 */
10013 		kmem_free(fmt, len);
10014 		return (0);
10015 	}
10016 
10017 	/*
10018 	 * For simplicity, we always resize the formats array to be exactly the
10019 	 * number of formats.
10020 	 */
10021 	ndx = state->dts_nformats++;
10022 	new = kmem_alloc((ndx + 1) * sizeof (char *), KM_SLEEP);
10023 
10024 	if (state->dts_formats != NULL) {
10025 		ASSERT(ndx != 0);
10026 		bcopy(state->dts_formats, new, ndx * sizeof (char *));
10027 		kmem_free(state->dts_formats, ndx * sizeof (char *));
10028 	}
10029 
10030 	state->dts_formats = new;
10031 	state->dts_formats[ndx] = fmt;
10032 
10033 	return (ndx + 1);
10034 }
10035 
10036 static void
10037 dtrace_format_remove(dtrace_state_t *state, uint16_t format)
10038 {
10039 	char *fmt;
10040 
10041 	ASSERT(state->dts_formats != NULL);
10042 	ASSERT(format <= state->dts_nformats);
10043 	ASSERT(state->dts_formats[format - 1] != NULL);
10044 
10045 	fmt = state->dts_formats[format - 1];
10046 	kmem_free(fmt, strlen(fmt) + 1);
10047 	state->dts_formats[format - 1] = NULL;
10048 }
10049 
10050 static void
10051 dtrace_format_destroy(dtrace_state_t *state)
10052 {
10053 	int i;
10054 
10055 	if (state->dts_nformats == 0) {
10056 		ASSERT(state->dts_formats == NULL);
10057 		return;
10058 	}
10059 
10060 	ASSERT(state->dts_formats != NULL);
10061 
10062 	for (i = 0; i < state->dts_nformats; i++) {
10063 		char *fmt = state->dts_formats[i];
10064 
10065 		if (fmt == NULL)
10066 			continue;
10067 
10068 		kmem_free(fmt, strlen(fmt) + 1);
10069 	}
10070 
10071 	kmem_free(state->dts_formats, state->dts_nformats * sizeof (char *));
10072 	state->dts_nformats = 0;
10073 	state->dts_formats = NULL;
10074 }
10075 
10076 /*
10077  * DTrace Predicate Functions
10078  */
10079 static dtrace_predicate_t *
10080 dtrace_predicate_create(dtrace_difo_t *dp)
10081 {
10082 	dtrace_predicate_t *pred;
10083 
10084 	ASSERT(MUTEX_HELD(&dtrace_lock));
10085 	ASSERT(dp->dtdo_refcnt != 0);
10086 
10087 	pred = kmem_zalloc(sizeof (dtrace_predicate_t), KM_SLEEP);
10088 	pred->dtp_difo = dp;
10089 	pred->dtp_refcnt = 1;
10090 
10091 	if (!dtrace_difo_cacheable(dp))
10092 		return (pred);
10093 
10094 	if (dtrace_predcache_id == DTRACE_CACHEIDNONE) {
10095 		/*
10096 		 * This is only theoretically possible -- we have had 2^32
10097 		 * cacheable predicates on this machine.  We cannot allow any
10098 		 * more predicates to become cacheable:  as unlikely as it is,
10099 		 * there may be a thread caching a (now stale) predicate cache
10100 		 * ID. (N.B.: the temptation is being successfully resisted to
10101 		 * have this cmn_err() "Holy shit -- we executed this code!")
10102 		 */
10103 		return (pred);
10104 	}
10105 
10106 	pred->dtp_cacheid = dtrace_predcache_id++;
10107 
10108 	return (pred);
10109 }
10110 
10111 static void
10112 dtrace_predicate_hold(dtrace_predicate_t *pred)
10113 {
10114 	ASSERT(MUTEX_HELD(&dtrace_lock));
10115 	ASSERT(pred->dtp_difo != NULL && pred->dtp_difo->dtdo_refcnt != 0);
10116 	ASSERT(pred->dtp_refcnt > 0);
10117 
10118 	pred->dtp_refcnt++;
10119 }
10120 
10121 static void
10122 dtrace_predicate_release(dtrace_predicate_t *pred, dtrace_vstate_t *vstate)
10123 {
10124 	dtrace_difo_t *dp = pred->dtp_difo;
10125 
10126 	ASSERT(MUTEX_HELD(&dtrace_lock));
10127 	ASSERT(dp != NULL && dp->dtdo_refcnt != 0);
10128 	ASSERT(pred->dtp_refcnt > 0);
10129 
10130 	if (--pred->dtp_refcnt == 0) {
10131 		dtrace_difo_release(pred->dtp_difo, vstate);
10132 		kmem_free(pred, sizeof (dtrace_predicate_t));
10133 	}
10134 }
10135 
10136 /*
10137  * DTrace Action Description Functions
10138  */
10139 static dtrace_actdesc_t *
10140 dtrace_actdesc_create(dtrace_actkind_t kind, uint32_t ntuple,
10141     uint64_t uarg, uint64_t arg)
10142 {
10143 	dtrace_actdesc_t *act;
10144 
10145 	ASSERT(!DTRACEACT_ISPRINTFLIKE(kind) || (arg != NULL &&
10146 	    arg >= KERNELBASE) || (arg == NULL && kind == DTRACEACT_PRINTA));
10147 
10148 	act = kmem_zalloc(sizeof (dtrace_actdesc_t), KM_SLEEP);
10149 	act->dtad_kind = kind;
10150 	act->dtad_ntuple = ntuple;
10151 	act->dtad_uarg = uarg;
10152 	act->dtad_arg = arg;
10153 	act->dtad_refcnt = 1;
10154 
10155 	return (act);
10156 }
10157 
10158 static void
10159 dtrace_actdesc_hold(dtrace_actdesc_t *act)
10160 {
10161 	ASSERT(act->dtad_refcnt >= 1);
10162 	act->dtad_refcnt++;
10163 }
10164 
10165 static void
10166 dtrace_actdesc_release(dtrace_actdesc_t *act, dtrace_vstate_t *vstate)
10167 {
10168 	dtrace_actkind_t kind = act->dtad_kind;
10169 	dtrace_difo_t *dp;
10170 
10171 	ASSERT(act->dtad_refcnt >= 1);
10172 
10173 	if (--act->dtad_refcnt != 0)
10174 		return;
10175 
10176 	if ((dp = act->dtad_difo) != NULL)
10177 		dtrace_difo_release(dp, vstate);
10178 
10179 	if (DTRACEACT_ISPRINTFLIKE(kind)) {
10180 		char *str = (char *)(uintptr_t)act->dtad_arg;
10181 
10182 		ASSERT((str != NULL && (uintptr_t)str >= KERNELBASE) ||
10183 		    (str == NULL && act->dtad_kind == DTRACEACT_PRINTA));
10184 
10185 		if (str != NULL)
10186 			kmem_free(str, strlen(str) + 1);
10187 	}
10188 
10189 	kmem_free(act, sizeof (dtrace_actdesc_t));
10190 }
10191 
10192 /*
10193  * DTrace ECB Functions
10194  */
10195 static dtrace_ecb_t *
10196 dtrace_ecb_add(dtrace_state_t *state, dtrace_probe_t *probe)
10197 {
10198 	dtrace_ecb_t *ecb;
10199 	dtrace_epid_t epid;
10200 
10201 	ASSERT(MUTEX_HELD(&dtrace_lock));
10202 
10203 	ecb = kmem_zalloc(sizeof (dtrace_ecb_t), KM_SLEEP);
10204 	ecb->dte_predicate = NULL;
10205 	ecb->dte_probe = probe;
10206 
10207 	/*
10208 	 * The default size is the size of the default action: recording
10209 	 * the header.
10210 	 */
10211 	ecb->dte_size = ecb->dte_needed = sizeof (dtrace_rechdr_t);
10212 	ecb->dte_alignment = sizeof (dtrace_epid_t);
10213 
10214 	epid = state->dts_epid++;
10215 
10216 	if (epid - 1 >= state->dts_necbs) {
10217 		dtrace_ecb_t **oecbs = state->dts_ecbs, **ecbs;
10218 		int necbs = state->dts_necbs << 1;
10219 
10220 		ASSERT(epid == state->dts_necbs + 1);
10221 
10222 		if (necbs == 0) {
10223 			ASSERT(oecbs == NULL);
10224 			necbs = 1;
10225 		}
10226 
10227 		ecbs = kmem_zalloc(necbs * sizeof (*ecbs), KM_SLEEP);
10228 
10229 		if (oecbs != NULL)
10230 			bcopy(oecbs, ecbs, state->dts_necbs * sizeof (*ecbs));
10231 
10232 		dtrace_membar_producer();
10233 		state->dts_ecbs = ecbs;
10234 
10235 		if (oecbs != NULL) {
10236 			/*
10237 			 * If this state is active, we must dtrace_sync()
10238 			 * before we can free the old dts_ecbs array:  we're
10239 			 * coming in hot, and there may be active ring
10240 			 * buffer processing (which indexes into the dts_ecbs
10241 			 * array) on another CPU.
10242 			 */
10243 			if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
10244 				dtrace_sync();
10245 
10246 			kmem_free(oecbs, state->dts_necbs * sizeof (*ecbs));
10247 		}
10248 
10249 		dtrace_membar_producer();
10250 		state->dts_necbs = necbs;
10251 	}
10252 
10253 	ecb->dte_state = state;
10254 
10255 	ASSERT(state->dts_ecbs[epid - 1] == NULL);
10256 	dtrace_membar_producer();
10257 	state->dts_ecbs[(ecb->dte_epid = epid) - 1] = ecb;
10258 
10259 	return (ecb);
10260 }
10261 
10262 static int
10263 dtrace_ecb_enable(dtrace_ecb_t *ecb)
10264 {
10265 	dtrace_probe_t *probe = ecb->dte_probe;
10266 
10267 	ASSERT(MUTEX_HELD(&cpu_lock));
10268 	ASSERT(MUTEX_HELD(&dtrace_lock));
10269 	ASSERT(ecb->dte_next == NULL);
10270 
10271 	if (probe == NULL) {
10272 		/*
10273 		 * This is the NULL probe -- there's nothing to do.
10274 		 */
10275 		return (0);
10276 	}
10277 
10278 	if (probe->dtpr_ecb == NULL) {
10279 		dtrace_provider_t *prov = probe->dtpr_provider;
10280 
10281 		/*
10282 		 * We're the first ECB on this probe.
10283 		 */
10284 		probe->dtpr_ecb = probe->dtpr_ecb_last = ecb;
10285 
10286 		if (ecb->dte_predicate != NULL)
10287 			probe->dtpr_predcache = ecb->dte_predicate->dtp_cacheid;
10288 
10289 		return (prov->dtpv_pops.dtps_enable(prov->dtpv_arg,
10290 		    probe->dtpr_id, probe->dtpr_arg));
10291 	} else {
10292 		/*
10293 		 * This probe is already active.  Swing the last pointer to
10294 		 * point to the new ECB, and issue a dtrace_sync() to assure
10295 		 * that all CPUs have seen the change.
10296 		 */
10297 		ASSERT(probe->dtpr_ecb_last != NULL);
10298 		probe->dtpr_ecb_last->dte_next = ecb;
10299 		probe->dtpr_ecb_last = ecb;
10300 		probe->dtpr_predcache = 0;
10301 
10302 		dtrace_sync();
10303 		return (0);
10304 	}
10305 }
10306 
10307 static void
10308 dtrace_ecb_resize(dtrace_ecb_t *ecb)
10309 {
10310 	dtrace_action_t *act;
10311 	uint32_t curneeded = UINT32_MAX;
10312 	uint32_t aggbase = UINT32_MAX;
10313 
10314 	/*
10315 	 * If we record anything, we always record the dtrace_rechdr_t.  (And
10316 	 * we always record it first.)
10317 	 */
10318 	ecb->dte_size = sizeof (dtrace_rechdr_t);
10319 	ecb->dte_alignment = sizeof (dtrace_epid_t);
10320 
10321 	for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
10322 		dtrace_recdesc_t *rec = &act->dta_rec;
10323 		ASSERT(rec->dtrd_size > 0 || rec->dtrd_alignment == 1);
10324 
10325 		ecb->dte_alignment = MAX(ecb->dte_alignment,
10326 		    rec->dtrd_alignment);
10327 
10328 		if (DTRACEACT_ISAGG(act->dta_kind)) {
10329 			dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act;
10330 
10331 			ASSERT(rec->dtrd_size != 0);
10332 			ASSERT(agg->dtag_first != NULL);
10333 			ASSERT(act->dta_prev->dta_intuple);
10334 			ASSERT(aggbase != UINT32_MAX);
10335 			ASSERT(curneeded != UINT32_MAX);
10336 
10337 			agg->dtag_base = aggbase;
10338 
10339 			curneeded = P2ROUNDUP(curneeded, rec->dtrd_alignment);
10340 			rec->dtrd_offset = curneeded;
10341 			curneeded += rec->dtrd_size;
10342 			ecb->dte_needed = MAX(ecb->dte_needed, curneeded);
10343 
10344 			aggbase = UINT32_MAX;
10345 			curneeded = UINT32_MAX;
10346 		} else if (act->dta_intuple) {
10347 			if (curneeded == UINT32_MAX) {
10348 				/*
10349 				 * This is the first record in a tuple.  Align
10350 				 * curneeded to be at offset 4 in an 8-byte
10351 				 * aligned block.
10352 				 */
10353 				ASSERT(act->dta_prev == NULL ||
10354 				    !act->dta_prev->dta_intuple);
10355 				ASSERT3U(aggbase, ==, UINT32_MAX);
10356 				curneeded = P2PHASEUP(ecb->dte_size,
10357 				    sizeof (uint64_t), sizeof (dtrace_aggid_t));
10358 
10359 				aggbase = curneeded - sizeof (dtrace_aggid_t);
10360 				ASSERT(IS_P2ALIGNED(aggbase,
10361 				    sizeof (uint64_t)));
10362 			}
10363 			curneeded = P2ROUNDUP(curneeded, rec->dtrd_alignment);
10364 			rec->dtrd_offset = curneeded;
10365 			curneeded += rec->dtrd_size;
10366 		} else {
10367 			/* tuples must be followed by an aggregation */
10368 			ASSERT(act->dta_prev == NULL ||
10369 			    !act->dta_prev->dta_intuple);
10370 
10371 			ecb->dte_size = P2ROUNDUP(ecb->dte_size,
10372 			    rec->dtrd_alignment);
10373 			rec->dtrd_offset = ecb->dte_size;
10374 			ecb->dte_size += rec->dtrd_size;
10375 			ecb->dte_needed = MAX(ecb->dte_needed, ecb->dte_size);
10376 		}
10377 	}
10378 
10379 	if ((act = ecb->dte_action) != NULL &&
10380 	    !(act->dta_kind == DTRACEACT_SPECULATE && act->dta_next == NULL) &&
10381 	    ecb->dte_size == sizeof (dtrace_rechdr_t)) {
10382 		/*
10383 		 * If the size is still sizeof (dtrace_rechdr_t), then all
10384 		 * actions store no data; set the size to 0.
10385 		 */
10386 		ecb->dte_size = 0;
10387 	}
10388 
10389 	ecb->dte_size = P2ROUNDUP(ecb->dte_size, sizeof (dtrace_epid_t));
10390 	ecb->dte_needed = P2ROUNDUP(ecb->dte_needed, (sizeof (dtrace_epid_t)));
10391 	ecb->dte_state->dts_needed = MAX(ecb->dte_state->dts_needed,
10392 	    ecb->dte_needed);
10393 }
10394 
10395 static dtrace_action_t *
10396 dtrace_ecb_aggregation_create(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc)
10397 {
10398 	dtrace_aggregation_t *agg;
10399 	size_t size = sizeof (uint64_t);
10400 	int ntuple = desc->dtad_ntuple;
10401 	dtrace_action_t *act;
10402 	dtrace_recdesc_t *frec;
10403 	dtrace_aggid_t aggid;
10404 	dtrace_state_t *state = ecb->dte_state;
10405 
10406 	agg = kmem_zalloc(sizeof (dtrace_aggregation_t), KM_SLEEP);
10407 	agg->dtag_ecb = ecb;
10408 
10409 	ASSERT(DTRACEACT_ISAGG(desc->dtad_kind));
10410 
10411 	switch (desc->dtad_kind) {
10412 	case DTRACEAGG_MIN:
10413 		agg->dtag_initial = INT64_MAX;
10414 		agg->dtag_aggregate = dtrace_aggregate_min;
10415 		break;
10416 
10417 	case DTRACEAGG_MAX:
10418 		agg->dtag_initial = INT64_MIN;
10419 		agg->dtag_aggregate = dtrace_aggregate_max;
10420 		break;
10421 
10422 	case DTRACEAGG_COUNT:
10423 		agg->dtag_aggregate = dtrace_aggregate_count;
10424 		break;
10425 
10426 	case DTRACEAGG_QUANTIZE:
10427 		agg->dtag_aggregate = dtrace_aggregate_quantize;
10428 		size = (((sizeof (uint64_t) * NBBY) - 1) * 2 + 1) *
10429 		    sizeof (uint64_t);
10430 		break;
10431 
10432 	case DTRACEAGG_LQUANTIZE: {
10433 		uint16_t step = DTRACE_LQUANTIZE_STEP(desc->dtad_arg);
10434 		uint16_t levels = DTRACE_LQUANTIZE_LEVELS(desc->dtad_arg);
10435 
10436 		agg->dtag_initial = desc->dtad_arg;
10437 		agg->dtag_aggregate = dtrace_aggregate_lquantize;
10438 
10439 		if (step == 0 || levels == 0)
10440 			goto err;
10441 
10442 		size = levels * sizeof (uint64_t) + 3 * sizeof (uint64_t);
10443 		break;
10444 	}
10445 
10446 	case DTRACEAGG_LLQUANTIZE: {
10447 		uint16_t factor = DTRACE_LLQUANTIZE_FACTOR(desc->dtad_arg);
10448 		uint16_t low = DTRACE_LLQUANTIZE_LOW(desc->dtad_arg);
10449 		uint16_t high = DTRACE_LLQUANTIZE_HIGH(desc->dtad_arg);
10450 		uint16_t nsteps = DTRACE_LLQUANTIZE_NSTEP(desc->dtad_arg);
10451 		int64_t v;
10452 
10453 		agg->dtag_initial = desc->dtad_arg;
10454 		agg->dtag_aggregate = dtrace_aggregate_llquantize;
10455 
10456 		if (factor < 2 || low >= high || nsteps < factor)
10457 			goto err;
10458 
10459 		/*
10460 		 * Now check that the number of steps evenly divides a power
10461 		 * of the factor.  (This assures both integer bucket size and
10462 		 * linearity within each magnitude.)
10463 		 */
10464 		for (v = factor; v < nsteps; v *= factor)
10465 			continue;
10466 
10467 		if ((v % nsteps) || (nsteps % factor))
10468 			goto err;
10469 
10470 		size = (dtrace_aggregate_llquantize_bucket(factor,
10471 		    low, high, nsteps, INT64_MAX) + 2) * sizeof (uint64_t);
10472 		break;
10473 	}
10474 
10475 	case DTRACEAGG_AVG:
10476 		agg->dtag_aggregate = dtrace_aggregate_avg;
10477 		size = sizeof (uint64_t) * 2;
10478 		break;
10479 
10480 	case DTRACEAGG_STDDEV:
10481 		agg->dtag_aggregate = dtrace_aggregate_stddev;
10482 		size = sizeof (uint64_t) * 4;
10483 		break;
10484 
10485 	case DTRACEAGG_SUM:
10486 		agg->dtag_aggregate = dtrace_aggregate_sum;
10487 		break;
10488 
10489 	default:
10490 		goto err;
10491 	}
10492 
10493 	agg->dtag_action.dta_rec.dtrd_size = size;
10494 
10495 	if (ntuple == 0)
10496 		goto err;
10497 
10498 	/*
10499 	 * We must make sure that we have enough actions for the n-tuple.
10500 	 */
10501 	for (act = ecb->dte_action_last; act != NULL; act = act->dta_prev) {
10502 		if (DTRACEACT_ISAGG(act->dta_kind))
10503 			break;
10504 
10505 		if (--ntuple == 0) {
10506 			/*
10507 			 * This is the action with which our n-tuple begins.
10508 			 */
10509 			agg->dtag_first = act;
10510 			goto success;
10511 		}
10512 	}
10513 
10514 	/*
10515 	 * This n-tuple is short by ntuple elements.  Return failure.
10516 	 */
10517 	ASSERT(ntuple != 0);
10518 err:
10519 	kmem_free(agg, sizeof (dtrace_aggregation_t));
10520 	return (NULL);
10521 
10522 success:
10523 	/*
10524 	 * If the last action in the tuple has a size of zero, it's actually
10525 	 * an expression argument for the aggregating action.
10526 	 */
10527 	ASSERT(ecb->dte_action_last != NULL);
10528 	act = ecb->dte_action_last;
10529 
10530 	if (act->dta_kind == DTRACEACT_DIFEXPR) {
10531 		ASSERT(act->dta_difo != NULL);
10532 
10533 		if (act->dta_difo->dtdo_rtype.dtdt_size == 0)
10534 			agg->dtag_hasarg = 1;
10535 	}
10536 
10537 	/*
10538 	 * We need to allocate an id for this aggregation.
10539 	 */
10540 	aggid = (dtrace_aggid_t)(uintptr_t)vmem_alloc(state->dts_aggid_arena, 1,
10541 	    VM_BESTFIT | VM_SLEEP);
10542 
10543 	if (aggid - 1 >= state->dts_naggregations) {
10544 		dtrace_aggregation_t **oaggs = state->dts_aggregations;
10545 		dtrace_aggregation_t **aggs;
10546 		int naggs = state->dts_naggregations << 1;
10547 		int onaggs = state->dts_naggregations;
10548 
10549 		ASSERT(aggid == state->dts_naggregations + 1);
10550 
10551 		if (naggs == 0) {
10552 			ASSERT(oaggs == NULL);
10553 			naggs = 1;
10554 		}
10555 
10556 		aggs = kmem_zalloc(naggs * sizeof (*aggs), KM_SLEEP);
10557 
10558 		if (oaggs != NULL) {
10559 			bcopy(oaggs, aggs, onaggs * sizeof (*aggs));
10560 			kmem_free(oaggs, onaggs * sizeof (*aggs));
10561 		}
10562 
10563 		state->dts_aggregations = aggs;
10564 		state->dts_naggregations = naggs;
10565 	}
10566 
10567 	ASSERT(state->dts_aggregations[aggid - 1] == NULL);
10568 	state->dts_aggregations[(agg->dtag_id = aggid) - 1] = agg;
10569 
10570 	frec = &agg->dtag_first->dta_rec;
10571 	if (frec->dtrd_alignment < sizeof (dtrace_aggid_t))
10572 		frec->dtrd_alignment = sizeof (dtrace_aggid_t);
10573 
10574 	for (act = agg->dtag_first; act != NULL; act = act->dta_next) {
10575 		ASSERT(!act->dta_intuple);
10576 		act->dta_intuple = 1;
10577 	}
10578 
10579 	return (&agg->dtag_action);
10580 }
10581 
10582 static void
10583 dtrace_ecb_aggregation_destroy(dtrace_ecb_t *ecb, dtrace_action_t *act)
10584 {
10585 	dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act;
10586 	dtrace_state_t *state = ecb->dte_state;
10587 	dtrace_aggid_t aggid = agg->dtag_id;
10588 
10589 	ASSERT(DTRACEACT_ISAGG(act->dta_kind));
10590 	vmem_free(state->dts_aggid_arena, (void *)(uintptr_t)aggid, 1);
10591 
10592 	ASSERT(state->dts_aggregations[aggid - 1] == agg);
10593 	state->dts_aggregations[aggid - 1] = NULL;
10594 
10595 	kmem_free(agg, sizeof (dtrace_aggregation_t));
10596 }
10597 
10598 static int
10599 dtrace_ecb_action_add(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc)
10600 {
10601 	dtrace_action_t *action, *last;
10602 	dtrace_difo_t *dp = desc->dtad_difo;
10603 	uint32_t size = 0, align = sizeof (uint8_t), mask;
10604 	uint16_t format = 0;
10605 	dtrace_recdesc_t *rec;
10606 	dtrace_state_t *state = ecb->dte_state;
10607 	dtrace_optval_t *opt = state->dts_options, nframes, strsize;
10608 	uint64_t arg = desc->dtad_arg;
10609 
10610 	ASSERT(MUTEX_HELD(&dtrace_lock));
10611 	ASSERT(ecb->dte_action == NULL || ecb->dte_action->dta_refcnt == 1);
10612 
10613 	if (DTRACEACT_ISAGG(desc->dtad_kind)) {
10614 		/*
10615 		 * If this is an aggregating action, there must be neither
10616 		 * a speculate nor a commit on the action chain.
10617 		 */
10618 		dtrace_action_t *act;
10619 
10620 		for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
10621 			if (act->dta_kind == DTRACEACT_COMMIT)
10622 				return (EINVAL);
10623 
10624 			if (act->dta_kind == DTRACEACT_SPECULATE)
10625 				return (EINVAL);
10626 		}
10627 
10628 		action = dtrace_ecb_aggregation_create(ecb, desc);
10629 
10630 		if (action == NULL)
10631 			return (EINVAL);
10632 	} else {
10633 		if (DTRACEACT_ISDESTRUCTIVE(desc->dtad_kind) ||
10634 		    (desc->dtad_kind == DTRACEACT_DIFEXPR &&
10635 		    dp != NULL && dp->dtdo_destructive)) {
10636 			state->dts_destructive = 1;
10637 		}
10638 
10639 		switch (desc->dtad_kind) {
10640 		case DTRACEACT_PRINTF:
10641 		case DTRACEACT_PRINTA:
10642 		case DTRACEACT_SYSTEM:
10643 		case DTRACEACT_FREOPEN:
10644 		case DTRACEACT_DIFEXPR:
10645 			/*
10646 			 * We know that our arg is a string -- turn it into a
10647 			 * format.
10648 			 */
10649 			if (arg == NULL) {
10650 				ASSERT(desc->dtad_kind == DTRACEACT_PRINTA ||
10651 				    desc->dtad_kind == DTRACEACT_DIFEXPR);
10652 				format = 0;
10653 			} else {
10654 				ASSERT(arg != NULL);
10655 				ASSERT(arg > KERNELBASE);
10656 				format = dtrace_format_add(state,
10657 				    (char *)(uintptr_t)arg);
10658 			}
10659 
10660 			/*FALLTHROUGH*/
10661 		case DTRACEACT_LIBACT:
10662 		case DTRACEACT_TRACEMEM:
10663 		case DTRACEACT_TRACEMEM_DYNSIZE:
10664 			if (dp == NULL)
10665 				return (EINVAL);
10666 
10667 			if ((size = dp->dtdo_rtype.dtdt_size) != 0)
10668 				break;
10669 
10670 			if (dp->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) {
10671 				if (!(dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
10672 					return (EINVAL);
10673 
10674 				size = opt[DTRACEOPT_STRSIZE];
10675 			}
10676 
10677 			break;
10678 
10679 		case DTRACEACT_STACK:
10680 			if ((nframes = arg) == 0) {
10681 				nframes = opt[DTRACEOPT_STACKFRAMES];
10682 				ASSERT(nframes > 0);
10683 				arg = nframes;
10684 			}
10685 
10686 			size = nframes * sizeof (pc_t);
10687 			break;
10688 
10689 		case DTRACEACT_JSTACK:
10690 			if ((strsize = DTRACE_USTACK_STRSIZE(arg)) == 0)
10691 				strsize = opt[DTRACEOPT_JSTACKSTRSIZE];
10692 
10693 			if ((nframes = DTRACE_USTACK_NFRAMES(arg)) == 0)
10694 				nframes = opt[DTRACEOPT_JSTACKFRAMES];
10695 
10696 			arg = DTRACE_USTACK_ARG(nframes, strsize);
10697 
10698 			/*FALLTHROUGH*/
10699 		case DTRACEACT_USTACK:
10700 			if (desc->dtad_kind != DTRACEACT_JSTACK &&
10701 			    (nframes = DTRACE_USTACK_NFRAMES(arg)) == 0) {
10702 				strsize = DTRACE_USTACK_STRSIZE(arg);
10703 				nframes = opt[DTRACEOPT_USTACKFRAMES];
10704 				ASSERT(nframes > 0);
10705 				arg = DTRACE_USTACK_ARG(nframes, strsize);
10706 			}
10707 
10708 			/*
10709 			 * Save a slot for the pid.
10710 			 */
10711 			size = (nframes + 1) * sizeof (uint64_t);
10712 			size += DTRACE_USTACK_STRSIZE(arg);
10713 			size = P2ROUNDUP(size, (uint32_t)(sizeof (uintptr_t)));
10714 
10715 			break;
10716 
10717 		case DTRACEACT_SYM:
10718 		case DTRACEACT_MOD:
10719 			if (dp == NULL || ((size = dp->dtdo_rtype.dtdt_size) !=
10720 			    sizeof (uint64_t)) ||
10721 			    (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
10722 				return (EINVAL);
10723 			break;
10724 
10725 		case DTRACEACT_USYM:
10726 		case DTRACEACT_UMOD:
10727 		case DTRACEACT_UADDR:
10728 			if (dp == NULL ||
10729 			    (dp->dtdo_rtype.dtdt_size != sizeof (uint64_t)) ||
10730 			    (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
10731 				return (EINVAL);
10732 
10733 			/*
10734 			 * We have a slot for the pid, plus a slot for the
10735 			 * argument.  To keep things simple (aligned with
10736 			 * bitness-neutral sizing), we store each as a 64-bit
10737 			 * quantity.
10738 			 */
10739 			size = 2 * sizeof (uint64_t);
10740 			break;
10741 
10742 		case DTRACEACT_STOP:
10743 		case DTRACEACT_BREAKPOINT:
10744 		case DTRACEACT_PANIC:
10745 			break;
10746 
10747 		case DTRACEACT_CHILL:
10748 		case DTRACEACT_DISCARD:
10749 		case DTRACEACT_RAISE:
10750 			if (dp == NULL)
10751 				return (EINVAL);
10752 			break;
10753 
10754 		case DTRACEACT_EXIT:
10755 			if (dp == NULL ||
10756 			    (size = dp->dtdo_rtype.dtdt_size) != sizeof (int) ||
10757 			    (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
10758 				return (EINVAL);
10759 			break;
10760 
10761 		case DTRACEACT_SPECULATE:
10762 			if (ecb->dte_size > sizeof (dtrace_rechdr_t))
10763 				return (EINVAL);
10764 
10765 			if (dp == NULL)
10766 				return (EINVAL);
10767 
10768 			state->dts_speculates = 1;
10769 			break;
10770 
10771 		case DTRACEACT_COMMIT: {
10772 			dtrace_action_t *act = ecb->dte_action;
10773 
10774 			for (; act != NULL; act = act->dta_next) {
10775 				if (act->dta_kind == DTRACEACT_COMMIT)
10776 					return (EINVAL);
10777 			}
10778 
10779 			if (dp == NULL)
10780 				return (EINVAL);
10781 			break;
10782 		}
10783 
10784 		default:
10785 			return (EINVAL);
10786 		}
10787 
10788 		if (size != 0 || desc->dtad_kind == DTRACEACT_SPECULATE) {
10789 			/*
10790 			 * If this is a data-storing action or a speculate,
10791 			 * we must be sure that there isn't a commit on the
10792 			 * action chain.
10793 			 */
10794 			dtrace_action_t *act = ecb->dte_action;
10795 
10796 			for (; act != NULL; act = act->dta_next) {
10797 				if (act->dta_kind == DTRACEACT_COMMIT)
10798 					return (EINVAL);
10799 			}
10800 		}
10801 
10802 		action = kmem_zalloc(sizeof (dtrace_action_t), KM_SLEEP);
10803 		action->dta_rec.dtrd_size = size;
10804 	}
10805 
10806 	action->dta_refcnt = 1;
10807 	rec = &action->dta_rec;
10808 	size = rec->dtrd_size;
10809 
10810 	for (mask = sizeof (uint64_t) - 1; size != 0 && mask > 0; mask >>= 1) {
10811 		if (!(size & mask)) {
10812 			align = mask + 1;
10813 			break;
10814 		}
10815 	}
10816 
10817 	action->dta_kind = desc->dtad_kind;
10818 
10819 	if ((action->dta_difo = dp) != NULL)
10820 		dtrace_difo_hold(dp);
10821 
10822 	rec->dtrd_action = action->dta_kind;
10823 	rec->dtrd_arg = arg;
10824 	rec->dtrd_uarg = desc->dtad_uarg;
10825 	rec->dtrd_alignment = (uint16_t)align;
10826 	rec->dtrd_format = format;
10827 
10828 	if ((last = ecb->dte_action_last) != NULL) {
10829 		ASSERT(ecb->dte_action != NULL);
10830 		action->dta_prev = last;
10831 		last->dta_next = action;
10832 	} else {
10833 		ASSERT(ecb->dte_action == NULL);
10834 		ecb->dte_action = action;
10835 	}
10836 
10837 	ecb->dte_action_last = action;
10838 
10839 	return (0);
10840 }
10841 
10842 static void
10843 dtrace_ecb_action_remove(dtrace_ecb_t *ecb)
10844 {
10845 	dtrace_action_t *act = ecb->dte_action, *next;
10846 	dtrace_vstate_t *vstate = &ecb->dte_state->dts_vstate;
10847 	dtrace_difo_t *dp;
10848 	uint16_t format;
10849 
10850 	if (act != NULL && act->dta_refcnt > 1) {
10851 		ASSERT(act->dta_next == NULL || act->dta_next->dta_refcnt == 1);
10852 		act->dta_refcnt--;
10853 	} else {
10854 		for (; act != NULL; act = next) {
10855 			next = act->dta_next;
10856 			ASSERT(next != NULL || act == ecb->dte_action_last);
10857 			ASSERT(act->dta_refcnt == 1);
10858 
10859 			if ((format = act->dta_rec.dtrd_format) != 0)
10860 				dtrace_format_remove(ecb->dte_state, format);
10861 
10862 			if ((dp = act->dta_difo) != NULL)
10863 				dtrace_difo_release(dp, vstate);
10864 
10865 			if (DTRACEACT_ISAGG(act->dta_kind)) {
10866 				dtrace_ecb_aggregation_destroy(ecb, act);
10867 			} else {
10868 				kmem_free(act, sizeof (dtrace_action_t));
10869 			}
10870 		}
10871 	}
10872 
10873 	ecb->dte_action = NULL;
10874 	ecb->dte_action_last = NULL;
10875 	ecb->dte_size = 0;
10876 }
10877 
10878 static void
10879 dtrace_ecb_disable(dtrace_ecb_t *ecb)
10880 {
10881 	/*
10882 	 * We disable the ECB by removing it from its probe.
10883 	 */
10884 	dtrace_ecb_t *pecb, *prev = NULL;
10885 	dtrace_probe_t *probe = ecb->dte_probe;
10886 
10887 	ASSERT(MUTEX_HELD(&dtrace_lock));
10888 
10889 	if (probe == NULL) {
10890 		/*
10891 		 * This is the NULL probe; there is nothing to disable.
10892 		 */
10893 		return;
10894 	}
10895 
10896 	for (pecb = probe->dtpr_ecb; pecb != NULL; pecb = pecb->dte_next) {
10897 		if (pecb == ecb)
10898 			break;
10899 		prev = pecb;
10900 	}
10901 
10902 	ASSERT(pecb != NULL);
10903 
10904 	if (prev == NULL) {
10905 		probe->dtpr_ecb = ecb->dte_next;
10906 	} else {
10907 		prev->dte_next = ecb->dte_next;
10908 	}
10909 
10910 	if (ecb == probe->dtpr_ecb_last) {
10911 		ASSERT(ecb->dte_next == NULL);
10912 		probe->dtpr_ecb_last = prev;
10913 	}
10914 
10915 	/*
10916 	 * The ECB has been disconnected from the probe; now sync to assure
10917 	 * that all CPUs have seen the change before returning.
10918 	 */
10919 	dtrace_sync();
10920 
10921 	if (probe->dtpr_ecb == NULL) {
10922 		/*
10923 		 * That was the last ECB on the probe; clear the predicate
10924 		 * cache ID for the probe, disable it and sync one more time
10925 		 * to assure that we'll never hit it again.
10926 		 */
10927 		dtrace_provider_t *prov = probe->dtpr_provider;
10928 
10929 		ASSERT(ecb->dte_next == NULL);
10930 		ASSERT(probe->dtpr_ecb_last == NULL);
10931 		probe->dtpr_predcache = DTRACE_CACHEIDNONE;
10932 		prov->dtpv_pops.dtps_disable(prov->dtpv_arg,
10933 		    probe->dtpr_id, probe->dtpr_arg);
10934 		dtrace_sync();
10935 	} else {
10936 		/*
10937 		 * There is at least one ECB remaining on the probe.  If there
10938 		 * is _exactly_ one, set the probe's predicate cache ID to be
10939 		 * the predicate cache ID of the remaining ECB.
10940 		 */
10941 		ASSERT(probe->dtpr_ecb_last != NULL);
10942 		ASSERT(probe->dtpr_predcache == DTRACE_CACHEIDNONE);
10943 
10944 		if (probe->dtpr_ecb == probe->dtpr_ecb_last) {
10945 			dtrace_predicate_t *p = probe->dtpr_ecb->dte_predicate;
10946 
10947 			ASSERT(probe->dtpr_ecb->dte_next == NULL);
10948 
10949 			if (p != NULL)
10950 				probe->dtpr_predcache = p->dtp_cacheid;
10951 		}
10952 
10953 		ecb->dte_next = NULL;
10954 	}
10955 }
10956 
10957 static void
10958 dtrace_ecb_destroy(dtrace_ecb_t *ecb)
10959 {
10960 	dtrace_state_t *state = ecb->dte_state;
10961 	dtrace_vstate_t *vstate = &state->dts_vstate;
10962 	dtrace_predicate_t *pred;
10963 	dtrace_epid_t epid = ecb->dte_epid;
10964 
10965 	ASSERT(MUTEX_HELD(&dtrace_lock));
10966 	ASSERT(ecb->dte_next == NULL);
10967 	ASSERT(ecb->dte_probe == NULL || ecb->dte_probe->dtpr_ecb != ecb);
10968 
10969 	if ((pred = ecb->dte_predicate) != NULL)
10970 		dtrace_predicate_release(pred, vstate);
10971 
10972 	dtrace_ecb_action_remove(ecb);
10973 
10974 	ASSERT(state->dts_ecbs[epid - 1] == ecb);
10975 	state->dts_ecbs[epid - 1] = NULL;
10976 
10977 	kmem_free(ecb, sizeof (dtrace_ecb_t));
10978 }
10979 
10980 static dtrace_ecb_t *
10981 dtrace_ecb_create(dtrace_state_t *state, dtrace_probe_t *probe,
10982     dtrace_enabling_t *enab)
10983 {
10984 	dtrace_ecb_t *ecb;
10985 	dtrace_predicate_t *pred;
10986 	dtrace_actdesc_t *act;
10987 	dtrace_provider_t *prov;
10988 	dtrace_ecbdesc_t *desc = enab->dten_current;
10989 
10990 	ASSERT(MUTEX_HELD(&dtrace_lock));
10991 	ASSERT(state != NULL);
10992 
10993 	ecb = dtrace_ecb_add(state, probe);
10994 	ecb->dte_uarg = desc->dted_uarg;
10995 
10996 	if ((pred = desc->dted_pred.dtpdd_predicate) != NULL) {
10997 		dtrace_predicate_hold(pred);
10998 		ecb->dte_predicate = pred;
10999 	}
11000 
11001 	if (probe != NULL) {
11002 		/*
11003 		 * If the provider shows more leg than the consumer is old
11004 		 * enough to see, we need to enable the appropriate implicit
11005 		 * predicate bits to prevent the ecb from activating at
11006 		 * revealing times.
11007 		 *
11008 		 * Providers specifying DTRACE_PRIV_USER at register time
11009 		 * are stating that they need the /proc-style privilege
11010 		 * model to be enforced, and this is what DTRACE_COND_OWNER
11011 		 * and DTRACE_COND_ZONEOWNER will then do at probe time.
11012 		 */
11013 		prov = probe->dtpr_provider;
11014 		if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLPROC) &&
11015 		    (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER))
11016 			ecb->dte_cond |= DTRACE_COND_OWNER;
11017 
11018 		if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLZONE) &&
11019 		    (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER))
11020 			ecb->dte_cond |= DTRACE_COND_ZONEOWNER;
11021 
11022 		/*
11023 		 * If the provider shows us kernel innards and the user
11024 		 * is lacking sufficient privilege, enable the
11025 		 * DTRACE_COND_USERMODE implicit predicate.
11026 		 */
11027 		if (!(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) &&
11028 		    (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_KERNEL))
11029 			ecb->dte_cond |= DTRACE_COND_USERMODE;
11030 	}
11031 
11032 	if (dtrace_ecb_create_cache != NULL) {
11033 		/*
11034 		 * If we have a cached ecb, we'll use its action list instead
11035 		 * of creating our own (saving both time and space).
11036 		 */
11037 		dtrace_ecb_t *cached = dtrace_ecb_create_cache;
11038 		dtrace_action_t *act = cached->dte_action;
11039 
11040 		if (act != NULL) {
11041 			ASSERT(act->dta_refcnt > 0);
11042 			act->dta_refcnt++;
11043 			ecb->dte_action = act;
11044 			ecb->dte_action_last = cached->dte_action_last;
11045 			ecb->dte_needed = cached->dte_needed;
11046 			ecb->dte_size = cached->dte_size;
11047 			ecb->dte_alignment = cached->dte_alignment;
11048 		}
11049 
11050 		return (ecb);
11051 	}
11052 
11053 	for (act = desc->dted_action; act != NULL; act = act->dtad_next) {
11054 		if ((enab->dten_error = dtrace_ecb_action_add(ecb, act)) != 0) {
11055 			dtrace_ecb_destroy(ecb);
11056 			return (NULL);
11057 		}
11058 	}
11059 
11060 	dtrace_ecb_resize(ecb);
11061 
11062 	return (dtrace_ecb_create_cache = ecb);
11063 }
11064 
11065 static int
11066 dtrace_ecb_create_enable(dtrace_probe_t *probe, void *arg)
11067 {
11068 	dtrace_ecb_t *ecb;
11069 	dtrace_enabling_t *enab = arg;
11070 	dtrace_state_t *state = enab->dten_vstate->dtvs_state;
11071 
11072 	ASSERT(state != NULL);
11073 
11074 	if (probe != NULL && probe->dtpr_gen < enab->dten_probegen) {
11075 		/*
11076 		 * This probe was created in a generation for which this
11077 		 * enabling has previously created ECBs; we don't want to
11078 		 * enable it again, so just kick out.
11079 		 */
11080 		return (DTRACE_MATCH_NEXT);
11081 	}
11082 
11083 	if ((ecb = dtrace_ecb_create(state, probe, enab)) == NULL)
11084 		return (DTRACE_MATCH_DONE);
11085 
11086 	if (dtrace_ecb_enable(ecb) < 0)
11087 		return (DTRACE_MATCH_FAIL);
11088 
11089 	return (DTRACE_MATCH_NEXT);
11090 }
11091 
11092 static dtrace_ecb_t *
11093 dtrace_epid2ecb(dtrace_state_t *state, dtrace_epid_t id)
11094 {
11095 	dtrace_ecb_t *ecb;
11096 
11097 	ASSERT(MUTEX_HELD(&dtrace_lock));
11098 
11099 	if (id == 0 || id > state->dts_necbs)
11100 		return (NULL);
11101 
11102 	ASSERT(state->dts_necbs > 0 && state->dts_ecbs != NULL);
11103 	ASSERT((ecb = state->dts_ecbs[id - 1]) == NULL || ecb->dte_epid == id);
11104 
11105 	return (state->dts_ecbs[id - 1]);
11106 }
11107 
11108 static dtrace_aggregation_t *
11109 dtrace_aggid2agg(dtrace_state_t *state, dtrace_aggid_t id)
11110 {
11111 	dtrace_aggregation_t *agg;
11112 
11113 	ASSERT(MUTEX_HELD(&dtrace_lock));
11114 
11115 	if (id == 0 || id > state->dts_naggregations)
11116 		return (NULL);
11117 
11118 	ASSERT(state->dts_naggregations > 0 && state->dts_aggregations != NULL);
11119 	ASSERT((agg = state->dts_aggregations[id - 1]) == NULL ||
11120 	    agg->dtag_id == id);
11121 
11122 	return (state->dts_aggregations[id - 1]);
11123 }
11124 
11125 /*
11126  * DTrace Buffer Functions
11127  *
11128  * The following functions manipulate DTrace buffers.  Most of these functions
11129  * are called in the context of establishing or processing consumer state;
11130  * exceptions are explicitly noted.
11131  */
11132 
11133 /*
11134  * Note:  called from cross call context.  This function switches the two
11135  * buffers on a given CPU.  The atomicity of this operation is assured by
11136  * disabling interrupts while the actual switch takes place; the disabling of
11137  * interrupts serializes the execution with any execution of dtrace_probe() on
11138  * the same CPU.
11139  */
11140 static void
11141 dtrace_buffer_switch(dtrace_buffer_t *buf)
11142 {
11143 	caddr_t tomax = buf->dtb_tomax;
11144 	caddr_t xamot = buf->dtb_xamot;
11145 	dtrace_icookie_t cookie;
11146 	hrtime_t now;
11147 
11148 	ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
11149 	ASSERT(!(buf->dtb_flags & DTRACEBUF_RING));
11150 
11151 	cookie = dtrace_interrupt_disable();
11152 	now = dtrace_gethrtime();
11153 	buf->dtb_tomax = xamot;
11154 	buf->dtb_xamot = tomax;
11155 	buf->dtb_xamot_drops = buf->dtb_drops;
11156 	buf->dtb_xamot_offset = buf->dtb_offset;
11157 	buf->dtb_xamot_errors = buf->dtb_errors;
11158 	buf->dtb_xamot_flags = buf->dtb_flags;
11159 	buf->dtb_offset = 0;
11160 	buf->dtb_drops = 0;
11161 	buf->dtb_errors = 0;
11162 	buf->dtb_flags &= ~(DTRACEBUF_ERROR | DTRACEBUF_DROPPED);
11163 	buf->dtb_interval = now - buf->dtb_switched;
11164 	buf->dtb_switched = now;
11165 	dtrace_interrupt_enable(cookie);
11166 }
11167 
11168 /*
11169  * Note:  called from cross call context.  This function activates a buffer
11170  * on a CPU.  As with dtrace_buffer_switch(), the atomicity of the operation
11171  * is guaranteed by the disabling of interrupts.
11172  */
11173 static void
11174 dtrace_buffer_activate(dtrace_state_t *state)
11175 {
11176 	dtrace_buffer_t *buf;
11177 	dtrace_icookie_t cookie = dtrace_interrupt_disable();
11178 
11179 	buf = &state->dts_buffer[CPU->cpu_id];
11180 
11181 	if (buf->dtb_tomax != NULL) {
11182 		/*
11183 		 * We might like to assert that the buffer is marked inactive,
11184 		 * but this isn't necessarily true:  the buffer for the CPU
11185 		 * that processes the BEGIN probe has its buffer activated
11186 		 * manually.  In this case, we take the (harmless) action
11187 		 * re-clearing the bit INACTIVE bit.
11188 		 */
11189 		buf->dtb_flags &= ~DTRACEBUF_INACTIVE;
11190 	}
11191 
11192 	dtrace_interrupt_enable(cookie);
11193 }
11194 
11195 static int
11196 dtrace_buffer_alloc(dtrace_buffer_t *bufs, size_t size, int flags,
11197     processorid_t cpu, int *factor)
11198 {
11199 	cpu_t *cp;
11200 	dtrace_buffer_t *buf;
11201 	int allocated = 0, desired = 0;
11202 
11203 	ASSERT(MUTEX_HELD(&cpu_lock));
11204 	ASSERT(MUTEX_HELD(&dtrace_lock));
11205 
11206 	*factor = 1;
11207 
11208 	if (size > dtrace_nonroot_maxsize &&
11209 	    !PRIV_POLICY_CHOICE(CRED(), PRIV_ALL, B_FALSE))
11210 		return (EFBIG);
11211 
11212 	cp = cpu_list;
11213 
11214 	do {
11215 		if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id)
11216 			continue;
11217 
11218 		buf = &bufs[cp->cpu_id];
11219 
11220 		/*
11221 		 * If there is already a buffer allocated for this CPU, it
11222 		 * is only possible that this is a DR event.  In this case,
11223 		 * the buffer size must match our specified size.
11224 		 */
11225 		if (buf->dtb_tomax != NULL) {
11226 			ASSERT(buf->dtb_size == size);
11227 			continue;
11228 		}
11229 
11230 		ASSERT(buf->dtb_xamot == NULL);
11231 
11232 		if ((buf->dtb_tomax = kmem_zalloc(size,
11233 		    KM_NOSLEEP | KM_NORMALPRI)) == NULL)
11234 			goto err;
11235 
11236 		buf->dtb_size = size;
11237 		buf->dtb_flags = flags;
11238 		buf->dtb_offset = 0;
11239 		buf->dtb_drops = 0;
11240 
11241 		if (flags & DTRACEBUF_NOSWITCH)
11242 			continue;
11243 
11244 		if ((buf->dtb_xamot = kmem_zalloc(size,
11245 		    KM_NOSLEEP | KM_NORMALPRI)) == NULL)
11246 			goto err;
11247 	} while ((cp = cp->cpu_next) != cpu_list);
11248 
11249 	return (0);
11250 
11251 err:
11252 	cp = cpu_list;
11253 
11254 	do {
11255 		if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id)
11256 			continue;
11257 
11258 		buf = &bufs[cp->cpu_id];
11259 		desired += 2;
11260 
11261 		if (buf->dtb_xamot != NULL) {
11262 			ASSERT(buf->dtb_tomax != NULL);
11263 			ASSERT(buf->dtb_size == size);
11264 			kmem_free(buf->dtb_xamot, size);
11265 			allocated++;
11266 		}
11267 
11268 		if (buf->dtb_tomax != NULL) {
11269 			ASSERT(buf->dtb_size == size);
11270 			kmem_free(buf->dtb_tomax, size);
11271 			allocated++;
11272 		}
11273 
11274 		buf->dtb_tomax = NULL;
11275 		buf->dtb_xamot = NULL;
11276 		buf->dtb_size = 0;
11277 	} while ((cp = cp->cpu_next) != cpu_list);
11278 
11279 	*factor = desired / (allocated > 0 ? allocated : 1);
11280 
11281 	return (ENOMEM);
11282 }
11283 
11284 /*
11285  * Note:  called from probe context.  This function just increments the drop
11286  * count on a buffer.  It has been made a function to allow for the
11287  * possibility of understanding the source of mysterious drop counts.  (A
11288  * problem for which one may be particularly disappointed that DTrace cannot
11289  * be used to understand DTrace.)
11290  */
11291 static void
11292 dtrace_buffer_drop(dtrace_buffer_t *buf)
11293 {
11294 	buf->dtb_drops++;
11295 }
11296 
11297 /*
11298  * Note:  called from probe context.  This function is called to reserve space
11299  * in a buffer.  If mstate is non-NULL, sets the scratch base and size in the
11300  * mstate.  Returns the new offset in the buffer, or a negative value if an
11301  * error has occurred.
11302  */
11303 static intptr_t
11304 dtrace_buffer_reserve(dtrace_buffer_t *buf, size_t needed, size_t align,
11305     dtrace_state_t *state, dtrace_mstate_t *mstate)
11306 {
11307 	intptr_t offs = buf->dtb_offset, soffs;
11308 	intptr_t woffs;
11309 	caddr_t tomax;
11310 	size_t total;
11311 
11312 	if (buf->dtb_flags & DTRACEBUF_INACTIVE)
11313 		return (-1);
11314 
11315 	if ((tomax = buf->dtb_tomax) == NULL) {
11316 		dtrace_buffer_drop(buf);
11317 		return (-1);
11318 	}
11319 
11320 	if (!(buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL))) {
11321 		while (offs & (align - 1)) {
11322 			/*
11323 			 * Assert that our alignment is off by a number which
11324 			 * is itself sizeof (uint32_t) aligned.
11325 			 */
11326 			ASSERT(!((align - (offs & (align - 1))) &
11327 			    (sizeof (uint32_t) - 1)));
11328 			DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE);
11329 			offs += sizeof (uint32_t);
11330 		}
11331 
11332 		if ((soffs = offs + needed) > buf->dtb_size) {
11333 			dtrace_buffer_drop(buf);
11334 			return (-1);
11335 		}
11336 
11337 		if (mstate == NULL)
11338 			return (offs);
11339 
11340 		mstate->dtms_scratch_base = (uintptr_t)tomax + soffs;
11341 		mstate->dtms_scratch_size = buf->dtb_size - soffs;
11342 		mstate->dtms_scratch_ptr = mstate->dtms_scratch_base;
11343 
11344 		return (offs);
11345 	}
11346 
11347 	if (buf->dtb_flags & DTRACEBUF_FILL) {
11348 		if (state->dts_activity != DTRACE_ACTIVITY_COOLDOWN &&
11349 		    (buf->dtb_flags & DTRACEBUF_FULL))
11350 			return (-1);
11351 		goto out;
11352 	}
11353 
11354 	total = needed + (offs & (align - 1));
11355 
11356 	/*
11357 	 * For a ring buffer, life is quite a bit more complicated.  Before
11358 	 * we can store any padding, we need to adjust our wrapping offset.
11359 	 * (If we've never before wrapped or we're not about to, no adjustment
11360 	 * is required.)
11361 	 */
11362 	if ((buf->dtb_flags & DTRACEBUF_WRAPPED) ||
11363 	    offs + total > buf->dtb_size) {
11364 		woffs = buf->dtb_xamot_offset;
11365 
11366 		if (offs + total > buf->dtb_size) {
11367 			/*
11368 			 * We can't fit in the end of the buffer.  First, a
11369 			 * sanity check that we can fit in the buffer at all.
11370 			 */
11371 			if (total > buf->dtb_size) {
11372 				dtrace_buffer_drop(buf);
11373 				return (-1);
11374 			}
11375 
11376 			/*
11377 			 * We're going to be storing at the top of the buffer,
11378 			 * so now we need to deal with the wrapped offset.  We
11379 			 * only reset our wrapped offset to 0 if it is
11380 			 * currently greater than the current offset.  If it
11381 			 * is less than the current offset, it is because a
11382 			 * previous allocation induced a wrap -- but the
11383 			 * allocation didn't subsequently take the space due
11384 			 * to an error or false predicate evaluation.  In this
11385 			 * case, we'll just leave the wrapped offset alone: if
11386 			 * the wrapped offset hasn't been advanced far enough
11387 			 * for this allocation, it will be adjusted in the
11388 			 * lower loop.
11389 			 */
11390 			if (buf->dtb_flags & DTRACEBUF_WRAPPED) {
11391 				if (woffs >= offs)
11392 					woffs = 0;
11393 			} else {
11394 				woffs = 0;
11395 			}
11396 
11397 			/*
11398 			 * Now we know that we're going to be storing to the
11399 			 * top of the buffer and that there is room for us
11400 			 * there.  We need to clear the buffer from the current
11401 			 * offset to the end (there may be old gunk there).
11402 			 */
11403 			while (offs < buf->dtb_size)
11404 				tomax[offs++] = 0;
11405 
11406 			/*
11407 			 * We need to set our offset to zero.  And because we
11408 			 * are wrapping, we need to set the bit indicating as
11409 			 * much.  We can also adjust our needed space back
11410 			 * down to the space required by the ECB -- we know
11411 			 * that the top of the buffer is aligned.
11412 			 */
11413 			offs = 0;
11414 			total = needed;
11415 			buf->dtb_flags |= DTRACEBUF_WRAPPED;
11416 		} else {
11417 			/*
11418 			 * There is room for us in the buffer, so we simply
11419 			 * need to check the wrapped offset.
11420 			 */
11421 			if (woffs < offs) {
11422 				/*
11423 				 * The wrapped offset is less than the offset.
11424 				 * This can happen if we allocated buffer space
11425 				 * that induced a wrap, but then we didn't
11426 				 * subsequently take the space due to an error
11427 				 * or false predicate evaluation.  This is
11428 				 * okay; we know that _this_ allocation isn't
11429 				 * going to induce a wrap.  We still can't
11430 				 * reset the wrapped offset to be zero,
11431 				 * however: the space may have been trashed in
11432 				 * the previous failed probe attempt.  But at
11433 				 * least the wrapped offset doesn't need to
11434 				 * be adjusted at all...
11435 				 */
11436 				goto out;
11437 			}
11438 		}
11439 
11440 		while (offs + total > woffs) {
11441 			dtrace_epid_t epid = *(uint32_t *)(tomax + woffs);
11442 			size_t size;
11443 
11444 			if (epid == DTRACE_EPIDNONE) {
11445 				size = sizeof (uint32_t);
11446 			} else {
11447 				ASSERT3U(epid, <=, state->dts_necbs);
11448 				ASSERT(state->dts_ecbs[epid - 1] != NULL);
11449 
11450 				size = state->dts_ecbs[epid - 1]->dte_size;
11451 			}
11452 
11453 			ASSERT(woffs + size <= buf->dtb_size);
11454 			ASSERT(size != 0);
11455 
11456 			if (woffs + size == buf->dtb_size) {
11457 				/*
11458 				 * We've reached the end of the buffer; we want
11459 				 * to set the wrapped offset to 0 and break
11460 				 * out.  However, if the offs is 0, then we're
11461 				 * in a strange edge-condition:  the amount of
11462 				 * space that we want to reserve plus the size
11463 				 * of the record that we're overwriting is
11464 				 * greater than the size of the buffer.  This
11465 				 * is problematic because if we reserve the
11466 				 * space but subsequently don't consume it (due
11467 				 * to a failed predicate or error) the wrapped
11468 				 * offset will be 0 -- yet the EPID at offset 0
11469 				 * will not be committed.  This situation is
11470 				 * relatively easy to deal with:  if we're in
11471 				 * this case, the buffer is indistinguishable
11472 				 * from one that hasn't wrapped; we need only
11473 				 * finish the job by clearing the wrapped bit,
11474 				 * explicitly setting the offset to be 0, and
11475 				 * zero'ing out the old data in the buffer.
11476 				 */
11477 				if (offs == 0) {
11478 					buf->dtb_flags &= ~DTRACEBUF_WRAPPED;
11479 					buf->dtb_offset = 0;
11480 					woffs = total;
11481 
11482 					while (woffs < buf->dtb_size)
11483 						tomax[woffs++] = 0;
11484 				}
11485 
11486 				woffs = 0;
11487 				break;
11488 			}
11489 
11490 			woffs += size;
11491 		}
11492 
11493 		/*
11494 		 * We have a wrapped offset.  It may be that the wrapped offset
11495 		 * has become zero -- that's okay.
11496 		 */
11497 		buf->dtb_xamot_offset = woffs;
11498 	}
11499 
11500 out:
11501 	/*
11502 	 * Now we can plow the buffer with any necessary padding.
11503 	 */
11504 	while (offs & (align - 1)) {
11505 		/*
11506 		 * Assert that our alignment is off by a number which
11507 		 * is itself sizeof (uint32_t) aligned.
11508 		 */
11509 		ASSERT(!((align - (offs & (align - 1))) &
11510 		    (sizeof (uint32_t) - 1)));
11511 		DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE);
11512 		offs += sizeof (uint32_t);
11513 	}
11514 
11515 	if (buf->dtb_flags & DTRACEBUF_FILL) {
11516 		if (offs + needed > buf->dtb_size - state->dts_reserve) {
11517 			buf->dtb_flags |= DTRACEBUF_FULL;
11518 			return (-1);
11519 		}
11520 	}
11521 
11522 	if (mstate == NULL)
11523 		return (offs);
11524 
11525 	/*
11526 	 * For ring buffers and fill buffers, the scratch space is always
11527 	 * the inactive buffer.
11528 	 */
11529 	mstate->dtms_scratch_base = (uintptr_t)buf->dtb_xamot;
11530 	mstate->dtms_scratch_size = buf->dtb_size;
11531 	mstate->dtms_scratch_ptr = mstate->dtms_scratch_base;
11532 
11533 	return (offs);
11534 }
11535 
11536 static void
11537 dtrace_buffer_polish(dtrace_buffer_t *buf)
11538 {
11539 	ASSERT(buf->dtb_flags & DTRACEBUF_RING);
11540 	ASSERT(MUTEX_HELD(&dtrace_lock));
11541 
11542 	if (!(buf->dtb_flags & DTRACEBUF_WRAPPED))
11543 		return;
11544 
11545 	/*
11546 	 * We need to polish the ring buffer.  There are three cases:
11547 	 *
11548 	 * - The first (and presumably most common) is that there is no gap
11549 	 *   between the buffer offset and the wrapped offset.  In this case,
11550 	 *   there is nothing in the buffer that isn't valid data; we can
11551 	 *   mark the buffer as polished and return.
11552 	 *
11553 	 * - The second (less common than the first but still more common
11554 	 *   than the third) is that there is a gap between the buffer offset
11555 	 *   and the wrapped offset, and the wrapped offset is larger than the
11556 	 *   buffer offset.  This can happen because of an alignment issue, or
11557 	 *   can happen because of a call to dtrace_buffer_reserve() that
11558 	 *   didn't subsequently consume the buffer space.  In this case,
11559 	 *   we need to zero the data from the buffer offset to the wrapped
11560 	 *   offset.
11561 	 *
11562 	 * - The third (and least common) is that there is a gap between the
11563 	 *   buffer offset and the wrapped offset, but the wrapped offset is
11564 	 *   _less_ than the buffer offset.  This can only happen because a
11565 	 *   call to dtrace_buffer_reserve() induced a wrap, but the space
11566 	 *   was not subsequently consumed.  In this case, we need to zero the
11567 	 *   space from the offset to the end of the buffer _and_ from the
11568 	 *   top of the buffer to the wrapped offset.
11569 	 */
11570 	if (buf->dtb_offset < buf->dtb_xamot_offset) {
11571 		bzero(buf->dtb_tomax + buf->dtb_offset,
11572 		    buf->dtb_xamot_offset - buf->dtb_offset);
11573 	}
11574 
11575 	if (buf->dtb_offset > buf->dtb_xamot_offset) {
11576 		bzero(buf->dtb_tomax + buf->dtb_offset,
11577 		    buf->dtb_size - buf->dtb_offset);
11578 		bzero(buf->dtb_tomax, buf->dtb_xamot_offset);
11579 	}
11580 }
11581 
11582 /*
11583  * This routine determines if data generated at the specified time has likely
11584  * been entirely consumed at user-level.  This routine is called to determine
11585  * if an ECB on a defunct probe (but for an active enabling) can be safely
11586  * disabled and destroyed.
11587  */
11588 static int
11589 dtrace_buffer_consumed(dtrace_buffer_t *bufs, hrtime_t when)
11590 {
11591 	int i;
11592 
11593 	for (i = 0; i < NCPU; i++) {
11594 		dtrace_buffer_t *buf = &bufs[i];
11595 
11596 		if (buf->dtb_size == 0)
11597 			continue;
11598 
11599 		if (buf->dtb_flags & DTRACEBUF_RING)
11600 			return (0);
11601 
11602 		if (!buf->dtb_switched && buf->dtb_offset != 0)
11603 			return (0);
11604 
11605 		if (buf->dtb_switched - buf->dtb_interval < when)
11606 			return (0);
11607 	}
11608 
11609 	return (1);
11610 }
11611 
11612 static void
11613 dtrace_buffer_free(dtrace_buffer_t *bufs)
11614 {
11615 	int i;
11616 
11617 	for (i = 0; i < NCPU; i++) {
11618 		dtrace_buffer_t *buf = &bufs[i];
11619 
11620 		if (buf->dtb_tomax == NULL) {
11621 			ASSERT(buf->dtb_xamot == NULL);
11622 			ASSERT(buf->dtb_size == 0);
11623 			continue;
11624 		}
11625 
11626 		if (buf->dtb_xamot != NULL) {
11627 			ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
11628 			kmem_free(buf->dtb_xamot, buf->dtb_size);
11629 		}
11630 
11631 		kmem_free(buf->dtb_tomax, buf->dtb_size);
11632 		buf->dtb_size = 0;
11633 		buf->dtb_tomax = NULL;
11634 		buf->dtb_xamot = NULL;
11635 	}
11636 }
11637 
11638 /*
11639  * DTrace Enabling Functions
11640  */
11641 static dtrace_enabling_t *
11642 dtrace_enabling_create(dtrace_vstate_t *vstate)
11643 {
11644 	dtrace_enabling_t *enab;
11645 
11646 	enab = kmem_zalloc(sizeof (dtrace_enabling_t), KM_SLEEP);
11647 	enab->dten_vstate = vstate;
11648 
11649 	return (enab);
11650 }
11651 
11652 static void
11653 dtrace_enabling_add(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb)
11654 {
11655 	dtrace_ecbdesc_t **ndesc;
11656 	size_t osize, nsize;
11657 
11658 	/*
11659 	 * We can't add to enablings after we've enabled them, or after we've
11660 	 * retained them.
11661 	 */
11662 	ASSERT(enab->dten_probegen == 0);
11663 	ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL);
11664 
11665 	if (enab->dten_ndesc < enab->dten_maxdesc) {
11666 		enab->dten_desc[enab->dten_ndesc++] = ecb;
11667 		return;
11668 	}
11669 
11670 	osize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *);
11671 
11672 	if (enab->dten_maxdesc == 0) {
11673 		enab->dten_maxdesc = 1;
11674 	} else {
11675 		enab->dten_maxdesc <<= 1;
11676 	}
11677 
11678 	ASSERT(enab->dten_ndesc < enab->dten_maxdesc);
11679 
11680 	nsize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *);
11681 	ndesc = kmem_zalloc(nsize, KM_SLEEP);
11682 	bcopy(enab->dten_desc, ndesc, osize);
11683 	kmem_free(enab->dten_desc, osize);
11684 
11685 	enab->dten_desc = ndesc;
11686 	enab->dten_desc[enab->dten_ndesc++] = ecb;
11687 }
11688 
11689 static void
11690 dtrace_enabling_addlike(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb,
11691     dtrace_probedesc_t *pd)
11692 {
11693 	dtrace_ecbdesc_t *new;
11694 	dtrace_predicate_t *pred;
11695 	dtrace_actdesc_t *act;
11696 
11697 	/*
11698 	 * We're going to create a new ECB description that matches the
11699 	 * specified ECB in every way, but has the specified probe description.
11700 	 */
11701 	new = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP);
11702 
11703 	if ((pred = ecb->dted_pred.dtpdd_predicate) != NULL)
11704 		dtrace_predicate_hold(pred);
11705 
11706 	for (act = ecb->dted_action; act != NULL; act = act->dtad_next)
11707 		dtrace_actdesc_hold(act);
11708 
11709 	new->dted_action = ecb->dted_action;
11710 	new->dted_pred = ecb->dted_pred;
11711 	new->dted_probe = *pd;
11712 	new->dted_uarg = ecb->dted_uarg;
11713 
11714 	dtrace_enabling_add(enab, new);
11715 }
11716 
11717 static void
11718 dtrace_enabling_dump(dtrace_enabling_t *enab)
11719 {
11720 	int i;
11721 
11722 	for (i = 0; i < enab->dten_ndesc; i++) {
11723 		dtrace_probedesc_t *desc = &enab->dten_desc[i]->dted_probe;
11724 
11725 		cmn_err(CE_NOTE, "enabling probe %d (%s:%s:%s:%s)", i,
11726 		    desc->dtpd_provider, desc->dtpd_mod,
11727 		    desc->dtpd_func, desc->dtpd_name);
11728 	}
11729 }
11730 
11731 static void
11732 dtrace_enabling_destroy(dtrace_enabling_t *enab)
11733 {
11734 	int i;
11735 	dtrace_ecbdesc_t *ep;
11736 	dtrace_vstate_t *vstate = enab->dten_vstate;
11737 
11738 	ASSERT(MUTEX_HELD(&dtrace_lock));
11739 
11740 	for (i = 0; i < enab->dten_ndesc; i++) {
11741 		dtrace_actdesc_t *act, *next;
11742 		dtrace_predicate_t *pred;
11743 
11744 		ep = enab->dten_desc[i];
11745 
11746 		if ((pred = ep->dted_pred.dtpdd_predicate) != NULL)
11747 			dtrace_predicate_release(pred, vstate);
11748 
11749 		for (act = ep->dted_action; act != NULL; act = next) {
11750 			next = act->dtad_next;
11751 			dtrace_actdesc_release(act, vstate);
11752 		}
11753 
11754 		kmem_free(ep, sizeof (dtrace_ecbdesc_t));
11755 	}
11756 
11757 	kmem_free(enab->dten_desc,
11758 	    enab->dten_maxdesc * sizeof (dtrace_enabling_t *));
11759 
11760 	/*
11761 	 * If this was a retained enabling, decrement the dts_nretained count
11762 	 * and take it off of the dtrace_retained list.
11763 	 */
11764 	if (enab->dten_prev != NULL || enab->dten_next != NULL ||
11765 	    dtrace_retained == enab) {
11766 		ASSERT(enab->dten_vstate->dtvs_state != NULL);
11767 		ASSERT(enab->dten_vstate->dtvs_state->dts_nretained > 0);
11768 		enab->dten_vstate->dtvs_state->dts_nretained--;
11769 		dtrace_retained_gen++;
11770 	}
11771 
11772 	if (enab->dten_prev == NULL) {
11773 		if (dtrace_retained == enab) {
11774 			dtrace_retained = enab->dten_next;
11775 
11776 			if (dtrace_retained != NULL)
11777 				dtrace_retained->dten_prev = NULL;
11778 		}
11779 	} else {
11780 		ASSERT(enab != dtrace_retained);
11781 		ASSERT(dtrace_retained != NULL);
11782 		enab->dten_prev->dten_next = enab->dten_next;
11783 	}
11784 
11785 	if (enab->dten_next != NULL) {
11786 		ASSERT(dtrace_retained != NULL);
11787 		enab->dten_next->dten_prev = enab->dten_prev;
11788 	}
11789 
11790 	kmem_free(enab, sizeof (dtrace_enabling_t));
11791 }
11792 
11793 static int
11794 dtrace_enabling_retain(dtrace_enabling_t *enab)
11795 {
11796 	dtrace_state_t *state;
11797 
11798 	ASSERT(MUTEX_HELD(&dtrace_lock));
11799 	ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL);
11800 	ASSERT(enab->dten_vstate != NULL);
11801 
11802 	state = enab->dten_vstate->dtvs_state;
11803 	ASSERT(state != NULL);
11804 
11805 	/*
11806 	 * We only allow each state to retain dtrace_retain_max enablings.
11807 	 */
11808 	if (state->dts_nretained >= dtrace_retain_max)
11809 		return (ENOSPC);
11810 
11811 	state->dts_nretained++;
11812 	dtrace_retained_gen++;
11813 
11814 	if (dtrace_retained == NULL) {
11815 		dtrace_retained = enab;
11816 		return (0);
11817 	}
11818 
11819 	enab->dten_next = dtrace_retained;
11820 	dtrace_retained->dten_prev = enab;
11821 	dtrace_retained = enab;
11822 
11823 	return (0);
11824 }
11825 
11826 static int
11827 dtrace_enabling_replicate(dtrace_state_t *state, dtrace_probedesc_t *match,
11828     dtrace_probedesc_t *create)
11829 {
11830 	dtrace_enabling_t *new, *enab;
11831 	int found = 0, err = ENOENT;
11832 
11833 	ASSERT(MUTEX_HELD(&dtrace_lock));
11834 	ASSERT(strlen(match->dtpd_provider) < DTRACE_PROVNAMELEN);
11835 	ASSERT(strlen(match->dtpd_mod) < DTRACE_MODNAMELEN);
11836 	ASSERT(strlen(match->dtpd_func) < DTRACE_FUNCNAMELEN);
11837 	ASSERT(strlen(match->dtpd_name) < DTRACE_NAMELEN);
11838 
11839 	new = dtrace_enabling_create(&state->dts_vstate);
11840 
11841 	/*
11842 	 * Iterate over all retained enablings, looking for enablings that
11843 	 * match the specified state.
11844 	 */
11845 	for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
11846 		int i;
11847 
11848 		/*
11849 		 * dtvs_state can only be NULL for helper enablings -- and
11850 		 * helper enablings can't be retained.
11851 		 */
11852 		ASSERT(enab->dten_vstate->dtvs_state != NULL);
11853 
11854 		if (enab->dten_vstate->dtvs_state != state)
11855 			continue;
11856 
11857 		/*
11858 		 * Now iterate over each probe description; we're looking for
11859 		 * an exact match to the specified probe description.
11860 		 */
11861 		for (i = 0; i < enab->dten_ndesc; i++) {
11862 			dtrace_ecbdesc_t *ep = enab->dten_desc[i];
11863 			dtrace_probedesc_t *pd = &ep->dted_probe;
11864 
11865 			if (strcmp(pd->dtpd_provider, match->dtpd_provider))
11866 				continue;
11867 
11868 			if (strcmp(pd->dtpd_mod, match->dtpd_mod))
11869 				continue;
11870 
11871 			if (strcmp(pd->dtpd_func, match->dtpd_func))
11872 				continue;
11873 
11874 			if (strcmp(pd->dtpd_name, match->dtpd_name))
11875 				continue;
11876 
11877 			/*
11878 			 * We have a winning probe!  Add it to our growing
11879 			 * enabling.
11880 			 */
11881 			found = 1;
11882 			dtrace_enabling_addlike(new, ep, create);
11883 		}
11884 	}
11885 
11886 	if (!found || (err = dtrace_enabling_retain(new)) != 0) {
11887 		dtrace_enabling_destroy(new);
11888 		return (err);
11889 	}
11890 
11891 	return (0);
11892 }
11893 
11894 static void
11895 dtrace_enabling_retract(dtrace_state_t *state)
11896 {
11897 	dtrace_enabling_t *enab, *next;
11898 
11899 	ASSERT(MUTEX_HELD(&dtrace_lock));
11900 
11901 	/*
11902 	 * Iterate over all retained enablings, destroy the enablings retained
11903 	 * for the specified state.
11904 	 */
11905 	for (enab = dtrace_retained; enab != NULL; enab = next) {
11906 		next = enab->dten_next;
11907 
11908 		/*
11909 		 * dtvs_state can only be NULL for helper enablings -- and
11910 		 * helper enablings can't be retained.
11911 		 */
11912 		ASSERT(enab->dten_vstate->dtvs_state != NULL);
11913 
11914 		if (enab->dten_vstate->dtvs_state == state) {
11915 			ASSERT(state->dts_nretained > 0);
11916 			dtrace_enabling_destroy(enab);
11917 		}
11918 	}
11919 
11920 	ASSERT(state->dts_nretained == 0);
11921 }
11922 
11923 static int
11924 dtrace_enabling_match(dtrace_enabling_t *enab, int *nmatched)
11925 {
11926 	int i = 0;
11927 	int total_matched = 0, matched = 0;
11928 
11929 	ASSERT(MUTEX_HELD(&cpu_lock));
11930 	ASSERT(MUTEX_HELD(&dtrace_lock));
11931 
11932 	for (i = 0; i < enab->dten_ndesc; i++) {
11933 		dtrace_ecbdesc_t *ep = enab->dten_desc[i];
11934 
11935 		enab->dten_current = ep;
11936 		enab->dten_error = 0;
11937 
11938 		/*
11939 		 * If a provider failed to enable a probe then get out and
11940 		 * let the consumer know we failed.
11941 		 */
11942 		if ((matched = dtrace_probe_enable(&ep->dted_probe, enab)) < 0)
11943 			return (EBUSY);
11944 
11945 		total_matched += matched;
11946 
11947 		if (enab->dten_error != 0) {
11948 			/*
11949 			 * If we get an error half-way through enabling the
11950 			 * probes, we kick out -- perhaps with some number of
11951 			 * them enabled.  Leaving enabled probes enabled may
11952 			 * be slightly confusing for user-level, but we expect
11953 			 * that no one will attempt to actually drive on in
11954 			 * the face of such errors.  If this is an anonymous
11955 			 * enabling (indicated with a NULL nmatched pointer),
11956 			 * we cmn_err() a message.  We aren't expecting to
11957 			 * get such an error -- such as it can exist at all,
11958 			 * it would be a result of corrupted DOF in the driver
11959 			 * properties.
11960 			 */
11961 			if (nmatched == NULL) {
11962 				cmn_err(CE_WARN, "dtrace_enabling_match() "
11963 				    "error on %p: %d", (void *)ep,
11964 				    enab->dten_error);
11965 			}
11966 
11967 			return (enab->dten_error);
11968 		}
11969 	}
11970 
11971 	enab->dten_probegen = dtrace_probegen;
11972 	if (nmatched != NULL)
11973 		*nmatched = total_matched;
11974 
11975 	return (0);
11976 }
11977 
11978 static void
11979 dtrace_enabling_matchall(void)
11980 {
11981 	dtrace_enabling_t *enab;
11982 
11983 	mutex_enter(&cpu_lock);
11984 	mutex_enter(&dtrace_lock);
11985 
11986 	/*
11987 	 * Iterate over all retained enablings to see if any probes match
11988 	 * against them.  We only perform this operation on enablings for which
11989 	 * we have sufficient permissions by virtue of being in the global zone
11990 	 * or in the same zone as the DTrace client.  Because we can be called
11991 	 * after dtrace_detach() has been called, we cannot assert that there
11992 	 * are retained enablings.  We can safely load from dtrace_retained,
11993 	 * however:  the taskq_destroy() at the end of dtrace_detach() will
11994 	 * block pending our completion.
11995 	 */
11996 	for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
11997 		dtrace_cred_t *dcr = &enab->dten_vstate->dtvs_state->dts_cred;
11998 		cred_t *cr = dcr->dcr_cred;
11999 		zoneid_t zone = cr != NULL ? crgetzoneid(cr) : 0;
12000 
12001 		if ((dcr->dcr_visible & DTRACE_CRV_ALLZONE) || (cr != NULL &&
12002 		    (zone == GLOBAL_ZONEID || getzoneid() == zone)))
12003 			(void) dtrace_enabling_match(enab, NULL);
12004 	}
12005 
12006 	mutex_exit(&dtrace_lock);
12007 	mutex_exit(&cpu_lock);
12008 }
12009 
12010 /*
12011  * If an enabling is to be enabled without having matched probes (that is, if
12012  * dtrace_state_go() is to be called on the underlying dtrace_state_t), the
12013  * enabling must be _primed_ by creating an ECB for every ECB description.
12014  * This must be done to assure that we know the number of speculations, the
12015  * number of aggregations, the minimum buffer size needed, etc. before we
12016  * transition out of DTRACE_ACTIVITY_INACTIVE.  To do this without actually
12017  * enabling any probes, we create ECBs for every ECB decription, but with a
12018  * NULL probe -- which is exactly what this function does.
12019  */
12020 static void
12021 dtrace_enabling_prime(dtrace_state_t *state)
12022 {
12023 	dtrace_enabling_t *enab;
12024 	int i;
12025 
12026 	for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
12027 		ASSERT(enab->dten_vstate->dtvs_state != NULL);
12028 
12029 		if (enab->dten_vstate->dtvs_state != state)
12030 			continue;
12031 
12032 		/*
12033 		 * We don't want to prime an enabling more than once, lest
12034 		 * we allow a malicious user to induce resource exhaustion.
12035 		 * (The ECBs that result from priming an enabling aren't
12036 		 * leaked -- but they also aren't deallocated until the
12037 		 * consumer state is destroyed.)
12038 		 */
12039 		if (enab->dten_primed)
12040 			continue;
12041 
12042 		for (i = 0; i < enab->dten_ndesc; i++) {
12043 			enab->dten_current = enab->dten_desc[i];
12044 			(void) dtrace_probe_enable(NULL, enab);
12045 		}
12046 
12047 		enab->dten_primed = 1;
12048 	}
12049 }
12050 
12051 /*
12052  * Called to indicate that probes should be provided due to retained
12053  * enablings.  This is implemented in terms of dtrace_probe_provide(), but it
12054  * must take an initial lap through the enabling calling the dtps_provide()
12055  * entry point explicitly to allow for autocreated probes.
12056  */
12057 static void
12058 dtrace_enabling_provide(dtrace_provider_t *prv)
12059 {
12060 	int i, all = 0;
12061 	dtrace_probedesc_t desc;
12062 	dtrace_genid_t gen;
12063 
12064 	ASSERT(MUTEX_HELD(&dtrace_lock));
12065 	ASSERT(MUTEX_HELD(&dtrace_provider_lock));
12066 
12067 	if (prv == NULL) {
12068 		all = 1;
12069 		prv = dtrace_provider;
12070 	}
12071 
12072 	do {
12073 		dtrace_enabling_t *enab;
12074 		void *parg = prv->dtpv_arg;
12075 
12076 retry:
12077 		gen = dtrace_retained_gen;
12078 		for (enab = dtrace_retained; enab != NULL;
12079 		    enab = enab->dten_next) {
12080 			for (i = 0; i < enab->dten_ndesc; i++) {
12081 				desc = enab->dten_desc[i]->dted_probe;
12082 				mutex_exit(&dtrace_lock);
12083 				prv->dtpv_pops.dtps_provide(parg, &desc);
12084 				mutex_enter(&dtrace_lock);
12085 				/*
12086 				 * Process the retained enablings again if
12087 				 * they have changed while we weren't holding
12088 				 * dtrace_lock.
12089 				 */
12090 				if (gen != dtrace_retained_gen)
12091 					goto retry;
12092 			}
12093 		}
12094 	} while (all && (prv = prv->dtpv_next) != NULL);
12095 
12096 	mutex_exit(&dtrace_lock);
12097 	dtrace_probe_provide(NULL, all ? NULL : prv);
12098 	mutex_enter(&dtrace_lock);
12099 }
12100 
12101 /*
12102  * Called to reap ECBs that are attached to probes from defunct providers.
12103  */
12104 static void
12105 dtrace_enabling_reap(void)
12106 {
12107 	dtrace_provider_t *prov;
12108 	dtrace_probe_t *probe;
12109 	dtrace_ecb_t *ecb;
12110 	hrtime_t when;
12111 	int i;
12112 
12113 	mutex_enter(&cpu_lock);
12114 	mutex_enter(&dtrace_lock);
12115 
12116 	for (i = 0; i < dtrace_nprobes; i++) {
12117 		if ((probe = dtrace_probes[i]) == NULL)
12118 			continue;
12119 
12120 		if (probe->dtpr_ecb == NULL)
12121 			continue;
12122 
12123 		prov = probe->dtpr_provider;
12124 
12125 		if ((when = prov->dtpv_defunct) == 0)
12126 			continue;
12127 
12128 		/*
12129 		 * We have ECBs on a defunct provider:  we want to reap these
12130 		 * ECBs to allow the provider to unregister.  The destruction
12131 		 * of these ECBs must be done carefully:  if we destroy the ECB
12132 		 * and the consumer later wishes to consume an EPID that
12133 		 * corresponds to the destroyed ECB (and if the EPID metadata
12134 		 * has not been previously consumed), the consumer will abort
12135 		 * processing on the unknown EPID.  To reduce (but not, sadly,
12136 		 * eliminate) the possibility of this, we will only destroy an
12137 		 * ECB for a defunct provider if, for the state that
12138 		 * corresponds to the ECB:
12139 		 *
12140 		 *  (a)	There is no speculative tracing (which can effectively
12141 		 *	cache an EPID for an arbitrary amount of time).
12142 		 *
12143 		 *  (b)	The principal buffers have been switched twice since the
12144 		 *	provider became defunct.
12145 		 *
12146 		 *  (c)	The aggregation buffers are of zero size or have been
12147 		 *	switched twice since the provider became defunct.
12148 		 *
12149 		 * We use dts_speculates to determine (a) and call a function
12150 		 * (dtrace_buffer_consumed()) to determine (b) and (c).  Note
12151 		 * that as soon as we've been unable to destroy one of the ECBs
12152 		 * associated with the probe, we quit trying -- reaping is only
12153 		 * fruitful in as much as we can destroy all ECBs associated
12154 		 * with the defunct provider's probes.
12155 		 */
12156 		while ((ecb = probe->dtpr_ecb) != NULL) {
12157 			dtrace_state_t *state = ecb->dte_state;
12158 			dtrace_buffer_t *buf = state->dts_buffer;
12159 			dtrace_buffer_t *aggbuf = state->dts_aggbuffer;
12160 
12161 			if (state->dts_speculates)
12162 				break;
12163 
12164 			if (!dtrace_buffer_consumed(buf, when))
12165 				break;
12166 
12167 			if (!dtrace_buffer_consumed(aggbuf, when))
12168 				break;
12169 
12170 			dtrace_ecb_disable(ecb);
12171 			ASSERT(probe->dtpr_ecb != ecb);
12172 			dtrace_ecb_destroy(ecb);
12173 		}
12174 	}
12175 
12176 	mutex_exit(&dtrace_lock);
12177 	mutex_exit(&cpu_lock);
12178 }
12179 
12180 /*
12181  * DTrace DOF Functions
12182  */
12183 /*ARGSUSED*/
12184 static void
12185 dtrace_dof_error(dof_hdr_t *dof, const char *str)
12186 {
12187 	if (dtrace_err_verbose)
12188 		cmn_err(CE_WARN, "failed to process DOF: %s", str);
12189 
12190 #ifdef DTRACE_ERRDEBUG
12191 	dtrace_errdebug(str);
12192 #endif
12193 }
12194 
12195 /*
12196  * Create DOF out of a currently enabled state.  Right now, we only create
12197  * DOF containing the run-time options -- but this could be expanded to create
12198  * complete DOF representing the enabled state.
12199  */
12200 static dof_hdr_t *
12201 dtrace_dof_create(dtrace_state_t *state)
12202 {
12203 	dof_hdr_t *dof;
12204 	dof_sec_t *sec;
12205 	dof_optdesc_t *opt;
12206 	int i, len = sizeof (dof_hdr_t) +
12207 	    roundup(sizeof (dof_sec_t), sizeof (uint64_t)) +
12208 	    sizeof (dof_optdesc_t) * DTRACEOPT_MAX;
12209 
12210 	ASSERT(MUTEX_HELD(&dtrace_lock));
12211 
12212 	dof = kmem_zalloc(len, KM_SLEEP);
12213 	dof->dofh_ident[DOF_ID_MAG0] = DOF_MAG_MAG0;
12214 	dof->dofh_ident[DOF_ID_MAG1] = DOF_MAG_MAG1;
12215 	dof->dofh_ident[DOF_ID_MAG2] = DOF_MAG_MAG2;
12216 	dof->dofh_ident[DOF_ID_MAG3] = DOF_MAG_MAG3;
12217 
12218 	dof->dofh_ident[DOF_ID_MODEL] = DOF_MODEL_NATIVE;
12219 	dof->dofh_ident[DOF_ID_ENCODING] = DOF_ENCODE_NATIVE;
12220 	dof->dofh_ident[DOF_ID_VERSION] = DOF_VERSION;
12221 	dof->dofh_ident[DOF_ID_DIFVERS] = DIF_VERSION;
12222 	dof->dofh_ident[DOF_ID_DIFIREG] = DIF_DIR_NREGS;
12223 	dof->dofh_ident[DOF_ID_DIFTREG] = DIF_DTR_NREGS;
12224 
12225 	dof->dofh_flags = 0;
12226 	dof->dofh_hdrsize = sizeof (dof_hdr_t);
12227 	dof->dofh_secsize = sizeof (dof_sec_t);
12228 	dof->dofh_secnum = 1;	/* only DOF_SECT_OPTDESC */
12229 	dof->dofh_secoff = sizeof (dof_hdr_t);
12230 	dof->dofh_loadsz = len;
12231 	dof->dofh_filesz = len;
12232 	dof->dofh_pad = 0;
12233 
12234 	/*
12235 	 * Fill in the option section header...
12236 	 */
12237 	sec = (dof_sec_t *)((uintptr_t)dof + sizeof (dof_hdr_t));
12238 	sec->dofs_type = DOF_SECT_OPTDESC;
12239 	sec->dofs_align = sizeof (uint64_t);
12240 	sec->dofs_flags = DOF_SECF_LOAD;
12241 	sec->dofs_entsize = sizeof (dof_optdesc_t);
12242 
12243 	opt = (dof_optdesc_t *)((uintptr_t)sec +
12244 	    roundup(sizeof (dof_sec_t), sizeof (uint64_t)));
12245 
12246 	sec->dofs_offset = (uintptr_t)opt - (uintptr_t)dof;
12247 	sec->dofs_size = sizeof (dof_optdesc_t) * DTRACEOPT_MAX;
12248 
12249 	for (i = 0; i < DTRACEOPT_MAX; i++) {
12250 		opt[i].dofo_option = i;
12251 		opt[i].dofo_strtab = DOF_SECIDX_NONE;
12252 		opt[i].dofo_value = state->dts_options[i];
12253 	}
12254 
12255 	return (dof);
12256 }
12257 
12258 static dof_hdr_t *
12259 dtrace_dof_copyin(uintptr_t uarg, int *errp)
12260 {
12261 	dof_hdr_t hdr, *dof;
12262 
12263 	ASSERT(!MUTEX_HELD(&dtrace_lock));
12264 
12265 	/*
12266 	 * First, we're going to copyin() the sizeof (dof_hdr_t).
12267 	 */
12268 	if (copyin((void *)uarg, &hdr, sizeof (hdr)) != 0) {
12269 		dtrace_dof_error(NULL, "failed to copyin DOF header");
12270 		*errp = EFAULT;
12271 		return (NULL);
12272 	}
12273 
12274 	/*
12275 	 * Now we'll allocate the entire DOF and copy it in -- provided
12276 	 * that the length isn't outrageous.
12277 	 */
12278 	if (hdr.dofh_loadsz >= dtrace_dof_maxsize) {
12279 		dtrace_dof_error(&hdr, "load size exceeds maximum");
12280 		*errp = E2BIG;
12281 		return (NULL);
12282 	}
12283 
12284 	if (hdr.dofh_loadsz < sizeof (hdr)) {
12285 		dtrace_dof_error(&hdr, "invalid load size");
12286 		*errp = EINVAL;
12287 		return (NULL);
12288 	}
12289 
12290 	dof = kmem_alloc(hdr.dofh_loadsz, KM_SLEEP);
12291 
12292 	if (copyin((void *)uarg, dof, hdr.dofh_loadsz) != 0 ||
12293 	    dof->dofh_loadsz != hdr.dofh_loadsz) {
12294 		kmem_free(dof, hdr.dofh_loadsz);
12295 		*errp = EFAULT;
12296 		return (NULL);
12297 	}
12298 
12299 	return (dof);
12300 }
12301 
12302 static dof_hdr_t *
12303 dtrace_dof_property(const char *name)
12304 {
12305 	uchar_t *buf;
12306 	uint64_t loadsz;
12307 	unsigned int len, i;
12308 	dof_hdr_t *dof;
12309 
12310 	/*
12311 	 * Unfortunately, array of values in .conf files are always (and
12312 	 * only) interpreted to be integer arrays.  We must read our DOF
12313 	 * as an integer array, and then squeeze it into a byte array.
12314 	 */
12315 	if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, dtrace_devi, 0,
12316 	    (char *)name, (int **)&buf, &len) != DDI_PROP_SUCCESS)
12317 		return (NULL);
12318 
12319 	for (i = 0; i < len; i++)
12320 		buf[i] = (uchar_t)(((int *)buf)[i]);
12321 
12322 	if (len < sizeof (dof_hdr_t)) {
12323 		ddi_prop_free(buf);
12324 		dtrace_dof_error(NULL, "truncated header");
12325 		return (NULL);
12326 	}
12327 
12328 	if (len < (loadsz = ((dof_hdr_t *)buf)->dofh_loadsz)) {
12329 		ddi_prop_free(buf);
12330 		dtrace_dof_error(NULL, "truncated DOF");
12331 		return (NULL);
12332 	}
12333 
12334 	if (loadsz >= dtrace_dof_maxsize) {
12335 		ddi_prop_free(buf);
12336 		dtrace_dof_error(NULL, "oversized DOF");
12337 		return (NULL);
12338 	}
12339 
12340 	dof = kmem_alloc(loadsz, KM_SLEEP);
12341 	bcopy(buf, dof, loadsz);
12342 	ddi_prop_free(buf);
12343 
12344 	return (dof);
12345 }
12346 
12347 static void
12348 dtrace_dof_destroy(dof_hdr_t *dof)
12349 {
12350 	kmem_free(dof, dof->dofh_loadsz);
12351 }
12352 
12353 /*
12354  * Return the dof_sec_t pointer corresponding to a given section index.  If the
12355  * index is not valid, dtrace_dof_error() is called and NULL is returned.  If
12356  * a type other than DOF_SECT_NONE is specified, the header is checked against
12357  * this type and NULL is returned if the types do not match.
12358  */
12359 static dof_sec_t *
12360 dtrace_dof_sect(dof_hdr_t *dof, uint32_t type, dof_secidx_t i)
12361 {
12362 	dof_sec_t *sec = (dof_sec_t *)(uintptr_t)
12363 	    ((uintptr_t)dof + dof->dofh_secoff + i * dof->dofh_secsize);
12364 
12365 	if (i >= dof->dofh_secnum) {
12366 		dtrace_dof_error(dof, "referenced section index is invalid");
12367 		return (NULL);
12368 	}
12369 
12370 	if (!(sec->dofs_flags & DOF_SECF_LOAD)) {
12371 		dtrace_dof_error(dof, "referenced section is not loadable");
12372 		return (NULL);
12373 	}
12374 
12375 	if (type != DOF_SECT_NONE && type != sec->dofs_type) {
12376 		dtrace_dof_error(dof, "referenced section is the wrong type");
12377 		return (NULL);
12378 	}
12379 
12380 	return (sec);
12381 }
12382 
12383 static dtrace_probedesc_t *
12384 dtrace_dof_probedesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_probedesc_t *desc)
12385 {
12386 	dof_probedesc_t *probe;
12387 	dof_sec_t *strtab;
12388 	uintptr_t daddr = (uintptr_t)dof;
12389 	uintptr_t str;
12390 	size_t size;
12391 
12392 	if (sec->dofs_type != DOF_SECT_PROBEDESC) {
12393 		dtrace_dof_error(dof, "invalid probe section");
12394 		return (NULL);
12395 	}
12396 
12397 	if (sec->dofs_align != sizeof (dof_secidx_t)) {
12398 		dtrace_dof_error(dof, "bad alignment in probe description");
12399 		return (NULL);
12400 	}
12401 
12402 	if (sec->dofs_offset + sizeof (dof_probedesc_t) > dof->dofh_loadsz) {
12403 		dtrace_dof_error(dof, "truncated probe description");
12404 		return (NULL);
12405 	}
12406 
12407 	probe = (dof_probedesc_t *)(uintptr_t)(daddr + sec->dofs_offset);
12408 	strtab = dtrace_dof_sect(dof, DOF_SECT_STRTAB, probe->dofp_strtab);
12409 
12410 	if (strtab == NULL)
12411 		return (NULL);
12412 
12413 	str = daddr + strtab->dofs_offset;
12414 	size = strtab->dofs_size;
12415 
12416 	if (probe->dofp_provider >= strtab->dofs_size) {
12417 		dtrace_dof_error(dof, "corrupt probe provider");
12418 		return (NULL);
12419 	}
12420 
12421 	(void) strncpy(desc->dtpd_provider,
12422 	    (char *)(str + probe->dofp_provider),
12423 	    MIN(DTRACE_PROVNAMELEN - 1, size - probe->dofp_provider));
12424 
12425 	if (probe->dofp_mod >= strtab->dofs_size) {
12426 		dtrace_dof_error(dof, "corrupt probe module");
12427 		return (NULL);
12428 	}
12429 
12430 	(void) strncpy(desc->dtpd_mod, (char *)(str + probe->dofp_mod),
12431 	    MIN(DTRACE_MODNAMELEN - 1, size - probe->dofp_mod));
12432 
12433 	if (probe->dofp_func >= strtab->dofs_size) {
12434 		dtrace_dof_error(dof, "corrupt probe function");
12435 		return (NULL);
12436 	}
12437 
12438 	(void) strncpy(desc->dtpd_func, (char *)(str + probe->dofp_func),
12439 	    MIN(DTRACE_FUNCNAMELEN - 1, size - probe->dofp_func));
12440 
12441 	if (probe->dofp_name >= strtab->dofs_size) {
12442 		dtrace_dof_error(dof, "corrupt probe name");
12443 		return (NULL);
12444 	}
12445 
12446 	(void) strncpy(desc->dtpd_name, (char *)(str + probe->dofp_name),
12447 	    MIN(DTRACE_NAMELEN - 1, size - probe->dofp_name));
12448 
12449 	return (desc);
12450 }
12451 
12452 static dtrace_difo_t *
12453 dtrace_dof_difo(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
12454     cred_t *cr)
12455 {
12456 	dtrace_difo_t *dp;
12457 	size_t ttl = 0;
12458 	dof_difohdr_t *dofd;
12459 	uintptr_t daddr = (uintptr_t)dof;
12460 	size_t max = dtrace_difo_maxsize;
12461 	int i, l, n;
12462 
12463 	static const struct {
12464 		int section;
12465 		int bufoffs;
12466 		int lenoffs;
12467 		int entsize;
12468 		int align;
12469 		const char *msg;
12470 	} difo[] = {
12471 		{ DOF_SECT_DIF, offsetof(dtrace_difo_t, dtdo_buf),
12472 		offsetof(dtrace_difo_t, dtdo_len), sizeof (dif_instr_t),
12473 		sizeof (dif_instr_t), "multiple DIF sections" },
12474 
12475 		{ DOF_SECT_INTTAB, offsetof(dtrace_difo_t, dtdo_inttab),
12476 		offsetof(dtrace_difo_t, dtdo_intlen), sizeof (uint64_t),
12477 		sizeof (uint64_t), "multiple integer tables" },
12478 
12479 		{ DOF_SECT_STRTAB, offsetof(dtrace_difo_t, dtdo_strtab),
12480 		offsetof(dtrace_difo_t, dtdo_strlen), 0,
12481 		sizeof (char), "multiple string tables" },
12482 
12483 		{ DOF_SECT_VARTAB, offsetof(dtrace_difo_t, dtdo_vartab),
12484 		offsetof(dtrace_difo_t, dtdo_varlen), sizeof (dtrace_difv_t),
12485 		sizeof (uint_t), "multiple variable tables" },
12486 
12487 		{ DOF_SECT_NONE, 0, 0, 0, NULL }
12488 	};
12489 
12490 	if (sec->dofs_type != DOF_SECT_DIFOHDR) {
12491 		dtrace_dof_error(dof, "invalid DIFO header section");
12492 		return (NULL);
12493 	}
12494 
12495 	if (sec->dofs_align != sizeof (dof_secidx_t)) {
12496 		dtrace_dof_error(dof, "bad alignment in DIFO header");
12497 		return (NULL);
12498 	}
12499 
12500 	if (sec->dofs_size < sizeof (dof_difohdr_t) ||
12501 	    sec->dofs_size % sizeof (dof_secidx_t)) {
12502 		dtrace_dof_error(dof, "bad size in DIFO header");
12503 		return (NULL);
12504 	}
12505 
12506 	dofd = (dof_difohdr_t *)(uintptr_t)(daddr + sec->dofs_offset);
12507 	n = (sec->dofs_size - sizeof (*dofd)) / sizeof (dof_secidx_t) + 1;
12508 
12509 	dp = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP);
12510 	dp->dtdo_rtype = dofd->dofd_rtype;
12511 
12512 	for (l = 0; l < n; l++) {
12513 		dof_sec_t *subsec;
12514 		void **bufp;
12515 		uint32_t *lenp;
12516 
12517 		if ((subsec = dtrace_dof_sect(dof, DOF_SECT_NONE,
12518 		    dofd->dofd_links[l])) == NULL)
12519 			goto err; /* invalid section link */
12520 
12521 		if (ttl + subsec->dofs_size > max) {
12522 			dtrace_dof_error(dof, "exceeds maximum size");
12523 			goto err;
12524 		}
12525 
12526 		ttl += subsec->dofs_size;
12527 
12528 		for (i = 0; difo[i].section != DOF_SECT_NONE; i++) {
12529 			if (subsec->dofs_type != difo[i].section)
12530 				continue;
12531 
12532 			if (!(subsec->dofs_flags & DOF_SECF_LOAD)) {
12533 				dtrace_dof_error(dof, "section not loaded");
12534 				goto err;
12535 			}
12536 
12537 			if (subsec->dofs_align != difo[i].align) {
12538 				dtrace_dof_error(dof, "bad alignment");
12539 				goto err;
12540 			}
12541 
12542 			bufp = (void **)((uintptr_t)dp + difo[i].bufoffs);
12543 			lenp = (uint32_t *)((uintptr_t)dp + difo[i].lenoffs);
12544 
12545 			if (*bufp != NULL) {
12546 				dtrace_dof_error(dof, difo[i].msg);
12547 				goto err;
12548 			}
12549 
12550 			if (difo[i].entsize != subsec->dofs_entsize) {
12551 				dtrace_dof_error(dof, "entry size mismatch");
12552 				goto err;
12553 			}
12554 
12555 			if (subsec->dofs_entsize != 0 &&
12556 			    (subsec->dofs_size % subsec->dofs_entsize) != 0) {
12557 				dtrace_dof_error(dof, "corrupt entry size");
12558 				goto err;
12559 			}
12560 
12561 			*lenp = subsec->dofs_size;
12562 			*bufp = kmem_alloc(subsec->dofs_size, KM_SLEEP);
12563 			bcopy((char *)(uintptr_t)(daddr + subsec->dofs_offset),
12564 			    *bufp, subsec->dofs_size);
12565 
12566 			if (subsec->dofs_entsize != 0)
12567 				*lenp /= subsec->dofs_entsize;
12568 
12569 			break;
12570 		}
12571 
12572 		/*
12573 		 * If we encounter a loadable DIFO sub-section that is not
12574 		 * known to us, assume this is a broken program and fail.
12575 		 */
12576 		if (difo[i].section == DOF_SECT_NONE &&
12577 		    (subsec->dofs_flags & DOF_SECF_LOAD)) {
12578 			dtrace_dof_error(dof, "unrecognized DIFO subsection");
12579 			goto err;
12580 		}
12581 	}
12582 
12583 	if (dp->dtdo_buf == NULL) {
12584 		/*
12585 		 * We can't have a DIF object without DIF text.
12586 		 */
12587 		dtrace_dof_error(dof, "missing DIF text");
12588 		goto err;
12589 	}
12590 
12591 	/*
12592 	 * Before we validate the DIF object, run through the variable table
12593 	 * looking for the strings -- if any of their size are under, we'll set
12594 	 * their size to be the system-wide default string size.  Note that
12595 	 * this should _not_ happen if the "strsize" option has been set --
12596 	 * in this case, the compiler should have set the size to reflect the
12597 	 * setting of the option.
12598 	 */
12599 	for (i = 0; i < dp->dtdo_varlen; i++) {
12600 		dtrace_difv_t *v = &dp->dtdo_vartab[i];
12601 		dtrace_diftype_t *t = &v->dtdv_type;
12602 
12603 		if (v->dtdv_id < DIF_VAR_OTHER_UBASE)
12604 			continue;
12605 
12606 		if (t->dtdt_kind == DIF_TYPE_STRING && t->dtdt_size == 0)
12607 			t->dtdt_size = dtrace_strsize_default;
12608 	}
12609 
12610 	if (dtrace_difo_validate(dp, vstate, DIF_DIR_NREGS, cr) != 0)
12611 		goto err;
12612 
12613 	dtrace_difo_init(dp, vstate);
12614 	return (dp);
12615 
12616 err:
12617 	kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t));
12618 	kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t));
12619 	kmem_free(dp->dtdo_strtab, dp->dtdo_strlen);
12620 	kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t));
12621 
12622 	kmem_free(dp, sizeof (dtrace_difo_t));
12623 	return (NULL);
12624 }
12625 
12626 static dtrace_predicate_t *
12627 dtrace_dof_predicate(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
12628     cred_t *cr)
12629 {
12630 	dtrace_difo_t *dp;
12631 
12632 	if ((dp = dtrace_dof_difo(dof, sec, vstate, cr)) == NULL)
12633 		return (NULL);
12634 
12635 	return (dtrace_predicate_create(dp));
12636 }
12637 
12638 static dtrace_actdesc_t *
12639 dtrace_dof_actdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
12640     cred_t *cr)
12641 {
12642 	dtrace_actdesc_t *act, *first = NULL, *last = NULL, *next;
12643 	dof_actdesc_t *desc;
12644 	dof_sec_t *difosec;
12645 	size_t offs;
12646 	uintptr_t daddr = (uintptr_t)dof;
12647 	uint64_t arg;
12648 	dtrace_actkind_t kind;
12649 
12650 	if (sec->dofs_type != DOF_SECT_ACTDESC) {
12651 		dtrace_dof_error(dof, "invalid action section");
12652 		return (NULL);
12653 	}
12654 
12655 	if (sec->dofs_offset + sizeof (dof_actdesc_t) > dof->dofh_loadsz) {
12656 		dtrace_dof_error(dof, "truncated action description");
12657 		return (NULL);
12658 	}
12659 
12660 	if (sec->dofs_align != sizeof (uint64_t)) {
12661 		dtrace_dof_error(dof, "bad alignment in action description");
12662 		return (NULL);
12663 	}
12664 
12665 	if (sec->dofs_size < sec->dofs_entsize) {
12666 		dtrace_dof_error(dof, "section entry size exceeds total size");
12667 		return (NULL);
12668 	}
12669 
12670 	if (sec->dofs_entsize != sizeof (dof_actdesc_t)) {
12671 		dtrace_dof_error(dof, "bad entry size in action description");
12672 		return (NULL);
12673 	}
12674 
12675 	if (sec->dofs_size / sec->dofs_entsize > dtrace_actions_max) {
12676 		dtrace_dof_error(dof, "actions exceed dtrace_actions_max");
12677 		return (NULL);
12678 	}
12679 
12680 	for (offs = 0; offs < sec->dofs_size; offs += sec->dofs_entsize) {
12681 		desc = (dof_actdesc_t *)(daddr +
12682 		    (uintptr_t)sec->dofs_offset + offs);
12683 		kind = (dtrace_actkind_t)desc->dofa_kind;
12684 
12685 		if ((DTRACEACT_ISPRINTFLIKE(kind) &&
12686 		    (kind != DTRACEACT_PRINTA ||
12687 		    desc->dofa_strtab != DOF_SECIDX_NONE)) ||
12688 		    (kind == DTRACEACT_DIFEXPR &&
12689 		    desc->dofa_strtab != DOF_SECIDX_NONE)) {
12690 			dof_sec_t *strtab;
12691 			char *str, *fmt;
12692 			uint64_t i;
12693 
12694 			/*
12695 			 * The argument to these actions is an index into the
12696 			 * DOF string table.  For printf()-like actions, this
12697 			 * is the format string.  For print(), this is the
12698 			 * CTF type of the expression result.
12699 			 */
12700 			if ((strtab = dtrace_dof_sect(dof,
12701 			    DOF_SECT_STRTAB, desc->dofa_strtab)) == NULL)
12702 				goto err;
12703 
12704 			str = (char *)((uintptr_t)dof +
12705 			    (uintptr_t)strtab->dofs_offset);
12706 
12707 			for (i = desc->dofa_arg; i < strtab->dofs_size; i++) {
12708 				if (str[i] == '\0')
12709 					break;
12710 			}
12711 
12712 			if (i >= strtab->dofs_size) {
12713 				dtrace_dof_error(dof, "bogus format string");
12714 				goto err;
12715 			}
12716 
12717 			if (i == desc->dofa_arg) {
12718 				dtrace_dof_error(dof, "empty format string");
12719 				goto err;
12720 			}
12721 
12722 			i -= desc->dofa_arg;
12723 			fmt = kmem_alloc(i + 1, KM_SLEEP);
12724 			bcopy(&str[desc->dofa_arg], fmt, i + 1);
12725 			arg = (uint64_t)(uintptr_t)fmt;
12726 		} else {
12727 			if (kind == DTRACEACT_PRINTA) {
12728 				ASSERT(desc->dofa_strtab == DOF_SECIDX_NONE);
12729 				arg = 0;
12730 			} else {
12731 				arg = desc->dofa_arg;
12732 			}
12733 		}
12734 
12735 		act = dtrace_actdesc_create(kind, desc->dofa_ntuple,
12736 		    desc->dofa_uarg, arg);
12737 
12738 		if (last != NULL) {
12739 			last->dtad_next = act;
12740 		} else {
12741 			first = act;
12742 		}
12743 
12744 		last = act;
12745 
12746 		if (desc->dofa_difo == DOF_SECIDX_NONE)
12747 			continue;
12748 
12749 		if ((difosec = dtrace_dof_sect(dof,
12750 		    DOF_SECT_DIFOHDR, desc->dofa_difo)) == NULL)
12751 			goto err;
12752 
12753 		act->dtad_difo = dtrace_dof_difo(dof, difosec, vstate, cr);
12754 
12755 		if (act->dtad_difo == NULL)
12756 			goto err;
12757 	}
12758 
12759 	ASSERT(first != NULL);
12760 	return (first);
12761 
12762 err:
12763 	for (act = first; act != NULL; act = next) {
12764 		next = act->dtad_next;
12765 		dtrace_actdesc_release(act, vstate);
12766 	}
12767 
12768 	return (NULL);
12769 }
12770 
12771 static dtrace_ecbdesc_t *
12772 dtrace_dof_ecbdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
12773     cred_t *cr)
12774 {
12775 	dtrace_ecbdesc_t *ep;
12776 	dof_ecbdesc_t *ecb;
12777 	dtrace_probedesc_t *desc;
12778 	dtrace_predicate_t *pred = NULL;
12779 
12780 	if (sec->dofs_size < sizeof (dof_ecbdesc_t)) {
12781 		dtrace_dof_error(dof, "truncated ECB description");
12782 		return (NULL);
12783 	}
12784 
12785 	if (sec->dofs_align != sizeof (uint64_t)) {
12786 		dtrace_dof_error(dof, "bad alignment in ECB description");
12787 		return (NULL);
12788 	}
12789 
12790 	ecb = (dof_ecbdesc_t *)((uintptr_t)dof + (uintptr_t)sec->dofs_offset);
12791 	sec = dtrace_dof_sect(dof, DOF_SECT_PROBEDESC, ecb->dofe_probes);
12792 
12793 	if (sec == NULL)
12794 		return (NULL);
12795 
12796 	ep = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP);
12797 	ep->dted_uarg = ecb->dofe_uarg;
12798 	desc = &ep->dted_probe;
12799 
12800 	if (dtrace_dof_probedesc(dof, sec, desc) == NULL)
12801 		goto err;
12802 
12803 	if (ecb->dofe_pred != DOF_SECIDX_NONE) {
12804 		if ((sec = dtrace_dof_sect(dof,
12805 		    DOF_SECT_DIFOHDR, ecb->dofe_pred)) == NULL)
12806 			goto err;
12807 
12808 		if ((pred = dtrace_dof_predicate(dof, sec, vstate, cr)) == NULL)
12809 			goto err;
12810 
12811 		ep->dted_pred.dtpdd_predicate = pred;
12812 	}
12813 
12814 	if (ecb->dofe_actions != DOF_SECIDX_NONE) {
12815 		if ((sec = dtrace_dof_sect(dof,
12816 		    DOF_SECT_ACTDESC, ecb->dofe_actions)) == NULL)
12817 			goto err;
12818 
12819 		ep->dted_action = dtrace_dof_actdesc(dof, sec, vstate, cr);
12820 
12821 		if (ep->dted_action == NULL)
12822 			goto err;
12823 	}
12824 
12825 	return (ep);
12826 
12827 err:
12828 	if (pred != NULL)
12829 		dtrace_predicate_release(pred, vstate);
12830 	kmem_free(ep, sizeof (dtrace_ecbdesc_t));
12831 	return (NULL);
12832 }
12833 
12834 /*
12835  * Apply the relocations from the specified 'sec' (a DOF_SECT_URELHDR) to the
12836  * specified DOF.  At present, this amounts to simply adding 'ubase' to the
12837  * site of any user SETX relocations to account for load object base address.
12838  * In the future, if we need other relocations, this function can be extended.
12839  */
12840 static int
12841 dtrace_dof_relocate(dof_hdr_t *dof, dof_sec_t *sec, uint64_t ubase)
12842 {
12843 	uintptr_t daddr = (uintptr_t)dof;
12844 	dof_relohdr_t *dofr =
12845 	    (dof_relohdr_t *)(uintptr_t)(daddr + sec->dofs_offset);
12846 	dof_sec_t *ss, *rs, *ts;
12847 	dof_relodesc_t *r;
12848 	uint_t i, n;
12849 
12850 	if (sec->dofs_size < sizeof (dof_relohdr_t) ||
12851 	    sec->dofs_align != sizeof (dof_secidx_t)) {
12852 		dtrace_dof_error(dof, "invalid relocation header");
12853 		return (-1);
12854 	}
12855 
12856 	ss = dtrace_dof_sect(dof, DOF_SECT_STRTAB, dofr->dofr_strtab);
12857 	rs = dtrace_dof_sect(dof, DOF_SECT_RELTAB, dofr->dofr_relsec);
12858 	ts = dtrace_dof_sect(dof, DOF_SECT_NONE, dofr->dofr_tgtsec);
12859 
12860 	if (ss == NULL || rs == NULL || ts == NULL)
12861 		return (-1); /* dtrace_dof_error() has been called already */
12862 
12863 	if (rs->dofs_entsize < sizeof (dof_relodesc_t) ||
12864 	    rs->dofs_align != sizeof (uint64_t)) {
12865 		dtrace_dof_error(dof, "invalid relocation section");
12866 		return (-1);
12867 	}
12868 
12869 	r = (dof_relodesc_t *)(uintptr_t)(daddr + rs->dofs_offset);
12870 	n = rs->dofs_size / rs->dofs_entsize;
12871 
12872 	for (i = 0; i < n; i++) {
12873 		uintptr_t taddr = daddr + ts->dofs_offset + r->dofr_offset;
12874 
12875 		switch (r->dofr_type) {
12876 		case DOF_RELO_NONE:
12877 			break;
12878 		case DOF_RELO_SETX:
12879 			if (r->dofr_offset >= ts->dofs_size || r->dofr_offset +
12880 			    sizeof (uint64_t) > ts->dofs_size) {
12881 				dtrace_dof_error(dof, "bad relocation offset");
12882 				return (-1);
12883 			}
12884 
12885 			if (!IS_P2ALIGNED(taddr, sizeof (uint64_t))) {
12886 				dtrace_dof_error(dof, "misaligned setx relo");
12887 				return (-1);
12888 			}
12889 
12890 			*(uint64_t *)taddr += ubase;
12891 			break;
12892 		default:
12893 			dtrace_dof_error(dof, "invalid relocation type");
12894 			return (-1);
12895 		}
12896 
12897 		r = (dof_relodesc_t *)((uintptr_t)r + rs->dofs_entsize);
12898 	}
12899 
12900 	return (0);
12901 }
12902 
12903 /*
12904  * The dof_hdr_t passed to dtrace_dof_slurp() should be a partially validated
12905  * header:  it should be at the front of a memory region that is at least
12906  * sizeof (dof_hdr_t) in size -- and then at least dof_hdr.dofh_loadsz in
12907  * size.  It need not be validated in any other way.
12908  */
12909 static int
12910 dtrace_dof_slurp(dof_hdr_t *dof, dtrace_vstate_t *vstate, cred_t *cr,
12911     dtrace_enabling_t **enabp, uint64_t ubase, int noprobes)
12912 {
12913 	uint64_t len = dof->dofh_loadsz, seclen;
12914 	uintptr_t daddr = (uintptr_t)dof;
12915 	dtrace_ecbdesc_t *ep;
12916 	dtrace_enabling_t *enab;
12917 	uint_t i;
12918 
12919 	ASSERT(MUTEX_HELD(&dtrace_lock));
12920 	ASSERT(dof->dofh_loadsz >= sizeof (dof_hdr_t));
12921 
12922 	/*
12923 	 * Check the DOF header identification bytes.  In addition to checking
12924 	 * valid settings, we also verify that unused bits/bytes are zeroed so
12925 	 * we can use them later without fear of regressing existing binaries.
12926 	 */
12927 	if (bcmp(&dof->dofh_ident[DOF_ID_MAG0],
12928 	    DOF_MAG_STRING, DOF_MAG_STRLEN) != 0) {
12929 		dtrace_dof_error(dof, "DOF magic string mismatch");
12930 		return (-1);
12931 	}
12932 
12933 	if (dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_ILP32 &&
12934 	    dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_LP64) {
12935 		dtrace_dof_error(dof, "DOF has invalid data model");
12936 		return (-1);
12937 	}
12938 
12939 	if (dof->dofh_ident[DOF_ID_ENCODING] != DOF_ENCODE_NATIVE) {
12940 		dtrace_dof_error(dof, "DOF encoding mismatch");
12941 		return (-1);
12942 	}
12943 
12944 	if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 &&
12945 	    dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_2) {
12946 		dtrace_dof_error(dof, "DOF version mismatch");
12947 		return (-1);
12948 	}
12949 
12950 	if (dof->dofh_ident[DOF_ID_DIFVERS] != DIF_VERSION_2) {
12951 		dtrace_dof_error(dof, "DOF uses unsupported instruction set");
12952 		return (-1);
12953 	}
12954 
12955 	if (dof->dofh_ident[DOF_ID_DIFIREG] > DIF_DIR_NREGS) {
12956 		dtrace_dof_error(dof, "DOF uses too many integer registers");
12957 		return (-1);
12958 	}
12959 
12960 	if (dof->dofh_ident[DOF_ID_DIFTREG] > DIF_DTR_NREGS) {
12961 		dtrace_dof_error(dof, "DOF uses too many tuple registers");
12962 		return (-1);
12963 	}
12964 
12965 	for (i = DOF_ID_PAD; i < DOF_ID_SIZE; i++) {
12966 		if (dof->dofh_ident[i] != 0) {
12967 			dtrace_dof_error(dof, "DOF has invalid ident byte set");
12968 			return (-1);
12969 		}
12970 	}
12971 
12972 	if (dof->dofh_flags & ~DOF_FL_VALID) {
12973 		dtrace_dof_error(dof, "DOF has invalid flag bits set");
12974 		return (-1);
12975 	}
12976 
12977 	if (dof->dofh_secsize == 0) {
12978 		dtrace_dof_error(dof, "zero section header size");
12979 		return (-1);
12980 	}
12981 
12982 	/*
12983 	 * Check that the section headers don't exceed the amount of DOF
12984 	 * data.  Note that we cast the section size and number of sections
12985 	 * to uint64_t's to prevent possible overflow in the multiplication.
12986 	 */
12987 	seclen = (uint64_t)dof->dofh_secnum * (uint64_t)dof->dofh_secsize;
12988 
12989 	if (dof->dofh_secoff > len || seclen > len ||
12990 	    dof->dofh_secoff + seclen > len) {
12991 		dtrace_dof_error(dof, "truncated section headers");
12992 		return (-1);
12993 	}
12994 
12995 	if (!IS_P2ALIGNED(dof->dofh_secoff, sizeof (uint64_t))) {
12996 		dtrace_dof_error(dof, "misaligned section headers");
12997 		return (-1);
12998 	}
12999 
13000 	if (!IS_P2ALIGNED(dof->dofh_secsize, sizeof (uint64_t))) {
13001 		dtrace_dof_error(dof, "misaligned section size");
13002 		return (-1);
13003 	}
13004 
13005 	/*
13006 	 * Take an initial pass through the section headers to be sure that
13007 	 * the headers don't have stray offsets.  If the 'noprobes' flag is
13008 	 * set, do not permit sections relating to providers, probes, or args.
13009 	 */
13010 	for (i = 0; i < dof->dofh_secnum; i++) {
13011 		dof_sec_t *sec = (dof_sec_t *)(daddr +
13012 		    (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
13013 
13014 		if (noprobes) {
13015 			switch (sec->dofs_type) {
13016 			case DOF_SECT_PROVIDER:
13017 			case DOF_SECT_PROBES:
13018 			case DOF_SECT_PRARGS:
13019 			case DOF_SECT_PROFFS:
13020 				dtrace_dof_error(dof, "illegal sections "
13021 				    "for enabling");
13022 				return (-1);
13023 			}
13024 		}
13025 
13026 		if (DOF_SEC_ISLOADABLE(sec->dofs_type) &&
13027 		    !(sec->dofs_flags & DOF_SECF_LOAD)) {
13028 			dtrace_dof_error(dof, "loadable section with load "
13029 			    "flag unset");
13030 			return (-1);
13031 		}
13032 
13033 		if (!(sec->dofs_flags & DOF_SECF_LOAD))
13034 			continue; /* just ignore non-loadable sections */
13035 
13036 		if (sec->dofs_align & (sec->dofs_align - 1)) {
13037 			dtrace_dof_error(dof, "bad section alignment");
13038 			return (-1);
13039 		}
13040 
13041 		if (sec->dofs_offset & (sec->dofs_align - 1)) {
13042 			dtrace_dof_error(dof, "misaligned section");
13043 			return (-1);
13044 		}
13045 
13046 		if (sec->dofs_offset > len || sec->dofs_size > len ||
13047 		    sec->dofs_offset + sec->dofs_size > len) {
13048 			dtrace_dof_error(dof, "corrupt section header");
13049 			return (-1);
13050 		}
13051 
13052 		if (sec->dofs_type == DOF_SECT_STRTAB && *((char *)daddr +
13053 		    sec->dofs_offset + sec->dofs_size - 1) != '\0') {
13054 			dtrace_dof_error(dof, "non-terminating string table");
13055 			return (-1);
13056 		}
13057 	}
13058 
13059 	/*
13060 	 * Take a second pass through the sections and locate and perform any
13061 	 * relocations that are present.  We do this after the first pass to
13062 	 * be sure that all sections have had their headers validated.
13063 	 */
13064 	for (i = 0; i < dof->dofh_secnum; i++) {
13065 		dof_sec_t *sec = (dof_sec_t *)(daddr +
13066 		    (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
13067 
13068 		if (!(sec->dofs_flags & DOF_SECF_LOAD))
13069 			continue; /* skip sections that are not loadable */
13070 
13071 		switch (sec->dofs_type) {
13072 		case DOF_SECT_URELHDR:
13073 			if (dtrace_dof_relocate(dof, sec, ubase) != 0)
13074 				return (-1);
13075 			break;
13076 		}
13077 	}
13078 
13079 	if ((enab = *enabp) == NULL)
13080 		enab = *enabp = dtrace_enabling_create(vstate);
13081 
13082 	for (i = 0; i < dof->dofh_secnum; i++) {
13083 		dof_sec_t *sec = (dof_sec_t *)(daddr +
13084 		    (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
13085 
13086 		if (sec->dofs_type != DOF_SECT_ECBDESC)
13087 			continue;
13088 
13089 		if ((ep = dtrace_dof_ecbdesc(dof, sec, vstate, cr)) == NULL) {
13090 			dtrace_enabling_destroy(enab);
13091 			*enabp = NULL;
13092 			return (-1);
13093 		}
13094 
13095 		dtrace_enabling_add(enab, ep);
13096 	}
13097 
13098 	return (0);
13099 }
13100 
13101 /*
13102  * Process DOF for any options.  This routine assumes that the DOF has been
13103  * at least processed by dtrace_dof_slurp().
13104  */
13105 static int
13106 dtrace_dof_options(dof_hdr_t *dof, dtrace_state_t *state)
13107 {
13108 	int i, rval;
13109 	uint32_t entsize;
13110 	size_t offs;
13111 	dof_optdesc_t *desc;
13112 
13113 	for (i = 0; i < dof->dofh_secnum; i++) {
13114 		dof_sec_t *sec = (dof_sec_t *)((uintptr_t)dof +
13115 		    (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
13116 
13117 		if (sec->dofs_type != DOF_SECT_OPTDESC)
13118 			continue;
13119 
13120 		if (sec->dofs_align != sizeof (uint64_t)) {
13121 			dtrace_dof_error(dof, "bad alignment in "
13122 			    "option description");
13123 			return (EINVAL);
13124 		}
13125 
13126 		if ((entsize = sec->dofs_entsize) == 0) {
13127 			dtrace_dof_error(dof, "zeroed option entry size");
13128 			return (EINVAL);
13129 		}
13130 
13131 		if (entsize < sizeof (dof_optdesc_t)) {
13132 			dtrace_dof_error(dof, "bad option entry size");
13133 			return (EINVAL);
13134 		}
13135 
13136 		for (offs = 0; offs < sec->dofs_size; offs += entsize) {
13137 			desc = (dof_optdesc_t *)((uintptr_t)dof +
13138 			    (uintptr_t)sec->dofs_offset + offs);
13139 
13140 			if (desc->dofo_strtab != DOF_SECIDX_NONE) {
13141 				dtrace_dof_error(dof, "non-zero option string");
13142 				return (EINVAL);
13143 			}
13144 
13145 			if (desc->dofo_value == DTRACEOPT_UNSET) {
13146 				dtrace_dof_error(dof, "unset option");
13147 				return (EINVAL);
13148 			}
13149 
13150 			if ((rval = dtrace_state_option(state,
13151 			    desc->dofo_option, desc->dofo_value)) != 0) {
13152 				dtrace_dof_error(dof, "rejected option");
13153 				return (rval);
13154 			}
13155 		}
13156 	}
13157 
13158 	return (0);
13159 }
13160 
13161 /*
13162  * DTrace Consumer State Functions
13163  */
13164 int
13165 dtrace_dstate_init(dtrace_dstate_t *dstate, size_t size)
13166 {
13167 	size_t hashsize, maxper, min, chunksize = dstate->dtds_chunksize;
13168 	void *base;
13169 	uintptr_t limit;
13170 	dtrace_dynvar_t *dvar, *next, *start;
13171 	int i;
13172 
13173 	ASSERT(MUTEX_HELD(&dtrace_lock));
13174 	ASSERT(dstate->dtds_base == NULL && dstate->dtds_percpu == NULL);
13175 
13176 	bzero(dstate, sizeof (dtrace_dstate_t));
13177 
13178 	if ((dstate->dtds_chunksize = chunksize) == 0)
13179 		dstate->dtds_chunksize = DTRACE_DYNVAR_CHUNKSIZE;
13180 
13181 	if (size < (min = dstate->dtds_chunksize + sizeof (dtrace_dynhash_t)))
13182 		size = min;
13183 
13184 	if ((base = kmem_zalloc(size, KM_NOSLEEP | KM_NORMALPRI)) == NULL)
13185 		return (ENOMEM);
13186 
13187 	dstate->dtds_size = size;
13188 	dstate->dtds_base = base;
13189 	dstate->dtds_percpu = kmem_cache_alloc(dtrace_state_cache, KM_SLEEP);
13190 	bzero(dstate->dtds_percpu, NCPU * sizeof (dtrace_dstate_percpu_t));
13191 
13192 	hashsize = size / (dstate->dtds_chunksize + sizeof (dtrace_dynhash_t));
13193 
13194 	if (hashsize != 1 && (hashsize & 1))
13195 		hashsize--;
13196 
13197 	dstate->dtds_hashsize = hashsize;
13198 	dstate->dtds_hash = dstate->dtds_base;
13199 
13200 	/*
13201 	 * Set all of our hash buckets to point to the single sink, and (if
13202 	 * it hasn't already been set), set the sink's hash value to be the
13203 	 * sink sentinel value.  The sink is needed for dynamic variable
13204 	 * lookups to know that they have iterated over an entire, valid hash
13205 	 * chain.
13206 	 */
13207 	for (i = 0; i < hashsize; i++)
13208 		dstate->dtds_hash[i].dtdh_chain = &dtrace_dynhash_sink;
13209 
13210 	if (dtrace_dynhash_sink.dtdv_hashval != DTRACE_DYNHASH_SINK)
13211 		dtrace_dynhash_sink.dtdv_hashval = DTRACE_DYNHASH_SINK;
13212 
13213 	/*
13214 	 * Determine number of active CPUs.  Divide free list evenly among
13215 	 * active CPUs.
13216 	 */
13217 	start = (dtrace_dynvar_t *)
13218 	    ((uintptr_t)base + hashsize * sizeof (dtrace_dynhash_t));
13219 	limit = (uintptr_t)base + size;
13220 
13221 	maxper = (limit - (uintptr_t)start) / NCPU;
13222 	maxper = (maxper / dstate->dtds_chunksize) * dstate->dtds_chunksize;
13223 
13224 	for (i = 0; i < NCPU; i++) {
13225 		dstate->dtds_percpu[i].dtdsc_free = dvar = start;
13226 
13227 		/*
13228 		 * If we don't even have enough chunks to make it once through
13229 		 * NCPUs, we're just going to allocate everything to the first
13230 		 * CPU.  And if we're on the last CPU, we're going to allocate
13231 		 * whatever is left over.  In either case, we set the limit to
13232 		 * be the limit of the dynamic variable space.
13233 		 */
13234 		if (maxper == 0 || i == NCPU - 1) {
13235 			limit = (uintptr_t)base + size;
13236 			start = NULL;
13237 		} else {
13238 			limit = (uintptr_t)start + maxper;
13239 			start = (dtrace_dynvar_t *)limit;
13240 		}
13241 
13242 		ASSERT(limit <= (uintptr_t)base + size);
13243 
13244 		for (;;) {
13245 			next = (dtrace_dynvar_t *)((uintptr_t)dvar +
13246 			    dstate->dtds_chunksize);
13247 
13248 			if ((uintptr_t)next + dstate->dtds_chunksize >= limit)
13249 				break;
13250 
13251 			dvar->dtdv_next = next;
13252 			dvar = next;
13253 		}
13254 
13255 		if (maxper == 0)
13256 			break;
13257 	}
13258 
13259 	return (0);
13260 }
13261 
13262 void
13263 dtrace_dstate_fini(dtrace_dstate_t *dstate)
13264 {
13265 	ASSERT(MUTEX_HELD(&cpu_lock));
13266 
13267 	if (dstate->dtds_base == NULL)
13268 		return;
13269 
13270 	kmem_free(dstate->dtds_base, dstate->dtds_size);
13271 	kmem_cache_free(dtrace_state_cache, dstate->dtds_percpu);
13272 }
13273 
13274 static void
13275 dtrace_vstate_fini(dtrace_vstate_t *vstate)
13276 {
13277 	/*
13278 	 * Logical XOR, where are you?
13279 	 */
13280 	ASSERT((vstate->dtvs_nglobals == 0) ^ (vstate->dtvs_globals != NULL));
13281 
13282 	if (vstate->dtvs_nglobals > 0) {
13283 		kmem_free(vstate->dtvs_globals, vstate->dtvs_nglobals *
13284 		    sizeof (dtrace_statvar_t *));
13285 	}
13286 
13287 	if (vstate->dtvs_ntlocals > 0) {
13288 		kmem_free(vstate->dtvs_tlocals, vstate->dtvs_ntlocals *
13289 		    sizeof (dtrace_difv_t));
13290 	}
13291 
13292 	ASSERT((vstate->dtvs_nlocals == 0) ^ (vstate->dtvs_locals != NULL));
13293 
13294 	if (vstate->dtvs_nlocals > 0) {
13295 		kmem_free(vstate->dtvs_locals, vstate->dtvs_nlocals *
13296 		    sizeof (dtrace_statvar_t *));
13297 	}
13298 }
13299 
13300 static void
13301 dtrace_state_clean(dtrace_state_t *state)
13302 {
13303 	if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE)
13304 		return;
13305 
13306 	dtrace_dynvar_clean(&state->dts_vstate.dtvs_dynvars);
13307 	dtrace_speculation_clean(state);
13308 }
13309 
13310 static void
13311 dtrace_state_deadman(dtrace_state_t *state)
13312 {
13313 	hrtime_t now;
13314 
13315 	dtrace_sync();
13316 
13317 	now = dtrace_gethrtime();
13318 
13319 	if (state != dtrace_anon.dta_state &&
13320 	    now - state->dts_laststatus >= dtrace_deadman_user)
13321 		return;
13322 
13323 	/*
13324 	 * We must be sure that dts_alive never appears to be less than the
13325 	 * value upon entry to dtrace_state_deadman(), and because we lack a
13326 	 * dtrace_cas64(), we cannot store to it atomically.  We thus instead
13327 	 * store INT64_MAX to it, followed by a memory barrier, followed by
13328 	 * the new value.  This assures that dts_alive never appears to be
13329 	 * less than its true value, regardless of the order in which the
13330 	 * stores to the underlying storage are issued.
13331 	 */
13332 	state->dts_alive = INT64_MAX;
13333 	dtrace_membar_producer();
13334 	state->dts_alive = now;
13335 }
13336 
13337 dtrace_state_t *
13338 dtrace_state_create(dev_t *devp, cred_t *cr)
13339 {
13340 	minor_t minor;
13341 	major_t major;
13342 	char c[30];
13343 	dtrace_state_t *state;
13344 	dtrace_optval_t *opt;
13345 	int bufsize = NCPU * sizeof (dtrace_buffer_t), i;
13346 
13347 	ASSERT(MUTEX_HELD(&dtrace_lock));
13348 	ASSERT(MUTEX_HELD(&cpu_lock));
13349 
13350 	minor = (minor_t)(uintptr_t)vmem_alloc(dtrace_minor, 1,
13351 	    VM_BESTFIT | VM_SLEEP);
13352 
13353 	if (ddi_soft_state_zalloc(dtrace_softstate, minor) != DDI_SUCCESS) {
13354 		vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1);
13355 		return (NULL);
13356 	}
13357 
13358 	state = ddi_get_soft_state(dtrace_softstate, minor);
13359 	state->dts_epid = DTRACE_EPIDNONE + 1;
13360 
13361 	(void) snprintf(c, sizeof (c), "dtrace_aggid_%d", minor);
13362 	state->dts_aggid_arena = vmem_create(c, (void *)1, UINT32_MAX, 1,
13363 	    NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER);
13364 
13365 	if (devp != NULL) {
13366 		major = getemajor(*devp);
13367 	} else {
13368 		major = ddi_driver_major(dtrace_devi);
13369 	}
13370 
13371 	state->dts_dev = makedevice(major, minor);
13372 
13373 	if (devp != NULL)
13374 		*devp = state->dts_dev;
13375 
13376 	/*
13377 	 * We allocate NCPU buffers.  On the one hand, this can be quite
13378 	 * a bit of memory per instance (nearly 36K on a Starcat).  On the
13379 	 * other hand, it saves an additional memory reference in the probe
13380 	 * path.
13381 	 */
13382 	state->dts_buffer = kmem_zalloc(bufsize, KM_SLEEP);
13383 	state->dts_aggbuffer = kmem_zalloc(bufsize, KM_SLEEP);
13384 	state->dts_cleaner = CYCLIC_NONE;
13385 	state->dts_deadman = CYCLIC_NONE;
13386 	state->dts_vstate.dtvs_state = state;
13387 
13388 	for (i = 0; i < DTRACEOPT_MAX; i++)
13389 		state->dts_options[i] = DTRACEOPT_UNSET;
13390 
13391 	/*
13392 	 * Set the default options.
13393 	 */
13394 	opt = state->dts_options;
13395 	opt[DTRACEOPT_BUFPOLICY] = DTRACEOPT_BUFPOLICY_SWITCH;
13396 	opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_AUTO;
13397 	opt[DTRACEOPT_NSPEC] = dtrace_nspec_default;
13398 	opt[DTRACEOPT_SPECSIZE] = dtrace_specsize_default;
13399 	opt[DTRACEOPT_CPU] = (dtrace_optval_t)DTRACE_CPUALL;
13400 	opt[DTRACEOPT_STRSIZE] = dtrace_strsize_default;
13401 	opt[DTRACEOPT_STACKFRAMES] = dtrace_stackframes_default;
13402 	opt[DTRACEOPT_USTACKFRAMES] = dtrace_ustackframes_default;
13403 	opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_default;
13404 	opt[DTRACEOPT_AGGRATE] = dtrace_aggrate_default;
13405 	opt[DTRACEOPT_SWITCHRATE] = dtrace_switchrate_default;
13406 	opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_default;
13407 	opt[DTRACEOPT_JSTACKFRAMES] = dtrace_jstackframes_default;
13408 	opt[DTRACEOPT_JSTACKSTRSIZE] = dtrace_jstackstrsize_default;
13409 
13410 	state->dts_activity = DTRACE_ACTIVITY_INACTIVE;
13411 
13412 	/*
13413 	 * Depending on the user credentials, we set flag bits which alter probe
13414 	 * visibility or the amount of destructiveness allowed.  In the case of
13415 	 * actual anonymous tracing, or the possession of all privileges, all of
13416 	 * the normal checks are bypassed.
13417 	 */
13418 	if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) {
13419 		state->dts_cred.dcr_visible = DTRACE_CRV_ALL;
13420 		state->dts_cred.dcr_action = DTRACE_CRA_ALL;
13421 	} else {
13422 		/*
13423 		 * Set up the credentials for this instantiation.  We take a
13424 		 * hold on the credential to prevent it from disappearing on
13425 		 * us; this in turn prevents the zone_t referenced by this
13426 		 * credential from disappearing.  This means that we can
13427 		 * examine the credential and the zone from probe context.
13428 		 */
13429 		crhold(cr);
13430 		state->dts_cred.dcr_cred = cr;
13431 
13432 		/*
13433 		 * CRA_PROC means "we have *some* privilege for dtrace" and
13434 		 * unlocks the use of variables like pid, zonename, etc.
13435 		 */
13436 		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE) ||
13437 		    PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) {
13438 			state->dts_cred.dcr_action |= DTRACE_CRA_PROC;
13439 		}
13440 
13441 		/*
13442 		 * dtrace_user allows use of syscall and profile providers.
13443 		 * If the user also has proc_owner and/or proc_zone, we
13444 		 * extend the scope to include additional visibility and
13445 		 * destructive power.
13446 		 */
13447 		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE)) {
13448 			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) {
13449 				state->dts_cred.dcr_visible |=
13450 				    DTRACE_CRV_ALLPROC;
13451 
13452 				state->dts_cred.dcr_action |=
13453 				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER;
13454 			}
13455 
13456 			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) {
13457 				state->dts_cred.dcr_visible |=
13458 				    DTRACE_CRV_ALLZONE;
13459 
13460 				state->dts_cred.dcr_action |=
13461 				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE;
13462 			}
13463 
13464 			/*
13465 			 * If we have all privs in whatever zone this is,
13466 			 * we can do destructive things to processes which
13467 			 * have altered credentials.
13468 			 */
13469 			if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE),
13470 			    cr->cr_zone->zone_privset)) {
13471 				state->dts_cred.dcr_action |=
13472 				    DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG;
13473 			}
13474 		}
13475 
13476 		/*
13477 		 * Holding the dtrace_kernel privilege also implies that
13478 		 * the user has the dtrace_user privilege from a visibility
13479 		 * perspective.  But without further privileges, some
13480 		 * destructive actions are not available.
13481 		 */
13482 		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE)) {
13483 			/*
13484 			 * Make all probes in all zones visible.  However,
13485 			 * this doesn't mean that all actions become available
13486 			 * to all zones.
13487 			 */
13488 			state->dts_cred.dcr_visible |= DTRACE_CRV_KERNEL |
13489 			    DTRACE_CRV_ALLPROC | DTRACE_CRV_ALLZONE;
13490 
13491 			state->dts_cred.dcr_action |= DTRACE_CRA_KERNEL |
13492 			    DTRACE_CRA_PROC;
13493 			/*
13494 			 * Holding proc_owner means that destructive actions
13495 			 * for *this* zone are allowed.
13496 			 */
13497 			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
13498 				state->dts_cred.dcr_action |=
13499 				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER;
13500 
13501 			/*
13502 			 * Holding proc_zone means that destructive actions
13503 			 * for this user/group ID in all zones is allowed.
13504 			 */
13505 			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
13506 				state->dts_cred.dcr_action |=
13507 				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE;
13508 
13509 			/*
13510 			 * If we have all privs in whatever zone this is,
13511 			 * we can do destructive things to processes which
13512 			 * have altered credentials.
13513 			 */
13514 			if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE),
13515 			    cr->cr_zone->zone_privset)) {
13516 				state->dts_cred.dcr_action |=
13517 				    DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG;
13518 			}
13519 		}
13520 
13521 		/*
13522 		 * Holding the dtrace_proc privilege gives control over fasttrap
13523 		 * and pid providers.  We need to grant wider destructive
13524 		 * privileges in the event that the user has proc_owner and/or
13525 		 * proc_zone.
13526 		 */
13527 		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) {
13528 			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
13529 				state->dts_cred.dcr_action |=
13530 				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER;
13531 
13532 			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
13533 				state->dts_cred.dcr_action |=
13534 				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE;
13535 		}
13536 	}
13537 
13538 	return (state);
13539 }
13540 
13541 static int
13542 dtrace_state_buffer(dtrace_state_t *state, dtrace_buffer_t *buf, int which)
13543 {
13544 	dtrace_optval_t *opt = state->dts_options, size;
13545 	processorid_t cpu;
13546 	int flags = 0, rval, factor, divisor = 1;
13547 
13548 	ASSERT(MUTEX_HELD(&dtrace_lock));
13549 	ASSERT(MUTEX_HELD(&cpu_lock));
13550 	ASSERT(which < DTRACEOPT_MAX);
13551 	ASSERT(state->dts_activity == DTRACE_ACTIVITY_INACTIVE ||
13552 	    (state == dtrace_anon.dta_state &&
13553 	    state->dts_activity == DTRACE_ACTIVITY_ACTIVE));
13554 
13555 	if (opt[which] == DTRACEOPT_UNSET || opt[which] == 0)
13556 		return (0);
13557 
13558 	if (opt[DTRACEOPT_CPU] != DTRACEOPT_UNSET)
13559 		cpu = opt[DTRACEOPT_CPU];
13560 
13561 	if (which == DTRACEOPT_SPECSIZE)
13562 		flags |= DTRACEBUF_NOSWITCH;
13563 
13564 	if (which == DTRACEOPT_BUFSIZE) {
13565 		if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_RING)
13566 			flags |= DTRACEBUF_RING;
13567 
13568 		if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_FILL)
13569 			flags |= DTRACEBUF_FILL;
13570 
13571 		if (state != dtrace_anon.dta_state ||
13572 		    state->dts_activity != DTRACE_ACTIVITY_ACTIVE)
13573 			flags |= DTRACEBUF_INACTIVE;
13574 	}
13575 
13576 	for (size = opt[which]; size >= sizeof (uint64_t); size /= divisor) {
13577 		/*
13578 		 * The size must be 8-byte aligned.  If the size is not 8-byte
13579 		 * aligned, drop it down by the difference.
13580 		 */
13581 		if (size & (sizeof (uint64_t) - 1))
13582 			size -= size & (sizeof (uint64_t) - 1);
13583 
13584 		if (size < state->dts_reserve) {
13585 			/*
13586 			 * Buffers always must be large enough to accommodate
13587 			 * their prereserved space.  We return E2BIG instead
13588 			 * of ENOMEM in this case to allow for user-level
13589 			 * software to differentiate the cases.
13590 			 */
13591 			return (E2BIG);
13592 		}
13593 
13594 		rval = dtrace_buffer_alloc(buf, size, flags, cpu, &factor);
13595 
13596 		if (rval != ENOMEM) {
13597 			opt[which] = size;
13598 			return (rval);
13599 		}
13600 
13601 		if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL)
13602 			return (rval);
13603 
13604 		for (divisor = 2; divisor < factor; divisor <<= 1)
13605 			continue;
13606 	}
13607 
13608 	return (ENOMEM);
13609 }
13610 
13611 static int
13612 dtrace_state_buffers(dtrace_state_t *state)
13613 {
13614 	dtrace_speculation_t *spec = state->dts_speculations;
13615 	int rval, i;
13616 
13617 	if ((rval = dtrace_state_buffer(state, state->dts_buffer,
13618 	    DTRACEOPT_BUFSIZE)) != 0)
13619 		return (rval);
13620 
13621 	if ((rval = dtrace_state_buffer(state, state->dts_aggbuffer,
13622 	    DTRACEOPT_AGGSIZE)) != 0)
13623 		return (rval);
13624 
13625 	for (i = 0; i < state->dts_nspeculations; i++) {
13626 		if ((rval = dtrace_state_buffer(state,
13627 		    spec[i].dtsp_buffer, DTRACEOPT_SPECSIZE)) != 0)
13628 			return (rval);
13629 	}
13630 
13631 	return (0);
13632 }
13633 
13634 static void
13635 dtrace_state_prereserve(dtrace_state_t *state)
13636 {
13637 	dtrace_ecb_t *ecb;
13638 	dtrace_probe_t *probe;
13639 
13640 	state->dts_reserve = 0;
13641 
13642 	if (state->dts_options[DTRACEOPT_BUFPOLICY] != DTRACEOPT_BUFPOLICY_FILL)
13643 		return;
13644 
13645 	/*
13646 	 * If our buffer policy is a "fill" buffer policy, we need to set the
13647 	 * prereserved space to be the space required by the END probes.
13648 	 */
13649 	probe = dtrace_probes[dtrace_probeid_end - 1];
13650 	ASSERT(probe != NULL);
13651 
13652 	for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) {
13653 		if (ecb->dte_state != state)
13654 			continue;
13655 
13656 		state->dts_reserve += ecb->dte_needed + ecb->dte_alignment;
13657 	}
13658 }
13659 
13660 static int
13661 dtrace_state_go(dtrace_state_t *state, processorid_t *cpu)
13662 {
13663 	dtrace_optval_t *opt = state->dts_options, sz, nspec;
13664 	dtrace_speculation_t *spec;
13665 	dtrace_buffer_t *buf;
13666 	cyc_handler_t hdlr;
13667 	cyc_time_t when;
13668 	int rval = 0, i, bufsize = NCPU * sizeof (dtrace_buffer_t);
13669 	dtrace_icookie_t cookie;
13670 
13671 	mutex_enter(&cpu_lock);
13672 	mutex_enter(&dtrace_lock);
13673 
13674 	if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) {
13675 		rval = EBUSY;
13676 		goto out;
13677 	}
13678 
13679 	/*
13680 	 * Before we can perform any checks, we must prime all of the
13681 	 * retained enablings that correspond to this state.
13682 	 */
13683 	dtrace_enabling_prime(state);
13684 
13685 	if (state->dts_destructive && !state->dts_cred.dcr_destructive) {
13686 		rval = EACCES;
13687 		goto out;
13688 	}
13689 
13690 	dtrace_state_prereserve(state);
13691 
13692 	/*
13693 	 * Now we want to do is try to allocate our speculations.
13694 	 * We do not automatically resize the number of speculations; if
13695 	 * this fails, we will fail the operation.
13696 	 */
13697 	nspec = opt[DTRACEOPT_NSPEC];
13698 	ASSERT(nspec != DTRACEOPT_UNSET);
13699 
13700 	if (nspec > INT_MAX) {
13701 		rval = ENOMEM;
13702 		goto out;
13703 	}
13704 
13705 	spec = kmem_zalloc(nspec * sizeof (dtrace_speculation_t),
13706 	    KM_NOSLEEP | KM_NORMALPRI);
13707 
13708 	if (spec == NULL) {
13709 		rval = ENOMEM;
13710 		goto out;
13711 	}
13712 
13713 	state->dts_speculations = spec;
13714 	state->dts_nspeculations = (int)nspec;
13715 
13716 	for (i = 0; i < nspec; i++) {
13717 		if ((buf = kmem_zalloc(bufsize,
13718 		    KM_NOSLEEP | KM_NORMALPRI)) == NULL) {
13719 			rval = ENOMEM;
13720 			goto err;
13721 		}
13722 
13723 		spec[i].dtsp_buffer = buf;
13724 	}
13725 
13726 	if (opt[DTRACEOPT_GRABANON] != DTRACEOPT_UNSET) {
13727 		if (dtrace_anon.dta_state == NULL) {
13728 			rval = ENOENT;
13729 			goto out;
13730 		}
13731 
13732 		if (state->dts_necbs != 0) {
13733 			rval = EALREADY;
13734 			goto out;
13735 		}
13736 
13737 		state->dts_anon = dtrace_anon_grab();
13738 		ASSERT(state->dts_anon != NULL);
13739 		state = state->dts_anon;
13740 
13741 		/*
13742 		 * We want "grabanon" to be set in the grabbed state, so we'll
13743 		 * copy that option value from the grabbing state into the
13744 		 * grabbed state.
13745 		 */
13746 		state->dts_options[DTRACEOPT_GRABANON] =
13747 		    opt[DTRACEOPT_GRABANON];
13748 
13749 		*cpu = dtrace_anon.dta_beganon;
13750 
13751 		/*
13752 		 * If the anonymous state is active (as it almost certainly
13753 		 * is if the anonymous enabling ultimately matched anything),
13754 		 * we don't allow any further option processing -- but we
13755 		 * don't return failure.
13756 		 */
13757 		if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
13758 			goto out;
13759 	}
13760 
13761 	if (opt[DTRACEOPT_AGGSIZE] != DTRACEOPT_UNSET &&
13762 	    opt[DTRACEOPT_AGGSIZE] != 0) {
13763 		if (state->dts_aggregations == NULL) {
13764 			/*
13765 			 * We're not going to create an aggregation buffer
13766 			 * because we don't have any ECBs that contain
13767 			 * aggregations -- set this option to 0.
13768 			 */
13769 			opt[DTRACEOPT_AGGSIZE] = 0;
13770 		} else {
13771 			/*
13772 			 * If we have an aggregation buffer, we must also have
13773 			 * a buffer to use as scratch.
13774 			 */
13775 			if (opt[DTRACEOPT_BUFSIZE] == DTRACEOPT_UNSET ||
13776 			    opt[DTRACEOPT_BUFSIZE] < state->dts_needed) {
13777 				opt[DTRACEOPT_BUFSIZE] = state->dts_needed;
13778 			}
13779 		}
13780 	}
13781 
13782 	if (opt[DTRACEOPT_SPECSIZE] != DTRACEOPT_UNSET &&
13783 	    opt[DTRACEOPT_SPECSIZE] != 0) {
13784 		if (!state->dts_speculates) {
13785 			/*
13786 			 * We're not going to create speculation buffers
13787 			 * because we don't have any ECBs that actually
13788 			 * speculate -- set the speculation size to 0.
13789 			 */
13790 			opt[DTRACEOPT_SPECSIZE] = 0;
13791 		}
13792 	}
13793 
13794 	/*
13795 	 * The bare minimum size for any buffer that we're actually going to
13796 	 * do anything to is sizeof (uint64_t).
13797 	 */
13798 	sz = sizeof (uint64_t);
13799 
13800 	if ((state->dts_needed != 0 && opt[DTRACEOPT_BUFSIZE] < sz) ||
13801 	    (state->dts_speculates && opt[DTRACEOPT_SPECSIZE] < sz) ||
13802 	    (state->dts_aggregations != NULL && opt[DTRACEOPT_AGGSIZE] < sz)) {
13803 		/*
13804 		 * A buffer size has been explicitly set to 0 (or to a size
13805 		 * that will be adjusted to 0) and we need the space -- we
13806 		 * need to return failure.  We return ENOSPC to differentiate
13807 		 * it from failing to allocate a buffer due to failure to meet
13808 		 * the reserve (for which we return E2BIG).
13809 		 */
13810 		rval = ENOSPC;
13811 		goto out;
13812 	}
13813 
13814 	if ((rval = dtrace_state_buffers(state)) != 0)
13815 		goto err;
13816 
13817 	if ((sz = opt[DTRACEOPT_DYNVARSIZE]) == DTRACEOPT_UNSET)
13818 		sz = dtrace_dstate_defsize;
13819 
13820 	do {
13821 		rval = dtrace_dstate_init(&state->dts_vstate.dtvs_dynvars, sz);
13822 
13823 		if (rval == 0)
13824 			break;
13825 
13826 		if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL)
13827 			goto err;
13828 	} while (sz >>= 1);
13829 
13830 	opt[DTRACEOPT_DYNVARSIZE] = sz;
13831 
13832 	if (rval != 0)
13833 		goto err;
13834 
13835 	if (opt[DTRACEOPT_STATUSRATE] > dtrace_statusrate_max)
13836 		opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_max;
13837 
13838 	if (opt[DTRACEOPT_CLEANRATE] == 0)
13839 		opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max;
13840 
13841 	if (opt[DTRACEOPT_CLEANRATE] < dtrace_cleanrate_min)
13842 		opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_min;
13843 
13844 	if (opt[DTRACEOPT_CLEANRATE] > dtrace_cleanrate_max)
13845 		opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max;
13846 
13847 	hdlr.cyh_func = (cyc_func_t)dtrace_state_clean;
13848 	hdlr.cyh_arg = state;
13849 	hdlr.cyh_level = CY_LOW_LEVEL;
13850 
13851 	when.cyt_when = 0;
13852 	when.cyt_interval = opt[DTRACEOPT_CLEANRATE];
13853 
13854 	state->dts_cleaner = cyclic_add(&hdlr, &when);
13855 
13856 	hdlr.cyh_func = (cyc_func_t)dtrace_state_deadman;
13857 	hdlr.cyh_arg = state;
13858 	hdlr.cyh_level = CY_LOW_LEVEL;
13859 
13860 	when.cyt_when = 0;
13861 	when.cyt_interval = dtrace_deadman_interval;
13862 
13863 	state->dts_alive = state->dts_laststatus = dtrace_gethrtime();
13864 	state->dts_deadman = cyclic_add(&hdlr, &when);
13865 
13866 	state->dts_activity = DTRACE_ACTIVITY_WARMUP;
13867 
13868 	if (state->dts_getf != 0 &&
13869 	    !(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL)) {
13870 		/*
13871 		 * We don't have kernel privs but we have at least one call
13872 		 * to getf(); we need to bump our zone's count, and (if
13873 		 * this is the first enabling to have an unprivileged call
13874 		 * to getf()) we need to hook into closef().
13875 		 */
13876 		state->dts_cred.dcr_cred->cr_zone->zone_dtrace_getf++;
13877 
13878 		if (dtrace_getf++ == 0) {
13879 			ASSERT(dtrace_closef == NULL);
13880 			dtrace_closef = dtrace_getf_barrier;
13881 		}
13882 	}
13883 
13884 	/*
13885 	 * Now it's time to actually fire the BEGIN probe.  We need to disable
13886 	 * interrupts here both to record the CPU on which we fired the BEGIN
13887 	 * probe (the data from this CPU will be processed first at user
13888 	 * level) and to manually activate the buffer for this CPU.
13889 	 */
13890 	cookie = dtrace_interrupt_disable();
13891 	*cpu = CPU->cpu_id;
13892 	ASSERT(state->dts_buffer[*cpu].dtb_flags & DTRACEBUF_INACTIVE);
13893 	state->dts_buffer[*cpu].dtb_flags &= ~DTRACEBUF_INACTIVE;
13894 
13895 	dtrace_probe(dtrace_probeid_begin,
13896 	    (uint64_t)(uintptr_t)state, 0, 0, 0, 0);
13897 	dtrace_interrupt_enable(cookie);
13898 	/*
13899 	 * We may have had an exit action from a BEGIN probe; only change our
13900 	 * state to ACTIVE if we're still in WARMUP.
13901 	 */
13902 	ASSERT(state->dts_activity == DTRACE_ACTIVITY_WARMUP ||
13903 	    state->dts_activity == DTRACE_ACTIVITY_DRAINING);
13904 
13905 	if (state->dts_activity == DTRACE_ACTIVITY_WARMUP)
13906 		state->dts_activity = DTRACE_ACTIVITY_ACTIVE;
13907 
13908 	/*
13909 	 * Regardless of whether or not now we're in ACTIVE or DRAINING, we
13910 	 * want each CPU to transition its principal buffer out of the
13911 	 * INACTIVE state.  Doing this assures that no CPU will suddenly begin
13912 	 * processing an ECB halfway down a probe's ECB chain; all CPUs will
13913 	 * atomically transition from processing none of a state's ECBs to
13914 	 * processing all of them.
13915 	 */
13916 	dtrace_xcall(DTRACE_CPUALL,
13917 	    (dtrace_xcall_t)dtrace_buffer_activate, state);
13918 	goto out;
13919 
13920 err:
13921 	dtrace_buffer_free(state->dts_buffer);
13922 	dtrace_buffer_free(state->dts_aggbuffer);
13923 
13924 	if ((nspec = state->dts_nspeculations) == 0) {
13925 		ASSERT(state->dts_speculations == NULL);
13926 		goto out;
13927 	}
13928 
13929 	spec = state->dts_speculations;
13930 	ASSERT(spec != NULL);
13931 
13932 	for (i = 0; i < state->dts_nspeculations; i++) {
13933 		if ((buf = spec[i].dtsp_buffer) == NULL)
13934 			break;
13935 
13936 		dtrace_buffer_free(buf);
13937 		kmem_free(buf, bufsize);
13938 	}
13939 
13940 	kmem_free(spec, nspec * sizeof (dtrace_speculation_t));
13941 	state->dts_nspeculations = 0;
13942 	state->dts_speculations = NULL;
13943 
13944 out:
13945 	mutex_exit(&dtrace_lock);
13946 	mutex_exit(&cpu_lock);
13947 
13948 	return (rval);
13949 }
13950 
13951 static int
13952 dtrace_state_stop(dtrace_state_t *state, processorid_t *cpu)
13953 {
13954 	dtrace_icookie_t cookie;
13955 
13956 	ASSERT(MUTEX_HELD(&dtrace_lock));
13957 
13958 	if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE &&
13959 	    state->dts_activity != DTRACE_ACTIVITY_DRAINING)
13960 		return (EINVAL);
13961 
13962 	/*
13963 	 * We'll set the activity to DTRACE_ACTIVITY_DRAINING, and issue a sync
13964 	 * to be sure that every CPU has seen it.  See below for the details
13965 	 * on why this is done.
13966 	 */
13967 	state->dts_activity = DTRACE_ACTIVITY_DRAINING;
13968 	dtrace_sync();
13969 
13970 	/*
13971 	 * By this point, it is impossible for any CPU to be still processing
13972 	 * with DTRACE_ACTIVITY_ACTIVE.  We can thus set our activity to
13973 	 * DTRACE_ACTIVITY_COOLDOWN and know that we're not racing with any
13974 	 * other CPU in dtrace_buffer_reserve().  This allows dtrace_probe()
13975 	 * and callees to know that the activity is DTRACE_ACTIVITY_COOLDOWN
13976 	 * iff we're in the END probe.
13977 	 */
13978 	state->dts_activity = DTRACE_ACTIVITY_COOLDOWN;
13979 	dtrace_sync();
13980 	ASSERT(state->dts_activity == DTRACE_ACTIVITY_COOLDOWN);
13981 
13982 	/*
13983 	 * Finally, we can release the reserve and call the END probe.  We
13984 	 * disable interrupts across calling the END probe to allow us to
13985 	 * return the CPU on which we actually called the END probe.  This
13986 	 * allows user-land to be sure that this CPU's principal buffer is
13987 	 * processed last.
13988 	 */
13989 	state->dts_reserve = 0;
13990 
13991 	cookie = dtrace_interrupt_disable();
13992 	*cpu = CPU->cpu_id;
13993 	dtrace_probe(dtrace_probeid_end,
13994 	    (uint64_t)(uintptr_t)state, 0, 0, 0, 0);
13995 	dtrace_interrupt_enable(cookie);
13996 
13997 	state->dts_activity = DTRACE_ACTIVITY_STOPPED;
13998 	dtrace_sync();
13999 
14000 	if (state->dts_getf != 0 &&
14001 	    !(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL)) {
14002 		/*
14003 		 * We don't have kernel privs but we have at least one call
14004 		 * to getf(); we need to lower our zone's count, and (if
14005 		 * this is the last enabling to have an unprivileged call
14006 		 * to getf()) we need to clear the closef() hook.
14007 		 */
14008 		ASSERT(state->dts_cred.dcr_cred->cr_zone->zone_dtrace_getf > 0);
14009 		ASSERT(dtrace_closef == dtrace_getf_barrier);
14010 		ASSERT(dtrace_getf > 0);
14011 
14012 		state->dts_cred.dcr_cred->cr_zone->zone_dtrace_getf--;
14013 
14014 		if (--dtrace_getf == 0)
14015 			dtrace_closef = NULL;
14016 	}
14017 
14018 	return (0);
14019 }
14020 
14021 static int
14022 dtrace_state_option(dtrace_state_t *state, dtrace_optid_t option,
14023     dtrace_optval_t val)
14024 {
14025 	ASSERT(MUTEX_HELD(&dtrace_lock));
14026 
14027 	if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
14028 		return (EBUSY);
14029 
14030 	if (option >= DTRACEOPT_MAX)
14031 		return (EINVAL);
14032 
14033 	if (option != DTRACEOPT_CPU && val < 0)
14034 		return (EINVAL);
14035 
14036 	switch (option) {
14037 	case DTRACEOPT_DESTRUCTIVE:
14038 		if (dtrace_destructive_disallow)
14039 			return (EACCES);
14040 
14041 		state->dts_cred.dcr_destructive = 1;
14042 		break;
14043 
14044 	case DTRACEOPT_BUFSIZE:
14045 	case DTRACEOPT_DYNVARSIZE:
14046 	case DTRACEOPT_AGGSIZE:
14047 	case DTRACEOPT_SPECSIZE:
14048 	case DTRACEOPT_STRSIZE:
14049 		if (val < 0)
14050 			return (EINVAL);
14051 
14052 		if (val >= LONG_MAX) {
14053 			/*
14054 			 * If this is an otherwise negative value, set it to
14055 			 * the highest multiple of 128m less than LONG_MAX.
14056 			 * Technically, we're adjusting the size without
14057 			 * regard to the buffer resizing policy, but in fact,
14058 			 * this has no effect -- if we set the buffer size to
14059 			 * ~LONG_MAX and the buffer policy is ultimately set to
14060 			 * be "manual", the buffer allocation is guaranteed to
14061 			 * fail, if only because the allocation requires two
14062 			 * buffers.  (We set the the size to the highest
14063 			 * multiple of 128m because it ensures that the size
14064 			 * will remain a multiple of a megabyte when
14065 			 * repeatedly halved -- all the way down to 15m.)
14066 			 */
14067 			val = LONG_MAX - (1 << 27) + 1;
14068 		}
14069 	}
14070 
14071 	state->dts_options[option] = val;
14072 
14073 	return (0);
14074 }
14075 
14076 static void
14077 dtrace_state_destroy(dtrace_state_t *state)
14078 {
14079 	dtrace_ecb_t *ecb;
14080 	dtrace_vstate_t *vstate = &state->dts_vstate;
14081 	minor_t minor = getminor(state->dts_dev);
14082 	int i, bufsize = NCPU * sizeof (dtrace_buffer_t);
14083 	dtrace_speculation_t *spec = state->dts_speculations;
14084 	int nspec = state->dts_nspeculations;
14085 	uint32_t match;
14086 
14087 	ASSERT(MUTEX_HELD(&dtrace_lock));
14088 	ASSERT(MUTEX_HELD(&cpu_lock));
14089 
14090 	/*
14091 	 * First, retract any retained enablings for this state.
14092 	 */
14093 	dtrace_enabling_retract(state);
14094 	ASSERT(state->dts_nretained == 0);
14095 
14096 	if (state->dts_activity == DTRACE_ACTIVITY_ACTIVE ||
14097 	    state->dts_activity == DTRACE_ACTIVITY_DRAINING) {
14098 		/*
14099 		 * We have managed to come into dtrace_state_destroy() on a
14100 		 * hot enabling -- almost certainly because of a disorderly
14101 		 * shutdown of a consumer.  (That is, a consumer that is
14102 		 * exiting without having called dtrace_stop().) In this case,
14103 		 * we're going to set our activity to be KILLED, and then
14104 		 * issue a sync to be sure that everyone is out of probe
14105 		 * context before we start blowing away ECBs.
14106 		 */
14107 		state->dts_activity = DTRACE_ACTIVITY_KILLED;
14108 		dtrace_sync();
14109 	}
14110 
14111 	/*
14112 	 * Release the credential hold we took in dtrace_state_create().
14113 	 */
14114 	if (state->dts_cred.dcr_cred != NULL)
14115 		crfree(state->dts_cred.dcr_cred);
14116 
14117 	/*
14118 	 * Now we can safely disable and destroy any enabled probes.  Because
14119 	 * any DTRACE_PRIV_KERNEL probes may actually be slowing our progress
14120 	 * (especially if they're all enabled), we take two passes through the
14121 	 * ECBs:  in the first, we disable just DTRACE_PRIV_KERNEL probes, and
14122 	 * in the second we disable whatever is left over.
14123 	 */
14124 	for (match = DTRACE_PRIV_KERNEL; ; match = 0) {
14125 		for (i = 0; i < state->dts_necbs; i++) {
14126 			if ((ecb = state->dts_ecbs[i]) == NULL)
14127 				continue;
14128 
14129 			if (match && ecb->dte_probe != NULL) {
14130 				dtrace_probe_t *probe = ecb->dte_probe;
14131 				dtrace_provider_t *prov = probe->dtpr_provider;
14132 
14133 				if (!(prov->dtpv_priv.dtpp_flags & match))
14134 					continue;
14135 			}
14136 
14137 			dtrace_ecb_disable(ecb);
14138 			dtrace_ecb_destroy(ecb);
14139 		}
14140 
14141 		if (!match)
14142 			break;
14143 	}
14144 
14145 	/*
14146 	 * Before we free the buffers, perform one more sync to assure that
14147 	 * every CPU is out of probe context.
14148 	 */
14149 	dtrace_sync();
14150 
14151 	dtrace_buffer_free(state->dts_buffer);
14152 	dtrace_buffer_free(state->dts_aggbuffer);
14153 
14154 	for (i = 0; i < nspec; i++)
14155 		dtrace_buffer_free(spec[i].dtsp_buffer);
14156 
14157 	if (state->dts_cleaner != CYCLIC_NONE)
14158 		cyclic_remove(state->dts_cleaner);
14159 
14160 	if (state->dts_deadman != CYCLIC_NONE)
14161 		cyclic_remove(state->dts_deadman);
14162 
14163 	dtrace_dstate_fini(&vstate->dtvs_dynvars);
14164 	dtrace_vstate_fini(vstate);
14165 	kmem_free(state->dts_ecbs, state->dts_necbs * sizeof (dtrace_ecb_t *));
14166 
14167 	if (state->dts_aggregations != NULL) {
14168 #ifdef DEBUG
14169 		for (i = 0; i < state->dts_naggregations; i++)
14170 			ASSERT(state->dts_aggregations[i] == NULL);
14171 #endif
14172 		ASSERT(state->dts_naggregations > 0);
14173 		kmem_free(state->dts_aggregations,
14174 		    state->dts_naggregations * sizeof (dtrace_aggregation_t *));
14175 	}
14176 
14177 	kmem_free(state->dts_buffer, bufsize);
14178 	kmem_free(state->dts_aggbuffer, bufsize);
14179 
14180 	for (i = 0; i < nspec; i++)
14181 		kmem_free(spec[i].dtsp_buffer, bufsize);
14182 
14183 	kmem_free(spec, nspec * sizeof (dtrace_speculation_t));
14184 
14185 	dtrace_format_destroy(state);
14186 
14187 	vmem_destroy(state->dts_aggid_arena);
14188 	ddi_soft_state_free(dtrace_softstate, minor);
14189 	vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1);
14190 }
14191 
14192 /*
14193  * DTrace Anonymous Enabling Functions
14194  */
14195 static dtrace_state_t *
14196 dtrace_anon_grab(void)
14197 {
14198 	dtrace_state_t *state;
14199 
14200 	ASSERT(MUTEX_HELD(&dtrace_lock));
14201 
14202 	if ((state = dtrace_anon.dta_state) == NULL) {
14203 		ASSERT(dtrace_anon.dta_enabling == NULL);
14204 		return (NULL);
14205 	}
14206 
14207 	ASSERT(dtrace_anon.dta_enabling != NULL);
14208 	ASSERT(dtrace_retained != NULL);
14209 
14210 	dtrace_enabling_destroy(dtrace_anon.dta_enabling);
14211 	dtrace_anon.dta_enabling = NULL;
14212 	dtrace_anon.dta_state = NULL;
14213 
14214 	return (state);
14215 }
14216 
14217 static void
14218 dtrace_anon_property(void)
14219 {
14220 	int i, rv;
14221 	dtrace_state_t *state;
14222 	dof_hdr_t *dof;
14223 	char c[32];		/* enough for "dof-data-" + digits */
14224 
14225 	ASSERT(MUTEX_HELD(&dtrace_lock));
14226 	ASSERT(MUTEX_HELD(&cpu_lock));
14227 
14228 	for (i = 0; ; i++) {
14229 		(void) snprintf(c, sizeof (c), "dof-data-%d", i);
14230 
14231 		dtrace_err_verbose = 1;
14232 
14233 		if ((dof = dtrace_dof_property(c)) == NULL) {
14234 			dtrace_err_verbose = 0;
14235 			break;
14236 		}
14237 
14238 		/*
14239 		 * We want to create anonymous state, so we need to transition
14240 		 * the kernel debugger to indicate that DTrace is active.  If
14241 		 * this fails (e.g. because the debugger has modified text in
14242 		 * some way), we won't continue with the processing.
14243 		 */
14244 		if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) {
14245 			cmn_err(CE_NOTE, "kernel debugger active; anonymous "
14246 			    "enabling ignored.");
14247 			dtrace_dof_destroy(dof);
14248 			break;
14249 		}
14250 
14251 		/*
14252 		 * If we haven't allocated an anonymous state, we'll do so now.
14253 		 */
14254 		if ((state = dtrace_anon.dta_state) == NULL) {
14255 			state = dtrace_state_create(NULL, NULL);
14256 			dtrace_anon.dta_state = state;
14257 
14258 			if (state == NULL) {
14259 				/*
14260 				 * This basically shouldn't happen:  the only
14261 				 * failure mode from dtrace_state_create() is a
14262 				 * failure of ddi_soft_state_zalloc() that
14263 				 * itself should never happen.  Still, the
14264 				 * interface allows for a failure mode, and
14265 				 * we want to fail as gracefully as possible:
14266 				 * we'll emit an error message and cease
14267 				 * processing anonymous state in this case.
14268 				 */
14269 				cmn_err(CE_WARN, "failed to create "
14270 				    "anonymous state");
14271 				dtrace_dof_destroy(dof);
14272 				break;
14273 			}
14274 		}
14275 
14276 		rv = dtrace_dof_slurp(dof, &state->dts_vstate, CRED(),
14277 		    &dtrace_anon.dta_enabling, 0, B_TRUE);
14278 
14279 		if (rv == 0)
14280 			rv = dtrace_dof_options(dof, state);
14281 
14282 		dtrace_err_verbose = 0;
14283 		dtrace_dof_destroy(dof);
14284 
14285 		if (rv != 0) {
14286 			/*
14287 			 * This is malformed DOF; chuck any anonymous state
14288 			 * that we created.
14289 			 */
14290 			ASSERT(dtrace_anon.dta_enabling == NULL);
14291 			dtrace_state_destroy(state);
14292 			dtrace_anon.dta_state = NULL;
14293 			break;
14294 		}
14295 
14296 		ASSERT(dtrace_anon.dta_enabling != NULL);
14297 	}
14298 
14299 	if (dtrace_anon.dta_enabling != NULL) {
14300 		int rval;
14301 
14302 		/*
14303 		 * dtrace_enabling_retain() can only fail because we are
14304 		 * trying to retain more enablings than are allowed -- but
14305 		 * we only have one anonymous enabling, and we are guaranteed
14306 		 * to be allowed at least one retained enabling; we assert
14307 		 * that dtrace_enabling_retain() returns success.
14308 		 */
14309 		rval = dtrace_enabling_retain(dtrace_anon.dta_enabling);
14310 		ASSERT(rval == 0);
14311 
14312 		dtrace_enabling_dump(dtrace_anon.dta_enabling);
14313 	}
14314 }
14315 
14316 /*
14317  * DTrace Helper Functions
14318  */
14319 static void
14320 dtrace_helper_trace(dtrace_helper_action_t *helper,
14321     dtrace_mstate_t *mstate, dtrace_vstate_t *vstate, int where)
14322 {
14323 	uint32_t size, next, nnext, i;
14324 	dtrace_helptrace_t *ent;
14325 	uint16_t flags = cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
14326 
14327 	if (!dtrace_helptrace_enabled)
14328 		return;
14329 
14330 	ASSERT(vstate->dtvs_nlocals <= dtrace_helptrace_nlocals);
14331 
14332 	/*
14333 	 * What would a tracing framework be without its own tracing
14334 	 * framework?  (Well, a hell of a lot simpler, for starters...)
14335 	 */
14336 	size = sizeof (dtrace_helptrace_t) + dtrace_helptrace_nlocals *
14337 	    sizeof (uint64_t) - sizeof (uint64_t);
14338 
14339 	/*
14340 	 * Iterate until we can allocate a slot in the trace buffer.
14341 	 */
14342 	do {
14343 		next = dtrace_helptrace_next;
14344 
14345 		if (next + size < dtrace_helptrace_bufsize) {
14346 			nnext = next + size;
14347 		} else {
14348 			nnext = size;
14349 		}
14350 	} while (dtrace_cas32(&dtrace_helptrace_next, next, nnext) != next);
14351 
14352 	/*
14353 	 * We have our slot; fill it in.
14354 	 */
14355 	if (nnext == size)
14356 		next = 0;
14357 
14358 	ent = (dtrace_helptrace_t *)&dtrace_helptrace_buffer[next];
14359 	ent->dtht_helper = helper;
14360 	ent->dtht_where = where;
14361 	ent->dtht_nlocals = vstate->dtvs_nlocals;
14362 
14363 	ent->dtht_fltoffs = (mstate->dtms_present & DTRACE_MSTATE_FLTOFFS) ?
14364 	    mstate->dtms_fltoffs : -1;
14365 	ent->dtht_fault = DTRACE_FLAGS2FLT(flags);
14366 	ent->dtht_illval = cpu_core[CPU->cpu_id].cpuc_dtrace_illval;
14367 
14368 	for (i = 0; i < vstate->dtvs_nlocals; i++) {
14369 		dtrace_statvar_t *svar;
14370 
14371 		if ((svar = vstate->dtvs_locals[i]) == NULL)
14372 			continue;
14373 
14374 		ASSERT(svar->dtsv_size >= NCPU * sizeof (uint64_t));
14375 		ent->dtht_locals[i] =
14376 		    ((uint64_t *)(uintptr_t)svar->dtsv_data)[CPU->cpu_id];
14377 	}
14378 }
14379 
14380 static uint64_t
14381 dtrace_helper(int which, dtrace_mstate_t *mstate,
14382     dtrace_state_t *state, uint64_t arg0, uint64_t arg1)
14383 {
14384 	uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
14385 	uint64_t sarg0 = mstate->dtms_arg[0];
14386 	uint64_t sarg1 = mstate->dtms_arg[1];
14387 	uint64_t rval;
14388 	dtrace_helpers_t *helpers = curproc->p_dtrace_helpers;
14389 	dtrace_helper_action_t *helper;
14390 	dtrace_vstate_t *vstate;
14391 	dtrace_difo_t *pred;
14392 	int i, trace = dtrace_helptrace_enabled;
14393 
14394 	ASSERT(which >= 0 && which < DTRACE_NHELPER_ACTIONS);
14395 
14396 	if (helpers == NULL)
14397 		return (0);
14398 
14399 	if ((helper = helpers->dthps_actions[which]) == NULL)
14400 		return (0);
14401 
14402 	vstate = &helpers->dthps_vstate;
14403 	mstate->dtms_arg[0] = arg0;
14404 	mstate->dtms_arg[1] = arg1;
14405 
14406 	/*
14407 	 * Now iterate over each helper.  If its predicate evaluates to 'true',
14408 	 * we'll call the corresponding actions.  Note that the below calls
14409 	 * to dtrace_dif_emulate() may set faults in machine state.  This is
14410 	 * okay:  our caller (the outer dtrace_dif_emulate()) will simply plow
14411 	 * the stored DIF offset with its own (which is the desired behavior).
14412 	 * Also, note the calls to dtrace_dif_emulate() may allocate scratch
14413 	 * from machine state; this is okay, too.
14414 	 */
14415 	for (; helper != NULL; helper = helper->dtha_next) {
14416 		if ((pred = helper->dtha_predicate) != NULL) {
14417 			if (trace)
14418 				dtrace_helper_trace(helper, mstate, vstate, 0);
14419 
14420 			if (!dtrace_dif_emulate(pred, mstate, vstate, state))
14421 				goto next;
14422 
14423 			if (*flags & CPU_DTRACE_FAULT)
14424 				goto err;
14425 		}
14426 
14427 		for (i = 0; i < helper->dtha_nactions; i++) {
14428 			if (trace)
14429 				dtrace_helper_trace(helper,
14430 				    mstate, vstate, i + 1);
14431 
14432 			rval = dtrace_dif_emulate(helper->dtha_actions[i],
14433 			    mstate, vstate, state);
14434 
14435 			if (*flags & CPU_DTRACE_FAULT)
14436 				goto err;
14437 		}
14438 
14439 next:
14440 		if (trace)
14441 			dtrace_helper_trace(helper, mstate, vstate,
14442 			    DTRACE_HELPTRACE_NEXT);
14443 	}
14444 
14445 	if (trace)
14446 		dtrace_helper_trace(helper, mstate, vstate,
14447 		    DTRACE_HELPTRACE_DONE);
14448 
14449 	/*
14450 	 * Restore the arg0 that we saved upon entry.
14451 	 */
14452 	mstate->dtms_arg[0] = sarg0;
14453 	mstate->dtms_arg[1] = sarg1;
14454 
14455 	return (rval);
14456 
14457 err:
14458 	if (trace)
14459 		dtrace_helper_trace(helper, mstate, vstate,
14460 		    DTRACE_HELPTRACE_ERR);
14461 
14462 	/*
14463 	 * Restore the arg0 that we saved upon entry.
14464 	 */
14465 	mstate->dtms_arg[0] = sarg0;
14466 	mstate->dtms_arg[1] = sarg1;
14467 
14468 	return (NULL);
14469 }
14470 
14471 static void
14472 dtrace_helper_action_destroy(dtrace_helper_action_t *helper,
14473     dtrace_vstate_t *vstate)
14474 {
14475 	int i;
14476 
14477 	if (helper->dtha_predicate != NULL)
14478 		dtrace_difo_release(helper->dtha_predicate, vstate);
14479 
14480 	for (i = 0; i < helper->dtha_nactions; i++) {
14481 		ASSERT(helper->dtha_actions[i] != NULL);
14482 		dtrace_difo_release(helper->dtha_actions[i], vstate);
14483 	}
14484 
14485 	kmem_free(helper->dtha_actions,
14486 	    helper->dtha_nactions * sizeof (dtrace_difo_t *));
14487 	kmem_free(helper, sizeof (dtrace_helper_action_t));
14488 }
14489 
14490 static int
14491 dtrace_helper_destroygen(int gen)
14492 {
14493 	proc_t *p = curproc;
14494 	dtrace_helpers_t *help = p->p_dtrace_helpers;
14495 	dtrace_vstate_t *vstate;
14496 	int i;
14497 
14498 	ASSERT(MUTEX_HELD(&dtrace_lock));
14499 
14500 	if (help == NULL || gen > help->dthps_generation)
14501 		return (EINVAL);
14502 
14503 	vstate = &help->dthps_vstate;
14504 
14505 	for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
14506 		dtrace_helper_action_t *last = NULL, *h, *next;
14507 
14508 		for (h = help->dthps_actions[i]; h != NULL; h = next) {
14509 			next = h->dtha_next;
14510 
14511 			if (h->dtha_generation == gen) {
14512 				if (last != NULL) {
14513 					last->dtha_next = next;
14514 				} else {
14515 					help->dthps_actions[i] = next;
14516 				}
14517 
14518 				dtrace_helper_action_destroy(h, vstate);
14519 			} else {
14520 				last = h;
14521 			}
14522 		}
14523 	}
14524 
14525 	/*
14526 	 * Interate until we've cleared out all helper providers with the
14527 	 * given generation number.
14528 	 */
14529 	for (;;) {
14530 		dtrace_helper_provider_t *prov;
14531 
14532 		/*
14533 		 * Look for a helper provider with the right generation. We
14534 		 * have to start back at the beginning of the list each time
14535 		 * because we drop dtrace_lock. It's unlikely that we'll make
14536 		 * more than two passes.
14537 		 */
14538 		for (i = 0; i < help->dthps_nprovs; i++) {
14539 			prov = help->dthps_provs[i];
14540 
14541 			if (prov->dthp_generation == gen)
14542 				break;
14543 		}
14544 
14545 		/*
14546 		 * If there were no matches, we're done.
14547 		 */
14548 		if (i == help->dthps_nprovs)
14549 			break;
14550 
14551 		/*
14552 		 * Move the last helper provider into this slot.
14553 		 */
14554 		help->dthps_nprovs--;
14555 		help->dthps_provs[i] = help->dthps_provs[help->dthps_nprovs];
14556 		help->dthps_provs[help->dthps_nprovs] = NULL;
14557 
14558 		mutex_exit(&dtrace_lock);
14559 
14560 		/*
14561 		 * If we have a meta provider, remove this helper provider.
14562 		 */
14563 		mutex_enter(&dtrace_meta_lock);
14564 		if (dtrace_meta_pid != NULL) {
14565 			ASSERT(dtrace_deferred_pid == NULL);
14566 			dtrace_helper_provider_remove(&prov->dthp_prov,
14567 			    p->p_pid);
14568 		}
14569 		mutex_exit(&dtrace_meta_lock);
14570 
14571 		dtrace_helper_provider_destroy(prov);
14572 
14573 		mutex_enter(&dtrace_lock);
14574 	}
14575 
14576 	return (0);
14577 }
14578 
14579 static int
14580 dtrace_helper_validate(dtrace_helper_action_t *helper)
14581 {
14582 	int err = 0, i;
14583 	dtrace_difo_t *dp;
14584 
14585 	if ((dp = helper->dtha_predicate) != NULL)
14586 		err += dtrace_difo_validate_helper(dp);
14587 
14588 	for (i = 0; i < helper->dtha_nactions; i++)
14589 		err += dtrace_difo_validate_helper(helper->dtha_actions[i]);
14590 
14591 	return (err == 0);
14592 }
14593 
14594 static int
14595 dtrace_helper_action_add(int which, dtrace_ecbdesc_t *ep)
14596 {
14597 	dtrace_helpers_t *help;
14598 	dtrace_helper_action_t *helper, *last;
14599 	dtrace_actdesc_t *act;
14600 	dtrace_vstate_t *vstate;
14601 	dtrace_predicate_t *pred;
14602 	int count = 0, nactions = 0, i;
14603 
14604 	if (which < 0 || which >= DTRACE_NHELPER_ACTIONS)
14605 		return (EINVAL);
14606 
14607 	help = curproc->p_dtrace_helpers;
14608 	last = help->dthps_actions[which];
14609 	vstate = &help->dthps_vstate;
14610 
14611 	for (count = 0; last != NULL; last = last->dtha_next) {
14612 		count++;
14613 		if (last->dtha_next == NULL)
14614 			break;
14615 	}
14616 
14617 	/*
14618 	 * If we already have dtrace_helper_actions_max helper actions for this
14619 	 * helper action type, we'll refuse to add a new one.
14620 	 */
14621 	if (count >= dtrace_helper_actions_max)
14622 		return (ENOSPC);
14623 
14624 	helper = kmem_zalloc(sizeof (dtrace_helper_action_t), KM_SLEEP);
14625 	helper->dtha_generation = help->dthps_generation;
14626 
14627 	if ((pred = ep->dted_pred.dtpdd_predicate) != NULL) {
14628 		ASSERT(pred->dtp_difo != NULL);
14629 		dtrace_difo_hold(pred->dtp_difo);
14630 		helper->dtha_predicate = pred->dtp_difo;
14631 	}
14632 
14633 	for (act = ep->dted_action; act != NULL; act = act->dtad_next) {
14634 		if (act->dtad_kind != DTRACEACT_DIFEXPR)
14635 			goto err;
14636 
14637 		if (act->dtad_difo == NULL)
14638 			goto err;
14639 
14640 		nactions++;
14641 	}
14642 
14643 	helper->dtha_actions = kmem_zalloc(sizeof (dtrace_difo_t *) *
14644 	    (helper->dtha_nactions = nactions), KM_SLEEP);
14645 
14646 	for (act = ep->dted_action, i = 0; act != NULL; act = act->dtad_next) {
14647 		dtrace_difo_hold(act->dtad_difo);
14648 		helper->dtha_actions[i++] = act->dtad_difo;
14649 	}
14650 
14651 	if (!dtrace_helper_validate(helper))
14652 		goto err;
14653 
14654 	if (last == NULL) {
14655 		help->dthps_actions[which] = helper;
14656 	} else {
14657 		last->dtha_next = helper;
14658 	}
14659 
14660 	if (vstate->dtvs_nlocals > dtrace_helptrace_nlocals) {
14661 		dtrace_helptrace_nlocals = vstate->dtvs_nlocals;
14662 		dtrace_helptrace_next = 0;
14663 	}
14664 
14665 	return (0);
14666 err:
14667 	dtrace_helper_action_destroy(helper, vstate);
14668 	return (EINVAL);
14669 }
14670 
14671 static void
14672 dtrace_helper_provider_register(proc_t *p, dtrace_helpers_t *help,
14673     dof_helper_t *dofhp)
14674 {
14675 	ASSERT(MUTEX_NOT_HELD(&dtrace_lock));
14676 
14677 	mutex_enter(&dtrace_meta_lock);
14678 	mutex_enter(&dtrace_lock);
14679 
14680 	if (!dtrace_attached() || dtrace_meta_pid == NULL) {
14681 		/*
14682 		 * If the dtrace module is loaded but not attached, or if
14683 		 * there aren't isn't a meta provider registered to deal with
14684 		 * these provider descriptions, we need to postpone creating
14685 		 * the actual providers until later.
14686 		 */
14687 
14688 		if (help->dthps_next == NULL && help->dthps_prev == NULL &&
14689 		    dtrace_deferred_pid != help) {
14690 			help->dthps_deferred = 1;
14691 			help->dthps_pid = p->p_pid;
14692 			help->dthps_next = dtrace_deferred_pid;
14693 			help->dthps_prev = NULL;
14694 			if (dtrace_deferred_pid != NULL)
14695 				dtrace_deferred_pid->dthps_prev = help;
14696 			dtrace_deferred_pid = help;
14697 		}
14698 
14699 		mutex_exit(&dtrace_lock);
14700 
14701 	} else if (dofhp != NULL) {
14702 		/*
14703 		 * If the dtrace module is loaded and we have a particular
14704 		 * helper provider description, pass that off to the
14705 		 * meta provider.
14706 		 */
14707 
14708 		mutex_exit(&dtrace_lock);
14709 
14710 		dtrace_helper_provide(dofhp, p->p_pid);
14711 
14712 	} else {
14713 		/*
14714 		 * Otherwise, just pass all the helper provider descriptions
14715 		 * off to the meta provider.
14716 		 */
14717 
14718 		int i;
14719 		mutex_exit(&dtrace_lock);
14720 
14721 		for (i = 0; i < help->dthps_nprovs; i++) {
14722 			dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov,
14723 			    p->p_pid);
14724 		}
14725 	}
14726 
14727 	mutex_exit(&dtrace_meta_lock);
14728 }
14729 
14730 static int
14731 dtrace_helper_provider_add(dof_helper_t *dofhp, int gen)
14732 {
14733 	dtrace_helpers_t *help;
14734 	dtrace_helper_provider_t *hprov, **tmp_provs;
14735 	uint_t tmp_maxprovs, i;
14736 
14737 	ASSERT(MUTEX_HELD(&dtrace_lock));
14738 
14739 	help = curproc->p_dtrace_helpers;
14740 	ASSERT(help != NULL);
14741 
14742 	/*
14743 	 * If we already have dtrace_helper_providers_max helper providers,
14744 	 * we're refuse to add a new one.
14745 	 */
14746 	if (help->dthps_nprovs >= dtrace_helper_providers_max)
14747 		return (ENOSPC);
14748 
14749 	/*
14750 	 * Check to make sure this isn't a duplicate.
14751 	 */
14752 	for (i = 0; i < help->dthps_nprovs; i++) {
14753 		if (dofhp->dofhp_dof ==
14754 		    help->dthps_provs[i]->dthp_prov.dofhp_dof)
14755 			return (EALREADY);
14756 	}
14757 
14758 	hprov = kmem_zalloc(sizeof (dtrace_helper_provider_t), KM_SLEEP);
14759 	hprov->dthp_prov = *dofhp;
14760 	hprov->dthp_ref = 1;
14761 	hprov->dthp_generation = gen;
14762 
14763 	/*
14764 	 * Allocate a bigger table for helper providers if it's already full.
14765 	 */
14766 	if (help->dthps_maxprovs == help->dthps_nprovs) {
14767 		tmp_maxprovs = help->dthps_maxprovs;
14768 		tmp_provs = help->dthps_provs;
14769 
14770 		if (help->dthps_maxprovs == 0)
14771 			help->dthps_maxprovs = 2;
14772 		else
14773 			help->dthps_maxprovs *= 2;
14774 		if (help->dthps_maxprovs > dtrace_helper_providers_max)
14775 			help->dthps_maxprovs = dtrace_helper_providers_max;
14776 
14777 		ASSERT(tmp_maxprovs < help->dthps_maxprovs);
14778 
14779 		help->dthps_provs = kmem_zalloc(help->dthps_maxprovs *
14780 		    sizeof (dtrace_helper_provider_t *), KM_SLEEP);
14781 
14782 		if (tmp_provs != NULL) {
14783 			bcopy(tmp_provs, help->dthps_provs, tmp_maxprovs *
14784 			    sizeof (dtrace_helper_provider_t *));
14785 			kmem_free(tmp_provs, tmp_maxprovs *
14786 			    sizeof (dtrace_helper_provider_t *));
14787 		}
14788 	}
14789 
14790 	help->dthps_provs[help->dthps_nprovs] = hprov;
14791 	help->dthps_nprovs++;
14792 
14793 	return (0);
14794 }
14795 
14796 static void
14797 dtrace_helper_provider_destroy(dtrace_helper_provider_t *hprov)
14798 {
14799 	mutex_enter(&dtrace_lock);
14800 
14801 	if (--hprov->dthp_ref == 0) {
14802 		dof_hdr_t *dof;
14803 		mutex_exit(&dtrace_lock);
14804 		dof = (dof_hdr_t *)(uintptr_t)hprov->dthp_prov.dofhp_dof;
14805 		dtrace_dof_destroy(dof);
14806 		kmem_free(hprov, sizeof (dtrace_helper_provider_t));
14807 	} else {
14808 		mutex_exit(&dtrace_lock);
14809 	}
14810 }
14811 
14812 static int
14813 dtrace_helper_provider_validate(dof_hdr_t *dof, dof_sec_t *sec)
14814 {
14815 	uintptr_t daddr = (uintptr_t)dof;
14816 	dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec;
14817 	dof_provider_t *provider;
14818 	dof_probe_t *probe;
14819 	uint8_t *arg;
14820 	char *strtab, *typestr;
14821 	dof_stridx_t typeidx;
14822 	size_t typesz;
14823 	uint_t nprobes, j, k;
14824 
14825 	ASSERT(sec->dofs_type == DOF_SECT_PROVIDER);
14826 
14827 	if (sec->dofs_offset & (sizeof (uint_t) - 1)) {
14828 		dtrace_dof_error(dof, "misaligned section offset");
14829 		return (-1);
14830 	}
14831 
14832 	/*
14833 	 * The section needs to be large enough to contain the DOF provider
14834 	 * structure appropriate for the given version.
14835 	 */
14836 	if (sec->dofs_size <
14837 	    ((dof->dofh_ident[DOF_ID_VERSION] == DOF_VERSION_1) ?
14838 	    offsetof(dof_provider_t, dofpv_prenoffs) :
14839 	    sizeof (dof_provider_t))) {
14840 		dtrace_dof_error(dof, "provider section too small");
14841 		return (-1);
14842 	}
14843 
14844 	provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
14845 	str_sec = dtrace_dof_sect(dof, DOF_SECT_STRTAB, provider->dofpv_strtab);
14846 	prb_sec = dtrace_dof_sect(dof, DOF_SECT_PROBES, provider->dofpv_probes);
14847 	arg_sec = dtrace_dof_sect(dof, DOF_SECT_PRARGS, provider->dofpv_prargs);
14848 	off_sec = dtrace_dof_sect(dof, DOF_SECT_PROFFS, provider->dofpv_proffs);
14849 
14850 	if (str_sec == NULL || prb_sec == NULL ||
14851 	    arg_sec == NULL || off_sec == NULL)
14852 		return (-1);
14853 
14854 	enoff_sec = NULL;
14855 
14856 	if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 &&
14857 	    provider->dofpv_prenoffs != DOF_SECT_NONE &&
14858 	    (enoff_sec = dtrace_dof_sect(dof, DOF_SECT_PRENOFFS,
14859 	    provider->dofpv_prenoffs)) == NULL)
14860 		return (-1);
14861 
14862 	strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
14863 
14864 	if (provider->dofpv_name >= str_sec->dofs_size ||
14865 	    strlen(strtab + provider->dofpv_name) >= DTRACE_PROVNAMELEN) {
14866 		dtrace_dof_error(dof, "invalid provider name");
14867 		return (-1);
14868 	}
14869 
14870 	if (prb_sec->dofs_entsize == 0 ||
14871 	    prb_sec->dofs_entsize > prb_sec->dofs_size) {
14872 		dtrace_dof_error(dof, "invalid entry size");
14873 		return (-1);
14874 	}
14875 
14876 	if (prb_sec->dofs_entsize & (sizeof (uintptr_t) - 1)) {
14877 		dtrace_dof_error(dof, "misaligned entry size");
14878 		return (-1);
14879 	}
14880 
14881 	if (off_sec->dofs_entsize != sizeof (uint32_t)) {
14882 		dtrace_dof_error(dof, "invalid entry size");
14883 		return (-1);
14884 	}
14885 
14886 	if (off_sec->dofs_offset & (sizeof (uint32_t) - 1)) {
14887 		dtrace_dof_error(dof, "misaligned section offset");
14888 		return (-1);
14889 	}
14890 
14891 	if (arg_sec->dofs_entsize != sizeof (uint8_t)) {
14892 		dtrace_dof_error(dof, "invalid entry size");
14893 		return (-1);
14894 	}
14895 
14896 	arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset);
14897 
14898 	nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize;
14899 
14900 	/*
14901 	 * Take a pass through the probes to check for errors.
14902 	 */
14903 	for (j = 0; j < nprobes; j++) {
14904 		probe = (dof_probe_t *)(uintptr_t)(daddr +
14905 		    prb_sec->dofs_offset + j * prb_sec->dofs_entsize);
14906 
14907 		if (probe->dofpr_func >= str_sec->dofs_size) {
14908 			dtrace_dof_error(dof, "invalid function name");
14909 			return (-1);
14910 		}
14911 
14912 		if (strlen(strtab + probe->dofpr_func) >= DTRACE_FUNCNAMELEN) {
14913 			dtrace_dof_error(dof, "function name too long");
14914 			return (-1);
14915 		}
14916 
14917 		if (probe->dofpr_name >= str_sec->dofs_size ||
14918 		    strlen(strtab + probe->dofpr_name) >= DTRACE_NAMELEN) {
14919 			dtrace_dof_error(dof, "invalid probe name");
14920 			return (-1);
14921 		}
14922 
14923 		/*
14924 		 * The offset count must not wrap the index, and the offsets
14925 		 * must also not overflow the section's data.
14926 		 */
14927 		if (probe->dofpr_offidx + probe->dofpr_noffs <
14928 		    probe->dofpr_offidx ||
14929 		    (probe->dofpr_offidx + probe->dofpr_noffs) *
14930 		    off_sec->dofs_entsize > off_sec->dofs_size) {
14931 			dtrace_dof_error(dof, "invalid probe offset");
14932 			return (-1);
14933 		}
14934 
14935 		if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1) {
14936 			/*
14937 			 * If there's no is-enabled offset section, make sure
14938 			 * there aren't any is-enabled offsets. Otherwise
14939 			 * perform the same checks as for probe offsets
14940 			 * (immediately above).
14941 			 */
14942 			if (enoff_sec == NULL) {
14943 				if (probe->dofpr_enoffidx != 0 ||
14944 				    probe->dofpr_nenoffs != 0) {
14945 					dtrace_dof_error(dof, "is-enabled "
14946 					    "offsets with null section");
14947 					return (-1);
14948 				}
14949 			} else if (probe->dofpr_enoffidx +
14950 			    probe->dofpr_nenoffs < probe->dofpr_enoffidx ||
14951 			    (probe->dofpr_enoffidx + probe->dofpr_nenoffs) *
14952 			    enoff_sec->dofs_entsize > enoff_sec->dofs_size) {
14953 				dtrace_dof_error(dof, "invalid is-enabled "
14954 				    "offset");
14955 				return (-1);
14956 			}
14957 
14958 			if (probe->dofpr_noffs + probe->dofpr_nenoffs == 0) {
14959 				dtrace_dof_error(dof, "zero probe and "
14960 				    "is-enabled offsets");
14961 				return (-1);
14962 			}
14963 		} else if (probe->dofpr_noffs == 0) {
14964 			dtrace_dof_error(dof, "zero probe offsets");
14965 			return (-1);
14966 		}
14967 
14968 		if (probe->dofpr_argidx + probe->dofpr_xargc <
14969 		    probe->dofpr_argidx ||
14970 		    (probe->dofpr_argidx + probe->dofpr_xargc) *
14971 		    arg_sec->dofs_entsize > arg_sec->dofs_size) {
14972 			dtrace_dof_error(dof, "invalid args");
14973 			return (-1);
14974 		}
14975 
14976 		typeidx = probe->dofpr_nargv;
14977 		typestr = strtab + probe->dofpr_nargv;
14978 		for (k = 0; k < probe->dofpr_nargc; k++) {
14979 			if (typeidx >= str_sec->dofs_size) {
14980 				dtrace_dof_error(dof, "bad "
14981 				    "native argument type");
14982 				return (-1);
14983 			}
14984 
14985 			typesz = strlen(typestr) + 1;
14986 			if (typesz > DTRACE_ARGTYPELEN) {
14987 				dtrace_dof_error(dof, "native "
14988 				    "argument type too long");
14989 				return (-1);
14990 			}
14991 			typeidx += typesz;
14992 			typestr += typesz;
14993 		}
14994 
14995 		typeidx = probe->dofpr_xargv;
14996 		typestr = strtab + probe->dofpr_xargv;
14997 		for (k = 0; k < probe->dofpr_xargc; k++) {
14998 			if (arg[probe->dofpr_argidx + k] > probe->dofpr_nargc) {
14999 				dtrace_dof_error(dof, "bad "
15000 				    "native argument index");
15001 				return (-1);
15002 			}
15003 
15004 			if (typeidx >= str_sec->dofs_size) {
15005 				dtrace_dof_error(dof, "bad "
15006 				    "translated argument type");
15007 				return (-1);
15008 			}
15009 
15010 			typesz = strlen(typestr) + 1;
15011 			if (typesz > DTRACE_ARGTYPELEN) {
15012 				dtrace_dof_error(dof, "translated argument "
15013 				    "type too long");
15014 				return (-1);
15015 			}
15016 
15017 			typeidx += typesz;
15018 			typestr += typesz;
15019 		}
15020 	}
15021 
15022 	return (0);
15023 }
15024 
15025 static int
15026 dtrace_helper_slurp(dof_hdr_t *dof, dof_helper_t *dhp)
15027 {
15028 	dtrace_helpers_t *help;
15029 	dtrace_vstate_t *vstate;
15030 	dtrace_enabling_t *enab = NULL;
15031 	int i, gen, rv, nhelpers = 0, nprovs = 0, destroy = 1;
15032 	uintptr_t daddr = (uintptr_t)dof;
15033 
15034 	ASSERT(MUTEX_HELD(&dtrace_lock));
15035 
15036 	if ((help = curproc->p_dtrace_helpers) == NULL)
15037 		help = dtrace_helpers_create(curproc);
15038 
15039 	vstate = &help->dthps_vstate;
15040 
15041 	if ((rv = dtrace_dof_slurp(dof, vstate, NULL, &enab,
15042 	    dhp != NULL ? dhp->dofhp_addr : 0, B_FALSE)) != 0) {
15043 		dtrace_dof_destroy(dof);
15044 		return (rv);
15045 	}
15046 
15047 	/*
15048 	 * Look for helper providers and validate their descriptions.
15049 	 */
15050 	if (dhp != NULL) {
15051 		for (i = 0; i < dof->dofh_secnum; i++) {
15052 			dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
15053 			    dof->dofh_secoff + i * dof->dofh_secsize);
15054 
15055 			if (sec->dofs_type != DOF_SECT_PROVIDER)
15056 				continue;
15057 
15058 			if (dtrace_helper_provider_validate(dof, sec) != 0) {
15059 				dtrace_enabling_destroy(enab);
15060 				dtrace_dof_destroy(dof);
15061 				return (-1);
15062 			}
15063 
15064 			nprovs++;
15065 		}
15066 	}
15067 
15068 	/*
15069 	 * Now we need to walk through the ECB descriptions in the enabling.
15070 	 */
15071 	for (i = 0; i < enab->dten_ndesc; i++) {
15072 		dtrace_ecbdesc_t *ep = enab->dten_desc[i];
15073 		dtrace_probedesc_t *desc = &ep->dted_probe;
15074 
15075 		if (strcmp(desc->dtpd_provider, "dtrace") != 0)
15076 			continue;
15077 
15078 		if (strcmp(desc->dtpd_mod, "helper") != 0)
15079 			continue;
15080 
15081 		if (strcmp(desc->dtpd_func, "ustack") != 0)
15082 			continue;
15083 
15084 		if ((rv = dtrace_helper_action_add(DTRACE_HELPER_ACTION_USTACK,
15085 		    ep)) != 0) {
15086 			/*
15087 			 * Adding this helper action failed -- we are now going
15088 			 * to rip out the entire generation and return failure.
15089 			 */
15090 			(void) dtrace_helper_destroygen(help->dthps_generation);
15091 			dtrace_enabling_destroy(enab);
15092 			dtrace_dof_destroy(dof);
15093 			return (-1);
15094 		}
15095 
15096 		nhelpers++;
15097 	}
15098 
15099 	if (nhelpers < enab->dten_ndesc)
15100 		dtrace_dof_error(dof, "unmatched helpers");
15101 
15102 	gen = help->dthps_generation++;
15103 	dtrace_enabling_destroy(enab);
15104 
15105 	if (dhp != NULL && nprovs > 0) {
15106 		dhp->dofhp_dof = (uint64_t)(uintptr_t)dof;
15107 		if (dtrace_helper_provider_add(dhp, gen) == 0) {
15108 			mutex_exit(&dtrace_lock);
15109 			dtrace_helper_provider_register(curproc, help, dhp);
15110 			mutex_enter(&dtrace_lock);
15111 
15112 			destroy = 0;
15113 		}
15114 	}
15115 
15116 	if (destroy)
15117 		dtrace_dof_destroy(dof);
15118 
15119 	return (gen);
15120 }
15121 
15122 static dtrace_helpers_t *
15123 dtrace_helpers_create(proc_t *p)
15124 {
15125 	dtrace_helpers_t *help;
15126 
15127 	ASSERT(MUTEX_HELD(&dtrace_lock));
15128 	ASSERT(p->p_dtrace_helpers == NULL);
15129 
15130 	help = kmem_zalloc(sizeof (dtrace_helpers_t), KM_SLEEP);
15131 	help->dthps_actions = kmem_zalloc(sizeof (dtrace_helper_action_t *) *
15132 	    DTRACE_NHELPER_ACTIONS, KM_SLEEP);
15133 
15134 	p->p_dtrace_helpers = help;
15135 	dtrace_helpers++;
15136 
15137 	return (help);
15138 }
15139 
15140 static void
15141 dtrace_helpers_destroy(void)
15142 {
15143 	dtrace_helpers_t *help;
15144 	dtrace_vstate_t *vstate;
15145 	proc_t *p = curproc;
15146 	int i;
15147 
15148 	mutex_enter(&dtrace_lock);
15149 
15150 	ASSERT(p->p_dtrace_helpers != NULL);
15151 	ASSERT(dtrace_helpers > 0);
15152 
15153 	help = p->p_dtrace_helpers;
15154 	vstate = &help->dthps_vstate;
15155 
15156 	/*
15157 	 * We're now going to lose the help from this process.
15158 	 */
15159 	p->p_dtrace_helpers = NULL;
15160 	dtrace_sync();
15161 
15162 	/*
15163 	 * Destory the helper actions.
15164 	 */
15165 	for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
15166 		dtrace_helper_action_t *h, *next;
15167 
15168 		for (h = help->dthps_actions[i]; h != NULL; h = next) {
15169 			next = h->dtha_next;
15170 			dtrace_helper_action_destroy(h, vstate);
15171 			h = next;
15172 		}
15173 	}
15174 
15175 	mutex_exit(&dtrace_lock);
15176 
15177 	/*
15178 	 * Destroy the helper providers.
15179 	 */
15180 	if (help->dthps_maxprovs > 0) {
15181 		mutex_enter(&dtrace_meta_lock);
15182 		if (dtrace_meta_pid != NULL) {
15183 			ASSERT(dtrace_deferred_pid == NULL);
15184 
15185 			for (i = 0; i < help->dthps_nprovs; i++) {
15186 				dtrace_helper_provider_remove(
15187 				    &help->dthps_provs[i]->dthp_prov, p->p_pid);
15188 			}
15189 		} else {
15190 			mutex_enter(&dtrace_lock);
15191 			ASSERT(help->dthps_deferred == 0 ||
15192 			    help->dthps_next != NULL ||
15193 			    help->dthps_prev != NULL ||
15194 			    help == dtrace_deferred_pid);
15195 
15196 			/*
15197 			 * Remove the helper from the deferred list.
15198 			 */
15199 			if (help->dthps_next != NULL)
15200 				help->dthps_next->dthps_prev = help->dthps_prev;
15201 			if (help->dthps_prev != NULL)
15202 				help->dthps_prev->dthps_next = help->dthps_next;
15203 			if (dtrace_deferred_pid == help) {
15204 				dtrace_deferred_pid = help->dthps_next;
15205 				ASSERT(help->dthps_prev == NULL);
15206 			}
15207 
15208 			mutex_exit(&dtrace_lock);
15209 		}
15210 
15211 		mutex_exit(&dtrace_meta_lock);
15212 
15213 		for (i = 0; i < help->dthps_nprovs; i++) {
15214 			dtrace_helper_provider_destroy(help->dthps_provs[i]);
15215 		}
15216 
15217 		kmem_free(help->dthps_provs, help->dthps_maxprovs *
15218 		    sizeof (dtrace_helper_provider_t *));
15219 	}
15220 
15221 	mutex_enter(&dtrace_lock);
15222 
15223 	dtrace_vstate_fini(&help->dthps_vstate);
15224 	kmem_free(help->dthps_actions,
15225 	    sizeof (dtrace_helper_action_t *) * DTRACE_NHELPER_ACTIONS);
15226 	kmem_free(help, sizeof (dtrace_helpers_t));
15227 
15228 	--dtrace_helpers;
15229 	mutex_exit(&dtrace_lock);
15230 }
15231 
15232 static void
15233 dtrace_helpers_duplicate(proc_t *from, proc_t *to)
15234 {
15235 	dtrace_helpers_t *help, *newhelp;
15236 	dtrace_helper_action_t *helper, *new, *last;
15237 	dtrace_difo_t *dp;
15238 	dtrace_vstate_t *vstate;
15239 	int i, j, sz, hasprovs = 0;
15240 
15241 	mutex_enter(&dtrace_lock);
15242 	ASSERT(from->p_dtrace_helpers != NULL);
15243 	ASSERT(dtrace_helpers > 0);
15244 
15245 	help = from->p_dtrace_helpers;
15246 	newhelp = dtrace_helpers_create(to);
15247 	ASSERT(to->p_dtrace_helpers != NULL);
15248 
15249 	newhelp->dthps_generation = help->dthps_generation;
15250 	vstate = &newhelp->dthps_vstate;
15251 
15252 	/*
15253 	 * Duplicate the helper actions.
15254 	 */
15255 	for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
15256 		if ((helper = help->dthps_actions[i]) == NULL)
15257 			continue;
15258 
15259 		for (last = NULL; helper != NULL; helper = helper->dtha_next) {
15260 			new = kmem_zalloc(sizeof (dtrace_helper_action_t),
15261 			    KM_SLEEP);
15262 			new->dtha_generation = helper->dtha_generation;
15263 
15264 			if ((dp = helper->dtha_predicate) != NULL) {
15265 				dp = dtrace_difo_duplicate(dp, vstate);
15266 				new->dtha_predicate = dp;
15267 			}
15268 
15269 			new->dtha_nactions = helper->dtha_nactions;
15270 			sz = sizeof (dtrace_difo_t *) * new->dtha_nactions;
15271 			new->dtha_actions = kmem_alloc(sz, KM_SLEEP);
15272 
15273 			for (j = 0; j < new->dtha_nactions; j++) {
15274 				dtrace_difo_t *dp = helper->dtha_actions[j];
15275 
15276 				ASSERT(dp != NULL);
15277 				dp = dtrace_difo_duplicate(dp, vstate);
15278 				new->dtha_actions[j] = dp;
15279 			}
15280 
15281 			if (last != NULL) {
15282 				last->dtha_next = new;
15283 			} else {
15284 				newhelp->dthps_actions[i] = new;
15285 			}
15286 
15287 			last = new;
15288 		}
15289 	}
15290 
15291 	/*
15292 	 * Duplicate the helper providers and register them with the
15293 	 * DTrace framework.
15294 	 */
15295 	if (help->dthps_nprovs > 0) {
15296 		newhelp->dthps_nprovs = help->dthps_nprovs;
15297 		newhelp->dthps_maxprovs = help->dthps_nprovs;
15298 		newhelp->dthps_provs = kmem_alloc(newhelp->dthps_nprovs *
15299 		    sizeof (dtrace_helper_provider_t *), KM_SLEEP);
15300 		for (i = 0; i < newhelp->dthps_nprovs; i++) {
15301 			newhelp->dthps_provs[i] = help->dthps_provs[i];
15302 			newhelp->dthps_provs[i]->dthp_ref++;
15303 		}
15304 
15305 		hasprovs = 1;
15306 	}
15307 
15308 	mutex_exit(&dtrace_lock);
15309 
15310 	if (hasprovs)
15311 		dtrace_helper_provider_register(to, newhelp, NULL);
15312 }
15313 
15314 /*
15315  * DTrace Hook Functions
15316  */
15317 static void
15318 dtrace_module_loaded(struct modctl *ctl)
15319 {
15320 	dtrace_provider_t *prv;
15321 
15322 	mutex_enter(&dtrace_provider_lock);
15323 	mutex_enter(&mod_lock);
15324 
15325 	ASSERT(ctl->mod_busy);
15326 
15327 	/*
15328 	 * We're going to call each providers per-module provide operation
15329 	 * specifying only this module.
15330 	 */
15331 	for (prv = dtrace_provider; prv != NULL; prv = prv->dtpv_next)
15332 		prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl);
15333 
15334 	mutex_exit(&mod_lock);
15335 	mutex_exit(&dtrace_provider_lock);
15336 
15337 	/*
15338 	 * If we have any retained enablings, we need to match against them.
15339 	 * Enabling probes requires that cpu_lock be held, and we cannot hold
15340 	 * cpu_lock here -- it is legal for cpu_lock to be held when loading a
15341 	 * module.  (In particular, this happens when loading scheduling
15342 	 * classes.)  So if we have any retained enablings, we need to dispatch
15343 	 * our task queue to do the match for us.
15344 	 */
15345 	mutex_enter(&dtrace_lock);
15346 
15347 	if (dtrace_retained == NULL) {
15348 		mutex_exit(&dtrace_lock);
15349 		return;
15350 	}
15351 
15352 	(void) taskq_dispatch(dtrace_taskq,
15353 	    (task_func_t *)dtrace_enabling_matchall, NULL, TQ_SLEEP);
15354 
15355 	mutex_exit(&dtrace_lock);
15356 
15357 	/*
15358 	 * And now, for a little heuristic sleaze:  in general, we want to
15359 	 * match modules as soon as they load.  However, we cannot guarantee
15360 	 * this, because it would lead us to the lock ordering violation
15361 	 * outlined above.  The common case, of course, is that cpu_lock is
15362 	 * _not_ held -- so we delay here for a clock tick, hoping that that's
15363 	 * long enough for the task queue to do its work.  If it's not, it's
15364 	 * not a serious problem -- it just means that the module that we
15365 	 * just loaded may not be immediately instrumentable.
15366 	 */
15367 	delay(1);
15368 }
15369 
15370 static void
15371 dtrace_module_unloaded(struct modctl *ctl)
15372 {
15373 	dtrace_probe_t template, *probe, *first, *next;
15374 	dtrace_provider_t *prov;
15375 
15376 	template.dtpr_mod = ctl->mod_modname;
15377 
15378 	mutex_enter(&dtrace_provider_lock);
15379 	mutex_enter(&mod_lock);
15380 	mutex_enter(&dtrace_lock);
15381 
15382 	if (dtrace_bymod == NULL) {
15383 		/*
15384 		 * The DTrace module is loaded (obviously) but not attached;
15385 		 * we don't have any work to do.
15386 		 */
15387 		mutex_exit(&dtrace_provider_lock);
15388 		mutex_exit(&mod_lock);
15389 		mutex_exit(&dtrace_lock);
15390 		return;
15391 	}
15392 
15393 	for (probe = first = dtrace_hash_lookup(dtrace_bymod, &template);
15394 	    probe != NULL; probe = probe->dtpr_nextmod) {
15395 		if (probe->dtpr_ecb != NULL) {
15396 			mutex_exit(&dtrace_provider_lock);
15397 			mutex_exit(&mod_lock);
15398 			mutex_exit(&dtrace_lock);
15399 
15400 			/*
15401 			 * This shouldn't _actually_ be possible -- we're
15402 			 * unloading a module that has an enabled probe in it.
15403 			 * (It's normally up to the provider to make sure that
15404 			 * this can't happen.)  However, because dtps_enable()
15405 			 * doesn't have a failure mode, there can be an
15406 			 * enable/unload race.  Upshot:  we don't want to
15407 			 * assert, but we're not going to disable the
15408 			 * probe, either.
15409 			 */
15410 			if (dtrace_err_verbose) {
15411 				cmn_err(CE_WARN, "unloaded module '%s' had "
15412 				    "enabled probes", ctl->mod_modname);
15413 			}
15414 
15415 			return;
15416 		}
15417 	}
15418 
15419 	probe = first;
15420 
15421 	for (first = NULL; probe != NULL; probe = next) {
15422 		ASSERT(dtrace_probes[probe->dtpr_id - 1] == probe);
15423 
15424 		dtrace_probes[probe->dtpr_id - 1] = NULL;
15425 
15426 		next = probe->dtpr_nextmod;
15427 		dtrace_hash_remove(dtrace_bymod, probe);
15428 		dtrace_hash_remove(dtrace_byfunc, probe);
15429 		dtrace_hash_remove(dtrace_byname, probe);
15430 
15431 		if (first == NULL) {
15432 			first = probe;
15433 			probe->dtpr_nextmod = NULL;
15434 		} else {
15435 			probe->dtpr_nextmod = first;
15436 			first = probe;
15437 		}
15438 	}
15439 
15440 	/*
15441 	 * We've removed all of the module's probes from the hash chains and
15442 	 * from the probe array.  Now issue a dtrace_sync() to be sure that
15443 	 * everyone has cleared out from any probe array processing.
15444 	 */
15445 	dtrace_sync();
15446 
15447 	for (probe = first; probe != NULL; probe = first) {
15448 		first = probe->dtpr_nextmod;
15449 		prov = probe->dtpr_provider;
15450 		prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, probe->dtpr_id,
15451 		    probe->dtpr_arg);
15452 		kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
15453 		kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
15454 		kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
15455 		vmem_free(dtrace_arena, (void *)(uintptr_t)probe->dtpr_id, 1);
15456 		kmem_free(probe, sizeof (dtrace_probe_t));
15457 	}
15458 
15459 	mutex_exit(&dtrace_lock);
15460 	mutex_exit(&mod_lock);
15461 	mutex_exit(&dtrace_provider_lock);
15462 }
15463 
15464 void
15465 dtrace_suspend(void)
15466 {
15467 	dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_suspend));
15468 }
15469 
15470 void
15471 dtrace_resume(void)
15472 {
15473 	dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_resume));
15474 }
15475 
15476 static int
15477 dtrace_cpu_setup(cpu_setup_t what, processorid_t cpu)
15478 {
15479 	ASSERT(MUTEX_HELD(&cpu_lock));
15480 	mutex_enter(&dtrace_lock);
15481 
15482 	switch (what) {
15483 	case CPU_CONFIG: {
15484 		dtrace_state_t *state;
15485 		dtrace_optval_t *opt, rs, c;
15486 
15487 		/*
15488 		 * For now, we only allocate a new buffer for anonymous state.
15489 		 */
15490 		if ((state = dtrace_anon.dta_state) == NULL)
15491 			break;
15492 
15493 		if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE)
15494 			break;
15495 
15496 		opt = state->dts_options;
15497 		c = opt[DTRACEOPT_CPU];
15498 
15499 		if (c != DTRACE_CPUALL && c != DTRACEOPT_UNSET && c != cpu)
15500 			break;
15501 
15502 		/*
15503 		 * Regardless of what the actual policy is, we're going to
15504 		 * temporarily set our resize policy to be manual.  We're
15505 		 * also going to temporarily set our CPU option to denote
15506 		 * the newly configured CPU.
15507 		 */
15508 		rs = opt[DTRACEOPT_BUFRESIZE];
15509 		opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_MANUAL;
15510 		opt[DTRACEOPT_CPU] = (dtrace_optval_t)cpu;
15511 
15512 		(void) dtrace_state_buffers(state);
15513 
15514 		opt[DTRACEOPT_BUFRESIZE] = rs;
15515 		opt[DTRACEOPT_CPU] = c;
15516 
15517 		break;
15518 	}
15519 
15520 	case CPU_UNCONFIG:
15521 		/*
15522 		 * We don't free the buffer in the CPU_UNCONFIG case.  (The
15523 		 * buffer will be freed when the consumer exits.)
15524 		 */
15525 		break;
15526 
15527 	default:
15528 		break;
15529 	}
15530 
15531 	mutex_exit(&dtrace_lock);
15532 	return (0);
15533 }
15534 
15535 static void
15536 dtrace_cpu_setup_initial(processorid_t cpu)
15537 {
15538 	(void) dtrace_cpu_setup(CPU_CONFIG, cpu);
15539 }
15540 
15541 static void
15542 dtrace_toxrange_add(uintptr_t base, uintptr_t limit)
15543 {
15544 	if (dtrace_toxranges >= dtrace_toxranges_max) {
15545 		int osize, nsize;
15546 		dtrace_toxrange_t *range;
15547 
15548 		osize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t);
15549 
15550 		if (osize == 0) {
15551 			ASSERT(dtrace_toxrange == NULL);
15552 			ASSERT(dtrace_toxranges_max == 0);
15553 			dtrace_toxranges_max = 1;
15554 		} else {
15555 			dtrace_toxranges_max <<= 1;
15556 		}
15557 
15558 		nsize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t);
15559 		range = kmem_zalloc(nsize, KM_SLEEP);
15560 
15561 		if (dtrace_toxrange != NULL) {
15562 			ASSERT(osize != 0);
15563 			bcopy(dtrace_toxrange, range, osize);
15564 			kmem_free(dtrace_toxrange, osize);
15565 		}
15566 
15567 		dtrace_toxrange = range;
15568 	}
15569 
15570 	ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_base == NULL);
15571 	ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_limit == NULL);
15572 
15573 	dtrace_toxrange[dtrace_toxranges].dtt_base = base;
15574 	dtrace_toxrange[dtrace_toxranges].dtt_limit = limit;
15575 	dtrace_toxranges++;
15576 }
15577 
15578 static void
15579 dtrace_getf_barrier()
15580 {
15581 	/*
15582 	 * When we have unprivileged (that is, non-DTRACE_CRV_KERNEL) enablings
15583 	 * that contain calls to getf(), this routine will be called on every
15584 	 * closef() before either the underlying vnode is released or the
15585 	 * file_t itself is freed.  By the time we are here, it is essential
15586 	 * that the file_t can no longer be accessed from a call to getf()
15587 	 * in probe context -- that assures that a dtrace_sync() can be used
15588 	 * to clear out any enablings referring to the old structures.
15589 	 */
15590 	if (curthread->t_procp->p_zone->zone_dtrace_getf != 0 ||
15591 	    kcred->cr_zone->zone_dtrace_getf != 0)
15592 		dtrace_sync();
15593 }
15594 
15595 /*
15596  * DTrace Driver Cookbook Functions
15597  */
15598 /*ARGSUSED*/
15599 static int
15600 dtrace_attach(dev_info_t *devi, ddi_attach_cmd_t cmd)
15601 {
15602 	dtrace_provider_id_t id;
15603 	dtrace_state_t *state = NULL;
15604 	dtrace_enabling_t *enab;
15605 
15606 	mutex_enter(&cpu_lock);
15607 	mutex_enter(&dtrace_provider_lock);
15608 	mutex_enter(&dtrace_lock);
15609 
15610 	if (ddi_soft_state_init(&dtrace_softstate,
15611 	    sizeof (dtrace_state_t), 0) != 0) {
15612 		cmn_err(CE_NOTE, "/dev/dtrace failed to initialize soft state");
15613 		mutex_exit(&cpu_lock);
15614 		mutex_exit(&dtrace_provider_lock);
15615 		mutex_exit(&dtrace_lock);
15616 		return (DDI_FAILURE);
15617 	}
15618 
15619 	if (ddi_create_minor_node(devi, DTRACEMNR_DTRACE, S_IFCHR,
15620 	    DTRACEMNRN_DTRACE, DDI_PSEUDO, NULL) == DDI_FAILURE ||
15621 	    ddi_create_minor_node(devi, DTRACEMNR_HELPER, S_IFCHR,
15622 	    DTRACEMNRN_HELPER, DDI_PSEUDO, NULL) == DDI_FAILURE) {
15623 		cmn_err(CE_NOTE, "/dev/dtrace couldn't create minor nodes");
15624 		ddi_remove_minor_node(devi, NULL);
15625 		ddi_soft_state_fini(&dtrace_softstate);
15626 		mutex_exit(&cpu_lock);
15627 		mutex_exit(&dtrace_provider_lock);
15628 		mutex_exit(&dtrace_lock);
15629 		return (DDI_FAILURE);
15630 	}
15631 
15632 	ddi_report_dev(devi);
15633 	dtrace_devi = devi;
15634 
15635 	dtrace_modload = dtrace_module_loaded;
15636 	dtrace_modunload = dtrace_module_unloaded;
15637 	dtrace_cpu_init = dtrace_cpu_setup_initial;
15638 	dtrace_helpers_cleanup = dtrace_helpers_destroy;
15639 	dtrace_helpers_fork = dtrace_helpers_duplicate;
15640 	dtrace_cpustart_init = dtrace_suspend;
15641 	dtrace_cpustart_fini = dtrace_resume;
15642 	dtrace_debugger_init = dtrace_suspend;
15643 	dtrace_debugger_fini = dtrace_resume;
15644 
15645 	register_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL);
15646 
15647 	ASSERT(MUTEX_HELD(&cpu_lock));
15648 
15649 	dtrace_arena = vmem_create("dtrace", (void *)1, UINT32_MAX, 1,
15650 	    NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER);
15651 	dtrace_minor = vmem_create("dtrace_minor", (void *)DTRACEMNRN_CLONE,
15652 	    UINT32_MAX - DTRACEMNRN_CLONE, 1, NULL, NULL, NULL, 0,
15653 	    VM_SLEEP | VMC_IDENTIFIER);
15654 	dtrace_taskq = taskq_create("dtrace_taskq", 1, maxclsyspri,
15655 	    1, INT_MAX, 0);
15656 
15657 	dtrace_state_cache = kmem_cache_create("dtrace_state_cache",
15658 	    sizeof (dtrace_dstate_percpu_t) * NCPU, DTRACE_STATE_ALIGN,
15659 	    NULL, NULL, NULL, NULL, NULL, 0);
15660 
15661 	ASSERT(MUTEX_HELD(&cpu_lock));
15662 	dtrace_bymod = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_mod),
15663 	    offsetof(dtrace_probe_t, dtpr_nextmod),
15664 	    offsetof(dtrace_probe_t, dtpr_prevmod));
15665 
15666 	dtrace_byfunc = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_func),
15667 	    offsetof(dtrace_probe_t, dtpr_nextfunc),
15668 	    offsetof(dtrace_probe_t, dtpr_prevfunc));
15669 
15670 	dtrace_byname = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_name),
15671 	    offsetof(dtrace_probe_t, dtpr_nextname),
15672 	    offsetof(dtrace_probe_t, dtpr_prevname));
15673 
15674 	if (dtrace_retain_max < 1) {
15675 		cmn_err(CE_WARN, "illegal value (%lu) for dtrace_retain_max; "
15676 		    "setting to 1", dtrace_retain_max);
15677 		dtrace_retain_max = 1;
15678 	}
15679 
15680 	/*
15681 	 * Now discover our toxic ranges.
15682 	 */
15683 	dtrace_toxic_ranges(dtrace_toxrange_add);
15684 
15685 	/*
15686 	 * Before we register ourselves as a provider to our own framework,
15687 	 * we would like to assert that dtrace_provider is NULL -- but that's
15688 	 * not true if we were loaded as a dependency of a DTrace provider.
15689 	 * Once we've registered, we can assert that dtrace_provider is our
15690 	 * pseudo provider.
15691 	 */
15692 	(void) dtrace_register("dtrace", &dtrace_provider_attr,
15693 	    DTRACE_PRIV_NONE, 0, &dtrace_provider_ops, NULL, &id);
15694 
15695 	ASSERT(dtrace_provider != NULL);
15696 	ASSERT((dtrace_provider_id_t)dtrace_provider == id);
15697 
15698 	dtrace_probeid_begin = dtrace_probe_create((dtrace_provider_id_t)
15699 	    dtrace_provider, NULL, NULL, "BEGIN", 0, NULL);
15700 	dtrace_probeid_end = dtrace_probe_create((dtrace_provider_id_t)
15701 	    dtrace_provider, NULL, NULL, "END", 0, NULL);
15702 	dtrace_probeid_error = dtrace_probe_create((dtrace_provider_id_t)
15703 	    dtrace_provider, NULL, NULL, "ERROR", 1, NULL);
15704 
15705 	dtrace_anon_property();
15706 	mutex_exit(&cpu_lock);
15707 
15708 	/*
15709 	 * If DTrace helper tracing is enabled, we need to allocate the
15710 	 * trace buffer and initialize the values.
15711 	 */
15712 	if (dtrace_helptrace_enabled) {
15713 		ASSERT(dtrace_helptrace_buffer == NULL);
15714 		dtrace_helptrace_buffer =
15715 		    kmem_zalloc(dtrace_helptrace_bufsize, KM_SLEEP);
15716 		dtrace_helptrace_next = 0;
15717 	}
15718 
15719 	/*
15720 	 * If there are already providers, we must ask them to provide their
15721 	 * probes, and then match any anonymous enabling against them.  Note
15722 	 * that there should be no other retained enablings at this time:
15723 	 * the only retained enablings at this time should be the anonymous
15724 	 * enabling.
15725 	 */
15726 	if (dtrace_anon.dta_enabling != NULL) {
15727 		ASSERT(dtrace_retained == dtrace_anon.dta_enabling);
15728 
15729 		dtrace_enabling_provide(NULL);
15730 		state = dtrace_anon.dta_state;
15731 
15732 		/*
15733 		 * We couldn't hold cpu_lock across the above call to
15734 		 * dtrace_enabling_provide(), but we must hold it to actually
15735 		 * enable the probes.  We have to drop all of our locks, pick
15736 		 * up cpu_lock, and regain our locks before matching the
15737 		 * retained anonymous enabling.
15738 		 */
15739 		mutex_exit(&dtrace_lock);
15740 		mutex_exit(&dtrace_provider_lock);
15741 
15742 		mutex_enter(&cpu_lock);
15743 		mutex_enter(&dtrace_provider_lock);
15744 		mutex_enter(&dtrace_lock);
15745 
15746 		if ((enab = dtrace_anon.dta_enabling) != NULL)
15747 			(void) dtrace_enabling_match(enab, NULL);
15748 
15749 		mutex_exit(&cpu_lock);
15750 	}
15751 
15752 	mutex_exit(&dtrace_lock);
15753 	mutex_exit(&dtrace_provider_lock);
15754 
15755 	if (state != NULL) {
15756 		/*
15757 		 * If we created any anonymous state, set it going now.
15758 		 */
15759 		(void) dtrace_state_go(state, &dtrace_anon.dta_beganon);
15760 	}
15761 
15762 	return (DDI_SUCCESS);
15763 }
15764 
15765 /*ARGSUSED*/
15766 static int
15767 dtrace_open(dev_t *devp, int flag, int otyp, cred_t *cred_p)
15768 {
15769 	dtrace_state_t *state;
15770 	uint32_t priv;
15771 	uid_t uid;
15772 	zoneid_t zoneid;
15773 
15774 	if (getminor(*devp) == DTRACEMNRN_HELPER)
15775 		return (0);
15776 
15777 	/*
15778 	 * If this wasn't an open with the "helper" minor, then it must be
15779 	 * the "dtrace" minor.
15780 	 */
15781 	if (getminor(*devp) != DTRACEMNRN_DTRACE)
15782 		return (ENXIO);
15783 
15784 	/*
15785 	 * If no DTRACE_PRIV_* bits are set in the credential, then the
15786 	 * caller lacks sufficient permission to do anything with DTrace.
15787 	 */
15788 	dtrace_cred2priv(cred_p, &priv, &uid, &zoneid);
15789 	if (priv == DTRACE_PRIV_NONE)
15790 		return (EACCES);
15791 
15792 	/*
15793 	 * Ask all providers to provide all their probes.
15794 	 */
15795 	mutex_enter(&dtrace_provider_lock);
15796 	dtrace_probe_provide(NULL, NULL);
15797 	mutex_exit(&dtrace_provider_lock);
15798 
15799 	mutex_enter(&cpu_lock);
15800 	mutex_enter(&dtrace_lock);
15801 	dtrace_opens++;
15802 	dtrace_membar_producer();
15803 
15804 	/*
15805 	 * If the kernel debugger is active (that is, if the kernel debugger
15806 	 * modified text in some way), we won't allow the open.
15807 	 */
15808 	if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) {
15809 		dtrace_opens--;
15810 		mutex_exit(&cpu_lock);
15811 		mutex_exit(&dtrace_lock);
15812 		return (EBUSY);
15813 	}
15814 
15815 	state = dtrace_state_create(devp, cred_p);
15816 	mutex_exit(&cpu_lock);
15817 
15818 	if (state == NULL) {
15819 		if (--dtrace_opens == 0 && dtrace_anon.dta_enabling == NULL)
15820 			(void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
15821 		mutex_exit(&dtrace_lock);
15822 		return (EAGAIN);
15823 	}
15824 
15825 	mutex_exit(&dtrace_lock);
15826 
15827 	return (0);
15828 }
15829 
15830 /*ARGSUSED*/
15831 static int
15832 dtrace_close(dev_t dev, int flag, int otyp, cred_t *cred_p)
15833 {
15834 	minor_t minor = getminor(dev);
15835 	dtrace_state_t *state;
15836 
15837 	if (minor == DTRACEMNRN_HELPER)
15838 		return (0);
15839 
15840 	state = ddi_get_soft_state(dtrace_softstate, minor);
15841 
15842 	mutex_enter(&cpu_lock);
15843 	mutex_enter(&dtrace_lock);
15844 
15845 	if (state->dts_anon) {
15846 		/*
15847 		 * There is anonymous state. Destroy that first.
15848 		 */
15849 		ASSERT(dtrace_anon.dta_state == NULL);
15850 		dtrace_state_destroy(state->dts_anon);
15851 	}
15852 
15853 	dtrace_state_destroy(state);
15854 	ASSERT(dtrace_opens > 0);
15855 
15856 	/*
15857 	 * Only relinquish control of the kernel debugger interface when there
15858 	 * are no consumers and no anonymous enablings.
15859 	 */
15860 	if (--dtrace_opens == 0 && dtrace_anon.dta_enabling == NULL)
15861 		(void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
15862 
15863 	mutex_exit(&dtrace_lock);
15864 	mutex_exit(&cpu_lock);
15865 
15866 	return (0);
15867 }
15868 
15869 /*ARGSUSED*/
15870 static int
15871 dtrace_ioctl_helper(int cmd, intptr_t arg, int *rv)
15872 {
15873 	int rval;
15874 	dof_helper_t help, *dhp = NULL;
15875 
15876 	switch (cmd) {
15877 	case DTRACEHIOC_ADDDOF:
15878 		if (copyin((void *)arg, &help, sizeof (help)) != 0) {
15879 			dtrace_dof_error(NULL, "failed to copyin DOF helper");
15880 			return (EFAULT);
15881 		}
15882 
15883 		dhp = &help;
15884 		arg = (intptr_t)help.dofhp_dof;
15885 		/*FALLTHROUGH*/
15886 
15887 	case DTRACEHIOC_ADD: {
15888 		dof_hdr_t *dof = dtrace_dof_copyin(arg, &rval);
15889 
15890 		if (dof == NULL)
15891 			return (rval);
15892 
15893 		mutex_enter(&dtrace_lock);
15894 
15895 		/*
15896 		 * dtrace_helper_slurp() takes responsibility for the dof --
15897 		 * it may free it now or it may save it and free it later.
15898 		 */
15899 		if ((rval = dtrace_helper_slurp(dof, dhp)) != -1) {
15900 			*rv = rval;
15901 			rval = 0;
15902 		} else {
15903 			rval = EINVAL;
15904 		}
15905 
15906 		mutex_exit(&dtrace_lock);
15907 		return (rval);
15908 	}
15909 
15910 	case DTRACEHIOC_REMOVE: {
15911 		mutex_enter(&dtrace_lock);
15912 		rval = dtrace_helper_destroygen(arg);
15913 		mutex_exit(&dtrace_lock);
15914 
15915 		return (rval);
15916 	}
15917 
15918 	default:
15919 		break;
15920 	}
15921 
15922 	return (ENOTTY);
15923 }
15924 
15925 /*ARGSUSED*/
15926 static int
15927 dtrace_ioctl(dev_t dev, int cmd, intptr_t arg, int md, cred_t *cr, int *rv)
15928 {
15929 	minor_t minor = getminor(dev);
15930 	dtrace_state_t *state;
15931 	int rval;
15932 
15933 	if (minor == DTRACEMNRN_HELPER)
15934 		return (dtrace_ioctl_helper(cmd, arg, rv));
15935 
15936 	state = ddi_get_soft_state(dtrace_softstate, minor);
15937 
15938 	if (state->dts_anon) {
15939 		ASSERT(dtrace_anon.dta_state == NULL);
15940 		state = state->dts_anon;
15941 	}
15942 
15943 	switch (cmd) {
15944 	case DTRACEIOC_PROVIDER: {
15945 		dtrace_providerdesc_t pvd;
15946 		dtrace_provider_t *pvp;
15947 
15948 		if (copyin((void *)arg, &pvd, sizeof (pvd)) != 0)
15949 			return (EFAULT);
15950 
15951 		pvd.dtvd_name[DTRACE_PROVNAMELEN - 1] = '\0';
15952 		mutex_enter(&dtrace_provider_lock);
15953 
15954 		for (pvp = dtrace_provider; pvp != NULL; pvp = pvp->dtpv_next) {
15955 			if (strcmp(pvp->dtpv_name, pvd.dtvd_name) == 0)
15956 				break;
15957 		}
15958 
15959 		mutex_exit(&dtrace_provider_lock);
15960 
15961 		if (pvp == NULL)
15962 			return (ESRCH);
15963 
15964 		bcopy(&pvp->dtpv_priv, &pvd.dtvd_priv, sizeof (dtrace_ppriv_t));
15965 		bcopy(&pvp->dtpv_attr, &pvd.dtvd_attr, sizeof (dtrace_pattr_t));
15966 		if (copyout(&pvd, (void *)arg, sizeof (pvd)) != 0)
15967 			return (EFAULT);
15968 
15969 		return (0);
15970 	}
15971 
15972 	case DTRACEIOC_EPROBE: {
15973 		dtrace_eprobedesc_t epdesc;
15974 		dtrace_ecb_t *ecb;
15975 		dtrace_action_t *act;
15976 		void *buf;
15977 		size_t size;
15978 		uintptr_t dest;
15979 		int nrecs;
15980 
15981 		if (copyin((void *)arg, &epdesc, sizeof (epdesc)) != 0)
15982 			return (EFAULT);
15983 
15984 		mutex_enter(&dtrace_lock);
15985 
15986 		if ((ecb = dtrace_epid2ecb(state, epdesc.dtepd_epid)) == NULL) {
15987 			mutex_exit(&dtrace_lock);
15988 			return (EINVAL);
15989 		}
15990 
15991 		if (ecb->dte_probe == NULL) {
15992 			mutex_exit(&dtrace_lock);
15993 			return (EINVAL);
15994 		}
15995 
15996 		epdesc.dtepd_probeid = ecb->dte_probe->dtpr_id;
15997 		epdesc.dtepd_uarg = ecb->dte_uarg;
15998 		epdesc.dtepd_size = ecb->dte_size;
15999 
16000 		nrecs = epdesc.dtepd_nrecs;
16001 		epdesc.dtepd_nrecs = 0;
16002 		for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
16003 			if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple)
16004 				continue;
16005 
16006 			epdesc.dtepd_nrecs++;
16007 		}
16008 
16009 		/*
16010 		 * Now that we have the size, we need to allocate a temporary
16011 		 * buffer in which to store the complete description.  We need
16012 		 * the temporary buffer to be able to drop dtrace_lock()
16013 		 * across the copyout(), below.
16014 		 */
16015 		size = sizeof (dtrace_eprobedesc_t) +
16016 		    (epdesc.dtepd_nrecs * sizeof (dtrace_recdesc_t));
16017 
16018 		buf = kmem_alloc(size, KM_SLEEP);
16019 		dest = (uintptr_t)buf;
16020 
16021 		bcopy(&epdesc, (void *)dest, sizeof (epdesc));
16022 		dest += offsetof(dtrace_eprobedesc_t, dtepd_rec[0]);
16023 
16024 		for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
16025 			if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple)
16026 				continue;
16027 
16028 			if (nrecs-- == 0)
16029 				break;
16030 
16031 			bcopy(&act->dta_rec, (void *)dest,
16032 			    sizeof (dtrace_recdesc_t));
16033 			dest += sizeof (dtrace_recdesc_t);
16034 		}
16035 
16036 		mutex_exit(&dtrace_lock);
16037 
16038 		if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) {
16039 			kmem_free(buf, size);
16040 			return (EFAULT);
16041 		}
16042 
16043 		kmem_free(buf, size);
16044 		return (0);
16045 	}
16046 
16047 	case DTRACEIOC_AGGDESC: {
16048 		dtrace_aggdesc_t aggdesc;
16049 		dtrace_action_t *act;
16050 		dtrace_aggregation_t *agg;
16051 		int nrecs;
16052 		uint32_t offs;
16053 		dtrace_recdesc_t *lrec;
16054 		void *buf;
16055 		size_t size;
16056 		uintptr_t dest;
16057 
16058 		if (copyin((void *)arg, &aggdesc, sizeof (aggdesc)) != 0)
16059 			return (EFAULT);
16060 
16061 		mutex_enter(&dtrace_lock);
16062 
16063 		if ((agg = dtrace_aggid2agg(state, aggdesc.dtagd_id)) == NULL) {
16064 			mutex_exit(&dtrace_lock);
16065 			return (EINVAL);
16066 		}
16067 
16068 		aggdesc.dtagd_epid = agg->dtag_ecb->dte_epid;
16069 
16070 		nrecs = aggdesc.dtagd_nrecs;
16071 		aggdesc.dtagd_nrecs = 0;
16072 
16073 		offs = agg->dtag_base;
16074 		lrec = &agg->dtag_action.dta_rec;
16075 		aggdesc.dtagd_size = lrec->dtrd_offset + lrec->dtrd_size - offs;
16076 
16077 		for (act = agg->dtag_first; ; act = act->dta_next) {
16078 			ASSERT(act->dta_intuple ||
16079 			    DTRACEACT_ISAGG(act->dta_kind));
16080 
16081 			/*
16082 			 * If this action has a record size of zero, it
16083 			 * denotes an argument to the aggregating action.
16084 			 * Because the presence of this record doesn't (or
16085 			 * shouldn't) affect the way the data is interpreted,
16086 			 * we don't copy it out to save user-level the
16087 			 * confusion of dealing with a zero-length record.
16088 			 */
16089 			if (act->dta_rec.dtrd_size == 0) {
16090 				ASSERT(agg->dtag_hasarg);
16091 				continue;
16092 			}
16093 
16094 			aggdesc.dtagd_nrecs++;
16095 
16096 			if (act == &agg->dtag_action)
16097 				break;
16098 		}
16099 
16100 		/*
16101 		 * Now that we have the size, we need to allocate a temporary
16102 		 * buffer in which to store the complete description.  We need
16103 		 * the temporary buffer to be able to drop dtrace_lock()
16104 		 * across the copyout(), below.
16105 		 */
16106 		size = sizeof (dtrace_aggdesc_t) +
16107 		    (aggdesc.dtagd_nrecs * sizeof (dtrace_recdesc_t));
16108 
16109 		buf = kmem_alloc(size, KM_SLEEP);
16110 		dest = (uintptr_t)buf;
16111 
16112 		bcopy(&aggdesc, (void *)dest, sizeof (aggdesc));
16113 		dest += offsetof(dtrace_aggdesc_t, dtagd_rec[0]);
16114 
16115 		for (act = agg->dtag_first; ; act = act->dta_next) {
16116 			dtrace_recdesc_t rec = act->dta_rec;
16117 
16118 			/*
16119 			 * See the comment in the above loop for why we pass
16120 			 * over zero-length records.
16121 			 */
16122 			if (rec.dtrd_size == 0) {
16123 				ASSERT(agg->dtag_hasarg);
16124 				continue;
16125 			}
16126 
16127 			if (nrecs-- == 0)
16128 				break;
16129 
16130 			rec.dtrd_offset -= offs;
16131 			bcopy(&rec, (void *)dest, sizeof (rec));
16132 			dest += sizeof (dtrace_recdesc_t);
16133 
16134 			if (act == &agg->dtag_action)
16135 				break;
16136 		}
16137 
16138 		mutex_exit(&dtrace_lock);
16139 
16140 		if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) {
16141 			kmem_free(buf, size);
16142 			return (EFAULT);
16143 		}
16144 
16145 		kmem_free(buf, size);
16146 		return (0);
16147 	}
16148 
16149 	case DTRACEIOC_ENABLE: {
16150 		dof_hdr_t *dof;
16151 		dtrace_enabling_t *enab = NULL;
16152 		dtrace_vstate_t *vstate;
16153 		int err = 0;
16154 
16155 		*rv = 0;
16156 
16157 		/*
16158 		 * If a NULL argument has been passed, we take this as our
16159 		 * cue to reevaluate our enablings.
16160 		 */
16161 		if (arg == NULL) {
16162 			dtrace_enabling_matchall();
16163 
16164 			return (0);
16165 		}
16166 
16167 		if ((dof = dtrace_dof_copyin(arg, &rval)) == NULL)
16168 			return (rval);
16169 
16170 		mutex_enter(&cpu_lock);
16171 		mutex_enter(&dtrace_lock);
16172 		vstate = &state->dts_vstate;
16173 
16174 		if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) {
16175 			mutex_exit(&dtrace_lock);
16176 			mutex_exit(&cpu_lock);
16177 			dtrace_dof_destroy(dof);
16178 			return (EBUSY);
16179 		}
16180 
16181 		if (dtrace_dof_slurp(dof, vstate, cr, &enab, 0, B_TRUE) != 0) {
16182 			mutex_exit(&dtrace_lock);
16183 			mutex_exit(&cpu_lock);
16184 			dtrace_dof_destroy(dof);
16185 			return (EINVAL);
16186 		}
16187 
16188 		if ((rval = dtrace_dof_options(dof, state)) != 0) {
16189 			dtrace_enabling_destroy(enab);
16190 			mutex_exit(&dtrace_lock);
16191 			mutex_exit(&cpu_lock);
16192 			dtrace_dof_destroy(dof);
16193 			return (rval);
16194 		}
16195 
16196 		if ((err = dtrace_enabling_match(enab, rv)) == 0) {
16197 			err = dtrace_enabling_retain(enab);
16198 		} else {
16199 			dtrace_enabling_destroy(enab);
16200 		}
16201 
16202 		mutex_exit(&cpu_lock);
16203 		mutex_exit(&dtrace_lock);
16204 		dtrace_dof_destroy(dof);
16205 
16206 		return (err);
16207 	}
16208 
16209 	case DTRACEIOC_REPLICATE: {
16210 		dtrace_repldesc_t desc;
16211 		dtrace_probedesc_t *match = &desc.dtrpd_match;
16212 		dtrace_probedesc_t *create = &desc.dtrpd_create;
16213 		int err;
16214 
16215 		if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
16216 			return (EFAULT);
16217 
16218 		match->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
16219 		match->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
16220 		match->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
16221 		match->dtpd_name[DTRACE_NAMELEN - 1] = '\0';
16222 
16223 		create->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
16224 		create->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
16225 		create->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
16226 		create->dtpd_name[DTRACE_NAMELEN - 1] = '\0';
16227 
16228 		mutex_enter(&dtrace_lock);
16229 		err = dtrace_enabling_replicate(state, match, create);
16230 		mutex_exit(&dtrace_lock);
16231 
16232 		return (err);
16233 	}
16234 
16235 	case DTRACEIOC_PROBEMATCH:
16236 	case DTRACEIOC_PROBES: {
16237 		dtrace_probe_t *probe = NULL;
16238 		dtrace_probedesc_t desc;
16239 		dtrace_probekey_t pkey;
16240 		dtrace_id_t i;
16241 		int m = 0;
16242 		uint32_t priv;
16243 		uid_t uid;
16244 		zoneid_t zoneid;
16245 
16246 		if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
16247 			return (EFAULT);
16248 
16249 		desc.dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
16250 		desc.dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
16251 		desc.dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
16252 		desc.dtpd_name[DTRACE_NAMELEN - 1] = '\0';
16253 
16254 		/*
16255 		 * Before we attempt to match this probe, we want to give
16256 		 * all providers the opportunity to provide it.
16257 		 */
16258 		if (desc.dtpd_id == DTRACE_IDNONE) {
16259 			mutex_enter(&dtrace_provider_lock);
16260 			dtrace_probe_provide(&desc, NULL);
16261 			mutex_exit(&dtrace_provider_lock);
16262 			desc.dtpd_id++;
16263 		}
16264 
16265 		if (cmd == DTRACEIOC_PROBEMATCH)  {
16266 			dtrace_probekey(&desc, &pkey);
16267 			pkey.dtpk_id = DTRACE_IDNONE;
16268 		}
16269 
16270 		dtrace_cred2priv(cr, &priv, &uid, &zoneid);
16271 
16272 		mutex_enter(&dtrace_lock);
16273 
16274 		if (cmd == DTRACEIOC_PROBEMATCH) {
16275 			for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) {
16276 				if ((probe = dtrace_probes[i - 1]) != NULL &&
16277 				    (m = dtrace_match_probe(probe, &pkey,
16278 				    priv, uid, zoneid)) != 0)
16279 					break;
16280 			}
16281 
16282 			if (m < 0) {
16283 				mutex_exit(&dtrace_lock);
16284 				return (EINVAL);
16285 			}
16286 
16287 		} else {
16288 			for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) {
16289 				if ((probe = dtrace_probes[i - 1]) != NULL &&
16290 				    dtrace_match_priv(probe, priv, uid, zoneid))
16291 					break;
16292 			}
16293 		}
16294 
16295 		if (probe == NULL) {
16296 			mutex_exit(&dtrace_lock);
16297 			return (ESRCH);
16298 		}
16299 
16300 		dtrace_probe_description(probe, &desc);
16301 		mutex_exit(&dtrace_lock);
16302 
16303 		if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
16304 			return (EFAULT);
16305 
16306 		return (0);
16307 	}
16308 
16309 	case DTRACEIOC_PROBEARG: {
16310 		dtrace_argdesc_t desc;
16311 		dtrace_probe_t *probe;
16312 		dtrace_provider_t *prov;
16313 
16314 		if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
16315 			return (EFAULT);
16316 
16317 		if (desc.dtargd_id == DTRACE_IDNONE)
16318 			return (EINVAL);
16319 
16320 		if (desc.dtargd_ndx == DTRACE_ARGNONE)
16321 			return (EINVAL);
16322 
16323 		mutex_enter(&dtrace_provider_lock);
16324 		mutex_enter(&mod_lock);
16325 		mutex_enter(&dtrace_lock);
16326 
16327 		if (desc.dtargd_id > dtrace_nprobes) {
16328 			mutex_exit(&dtrace_lock);
16329 			mutex_exit(&mod_lock);
16330 			mutex_exit(&dtrace_provider_lock);
16331 			return (EINVAL);
16332 		}
16333 
16334 		if ((probe = dtrace_probes[desc.dtargd_id - 1]) == NULL) {
16335 			mutex_exit(&dtrace_lock);
16336 			mutex_exit(&mod_lock);
16337 			mutex_exit(&dtrace_provider_lock);
16338 			return (EINVAL);
16339 		}
16340 
16341 		mutex_exit(&dtrace_lock);
16342 
16343 		prov = probe->dtpr_provider;
16344 
16345 		if (prov->dtpv_pops.dtps_getargdesc == NULL) {
16346 			/*
16347 			 * There isn't any typed information for this probe.
16348 			 * Set the argument number to DTRACE_ARGNONE.
16349 			 */
16350 			desc.dtargd_ndx = DTRACE_ARGNONE;
16351 		} else {
16352 			desc.dtargd_native[0] = '\0';
16353 			desc.dtargd_xlate[0] = '\0';
16354 			desc.dtargd_mapping = desc.dtargd_ndx;
16355 
16356 			prov->dtpv_pops.dtps_getargdesc(prov->dtpv_arg,
16357 			    probe->dtpr_id, probe->dtpr_arg, &desc);
16358 		}
16359 
16360 		mutex_exit(&mod_lock);
16361 		mutex_exit(&dtrace_provider_lock);
16362 
16363 		if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
16364 			return (EFAULT);
16365 
16366 		return (0);
16367 	}
16368 
16369 	case DTRACEIOC_GO: {
16370 		processorid_t cpuid;
16371 		rval = dtrace_state_go(state, &cpuid);
16372 
16373 		if (rval != 0)
16374 			return (rval);
16375 
16376 		if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0)
16377 			return (EFAULT);
16378 
16379 		return (0);
16380 	}
16381 
16382 	case DTRACEIOC_STOP: {
16383 		processorid_t cpuid;
16384 
16385 		mutex_enter(&dtrace_lock);
16386 		rval = dtrace_state_stop(state, &cpuid);
16387 		mutex_exit(&dtrace_lock);
16388 
16389 		if (rval != 0)
16390 			return (rval);
16391 
16392 		if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0)
16393 			return (EFAULT);
16394 
16395 		return (0);
16396 	}
16397 
16398 	case DTRACEIOC_DOFGET: {
16399 		dof_hdr_t hdr, *dof;
16400 		uint64_t len;
16401 
16402 		if (copyin((void *)arg, &hdr, sizeof (hdr)) != 0)
16403 			return (EFAULT);
16404 
16405 		mutex_enter(&dtrace_lock);
16406 		dof = dtrace_dof_create(state);
16407 		mutex_exit(&dtrace_lock);
16408 
16409 		len = MIN(hdr.dofh_loadsz, dof->dofh_loadsz);
16410 		rval = copyout(dof, (void *)arg, len);
16411 		dtrace_dof_destroy(dof);
16412 
16413 		return (rval == 0 ? 0 : EFAULT);
16414 	}
16415 
16416 	case DTRACEIOC_AGGSNAP:
16417 	case DTRACEIOC_BUFSNAP: {
16418 		dtrace_bufdesc_t desc;
16419 		caddr_t cached;
16420 		dtrace_buffer_t *buf;
16421 
16422 		if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
16423 			return (EFAULT);
16424 
16425 		if (desc.dtbd_cpu < 0 || desc.dtbd_cpu >= NCPU)
16426 			return (EINVAL);
16427 
16428 		mutex_enter(&dtrace_lock);
16429 
16430 		if (cmd == DTRACEIOC_BUFSNAP) {
16431 			buf = &state->dts_buffer[desc.dtbd_cpu];
16432 		} else {
16433 			buf = &state->dts_aggbuffer[desc.dtbd_cpu];
16434 		}
16435 
16436 		if (buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL)) {
16437 			size_t sz = buf->dtb_offset;
16438 
16439 			if (state->dts_activity != DTRACE_ACTIVITY_STOPPED) {
16440 				mutex_exit(&dtrace_lock);
16441 				return (EBUSY);
16442 			}
16443 
16444 			/*
16445 			 * If this buffer has already been consumed, we're
16446 			 * going to indicate that there's nothing left here
16447 			 * to consume.
16448 			 */
16449 			if (buf->dtb_flags & DTRACEBUF_CONSUMED) {
16450 				mutex_exit(&dtrace_lock);
16451 
16452 				desc.dtbd_size = 0;
16453 				desc.dtbd_drops = 0;
16454 				desc.dtbd_errors = 0;
16455 				desc.dtbd_oldest = 0;
16456 				sz = sizeof (desc);
16457 
16458 				if (copyout(&desc, (void *)arg, sz) != 0)
16459 					return (EFAULT);
16460 
16461 				return (0);
16462 			}
16463 
16464 			/*
16465 			 * If this is a ring buffer that has wrapped, we want
16466 			 * to copy the whole thing out.
16467 			 */
16468 			if (buf->dtb_flags & DTRACEBUF_WRAPPED) {
16469 				dtrace_buffer_polish(buf);
16470 				sz = buf->dtb_size;
16471 			}
16472 
16473 			if (copyout(buf->dtb_tomax, desc.dtbd_data, sz) != 0) {
16474 				mutex_exit(&dtrace_lock);
16475 				return (EFAULT);
16476 			}
16477 
16478 			desc.dtbd_size = sz;
16479 			desc.dtbd_drops = buf->dtb_drops;
16480 			desc.dtbd_errors = buf->dtb_errors;
16481 			desc.dtbd_oldest = buf->dtb_xamot_offset;
16482 			desc.dtbd_timestamp = dtrace_gethrtime();
16483 
16484 			mutex_exit(&dtrace_lock);
16485 
16486 			if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
16487 				return (EFAULT);
16488 
16489 			buf->dtb_flags |= DTRACEBUF_CONSUMED;
16490 
16491 			return (0);
16492 		}
16493 
16494 		if (buf->dtb_tomax == NULL) {
16495 			ASSERT(buf->dtb_xamot == NULL);
16496 			mutex_exit(&dtrace_lock);
16497 			return (ENOENT);
16498 		}
16499 
16500 		cached = buf->dtb_tomax;
16501 		ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
16502 
16503 		dtrace_xcall(desc.dtbd_cpu,
16504 		    (dtrace_xcall_t)dtrace_buffer_switch, buf);
16505 
16506 		state->dts_errors += buf->dtb_xamot_errors;
16507 
16508 		/*
16509 		 * If the buffers did not actually switch, then the cross call
16510 		 * did not take place -- presumably because the given CPU is
16511 		 * not in the ready set.  If this is the case, we'll return
16512 		 * ENOENT.
16513 		 */
16514 		if (buf->dtb_tomax == cached) {
16515 			ASSERT(buf->dtb_xamot != cached);
16516 			mutex_exit(&dtrace_lock);
16517 			return (ENOENT);
16518 		}
16519 
16520 		ASSERT(cached == buf->dtb_xamot);
16521 
16522 		/*
16523 		 * We have our snapshot; now copy it out.
16524 		 */
16525 		if (copyout(buf->dtb_xamot, desc.dtbd_data,
16526 		    buf->dtb_xamot_offset) != 0) {
16527 			mutex_exit(&dtrace_lock);
16528 			return (EFAULT);
16529 		}
16530 
16531 		desc.dtbd_size = buf->dtb_xamot_offset;
16532 		desc.dtbd_drops = buf->dtb_xamot_drops;
16533 		desc.dtbd_errors = buf->dtb_xamot_errors;
16534 		desc.dtbd_oldest = 0;
16535 		desc.dtbd_timestamp = buf->dtb_switched;
16536 
16537 		mutex_exit(&dtrace_lock);
16538 
16539 		/*
16540 		 * Finally, copy out the buffer description.
16541 		 */
16542 		if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
16543 			return (EFAULT);
16544 
16545 		return (0);
16546 	}
16547 
16548 	case DTRACEIOC_CONF: {
16549 		dtrace_conf_t conf;
16550 
16551 		bzero(&conf, sizeof (conf));
16552 		conf.dtc_difversion = DIF_VERSION;
16553 		conf.dtc_difintregs = DIF_DIR_NREGS;
16554 		conf.dtc_diftupregs = DIF_DTR_NREGS;
16555 		conf.dtc_ctfmodel = CTF_MODEL_NATIVE;
16556 
16557 		if (copyout(&conf, (void *)arg, sizeof (conf)) != 0)
16558 			return (EFAULT);
16559 
16560 		return (0);
16561 	}
16562 
16563 	case DTRACEIOC_STATUS: {
16564 		dtrace_status_t stat;
16565 		dtrace_dstate_t *dstate;
16566 		int i, j;
16567 		uint64_t nerrs;
16568 
16569 		/*
16570 		 * See the comment in dtrace_state_deadman() for the reason
16571 		 * for setting dts_laststatus to INT64_MAX before setting
16572 		 * it to the correct value.
16573 		 */
16574 		state->dts_laststatus = INT64_MAX;
16575 		dtrace_membar_producer();
16576 		state->dts_laststatus = dtrace_gethrtime();
16577 
16578 		bzero(&stat, sizeof (stat));
16579 
16580 		mutex_enter(&dtrace_lock);
16581 
16582 		if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE) {
16583 			mutex_exit(&dtrace_lock);
16584 			return (ENOENT);
16585 		}
16586 
16587 		if (state->dts_activity == DTRACE_ACTIVITY_DRAINING)
16588 			stat.dtst_exiting = 1;
16589 
16590 		nerrs = state->dts_errors;
16591 		dstate = &state->dts_vstate.dtvs_dynvars;
16592 
16593 		for (i = 0; i < NCPU; i++) {
16594 			dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[i];
16595 
16596 			stat.dtst_dyndrops += dcpu->dtdsc_drops;
16597 			stat.dtst_dyndrops_dirty += dcpu->dtdsc_dirty_drops;
16598 			stat.dtst_dyndrops_rinsing += dcpu->dtdsc_rinsing_drops;
16599 
16600 			if (state->dts_buffer[i].dtb_flags & DTRACEBUF_FULL)
16601 				stat.dtst_filled++;
16602 
16603 			nerrs += state->dts_buffer[i].dtb_errors;
16604 
16605 			for (j = 0; j < state->dts_nspeculations; j++) {
16606 				dtrace_speculation_t *spec;
16607 				dtrace_buffer_t *buf;
16608 
16609 				spec = &state->dts_speculations[j];
16610 				buf = &spec->dtsp_buffer[i];
16611 				stat.dtst_specdrops += buf->dtb_xamot_drops;
16612 			}
16613 		}
16614 
16615 		stat.dtst_specdrops_busy = state->dts_speculations_busy;
16616 		stat.dtst_specdrops_unavail = state->dts_speculations_unavail;
16617 		stat.dtst_stkstroverflows = state->dts_stkstroverflows;
16618 		stat.dtst_dblerrors = state->dts_dblerrors;
16619 		stat.dtst_killed =
16620 		    (state->dts_activity == DTRACE_ACTIVITY_KILLED);
16621 		stat.dtst_errors = nerrs;
16622 
16623 		mutex_exit(&dtrace_lock);
16624 
16625 		if (copyout(&stat, (void *)arg, sizeof (stat)) != 0)
16626 			return (EFAULT);
16627 
16628 		return (0);
16629 	}
16630 
16631 	case DTRACEIOC_FORMAT: {
16632 		dtrace_fmtdesc_t fmt;
16633 		char *str;
16634 		int len;
16635 
16636 		if (copyin((void *)arg, &fmt, sizeof (fmt)) != 0)
16637 			return (EFAULT);
16638 
16639 		mutex_enter(&dtrace_lock);
16640 
16641 		if (fmt.dtfd_format == 0 ||
16642 		    fmt.dtfd_format > state->dts_nformats) {
16643 			mutex_exit(&dtrace_lock);
16644 			return (EINVAL);
16645 		}
16646 
16647 		/*
16648 		 * Format strings are allocated contiguously and they are
16649 		 * never freed; if a format index is less than the number
16650 		 * of formats, we can assert that the format map is non-NULL
16651 		 * and that the format for the specified index is non-NULL.
16652 		 */
16653 		ASSERT(state->dts_formats != NULL);
16654 		str = state->dts_formats[fmt.dtfd_format - 1];
16655 		ASSERT(str != NULL);
16656 
16657 		len = strlen(str) + 1;
16658 
16659 		if (len > fmt.dtfd_length) {
16660 			fmt.dtfd_length = len;
16661 
16662 			if (copyout(&fmt, (void *)arg, sizeof (fmt)) != 0) {
16663 				mutex_exit(&dtrace_lock);
16664 				return (EINVAL);
16665 			}
16666 		} else {
16667 			if (copyout(str, fmt.dtfd_string, len) != 0) {
16668 				mutex_exit(&dtrace_lock);
16669 				return (EINVAL);
16670 			}
16671 		}
16672 
16673 		mutex_exit(&dtrace_lock);
16674 		return (0);
16675 	}
16676 
16677 	default:
16678 		break;
16679 	}
16680 
16681 	return (ENOTTY);
16682 }
16683 
16684 /*ARGSUSED*/
16685 static int
16686 dtrace_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
16687 {
16688 	dtrace_state_t *state;
16689 
16690 	switch (cmd) {
16691 	case DDI_DETACH:
16692 		break;
16693 
16694 	case DDI_SUSPEND:
16695 		return (DDI_SUCCESS);
16696 
16697 	default:
16698 		return (DDI_FAILURE);
16699 	}
16700 
16701 	mutex_enter(&cpu_lock);
16702 	mutex_enter(&dtrace_provider_lock);
16703 	mutex_enter(&dtrace_lock);
16704 
16705 	ASSERT(dtrace_opens == 0);
16706 
16707 	if (dtrace_helpers > 0) {
16708 		mutex_exit(&dtrace_provider_lock);
16709 		mutex_exit(&dtrace_lock);
16710 		mutex_exit(&cpu_lock);
16711 		return (DDI_FAILURE);
16712 	}
16713 
16714 	if (dtrace_unregister((dtrace_provider_id_t)dtrace_provider) != 0) {
16715 		mutex_exit(&dtrace_provider_lock);
16716 		mutex_exit(&dtrace_lock);
16717 		mutex_exit(&cpu_lock);
16718 		return (DDI_FAILURE);
16719 	}
16720 
16721 	dtrace_provider = NULL;
16722 
16723 	if ((state = dtrace_anon_grab()) != NULL) {
16724 		/*
16725 		 * If there were ECBs on this state, the provider should
16726 		 * have not been allowed to detach; assert that there is
16727 		 * none.
16728 		 */
16729 		ASSERT(state->dts_necbs == 0);
16730 		dtrace_state_destroy(state);
16731 
16732 		/*
16733 		 * If we're being detached with anonymous state, we need to
16734 		 * indicate to the kernel debugger that DTrace is now inactive.
16735 		 */
16736 		(void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
16737 	}
16738 
16739 	bzero(&dtrace_anon, sizeof (dtrace_anon_t));
16740 	unregister_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL);
16741 	dtrace_cpu_init = NULL;
16742 	dtrace_helpers_cleanup = NULL;
16743 	dtrace_helpers_fork = NULL;
16744 	dtrace_cpustart_init = NULL;
16745 	dtrace_cpustart_fini = NULL;
16746 	dtrace_debugger_init = NULL;
16747 	dtrace_debugger_fini = NULL;
16748 	dtrace_modload = NULL;
16749 	dtrace_modunload = NULL;
16750 
16751 	ASSERT(dtrace_getf == 0);
16752 	ASSERT(dtrace_closef == NULL);
16753 
16754 	mutex_exit(&cpu_lock);
16755 
16756 	if (dtrace_helptrace_enabled) {
16757 		kmem_free(dtrace_helptrace_buffer, dtrace_helptrace_bufsize);
16758 		dtrace_helptrace_buffer = NULL;
16759 	}
16760 
16761 	kmem_free(dtrace_probes, dtrace_nprobes * sizeof (dtrace_probe_t *));
16762 	dtrace_probes = NULL;
16763 	dtrace_nprobes = 0;
16764 
16765 	dtrace_hash_destroy(dtrace_bymod);
16766 	dtrace_hash_destroy(dtrace_byfunc);
16767 	dtrace_hash_destroy(dtrace_byname);
16768 	dtrace_bymod = NULL;
16769 	dtrace_byfunc = NULL;
16770 	dtrace_byname = NULL;
16771 
16772 	kmem_cache_destroy(dtrace_state_cache);
16773 	vmem_destroy(dtrace_minor);
16774 	vmem_destroy(dtrace_arena);
16775 
16776 	if (dtrace_toxrange != NULL) {
16777 		kmem_free(dtrace_toxrange,
16778 		    dtrace_toxranges_max * sizeof (dtrace_toxrange_t));
16779 		dtrace_toxrange = NULL;
16780 		dtrace_toxranges = 0;
16781 		dtrace_toxranges_max = 0;
16782 	}
16783 
16784 	ddi_remove_minor_node(dtrace_devi, NULL);
16785 	dtrace_devi = NULL;
16786 
16787 	ddi_soft_state_fini(&dtrace_softstate);
16788 
16789 	ASSERT(dtrace_vtime_references == 0);
16790 	ASSERT(dtrace_opens == 0);
16791 	ASSERT(dtrace_retained == NULL);
16792 
16793 	mutex_exit(&dtrace_lock);
16794 	mutex_exit(&dtrace_provider_lock);
16795 
16796 	/*
16797 	 * We don't destroy the task queue until after we have dropped our
16798 	 * locks (taskq_destroy() may block on running tasks).  To prevent
16799 	 * attempting to do work after we have effectively detached but before
16800 	 * the task queue has been destroyed, all tasks dispatched via the
16801 	 * task queue must check that DTrace is still attached before
16802 	 * performing any operation.
16803 	 */
16804 	taskq_destroy(dtrace_taskq);
16805 	dtrace_taskq = NULL;
16806 
16807 	return (DDI_SUCCESS);
16808 }
16809 
16810 /*ARGSUSED*/
16811 static int
16812 dtrace_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result)
16813 {
16814 	int error;
16815 
16816 	switch (infocmd) {
16817 	case DDI_INFO_DEVT2DEVINFO:
16818 		*result = (void *)dtrace_devi;
16819 		error = DDI_SUCCESS;
16820 		break;
16821 	case DDI_INFO_DEVT2INSTANCE:
16822 		*result = (void *)0;
16823 		error = DDI_SUCCESS;
16824 		break;
16825 	default:
16826 		error = DDI_FAILURE;
16827 	}
16828 	return (error);
16829 }
16830 
16831 static struct cb_ops dtrace_cb_ops = {
16832 	dtrace_open,		/* open */
16833 	dtrace_close,		/* close */
16834 	nulldev,		/* strategy */
16835 	nulldev,		/* print */
16836 	nodev,			/* dump */
16837 	nodev,			/* read */
16838 	nodev,			/* write */
16839 	dtrace_ioctl,		/* ioctl */
16840 	nodev,			/* devmap */
16841 	nodev,			/* mmap */
16842 	nodev,			/* segmap */
16843 	nochpoll,		/* poll */
16844 	ddi_prop_op,		/* cb_prop_op */
16845 	0,			/* streamtab  */
16846 	D_NEW | D_MP		/* Driver compatibility flag */
16847 };
16848 
16849 static struct dev_ops dtrace_ops = {
16850 	DEVO_REV,		/* devo_rev */
16851 	0,			/* refcnt */
16852 	dtrace_info,		/* get_dev_info */
16853 	nulldev,		/* identify */
16854 	nulldev,		/* probe */
16855 	dtrace_attach,		/* attach */
16856 	dtrace_detach,		/* detach */
16857 	nodev,			/* reset */
16858 	&dtrace_cb_ops,		/* driver operations */
16859 	NULL,			/* bus operations */
16860 	nodev,			/* dev power */
16861 	ddi_quiesce_not_needed,		/* quiesce */
16862 };
16863 
16864 static struct modldrv modldrv = {
16865 	&mod_driverops,		/* module type (this is a pseudo driver) */
16866 	"Dynamic Tracing",	/* name of module */
16867 	&dtrace_ops,		/* driver ops */
16868 };
16869 
16870 static struct modlinkage modlinkage = {
16871 	MODREV_1,
16872 	(void *)&modldrv,
16873 	NULL
16874 };
16875 
16876 int
16877 _init(void)
16878 {
16879 	return (mod_install(&modlinkage));
16880 }
16881 
16882 int
16883 _info(struct modinfo *modinfop)
16884 {
16885 	return (mod_info(&modlinkage, modinfop));
16886 }
16887 
16888 int
16889 _fini(void)
16890 {
16891 	return (mod_remove(&modlinkage));
16892 }
16893