1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2011, Joyent, Inc. All rights reserved. 25 * Copyright (c) 2012 by Delphix. All rights reserved. 26 */ 27 28 /* 29 * DTrace - Dynamic Tracing for Solaris 30 * 31 * This is the implementation of the Solaris Dynamic Tracing framework 32 * (DTrace). The user-visible interface to DTrace is described at length in 33 * the "Solaris Dynamic Tracing Guide". The interfaces between the libdtrace 34 * library, the in-kernel DTrace framework, and the DTrace providers are 35 * described in the block comments in the <sys/dtrace.h> header file. The 36 * internal architecture of DTrace is described in the block comments in the 37 * <sys/dtrace_impl.h> header file. The comments contained within the DTrace 38 * implementation very much assume mastery of all of these sources; if one has 39 * an unanswered question about the implementation, one should consult them 40 * first. 41 * 42 * The functions here are ordered roughly as follows: 43 * 44 * - Probe context functions 45 * - Probe hashing functions 46 * - Non-probe context utility functions 47 * - Matching functions 48 * - Provider-to-Framework API functions 49 * - Probe management functions 50 * - DIF object functions 51 * - Format functions 52 * - Predicate functions 53 * - ECB functions 54 * - Buffer functions 55 * - Enabling functions 56 * - DOF functions 57 * - Anonymous enabling functions 58 * - Consumer state functions 59 * - Helper functions 60 * - Hook functions 61 * - Driver cookbook functions 62 * 63 * Each group of functions begins with a block comment labelled the "DTrace 64 * [Group] Functions", allowing one to find each block by searching forward 65 * on capital-f functions. 66 */ 67 #include <sys/errno.h> 68 #include <sys/stat.h> 69 #include <sys/modctl.h> 70 #include <sys/conf.h> 71 #include <sys/systm.h> 72 #include <sys/ddi.h> 73 #include <sys/sunddi.h> 74 #include <sys/cpuvar.h> 75 #include <sys/kmem.h> 76 #include <sys/strsubr.h> 77 #include <sys/sysmacros.h> 78 #include <sys/dtrace_impl.h> 79 #include <sys/atomic.h> 80 #include <sys/cmn_err.h> 81 #include <sys/mutex_impl.h> 82 #include <sys/rwlock_impl.h> 83 #include <sys/ctf_api.h> 84 #include <sys/panic.h> 85 #include <sys/priv_impl.h> 86 #include <sys/policy.h> 87 #include <sys/cred_impl.h> 88 #include <sys/procfs_isa.h> 89 #include <sys/taskq.h> 90 #include <sys/mkdev.h> 91 #include <sys/kdi.h> 92 #include <sys/zone.h> 93 #include <sys/socket.h> 94 #include <netinet/in.h> 95 96 /* 97 * DTrace Tunable Variables 98 * 99 * The following variables may be tuned by adding a line to /etc/system that 100 * includes both the name of the DTrace module ("dtrace") and the name of the 101 * variable. For example: 102 * 103 * set dtrace:dtrace_destructive_disallow = 1 104 * 105 * In general, the only variables that one should be tuning this way are those 106 * that affect system-wide DTrace behavior, and for which the default behavior 107 * is undesirable. Most of these variables are tunable on a per-consumer 108 * basis using DTrace options, and need not be tuned on a system-wide basis. 109 * When tuning these variables, avoid pathological values; while some attempt 110 * is made to verify the integrity of these variables, they are not considered 111 * part of the supported interface to DTrace, and they are therefore not 112 * checked comprehensively. Further, these variables should not be tuned 113 * dynamically via "mdb -kw" or other means; they should only be tuned via 114 * /etc/system. 115 */ 116 int dtrace_destructive_disallow = 0; 117 dtrace_optval_t dtrace_nonroot_maxsize = (16 * 1024 * 1024); 118 size_t dtrace_difo_maxsize = (256 * 1024); 119 dtrace_optval_t dtrace_dof_maxsize = (256 * 1024); 120 size_t dtrace_global_maxsize = (16 * 1024); 121 size_t dtrace_actions_max = (16 * 1024); 122 size_t dtrace_retain_max = 1024; 123 dtrace_optval_t dtrace_helper_actions_max = 1024; 124 dtrace_optval_t dtrace_helper_providers_max = 32; 125 dtrace_optval_t dtrace_dstate_defsize = (1 * 1024 * 1024); 126 size_t dtrace_strsize_default = 256; 127 dtrace_optval_t dtrace_cleanrate_default = 9900990; /* 101 hz */ 128 dtrace_optval_t dtrace_cleanrate_min = 200000; /* 5000 hz */ 129 dtrace_optval_t dtrace_cleanrate_max = (uint64_t)60 * NANOSEC; /* 1/minute */ 130 dtrace_optval_t dtrace_aggrate_default = NANOSEC; /* 1 hz */ 131 dtrace_optval_t dtrace_statusrate_default = NANOSEC; /* 1 hz */ 132 dtrace_optval_t dtrace_statusrate_max = (hrtime_t)10 * NANOSEC; /* 6/minute */ 133 dtrace_optval_t dtrace_switchrate_default = NANOSEC; /* 1 hz */ 134 dtrace_optval_t dtrace_nspec_default = 1; 135 dtrace_optval_t dtrace_specsize_default = 32 * 1024; 136 dtrace_optval_t dtrace_stackframes_default = 20; 137 dtrace_optval_t dtrace_ustackframes_default = 20; 138 dtrace_optval_t dtrace_jstackframes_default = 50; 139 dtrace_optval_t dtrace_jstackstrsize_default = 512; 140 int dtrace_msgdsize_max = 128; 141 hrtime_t dtrace_chill_max = 500 * (NANOSEC / MILLISEC); /* 500 ms */ 142 hrtime_t dtrace_chill_interval = NANOSEC; /* 1000 ms */ 143 int dtrace_devdepth_max = 32; 144 int dtrace_err_verbose; 145 hrtime_t dtrace_deadman_interval = NANOSEC; 146 hrtime_t dtrace_deadman_timeout = (hrtime_t)10 * NANOSEC; 147 hrtime_t dtrace_deadman_user = (hrtime_t)30 * NANOSEC; 148 hrtime_t dtrace_unregister_defunct_reap = (hrtime_t)60 * NANOSEC; 149 150 /* 151 * DTrace External Variables 152 * 153 * As dtrace(7D) is a kernel module, any DTrace variables are obviously 154 * available to DTrace consumers via the backtick (`) syntax. One of these, 155 * dtrace_zero, is made deliberately so: it is provided as a source of 156 * well-known, zero-filled memory. While this variable is not documented, 157 * it is used by some translators as an implementation detail. 158 */ 159 const char dtrace_zero[256] = { 0 }; /* zero-filled memory */ 160 161 /* 162 * DTrace Internal Variables 163 */ 164 static dev_info_t *dtrace_devi; /* device info */ 165 static vmem_t *dtrace_arena; /* probe ID arena */ 166 static vmem_t *dtrace_minor; /* minor number arena */ 167 static taskq_t *dtrace_taskq; /* task queue */ 168 static dtrace_probe_t **dtrace_probes; /* array of all probes */ 169 static int dtrace_nprobes; /* number of probes */ 170 static dtrace_provider_t *dtrace_provider; /* provider list */ 171 static dtrace_meta_t *dtrace_meta_pid; /* user-land meta provider */ 172 static int dtrace_opens; /* number of opens */ 173 static int dtrace_helpers; /* number of helpers */ 174 static void *dtrace_softstate; /* softstate pointer */ 175 static dtrace_hash_t *dtrace_bymod; /* probes hashed by module */ 176 static dtrace_hash_t *dtrace_byfunc; /* probes hashed by function */ 177 static dtrace_hash_t *dtrace_byname; /* probes hashed by name */ 178 static dtrace_toxrange_t *dtrace_toxrange; /* toxic range array */ 179 static int dtrace_toxranges; /* number of toxic ranges */ 180 static int dtrace_toxranges_max; /* size of toxic range array */ 181 static dtrace_anon_t dtrace_anon; /* anonymous enabling */ 182 static kmem_cache_t *dtrace_state_cache; /* cache for dynamic state */ 183 static uint64_t dtrace_vtime_references; /* number of vtimestamp refs */ 184 static kthread_t *dtrace_panicked; /* panicking thread */ 185 static dtrace_ecb_t *dtrace_ecb_create_cache; /* cached created ECB */ 186 static dtrace_genid_t dtrace_probegen; /* current probe generation */ 187 static dtrace_helpers_t *dtrace_deferred_pid; /* deferred helper list */ 188 static dtrace_enabling_t *dtrace_retained; /* list of retained enablings */ 189 static dtrace_genid_t dtrace_retained_gen; /* current retained enab gen */ 190 static dtrace_dynvar_t dtrace_dynhash_sink; /* end of dynamic hash chains */ 191 static int dtrace_dynvar_failclean; /* dynvars failed to clean */ 192 193 /* 194 * DTrace Locking 195 * DTrace is protected by three (relatively coarse-grained) locks: 196 * 197 * (1) dtrace_lock is required to manipulate essentially any DTrace state, 198 * including enabling state, probes, ECBs, consumer state, helper state, 199 * etc. Importantly, dtrace_lock is _not_ required when in probe context; 200 * probe context is lock-free -- synchronization is handled via the 201 * dtrace_sync() cross call mechanism. 202 * 203 * (2) dtrace_provider_lock is required when manipulating provider state, or 204 * when provider state must be held constant. 205 * 206 * (3) dtrace_meta_lock is required when manipulating meta provider state, or 207 * when meta provider state must be held constant. 208 * 209 * The lock ordering between these three locks is dtrace_meta_lock before 210 * dtrace_provider_lock before dtrace_lock. (In particular, there are 211 * several places where dtrace_provider_lock is held by the framework as it 212 * calls into the providers -- which then call back into the framework, 213 * grabbing dtrace_lock.) 214 * 215 * There are two other locks in the mix: mod_lock and cpu_lock. With respect 216 * to dtrace_provider_lock and dtrace_lock, cpu_lock continues its historical 217 * role as a coarse-grained lock; it is acquired before both of these locks. 218 * With respect to dtrace_meta_lock, its behavior is stranger: cpu_lock must 219 * be acquired _between_ dtrace_meta_lock and any other DTrace locks. 220 * mod_lock is similar with respect to dtrace_provider_lock in that it must be 221 * acquired _between_ dtrace_provider_lock and dtrace_lock. 222 */ 223 static kmutex_t dtrace_lock; /* probe state lock */ 224 static kmutex_t dtrace_provider_lock; /* provider state lock */ 225 static kmutex_t dtrace_meta_lock; /* meta-provider state lock */ 226 227 /* 228 * DTrace Provider Variables 229 * 230 * These are the variables relating to DTrace as a provider (that is, the 231 * provider of the BEGIN, END, and ERROR probes). 232 */ 233 static dtrace_pattr_t dtrace_provider_attr = { 234 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON }, 235 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN }, 236 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN }, 237 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON }, 238 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON }, 239 }; 240 241 static void 242 dtrace_nullop(void) 243 {} 244 245 static int 246 dtrace_enable_nullop(void) 247 { 248 return (0); 249 } 250 251 static dtrace_pops_t dtrace_provider_ops = { 252 (void (*)(void *, const dtrace_probedesc_t *))dtrace_nullop, 253 (void (*)(void *, struct modctl *))dtrace_nullop, 254 (int (*)(void *, dtrace_id_t, void *))dtrace_enable_nullop, 255 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop, 256 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop, 257 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop, 258 NULL, 259 NULL, 260 NULL, 261 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop 262 }; 263 264 static dtrace_id_t dtrace_probeid_begin; /* special BEGIN probe */ 265 static dtrace_id_t dtrace_probeid_end; /* special END probe */ 266 dtrace_id_t dtrace_probeid_error; /* special ERROR probe */ 267 268 /* 269 * DTrace Helper Tracing Variables 270 */ 271 uint32_t dtrace_helptrace_next = 0; 272 uint32_t dtrace_helptrace_nlocals; 273 char *dtrace_helptrace_buffer; 274 int dtrace_helptrace_bufsize = 512 * 1024; 275 276 #ifdef DEBUG 277 int dtrace_helptrace_enabled = 1; 278 #else 279 int dtrace_helptrace_enabled = 0; 280 #endif 281 282 /* 283 * DTrace Error Hashing 284 * 285 * On DEBUG kernels, DTrace will track the errors that has seen in a hash 286 * table. This is very useful for checking coverage of tests that are 287 * expected to induce DIF or DOF processing errors, and may be useful for 288 * debugging problems in the DIF code generator or in DOF generation . The 289 * error hash may be examined with the ::dtrace_errhash MDB dcmd. 290 */ 291 #ifdef DEBUG 292 static dtrace_errhash_t dtrace_errhash[DTRACE_ERRHASHSZ]; 293 static const char *dtrace_errlast; 294 static kthread_t *dtrace_errthread; 295 static kmutex_t dtrace_errlock; 296 #endif 297 298 /* 299 * DTrace Macros and Constants 300 * 301 * These are various macros that are useful in various spots in the 302 * implementation, along with a few random constants that have no meaning 303 * outside of the implementation. There is no real structure to this cpp 304 * mishmash -- but is there ever? 305 */ 306 #define DTRACE_HASHSTR(hash, probe) \ 307 dtrace_hash_str(*((char **)((uintptr_t)(probe) + (hash)->dth_stroffs))) 308 309 #define DTRACE_HASHNEXT(hash, probe) \ 310 (dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_nextoffs) 311 312 #define DTRACE_HASHPREV(hash, probe) \ 313 (dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_prevoffs) 314 315 #define DTRACE_HASHEQ(hash, lhs, rhs) \ 316 (strcmp(*((char **)((uintptr_t)(lhs) + (hash)->dth_stroffs)), \ 317 *((char **)((uintptr_t)(rhs) + (hash)->dth_stroffs))) == 0) 318 319 #define DTRACE_AGGHASHSIZE_SLEW 17 320 321 #define DTRACE_V4MAPPED_OFFSET (sizeof (uint32_t) * 3) 322 323 /* 324 * The key for a thread-local variable consists of the lower 61 bits of the 325 * t_did, plus the 3 bits of the highest active interrupt above LOCK_LEVEL. 326 * We add DIF_VARIABLE_MAX to t_did to assure that the thread key is never 327 * equal to a variable identifier. This is necessary (but not sufficient) to 328 * assure that global associative arrays never collide with thread-local 329 * variables. To guarantee that they cannot collide, we must also define the 330 * order for keying dynamic variables. That order is: 331 * 332 * [ key0 ] ... [ keyn ] [ variable-key ] [ tls-key ] 333 * 334 * Because the variable-key and the tls-key are in orthogonal spaces, there is 335 * no way for a global variable key signature to match a thread-local key 336 * signature. 337 */ 338 #define DTRACE_TLS_THRKEY(where) { \ 339 uint_t intr = 0; \ 340 uint_t actv = CPU->cpu_intr_actv >> (LOCK_LEVEL + 1); \ 341 for (; actv; actv >>= 1) \ 342 intr++; \ 343 ASSERT(intr < (1 << 3)); \ 344 (where) = ((curthread->t_did + DIF_VARIABLE_MAX) & \ 345 (((uint64_t)1 << 61) - 1)) | ((uint64_t)intr << 61); \ 346 } 347 348 #define DT_BSWAP_8(x) ((x) & 0xff) 349 #define DT_BSWAP_16(x) ((DT_BSWAP_8(x) << 8) | DT_BSWAP_8((x) >> 8)) 350 #define DT_BSWAP_32(x) ((DT_BSWAP_16(x) << 16) | DT_BSWAP_16((x) >> 16)) 351 #define DT_BSWAP_64(x) ((DT_BSWAP_32(x) << 32) | DT_BSWAP_32((x) >> 32)) 352 353 #define DT_MASK_LO 0x00000000FFFFFFFFULL 354 355 #define DTRACE_STORE(type, tomax, offset, what) \ 356 *((type *)((uintptr_t)(tomax) + (uintptr_t)offset)) = (type)(what); 357 358 #ifndef __x86 359 #define DTRACE_ALIGNCHECK(addr, size, flags) \ 360 if (addr & (size - 1)) { \ 361 *flags |= CPU_DTRACE_BADALIGN; \ 362 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = addr; \ 363 return (0); \ 364 } 365 #else 366 #define DTRACE_ALIGNCHECK(addr, size, flags) 367 #endif 368 369 /* 370 * Test whether a range of memory starting at testaddr of size testsz falls 371 * within the range of memory described by addr, sz. We take care to avoid 372 * problems with overflow and underflow of the unsigned quantities, and 373 * disallow all negative sizes. Ranges of size 0 are allowed. 374 */ 375 #define DTRACE_INRANGE(testaddr, testsz, baseaddr, basesz) \ 376 ((testaddr) - (baseaddr) < (basesz) && \ 377 (testaddr) + (testsz) - (baseaddr) <= (basesz) && \ 378 (testaddr) + (testsz) >= (testaddr)) 379 380 /* 381 * Test whether alloc_sz bytes will fit in the scratch region. We isolate 382 * alloc_sz on the righthand side of the comparison in order to avoid overflow 383 * or underflow in the comparison with it. This is simpler than the INRANGE 384 * check above, because we know that the dtms_scratch_ptr is valid in the 385 * range. Allocations of size zero are allowed. 386 */ 387 #define DTRACE_INSCRATCH(mstate, alloc_sz) \ 388 ((mstate)->dtms_scratch_base + (mstate)->dtms_scratch_size - \ 389 (mstate)->dtms_scratch_ptr >= (alloc_sz)) 390 391 #define DTRACE_LOADFUNC(bits) \ 392 /*CSTYLED*/ \ 393 uint##bits##_t \ 394 dtrace_load##bits(uintptr_t addr) \ 395 { \ 396 size_t size = bits / NBBY; \ 397 /*CSTYLED*/ \ 398 uint##bits##_t rval; \ 399 int i; \ 400 volatile uint16_t *flags = (volatile uint16_t *) \ 401 &cpu_core[CPU->cpu_id].cpuc_dtrace_flags; \ 402 \ 403 DTRACE_ALIGNCHECK(addr, size, flags); \ 404 \ 405 for (i = 0; i < dtrace_toxranges; i++) { \ 406 if (addr >= dtrace_toxrange[i].dtt_limit) \ 407 continue; \ 408 \ 409 if (addr + size <= dtrace_toxrange[i].dtt_base) \ 410 continue; \ 411 \ 412 /* \ 413 * This address falls within a toxic region; return 0. \ 414 */ \ 415 *flags |= CPU_DTRACE_BADADDR; \ 416 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = addr; \ 417 return (0); \ 418 } \ 419 \ 420 *flags |= CPU_DTRACE_NOFAULT; \ 421 /*CSTYLED*/ \ 422 rval = *((volatile uint##bits##_t *)addr); \ 423 *flags &= ~CPU_DTRACE_NOFAULT; \ 424 \ 425 return (!(*flags & CPU_DTRACE_FAULT) ? rval : 0); \ 426 } 427 428 #ifdef _LP64 429 #define dtrace_loadptr dtrace_load64 430 #else 431 #define dtrace_loadptr dtrace_load32 432 #endif 433 434 #define DTRACE_DYNHASH_FREE 0 435 #define DTRACE_DYNHASH_SINK 1 436 #define DTRACE_DYNHASH_VALID 2 437 438 #define DTRACE_MATCH_FAIL -1 439 #define DTRACE_MATCH_NEXT 0 440 #define DTRACE_MATCH_DONE 1 441 #define DTRACE_ANCHORED(probe) ((probe)->dtpr_func[0] != '\0') 442 #define DTRACE_STATE_ALIGN 64 443 444 #define DTRACE_FLAGS2FLT(flags) \ 445 (((flags) & CPU_DTRACE_BADADDR) ? DTRACEFLT_BADADDR : \ 446 ((flags) & CPU_DTRACE_ILLOP) ? DTRACEFLT_ILLOP : \ 447 ((flags) & CPU_DTRACE_DIVZERO) ? DTRACEFLT_DIVZERO : \ 448 ((flags) & CPU_DTRACE_KPRIV) ? DTRACEFLT_KPRIV : \ 449 ((flags) & CPU_DTRACE_UPRIV) ? DTRACEFLT_UPRIV : \ 450 ((flags) & CPU_DTRACE_TUPOFLOW) ? DTRACEFLT_TUPOFLOW : \ 451 ((flags) & CPU_DTRACE_BADALIGN) ? DTRACEFLT_BADALIGN : \ 452 ((flags) & CPU_DTRACE_NOSCRATCH) ? DTRACEFLT_NOSCRATCH : \ 453 ((flags) & CPU_DTRACE_BADSTACK) ? DTRACEFLT_BADSTACK : \ 454 DTRACEFLT_UNKNOWN) 455 456 #define DTRACEACT_ISSTRING(act) \ 457 ((act)->dta_kind == DTRACEACT_DIFEXPR && \ 458 (act)->dta_difo->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) 459 460 static size_t dtrace_strlen(const char *, size_t); 461 static dtrace_probe_t *dtrace_probe_lookup_id(dtrace_id_t id); 462 static void dtrace_enabling_provide(dtrace_provider_t *); 463 static int dtrace_enabling_match(dtrace_enabling_t *, int *); 464 static void dtrace_enabling_matchall(void); 465 static void dtrace_enabling_reap(void); 466 static dtrace_state_t *dtrace_anon_grab(void); 467 static uint64_t dtrace_helper(int, dtrace_mstate_t *, 468 dtrace_state_t *, uint64_t, uint64_t); 469 static dtrace_helpers_t *dtrace_helpers_create(proc_t *); 470 static void dtrace_buffer_drop(dtrace_buffer_t *); 471 static int dtrace_buffer_consumed(dtrace_buffer_t *, hrtime_t when); 472 static intptr_t dtrace_buffer_reserve(dtrace_buffer_t *, size_t, size_t, 473 dtrace_state_t *, dtrace_mstate_t *); 474 static int dtrace_state_option(dtrace_state_t *, dtrace_optid_t, 475 dtrace_optval_t); 476 static int dtrace_ecb_create_enable(dtrace_probe_t *, void *); 477 static void dtrace_helper_provider_destroy(dtrace_helper_provider_t *); 478 479 /* 480 * DTrace Probe Context Functions 481 * 482 * These functions are called from probe context. Because probe context is 483 * any context in which C may be called, arbitrarily locks may be held, 484 * interrupts may be disabled, we may be in arbitrary dispatched state, etc. 485 * As a result, functions called from probe context may only call other DTrace 486 * support functions -- they may not interact at all with the system at large. 487 * (Note that the ASSERT macro is made probe-context safe by redefining it in 488 * terms of dtrace_assfail(), a probe-context safe function.) If arbitrary 489 * loads are to be performed from probe context, they _must_ be in terms of 490 * the safe dtrace_load*() variants. 491 * 492 * Some functions in this block are not actually called from probe context; 493 * for these functions, there will be a comment above the function reading 494 * "Note: not called from probe context." 495 */ 496 void 497 dtrace_panic(const char *format, ...) 498 { 499 va_list alist; 500 501 va_start(alist, format); 502 dtrace_vpanic(format, alist); 503 va_end(alist); 504 } 505 506 int 507 dtrace_assfail(const char *a, const char *f, int l) 508 { 509 dtrace_panic("assertion failed: %s, file: %s, line: %d", a, f, l); 510 511 /* 512 * We just need something here that even the most clever compiler 513 * cannot optimize away. 514 */ 515 return (a[(uintptr_t)f]); 516 } 517 518 /* 519 * Atomically increment a specified error counter from probe context. 520 */ 521 static void 522 dtrace_error(uint32_t *counter) 523 { 524 /* 525 * Most counters stored to in probe context are per-CPU counters. 526 * However, there are some error conditions that are sufficiently 527 * arcane that they don't merit per-CPU storage. If these counters 528 * are incremented concurrently on different CPUs, scalability will be 529 * adversely affected -- but we don't expect them to be white-hot in a 530 * correctly constructed enabling... 531 */ 532 uint32_t oval, nval; 533 534 do { 535 oval = *counter; 536 537 if ((nval = oval + 1) == 0) { 538 /* 539 * If the counter would wrap, set it to 1 -- assuring 540 * that the counter is never zero when we have seen 541 * errors. (The counter must be 32-bits because we 542 * aren't guaranteed a 64-bit compare&swap operation.) 543 * To save this code both the infamy of being fingered 544 * by a priggish news story and the indignity of being 545 * the target of a neo-puritan witch trial, we're 546 * carefully avoiding any colorful description of the 547 * likelihood of this condition -- but suffice it to 548 * say that it is only slightly more likely than the 549 * overflow of predicate cache IDs, as discussed in 550 * dtrace_predicate_create(). 551 */ 552 nval = 1; 553 } 554 } while (dtrace_cas32(counter, oval, nval) != oval); 555 } 556 557 /* 558 * Use the DTRACE_LOADFUNC macro to define functions for each of loading a 559 * uint8_t, a uint16_t, a uint32_t and a uint64_t. 560 */ 561 DTRACE_LOADFUNC(8) 562 DTRACE_LOADFUNC(16) 563 DTRACE_LOADFUNC(32) 564 DTRACE_LOADFUNC(64) 565 566 static int 567 dtrace_inscratch(uintptr_t dest, size_t size, dtrace_mstate_t *mstate) 568 { 569 if (dest < mstate->dtms_scratch_base) 570 return (0); 571 572 if (dest + size < dest) 573 return (0); 574 575 if (dest + size > mstate->dtms_scratch_ptr) 576 return (0); 577 578 return (1); 579 } 580 581 static int 582 dtrace_canstore_statvar(uint64_t addr, size_t sz, 583 dtrace_statvar_t **svars, int nsvars) 584 { 585 int i; 586 587 for (i = 0; i < nsvars; i++) { 588 dtrace_statvar_t *svar = svars[i]; 589 590 if (svar == NULL || svar->dtsv_size == 0) 591 continue; 592 593 if (DTRACE_INRANGE(addr, sz, svar->dtsv_data, svar->dtsv_size)) 594 return (1); 595 } 596 597 return (0); 598 } 599 600 /* 601 * Check to see if the address is within a memory region to which a store may 602 * be issued. This includes the DTrace scratch areas, and any DTrace variable 603 * region. The caller of dtrace_canstore() is responsible for performing any 604 * alignment checks that are needed before stores are actually executed. 605 */ 606 static int 607 dtrace_canstore(uint64_t addr, size_t sz, dtrace_mstate_t *mstate, 608 dtrace_vstate_t *vstate) 609 { 610 /* 611 * First, check to see if the address is in scratch space... 612 */ 613 if (DTRACE_INRANGE(addr, sz, mstate->dtms_scratch_base, 614 mstate->dtms_scratch_size)) 615 return (1); 616 617 /* 618 * Now check to see if it's a dynamic variable. This check will pick 619 * up both thread-local variables and any global dynamically-allocated 620 * variables. 621 */ 622 if (DTRACE_INRANGE(addr, sz, (uintptr_t)vstate->dtvs_dynvars.dtds_base, 623 vstate->dtvs_dynvars.dtds_size)) { 624 dtrace_dstate_t *dstate = &vstate->dtvs_dynvars; 625 uintptr_t base = (uintptr_t)dstate->dtds_base + 626 (dstate->dtds_hashsize * sizeof (dtrace_dynhash_t)); 627 uintptr_t chunkoffs; 628 629 /* 630 * Before we assume that we can store here, we need to make 631 * sure that it isn't in our metadata -- storing to our 632 * dynamic variable metadata would corrupt our state. For 633 * the range to not include any dynamic variable metadata, 634 * it must: 635 * 636 * (1) Start above the hash table that is at the base of 637 * the dynamic variable space 638 * 639 * (2) Have a starting chunk offset that is beyond the 640 * dtrace_dynvar_t that is at the base of every chunk 641 * 642 * (3) Not span a chunk boundary 643 * 644 */ 645 if (addr < base) 646 return (0); 647 648 chunkoffs = (addr - base) % dstate->dtds_chunksize; 649 650 if (chunkoffs < sizeof (dtrace_dynvar_t)) 651 return (0); 652 653 if (chunkoffs + sz > dstate->dtds_chunksize) 654 return (0); 655 656 return (1); 657 } 658 659 /* 660 * Finally, check the static local and global variables. These checks 661 * take the longest, so we perform them last. 662 */ 663 if (dtrace_canstore_statvar(addr, sz, 664 vstate->dtvs_locals, vstate->dtvs_nlocals)) 665 return (1); 666 667 if (dtrace_canstore_statvar(addr, sz, 668 vstate->dtvs_globals, vstate->dtvs_nglobals)) 669 return (1); 670 671 return (0); 672 } 673 674 675 /* 676 * Convenience routine to check to see if the address is within a memory 677 * region in which a load may be issued given the user's privilege level; 678 * if not, it sets the appropriate error flags and loads 'addr' into the 679 * illegal value slot. 680 * 681 * DTrace subroutines (DIF_SUBR_*) should use this helper to implement 682 * appropriate memory access protection. 683 */ 684 static int 685 dtrace_canload(uint64_t addr, size_t sz, dtrace_mstate_t *mstate, 686 dtrace_vstate_t *vstate) 687 { 688 volatile uintptr_t *illval = &cpu_core[CPU->cpu_id].cpuc_dtrace_illval; 689 690 /* 691 * If we hold the privilege to read from kernel memory, then 692 * everything is readable. 693 */ 694 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) 695 return (1); 696 697 /* 698 * You can obviously read that which you can store. 699 */ 700 if (dtrace_canstore(addr, sz, mstate, vstate)) 701 return (1); 702 703 /* 704 * We're allowed to read from our own string table. 705 */ 706 if (DTRACE_INRANGE(addr, sz, (uintptr_t)mstate->dtms_difo->dtdo_strtab, 707 mstate->dtms_difo->dtdo_strlen)) 708 return (1); 709 710 DTRACE_CPUFLAG_SET(CPU_DTRACE_KPRIV); 711 *illval = addr; 712 return (0); 713 } 714 715 /* 716 * Convenience routine to check to see if a given string is within a memory 717 * region in which a load may be issued given the user's privilege level; 718 * this exists so that we don't need to issue unnecessary dtrace_strlen() 719 * calls in the event that the user has all privileges. 720 */ 721 static int 722 dtrace_strcanload(uint64_t addr, size_t sz, dtrace_mstate_t *mstate, 723 dtrace_vstate_t *vstate) 724 { 725 size_t strsz; 726 727 /* 728 * If we hold the privilege to read from kernel memory, then 729 * everything is readable. 730 */ 731 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) 732 return (1); 733 734 strsz = 1 + dtrace_strlen((char *)(uintptr_t)addr, sz); 735 if (dtrace_canload(addr, strsz, mstate, vstate)) 736 return (1); 737 738 return (0); 739 } 740 741 /* 742 * Convenience routine to check to see if a given variable is within a memory 743 * region in which a load may be issued given the user's privilege level. 744 */ 745 static int 746 dtrace_vcanload(void *src, dtrace_diftype_t *type, dtrace_mstate_t *mstate, 747 dtrace_vstate_t *vstate) 748 { 749 size_t sz; 750 ASSERT(type->dtdt_flags & DIF_TF_BYREF); 751 752 /* 753 * If we hold the privilege to read from kernel memory, then 754 * everything is readable. 755 */ 756 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) 757 return (1); 758 759 if (type->dtdt_kind == DIF_TYPE_STRING) 760 sz = dtrace_strlen(src, 761 vstate->dtvs_state->dts_options[DTRACEOPT_STRSIZE]) + 1; 762 else 763 sz = type->dtdt_size; 764 765 return (dtrace_canload((uintptr_t)src, sz, mstate, vstate)); 766 } 767 768 /* 769 * Compare two strings using safe loads. 770 */ 771 static int 772 dtrace_strncmp(char *s1, char *s2, size_t limit) 773 { 774 uint8_t c1, c2; 775 volatile uint16_t *flags; 776 777 if (s1 == s2 || limit == 0) 778 return (0); 779 780 flags = (volatile uint16_t *)&cpu_core[CPU->cpu_id].cpuc_dtrace_flags; 781 782 do { 783 if (s1 == NULL) { 784 c1 = '\0'; 785 } else { 786 c1 = dtrace_load8((uintptr_t)s1++); 787 } 788 789 if (s2 == NULL) { 790 c2 = '\0'; 791 } else { 792 c2 = dtrace_load8((uintptr_t)s2++); 793 } 794 795 if (c1 != c2) 796 return (c1 - c2); 797 } while (--limit && c1 != '\0' && !(*flags & CPU_DTRACE_FAULT)); 798 799 return (0); 800 } 801 802 /* 803 * Compute strlen(s) for a string using safe memory accesses. The additional 804 * len parameter is used to specify a maximum length to ensure completion. 805 */ 806 static size_t 807 dtrace_strlen(const char *s, size_t lim) 808 { 809 uint_t len; 810 811 for (len = 0; len != lim; len++) { 812 if (dtrace_load8((uintptr_t)s++) == '\0') 813 break; 814 } 815 816 return (len); 817 } 818 819 /* 820 * Check if an address falls within a toxic region. 821 */ 822 static int 823 dtrace_istoxic(uintptr_t kaddr, size_t size) 824 { 825 uintptr_t taddr, tsize; 826 int i; 827 828 for (i = 0; i < dtrace_toxranges; i++) { 829 taddr = dtrace_toxrange[i].dtt_base; 830 tsize = dtrace_toxrange[i].dtt_limit - taddr; 831 832 if (kaddr - taddr < tsize) { 833 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); 834 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = kaddr; 835 return (1); 836 } 837 838 if (taddr - kaddr < size) { 839 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); 840 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = taddr; 841 return (1); 842 } 843 } 844 845 return (0); 846 } 847 848 /* 849 * Copy src to dst using safe memory accesses. The src is assumed to be unsafe 850 * memory specified by the DIF program. The dst is assumed to be safe memory 851 * that we can store to directly because it is managed by DTrace. As with 852 * standard bcopy, overlapping copies are handled properly. 853 */ 854 static void 855 dtrace_bcopy(const void *src, void *dst, size_t len) 856 { 857 if (len != 0) { 858 uint8_t *s1 = dst; 859 const uint8_t *s2 = src; 860 861 if (s1 <= s2) { 862 do { 863 *s1++ = dtrace_load8((uintptr_t)s2++); 864 } while (--len != 0); 865 } else { 866 s2 += len; 867 s1 += len; 868 869 do { 870 *--s1 = dtrace_load8((uintptr_t)--s2); 871 } while (--len != 0); 872 } 873 } 874 } 875 876 /* 877 * Copy src to dst using safe memory accesses, up to either the specified 878 * length, or the point that a nul byte is encountered. The src is assumed to 879 * be unsafe memory specified by the DIF program. The dst is assumed to be 880 * safe memory that we can store to directly because it is managed by DTrace. 881 * Unlike dtrace_bcopy(), overlapping regions are not handled. 882 */ 883 static void 884 dtrace_strcpy(const void *src, void *dst, size_t len) 885 { 886 if (len != 0) { 887 uint8_t *s1 = dst, c; 888 const uint8_t *s2 = src; 889 890 do { 891 *s1++ = c = dtrace_load8((uintptr_t)s2++); 892 } while (--len != 0 && c != '\0'); 893 } 894 } 895 896 /* 897 * Copy src to dst, deriving the size and type from the specified (BYREF) 898 * variable type. The src is assumed to be unsafe memory specified by the DIF 899 * program. The dst is assumed to be DTrace variable memory that is of the 900 * specified type; we assume that we can store to directly. 901 */ 902 static void 903 dtrace_vcopy(void *src, void *dst, dtrace_diftype_t *type) 904 { 905 ASSERT(type->dtdt_flags & DIF_TF_BYREF); 906 907 if (type->dtdt_kind == DIF_TYPE_STRING) { 908 dtrace_strcpy(src, dst, type->dtdt_size); 909 } else { 910 dtrace_bcopy(src, dst, type->dtdt_size); 911 } 912 } 913 914 /* 915 * Compare s1 to s2 using safe memory accesses. The s1 data is assumed to be 916 * unsafe memory specified by the DIF program. The s2 data is assumed to be 917 * safe memory that we can access directly because it is managed by DTrace. 918 */ 919 static int 920 dtrace_bcmp(const void *s1, const void *s2, size_t len) 921 { 922 volatile uint16_t *flags; 923 924 flags = (volatile uint16_t *)&cpu_core[CPU->cpu_id].cpuc_dtrace_flags; 925 926 if (s1 == s2) 927 return (0); 928 929 if (s1 == NULL || s2 == NULL) 930 return (1); 931 932 if (s1 != s2 && len != 0) { 933 const uint8_t *ps1 = s1; 934 const uint8_t *ps2 = s2; 935 936 do { 937 if (dtrace_load8((uintptr_t)ps1++) != *ps2++) 938 return (1); 939 } while (--len != 0 && !(*flags & CPU_DTRACE_FAULT)); 940 } 941 return (0); 942 } 943 944 /* 945 * Zero the specified region using a simple byte-by-byte loop. Note that this 946 * is for safe DTrace-managed memory only. 947 */ 948 static void 949 dtrace_bzero(void *dst, size_t len) 950 { 951 uchar_t *cp; 952 953 for (cp = dst; len != 0; len--) 954 *cp++ = 0; 955 } 956 957 static void 958 dtrace_add_128(uint64_t *addend1, uint64_t *addend2, uint64_t *sum) 959 { 960 uint64_t result[2]; 961 962 result[0] = addend1[0] + addend2[0]; 963 result[1] = addend1[1] + addend2[1] + 964 (result[0] < addend1[0] || result[0] < addend2[0] ? 1 : 0); 965 966 sum[0] = result[0]; 967 sum[1] = result[1]; 968 } 969 970 /* 971 * Shift the 128-bit value in a by b. If b is positive, shift left. 972 * If b is negative, shift right. 973 */ 974 static void 975 dtrace_shift_128(uint64_t *a, int b) 976 { 977 uint64_t mask; 978 979 if (b == 0) 980 return; 981 982 if (b < 0) { 983 b = -b; 984 if (b >= 64) { 985 a[0] = a[1] >> (b - 64); 986 a[1] = 0; 987 } else { 988 a[0] >>= b; 989 mask = 1LL << (64 - b); 990 mask -= 1; 991 a[0] |= ((a[1] & mask) << (64 - b)); 992 a[1] >>= b; 993 } 994 } else { 995 if (b >= 64) { 996 a[1] = a[0] << (b - 64); 997 a[0] = 0; 998 } else { 999 a[1] <<= b; 1000 mask = a[0] >> (64 - b); 1001 a[1] |= mask; 1002 a[0] <<= b; 1003 } 1004 } 1005 } 1006 1007 /* 1008 * The basic idea is to break the 2 64-bit values into 4 32-bit values, 1009 * use native multiplication on those, and then re-combine into the 1010 * resulting 128-bit value. 1011 * 1012 * (hi1 << 32 + lo1) * (hi2 << 32 + lo2) = 1013 * hi1 * hi2 << 64 + 1014 * hi1 * lo2 << 32 + 1015 * hi2 * lo1 << 32 + 1016 * lo1 * lo2 1017 */ 1018 static void 1019 dtrace_multiply_128(uint64_t factor1, uint64_t factor2, uint64_t *product) 1020 { 1021 uint64_t hi1, hi2, lo1, lo2; 1022 uint64_t tmp[2]; 1023 1024 hi1 = factor1 >> 32; 1025 hi2 = factor2 >> 32; 1026 1027 lo1 = factor1 & DT_MASK_LO; 1028 lo2 = factor2 & DT_MASK_LO; 1029 1030 product[0] = lo1 * lo2; 1031 product[1] = hi1 * hi2; 1032 1033 tmp[0] = hi1 * lo2; 1034 tmp[1] = 0; 1035 dtrace_shift_128(tmp, 32); 1036 dtrace_add_128(product, tmp, product); 1037 1038 tmp[0] = hi2 * lo1; 1039 tmp[1] = 0; 1040 dtrace_shift_128(tmp, 32); 1041 dtrace_add_128(product, tmp, product); 1042 } 1043 1044 /* 1045 * This privilege check should be used by actions and subroutines to 1046 * verify that the user credentials of the process that enabled the 1047 * invoking ECB match the target credentials 1048 */ 1049 static int 1050 dtrace_priv_proc_common_user(dtrace_state_t *state) 1051 { 1052 cred_t *cr, *s_cr = state->dts_cred.dcr_cred; 1053 1054 /* 1055 * We should always have a non-NULL state cred here, since if cred 1056 * is null (anonymous tracing), we fast-path bypass this routine. 1057 */ 1058 ASSERT(s_cr != NULL); 1059 1060 if ((cr = CRED()) != NULL && 1061 s_cr->cr_uid == cr->cr_uid && 1062 s_cr->cr_uid == cr->cr_ruid && 1063 s_cr->cr_uid == cr->cr_suid && 1064 s_cr->cr_gid == cr->cr_gid && 1065 s_cr->cr_gid == cr->cr_rgid && 1066 s_cr->cr_gid == cr->cr_sgid) 1067 return (1); 1068 1069 return (0); 1070 } 1071 1072 /* 1073 * This privilege check should be used by actions and subroutines to 1074 * verify that the zone of the process that enabled the invoking ECB 1075 * matches the target credentials 1076 */ 1077 static int 1078 dtrace_priv_proc_common_zone(dtrace_state_t *state) 1079 { 1080 cred_t *cr, *s_cr = state->dts_cred.dcr_cred; 1081 1082 /* 1083 * We should always have a non-NULL state cred here, since if cred 1084 * is null (anonymous tracing), we fast-path bypass this routine. 1085 */ 1086 ASSERT(s_cr != NULL); 1087 1088 if ((cr = CRED()) != NULL && 1089 s_cr->cr_zone == cr->cr_zone) 1090 return (1); 1091 1092 return (0); 1093 } 1094 1095 /* 1096 * This privilege check should be used by actions and subroutines to 1097 * verify that the process has not setuid or changed credentials. 1098 */ 1099 static int 1100 dtrace_priv_proc_common_nocd() 1101 { 1102 proc_t *proc; 1103 1104 if ((proc = ttoproc(curthread)) != NULL && 1105 !(proc->p_flag & SNOCD)) 1106 return (1); 1107 1108 return (0); 1109 } 1110 1111 static int 1112 dtrace_priv_proc_destructive(dtrace_state_t *state, dtrace_mstate_t *mstate) 1113 { 1114 int action = state->dts_cred.dcr_action; 1115 1116 if (!(mstate->dtms_access & DTRACE_ACCESS_PROC)) 1117 goto bad; 1118 1119 if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE) == 0) && 1120 dtrace_priv_proc_common_zone(state) == 0) 1121 goto bad; 1122 1123 if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER) == 0) && 1124 dtrace_priv_proc_common_user(state) == 0) 1125 goto bad; 1126 1127 if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG) == 0) && 1128 dtrace_priv_proc_common_nocd() == 0) 1129 goto bad; 1130 1131 return (1); 1132 1133 bad: 1134 cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV; 1135 1136 return (0); 1137 } 1138 1139 static int 1140 dtrace_priv_proc_control(dtrace_state_t *state, dtrace_mstate_t *mstate) 1141 { 1142 if (mstate->dtms_access & DTRACE_ACCESS_PROC) { 1143 if (state->dts_cred.dcr_action & DTRACE_CRA_PROC_CONTROL) 1144 return (1); 1145 1146 if (dtrace_priv_proc_common_zone(state) && 1147 dtrace_priv_proc_common_user(state) && 1148 dtrace_priv_proc_common_nocd()) 1149 return (1); 1150 } 1151 1152 cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV; 1153 1154 return (0); 1155 } 1156 1157 static int 1158 dtrace_priv_proc(dtrace_state_t *state, dtrace_mstate_t *mstate) 1159 { 1160 if ((mstate->dtms_access & DTRACE_ACCESS_PROC) && 1161 (state->dts_cred.dcr_action & DTRACE_CRA_PROC)) 1162 return (1); 1163 1164 cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV; 1165 1166 return (0); 1167 } 1168 1169 static int 1170 dtrace_priv_kernel(dtrace_state_t *state) 1171 { 1172 if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL) 1173 return (1); 1174 1175 cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV; 1176 1177 return (0); 1178 } 1179 1180 static int 1181 dtrace_priv_kernel_destructive(dtrace_state_t *state) 1182 { 1183 if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL_DESTRUCTIVE) 1184 return (1); 1185 1186 cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV; 1187 1188 return (0); 1189 } 1190 1191 /* 1192 * Determine if the dte_cond of the specified ECB allows for processing of 1193 * the current probe to continue. Note that this routine may allow continued 1194 * processing, but with access(es) stripped from the mstate's dtms_access 1195 * field. 1196 */ 1197 static int 1198 dtrace_priv_probe(dtrace_state_t *state, dtrace_mstate_t *mstate, 1199 dtrace_ecb_t *ecb) 1200 { 1201 dtrace_probe_t *probe = ecb->dte_probe; 1202 dtrace_provider_t *prov = probe->dtpr_provider; 1203 dtrace_pops_t *pops = &prov->dtpv_pops; 1204 int mode = DTRACE_MODE_NOPRIV_DROP; 1205 1206 ASSERT(ecb->dte_cond); 1207 1208 if (pops->dtps_mode != NULL) { 1209 mode = pops->dtps_mode(prov->dtpv_arg, 1210 probe->dtpr_id, probe->dtpr_arg); 1211 1212 ASSERT((mode & DTRACE_MODE_USER) || 1213 (mode & DTRACE_MODE_KERNEL)); 1214 ASSERT((mode & DTRACE_MODE_NOPRIV_RESTRICT) || 1215 (mode & DTRACE_MODE_NOPRIV_DROP)); 1216 } 1217 1218 /* 1219 * If the dte_cond bits indicate that this consumer is only allowed to 1220 * see user-mode firings of this probe, call the provider's dtps_mode() 1221 * entry point to check that the probe was fired while in a user 1222 * context. If that's not the case, use the policy specified by the 1223 * provider to determine if we drop the probe or merely restrict 1224 * operation. 1225 */ 1226 if (ecb->dte_cond & DTRACE_COND_USERMODE) { 1227 ASSERT(mode != DTRACE_MODE_NOPRIV_DROP); 1228 1229 if (!(mode & DTRACE_MODE_USER)) { 1230 if (mode & DTRACE_MODE_NOPRIV_DROP) 1231 return (0); 1232 1233 mstate->dtms_access &= ~DTRACE_ACCESS_ARGS; 1234 } 1235 } 1236 1237 /* 1238 * This is more subtle than it looks. We have to be absolutely certain 1239 * that CRED() isn't going to change out from under us so it's only 1240 * legit to examine that structure if we're in constrained situations. 1241 * Currently, the only times we'll this check is if a non-super-user 1242 * has enabled the profile or syscall providers -- providers that 1243 * allow visibility of all processes. For the profile case, the check 1244 * above will ensure that we're examining a user context. 1245 */ 1246 if (ecb->dte_cond & DTRACE_COND_OWNER) { 1247 cred_t *cr; 1248 cred_t *s_cr = state->dts_cred.dcr_cred; 1249 proc_t *proc; 1250 1251 ASSERT(s_cr != NULL); 1252 1253 if ((cr = CRED()) == NULL || 1254 s_cr->cr_uid != cr->cr_uid || 1255 s_cr->cr_uid != cr->cr_ruid || 1256 s_cr->cr_uid != cr->cr_suid || 1257 s_cr->cr_gid != cr->cr_gid || 1258 s_cr->cr_gid != cr->cr_rgid || 1259 s_cr->cr_gid != cr->cr_sgid || 1260 (proc = ttoproc(curthread)) == NULL || 1261 (proc->p_flag & SNOCD)) { 1262 if (mode & DTRACE_MODE_NOPRIV_DROP) 1263 return (0); 1264 1265 mstate->dtms_access &= ~DTRACE_ACCESS_PROC; 1266 } 1267 } 1268 1269 /* 1270 * If our dte_cond is set to DTRACE_COND_ZONEOWNER and we are not 1271 * in our zone, check to see if our mode policy is to restrict rather 1272 * than to drop; if to restrict, strip away both DTRACE_ACCESS_PROC 1273 * and DTRACE_ACCESS_ARGS 1274 */ 1275 if (ecb->dte_cond & DTRACE_COND_ZONEOWNER) { 1276 cred_t *cr; 1277 cred_t *s_cr = state->dts_cred.dcr_cred; 1278 1279 ASSERT(s_cr != NULL); 1280 1281 if ((cr = CRED()) == NULL || 1282 s_cr->cr_zone->zone_id != cr->cr_zone->zone_id) { 1283 if (mode & DTRACE_MODE_NOPRIV_DROP) 1284 return (0); 1285 1286 mstate->dtms_access &= 1287 ~(DTRACE_ACCESS_PROC | DTRACE_ACCESS_ARGS); 1288 } 1289 } 1290 1291 return (1); 1292 } 1293 1294 /* 1295 * Note: not called from probe context. This function is called 1296 * asynchronously (and at a regular interval) from outside of probe context to 1297 * clean the dirty dynamic variable lists on all CPUs. Dynamic variable 1298 * cleaning is explained in detail in <sys/dtrace_impl.h>. 1299 */ 1300 void 1301 dtrace_dynvar_clean(dtrace_dstate_t *dstate) 1302 { 1303 dtrace_dynvar_t *dirty; 1304 dtrace_dstate_percpu_t *dcpu; 1305 dtrace_dynvar_t **rinsep; 1306 int i, j, work = 0; 1307 1308 for (i = 0; i < NCPU; i++) { 1309 dcpu = &dstate->dtds_percpu[i]; 1310 rinsep = &dcpu->dtdsc_rinsing; 1311 1312 /* 1313 * If the dirty list is NULL, there is no dirty work to do. 1314 */ 1315 if (dcpu->dtdsc_dirty == NULL) 1316 continue; 1317 1318 if (dcpu->dtdsc_rinsing != NULL) { 1319 /* 1320 * If the rinsing list is non-NULL, then it is because 1321 * this CPU was selected to accept another CPU's 1322 * dirty list -- and since that time, dirty buffers 1323 * have accumulated. This is a highly unlikely 1324 * condition, but we choose to ignore the dirty 1325 * buffers -- they'll be picked up a future cleanse. 1326 */ 1327 continue; 1328 } 1329 1330 if (dcpu->dtdsc_clean != NULL) { 1331 /* 1332 * If the clean list is non-NULL, then we're in a 1333 * situation where a CPU has done deallocations (we 1334 * have a non-NULL dirty list) but no allocations (we 1335 * also have a non-NULL clean list). We can't simply 1336 * move the dirty list into the clean list on this 1337 * CPU, yet we also don't want to allow this condition 1338 * to persist, lest a short clean list prevent a 1339 * massive dirty list from being cleaned (which in 1340 * turn could lead to otherwise avoidable dynamic 1341 * drops). To deal with this, we look for some CPU 1342 * with a NULL clean list, NULL dirty list, and NULL 1343 * rinsing list -- and then we borrow this CPU to 1344 * rinse our dirty list. 1345 */ 1346 for (j = 0; j < NCPU; j++) { 1347 dtrace_dstate_percpu_t *rinser; 1348 1349 rinser = &dstate->dtds_percpu[j]; 1350 1351 if (rinser->dtdsc_rinsing != NULL) 1352 continue; 1353 1354 if (rinser->dtdsc_dirty != NULL) 1355 continue; 1356 1357 if (rinser->dtdsc_clean != NULL) 1358 continue; 1359 1360 rinsep = &rinser->dtdsc_rinsing; 1361 break; 1362 } 1363 1364 if (j == NCPU) { 1365 /* 1366 * We were unable to find another CPU that 1367 * could accept this dirty list -- we are 1368 * therefore unable to clean it now. 1369 */ 1370 dtrace_dynvar_failclean++; 1371 continue; 1372 } 1373 } 1374 1375 work = 1; 1376 1377 /* 1378 * Atomically move the dirty list aside. 1379 */ 1380 do { 1381 dirty = dcpu->dtdsc_dirty; 1382 1383 /* 1384 * Before we zap the dirty list, set the rinsing list. 1385 * (This allows for a potential assertion in 1386 * dtrace_dynvar(): if a free dynamic variable appears 1387 * on a hash chain, either the dirty list or the 1388 * rinsing list for some CPU must be non-NULL.) 1389 */ 1390 *rinsep = dirty; 1391 dtrace_membar_producer(); 1392 } while (dtrace_casptr(&dcpu->dtdsc_dirty, 1393 dirty, NULL) != dirty); 1394 } 1395 1396 if (!work) { 1397 /* 1398 * We have no work to do; we can simply return. 1399 */ 1400 return; 1401 } 1402 1403 dtrace_sync(); 1404 1405 for (i = 0; i < NCPU; i++) { 1406 dcpu = &dstate->dtds_percpu[i]; 1407 1408 if (dcpu->dtdsc_rinsing == NULL) 1409 continue; 1410 1411 /* 1412 * We are now guaranteed that no hash chain contains a pointer 1413 * into this dirty list; we can make it clean. 1414 */ 1415 ASSERT(dcpu->dtdsc_clean == NULL); 1416 dcpu->dtdsc_clean = dcpu->dtdsc_rinsing; 1417 dcpu->dtdsc_rinsing = NULL; 1418 } 1419 1420 /* 1421 * Before we actually set the state to be DTRACE_DSTATE_CLEAN, make 1422 * sure that all CPUs have seen all of the dtdsc_clean pointers. 1423 * This prevents a race whereby a CPU incorrectly decides that 1424 * the state should be something other than DTRACE_DSTATE_CLEAN 1425 * after dtrace_dynvar_clean() has completed. 1426 */ 1427 dtrace_sync(); 1428 1429 dstate->dtds_state = DTRACE_DSTATE_CLEAN; 1430 } 1431 1432 /* 1433 * Depending on the value of the op parameter, this function looks-up, 1434 * allocates or deallocates an arbitrarily-keyed dynamic variable. If an 1435 * allocation is requested, this function will return a pointer to a 1436 * dtrace_dynvar_t corresponding to the allocated variable -- or NULL if no 1437 * variable can be allocated. If NULL is returned, the appropriate counter 1438 * will be incremented. 1439 */ 1440 dtrace_dynvar_t * 1441 dtrace_dynvar(dtrace_dstate_t *dstate, uint_t nkeys, 1442 dtrace_key_t *key, size_t dsize, dtrace_dynvar_op_t op, 1443 dtrace_mstate_t *mstate, dtrace_vstate_t *vstate) 1444 { 1445 uint64_t hashval = DTRACE_DYNHASH_VALID; 1446 dtrace_dynhash_t *hash = dstate->dtds_hash; 1447 dtrace_dynvar_t *free, *new_free, *next, *dvar, *start, *prev = NULL; 1448 processorid_t me = CPU->cpu_id, cpu = me; 1449 dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[me]; 1450 size_t bucket, ksize; 1451 size_t chunksize = dstate->dtds_chunksize; 1452 uintptr_t kdata, lock, nstate; 1453 uint_t i; 1454 1455 ASSERT(nkeys != 0); 1456 1457 /* 1458 * Hash the key. As with aggregations, we use Jenkins' "One-at-a-time" 1459 * algorithm. For the by-value portions, we perform the algorithm in 1460 * 16-bit chunks (as opposed to 8-bit chunks). This speeds things up a 1461 * bit, and seems to have only a minute effect on distribution. For 1462 * the by-reference data, we perform "One-at-a-time" iterating (safely) 1463 * over each referenced byte. It's painful to do this, but it's much 1464 * better than pathological hash distribution. The efficacy of the 1465 * hashing algorithm (and a comparison with other algorithms) may be 1466 * found by running the ::dtrace_dynstat MDB dcmd. 1467 */ 1468 for (i = 0; i < nkeys; i++) { 1469 if (key[i].dttk_size == 0) { 1470 uint64_t val = key[i].dttk_value; 1471 1472 hashval += (val >> 48) & 0xffff; 1473 hashval += (hashval << 10); 1474 hashval ^= (hashval >> 6); 1475 1476 hashval += (val >> 32) & 0xffff; 1477 hashval += (hashval << 10); 1478 hashval ^= (hashval >> 6); 1479 1480 hashval += (val >> 16) & 0xffff; 1481 hashval += (hashval << 10); 1482 hashval ^= (hashval >> 6); 1483 1484 hashval += val & 0xffff; 1485 hashval += (hashval << 10); 1486 hashval ^= (hashval >> 6); 1487 } else { 1488 /* 1489 * This is incredibly painful, but it beats the hell 1490 * out of the alternative. 1491 */ 1492 uint64_t j, size = key[i].dttk_size; 1493 uintptr_t base = (uintptr_t)key[i].dttk_value; 1494 1495 if (!dtrace_canload(base, size, mstate, vstate)) 1496 break; 1497 1498 for (j = 0; j < size; j++) { 1499 hashval += dtrace_load8(base + j); 1500 hashval += (hashval << 10); 1501 hashval ^= (hashval >> 6); 1502 } 1503 } 1504 } 1505 1506 if (DTRACE_CPUFLAG_ISSET(CPU_DTRACE_FAULT)) 1507 return (NULL); 1508 1509 hashval += (hashval << 3); 1510 hashval ^= (hashval >> 11); 1511 hashval += (hashval << 15); 1512 1513 /* 1514 * There is a remote chance (ideally, 1 in 2^31) that our hashval 1515 * comes out to be one of our two sentinel hash values. If this 1516 * actually happens, we set the hashval to be a value known to be a 1517 * non-sentinel value. 1518 */ 1519 if (hashval == DTRACE_DYNHASH_FREE || hashval == DTRACE_DYNHASH_SINK) 1520 hashval = DTRACE_DYNHASH_VALID; 1521 1522 /* 1523 * Yes, it's painful to do a divide here. If the cycle count becomes 1524 * important here, tricks can be pulled to reduce it. (However, it's 1525 * critical that hash collisions be kept to an absolute minimum; 1526 * they're much more painful than a divide.) It's better to have a 1527 * solution that generates few collisions and still keeps things 1528 * relatively simple. 1529 */ 1530 bucket = hashval % dstate->dtds_hashsize; 1531 1532 if (op == DTRACE_DYNVAR_DEALLOC) { 1533 volatile uintptr_t *lockp = &hash[bucket].dtdh_lock; 1534 1535 for (;;) { 1536 while ((lock = *lockp) & 1) 1537 continue; 1538 1539 if (dtrace_casptr((void *)lockp, 1540 (void *)lock, (void *)(lock + 1)) == (void *)lock) 1541 break; 1542 } 1543 1544 dtrace_membar_producer(); 1545 } 1546 1547 top: 1548 prev = NULL; 1549 lock = hash[bucket].dtdh_lock; 1550 1551 dtrace_membar_consumer(); 1552 1553 start = hash[bucket].dtdh_chain; 1554 ASSERT(start != NULL && (start->dtdv_hashval == DTRACE_DYNHASH_SINK || 1555 start->dtdv_hashval != DTRACE_DYNHASH_FREE || 1556 op != DTRACE_DYNVAR_DEALLOC)); 1557 1558 for (dvar = start; dvar != NULL; dvar = dvar->dtdv_next) { 1559 dtrace_tuple_t *dtuple = &dvar->dtdv_tuple; 1560 dtrace_key_t *dkey = &dtuple->dtt_key[0]; 1561 1562 if (dvar->dtdv_hashval != hashval) { 1563 if (dvar->dtdv_hashval == DTRACE_DYNHASH_SINK) { 1564 /* 1565 * We've reached the sink, and therefore the 1566 * end of the hash chain; we can kick out of 1567 * the loop knowing that we have seen a valid 1568 * snapshot of state. 1569 */ 1570 ASSERT(dvar->dtdv_next == NULL); 1571 ASSERT(dvar == &dtrace_dynhash_sink); 1572 break; 1573 } 1574 1575 if (dvar->dtdv_hashval == DTRACE_DYNHASH_FREE) { 1576 /* 1577 * We've gone off the rails: somewhere along 1578 * the line, one of the members of this hash 1579 * chain was deleted. Note that we could also 1580 * detect this by simply letting this loop run 1581 * to completion, as we would eventually hit 1582 * the end of the dirty list. However, we 1583 * want to avoid running the length of the 1584 * dirty list unnecessarily (it might be quite 1585 * long), so we catch this as early as 1586 * possible by detecting the hash marker. In 1587 * this case, we simply set dvar to NULL and 1588 * break; the conditional after the loop will 1589 * send us back to top. 1590 */ 1591 dvar = NULL; 1592 break; 1593 } 1594 1595 goto next; 1596 } 1597 1598 if (dtuple->dtt_nkeys != nkeys) 1599 goto next; 1600 1601 for (i = 0; i < nkeys; i++, dkey++) { 1602 if (dkey->dttk_size != key[i].dttk_size) 1603 goto next; /* size or type mismatch */ 1604 1605 if (dkey->dttk_size != 0) { 1606 if (dtrace_bcmp( 1607 (void *)(uintptr_t)key[i].dttk_value, 1608 (void *)(uintptr_t)dkey->dttk_value, 1609 dkey->dttk_size)) 1610 goto next; 1611 } else { 1612 if (dkey->dttk_value != key[i].dttk_value) 1613 goto next; 1614 } 1615 } 1616 1617 if (op != DTRACE_DYNVAR_DEALLOC) 1618 return (dvar); 1619 1620 ASSERT(dvar->dtdv_next == NULL || 1621 dvar->dtdv_next->dtdv_hashval != DTRACE_DYNHASH_FREE); 1622 1623 if (prev != NULL) { 1624 ASSERT(hash[bucket].dtdh_chain != dvar); 1625 ASSERT(start != dvar); 1626 ASSERT(prev->dtdv_next == dvar); 1627 prev->dtdv_next = dvar->dtdv_next; 1628 } else { 1629 if (dtrace_casptr(&hash[bucket].dtdh_chain, 1630 start, dvar->dtdv_next) != start) { 1631 /* 1632 * We have failed to atomically swing the 1633 * hash table head pointer, presumably because 1634 * of a conflicting allocation on another CPU. 1635 * We need to reread the hash chain and try 1636 * again. 1637 */ 1638 goto top; 1639 } 1640 } 1641 1642 dtrace_membar_producer(); 1643 1644 /* 1645 * Now set the hash value to indicate that it's free. 1646 */ 1647 ASSERT(hash[bucket].dtdh_chain != dvar); 1648 dvar->dtdv_hashval = DTRACE_DYNHASH_FREE; 1649 1650 dtrace_membar_producer(); 1651 1652 /* 1653 * Set the next pointer to point at the dirty list, and 1654 * atomically swing the dirty pointer to the newly freed dvar. 1655 */ 1656 do { 1657 next = dcpu->dtdsc_dirty; 1658 dvar->dtdv_next = next; 1659 } while (dtrace_casptr(&dcpu->dtdsc_dirty, next, dvar) != next); 1660 1661 /* 1662 * Finally, unlock this hash bucket. 1663 */ 1664 ASSERT(hash[bucket].dtdh_lock == lock); 1665 ASSERT(lock & 1); 1666 hash[bucket].dtdh_lock++; 1667 1668 return (NULL); 1669 next: 1670 prev = dvar; 1671 continue; 1672 } 1673 1674 if (dvar == NULL) { 1675 /* 1676 * If dvar is NULL, it is because we went off the rails: 1677 * one of the elements that we traversed in the hash chain 1678 * was deleted while we were traversing it. In this case, 1679 * we assert that we aren't doing a dealloc (deallocs lock 1680 * the hash bucket to prevent themselves from racing with 1681 * one another), and retry the hash chain traversal. 1682 */ 1683 ASSERT(op != DTRACE_DYNVAR_DEALLOC); 1684 goto top; 1685 } 1686 1687 if (op != DTRACE_DYNVAR_ALLOC) { 1688 /* 1689 * If we are not to allocate a new variable, we want to 1690 * return NULL now. Before we return, check that the value 1691 * of the lock word hasn't changed. If it has, we may have 1692 * seen an inconsistent snapshot. 1693 */ 1694 if (op == DTRACE_DYNVAR_NOALLOC) { 1695 if (hash[bucket].dtdh_lock != lock) 1696 goto top; 1697 } else { 1698 ASSERT(op == DTRACE_DYNVAR_DEALLOC); 1699 ASSERT(hash[bucket].dtdh_lock == lock); 1700 ASSERT(lock & 1); 1701 hash[bucket].dtdh_lock++; 1702 } 1703 1704 return (NULL); 1705 } 1706 1707 /* 1708 * We need to allocate a new dynamic variable. The size we need is the 1709 * size of dtrace_dynvar plus the size of nkeys dtrace_key_t's plus the 1710 * size of any auxiliary key data (rounded up to 8-byte alignment) plus 1711 * the size of any referred-to data (dsize). We then round the final 1712 * size up to the chunksize for allocation. 1713 */ 1714 for (ksize = 0, i = 0; i < nkeys; i++) 1715 ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t)); 1716 1717 /* 1718 * This should be pretty much impossible, but could happen if, say, 1719 * strange DIF specified the tuple. Ideally, this should be an 1720 * assertion and not an error condition -- but that requires that the 1721 * chunksize calculation in dtrace_difo_chunksize() be absolutely 1722 * bullet-proof. (That is, it must not be able to be fooled by 1723 * malicious DIF.) Given the lack of backwards branches in DIF, 1724 * solving this would presumably not amount to solving the Halting 1725 * Problem -- but it still seems awfully hard. 1726 */ 1727 if (sizeof (dtrace_dynvar_t) + sizeof (dtrace_key_t) * (nkeys - 1) + 1728 ksize + dsize > chunksize) { 1729 dcpu->dtdsc_drops++; 1730 return (NULL); 1731 } 1732 1733 nstate = DTRACE_DSTATE_EMPTY; 1734 1735 do { 1736 retry: 1737 free = dcpu->dtdsc_free; 1738 1739 if (free == NULL) { 1740 dtrace_dynvar_t *clean = dcpu->dtdsc_clean; 1741 void *rval; 1742 1743 if (clean == NULL) { 1744 /* 1745 * We're out of dynamic variable space on 1746 * this CPU. Unless we have tried all CPUs, 1747 * we'll try to allocate from a different 1748 * CPU. 1749 */ 1750 switch (dstate->dtds_state) { 1751 case DTRACE_DSTATE_CLEAN: { 1752 void *sp = &dstate->dtds_state; 1753 1754 if (++cpu >= NCPU) 1755 cpu = 0; 1756 1757 if (dcpu->dtdsc_dirty != NULL && 1758 nstate == DTRACE_DSTATE_EMPTY) 1759 nstate = DTRACE_DSTATE_DIRTY; 1760 1761 if (dcpu->dtdsc_rinsing != NULL) 1762 nstate = DTRACE_DSTATE_RINSING; 1763 1764 dcpu = &dstate->dtds_percpu[cpu]; 1765 1766 if (cpu != me) 1767 goto retry; 1768 1769 (void) dtrace_cas32(sp, 1770 DTRACE_DSTATE_CLEAN, nstate); 1771 1772 /* 1773 * To increment the correct bean 1774 * counter, take another lap. 1775 */ 1776 goto retry; 1777 } 1778 1779 case DTRACE_DSTATE_DIRTY: 1780 dcpu->dtdsc_dirty_drops++; 1781 break; 1782 1783 case DTRACE_DSTATE_RINSING: 1784 dcpu->dtdsc_rinsing_drops++; 1785 break; 1786 1787 case DTRACE_DSTATE_EMPTY: 1788 dcpu->dtdsc_drops++; 1789 break; 1790 } 1791 1792 DTRACE_CPUFLAG_SET(CPU_DTRACE_DROP); 1793 return (NULL); 1794 } 1795 1796 /* 1797 * The clean list appears to be non-empty. We want to 1798 * move the clean list to the free list; we start by 1799 * moving the clean pointer aside. 1800 */ 1801 if (dtrace_casptr(&dcpu->dtdsc_clean, 1802 clean, NULL) != clean) { 1803 /* 1804 * We are in one of two situations: 1805 * 1806 * (a) The clean list was switched to the 1807 * free list by another CPU. 1808 * 1809 * (b) The clean list was added to by the 1810 * cleansing cyclic. 1811 * 1812 * In either of these situations, we can 1813 * just reattempt the free list allocation. 1814 */ 1815 goto retry; 1816 } 1817 1818 ASSERT(clean->dtdv_hashval == DTRACE_DYNHASH_FREE); 1819 1820 /* 1821 * Now we'll move the clean list to our free list. 1822 * It's impossible for this to fail: the only way 1823 * the free list can be updated is through this 1824 * code path, and only one CPU can own the clean list. 1825 * Thus, it would only be possible for this to fail if 1826 * this code were racing with dtrace_dynvar_clean(). 1827 * (That is, if dtrace_dynvar_clean() updated the clean 1828 * list, and we ended up racing to update the free 1829 * list.) This race is prevented by the dtrace_sync() 1830 * in dtrace_dynvar_clean() -- which flushes the 1831 * owners of the clean lists out before resetting 1832 * the clean lists. 1833 */ 1834 dcpu = &dstate->dtds_percpu[me]; 1835 rval = dtrace_casptr(&dcpu->dtdsc_free, NULL, clean); 1836 ASSERT(rval == NULL); 1837 goto retry; 1838 } 1839 1840 dvar = free; 1841 new_free = dvar->dtdv_next; 1842 } while (dtrace_casptr(&dcpu->dtdsc_free, free, new_free) != free); 1843 1844 /* 1845 * We have now allocated a new chunk. We copy the tuple keys into the 1846 * tuple array and copy any referenced key data into the data space 1847 * following the tuple array. As we do this, we relocate dttk_value 1848 * in the final tuple to point to the key data address in the chunk. 1849 */ 1850 kdata = (uintptr_t)&dvar->dtdv_tuple.dtt_key[nkeys]; 1851 dvar->dtdv_data = (void *)(kdata + ksize); 1852 dvar->dtdv_tuple.dtt_nkeys = nkeys; 1853 1854 for (i = 0; i < nkeys; i++) { 1855 dtrace_key_t *dkey = &dvar->dtdv_tuple.dtt_key[i]; 1856 size_t kesize = key[i].dttk_size; 1857 1858 if (kesize != 0) { 1859 dtrace_bcopy( 1860 (const void *)(uintptr_t)key[i].dttk_value, 1861 (void *)kdata, kesize); 1862 dkey->dttk_value = kdata; 1863 kdata += P2ROUNDUP(kesize, sizeof (uint64_t)); 1864 } else { 1865 dkey->dttk_value = key[i].dttk_value; 1866 } 1867 1868 dkey->dttk_size = kesize; 1869 } 1870 1871 ASSERT(dvar->dtdv_hashval == DTRACE_DYNHASH_FREE); 1872 dvar->dtdv_hashval = hashval; 1873 dvar->dtdv_next = start; 1874 1875 if (dtrace_casptr(&hash[bucket].dtdh_chain, start, dvar) == start) 1876 return (dvar); 1877 1878 /* 1879 * The cas has failed. Either another CPU is adding an element to 1880 * this hash chain, or another CPU is deleting an element from this 1881 * hash chain. The simplest way to deal with both of these cases 1882 * (though not necessarily the most efficient) is to free our 1883 * allocated block and tail-call ourselves. Note that the free is 1884 * to the dirty list and _not_ to the free list. This is to prevent 1885 * races with allocators, above. 1886 */ 1887 dvar->dtdv_hashval = DTRACE_DYNHASH_FREE; 1888 1889 dtrace_membar_producer(); 1890 1891 do { 1892 free = dcpu->dtdsc_dirty; 1893 dvar->dtdv_next = free; 1894 } while (dtrace_casptr(&dcpu->dtdsc_dirty, free, dvar) != free); 1895 1896 return (dtrace_dynvar(dstate, nkeys, key, dsize, op, mstate, vstate)); 1897 } 1898 1899 /*ARGSUSED*/ 1900 static void 1901 dtrace_aggregate_min(uint64_t *oval, uint64_t nval, uint64_t arg) 1902 { 1903 if ((int64_t)nval < (int64_t)*oval) 1904 *oval = nval; 1905 } 1906 1907 /*ARGSUSED*/ 1908 static void 1909 dtrace_aggregate_max(uint64_t *oval, uint64_t nval, uint64_t arg) 1910 { 1911 if ((int64_t)nval > (int64_t)*oval) 1912 *oval = nval; 1913 } 1914 1915 static void 1916 dtrace_aggregate_quantize(uint64_t *quanta, uint64_t nval, uint64_t incr) 1917 { 1918 int i, zero = DTRACE_QUANTIZE_ZEROBUCKET; 1919 int64_t val = (int64_t)nval; 1920 1921 if (val < 0) { 1922 for (i = 0; i < zero; i++) { 1923 if (val <= DTRACE_QUANTIZE_BUCKETVAL(i)) { 1924 quanta[i] += incr; 1925 return; 1926 } 1927 } 1928 } else { 1929 for (i = zero + 1; i < DTRACE_QUANTIZE_NBUCKETS; i++) { 1930 if (val < DTRACE_QUANTIZE_BUCKETVAL(i)) { 1931 quanta[i - 1] += incr; 1932 return; 1933 } 1934 } 1935 1936 quanta[DTRACE_QUANTIZE_NBUCKETS - 1] += incr; 1937 return; 1938 } 1939 1940 ASSERT(0); 1941 } 1942 1943 static void 1944 dtrace_aggregate_lquantize(uint64_t *lquanta, uint64_t nval, uint64_t incr) 1945 { 1946 uint64_t arg = *lquanta++; 1947 int32_t base = DTRACE_LQUANTIZE_BASE(arg); 1948 uint16_t step = DTRACE_LQUANTIZE_STEP(arg); 1949 uint16_t levels = DTRACE_LQUANTIZE_LEVELS(arg); 1950 int32_t val = (int32_t)nval, level; 1951 1952 ASSERT(step != 0); 1953 ASSERT(levels != 0); 1954 1955 if (val < base) { 1956 /* 1957 * This is an underflow. 1958 */ 1959 lquanta[0] += incr; 1960 return; 1961 } 1962 1963 level = (val - base) / step; 1964 1965 if (level < levels) { 1966 lquanta[level + 1] += incr; 1967 return; 1968 } 1969 1970 /* 1971 * This is an overflow. 1972 */ 1973 lquanta[levels + 1] += incr; 1974 } 1975 1976 static int 1977 dtrace_aggregate_llquantize_bucket(uint16_t factor, uint16_t low, 1978 uint16_t high, uint16_t nsteps, int64_t value) 1979 { 1980 int64_t this = 1, last, next; 1981 int base = 1, order; 1982 1983 ASSERT(factor <= nsteps); 1984 ASSERT(nsteps % factor == 0); 1985 1986 for (order = 0; order < low; order++) 1987 this *= factor; 1988 1989 /* 1990 * If our value is less than our factor taken to the power of the 1991 * low order of magnitude, it goes into the zeroth bucket. 1992 */ 1993 if (value < (last = this)) 1994 return (0); 1995 1996 for (this *= factor; order <= high; order++) { 1997 int nbuckets = this > nsteps ? nsteps : this; 1998 1999 if ((next = this * factor) < this) { 2000 /* 2001 * We should not generally get log/linear quantizations 2002 * with a high magnitude that allows 64-bits to 2003 * overflow, but we nonetheless protect against this 2004 * by explicitly checking for overflow, and clamping 2005 * our value accordingly. 2006 */ 2007 value = this - 1; 2008 } 2009 2010 if (value < this) { 2011 /* 2012 * If our value lies within this order of magnitude, 2013 * determine its position by taking the offset within 2014 * the order of magnitude, dividing by the bucket 2015 * width, and adding to our (accumulated) base. 2016 */ 2017 return (base + (value - last) / (this / nbuckets)); 2018 } 2019 2020 base += nbuckets - (nbuckets / factor); 2021 last = this; 2022 this = next; 2023 } 2024 2025 /* 2026 * Our value is greater than or equal to our factor taken to the 2027 * power of one plus the high magnitude -- return the top bucket. 2028 */ 2029 return (base); 2030 } 2031 2032 static void 2033 dtrace_aggregate_llquantize(uint64_t *llquanta, uint64_t nval, uint64_t incr) 2034 { 2035 uint64_t arg = *llquanta++; 2036 uint16_t factor = DTRACE_LLQUANTIZE_FACTOR(arg); 2037 uint16_t low = DTRACE_LLQUANTIZE_LOW(arg); 2038 uint16_t high = DTRACE_LLQUANTIZE_HIGH(arg); 2039 uint16_t nsteps = DTRACE_LLQUANTIZE_NSTEP(arg); 2040 2041 llquanta[dtrace_aggregate_llquantize_bucket(factor, 2042 low, high, nsteps, nval)] += incr; 2043 } 2044 2045 /*ARGSUSED*/ 2046 static void 2047 dtrace_aggregate_avg(uint64_t *data, uint64_t nval, uint64_t arg) 2048 { 2049 data[0]++; 2050 data[1] += nval; 2051 } 2052 2053 /*ARGSUSED*/ 2054 static void 2055 dtrace_aggregate_stddev(uint64_t *data, uint64_t nval, uint64_t arg) 2056 { 2057 int64_t snval = (int64_t)nval; 2058 uint64_t tmp[2]; 2059 2060 data[0]++; 2061 data[1] += nval; 2062 2063 /* 2064 * What we want to say here is: 2065 * 2066 * data[2] += nval * nval; 2067 * 2068 * But given that nval is 64-bit, we could easily overflow, so 2069 * we do this as 128-bit arithmetic. 2070 */ 2071 if (snval < 0) 2072 snval = -snval; 2073 2074 dtrace_multiply_128((uint64_t)snval, (uint64_t)snval, tmp); 2075 dtrace_add_128(data + 2, tmp, data + 2); 2076 } 2077 2078 /*ARGSUSED*/ 2079 static void 2080 dtrace_aggregate_count(uint64_t *oval, uint64_t nval, uint64_t arg) 2081 { 2082 *oval = *oval + 1; 2083 } 2084 2085 /*ARGSUSED*/ 2086 static void 2087 dtrace_aggregate_sum(uint64_t *oval, uint64_t nval, uint64_t arg) 2088 { 2089 *oval += nval; 2090 } 2091 2092 /* 2093 * Aggregate given the tuple in the principal data buffer, and the aggregating 2094 * action denoted by the specified dtrace_aggregation_t. The aggregation 2095 * buffer is specified as the buf parameter. This routine does not return 2096 * failure; if there is no space in the aggregation buffer, the data will be 2097 * dropped, and a corresponding counter incremented. 2098 */ 2099 static void 2100 dtrace_aggregate(dtrace_aggregation_t *agg, dtrace_buffer_t *dbuf, 2101 intptr_t offset, dtrace_buffer_t *buf, uint64_t expr, uint64_t arg) 2102 { 2103 dtrace_recdesc_t *rec = &agg->dtag_action.dta_rec; 2104 uint32_t i, ndx, size, fsize; 2105 uint32_t align = sizeof (uint64_t) - 1; 2106 dtrace_aggbuffer_t *agb; 2107 dtrace_aggkey_t *key; 2108 uint32_t hashval = 0, limit, isstr; 2109 caddr_t tomax, data, kdata; 2110 dtrace_actkind_t action; 2111 dtrace_action_t *act; 2112 uintptr_t offs; 2113 2114 if (buf == NULL) 2115 return; 2116 2117 if (!agg->dtag_hasarg) { 2118 /* 2119 * Currently, only quantize() and lquantize() take additional 2120 * arguments, and they have the same semantics: an increment 2121 * value that defaults to 1 when not present. If additional 2122 * aggregating actions take arguments, the setting of the 2123 * default argument value will presumably have to become more 2124 * sophisticated... 2125 */ 2126 arg = 1; 2127 } 2128 2129 action = agg->dtag_action.dta_kind - DTRACEACT_AGGREGATION; 2130 size = rec->dtrd_offset - agg->dtag_base; 2131 fsize = size + rec->dtrd_size; 2132 2133 ASSERT(dbuf->dtb_tomax != NULL); 2134 data = dbuf->dtb_tomax + offset + agg->dtag_base; 2135 2136 if ((tomax = buf->dtb_tomax) == NULL) { 2137 dtrace_buffer_drop(buf); 2138 return; 2139 } 2140 2141 /* 2142 * The metastructure is always at the bottom of the buffer. 2143 */ 2144 agb = (dtrace_aggbuffer_t *)(tomax + buf->dtb_size - 2145 sizeof (dtrace_aggbuffer_t)); 2146 2147 if (buf->dtb_offset == 0) { 2148 /* 2149 * We just kludge up approximately 1/8th of the size to be 2150 * buckets. If this guess ends up being routinely 2151 * off-the-mark, we may need to dynamically readjust this 2152 * based on past performance. 2153 */ 2154 uintptr_t hashsize = (buf->dtb_size >> 3) / sizeof (uintptr_t); 2155 2156 if ((uintptr_t)agb - hashsize * sizeof (dtrace_aggkey_t *) < 2157 (uintptr_t)tomax || hashsize == 0) { 2158 /* 2159 * We've been given a ludicrously small buffer; 2160 * increment our drop count and leave. 2161 */ 2162 dtrace_buffer_drop(buf); 2163 return; 2164 } 2165 2166 /* 2167 * And now, a pathetic attempt to try to get a an odd (or 2168 * perchance, a prime) hash size for better hash distribution. 2169 */ 2170 if (hashsize > (DTRACE_AGGHASHSIZE_SLEW << 3)) 2171 hashsize -= DTRACE_AGGHASHSIZE_SLEW; 2172 2173 agb->dtagb_hashsize = hashsize; 2174 agb->dtagb_hash = (dtrace_aggkey_t **)((uintptr_t)agb - 2175 agb->dtagb_hashsize * sizeof (dtrace_aggkey_t *)); 2176 agb->dtagb_free = (uintptr_t)agb->dtagb_hash; 2177 2178 for (i = 0; i < agb->dtagb_hashsize; i++) 2179 agb->dtagb_hash[i] = NULL; 2180 } 2181 2182 ASSERT(agg->dtag_first != NULL); 2183 ASSERT(agg->dtag_first->dta_intuple); 2184 2185 /* 2186 * Calculate the hash value based on the key. Note that we _don't_ 2187 * include the aggid in the hashing (but we will store it as part of 2188 * the key). The hashing algorithm is Bob Jenkins' "One-at-a-time" 2189 * algorithm: a simple, quick algorithm that has no known funnels, and 2190 * gets good distribution in practice. The efficacy of the hashing 2191 * algorithm (and a comparison with other algorithms) may be found by 2192 * running the ::dtrace_aggstat MDB dcmd. 2193 */ 2194 for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) { 2195 i = act->dta_rec.dtrd_offset - agg->dtag_base; 2196 limit = i + act->dta_rec.dtrd_size; 2197 ASSERT(limit <= size); 2198 isstr = DTRACEACT_ISSTRING(act); 2199 2200 for (; i < limit; i++) { 2201 hashval += data[i]; 2202 hashval += (hashval << 10); 2203 hashval ^= (hashval >> 6); 2204 2205 if (isstr && data[i] == '\0') 2206 break; 2207 } 2208 } 2209 2210 hashval += (hashval << 3); 2211 hashval ^= (hashval >> 11); 2212 hashval += (hashval << 15); 2213 2214 /* 2215 * Yes, the divide here is expensive -- but it's generally the least 2216 * of the performance issues given the amount of data that we iterate 2217 * over to compute hash values, compare data, etc. 2218 */ 2219 ndx = hashval % agb->dtagb_hashsize; 2220 2221 for (key = agb->dtagb_hash[ndx]; key != NULL; key = key->dtak_next) { 2222 ASSERT((caddr_t)key >= tomax); 2223 ASSERT((caddr_t)key < tomax + buf->dtb_size); 2224 2225 if (hashval != key->dtak_hashval || key->dtak_size != size) 2226 continue; 2227 2228 kdata = key->dtak_data; 2229 ASSERT(kdata >= tomax && kdata < tomax + buf->dtb_size); 2230 2231 for (act = agg->dtag_first; act->dta_intuple; 2232 act = act->dta_next) { 2233 i = act->dta_rec.dtrd_offset - agg->dtag_base; 2234 limit = i + act->dta_rec.dtrd_size; 2235 ASSERT(limit <= size); 2236 isstr = DTRACEACT_ISSTRING(act); 2237 2238 for (; i < limit; i++) { 2239 if (kdata[i] != data[i]) 2240 goto next; 2241 2242 if (isstr && data[i] == '\0') 2243 break; 2244 } 2245 } 2246 2247 if (action != key->dtak_action) { 2248 /* 2249 * We are aggregating on the same value in the same 2250 * aggregation with two different aggregating actions. 2251 * (This should have been picked up in the compiler, 2252 * so we may be dealing with errant or devious DIF.) 2253 * This is an error condition; we indicate as much, 2254 * and return. 2255 */ 2256 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); 2257 return; 2258 } 2259 2260 /* 2261 * This is a hit: we need to apply the aggregator to 2262 * the value at this key. 2263 */ 2264 agg->dtag_aggregate((uint64_t *)(kdata + size), expr, arg); 2265 return; 2266 next: 2267 continue; 2268 } 2269 2270 /* 2271 * We didn't find it. We need to allocate some zero-filled space, 2272 * link it into the hash table appropriately, and apply the aggregator 2273 * to the (zero-filled) value. 2274 */ 2275 offs = buf->dtb_offset; 2276 while (offs & (align - 1)) 2277 offs += sizeof (uint32_t); 2278 2279 /* 2280 * If we don't have enough room to both allocate a new key _and_ 2281 * its associated data, increment the drop count and return. 2282 */ 2283 if ((uintptr_t)tomax + offs + fsize > 2284 agb->dtagb_free - sizeof (dtrace_aggkey_t)) { 2285 dtrace_buffer_drop(buf); 2286 return; 2287 } 2288 2289 /*CONSTCOND*/ 2290 ASSERT(!(sizeof (dtrace_aggkey_t) & (sizeof (uintptr_t) - 1))); 2291 key = (dtrace_aggkey_t *)(agb->dtagb_free - sizeof (dtrace_aggkey_t)); 2292 agb->dtagb_free -= sizeof (dtrace_aggkey_t); 2293 2294 key->dtak_data = kdata = tomax + offs; 2295 buf->dtb_offset = offs + fsize; 2296 2297 /* 2298 * Now copy the data across. 2299 */ 2300 *((dtrace_aggid_t *)kdata) = agg->dtag_id; 2301 2302 for (i = sizeof (dtrace_aggid_t); i < size; i++) 2303 kdata[i] = data[i]; 2304 2305 /* 2306 * Because strings are not zeroed out by default, we need to iterate 2307 * looking for actions that store strings, and we need to explicitly 2308 * pad these strings out with zeroes. 2309 */ 2310 for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) { 2311 int nul; 2312 2313 if (!DTRACEACT_ISSTRING(act)) 2314 continue; 2315 2316 i = act->dta_rec.dtrd_offset - agg->dtag_base; 2317 limit = i + act->dta_rec.dtrd_size; 2318 ASSERT(limit <= size); 2319 2320 for (nul = 0; i < limit; i++) { 2321 if (nul) { 2322 kdata[i] = '\0'; 2323 continue; 2324 } 2325 2326 if (data[i] != '\0') 2327 continue; 2328 2329 nul = 1; 2330 } 2331 } 2332 2333 for (i = size; i < fsize; i++) 2334 kdata[i] = 0; 2335 2336 key->dtak_hashval = hashval; 2337 key->dtak_size = size; 2338 key->dtak_action = action; 2339 key->dtak_next = agb->dtagb_hash[ndx]; 2340 agb->dtagb_hash[ndx] = key; 2341 2342 /* 2343 * Finally, apply the aggregator. 2344 */ 2345 *((uint64_t *)(key->dtak_data + size)) = agg->dtag_initial; 2346 agg->dtag_aggregate((uint64_t *)(key->dtak_data + size), expr, arg); 2347 } 2348 2349 /* 2350 * Given consumer state, this routine finds a speculation in the INACTIVE 2351 * state and transitions it into the ACTIVE state. If there is no speculation 2352 * in the INACTIVE state, 0 is returned. In this case, no error counter is 2353 * incremented -- it is up to the caller to take appropriate action. 2354 */ 2355 static int 2356 dtrace_speculation(dtrace_state_t *state) 2357 { 2358 int i = 0; 2359 dtrace_speculation_state_t current; 2360 uint32_t *stat = &state->dts_speculations_unavail, count; 2361 2362 while (i < state->dts_nspeculations) { 2363 dtrace_speculation_t *spec = &state->dts_speculations[i]; 2364 2365 current = spec->dtsp_state; 2366 2367 if (current != DTRACESPEC_INACTIVE) { 2368 if (current == DTRACESPEC_COMMITTINGMANY || 2369 current == DTRACESPEC_COMMITTING || 2370 current == DTRACESPEC_DISCARDING) 2371 stat = &state->dts_speculations_busy; 2372 i++; 2373 continue; 2374 } 2375 2376 if (dtrace_cas32((uint32_t *)&spec->dtsp_state, 2377 current, DTRACESPEC_ACTIVE) == current) 2378 return (i + 1); 2379 } 2380 2381 /* 2382 * We couldn't find a speculation. If we found as much as a single 2383 * busy speculation buffer, we'll attribute this failure as "busy" 2384 * instead of "unavail". 2385 */ 2386 do { 2387 count = *stat; 2388 } while (dtrace_cas32(stat, count, count + 1) != count); 2389 2390 return (0); 2391 } 2392 2393 /* 2394 * This routine commits an active speculation. If the specified speculation 2395 * is not in a valid state to perform a commit(), this routine will silently do 2396 * nothing. The state of the specified speculation is transitioned according 2397 * to the state transition diagram outlined in <sys/dtrace_impl.h> 2398 */ 2399 static void 2400 dtrace_speculation_commit(dtrace_state_t *state, processorid_t cpu, 2401 dtrace_specid_t which) 2402 { 2403 dtrace_speculation_t *spec; 2404 dtrace_buffer_t *src, *dest; 2405 uintptr_t daddr, saddr, dlimit, slimit; 2406 dtrace_speculation_state_t current, new; 2407 intptr_t offs; 2408 uint64_t timestamp; 2409 2410 if (which == 0) 2411 return; 2412 2413 if (which > state->dts_nspeculations) { 2414 cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP; 2415 return; 2416 } 2417 2418 spec = &state->dts_speculations[which - 1]; 2419 src = &spec->dtsp_buffer[cpu]; 2420 dest = &state->dts_buffer[cpu]; 2421 2422 do { 2423 current = spec->dtsp_state; 2424 2425 if (current == DTRACESPEC_COMMITTINGMANY) 2426 break; 2427 2428 switch (current) { 2429 case DTRACESPEC_INACTIVE: 2430 case DTRACESPEC_DISCARDING: 2431 return; 2432 2433 case DTRACESPEC_COMMITTING: 2434 /* 2435 * This is only possible if we are (a) commit()'ing 2436 * without having done a prior speculate() on this CPU 2437 * and (b) racing with another commit() on a different 2438 * CPU. There's nothing to do -- we just assert that 2439 * our offset is 0. 2440 */ 2441 ASSERT(src->dtb_offset == 0); 2442 return; 2443 2444 case DTRACESPEC_ACTIVE: 2445 new = DTRACESPEC_COMMITTING; 2446 break; 2447 2448 case DTRACESPEC_ACTIVEONE: 2449 /* 2450 * This speculation is active on one CPU. If our 2451 * buffer offset is non-zero, we know that the one CPU 2452 * must be us. Otherwise, we are committing on a 2453 * different CPU from the speculate(), and we must 2454 * rely on being asynchronously cleaned. 2455 */ 2456 if (src->dtb_offset != 0) { 2457 new = DTRACESPEC_COMMITTING; 2458 break; 2459 } 2460 /*FALLTHROUGH*/ 2461 2462 case DTRACESPEC_ACTIVEMANY: 2463 new = DTRACESPEC_COMMITTINGMANY; 2464 break; 2465 2466 default: 2467 ASSERT(0); 2468 } 2469 } while (dtrace_cas32((uint32_t *)&spec->dtsp_state, 2470 current, new) != current); 2471 2472 /* 2473 * We have set the state to indicate that we are committing this 2474 * speculation. Now reserve the necessary space in the destination 2475 * buffer. 2476 */ 2477 if ((offs = dtrace_buffer_reserve(dest, src->dtb_offset, 2478 sizeof (uint64_t), state, NULL)) < 0) { 2479 dtrace_buffer_drop(dest); 2480 goto out; 2481 } 2482 2483 /* 2484 * We have sufficient space to copy the speculative buffer into the 2485 * primary buffer. First, modify the speculative buffer, filling 2486 * in the timestamp of all entries with the current time. The data 2487 * must have the commit() time rather than the time it was traced, 2488 * so that all entries in the primary buffer are in timestamp order. 2489 */ 2490 timestamp = dtrace_gethrtime(); 2491 saddr = (uintptr_t)src->dtb_tomax; 2492 slimit = saddr + src->dtb_offset; 2493 while (saddr < slimit) { 2494 size_t size; 2495 dtrace_rechdr_t *dtrh = (dtrace_rechdr_t *)saddr; 2496 2497 if (dtrh->dtrh_epid == DTRACE_EPIDNONE) { 2498 saddr += sizeof (dtrace_epid_t); 2499 continue; 2500 } 2501 ASSERT3U(dtrh->dtrh_epid, <=, state->dts_necbs); 2502 size = state->dts_ecbs[dtrh->dtrh_epid - 1]->dte_size; 2503 2504 ASSERT3U(saddr + size, <=, slimit); 2505 ASSERT3U(size, >=, sizeof (dtrace_rechdr_t)); 2506 ASSERT3U(DTRACE_RECORD_LOAD_TIMESTAMP(dtrh), ==, UINT64_MAX); 2507 2508 DTRACE_RECORD_STORE_TIMESTAMP(dtrh, timestamp); 2509 2510 saddr += size; 2511 } 2512 2513 /* 2514 * Copy the buffer across. (Note that this is a 2515 * highly subobtimal bcopy(); in the unlikely event that this becomes 2516 * a serious performance issue, a high-performance DTrace-specific 2517 * bcopy() should obviously be invented.) 2518 */ 2519 daddr = (uintptr_t)dest->dtb_tomax + offs; 2520 dlimit = daddr + src->dtb_offset; 2521 saddr = (uintptr_t)src->dtb_tomax; 2522 2523 /* 2524 * First, the aligned portion. 2525 */ 2526 while (dlimit - daddr >= sizeof (uint64_t)) { 2527 *((uint64_t *)daddr) = *((uint64_t *)saddr); 2528 2529 daddr += sizeof (uint64_t); 2530 saddr += sizeof (uint64_t); 2531 } 2532 2533 /* 2534 * Now any left-over bit... 2535 */ 2536 while (dlimit - daddr) 2537 *((uint8_t *)daddr++) = *((uint8_t *)saddr++); 2538 2539 /* 2540 * Finally, commit the reserved space in the destination buffer. 2541 */ 2542 dest->dtb_offset = offs + src->dtb_offset; 2543 2544 out: 2545 /* 2546 * If we're lucky enough to be the only active CPU on this speculation 2547 * buffer, we can just set the state back to DTRACESPEC_INACTIVE. 2548 */ 2549 if (current == DTRACESPEC_ACTIVE || 2550 (current == DTRACESPEC_ACTIVEONE && new == DTRACESPEC_COMMITTING)) { 2551 uint32_t rval = dtrace_cas32((uint32_t *)&spec->dtsp_state, 2552 DTRACESPEC_COMMITTING, DTRACESPEC_INACTIVE); 2553 2554 ASSERT(rval == DTRACESPEC_COMMITTING); 2555 } 2556 2557 src->dtb_offset = 0; 2558 src->dtb_xamot_drops += src->dtb_drops; 2559 src->dtb_drops = 0; 2560 } 2561 2562 /* 2563 * This routine discards an active speculation. If the specified speculation 2564 * is not in a valid state to perform a discard(), this routine will silently 2565 * do nothing. The state of the specified speculation is transitioned 2566 * according to the state transition diagram outlined in <sys/dtrace_impl.h> 2567 */ 2568 static void 2569 dtrace_speculation_discard(dtrace_state_t *state, processorid_t cpu, 2570 dtrace_specid_t which) 2571 { 2572 dtrace_speculation_t *spec; 2573 dtrace_speculation_state_t current, new; 2574 dtrace_buffer_t *buf; 2575 2576 if (which == 0) 2577 return; 2578 2579 if (which > state->dts_nspeculations) { 2580 cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP; 2581 return; 2582 } 2583 2584 spec = &state->dts_speculations[which - 1]; 2585 buf = &spec->dtsp_buffer[cpu]; 2586 2587 do { 2588 current = spec->dtsp_state; 2589 2590 switch (current) { 2591 case DTRACESPEC_INACTIVE: 2592 case DTRACESPEC_COMMITTINGMANY: 2593 case DTRACESPEC_COMMITTING: 2594 case DTRACESPEC_DISCARDING: 2595 return; 2596 2597 case DTRACESPEC_ACTIVE: 2598 case DTRACESPEC_ACTIVEMANY: 2599 new = DTRACESPEC_DISCARDING; 2600 break; 2601 2602 case DTRACESPEC_ACTIVEONE: 2603 if (buf->dtb_offset != 0) { 2604 new = DTRACESPEC_INACTIVE; 2605 } else { 2606 new = DTRACESPEC_DISCARDING; 2607 } 2608 break; 2609 2610 default: 2611 ASSERT(0); 2612 } 2613 } while (dtrace_cas32((uint32_t *)&spec->dtsp_state, 2614 current, new) != current); 2615 2616 buf->dtb_offset = 0; 2617 buf->dtb_drops = 0; 2618 } 2619 2620 /* 2621 * Note: not called from probe context. This function is called 2622 * asynchronously from cross call context to clean any speculations that are 2623 * in the COMMITTINGMANY or DISCARDING states. These speculations may not be 2624 * transitioned back to the INACTIVE state until all CPUs have cleaned the 2625 * speculation. 2626 */ 2627 static void 2628 dtrace_speculation_clean_here(dtrace_state_t *state) 2629 { 2630 dtrace_icookie_t cookie; 2631 processorid_t cpu = CPU->cpu_id; 2632 dtrace_buffer_t *dest = &state->dts_buffer[cpu]; 2633 dtrace_specid_t i; 2634 2635 cookie = dtrace_interrupt_disable(); 2636 2637 if (dest->dtb_tomax == NULL) { 2638 dtrace_interrupt_enable(cookie); 2639 return; 2640 } 2641 2642 for (i = 0; i < state->dts_nspeculations; i++) { 2643 dtrace_speculation_t *spec = &state->dts_speculations[i]; 2644 dtrace_buffer_t *src = &spec->dtsp_buffer[cpu]; 2645 2646 if (src->dtb_tomax == NULL) 2647 continue; 2648 2649 if (spec->dtsp_state == DTRACESPEC_DISCARDING) { 2650 src->dtb_offset = 0; 2651 continue; 2652 } 2653 2654 if (spec->dtsp_state != DTRACESPEC_COMMITTINGMANY) 2655 continue; 2656 2657 if (src->dtb_offset == 0) 2658 continue; 2659 2660 dtrace_speculation_commit(state, cpu, i + 1); 2661 } 2662 2663 dtrace_interrupt_enable(cookie); 2664 } 2665 2666 /* 2667 * Note: not called from probe context. This function is called 2668 * asynchronously (and at a regular interval) to clean any speculations that 2669 * are in the COMMITTINGMANY or DISCARDING states. If it discovers that there 2670 * is work to be done, it cross calls all CPUs to perform that work; 2671 * COMMITMANY and DISCARDING speculations may not be transitioned back to the 2672 * INACTIVE state until they have been cleaned by all CPUs. 2673 */ 2674 static void 2675 dtrace_speculation_clean(dtrace_state_t *state) 2676 { 2677 int work = 0, rv; 2678 dtrace_specid_t i; 2679 2680 for (i = 0; i < state->dts_nspeculations; i++) { 2681 dtrace_speculation_t *spec = &state->dts_speculations[i]; 2682 2683 ASSERT(!spec->dtsp_cleaning); 2684 2685 if (spec->dtsp_state != DTRACESPEC_DISCARDING && 2686 spec->dtsp_state != DTRACESPEC_COMMITTINGMANY) 2687 continue; 2688 2689 work++; 2690 spec->dtsp_cleaning = 1; 2691 } 2692 2693 if (!work) 2694 return; 2695 2696 dtrace_xcall(DTRACE_CPUALL, 2697 (dtrace_xcall_t)dtrace_speculation_clean_here, state); 2698 2699 /* 2700 * We now know that all CPUs have committed or discarded their 2701 * speculation buffers, as appropriate. We can now set the state 2702 * to inactive. 2703 */ 2704 for (i = 0; i < state->dts_nspeculations; i++) { 2705 dtrace_speculation_t *spec = &state->dts_speculations[i]; 2706 dtrace_speculation_state_t current, new; 2707 2708 if (!spec->dtsp_cleaning) 2709 continue; 2710 2711 current = spec->dtsp_state; 2712 ASSERT(current == DTRACESPEC_DISCARDING || 2713 current == DTRACESPEC_COMMITTINGMANY); 2714 2715 new = DTRACESPEC_INACTIVE; 2716 2717 rv = dtrace_cas32((uint32_t *)&spec->dtsp_state, current, new); 2718 ASSERT(rv == current); 2719 spec->dtsp_cleaning = 0; 2720 } 2721 } 2722 2723 /* 2724 * Called as part of a speculate() to get the speculative buffer associated 2725 * with a given speculation. Returns NULL if the specified speculation is not 2726 * in an ACTIVE state. If the speculation is in the ACTIVEONE state -- and 2727 * the active CPU is not the specified CPU -- the speculation will be 2728 * atomically transitioned into the ACTIVEMANY state. 2729 */ 2730 static dtrace_buffer_t * 2731 dtrace_speculation_buffer(dtrace_state_t *state, processorid_t cpuid, 2732 dtrace_specid_t which) 2733 { 2734 dtrace_speculation_t *spec; 2735 dtrace_speculation_state_t current, new; 2736 dtrace_buffer_t *buf; 2737 2738 if (which == 0) 2739 return (NULL); 2740 2741 if (which > state->dts_nspeculations) { 2742 cpu_core[cpuid].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP; 2743 return (NULL); 2744 } 2745 2746 spec = &state->dts_speculations[which - 1]; 2747 buf = &spec->dtsp_buffer[cpuid]; 2748 2749 do { 2750 current = spec->dtsp_state; 2751 2752 switch (current) { 2753 case DTRACESPEC_INACTIVE: 2754 case DTRACESPEC_COMMITTINGMANY: 2755 case DTRACESPEC_DISCARDING: 2756 return (NULL); 2757 2758 case DTRACESPEC_COMMITTING: 2759 ASSERT(buf->dtb_offset == 0); 2760 return (NULL); 2761 2762 case DTRACESPEC_ACTIVEONE: 2763 /* 2764 * This speculation is currently active on one CPU. 2765 * Check the offset in the buffer; if it's non-zero, 2766 * that CPU must be us (and we leave the state alone). 2767 * If it's zero, assume that we're starting on a new 2768 * CPU -- and change the state to indicate that the 2769 * speculation is active on more than one CPU. 2770 */ 2771 if (buf->dtb_offset != 0) 2772 return (buf); 2773 2774 new = DTRACESPEC_ACTIVEMANY; 2775 break; 2776 2777 case DTRACESPEC_ACTIVEMANY: 2778 return (buf); 2779 2780 case DTRACESPEC_ACTIVE: 2781 new = DTRACESPEC_ACTIVEONE; 2782 break; 2783 2784 default: 2785 ASSERT(0); 2786 } 2787 } while (dtrace_cas32((uint32_t *)&spec->dtsp_state, 2788 current, new) != current); 2789 2790 ASSERT(new == DTRACESPEC_ACTIVEONE || new == DTRACESPEC_ACTIVEMANY); 2791 return (buf); 2792 } 2793 2794 /* 2795 * Return a string. In the event that the user lacks the privilege to access 2796 * arbitrary kernel memory, we copy the string out to scratch memory so that we 2797 * don't fail access checking. 2798 * 2799 * dtrace_dif_variable() uses this routine as a helper for various 2800 * builtin values such as 'execname' and 'probefunc.' 2801 */ 2802 uintptr_t 2803 dtrace_dif_varstr(uintptr_t addr, dtrace_state_t *state, 2804 dtrace_mstate_t *mstate) 2805 { 2806 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 2807 uintptr_t ret; 2808 size_t strsz; 2809 2810 /* 2811 * The easy case: this probe is allowed to read all of memory, so 2812 * we can just return this as a vanilla pointer. 2813 */ 2814 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) 2815 return (addr); 2816 2817 /* 2818 * This is the tougher case: we copy the string in question from 2819 * kernel memory into scratch memory and return it that way: this 2820 * ensures that we won't trip up when access checking tests the 2821 * BYREF return value. 2822 */ 2823 strsz = dtrace_strlen((char *)addr, size) + 1; 2824 2825 if (mstate->dtms_scratch_ptr + strsz > 2826 mstate->dtms_scratch_base + mstate->dtms_scratch_size) { 2827 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 2828 return (NULL); 2829 } 2830 2831 dtrace_strcpy((const void *)addr, (void *)mstate->dtms_scratch_ptr, 2832 strsz); 2833 ret = mstate->dtms_scratch_ptr; 2834 mstate->dtms_scratch_ptr += strsz; 2835 return (ret); 2836 } 2837 2838 /* 2839 * This function implements the DIF emulator's variable lookups. The emulator 2840 * passes a reserved variable identifier and optional built-in array index. 2841 */ 2842 static uint64_t 2843 dtrace_dif_variable(dtrace_mstate_t *mstate, dtrace_state_t *state, uint64_t v, 2844 uint64_t ndx) 2845 { 2846 /* 2847 * If we're accessing one of the uncached arguments, we'll turn this 2848 * into a reference in the args array. 2849 */ 2850 if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9) { 2851 ndx = v - DIF_VAR_ARG0; 2852 v = DIF_VAR_ARGS; 2853 } 2854 2855 switch (v) { 2856 case DIF_VAR_ARGS: 2857 if (!(mstate->dtms_access & DTRACE_ACCESS_ARGS)) { 2858 cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= 2859 CPU_DTRACE_KPRIV; 2860 return (0); 2861 } 2862 2863 ASSERT(mstate->dtms_present & DTRACE_MSTATE_ARGS); 2864 if (ndx >= sizeof (mstate->dtms_arg) / 2865 sizeof (mstate->dtms_arg[0])) { 2866 int aframes = mstate->dtms_probe->dtpr_aframes + 2; 2867 dtrace_provider_t *pv; 2868 uint64_t val; 2869 2870 pv = mstate->dtms_probe->dtpr_provider; 2871 if (pv->dtpv_pops.dtps_getargval != NULL) 2872 val = pv->dtpv_pops.dtps_getargval(pv->dtpv_arg, 2873 mstate->dtms_probe->dtpr_id, 2874 mstate->dtms_probe->dtpr_arg, ndx, aframes); 2875 else 2876 val = dtrace_getarg(ndx, aframes); 2877 2878 /* 2879 * This is regrettably required to keep the compiler 2880 * from tail-optimizing the call to dtrace_getarg(). 2881 * The condition always evaluates to true, but the 2882 * compiler has no way of figuring that out a priori. 2883 * (None of this would be necessary if the compiler 2884 * could be relied upon to _always_ tail-optimize 2885 * the call to dtrace_getarg() -- but it can't.) 2886 */ 2887 if (mstate->dtms_probe != NULL) 2888 return (val); 2889 2890 ASSERT(0); 2891 } 2892 2893 return (mstate->dtms_arg[ndx]); 2894 2895 case DIF_VAR_UREGS: { 2896 klwp_t *lwp; 2897 2898 if (!dtrace_priv_proc(state, mstate)) 2899 return (0); 2900 2901 if ((lwp = curthread->t_lwp) == NULL) { 2902 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); 2903 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = NULL; 2904 return (0); 2905 } 2906 2907 return (dtrace_getreg(lwp->lwp_regs, ndx)); 2908 } 2909 2910 case DIF_VAR_VMREGS: { 2911 uint64_t rval; 2912 2913 if (!dtrace_priv_kernel(state)) 2914 return (0); 2915 2916 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 2917 2918 rval = dtrace_getvmreg(ndx, 2919 &cpu_core[CPU->cpu_id].cpuc_dtrace_flags); 2920 2921 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 2922 2923 return (rval); 2924 } 2925 2926 case DIF_VAR_CURTHREAD: 2927 if (!dtrace_priv_kernel(state)) 2928 return (0); 2929 return ((uint64_t)(uintptr_t)curthread); 2930 2931 case DIF_VAR_TIMESTAMP: 2932 if (!(mstate->dtms_present & DTRACE_MSTATE_TIMESTAMP)) { 2933 mstate->dtms_timestamp = dtrace_gethrtime(); 2934 mstate->dtms_present |= DTRACE_MSTATE_TIMESTAMP; 2935 } 2936 return (mstate->dtms_timestamp); 2937 2938 case DIF_VAR_VTIMESTAMP: 2939 ASSERT(dtrace_vtime_references != 0); 2940 return (curthread->t_dtrace_vtime); 2941 2942 case DIF_VAR_WALLTIMESTAMP: 2943 if (!(mstate->dtms_present & DTRACE_MSTATE_WALLTIMESTAMP)) { 2944 mstate->dtms_walltimestamp = dtrace_gethrestime(); 2945 mstate->dtms_present |= DTRACE_MSTATE_WALLTIMESTAMP; 2946 } 2947 return (mstate->dtms_walltimestamp); 2948 2949 case DIF_VAR_IPL: 2950 if (!dtrace_priv_kernel(state)) 2951 return (0); 2952 if (!(mstate->dtms_present & DTRACE_MSTATE_IPL)) { 2953 mstate->dtms_ipl = dtrace_getipl(); 2954 mstate->dtms_present |= DTRACE_MSTATE_IPL; 2955 } 2956 return (mstate->dtms_ipl); 2957 2958 case DIF_VAR_EPID: 2959 ASSERT(mstate->dtms_present & DTRACE_MSTATE_EPID); 2960 return (mstate->dtms_epid); 2961 2962 case DIF_VAR_ID: 2963 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); 2964 return (mstate->dtms_probe->dtpr_id); 2965 2966 case DIF_VAR_STACKDEPTH: 2967 if (!dtrace_priv_kernel(state)) 2968 return (0); 2969 if (!(mstate->dtms_present & DTRACE_MSTATE_STACKDEPTH)) { 2970 int aframes = mstate->dtms_probe->dtpr_aframes + 2; 2971 2972 mstate->dtms_stackdepth = dtrace_getstackdepth(aframes); 2973 mstate->dtms_present |= DTRACE_MSTATE_STACKDEPTH; 2974 } 2975 return (mstate->dtms_stackdepth); 2976 2977 case DIF_VAR_USTACKDEPTH: 2978 if (!dtrace_priv_proc(state, mstate)) 2979 return (0); 2980 if (!(mstate->dtms_present & DTRACE_MSTATE_USTACKDEPTH)) { 2981 /* 2982 * See comment in DIF_VAR_PID. 2983 */ 2984 if (DTRACE_ANCHORED(mstate->dtms_probe) && 2985 CPU_ON_INTR(CPU)) { 2986 mstate->dtms_ustackdepth = 0; 2987 } else { 2988 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 2989 mstate->dtms_ustackdepth = 2990 dtrace_getustackdepth(); 2991 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 2992 } 2993 mstate->dtms_present |= DTRACE_MSTATE_USTACKDEPTH; 2994 } 2995 return (mstate->dtms_ustackdepth); 2996 2997 case DIF_VAR_CALLER: 2998 if (!dtrace_priv_kernel(state)) 2999 return (0); 3000 if (!(mstate->dtms_present & DTRACE_MSTATE_CALLER)) { 3001 int aframes = mstate->dtms_probe->dtpr_aframes + 2; 3002 3003 if (!DTRACE_ANCHORED(mstate->dtms_probe)) { 3004 /* 3005 * If this is an unanchored probe, we are 3006 * required to go through the slow path: 3007 * dtrace_caller() only guarantees correct 3008 * results for anchored probes. 3009 */ 3010 pc_t caller[2]; 3011 3012 dtrace_getpcstack(caller, 2, aframes, 3013 (uint32_t *)(uintptr_t)mstate->dtms_arg[0]); 3014 mstate->dtms_caller = caller[1]; 3015 } else if ((mstate->dtms_caller = 3016 dtrace_caller(aframes)) == -1) { 3017 /* 3018 * We have failed to do this the quick way; 3019 * we must resort to the slower approach of 3020 * calling dtrace_getpcstack(). 3021 */ 3022 pc_t caller; 3023 3024 dtrace_getpcstack(&caller, 1, aframes, NULL); 3025 mstate->dtms_caller = caller; 3026 } 3027 3028 mstate->dtms_present |= DTRACE_MSTATE_CALLER; 3029 } 3030 return (mstate->dtms_caller); 3031 3032 case DIF_VAR_UCALLER: 3033 if (!dtrace_priv_proc(state, mstate)) 3034 return (0); 3035 3036 if (!(mstate->dtms_present & DTRACE_MSTATE_UCALLER)) { 3037 uint64_t ustack[3]; 3038 3039 /* 3040 * dtrace_getupcstack() fills in the first uint64_t 3041 * with the current PID. The second uint64_t will 3042 * be the program counter at user-level. The third 3043 * uint64_t will contain the caller, which is what 3044 * we're after. 3045 */ 3046 ustack[2] = NULL; 3047 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 3048 dtrace_getupcstack(ustack, 3); 3049 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 3050 mstate->dtms_ucaller = ustack[2]; 3051 mstate->dtms_present |= DTRACE_MSTATE_UCALLER; 3052 } 3053 3054 return (mstate->dtms_ucaller); 3055 3056 case DIF_VAR_PROBEPROV: 3057 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); 3058 return (dtrace_dif_varstr( 3059 (uintptr_t)mstate->dtms_probe->dtpr_provider->dtpv_name, 3060 state, mstate)); 3061 3062 case DIF_VAR_PROBEMOD: 3063 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); 3064 return (dtrace_dif_varstr( 3065 (uintptr_t)mstate->dtms_probe->dtpr_mod, 3066 state, mstate)); 3067 3068 case DIF_VAR_PROBEFUNC: 3069 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); 3070 return (dtrace_dif_varstr( 3071 (uintptr_t)mstate->dtms_probe->dtpr_func, 3072 state, mstate)); 3073 3074 case DIF_VAR_PROBENAME: 3075 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); 3076 return (dtrace_dif_varstr( 3077 (uintptr_t)mstate->dtms_probe->dtpr_name, 3078 state, mstate)); 3079 3080 case DIF_VAR_PID: 3081 if (!dtrace_priv_proc(state, mstate)) 3082 return (0); 3083 3084 /* 3085 * Note that we are assuming that an unanchored probe is 3086 * always due to a high-level interrupt. (And we're assuming 3087 * that there is only a single high level interrupt.) 3088 */ 3089 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3090 return (pid0.pid_id); 3091 3092 /* 3093 * It is always safe to dereference one's own t_procp pointer: 3094 * it always points to a valid, allocated proc structure. 3095 * Further, it is always safe to dereference the p_pidp member 3096 * of one's own proc structure. (These are truisms becuase 3097 * threads and processes don't clean up their own state -- 3098 * they leave that task to whomever reaps them.) 3099 */ 3100 return ((uint64_t)curthread->t_procp->p_pidp->pid_id); 3101 3102 case DIF_VAR_PPID: 3103 if (!dtrace_priv_proc(state, mstate)) 3104 return (0); 3105 3106 /* 3107 * See comment in DIF_VAR_PID. 3108 */ 3109 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3110 return (pid0.pid_id); 3111 3112 /* 3113 * It is always safe to dereference one's own t_procp pointer: 3114 * it always points to a valid, allocated proc structure. 3115 * (This is true because threads don't clean up their own 3116 * state -- they leave that task to whomever reaps them.) 3117 */ 3118 return ((uint64_t)curthread->t_procp->p_ppid); 3119 3120 case DIF_VAR_TID: 3121 /* 3122 * See comment in DIF_VAR_PID. 3123 */ 3124 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3125 return (0); 3126 3127 return ((uint64_t)curthread->t_tid); 3128 3129 case DIF_VAR_EXECNAME: 3130 if (!dtrace_priv_proc(state, mstate)) 3131 return (0); 3132 3133 /* 3134 * See comment in DIF_VAR_PID. 3135 */ 3136 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3137 return ((uint64_t)(uintptr_t)p0.p_user.u_comm); 3138 3139 /* 3140 * It is always safe to dereference one's own t_procp pointer: 3141 * it always points to a valid, allocated proc structure. 3142 * (This is true because threads don't clean up their own 3143 * state -- they leave that task to whomever reaps them.) 3144 */ 3145 return (dtrace_dif_varstr( 3146 (uintptr_t)curthread->t_procp->p_user.u_comm, 3147 state, mstate)); 3148 3149 case DIF_VAR_ZONENAME: 3150 if (!dtrace_priv_proc(state, mstate)) 3151 return (0); 3152 3153 /* 3154 * See comment in DIF_VAR_PID. 3155 */ 3156 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3157 return ((uint64_t)(uintptr_t)p0.p_zone->zone_name); 3158 3159 /* 3160 * It is always safe to dereference one's own t_procp pointer: 3161 * it always points to a valid, allocated proc structure. 3162 * (This is true because threads don't clean up their own 3163 * state -- they leave that task to whomever reaps them.) 3164 */ 3165 return (dtrace_dif_varstr( 3166 (uintptr_t)curthread->t_procp->p_zone->zone_name, 3167 state, mstate)); 3168 3169 case DIF_VAR_UID: 3170 if (!dtrace_priv_proc(state, mstate)) 3171 return (0); 3172 3173 /* 3174 * See comment in DIF_VAR_PID. 3175 */ 3176 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3177 return ((uint64_t)p0.p_cred->cr_uid); 3178 3179 /* 3180 * It is always safe to dereference one's own t_procp pointer: 3181 * it always points to a valid, allocated proc structure. 3182 * (This is true because threads don't clean up their own 3183 * state -- they leave that task to whomever reaps them.) 3184 * 3185 * Additionally, it is safe to dereference one's own process 3186 * credential, since this is never NULL after process birth. 3187 */ 3188 return ((uint64_t)curthread->t_procp->p_cred->cr_uid); 3189 3190 case DIF_VAR_GID: 3191 if (!dtrace_priv_proc(state, mstate)) 3192 return (0); 3193 3194 /* 3195 * See comment in DIF_VAR_PID. 3196 */ 3197 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3198 return ((uint64_t)p0.p_cred->cr_gid); 3199 3200 /* 3201 * It is always safe to dereference one's own t_procp pointer: 3202 * it always points to a valid, allocated proc structure. 3203 * (This is true because threads don't clean up their own 3204 * state -- they leave that task to whomever reaps them.) 3205 * 3206 * Additionally, it is safe to dereference one's own process 3207 * credential, since this is never NULL after process birth. 3208 */ 3209 return ((uint64_t)curthread->t_procp->p_cred->cr_gid); 3210 3211 case DIF_VAR_ERRNO: { 3212 klwp_t *lwp; 3213 if (!dtrace_priv_proc(state, mstate)) 3214 return (0); 3215 3216 /* 3217 * See comment in DIF_VAR_PID. 3218 */ 3219 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3220 return (0); 3221 3222 /* 3223 * It is always safe to dereference one's own t_lwp pointer in 3224 * the event that this pointer is non-NULL. (This is true 3225 * because threads and lwps don't clean up their own state -- 3226 * they leave that task to whomever reaps them.) 3227 */ 3228 if ((lwp = curthread->t_lwp) == NULL) 3229 return (0); 3230 3231 return ((uint64_t)lwp->lwp_errno); 3232 } 3233 default: 3234 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); 3235 return (0); 3236 } 3237 } 3238 3239 /* 3240 * Emulate the execution of DTrace ID subroutines invoked by the call opcode. 3241 * Notice that we don't bother validating the proper number of arguments or 3242 * their types in the tuple stack. This isn't needed because all argument 3243 * interpretation is safe because of our load safety -- the worst that can 3244 * happen is that a bogus program can obtain bogus results. 3245 */ 3246 static void 3247 dtrace_dif_subr(uint_t subr, uint_t rd, uint64_t *regs, 3248 dtrace_key_t *tupregs, int nargs, 3249 dtrace_mstate_t *mstate, dtrace_state_t *state) 3250 { 3251 volatile uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags; 3252 volatile uintptr_t *illval = &cpu_core[CPU->cpu_id].cpuc_dtrace_illval; 3253 dtrace_vstate_t *vstate = &state->dts_vstate; 3254 3255 union { 3256 mutex_impl_t mi; 3257 uint64_t mx; 3258 } m; 3259 3260 union { 3261 krwlock_t ri; 3262 uintptr_t rw; 3263 } r; 3264 3265 switch (subr) { 3266 case DIF_SUBR_RAND: 3267 regs[rd] = (dtrace_gethrtime() * 2416 + 374441) % 1771875; 3268 break; 3269 3270 case DIF_SUBR_MUTEX_OWNED: 3271 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t), 3272 mstate, vstate)) { 3273 regs[rd] = NULL; 3274 break; 3275 } 3276 3277 m.mx = dtrace_load64(tupregs[0].dttk_value); 3278 if (MUTEX_TYPE_ADAPTIVE(&m.mi)) 3279 regs[rd] = MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER; 3280 else 3281 regs[rd] = LOCK_HELD(&m.mi.m_spin.m_spinlock); 3282 break; 3283 3284 case DIF_SUBR_MUTEX_OWNER: 3285 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t), 3286 mstate, vstate)) { 3287 regs[rd] = NULL; 3288 break; 3289 } 3290 3291 m.mx = dtrace_load64(tupregs[0].dttk_value); 3292 if (MUTEX_TYPE_ADAPTIVE(&m.mi) && 3293 MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER) 3294 regs[rd] = (uintptr_t)MUTEX_OWNER(&m.mi); 3295 else 3296 regs[rd] = 0; 3297 break; 3298 3299 case DIF_SUBR_MUTEX_TYPE_ADAPTIVE: 3300 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t), 3301 mstate, vstate)) { 3302 regs[rd] = NULL; 3303 break; 3304 } 3305 3306 m.mx = dtrace_load64(tupregs[0].dttk_value); 3307 regs[rd] = MUTEX_TYPE_ADAPTIVE(&m.mi); 3308 break; 3309 3310 case DIF_SUBR_MUTEX_TYPE_SPIN: 3311 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t), 3312 mstate, vstate)) { 3313 regs[rd] = NULL; 3314 break; 3315 } 3316 3317 m.mx = dtrace_load64(tupregs[0].dttk_value); 3318 regs[rd] = MUTEX_TYPE_SPIN(&m.mi); 3319 break; 3320 3321 case DIF_SUBR_RW_READ_HELD: { 3322 uintptr_t tmp; 3323 3324 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t), 3325 mstate, vstate)) { 3326 regs[rd] = NULL; 3327 break; 3328 } 3329 3330 r.rw = dtrace_loadptr(tupregs[0].dttk_value); 3331 regs[rd] = _RW_READ_HELD(&r.ri, tmp); 3332 break; 3333 } 3334 3335 case DIF_SUBR_RW_WRITE_HELD: 3336 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t), 3337 mstate, vstate)) { 3338 regs[rd] = NULL; 3339 break; 3340 } 3341 3342 r.rw = dtrace_loadptr(tupregs[0].dttk_value); 3343 regs[rd] = _RW_WRITE_HELD(&r.ri); 3344 break; 3345 3346 case DIF_SUBR_RW_ISWRITER: 3347 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t), 3348 mstate, vstate)) { 3349 regs[rd] = NULL; 3350 break; 3351 } 3352 3353 r.rw = dtrace_loadptr(tupregs[0].dttk_value); 3354 regs[rd] = _RW_ISWRITER(&r.ri); 3355 break; 3356 3357 case DIF_SUBR_BCOPY: { 3358 /* 3359 * We need to be sure that the destination is in the scratch 3360 * region -- no other region is allowed. 3361 */ 3362 uintptr_t src = tupregs[0].dttk_value; 3363 uintptr_t dest = tupregs[1].dttk_value; 3364 size_t size = tupregs[2].dttk_value; 3365 3366 if (!dtrace_inscratch(dest, size, mstate)) { 3367 *flags |= CPU_DTRACE_BADADDR; 3368 *illval = regs[rd]; 3369 break; 3370 } 3371 3372 if (!dtrace_canload(src, size, mstate, vstate)) { 3373 regs[rd] = NULL; 3374 break; 3375 } 3376 3377 dtrace_bcopy((void *)src, (void *)dest, size); 3378 break; 3379 } 3380 3381 case DIF_SUBR_ALLOCA: 3382 case DIF_SUBR_COPYIN: { 3383 uintptr_t dest = P2ROUNDUP(mstate->dtms_scratch_ptr, 8); 3384 uint64_t size = 3385 tupregs[subr == DIF_SUBR_ALLOCA ? 0 : 1].dttk_value; 3386 size_t scratch_size = (dest - mstate->dtms_scratch_ptr) + size; 3387 3388 /* 3389 * This action doesn't require any credential checks since 3390 * probes will not activate in user contexts to which the 3391 * enabling user does not have permissions. 3392 */ 3393 3394 /* 3395 * Rounding up the user allocation size could have overflowed 3396 * a large, bogus allocation (like -1ULL) to 0. 3397 */ 3398 if (scratch_size < size || 3399 !DTRACE_INSCRATCH(mstate, scratch_size)) { 3400 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 3401 regs[rd] = NULL; 3402 break; 3403 } 3404 3405 if (subr == DIF_SUBR_COPYIN) { 3406 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 3407 dtrace_copyin(tupregs[0].dttk_value, dest, size, flags); 3408 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 3409 } 3410 3411 mstate->dtms_scratch_ptr += scratch_size; 3412 regs[rd] = dest; 3413 break; 3414 } 3415 3416 case DIF_SUBR_COPYINTO: { 3417 uint64_t size = tupregs[1].dttk_value; 3418 uintptr_t dest = tupregs[2].dttk_value; 3419 3420 /* 3421 * This action doesn't require any credential checks since 3422 * probes will not activate in user contexts to which the 3423 * enabling user does not have permissions. 3424 */ 3425 if (!dtrace_inscratch(dest, size, mstate)) { 3426 *flags |= CPU_DTRACE_BADADDR; 3427 *illval = regs[rd]; 3428 break; 3429 } 3430 3431 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 3432 dtrace_copyin(tupregs[0].dttk_value, dest, size, flags); 3433 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 3434 break; 3435 } 3436 3437 case DIF_SUBR_COPYINSTR: { 3438 uintptr_t dest = mstate->dtms_scratch_ptr; 3439 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 3440 3441 if (nargs > 1 && tupregs[1].dttk_value < size) 3442 size = tupregs[1].dttk_value + 1; 3443 3444 /* 3445 * This action doesn't require any credential checks since 3446 * probes will not activate in user contexts to which the 3447 * enabling user does not have permissions. 3448 */ 3449 if (!DTRACE_INSCRATCH(mstate, size)) { 3450 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 3451 regs[rd] = NULL; 3452 break; 3453 } 3454 3455 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 3456 dtrace_copyinstr(tupregs[0].dttk_value, dest, size, flags); 3457 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 3458 3459 ((char *)dest)[size - 1] = '\0'; 3460 mstate->dtms_scratch_ptr += size; 3461 regs[rd] = dest; 3462 break; 3463 } 3464 3465 case DIF_SUBR_MSGSIZE: 3466 case DIF_SUBR_MSGDSIZE: { 3467 uintptr_t baddr = tupregs[0].dttk_value, daddr; 3468 uintptr_t wptr, rptr; 3469 size_t count = 0; 3470 int cont = 0; 3471 3472 while (baddr != NULL && !(*flags & CPU_DTRACE_FAULT)) { 3473 3474 if (!dtrace_canload(baddr, sizeof (mblk_t), mstate, 3475 vstate)) { 3476 regs[rd] = NULL; 3477 break; 3478 } 3479 3480 wptr = dtrace_loadptr(baddr + 3481 offsetof(mblk_t, b_wptr)); 3482 3483 rptr = dtrace_loadptr(baddr + 3484 offsetof(mblk_t, b_rptr)); 3485 3486 if (wptr < rptr) { 3487 *flags |= CPU_DTRACE_BADADDR; 3488 *illval = tupregs[0].dttk_value; 3489 break; 3490 } 3491 3492 daddr = dtrace_loadptr(baddr + 3493 offsetof(mblk_t, b_datap)); 3494 3495 baddr = dtrace_loadptr(baddr + 3496 offsetof(mblk_t, b_cont)); 3497 3498 /* 3499 * We want to prevent against denial-of-service here, 3500 * so we're only going to search the list for 3501 * dtrace_msgdsize_max mblks. 3502 */ 3503 if (cont++ > dtrace_msgdsize_max) { 3504 *flags |= CPU_DTRACE_ILLOP; 3505 break; 3506 } 3507 3508 if (subr == DIF_SUBR_MSGDSIZE) { 3509 if (dtrace_load8(daddr + 3510 offsetof(dblk_t, db_type)) != M_DATA) 3511 continue; 3512 } 3513 3514 count += wptr - rptr; 3515 } 3516 3517 if (!(*flags & CPU_DTRACE_FAULT)) 3518 regs[rd] = count; 3519 3520 break; 3521 } 3522 3523 case DIF_SUBR_PROGENYOF: { 3524 pid_t pid = tupregs[0].dttk_value; 3525 proc_t *p; 3526 int rval = 0; 3527 3528 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 3529 3530 for (p = curthread->t_procp; p != NULL; p = p->p_parent) { 3531 if (p->p_pidp->pid_id == pid) { 3532 rval = 1; 3533 break; 3534 } 3535 } 3536 3537 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 3538 3539 regs[rd] = rval; 3540 break; 3541 } 3542 3543 case DIF_SUBR_SPECULATION: 3544 regs[rd] = dtrace_speculation(state); 3545 break; 3546 3547 case DIF_SUBR_COPYOUT: { 3548 uintptr_t kaddr = tupregs[0].dttk_value; 3549 uintptr_t uaddr = tupregs[1].dttk_value; 3550 uint64_t size = tupregs[2].dttk_value; 3551 3552 if (!dtrace_destructive_disallow && 3553 dtrace_priv_proc_control(state, mstate) && 3554 !dtrace_istoxic(kaddr, size)) { 3555 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 3556 dtrace_copyout(kaddr, uaddr, size, flags); 3557 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 3558 } 3559 break; 3560 } 3561 3562 case DIF_SUBR_COPYOUTSTR: { 3563 uintptr_t kaddr = tupregs[0].dttk_value; 3564 uintptr_t uaddr = tupregs[1].dttk_value; 3565 uint64_t size = tupregs[2].dttk_value; 3566 3567 if (!dtrace_destructive_disallow && 3568 dtrace_priv_proc_control(state, mstate) && 3569 !dtrace_istoxic(kaddr, size)) { 3570 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 3571 dtrace_copyoutstr(kaddr, uaddr, size, flags); 3572 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 3573 } 3574 break; 3575 } 3576 3577 case DIF_SUBR_STRLEN: { 3578 size_t sz; 3579 uintptr_t addr = (uintptr_t)tupregs[0].dttk_value; 3580 sz = dtrace_strlen((char *)addr, 3581 state->dts_options[DTRACEOPT_STRSIZE]); 3582 3583 if (!dtrace_canload(addr, sz + 1, mstate, vstate)) { 3584 regs[rd] = NULL; 3585 break; 3586 } 3587 3588 regs[rd] = sz; 3589 3590 break; 3591 } 3592 3593 case DIF_SUBR_STRCHR: 3594 case DIF_SUBR_STRRCHR: { 3595 /* 3596 * We're going to iterate over the string looking for the 3597 * specified character. We will iterate until we have reached 3598 * the string length or we have found the character. If this 3599 * is DIF_SUBR_STRRCHR, we will look for the last occurrence 3600 * of the specified character instead of the first. 3601 */ 3602 uintptr_t saddr = tupregs[0].dttk_value; 3603 uintptr_t addr = tupregs[0].dttk_value; 3604 uintptr_t limit = addr + state->dts_options[DTRACEOPT_STRSIZE]; 3605 char c, target = (char)tupregs[1].dttk_value; 3606 3607 for (regs[rd] = NULL; addr < limit; addr++) { 3608 if ((c = dtrace_load8(addr)) == target) { 3609 regs[rd] = addr; 3610 3611 if (subr == DIF_SUBR_STRCHR) 3612 break; 3613 } 3614 3615 if (c == '\0') 3616 break; 3617 } 3618 3619 if (!dtrace_canload(saddr, addr - saddr, mstate, vstate)) { 3620 regs[rd] = NULL; 3621 break; 3622 } 3623 3624 break; 3625 } 3626 3627 case DIF_SUBR_STRSTR: 3628 case DIF_SUBR_INDEX: 3629 case DIF_SUBR_RINDEX: { 3630 /* 3631 * We're going to iterate over the string looking for the 3632 * specified string. We will iterate until we have reached 3633 * the string length or we have found the string. (Yes, this 3634 * is done in the most naive way possible -- but considering 3635 * that the string we're searching for is likely to be 3636 * relatively short, the complexity of Rabin-Karp or similar 3637 * hardly seems merited.) 3638 */ 3639 char *addr = (char *)(uintptr_t)tupregs[0].dttk_value; 3640 char *substr = (char *)(uintptr_t)tupregs[1].dttk_value; 3641 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 3642 size_t len = dtrace_strlen(addr, size); 3643 size_t sublen = dtrace_strlen(substr, size); 3644 char *limit = addr + len, *orig = addr; 3645 int notfound = subr == DIF_SUBR_STRSTR ? 0 : -1; 3646 int inc = 1; 3647 3648 regs[rd] = notfound; 3649 3650 if (!dtrace_canload((uintptr_t)addr, len + 1, mstate, vstate)) { 3651 regs[rd] = NULL; 3652 break; 3653 } 3654 3655 if (!dtrace_canload((uintptr_t)substr, sublen + 1, mstate, 3656 vstate)) { 3657 regs[rd] = NULL; 3658 break; 3659 } 3660 3661 /* 3662 * strstr() and index()/rindex() have similar semantics if 3663 * both strings are the empty string: strstr() returns a 3664 * pointer to the (empty) string, and index() and rindex() 3665 * both return index 0 (regardless of any position argument). 3666 */ 3667 if (sublen == 0 && len == 0) { 3668 if (subr == DIF_SUBR_STRSTR) 3669 regs[rd] = (uintptr_t)addr; 3670 else 3671 regs[rd] = 0; 3672 break; 3673 } 3674 3675 if (subr != DIF_SUBR_STRSTR) { 3676 if (subr == DIF_SUBR_RINDEX) { 3677 limit = orig - 1; 3678 addr += len; 3679 inc = -1; 3680 } 3681 3682 /* 3683 * Both index() and rindex() take an optional position 3684 * argument that denotes the starting position. 3685 */ 3686 if (nargs == 3) { 3687 int64_t pos = (int64_t)tupregs[2].dttk_value; 3688 3689 /* 3690 * If the position argument to index() is 3691 * negative, Perl implicitly clamps it at 3692 * zero. This semantic is a little surprising 3693 * given the special meaning of negative 3694 * positions to similar Perl functions like 3695 * substr(), but it appears to reflect a 3696 * notion that index() can start from a 3697 * negative index and increment its way up to 3698 * the string. Given this notion, Perl's 3699 * rindex() is at least self-consistent in 3700 * that it implicitly clamps positions greater 3701 * than the string length to be the string 3702 * length. Where Perl completely loses 3703 * coherence, however, is when the specified 3704 * substring is the empty string (""). In 3705 * this case, even if the position is 3706 * negative, rindex() returns 0 -- and even if 3707 * the position is greater than the length, 3708 * index() returns the string length. These 3709 * semantics violate the notion that index() 3710 * should never return a value less than the 3711 * specified position and that rindex() should 3712 * never return a value greater than the 3713 * specified position. (One assumes that 3714 * these semantics are artifacts of Perl's 3715 * implementation and not the results of 3716 * deliberate design -- it beggars belief that 3717 * even Larry Wall could desire such oddness.) 3718 * While in the abstract one would wish for 3719 * consistent position semantics across 3720 * substr(), index() and rindex() -- or at the 3721 * very least self-consistent position 3722 * semantics for index() and rindex() -- we 3723 * instead opt to keep with the extant Perl 3724 * semantics, in all their broken glory. (Do 3725 * we have more desire to maintain Perl's 3726 * semantics than Perl does? Probably.) 3727 */ 3728 if (subr == DIF_SUBR_RINDEX) { 3729 if (pos < 0) { 3730 if (sublen == 0) 3731 regs[rd] = 0; 3732 break; 3733 } 3734 3735 if (pos > len) 3736 pos = len; 3737 } else { 3738 if (pos < 0) 3739 pos = 0; 3740 3741 if (pos >= len) { 3742 if (sublen == 0) 3743 regs[rd] = len; 3744 break; 3745 } 3746 } 3747 3748 addr = orig + pos; 3749 } 3750 } 3751 3752 for (regs[rd] = notfound; addr != limit; addr += inc) { 3753 if (dtrace_strncmp(addr, substr, sublen) == 0) { 3754 if (subr != DIF_SUBR_STRSTR) { 3755 /* 3756 * As D index() and rindex() are 3757 * modeled on Perl (and not on awk), 3758 * we return a zero-based (and not a 3759 * one-based) index. (For you Perl 3760 * weenies: no, we're not going to add 3761 * $[ -- and shouldn't you be at a con 3762 * or something?) 3763 */ 3764 regs[rd] = (uintptr_t)(addr - orig); 3765 break; 3766 } 3767 3768 ASSERT(subr == DIF_SUBR_STRSTR); 3769 regs[rd] = (uintptr_t)addr; 3770 break; 3771 } 3772 } 3773 3774 break; 3775 } 3776 3777 case DIF_SUBR_STRTOK: { 3778 uintptr_t addr = tupregs[0].dttk_value; 3779 uintptr_t tokaddr = tupregs[1].dttk_value; 3780 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 3781 uintptr_t limit, toklimit = tokaddr + size; 3782 uint8_t c, tokmap[32]; /* 256 / 8 */ 3783 char *dest = (char *)mstate->dtms_scratch_ptr; 3784 int i; 3785 3786 /* 3787 * Check both the token buffer and (later) the input buffer, 3788 * since both could be non-scratch addresses. 3789 */ 3790 if (!dtrace_strcanload(tokaddr, size, mstate, vstate)) { 3791 regs[rd] = NULL; 3792 break; 3793 } 3794 3795 if (!DTRACE_INSCRATCH(mstate, size)) { 3796 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 3797 regs[rd] = NULL; 3798 break; 3799 } 3800 3801 if (addr == NULL) { 3802 /* 3803 * If the address specified is NULL, we use our saved 3804 * strtok pointer from the mstate. Note that this 3805 * means that the saved strtok pointer is _only_ 3806 * valid within multiple enablings of the same probe -- 3807 * it behaves like an implicit clause-local variable. 3808 */ 3809 addr = mstate->dtms_strtok; 3810 } else { 3811 /* 3812 * If the user-specified address is non-NULL we must 3813 * access check it. This is the only time we have 3814 * a chance to do so, since this address may reside 3815 * in the string table of this clause-- future calls 3816 * (when we fetch addr from mstate->dtms_strtok) 3817 * would fail this access check. 3818 */ 3819 if (!dtrace_strcanload(addr, size, mstate, vstate)) { 3820 regs[rd] = NULL; 3821 break; 3822 } 3823 } 3824 3825 /* 3826 * First, zero the token map, and then process the token 3827 * string -- setting a bit in the map for every character 3828 * found in the token string. 3829 */ 3830 for (i = 0; i < sizeof (tokmap); i++) 3831 tokmap[i] = 0; 3832 3833 for (; tokaddr < toklimit; tokaddr++) { 3834 if ((c = dtrace_load8(tokaddr)) == '\0') 3835 break; 3836 3837 ASSERT((c >> 3) < sizeof (tokmap)); 3838 tokmap[c >> 3] |= (1 << (c & 0x7)); 3839 } 3840 3841 for (limit = addr + size; addr < limit; addr++) { 3842 /* 3843 * We're looking for a character that is _not_ contained 3844 * in the token string. 3845 */ 3846 if ((c = dtrace_load8(addr)) == '\0') 3847 break; 3848 3849 if (!(tokmap[c >> 3] & (1 << (c & 0x7)))) 3850 break; 3851 } 3852 3853 if (c == '\0') { 3854 /* 3855 * We reached the end of the string without finding 3856 * any character that was not in the token string. 3857 * We return NULL in this case, and we set the saved 3858 * address to NULL as well. 3859 */ 3860 regs[rd] = NULL; 3861 mstate->dtms_strtok = NULL; 3862 break; 3863 } 3864 3865 /* 3866 * From here on, we're copying into the destination string. 3867 */ 3868 for (i = 0; addr < limit && i < size - 1; addr++) { 3869 if ((c = dtrace_load8(addr)) == '\0') 3870 break; 3871 3872 if (tokmap[c >> 3] & (1 << (c & 0x7))) 3873 break; 3874 3875 ASSERT(i < size); 3876 dest[i++] = c; 3877 } 3878 3879 ASSERT(i < size); 3880 dest[i] = '\0'; 3881 regs[rd] = (uintptr_t)dest; 3882 mstate->dtms_scratch_ptr += size; 3883 mstate->dtms_strtok = addr; 3884 break; 3885 } 3886 3887 case DIF_SUBR_SUBSTR: { 3888 uintptr_t s = tupregs[0].dttk_value; 3889 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 3890 char *d = (char *)mstate->dtms_scratch_ptr; 3891 int64_t index = (int64_t)tupregs[1].dttk_value; 3892 int64_t remaining = (int64_t)tupregs[2].dttk_value; 3893 size_t len = dtrace_strlen((char *)s, size); 3894 int64_t i; 3895 3896 if (!dtrace_canload(s, len + 1, mstate, vstate)) { 3897 regs[rd] = NULL; 3898 break; 3899 } 3900 3901 if (!DTRACE_INSCRATCH(mstate, size)) { 3902 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 3903 regs[rd] = NULL; 3904 break; 3905 } 3906 3907 if (nargs <= 2) 3908 remaining = (int64_t)size; 3909 3910 if (index < 0) { 3911 index += len; 3912 3913 if (index < 0 && index + remaining > 0) { 3914 remaining += index; 3915 index = 0; 3916 } 3917 } 3918 3919 if (index >= len || index < 0) { 3920 remaining = 0; 3921 } else if (remaining < 0) { 3922 remaining += len - index; 3923 } else if (index + remaining > size) { 3924 remaining = size - index; 3925 } 3926 3927 for (i = 0; i < remaining; i++) { 3928 if ((d[i] = dtrace_load8(s + index + i)) == '\0') 3929 break; 3930 } 3931 3932 d[i] = '\0'; 3933 3934 mstate->dtms_scratch_ptr += size; 3935 regs[rd] = (uintptr_t)d; 3936 break; 3937 } 3938 3939 case DIF_SUBR_TOUPPER: 3940 case DIF_SUBR_TOLOWER: { 3941 uintptr_t s = tupregs[0].dttk_value; 3942 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 3943 char *dest = (char *)mstate->dtms_scratch_ptr, c; 3944 size_t len = dtrace_strlen((char *)s, size); 3945 char lower, upper, convert; 3946 int64_t i; 3947 3948 if (subr == DIF_SUBR_TOUPPER) { 3949 lower = 'a'; 3950 upper = 'z'; 3951 convert = 'A'; 3952 } else { 3953 lower = 'A'; 3954 upper = 'Z'; 3955 convert = 'a'; 3956 } 3957 3958 if (!dtrace_canload(s, len + 1, mstate, vstate)) { 3959 regs[rd] = NULL; 3960 break; 3961 } 3962 3963 if (!DTRACE_INSCRATCH(mstate, size)) { 3964 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 3965 regs[rd] = NULL; 3966 break; 3967 } 3968 3969 for (i = 0; i < size - 1; i++) { 3970 if ((c = dtrace_load8(s + i)) == '\0') 3971 break; 3972 3973 if (c >= lower && c <= upper) 3974 c = convert + (c - lower); 3975 3976 dest[i] = c; 3977 } 3978 3979 ASSERT(i < size); 3980 dest[i] = '\0'; 3981 regs[rd] = (uintptr_t)dest; 3982 mstate->dtms_scratch_ptr += size; 3983 break; 3984 } 3985 3986 case DIF_SUBR_GETMAJOR: 3987 #ifdef _LP64 3988 regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR64) & MAXMAJ64; 3989 #else 3990 regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR) & MAXMAJ; 3991 #endif 3992 break; 3993 3994 case DIF_SUBR_GETMINOR: 3995 #ifdef _LP64 3996 regs[rd] = tupregs[0].dttk_value & MAXMIN64; 3997 #else 3998 regs[rd] = tupregs[0].dttk_value & MAXMIN; 3999 #endif 4000 break; 4001 4002 case DIF_SUBR_DDI_PATHNAME: { 4003 /* 4004 * This one is a galactic mess. We are going to roughly 4005 * emulate ddi_pathname(), but it's made more complicated 4006 * by the fact that we (a) want to include the minor name and 4007 * (b) must proceed iteratively instead of recursively. 4008 */ 4009 uintptr_t dest = mstate->dtms_scratch_ptr; 4010 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 4011 char *start = (char *)dest, *end = start + size - 1; 4012 uintptr_t daddr = tupregs[0].dttk_value; 4013 int64_t minor = (int64_t)tupregs[1].dttk_value; 4014 char *s; 4015 int i, len, depth = 0; 4016 4017 /* 4018 * Due to all the pointer jumping we do and context we must 4019 * rely upon, we just mandate that the user must have kernel 4020 * read privileges to use this routine. 4021 */ 4022 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) == 0) { 4023 *flags |= CPU_DTRACE_KPRIV; 4024 *illval = daddr; 4025 regs[rd] = NULL; 4026 } 4027 4028 if (!DTRACE_INSCRATCH(mstate, size)) { 4029 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4030 regs[rd] = NULL; 4031 break; 4032 } 4033 4034 *end = '\0'; 4035 4036 /* 4037 * We want to have a name for the minor. In order to do this, 4038 * we need to walk the minor list from the devinfo. We want 4039 * to be sure that we don't infinitely walk a circular list, 4040 * so we check for circularity by sending a scout pointer 4041 * ahead two elements for every element that we iterate over; 4042 * if the list is circular, these will ultimately point to the 4043 * same element. You may recognize this little trick as the 4044 * answer to a stupid interview question -- one that always 4045 * seems to be asked by those who had to have it laboriously 4046 * explained to them, and who can't even concisely describe 4047 * the conditions under which one would be forced to resort to 4048 * this technique. Needless to say, those conditions are 4049 * found here -- and probably only here. Is this the only use 4050 * of this infamous trick in shipping, production code? If it 4051 * isn't, it probably should be... 4052 */ 4053 if (minor != -1) { 4054 uintptr_t maddr = dtrace_loadptr(daddr + 4055 offsetof(struct dev_info, devi_minor)); 4056 4057 uintptr_t next = offsetof(struct ddi_minor_data, next); 4058 uintptr_t name = offsetof(struct ddi_minor_data, 4059 d_minor) + offsetof(struct ddi_minor, name); 4060 uintptr_t dev = offsetof(struct ddi_minor_data, 4061 d_minor) + offsetof(struct ddi_minor, dev); 4062 uintptr_t scout; 4063 4064 if (maddr != NULL) 4065 scout = dtrace_loadptr(maddr + next); 4066 4067 while (maddr != NULL && !(*flags & CPU_DTRACE_FAULT)) { 4068 uint64_t m; 4069 #ifdef _LP64 4070 m = dtrace_load64(maddr + dev) & MAXMIN64; 4071 #else 4072 m = dtrace_load32(maddr + dev) & MAXMIN; 4073 #endif 4074 if (m != minor) { 4075 maddr = dtrace_loadptr(maddr + next); 4076 4077 if (scout == NULL) 4078 continue; 4079 4080 scout = dtrace_loadptr(scout + next); 4081 4082 if (scout == NULL) 4083 continue; 4084 4085 scout = dtrace_loadptr(scout + next); 4086 4087 if (scout == NULL) 4088 continue; 4089 4090 if (scout == maddr) { 4091 *flags |= CPU_DTRACE_ILLOP; 4092 break; 4093 } 4094 4095 continue; 4096 } 4097 4098 /* 4099 * We have the minor data. Now we need to 4100 * copy the minor's name into the end of the 4101 * pathname. 4102 */ 4103 s = (char *)dtrace_loadptr(maddr + name); 4104 len = dtrace_strlen(s, size); 4105 4106 if (*flags & CPU_DTRACE_FAULT) 4107 break; 4108 4109 if (len != 0) { 4110 if ((end -= (len + 1)) < start) 4111 break; 4112 4113 *end = ':'; 4114 } 4115 4116 for (i = 1; i <= len; i++) 4117 end[i] = dtrace_load8((uintptr_t)s++); 4118 break; 4119 } 4120 } 4121 4122 while (daddr != NULL && !(*flags & CPU_DTRACE_FAULT)) { 4123 ddi_node_state_t devi_state; 4124 4125 devi_state = dtrace_load32(daddr + 4126 offsetof(struct dev_info, devi_node_state)); 4127 4128 if (*flags & CPU_DTRACE_FAULT) 4129 break; 4130 4131 if (devi_state >= DS_INITIALIZED) { 4132 s = (char *)dtrace_loadptr(daddr + 4133 offsetof(struct dev_info, devi_addr)); 4134 len = dtrace_strlen(s, size); 4135 4136 if (*flags & CPU_DTRACE_FAULT) 4137 break; 4138 4139 if (len != 0) { 4140 if ((end -= (len + 1)) < start) 4141 break; 4142 4143 *end = '@'; 4144 } 4145 4146 for (i = 1; i <= len; i++) 4147 end[i] = dtrace_load8((uintptr_t)s++); 4148 } 4149 4150 /* 4151 * Now for the node name... 4152 */ 4153 s = (char *)dtrace_loadptr(daddr + 4154 offsetof(struct dev_info, devi_node_name)); 4155 4156 daddr = dtrace_loadptr(daddr + 4157 offsetof(struct dev_info, devi_parent)); 4158 4159 /* 4160 * If our parent is NULL (that is, if we're the root 4161 * node), we're going to use the special path 4162 * "devices". 4163 */ 4164 if (daddr == NULL) 4165 s = "devices"; 4166 4167 len = dtrace_strlen(s, size); 4168 if (*flags & CPU_DTRACE_FAULT) 4169 break; 4170 4171 if ((end -= (len + 1)) < start) 4172 break; 4173 4174 for (i = 1; i <= len; i++) 4175 end[i] = dtrace_load8((uintptr_t)s++); 4176 *end = '/'; 4177 4178 if (depth++ > dtrace_devdepth_max) { 4179 *flags |= CPU_DTRACE_ILLOP; 4180 break; 4181 } 4182 } 4183 4184 if (end < start) 4185 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4186 4187 if (daddr == NULL) { 4188 regs[rd] = (uintptr_t)end; 4189 mstate->dtms_scratch_ptr += size; 4190 } 4191 4192 break; 4193 } 4194 4195 case DIF_SUBR_STRJOIN: { 4196 char *d = (char *)mstate->dtms_scratch_ptr; 4197 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 4198 uintptr_t s1 = tupregs[0].dttk_value; 4199 uintptr_t s2 = tupregs[1].dttk_value; 4200 int i = 0; 4201 4202 if (!dtrace_strcanload(s1, size, mstate, vstate) || 4203 !dtrace_strcanload(s2, size, mstate, vstate)) { 4204 regs[rd] = NULL; 4205 break; 4206 } 4207 4208 if (!DTRACE_INSCRATCH(mstate, size)) { 4209 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4210 regs[rd] = NULL; 4211 break; 4212 } 4213 4214 for (;;) { 4215 if (i >= size) { 4216 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4217 regs[rd] = NULL; 4218 break; 4219 } 4220 4221 if ((d[i++] = dtrace_load8(s1++)) == '\0') { 4222 i--; 4223 break; 4224 } 4225 } 4226 4227 for (;;) { 4228 if (i >= size) { 4229 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4230 regs[rd] = NULL; 4231 break; 4232 } 4233 4234 if ((d[i++] = dtrace_load8(s2++)) == '\0') 4235 break; 4236 } 4237 4238 if (i < size) { 4239 mstate->dtms_scratch_ptr += i; 4240 regs[rd] = (uintptr_t)d; 4241 } 4242 4243 break; 4244 } 4245 4246 case DIF_SUBR_LLTOSTR: { 4247 int64_t i = (int64_t)tupregs[0].dttk_value; 4248 uint64_t val, digit; 4249 uint64_t size = 65; /* enough room for 2^64 in binary */ 4250 char *end = (char *)mstate->dtms_scratch_ptr + size - 1; 4251 int base = 10; 4252 4253 if (nargs > 1) { 4254 if ((base = tupregs[1].dttk_value) <= 1 || 4255 base > ('z' - 'a' + 1) + ('9' - '0' + 1)) { 4256 *flags |= CPU_DTRACE_ILLOP; 4257 break; 4258 } 4259 } 4260 4261 val = (base == 10 && i < 0) ? i * -1 : i; 4262 4263 if (!DTRACE_INSCRATCH(mstate, size)) { 4264 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4265 regs[rd] = NULL; 4266 break; 4267 } 4268 4269 for (*end-- = '\0'; val; val /= base) { 4270 if ((digit = val % base) <= '9' - '0') { 4271 *end-- = '0' + digit; 4272 } else { 4273 *end-- = 'a' + (digit - ('9' - '0') - 1); 4274 } 4275 } 4276 4277 if (i == 0 && base == 16) 4278 *end-- = '0'; 4279 4280 if (base == 16) 4281 *end-- = 'x'; 4282 4283 if (i == 0 || base == 8 || base == 16) 4284 *end-- = '0'; 4285 4286 if (i < 0 && base == 10) 4287 *end-- = '-'; 4288 4289 regs[rd] = (uintptr_t)end + 1; 4290 mstate->dtms_scratch_ptr += size; 4291 break; 4292 } 4293 4294 case DIF_SUBR_HTONS: 4295 case DIF_SUBR_NTOHS: 4296 #ifdef _BIG_ENDIAN 4297 regs[rd] = (uint16_t)tupregs[0].dttk_value; 4298 #else 4299 regs[rd] = DT_BSWAP_16((uint16_t)tupregs[0].dttk_value); 4300 #endif 4301 break; 4302 4303 4304 case DIF_SUBR_HTONL: 4305 case DIF_SUBR_NTOHL: 4306 #ifdef _BIG_ENDIAN 4307 regs[rd] = (uint32_t)tupregs[0].dttk_value; 4308 #else 4309 regs[rd] = DT_BSWAP_32((uint32_t)tupregs[0].dttk_value); 4310 #endif 4311 break; 4312 4313 4314 case DIF_SUBR_HTONLL: 4315 case DIF_SUBR_NTOHLL: 4316 #ifdef _BIG_ENDIAN 4317 regs[rd] = (uint64_t)tupregs[0].dttk_value; 4318 #else 4319 regs[rd] = DT_BSWAP_64((uint64_t)tupregs[0].dttk_value); 4320 #endif 4321 break; 4322 4323 4324 case DIF_SUBR_DIRNAME: 4325 case DIF_SUBR_BASENAME: { 4326 char *dest = (char *)mstate->dtms_scratch_ptr; 4327 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 4328 uintptr_t src = tupregs[0].dttk_value; 4329 int i, j, len = dtrace_strlen((char *)src, size); 4330 int lastbase = -1, firstbase = -1, lastdir = -1; 4331 int start, end; 4332 4333 if (!dtrace_canload(src, len + 1, mstate, vstate)) { 4334 regs[rd] = NULL; 4335 break; 4336 } 4337 4338 if (!DTRACE_INSCRATCH(mstate, size)) { 4339 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4340 regs[rd] = NULL; 4341 break; 4342 } 4343 4344 /* 4345 * The basename and dirname for a zero-length string is 4346 * defined to be "." 4347 */ 4348 if (len == 0) { 4349 len = 1; 4350 src = (uintptr_t)"."; 4351 } 4352 4353 /* 4354 * Start from the back of the string, moving back toward the 4355 * front until we see a character that isn't a slash. That 4356 * character is the last character in the basename. 4357 */ 4358 for (i = len - 1; i >= 0; i--) { 4359 if (dtrace_load8(src + i) != '/') 4360 break; 4361 } 4362 4363 if (i >= 0) 4364 lastbase = i; 4365 4366 /* 4367 * Starting from the last character in the basename, move 4368 * towards the front until we find a slash. The character 4369 * that we processed immediately before that is the first 4370 * character in the basename. 4371 */ 4372 for (; i >= 0; i--) { 4373 if (dtrace_load8(src + i) == '/') 4374 break; 4375 } 4376 4377 if (i >= 0) 4378 firstbase = i + 1; 4379 4380 /* 4381 * Now keep going until we find a non-slash character. That 4382 * character is the last character in the dirname. 4383 */ 4384 for (; i >= 0; i--) { 4385 if (dtrace_load8(src + i) != '/') 4386 break; 4387 } 4388 4389 if (i >= 0) 4390 lastdir = i; 4391 4392 ASSERT(!(lastbase == -1 && firstbase != -1)); 4393 ASSERT(!(firstbase == -1 && lastdir != -1)); 4394 4395 if (lastbase == -1) { 4396 /* 4397 * We didn't find a non-slash character. We know that 4398 * the length is non-zero, so the whole string must be 4399 * slashes. In either the dirname or the basename 4400 * case, we return '/'. 4401 */ 4402 ASSERT(firstbase == -1); 4403 firstbase = lastbase = lastdir = 0; 4404 } 4405 4406 if (firstbase == -1) { 4407 /* 4408 * The entire string consists only of a basename 4409 * component. If we're looking for dirname, we need 4410 * to change our string to be just "."; if we're 4411 * looking for a basename, we'll just set the first 4412 * character of the basename to be 0. 4413 */ 4414 if (subr == DIF_SUBR_DIRNAME) { 4415 ASSERT(lastdir == -1); 4416 src = (uintptr_t)"."; 4417 lastdir = 0; 4418 } else { 4419 firstbase = 0; 4420 } 4421 } 4422 4423 if (subr == DIF_SUBR_DIRNAME) { 4424 if (lastdir == -1) { 4425 /* 4426 * We know that we have a slash in the name -- 4427 * or lastdir would be set to 0, above. And 4428 * because lastdir is -1, we know that this 4429 * slash must be the first character. (That 4430 * is, the full string must be of the form 4431 * "/basename".) In this case, the last 4432 * character of the directory name is 0. 4433 */ 4434 lastdir = 0; 4435 } 4436 4437 start = 0; 4438 end = lastdir; 4439 } else { 4440 ASSERT(subr == DIF_SUBR_BASENAME); 4441 ASSERT(firstbase != -1 && lastbase != -1); 4442 start = firstbase; 4443 end = lastbase; 4444 } 4445 4446 for (i = start, j = 0; i <= end && j < size - 1; i++, j++) 4447 dest[j] = dtrace_load8(src + i); 4448 4449 dest[j] = '\0'; 4450 regs[rd] = (uintptr_t)dest; 4451 mstate->dtms_scratch_ptr += size; 4452 break; 4453 } 4454 4455 case DIF_SUBR_CLEANPATH: { 4456 char *dest = (char *)mstate->dtms_scratch_ptr, c; 4457 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 4458 uintptr_t src = tupregs[0].dttk_value; 4459 int i = 0, j = 0; 4460 4461 if (!dtrace_strcanload(src, size, mstate, vstate)) { 4462 regs[rd] = NULL; 4463 break; 4464 } 4465 4466 if (!DTRACE_INSCRATCH(mstate, size)) { 4467 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4468 regs[rd] = NULL; 4469 break; 4470 } 4471 4472 /* 4473 * Move forward, loading each character. 4474 */ 4475 do { 4476 c = dtrace_load8(src + i++); 4477 next: 4478 if (j + 5 >= size) /* 5 = strlen("/..c\0") */ 4479 break; 4480 4481 if (c != '/') { 4482 dest[j++] = c; 4483 continue; 4484 } 4485 4486 c = dtrace_load8(src + i++); 4487 4488 if (c == '/') { 4489 /* 4490 * We have two slashes -- we can just advance 4491 * to the next character. 4492 */ 4493 goto next; 4494 } 4495 4496 if (c != '.') { 4497 /* 4498 * This is not "." and it's not ".." -- we can 4499 * just store the "/" and this character and 4500 * drive on. 4501 */ 4502 dest[j++] = '/'; 4503 dest[j++] = c; 4504 continue; 4505 } 4506 4507 c = dtrace_load8(src + i++); 4508 4509 if (c == '/') { 4510 /* 4511 * This is a "/./" component. We're not going 4512 * to store anything in the destination buffer; 4513 * we're just going to go to the next component. 4514 */ 4515 goto next; 4516 } 4517 4518 if (c != '.') { 4519 /* 4520 * This is not ".." -- we can just store the 4521 * "/." and this character and continue 4522 * processing. 4523 */ 4524 dest[j++] = '/'; 4525 dest[j++] = '.'; 4526 dest[j++] = c; 4527 continue; 4528 } 4529 4530 c = dtrace_load8(src + i++); 4531 4532 if (c != '/' && c != '\0') { 4533 /* 4534 * This is not ".." -- it's "..[mumble]". 4535 * We'll store the "/.." and this character 4536 * and continue processing. 4537 */ 4538 dest[j++] = '/'; 4539 dest[j++] = '.'; 4540 dest[j++] = '.'; 4541 dest[j++] = c; 4542 continue; 4543 } 4544 4545 /* 4546 * This is "/../" or "/..\0". We need to back up 4547 * our destination pointer until we find a "/". 4548 */ 4549 i--; 4550 while (j != 0 && dest[--j] != '/') 4551 continue; 4552 4553 if (c == '\0') 4554 dest[++j] = '/'; 4555 } while (c != '\0'); 4556 4557 dest[j] = '\0'; 4558 regs[rd] = (uintptr_t)dest; 4559 mstate->dtms_scratch_ptr += size; 4560 break; 4561 } 4562 4563 case DIF_SUBR_INET_NTOA: 4564 case DIF_SUBR_INET_NTOA6: 4565 case DIF_SUBR_INET_NTOP: { 4566 size_t size; 4567 int af, argi, i; 4568 char *base, *end; 4569 4570 if (subr == DIF_SUBR_INET_NTOP) { 4571 af = (int)tupregs[0].dttk_value; 4572 argi = 1; 4573 } else { 4574 af = subr == DIF_SUBR_INET_NTOA ? AF_INET: AF_INET6; 4575 argi = 0; 4576 } 4577 4578 if (af == AF_INET) { 4579 ipaddr_t ip4; 4580 uint8_t *ptr8, val; 4581 4582 /* 4583 * Safely load the IPv4 address. 4584 */ 4585 ip4 = dtrace_load32(tupregs[argi].dttk_value); 4586 4587 /* 4588 * Check an IPv4 string will fit in scratch. 4589 */ 4590 size = INET_ADDRSTRLEN; 4591 if (!DTRACE_INSCRATCH(mstate, size)) { 4592 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4593 regs[rd] = NULL; 4594 break; 4595 } 4596 base = (char *)mstate->dtms_scratch_ptr; 4597 end = (char *)mstate->dtms_scratch_ptr + size - 1; 4598 4599 /* 4600 * Stringify as a dotted decimal quad. 4601 */ 4602 *end-- = '\0'; 4603 ptr8 = (uint8_t *)&ip4; 4604 for (i = 3; i >= 0; i--) { 4605 val = ptr8[i]; 4606 4607 if (val == 0) { 4608 *end-- = '0'; 4609 } else { 4610 for (; val; val /= 10) { 4611 *end-- = '0' + (val % 10); 4612 } 4613 } 4614 4615 if (i > 0) 4616 *end-- = '.'; 4617 } 4618 ASSERT(end + 1 >= base); 4619 4620 } else if (af == AF_INET6) { 4621 struct in6_addr ip6; 4622 int firstzero, tryzero, numzero, v6end; 4623 uint16_t val; 4624 const char digits[] = "0123456789abcdef"; 4625 4626 /* 4627 * Stringify using RFC 1884 convention 2 - 16 bit 4628 * hexadecimal values with a zero-run compression. 4629 * Lower case hexadecimal digits are used. 4630 * eg, fe80::214:4fff:fe0b:76c8. 4631 * The IPv4 embedded form is returned for inet_ntop, 4632 * just the IPv4 string is returned for inet_ntoa6. 4633 */ 4634 4635 /* 4636 * Safely load the IPv6 address. 4637 */ 4638 dtrace_bcopy( 4639 (void *)(uintptr_t)tupregs[argi].dttk_value, 4640 (void *)(uintptr_t)&ip6, sizeof (struct in6_addr)); 4641 4642 /* 4643 * Check an IPv6 string will fit in scratch. 4644 */ 4645 size = INET6_ADDRSTRLEN; 4646 if (!DTRACE_INSCRATCH(mstate, size)) { 4647 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4648 regs[rd] = NULL; 4649 break; 4650 } 4651 base = (char *)mstate->dtms_scratch_ptr; 4652 end = (char *)mstate->dtms_scratch_ptr + size - 1; 4653 *end-- = '\0'; 4654 4655 /* 4656 * Find the longest run of 16 bit zero values 4657 * for the single allowed zero compression - "::". 4658 */ 4659 firstzero = -1; 4660 tryzero = -1; 4661 numzero = 1; 4662 for (i = 0; i < sizeof (struct in6_addr); i++) { 4663 if (ip6._S6_un._S6_u8[i] == 0 && 4664 tryzero == -1 && i % 2 == 0) { 4665 tryzero = i; 4666 continue; 4667 } 4668 4669 if (tryzero != -1 && 4670 (ip6._S6_un._S6_u8[i] != 0 || 4671 i == sizeof (struct in6_addr) - 1)) { 4672 4673 if (i - tryzero <= numzero) { 4674 tryzero = -1; 4675 continue; 4676 } 4677 4678 firstzero = tryzero; 4679 numzero = i - i % 2 - tryzero; 4680 tryzero = -1; 4681 4682 if (ip6._S6_un._S6_u8[i] == 0 && 4683 i == sizeof (struct in6_addr) - 1) 4684 numzero += 2; 4685 } 4686 } 4687 ASSERT(firstzero + numzero <= sizeof (struct in6_addr)); 4688 4689 /* 4690 * Check for an IPv4 embedded address. 4691 */ 4692 v6end = sizeof (struct in6_addr) - 2; 4693 if (IN6_IS_ADDR_V4MAPPED(&ip6) || 4694 IN6_IS_ADDR_V4COMPAT(&ip6)) { 4695 for (i = sizeof (struct in6_addr) - 1; 4696 i >= DTRACE_V4MAPPED_OFFSET; i--) { 4697 ASSERT(end >= base); 4698 4699 val = ip6._S6_un._S6_u8[i]; 4700 4701 if (val == 0) { 4702 *end-- = '0'; 4703 } else { 4704 for (; val; val /= 10) { 4705 *end-- = '0' + val % 10; 4706 } 4707 } 4708 4709 if (i > DTRACE_V4MAPPED_OFFSET) 4710 *end-- = '.'; 4711 } 4712 4713 if (subr == DIF_SUBR_INET_NTOA6) 4714 goto inetout; 4715 4716 /* 4717 * Set v6end to skip the IPv4 address that 4718 * we have already stringified. 4719 */ 4720 v6end = 10; 4721 } 4722 4723 /* 4724 * Build the IPv6 string by working through the 4725 * address in reverse. 4726 */ 4727 for (i = v6end; i >= 0; i -= 2) { 4728 ASSERT(end >= base); 4729 4730 if (i == firstzero + numzero - 2) { 4731 *end-- = ':'; 4732 *end-- = ':'; 4733 i -= numzero - 2; 4734 continue; 4735 } 4736 4737 if (i < 14 && i != firstzero - 2) 4738 *end-- = ':'; 4739 4740 val = (ip6._S6_un._S6_u8[i] << 8) + 4741 ip6._S6_un._S6_u8[i + 1]; 4742 4743 if (val == 0) { 4744 *end-- = '0'; 4745 } else { 4746 for (; val; val /= 16) { 4747 *end-- = digits[val % 16]; 4748 } 4749 } 4750 } 4751 ASSERT(end + 1 >= base); 4752 4753 } else { 4754 /* 4755 * The user didn't use AH_INET or AH_INET6. 4756 */ 4757 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); 4758 regs[rd] = NULL; 4759 break; 4760 } 4761 4762 inetout: regs[rd] = (uintptr_t)end + 1; 4763 mstate->dtms_scratch_ptr += size; 4764 break; 4765 } 4766 4767 } 4768 } 4769 4770 /* 4771 * Emulate the execution of DTrace IR instructions specified by the given 4772 * DIF object. This function is deliberately void of assertions as all of 4773 * the necessary checks are handled by a call to dtrace_difo_validate(). 4774 */ 4775 static uint64_t 4776 dtrace_dif_emulate(dtrace_difo_t *difo, dtrace_mstate_t *mstate, 4777 dtrace_vstate_t *vstate, dtrace_state_t *state) 4778 { 4779 const dif_instr_t *text = difo->dtdo_buf; 4780 const uint_t textlen = difo->dtdo_len; 4781 const char *strtab = difo->dtdo_strtab; 4782 const uint64_t *inttab = difo->dtdo_inttab; 4783 4784 uint64_t rval = 0; 4785 dtrace_statvar_t *svar; 4786 dtrace_dstate_t *dstate = &vstate->dtvs_dynvars; 4787 dtrace_difv_t *v; 4788 volatile uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags; 4789 volatile uintptr_t *illval = &cpu_core[CPU->cpu_id].cpuc_dtrace_illval; 4790 4791 dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */ 4792 uint64_t regs[DIF_DIR_NREGS]; 4793 uint64_t *tmp; 4794 4795 uint8_t cc_n = 0, cc_z = 0, cc_v = 0, cc_c = 0; 4796 int64_t cc_r; 4797 uint_t pc = 0, id, opc; 4798 uint8_t ttop = 0; 4799 dif_instr_t instr; 4800 uint_t r1, r2, rd; 4801 4802 /* 4803 * We stash the current DIF object into the machine state: we need it 4804 * for subsequent access checking. 4805 */ 4806 mstate->dtms_difo = difo; 4807 4808 regs[DIF_REG_R0] = 0; /* %r0 is fixed at zero */ 4809 4810 while (pc < textlen && !(*flags & CPU_DTRACE_FAULT)) { 4811 opc = pc; 4812 4813 instr = text[pc++]; 4814 r1 = DIF_INSTR_R1(instr); 4815 r2 = DIF_INSTR_R2(instr); 4816 rd = DIF_INSTR_RD(instr); 4817 4818 switch (DIF_INSTR_OP(instr)) { 4819 case DIF_OP_OR: 4820 regs[rd] = regs[r1] | regs[r2]; 4821 break; 4822 case DIF_OP_XOR: 4823 regs[rd] = regs[r1] ^ regs[r2]; 4824 break; 4825 case DIF_OP_AND: 4826 regs[rd] = regs[r1] & regs[r2]; 4827 break; 4828 case DIF_OP_SLL: 4829 regs[rd] = regs[r1] << regs[r2]; 4830 break; 4831 case DIF_OP_SRL: 4832 regs[rd] = regs[r1] >> regs[r2]; 4833 break; 4834 case DIF_OP_SUB: 4835 regs[rd] = regs[r1] - regs[r2]; 4836 break; 4837 case DIF_OP_ADD: 4838 regs[rd] = regs[r1] + regs[r2]; 4839 break; 4840 case DIF_OP_MUL: 4841 regs[rd] = regs[r1] * regs[r2]; 4842 break; 4843 case DIF_OP_SDIV: 4844 if (regs[r2] == 0) { 4845 regs[rd] = 0; 4846 *flags |= CPU_DTRACE_DIVZERO; 4847 } else { 4848 regs[rd] = (int64_t)regs[r1] / 4849 (int64_t)regs[r2]; 4850 } 4851 break; 4852 4853 case DIF_OP_UDIV: 4854 if (regs[r2] == 0) { 4855 regs[rd] = 0; 4856 *flags |= CPU_DTRACE_DIVZERO; 4857 } else { 4858 regs[rd] = regs[r1] / regs[r2]; 4859 } 4860 break; 4861 4862 case DIF_OP_SREM: 4863 if (regs[r2] == 0) { 4864 regs[rd] = 0; 4865 *flags |= CPU_DTRACE_DIVZERO; 4866 } else { 4867 regs[rd] = (int64_t)regs[r1] % 4868 (int64_t)regs[r2]; 4869 } 4870 break; 4871 4872 case DIF_OP_UREM: 4873 if (regs[r2] == 0) { 4874 regs[rd] = 0; 4875 *flags |= CPU_DTRACE_DIVZERO; 4876 } else { 4877 regs[rd] = regs[r1] % regs[r2]; 4878 } 4879 break; 4880 4881 case DIF_OP_NOT: 4882 regs[rd] = ~regs[r1]; 4883 break; 4884 case DIF_OP_MOV: 4885 regs[rd] = regs[r1]; 4886 break; 4887 case DIF_OP_CMP: 4888 cc_r = regs[r1] - regs[r2]; 4889 cc_n = cc_r < 0; 4890 cc_z = cc_r == 0; 4891 cc_v = 0; 4892 cc_c = regs[r1] < regs[r2]; 4893 break; 4894 case DIF_OP_TST: 4895 cc_n = cc_v = cc_c = 0; 4896 cc_z = regs[r1] == 0; 4897 break; 4898 case DIF_OP_BA: 4899 pc = DIF_INSTR_LABEL(instr); 4900 break; 4901 case DIF_OP_BE: 4902 if (cc_z) 4903 pc = DIF_INSTR_LABEL(instr); 4904 break; 4905 case DIF_OP_BNE: 4906 if (cc_z == 0) 4907 pc = DIF_INSTR_LABEL(instr); 4908 break; 4909 case DIF_OP_BG: 4910 if ((cc_z | (cc_n ^ cc_v)) == 0) 4911 pc = DIF_INSTR_LABEL(instr); 4912 break; 4913 case DIF_OP_BGU: 4914 if ((cc_c | cc_z) == 0) 4915 pc = DIF_INSTR_LABEL(instr); 4916 break; 4917 case DIF_OP_BGE: 4918 if ((cc_n ^ cc_v) == 0) 4919 pc = DIF_INSTR_LABEL(instr); 4920 break; 4921 case DIF_OP_BGEU: 4922 if (cc_c == 0) 4923 pc = DIF_INSTR_LABEL(instr); 4924 break; 4925 case DIF_OP_BL: 4926 if (cc_n ^ cc_v) 4927 pc = DIF_INSTR_LABEL(instr); 4928 break; 4929 case DIF_OP_BLU: 4930 if (cc_c) 4931 pc = DIF_INSTR_LABEL(instr); 4932 break; 4933 case DIF_OP_BLE: 4934 if (cc_z | (cc_n ^ cc_v)) 4935 pc = DIF_INSTR_LABEL(instr); 4936 break; 4937 case DIF_OP_BLEU: 4938 if (cc_c | cc_z) 4939 pc = DIF_INSTR_LABEL(instr); 4940 break; 4941 case DIF_OP_RLDSB: 4942 if (!dtrace_canstore(regs[r1], 1, mstate, vstate)) { 4943 *flags |= CPU_DTRACE_KPRIV; 4944 *illval = regs[r1]; 4945 break; 4946 } 4947 /*FALLTHROUGH*/ 4948 case DIF_OP_LDSB: 4949 regs[rd] = (int8_t)dtrace_load8(regs[r1]); 4950 break; 4951 case DIF_OP_RLDSH: 4952 if (!dtrace_canstore(regs[r1], 2, mstate, vstate)) { 4953 *flags |= CPU_DTRACE_KPRIV; 4954 *illval = regs[r1]; 4955 break; 4956 } 4957 /*FALLTHROUGH*/ 4958 case DIF_OP_LDSH: 4959 regs[rd] = (int16_t)dtrace_load16(regs[r1]); 4960 break; 4961 case DIF_OP_RLDSW: 4962 if (!dtrace_canstore(regs[r1], 4, mstate, vstate)) { 4963 *flags |= CPU_DTRACE_KPRIV; 4964 *illval = regs[r1]; 4965 break; 4966 } 4967 /*FALLTHROUGH*/ 4968 case DIF_OP_LDSW: 4969 regs[rd] = (int32_t)dtrace_load32(regs[r1]); 4970 break; 4971 case DIF_OP_RLDUB: 4972 if (!dtrace_canstore(regs[r1], 1, mstate, vstate)) { 4973 *flags |= CPU_DTRACE_KPRIV; 4974 *illval = regs[r1]; 4975 break; 4976 } 4977 /*FALLTHROUGH*/ 4978 case DIF_OP_LDUB: 4979 regs[rd] = dtrace_load8(regs[r1]); 4980 break; 4981 case DIF_OP_RLDUH: 4982 if (!dtrace_canstore(regs[r1], 2, mstate, vstate)) { 4983 *flags |= CPU_DTRACE_KPRIV; 4984 *illval = regs[r1]; 4985 break; 4986 } 4987 /*FALLTHROUGH*/ 4988 case DIF_OP_LDUH: 4989 regs[rd] = dtrace_load16(regs[r1]); 4990 break; 4991 case DIF_OP_RLDUW: 4992 if (!dtrace_canstore(regs[r1], 4, mstate, vstate)) { 4993 *flags |= CPU_DTRACE_KPRIV; 4994 *illval = regs[r1]; 4995 break; 4996 } 4997 /*FALLTHROUGH*/ 4998 case DIF_OP_LDUW: 4999 regs[rd] = dtrace_load32(regs[r1]); 5000 break; 5001 case DIF_OP_RLDX: 5002 if (!dtrace_canstore(regs[r1], 8, mstate, vstate)) { 5003 *flags |= CPU_DTRACE_KPRIV; 5004 *illval = regs[r1]; 5005 break; 5006 } 5007 /*FALLTHROUGH*/ 5008 case DIF_OP_LDX: 5009 regs[rd] = dtrace_load64(regs[r1]); 5010 break; 5011 case DIF_OP_ULDSB: 5012 regs[rd] = (int8_t) 5013 dtrace_fuword8((void *)(uintptr_t)regs[r1]); 5014 break; 5015 case DIF_OP_ULDSH: 5016 regs[rd] = (int16_t) 5017 dtrace_fuword16((void *)(uintptr_t)regs[r1]); 5018 break; 5019 case DIF_OP_ULDSW: 5020 regs[rd] = (int32_t) 5021 dtrace_fuword32((void *)(uintptr_t)regs[r1]); 5022 break; 5023 case DIF_OP_ULDUB: 5024 regs[rd] = 5025 dtrace_fuword8((void *)(uintptr_t)regs[r1]); 5026 break; 5027 case DIF_OP_ULDUH: 5028 regs[rd] = 5029 dtrace_fuword16((void *)(uintptr_t)regs[r1]); 5030 break; 5031 case DIF_OP_ULDUW: 5032 regs[rd] = 5033 dtrace_fuword32((void *)(uintptr_t)regs[r1]); 5034 break; 5035 case DIF_OP_ULDX: 5036 regs[rd] = 5037 dtrace_fuword64((void *)(uintptr_t)regs[r1]); 5038 break; 5039 case DIF_OP_RET: 5040 rval = regs[rd]; 5041 pc = textlen; 5042 break; 5043 case DIF_OP_NOP: 5044 break; 5045 case DIF_OP_SETX: 5046 regs[rd] = inttab[DIF_INSTR_INTEGER(instr)]; 5047 break; 5048 case DIF_OP_SETS: 5049 regs[rd] = (uint64_t)(uintptr_t) 5050 (strtab + DIF_INSTR_STRING(instr)); 5051 break; 5052 case DIF_OP_SCMP: { 5053 size_t sz = state->dts_options[DTRACEOPT_STRSIZE]; 5054 uintptr_t s1 = regs[r1]; 5055 uintptr_t s2 = regs[r2]; 5056 5057 if (s1 != NULL && 5058 !dtrace_strcanload(s1, sz, mstate, vstate)) 5059 break; 5060 if (s2 != NULL && 5061 !dtrace_strcanload(s2, sz, mstate, vstate)) 5062 break; 5063 5064 cc_r = dtrace_strncmp((char *)s1, (char *)s2, sz); 5065 5066 cc_n = cc_r < 0; 5067 cc_z = cc_r == 0; 5068 cc_v = cc_c = 0; 5069 break; 5070 } 5071 case DIF_OP_LDGA: 5072 regs[rd] = dtrace_dif_variable(mstate, state, 5073 r1, regs[r2]); 5074 break; 5075 case DIF_OP_LDGS: 5076 id = DIF_INSTR_VAR(instr); 5077 5078 if (id >= DIF_VAR_OTHER_UBASE) { 5079 uintptr_t a; 5080 5081 id -= DIF_VAR_OTHER_UBASE; 5082 svar = vstate->dtvs_globals[id]; 5083 ASSERT(svar != NULL); 5084 v = &svar->dtsv_var; 5085 5086 if (!(v->dtdv_type.dtdt_flags & DIF_TF_BYREF)) { 5087 regs[rd] = svar->dtsv_data; 5088 break; 5089 } 5090 5091 a = (uintptr_t)svar->dtsv_data; 5092 5093 if (*(uint8_t *)a == UINT8_MAX) { 5094 /* 5095 * If the 0th byte is set to UINT8_MAX 5096 * then this is to be treated as a 5097 * reference to a NULL variable. 5098 */ 5099 regs[rd] = NULL; 5100 } else { 5101 regs[rd] = a + sizeof (uint64_t); 5102 } 5103 5104 break; 5105 } 5106 5107 regs[rd] = dtrace_dif_variable(mstate, state, id, 0); 5108 break; 5109 5110 case DIF_OP_STGS: 5111 id = DIF_INSTR_VAR(instr); 5112 5113 ASSERT(id >= DIF_VAR_OTHER_UBASE); 5114 id -= DIF_VAR_OTHER_UBASE; 5115 5116 svar = vstate->dtvs_globals[id]; 5117 ASSERT(svar != NULL); 5118 v = &svar->dtsv_var; 5119 5120 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 5121 uintptr_t a = (uintptr_t)svar->dtsv_data; 5122 5123 ASSERT(a != NULL); 5124 ASSERT(svar->dtsv_size != 0); 5125 5126 if (regs[rd] == NULL) { 5127 *(uint8_t *)a = UINT8_MAX; 5128 break; 5129 } else { 5130 *(uint8_t *)a = 0; 5131 a += sizeof (uint64_t); 5132 } 5133 if (!dtrace_vcanload( 5134 (void *)(uintptr_t)regs[rd], &v->dtdv_type, 5135 mstate, vstate)) 5136 break; 5137 5138 dtrace_vcopy((void *)(uintptr_t)regs[rd], 5139 (void *)a, &v->dtdv_type); 5140 break; 5141 } 5142 5143 svar->dtsv_data = regs[rd]; 5144 break; 5145 5146 case DIF_OP_LDTA: 5147 /* 5148 * There are no DTrace built-in thread-local arrays at 5149 * present. This opcode is saved for future work. 5150 */ 5151 *flags |= CPU_DTRACE_ILLOP; 5152 regs[rd] = 0; 5153 break; 5154 5155 case DIF_OP_LDLS: 5156 id = DIF_INSTR_VAR(instr); 5157 5158 if (id < DIF_VAR_OTHER_UBASE) { 5159 /* 5160 * For now, this has no meaning. 5161 */ 5162 regs[rd] = 0; 5163 break; 5164 } 5165 5166 id -= DIF_VAR_OTHER_UBASE; 5167 5168 ASSERT(id < vstate->dtvs_nlocals); 5169 ASSERT(vstate->dtvs_locals != NULL); 5170 5171 svar = vstate->dtvs_locals[id]; 5172 ASSERT(svar != NULL); 5173 v = &svar->dtsv_var; 5174 5175 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 5176 uintptr_t a = (uintptr_t)svar->dtsv_data; 5177 size_t sz = v->dtdv_type.dtdt_size; 5178 5179 sz += sizeof (uint64_t); 5180 ASSERT(svar->dtsv_size == NCPU * sz); 5181 a += CPU->cpu_id * sz; 5182 5183 if (*(uint8_t *)a == UINT8_MAX) { 5184 /* 5185 * If the 0th byte is set to UINT8_MAX 5186 * then this is to be treated as a 5187 * reference to a NULL variable. 5188 */ 5189 regs[rd] = NULL; 5190 } else { 5191 regs[rd] = a + sizeof (uint64_t); 5192 } 5193 5194 break; 5195 } 5196 5197 ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t)); 5198 tmp = (uint64_t *)(uintptr_t)svar->dtsv_data; 5199 regs[rd] = tmp[CPU->cpu_id]; 5200 break; 5201 5202 case DIF_OP_STLS: 5203 id = DIF_INSTR_VAR(instr); 5204 5205 ASSERT(id >= DIF_VAR_OTHER_UBASE); 5206 id -= DIF_VAR_OTHER_UBASE; 5207 ASSERT(id < vstate->dtvs_nlocals); 5208 5209 ASSERT(vstate->dtvs_locals != NULL); 5210 svar = vstate->dtvs_locals[id]; 5211 ASSERT(svar != NULL); 5212 v = &svar->dtsv_var; 5213 5214 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 5215 uintptr_t a = (uintptr_t)svar->dtsv_data; 5216 size_t sz = v->dtdv_type.dtdt_size; 5217 5218 sz += sizeof (uint64_t); 5219 ASSERT(svar->dtsv_size == NCPU * sz); 5220 a += CPU->cpu_id * sz; 5221 5222 if (regs[rd] == NULL) { 5223 *(uint8_t *)a = UINT8_MAX; 5224 break; 5225 } else { 5226 *(uint8_t *)a = 0; 5227 a += sizeof (uint64_t); 5228 } 5229 5230 if (!dtrace_vcanload( 5231 (void *)(uintptr_t)regs[rd], &v->dtdv_type, 5232 mstate, vstate)) 5233 break; 5234 5235 dtrace_vcopy((void *)(uintptr_t)regs[rd], 5236 (void *)a, &v->dtdv_type); 5237 break; 5238 } 5239 5240 ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t)); 5241 tmp = (uint64_t *)(uintptr_t)svar->dtsv_data; 5242 tmp[CPU->cpu_id] = regs[rd]; 5243 break; 5244 5245 case DIF_OP_LDTS: { 5246 dtrace_dynvar_t *dvar; 5247 dtrace_key_t *key; 5248 5249 id = DIF_INSTR_VAR(instr); 5250 ASSERT(id >= DIF_VAR_OTHER_UBASE); 5251 id -= DIF_VAR_OTHER_UBASE; 5252 v = &vstate->dtvs_tlocals[id]; 5253 5254 key = &tupregs[DIF_DTR_NREGS]; 5255 key[0].dttk_value = (uint64_t)id; 5256 key[0].dttk_size = 0; 5257 DTRACE_TLS_THRKEY(key[1].dttk_value); 5258 key[1].dttk_size = 0; 5259 5260 dvar = dtrace_dynvar(dstate, 2, key, 5261 sizeof (uint64_t), DTRACE_DYNVAR_NOALLOC, 5262 mstate, vstate); 5263 5264 if (dvar == NULL) { 5265 regs[rd] = 0; 5266 break; 5267 } 5268 5269 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 5270 regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data; 5271 } else { 5272 regs[rd] = *((uint64_t *)dvar->dtdv_data); 5273 } 5274 5275 break; 5276 } 5277 5278 case DIF_OP_STTS: { 5279 dtrace_dynvar_t *dvar; 5280 dtrace_key_t *key; 5281 5282 id = DIF_INSTR_VAR(instr); 5283 ASSERT(id >= DIF_VAR_OTHER_UBASE); 5284 id -= DIF_VAR_OTHER_UBASE; 5285 5286 key = &tupregs[DIF_DTR_NREGS]; 5287 key[0].dttk_value = (uint64_t)id; 5288 key[0].dttk_size = 0; 5289 DTRACE_TLS_THRKEY(key[1].dttk_value); 5290 key[1].dttk_size = 0; 5291 v = &vstate->dtvs_tlocals[id]; 5292 5293 dvar = dtrace_dynvar(dstate, 2, key, 5294 v->dtdv_type.dtdt_size > sizeof (uint64_t) ? 5295 v->dtdv_type.dtdt_size : sizeof (uint64_t), 5296 regs[rd] ? DTRACE_DYNVAR_ALLOC : 5297 DTRACE_DYNVAR_DEALLOC, mstate, vstate); 5298 5299 /* 5300 * Given that we're storing to thread-local data, 5301 * we need to flush our predicate cache. 5302 */ 5303 curthread->t_predcache = NULL; 5304 5305 if (dvar == NULL) 5306 break; 5307 5308 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 5309 if (!dtrace_vcanload( 5310 (void *)(uintptr_t)regs[rd], 5311 &v->dtdv_type, mstate, vstate)) 5312 break; 5313 5314 dtrace_vcopy((void *)(uintptr_t)regs[rd], 5315 dvar->dtdv_data, &v->dtdv_type); 5316 } else { 5317 *((uint64_t *)dvar->dtdv_data) = regs[rd]; 5318 } 5319 5320 break; 5321 } 5322 5323 case DIF_OP_SRA: 5324 regs[rd] = (int64_t)regs[r1] >> regs[r2]; 5325 break; 5326 5327 case DIF_OP_CALL: 5328 dtrace_dif_subr(DIF_INSTR_SUBR(instr), rd, 5329 regs, tupregs, ttop, mstate, state); 5330 break; 5331 5332 case DIF_OP_PUSHTR: 5333 if (ttop == DIF_DTR_NREGS) { 5334 *flags |= CPU_DTRACE_TUPOFLOW; 5335 break; 5336 } 5337 5338 if (r1 == DIF_TYPE_STRING) { 5339 /* 5340 * If this is a string type and the size is 0, 5341 * we'll use the system-wide default string 5342 * size. Note that we are _not_ looking at 5343 * the value of the DTRACEOPT_STRSIZE option; 5344 * had this been set, we would expect to have 5345 * a non-zero size value in the "pushtr". 5346 */ 5347 tupregs[ttop].dttk_size = 5348 dtrace_strlen((char *)(uintptr_t)regs[rd], 5349 regs[r2] ? regs[r2] : 5350 dtrace_strsize_default) + 1; 5351 } else { 5352 tupregs[ttop].dttk_size = regs[r2]; 5353 } 5354 5355 tupregs[ttop++].dttk_value = regs[rd]; 5356 break; 5357 5358 case DIF_OP_PUSHTV: 5359 if (ttop == DIF_DTR_NREGS) { 5360 *flags |= CPU_DTRACE_TUPOFLOW; 5361 break; 5362 } 5363 5364 tupregs[ttop].dttk_value = regs[rd]; 5365 tupregs[ttop++].dttk_size = 0; 5366 break; 5367 5368 case DIF_OP_POPTS: 5369 if (ttop != 0) 5370 ttop--; 5371 break; 5372 5373 case DIF_OP_FLUSHTS: 5374 ttop = 0; 5375 break; 5376 5377 case DIF_OP_LDGAA: 5378 case DIF_OP_LDTAA: { 5379 dtrace_dynvar_t *dvar; 5380 dtrace_key_t *key = tupregs; 5381 uint_t nkeys = ttop; 5382 5383 id = DIF_INSTR_VAR(instr); 5384 ASSERT(id >= DIF_VAR_OTHER_UBASE); 5385 id -= DIF_VAR_OTHER_UBASE; 5386 5387 key[nkeys].dttk_value = (uint64_t)id; 5388 key[nkeys++].dttk_size = 0; 5389 5390 if (DIF_INSTR_OP(instr) == DIF_OP_LDTAA) { 5391 DTRACE_TLS_THRKEY(key[nkeys].dttk_value); 5392 key[nkeys++].dttk_size = 0; 5393 v = &vstate->dtvs_tlocals[id]; 5394 } else { 5395 v = &vstate->dtvs_globals[id]->dtsv_var; 5396 } 5397 5398 dvar = dtrace_dynvar(dstate, nkeys, key, 5399 v->dtdv_type.dtdt_size > sizeof (uint64_t) ? 5400 v->dtdv_type.dtdt_size : sizeof (uint64_t), 5401 DTRACE_DYNVAR_NOALLOC, mstate, vstate); 5402 5403 if (dvar == NULL) { 5404 regs[rd] = 0; 5405 break; 5406 } 5407 5408 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 5409 regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data; 5410 } else { 5411 regs[rd] = *((uint64_t *)dvar->dtdv_data); 5412 } 5413 5414 break; 5415 } 5416 5417 case DIF_OP_STGAA: 5418 case DIF_OP_STTAA: { 5419 dtrace_dynvar_t *dvar; 5420 dtrace_key_t *key = tupregs; 5421 uint_t nkeys = ttop; 5422 5423 id = DIF_INSTR_VAR(instr); 5424 ASSERT(id >= DIF_VAR_OTHER_UBASE); 5425 id -= DIF_VAR_OTHER_UBASE; 5426 5427 key[nkeys].dttk_value = (uint64_t)id; 5428 key[nkeys++].dttk_size = 0; 5429 5430 if (DIF_INSTR_OP(instr) == DIF_OP_STTAA) { 5431 DTRACE_TLS_THRKEY(key[nkeys].dttk_value); 5432 key[nkeys++].dttk_size = 0; 5433 v = &vstate->dtvs_tlocals[id]; 5434 } else { 5435 v = &vstate->dtvs_globals[id]->dtsv_var; 5436 } 5437 5438 dvar = dtrace_dynvar(dstate, nkeys, key, 5439 v->dtdv_type.dtdt_size > sizeof (uint64_t) ? 5440 v->dtdv_type.dtdt_size : sizeof (uint64_t), 5441 regs[rd] ? DTRACE_DYNVAR_ALLOC : 5442 DTRACE_DYNVAR_DEALLOC, mstate, vstate); 5443 5444 if (dvar == NULL) 5445 break; 5446 5447 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 5448 if (!dtrace_vcanload( 5449 (void *)(uintptr_t)regs[rd], &v->dtdv_type, 5450 mstate, vstate)) 5451 break; 5452 5453 dtrace_vcopy((void *)(uintptr_t)regs[rd], 5454 dvar->dtdv_data, &v->dtdv_type); 5455 } else { 5456 *((uint64_t *)dvar->dtdv_data) = regs[rd]; 5457 } 5458 5459 break; 5460 } 5461 5462 case DIF_OP_ALLOCS: { 5463 uintptr_t ptr = P2ROUNDUP(mstate->dtms_scratch_ptr, 8); 5464 size_t size = ptr - mstate->dtms_scratch_ptr + regs[r1]; 5465 5466 /* 5467 * Rounding up the user allocation size could have 5468 * overflowed large, bogus allocations (like -1ULL) to 5469 * 0. 5470 */ 5471 if (size < regs[r1] || 5472 !DTRACE_INSCRATCH(mstate, size)) { 5473 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5474 regs[rd] = NULL; 5475 break; 5476 } 5477 5478 dtrace_bzero((void *) mstate->dtms_scratch_ptr, size); 5479 mstate->dtms_scratch_ptr += size; 5480 regs[rd] = ptr; 5481 break; 5482 } 5483 5484 case DIF_OP_COPYS: 5485 if (!dtrace_canstore(regs[rd], regs[r2], 5486 mstate, vstate)) { 5487 *flags |= CPU_DTRACE_BADADDR; 5488 *illval = regs[rd]; 5489 break; 5490 } 5491 5492 if (!dtrace_canload(regs[r1], regs[r2], mstate, vstate)) 5493 break; 5494 5495 dtrace_bcopy((void *)(uintptr_t)regs[r1], 5496 (void *)(uintptr_t)regs[rd], (size_t)regs[r2]); 5497 break; 5498 5499 case DIF_OP_STB: 5500 if (!dtrace_canstore(regs[rd], 1, mstate, vstate)) { 5501 *flags |= CPU_DTRACE_BADADDR; 5502 *illval = regs[rd]; 5503 break; 5504 } 5505 *((uint8_t *)(uintptr_t)regs[rd]) = (uint8_t)regs[r1]; 5506 break; 5507 5508 case DIF_OP_STH: 5509 if (!dtrace_canstore(regs[rd], 2, mstate, vstate)) { 5510 *flags |= CPU_DTRACE_BADADDR; 5511 *illval = regs[rd]; 5512 break; 5513 } 5514 if (regs[rd] & 1) { 5515 *flags |= CPU_DTRACE_BADALIGN; 5516 *illval = regs[rd]; 5517 break; 5518 } 5519 *((uint16_t *)(uintptr_t)regs[rd]) = (uint16_t)regs[r1]; 5520 break; 5521 5522 case DIF_OP_STW: 5523 if (!dtrace_canstore(regs[rd], 4, mstate, vstate)) { 5524 *flags |= CPU_DTRACE_BADADDR; 5525 *illval = regs[rd]; 5526 break; 5527 } 5528 if (regs[rd] & 3) { 5529 *flags |= CPU_DTRACE_BADALIGN; 5530 *illval = regs[rd]; 5531 break; 5532 } 5533 *((uint32_t *)(uintptr_t)regs[rd]) = (uint32_t)regs[r1]; 5534 break; 5535 5536 case DIF_OP_STX: 5537 if (!dtrace_canstore(regs[rd], 8, mstate, vstate)) { 5538 *flags |= CPU_DTRACE_BADADDR; 5539 *illval = regs[rd]; 5540 break; 5541 } 5542 if (regs[rd] & 7) { 5543 *flags |= CPU_DTRACE_BADALIGN; 5544 *illval = regs[rd]; 5545 break; 5546 } 5547 *((uint64_t *)(uintptr_t)regs[rd]) = regs[r1]; 5548 break; 5549 } 5550 } 5551 5552 if (!(*flags & CPU_DTRACE_FAULT)) 5553 return (rval); 5554 5555 mstate->dtms_fltoffs = opc * sizeof (dif_instr_t); 5556 mstate->dtms_present |= DTRACE_MSTATE_FLTOFFS; 5557 5558 return (0); 5559 } 5560 5561 static void 5562 dtrace_action_breakpoint(dtrace_ecb_t *ecb) 5563 { 5564 dtrace_probe_t *probe = ecb->dte_probe; 5565 dtrace_provider_t *prov = probe->dtpr_provider; 5566 char c[DTRACE_FULLNAMELEN + 80], *str; 5567 char *msg = "dtrace: breakpoint action at probe "; 5568 char *ecbmsg = " (ecb "; 5569 uintptr_t mask = (0xf << (sizeof (uintptr_t) * NBBY / 4)); 5570 uintptr_t val = (uintptr_t)ecb; 5571 int shift = (sizeof (uintptr_t) * NBBY) - 4, i = 0; 5572 5573 if (dtrace_destructive_disallow) 5574 return; 5575 5576 /* 5577 * It's impossible to be taking action on the NULL probe. 5578 */ 5579 ASSERT(probe != NULL); 5580 5581 /* 5582 * This is a poor man's (destitute man's?) sprintf(): we want to 5583 * print the provider name, module name, function name and name of 5584 * the probe, along with the hex address of the ECB with the breakpoint 5585 * action -- all of which we must place in the character buffer by 5586 * hand. 5587 */ 5588 while (*msg != '\0') 5589 c[i++] = *msg++; 5590 5591 for (str = prov->dtpv_name; *str != '\0'; str++) 5592 c[i++] = *str; 5593 c[i++] = ':'; 5594 5595 for (str = probe->dtpr_mod; *str != '\0'; str++) 5596 c[i++] = *str; 5597 c[i++] = ':'; 5598 5599 for (str = probe->dtpr_func; *str != '\0'; str++) 5600 c[i++] = *str; 5601 c[i++] = ':'; 5602 5603 for (str = probe->dtpr_name; *str != '\0'; str++) 5604 c[i++] = *str; 5605 5606 while (*ecbmsg != '\0') 5607 c[i++] = *ecbmsg++; 5608 5609 while (shift >= 0) { 5610 mask = (uintptr_t)0xf << shift; 5611 5612 if (val >= ((uintptr_t)1 << shift)) 5613 c[i++] = "0123456789abcdef"[(val & mask) >> shift]; 5614 shift -= 4; 5615 } 5616 5617 c[i++] = ')'; 5618 c[i] = '\0'; 5619 5620 debug_enter(c); 5621 } 5622 5623 static void 5624 dtrace_action_panic(dtrace_ecb_t *ecb) 5625 { 5626 dtrace_probe_t *probe = ecb->dte_probe; 5627 5628 /* 5629 * It's impossible to be taking action on the NULL probe. 5630 */ 5631 ASSERT(probe != NULL); 5632 5633 if (dtrace_destructive_disallow) 5634 return; 5635 5636 if (dtrace_panicked != NULL) 5637 return; 5638 5639 if (dtrace_casptr(&dtrace_panicked, NULL, curthread) != NULL) 5640 return; 5641 5642 /* 5643 * We won the right to panic. (We want to be sure that only one 5644 * thread calls panic() from dtrace_probe(), and that panic() is 5645 * called exactly once.) 5646 */ 5647 dtrace_panic("dtrace: panic action at probe %s:%s:%s:%s (ecb %p)", 5648 probe->dtpr_provider->dtpv_name, probe->dtpr_mod, 5649 probe->dtpr_func, probe->dtpr_name, (void *)ecb); 5650 } 5651 5652 static void 5653 dtrace_action_raise(uint64_t sig) 5654 { 5655 if (dtrace_destructive_disallow) 5656 return; 5657 5658 if (sig >= NSIG) { 5659 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); 5660 return; 5661 } 5662 5663 /* 5664 * raise() has a queue depth of 1 -- we ignore all subsequent 5665 * invocations of the raise() action. 5666 */ 5667 if (curthread->t_dtrace_sig == 0) 5668 curthread->t_dtrace_sig = (uint8_t)sig; 5669 5670 curthread->t_sig_check = 1; 5671 aston(curthread); 5672 } 5673 5674 static void 5675 dtrace_action_stop(void) 5676 { 5677 if (dtrace_destructive_disallow) 5678 return; 5679 5680 if (!curthread->t_dtrace_stop) { 5681 curthread->t_dtrace_stop = 1; 5682 curthread->t_sig_check = 1; 5683 aston(curthread); 5684 } 5685 } 5686 5687 static void 5688 dtrace_action_chill(dtrace_mstate_t *mstate, hrtime_t val) 5689 { 5690 hrtime_t now; 5691 volatile uint16_t *flags; 5692 cpu_t *cpu = CPU; 5693 5694 if (dtrace_destructive_disallow) 5695 return; 5696 5697 flags = (volatile uint16_t *)&cpu_core[cpu->cpu_id].cpuc_dtrace_flags; 5698 5699 now = dtrace_gethrtime(); 5700 5701 if (now - cpu->cpu_dtrace_chillmark > dtrace_chill_interval) { 5702 /* 5703 * We need to advance the mark to the current time. 5704 */ 5705 cpu->cpu_dtrace_chillmark = now; 5706 cpu->cpu_dtrace_chilled = 0; 5707 } 5708 5709 /* 5710 * Now check to see if the requested chill time would take us over 5711 * the maximum amount of time allowed in the chill interval. (Or 5712 * worse, if the calculation itself induces overflow.) 5713 */ 5714 if (cpu->cpu_dtrace_chilled + val > dtrace_chill_max || 5715 cpu->cpu_dtrace_chilled + val < cpu->cpu_dtrace_chilled) { 5716 *flags |= CPU_DTRACE_ILLOP; 5717 return; 5718 } 5719 5720 while (dtrace_gethrtime() - now < val) 5721 continue; 5722 5723 /* 5724 * Normally, we assure that the value of the variable "timestamp" does 5725 * not change within an ECB. The presence of chill() represents an 5726 * exception to this rule, however. 5727 */ 5728 mstate->dtms_present &= ~DTRACE_MSTATE_TIMESTAMP; 5729 cpu->cpu_dtrace_chilled += val; 5730 } 5731 5732 static void 5733 dtrace_action_ustack(dtrace_mstate_t *mstate, dtrace_state_t *state, 5734 uint64_t *buf, uint64_t arg) 5735 { 5736 int nframes = DTRACE_USTACK_NFRAMES(arg); 5737 int strsize = DTRACE_USTACK_STRSIZE(arg); 5738 uint64_t *pcs = &buf[1], *fps; 5739 char *str = (char *)&pcs[nframes]; 5740 int size, offs = 0, i, j; 5741 uintptr_t old = mstate->dtms_scratch_ptr, saved; 5742 uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags; 5743 char *sym; 5744 5745 /* 5746 * Should be taking a faster path if string space has not been 5747 * allocated. 5748 */ 5749 ASSERT(strsize != 0); 5750 5751 /* 5752 * We will first allocate some temporary space for the frame pointers. 5753 */ 5754 fps = (uint64_t *)P2ROUNDUP(mstate->dtms_scratch_ptr, 8); 5755 size = (uintptr_t)fps - mstate->dtms_scratch_ptr + 5756 (nframes * sizeof (uint64_t)); 5757 5758 if (!DTRACE_INSCRATCH(mstate, size)) { 5759 /* 5760 * Not enough room for our frame pointers -- need to indicate 5761 * that we ran out of scratch space. 5762 */ 5763 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5764 return; 5765 } 5766 5767 mstate->dtms_scratch_ptr += size; 5768 saved = mstate->dtms_scratch_ptr; 5769 5770 /* 5771 * Now get a stack with both program counters and frame pointers. 5772 */ 5773 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 5774 dtrace_getufpstack(buf, fps, nframes + 1); 5775 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 5776 5777 /* 5778 * If that faulted, we're cooked. 5779 */ 5780 if (*flags & CPU_DTRACE_FAULT) 5781 goto out; 5782 5783 /* 5784 * Now we want to walk up the stack, calling the USTACK helper. For 5785 * each iteration, we restore the scratch pointer. 5786 */ 5787 for (i = 0; i < nframes; i++) { 5788 mstate->dtms_scratch_ptr = saved; 5789 5790 if (offs >= strsize) 5791 break; 5792 5793 sym = (char *)(uintptr_t)dtrace_helper( 5794 DTRACE_HELPER_ACTION_USTACK, 5795 mstate, state, pcs[i], fps[i]); 5796 5797 /* 5798 * If we faulted while running the helper, we're going to 5799 * clear the fault and null out the corresponding string. 5800 */ 5801 if (*flags & CPU_DTRACE_FAULT) { 5802 *flags &= ~CPU_DTRACE_FAULT; 5803 str[offs++] = '\0'; 5804 continue; 5805 } 5806 5807 if (sym == NULL) { 5808 str[offs++] = '\0'; 5809 continue; 5810 } 5811 5812 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 5813 5814 /* 5815 * Now copy in the string that the helper returned to us. 5816 */ 5817 for (j = 0; offs + j < strsize; j++) { 5818 if ((str[offs + j] = sym[j]) == '\0') 5819 break; 5820 } 5821 5822 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 5823 5824 offs += j + 1; 5825 } 5826 5827 if (offs >= strsize) { 5828 /* 5829 * If we didn't have room for all of the strings, we don't 5830 * abort processing -- this needn't be a fatal error -- but we 5831 * still want to increment a counter (dts_stkstroverflows) to 5832 * allow this condition to be warned about. (If this is from 5833 * a jstack() action, it is easily tuned via jstackstrsize.) 5834 */ 5835 dtrace_error(&state->dts_stkstroverflows); 5836 } 5837 5838 while (offs < strsize) 5839 str[offs++] = '\0'; 5840 5841 out: 5842 mstate->dtms_scratch_ptr = old; 5843 } 5844 5845 /* 5846 * If you're looking for the epicenter of DTrace, you just found it. This 5847 * is the function called by the provider to fire a probe -- from which all 5848 * subsequent probe-context DTrace activity emanates. 5849 */ 5850 void 5851 dtrace_probe(dtrace_id_t id, uintptr_t arg0, uintptr_t arg1, 5852 uintptr_t arg2, uintptr_t arg3, uintptr_t arg4) 5853 { 5854 processorid_t cpuid; 5855 dtrace_icookie_t cookie; 5856 dtrace_probe_t *probe; 5857 dtrace_mstate_t mstate; 5858 dtrace_ecb_t *ecb; 5859 dtrace_action_t *act; 5860 intptr_t offs; 5861 size_t size; 5862 int vtime, onintr; 5863 volatile uint16_t *flags; 5864 hrtime_t now, end; 5865 5866 /* 5867 * Kick out immediately if this CPU is still being born (in which case 5868 * curthread will be set to -1) or the current thread can't allow 5869 * probes in its current context. 5870 */ 5871 if (((uintptr_t)curthread & 1) || (curthread->t_flag & T_DONTDTRACE)) 5872 return; 5873 5874 cookie = dtrace_interrupt_disable(); 5875 probe = dtrace_probes[id - 1]; 5876 cpuid = CPU->cpu_id; 5877 onintr = CPU_ON_INTR(CPU); 5878 5879 CPU->cpu_dtrace_probes++; 5880 5881 if (!onintr && probe->dtpr_predcache != DTRACE_CACHEIDNONE && 5882 probe->dtpr_predcache == curthread->t_predcache) { 5883 /* 5884 * We have hit in the predicate cache; we know that 5885 * this predicate would evaluate to be false. 5886 */ 5887 dtrace_interrupt_enable(cookie); 5888 return; 5889 } 5890 5891 if (panic_quiesce) { 5892 /* 5893 * We don't trace anything if we're panicking. 5894 */ 5895 dtrace_interrupt_enable(cookie); 5896 return; 5897 } 5898 5899 now = dtrace_gethrtime(); 5900 vtime = dtrace_vtime_references != 0; 5901 5902 if (vtime && curthread->t_dtrace_start) 5903 curthread->t_dtrace_vtime += now - curthread->t_dtrace_start; 5904 5905 mstate.dtms_difo = NULL; 5906 mstate.dtms_probe = probe; 5907 mstate.dtms_strtok = NULL; 5908 mstate.dtms_arg[0] = arg0; 5909 mstate.dtms_arg[1] = arg1; 5910 mstate.dtms_arg[2] = arg2; 5911 mstate.dtms_arg[3] = arg3; 5912 mstate.dtms_arg[4] = arg4; 5913 5914 flags = (volatile uint16_t *)&cpu_core[cpuid].cpuc_dtrace_flags; 5915 5916 for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) { 5917 dtrace_predicate_t *pred = ecb->dte_predicate; 5918 dtrace_state_t *state = ecb->dte_state; 5919 dtrace_buffer_t *buf = &state->dts_buffer[cpuid]; 5920 dtrace_buffer_t *aggbuf = &state->dts_aggbuffer[cpuid]; 5921 dtrace_vstate_t *vstate = &state->dts_vstate; 5922 dtrace_provider_t *prov = probe->dtpr_provider; 5923 uint64_t tracememsize = 0; 5924 int committed = 0; 5925 caddr_t tomax; 5926 5927 /* 5928 * A little subtlety with the following (seemingly innocuous) 5929 * declaration of the automatic 'val': by looking at the 5930 * code, you might think that it could be declared in the 5931 * action processing loop, below. (That is, it's only used in 5932 * the action processing loop.) However, it must be declared 5933 * out of that scope because in the case of DIF expression 5934 * arguments to aggregating actions, one iteration of the 5935 * action loop will use the last iteration's value. 5936 */ 5937 #ifdef lint 5938 uint64_t val = 0; 5939 #else 5940 uint64_t val; 5941 #endif 5942 5943 mstate.dtms_present = DTRACE_MSTATE_ARGS | DTRACE_MSTATE_PROBE; 5944 mstate.dtms_access = DTRACE_ACCESS_ARGS | DTRACE_ACCESS_PROC; 5945 *flags &= ~CPU_DTRACE_ERROR; 5946 5947 if (prov == dtrace_provider) { 5948 /* 5949 * If dtrace itself is the provider of this probe, 5950 * we're only going to continue processing the ECB if 5951 * arg0 (the dtrace_state_t) is equal to the ECB's 5952 * creating state. (This prevents disjoint consumers 5953 * from seeing one another's metaprobes.) 5954 */ 5955 if (arg0 != (uint64_t)(uintptr_t)state) 5956 continue; 5957 } 5958 5959 if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE) { 5960 /* 5961 * We're not currently active. If our provider isn't 5962 * the dtrace pseudo provider, we're not interested. 5963 */ 5964 if (prov != dtrace_provider) 5965 continue; 5966 5967 /* 5968 * Now we must further check if we are in the BEGIN 5969 * probe. If we are, we will only continue processing 5970 * if we're still in WARMUP -- if one BEGIN enabling 5971 * has invoked the exit() action, we don't want to 5972 * evaluate subsequent BEGIN enablings. 5973 */ 5974 if (probe->dtpr_id == dtrace_probeid_begin && 5975 state->dts_activity != DTRACE_ACTIVITY_WARMUP) { 5976 ASSERT(state->dts_activity == 5977 DTRACE_ACTIVITY_DRAINING); 5978 continue; 5979 } 5980 } 5981 5982 if (ecb->dte_cond && !dtrace_priv_probe(state, &mstate, ecb)) 5983 continue; 5984 5985 if (now - state->dts_alive > dtrace_deadman_timeout) { 5986 /* 5987 * We seem to be dead. Unless we (a) have kernel 5988 * destructive permissions (b) have explicitly enabled 5989 * destructive actions and (c) destructive actions have 5990 * not been disabled, we're going to transition into 5991 * the KILLED state, from which no further processing 5992 * on this state will be performed. 5993 */ 5994 if (!dtrace_priv_kernel_destructive(state) || 5995 !state->dts_cred.dcr_destructive || 5996 dtrace_destructive_disallow) { 5997 void *activity = &state->dts_activity; 5998 dtrace_activity_t current; 5999 6000 do { 6001 current = state->dts_activity; 6002 } while (dtrace_cas32(activity, current, 6003 DTRACE_ACTIVITY_KILLED) != current); 6004 6005 continue; 6006 } 6007 } 6008 6009 if ((offs = dtrace_buffer_reserve(buf, ecb->dte_needed, 6010 ecb->dte_alignment, state, &mstate)) < 0) 6011 continue; 6012 6013 tomax = buf->dtb_tomax; 6014 ASSERT(tomax != NULL); 6015 6016 if (ecb->dte_size != 0) { 6017 dtrace_rechdr_t dtrh; 6018 if (!(mstate.dtms_present & DTRACE_MSTATE_TIMESTAMP)) { 6019 mstate.dtms_timestamp = dtrace_gethrtime(); 6020 mstate.dtms_present |= DTRACE_MSTATE_TIMESTAMP; 6021 } 6022 ASSERT3U(ecb->dte_size, >=, sizeof (dtrace_rechdr_t)); 6023 dtrh.dtrh_epid = ecb->dte_epid; 6024 DTRACE_RECORD_STORE_TIMESTAMP(&dtrh, 6025 mstate.dtms_timestamp); 6026 *((dtrace_rechdr_t *)(tomax + offs)) = dtrh; 6027 } 6028 6029 mstate.dtms_epid = ecb->dte_epid; 6030 mstate.dtms_present |= DTRACE_MSTATE_EPID; 6031 6032 if (state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) 6033 mstate.dtms_access |= DTRACE_ACCESS_KERNEL; 6034 6035 if (pred != NULL) { 6036 dtrace_difo_t *dp = pred->dtp_difo; 6037 int rval; 6038 6039 rval = dtrace_dif_emulate(dp, &mstate, vstate, state); 6040 6041 if (!(*flags & CPU_DTRACE_ERROR) && !rval) { 6042 dtrace_cacheid_t cid = probe->dtpr_predcache; 6043 6044 if (cid != DTRACE_CACHEIDNONE && !onintr) { 6045 /* 6046 * Update the predicate cache... 6047 */ 6048 ASSERT(cid == pred->dtp_cacheid); 6049 curthread->t_predcache = cid; 6050 } 6051 6052 continue; 6053 } 6054 } 6055 6056 for (act = ecb->dte_action; !(*flags & CPU_DTRACE_ERROR) && 6057 act != NULL; act = act->dta_next) { 6058 size_t valoffs; 6059 dtrace_difo_t *dp; 6060 dtrace_recdesc_t *rec = &act->dta_rec; 6061 6062 size = rec->dtrd_size; 6063 valoffs = offs + rec->dtrd_offset; 6064 6065 if (DTRACEACT_ISAGG(act->dta_kind)) { 6066 uint64_t v = 0xbad; 6067 dtrace_aggregation_t *agg; 6068 6069 agg = (dtrace_aggregation_t *)act; 6070 6071 if ((dp = act->dta_difo) != NULL) 6072 v = dtrace_dif_emulate(dp, 6073 &mstate, vstate, state); 6074 6075 if (*flags & CPU_DTRACE_ERROR) 6076 continue; 6077 6078 /* 6079 * Note that we always pass the expression 6080 * value from the previous iteration of the 6081 * action loop. This value will only be used 6082 * if there is an expression argument to the 6083 * aggregating action, denoted by the 6084 * dtag_hasarg field. 6085 */ 6086 dtrace_aggregate(agg, buf, 6087 offs, aggbuf, v, val); 6088 continue; 6089 } 6090 6091 switch (act->dta_kind) { 6092 case DTRACEACT_STOP: 6093 if (dtrace_priv_proc_destructive(state, 6094 &mstate)) 6095 dtrace_action_stop(); 6096 continue; 6097 6098 case DTRACEACT_BREAKPOINT: 6099 if (dtrace_priv_kernel_destructive(state)) 6100 dtrace_action_breakpoint(ecb); 6101 continue; 6102 6103 case DTRACEACT_PANIC: 6104 if (dtrace_priv_kernel_destructive(state)) 6105 dtrace_action_panic(ecb); 6106 continue; 6107 6108 case DTRACEACT_STACK: 6109 if (!dtrace_priv_kernel(state)) 6110 continue; 6111 6112 dtrace_getpcstack((pc_t *)(tomax + valoffs), 6113 size / sizeof (pc_t), probe->dtpr_aframes, 6114 DTRACE_ANCHORED(probe) ? NULL : 6115 (uint32_t *)arg0); 6116 6117 continue; 6118 6119 case DTRACEACT_JSTACK: 6120 case DTRACEACT_USTACK: 6121 if (!dtrace_priv_proc(state, &mstate)) 6122 continue; 6123 6124 /* 6125 * See comment in DIF_VAR_PID. 6126 */ 6127 if (DTRACE_ANCHORED(mstate.dtms_probe) && 6128 CPU_ON_INTR(CPU)) { 6129 int depth = DTRACE_USTACK_NFRAMES( 6130 rec->dtrd_arg) + 1; 6131 6132 dtrace_bzero((void *)(tomax + valoffs), 6133 DTRACE_USTACK_STRSIZE(rec->dtrd_arg) 6134 + depth * sizeof (uint64_t)); 6135 6136 continue; 6137 } 6138 6139 if (DTRACE_USTACK_STRSIZE(rec->dtrd_arg) != 0 && 6140 curproc->p_dtrace_helpers != NULL) { 6141 /* 6142 * This is the slow path -- we have 6143 * allocated string space, and we're 6144 * getting the stack of a process that 6145 * has helpers. Call into a separate 6146 * routine to perform this processing. 6147 */ 6148 dtrace_action_ustack(&mstate, state, 6149 (uint64_t *)(tomax + valoffs), 6150 rec->dtrd_arg); 6151 continue; 6152 } 6153 6154 /* 6155 * Clear the string space, since there's no 6156 * helper to do it for us. 6157 */ 6158 if (DTRACE_USTACK_STRSIZE(rec->dtrd_arg) != 0) { 6159 int depth = DTRACE_USTACK_NFRAMES( 6160 rec->dtrd_arg); 6161 size_t strsize = DTRACE_USTACK_STRSIZE( 6162 rec->dtrd_arg); 6163 uint64_t *buf = (uint64_t *)(tomax + 6164 valoffs); 6165 void *strspace = &buf[depth + 1]; 6166 6167 dtrace_bzero(strspace, 6168 MIN(depth, strsize)); 6169 } 6170 6171 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 6172 dtrace_getupcstack((uint64_t *) 6173 (tomax + valoffs), 6174 DTRACE_USTACK_NFRAMES(rec->dtrd_arg) + 1); 6175 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 6176 continue; 6177 6178 default: 6179 break; 6180 } 6181 6182 dp = act->dta_difo; 6183 ASSERT(dp != NULL); 6184 6185 val = dtrace_dif_emulate(dp, &mstate, vstate, state); 6186 6187 if (*flags & CPU_DTRACE_ERROR) 6188 continue; 6189 6190 switch (act->dta_kind) { 6191 case DTRACEACT_SPECULATE: { 6192 dtrace_rechdr_t *dtrh; 6193 6194 ASSERT(buf == &state->dts_buffer[cpuid]); 6195 buf = dtrace_speculation_buffer(state, 6196 cpuid, val); 6197 6198 if (buf == NULL) { 6199 *flags |= CPU_DTRACE_DROP; 6200 continue; 6201 } 6202 6203 offs = dtrace_buffer_reserve(buf, 6204 ecb->dte_needed, ecb->dte_alignment, 6205 state, NULL); 6206 6207 if (offs < 0) { 6208 *flags |= CPU_DTRACE_DROP; 6209 continue; 6210 } 6211 6212 tomax = buf->dtb_tomax; 6213 ASSERT(tomax != NULL); 6214 6215 if (ecb->dte_size == 0) 6216 continue; 6217 6218 ASSERT3U(ecb->dte_size, >=, 6219 sizeof (dtrace_rechdr_t)); 6220 dtrh = ((void *)(tomax + offs)); 6221 dtrh->dtrh_epid = ecb->dte_epid; 6222 /* 6223 * When the speculation is committed, all of 6224 * the records in the speculative buffer will 6225 * have their timestamps set to the commit 6226 * time. Until then, it is set to a sentinel 6227 * value, for debugability. 6228 */ 6229 DTRACE_RECORD_STORE_TIMESTAMP(dtrh, UINT64_MAX); 6230 continue; 6231 } 6232 6233 case DTRACEACT_CHILL: 6234 if (dtrace_priv_kernel_destructive(state)) 6235 dtrace_action_chill(&mstate, val); 6236 continue; 6237 6238 case DTRACEACT_RAISE: 6239 if (dtrace_priv_proc_destructive(state, 6240 &mstate)) 6241 dtrace_action_raise(val); 6242 continue; 6243 6244 case DTRACEACT_COMMIT: 6245 ASSERT(!committed); 6246 6247 /* 6248 * We need to commit our buffer state. 6249 */ 6250 if (ecb->dte_size) 6251 buf->dtb_offset = offs + ecb->dte_size; 6252 buf = &state->dts_buffer[cpuid]; 6253 dtrace_speculation_commit(state, cpuid, val); 6254 committed = 1; 6255 continue; 6256 6257 case DTRACEACT_DISCARD: 6258 dtrace_speculation_discard(state, cpuid, val); 6259 continue; 6260 6261 case DTRACEACT_DIFEXPR: 6262 case DTRACEACT_LIBACT: 6263 case DTRACEACT_PRINTF: 6264 case DTRACEACT_PRINTA: 6265 case DTRACEACT_SYSTEM: 6266 case DTRACEACT_FREOPEN: 6267 case DTRACEACT_TRACEMEM: 6268 break; 6269 6270 case DTRACEACT_TRACEMEM_DYNSIZE: 6271 tracememsize = val; 6272 break; 6273 6274 case DTRACEACT_SYM: 6275 case DTRACEACT_MOD: 6276 if (!dtrace_priv_kernel(state)) 6277 continue; 6278 break; 6279 6280 case DTRACEACT_USYM: 6281 case DTRACEACT_UMOD: 6282 case DTRACEACT_UADDR: { 6283 struct pid *pid = curthread->t_procp->p_pidp; 6284 6285 if (!dtrace_priv_proc(state, &mstate)) 6286 continue; 6287 6288 DTRACE_STORE(uint64_t, tomax, 6289 valoffs, (uint64_t)pid->pid_id); 6290 DTRACE_STORE(uint64_t, tomax, 6291 valoffs + sizeof (uint64_t), val); 6292 6293 continue; 6294 } 6295 6296 case DTRACEACT_EXIT: { 6297 /* 6298 * For the exit action, we are going to attempt 6299 * to atomically set our activity to be 6300 * draining. If this fails (either because 6301 * another CPU has beat us to the exit action, 6302 * or because our current activity is something 6303 * other than ACTIVE or WARMUP), we will 6304 * continue. This assures that the exit action 6305 * can be successfully recorded at most once 6306 * when we're in the ACTIVE state. If we're 6307 * encountering the exit() action while in 6308 * COOLDOWN, however, we want to honor the new 6309 * status code. (We know that we're the only 6310 * thread in COOLDOWN, so there is no race.) 6311 */ 6312 void *activity = &state->dts_activity; 6313 dtrace_activity_t current = state->dts_activity; 6314 6315 if (current == DTRACE_ACTIVITY_COOLDOWN) 6316 break; 6317 6318 if (current != DTRACE_ACTIVITY_WARMUP) 6319 current = DTRACE_ACTIVITY_ACTIVE; 6320 6321 if (dtrace_cas32(activity, current, 6322 DTRACE_ACTIVITY_DRAINING) != current) { 6323 *flags |= CPU_DTRACE_DROP; 6324 continue; 6325 } 6326 6327 break; 6328 } 6329 6330 default: 6331 ASSERT(0); 6332 } 6333 6334 if (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF) { 6335 uintptr_t end = valoffs + size; 6336 6337 if (tracememsize != 0 && 6338 valoffs + tracememsize < end) { 6339 end = valoffs + tracememsize; 6340 tracememsize = 0; 6341 } 6342 6343 if (!dtrace_vcanload((void *)(uintptr_t)val, 6344 &dp->dtdo_rtype, &mstate, vstate)) 6345 continue; 6346 6347 /* 6348 * If this is a string, we're going to only 6349 * load until we find the zero byte -- after 6350 * which we'll store zero bytes. 6351 */ 6352 if (dp->dtdo_rtype.dtdt_kind == 6353 DIF_TYPE_STRING) { 6354 char c = '\0' + 1; 6355 int intuple = act->dta_intuple; 6356 size_t s; 6357 6358 for (s = 0; s < size; s++) { 6359 if (c != '\0') 6360 c = dtrace_load8(val++); 6361 6362 DTRACE_STORE(uint8_t, tomax, 6363 valoffs++, c); 6364 6365 if (c == '\0' && intuple) 6366 break; 6367 } 6368 6369 continue; 6370 } 6371 6372 while (valoffs < end) { 6373 DTRACE_STORE(uint8_t, tomax, valoffs++, 6374 dtrace_load8(val++)); 6375 } 6376 6377 continue; 6378 } 6379 6380 switch (size) { 6381 case 0: 6382 break; 6383 6384 case sizeof (uint8_t): 6385 DTRACE_STORE(uint8_t, tomax, valoffs, val); 6386 break; 6387 case sizeof (uint16_t): 6388 DTRACE_STORE(uint16_t, tomax, valoffs, val); 6389 break; 6390 case sizeof (uint32_t): 6391 DTRACE_STORE(uint32_t, tomax, valoffs, val); 6392 break; 6393 case sizeof (uint64_t): 6394 DTRACE_STORE(uint64_t, tomax, valoffs, val); 6395 break; 6396 default: 6397 /* 6398 * Any other size should have been returned by 6399 * reference, not by value. 6400 */ 6401 ASSERT(0); 6402 break; 6403 } 6404 } 6405 6406 if (*flags & CPU_DTRACE_DROP) 6407 continue; 6408 6409 if (*flags & CPU_DTRACE_FAULT) { 6410 int ndx; 6411 dtrace_action_t *err; 6412 6413 buf->dtb_errors++; 6414 6415 if (probe->dtpr_id == dtrace_probeid_error) { 6416 /* 6417 * There's nothing we can do -- we had an 6418 * error on the error probe. We bump an 6419 * error counter to at least indicate that 6420 * this condition happened. 6421 */ 6422 dtrace_error(&state->dts_dblerrors); 6423 continue; 6424 } 6425 6426 if (vtime) { 6427 /* 6428 * Before recursing on dtrace_probe(), we 6429 * need to explicitly clear out our start 6430 * time to prevent it from being accumulated 6431 * into t_dtrace_vtime. 6432 */ 6433 curthread->t_dtrace_start = 0; 6434 } 6435 6436 /* 6437 * Iterate over the actions to figure out which action 6438 * we were processing when we experienced the error. 6439 * Note that act points _past_ the faulting action; if 6440 * act is ecb->dte_action, the fault was in the 6441 * predicate, if it's ecb->dte_action->dta_next it's 6442 * in action #1, and so on. 6443 */ 6444 for (err = ecb->dte_action, ndx = 0; 6445 err != act; err = err->dta_next, ndx++) 6446 continue; 6447 6448 dtrace_probe_error(state, ecb->dte_epid, ndx, 6449 (mstate.dtms_present & DTRACE_MSTATE_FLTOFFS) ? 6450 mstate.dtms_fltoffs : -1, DTRACE_FLAGS2FLT(*flags), 6451 cpu_core[cpuid].cpuc_dtrace_illval); 6452 6453 continue; 6454 } 6455 6456 if (!committed) 6457 buf->dtb_offset = offs + ecb->dte_size; 6458 } 6459 6460 end = dtrace_gethrtime(); 6461 if (vtime) 6462 curthread->t_dtrace_start = end; 6463 6464 CPU->cpu_dtrace_nsec += end - now; 6465 6466 dtrace_interrupt_enable(cookie); 6467 } 6468 6469 /* 6470 * DTrace Probe Hashing Functions 6471 * 6472 * The functions in this section (and indeed, the functions in remaining 6473 * sections) are not _called_ from probe context. (Any exceptions to this are 6474 * marked with a "Note:".) Rather, they are called from elsewhere in the 6475 * DTrace framework to look-up probes in, add probes to and remove probes from 6476 * the DTrace probe hashes. (Each probe is hashed by each element of the 6477 * probe tuple -- allowing for fast lookups, regardless of what was 6478 * specified.) 6479 */ 6480 static uint_t 6481 dtrace_hash_str(char *p) 6482 { 6483 unsigned int g; 6484 uint_t hval = 0; 6485 6486 while (*p) { 6487 hval = (hval << 4) + *p++; 6488 if ((g = (hval & 0xf0000000)) != 0) 6489 hval ^= g >> 24; 6490 hval &= ~g; 6491 } 6492 return (hval); 6493 } 6494 6495 static dtrace_hash_t * 6496 dtrace_hash_create(uintptr_t stroffs, uintptr_t nextoffs, uintptr_t prevoffs) 6497 { 6498 dtrace_hash_t *hash = kmem_zalloc(sizeof (dtrace_hash_t), KM_SLEEP); 6499 6500 hash->dth_stroffs = stroffs; 6501 hash->dth_nextoffs = nextoffs; 6502 hash->dth_prevoffs = prevoffs; 6503 6504 hash->dth_size = 1; 6505 hash->dth_mask = hash->dth_size - 1; 6506 6507 hash->dth_tab = kmem_zalloc(hash->dth_size * 6508 sizeof (dtrace_hashbucket_t *), KM_SLEEP); 6509 6510 return (hash); 6511 } 6512 6513 static void 6514 dtrace_hash_destroy(dtrace_hash_t *hash) 6515 { 6516 #ifdef DEBUG 6517 int i; 6518 6519 for (i = 0; i < hash->dth_size; i++) 6520 ASSERT(hash->dth_tab[i] == NULL); 6521 #endif 6522 6523 kmem_free(hash->dth_tab, 6524 hash->dth_size * sizeof (dtrace_hashbucket_t *)); 6525 kmem_free(hash, sizeof (dtrace_hash_t)); 6526 } 6527 6528 static void 6529 dtrace_hash_resize(dtrace_hash_t *hash) 6530 { 6531 int size = hash->dth_size, i, ndx; 6532 int new_size = hash->dth_size << 1; 6533 int new_mask = new_size - 1; 6534 dtrace_hashbucket_t **new_tab, *bucket, *next; 6535 6536 ASSERT((new_size & new_mask) == 0); 6537 6538 new_tab = kmem_zalloc(new_size * sizeof (void *), KM_SLEEP); 6539 6540 for (i = 0; i < size; i++) { 6541 for (bucket = hash->dth_tab[i]; bucket != NULL; bucket = next) { 6542 dtrace_probe_t *probe = bucket->dthb_chain; 6543 6544 ASSERT(probe != NULL); 6545 ndx = DTRACE_HASHSTR(hash, probe) & new_mask; 6546 6547 next = bucket->dthb_next; 6548 bucket->dthb_next = new_tab[ndx]; 6549 new_tab[ndx] = bucket; 6550 } 6551 } 6552 6553 kmem_free(hash->dth_tab, hash->dth_size * sizeof (void *)); 6554 hash->dth_tab = new_tab; 6555 hash->dth_size = new_size; 6556 hash->dth_mask = new_mask; 6557 } 6558 6559 static void 6560 dtrace_hash_add(dtrace_hash_t *hash, dtrace_probe_t *new) 6561 { 6562 int hashval = DTRACE_HASHSTR(hash, new); 6563 int ndx = hashval & hash->dth_mask; 6564 dtrace_hashbucket_t *bucket = hash->dth_tab[ndx]; 6565 dtrace_probe_t **nextp, **prevp; 6566 6567 for (; bucket != NULL; bucket = bucket->dthb_next) { 6568 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, new)) 6569 goto add; 6570 } 6571 6572 if ((hash->dth_nbuckets >> 1) > hash->dth_size) { 6573 dtrace_hash_resize(hash); 6574 dtrace_hash_add(hash, new); 6575 return; 6576 } 6577 6578 bucket = kmem_zalloc(sizeof (dtrace_hashbucket_t), KM_SLEEP); 6579 bucket->dthb_next = hash->dth_tab[ndx]; 6580 hash->dth_tab[ndx] = bucket; 6581 hash->dth_nbuckets++; 6582 6583 add: 6584 nextp = DTRACE_HASHNEXT(hash, new); 6585 ASSERT(*nextp == NULL && *(DTRACE_HASHPREV(hash, new)) == NULL); 6586 *nextp = bucket->dthb_chain; 6587 6588 if (bucket->dthb_chain != NULL) { 6589 prevp = DTRACE_HASHPREV(hash, bucket->dthb_chain); 6590 ASSERT(*prevp == NULL); 6591 *prevp = new; 6592 } 6593 6594 bucket->dthb_chain = new; 6595 bucket->dthb_len++; 6596 } 6597 6598 static dtrace_probe_t * 6599 dtrace_hash_lookup(dtrace_hash_t *hash, dtrace_probe_t *template) 6600 { 6601 int hashval = DTRACE_HASHSTR(hash, template); 6602 int ndx = hashval & hash->dth_mask; 6603 dtrace_hashbucket_t *bucket = hash->dth_tab[ndx]; 6604 6605 for (; bucket != NULL; bucket = bucket->dthb_next) { 6606 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template)) 6607 return (bucket->dthb_chain); 6608 } 6609 6610 return (NULL); 6611 } 6612 6613 static int 6614 dtrace_hash_collisions(dtrace_hash_t *hash, dtrace_probe_t *template) 6615 { 6616 int hashval = DTRACE_HASHSTR(hash, template); 6617 int ndx = hashval & hash->dth_mask; 6618 dtrace_hashbucket_t *bucket = hash->dth_tab[ndx]; 6619 6620 for (; bucket != NULL; bucket = bucket->dthb_next) { 6621 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template)) 6622 return (bucket->dthb_len); 6623 } 6624 6625 return (NULL); 6626 } 6627 6628 static void 6629 dtrace_hash_remove(dtrace_hash_t *hash, dtrace_probe_t *probe) 6630 { 6631 int ndx = DTRACE_HASHSTR(hash, probe) & hash->dth_mask; 6632 dtrace_hashbucket_t *bucket = hash->dth_tab[ndx]; 6633 6634 dtrace_probe_t **prevp = DTRACE_HASHPREV(hash, probe); 6635 dtrace_probe_t **nextp = DTRACE_HASHNEXT(hash, probe); 6636 6637 /* 6638 * Find the bucket that we're removing this probe from. 6639 */ 6640 for (; bucket != NULL; bucket = bucket->dthb_next) { 6641 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, probe)) 6642 break; 6643 } 6644 6645 ASSERT(bucket != NULL); 6646 6647 if (*prevp == NULL) { 6648 if (*nextp == NULL) { 6649 /* 6650 * The removed probe was the only probe on this 6651 * bucket; we need to remove the bucket. 6652 */ 6653 dtrace_hashbucket_t *b = hash->dth_tab[ndx]; 6654 6655 ASSERT(bucket->dthb_chain == probe); 6656 ASSERT(b != NULL); 6657 6658 if (b == bucket) { 6659 hash->dth_tab[ndx] = bucket->dthb_next; 6660 } else { 6661 while (b->dthb_next != bucket) 6662 b = b->dthb_next; 6663 b->dthb_next = bucket->dthb_next; 6664 } 6665 6666 ASSERT(hash->dth_nbuckets > 0); 6667 hash->dth_nbuckets--; 6668 kmem_free(bucket, sizeof (dtrace_hashbucket_t)); 6669 return; 6670 } 6671 6672 bucket->dthb_chain = *nextp; 6673 } else { 6674 *(DTRACE_HASHNEXT(hash, *prevp)) = *nextp; 6675 } 6676 6677 if (*nextp != NULL) 6678 *(DTRACE_HASHPREV(hash, *nextp)) = *prevp; 6679 } 6680 6681 /* 6682 * DTrace Utility Functions 6683 * 6684 * These are random utility functions that are _not_ called from probe context. 6685 */ 6686 static int 6687 dtrace_badattr(const dtrace_attribute_t *a) 6688 { 6689 return (a->dtat_name > DTRACE_STABILITY_MAX || 6690 a->dtat_data > DTRACE_STABILITY_MAX || 6691 a->dtat_class > DTRACE_CLASS_MAX); 6692 } 6693 6694 /* 6695 * Return a duplicate copy of a string. If the specified string is NULL, 6696 * this function returns a zero-length string. 6697 */ 6698 static char * 6699 dtrace_strdup(const char *str) 6700 { 6701 char *new = kmem_zalloc((str != NULL ? strlen(str) : 0) + 1, KM_SLEEP); 6702 6703 if (str != NULL) 6704 (void) strcpy(new, str); 6705 6706 return (new); 6707 } 6708 6709 #define DTRACE_ISALPHA(c) \ 6710 (((c) >= 'a' && (c) <= 'z') || ((c) >= 'A' && (c) <= 'Z')) 6711 6712 static int 6713 dtrace_badname(const char *s) 6714 { 6715 char c; 6716 6717 if (s == NULL || (c = *s++) == '\0') 6718 return (0); 6719 6720 if (!DTRACE_ISALPHA(c) && c != '-' && c != '_' && c != '.') 6721 return (1); 6722 6723 while ((c = *s++) != '\0') { 6724 if (!DTRACE_ISALPHA(c) && (c < '0' || c > '9') && 6725 c != '-' && c != '_' && c != '.' && c != '`') 6726 return (1); 6727 } 6728 6729 return (0); 6730 } 6731 6732 static void 6733 dtrace_cred2priv(cred_t *cr, uint32_t *privp, uid_t *uidp, zoneid_t *zoneidp) 6734 { 6735 uint32_t priv; 6736 6737 if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) { 6738 /* 6739 * For DTRACE_PRIV_ALL, the uid and zoneid don't matter. 6740 */ 6741 priv = DTRACE_PRIV_ALL; 6742 } else { 6743 *uidp = crgetuid(cr); 6744 *zoneidp = crgetzoneid(cr); 6745 6746 priv = 0; 6747 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE)) 6748 priv |= DTRACE_PRIV_KERNEL | DTRACE_PRIV_USER; 6749 else if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE)) 6750 priv |= DTRACE_PRIV_USER; 6751 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) 6752 priv |= DTRACE_PRIV_PROC; 6753 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) 6754 priv |= DTRACE_PRIV_OWNER; 6755 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) 6756 priv |= DTRACE_PRIV_ZONEOWNER; 6757 } 6758 6759 *privp = priv; 6760 } 6761 6762 #ifdef DTRACE_ERRDEBUG 6763 static void 6764 dtrace_errdebug(const char *str) 6765 { 6766 int hval = dtrace_hash_str((char *)str) % DTRACE_ERRHASHSZ; 6767 int occupied = 0; 6768 6769 mutex_enter(&dtrace_errlock); 6770 dtrace_errlast = str; 6771 dtrace_errthread = curthread; 6772 6773 while (occupied++ < DTRACE_ERRHASHSZ) { 6774 if (dtrace_errhash[hval].dter_msg == str) { 6775 dtrace_errhash[hval].dter_count++; 6776 goto out; 6777 } 6778 6779 if (dtrace_errhash[hval].dter_msg != NULL) { 6780 hval = (hval + 1) % DTRACE_ERRHASHSZ; 6781 continue; 6782 } 6783 6784 dtrace_errhash[hval].dter_msg = str; 6785 dtrace_errhash[hval].dter_count = 1; 6786 goto out; 6787 } 6788 6789 panic("dtrace: undersized error hash"); 6790 out: 6791 mutex_exit(&dtrace_errlock); 6792 } 6793 #endif 6794 6795 /* 6796 * DTrace Matching Functions 6797 * 6798 * These functions are used to match groups of probes, given some elements of 6799 * a probe tuple, or some globbed expressions for elements of a probe tuple. 6800 */ 6801 static int 6802 dtrace_match_priv(const dtrace_probe_t *prp, uint32_t priv, uid_t uid, 6803 zoneid_t zoneid) 6804 { 6805 if (priv != DTRACE_PRIV_ALL) { 6806 uint32_t ppriv = prp->dtpr_provider->dtpv_priv.dtpp_flags; 6807 uint32_t match = priv & ppriv; 6808 6809 /* 6810 * No PRIV_DTRACE_* privileges... 6811 */ 6812 if ((priv & (DTRACE_PRIV_PROC | DTRACE_PRIV_USER | 6813 DTRACE_PRIV_KERNEL)) == 0) 6814 return (0); 6815 6816 /* 6817 * No matching bits, but there were bits to match... 6818 */ 6819 if (match == 0 && ppriv != 0) 6820 return (0); 6821 6822 /* 6823 * Need to have permissions to the process, but don't... 6824 */ 6825 if (((ppriv & ~match) & DTRACE_PRIV_OWNER) != 0 && 6826 uid != prp->dtpr_provider->dtpv_priv.dtpp_uid) { 6827 return (0); 6828 } 6829 6830 /* 6831 * Need to be in the same zone unless we possess the 6832 * privilege to examine all zones. 6833 */ 6834 if (((ppriv & ~match) & DTRACE_PRIV_ZONEOWNER) != 0 && 6835 zoneid != prp->dtpr_provider->dtpv_priv.dtpp_zoneid) { 6836 return (0); 6837 } 6838 } 6839 6840 return (1); 6841 } 6842 6843 /* 6844 * dtrace_match_probe compares a dtrace_probe_t to a pre-compiled key, which 6845 * consists of input pattern strings and an ops-vector to evaluate them. 6846 * This function returns >0 for match, 0 for no match, and <0 for error. 6847 */ 6848 static int 6849 dtrace_match_probe(const dtrace_probe_t *prp, const dtrace_probekey_t *pkp, 6850 uint32_t priv, uid_t uid, zoneid_t zoneid) 6851 { 6852 dtrace_provider_t *pvp = prp->dtpr_provider; 6853 int rv; 6854 6855 if (pvp->dtpv_defunct) 6856 return (0); 6857 6858 if ((rv = pkp->dtpk_pmatch(pvp->dtpv_name, pkp->dtpk_prov, 0)) <= 0) 6859 return (rv); 6860 6861 if ((rv = pkp->dtpk_mmatch(prp->dtpr_mod, pkp->dtpk_mod, 0)) <= 0) 6862 return (rv); 6863 6864 if ((rv = pkp->dtpk_fmatch(prp->dtpr_func, pkp->dtpk_func, 0)) <= 0) 6865 return (rv); 6866 6867 if ((rv = pkp->dtpk_nmatch(prp->dtpr_name, pkp->dtpk_name, 0)) <= 0) 6868 return (rv); 6869 6870 if (dtrace_match_priv(prp, priv, uid, zoneid) == 0) 6871 return (0); 6872 6873 return (rv); 6874 } 6875 6876 /* 6877 * dtrace_match_glob() is a safe kernel implementation of the gmatch(3GEN) 6878 * interface for matching a glob pattern 'p' to an input string 's'. Unlike 6879 * libc's version, the kernel version only applies to 8-bit ASCII strings. 6880 * In addition, all of the recursion cases except for '*' matching have been 6881 * unwound. For '*', we still implement recursive evaluation, but a depth 6882 * counter is maintained and matching is aborted if we recurse too deep. 6883 * The function returns 0 if no match, >0 if match, and <0 if recursion error. 6884 */ 6885 static int 6886 dtrace_match_glob(const char *s, const char *p, int depth) 6887 { 6888 const char *olds; 6889 char s1, c; 6890 int gs; 6891 6892 if (depth > DTRACE_PROBEKEY_MAXDEPTH) 6893 return (-1); 6894 6895 if (s == NULL) 6896 s = ""; /* treat NULL as empty string */ 6897 6898 top: 6899 olds = s; 6900 s1 = *s++; 6901 6902 if (p == NULL) 6903 return (0); 6904 6905 if ((c = *p++) == '\0') 6906 return (s1 == '\0'); 6907 6908 switch (c) { 6909 case '[': { 6910 int ok = 0, notflag = 0; 6911 char lc = '\0'; 6912 6913 if (s1 == '\0') 6914 return (0); 6915 6916 if (*p == '!') { 6917 notflag = 1; 6918 p++; 6919 } 6920 6921 if ((c = *p++) == '\0') 6922 return (0); 6923 6924 do { 6925 if (c == '-' && lc != '\0' && *p != ']') { 6926 if ((c = *p++) == '\0') 6927 return (0); 6928 if (c == '\\' && (c = *p++) == '\0') 6929 return (0); 6930 6931 if (notflag) { 6932 if (s1 < lc || s1 > c) 6933 ok++; 6934 else 6935 return (0); 6936 } else if (lc <= s1 && s1 <= c) 6937 ok++; 6938 6939 } else if (c == '\\' && (c = *p++) == '\0') 6940 return (0); 6941 6942 lc = c; /* save left-hand 'c' for next iteration */ 6943 6944 if (notflag) { 6945 if (s1 != c) 6946 ok++; 6947 else 6948 return (0); 6949 } else if (s1 == c) 6950 ok++; 6951 6952 if ((c = *p++) == '\0') 6953 return (0); 6954 6955 } while (c != ']'); 6956 6957 if (ok) 6958 goto top; 6959 6960 return (0); 6961 } 6962 6963 case '\\': 6964 if ((c = *p++) == '\0') 6965 return (0); 6966 /*FALLTHRU*/ 6967 6968 default: 6969 if (c != s1) 6970 return (0); 6971 /*FALLTHRU*/ 6972 6973 case '?': 6974 if (s1 != '\0') 6975 goto top; 6976 return (0); 6977 6978 case '*': 6979 while (*p == '*') 6980 p++; /* consecutive *'s are identical to a single one */ 6981 6982 if (*p == '\0') 6983 return (1); 6984 6985 for (s = olds; *s != '\0'; s++) { 6986 if ((gs = dtrace_match_glob(s, p, depth + 1)) != 0) 6987 return (gs); 6988 } 6989 6990 return (0); 6991 } 6992 } 6993 6994 /*ARGSUSED*/ 6995 static int 6996 dtrace_match_string(const char *s, const char *p, int depth) 6997 { 6998 return (s != NULL && strcmp(s, p) == 0); 6999 } 7000 7001 /*ARGSUSED*/ 7002 static int 7003 dtrace_match_nul(const char *s, const char *p, int depth) 7004 { 7005 return (1); /* always match the empty pattern */ 7006 } 7007 7008 /*ARGSUSED*/ 7009 static int 7010 dtrace_match_nonzero(const char *s, const char *p, int depth) 7011 { 7012 return (s != NULL && s[0] != '\0'); 7013 } 7014 7015 static int 7016 dtrace_match(const dtrace_probekey_t *pkp, uint32_t priv, uid_t uid, 7017 zoneid_t zoneid, int (*matched)(dtrace_probe_t *, void *), void *arg) 7018 { 7019 dtrace_probe_t template, *probe; 7020 dtrace_hash_t *hash = NULL; 7021 int len, rc, best = INT_MAX, nmatched = 0; 7022 dtrace_id_t i; 7023 7024 ASSERT(MUTEX_HELD(&dtrace_lock)); 7025 7026 /* 7027 * If the probe ID is specified in the key, just lookup by ID and 7028 * invoke the match callback once if a matching probe is found. 7029 */ 7030 if (pkp->dtpk_id != DTRACE_IDNONE) { 7031 if ((probe = dtrace_probe_lookup_id(pkp->dtpk_id)) != NULL && 7032 dtrace_match_probe(probe, pkp, priv, uid, zoneid) > 0) { 7033 if ((*matched)(probe, arg) == DTRACE_MATCH_FAIL) 7034 return (DTRACE_MATCH_FAIL); 7035 nmatched++; 7036 } 7037 return (nmatched); 7038 } 7039 7040 template.dtpr_mod = (char *)pkp->dtpk_mod; 7041 template.dtpr_func = (char *)pkp->dtpk_func; 7042 template.dtpr_name = (char *)pkp->dtpk_name; 7043 7044 /* 7045 * We want to find the most distinct of the module name, function 7046 * name, and name. So for each one that is not a glob pattern or 7047 * empty string, we perform a lookup in the corresponding hash and 7048 * use the hash table with the fewest collisions to do our search. 7049 */ 7050 if (pkp->dtpk_mmatch == &dtrace_match_string && 7051 (len = dtrace_hash_collisions(dtrace_bymod, &template)) < best) { 7052 best = len; 7053 hash = dtrace_bymod; 7054 } 7055 7056 if (pkp->dtpk_fmatch == &dtrace_match_string && 7057 (len = dtrace_hash_collisions(dtrace_byfunc, &template)) < best) { 7058 best = len; 7059 hash = dtrace_byfunc; 7060 } 7061 7062 if (pkp->dtpk_nmatch == &dtrace_match_string && 7063 (len = dtrace_hash_collisions(dtrace_byname, &template)) < best) { 7064 best = len; 7065 hash = dtrace_byname; 7066 } 7067 7068 /* 7069 * If we did not select a hash table, iterate over every probe and 7070 * invoke our callback for each one that matches our input probe key. 7071 */ 7072 if (hash == NULL) { 7073 for (i = 0; i < dtrace_nprobes; i++) { 7074 if ((probe = dtrace_probes[i]) == NULL || 7075 dtrace_match_probe(probe, pkp, priv, uid, 7076 zoneid) <= 0) 7077 continue; 7078 7079 nmatched++; 7080 7081 if ((rc = (*matched)(probe, arg)) != 7082 DTRACE_MATCH_NEXT) { 7083 if (rc == DTRACE_MATCH_FAIL) 7084 return (DTRACE_MATCH_FAIL); 7085 break; 7086 } 7087 } 7088 7089 return (nmatched); 7090 } 7091 7092 /* 7093 * If we selected a hash table, iterate over each probe of the same key 7094 * name and invoke the callback for every probe that matches the other 7095 * attributes of our input probe key. 7096 */ 7097 for (probe = dtrace_hash_lookup(hash, &template); probe != NULL; 7098 probe = *(DTRACE_HASHNEXT(hash, probe))) { 7099 7100 if (dtrace_match_probe(probe, pkp, priv, uid, zoneid) <= 0) 7101 continue; 7102 7103 nmatched++; 7104 7105 if ((rc = (*matched)(probe, arg)) != DTRACE_MATCH_NEXT) { 7106 if (rc == DTRACE_MATCH_FAIL) 7107 return (DTRACE_MATCH_FAIL); 7108 break; 7109 } 7110 } 7111 7112 return (nmatched); 7113 } 7114 7115 /* 7116 * Return the function pointer dtrace_probecmp() should use to compare the 7117 * specified pattern with a string. For NULL or empty patterns, we select 7118 * dtrace_match_nul(). For glob pattern strings, we use dtrace_match_glob(). 7119 * For non-empty non-glob strings, we use dtrace_match_string(). 7120 */ 7121 static dtrace_probekey_f * 7122 dtrace_probekey_func(const char *p) 7123 { 7124 char c; 7125 7126 if (p == NULL || *p == '\0') 7127 return (&dtrace_match_nul); 7128 7129 while ((c = *p++) != '\0') { 7130 if (c == '[' || c == '?' || c == '*' || c == '\\') 7131 return (&dtrace_match_glob); 7132 } 7133 7134 return (&dtrace_match_string); 7135 } 7136 7137 /* 7138 * Build a probe comparison key for use with dtrace_match_probe() from the 7139 * given probe description. By convention, a null key only matches anchored 7140 * probes: if each field is the empty string, reset dtpk_fmatch to 7141 * dtrace_match_nonzero(). 7142 */ 7143 static void 7144 dtrace_probekey(const dtrace_probedesc_t *pdp, dtrace_probekey_t *pkp) 7145 { 7146 pkp->dtpk_prov = pdp->dtpd_provider; 7147 pkp->dtpk_pmatch = dtrace_probekey_func(pdp->dtpd_provider); 7148 7149 pkp->dtpk_mod = pdp->dtpd_mod; 7150 pkp->dtpk_mmatch = dtrace_probekey_func(pdp->dtpd_mod); 7151 7152 pkp->dtpk_func = pdp->dtpd_func; 7153 pkp->dtpk_fmatch = dtrace_probekey_func(pdp->dtpd_func); 7154 7155 pkp->dtpk_name = pdp->dtpd_name; 7156 pkp->dtpk_nmatch = dtrace_probekey_func(pdp->dtpd_name); 7157 7158 pkp->dtpk_id = pdp->dtpd_id; 7159 7160 if (pkp->dtpk_id == DTRACE_IDNONE && 7161 pkp->dtpk_pmatch == &dtrace_match_nul && 7162 pkp->dtpk_mmatch == &dtrace_match_nul && 7163 pkp->dtpk_fmatch == &dtrace_match_nul && 7164 pkp->dtpk_nmatch == &dtrace_match_nul) 7165 pkp->dtpk_fmatch = &dtrace_match_nonzero; 7166 } 7167 7168 /* 7169 * DTrace Provider-to-Framework API Functions 7170 * 7171 * These functions implement much of the Provider-to-Framework API, as 7172 * described in <sys/dtrace.h>. The parts of the API not in this section are 7173 * the functions in the API for probe management (found below), and 7174 * dtrace_probe() itself (found above). 7175 */ 7176 7177 /* 7178 * Register the calling provider with the DTrace framework. This should 7179 * generally be called by DTrace providers in their attach(9E) entry point. 7180 */ 7181 int 7182 dtrace_register(const char *name, const dtrace_pattr_t *pap, uint32_t priv, 7183 cred_t *cr, const dtrace_pops_t *pops, void *arg, dtrace_provider_id_t *idp) 7184 { 7185 dtrace_provider_t *provider; 7186 7187 if (name == NULL || pap == NULL || pops == NULL || idp == NULL) { 7188 cmn_err(CE_WARN, "failed to register provider '%s': invalid " 7189 "arguments", name ? name : "<NULL>"); 7190 return (EINVAL); 7191 } 7192 7193 if (name[0] == '\0' || dtrace_badname(name)) { 7194 cmn_err(CE_WARN, "failed to register provider '%s': invalid " 7195 "provider name", name); 7196 return (EINVAL); 7197 } 7198 7199 if ((pops->dtps_provide == NULL && pops->dtps_provide_module == NULL) || 7200 pops->dtps_enable == NULL || pops->dtps_disable == NULL || 7201 pops->dtps_destroy == NULL || 7202 ((pops->dtps_resume == NULL) != (pops->dtps_suspend == NULL))) { 7203 cmn_err(CE_WARN, "failed to register provider '%s': invalid " 7204 "provider ops", name); 7205 return (EINVAL); 7206 } 7207 7208 if (dtrace_badattr(&pap->dtpa_provider) || 7209 dtrace_badattr(&pap->dtpa_mod) || 7210 dtrace_badattr(&pap->dtpa_func) || 7211 dtrace_badattr(&pap->dtpa_name) || 7212 dtrace_badattr(&pap->dtpa_args)) { 7213 cmn_err(CE_WARN, "failed to register provider '%s': invalid " 7214 "provider attributes", name); 7215 return (EINVAL); 7216 } 7217 7218 if (priv & ~DTRACE_PRIV_ALL) { 7219 cmn_err(CE_WARN, "failed to register provider '%s': invalid " 7220 "privilege attributes", name); 7221 return (EINVAL); 7222 } 7223 7224 if ((priv & DTRACE_PRIV_KERNEL) && 7225 (priv & (DTRACE_PRIV_USER | DTRACE_PRIV_OWNER)) && 7226 pops->dtps_mode == NULL) { 7227 cmn_err(CE_WARN, "failed to register provider '%s': need " 7228 "dtps_mode() op for given privilege attributes", name); 7229 return (EINVAL); 7230 } 7231 7232 provider = kmem_zalloc(sizeof (dtrace_provider_t), KM_SLEEP); 7233 provider->dtpv_name = kmem_alloc(strlen(name) + 1, KM_SLEEP); 7234 (void) strcpy(provider->dtpv_name, name); 7235 7236 provider->dtpv_attr = *pap; 7237 provider->dtpv_priv.dtpp_flags = priv; 7238 if (cr != NULL) { 7239 provider->dtpv_priv.dtpp_uid = crgetuid(cr); 7240 provider->dtpv_priv.dtpp_zoneid = crgetzoneid(cr); 7241 } 7242 provider->dtpv_pops = *pops; 7243 7244 if (pops->dtps_provide == NULL) { 7245 ASSERT(pops->dtps_provide_module != NULL); 7246 provider->dtpv_pops.dtps_provide = 7247 (void (*)(void *, const dtrace_probedesc_t *))dtrace_nullop; 7248 } 7249 7250 if (pops->dtps_provide_module == NULL) { 7251 ASSERT(pops->dtps_provide != NULL); 7252 provider->dtpv_pops.dtps_provide_module = 7253 (void (*)(void *, struct modctl *))dtrace_nullop; 7254 } 7255 7256 if (pops->dtps_suspend == NULL) { 7257 ASSERT(pops->dtps_resume == NULL); 7258 provider->dtpv_pops.dtps_suspend = 7259 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop; 7260 provider->dtpv_pops.dtps_resume = 7261 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop; 7262 } 7263 7264 provider->dtpv_arg = arg; 7265 *idp = (dtrace_provider_id_t)provider; 7266 7267 if (pops == &dtrace_provider_ops) { 7268 ASSERT(MUTEX_HELD(&dtrace_provider_lock)); 7269 ASSERT(MUTEX_HELD(&dtrace_lock)); 7270 ASSERT(dtrace_anon.dta_enabling == NULL); 7271 7272 /* 7273 * We make sure that the DTrace provider is at the head of 7274 * the provider chain. 7275 */ 7276 provider->dtpv_next = dtrace_provider; 7277 dtrace_provider = provider; 7278 return (0); 7279 } 7280 7281 mutex_enter(&dtrace_provider_lock); 7282 mutex_enter(&dtrace_lock); 7283 7284 /* 7285 * If there is at least one provider registered, we'll add this 7286 * provider after the first provider. 7287 */ 7288 if (dtrace_provider != NULL) { 7289 provider->dtpv_next = dtrace_provider->dtpv_next; 7290 dtrace_provider->dtpv_next = provider; 7291 } else { 7292 dtrace_provider = provider; 7293 } 7294 7295 if (dtrace_retained != NULL) { 7296 dtrace_enabling_provide(provider); 7297 7298 /* 7299 * Now we need to call dtrace_enabling_matchall() -- which 7300 * will acquire cpu_lock and dtrace_lock. We therefore need 7301 * to drop all of our locks before calling into it... 7302 */ 7303 mutex_exit(&dtrace_lock); 7304 mutex_exit(&dtrace_provider_lock); 7305 dtrace_enabling_matchall(); 7306 7307 return (0); 7308 } 7309 7310 mutex_exit(&dtrace_lock); 7311 mutex_exit(&dtrace_provider_lock); 7312 7313 return (0); 7314 } 7315 7316 /* 7317 * Unregister the specified provider from the DTrace framework. This should 7318 * generally be called by DTrace providers in their detach(9E) entry point. 7319 */ 7320 int 7321 dtrace_unregister(dtrace_provider_id_t id) 7322 { 7323 dtrace_provider_t *old = (dtrace_provider_t *)id; 7324 dtrace_provider_t *prev = NULL; 7325 int i, self = 0, noreap = 0; 7326 dtrace_probe_t *probe, *first = NULL; 7327 7328 if (old->dtpv_pops.dtps_enable == 7329 (int (*)(void *, dtrace_id_t, void *))dtrace_enable_nullop) { 7330 /* 7331 * If DTrace itself is the provider, we're called with locks 7332 * already held. 7333 */ 7334 ASSERT(old == dtrace_provider); 7335 ASSERT(dtrace_devi != NULL); 7336 ASSERT(MUTEX_HELD(&dtrace_provider_lock)); 7337 ASSERT(MUTEX_HELD(&dtrace_lock)); 7338 self = 1; 7339 7340 if (dtrace_provider->dtpv_next != NULL) { 7341 /* 7342 * There's another provider here; return failure. 7343 */ 7344 return (EBUSY); 7345 } 7346 } else { 7347 mutex_enter(&dtrace_provider_lock); 7348 mutex_enter(&mod_lock); 7349 mutex_enter(&dtrace_lock); 7350 } 7351 7352 /* 7353 * If anyone has /dev/dtrace open, or if there are anonymous enabled 7354 * probes, we refuse to let providers slither away, unless this 7355 * provider has already been explicitly invalidated. 7356 */ 7357 if (!old->dtpv_defunct && 7358 (dtrace_opens || (dtrace_anon.dta_state != NULL && 7359 dtrace_anon.dta_state->dts_necbs > 0))) { 7360 if (!self) { 7361 mutex_exit(&dtrace_lock); 7362 mutex_exit(&mod_lock); 7363 mutex_exit(&dtrace_provider_lock); 7364 } 7365 return (EBUSY); 7366 } 7367 7368 /* 7369 * Attempt to destroy the probes associated with this provider. 7370 */ 7371 for (i = 0; i < dtrace_nprobes; i++) { 7372 if ((probe = dtrace_probes[i]) == NULL) 7373 continue; 7374 7375 if (probe->dtpr_provider != old) 7376 continue; 7377 7378 if (probe->dtpr_ecb == NULL) 7379 continue; 7380 7381 /* 7382 * If we are trying to unregister a defunct provider, and the 7383 * provider was made defunct within the interval dictated by 7384 * dtrace_unregister_defunct_reap, we'll (asynchronously) 7385 * attempt to reap our enablings. To denote that the provider 7386 * should reattempt to unregister itself at some point in the 7387 * future, we will return a differentiable error code (EAGAIN 7388 * instead of EBUSY) in this case. 7389 */ 7390 if (dtrace_gethrtime() - old->dtpv_defunct > 7391 dtrace_unregister_defunct_reap) 7392 noreap = 1; 7393 7394 if (!self) { 7395 mutex_exit(&dtrace_lock); 7396 mutex_exit(&mod_lock); 7397 mutex_exit(&dtrace_provider_lock); 7398 } 7399 7400 if (noreap) 7401 return (EBUSY); 7402 7403 (void) taskq_dispatch(dtrace_taskq, 7404 (task_func_t *)dtrace_enabling_reap, NULL, TQ_SLEEP); 7405 7406 return (EAGAIN); 7407 } 7408 7409 /* 7410 * All of the probes for this provider are disabled; we can safely 7411 * remove all of them from their hash chains and from the probe array. 7412 */ 7413 for (i = 0; i < dtrace_nprobes; i++) { 7414 if ((probe = dtrace_probes[i]) == NULL) 7415 continue; 7416 7417 if (probe->dtpr_provider != old) 7418 continue; 7419 7420 dtrace_probes[i] = NULL; 7421 7422 dtrace_hash_remove(dtrace_bymod, probe); 7423 dtrace_hash_remove(dtrace_byfunc, probe); 7424 dtrace_hash_remove(dtrace_byname, probe); 7425 7426 if (first == NULL) { 7427 first = probe; 7428 probe->dtpr_nextmod = NULL; 7429 } else { 7430 probe->dtpr_nextmod = first; 7431 first = probe; 7432 } 7433 } 7434 7435 /* 7436 * The provider's probes have been removed from the hash chains and 7437 * from the probe array. Now issue a dtrace_sync() to be sure that 7438 * everyone has cleared out from any probe array processing. 7439 */ 7440 dtrace_sync(); 7441 7442 for (probe = first; probe != NULL; probe = first) { 7443 first = probe->dtpr_nextmod; 7444 7445 old->dtpv_pops.dtps_destroy(old->dtpv_arg, probe->dtpr_id, 7446 probe->dtpr_arg); 7447 kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1); 7448 kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1); 7449 kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1); 7450 vmem_free(dtrace_arena, (void *)(uintptr_t)(probe->dtpr_id), 1); 7451 kmem_free(probe, sizeof (dtrace_probe_t)); 7452 } 7453 7454 if ((prev = dtrace_provider) == old) { 7455 ASSERT(self || dtrace_devi == NULL); 7456 ASSERT(old->dtpv_next == NULL || dtrace_devi == NULL); 7457 dtrace_provider = old->dtpv_next; 7458 } else { 7459 while (prev != NULL && prev->dtpv_next != old) 7460 prev = prev->dtpv_next; 7461 7462 if (prev == NULL) { 7463 panic("attempt to unregister non-existent " 7464 "dtrace provider %p\n", (void *)id); 7465 } 7466 7467 prev->dtpv_next = old->dtpv_next; 7468 } 7469 7470 if (!self) { 7471 mutex_exit(&dtrace_lock); 7472 mutex_exit(&mod_lock); 7473 mutex_exit(&dtrace_provider_lock); 7474 } 7475 7476 kmem_free(old->dtpv_name, strlen(old->dtpv_name) + 1); 7477 kmem_free(old, sizeof (dtrace_provider_t)); 7478 7479 return (0); 7480 } 7481 7482 /* 7483 * Invalidate the specified provider. All subsequent probe lookups for the 7484 * specified provider will fail, but its probes will not be removed. 7485 */ 7486 void 7487 dtrace_invalidate(dtrace_provider_id_t id) 7488 { 7489 dtrace_provider_t *pvp = (dtrace_provider_t *)id; 7490 7491 ASSERT(pvp->dtpv_pops.dtps_enable != 7492 (int (*)(void *, dtrace_id_t, void *))dtrace_enable_nullop); 7493 7494 mutex_enter(&dtrace_provider_lock); 7495 mutex_enter(&dtrace_lock); 7496 7497 pvp->dtpv_defunct = dtrace_gethrtime(); 7498 7499 mutex_exit(&dtrace_lock); 7500 mutex_exit(&dtrace_provider_lock); 7501 } 7502 7503 /* 7504 * Indicate whether or not DTrace has attached. 7505 */ 7506 int 7507 dtrace_attached(void) 7508 { 7509 /* 7510 * dtrace_provider will be non-NULL iff the DTrace driver has 7511 * attached. (It's non-NULL because DTrace is always itself a 7512 * provider.) 7513 */ 7514 return (dtrace_provider != NULL); 7515 } 7516 7517 /* 7518 * Remove all the unenabled probes for the given provider. This function is 7519 * not unlike dtrace_unregister(), except that it doesn't remove the provider 7520 * -- just as many of its associated probes as it can. 7521 */ 7522 int 7523 dtrace_condense(dtrace_provider_id_t id) 7524 { 7525 dtrace_provider_t *prov = (dtrace_provider_t *)id; 7526 int i; 7527 dtrace_probe_t *probe; 7528 7529 /* 7530 * Make sure this isn't the dtrace provider itself. 7531 */ 7532 ASSERT(prov->dtpv_pops.dtps_enable != 7533 (int (*)(void *, dtrace_id_t, void *))dtrace_enable_nullop); 7534 7535 mutex_enter(&dtrace_provider_lock); 7536 mutex_enter(&dtrace_lock); 7537 7538 /* 7539 * Attempt to destroy the probes associated with this provider. 7540 */ 7541 for (i = 0; i < dtrace_nprobes; i++) { 7542 if ((probe = dtrace_probes[i]) == NULL) 7543 continue; 7544 7545 if (probe->dtpr_provider != prov) 7546 continue; 7547 7548 if (probe->dtpr_ecb != NULL) 7549 continue; 7550 7551 dtrace_probes[i] = NULL; 7552 7553 dtrace_hash_remove(dtrace_bymod, probe); 7554 dtrace_hash_remove(dtrace_byfunc, probe); 7555 dtrace_hash_remove(dtrace_byname, probe); 7556 7557 prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, i + 1, 7558 probe->dtpr_arg); 7559 kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1); 7560 kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1); 7561 kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1); 7562 kmem_free(probe, sizeof (dtrace_probe_t)); 7563 vmem_free(dtrace_arena, (void *)((uintptr_t)i + 1), 1); 7564 } 7565 7566 mutex_exit(&dtrace_lock); 7567 mutex_exit(&dtrace_provider_lock); 7568 7569 return (0); 7570 } 7571 7572 /* 7573 * DTrace Probe Management Functions 7574 * 7575 * The functions in this section perform the DTrace probe management, 7576 * including functions to create probes, look-up probes, and call into the 7577 * providers to request that probes be provided. Some of these functions are 7578 * in the Provider-to-Framework API; these functions can be identified by the 7579 * fact that they are not declared "static". 7580 */ 7581 7582 /* 7583 * Create a probe with the specified module name, function name, and name. 7584 */ 7585 dtrace_id_t 7586 dtrace_probe_create(dtrace_provider_id_t prov, const char *mod, 7587 const char *func, const char *name, int aframes, void *arg) 7588 { 7589 dtrace_probe_t *probe, **probes; 7590 dtrace_provider_t *provider = (dtrace_provider_t *)prov; 7591 dtrace_id_t id; 7592 7593 if (provider == dtrace_provider) { 7594 ASSERT(MUTEX_HELD(&dtrace_lock)); 7595 } else { 7596 mutex_enter(&dtrace_lock); 7597 } 7598 7599 id = (dtrace_id_t)(uintptr_t)vmem_alloc(dtrace_arena, 1, 7600 VM_BESTFIT | VM_SLEEP); 7601 probe = kmem_zalloc(sizeof (dtrace_probe_t), KM_SLEEP); 7602 7603 probe->dtpr_id = id; 7604 probe->dtpr_gen = dtrace_probegen++; 7605 probe->dtpr_mod = dtrace_strdup(mod); 7606 probe->dtpr_func = dtrace_strdup(func); 7607 probe->dtpr_name = dtrace_strdup(name); 7608 probe->dtpr_arg = arg; 7609 probe->dtpr_aframes = aframes; 7610 probe->dtpr_provider = provider; 7611 7612 dtrace_hash_add(dtrace_bymod, probe); 7613 dtrace_hash_add(dtrace_byfunc, probe); 7614 dtrace_hash_add(dtrace_byname, probe); 7615 7616 if (id - 1 >= dtrace_nprobes) { 7617 size_t osize = dtrace_nprobes * sizeof (dtrace_probe_t *); 7618 size_t nsize = osize << 1; 7619 7620 if (nsize == 0) { 7621 ASSERT(osize == 0); 7622 ASSERT(dtrace_probes == NULL); 7623 nsize = sizeof (dtrace_probe_t *); 7624 } 7625 7626 probes = kmem_zalloc(nsize, KM_SLEEP); 7627 7628 if (dtrace_probes == NULL) { 7629 ASSERT(osize == 0); 7630 dtrace_probes = probes; 7631 dtrace_nprobes = 1; 7632 } else { 7633 dtrace_probe_t **oprobes = dtrace_probes; 7634 7635 bcopy(oprobes, probes, osize); 7636 dtrace_membar_producer(); 7637 dtrace_probes = probes; 7638 7639 dtrace_sync(); 7640 7641 /* 7642 * All CPUs are now seeing the new probes array; we can 7643 * safely free the old array. 7644 */ 7645 kmem_free(oprobes, osize); 7646 dtrace_nprobes <<= 1; 7647 } 7648 7649 ASSERT(id - 1 < dtrace_nprobes); 7650 } 7651 7652 ASSERT(dtrace_probes[id - 1] == NULL); 7653 dtrace_probes[id - 1] = probe; 7654 7655 if (provider != dtrace_provider) 7656 mutex_exit(&dtrace_lock); 7657 7658 return (id); 7659 } 7660 7661 static dtrace_probe_t * 7662 dtrace_probe_lookup_id(dtrace_id_t id) 7663 { 7664 ASSERT(MUTEX_HELD(&dtrace_lock)); 7665 7666 if (id == 0 || id > dtrace_nprobes) 7667 return (NULL); 7668 7669 return (dtrace_probes[id - 1]); 7670 } 7671 7672 static int 7673 dtrace_probe_lookup_match(dtrace_probe_t *probe, void *arg) 7674 { 7675 *((dtrace_id_t *)arg) = probe->dtpr_id; 7676 7677 return (DTRACE_MATCH_DONE); 7678 } 7679 7680 /* 7681 * Look up a probe based on provider and one or more of module name, function 7682 * name and probe name. 7683 */ 7684 dtrace_id_t 7685 dtrace_probe_lookup(dtrace_provider_id_t prid, const char *mod, 7686 const char *func, const char *name) 7687 { 7688 dtrace_probekey_t pkey; 7689 dtrace_id_t id; 7690 int match; 7691 7692 pkey.dtpk_prov = ((dtrace_provider_t *)prid)->dtpv_name; 7693 pkey.dtpk_pmatch = &dtrace_match_string; 7694 pkey.dtpk_mod = mod; 7695 pkey.dtpk_mmatch = mod ? &dtrace_match_string : &dtrace_match_nul; 7696 pkey.dtpk_func = func; 7697 pkey.dtpk_fmatch = func ? &dtrace_match_string : &dtrace_match_nul; 7698 pkey.dtpk_name = name; 7699 pkey.dtpk_nmatch = name ? &dtrace_match_string : &dtrace_match_nul; 7700 pkey.dtpk_id = DTRACE_IDNONE; 7701 7702 mutex_enter(&dtrace_lock); 7703 match = dtrace_match(&pkey, DTRACE_PRIV_ALL, 0, 0, 7704 dtrace_probe_lookup_match, &id); 7705 mutex_exit(&dtrace_lock); 7706 7707 ASSERT(match == 1 || match == 0); 7708 return (match ? id : 0); 7709 } 7710 7711 /* 7712 * Returns the probe argument associated with the specified probe. 7713 */ 7714 void * 7715 dtrace_probe_arg(dtrace_provider_id_t id, dtrace_id_t pid) 7716 { 7717 dtrace_probe_t *probe; 7718 void *rval = NULL; 7719 7720 mutex_enter(&dtrace_lock); 7721 7722 if ((probe = dtrace_probe_lookup_id(pid)) != NULL && 7723 probe->dtpr_provider == (dtrace_provider_t *)id) 7724 rval = probe->dtpr_arg; 7725 7726 mutex_exit(&dtrace_lock); 7727 7728 return (rval); 7729 } 7730 7731 /* 7732 * Copy a probe into a probe description. 7733 */ 7734 static void 7735 dtrace_probe_description(const dtrace_probe_t *prp, dtrace_probedesc_t *pdp) 7736 { 7737 bzero(pdp, sizeof (dtrace_probedesc_t)); 7738 pdp->dtpd_id = prp->dtpr_id; 7739 7740 (void) strncpy(pdp->dtpd_provider, 7741 prp->dtpr_provider->dtpv_name, DTRACE_PROVNAMELEN - 1); 7742 7743 (void) strncpy(pdp->dtpd_mod, prp->dtpr_mod, DTRACE_MODNAMELEN - 1); 7744 (void) strncpy(pdp->dtpd_func, prp->dtpr_func, DTRACE_FUNCNAMELEN - 1); 7745 (void) strncpy(pdp->dtpd_name, prp->dtpr_name, DTRACE_NAMELEN - 1); 7746 } 7747 7748 /* 7749 * Called to indicate that a probe -- or probes -- should be provided by a 7750 * specfied provider. If the specified description is NULL, the provider will 7751 * be told to provide all of its probes. (This is done whenever a new 7752 * consumer comes along, or whenever a retained enabling is to be matched.) If 7753 * the specified description is non-NULL, the provider is given the 7754 * opportunity to dynamically provide the specified probe, allowing providers 7755 * to support the creation of probes on-the-fly. (So-called _autocreated_ 7756 * probes.) If the provider is NULL, the operations will be applied to all 7757 * providers; if the provider is non-NULL the operations will only be applied 7758 * to the specified provider. The dtrace_provider_lock must be held, and the 7759 * dtrace_lock must _not_ be held -- the provider's dtps_provide() operation 7760 * will need to grab the dtrace_lock when it reenters the framework through 7761 * dtrace_probe_lookup(), dtrace_probe_create(), etc. 7762 */ 7763 static void 7764 dtrace_probe_provide(dtrace_probedesc_t *desc, dtrace_provider_t *prv) 7765 { 7766 struct modctl *ctl; 7767 int all = 0; 7768 7769 ASSERT(MUTEX_HELD(&dtrace_provider_lock)); 7770 7771 if (prv == NULL) { 7772 all = 1; 7773 prv = dtrace_provider; 7774 } 7775 7776 do { 7777 /* 7778 * First, call the blanket provide operation. 7779 */ 7780 prv->dtpv_pops.dtps_provide(prv->dtpv_arg, desc); 7781 7782 /* 7783 * Now call the per-module provide operation. We will grab 7784 * mod_lock to prevent the list from being modified. Note 7785 * that this also prevents the mod_busy bits from changing. 7786 * (mod_busy can only be changed with mod_lock held.) 7787 */ 7788 mutex_enter(&mod_lock); 7789 7790 ctl = &modules; 7791 do { 7792 if (ctl->mod_busy || ctl->mod_mp == NULL) 7793 continue; 7794 7795 prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl); 7796 7797 } while ((ctl = ctl->mod_next) != &modules); 7798 7799 mutex_exit(&mod_lock); 7800 } while (all && (prv = prv->dtpv_next) != NULL); 7801 } 7802 7803 /* 7804 * Iterate over each probe, and call the Framework-to-Provider API function 7805 * denoted by offs. 7806 */ 7807 static void 7808 dtrace_probe_foreach(uintptr_t offs) 7809 { 7810 dtrace_provider_t *prov; 7811 void (*func)(void *, dtrace_id_t, void *); 7812 dtrace_probe_t *probe; 7813 dtrace_icookie_t cookie; 7814 int i; 7815 7816 /* 7817 * We disable interrupts to walk through the probe array. This is 7818 * safe -- the dtrace_sync() in dtrace_unregister() assures that we 7819 * won't see stale data. 7820 */ 7821 cookie = dtrace_interrupt_disable(); 7822 7823 for (i = 0; i < dtrace_nprobes; i++) { 7824 if ((probe = dtrace_probes[i]) == NULL) 7825 continue; 7826 7827 if (probe->dtpr_ecb == NULL) { 7828 /* 7829 * This probe isn't enabled -- don't call the function. 7830 */ 7831 continue; 7832 } 7833 7834 prov = probe->dtpr_provider; 7835 func = *((void(**)(void *, dtrace_id_t, void *)) 7836 ((uintptr_t)&prov->dtpv_pops + offs)); 7837 7838 func(prov->dtpv_arg, i + 1, probe->dtpr_arg); 7839 } 7840 7841 dtrace_interrupt_enable(cookie); 7842 } 7843 7844 static int 7845 dtrace_probe_enable(const dtrace_probedesc_t *desc, dtrace_enabling_t *enab) 7846 { 7847 dtrace_probekey_t pkey; 7848 uint32_t priv; 7849 uid_t uid; 7850 zoneid_t zoneid; 7851 7852 ASSERT(MUTEX_HELD(&dtrace_lock)); 7853 dtrace_ecb_create_cache = NULL; 7854 7855 if (desc == NULL) { 7856 /* 7857 * If we're passed a NULL description, we're being asked to 7858 * create an ECB with a NULL probe. 7859 */ 7860 (void) dtrace_ecb_create_enable(NULL, enab); 7861 return (0); 7862 } 7863 7864 dtrace_probekey(desc, &pkey); 7865 dtrace_cred2priv(enab->dten_vstate->dtvs_state->dts_cred.dcr_cred, 7866 &priv, &uid, &zoneid); 7867 7868 return (dtrace_match(&pkey, priv, uid, zoneid, dtrace_ecb_create_enable, 7869 enab)); 7870 } 7871 7872 /* 7873 * DTrace Helper Provider Functions 7874 */ 7875 static void 7876 dtrace_dofattr2attr(dtrace_attribute_t *attr, const dof_attr_t dofattr) 7877 { 7878 attr->dtat_name = DOF_ATTR_NAME(dofattr); 7879 attr->dtat_data = DOF_ATTR_DATA(dofattr); 7880 attr->dtat_class = DOF_ATTR_CLASS(dofattr); 7881 } 7882 7883 static void 7884 dtrace_dofprov2hprov(dtrace_helper_provdesc_t *hprov, 7885 const dof_provider_t *dofprov, char *strtab) 7886 { 7887 hprov->dthpv_provname = strtab + dofprov->dofpv_name; 7888 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_provider, 7889 dofprov->dofpv_provattr); 7890 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_mod, 7891 dofprov->dofpv_modattr); 7892 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_func, 7893 dofprov->dofpv_funcattr); 7894 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_name, 7895 dofprov->dofpv_nameattr); 7896 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_args, 7897 dofprov->dofpv_argsattr); 7898 } 7899 7900 static void 7901 dtrace_helper_provide_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid) 7902 { 7903 uintptr_t daddr = (uintptr_t)dhp->dofhp_dof; 7904 dof_hdr_t *dof = (dof_hdr_t *)daddr; 7905 dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec; 7906 dof_provider_t *provider; 7907 dof_probe_t *probe; 7908 uint32_t *off, *enoff; 7909 uint8_t *arg; 7910 char *strtab; 7911 uint_t i, nprobes; 7912 dtrace_helper_provdesc_t dhpv; 7913 dtrace_helper_probedesc_t dhpb; 7914 dtrace_meta_t *meta = dtrace_meta_pid; 7915 dtrace_mops_t *mops = &meta->dtm_mops; 7916 void *parg; 7917 7918 provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset); 7919 str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 7920 provider->dofpv_strtab * dof->dofh_secsize); 7921 prb_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 7922 provider->dofpv_probes * dof->dofh_secsize); 7923 arg_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 7924 provider->dofpv_prargs * dof->dofh_secsize); 7925 off_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 7926 provider->dofpv_proffs * dof->dofh_secsize); 7927 7928 strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset); 7929 off = (uint32_t *)(uintptr_t)(daddr + off_sec->dofs_offset); 7930 arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset); 7931 enoff = NULL; 7932 7933 /* 7934 * See dtrace_helper_provider_validate(). 7935 */ 7936 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 && 7937 provider->dofpv_prenoffs != DOF_SECT_NONE) { 7938 enoff_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 7939 provider->dofpv_prenoffs * dof->dofh_secsize); 7940 enoff = (uint32_t *)(uintptr_t)(daddr + enoff_sec->dofs_offset); 7941 } 7942 7943 nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize; 7944 7945 /* 7946 * Create the provider. 7947 */ 7948 dtrace_dofprov2hprov(&dhpv, provider, strtab); 7949 7950 if ((parg = mops->dtms_provide_pid(meta->dtm_arg, &dhpv, pid)) == NULL) 7951 return; 7952 7953 meta->dtm_count++; 7954 7955 /* 7956 * Create the probes. 7957 */ 7958 for (i = 0; i < nprobes; i++) { 7959 probe = (dof_probe_t *)(uintptr_t)(daddr + 7960 prb_sec->dofs_offset + i * prb_sec->dofs_entsize); 7961 7962 dhpb.dthpb_mod = dhp->dofhp_mod; 7963 dhpb.dthpb_func = strtab + probe->dofpr_func; 7964 dhpb.dthpb_name = strtab + probe->dofpr_name; 7965 dhpb.dthpb_base = probe->dofpr_addr; 7966 dhpb.dthpb_offs = off + probe->dofpr_offidx; 7967 dhpb.dthpb_noffs = probe->dofpr_noffs; 7968 if (enoff != NULL) { 7969 dhpb.dthpb_enoffs = enoff + probe->dofpr_enoffidx; 7970 dhpb.dthpb_nenoffs = probe->dofpr_nenoffs; 7971 } else { 7972 dhpb.dthpb_enoffs = NULL; 7973 dhpb.dthpb_nenoffs = 0; 7974 } 7975 dhpb.dthpb_args = arg + probe->dofpr_argidx; 7976 dhpb.dthpb_nargc = probe->dofpr_nargc; 7977 dhpb.dthpb_xargc = probe->dofpr_xargc; 7978 dhpb.dthpb_ntypes = strtab + probe->dofpr_nargv; 7979 dhpb.dthpb_xtypes = strtab + probe->dofpr_xargv; 7980 7981 mops->dtms_create_probe(meta->dtm_arg, parg, &dhpb); 7982 } 7983 } 7984 7985 static void 7986 dtrace_helper_provide(dof_helper_t *dhp, pid_t pid) 7987 { 7988 uintptr_t daddr = (uintptr_t)dhp->dofhp_dof; 7989 dof_hdr_t *dof = (dof_hdr_t *)daddr; 7990 int i; 7991 7992 ASSERT(MUTEX_HELD(&dtrace_meta_lock)); 7993 7994 for (i = 0; i < dof->dofh_secnum; i++) { 7995 dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr + 7996 dof->dofh_secoff + i * dof->dofh_secsize); 7997 7998 if (sec->dofs_type != DOF_SECT_PROVIDER) 7999 continue; 8000 8001 dtrace_helper_provide_one(dhp, sec, pid); 8002 } 8003 8004 /* 8005 * We may have just created probes, so we must now rematch against 8006 * any retained enablings. Note that this call will acquire both 8007 * cpu_lock and dtrace_lock; the fact that we are holding 8008 * dtrace_meta_lock now is what defines the ordering with respect to 8009 * these three locks. 8010 */ 8011 dtrace_enabling_matchall(); 8012 } 8013 8014 static void 8015 dtrace_helper_provider_remove_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid) 8016 { 8017 uintptr_t daddr = (uintptr_t)dhp->dofhp_dof; 8018 dof_hdr_t *dof = (dof_hdr_t *)daddr; 8019 dof_sec_t *str_sec; 8020 dof_provider_t *provider; 8021 char *strtab; 8022 dtrace_helper_provdesc_t dhpv; 8023 dtrace_meta_t *meta = dtrace_meta_pid; 8024 dtrace_mops_t *mops = &meta->dtm_mops; 8025 8026 provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset); 8027 str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 8028 provider->dofpv_strtab * dof->dofh_secsize); 8029 8030 strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset); 8031 8032 /* 8033 * Create the provider. 8034 */ 8035 dtrace_dofprov2hprov(&dhpv, provider, strtab); 8036 8037 mops->dtms_remove_pid(meta->dtm_arg, &dhpv, pid); 8038 8039 meta->dtm_count--; 8040 } 8041 8042 static void 8043 dtrace_helper_provider_remove(dof_helper_t *dhp, pid_t pid) 8044 { 8045 uintptr_t daddr = (uintptr_t)dhp->dofhp_dof; 8046 dof_hdr_t *dof = (dof_hdr_t *)daddr; 8047 int i; 8048 8049 ASSERT(MUTEX_HELD(&dtrace_meta_lock)); 8050 8051 for (i = 0; i < dof->dofh_secnum; i++) { 8052 dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr + 8053 dof->dofh_secoff + i * dof->dofh_secsize); 8054 8055 if (sec->dofs_type != DOF_SECT_PROVIDER) 8056 continue; 8057 8058 dtrace_helper_provider_remove_one(dhp, sec, pid); 8059 } 8060 } 8061 8062 /* 8063 * DTrace Meta Provider-to-Framework API Functions 8064 * 8065 * These functions implement the Meta Provider-to-Framework API, as described 8066 * in <sys/dtrace.h>. 8067 */ 8068 int 8069 dtrace_meta_register(const char *name, const dtrace_mops_t *mops, void *arg, 8070 dtrace_meta_provider_id_t *idp) 8071 { 8072 dtrace_meta_t *meta; 8073 dtrace_helpers_t *help, *next; 8074 int i; 8075 8076 *idp = DTRACE_METAPROVNONE; 8077 8078 /* 8079 * We strictly don't need the name, but we hold onto it for 8080 * debuggability. All hail error queues! 8081 */ 8082 if (name == NULL) { 8083 cmn_err(CE_WARN, "failed to register meta-provider: " 8084 "invalid name"); 8085 return (EINVAL); 8086 } 8087 8088 if (mops == NULL || 8089 mops->dtms_create_probe == NULL || 8090 mops->dtms_provide_pid == NULL || 8091 mops->dtms_remove_pid == NULL) { 8092 cmn_err(CE_WARN, "failed to register meta-register %s: " 8093 "invalid ops", name); 8094 return (EINVAL); 8095 } 8096 8097 meta = kmem_zalloc(sizeof (dtrace_meta_t), KM_SLEEP); 8098 meta->dtm_mops = *mops; 8099 meta->dtm_name = kmem_alloc(strlen(name) + 1, KM_SLEEP); 8100 (void) strcpy(meta->dtm_name, name); 8101 meta->dtm_arg = arg; 8102 8103 mutex_enter(&dtrace_meta_lock); 8104 mutex_enter(&dtrace_lock); 8105 8106 if (dtrace_meta_pid != NULL) { 8107 mutex_exit(&dtrace_lock); 8108 mutex_exit(&dtrace_meta_lock); 8109 cmn_err(CE_WARN, "failed to register meta-register %s: " 8110 "user-land meta-provider exists", name); 8111 kmem_free(meta->dtm_name, strlen(meta->dtm_name) + 1); 8112 kmem_free(meta, sizeof (dtrace_meta_t)); 8113 return (EINVAL); 8114 } 8115 8116 dtrace_meta_pid = meta; 8117 *idp = (dtrace_meta_provider_id_t)meta; 8118 8119 /* 8120 * If there are providers and probes ready to go, pass them 8121 * off to the new meta provider now. 8122 */ 8123 8124 help = dtrace_deferred_pid; 8125 dtrace_deferred_pid = NULL; 8126 8127 mutex_exit(&dtrace_lock); 8128 8129 while (help != NULL) { 8130 for (i = 0; i < help->dthps_nprovs; i++) { 8131 dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov, 8132 help->dthps_pid); 8133 } 8134 8135 next = help->dthps_next; 8136 help->dthps_next = NULL; 8137 help->dthps_prev = NULL; 8138 help->dthps_deferred = 0; 8139 help = next; 8140 } 8141 8142 mutex_exit(&dtrace_meta_lock); 8143 8144 return (0); 8145 } 8146 8147 int 8148 dtrace_meta_unregister(dtrace_meta_provider_id_t id) 8149 { 8150 dtrace_meta_t **pp, *old = (dtrace_meta_t *)id; 8151 8152 mutex_enter(&dtrace_meta_lock); 8153 mutex_enter(&dtrace_lock); 8154 8155 if (old == dtrace_meta_pid) { 8156 pp = &dtrace_meta_pid; 8157 } else { 8158 panic("attempt to unregister non-existent " 8159 "dtrace meta-provider %p\n", (void *)old); 8160 } 8161 8162 if (old->dtm_count != 0) { 8163 mutex_exit(&dtrace_lock); 8164 mutex_exit(&dtrace_meta_lock); 8165 return (EBUSY); 8166 } 8167 8168 *pp = NULL; 8169 8170 mutex_exit(&dtrace_lock); 8171 mutex_exit(&dtrace_meta_lock); 8172 8173 kmem_free(old->dtm_name, strlen(old->dtm_name) + 1); 8174 kmem_free(old, sizeof (dtrace_meta_t)); 8175 8176 return (0); 8177 } 8178 8179 8180 /* 8181 * DTrace DIF Object Functions 8182 */ 8183 static int 8184 dtrace_difo_err(uint_t pc, const char *format, ...) 8185 { 8186 if (dtrace_err_verbose) { 8187 va_list alist; 8188 8189 (void) uprintf("dtrace DIF object error: [%u]: ", pc); 8190 va_start(alist, format); 8191 (void) vuprintf(format, alist); 8192 va_end(alist); 8193 } 8194 8195 #ifdef DTRACE_ERRDEBUG 8196 dtrace_errdebug(format); 8197 #endif 8198 return (1); 8199 } 8200 8201 /* 8202 * Validate a DTrace DIF object by checking the IR instructions. The following 8203 * rules are currently enforced by dtrace_difo_validate(): 8204 * 8205 * 1. Each instruction must have a valid opcode 8206 * 2. Each register, string, variable, or subroutine reference must be valid 8207 * 3. No instruction can modify register %r0 (must be zero) 8208 * 4. All instruction reserved bits must be set to zero 8209 * 5. The last instruction must be a "ret" instruction 8210 * 6. All branch targets must reference a valid instruction _after_ the branch 8211 */ 8212 static int 8213 dtrace_difo_validate(dtrace_difo_t *dp, dtrace_vstate_t *vstate, uint_t nregs, 8214 cred_t *cr) 8215 { 8216 int err = 0, i; 8217 int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err; 8218 int kcheckload; 8219 uint_t pc; 8220 8221 kcheckload = cr == NULL || 8222 (vstate->dtvs_state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) == 0; 8223 8224 dp->dtdo_destructive = 0; 8225 8226 for (pc = 0; pc < dp->dtdo_len && err == 0; pc++) { 8227 dif_instr_t instr = dp->dtdo_buf[pc]; 8228 8229 uint_t r1 = DIF_INSTR_R1(instr); 8230 uint_t r2 = DIF_INSTR_R2(instr); 8231 uint_t rd = DIF_INSTR_RD(instr); 8232 uint_t rs = DIF_INSTR_RS(instr); 8233 uint_t label = DIF_INSTR_LABEL(instr); 8234 uint_t v = DIF_INSTR_VAR(instr); 8235 uint_t subr = DIF_INSTR_SUBR(instr); 8236 uint_t type = DIF_INSTR_TYPE(instr); 8237 uint_t op = DIF_INSTR_OP(instr); 8238 8239 switch (op) { 8240 case DIF_OP_OR: 8241 case DIF_OP_XOR: 8242 case DIF_OP_AND: 8243 case DIF_OP_SLL: 8244 case DIF_OP_SRL: 8245 case DIF_OP_SRA: 8246 case DIF_OP_SUB: 8247 case DIF_OP_ADD: 8248 case DIF_OP_MUL: 8249 case DIF_OP_SDIV: 8250 case DIF_OP_UDIV: 8251 case DIF_OP_SREM: 8252 case DIF_OP_UREM: 8253 case DIF_OP_COPYS: 8254 if (r1 >= nregs) 8255 err += efunc(pc, "invalid register %u\n", r1); 8256 if (r2 >= nregs) 8257 err += efunc(pc, "invalid register %u\n", r2); 8258 if (rd >= nregs) 8259 err += efunc(pc, "invalid register %u\n", rd); 8260 if (rd == 0) 8261 err += efunc(pc, "cannot write to %r0\n"); 8262 break; 8263 case DIF_OP_NOT: 8264 case DIF_OP_MOV: 8265 case DIF_OP_ALLOCS: 8266 if (r1 >= nregs) 8267 err += efunc(pc, "invalid register %u\n", r1); 8268 if (r2 != 0) 8269 err += efunc(pc, "non-zero reserved bits\n"); 8270 if (rd >= nregs) 8271 err += efunc(pc, "invalid register %u\n", rd); 8272 if (rd == 0) 8273 err += efunc(pc, "cannot write to %r0\n"); 8274 break; 8275 case DIF_OP_LDSB: 8276 case DIF_OP_LDSH: 8277 case DIF_OP_LDSW: 8278 case DIF_OP_LDUB: 8279 case DIF_OP_LDUH: 8280 case DIF_OP_LDUW: 8281 case DIF_OP_LDX: 8282 if (r1 >= nregs) 8283 err += efunc(pc, "invalid register %u\n", r1); 8284 if (r2 != 0) 8285 err += efunc(pc, "non-zero reserved bits\n"); 8286 if (rd >= nregs) 8287 err += efunc(pc, "invalid register %u\n", rd); 8288 if (rd == 0) 8289 err += efunc(pc, "cannot write to %r0\n"); 8290 if (kcheckload) 8291 dp->dtdo_buf[pc] = DIF_INSTR_LOAD(op + 8292 DIF_OP_RLDSB - DIF_OP_LDSB, r1, rd); 8293 break; 8294 case DIF_OP_RLDSB: 8295 case DIF_OP_RLDSH: 8296 case DIF_OP_RLDSW: 8297 case DIF_OP_RLDUB: 8298 case DIF_OP_RLDUH: 8299 case DIF_OP_RLDUW: 8300 case DIF_OP_RLDX: 8301 if (r1 >= nregs) 8302 err += efunc(pc, "invalid register %u\n", r1); 8303 if (r2 != 0) 8304 err += efunc(pc, "non-zero reserved bits\n"); 8305 if (rd >= nregs) 8306 err += efunc(pc, "invalid register %u\n", rd); 8307 if (rd == 0) 8308 err += efunc(pc, "cannot write to %r0\n"); 8309 break; 8310 case DIF_OP_ULDSB: 8311 case DIF_OP_ULDSH: 8312 case DIF_OP_ULDSW: 8313 case DIF_OP_ULDUB: 8314 case DIF_OP_ULDUH: 8315 case DIF_OP_ULDUW: 8316 case DIF_OP_ULDX: 8317 if (r1 >= nregs) 8318 err += efunc(pc, "invalid register %u\n", r1); 8319 if (r2 != 0) 8320 err += efunc(pc, "non-zero reserved bits\n"); 8321 if (rd >= nregs) 8322 err += efunc(pc, "invalid register %u\n", rd); 8323 if (rd == 0) 8324 err += efunc(pc, "cannot write to %r0\n"); 8325 break; 8326 case DIF_OP_STB: 8327 case DIF_OP_STH: 8328 case DIF_OP_STW: 8329 case DIF_OP_STX: 8330 if (r1 >= nregs) 8331 err += efunc(pc, "invalid register %u\n", r1); 8332 if (r2 != 0) 8333 err += efunc(pc, "non-zero reserved bits\n"); 8334 if (rd >= nregs) 8335 err += efunc(pc, "invalid register %u\n", rd); 8336 if (rd == 0) 8337 err += efunc(pc, "cannot write to 0 address\n"); 8338 break; 8339 case DIF_OP_CMP: 8340 case DIF_OP_SCMP: 8341 if (r1 >= nregs) 8342 err += efunc(pc, "invalid register %u\n", r1); 8343 if (r2 >= nregs) 8344 err += efunc(pc, "invalid register %u\n", r2); 8345 if (rd != 0) 8346 err += efunc(pc, "non-zero reserved bits\n"); 8347 break; 8348 case DIF_OP_TST: 8349 if (r1 >= nregs) 8350 err += efunc(pc, "invalid register %u\n", r1); 8351 if (r2 != 0 || rd != 0) 8352 err += efunc(pc, "non-zero reserved bits\n"); 8353 break; 8354 case DIF_OP_BA: 8355 case DIF_OP_BE: 8356 case DIF_OP_BNE: 8357 case DIF_OP_BG: 8358 case DIF_OP_BGU: 8359 case DIF_OP_BGE: 8360 case DIF_OP_BGEU: 8361 case DIF_OP_BL: 8362 case DIF_OP_BLU: 8363 case DIF_OP_BLE: 8364 case DIF_OP_BLEU: 8365 if (label >= dp->dtdo_len) { 8366 err += efunc(pc, "invalid branch target %u\n", 8367 label); 8368 } 8369 if (label <= pc) { 8370 err += efunc(pc, "backward branch to %u\n", 8371 label); 8372 } 8373 break; 8374 case DIF_OP_RET: 8375 if (r1 != 0 || r2 != 0) 8376 err += efunc(pc, "non-zero reserved bits\n"); 8377 if (rd >= nregs) 8378 err += efunc(pc, "invalid register %u\n", rd); 8379 break; 8380 case DIF_OP_NOP: 8381 case DIF_OP_POPTS: 8382 case DIF_OP_FLUSHTS: 8383 if (r1 != 0 || r2 != 0 || rd != 0) 8384 err += efunc(pc, "non-zero reserved bits\n"); 8385 break; 8386 case DIF_OP_SETX: 8387 if (DIF_INSTR_INTEGER(instr) >= dp->dtdo_intlen) { 8388 err += efunc(pc, "invalid integer ref %u\n", 8389 DIF_INSTR_INTEGER(instr)); 8390 } 8391 if (rd >= nregs) 8392 err += efunc(pc, "invalid register %u\n", rd); 8393 if (rd == 0) 8394 err += efunc(pc, "cannot write to %r0\n"); 8395 break; 8396 case DIF_OP_SETS: 8397 if (DIF_INSTR_STRING(instr) >= dp->dtdo_strlen) { 8398 err += efunc(pc, "invalid string ref %u\n", 8399 DIF_INSTR_STRING(instr)); 8400 } 8401 if (rd >= nregs) 8402 err += efunc(pc, "invalid register %u\n", rd); 8403 if (rd == 0) 8404 err += efunc(pc, "cannot write to %r0\n"); 8405 break; 8406 case DIF_OP_LDGA: 8407 case DIF_OP_LDTA: 8408 if (r1 > DIF_VAR_ARRAY_MAX) 8409 err += efunc(pc, "invalid array %u\n", r1); 8410 if (r2 >= nregs) 8411 err += efunc(pc, "invalid register %u\n", r2); 8412 if (rd >= nregs) 8413 err += efunc(pc, "invalid register %u\n", rd); 8414 if (rd == 0) 8415 err += efunc(pc, "cannot write to %r0\n"); 8416 break; 8417 case DIF_OP_LDGS: 8418 case DIF_OP_LDTS: 8419 case DIF_OP_LDLS: 8420 case DIF_OP_LDGAA: 8421 case DIF_OP_LDTAA: 8422 if (v < DIF_VAR_OTHER_MIN || v > DIF_VAR_OTHER_MAX) 8423 err += efunc(pc, "invalid variable %u\n", v); 8424 if (rd >= nregs) 8425 err += efunc(pc, "invalid register %u\n", rd); 8426 if (rd == 0) 8427 err += efunc(pc, "cannot write to %r0\n"); 8428 break; 8429 case DIF_OP_STGS: 8430 case DIF_OP_STTS: 8431 case DIF_OP_STLS: 8432 case DIF_OP_STGAA: 8433 case DIF_OP_STTAA: 8434 if (v < DIF_VAR_OTHER_UBASE || v > DIF_VAR_OTHER_MAX) 8435 err += efunc(pc, "invalid variable %u\n", v); 8436 if (rs >= nregs) 8437 err += efunc(pc, "invalid register %u\n", rd); 8438 break; 8439 case DIF_OP_CALL: 8440 if (subr > DIF_SUBR_MAX) 8441 err += efunc(pc, "invalid subr %u\n", subr); 8442 if (rd >= nregs) 8443 err += efunc(pc, "invalid register %u\n", rd); 8444 if (rd == 0) 8445 err += efunc(pc, "cannot write to %r0\n"); 8446 8447 if (subr == DIF_SUBR_COPYOUT || 8448 subr == DIF_SUBR_COPYOUTSTR) { 8449 dp->dtdo_destructive = 1; 8450 } 8451 break; 8452 case DIF_OP_PUSHTR: 8453 if (type != DIF_TYPE_STRING && type != DIF_TYPE_CTF) 8454 err += efunc(pc, "invalid ref type %u\n", type); 8455 if (r2 >= nregs) 8456 err += efunc(pc, "invalid register %u\n", r2); 8457 if (rs >= nregs) 8458 err += efunc(pc, "invalid register %u\n", rs); 8459 break; 8460 case DIF_OP_PUSHTV: 8461 if (type != DIF_TYPE_CTF) 8462 err += efunc(pc, "invalid val type %u\n", type); 8463 if (r2 >= nregs) 8464 err += efunc(pc, "invalid register %u\n", r2); 8465 if (rs >= nregs) 8466 err += efunc(pc, "invalid register %u\n", rs); 8467 break; 8468 default: 8469 err += efunc(pc, "invalid opcode %u\n", 8470 DIF_INSTR_OP(instr)); 8471 } 8472 } 8473 8474 if (dp->dtdo_len != 0 && 8475 DIF_INSTR_OP(dp->dtdo_buf[dp->dtdo_len - 1]) != DIF_OP_RET) { 8476 err += efunc(dp->dtdo_len - 1, 8477 "expected 'ret' as last DIF instruction\n"); 8478 } 8479 8480 if (!(dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) { 8481 /* 8482 * If we're not returning by reference, the size must be either 8483 * 0 or the size of one of the base types. 8484 */ 8485 switch (dp->dtdo_rtype.dtdt_size) { 8486 case 0: 8487 case sizeof (uint8_t): 8488 case sizeof (uint16_t): 8489 case sizeof (uint32_t): 8490 case sizeof (uint64_t): 8491 break; 8492 8493 default: 8494 err += efunc(dp->dtdo_len - 1, "bad return size\n"); 8495 } 8496 } 8497 8498 for (i = 0; i < dp->dtdo_varlen && err == 0; i++) { 8499 dtrace_difv_t *v = &dp->dtdo_vartab[i], *existing = NULL; 8500 dtrace_diftype_t *vt, *et; 8501 uint_t id, ndx; 8502 8503 if (v->dtdv_scope != DIFV_SCOPE_GLOBAL && 8504 v->dtdv_scope != DIFV_SCOPE_THREAD && 8505 v->dtdv_scope != DIFV_SCOPE_LOCAL) { 8506 err += efunc(i, "unrecognized variable scope %d\n", 8507 v->dtdv_scope); 8508 break; 8509 } 8510 8511 if (v->dtdv_kind != DIFV_KIND_ARRAY && 8512 v->dtdv_kind != DIFV_KIND_SCALAR) { 8513 err += efunc(i, "unrecognized variable type %d\n", 8514 v->dtdv_kind); 8515 break; 8516 } 8517 8518 if ((id = v->dtdv_id) > DIF_VARIABLE_MAX) { 8519 err += efunc(i, "%d exceeds variable id limit\n", id); 8520 break; 8521 } 8522 8523 if (id < DIF_VAR_OTHER_UBASE) 8524 continue; 8525 8526 /* 8527 * For user-defined variables, we need to check that this 8528 * definition is identical to any previous definition that we 8529 * encountered. 8530 */ 8531 ndx = id - DIF_VAR_OTHER_UBASE; 8532 8533 switch (v->dtdv_scope) { 8534 case DIFV_SCOPE_GLOBAL: 8535 if (ndx < vstate->dtvs_nglobals) { 8536 dtrace_statvar_t *svar; 8537 8538 if ((svar = vstate->dtvs_globals[ndx]) != NULL) 8539 existing = &svar->dtsv_var; 8540 } 8541 8542 break; 8543 8544 case DIFV_SCOPE_THREAD: 8545 if (ndx < vstate->dtvs_ntlocals) 8546 existing = &vstate->dtvs_tlocals[ndx]; 8547 break; 8548 8549 case DIFV_SCOPE_LOCAL: 8550 if (ndx < vstate->dtvs_nlocals) { 8551 dtrace_statvar_t *svar; 8552 8553 if ((svar = vstate->dtvs_locals[ndx]) != NULL) 8554 existing = &svar->dtsv_var; 8555 } 8556 8557 break; 8558 } 8559 8560 vt = &v->dtdv_type; 8561 8562 if (vt->dtdt_flags & DIF_TF_BYREF) { 8563 if (vt->dtdt_size == 0) { 8564 err += efunc(i, "zero-sized variable\n"); 8565 break; 8566 } 8567 8568 if (v->dtdv_scope == DIFV_SCOPE_GLOBAL && 8569 vt->dtdt_size > dtrace_global_maxsize) { 8570 err += efunc(i, "oversized by-ref global\n"); 8571 break; 8572 } 8573 } 8574 8575 if (existing == NULL || existing->dtdv_id == 0) 8576 continue; 8577 8578 ASSERT(existing->dtdv_id == v->dtdv_id); 8579 ASSERT(existing->dtdv_scope == v->dtdv_scope); 8580 8581 if (existing->dtdv_kind != v->dtdv_kind) 8582 err += efunc(i, "%d changed variable kind\n", id); 8583 8584 et = &existing->dtdv_type; 8585 8586 if (vt->dtdt_flags != et->dtdt_flags) { 8587 err += efunc(i, "%d changed variable type flags\n", id); 8588 break; 8589 } 8590 8591 if (vt->dtdt_size != 0 && vt->dtdt_size != et->dtdt_size) { 8592 err += efunc(i, "%d changed variable type size\n", id); 8593 break; 8594 } 8595 } 8596 8597 return (err); 8598 } 8599 8600 /* 8601 * Validate a DTrace DIF object that it is to be used as a helper. Helpers 8602 * are much more constrained than normal DIFOs. Specifically, they may 8603 * not: 8604 * 8605 * 1. Make calls to subroutines other than copyin(), copyinstr() or 8606 * miscellaneous string routines 8607 * 2. Access DTrace variables other than the args[] array, and the 8608 * curthread, pid, ppid, tid, execname, zonename, uid and gid variables. 8609 * 3. Have thread-local variables. 8610 * 4. Have dynamic variables. 8611 */ 8612 static int 8613 dtrace_difo_validate_helper(dtrace_difo_t *dp) 8614 { 8615 int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err; 8616 int err = 0; 8617 uint_t pc; 8618 8619 for (pc = 0; pc < dp->dtdo_len; pc++) { 8620 dif_instr_t instr = dp->dtdo_buf[pc]; 8621 8622 uint_t v = DIF_INSTR_VAR(instr); 8623 uint_t subr = DIF_INSTR_SUBR(instr); 8624 uint_t op = DIF_INSTR_OP(instr); 8625 8626 switch (op) { 8627 case DIF_OP_OR: 8628 case DIF_OP_XOR: 8629 case DIF_OP_AND: 8630 case DIF_OP_SLL: 8631 case DIF_OP_SRL: 8632 case DIF_OP_SRA: 8633 case DIF_OP_SUB: 8634 case DIF_OP_ADD: 8635 case DIF_OP_MUL: 8636 case DIF_OP_SDIV: 8637 case DIF_OP_UDIV: 8638 case DIF_OP_SREM: 8639 case DIF_OP_UREM: 8640 case DIF_OP_COPYS: 8641 case DIF_OP_NOT: 8642 case DIF_OP_MOV: 8643 case DIF_OP_RLDSB: 8644 case DIF_OP_RLDSH: 8645 case DIF_OP_RLDSW: 8646 case DIF_OP_RLDUB: 8647 case DIF_OP_RLDUH: 8648 case DIF_OP_RLDUW: 8649 case DIF_OP_RLDX: 8650 case DIF_OP_ULDSB: 8651 case DIF_OP_ULDSH: 8652 case DIF_OP_ULDSW: 8653 case DIF_OP_ULDUB: 8654 case DIF_OP_ULDUH: 8655 case DIF_OP_ULDUW: 8656 case DIF_OP_ULDX: 8657 case DIF_OP_STB: 8658 case DIF_OP_STH: 8659 case DIF_OP_STW: 8660 case DIF_OP_STX: 8661 case DIF_OP_ALLOCS: 8662 case DIF_OP_CMP: 8663 case DIF_OP_SCMP: 8664 case DIF_OP_TST: 8665 case DIF_OP_BA: 8666 case DIF_OP_BE: 8667 case DIF_OP_BNE: 8668 case DIF_OP_BG: 8669 case DIF_OP_BGU: 8670 case DIF_OP_BGE: 8671 case DIF_OP_BGEU: 8672 case DIF_OP_BL: 8673 case DIF_OP_BLU: 8674 case DIF_OP_BLE: 8675 case DIF_OP_BLEU: 8676 case DIF_OP_RET: 8677 case DIF_OP_NOP: 8678 case DIF_OP_POPTS: 8679 case DIF_OP_FLUSHTS: 8680 case DIF_OP_SETX: 8681 case DIF_OP_SETS: 8682 case DIF_OP_LDGA: 8683 case DIF_OP_LDLS: 8684 case DIF_OP_STGS: 8685 case DIF_OP_STLS: 8686 case DIF_OP_PUSHTR: 8687 case DIF_OP_PUSHTV: 8688 break; 8689 8690 case DIF_OP_LDGS: 8691 if (v >= DIF_VAR_OTHER_UBASE) 8692 break; 8693 8694 if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9) 8695 break; 8696 8697 if (v == DIF_VAR_CURTHREAD || v == DIF_VAR_PID || 8698 v == DIF_VAR_PPID || v == DIF_VAR_TID || 8699 v == DIF_VAR_EXECNAME || v == DIF_VAR_ZONENAME || 8700 v == DIF_VAR_UID || v == DIF_VAR_GID) 8701 break; 8702 8703 err += efunc(pc, "illegal variable %u\n", v); 8704 break; 8705 8706 case DIF_OP_LDTA: 8707 case DIF_OP_LDTS: 8708 case DIF_OP_LDGAA: 8709 case DIF_OP_LDTAA: 8710 err += efunc(pc, "illegal dynamic variable load\n"); 8711 break; 8712 8713 case DIF_OP_STTS: 8714 case DIF_OP_STGAA: 8715 case DIF_OP_STTAA: 8716 err += efunc(pc, "illegal dynamic variable store\n"); 8717 break; 8718 8719 case DIF_OP_CALL: 8720 if (subr == DIF_SUBR_ALLOCA || 8721 subr == DIF_SUBR_BCOPY || 8722 subr == DIF_SUBR_COPYIN || 8723 subr == DIF_SUBR_COPYINTO || 8724 subr == DIF_SUBR_COPYINSTR || 8725 subr == DIF_SUBR_INDEX || 8726 subr == DIF_SUBR_INET_NTOA || 8727 subr == DIF_SUBR_INET_NTOA6 || 8728 subr == DIF_SUBR_INET_NTOP || 8729 subr == DIF_SUBR_LLTOSTR || 8730 subr == DIF_SUBR_RINDEX || 8731 subr == DIF_SUBR_STRCHR || 8732 subr == DIF_SUBR_STRJOIN || 8733 subr == DIF_SUBR_STRRCHR || 8734 subr == DIF_SUBR_STRSTR || 8735 subr == DIF_SUBR_HTONS || 8736 subr == DIF_SUBR_HTONL || 8737 subr == DIF_SUBR_HTONLL || 8738 subr == DIF_SUBR_NTOHS || 8739 subr == DIF_SUBR_NTOHL || 8740 subr == DIF_SUBR_NTOHLL) 8741 break; 8742 8743 err += efunc(pc, "invalid subr %u\n", subr); 8744 break; 8745 8746 default: 8747 err += efunc(pc, "invalid opcode %u\n", 8748 DIF_INSTR_OP(instr)); 8749 } 8750 } 8751 8752 return (err); 8753 } 8754 8755 /* 8756 * Returns 1 if the expression in the DIF object can be cached on a per-thread 8757 * basis; 0 if not. 8758 */ 8759 static int 8760 dtrace_difo_cacheable(dtrace_difo_t *dp) 8761 { 8762 int i; 8763 8764 if (dp == NULL) 8765 return (0); 8766 8767 for (i = 0; i < dp->dtdo_varlen; i++) { 8768 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 8769 8770 if (v->dtdv_scope != DIFV_SCOPE_GLOBAL) 8771 continue; 8772 8773 switch (v->dtdv_id) { 8774 case DIF_VAR_CURTHREAD: 8775 case DIF_VAR_PID: 8776 case DIF_VAR_TID: 8777 case DIF_VAR_EXECNAME: 8778 case DIF_VAR_ZONENAME: 8779 break; 8780 8781 default: 8782 return (0); 8783 } 8784 } 8785 8786 /* 8787 * This DIF object may be cacheable. Now we need to look for any 8788 * array loading instructions, any memory loading instructions, or 8789 * any stores to thread-local variables. 8790 */ 8791 for (i = 0; i < dp->dtdo_len; i++) { 8792 uint_t op = DIF_INSTR_OP(dp->dtdo_buf[i]); 8793 8794 if ((op >= DIF_OP_LDSB && op <= DIF_OP_LDX) || 8795 (op >= DIF_OP_ULDSB && op <= DIF_OP_ULDX) || 8796 (op >= DIF_OP_RLDSB && op <= DIF_OP_RLDX) || 8797 op == DIF_OP_LDGA || op == DIF_OP_STTS) 8798 return (0); 8799 } 8800 8801 return (1); 8802 } 8803 8804 static void 8805 dtrace_difo_hold(dtrace_difo_t *dp) 8806 { 8807 int i; 8808 8809 ASSERT(MUTEX_HELD(&dtrace_lock)); 8810 8811 dp->dtdo_refcnt++; 8812 ASSERT(dp->dtdo_refcnt != 0); 8813 8814 /* 8815 * We need to check this DIF object for references to the variable 8816 * DIF_VAR_VTIMESTAMP. 8817 */ 8818 for (i = 0; i < dp->dtdo_varlen; i++) { 8819 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 8820 8821 if (v->dtdv_id != DIF_VAR_VTIMESTAMP) 8822 continue; 8823 8824 if (dtrace_vtime_references++ == 0) 8825 dtrace_vtime_enable(); 8826 } 8827 } 8828 8829 /* 8830 * This routine calculates the dynamic variable chunksize for a given DIF 8831 * object. The calculation is not fool-proof, and can probably be tricked by 8832 * malicious DIF -- but it works for all compiler-generated DIF. Because this 8833 * calculation is likely imperfect, dtrace_dynvar() is able to gracefully fail 8834 * if a dynamic variable size exceeds the chunksize. 8835 */ 8836 static void 8837 dtrace_difo_chunksize(dtrace_difo_t *dp, dtrace_vstate_t *vstate) 8838 { 8839 uint64_t sval; 8840 dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */ 8841 const dif_instr_t *text = dp->dtdo_buf; 8842 uint_t pc, srd = 0; 8843 uint_t ttop = 0; 8844 size_t size, ksize; 8845 uint_t id, i; 8846 8847 for (pc = 0; pc < dp->dtdo_len; pc++) { 8848 dif_instr_t instr = text[pc]; 8849 uint_t op = DIF_INSTR_OP(instr); 8850 uint_t rd = DIF_INSTR_RD(instr); 8851 uint_t r1 = DIF_INSTR_R1(instr); 8852 uint_t nkeys = 0; 8853 uchar_t scope; 8854 8855 dtrace_key_t *key = tupregs; 8856 8857 switch (op) { 8858 case DIF_OP_SETX: 8859 sval = dp->dtdo_inttab[DIF_INSTR_INTEGER(instr)]; 8860 srd = rd; 8861 continue; 8862 8863 case DIF_OP_STTS: 8864 key = &tupregs[DIF_DTR_NREGS]; 8865 key[0].dttk_size = 0; 8866 key[1].dttk_size = 0; 8867 nkeys = 2; 8868 scope = DIFV_SCOPE_THREAD; 8869 break; 8870 8871 case DIF_OP_STGAA: 8872 case DIF_OP_STTAA: 8873 nkeys = ttop; 8874 8875 if (DIF_INSTR_OP(instr) == DIF_OP_STTAA) 8876 key[nkeys++].dttk_size = 0; 8877 8878 key[nkeys++].dttk_size = 0; 8879 8880 if (op == DIF_OP_STTAA) { 8881 scope = DIFV_SCOPE_THREAD; 8882 } else { 8883 scope = DIFV_SCOPE_GLOBAL; 8884 } 8885 8886 break; 8887 8888 case DIF_OP_PUSHTR: 8889 if (ttop == DIF_DTR_NREGS) 8890 return; 8891 8892 if ((srd == 0 || sval == 0) && r1 == DIF_TYPE_STRING) { 8893 /* 8894 * If the register for the size of the "pushtr" 8895 * is %r0 (or the value is 0) and the type is 8896 * a string, we'll use the system-wide default 8897 * string size. 8898 */ 8899 tupregs[ttop++].dttk_size = 8900 dtrace_strsize_default; 8901 } else { 8902 if (srd == 0) 8903 return; 8904 8905 tupregs[ttop++].dttk_size = sval; 8906 } 8907 8908 break; 8909 8910 case DIF_OP_PUSHTV: 8911 if (ttop == DIF_DTR_NREGS) 8912 return; 8913 8914 tupregs[ttop++].dttk_size = 0; 8915 break; 8916 8917 case DIF_OP_FLUSHTS: 8918 ttop = 0; 8919 break; 8920 8921 case DIF_OP_POPTS: 8922 if (ttop != 0) 8923 ttop--; 8924 break; 8925 } 8926 8927 sval = 0; 8928 srd = 0; 8929 8930 if (nkeys == 0) 8931 continue; 8932 8933 /* 8934 * We have a dynamic variable allocation; calculate its size. 8935 */ 8936 for (ksize = 0, i = 0; i < nkeys; i++) 8937 ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t)); 8938 8939 size = sizeof (dtrace_dynvar_t); 8940 size += sizeof (dtrace_key_t) * (nkeys - 1); 8941 size += ksize; 8942 8943 /* 8944 * Now we need to determine the size of the stored data. 8945 */ 8946 id = DIF_INSTR_VAR(instr); 8947 8948 for (i = 0; i < dp->dtdo_varlen; i++) { 8949 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 8950 8951 if (v->dtdv_id == id && v->dtdv_scope == scope) { 8952 size += v->dtdv_type.dtdt_size; 8953 break; 8954 } 8955 } 8956 8957 if (i == dp->dtdo_varlen) 8958 return; 8959 8960 /* 8961 * We have the size. If this is larger than the chunk size 8962 * for our dynamic variable state, reset the chunk size. 8963 */ 8964 size = P2ROUNDUP(size, sizeof (uint64_t)); 8965 8966 if (size > vstate->dtvs_dynvars.dtds_chunksize) 8967 vstate->dtvs_dynvars.dtds_chunksize = size; 8968 } 8969 } 8970 8971 static void 8972 dtrace_difo_init(dtrace_difo_t *dp, dtrace_vstate_t *vstate) 8973 { 8974 int i, oldsvars, osz, nsz, otlocals, ntlocals; 8975 uint_t id; 8976 8977 ASSERT(MUTEX_HELD(&dtrace_lock)); 8978 ASSERT(dp->dtdo_buf != NULL && dp->dtdo_len != 0); 8979 8980 for (i = 0; i < dp->dtdo_varlen; i++) { 8981 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 8982 dtrace_statvar_t *svar, ***svarp; 8983 size_t dsize = 0; 8984 uint8_t scope = v->dtdv_scope; 8985 int *np; 8986 8987 if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE) 8988 continue; 8989 8990 id -= DIF_VAR_OTHER_UBASE; 8991 8992 switch (scope) { 8993 case DIFV_SCOPE_THREAD: 8994 while (id >= (otlocals = vstate->dtvs_ntlocals)) { 8995 dtrace_difv_t *tlocals; 8996 8997 if ((ntlocals = (otlocals << 1)) == 0) 8998 ntlocals = 1; 8999 9000 osz = otlocals * sizeof (dtrace_difv_t); 9001 nsz = ntlocals * sizeof (dtrace_difv_t); 9002 9003 tlocals = kmem_zalloc(nsz, KM_SLEEP); 9004 9005 if (osz != 0) { 9006 bcopy(vstate->dtvs_tlocals, 9007 tlocals, osz); 9008 kmem_free(vstate->dtvs_tlocals, osz); 9009 } 9010 9011 vstate->dtvs_tlocals = tlocals; 9012 vstate->dtvs_ntlocals = ntlocals; 9013 } 9014 9015 vstate->dtvs_tlocals[id] = *v; 9016 continue; 9017 9018 case DIFV_SCOPE_LOCAL: 9019 np = &vstate->dtvs_nlocals; 9020 svarp = &vstate->dtvs_locals; 9021 9022 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) 9023 dsize = NCPU * (v->dtdv_type.dtdt_size + 9024 sizeof (uint64_t)); 9025 else 9026 dsize = NCPU * sizeof (uint64_t); 9027 9028 break; 9029 9030 case DIFV_SCOPE_GLOBAL: 9031 np = &vstate->dtvs_nglobals; 9032 svarp = &vstate->dtvs_globals; 9033 9034 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) 9035 dsize = v->dtdv_type.dtdt_size + 9036 sizeof (uint64_t); 9037 9038 break; 9039 9040 default: 9041 ASSERT(0); 9042 } 9043 9044 while (id >= (oldsvars = *np)) { 9045 dtrace_statvar_t **statics; 9046 int newsvars, oldsize, newsize; 9047 9048 if ((newsvars = (oldsvars << 1)) == 0) 9049 newsvars = 1; 9050 9051 oldsize = oldsvars * sizeof (dtrace_statvar_t *); 9052 newsize = newsvars * sizeof (dtrace_statvar_t *); 9053 9054 statics = kmem_zalloc(newsize, KM_SLEEP); 9055 9056 if (oldsize != 0) { 9057 bcopy(*svarp, statics, oldsize); 9058 kmem_free(*svarp, oldsize); 9059 } 9060 9061 *svarp = statics; 9062 *np = newsvars; 9063 } 9064 9065 if ((svar = (*svarp)[id]) == NULL) { 9066 svar = kmem_zalloc(sizeof (dtrace_statvar_t), KM_SLEEP); 9067 svar->dtsv_var = *v; 9068 9069 if ((svar->dtsv_size = dsize) != 0) { 9070 svar->dtsv_data = (uint64_t)(uintptr_t) 9071 kmem_zalloc(dsize, KM_SLEEP); 9072 } 9073 9074 (*svarp)[id] = svar; 9075 } 9076 9077 svar->dtsv_refcnt++; 9078 } 9079 9080 dtrace_difo_chunksize(dp, vstate); 9081 dtrace_difo_hold(dp); 9082 } 9083 9084 static dtrace_difo_t * 9085 dtrace_difo_duplicate(dtrace_difo_t *dp, dtrace_vstate_t *vstate) 9086 { 9087 dtrace_difo_t *new; 9088 size_t sz; 9089 9090 ASSERT(dp->dtdo_buf != NULL); 9091 ASSERT(dp->dtdo_refcnt != 0); 9092 9093 new = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP); 9094 9095 ASSERT(dp->dtdo_buf != NULL); 9096 sz = dp->dtdo_len * sizeof (dif_instr_t); 9097 new->dtdo_buf = kmem_alloc(sz, KM_SLEEP); 9098 bcopy(dp->dtdo_buf, new->dtdo_buf, sz); 9099 new->dtdo_len = dp->dtdo_len; 9100 9101 if (dp->dtdo_strtab != NULL) { 9102 ASSERT(dp->dtdo_strlen != 0); 9103 new->dtdo_strtab = kmem_alloc(dp->dtdo_strlen, KM_SLEEP); 9104 bcopy(dp->dtdo_strtab, new->dtdo_strtab, dp->dtdo_strlen); 9105 new->dtdo_strlen = dp->dtdo_strlen; 9106 } 9107 9108 if (dp->dtdo_inttab != NULL) { 9109 ASSERT(dp->dtdo_intlen != 0); 9110 sz = dp->dtdo_intlen * sizeof (uint64_t); 9111 new->dtdo_inttab = kmem_alloc(sz, KM_SLEEP); 9112 bcopy(dp->dtdo_inttab, new->dtdo_inttab, sz); 9113 new->dtdo_intlen = dp->dtdo_intlen; 9114 } 9115 9116 if (dp->dtdo_vartab != NULL) { 9117 ASSERT(dp->dtdo_varlen != 0); 9118 sz = dp->dtdo_varlen * sizeof (dtrace_difv_t); 9119 new->dtdo_vartab = kmem_alloc(sz, KM_SLEEP); 9120 bcopy(dp->dtdo_vartab, new->dtdo_vartab, sz); 9121 new->dtdo_varlen = dp->dtdo_varlen; 9122 } 9123 9124 dtrace_difo_init(new, vstate); 9125 return (new); 9126 } 9127 9128 static void 9129 dtrace_difo_destroy(dtrace_difo_t *dp, dtrace_vstate_t *vstate) 9130 { 9131 int i; 9132 9133 ASSERT(dp->dtdo_refcnt == 0); 9134 9135 for (i = 0; i < dp->dtdo_varlen; i++) { 9136 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 9137 dtrace_statvar_t *svar, **svarp; 9138 uint_t id; 9139 uint8_t scope = v->dtdv_scope; 9140 int *np; 9141 9142 switch (scope) { 9143 case DIFV_SCOPE_THREAD: 9144 continue; 9145 9146 case DIFV_SCOPE_LOCAL: 9147 np = &vstate->dtvs_nlocals; 9148 svarp = vstate->dtvs_locals; 9149 break; 9150 9151 case DIFV_SCOPE_GLOBAL: 9152 np = &vstate->dtvs_nglobals; 9153 svarp = vstate->dtvs_globals; 9154 break; 9155 9156 default: 9157 ASSERT(0); 9158 } 9159 9160 if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE) 9161 continue; 9162 9163 id -= DIF_VAR_OTHER_UBASE; 9164 ASSERT(id < *np); 9165 9166 svar = svarp[id]; 9167 ASSERT(svar != NULL); 9168 ASSERT(svar->dtsv_refcnt > 0); 9169 9170 if (--svar->dtsv_refcnt > 0) 9171 continue; 9172 9173 if (svar->dtsv_size != 0) { 9174 ASSERT(svar->dtsv_data != NULL); 9175 kmem_free((void *)(uintptr_t)svar->dtsv_data, 9176 svar->dtsv_size); 9177 } 9178 9179 kmem_free(svar, sizeof (dtrace_statvar_t)); 9180 svarp[id] = NULL; 9181 } 9182 9183 kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t)); 9184 kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t)); 9185 kmem_free(dp->dtdo_strtab, dp->dtdo_strlen); 9186 kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t)); 9187 9188 kmem_free(dp, sizeof (dtrace_difo_t)); 9189 } 9190 9191 static void 9192 dtrace_difo_release(dtrace_difo_t *dp, dtrace_vstate_t *vstate) 9193 { 9194 int i; 9195 9196 ASSERT(MUTEX_HELD(&dtrace_lock)); 9197 ASSERT(dp->dtdo_refcnt != 0); 9198 9199 for (i = 0; i < dp->dtdo_varlen; i++) { 9200 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 9201 9202 if (v->dtdv_id != DIF_VAR_VTIMESTAMP) 9203 continue; 9204 9205 ASSERT(dtrace_vtime_references > 0); 9206 if (--dtrace_vtime_references == 0) 9207 dtrace_vtime_disable(); 9208 } 9209 9210 if (--dp->dtdo_refcnt == 0) 9211 dtrace_difo_destroy(dp, vstate); 9212 } 9213 9214 /* 9215 * DTrace Format Functions 9216 */ 9217 static uint16_t 9218 dtrace_format_add(dtrace_state_t *state, char *str) 9219 { 9220 char *fmt, **new; 9221 uint16_t ndx, len = strlen(str) + 1; 9222 9223 fmt = kmem_zalloc(len, KM_SLEEP); 9224 bcopy(str, fmt, len); 9225 9226 for (ndx = 0; ndx < state->dts_nformats; ndx++) { 9227 if (state->dts_formats[ndx] == NULL) { 9228 state->dts_formats[ndx] = fmt; 9229 return (ndx + 1); 9230 } 9231 } 9232 9233 if (state->dts_nformats == USHRT_MAX) { 9234 /* 9235 * This is only likely if a denial-of-service attack is being 9236 * attempted. As such, it's okay to fail silently here. 9237 */ 9238 kmem_free(fmt, len); 9239 return (0); 9240 } 9241 9242 /* 9243 * For simplicity, we always resize the formats array to be exactly the 9244 * number of formats. 9245 */ 9246 ndx = state->dts_nformats++; 9247 new = kmem_alloc((ndx + 1) * sizeof (char *), KM_SLEEP); 9248 9249 if (state->dts_formats != NULL) { 9250 ASSERT(ndx != 0); 9251 bcopy(state->dts_formats, new, ndx * sizeof (char *)); 9252 kmem_free(state->dts_formats, ndx * sizeof (char *)); 9253 } 9254 9255 state->dts_formats = new; 9256 state->dts_formats[ndx] = fmt; 9257 9258 return (ndx + 1); 9259 } 9260 9261 static void 9262 dtrace_format_remove(dtrace_state_t *state, uint16_t format) 9263 { 9264 char *fmt; 9265 9266 ASSERT(state->dts_formats != NULL); 9267 ASSERT(format <= state->dts_nformats); 9268 ASSERT(state->dts_formats[format - 1] != NULL); 9269 9270 fmt = state->dts_formats[format - 1]; 9271 kmem_free(fmt, strlen(fmt) + 1); 9272 state->dts_formats[format - 1] = NULL; 9273 } 9274 9275 static void 9276 dtrace_format_destroy(dtrace_state_t *state) 9277 { 9278 int i; 9279 9280 if (state->dts_nformats == 0) { 9281 ASSERT(state->dts_formats == NULL); 9282 return; 9283 } 9284 9285 ASSERT(state->dts_formats != NULL); 9286 9287 for (i = 0; i < state->dts_nformats; i++) { 9288 char *fmt = state->dts_formats[i]; 9289 9290 if (fmt == NULL) 9291 continue; 9292 9293 kmem_free(fmt, strlen(fmt) + 1); 9294 } 9295 9296 kmem_free(state->dts_formats, state->dts_nformats * sizeof (char *)); 9297 state->dts_nformats = 0; 9298 state->dts_formats = NULL; 9299 } 9300 9301 /* 9302 * DTrace Predicate Functions 9303 */ 9304 static dtrace_predicate_t * 9305 dtrace_predicate_create(dtrace_difo_t *dp) 9306 { 9307 dtrace_predicate_t *pred; 9308 9309 ASSERT(MUTEX_HELD(&dtrace_lock)); 9310 ASSERT(dp->dtdo_refcnt != 0); 9311 9312 pred = kmem_zalloc(sizeof (dtrace_predicate_t), KM_SLEEP); 9313 pred->dtp_difo = dp; 9314 pred->dtp_refcnt = 1; 9315 9316 if (!dtrace_difo_cacheable(dp)) 9317 return (pred); 9318 9319 if (dtrace_predcache_id == DTRACE_CACHEIDNONE) { 9320 /* 9321 * This is only theoretically possible -- we have had 2^32 9322 * cacheable predicates on this machine. We cannot allow any 9323 * more predicates to become cacheable: as unlikely as it is, 9324 * there may be a thread caching a (now stale) predicate cache 9325 * ID. (N.B.: the temptation is being successfully resisted to 9326 * have this cmn_err() "Holy shit -- we executed this code!") 9327 */ 9328 return (pred); 9329 } 9330 9331 pred->dtp_cacheid = dtrace_predcache_id++; 9332 9333 return (pred); 9334 } 9335 9336 static void 9337 dtrace_predicate_hold(dtrace_predicate_t *pred) 9338 { 9339 ASSERT(MUTEX_HELD(&dtrace_lock)); 9340 ASSERT(pred->dtp_difo != NULL && pred->dtp_difo->dtdo_refcnt != 0); 9341 ASSERT(pred->dtp_refcnt > 0); 9342 9343 pred->dtp_refcnt++; 9344 } 9345 9346 static void 9347 dtrace_predicate_release(dtrace_predicate_t *pred, dtrace_vstate_t *vstate) 9348 { 9349 dtrace_difo_t *dp = pred->dtp_difo; 9350 9351 ASSERT(MUTEX_HELD(&dtrace_lock)); 9352 ASSERT(dp != NULL && dp->dtdo_refcnt != 0); 9353 ASSERT(pred->dtp_refcnt > 0); 9354 9355 if (--pred->dtp_refcnt == 0) { 9356 dtrace_difo_release(pred->dtp_difo, vstate); 9357 kmem_free(pred, sizeof (dtrace_predicate_t)); 9358 } 9359 } 9360 9361 /* 9362 * DTrace Action Description Functions 9363 */ 9364 static dtrace_actdesc_t * 9365 dtrace_actdesc_create(dtrace_actkind_t kind, uint32_t ntuple, 9366 uint64_t uarg, uint64_t arg) 9367 { 9368 dtrace_actdesc_t *act; 9369 9370 ASSERT(!DTRACEACT_ISPRINTFLIKE(kind) || (arg != NULL && 9371 arg >= KERNELBASE) || (arg == NULL && kind == DTRACEACT_PRINTA)); 9372 9373 act = kmem_zalloc(sizeof (dtrace_actdesc_t), KM_SLEEP); 9374 act->dtad_kind = kind; 9375 act->dtad_ntuple = ntuple; 9376 act->dtad_uarg = uarg; 9377 act->dtad_arg = arg; 9378 act->dtad_refcnt = 1; 9379 9380 return (act); 9381 } 9382 9383 static void 9384 dtrace_actdesc_hold(dtrace_actdesc_t *act) 9385 { 9386 ASSERT(act->dtad_refcnt >= 1); 9387 act->dtad_refcnt++; 9388 } 9389 9390 static void 9391 dtrace_actdesc_release(dtrace_actdesc_t *act, dtrace_vstate_t *vstate) 9392 { 9393 dtrace_actkind_t kind = act->dtad_kind; 9394 dtrace_difo_t *dp; 9395 9396 ASSERT(act->dtad_refcnt >= 1); 9397 9398 if (--act->dtad_refcnt != 0) 9399 return; 9400 9401 if ((dp = act->dtad_difo) != NULL) 9402 dtrace_difo_release(dp, vstate); 9403 9404 if (DTRACEACT_ISPRINTFLIKE(kind)) { 9405 char *str = (char *)(uintptr_t)act->dtad_arg; 9406 9407 ASSERT((str != NULL && (uintptr_t)str >= KERNELBASE) || 9408 (str == NULL && act->dtad_kind == DTRACEACT_PRINTA)); 9409 9410 if (str != NULL) 9411 kmem_free(str, strlen(str) + 1); 9412 } 9413 9414 kmem_free(act, sizeof (dtrace_actdesc_t)); 9415 } 9416 9417 /* 9418 * DTrace ECB Functions 9419 */ 9420 static dtrace_ecb_t * 9421 dtrace_ecb_add(dtrace_state_t *state, dtrace_probe_t *probe) 9422 { 9423 dtrace_ecb_t *ecb; 9424 dtrace_epid_t epid; 9425 9426 ASSERT(MUTEX_HELD(&dtrace_lock)); 9427 9428 ecb = kmem_zalloc(sizeof (dtrace_ecb_t), KM_SLEEP); 9429 ecb->dte_predicate = NULL; 9430 ecb->dte_probe = probe; 9431 9432 /* 9433 * The default size is the size of the default action: recording 9434 * the header. 9435 */ 9436 ecb->dte_size = ecb->dte_needed = sizeof (dtrace_rechdr_t); 9437 ecb->dte_alignment = sizeof (dtrace_epid_t); 9438 9439 epid = state->dts_epid++; 9440 9441 if (epid - 1 >= state->dts_necbs) { 9442 dtrace_ecb_t **oecbs = state->dts_ecbs, **ecbs; 9443 int necbs = state->dts_necbs << 1; 9444 9445 ASSERT(epid == state->dts_necbs + 1); 9446 9447 if (necbs == 0) { 9448 ASSERT(oecbs == NULL); 9449 necbs = 1; 9450 } 9451 9452 ecbs = kmem_zalloc(necbs * sizeof (*ecbs), KM_SLEEP); 9453 9454 if (oecbs != NULL) 9455 bcopy(oecbs, ecbs, state->dts_necbs * sizeof (*ecbs)); 9456 9457 dtrace_membar_producer(); 9458 state->dts_ecbs = ecbs; 9459 9460 if (oecbs != NULL) { 9461 /* 9462 * If this state is active, we must dtrace_sync() 9463 * before we can free the old dts_ecbs array: we're 9464 * coming in hot, and there may be active ring 9465 * buffer processing (which indexes into the dts_ecbs 9466 * array) on another CPU. 9467 */ 9468 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) 9469 dtrace_sync(); 9470 9471 kmem_free(oecbs, state->dts_necbs * sizeof (*ecbs)); 9472 } 9473 9474 dtrace_membar_producer(); 9475 state->dts_necbs = necbs; 9476 } 9477 9478 ecb->dte_state = state; 9479 9480 ASSERT(state->dts_ecbs[epid - 1] == NULL); 9481 dtrace_membar_producer(); 9482 state->dts_ecbs[(ecb->dte_epid = epid) - 1] = ecb; 9483 9484 return (ecb); 9485 } 9486 9487 static int 9488 dtrace_ecb_enable(dtrace_ecb_t *ecb) 9489 { 9490 dtrace_probe_t *probe = ecb->dte_probe; 9491 9492 ASSERT(MUTEX_HELD(&cpu_lock)); 9493 ASSERT(MUTEX_HELD(&dtrace_lock)); 9494 ASSERT(ecb->dte_next == NULL); 9495 9496 if (probe == NULL) { 9497 /* 9498 * This is the NULL probe -- there's nothing to do. 9499 */ 9500 return (0); 9501 } 9502 9503 if (probe->dtpr_ecb == NULL) { 9504 dtrace_provider_t *prov = probe->dtpr_provider; 9505 9506 /* 9507 * We're the first ECB on this probe. 9508 */ 9509 probe->dtpr_ecb = probe->dtpr_ecb_last = ecb; 9510 9511 if (ecb->dte_predicate != NULL) 9512 probe->dtpr_predcache = ecb->dte_predicate->dtp_cacheid; 9513 9514 return (prov->dtpv_pops.dtps_enable(prov->dtpv_arg, 9515 probe->dtpr_id, probe->dtpr_arg)); 9516 } else { 9517 /* 9518 * This probe is already active. Swing the last pointer to 9519 * point to the new ECB, and issue a dtrace_sync() to assure 9520 * that all CPUs have seen the change. 9521 */ 9522 ASSERT(probe->dtpr_ecb_last != NULL); 9523 probe->dtpr_ecb_last->dte_next = ecb; 9524 probe->dtpr_ecb_last = ecb; 9525 probe->dtpr_predcache = 0; 9526 9527 dtrace_sync(); 9528 return (0); 9529 } 9530 } 9531 9532 static void 9533 dtrace_ecb_resize(dtrace_ecb_t *ecb) 9534 { 9535 dtrace_action_t *act; 9536 uint32_t curneeded = UINT32_MAX; 9537 uint32_t aggbase = UINT32_MAX; 9538 9539 /* 9540 * If we record anything, we always record the dtrace_rechdr_t. (And 9541 * we always record it first.) 9542 */ 9543 ecb->dte_size = sizeof (dtrace_rechdr_t); 9544 ecb->dte_alignment = sizeof (dtrace_epid_t); 9545 9546 for (act = ecb->dte_action; act != NULL; act = act->dta_next) { 9547 dtrace_recdesc_t *rec = &act->dta_rec; 9548 ASSERT(rec->dtrd_size > 0 || rec->dtrd_alignment == 1); 9549 9550 ecb->dte_alignment = MAX(ecb->dte_alignment, 9551 rec->dtrd_alignment); 9552 9553 if (DTRACEACT_ISAGG(act->dta_kind)) { 9554 dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act; 9555 9556 ASSERT(rec->dtrd_size != 0); 9557 ASSERT(agg->dtag_first != NULL); 9558 ASSERT(act->dta_prev->dta_intuple); 9559 ASSERT(aggbase != UINT32_MAX); 9560 ASSERT(curneeded != UINT32_MAX); 9561 9562 agg->dtag_base = aggbase; 9563 9564 curneeded = P2ROUNDUP(curneeded, rec->dtrd_alignment); 9565 rec->dtrd_offset = curneeded; 9566 curneeded += rec->dtrd_size; 9567 ecb->dte_needed = MAX(ecb->dte_needed, curneeded); 9568 9569 aggbase = UINT32_MAX; 9570 curneeded = UINT32_MAX; 9571 } else if (act->dta_intuple) { 9572 if (curneeded == UINT32_MAX) { 9573 /* 9574 * This is the first record in a tuple. Align 9575 * curneeded to be at offset 4 in an 8-byte 9576 * aligned block. 9577 */ 9578 ASSERT(act->dta_prev == NULL || 9579 !act->dta_prev->dta_intuple); 9580 ASSERT3U(aggbase, ==, UINT32_MAX); 9581 curneeded = P2PHASEUP(ecb->dte_size, 9582 sizeof (uint64_t), sizeof (dtrace_aggid_t)); 9583 9584 aggbase = curneeded - sizeof (dtrace_aggid_t); 9585 ASSERT(IS_P2ALIGNED(aggbase, 9586 sizeof (uint64_t))); 9587 } 9588 curneeded = P2ROUNDUP(curneeded, rec->dtrd_alignment); 9589 rec->dtrd_offset = curneeded; 9590 curneeded += rec->dtrd_size; 9591 } else { 9592 /* tuples must be followed by an aggregation */ 9593 ASSERT(act->dta_prev == NULL || 9594 !act->dta_prev->dta_intuple); 9595 9596 ecb->dte_size = P2ROUNDUP(ecb->dte_size, 9597 rec->dtrd_alignment); 9598 rec->dtrd_offset = ecb->dte_size; 9599 ecb->dte_size += rec->dtrd_size; 9600 ecb->dte_needed = MAX(ecb->dte_needed, ecb->dte_size); 9601 } 9602 } 9603 9604 if ((act = ecb->dte_action) != NULL && 9605 !(act->dta_kind == DTRACEACT_SPECULATE && act->dta_next == NULL) && 9606 ecb->dte_size == sizeof (dtrace_rechdr_t)) { 9607 /* 9608 * If the size is still sizeof (dtrace_rechdr_t), then all 9609 * actions store no data; set the size to 0. 9610 */ 9611 ecb->dte_size = 0; 9612 } 9613 9614 ecb->dte_size = P2ROUNDUP(ecb->dte_size, sizeof (dtrace_epid_t)); 9615 ecb->dte_needed = P2ROUNDUP(ecb->dte_needed, (sizeof (dtrace_epid_t))); 9616 ecb->dte_state->dts_needed = MAX(ecb->dte_state->dts_needed, 9617 ecb->dte_needed); 9618 } 9619 9620 static dtrace_action_t * 9621 dtrace_ecb_aggregation_create(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc) 9622 { 9623 dtrace_aggregation_t *agg; 9624 size_t size = sizeof (uint64_t); 9625 int ntuple = desc->dtad_ntuple; 9626 dtrace_action_t *act; 9627 dtrace_recdesc_t *frec; 9628 dtrace_aggid_t aggid; 9629 dtrace_state_t *state = ecb->dte_state; 9630 9631 agg = kmem_zalloc(sizeof (dtrace_aggregation_t), KM_SLEEP); 9632 agg->dtag_ecb = ecb; 9633 9634 ASSERT(DTRACEACT_ISAGG(desc->dtad_kind)); 9635 9636 switch (desc->dtad_kind) { 9637 case DTRACEAGG_MIN: 9638 agg->dtag_initial = INT64_MAX; 9639 agg->dtag_aggregate = dtrace_aggregate_min; 9640 break; 9641 9642 case DTRACEAGG_MAX: 9643 agg->dtag_initial = INT64_MIN; 9644 agg->dtag_aggregate = dtrace_aggregate_max; 9645 break; 9646 9647 case DTRACEAGG_COUNT: 9648 agg->dtag_aggregate = dtrace_aggregate_count; 9649 break; 9650 9651 case DTRACEAGG_QUANTIZE: 9652 agg->dtag_aggregate = dtrace_aggregate_quantize; 9653 size = (((sizeof (uint64_t) * NBBY) - 1) * 2 + 1) * 9654 sizeof (uint64_t); 9655 break; 9656 9657 case DTRACEAGG_LQUANTIZE: { 9658 uint16_t step = DTRACE_LQUANTIZE_STEP(desc->dtad_arg); 9659 uint16_t levels = DTRACE_LQUANTIZE_LEVELS(desc->dtad_arg); 9660 9661 agg->dtag_initial = desc->dtad_arg; 9662 agg->dtag_aggregate = dtrace_aggregate_lquantize; 9663 9664 if (step == 0 || levels == 0) 9665 goto err; 9666 9667 size = levels * sizeof (uint64_t) + 3 * sizeof (uint64_t); 9668 break; 9669 } 9670 9671 case DTRACEAGG_LLQUANTIZE: { 9672 uint16_t factor = DTRACE_LLQUANTIZE_FACTOR(desc->dtad_arg); 9673 uint16_t low = DTRACE_LLQUANTIZE_LOW(desc->dtad_arg); 9674 uint16_t high = DTRACE_LLQUANTIZE_HIGH(desc->dtad_arg); 9675 uint16_t nsteps = DTRACE_LLQUANTIZE_NSTEP(desc->dtad_arg); 9676 int64_t v; 9677 9678 agg->dtag_initial = desc->dtad_arg; 9679 agg->dtag_aggregate = dtrace_aggregate_llquantize; 9680 9681 if (factor < 2 || low >= high || nsteps < factor) 9682 goto err; 9683 9684 /* 9685 * Now check that the number of steps evenly divides a power 9686 * of the factor. (This assures both integer bucket size and 9687 * linearity within each magnitude.) 9688 */ 9689 for (v = factor; v < nsteps; v *= factor) 9690 continue; 9691 9692 if ((v % nsteps) || (nsteps % factor)) 9693 goto err; 9694 9695 size = (dtrace_aggregate_llquantize_bucket(factor, 9696 low, high, nsteps, INT64_MAX) + 2) * sizeof (uint64_t); 9697 break; 9698 } 9699 9700 case DTRACEAGG_AVG: 9701 agg->dtag_aggregate = dtrace_aggregate_avg; 9702 size = sizeof (uint64_t) * 2; 9703 break; 9704 9705 case DTRACEAGG_STDDEV: 9706 agg->dtag_aggregate = dtrace_aggregate_stddev; 9707 size = sizeof (uint64_t) * 4; 9708 break; 9709 9710 case DTRACEAGG_SUM: 9711 agg->dtag_aggregate = dtrace_aggregate_sum; 9712 break; 9713 9714 default: 9715 goto err; 9716 } 9717 9718 agg->dtag_action.dta_rec.dtrd_size = size; 9719 9720 if (ntuple == 0) 9721 goto err; 9722 9723 /* 9724 * We must make sure that we have enough actions for the n-tuple. 9725 */ 9726 for (act = ecb->dte_action_last; act != NULL; act = act->dta_prev) { 9727 if (DTRACEACT_ISAGG(act->dta_kind)) 9728 break; 9729 9730 if (--ntuple == 0) { 9731 /* 9732 * This is the action with which our n-tuple begins. 9733 */ 9734 agg->dtag_first = act; 9735 goto success; 9736 } 9737 } 9738 9739 /* 9740 * This n-tuple is short by ntuple elements. Return failure. 9741 */ 9742 ASSERT(ntuple != 0); 9743 err: 9744 kmem_free(agg, sizeof (dtrace_aggregation_t)); 9745 return (NULL); 9746 9747 success: 9748 /* 9749 * If the last action in the tuple has a size of zero, it's actually 9750 * an expression argument for the aggregating action. 9751 */ 9752 ASSERT(ecb->dte_action_last != NULL); 9753 act = ecb->dte_action_last; 9754 9755 if (act->dta_kind == DTRACEACT_DIFEXPR) { 9756 ASSERT(act->dta_difo != NULL); 9757 9758 if (act->dta_difo->dtdo_rtype.dtdt_size == 0) 9759 agg->dtag_hasarg = 1; 9760 } 9761 9762 /* 9763 * We need to allocate an id for this aggregation. 9764 */ 9765 aggid = (dtrace_aggid_t)(uintptr_t)vmem_alloc(state->dts_aggid_arena, 1, 9766 VM_BESTFIT | VM_SLEEP); 9767 9768 if (aggid - 1 >= state->dts_naggregations) { 9769 dtrace_aggregation_t **oaggs = state->dts_aggregations; 9770 dtrace_aggregation_t **aggs; 9771 int naggs = state->dts_naggregations << 1; 9772 int onaggs = state->dts_naggregations; 9773 9774 ASSERT(aggid == state->dts_naggregations + 1); 9775 9776 if (naggs == 0) { 9777 ASSERT(oaggs == NULL); 9778 naggs = 1; 9779 } 9780 9781 aggs = kmem_zalloc(naggs * sizeof (*aggs), KM_SLEEP); 9782 9783 if (oaggs != NULL) { 9784 bcopy(oaggs, aggs, onaggs * sizeof (*aggs)); 9785 kmem_free(oaggs, onaggs * sizeof (*aggs)); 9786 } 9787 9788 state->dts_aggregations = aggs; 9789 state->dts_naggregations = naggs; 9790 } 9791 9792 ASSERT(state->dts_aggregations[aggid - 1] == NULL); 9793 state->dts_aggregations[(agg->dtag_id = aggid) - 1] = agg; 9794 9795 frec = &agg->dtag_first->dta_rec; 9796 if (frec->dtrd_alignment < sizeof (dtrace_aggid_t)) 9797 frec->dtrd_alignment = sizeof (dtrace_aggid_t); 9798 9799 for (act = agg->dtag_first; act != NULL; act = act->dta_next) { 9800 ASSERT(!act->dta_intuple); 9801 act->dta_intuple = 1; 9802 } 9803 9804 return (&agg->dtag_action); 9805 } 9806 9807 static void 9808 dtrace_ecb_aggregation_destroy(dtrace_ecb_t *ecb, dtrace_action_t *act) 9809 { 9810 dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act; 9811 dtrace_state_t *state = ecb->dte_state; 9812 dtrace_aggid_t aggid = agg->dtag_id; 9813 9814 ASSERT(DTRACEACT_ISAGG(act->dta_kind)); 9815 vmem_free(state->dts_aggid_arena, (void *)(uintptr_t)aggid, 1); 9816 9817 ASSERT(state->dts_aggregations[aggid - 1] == agg); 9818 state->dts_aggregations[aggid - 1] = NULL; 9819 9820 kmem_free(agg, sizeof (dtrace_aggregation_t)); 9821 } 9822 9823 static int 9824 dtrace_ecb_action_add(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc) 9825 { 9826 dtrace_action_t *action, *last; 9827 dtrace_difo_t *dp = desc->dtad_difo; 9828 uint32_t size = 0, align = sizeof (uint8_t), mask; 9829 uint16_t format = 0; 9830 dtrace_recdesc_t *rec; 9831 dtrace_state_t *state = ecb->dte_state; 9832 dtrace_optval_t *opt = state->dts_options, nframes, strsize; 9833 uint64_t arg = desc->dtad_arg; 9834 9835 ASSERT(MUTEX_HELD(&dtrace_lock)); 9836 ASSERT(ecb->dte_action == NULL || ecb->dte_action->dta_refcnt == 1); 9837 9838 if (DTRACEACT_ISAGG(desc->dtad_kind)) { 9839 /* 9840 * If this is an aggregating action, there must be neither 9841 * a speculate nor a commit on the action chain. 9842 */ 9843 dtrace_action_t *act; 9844 9845 for (act = ecb->dte_action; act != NULL; act = act->dta_next) { 9846 if (act->dta_kind == DTRACEACT_COMMIT) 9847 return (EINVAL); 9848 9849 if (act->dta_kind == DTRACEACT_SPECULATE) 9850 return (EINVAL); 9851 } 9852 9853 action = dtrace_ecb_aggregation_create(ecb, desc); 9854 9855 if (action == NULL) 9856 return (EINVAL); 9857 } else { 9858 if (DTRACEACT_ISDESTRUCTIVE(desc->dtad_kind) || 9859 (desc->dtad_kind == DTRACEACT_DIFEXPR && 9860 dp != NULL && dp->dtdo_destructive)) { 9861 state->dts_destructive = 1; 9862 } 9863 9864 switch (desc->dtad_kind) { 9865 case DTRACEACT_PRINTF: 9866 case DTRACEACT_PRINTA: 9867 case DTRACEACT_SYSTEM: 9868 case DTRACEACT_FREOPEN: 9869 case DTRACEACT_DIFEXPR: 9870 /* 9871 * We know that our arg is a string -- turn it into a 9872 * format. 9873 */ 9874 if (arg == NULL) { 9875 ASSERT(desc->dtad_kind == DTRACEACT_PRINTA || 9876 desc->dtad_kind == DTRACEACT_DIFEXPR); 9877 format = 0; 9878 } else { 9879 ASSERT(arg != NULL); 9880 ASSERT(arg > KERNELBASE); 9881 format = dtrace_format_add(state, 9882 (char *)(uintptr_t)arg); 9883 } 9884 9885 /*FALLTHROUGH*/ 9886 case DTRACEACT_LIBACT: 9887 case DTRACEACT_TRACEMEM: 9888 case DTRACEACT_TRACEMEM_DYNSIZE: 9889 if (dp == NULL) 9890 return (EINVAL); 9891 9892 if ((size = dp->dtdo_rtype.dtdt_size) != 0) 9893 break; 9894 9895 if (dp->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) { 9896 if (!(dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) 9897 return (EINVAL); 9898 9899 size = opt[DTRACEOPT_STRSIZE]; 9900 } 9901 9902 break; 9903 9904 case DTRACEACT_STACK: 9905 if ((nframes = arg) == 0) { 9906 nframes = opt[DTRACEOPT_STACKFRAMES]; 9907 ASSERT(nframes > 0); 9908 arg = nframes; 9909 } 9910 9911 size = nframes * sizeof (pc_t); 9912 break; 9913 9914 case DTRACEACT_JSTACK: 9915 if ((strsize = DTRACE_USTACK_STRSIZE(arg)) == 0) 9916 strsize = opt[DTRACEOPT_JSTACKSTRSIZE]; 9917 9918 if ((nframes = DTRACE_USTACK_NFRAMES(arg)) == 0) 9919 nframes = opt[DTRACEOPT_JSTACKFRAMES]; 9920 9921 arg = DTRACE_USTACK_ARG(nframes, strsize); 9922 9923 /*FALLTHROUGH*/ 9924 case DTRACEACT_USTACK: 9925 if (desc->dtad_kind != DTRACEACT_JSTACK && 9926 (nframes = DTRACE_USTACK_NFRAMES(arg)) == 0) { 9927 strsize = DTRACE_USTACK_STRSIZE(arg); 9928 nframes = opt[DTRACEOPT_USTACKFRAMES]; 9929 ASSERT(nframes > 0); 9930 arg = DTRACE_USTACK_ARG(nframes, strsize); 9931 } 9932 9933 /* 9934 * Save a slot for the pid. 9935 */ 9936 size = (nframes + 1) * sizeof (uint64_t); 9937 size += DTRACE_USTACK_STRSIZE(arg); 9938 size = P2ROUNDUP(size, (uint32_t)(sizeof (uintptr_t))); 9939 9940 break; 9941 9942 case DTRACEACT_SYM: 9943 case DTRACEACT_MOD: 9944 if (dp == NULL || ((size = dp->dtdo_rtype.dtdt_size) != 9945 sizeof (uint64_t)) || 9946 (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) 9947 return (EINVAL); 9948 break; 9949 9950 case DTRACEACT_USYM: 9951 case DTRACEACT_UMOD: 9952 case DTRACEACT_UADDR: 9953 if (dp == NULL || 9954 (dp->dtdo_rtype.dtdt_size != sizeof (uint64_t)) || 9955 (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) 9956 return (EINVAL); 9957 9958 /* 9959 * We have a slot for the pid, plus a slot for the 9960 * argument. To keep things simple (aligned with 9961 * bitness-neutral sizing), we store each as a 64-bit 9962 * quantity. 9963 */ 9964 size = 2 * sizeof (uint64_t); 9965 break; 9966 9967 case DTRACEACT_STOP: 9968 case DTRACEACT_BREAKPOINT: 9969 case DTRACEACT_PANIC: 9970 break; 9971 9972 case DTRACEACT_CHILL: 9973 case DTRACEACT_DISCARD: 9974 case DTRACEACT_RAISE: 9975 if (dp == NULL) 9976 return (EINVAL); 9977 break; 9978 9979 case DTRACEACT_EXIT: 9980 if (dp == NULL || 9981 (size = dp->dtdo_rtype.dtdt_size) != sizeof (int) || 9982 (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) 9983 return (EINVAL); 9984 break; 9985 9986 case DTRACEACT_SPECULATE: 9987 if (ecb->dte_size > sizeof (dtrace_rechdr_t)) 9988 return (EINVAL); 9989 9990 if (dp == NULL) 9991 return (EINVAL); 9992 9993 state->dts_speculates = 1; 9994 break; 9995 9996 case DTRACEACT_COMMIT: { 9997 dtrace_action_t *act = ecb->dte_action; 9998 9999 for (; act != NULL; act = act->dta_next) { 10000 if (act->dta_kind == DTRACEACT_COMMIT) 10001 return (EINVAL); 10002 } 10003 10004 if (dp == NULL) 10005 return (EINVAL); 10006 break; 10007 } 10008 10009 default: 10010 return (EINVAL); 10011 } 10012 10013 if (size != 0 || desc->dtad_kind == DTRACEACT_SPECULATE) { 10014 /* 10015 * If this is a data-storing action or a speculate, 10016 * we must be sure that there isn't a commit on the 10017 * action chain. 10018 */ 10019 dtrace_action_t *act = ecb->dte_action; 10020 10021 for (; act != NULL; act = act->dta_next) { 10022 if (act->dta_kind == DTRACEACT_COMMIT) 10023 return (EINVAL); 10024 } 10025 } 10026 10027 action = kmem_zalloc(sizeof (dtrace_action_t), KM_SLEEP); 10028 action->dta_rec.dtrd_size = size; 10029 } 10030 10031 action->dta_refcnt = 1; 10032 rec = &action->dta_rec; 10033 size = rec->dtrd_size; 10034 10035 for (mask = sizeof (uint64_t) - 1; size != 0 && mask > 0; mask >>= 1) { 10036 if (!(size & mask)) { 10037 align = mask + 1; 10038 break; 10039 } 10040 } 10041 10042 action->dta_kind = desc->dtad_kind; 10043 10044 if ((action->dta_difo = dp) != NULL) 10045 dtrace_difo_hold(dp); 10046 10047 rec->dtrd_action = action->dta_kind; 10048 rec->dtrd_arg = arg; 10049 rec->dtrd_uarg = desc->dtad_uarg; 10050 rec->dtrd_alignment = (uint16_t)align; 10051 rec->dtrd_format = format; 10052 10053 if ((last = ecb->dte_action_last) != NULL) { 10054 ASSERT(ecb->dte_action != NULL); 10055 action->dta_prev = last; 10056 last->dta_next = action; 10057 } else { 10058 ASSERT(ecb->dte_action == NULL); 10059 ecb->dte_action = action; 10060 } 10061 10062 ecb->dte_action_last = action; 10063 10064 return (0); 10065 } 10066 10067 static void 10068 dtrace_ecb_action_remove(dtrace_ecb_t *ecb) 10069 { 10070 dtrace_action_t *act = ecb->dte_action, *next; 10071 dtrace_vstate_t *vstate = &ecb->dte_state->dts_vstate; 10072 dtrace_difo_t *dp; 10073 uint16_t format; 10074 10075 if (act != NULL && act->dta_refcnt > 1) { 10076 ASSERT(act->dta_next == NULL || act->dta_next->dta_refcnt == 1); 10077 act->dta_refcnt--; 10078 } else { 10079 for (; act != NULL; act = next) { 10080 next = act->dta_next; 10081 ASSERT(next != NULL || act == ecb->dte_action_last); 10082 ASSERT(act->dta_refcnt == 1); 10083 10084 if ((format = act->dta_rec.dtrd_format) != 0) 10085 dtrace_format_remove(ecb->dte_state, format); 10086 10087 if ((dp = act->dta_difo) != NULL) 10088 dtrace_difo_release(dp, vstate); 10089 10090 if (DTRACEACT_ISAGG(act->dta_kind)) { 10091 dtrace_ecb_aggregation_destroy(ecb, act); 10092 } else { 10093 kmem_free(act, sizeof (dtrace_action_t)); 10094 } 10095 } 10096 } 10097 10098 ecb->dte_action = NULL; 10099 ecb->dte_action_last = NULL; 10100 ecb->dte_size = 0; 10101 } 10102 10103 static void 10104 dtrace_ecb_disable(dtrace_ecb_t *ecb) 10105 { 10106 /* 10107 * We disable the ECB by removing it from its probe. 10108 */ 10109 dtrace_ecb_t *pecb, *prev = NULL; 10110 dtrace_probe_t *probe = ecb->dte_probe; 10111 10112 ASSERT(MUTEX_HELD(&dtrace_lock)); 10113 10114 if (probe == NULL) { 10115 /* 10116 * This is the NULL probe; there is nothing to disable. 10117 */ 10118 return; 10119 } 10120 10121 for (pecb = probe->dtpr_ecb; pecb != NULL; pecb = pecb->dte_next) { 10122 if (pecb == ecb) 10123 break; 10124 prev = pecb; 10125 } 10126 10127 ASSERT(pecb != NULL); 10128 10129 if (prev == NULL) { 10130 probe->dtpr_ecb = ecb->dte_next; 10131 } else { 10132 prev->dte_next = ecb->dte_next; 10133 } 10134 10135 if (ecb == probe->dtpr_ecb_last) { 10136 ASSERT(ecb->dte_next == NULL); 10137 probe->dtpr_ecb_last = prev; 10138 } 10139 10140 /* 10141 * The ECB has been disconnected from the probe; now sync to assure 10142 * that all CPUs have seen the change before returning. 10143 */ 10144 dtrace_sync(); 10145 10146 if (probe->dtpr_ecb == NULL) { 10147 /* 10148 * That was the last ECB on the probe; clear the predicate 10149 * cache ID for the probe, disable it and sync one more time 10150 * to assure that we'll never hit it again. 10151 */ 10152 dtrace_provider_t *prov = probe->dtpr_provider; 10153 10154 ASSERT(ecb->dte_next == NULL); 10155 ASSERT(probe->dtpr_ecb_last == NULL); 10156 probe->dtpr_predcache = DTRACE_CACHEIDNONE; 10157 prov->dtpv_pops.dtps_disable(prov->dtpv_arg, 10158 probe->dtpr_id, probe->dtpr_arg); 10159 dtrace_sync(); 10160 } else { 10161 /* 10162 * There is at least one ECB remaining on the probe. If there 10163 * is _exactly_ one, set the probe's predicate cache ID to be 10164 * the predicate cache ID of the remaining ECB. 10165 */ 10166 ASSERT(probe->dtpr_ecb_last != NULL); 10167 ASSERT(probe->dtpr_predcache == DTRACE_CACHEIDNONE); 10168 10169 if (probe->dtpr_ecb == probe->dtpr_ecb_last) { 10170 dtrace_predicate_t *p = probe->dtpr_ecb->dte_predicate; 10171 10172 ASSERT(probe->dtpr_ecb->dte_next == NULL); 10173 10174 if (p != NULL) 10175 probe->dtpr_predcache = p->dtp_cacheid; 10176 } 10177 10178 ecb->dte_next = NULL; 10179 } 10180 } 10181 10182 static void 10183 dtrace_ecb_destroy(dtrace_ecb_t *ecb) 10184 { 10185 dtrace_state_t *state = ecb->dte_state; 10186 dtrace_vstate_t *vstate = &state->dts_vstate; 10187 dtrace_predicate_t *pred; 10188 dtrace_epid_t epid = ecb->dte_epid; 10189 10190 ASSERT(MUTEX_HELD(&dtrace_lock)); 10191 ASSERT(ecb->dte_next == NULL); 10192 ASSERT(ecb->dte_probe == NULL || ecb->dte_probe->dtpr_ecb != ecb); 10193 10194 if ((pred = ecb->dte_predicate) != NULL) 10195 dtrace_predicate_release(pred, vstate); 10196 10197 dtrace_ecb_action_remove(ecb); 10198 10199 ASSERT(state->dts_ecbs[epid - 1] == ecb); 10200 state->dts_ecbs[epid - 1] = NULL; 10201 10202 kmem_free(ecb, sizeof (dtrace_ecb_t)); 10203 } 10204 10205 static dtrace_ecb_t * 10206 dtrace_ecb_create(dtrace_state_t *state, dtrace_probe_t *probe, 10207 dtrace_enabling_t *enab) 10208 { 10209 dtrace_ecb_t *ecb; 10210 dtrace_predicate_t *pred; 10211 dtrace_actdesc_t *act; 10212 dtrace_provider_t *prov; 10213 dtrace_ecbdesc_t *desc = enab->dten_current; 10214 10215 ASSERT(MUTEX_HELD(&dtrace_lock)); 10216 ASSERT(state != NULL); 10217 10218 ecb = dtrace_ecb_add(state, probe); 10219 ecb->dte_uarg = desc->dted_uarg; 10220 10221 if ((pred = desc->dted_pred.dtpdd_predicate) != NULL) { 10222 dtrace_predicate_hold(pred); 10223 ecb->dte_predicate = pred; 10224 } 10225 10226 if (probe != NULL) { 10227 /* 10228 * If the provider shows more leg than the consumer is old 10229 * enough to see, we need to enable the appropriate implicit 10230 * predicate bits to prevent the ecb from activating at 10231 * revealing times. 10232 * 10233 * Providers specifying DTRACE_PRIV_USER at register time 10234 * are stating that they need the /proc-style privilege 10235 * model to be enforced, and this is what DTRACE_COND_OWNER 10236 * and DTRACE_COND_ZONEOWNER will then do at probe time. 10237 */ 10238 prov = probe->dtpr_provider; 10239 if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLPROC) && 10240 (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER)) 10241 ecb->dte_cond |= DTRACE_COND_OWNER; 10242 10243 if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLZONE) && 10244 (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER)) 10245 ecb->dte_cond |= DTRACE_COND_ZONEOWNER; 10246 10247 /* 10248 * If the provider shows us kernel innards and the user 10249 * is lacking sufficient privilege, enable the 10250 * DTRACE_COND_USERMODE implicit predicate. 10251 */ 10252 if (!(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) && 10253 (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_KERNEL)) 10254 ecb->dte_cond |= DTRACE_COND_USERMODE; 10255 } 10256 10257 if (dtrace_ecb_create_cache != NULL) { 10258 /* 10259 * If we have a cached ecb, we'll use its action list instead 10260 * of creating our own (saving both time and space). 10261 */ 10262 dtrace_ecb_t *cached = dtrace_ecb_create_cache; 10263 dtrace_action_t *act = cached->dte_action; 10264 10265 if (act != NULL) { 10266 ASSERT(act->dta_refcnt > 0); 10267 act->dta_refcnt++; 10268 ecb->dte_action = act; 10269 ecb->dte_action_last = cached->dte_action_last; 10270 ecb->dte_needed = cached->dte_needed; 10271 ecb->dte_size = cached->dte_size; 10272 ecb->dte_alignment = cached->dte_alignment; 10273 } 10274 10275 return (ecb); 10276 } 10277 10278 for (act = desc->dted_action; act != NULL; act = act->dtad_next) { 10279 if ((enab->dten_error = dtrace_ecb_action_add(ecb, act)) != 0) { 10280 dtrace_ecb_destroy(ecb); 10281 return (NULL); 10282 } 10283 } 10284 10285 dtrace_ecb_resize(ecb); 10286 10287 return (dtrace_ecb_create_cache = ecb); 10288 } 10289 10290 static int 10291 dtrace_ecb_create_enable(dtrace_probe_t *probe, void *arg) 10292 { 10293 dtrace_ecb_t *ecb; 10294 dtrace_enabling_t *enab = arg; 10295 dtrace_state_t *state = enab->dten_vstate->dtvs_state; 10296 10297 ASSERT(state != NULL); 10298 10299 if (probe != NULL && probe->dtpr_gen < enab->dten_probegen) { 10300 /* 10301 * This probe was created in a generation for which this 10302 * enabling has previously created ECBs; we don't want to 10303 * enable it again, so just kick out. 10304 */ 10305 return (DTRACE_MATCH_NEXT); 10306 } 10307 10308 if ((ecb = dtrace_ecb_create(state, probe, enab)) == NULL) 10309 return (DTRACE_MATCH_DONE); 10310 10311 if (dtrace_ecb_enable(ecb) < 0) 10312 return (DTRACE_MATCH_FAIL); 10313 10314 return (DTRACE_MATCH_NEXT); 10315 } 10316 10317 static dtrace_ecb_t * 10318 dtrace_epid2ecb(dtrace_state_t *state, dtrace_epid_t id) 10319 { 10320 dtrace_ecb_t *ecb; 10321 10322 ASSERT(MUTEX_HELD(&dtrace_lock)); 10323 10324 if (id == 0 || id > state->dts_necbs) 10325 return (NULL); 10326 10327 ASSERT(state->dts_necbs > 0 && state->dts_ecbs != NULL); 10328 ASSERT((ecb = state->dts_ecbs[id - 1]) == NULL || ecb->dte_epid == id); 10329 10330 return (state->dts_ecbs[id - 1]); 10331 } 10332 10333 static dtrace_aggregation_t * 10334 dtrace_aggid2agg(dtrace_state_t *state, dtrace_aggid_t id) 10335 { 10336 dtrace_aggregation_t *agg; 10337 10338 ASSERT(MUTEX_HELD(&dtrace_lock)); 10339 10340 if (id == 0 || id > state->dts_naggregations) 10341 return (NULL); 10342 10343 ASSERT(state->dts_naggregations > 0 && state->dts_aggregations != NULL); 10344 ASSERT((agg = state->dts_aggregations[id - 1]) == NULL || 10345 agg->dtag_id == id); 10346 10347 return (state->dts_aggregations[id - 1]); 10348 } 10349 10350 /* 10351 * DTrace Buffer Functions 10352 * 10353 * The following functions manipulate DTrace buffers. Most of these functions 10354 * are called in the context of establishing or processing consumer state; 10355 * exceptions are explicitly noted. 10356 */ 10357 10358 /* 10359 * Note: called from cross call context. This function switches the two 10360 * buffers on a given CPU. The atomicity of this operation is assured by 10361 * disabling interrupts while the actual switch takes place; the disabling of 10362 * interrupts serializes the execution with any execution of dtrace_probe() on 10363 * the same CPU. 10364 */ 10365 static void 10366 dtrace_buffer_switch(dtrace_buffer_t *buf) 10367 { 10368 caddr_t tomax = buf->dtb_tomax; 10369 caddr_t xamot = buf->dtb_xamot; 10370 dtrace_icookie_t cookie; 10371 hrtime_t now; 10372 10373 ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH)); 10374 ASSERT(!(buf->dtb_flags & DTRACEBUF_RING)); 10375 10376 cookie = dtrace_interrupt_disable(); 10377 now = dtrace_gethrtime(); 10378 buf->dtb_tomax = xamot; 10379 buf->dtb_xamot = tomax; 10380 buf->dtb_xamot_drops = buf->dtb_drops; 10381 buf->dtb_xamot_offset = buf->dtb_offset; 10382 buf->dtb_xamot_errors = buf->dtb_errors; 10383 buf->dtb_xamot_flags = buf->dtb_flags; 10384 buf->dtb_offset = 0; 10385 buf->dtb_drops = 0; 10386 buf->dtb_errors = 0; 10387 buf->dtb_flags &= ~(DTRACEBUF_ERROR | DTRACEBUF_DROPPED); 10388 buf->dtb_interval = now - buf->dtb_switched; 10389 buf->dtb_switched = now; 10390 dtrace_interrupt_enable(cookie); 10391 } 10392 10393 /* 10394 * Note: called from cross call context. This function activates a buffer 10395 * on a CPU. As with dtrace_buffer_switch(), the atomicity of the operation 10396 * is guaranteed by the disabling of interrupts. 10397 */ 10398 static void 10399 dtrace_buffer_activate(dtrace_state_t *state) 10400 { 10401 dtrace_buffer_t *buf; 10402 dtrace_icookie_t cookie = dtrace_interrupt_disable(); 10403 10404 buf = &state->dts_buffer[CPU->cpu_id]; 10405 10406 if (buf->dtb_tomax != NULL) { 10407 /* 10408 * We might like to assert that the buffer is marked inactive, 10409 * but this isn't necessarily true: the buffer for the CPU 10410 * that processes the BEGIN probe has its buffer activated 10411 * manually. In this case, we take the (harmless) action 10412 * re-clearing the bit INACTIVE bit. 10413 */ 10414 buf->dtb_flags &= ~DTRACEBUF_INACTIVE; 10415 } 10416 10417 dtrace_interrupt_enable(cookie); 10418 } 10419 10420 static int 10421 dtrace_buffer_alloc(dtrace_buffer_t *bufs, size_t size, int flags, 10422 processorid_t cpu, int *factor) 10423 { 10424 cpu_t *cp; 10425 dtrace_buffer_t *buf; 10426 int allocated = 0, desired = 0; 10427 10428 ASSERT(MUTEX_HELD(&cpu_lock)); 10429 ASSERT(MUTEX_HELD(&dtrace_lock)); 10430 10431 *factor = 1; 10432 10433 if (size > dtrace_nonroot_maxsize && 10434 !PRIV_POLICY_CHOICE(CRED(), PRIV_ALL, B_FALSE)) 10435 return (EFBIG); 10436 10437 cp = cpu_list; 10438 10439 do { 10440 if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id) 10441 continue; 10442 10443 buf = &bufs[cp->cpu_id]; 10444 10445 /* 10446 * If there is already a buffer allocated for this CPU, it 10447 * is only possible that this is a DR event. In this case, 10448 * the buffer size must match our specified size. 10449 */ 10450 if (buf->dtb_tomax != NULL) { 10451 ASSERT(buf->dtb_size == size); 10452 continue; 10453 } 10454 10455 ASSERT(buf->dtb_xamot == NULL); 10456 10457 if ((buf->dtb_tomax = kmem_zalloc(size, 10458 KM_NOSLEEP | KM_NORMALPRI)) == NULL) 10459 goto err; 10460 10461 buf->dtb_size = size; 10462 buf->dtb_flags = flags; 10463 buf->dtb_offset = 0; 10464 buf->dtb_drops = 0; 10465 10466 if (flags & DTRACEBUF_NOSWITCH) 10467 continue; 10468 10469 if ((buf->dtb_xamot = kmem_zalloc(size, 10470 KM_NOSLEEP | KM_NORMALPRI)) == NULL) 10471 goto err; 10472 } while ((cp = cp->cpu_next) != cpu_list); 10473 10474 return (0); 10475 10476 err: 10477 cp = cpu_list; 10478 10479 do { 10480 if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id) 10481 continue; 10482 10483 buf = &bufs[cp->cpu_id]; 10484 desired += 2; 10485 10486 if (buf->dtb_xamot != NULL) { 10487 ASSERT(buf->dtb_tomax != NULL); 10488 ASSERT(buf->dtb_size == size); 10489 kmem_free(buf->dtb_xamot, size); 10490 allocated++; 10491 } 10492 10493 if (buf->dtb_tomax != NULL) { 10494 ASSERT(buf->dtb_size == size); 10495 kmem_free(buf->dtb_tomax, size); 10496 allocated++; 10497 } 10498 10499 buf->dtb_tomax = NULL; 10500 buf->dtb_xamot = NULL; 10501 buf->dtb_size = 0; 10502 } while ((cp = cp->cpu_next) != cpu_list); 10503 10504 *factor = desired / (allocated > 0 ? allocated : 1); 10505 10506 return (ENOMEM); 10507 } 10508 10509 /* 10510 * Note: called from probe context. This function just increments the drop 10511 * count on a buffer. It has been made a function to allow for the 10512 * possibility of understanding the source of mysterious drop counts. (A 10513 * problem for which one may be particularly disappointed that DTrace cannot 10514 * be used to understand DTrace.) 10515 */ 10516 static void 10517 dtrace_buffer_drop(dtrace_buffer_t *buf) 10518 { 10519 buf->dtb_drops++; 10520 } 10521 10522 /* 10523 * Note: called from probe context. This function is called to reserve space 10524 * in a buffer. If mstate is non-NULL, sets the scratch base and size in the 10525 * mstate. Returns the new offset in the buffer, or a negative value if an 10526 * error has occurred. 10527 */ 10528 static intptr_t 10529 dtrace_buffer_reserve(dtrace_buffer_t *buf, size_t needed, size_t align, 10530 dtrace_state_t *state, dtrace_mstate_t *mstate) 10531 { 10532 intptr_t offs = buf->dtb_offset, soffs; 10533 intptr_t woffs; 10534 caddr_t tomax; 10535 size_t total; 10536 10537 if (buf->dtb_flags & DTRACEBUF_INACTIVE) 10538 return (-1); 10539 10540 if ((tomax = buf->dtb_tomax) == NULL) { 10541 dtrace_buffer_drop(buf); 10542 return (-1); 10543 } 10544 10545 if (!(buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL))) { 10546 while (offs & (align - 1)) { 10547 /* 10548 * Assert that our alignment is off by a number which 10549 * is itself sizeof (uint32_t) aligned. 10550 */ 10551 ASSERT(!((align - (offs & (align - 1))) & 10552 (sizeof (uint32_t) - 1))); 10553 DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE); 10554 offs += sizeof (uint32_t); 10555 } 10556 10557 if ((soffs = offs + needed) > buf->dtb_size) { 10558 dtrace_buffer_drop(buf); 10559 return (-1); 10560 } 10561 10562 if (mstate == NULL) 10563 return (offs); 10564 10565 mstate->dtms_scratch_base = (uintptr_t)tomax + soffs; 10566 mstate->dtms_scratch_size = buf->dtb_size - soffs; 10567 mstate->dtms_scratch_ptr = mstate->dtms_scratch_base; 10568 10569 return (offs); 10570 } 10571 10572 if (buf->dtb_flags & DTRACEBUF_FILL) { 10573 if (state->dts_activity != DTRACE_ACTIVITY_COOLDOWN && 10574 (buf->dtb_flags & DTRACEBUF_FULL)) 10575 return (-1); 10576 goto out; 10577 } 10578 10579 total = needed + (offs & (align - 1)); 10580 10581 /* 10582 * For a ring buffer, life is quite a bit more complicated. Before 10583 * we can store any padding, we need to adjust our wrapping offset. 10584 * (If we've never before wrapped or we're not about to, no adjustment 10585 * is required.) 10586 */ 10587 if ((buf->dtb_flags & DTRACEBUF_WRAPPED) || 10588 offs + total > buf->dtb_size) { 10589 woffs = buf->dtb_xamot_offset; 10590 10591 if (offs + total > buf->dtb_size) { 10592 /* 10593 * We can't fit in the end of the buffer. First, a 10594 * sanity check that we can fit in the buffer at all. 10595 */ 10596 if (total > buf->dtb_size) { 10597 dtrace_buffer_drop(buf); 10598 return (-1); 10599 } 10600 10601 /* 10602 * We're going to be storing at the top of the buffer, 10603 * so now we need to deal with the wrapped offset. We 10604 * only reset our wrapped offset to 0 if it is 10605 * currently greater than the current offset. If it 10606 * is less than the current offset, it is because a 10607 * previous allocation induced a wrap -- but the 10608 * allocation didn't subsequently take the space due 10609 * to an error or false predicate evaluation. In this 10610 * case, we'll just leave the wrapped offset alone: if 10611 * the wrapped offset hasn't been advanced far enough 10612 * for this allocation, it will be adjusted in the 10613 * lower loop. 10614 */ 10615 if (buf->dtb_flags & DTRACEBUF_WRAPPED) { 10616 if (woffs >= offs) 10617 woffs = 0; 10618 } else { 10619 woffs = 0; 10620 } 10621 10622 /* 10623 * Now we know that we're going to be storing to the 10624 * top of the buffer and that there is room for us 10625 * there. We need to clear the buffer from the current 10626 * offset to the end (there may be old gunk there). 10627 */ 10628 while (offs < buf->dtb_size) 10629 tomax[offs++] = 0; 10630 10631 /* 10632 * We need to set our offset to zero. And because we 10633 * are wrapping, we need to set the bit indicating as 10634 * much. We can also adjust our needed space back 10635 * down to the space required by the ECB -- we know 10636 * that the top of the buffer is aligned. 10637 */ 10638 offs = 0; 10639 total = needed; 10640 buf->dtb_flags |= DTRACEBUF_WRAPPED; 10641 } else { 10642 /* 10643 * There is room for us in the buffer, so we simply 10644 * need to check the wrapped offset. 10645 */ 10646 if (woffs < offs) { 10647 /* 10648 * The wrapped offset is less than the offset. 10649 * This can happen if we allocated buffer space 10650 * that induced a wrap, but then we didn't 10651 * subsequently take the space due to an error 10652 * or false predicate evaluation. This is 10653 * okay; we know that _this_ allocation isn't 10654 * going to induce a wrap. We still can't 10655 * reset the wrapped offset to be zero, 10656 * however: the space may have been trashed in 10657 * the previous failed probe attempt. But at 10658 * least the wrapped offset doesn't need to 10659 * be adjusted at all... 10660 */ 10661 goto out; 10662 } 10663 } 10664 10665 while (offs + total > woffs) { 10666 dtrace_epid_t epid = *(uint32_t *)(tomax + woffs); 10667 size_t size; 10668 10669 if (epid == DTRACE_EPIDNONE) { 10670 size = sizeof (uint32_t); 10671 } else { 10672 ASSERT3U(epid, <=, state->dts_necbs); 10673 ASSERT(state->dts_ecbs[epid - 1] != NULL); 10674 10675 size = state->dts_ecbs[epid - 1]->dte_size; 10676 } 10677 10678 ASSERT(woffs + size <= buf->dtb_size); 10679 ASSERT(size != 0); 10680 10681 if (woffs + size == buf->dtb_size) { 10682 /* 10683 * We've reached the end of the buffer; we want 10684 * to set the wrapped offset to 0 and break 10685 * out. However, if the offs is 0, then we're 10686 * in a strange edge-condition: the amount of 10687 * space that we want to reserve plus the size 10688 * of the record that we're overwriting is 10689 * greater than the size of the buffer. This 10690 * is problematic because if we reserve the 10691 * space but subsequently don't consume it (due 10692 * to a failed predicate or error) the wrapped 10693 * offset will be 0 -- yet the EPID at offset 0 10694 * will not be committed. This situation is 10695 * relatively easy to deal with: if we're in 10696 * this case, the buffer is indistinguishable 10697 * from one that hasn't wrapped; we need only 10698 * finish the job by clearing the wrapped bit, 10699 * explicitly setting the offset to be 0, and 10700 * zero'ing out the old data in the buffer. 10701 */ 10702 if (offs == 0) { 10703 buf->dtb_flags &= ~DTRACEBUF_WRAPPED; 10704 buf->dtb_offset = 0; 10705 woffs = total; 10706 10707 while (woffs < buf->dtb_size) 10708 tomax[woffs++] = 0; 10709 } 10710 10711 woffs = 0; 10712 break; 10713 } 10714 10715 woffs += size; 10716 } 10717 10718 /* 10719 * We have a wrapped offset. It may be that the wrapped offset 10720 * has become zero -- that's okay. 10721 */ 10722 buf->dtb_xamot_offset = woffs; 10723 } 10724 10725 out: 10726 /* 10727 * Now we can plow the buffer with any necessary padding. 10728 */ 10729 while (offs & (align - 1)) { 10730 /* 10731 * Assert that our alignment is off by a number which 10732 * is itself sizeof (uint32_t) aligned. 10733 */ 10734 ASSERT(!((align - (offs & (align - 1))) & 10735 (sizeof (uint32_t) - 1))); 10736 DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE); 10737 offs += sizeof (uint32_t); 10738 } 10739 10740 if (buf->dtb_flags & DTRACEBUF_FILL) { 10741 if (offs + needed > buf->dtb_size - state->dts_reserve) { 10742 buf->dtb_flags |= DTRACEBUF_FULL; 10743 return (-1); 10744 } 10745 } 10746 10747 if (mstate == NULL) 10748 return (offs); 10749 10750 /* 10751 * For ring buffers and fill buffers, the scratch space is always 10752 * the inactive buffer. 10753 */ 10754 mstate->dtms_scratch_base = (uintptr_t)buf->dtb_xamot; 10755 mstate->dtms_scratch_size = buf->dtb_size; 10756 mstate->dtms_scratch_ptr = mstate->dtms_scratch_base; 10757 10758 return (offs); 10759 } 10760 10761 static void 10762 dtrace_buffer_polish(dtrace_buffer_t *buf) 10763 { 10764 ASSERT(buf->dtb_flags & DTRACEBUF_RING); 10765 ASSERT(MUTEX_HELD(&dtrace_lock)); 10766 10767 if (!(buf->dtb_flags & DTRACEBUF_WRAPPED)) 10768 return; 10769 10770 /* 10771 * We need to polish the ring buffer. There are three cases: 10772 * 10773 * - The first (and presumably most common) is that there is no gap 10774 * between the buffer offset and the wrapped offset. In this case, 10775 * there is nothing in the buffer that isn't valid data; we can 10776 * mark the buffer as polished and return. 10777 * 10778 * - The second (less common than the first but still more common 10779 * than the third) is that there is a gap between the buffer offset 10780 * and the wrapped offset, and the wrapped offset is larger than the 10781 * buffer offset. This can happen because of an alignment issue, or 10782 * can happen because of a call to dtrace_buffer_reserve() that 10783 * didn't subsequently consume the buffer space. In this case, 10784 * we need to zero the data from the buffer offset to the wrapped 10785 * offset. 10786 * 10787 * - The third (and least common) is that there is a gap between the 10788 * buffer offset and the wrapped offset, but the wrapped offset is 10789 * _less_ than the buffer offset. This can only happen because a 10790 * call to dtrace_buffer_reserve() induced a wrap, but the space 10791 * was not subsequently consumed. In this case, we need to zero the 10792 * space from the offset to the end of the buffer _and_ from the 10793 * top of the buffer to the wrapped offset. 10794 */ 10795 if (buf->dtb_offset < buf->dtb_xamot_offset) { 10796 bzero(buf->dtb_tomax + buf->dtb_offset, 10797 buf->dtb_xamot_offset - buf->dtb_offset); 10798 } 10799 10800 if (buf->dtb_offset > buf->dtb_xamot_offset) { 10801 bzero(buf->dtb_tomax + buf->dtb_offset, 10802 buf->dtb_size - buf->dtb_offset); 10803 bzero(buf->dtb_tomax, buf->dtb_xamot_offset); 10804 } 10805 } 10806 10807 /* 10808 * This routine determines if data generated at the specified time has likely 10809 * been entirely consumed at user-level. This routine is called to determine 10810 * if an ECB on a defunct probe (but for an active enabling) can be safely 10811 * disabled and destroyed. 10812 */ 10813 static int 10814 dtrace_buffer_consumed(dtrace_buffer_t *bufs, hrtime_t when) 10815 { 10816 int i; 10817 10818 for (i = 0; i < NCPU; i++) { 10819 dtrace_buffer_t *buf = &bufs[i]; 10820 10821 if (buf->dtb_size == 0) 10822 continue; 10823 10824 if (buf->dtb_flags & DTRACEBUF_RING) 10825 return (0); 10826 10827 if (!buf->dtb_switched && buf->dtb_offset != 0) 10828 return (0); 10829 10830 if (buf->dtb_switched - buf->dtb_interval < when) 10831 return (0); 10832 } 10833 10834 return (1); 10835 } 10836 10837 static void 10838 dtrace_buffer_free(dtrace_buffer_t *bufs) 10839 { 10840 int i; 10841 10842 for (i = 0; i < NCPU; i++) { 10843 dtrace_buffer_t *buf = &bufs[i]; 10844 10845 if (buf->dtb_tomax == NULL) { 10846 ASSERT(buf->dtb_xamot == NULL); 10847 ASSERT(buf->dtb_size == 0); 10848 continue; 10849 } 10850 10851 if (buf->dtb_xamot != NULL) { 10852 ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH)); 10853 kmem_free(buf->dtb_xamot, buf->dtb_size); 10854 } 10855 10856 kmem_free(buf->dtb_tomax, buf->dtb_size); 10857 buf->dtb_size = 0; 10858 buf->dtb_tomax = NULL; 10859 buf->dtb_xamot = NULL; 10860 } 10861 } 10862 10863 /* 10864 * DTrace Enabling Functions 10865 */ 10866 static dtrace_enabling_t * 10867 dtrace_enabling_create(dtrace_vstate_t *vstate) 10868 { 10869 dtrace_enabling_t *enab; 10870 10871 enab = kmem_zalloc(sizeof (dtrace_enabling_t), KM_SLEEP); 10872 enab->dten_vstate = vstate; 10873 10874 return (enab); 10875 } 10876 10877 static void 10878 dtrace_enabling_add(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb) 10879 { 10880 dtrace_ecbdesc_t **ndesc; 10881 size_t osize, nsize; 10882 10883 /* 10884 * We can't add to enablings after we've enabled them, or after we've 10885 * retained them. 10886 */ 10887 ASSERT(enab->dten_probegen == 0); 10888 ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL); 10889 10890 if (enab->dten_ndesc < enab->dten_maxdesc) { 10891 enab->dten_desc[enab->dten_ndesc++] = ecb; 10892 return; 10893 } 10894 10895 osize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *); 10896 10897 if (enab->dten_maxdesc == 0) { 10898 enab->dten_maxdesc = 1; 10899 } else { 10900 enab->dten_maxdesc <<= 1; 10901 } 10902 10903 ASSERT(enab->dten_ndesc < enab->dten_maxdesc); 10904 10905 nsize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *); 10906 ndesc = kmem_zalloc(nsize, KM_SLEEP); 10907 bcopy(enab->dten_desc, ndesc, osize); 10908 kmem_free(enab->dten_desc, osize); 10909 10910 enab->dten_desc = ndesc; 10911 enab->dten_desc[enab->dten_ndesc++] = ecb; 10912 } 10913 10914 static void 10915 dtrace_enabling_addlike(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb, 10916 dtrace_probedesc_t *pd) 10917 { 10918 dtrace_ecbdesc_t *new; 10919 dtrace_predicate_t *pred; 10920 dtrace_actdesc_t *act; 10921 10922 /* 10923 * We're going to create a new ECB description that matches the 10924 * specified ECB in every way, but has the specified probe description. 10925 */ 10926 new = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP); 10927 10928 if ((pred = ecb->dted_pred.dtpdd_predicate) != NULL) 10929 dtrace_predicate_hold(pred); 10930 10931 for (act = ecb->dted_action; act != NULL; act = act->dtad_next) 10932 dtrace_actdesc_hold(act); 10933 10934 new->dted_action = ecb->dted_action; 10935 new->dted_pred = ecb->dted_pred; 10936 new->dted_probe = *pd; 10937 new->dted_uarg = ecb->dted_uarg; 10938 10939 dtrace_enabling_add(enab, new); 10940 } 10941 10942 static void 10943 dtrace_enabling_dump(dtrace_enabling_t *enab) 10944 { 10945 int i; 10946 10947 for (i = 0; i < enab->dten_ndesc; i++) { 10948 dtrace_probedesc_t *desc = &enab->dten_desc[i]->dted_probe; 10949 10950 cmn_err(CE_NOTE, "enabling probe %d (%s:%s:%s:%s)", i, 10951 desc->dtpd_provider, desc->dtpd_mod, 10952 desc->dtpd_func, desc->dtpd_name); 10953 } 10954 } 10955 10956 static void 10957 dtrace_enabling_destroy(dtrace_enabling_t *enab) 10958 { 10959 int i; 10960 dtrace_ecbdesc_t *ep; 10961 dtrace_vstate_t *vstate = enab->dten_vstate; 10962 10963 ASSERT(MUTEX_HELD(&dtrace_lock)); 10964 10965 for (i = 0; i < enab->dten_ndesc; i++) { 10966 dtrace_actdesc_t *act, *next; 10967 dtrace_predicate_t *pred; 10968 10969 ep = enab->dten_desc[i]; 10970 10971 if ((pred = ep->dted_pred.dtpdd_predicate) != NULL) 10972 dtrace_predicate_release(pred, vstate); 10973 10974 for (act = ep->dted_action; act != NULL; act = next) { 10975 next = act->dtad_next; 10976 dtrace_actdesc_release(act, vstate); 10977 } 10978 10979 kmem_free(ep, sizeof (dtrace_ecbdesc_t)); 10980 } 10981 10982 kmem_free(enab->dten_desc, 10983 enab->dten_maxdesc * sizeof (dtrace_enabling_t *)); 10984 10985 /* 10986 * If this was a retained enabling, decrement the dts_nretained count 10987 * and take it off of the dtrace_retained list. 10988 */ 10989 if (enab->dten_prev != NULL || enab->dten_next != NULL || 10990 dtrace_retained == enab) { 10991 ASSERT(enab->dten_vstate->dtvs_state != NULL); 10992 ASSERT(enab->dten_vstate->dtvs_state->dts_nretained > 0); 10993 enab->dten_vstate->dtvs_state->dts_nretained--; 10994 dtrace_retained_gen++; 10995 } 10996 10997 if (enab->dten_prev == NULL) { 10998 if (dtrace_retained == enab) { 10999 dtrace_retained = enab->dten_next; 11000 11001 if (dtrace_retained != NULL) 11002 dtrace_retained->dten_prev = NULL; 11003 } 11004 } else { 11005 ASSERT(enab != dtrace_retained); 11006 ASSERT(dtrace_retained != NULL); 11007 enab->dten_prev->dten_next = enab->dten_next; 11008 } 11009 11010 if (enab->dten_next != NULL) { 11011 ASSERT(dtrace_retained != NULL); 11012 enab->dten_next->dten_prev = enab->dten_prev; 11013 } 11014 11015 kmem_free(enab, sizeof (dtrace_enabling_t)); 11016 } 11017 11018 static int 11019 dtrace_enabling_retain(dtrace_enabling_t *enab) 11020 { 11021 dtrace_state_t *state; 11022 11023 ASSERT(MUTEX_HELD(&dtrace_lock)); 11024 ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL); 11025 ASSERT(enab->dten_vstate != NULL); 11026 11027 state = enab->dten_vstate->dtvs_state; 11028 ASSERT(state != NULL); 11029 11030 /* 11031 * We only allow each state to retain dtrace_retain_max enablings. 11032 */ 11033 if (state->dts_nretained >= dtrace_retain_max) 11034 return (ENOSPC); 11035 11036 state->dts_nretained++; 11037 dtrace_retained_gen++; 11038 11039 if (dtrace_retained == NULL) { 11040 dtrace_retained = enab; 11041 return (0); 11042 } 11043 11044 enab->dten_next = dtrace_retained; 11045 dtrace_retained->dten_prev = enab; 11046 dtrace_retained = enab; 11047 11048 return (0); 11049 } 11050 11051 static int 11052 dtrace_enabling_replicate(dtrace_state_t *state, dtrace_probedesc_t *match, 11053 dtrace_probedesc_t *create) 11054 { 11055 dtrace_enabling_t *new, *enab; 11056 int found = 0, err = ENOENT; 11057 11058 ASSERT(MUTEX_HELD(&dtrace_lock)); 11059 ASSERT(strlen(match->dtpd_provider) < DTRACE_PROVNAMELEN); 11060 ASSERT(strlen(match->dtpd_mod) < DTRACE_MODNAMELEN); 11061 ASSERT(strlen(match->dtpd_func) < DTRACE_FUNCNAMELEN); 11062 ASSERT(strlen(match->dtpd_name) < DTRACE_NAMELEN); 11063 11064 new = dtrace_enabling_create(&state->dts_vstate); 11065 11066 /* 11067 * Iterate over all retained enablings, looking for enablings that 11068 * match the specified state. 11069 */ 11070 for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) { 11071 int i; 11072 11073 /* 11074 * dtvs_state can only be NULL for helper enablings -- and 11075 * helper enablings can't be retained. 11076 */ 11077 ASSERT(enab->dten_vstate->dtvs_state != NULL); 11078 11079 if (enab->dten_vstate->dtvs_state != state) 11080 continue; 11081 11082 /* 11083 * Now iterate over each probe description; we're looking for 11084 * an exact match to the specified probe description. 11085 */ 11086 for (i = 0; i < enab->dten_ndesc; i++) { 11087 dtrace_ecbdesc_t *ep = enab->dten_desc[i]; 11088 dtrace_probedesc_t *pd = &ep->dted_probe; 11089 11090 if (strcmp(pd->dtpd_provider, match->dtpd_provider)) 11091 continue; 11092 11093 if (strcmp(pd->dtpd_mod, match->dtpd_mod)) 11094 continue; 11095 11096 if (strcmp(pd->dtpd_func, match->dtpd_func)) 11097 continue; 11098 11099 if (strcmp(pd->dtpd_name, match->dtpd_name)) 11100 continue; 11101 11102 /* 11103 * We have a winning probe! Add it to our growing 11104 * enabling. 11105 */ 11106 found = 1; 11107 dtrace_enabling_addlike(new, ep, create); 11108 } 11109 } 11110 11111 if (!found || (err = dtrace_enabling_retain(new)) != 0) { 11112 dtrace_enabling_destroy(new); 11113 return (err); 11114 } 11115 11116 return (0); 11117 } 11118 11119 static void 11120 dtrace_enabling_retract(dtrace_state_t *state) 11121 { 11122 dtrace_enabling_t *enab, *next; 11123 11124 ASSERT(MUTEX_HELD(&dtrace_lock)); 11125 11126 /* 11127 * Iterate over all retained enablings, destroy the enablings retained 11128 * for the specified state. 11129 */ 11130 for (enab = dtrace_retained; enab != NULL; enab = next) { 11131 next = enab->dten_next; 11132 11133 /* 11134 * dtvs_state can only be NULL for helper enablings -- and 11135 * helper enablings can't be retained. 11136 */ 11137 ASSERT(enab->dten_vstate->dtvs_state != NULL); 11138 11139 if (enab->dten_vstate->dtvs_state == state) { 11140 ASSERT(state->dts_nretained > 0); 11141 dtrace_enabling_destroy(enab); 11142 } 11143 } 11144 11145 ASSERT(state->dts_nretained == 0); 11146 } 11147 11148 static int 11149 dtrace_enabling_match(dtrace_enabling_t *enab, int *nmatched) 11150 { 11151 int i = 0; 11152 int total_matched = 0, matched = 0; 11153 11154 ASSERT(MUTEX_HELD(&cpu_lock)); 11155 ASSERT(MUTEX_HELD(&dtrace_lock)); 11156 11157 for (i = 0; i < enab->dten_ndesc; i++) { 11158 dtrace_ecbdesc_t *ep = enab->dten_desc[i]; 11159 11160 enab->dten_current = ep; 11161 enab->dten_error = 0; 11162 11163 /* 11164 * If a provider failed to enable a probe then get out and 11165 * let the consumer know we failed. 11166 */ 11167 if ((matched = dtrace_probe_enable(&ep->dted_probe, enab)) < 0) 11168 return (EBUSY); 11169 11170 total_matched += matched; 11171 11172 if (enab->dten_error != 0) { 11173 /* 11174 * If we get an error half-way through enabling the 11175 * probes, we kick out -- perhaps with some number of 11176 * them enabled. Leaving enabled probes enabled may 11177 * be slightly confusing for user-level, but we expect 11178 * that no one will attempt to actually drive on in 11179 * the face of such errors. If this is an anonymous 11180 * enabling (indicated with a NULL nmatched pointer), 11181 * we cmn_err() a message. We aren't expecting to 11182 * get such an error -- such as it can exist at all, 11183 * it would be a result of corrupted DOF in the driver 11184 * properties. 11185 */ 11186 if (nmatched == NULL) { 11187 cmn_err(CE_WARN, "dtrace_enabling_match() " 11188 "error on %p: %d", (void *)ep, 11189 enab->dten_error); 11190 } 11191 11192 return (enab->dten_error); 11193 } 11194 } 11195 11196 enab->dten_probegen = dtrace_probegen; 11197 if (nmatched != NULL) 11198 *nmatched = total_matched; 11199 11200 return (0); 11201 } 11202 11203 static void 11204 dtrace_enabling_matchall(void) 11205 { 11206 dtrace_enabling_t *enab; 11207 11208 mutex_enter(&cpu_lock); 11209 mutex_enter(&dtrace_lock); 11210 11211 /* 11212 * Iterate over all retained enablings to see if any probes match 11213 * against them. We only perform this operation on enablings for which 11214 * we have sufficient permissions by virtue of being in the global zone 11215 * or in the same zone as the DTrace client. Because we can be called 11216 * after dtrace_detach() has been called, we cannot assert that there 11217 * are retained enablings. We can safely load from dtrace_retained, 11218 * however: the taskq_destroy() at the end of dtrace_detach() will 11219 * block pending our completion. 11220 */ 11221 for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) { 11222 dtrace_cred_t *dcr = &enab->dten_vstate->dtvs_state->dts_cred; 11223 cred_t *cr = dcr->dcr_cred; 11224 zoneid_t zone = cr != NULL ? crgetzoneid(cr) : 0; 11225 11226 if ((dcr->dcr_visible & DTRACE_CRV_ALLZONE) || (cr != NULL && 11227 (zone == GLOBAL_ZONEID || getzoneid() == zone))) 11228 (void) dtrace_enabling_match(enab, NULL); 11229 } 11230 11231 mutex_exit(&dtrace_lock); 11232 mutex_exit(&cpu_lock); 11233 } 11234 11235 /* 11236 * If an enabling is to be enabled without having matched probes (that is, if 11237 * dtrace_state_go() is to be called on the underlying dtrace_state_t), the 11238 * enabling must be _primed_ by creating an ECB for every ECB description. 11239 * This must be done to assure that we know the number of speculations, the 11240 * number of aggregations, the minimum buffer size needed, etc. before we 11241 * transition out of DTRACE_ACTIVITY_INACTIVE. To do this without actually 11242 * enabling any probes, we create ECBs for every ECB decription, but with a 11243 * NULL probe -- which is exactly what this function does. 11244 */ 11245 static void 11246 dtrace_enabling_prime(dtrace_state_t *state) 11247 { 11248 dtrace_enabling_t *enab; 11249 int i; 11250 11251 for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) { 11252 ASSERT(enab->dten_vstate->dtvs_state != NULL); 11253 11254 if (enab->dten_vstate->dtvs_state != state) 11255 continue; 11256 11257 /* 11258 * We don't want to prime an enabling more than once, lest 11259 * we allow a malicious user to induce resource exhaustion. 11260 * (The ECBs that result from priming an enabling aren't 11261 * leaked -- but they also aren't deallocated until the 11262 * consumer state is destroyed.) 11263 */ 11264 if (enab->dten_primed) 11265 continue; 11266 11267 for (i = 0; i < enab->dten_ndesc; i++) { 11268 enab->dten_current = enab->dten_desc[i]; 11269 (void) dtrace_probe_enable(NULL, enab); 11270 } 11271 11272 enab->dten_primed = 1; 11273 } 11274 } 11275 11276 /* 11277 * Called to indicate that probes should be provided due to retained 11278 * enablings. This is implemented in terms of dtrace_probe_provide(), but it 11279 * must take an initial lap through the enabling calling the dtps_provide() 11280 * entry point explicitly to allow for autocreated probes. 11281 */ 11282 static void 11283 dtrace_enabling_provide(dtrace_provider_t *prv) 11284 { 11285 int i, all = 0; 11286 dtrace_probedesc_t desc; 11287 dtrace_genid_t gen; 11288 11289 ASSERT(MUTEX_HELD(&dtrace_lock)); 11290 ASSERT(MUTEX_HELD(&dtrace_provider_lock)); 11291 11292 if (prv == NULL) { 11293 all = 1; 11294 prv = dtrace_provider; 11295 } 11296 11297 do { 11298 dtrace_enabling_t *enab; 11299 void *parg = prv->dtpv_arg; 11300 11301 retry: 11302 gen = dtrace_retained_gen; 11303 for (enab = dtrace_retained; enab != NULL; 11304 enab = enab->dten_next) { 11305 for (i = 0; i < enab->dten_ndesc; i++) { 11306 desc = enab->dten_desc[i]->dted_probe; 11307 mutex_exit(&dtrace_lock); 11308 prv->dtpv_pops.dtps_provide(parg, &desc); 11309 mutex_enter(&dtrace_lock); 11310 /* 11311 * Process the retained enablings again if 11312 * they have changed while we weren't holding 11313 * dtrace_lock. 11314 */ 11315 if (gen != dtrace_retained_gen) 11316 goto retry; 11317 } 11318 } 11319 } while (all && (prv = prv->dtpv_next) != NULL); 11320 11321 mutex_exit(&dtrace_lock); 11322 dtrace_probe_provide(NULL, all ? NULL : prv); 11323 mutex_enter(&dtrace_lock); 11324 } 11325 11326 /* 11327 * Called to reap ECBs that are attached to probes from defunct providers. 11328 */ 11329 static void 11330 dtrace_enabling_reap(void) 11331 { 11332 dtrace_provider_t *prov; 11333 dtrace_probe_t *probe; 11334 dtrace_ecb_t *ecb; 11335 hrtime_t when; 11336 int i; 11337 11338 mutex_enter(&cpu_lock); 11339 mutex_enter(&dtrace_lock); 11340 11341 for (i = 0; i < dtrace_nprobes; i++) { 11342 if ((probe = dtrace_probes[i]) == NULL) 11343 continue; 11344 11345 if (probe->dtpr_ecb == NULL) 11346 continue; 11347 11348 prov = probe->dtpr_provider; 11349 11350 if ((when = prov->dtpv_defunct) == 0) 11351 continue; 11352 11353 /* 11354 * We have ECBs on a defunct provider: we want to reap these 11355 * ECBs to allow the provider to unregister. The destruction 11356 * of these ECBs must be done carefully: if we destroy the ECB 11357 * and the consumer later wishes to consume an EPID that 11358 * corresponds to the destroyed ECB (and if the EPID metadata 11359 * has not been previously consumed), the consumer will abort 11360 * processing on the unknown EPID. To reduce (but not, sadly, 11361 * eliminate) the possibility of this, we will only destroy an 11362 * ECB for a defunct provider if, for the state that 11363 * corresponds to the ECB: 11364 * 11365 * (a) There is no speculative tracing (which can effectively 11366 * cache an EPID for an arbitrary amount of time). 11367 * 11368 * (b) The principal buffers have been switched twice since the 11369 * provider became defunct. 11370 * 11371 * (c) The aggregation buffers are of zero size or have been 11372 * switched twice since the provider became defunct. 11373 * 11374 * We use dts_speculates to determine (a) and call a function 11375 * (dtrace_buffer_consumed()) to determine (b) and (c). Note 11376 * that as soon as we've been unable to destroy one of the ECBs 11377 * associated with the probe, we quit trying -- reaping is only 11378 * fruitful in as much as we can destroy all ECBs associated 11379 * with the defunct provider's probes. 11380 */ 11381 while ((ecb = probe->dtpr_ecb) != NULL) { 11382 dtrace_state_t *state = ecb->dte_state; 11383 dtrace_buffer_t *buf = state->dts_buffer; 11384 dtrace_buffer_t *aggbuf = state->dts_aggbuffer; 11385 11386 if (state->dts_speculates) 11387 break; 11388 11389 if (!dtrace_buffer_consumed(buf, when)) 11390 break; 11391 11392 if (!dtrace_buffer_consumed(aggbuf, when)) 11393 break; 11394 11395 dtrace_ecb_disable(ecb); 11396 ASSERT(probe->dtpr_ecb != ecb); 11397 dtrace_ecb_destroy(ecb); 11398 } 11399 } 11400 11401 mutex_exit(&dtrace_lock); 11402 mutex_exit(&cpu_lock); 11403 } 11404 11405 /* 11406 * DTrace DOF Functions 11407 */ 11408 /*ARGSUSED*/ 11409 static void 11410 dtrace_dof_error(dof_hdr_t *dof, const char *str) 11411 { 11412 if (dtrace_err_verbose) 11413 cmn_err(CE_WARN, "failed to process DOF: %s", str); 11414 11415 #ifdef DTRACE_ERRDEBUG 11416 dtrace_errdebug(str); 11417 #endif 11418 } 11419 11420 /* 11421 * Create DOF out of a currently enabled state. Right now, we only create 11422 * DOF containing the run-time options -- but this could be expanded to create 11423 * complete DOF representing the enabled state. 11424 */ 11425 static dof_hdr_t * 11426 dtrace_dof_create(dtrace_state_t *state) 11427 { 11428 dof_hdr_t *dof; 11429 dof_sec_t *sec; 11430 dof_optdesc_t *opt; 11431 int i, len = sizeof (dof_hdr_t) + 11432 roundup(sizeof (dof_sec_t), sizeof (uint64_t)) + 11433 sizeof (dof_optdesc_t) * DTRACEOPT_MAX; 11434 11435 ASSERT(MUTEX_HELD(&dtrace_lock)); 11436 11437 dof = kmem_zalloc(len, KM_SLEEP); 11438 dof->dofh_ident[DOF_ID_MAG0] = DOF_MAG_MAG0; 11439 dof->dofh_ident[DOF_ID_MAG1] = DOF_MAG_MAG1; 11440 dof->dofh_ident[DOF_ID_MAG2] = DOF_MAG_MAG2; 11441 dof->dofh_ident[DOF_ID_MAG3] = DOF_MAG_MAG3; 11442 11443 dof->dofh_ident[DOF_ID_MODEL] = DOF_MODEL_NATIVE; 11444 dof->dofh_ident[DOF_ID_ENCODING] = DOF_ENCODE_NATIVE; 11445 dof->dofh_ident[DOF_ID_VERSION] = DOF_VERSION; 11446 dof->dofh_ident[DOF_ID_DIFVERS] = DIF_VERSION; 11447 dof->dofh_ident[DOF_ID_DIFIREG] = DIF_DIR_NREGS; 11448 dof->dofh_ident[DOF_ID_DIFTREG] = DIF_DTR_NREGS; 11449 11450 dof->dofh_flags = 0; 11451 dof->dofh_hdrsize = sizeof (dof_hdr_t); 11452 dof->dofh_secsize = sizeof (dof_sec_t); 11453 dof->dofh_secnum = 1; /* only DOF_SECT_OPTDESC */ 11454 dof->dofh_secoff = sizeof (dof_hdr_t); 11455 dof->dofh_loadsz = len; 11456 dof->dofh_filesz = len; 11457 dof->dofh_pad = 0; 11458 11459 /* 11460 * Fill in the option section header... 11461 */ 11462 sec = (dof_sec_t *)((uintptr_t)dof + sizeof (dof_hdr_t)); 11463 sec->dofs_type = DOF_SECT_OPTDESC; 11464 sec->dofs_align = sizeof (uint64_t); 11465 sec->dofs_flags = DOF_SECF_LOAD; 11466 sec->dofs_entsize = sizeof (dof_optdesc_t); 11467 11468 opt = (dof_optdesc_t *)((uintptr_t)sec + 11469 roundup(sizeof (dof_sec_t), sizeof (uint64_t))); 11470 11471 sec->dofs_offset = (uintptr_t)opt - (uintptr_t)dof; 11472 sec->dofs_size = sizeof (dof_optdesc_t) * DTRACEOPT_MAX; 11473 11474 for (i = 0; i < DTRACEOPT_MAX; i++) { 11475 opt[i].dofo_option = i; 11476 opt[i].dofo_strtab = DOF_SECIDX_NONE; 11477 opt[i].dofo_value = state->dts_options[i]; 11478 } 11479 11480 return (dof); 11481 } 11482 11483 static dof_hdr_t * 11484 dtrace_dof_copyin(uintptr_t uarg, int *errp) 11485 { 11486 dof_hdr_t hdr, *dof; 11487 11488 ASSERT(!MUTEX_HELD(&dtrace_lock)); 11489 11490 /* 11491 * First, we're going to copyin() the sizeof (dof_hdr_t). 11492 */ 11493 if (copyin((void *)uarg, &hdr, sizeof (hdr)) != 0) { 11494 dtrace_dof_error(NULL, "failed to copyin DOF header"); 11495 *errp = EFAULT; 11496 return (NULL); 11497 } 11498 11499 /* 11500 * Now we'll allocate the entire DOF and copy it in -- provided 11501 * that the length isn't outrageous. 11502 */ 11503 if (hdr.dofh_loadsz >= dtrace_dof_maxsize) { 11504 dtrace_dof_error(&hdr, "load size exceeds maximum"); 11505 *errp = E2BIG; 11506 return (NULL); 11507 } 11508 11509 if (hdr.dofh_loadsz < sizeof (hdr)) { 11510 dtrace_dof_error(&hdr, "invalid load size"); 11511 *errp = EINVAL; 11512 return (NULL); 11513 } 11514 11515 dof = kmem_alloc(hdr.dofh_loadsz, KM_SLEEP); 11516 11517 if (copyin((void *)uarg, dof, hdr.dofh_loadsz) != 0 || 11518 dof->dofh_loadsz != hdr.dofh_loadsz) { 11519 kmem_free(dof, hdr.dofh_loadsz); 11520 *errp = EFAULT; 11521 return (NULL); 11522 } 11523 11524 return (dof); 11525 } 11526 11527 static dof_hdr_t * 11528 dtrace_dof_property(const char *name) 11529 { 11530 uchar_t *buf; 11531 uint64_t loadsz; 11532 unsigned int len, i; 11533 dof_hdr_t *dof; 11534 11535 /* 11536 * Unfortunately, array of values in .conf files are always (and 11537 * only) interpreted to be integer arrays. We must read our DOF 11538 * as an integer array, and then squeeze it into a byte array. 11539 */ 11540 if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, dtrace_devi, 0, 11541 (char *)name, (int **)&buf, &len) != DDI_PROP_SUCCESS) 11542 return (NULL); 11543 11544 for (i = 0; i < len; i++) 11545 buf[i] = (uchar_t)(((int *)buf)[i]); 11546 11547 if (len < sizeof (dof_hdr_t)) { 11548 ddi_prop_free(buf); 11549 dtrace_dof_error(NULL, "truncated header"); 11550 return (NULL); 11551 } 11552 11553 if (len < (loadsz = ((dof_hdr_t *)buf)->dofh_loadsz)) { 11554 ddi_prop_free(buf); 11555 dtrace_dof_error(NULL, "truncated DOF"); 11556 return (NULL); 11557 } 11558 11559 if (loadsz >= dtrace_dof_maxsize) { 11560 ddi_prop_free(buf); 11561 dtrace_dof_error(NULL, "oversized DOF"); 11562 return (NULL); 11563 } 11564 11565 dof = kmem_alloc(loadsz, KM_SLEEP); 11566 bcopy(buf, dof, loadsz); 11567 ddi_prop_free(buf); 11568 11569 return (dof); 11570 } 11571 11572 static void 11573 dtrace_dof_destroy(dof_hdr_t *dof) 11574 { 11575 kmem_free(dof, dof->dofh_loadsz); 11576 } 11577 11578 /* 11579 * Return the dof_sec_t pointer corresponding to a given section index. If the 11580 * index is not valid, dtrace_dof_error() is called and NULL is returned. If 11581 * a type other than DOF_SECT_NONE is specified, the header is checked against 11582 * this type and NULL is returned if the types do not match. 11583 */ 11584 static dof_sec_t * 11585 dtrace_dof_sect(dof_hdr_t *dof, uint32_t type, dof_secidx_t i) 11586 { 11587 dof_sec_t *sec = (dof_sec_t *)(uintptr_t) 11588 ((uintptr_t)dof + dof->dofh_secoff + i * dof->dofh_secsize); 11589 11590 if (i >= dof->dofh_secnum) { 11591 dtrace_dof_error(dof, "referenced section index is invalid"); 11592 return (NULL); 11593 } 11594 11595 if (!(sec->dofs_flags & DOF_SECF_LOAD)) { 11596 dtrace_dof_error(dof, "referenced section is not loadable"); 11597 return (NULL); 11598 } 11599 11600 if (type != DOF_SECT_NONE && type != sec->dofs_type) { 11601 dtrace_dof_error(dof, "referenced section is the wrong type"); 11602 return (NULL); 11603 } 11604 11605 return (sec); 11606 } 11607 11608 static dtrace_probedesc_t * 11609 dtrace_dof_probedesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_probedesc_t *desc) 11610 { 11611 dof_probedesc_t *probe; 11612 dof_sec_t *strtab; 11613 uintptr_t daddr = (uintptr_t)dof; 11614 uintptr_t str; 11615 size_t size; 11616 11617 if (sec->dofs_type != DOF_SECT_PROBEDESC) { 11618 dtrace_dof_error(dof, "invalid probe section"); 11619 return (NULL); 11620 } 11621 11622 if (sec->dofs_align != sizeof (dof_secidx_t)) { 11623 dtrace_dof_error(dof, "bad alignment in probe description"); 11624 return (NULL); 11625 } 11626 11627 if (sec->dofs_offset + sizeof (dof_probedesc_t) > dof->dofh_loadsz) { 11628 dtrace_dof_error(dof, "truncated probe description"); 11629 return (NULL); 11630 } 11631 11632 probe = (dof_probedesc_t *)(uintptr_t)(daddr + sec->dofs_offset); 11633 strtab = dtrace_dof_sect(dof, DOF_SECT_STRTAB, probe->dofp_strtab); 11634 11635 if (strtab == NULL) 11636 return (NULL); 11637 11638 str = daddr + strtab->dofs_offset; 11639 size = strtab->dofs_size; 11640 11641 if (probe->dofp_provider >= strtab->dofs_size) { 11642 dtrace_dof_error(dof, "corrupt probe provider"); 11643 return (NULL); 11644 } 11645 11646 (void) strncpy(desc->dtpd_provider, 11647 (char *)(str + probe->dofp_provider), 11648 MIN(DTRACE_PROVNAMELEN - 1, size - probe->dofp_provider)); 11649 11650 if (probe->dofp_mod >= strtab->dofs_size) { 11651 dtrace_dof_error(dof, "corrupt probe module"); 11652 return (NULL); 11653 } 11654 11655 (void) strncpy(desc->dtpd_mod, (char *)(str + probe->dofp_mod), 11656 MIN(DTRACE_MODNAMELEN - 1, size - probe->dofp_mod)); 11657 11658 if (probe->dofp_func >= strtab->dofs_size) { 11659 dtrace_dof_error(dof, "corrupt probe function"); 11660 return (NULL); 11661 } 11662 11663 (void) strncpy(desc->dtpd_func, (char *)(str + probe->dofp_func), 11664 MIN(DTRACE_FUNCNAMELEN - 1, size - probe->dofp_func)); 11665 11666 if (probe->dofp_name >= strtab->dofs_size) { 11667 dtrace_dof_error(dof, "corrupt probe name"); 11668 return (NULL); 11669 } 11670 11671 (void) strncpy(desc->dtpd_name, (char *)(str + probe->dofp_name), 11672 MIN(DTRACE_NAMELEN - 1, size - probe->dofp_name)); 11673 11674 return (desc); 11675 } 11676 11677 static dtrace_difo_t * 11678 dtrace_dof_difo(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate, 11679 cred_t *cr) 11680 { 11681 dtrace_difo_t *dp; 11682 size_t ttl = 0; 11683 dof_difohdr_t *dofd; 11684 uintptr_t daddr = (uintptr_t)dof; 11685 size_t max = dtrace_difo_maxsize; 11686 int i, l, n; 11687 11688 static const struct { 11689 int section; 11690 int bufoffs; 11691 int lenoffs; 11692 int entsize; 11693 int align; 11694 const char *msg; 11695 } difo[] = { 11696 { DOF_SECT_DIF, offsetof(dtrace_difo_t, dtdo_buf), 11697 offsetof(dtrace_difo_t, dtdo_len), sizeof (dif_instr_t), 11698 sizeof (dif_instr_t), "multiple DIF sections" }, 11699 11700 { DOF_SECT_INTTAB, offsetof(dtrace_difo_t, dtdo_inttab), 11701 offsetof(dtrace_difo_t, dtdo_intlen), sizeof (uint64_t), 11702 sizeof (uint64_t), "multiple integer tables" }, 11703 11704 { DOF_SECT_STRTAB, offsetof(dtrace_difo_t, dtdo_strtab), 11705 offsetof(dtrace_difo_t, dtdo_strlen), 0, 11706 sizeof (char), "multiple string tables" }, 11707 11708 { DOF_SECT_VARTAB, offsetof(dtrace_difo_t, dtdo_vartab), 11709 offsetof(dtrace_difo_t, dtdo_varlen), sizeof (dtrace_difv_t), 11710 sizeof (uint_t), "multiple variable tables" }, 11711 11712 { DOF_SECT_NONE, 0, 0, 0, NULL } 11713 }; 11714 11715 if (sec->dofs_type != DOF_SECT_DIFOHDR) { 11716 dtrace_dof_error(dof, "invalid DIFO header section"); 11717 return (NULL); 11718 } 11719 11720 if (sec->dofs_align != sizeof (dof_secidx_t)) { 11721 dtrace_dof_error(dof, "bad alignment in DIFO header"); 11722 return (NULL); 11723 } 11724 11725 if (sec->dofs_size < sizeof (dof_difohdr_t) || 11726 sec->dofs_size % sizeof (dof_secidx_t)) { 11727 dtrace_dof_error(dof, "bad size in DIFO header"); 11728 return (NULL); 11729 } 11730 11731 dofd = (dof_difohdr_t *)(uintptr_t)(daddr + sec->dofs_offset); 11732 n = (sec->dofs_size - sizeof (*dofd)) / sizeof (dof_secidx_t) + 1; 11733 11734 dp = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP); 11735 dp->dtdo_rtype = dofd->dofd_rtype; 11736 11737 for (l = 0; l < n; l++) { 11738 dof_sec_t *subsec; 11739 void **bufp; 11740 uint32_t *lenp; 11741 11742 if ((subsec = dtrace_dof_sect(dof, DOF_SECT_NONE, 11743 dofd->dofd_links[l])) == NULL) 11744 goto err; /* invalid section link */ 11745 11746 if (ttl + subsec->dofs_size > max) { 11747 dtrace_dof_error(dof, "exceeds maximum size"); 11748 goto err; 11749 } 11750 11751 ttl += subsec->dofs_size; 11752 11753 for (i = 0; difo[i].section != DOF_SECT_NONE; i++) { 11754 if (subsec->dofs_type != difo[i].section) 11755 continue; 11756 11757 if (!(subsec->dofs_flags & DOF_SECF_LOAD)) { 11758 dtrace_dof_error(dof, "section not loaded"); 11759 goto err; 11760 } 11761 11762 if (subsec->dofs_align != difo[i].align) { 11763 dtrace_dof_error(dof, "bad alignment"); 11764 goto err; 11765 } 11766 11767 bufp = (void **)((uintptr_t)dp + difo[i].bufoffs); 11768 lenp = (uint32_t *)((uintptr_t)dp + difo[i].lenoffs); 11769 11770 if (*bufp != NULL) { 11771 dtrace_dof_error(dof, difo[i].msg); 11772 goto err; 11773 } 11774 11775 if (difo[i].entsize != subsec->dofs_entsize) { 11776 dtrace_dof_error(dof, "entry size mismatch"); 11777 goto err; 11778 } 11779 11780 if (subsec->dofs_entsize != 0 && 11781 (subsec->dofs_size % subsec->dofs_entsize) != 0) { 11782 dtrace_dof_error(dof, "corrupt entry size"); 11783 goto err; 11784 } 11785 11786 *lenp = subsec->dofs_size; 11787 *bufp = kmem_alloc(subsec->dofs_size, KM_SLEEP); 11788 bcopy((char *)(uintptr_t)(daddr + subsec->dofs_offset), 11789 *bufp, subsec->dofs_size); 11790 11791 if (subsec->dofs_entsize != 0) 11792 *lenp /= subsec->dofs_entsize; 11793 11794 break; 11795 } 11796 11797 /* 11798 * If we encounter a loadable DIFO sub-section that is not 11799 * known to us, assume this is a broken program and fail. 11800 */ 11801 if (difo[i].section == DOF_SECT_NONE && 11802 (subsec->dofs_flags & DOF_SECF_LOAD)) { 11803 dtrace_dof_error(dof, "unrecognized DIFO subsection"); 11804 goto err; 11805 } 11806 } 11807 11808 if (dp->dtdo_buf == NULL) { 11809 /* 11810 * We can't have a DIF object without DIF text. 11811 */ 11812 dtrace_dof_error(dof, "missing DIF text"); 11813 goto err; 11814 } 11815 11816 /* 11817 * Before we validate the DIF object, run through the variable table 11818 * looking for the strings -- if any of their size are under, we'll set 11819 * their size to be the system-wide default string size. Note that 11820 * this should _not_ happen if the "strsize" option has been set -- 11821 * in this case, the compiler should have set the size to reflect the 11822 * setting of the option. 11823 */ 11824 for (i = 0; i < dp->dtdo_varlen; i++) { 11825 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 11826 dtrace_diftype_t *t = &v->dtdv_type; 11827 11828 if (v->dtdv_id < DIF_VAR_OTHER_UBASE) 11829 continue; 11830 11831 if (t->dtdt_kind == DIF_TYPE_STRING && t->dtdt_size == 0) 11832 t->dtdt_size = dtrace_strsize_default; 11833 } 11834 11835 if (dtrace_difo_validate(dp, vstate, DIF_DIR_NREGS, cr) != 0) 11836 goto err; 11837 11838 dtrace_difo_init(dp, vstate); 11839 return (dp); 11840 11841 err: 11842 kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t)); 11843 kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t)); 11844 kmem_free(dp->dtdo_strtab, dp->dtdo_strlen); 11845 kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t)); 11846 11847 kmem_free(dp, sizeof (dtrace_difo_t)); 11848 return (NULL); 11849 } 11850 11851 static dtrace_predicate_t * 11852 dtrace_dof_predicate(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate, 11853 cred_t *cr) 11854 { 11855 dtrace_difo_t *dp; 11856 11857 if ((dp = dtrace_dof_difo(dof, sec, vstate, cr)) == NULL) 11858 return (NULL); 11859 11860 return (dtrace_predicate_create(dp)); 11861 } 11862 11863 static dtrace_actdesc_t * 11864 dtrace_dof_actdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate, 11865 cred_t *cr) 11866 { 11867 dtrace_actdesc_t *act, *first = NULL, *last = NULL, *next; 11868 dof_actdesc_t *desc; 11869 dof_sec_t *difosec; 11870 size_t offs; 11871 uintptr_t daddr = (uintptr_t)dof; 11872 uint64_t arg; 11873 dtrace_actkind_t kind; 11874 11875 if (sec->dofs_type != DOF_SECT_ACTDESC) { 11876 dtrace_dof_error(dof, "invalid action section"); 11877 return (NULL); 11878 } 11879 11880 if (sec->dofs_offset + sizeof (dof_actdesc_t) > dof->dofh_loadsz) { 11881 dtrace_dof_error(dof, "truncated action description"); 11882 return (NULL); 11883 } 11884 11885 if (sec->dofs_align != sizeof (uint64_t)) { 11886 dtrace_dof_error(dof, "bad alignment in action description"); 11887 return (NULL); 11888 } 11889 11890 if (sec->dofs_size < sec->dofs_entsize) { 11891 dtrace_dof_error(dof, "section entry size exceeds total size"); 11892 return (NULL); 11893 } 11894 11895 if (sec->dofs_entsize != sizeof (dof_actdesc_t)) { 11896 dtrace_dof_error(dof, "bad entry size in action description"); 11897 return (NULL); 11898 } 11899 11900 if (sec->dofs_size / sec->dofs_entsize > dtrace_actions_max) { 11901 dtrace_dof_error(dof, "actions exceed dtrace_actions_max"); 11902 return (NULL); 11903 } 11904 11905 for (offs = 0; offs < sec->dofs_size; offs += sec->dofs_entsize) { 11906 desc = (dof_actdesc_t *)(daddr + 11907 (uintptr_t)sec->dofs_offset + offs); 11908 kind = (dtrace_actkind_t)desc->dofa_kind; 11909 11910 if ((DTRACEACT_ISPRINTFLIKE(kind) && 11911 (kind != DTRACEACT_PRINTA || 11912 desc->dofa_strtab != DOF_SECIDX_NONE)) || 11913 (kind == DTRACEACT_DIFEXPR && 11914 desc->dofa_strtab != DOF_SECIDX_NONE)) { 11915 dof_sec_t *strtab; 11916 char *str, *fmt; 11917 uint64_t i; 11918 11919 /* 11920 * The argument to these actions is an index into the 11921 * DOF string table. For printf()-like actions, this 11922 * is the format string. For print(), this is the 11923 * CTF type of the expression result. 11924 */ 11925 if ((strtab = dtrace_dof_sect(dof, 11926 DOF_SECT_STRTAB, desc->dofa_strtab)) == NULL) 11927 goto err; 11928 11929 str = (char *)((uintptr_t)dof + 11930 (uintptr_t)strtab->dofs_offset); 11931 11932 for (i = desc->dofa_arg; i < strtab->dofs_size; i++) { 11933 if (str[i] == '\0') 11934 break; 11935 } 11936 11937 if (i >= strtab->dofs_size) { 11938 dtrace_dof_error(dof, "bogus format string"); 11939 goto err; 11940 } 11941 11942 if (i == desc->dofa_arg) { 11943 dtrace_dof_error(dof, "empty format string"); 11944 goto err; 11945 } 11946 11947 i -= desc->dofa_arg; 11948 fmt = kmem_alloc(i + 1, KM_SLEEP); 11949 bcopy(&str[desc->dofa_arg], fmt, i + 1); 11950 arg = (uint64_t)(uintptr_t)fmt; 11951 } else { 11952 if (kind == DTRACEACT_PRINTA) { 11953 ASSERT(desc->dofa_strtab == DOF_SECIDX_NONE); 11954 arg = 0; 11955 } else { 11956 arg = desc->dofa_arg; 11957 } 11958 } 11959 11960 act = dtrace_actdesc_create(kind, desc->dofa_ntuple, 11961 desc->dofa_uarg, arg); 11962 11963 if (last != NULL) { 11964 last->dtad_next = act; 11965 } else { 11966 first = act; 11967 } 11968 11969 last = act; 11970 11971 if (desc->dofa_difo == DOF_SECIDX_NONE) 11972 continue; 11973 11974 if ((difosec = dtrace_dof_sect(dof, 11975 DOF_SECT_DIFOHDR, desc->dofa_difo)) == NULL) 11976 goto err; 11977 11978 act->dtad_difo = dtrace_dof_difo(dof, difosec, vstate, cr); 11979 11980 if (act->dtad_difo == NULL) 11981 goto err; 11982 } 11983 11984 ASSERT(first != NULL); 11985 return (first); 11986 11987 err: 11988 for (act = first; act != NULL; act = next) { 11989 next = act->dtad_next; 11990 dtrace_actdesc_release(act, vstate); 11991 } 11992 11993 return (NULL); 11994 } 11995 11996 static dtrace_ecbdesc_t * 11997 dtrace_dof_ecbdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate, 11998 cred_t *cr) 11999 { 12000 dtrace_ecbdesc_t *ep; 12001 dof_ecbdesc_t *ecb; 12002 dtrace_probedesc_t *desc; 12003 dtrace_predicate_t *pred = NULL; 12004 12005 if (sec->dofs_size < sizeof (dof_ecbdesc_t)) { 12006 dtrace_dof_error(dof, "truncated ECB description"); 12007 return (NULL); 12008 } 12009 12010 if (sec->dofs_align != sizeof (uint64_t)) { 12011 dtrace_dof_error(dof, "bad alignment in ECB description"); 12012 return (NULL); 12013 } 12014 12015 ecb = (dof_ecbdesc_t *)((uintptr_t)dof + (uintptr_t)sec->dofs_offset); 12016 sec = dtrace_dof_sect(dof, DOF_SECT_PROBEDESC, ecb->dofe_probes); 12017 12018 if (sec == NULL) 12019 return (NULL); 12020 12021 ep = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP); 12022 ep->dted_uarg = ecb->dofe_uarg; 12023 desc = &ep->dted_probe; 12024 12025 if (dtrace_dof_probedesc(dof, sec, desc) == NULL) 12026 goto err; 12027 12028 if (ecb->dofe_pred != DOF_SECIDX_NONE) { 12029 if ((sec = dtrace_dof_sect(dof, 12030 DOF_SECT_DIFOHDR, ecb->dofe_pred)) == NULL) 12031 goto err; 12032 12033 if ((pred = dtrace_dof_predicate(dof, sec, vstate, cr)) == NULL) 12034 goto err; 12035 12036 ep->dted_pred.dtpdd_predicate = pred; 12037 } 12038 12039 if (ecb->dofe_actions != DOF_SECIDX_NONE) { 12040 if ((sec = dtrace_dof_sect(dof, 12041 DOF_SECT_ACTDESC, ecb->dofe_actions)) == NULL) 12042 goto err; 12043 12044 ep->dted_action = dtrace_dof_actdesc(dof, sec, vstate, cr); 12045 12046 if (ep->dted_action == NULL) 12047 goto err; 12048 } 12049 12050 return (ep); 12051 12052 err: 12053 if (pred != NULL) 12054 dtrace_predicate_release(pred, vstate); 12055 kmem_free(ep, sizeof (dtrace_ecbdesc_t)); 12056 return (NULL); 12057 } 12058 12059 /* 12060 * Apply the relocations from the specified 'sec' (a DOF_SECT_URELHDR) to the 12061 * specified DOF. At present, this amounts to simply adding 'ubase' to the 12062 * site of any user SETX relocations to account for load object base address. 12063 * In the future, if we need other relocations, this function can be extended. 12064 */ 12065 static int 12066 dtrace_dof_relocate(dof_hdr_t *dof, dof_sec_t *sec, uint64_t ubase) 12067 { 12068 uintptr_t daddr = (uintptr_t)dof; 12069 dof_relohdr_t *dofr = 12070 (dof_relohdr_t *)(uintptr_t)(daddr + sec->dofs_offset); 12071 dof_sec_t *ss, *rs, *ts; 12072 dof_relodesc_t *r; 12073 uint_t i, n; 12074 12075 if (sec->dofs_size < sizeof (dof_relohdr_t) || 12076 sec->dofs_align != sizeof (dof_secidx_t)) { 12077 dtrace_dof_error(dof, "invalid relocation header"); 12078 return (-1); 12079 } 12080 12081 ss = dtrace_dof_sect(dof, DOF_SECT_STRTAB, dofr->dofr_strtab); 12082 rs = dtrace_dof_sect(dof, DOF_SECT_RELTAB, dofr->dofr_relsec); 12083 ts = dtrace_dof_sect(dof, DOF_SECT_NONE, dofr->dofr_tgtsec); 12084 12085 if (ss == NULL || rs == NULL || ts == NULL) 12086 return (-1); /* dtrace_dof_error() has been called already */ 12087 12088 if (rs->dofs_entsize < sizeof (dof_relodesc_t) || 12089 rs->dofs_align != sizeof (uint64_t)) { 12090 dtrace_dof_error(dof, "invalid relocation section"); 12091 return (-1); 12092 } 12093 12094 r = (dof_relodesc_t *)(uintptr_t)(daddr + rs->dofs_offset); 12095 n = rs->dofs_size / rs->dofs_entsize; 12096 12097 for (i = 0; i < n; i++) { 12098 uintptr_t taddr = daddr + ts->dofs_offset + r->dofr_offset; 12099 12100 switch (r->dofr_type) { 12101 case DOF_RELO_NONE: 12102 break; 12103 case DOF_RELO_SETX: 12104 if (r->dofr_offset >= ts->dofs_size || r->dofr_offset + 12105 sizeof (uint64_t) > ts->dofs_size) { 12106 dtrace_dof_error(dof, "bad relocation offset"); 12107 return (-1); 12108 } 12109 12110 if (!IS_P2ALIGNED(taddr, sizeof (uint64_t))) { 12111 dtrace_dof_error(dof, "misaligned setx relo"); 12112 return (-1); 12113 } 12114 12115 *(uint64_t *)taddr += ubase; 12116 break; 12117 default: 12118 dtrace_dof_error(dof, "invalid relocation type"); 12119 return (-1); 12120 } 12121 12122 r = (dof_relodesc_t *)((uintptr_t)r + rs->dofs_entsize); 12123 } 12124 12125 return (0); 12126 } 12127 12128 /* 12129 * The dof_hdr_t passed to dtrace_dof_slurp() should be a partially validated 12130 * header: it should be at the front of a memory region that is at least 12131 * sizeof (dof_hdr_t) in size -- and then at least dof_hdr.dofh_loadsz in 12132 * size. It need not be validated in any other way. 12133 */ 12134 static int 12135 dtrace_dof_slurp(dof_hdr_t *dof, dtrace_vstate_t *vstate, cred_t *cr, 12136 dtrace_enabling_t **enabp, uint64_t ubase, int noprobes) 12137 { 12138 uint64_t len = dof->dofh_loadsz, seclen; 12139 uintptr_t daddr = (uintptr_t)dof; 12140 dtrace_ecbdesc_t *ep; 12141 dtrace_enabling_t *enab; 12142 uint_t i; 12143 12144 ASSERT(MUTEX_HELD(&dtrace_lock)); 12145 ASSERT(dof->dofh_loadsz >= sizeof (dof_hdr_t)); 12146 12147 /* 12148 * Check the DOF header identification bytes. In addition to checking 12149 * valid settings, we also verify that unused bits/bytes are zeroed so 12150 * we can use them later without fear of regressing existing binaries. 12151 */ 12152 if (bcmp(&dof->dofh_ident[DOF_ID_MAG0], 12153 DOF_MAG_STRING, DOF_MAG_STRLEN) != 0) { 12154 dtrace_dof_error(dof, "DOF magic string mismatch"); 12155 return (-1); 12156 } 12157 12158 if (dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_ILP32 && 12159 dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_LP64) { 12160 dtrace_dof_error(dof, "DOF has invalid data model"); 12161 return (-1); 12162 } 12163 12164 if (dof->dofh_ident[DOF_ID_ENCODING] != DOF_ENCODE_NATIVE) { 12165 dtrace_dof_error(dof, "DOF encoding mismatch"); 12166 return (-1); 12167 } 12168 12169 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 && 12170 dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_2) { 12171 dtrace_dof_error(dof, "DOF version mismatch"); 12172 return (-1); 12173 } 12174 12175 if (dof->dofh_ident[DOF_ID_DIFVERS] != DIF_VERSION_2) { 12176 dtrace_dof_error(dof, "DOF uses unsupported instruction set"); 12177 return (-1); 12178 } 12179 12180 if (dof->dofh_ident[DOF_ID_DIFIREG] > DIF_DIR_NREGS) { 12181 dtrace_dof_error(dof, "DOF uses too many integer registers"); 12182 return (-1); 12183 } 12184 12185 if (dof->dofh_ident[DOF_ID_DIFTREG] > DIF_DTR_NREGS) { 12186 dtrace_dof_error(dof, "DOF uses too many tuple registers"); 12187 return (-1); 12188 } 12189 12190 for (i = DOF_ID_PAD; i < DOF_ID_SIZE; i++) { 12191 if (dof->dofh_ident[i] != 0) { 12192 dtrace_dof_error(dof, "DOF has invalid ident byte set"); 12193 return (-1); 12194 } 12195 } 12196 12197 if (dof->dofh_flags & ~DOF_FL_VALID) { 12198 dtrace_dof_error(dof, "DOF has invalid flag bits set"); 12199 return (-1); 12200 } 12201 12202 if (dof->dofh_secsize == 0) { 12203 dtrace_dof_error(dof, "zero section header size"); 12204 return (-1); 12205 } 12206 12207 /* 12208 * Check that the section headers don't exceed the amount of DOF 12209 * data. Note that we cast the section size and number of sections 12210 * to uint64_t's to prevent possible overflow in the multiplication. 12211 */ 12212 seclen = (uint64_t)dof->dofh_secnum * (uint64_t)dof->dofh_secsize; 12213 12214 if (dof->dofh_secoff > len || seclen > len || 12215 dof->dofh_secoff + seclen > len) { 12216 dtrace_dof_error(dof, "truncated section headers"); 12217 return (-1); 12218 } 12219 12220 if (!IS_P2ALIGNED(dof->dofh_secoff, sizeof (uint64_t))) { 12221 dtrace_dof_error(dof, "misaligned section headers"); 12222 return (-1); 12223 } 12224 12225 if (!IS_P2ALIGNED(dof->dofh_secsize, sizeof (uint64_t))) { 12226 dtrace_dof_error(dof, "misaligned section size"); 12227 return (-1); 12228 } 12229 12230 /* 12231 * Take an initial pass through the section headers to be sure that 12232 * the headers don't have stray offsets. If the 'noprobes' flag is 12233 * set, do not permit sections relating to providers, probes, or args. 12234 */ 12235 for (i = 0; i < dof->dofh_secnum; i++) { 12236 dof_sec_t *sec = (dof_sec_t *)(daddr + 12237 (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize); 12238 12239 if (noprobes) { 12240 switch (sec->dofs_type) { 12241 case DOF_SECT_PROVIDER: 12242 case DOF_SECT_PROBES: 12243 case DOF_SECT_PRARGS: 12244 case DOF_SECT_PROFFS: 12245 dtrace_dof_error(dof, "illegal sections " 12246 "for enabling"); 12247 return (-1); 12248 } 12249 } 12250 12251 if (DOF_SEC_ISLOADABLE(sec->dofs_type) && 12252 !(sec->dofs_flags & DOF_SECF_LOAD)) { 12253 dtrace_dof_error(dof, "loadable section with load " 12254 "flag unset"); 12255 return (-1); 12256 } 12257 12258 if (!(sec->dofs_flags & DOF_SECF_LOAD)) 12259 continue; /* just ignore non-loadable sections */ 12260 12261 if (sec->dofs_align & (sec->dofs_align - 1)) { 12262 dtrace_dof_error(dof, "bad section alignment"); 12263 return (-1); 12264 } 12265 12266 if (sec->dofs_offset & (sec->dofs_align - 1)) { 12267 dtrace_dof_error(dof, "misaligned section"); 12268 return (-1); 12269 } 12270 12271 if (sec->dofs_offset > len || sec->dofs_size > len || 12272 sec->dofs_offset + sec->dofs_size > len) { 12273 dtrace_dof_error(dof, "corrupt section header"); 12274 return (-1); 12275 } 12276 12277 if (sec->dofs_type == DOF_SECT_STRTAB && *((char *)daddr + 12278 sec->dofs_offset + sec->dofs_size - 1) != '\0') { 12279 dtrace_dof_error(dof, "non-terminating string table"); 12280 return (-1); 12281 } 12282 } 12283 12284 /* 12285 * Take a second pass through the sections and locate and perform any 12286 * relocations that are present. We do this after the first pass to 12287 * be sure that all sections have had their headers validated. 12288 */ 12289 for (i = 0; i < dof->dofh_secnum; i++) { 12290 dof_sec_t *sec = (dof_sec_t *)(daddr + 12291 (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize); 12292 12293 if (!(sec->dofs_flags & DOF_SECF_LOAD)) 12294 continue; /* skip sections that are not loadable */ 12295 12296 switch (sec->dofs_type) { 12297 case DOF_SECT_URELHDR: 12298 if (dtrace_dof_relocate(dof, sec, ubase) != 0) 12299 return (-1); 12300 break; 12301 } 12302 } 12303 12304 if ((enab = *enabp) == NULL) 12305 enab = *enabp = dtrace_enabling_create(vstate); 12306 12307 for (i = 0; i < dof->dofh_secnum; i++) { 12308 dof_sec_t *sec = (dof_sec_t *)(daddr + 12309 (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize); 12310 12311 if (sec->dofs_type != DOF_SECT_ECBDESC) 12312 continue; 12313 12314 if ((ep = dtrace_dof_ecbdesc(dof, sec, vstate, cr)) == NULL) { 12315 dtrace_enabling_destroy(enab); 12316 *enabp = NULL; 12317 return (-1); 12318 } 12319 12320 dtrace_enabling_add(enab, ep); 12321 } 12322 12323 return (0); 12324 } 12325 12326 /* 12327 * Process DOF for any options. This routine assumes that the DOF has been 12328 * at least processed by dtrace_dof_slurp(). 12329 */ 12330 static int 12331 dtrace_dof_options(dof_hdr_t *dof, dtrace_state_t *state) 12332 { 12333 int i, rval; 12334 uint32_t entsize; 12335 size_t offs; 12336 dof_optdesc_t *desc; 12337 12338 for (i = 0; i < dof->dofh_secnum; i++) { 12339 dof_sec_t *sec = (dof_sec_t *)((uintptr_t)dof + 12340 (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize); 12341 12342 if (sec->dofs_type != DOF_SECT_OPTDESC) 12343 continue; 12344 12345 if (sec->dofs_align != sizeof (uint64_t)) { 12346 dtrace_dof_error(dof, "bad alignment in " 12347 "option description"); 12348 return (EINVAL); 12349 } 12350 12351 if ((entsize = sec->dofs_entsize) == 0) { 12352 dtrace_dof_error(dof, "zeroed option entry size"); 12353 return (EINVAL); 12354 } 12355 12356 if (entsize < sizeof (dof_optdesc_t)) { 12357 dtrace_dof_error(dof, "bad option entry size"); 12358 return (EINVAL); 12359 } 12360 12361 for (offs = 0; offs < sec->dofs_size; offs += entsize) { 12362 desc = (dof_optdesc_t *)((uintptr_t)dof + 12363 (uintptr_t)sec->dofs_offset + offs); 12364 12365 if (desc->dofo_strtab != DOF_SECIDX_NONE) { 12366 dtrace_dof_error(dof, "non-zero option string"); 12367 return (EINVAL); 12368 } 12369 12370 if (desc->dofo_value == DTRACEOPT_UNSET) { 12371 dtrace_dof_error(dof, "unset option"); 12372 return (EINVAL); 12373 } 12374 12375 if ((rval = dtrace_state_option(state, 12376 desc->dofo_option, desc->dofo_value)) != 0) { 12377 dtrace_dof_error(dof, "rejected option"); 12378 return (rval); 12379 } 12380 } 12381 } 12382 12383 return (0); 12384 } 12385 12386 /* 12387 * DTrace Consumer State Functions 12388 */ 12389 int 12390 dtrace_dstate_init(dtrace_dstate_t *dstate, size_t size) 12391 { 12392 size_t hashsize, maxper, min, chunksize = dstate->dtds_chunksize; 12393 void *base; 12394 uintptr_t limit; 12395 dtrace_dynvar_t *dvar, *next, *start; 12396 int i; 12397 12398 ASSERT(MUTEX_HELD(&dtrace_lock)); 12399 ASSERT(dstate->dtds_base == NULL && dstate->dtds_percpu == NULL); 12400 12401 bzero(dstate, sizeof (dtrace_dstate_t)); 12402 12403 if ((dstate->dtds_chunksize = chunksize) == 0) 12404 dstate->dtds_chunksize = DTRACE_DYNVAR_CHUNKSIZE; 12405 12406 if (size < (min = dstate->dtds_chunksize + sizeof (dtrace_dynhash_t))) 12407 size = min; 12408 12409 if ((base = kmem_zalloc(size, KM_NOSLEEP | KM_NORMALPRI)) == NULL) 12410 return (ENOMEM); 12411 12412 dstate->dtds_size = size; 12413 dstate->dtds_base = base; 12414 dstate->dtds_percpu = kmem_cache_alloc(dtrace_state_cache, KM_SLEEP); 12415 bzero(dstate->dtds_percpu, NCPU * sizeof (dtrace_dstate_percpu_t)); 12416 12417 hashsize = size / (dstate->dtds_chunksize + sizeof (dtrace_dynhash_t)); 12418 12419 if (hashsize != 1 && (hashsize & 1)) 12420 hashsize--; 12421 12422 dstate->dtds_hashsize = hashsize; 12423 dstate->dtds_hash = dstate->dtds_base; 12424 12425 /* 12426 * Set all of our hash buckets to point to the single sink, and (if 12427 * it hasn't already been set), set the sink's hash value to be the 12428 * sink sentinel value. The sink is needed for dynamic variable 12429 * lookups to know that they have iterated over an entire, valid hash 12430 * chain. 12431 */ 12432 for (i = 0; i < hashsize; i++) 12433 dstate->dtds_hash[i].dtdh_chain = &dtrace_dynhash_sink; 12434 12435 if (dtrace_dynhash_sink.dtdv_hashval != DTRACE_DYNHASH_SINK) 12436 dtrace_dynhash_sink.dtdv_hashval = DTRACE_DYNHASH_SINK; 12437 12438 /* 12439 * Determine number of active CPUs. Divide free list evenly among 12440 * active CPUs. 12441 */ 12442 start = (dtrace_dynvar_t *) 12443 ((uintptr_t)base + hashsize * sizeof (dtrace_dynhash_t)); 12444 limit = (uintptr_t)base + size; 12445 12446 maxper = (limit - (uintptr_t)start) / NCPU; 12447 maxper = (maxper / dstate->dtds_chunksize) * dstate->dtds_chunksize; 12448 12449 for (i = 0; i < NCPU; i++) { 12450 dstate->dtds_percpu[i].dtdsc_free = dvar = start; 12451 12452 /* 12453 * If we don't even have enough chunks to make it once through 12454 * NCPUs, we're just going to allocate everything to the first 12455 * CPU. And if we're on the last CPU, we're going to allocate 12456 * whatever is left over. In either case, we set the limit to 12457 * be the limit of the dynamic variable space. 12458 */ 12459 if (maxper == 0 || i == NCPU - 1) { 12460 limit = (uintptr_t)base + size; 12461 start = NULL; 12462 } else { 12463 limit = (uintptr_t)start + maxper; 12464 start = (dtrace_dynvar_t *)limit; 12465 } 12466 12467 ASSERT(limit <= (uintptr_t)base + size); 12468 12469 for (;;) { 12470 next = (dtrace_dynvar_t *)((uintptr_t)dvar + 12471 dstate->dtds_chunksize); 12472 12473 if ((uintptr_t)next + dstate->dtds_chunksize >= limit) 12474 break; 12475 12476 dvar->dtdv_next = next; 12477 dvar = next; 12478 } 12479 12480 if (maxper == 0) 12481 break; 12482 } 12483 12484 return (0); 12485 } 12486 12487 void 12488 dtrace_dstate_fini(dtrace_dstate_t *dstate) 12489 { 12490 ASSERT(MUTEX_HELD(&cpu_lock)); 12491 12492 if (dstate->dtds_base == NULL) 12493 return; 12494 12495 kmem_free(dstate->dtds_base, dstate->dtds_size); 12496 kmem_cache_free(dtrace_state_cache, dstate->dtds_percpu); 12497 } 12498 12499 static void 12500 dtrace_vstate_fini(dtrace_vstate_t *vstate) 12501 { 12502 /* 12503 * Logical XOR, where are you? 12504 */ 12505 ASSERT((vstate->dtvs_nglobals == 0) ^ (vstate->dtvs_globals != NULL)); 12506 12507 if (vstate->dtvs_nglobals > 0) { 12508 kmem_free(vstate->dtvs_globals, vstate->dtvs_nglobals * 12509 sizeof (dtrace_statvar_t *)); 12510 } 12511 12512 if (vstate->dtvs_ntlocals > 0) { 12513 kmem_free(vstate->dtvs_tlocals, vstate->dtvs_ntlocals * 12514 sizeof (dtrace_difv_t)); 12515 } 12516 12517 ASSERT((vstate->dtvs_nlocals == 0) ^ (vstate->dtvs_locals != NULL)); 12518 12519 if (vstate->dtvs_nlocals > 0) { 12520 kmem_free(vstate->dtvs_locals, vstate->dtvs_nlocals * 12521 sizeof (dtrace_statvar_t *)); 12522 } 12523 } 12524 12525 static void 12526 dtrace_state_clean(dtrace_state_t *state) 12527 { 12528 if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE) 12529 return; 12530 12531 dtrace_dynvar_clean(&state->dts_vstate.dtvs_dynvars); 12532 dtrace_speculation_clean(state); 12533 } 12534 12535 static void 12536 dtrace_state_deadman(dtrace_state_t *state) 12537 { 12538 hrtime_t now; 12539 12540 dtrace_sync(); 12541 12542 now = dtrace_gethrtime(); 12543 12544 if (state != dtrace_anon.dta_state && 12545 now - state->dts_laststatus >= dtrace_deadman_user) 12546 return; 12547 12548 /* 12549 * We must be sure that dts_alive never appears to be less than the 12550 * value upon entry to dtrace_state_deadman(), and because we lack a 12551 * dtrace_cas64(), we cannot store to it atomically. We thus instead 12552 * store INT64_MAX to it, followed by a memory barrier, followed by 12553 * the new value. This assures that dts_alive never appears to be 12554 * less than its true value, regardless of the order in which the 12555 * stores to the underlying storage are issued. 12556 */ 12557 state->dts_alive = INT64_MAX; 12558 dtrace_membar_producer(); 12559 state->dts_alive = now; 12560 } 12561 12562 dtrace_state_t * 12563 dtrace_state_create(dev_t *devp, cred_t *cr) 12564 { 12565 minor_t minor; 12566 major_t major; 12567 char c[30]; 12568 dtrace_state_t *state; 12569 dtrace_optval_t *opt; 12570 int bufsize = NCPU * sizeof (dtrace_buffer_t), i; 12571 12572 ASSERT(MUTEX_HELD(&dtrace_lock)); 12573 ASSERT(MUTEX_HELD(&cpu_lock)); 12574 12575 minor = (minor_t)(uintptr_t)vmem_alloc(dtrace_minor, 1, 12576 VM_BESTFIT | VM_SLEEP); 12577 12578 if (ddi_soft_state_zalloc(dtrace_softstate, minor) != DDI_SUCCESS) { 12579 vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1); 12580 return (NULL); 12581 } 12582 12583 state = ddi_get_soft_state(dtrace_softstate, minor); 12584 state->dts_epid = DTRACE_EPIDNONE + 1; 12585 12586 (void) snprintf(c, sizeof (c), "dtrace_aggid_%d", minor); 12587 state->dts_aggid_arena = vmem_create(c, (void *)1, UINT32_MAX, 1, 12588 NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER); 12589 12590 if (devp != NULL) { 12591 major = getemajor(*devp); 12592 } else { 12593 major = ddi_driver_major(dtrace_devi); 12594 } 12595 12596 state->dts_dev = makedevice(major, minor); 12597 12598 if (devp != NULL) 12599 *devp = state->dts_dev; 12600 12601 /* 12602 * We allocate NCPU buffers. On the one hand, this can be quite 12603 * a bit of memory per instance (nearly 36K on a Starcat). On the 12604 * other hand, it saves an additional memory reference in the probe 12605 * path. 12606 */ 12607 state->dts_buffer = kmem_zalloc(bufsize, KM_SLEEP); 12608 state->dts_aggbuffer = kmem_zalloc(bufsize, KM_SLEEP); 12609 state->dts_cleaner = CYCLIC_NONE; 12610 state->dts_deadman = CYCLIC_NONE; 12611 state->dts_vstate.dtvs_state = state; 12612 12613 for (i = 0; i < DTRACEOPT_MAX; i++) 12614 state->dts_options[i] = DTRACEOPT_UNSET; 12615 12616 /* 12617 * Set the default options. 12618 */ 12619 opt = state->dts_options; 12620 opt[DTRACEOPT_BUFPOLICY] = DTRACEOPT_BUFPOLICY_SWITCH; 12621 opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_AUTO; 12622 opt[DTRACEOPT_NSPEC] = dtrace_nspec_default; 12623 opt[DTRACEOPT_SPECSIZE] = dtrace_specsize_default; 12624 opt[DTRACEOPT_CPU] = (dtrace_optval_t)DTRACE_CPUALL; 12625 opt[DTRACEOPT_STRSIZE] = dtrace_strsize_default; 12626 opt[DTRACEOPT_STACKFRAMES] = dtrace_stackframes_default; 12627 opt[DTRACEOPT_USTACKFRAMES] = dtrace_ustackframes_default; 12628 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_default; 12629 opt[DTRACEOPT_AGGRATE] = dtrace_aggrate_default; 12630 opt[DTRACEOPT_SWITCHRATE] = dtrace_switchrate_default; 12631 opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_default; 12632 opt[DTRACEOPT_JSTACKFRAMES] = dtrace_jstackframes_default; 12633 opt[DTRACEOPT_JSTACKSTRSIZE] = dtrace_jstackstrsize_default; 12634 12635 state->dts_activity = DTRACE_ACTIVITY_INACTIVE; 12636 12637 /* 12638 * Depending on the user credentials, we set flag bits which alter probe 12639 * visibility or the amount of destructiveness allowed. In the case of 12640 * actual anonymous tracing, or the possession of all privileges, all of 12641 * the normal checks are bypassed. 12642 */ 12643 if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) { 12644 state->dts_cred.dcr_visible = DTRACE_CRV_ALL; 12645 state->dts_cred.dcr_action = DTRACE_CRA_ALL; 12646 } else { 12647 /* 12648 * Set up the credentials for this instantiation. We take a 12649 * hold on the credential to prevent it from disappearing on 12650 * us; this in turn prevents the zone_t referenced by this 12651 * credential from disappearing. This means that we can 12652 * examine the credential and the zone from probe context. 12653 */ 12654 crhold(cr); 12655 state->dts_cred.dcr_cred = cr; 12656 12657 /* 12658 * CRA_PROC means "we have *some* privilege for dtrace" and 12659 * unlocks the use of variables like pid, zonename, etc. 12660 */ 12661 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE) || 12662 PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) { 12663 state->dts_cred.dcr_action |= DTRACE_CRA_PROC; 12664 } 12665 12666 /* 12667 * dtrace_user allows use of syscall and profile providers. 12668 * If the user also has proc_owner and/or proc_zone, we 12669 * extend the scope to include additional visibility and 12670 * destructive power. 12671 */ 12672 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE)) { 12673 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) { 12674 state->dts_cred.dcr_visible |= 12675 DTRACE_CRV_ALLPROC; 12676 12677 state->dts_cred.dcr_action |= 12678 DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER; 12679 } 12680 12681 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) { 12682 state->dts_cred.dcr_visible |= 12683 DTRACE_CRV_ALLZONE; 12684 12685 state->dts_cred.dcr_action |= 12686 DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE; 12687 } 12688 12689 /* 12690 * If we have all privs in whatever zone this is, 12691 * we can do destructive things to processes which 12692 * have altered credentials. 12693 */ 12694 if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE), 12695 cr->cr_zone->zone_privset)) { 12696 state->dts_cred.dcr_action |= 12697 DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG; 12698 } 12699 } 12700 12701 /* 12702 * Holding the dtrace_kernel privilege also implies that 12703 * the user has the dtrace_user privilege from a visibility 12704 * perspective. But without further privileges, some 12705 * destructive actions are not available. 12706 */ 12707 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE)) { 12708 /* 12709 * Make all probes in all zones visible. However, 12710 * this doesn't mean that all actions become available 12711 * to all zones. 12712 */ 12713 state->dts_cred.dcr_visible |= DTRACE_CRV_KERNEL | 12714 DTRACE_CRV_ALLPROC | DTRACE_CRV_ALLZONE; 12715 12716 state->dts_cred.dcr_action |= DTRACE_CRA_KERNEL | 12717 DTRACE_CRA_PROC; 12718 /* 12719 * Holding proc_owner means that destructive actions 12720 * for *this* zone are allowed. 12721 */ 12722 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) 12723 state->dts_cred.dcr_action |= 12724 DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER; 12725 12726 /* 12727 * Holding proc_zone means that destructive actions 12728 * for this user/group ID in all zones is allowed. 12729 */ 12730 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) 12731 state->dts_cred.dcr_action |= 12732 DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE; 12733 12734 /* 12735 * If we have all privs in whatever zone this is, 12736 * we can do destructive things to processes which 12737 * have altered credentials. 12738 */ 12739 if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE), 12740 cr->cr_zone->zone_privset)) { 12741 state->dts_cred.dcr_action |= 12742 DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG; 12743 } 12744 } 12745 12746 /* 12747 * Holding the dtrace_proc privilege gives control over fasttrap 12748 * and pid providers. We need to grant wider destructive 12749 * privileges in the event that the user has proc_owner and/or 12750 * proc_zone. 12751 */ 12752 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) { 12753 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) 12754 state->dts_cred.dcr_action |= 12755 DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER; 12756 12757 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) 12758 state->dts_cred.dcr_action |= 12759 DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE; 12760 } 12761 } 12762 12763 return (state); 12764 } 12765 12766 static int 12767 dtrace_state_buffer(dtrace_state_t *state, dtrace_buffer_t *buf, int which) 12768 { 12769 dtrace_optval_t *opt = state->dts_options, size; 12770 processorid_t cpu; 12771 int flags = 0, rval, factor, divisor = 1; 12772 12773 ASSERT(MUTEX_HELD(&dtrace_lock)); 12774 ASSERT(MUTEX_HELD(&cpu_lock)); 12775 ASSERT(which < DTRACEOPT_MAX); 12776 ASSERT(state->dts_activity == DTRACE_ACTIVITY_INACTIVE || 12777 (state == dtrace_anon.dta_state && 12778 state->dts_activity == DTRACE_ACTIVITY_ACTIVE)); 12779 12780 if (opt[which] == DTRACEOPT_UNSET || opt[which] == 0) 12781 return (0); 12782 12783 if (opt[DTRACEOPT_CPU] != DTRACEOPT_UNSET) 12784 cpu = opt[DTRACEOPT_CPU]; 12785 12786 if (which == DTRACEOPT_SPECSIZE) 12787 flags |= DTRACEBUF_NOSWITCH; 12788 12789 if (which == DTRACEOPT_BUFSIZE) { 12790 if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_RING) 12791 flags |= DTRACEBUF_RING; 12792 12793 if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_FILL) 12794 flags |= DTRACEBUF_FILL; 12795 12796 if (state != dtrace_anon.dta_state || 12797 state->dts_activity != DTRACE_ACTIVITY_ACTIVE) 12798 flags |= DTRACEBUF_INACTIVE; 12799 } 12800 12801 for (size = opt[which]; size >= sizeof (uint64_t); size /= divisor) { 12802 /* 12803 * The size must be 8-byte aligned. If the size is not 8-byte 12804 * aligned, drop it down by the difference. 12805 */ 12806 if (size & (sizeof (uint64_t) - 1)) 12807 size -= size & (sizeof (uint64_t) - 1); 12808 12809 if (size < state->dts_reserve) { 12810 /* 12811 * Buffers always must be large enough to accommodate 12812 * their prereserved space. We return E2BIG instead 12813 * of ENOMEM in this case to allow for user-level 12814 * software to differentiate the cases. 12815 */ 12816 return (E2BIG); 12817 } 12818 12819 rval = dtrace_buffer_alloc(buf, size, flags, cpu, &factor); 12820 12821 if (rval != ENOMEM) { 12822 opt[which] = size; 12823 return (rval); 12824 } 12825 12826 if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL) 12827 return (rval); 12828 12829 for (divisor = 2; divisor < factor; divisor <<= 1) 12830 continue; 12831 } 12832 12833 return (ENOMEM); 12834 } 12835 12836 static int 12837 dtrace_state_buffers(dtrace_state_t *state) 12838 { 12839 dtrace_speculation_t *spec = state->dts_speculations; 12840 int rval, i; 12841 12842 if ((rval = dtrace_state_buffer(state, state->dts_buffer, 12843 DTRACEOPT_BUFSIZE)) != 0) 12844 return (rval); 12845 12846 if ((rval = dtrace_state_buffer(state, state->dts_aggbuffer, 12847 DTRACEOPT_AGGSIZE)) != 0) 12848 return (rval); 12849 12850 for (i = 0; i < state->dts_nspeculations; i++) { 12851 if ((rval = dtrace_state_buffer(state, 12852 spec[i].dtsp_buffer, DTRACEOPT_SPECSIZE)) != 0) 12853 return (rval); 12854 } 12855 12856 return (0); 12857 } 12858 12859 static void 12860 dtrace_state_prereserve(dtrace_state_t *state) 12861 { 12862 dtrace_ecb_t *ecb; 12863 dtrace_probe_t *probe; 12864 12865 state->dts_reserve = 0; 12866 12867 if (state->dts_options[DTRACEOPT_BUFPOLICY] != DTRACEOPT_BUFPOLICY_FILL) 12868 return; 12869 12870 /* 12871 * If our buffer policy is a "fill" buffer policy, we need to set the 12872 * prereserved space to be the space required by the END probes. 12873 */ 12874 probe = dtrace_probes[dtrace_probeid_end - 1]; 12875 ASSERT(probe != NULL); 12876 12877 for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) { 12878 if (ecb->dte_state != state) 12879 continue; 12880 12881 state->dts_reserve += ecb->dte_needed + ecb->dte_alignment; 12882 } 12883 } 12884 12885 static int 12886 dtrace_state_go(dtrace_state_t *state, processorid_t *cpu) 12887 { 12888 dtrace_optval_t *opt = state->dts_options, sz, nspec; 12889 dtrace_speculation_t *spec; 12890 dtrace_buffer_t *buf; 12891 cyc_handler_t hdlr; 12892 cyc_time_t when; 12893 int rval = 0, i, bufsize = NCPU * sizeof (dtrace_buffer_t); 12894 dtrace_icookie_t cookie; 12895 12896 mutex_enter(&cpu_lock); 12897 mutex_enter(&dtrace_lock); 12898 12899 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) { 12900 rval = EBUSY; 12901 goto out; 12902 } 12903 12904 /* 12905 * Before we can perform any checks, we must prime all of the 12906 * retained enablings that correspond to this state. 12907 */ 12908 dtrace_enabling_prime(state); 12909 12910 if (state->dts_destructive && !state->dts_cred.dcr_destructive) { 12911 rval = EACCES; 12912 goto out; 12913 } 12914 12915 dtrace_state_prereserve(state); 12916 12917 /* 12918 * Now we want to do is try to allocate our speculations. 12919 * We do not automatically resize the number of speculations; if 12920 * this fails, we will fail the operation. 12921 */ 12922 nspec = opt[DTRACEOPT_NSPEC]; 12923 ASSERT(nspec != DTRACEOPT_UNSET); 12924 12925 if (nspec > INT_MAX) { 12926 rval = ENOMEM; 12927 goto out; 12928 } 12929 12930 spec = kmem_zalloc(nspec * sizeof (dtrace_speculation_t), 12931 KM_NOSLEEP | KM_NORMALPRI); 12932 12933 if (spec == NULL) { 12934 rval = ENOMEM; 12935 goto out; 12936 } 12937 12938 state->dts_speculations = spec; 12939 state->dts_nspeculations = (int)nspec; 12940 12941 for (i = 0; i < nspec; i++) { 12942 if ((buf = kmem_zalloc(bufsize, 12943 KM_NOSLEEP | KM_NORMALPRI)) == NULL) { 12944 rval = ENOMEM; 12945 goto err; 12946 } 12947 12948 spec[i].dtsp_buffer = buf; 12949 } 12950 12951 if (opt[DTRACEOPT_GRABANON] != DTRACEOPT_UNSET) { 12952 if (dtrace_anon.dta_state == NULL) { 12953 rval = ENOENT; 12954 goto out; 12955 } 12956 12957 if (state->dts_necbs != 0) { 12958 rval = EALREADY; 12959 goto out; 12960 } 12961 12962 state->dts_anon = dtrace_anon_grab(); 12963 ASSERT(state->dts_anon != NULL); 12964 state = state->dts_anon; 12965 12966 /* 12967 * We want "grabanon" to be set in the grabbed state, so we'll 12968 * copy that option value from the grabbing state into the 12969 * grabbed state. 12970 */ 12971 state->dts_options[DTRACEOPT_GRABANON] = 12972 opt[DTRACEOPT_GRABANON]; 12973 12974 *cpu = dtrace_anon.dta_beganon; 12975 12976 /* 12977 * If the anonymous state is active (as it almost certainly 12978 * is if the anonymous enabling ultimately matched anything), 12979 * we don't allow any further option processing -- but we 12980 * don't return failure. 12981 */ 12982 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) 12983 goto out; 12984 } 12985 12986 if (opt[DTRACEOPT_AGGSIZE] != DTRACEOPT_UNSET && 12987 opt[DTRACEOPT_AGGSIZE] != 0) { 12988 if (state->dts_aggregations == NULL) { 12989 /* 12990 * We're not going to create an aggregation buffer 12991 * because we don't have any ECBs that contain 12992 * aggregations -- set this option to 0. 12993 */ 12994 opt[DTRACEOPT_AGGSIZE] = 0; 12995 } else { 12996 /* 12997 * If we have an aggregation buffer, we must also have 12998 * a buffer to use as scratch. 12999 */ 13000 if (opt[DTRACEOPT_BUFSIZE] == DTRACEOPT_UNSET || 13001 opt[DTRACEOPT_BUFSIZE] < state->dts_needed) { 13002 opt[DTRACEOPT_BUFSIZE] = state->dts_needed; 13003 } 13004 } 13005 } 13006 13007 if (opt[DTRACEOPT_SPECSIZE] != DTRACEOPT_UNSET && 13008 opt[DTRACEOPT_SPECSIZE] != 0) { 13009 if (!state->dts_speculates) { 13010 /* 13011 * We're not going to create speculation buffers 13012 * because we don't have any ECBs that actually 13013 * speculate -- set the speculation size to 0. 13014 */ 13015 opt[DTRACEOPT_SPECSIZE] = 0; 13016 } 13017 } 13018 13019 /* 13020 * The bare minimum size for any buffer that we're actually going to 13021 * do anything to is sizeof (uint64_t). 13022 */ 13023 sz = sizeof (uint64_t); 13024 13025 if ((state->dts_needed != 0 && opt[DTRACEOPT_BUFSIZE] < sz) || 13026 (state->dts_speculates && opt[DTRACEOPT_SPECSIZE] < sz) || 13027 (state->dts_aggregations != NULL && opt[DTRACEOPT_AGGSIZE] < sz)) { 13028 /* 13029 * A buffer size has been explicitly set to 0 (or to a size 13030 * that will be adjusted to 0) and we need the space -- we 13031 * need to return failure. We return ENOSPC to differentiate 13032 * it from failing to allocate a buffer due to failure to meet 13033 * the reserve (for which we return E2BIG). 13034 */ 13035 rval = ENOSPC; 13036 goto out; 13037 } 13038 13039 if ((rval = dtrace_state_buffers(state)) != 0) 13040 goto err; 13041 13042 if ((sz = opt[DTRACEOPT_DYNVARSIZE]) == DTRACEOPT_UNSET) 13043 sz = dtrace_dstate_defsize; 13044 13045 do { 13046 rval = dtrace_dstate_init(&state->dts_vstate.dtvs_dynvars, sz); 13047 13048 if (rval == 0) 13049 break; 13050 13051 if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL) 13052 goto err; 13053 } while (sz >>= 1); 13054 13055 opt[DTRACEOPT_DYNVARSIZE] = sz; 13056 13057 if (rval != 0) 13058 goto err; 13059 13060 if (opt[DTRACEOPT_STATUSRATE] > dtrace_statusrate_max) 13061 opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_max; 13062 13063 if (opt[DTRACEOPT_CLEANRATE] == 0) 13064 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max; 13065 13066 if (opt[DTRACEOPT_CLEANRATE] < dtrace_cleanrate_min) 13067 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_min; 13068 13069 if (opt[DTRACEOPT_CLEANRATE] > dtrace_cleanrate_max) 13070 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max; 13071 13072 hdlr.cyh_func = (cyc_func_t)dtrace_state_clean; 13073 hdlr.cyh_arg = state; 13074 hdlr.cyh_level = CY_LOW_LEVEL; 13075 13076 when.cyt_when = 0; 13077 when.cyt_interval = opt[DTRACEOPT_CLEANRATE]; 13078 13079 state->dts_cleaner = cyclic_add(&hdlr, &when); 13080 13081 hdlr.cyh_func = (cyc_func_t)dtrace_state_deadman; 13082 hdlr.cyh_arg = state; 13083 hdlr.cyh_level = CY_LOW_LEVEL; 13084 13085 when.cyt_when = 0; 13086 when.cyt_interval = dtrace_deadman_interval; 13087 13088 state->dts_alive = state->dts_laststatus = dtrace_gethrtime(); 13089 state->dts_deadman = cyclic_add(&hdlr, &when); 13090 13091 state->dts_activity = DTRACE_ACTIVITY_WARMUP; 13092 13093 /* 13094 * Now it's time to actually fire the BEGIN probe. We need to disable 13095 * interrupts here both to record the CPU on which we fired the BEGIN 13096 * probe (the data from this CPU will be processed first at user 13097 * level) and to manually activate the buffer for this CPU. 13098 */ 13099 cookie = dtrace_interrupt_disable(); 13100 *cpu = CPU->cpu_id; 13101 ASSERT(state->dts_buffer[*cpu].dtb_flags & DTRACEBUF_INACTIVE); 13102 state->dts_buffer[*cpu].dtb_flags &= ~DTRACEBUF_INACTIVE; 13103 13104 dtrace_probe(dtrace_probeid_begin, 13105 (uint64_t)(uintptr_t)state, 0, 0, 0, 0); 13106 dtrace_interrupt_enable(cookie); 13107 /* 13108 * We may have had an exit action from a BEGIN probe; only change our 13109 * state to ACTIVE if we're still in WARMUP. 13110 */ 13111 ASSERT(state->dts_activity == DTRACE_ACTIVITY_WARMUP || 13112 state->dts_activity == DTRACE_ACTIVITY_DRAINING); 13113 13114 if (state->dts_activity == DTRACE_ACTIVITY_WARMUP) 13115 state->dts_activity = DTRACE_ACTIVITY_ACTIVE; 13116 13117 /* 13118 * Regardless of whether or not now we're in ACTIVE or DRAINING, we 13119 * want each CPU to transition its principal buffer out of the 13120 * INACTIVE state. Doing this assures that no CPU will suddenly begin 13121 * processing an ECB halfway down a probe's ECB chain; all CPUs will 13122 * atomically transition from processing none of a state's ECBs to 13123 * processing all of them. 13124 */ 13125 dtrace_xcall(DTRACE_CPUALL, 13126 (dtrace_xcall_t)dtrace_buffer_activate, state); 13127 goto out; 13128 13129 err: 13130 dtrace_buffer_free(state->dts_buffer); 13131 dtrace_buffer_free(state->dts_aggbuffer); 13132 13133 if ((nspec = state->dts_nspeculations) == 0) { 13134 ASSERT(state->dts_speculations == NULL); 13135 goto out; 13136 } 13137 13138 spec = state->dts_speculations; 13139 ASSERT(spec != NULL); 13140 13141 for (i = 0; i < state->dts_nspeculations; i++) { 13142 if ((buf = spec[i].dtsp_buffer) == NULL) 13143 break; 13144 13145 dtrace_buffer_free(buf); 13146 kmem_free(buf, bufsize); 13147 } 13148 13149 kmem_free(spec, nspec * sizeof (dtrace_speculation_t)); 13150 state->dts_nspeculations = 0; 13151 state->dts_speculations = NULL; 13152 13153 out: 13154 mutex_exit(&dtrace_lock); 13155 mutex_exit(&cpu_lock); 13156 13157 return (rval); 13158 } 13159 13160 static int 13161 dtrace_state_stop(dtrace_state_t *state, processorid_t *cpu) 13162 { 13163 dtrace_icookie_t cookie; 13164 13165 ASSERT(MUTEX_HELD(&dtrace_lock)); 13166 13167 if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE && 13168 state->dts_activity != DTRACE_ACTIVITY_DRAINING) 13169 return (EINVAL); 13170 13171 /* 13172 * We'll set the activity to DTRACE_ACTIVITY_DRAINING, and issue a sync 13173 * to be sure that every CPU has seen it. See below for the details 13174 * on why this is done. 13175 */ 13176 state->dts_activity = DTRACE_ACTIVITY_DRAINING; 13177 dtrace_sync(); 13178 13179 /* 13180 * By this point, it is impossible for any CPU to be still processing 13181 * with DTRACE_ACTIVITY_ACTIVE. We can thus set our activity to 13182 * DTRACE_ACTIVITY_COOLDOWN and know that we're not racing with any 13183 * other CPU in dtrace_buffer_reserve(). This allows dtrace_probe() 13184 * and callees to know that the activity is DTRACE_ACTIVITY_COOLDOWN 13185 * iff we're in the END probe. 13186 */ 13187 state->dts_activity = DTRACE_ACTIVITY_COOLDOWN; 13188 dtrace_sync(); 13189 ASSERT(state->dts_activity == DTRACE_ACTIVITY_COOLDOWN); 13190 13191 /* 13192 * Finally, we can release the reserve and call the END probe. We 13193 * disable interrupts across calling the END probe to allow us to 13194 * return the CPU on which we actually called the END probe. This 13195 * allows user-land to be sure that this CPU's principal buffer is 13196 * processed last. 13197 */ 13198 state->dts_reserve = 0; 13199 13200 cookie = dtrace_interrupt_disable(); 13201 *cpu = CPU->cpu_id; 13202 dtrace_probe(dtrace_probeid_end, 13203 (uint64_t)(uintptr_t)state, 0, 0, 0, 0); 13204 dtrace_interrupt_enable(cookie); 13205 13206 state->dts_activity = DTRACE_ACTIVITY_STOPPED; 13207 dtrace_sync(); 13208 13209 return (0); 13210 } 13211 13212 static int 13213 dtrace_state_option(dtrace_state_t *state, dtrace_optid_t option, 13214 dtrace_optval_t val) 13215 { 13216 ASSERT(MUTEX_HELD(&dtrace_lock)); 13217 13218 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) 13219 return (EBUSY); 13220 13221 if (option >= DTRACEOPT_MAX) 13222 return (EINVAL); 13223 13224 if (option != DTRACEOPT_CPU && val < 0) 13225 return (EINVAL); 13226 13227 switch (option) { 13228 case DTRACEOPT_DESTRUCTIVE: 13229 if (dtrace_destructive_disallow) 13230 return (EACCES); 13231 13232 state->dts_cred.dcr_destructive = 1; 13233 break; 13234 13235 case DTRACEOPT_BUFSIZE: 13236 case DTRACEOPT_DYNVARSIZE: 13237 case DTRACEOPT_AGGSIZE: 13238 case DTRACEOPT_SPECSIZE: 13239 case DTRACEOPT_STRSIZE: 13240 if (val < 0) 13241 return (EINVAL); 13242 13243 if (val >= LONG_MAX) { 13244 /* 13245 * If this is an otherwise negative value, set it to 13246 * the highest multiple of 128m less than LONG_MAX. 13247 * Technically, we're adjusting the size without 13248 * regard to the buffer resizing policy, but in fact, 13249 * this has no effect -- if we set the buffer size to 13250 * ~LONG_MAX and the buffer policy is ultimately set to 13251 * be "manual", the buffer allocation is guaranteed to 13252 * fail, if only because the allocation requires two 13253 * buffers. (We set the the size to the highest 13254 * multiple of 128m because it ensures that the size 13255 * will remain a multiple of a megabyte when 13256 * repeatedly halved -- all the way down to 15m.) 13257 */ 13258 val = LONG_MAX - (1 << 27) + 1; 13259 } 13260 } 13261 13262 state->dts_options[option] = val; 13263 13264 return (0); 13265 } 13266 13267 static void 13268 dtrace_state_destroy(dtrace_state_t *state) 13269 { 13270 dtrace_ecb_t *ecb; 13271 dtrace_vstate_t *vstate = &state->dts_vstate; 13272 minor_t minor = getminor(state->dts_dev); 13273 int i, bufsize = NCPU * sizeof (dtrace_buffer_t); 13274 dtrace_speculation_t *spec = state->dts_speculations; 13275 int nspec = state->dts_nspeculations; 13276 uint32_t match; 13277 13278 ASSERT(MUTEX_HELD(&dtrace_lock)); 13279 ASSERT(MUTEX_HELD(&cpu_lock)); 13280 13281 /* 13282 * First, retract any retained enablings for this state. 13283 */ 13284 dtrace_enabling_retract(state); 13285 ASSERT(state->dts_nretained == 0); 13286 13287 if (state->dts_activity == DTRACE_ACTIVITY_ACTIVE || 13288 state->dts_activity == DTRACE_ACTIVITY_DRAINING) { 13289 /* 13290 * We have managed to come into dtrace_state_destroy() on a 13291 * hot enabling -- almost certainly because of a disorderly 13292 * shutdown of a consumer. (That is, a consumer that is 13293 * exiting without having called dtrace_stop().) In this case, 13294 * we're going to set our activity to be KILLED, and then 13295 * issue a sync to be sure that everyone is out of probe 13296 * context before we start blowing away ECBs. 13297 */ 13298 state->dts_activity = DTRACE_ACTIVITY_KILLED; 13299 dtrace_sync(); 13300 } 13301 13302 /* 13303 * Release the credential hold we took in dtrace_state_create(). 13304 */ 13305 if (state->dts_cred.dcr_cred != NULL) 13306 crfree(state->dts_cred.dcr_cred); 13307 13308 /* 13309 * Now we can safely disable and destroy any enabled probes. Because 13310 * any DTRACE_PRIV_KERNEL probes may actually be slowing our progress 13311 * (especially if they're all enabled), we take two passes through the 13312 * ECBs: in the first, we disable just DTRACE_PRIV_KERNEL probes, and 13313 * in the second we disable whatever is left over. 13314 */ 13315 for (match = DTRACE_PRIV_KERNEL; ; match = 0) { 13316 for (i = 0; i < state->dts_necbs; i++) { 13317 if ((ecb = state->dts_ecbs[i]) == NULL) 13318 continue; 13319 13320 if (match && ecb->dte_probe != NULL) { 13321 dtrace_probe_t *probe = ecb->dte_probe; 13322 dtrace_provider_t *prov = probe->dtpr_provider; 13323 13324 if (!(prov->dtpv_priv.dtpp_flags & match)) 13325 continue; 13326 } 13327 13328 dtrace_ecb_disable(ecb); 13329 dtrace_ecb_destroy(ecb); 13330 } 13331 13332 if (!match) 13333 break; 13334 } 13335 13336 /* 13337 * Before we free the buffers, perform one more sync to assure that 13338 * every CPU is out of probe context. 13339 */ 13340 dtrace_sync(); 13341 13342 dtrace_buffer_free(state->dts_buffer); 13343 dtrace_buffer_free(state->dts_aggbuffer); 13344 13345 for (i = 0; i < nspec; i++) 13346 dtrace_buffer_free(spec[i].dtsp_buffer); 13347 13348 if (state->dts_cleaner != CYCLIC_NONE) 13349 cyclic_remove(state->dts_cleaner); 13350 13351 if (state->dts_deadman != CYCLIC_NONE) 13352 cyclic_remove(state->dts_deadman); 13353 13354 dtrace_dstate_fini(&vstate->dtvs_dynvars); 13355 dtrace_vstate_fini(vstate); 13356 kmem_free(state->dts_ecbs, state->dts_necbs * sizeof (dtrace_ecb_t *)); 13357 13358 if (state->dts_aggregations != NULL) { 13359 #ifdef DEBUG 13360 for (i = 0; i < state->dts_naggregations; i++) 13361 ASSERT(state->dts_aggregations[i] == NULL); 13362 #endif 13363 ASSERT(state->dts_naggregations > 0); 13364 kmem_free(state->dts_aggregations, 13365 state->dts_naggregations * sizeof (dtrace_aggregation_t *)); 13366 } 13367 13368 kmem_free(state->dts_buffer, bufsize); 13369 kmem_free(state->dts_aggbuffer, bufsize); 13370 13371 for (i = 0; i < nspec; i++) 13372 kmem_free(spec[i].dtsp_buffer, bufsize); 13373 13374 kmem_free(spec, nspec * sizeof (dtrace_speculation_t)); 13375 13376 dtrace_format_destroy(state); 13377 13378 vmem_destroy(state->dts_aggid_arena); 13379 ddi_soft_state_free(dtrace_softstate, minor); 13380 vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1); 13381 } 13382 13383 /* 13384 * DTrace Anonymous Enabling Functions 13385 */ 13386 static dtrace_state_t * 13387 dtrace_anon_grab(void) 13388 { 13389 dtrace_state_t *state; 13390 13391 ASSERT(MUTEX_HELD(&dtrace_lock)); 13392 13393 if ((state = dtrace_anon.dta_state) == NULL) { 13394 ASSERT(dtrace_anon.dta_enabling == NULL); 13395 return (NULL); 13396 } 13397 13398 ASSERT(dtrace_anon.dta_enabling != NULL); 13399 ASSERT(dtrace_retained != NULL); 13400 13401 dtrace_enabling_destroy(dtrace_anon.dta_enabling); 13402 dtrace_anon.dta_enabling = NULL; 13403 dtrace_anon.dta_state = NULL; 13404 13405 return (state); 13406 } 13407 13408 static void 13409 dtrace_anon_property(void) 13410 { 13411 int i, rv; 13412 dtrace_state_t *state; 13413 dof_hdr_t *dof; 13414 char c[32]; /* enough for "dof-data-" + digits */ 13415 13416 ASSERT(MUTEX_HELD(&dtrace_lock)); 13417 ASSERT(MUTEX_HELD(&cpu_lock)); 13418 13419 for (i = 0; ; i++) { 13420 (void) snprintf(c, sizeof (c), "dof-data-%d", i); 13421 13422 dtrace_err_verbose = 1; 13423 13424 if ((dof = dtrace_dof_property(c)) == NULL) { 13425 dtrace_err_verbose = 0; 13426 break; 13427 } 13428 13429 /* 13430 * We want to create anonymous state, so we need to transition 13431 * the kernel debugger to indicate that DTrace is active. If 13432 * this fails (e.g. because the debugger has modified text in 13433 * some way), we won't continue with the processing. 13434 */ 13435 if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) { 13436 cmn_err(CE_NOTE, "kernel debugger active; anonymous " 13437 "enabling ignored."); 13438 dtrace_dof_destroy(dof); 13439 break; 13440 } 13441 13442 /* 13443 * If we haven't allocated an anonymous state, we'll do so now. 13444 */ 13445 if ((state = dtrace_anon.dta_state) == NULL) { 13446 state = dtrace_state_create(NULL, NULL); 13447 dtrace_anon.dta_state = state; 13448 13449 if (state == NULL) { 13450 /* 13451 * This basically shouldn't happen: the only 13452 * failure mode from dtrace_state_create() is a 13453 * failure of ddi_soft_state_zalloc() that 13454 * itself should never happen. Still, the 13455 * interface allows for a failure mode, and 13456 * we want to fail as gracefully as possible: 13457 * we'll emit an error message and cease 13458 * processing anonymous state in this case. 13459 */ 13460 cmn_err(CE_WARN, "failed to create " 13461 "anonymous state"); 13462 dtrace_dof_destroy(dof); 13463 break; 13464 } 13465 } 13466 13467 rv = dtrace_dof_slurp(dof, &state->dts_vstate, CRED(), 13468 &dtrace_anon.dta_enabling, 0, B_TRUE); 13469 13470 if (rv == 0) 13471 rv = dtrace_dof_options(dof, state); 13472 13473 dtrace_err_verbose = 0; 13474 dtrace_dof_destroy(dof); 13475 13476 if (rv != 0) { 13477 /* 13478 * This is malformed DOF; chuck any anonymous state 13479 * that we created. 13480 */ 13481 ASSERT(dtrace_anon.dta_enabling == NULL); 13482 dtrace_state_destroy(state); 13483 dtrace_anon.dta_state = NULL; 13484 break; 13485 } 13486 13487 ASSERT(dtrace_anon.dta_enabling != NULL); 13488 } 13489 13490 if (dtrace_anon.dta_enabling != NULL) { 13491 int rval; 13492 13493 /* 13494 * dtrace_enabling_retain() can only fail because we are 13495 * trying to retain more enablings than are allowed -- but 13496 * we only have one anonymous enabling, and we are guaranteed 13497 * to be allowed at least one retained enabling; we assert 13498 * that dtrace_enabling_retain() returns success. 13499 */ 13500 rval = dtrace_enabling_retain(dtrace_anon.dta_enabling); 13501 ASSERT(rval == 0); 13502 13503 dtrace_enabling_dump(dtrace_anon.dta_enabling); 13504 } 13505 } 13506 13507 /* 13508 * DTrace Helper Functions 13509 */ 13510 static void 13511 dtrace_helper_trace(dtrace_helper_action_t *helper, 13512 dtrace_mstate_t *mstate, dtrace_vstate_t *vstate, int where) 13513 { 13514 uint32_t size, next, nnext, i; 13515 dtrace_helptrace_t *ent; 13516 uint16_t flags = cpu_core[CPU->cpu_id].cpuc_dtrace_flags; 13517 13518 if (!dtrace_helptrace_enabled) 13519 return; 13520 13521 ASSERT(vstate->dtvs_nlocals <= dtrace_helptrace_nlocals); 13522 13523 /* 13524 * What would a tracing framework be without its own tracing 13525 * framework? (Well, a hell of a lot simpler, for starters...) 13526 */ 13527 size = sizeof (dtrace_helptrace_t) + dtrace_helptrace_nlocals * 13528 sizeof (uint64_t) - sizeof (uint64_t); 13529 13530 /* 13531 * Iterate until we can allocate a slot in the trace buffer. 13532 */ 13533 do { 13534 next = dtrace_helptrace_next; 13535 13536 if (next + size < dtrace_helptrace_bufsize) { 13537 nnext = next + size; 13538 } else { 13539 nnext = size; 13540 } 13541 } while (dtrace_cas32(&dtrace_helptrace_next, next, nnext) != next); 13542 13543 /* 13544 * We have our slot; fill it in. 13545 */ 13546 if (nnext == size) 13547 next = 0; 13548 13549 ent = (dtrace_helptrace_t *)&dtrace_helptrace_buffer[next]; 13550 ent->dtht_helper = helper; 13551 ent->dtht_where = where; 13552 ent->dtht_nlocals = vstate->dtvs_nlocals; 13553 13554 ent->dtht_fltoffs = (mstate->dtms_present & DTRACE_MSTATE_FLTOFFS) ? 13555 mstate->dtms_fltoffs : -1; 13556 ent->dtht_fault = DTRACE_FLAGS2FLT(flags); 13557 ent->dtht_illval = cpu_core[CPU->cpu_id].cpuc_dtrace_illval; 13558 13559 for (i = 0; i < vstate->dtvs_nlocals; i++) { 13560 dtrace_statvar_t *svar; 13561 13562 if ((svar = vstate->dtvs_locals[i]) == NULL) 13563 continue; 13564 13565 ASSERT(svar->dtsv_size >= NCPU * sizeof (uint64_t)); 13566 ent->dtht_locals[i] = 13567 ((uint64_t *)(uintptr_t)svar->dtsv_data)[CPU->cpu_id]; 13568 } 13569 } 13570 13571 static uint64_t 13572 dtrace_helper(int which, dtrace_mstate_t *mstate, 13573 dtrace_state_t *state, uint64_t arg0, uint64_t arg1) 13574 { 13575 uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags; 13576 uint64_t sarg0 = mstate->dtms_arg[0]; 13577 uint64_t sarg1 = mstate->dtms_arg[1]; 13578 uint64_t rval; 13579 dtrace_helpers_t *helpers = curproc->p_dtrace_helpers; 13580 dtrace_helper_action_t *helper; 13581 dtrace_vstate_t *vstate; 13582 dtrace_difo_t *pred; 13583 int i, trace = dtrace_helptrace_enabled; 13584 13585 ASSERT(which >= 0 && which < DTRACE_NHELPER_ACTIONS); 13586 13587 if (helpers == NULL) 13588 return (0); 13589 13590 if ((helper = helpers->dthps_actions[which]) == NULL) 13591 return (0); 13592 13593 vstate = &helpers->dthps_vstate; 13594 mstate->dtms_arg[0] = arg0; 13595 mstate->dtms_arg[1] = arg1; 13596 13597 /* 13598 * Now iterate over each helper. If its predicate evaluates to 'true', 13599 * we'll call the corresponding actions. Note that the below calls 13600 * to dtrace_dif_emulate() may set faults in machine state. This is 13601 * okay: our caller (the outer dtrace_dif_emulate()) will simply plow 13602 * the stored DIF offset with its own (which is the desired behavior). 13603 * Also, note the calls to dtrace_dif_emulate() may allocate scratch 13604 * from machine state; this is okay, too. 13605 */ 13606 for (; helper != NULL; helper = helper->dtha_next) { 13607 if ((pred = helper->dtha_predicate) != NULL) { 13608 if (trace) 13609 dtrace_helper_trace(helper, mstate, vstate, 0); 13610 13611 if (!dtrace_dif_emulate(pred, mstate, vstate, state)) 13612 goto next; 13613 13614 if (*flags & CPU_DTRACE_FAULT) 13615 goto err; 13616 } 13617 13618 for (i = 0; i < helper->dtha_nactions; i++) { 13619 if (trace) 13620 dtrace_helper_trace(helper, 13621 mstate, vstate, i + 1); 13622 13623 rval = dtrace_dif_emulate(helper->dtha_actions[i], 13624 mstate, vstate, state); 13625 13626 if (*flags & CPU_DTRACE_FAULT) 13627 goto err; 13628 } 13629 13630 next: 13631 if (trace) 13632 dtrace_helper_trace(helper, mstate, vstate, 13633 DTRACE_HELPTRACE_NEXT); 13634 } 13635 13636 if (trace) 13637 dtrace_helper_trace(helper, mstate, vstate, 13638 DTRACE_HELPTRACE_DONE); 13639 13640 /* 13641 * Restore the arg0 that we saved upon entry. 13642 */ 13643 mstate->dtms_arg[0] = sarg0; 13644 mstate->dtms_arg[1] = sarg1; 13645 13646 return (rval); 13647 13648 err: 13649 if (trace) 13650 dtrace_helper_trace(helper, mstate, vstate, 13651 DTRACE_HELPTRACE_ERR); 13652 13653 /* 13654 * Restore the arg0 that we saved upon entry. 13655 */ 13656 mstate->dtms_arg[0] = sarg0; 13657 mstate->dtms_arg[1] = sarg1; 13658 13659 return (NULL); 13660 } 13661 13662 static void 13663 dtrace_helper_action_destroy(dtrace_helper_action_t *helper, 13664 dtrace_vstate_t *vstate) 13665 { 13666 int i; 13667 13668 if (helper->dtha_predicate != NULL) 13669 dtrace_difo_release(helper->dtha_predicate, vstate); 13670 13671 for (i = 0; i < helper->dtha_nactions; i++) { 13672 ASSERT(helper->dtha_actions[i] != NULL); 13673 dtrace_difo_release(helper->dtha_actions[i], vstate); 13674 } 13675 13676 kmem_free(helper->dtha_actions, 13677 helper->dtha_nactions * sizeof (dtrace_difo_t *)); 13678 kmem_free(helper, sizeof (dtrace_helper_action_t)); 13679 } 13680 13681 static int 13682 dtrace_helper_destroygen(int gen) 13683 { 13684 proc_t *p = curproc; 13685 dtrace_helpers_t *help = p->p_dtrace_helpers; 13686 dtrace_vstate_t *vstate; 13687 int i; 13688 13689 ASSERT(MUTEX_HELD(&dtrace_lock)); 13690 13691 if (help == NULL || gen > help->dthps_generation) 13692 return (EINVAL); 13693 13694 vstate = &help->dthps_vstate; 13695 13696 for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) { 13697 dtrace_helper_action_t *last = NULL, *h, *next; 13698 13699 for (h = help->dthps_actions[i]; h != NULL; h = next) { 13700 next = h->dtha_next; 13701 13702 if (h->dtha_generation == gen) { 13703 if (last != NULL) { 13704 last->dtha_next = next; 13705 } else { 13706 help->dthps_actions[i] = next; 13707 } 13708 13709 dtrace_helper_action_destroy(h, vstate); 13710 } else { 13711 last = h; 13712 } 13713 } 13714 } 13715 13716 /* 13717 * Interate until we've cleared out all helper providers with the 13718 * given generation number. 13719 */ 13720 for (;;) { 13721 dtrace_helper_provider_t *prov; 13722 13723 /* 13724 * Look for a helper provider with the right generation. We 13725 * have to start back at the beginning of the list each time 13726 * because we drop dtrace_lock. It's unlikely that we'll make 13727 * more than two passes. 13728 */ 13729 for (i = 0; i < help->dthps_nprovs; i++) { 13730 prov = help->dthps_provs[i]; 13731 13732 if (prov->dthp_generation == gen) 13733 break; 13734 } 13735 13736 /* 13737 * If there were no matches, we're done. 13738 */ 13739 if (i == help->dthps_nprovs) 13740 break; 13741 13742 /* 13743 * Move the last helper provider into this slot. 13744 */ 13745 help->dthps_nprovs--; 13746 help->dthps_provs[i] = help->dthps_provs[help->dthps_nprovs]; 13747 help->dthps_provs[help->dthps_nprovs] = NULL; 13748 13749 mutex_exit(&dtrace_lock); 13750 13751 /* 13752 * If we have a meta provider, remove this helper provider. 13753 */ 13754 mutex_enter(&dtrace_meta_lock); 13755 if (dtrace_meta_pid != NULL) { 13756 ASSERT(dtrace_deferred_pid == NULL); 13757 dtrace_helper_provider_remove(&prov->dthp_prov, 13758 p->p_pid); 13759 } 13760 mutex_exit(&dtrace_meta_lock); 13761 13762 dtrace_helper_provider_destroy(prov); 13763 13764 mutex_enter(&dtrace_lock); 13765 } 13766 13767 return (0); 13768 } 13769 13770 static int 13771 dtrace_helper_validate(dtrace_helper_action_t *helper) 13772 { 13773 int err = 0, i; 13774 dtrace_difo_t *dp; 13775 13776 if ((dp = helper->dtha_predicate) != NULL) 13777 err += dtrace_difo_validate_helper(dp); 13778 13779 for (i = 0; i < helper->dtha_nactions; i++) 13780 err += dtrace_difo_validate_helper(helper->dtha_actions[i]); 13781 13782 return (err == 0); 13783 } 13784 13785 static int 13786 dtrace_helper_action_add(int which, dtrace_ecbdesc_t *ep) 13787 { 13788 dtrace_helpers_t *help; 13789 dtrace_helper_action_t *helper, *last; 13790 dtrace_actdesc_t *act; 13791 dtrace_vstate_t *vstate; 13792 dtrace_predicate_t *pred; 13793 int count = 0, nactions = 0, i; 13794 13795 if (which < 0 || which >= DTRACE_NHELPER_ACTIONS) 13796 return (EINVAL); 13797 13798 help = curproc->p_dtrace_helpers; 13799 last = help->dthps_actions[which]; 13800 vstate = &help->dthps_vstate; 13801 13802 for (count = 0; last != NULL; last = last->dtha_next) { 13803 count++; 13804 if (last->dtha_next == NULL) 13805 break; 13806 } 13807 13808 /* 13809 * If we already have dtrace_helper_actions_max helper actions for this 13810 * helper action type, we'll refuse to add a new one. 13811 */ 13812 if (count >= dtrace_helper_actions_max) 13813 return (ENOSPC); 13814 13815 helper = kmem_zalloc(sizeof (dtrace_helper_action_t), KM_SLEEP); 13816 helper->dtha_generation = help->dthps_generation; 13817 13818 if ((pred = ep->dted_pred.dtpdd_predicate) != NULL) { 13819 ASSERT(pred->dtp_difo != NULL); 13820 dtrace_difo_hold(pred->dtp_difo); 13821 helper->dtha_predicate = pred->dtp_difo; 13822 } 13823 13824 for (act = ep->dted_action; act != NULL; act = act->dtad_next) { 13825 if (act->dtad_kind != DTRACEACT_DIFEXPR) 13826 goto err; 13827 13828 if (act->dtad_difo == NULL) 13829 goto err; 13830 13831 nactions++; 13832 } 13833 13834 helper->dtha_actions = kmem_zalloc(sizeof (dtrace_difo_t *) * 13835 (helper->dtha_nactions = nactions), KM_SLEEP); 13836 13837 for (act = ep->dted_action, i = 0; act != NULL; act = act->dtad_next) { 13838 dtrace_difo_hold(act->dtad_difo); 13839 helper->dtha_actions[i++] = act->dtad_difo; 13840 } 13841 13842 if (!dtrace_helper_validate(helper)) 13843 goto err; 13844 13845 if (last == NULL) { 13846 help->dthps_actions[which] = helper; 13847 } else { 13848 last->dtha_next = helper; 13849 } 13850 13851 if (vstate->dtvs_nlocals > dtrace_helptrace_nlocals) { 13852 dtrace_helptrace_nlocals = vstate->dtvs_nlocals; 13853 dtrace_helptrace_next = 0; 13854 } 13855 13856 return (0); 13857 err: 13858 dtrace_helper_action_destroy(helper, vstate); 13859 return (EINVAL); 13860 } 13861 13862 static void 13863 dtrace_helper_provider_register(proc_t *p, dtrace_helpers_t *help, 13864 dof_helper_t *dofhp) 13865 { 13866 ASSERT(MUTEX_NOT_HELD(&dtrace_lock)); 13867 13868 mutex_enter(&dtrace_meta_lock); 13869 mutex_enter(&dtrace_lock); 13870 13871 if (!dtrace_attached() || dtrace_meta_pid == NULL) { 13872 /* 13873 * If the dtrace module is loaded but not attached, or if 13874 * there aren't isn't a meta provider registered to deal with 13875 * these provider descriptions, we need to postpone creating 13876 * the actual providers until later. 13877 */ 13878 13879 if (help->dthps_next == NULL && help->dthps_prev == NULL && 13880 dtrace_deferred_pid != help) { 13881 help->dthps_deferred = 1; 13882 help->dthps_pid = p->p_pid; 13883 help->dthps_next = dtrace_deferred_pid; 13884 help->dthps_prev = NULL; 13885 if (dtrace_deferred_pid != NULL) 13886 dtrace_deferred_pid->dthps_prev = help; 13887 dtrace_deferred_pid = help; 13888 } 13889 13890 mutex_exit(&dtrace_lock); 13891 13892 } else if (dofhp != NULL) { 13893 /* 13894 * If the dtrace module is loaded and we have a particular 13895 * helper provider description, pass that off to the 13896 * meta provider. 13897 */ 13898 13899 mutex_exit(&dtrace_lock); 13900 13901 dtrace_helper_provide(dofhp, p->p_pid); 13902 13903 } else { 13904 /* 13905 * Otherwise, just pass all the helper provider descriptions 13906 * off to the meta provider. 13907 */ 13908 13909 int i; 13910 mutex_exit(&dtrace_lock); 13911 13912 for (i = 0; i < help->dthps_nprovs; i++) { 13913 dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov, 13914 p->p_pid); 13915 } 13916 } 13917 13918 mutex_exit(&dtrace_meta_lock); 13919 } 13920 13921 static int 13922 dtrace_helper_provider_add(dof_helper_t *dofhp, int gen) 13923 { 13924 dtrace_helpers_t *help; 13925 dtrace_helper_provider_t *hprov, **tmp_provs; 13926 uint_t tmp_maxprovs, i; 13927 13928 ASSERT(MUTEX_HELD(&dtrace_lock)); 13929 13930 help = curproc->p_dtrace_helpers; 13931 ASSERT(help != NULL); 13932 13933 /* 13934 * If we already have dtrace_helper_providers_max helper providers, 13935 * we're refuse to add a new one. 13936 */ 13937 if (help->dthps_nprovs >= dtrace_helper_providers_max) 13938 return (ENOSPC); 13939 13940 /* 13941 * Check to make sure this isn't a duplicate. 13942 */ 13943 for (i = 0; i < help->dthps_nprovs; i++) { 13944 if (dofhp->dofhp_addr == 13945 help->dthps_provs[i]->dthp_prov.dofhp_addr) 13946 return (EALREADY); 13947 } 13948 13949 hprov = kmem_zalloc(sizeof (dtrace_helper_provider_t), KM_SLEEP); 13950 hprov->dthp_prov = *dofhp; 13951 hprov->dthp_ref = 1; 13952 hprov->dthp_generation = gen; 13953 13954 /* 13955 * Allocate a bigger table for helper providers if it's already full. 13956 */ 13957 if (help->dthps_maxprovs == help->dthps_nprovs) { 13958 tmp_maxprovs = help->dthps_maxprovs; 13959 tmp_provs = help->dthps_provs; 13960 13961 if (help->dthps_maxprovs == 0) 13962 help->dthps_maxprovs = 2; 13963 else 13964 help->dthps_maxprovs *= 2; 13965 if (help->dthps_maxprovs > dtrace_helper_providers_max) 13966 help->dthps_maxprovs = dtrace_helper_providers_max; 13967 13968 ASSERT(tmp_maxprovs < help->dthps_maxprovs); 13969 13970 help->dthps_provs = kmem_zalloc(help->dthps_maxprovs * 13971 sizeof (dtrace_helper_provider_t *), KM_SLEEP); 13972 13973 if (tmp_provs != NULL) { 13974 bcopy(tmp_provs, help->dthps_provs, tmp_maxprovs * 13975 sizeof (dtrace_helper_provider_t *)); 13976 kmem_free(tmp_provs, tmp_maxprovs * 13977 sizeof (dtrace_helper_provider_t *)); 13978 } 13979 } 13980 13981 help->dthps_provs[help->dthps_nprovs] = hprov; 13982 help->dthps_nprovs++; 13983 13984 return (0); 13985 } 13986 13987 static void 13988 dtrace_helper_provider_destroy(dtrace_helper_provider_t *hprov) 13989 { 13990 mutex_enter(&dtrace_lock); 13991 13992 if (--hprov->dthp_ref == 0) { 13993 dof_hdr_t *dof; 13994 mutex_exit(&dtrace_lock); 13995 dof = (dof_hdr_t *)(uintptr_t)hprov->dthp_prov.dofhp_dof; 13996 dtrace_dof_destroy(dof); 13997 kmem_free(hprov, sizeof (dtrace_helper_provider_t)); 13998 } else { 13999 mutex_exit(&dtrace_lock); 14000 } 14001 } 14002 14003 static int 14004 dtrace_helper_provider_validate(dof_hdr_t *dof, dof_sec_t *sec) 14005 { 14006 uintptr_t daddr = (uintptr_t)dof; 14007 dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec; 14008 dof_provider_t *provider; 14009 dof_probe_t *probe; 14010 uint8_t *arg; 14011 char *strtab, *typestr; 14012 dof_stridx_t typeidx; 14013 size_t typesz; 14014 uint_t nprobes, j, k; 14015 14016 ASSERT(sec->dofs_type == DOF_SECT_PROVIDER); 14017 14018 if (sec->dofs_offset & (sizeof (uint_t) - 1)) { 14019 dtrace_dof_error(dof, "misaligned section offset"); 14020 return (-1); 14021 } 14022 14023 /* 14024 * The section needs to be large enough to contain the DOF provider 14025 * structure appropriate for the given version. 14026 */ 14027 if (sec->dofs_size < 14028 ((dof->dofh_ident[DOF_ID_VERSION] == DOF_VERSION_1) ? 14029 offsetof(dof_provider_t, dofpv_prenoffs) : 14030 sizeof (dof_provider_t))) { 14031 dtrace_dof_error(dof, "provider section too small"); 14032 return (-1); 14033 } 14034 14035 provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset); 14036 str_sec = dtrace_dof_sect(dof, DOF_SECT_STRTAB, provider->dofpv_strtab); 14037 prb_sec = dtrace_dof_sect(dof, DOF_SECT_PROBES, provider->dofpv_probes); 14038 arg_sec = dtrace_dof_sect(dof, DOF_SECT_PRARGS, provider->dofpv_prargs); 14039 off_sec = dtrace_dof_sect(dof, DOF_SECT_PROFFS, provider->dofpv_proffs); 14040 14041 if (str_sec == NULL || prb_sec == NULL || 14042 arg_sec == NULL || off_sec == NULL) 14043 return (-1); 14044 14045 enoff_sec = NULL; 14046 14047 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 && 14048 provider->dofpv_prenoffs != DOF_SECT_NONE && 14049 (enoff_sec = dtrace_dof_sect(dof, DOF_SECT_PRENOFFS, 14050 provider->dofpv_prenoffs)) == NULL) 14051 return (-1); 14052 14053 strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset); 14054 14055 if (provider->dofpv_name >= str_sec->dofs_size || 14056 strlen(strtab + provider->dofpv_name) >= DTRACE_PROVNAMELEN) { 14057 dtrace_dof_error(dof, "invalid provider name"); 14058 return (-1); 14059 } 14060 14061 if (prb_sec->dofs_entsize == 0 || 14062 prb_sec->dofs_entsize > prb_sec->dofs_size) { 14063 dtrace_dof_error(dof, "invalid entry size"); 14064 return (-1); 14065 } 14066 14067 if (prb_sec->dofs_entsize & (sizeof (uintptr_t) - 1)) { 14068 dtrace_dof_error(dof, "misaligned entry size"); 14069 return (-1); 14070 } 14071 14072 if (off_sec->dofs_entsize != sizeof (uint32_t)) { 14073 dtrace_dof_error(dof, "invalid entry size"); 14074 return (-1); 14075 } 14076 14077 if (off_sec->dofs_offset & (sizeof (uint32_t) - 1)) { 14078 dtrace_dof_error(dof, "misaligned section offset"); 14079 return (-1); 14080 } 14081 14082 if (arg_sec->dofs_entsize != sizeof (uint8_t)) { 14083 dtrace_dof_error(dof, "invalid entry size"); 14084 return (-1); 14085 } 14086 14087 arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset); 14088 14089 nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize; 14090 14091 /* 14092 * Take a pass through the probes to check for errors. 14093 */ 14094 for (j = 0; j < nprobes; j++) { 14095 probe = (dof_probe_t *)(uintptr_t)(daddr + 14096 prb_sec->dofs_offset + j * prb_sec->dofs_entsize); 14097 14098 if (probe->dofpr_func >= str_sec->dofs_size) { 14099 dtrace_dof_error(dof, "invalid function name"); 14100 return (-1); 14101 } 14102 14103 if (strlen(strtab + probe->dofpr_func) >= DTRACE_FUNCNAMELEN) { 14104 dtrace_dof_error(dof, "function name too long"); 14105 return (-1); 14106 } 14107 14108 if (probe->dofpr_name >= str_sec->dofs_size || 14109 strlen(strtab + probe->dofpr_name) >= DTRACE_NAMELEN) { 14110 dtrace_dof_error(dof, "invalid probe name"); 14111 return (-1); 14112 } 14113 14114 /* 14115 * The offset count must not wrap the index, and the offsets 14116 * must also not overflow the section's data. 14117 */ 14118 if (probe->dofpr_offidx + probe->dofpr_noffs < 14119 probe->dofpr_offidx || 14120 (probe->dofpr_offidx + probe->dofpr_noffs) * 14121 off_sec->dofs_entsize > off_sec->dofs_size) { 14122 dtrace_dof_error(dof, "invalid probe offset"); 14123 return (-1); 14124 } 14125 14126 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1) { 14127 /* 14128 * If there's no is-enabled offset section, make sure 14129 * there aren't any is-enabled offsets. Otherwise 14130 * perform the same checks as for probe offsets 14131 * (immediately above). 14132 */ 14133 if (enoff_sec == NULL) { 14134 if (probe->dofpr_enoffidx != 0 || 14135 probe->dofpr_nenoffs != 0) { 14136 dtrace_dof_error(dof, "is-enabled " 14137 "offsets with null section"); 14138 return (-1); 14139 } 14140 } else if (probe->dofpr_enoffidx + 14141 probe->dofpr_nenoffs < probe->dofpr_enoffidx || 14142 (probe->dofpr_enoffidx + probe->dofpr_nenoffs) * 14143 enoff_sec->dofs_entsize > enoff_sec->dofs_size) { 14144 dtrace_dof_error(dof, "invalid is-enabled " 14145 "offset"); 14146 return (-1); 14147 } 14148 14149 if (probe->dofpr_noffs + probe->dofpr_nenoffs == 0) { 14150 dtrace_dof_error(dof, "zero probe and " 14151 "is-enabled offsets"); 14152 return (-1); 14153 } 14154 } else if (probe->dofpr_noffs == 0) { 14155 dtrace_dof_error(dof, "zero probe offsets"); 14156 return (-1); 14157 } 14158 14159 if (probe->dofpr_argidx + probe->dofpr_xargc < 14160 probe->dofpr_argidx || 14161 (probe->dofpr_argidx + probe->dofpr_xargc) * 14162 arg_sec->dofs_entsize > arg_sec->dofs_size) { 14163 dtrace_dof_error(dof, "invalid args"); 14164 return (-1); 14165 } 14166 14167 typeidx = probe->dofpr_nargv; 14168 typestr = strtab + probe->dofpr_nargv; 14169 for (k = 0; k < probe->dofpr_nargc; k++) { 14170 if (typeidx >= str_sec->dofs_size) { 14171 dtrace_dof_error(dof, "bad " 14172 "native argument type"); 14173 return (-1); 14174 } 14175 14176 typesz = strlen(typestr) + 1; 14177 if (typesz > DTRACE_ARGTYPELEN) { 14178 dtrace_dof_error(dof, "native " 14179 "argument type too long"); 14180 return (-1); 14181 } 14182 typeidx += typesz; 14183 typestr += typesz; 14184 } 14185 14186 typeidx = probe->dofpr_xargv; 14187 typestr = strtab + probe->dofpr_xargv; 14188 for (k = 0; k < probe->dofpr_xargc; k++) { 14189 if (arg[probe->dofpr_argidx + k] > probe->dofpr_nargc) { 14190 dtrace_dof_error(dof, "bad " 14191 "native argument index"); 14192 return (-1); 14193 } 14194 14195 if (typeidx >= str_sec->dofs_size) { 14196 dtrace_dof_error(dof, "bad " 14197 "translated argument type"); 14198 return (-1); 14199 } 14200 14201 typesz = strlen(typestr) + 1; 14202 if (typesz > DTRACE_ARGTYPELEN) { 14203 dtrace_dof_error(dof, "translated argument " 14204 "type too long"); 14205 return (-1); 14206 } 14207 14208 typeidx += typesz; 14209 typestr += typesz; 14210 } 14211 } 14212 14213 return (0); 14214 } 14215 14216 static int 14217 dtrace_helper_slurp(dof_hdr_t *dof, dof_helper_t *dhp) 14218 { 14219 dtrace_helpers_t *help; 14220 dtrace_vstate_t *vstate; 14221 dtrace_enabling_t *enab = NULL; 14222 int i, gen, rv, nhelpers = 0, nprovs = 0, destroy = 1; 14223 uintptr_t daddr = (uintptr_t)dof; 14224 14225 ASSERT(MUTEX_HELD(&dtrace_lock)); 14226 14227 if ((help = curproc->p_dtrace_helpers) == NULL) 14228 help = dtrace_helpers_create(curproc); 14229 14230 vstate = &help->dthps_vstate; 14231 14232 if ((rv = dtrace_dof_slurp(dof, vstate, NULL, &enab, 14233 dhp != NULL ? dhp->dofhp_addr : 0, B_FALSE)) != 0) { 14234 dtrace_dof_destroy(dof); 14235 return (rv); 14236 } 14237 14238 /* 14239 * Look for helper providers and validate their descriptions. 14240 */ 14241 if (dhp != NULL) { 14242 for (i = 0; i < dof->dofh_secnum; i++) { 14243 dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr + 14244 dof->dofh_secoff + i * dof->dofh_secsize); 14245 14246 if (sec->dofs_type != DOF_SECT_PROVIDER) 14247 continue; 14248 14249 if (dtrace_helper_provider_validate(dof, sec) != 0) { 14250 dtrace_enabling_destroy(enab); 14251 dtrace_dof_destroy(dof); 14252 return (-1); 14253 } 14254 14255 nprovs++; 14256 } 14257 } 14258 14259 /* 14260 * Now we need to walk through the ECB descriptions in the enabling. 14261 */ 14262 for (i = 0; i < enab->dten_ndesc; i++) { 14263 dtrace_ecbdesc_t *ep = enab->dten_desc[i]; 14264 dtrace_probedesc_t *desc = &ep->dted_probe; 14265 14266 if (strcmp(desc->dtpd_provider, "dtrace") != 0) 14267 continue; 14268 14269 if (strcmp(desc->dtpd_mod, "helper") != 0) 14270 continue; 14271 14272 if (strcmp(desc->dtpd_func, "ustack") != 0) 14273 continue; 14274 14275 if ((rv = dtrace_helper_action_add(DTRACE_HELPER_ACTION_USTACK, 14276 ep)) != 0) { 14277 /* 14278 * Adding this helper action failed -- we are now going 14279 * to rip out the entire generation and return failure. 14280 */ 14281 (void) dtrace_helper_destroygen(help->dthps_generation); 14282 dtrace_enabling_destroy(enab); 14283 dtrace_dof_destroy(dof); 14284 return (-1); 14285 } 14286 14287 nhelpers++; 14288 } 14289 14290 if (nhelpers < enab->dten_ndesc) 14291 dtrace_dof_error(dof, "unmatched helpers"); 14292 14293 gen = help->dthps_generation++; 14294 dtrace_enabling_destroy(enab); 14295 14296 if (dhp != NULL && nprovs > 0) { 14297 dhp->dofhp_dof = (uint64_t)(uintptr_t)dof; 14298 if (dtrace_helper_provider_add(dhp, gen) == 0) { 14299 mutex_exit(&dtrace_lock); 14300 dtrace_helper_provider_register(curproc, help, dhp); 14301 mutex_enter(&dtrace_lock); 14302 14303 destroy = 0; 14304 } 14305 } 14306 14307 if (destroy) 14308 dtrace_dof_destroy(dof); 14309 14310 return (gen); 14311 } 14312 14313 static dtrace_helpers_t * 14314 dtrace_helpers_create(proc_t *p) 14315 { 14316 dtrace_helpers_t *help; 14317 14318 ASSERT(MUTEX_HELD(&dtrace_lock)); 14319 ASSERT(p->p_dtrace_helpers == NULL); 14320 14321 help = kmem_zalloc(sizeof (dtrace_helpers_t), KM_SLEEP); 14322 help->dthps_actions = kmem_zalloc(sizeof (dtrace_helper_action_t *) * 14323 DTRACE_NHELPER_ACTIONS, KM_SLEEP); 14324 14325 p->p_dtrace_helpers = help; 14326 dtrace_helpers++; 14327 14328 return (help); 14329 } 14330 14331 static void 14332 dtrace_helpers_destroy(void) 14333 { 14334 dtrace_helpers_t *help; 14335 dtrace_vstate_t *vstate; 14336 proc_t *p = curproc; 14337 int i; 14338 14339 mutex_enter(&dtrace_lock); 14340 14341 ASSERT(p->p_dtrace_helpers != NULL); 14342 ASSERT(dtrace_helpers > 0); 14343 14344 help = p->p_dtrace_helpers; 14345 vstate = &help->dthps_vstate; 14346 14347 /* 14348 * We're now going to lose the help from this process. 14349 */ 14350 p->p_dtrace_helpers = NULL; 14351 dtrace_sync(); 14352 14353 /* 14354 * Destory the helper actions. 14355 */ 14356 for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) { 14357 dtrace_helper_action_t *h, *next; 14358 14359 for (h = help->dthps_actions[i]; h != NULL; h = next) { 14360 next = h->dtha_next; 14361 dtrace_helper_action_destroy(h, vstate); 14362 h = next; 14363 } 14364 } 14365 14366 mutex_exit(&dtrace_lock); 14367 14368 /* 14369 * Destroy the helper providers. 14370 */ 14371 if (help->dthps_maxprovs > 0) { 14372 mutex_enter(&dtrace_meta_lock); 14373 if (dtrace_meta_pid != NULL) { 14374 ASSERT(dtrace_deferred_pid == NULL); 14375 14376 for (i = 0; i < help->dthps_nprovs; i++) { 14377 dtrace_helper_provider_remove( 14378 &help->dthps_provs[i]->dthp_prov, p->p_pid); 14379 } 14380 } else { 14381 mutex_enter(&dtrace_lock); 14382 ASSERT(help->dthps_deferred == 0 || 14383 help->dthps_next != NULL || 14384 help->dthps_prev != NULL || 14385 help == dtrace_deferred_pid); 14386 14387 /* 14388 * Remove the helper from the deferred list. 14389 */ 14390 if (help->dthps_next != NULL) 14391 help->dthps_next->dthps_prev = help->dthps_prev; 14392 if (help->dthps_prev != NULL) 14393 help->dthps_prev->dthps_next = help->dthps_next; 14394 if (dtrace_deferred_pid == help) { 14395 dtrace_deferred_pid = help->dthps_next; 14396 ASSERT(help->dthps_prev == NULL); 14397 } 14398 14399 mutex_exit(&dtrace_lock); 14400 } 14401 14402 mutex_exit(&dtrace_meta_lock); 14403 14404 for (i = 0; i < help->dthps_nprovs; i++) { 14405 dtrace_helper_provider_destroy(help->dthps_provs[i]); 14406 } 14407 14408 kmem_free(help->dthps_provs, help->dthps_maxprovs * 14409 sizeof (dtrace_helper_provider_t *)); 14410 } 14411 14412 mutex_enter(&dtrace_lock); 14413 14414 dtrace_vstate_fini(&help->dthps_vstate); 14415 kmem_free(help->dthps_actions, 14416 sizeof (dtrace_helper_action_t *) * DTRACE_NHELPER_ACTIONS); 14417 kmem_free(help, sizeof (dtrace_helpers_t)); 14418 14419 --dtrace_helpers; 14420 mutex_exit(&dtrace_lock); 14421 } 14422 14423 static void 14424 dtrace_helpers_duplicate(proc_t *from, proc_t *to) 14425 { 14426 dtrace_helpers_t *help, *newhelp; 14427 dtrace_helper_action_t *helper, *new, *last; 14428 dtrace_difo_t *dp; 14429 dtrace_vstate_t *vstate; 14430 int i, j, sz, hasprovs = 0; 14431 14432 mutex_enter(&dtrace_lock); 14433 ASSERT(from->p_dtrace_helpers != NULL); 14434 ASSERT(dtrace_helpers > 0); 14435 14436 help = from->p_dtrace_helpers; 14437 newhelp = dtrace_helpers_create(to); 14438 ASSERT(to->p_dtrace_helpers != NULL); 14439 14440 newhelp->dthps_generation = help->dthps_generation; 14441 vstate = &newhelp->dthps_vstate; 14442 14443 /* 14444 * Duplicate the helper actions. 14445 */ 14446 for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) { 14447 if ((helper = help->dthps_actions[i]) == NULL) 14448 continue; 14449 14450 for (last = NULL; helper != NULL; helper = helper->dtha_next) { 14451 new = kmem_zalloc(sizeof (dtrace_helper_action_t), 14452 KM_SLEEP); 14453 new->dtha_generation = helper->dtha_generation; 14454 14455 if ((dp = helper->dtha_predicate) != NULL) { 14456 dp = dtrace_difo_duplicate(dp, vstate); 14457 new->dtha_predicate = dp; 14458 } 14459 14460 new->dtha_nactions = helper->dtha_nactions; 14461 sz = sizeof (dtrace_difo_t *) * new->dtha_nactions; 14462 new->dtha_actions = kmem_alloc(sz, KM_SLEEP); 14463 14464 for (j = 0; j < new->dtha_nactions; j++) { 14465 dtrace_difo_t *dp = helper->dtha_actions[j]; 14466 14467 ASSERT(dp != NULL); 14468 dp = dtrace_difo_duplicate(dp, vstate); 14469 new->dtha_actions[j] = dp; 14470 } 14471 14472 if (last != NULL) { 14473 last->dtha_next = new; 14474 } else { 14475 newhelp->dthps_actions[i] = new; 14476 } 14477 14478 last = new; 14479 } 14480 } 14481 14482 /* 14483 * Duplicate the helper providers and register them with the 14484 * DTrace framework. 14485 */ 14486 if (help->dthps_nprovs > 0) { 14487 newhelp->dthps_nprovs = help->dthps_nprovs; 14488 newhelp->dthps_maxprovs = help->dthps_nprovs; 14489 newhelp->dthps_provs = kmem_alloc(newhelp->dthps_nprovs * 14490 sizeof (dtrace_helper_provider_t *), KM_SLEEP); 14491 for (i = 0; i < newhelp->dthps_nprovs; i++) { 14492 newhelp->dthps_provs[i] = help->dthps_provs[i]; 14493 newhelp->dthps_provs[i]->dthp_ref++; 14494 } 14495 14496 hasprovs = 1; 14497 } 14498 14499 mutex_exit(&dtrace_lock); 14500 14501 if (hasprovs) 14502 dtrace_helper_provider_register(to, newhelp, NULL); 14503 } 14504 14505 /* 14506 * DTrace Hook Functions 14507 */ 14508 static void 14509 dtrace_module_loaded(struct modctl *ctl) 14510 { 14511 dtrace_provider_t *prv; 14512 14513 mutex_enter(&dtrace_provider_lock); 14514 mutex_enter(&mod_lock); 14515 14516 ASSERT(ctl->mod_busy); 14517 14518 /* 14519 * We're going to call each providers per-module provide operation 14520 * specifying only this module. 14521 */ 14522 for (prv = dtrace_provider; prv != NULL; prv = prv->dtpv_next) 14523 prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl); 14524 14525 mutex_exit(&mod_lock); 14526 mutex_exit(&dtrace_provider_lock); 14527 14528 /* 14529 * If we have any retained enablings, we need to match against them. 14530 * Enabling probes requires that cpu_lock be held, and we cannot hold 14531 * cpu_lock here -- it is legal for cpu_lock to be held when loading a 14532 * module. (In particular, this happens when loading scheduling 14533 * classes.) So if we have any retained enablings, we need to dispatch 14534 * our task queue to do the match for us. 14535 */ 14536 mutex_enter(&dtrace_lock); 14537 14538 if (dtrace_retained == NULL) { 14539 mutex_exit(&dtrace_lock); 14540 return; 14541 } 14542 14543 (void) taskq_dispatch(dtrace_taskq, 14544 (task_func_t *)dtrace_enabling_matchall, NULL, TQ_SLEEP); 14545 14546 mutex_exit(&dtrace_lock); 14547 14548 /* 14549 * And now, for a little heuristic sleaze: in general, we want to 14550 * match modules as soon as they load. However, we cannot guarantee 14551 * this, because it would lead us to the lock ordering violation 14552 * outlined above. The common case, of course, is that cpu_lock is 14553 * _not_ held -- so we delay here for a clock tick, hoping that that's 14554 * long enough for the task queue to do its work. If it's not, it's 14555 * not a serious problem -- it just means that the module that we 14556 * just loaded may not be immediately instrumentable. 14557 */ 14558 delay(1); 14559 } 14560 14561 static void 14562 dtrace_module_unloaded(struct modctl *ctl) 14563 { 14564 dtrace_probe_t template, *probe, *first, *next; 14565 dtrace_provider_t *prov; 14566 14567 template.dtpr_mod = ctl->mod_modname; 14568 14569 mutex_enter(&dtrace_provider_lock); 14570 mutex_enter(&mod_lock); 14571 mutex_enter(&dtrace_lock); 14572 14573 if (dtrace_bymod == NULL) { 14574 /* 14575 * The DTrace module is loaded (obviously) but not attached; 14576 * we don't have any work to do. 14577 */ 14578 mutex_exit(&dtrace_provider_lock); 14579 mutex_exit(&mod_lock); 14580 mutex_exit(&dtrace_lock); 14581 return; 14582 } 14583 14584 for (probe = first = dtrace_hash_lookup(dtrace_bymod, &template); 14585 probe != NULL; probe = probe->dtpr_nextmod) { 14586 if (probe->dtpr_ecb != NULL) { 14587 mutex_exit(&dtrace_provider_lock); 14588 mutex_exit(&mod_lock); 14589 mutex_exit(&dtrace_lock); 14590 14591 /* 14592 * This shouldn't _actually_ be possible -- we're 14593 * unloading a module that has an enabled probe in it. 14594 * (It's normally up to the provider to make sure that 14595 * this can't happen.) However, because dtps_enable() 14596 * doesn't have a failure mode, there can be an 14597 * enable/unload race. Upshot: we don't want to 14598 * assert, but we're not going to disable the 14599 * probe, either. 14600 */ 14601 if (dtrace_err_verbose) { 14602 cmn_err(CE_WARN, "unloaded module '%s' had " 14603 "enabled probes", ctl->mod_modname); 14604 } 14605 14606 return; 14607 } 14608 } 14609 14610 probe = first; 14611 14612 for (first = NULL; probe != NULL; probe = next) { 14613 ASSERT(dtrace_probes[probe->dtpr_id - 1] == probe); 14614 14615 dtrace_probes[probe->dtpr_id - 1] = NULL; 14616 14617 next = probe->dtpr_nextmod; 14618 dtrace_hash_remove(dtrace_bymod, probe); 14619 dtrace_hash_remove(dtrace_byfunc, probe); 14620 dtrace_hash_remove(dtrace_byname, probe); 14621 14622 if (first == NULL) { 14623 first = probe; 14624 probe->dtpr_nextmod = NULL; 14625 } else { 14626 probe->dtpr_nextmod = first; 14627 first = probe; 14628 } 14629 } 14630 14631 /* 14632 * We've removed all of the module's probes from the hash chains and 14633 * from the probe array. Now issue a dtrace_sync() to be sure that 14634 * everyone has cleared out from any probe array processing. 14635 */ 14636 dtrace_sync(); 14637 14638 for (probe = first; probe != NULL; probe = first) { 14639 first = probe->dtpr_nextmod; 14640 prov = probe->dtpr_provider; 14641 prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, probe->dtpr_id, 14642 probe->dtpr_arg); 14643 kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1); 14644 kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1); 14645 kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1); 14646 vmem_free(dtrace_arena, (void *)(uintptr_t)probe->dtpr_id, 1); 14647 kmem_free(probe, sizeof (dtrace_probe_t)); 14648 } 14649 14650 mutex_exit(&dtrace_lock); 14651 mutex_exit(&mod_lock); 14652 mutex_exit(&dtrace_provider_lock); 14653 } 14654 14655 void 14656 dtrace_suspend(void) 14657 { 14658 dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_suspend)); 14659 } 14660 14661 void 14662 dtrace_resume(void) 14663 { 14664 dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_resume)); 14665 } 14666 14667 static int 14668 dtrace_cpu_setup(cpu_setup_t what, processorid_t cpu) 14669 { 14670 ASSERT(MUTEX_HELD(&cpu_lock)); 14671 mutex_enter(&dtrace_lock); 14672 14673 switch (what) { 14674 case CPU_CONFIG: { 14675 dtrace_state_t *state; 14676 dtrace_optval_t *opt, rs, c; 14677 14678 /* 14679 * For now, we only allocate a new buffer for anonymous state. 14680 */ 14681 if ((state = dtrace_anon.dta_state) == NULL) 14682 break; 14683 14684 if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE) 14685 break; 14686 14687 opt = state->dts_options; 14688 c = opt[DTRACEOPT_CPU]; 14689 14690 if (c != DTRACE_CPUALL && c != DTRACEOPT_UNSET && c != cpu) 14691 break; 14692 14693 /* 14694 * Regardless of what the actual policy is, we're going to 14695 * temporarily set our resize policy to be manual. We're 14696 * also going to temporarily set our CPU option to denote 14697 * the newly configured CPU. 14698 */ 14699 rs = opt[DTRACEOPT_BUFRESIZE]; 14700 opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_MANUAL; 14701 opt[DTRACEOPT_CPU] = (dtrace_optval_t)cpu; 14702 14703 (void) dtrace_state_buffers(state); 14704 14705 opt[DTRACEOPT_BUFRESIZE] = rs; 14706 opt[DTRACEOPT_CPU] = c; 14707 14708 break; 14709 } 14710 14711 case CPU_UNCONFIG: 14712 /* 14713 * We don't free the buffer in the CPU_UNCONFIG case. (The 14714 * buffer will be freed when the consumer exits.) 14715 */ 14716 break; 14717 14718 default: 14719 break; 14720 } 14721 14722 mutex_exit(&dtrace_lock); 14723 return (0); 14724 } 14725 14726 static void 14727 dtrace_cpu_setup_initial(processorid_t cpu) 14728 { 14729 (void) dtrace_cpu_setup(CPU_CONFIG, cpu); 14730 } 14731 14732 static void 14733 dtrace_toxrange_add(uintptr_t base, uintptr_t limit) 14734 { 14735 if (dtrace_toxranges >= dtrace_toxranges_max) { 14736 int osize, nsize; 14737 dtrace_toxrange_t *range; 14738 14739 osize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t); 14740 14741 if (osize == 0) { 14742 ASSERT(dtrace_toxrange == NULL); 14743 ASSERT(dtrace_toxranges_max == 0); 14744 dtrace_toxranges_max = 1; 14745 } else { 14746 dtrace_toxranges_max <<= 1; 14747 } 14748 14749 nsize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t); 14750 range = kmem_zalloc(nsize, KM_SLEEP); 14751 14752 if (dtrace_toxrange != NULL) { 14753 ASSERT(osize != 0); 14754 bcopy(dtrace_toxrange, range, osize); 14755 kmem_free(dtrace_toxrange, osize); 14756 } 14757 14758 dtrace_toxrange = range; 14759 } 14760 14761 ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_base == NULL); 14762 ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_limit == NULL); 14763 14764 dtrace_toxrange[dtrace_toxranges].dtt_base = base; 14765 dtrace_toxrange[dtrace_toxranges].dtt_limit = limit; 14766 dtrace_toxranges++; 14767 } 14768 14769 /* 14770 * DTrace Driver Cookbook Functions 14771 */ 14772 /*ARGSUSED*/ 14773 static int 14774 dtrace_attach(dev_info_t *devi, ddi_attach_cmd_t cmd) 14775 { 14776 dtrace_provider_id_t id; 14777 dtrace_state_t *state = NULL; 14778 dtrace_enabling_t *enab; 14779 14780 mutex_enter(&cpu_lock); 14781 mutex_enter(&dtrace_provider_lock); 14782 mutex_enter(&dtrace_lock); 14783 14784 if (ddi_soft_state_init(&dtrace_softstate, 14785 sizeof (dtrace_state_t), 0) != 0) { 14786 cmn_err(CE_NOTE, "/dev/dtrace failed to initialize soft state"); 14787 mutex_exit(&cpu_lock); 14788 mutex_exit(&dtrace_provider_lock); 14789 mutex_exit(&dtrace_lock); 14790 return (DDI_FAILURE); 14791 } 14792 14793 if (ddi_create_minor_node(devi, DTRACEMNR_DTRACE, S_IFCHR, 14794 DTRACEMNRN_DTRACE, DDI_PSEUDO, NULL) == DDI_FAILURE || 14795 ddi_create_minor_node(devi, DTRACEMNR_HELPER, S_IFCHR, 14796 DTRACEMNRN_HELPER, DDI_PSEUDO, NULL) == DDI_FAILURE) { 14797 cmn_err(CE_NOTE, "/dev/dtrace couldn't create minor nodes"); 14798 ddi_remove_minor_node(devi, NULL); 14799 ddi_soft_state_fini(&dtrace_softstate); 14800 mutex_exit(&cpu_lock); 14801 mutex_exit(&dtrace_provider_lock); 14802 mutex_exit(&dtrace_lock); 14803 return (DDI_FAILURE); 14804 } 14805 14806 ddi_report_dev(devi); 14807 dtrace_devi = devi; 14808 14809 dtrace_modload = dtrace_module_loaded; 14810 dtrace_modunload = dtrace_module_unloaded; 14811 dtrace_cpu_init = dtrace_cpu_setup_initial; 14812 dtrace_helpers_cleanup = dtrace_helpers_destroy; 14813 dtrace_helpers_fork = dtrace_helpers_duplicate; 14814 dtrace_cpustart_init = dtrace_suspend; 14815 dtrace_cpustart_fini = dtrace_resume; 14816 dtrace_debugger_init = dtrace_suspend; 14817 dtrace_debugger_fini = dtrace_resume; 14818 14819 register_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL); 14820 14821 ASSERT(MUTEX_HELD(&cpu_lock)); 14822 14823 dtrace_arena = vmem_create("dtrace", (void *)1, UINT32_MAX, 1, 14824 NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER); 14825 dtrace_minor = vmem_create("dtrace_minor", (void *)DTRACEMNRN_CLONE, 14826 UINT32_MAX - DTRACEMNRN_CLONE, 1, NULL, NULL, NULL, 0, 14827 VM_SLEEP | VMC_IDENTIFIER); 14828 dtrace_taskq = taskq_create("dtrace_taskq", 1, maxclsyspri, 14829 1, INT_MAX, 0); 14830 14831 dtrace_state_cache = kmem_cache_create("dtrace_state_cache", 14832 sizeof (dtrace_dstate_percpu_t) * NCPU, DTRACE_STATE_ALIGN, 14833 NULL, NULL, NULL, NULL, NULL, 0); 14834 14835 ASSERT(MUTEX_HELD(&cpu_lock)); 14836 dtrace_bymod = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_mod), 14837 offsetof(dtrace_probe_t, dtpr_nextmod), 14838 offsetof(dtrace_probe_t, dtpr_prevmod)); 14839 14840 dtrace_byfunc = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_func), 14841 offsetof(dtrace_probe_t, dtpr_nextfunc), 14842 offsetof(dtrace_probe_t, dtpr_prevfunc)); 14843 14844 dtrace_byname = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_name), 14845 offsetof(dtrace_probe_t, dtpr_nextname), 14846 offsetof(dtrace_probe_t, dtpr_prevname)); 14847 14848 if (dtrace_retain_max < 1) { 14849 cmn_err(CE_WARN, "illegal value (%lu) for dtrace_retain_max; " 14850 "setting to 1", dtrace_retain_max); 14851 dtrace_retain_max = 1; 14852 } 14853 14854 /* 14855 * Now discover our toxic ranges. 14856 */ 14857 dtrace_toxic_ranges(dtrace_toxrange_add); 14858 14859 /* 14860 * Before we register ourselves as a provider to our own framework, 14861 * we would like to assert that dtrace_provider is NULL -- but that's 14862 * not true if we were loaded as a dependency of a DTrace provider. 14863 * Once we've registered, we can assert that dtrace_provider is our 14864 * pseudo provider. 14865 */ 14866 (void) dtrace_register("dtrace", &dtrace_provider_attr, 14867 DTRACE_PRIV_NONE, 0, &dtrace_provider_ops, NULL, &id); 14868 14869 ASSERT(dtrace_provider != NULL); 14870 ASSERT((dtrace_provider_id_t)dtrace_provider == id); 14871 14872 dtrace_probeid_begin = dtrace_probe_create((dtrace_provider_id_t) 14873 dtrace_provider, NULL, NULL, "BEGIN", 0, NULL); 14874 dtrace_probeid_end = dtrace_probe_create((dtrace_provider_id_t) 14875 dtrace_provider, NULL, NULL, "END", 0, NULL); 14876 dtrace_probeid_error = dtrace_probe_create((dtrace_provider_id_t) 14877 dtrace_provider, NULL, NULL, "ERROR", 1, NULL); 14878 14879 dtrace_anon_property(); 14880 mutex_exit(&cpu_lock); 14881 14882 /* 14883 * If DTrace helper tracing is enabled, we need to allocate the 14884 * trace buffer and initialize the values. 14885 */ 14886 if (dtrace_helptrace_enabled) { 14887 ASSERT(dtrace_helptrace_buffer == NULL); 14888 dtrace_helptrace_buffer = 14889 kmem_zalloc(dtrace_helptrace_bufsize, KM_SLEEP); 14890 dtrace_helptrace_next = 0; 14891 } 14892 14893 /* 14894 * If there are already providers, we must ask them to provide their 14895 * probes, and then match any anonymous enabling against them. Note 14896 * that there should be no other retained enablings at this time: 14897 * the only retained enablings at this time should be the anonymous 14898 * enabling. 14899 */ 14900 if (dtrace_anon.dta_enabling != NULL) { 14901 ASSERT(dtrace_retained == dtrace_anon.dta_enabling); 14902 14903 dtrace_enabling_provide(NULL); 14904 state = dtrace_anon.dta_state; 14905 14906 /* 14907 * We couldn't hold cpu_lock across the above call to 14908 * dtrace_enabling_provide(), but we must hold it to actually 14909 * enable the probes. We have to drop all of our locks, pick 14910 * up cpu_lock, and regain our locks before matching the 14911 * retained anonymous enabling. 14912 */ 14913 mutex_exit(&dtrace_lock); 14914 mutex_exit(&dtrace_provider_lock); 14915 14916 mutex_enter(&cpu_lock); 14917 mutex_enter(&dtrace_provider_lock); 14918 mutex_enter(&dtrace_lock); 14919 14920 if ((enab = dtrace_anon.dta_enabling) != NULL) 14921 (void) dtrace_enabling_match(enab, NULL); 14922 14923 mutex_exit(&cpu_lock); 14924 } 14925 14926 mutex_exit(&dtrace_lock); 14927 mutex_exit(&dtrace_provider_lock); 14928 14929 if (state != NULL) { 14930 /* 14931 * If we created any anonymous state, set it going now. 14932 */ 14933 (void) dtrace_state_go(state, &dtrace_anon.dta_beganon); 14934 } 14935 14936 return (DDI_SUCCESS); 14937 } 14938 14939 /*ARGSUSED*/ 14940 static int 14941 dtrace_open(dev_t *devp, int flag, int otyp, cred_t *cred_p) 14942 { 14943 dtrace_state_t *state; 14944 uint32_t priv; 14945 uid_t uid; 14946 zoneid_t zoneid; 14947 14948 if (getminor(*devp) == DTRACEMNRN_HELPER) 14949 return (0); 14950 14951 /* 14952 * If this wasn't an open with the "helper" minor, then it must be 14953 * the "dtrace" minor. 14954 */ 14955 if (getminor(*devp) != DTRACEMNRN_DTRACE) 14956 return (ENXIO); 14957 14958 /* 14959 * If no DTRACE_PRIV_* bits are set in the credential, then the 14960 * caller lacks sufficient permission to do anything with DTrace. 14961 */ 14962 dtrace_cred2priv(cred_p, &priv, &uid, &zoneid); 14963 if (priv == DTRACE_PRIV_NONE) 14964 return (EACCES); 14965 14966 /* 14967 * Ask all providers to provide all their probes. 14968 */ 14969 mutex_enter(&dtrace_provider_lock); 14970 dtrace_probe_provide(NULL, NULL); 14971 mutex_exit(&dtrace_provider_lock); 14972 14973 mutex_enter(&cpu_lock); 14974 mutex_enter(&dtrace_lock); 14975 dtrace_opens++; 14976 dtrace_membar_producer(); 14977 14978 /* 14979 * If the kernel debugger is active (that is, if the kernel debugger 14980 * modified text in some way), we won't allow the open. 14981 */ 14982 if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) { 14983 dtrace_opens--; 14984 mutex_exit(&cpu_lock); 14985 mutex_exit(&dtrace_lock); 14986 return (EBUSY); 14987 } 14988 14989 state = dtrace_state_create(devp, cred_p); 14990 mutex_exit(&cpu_lock); 14991 14992 if (state == NULL) { 14993 if (--dtrace_opens == 0 && dtrace_anon.dta_enabling == NULL) 14994 (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE); 14995 mutex_exit(&dtrace_lock); 14996 return (EAGAIN); 14997 } 14998 14999 mutex_exit(&dtrace_lock); 15000 15001 return (0); 15002 } 15003 15004 /*ARGSUSED*/ 15005 static int 15006 dtrace_close(dev_t dev, int flag, int otyp, cred_t *cred_p) 15007 { 15008 minor_t minor = getminor(dev); 15009 dtrace_state_t *state; 15010 15011 if (minor == DTRACEMNRN_HELPER) 15012 return (0); 15013 15014 state = ddi_get_soft_state(dtrace_softstate, minor); 15015 15016 mutex_enter(&cpu_lock); 15017 mutex_enter(&dtrace_lock); 15018 15019 if (state->dts_anon) { 15020 /* 15021 * There is anonymous state. Destroy that first. 15022 */ 15023 ASSERT(dtrace_anon.dta_state == NULL); 15024 dtrace_state_destroy(state->dts_anon); 15025 } 15026 15027 dtrace_state_destroy(state); 15028 ASSERT(dtrace_opens > 0); 15029 15030 /* 15031 * Only relinquish control of the kernel debugger interface when there 15032 * are no consumers and no anonymous enablings. 15033 */ 15034 if (--dtrace_opens == 0 && dtrace_anon.dta_enabling == NULL) 15035 (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE); 15036 15037 mutex_exit(&dtrace_lock); 15038 mutex_exit(&cpu_lock); 15039 15040 return (0); 15041 } 15042 15043 /*ARGSUSED*/ 15044 static int 15045 dtrace_ioctl_helper(int cmd, intptr_t arg, int *rv) 15046 { 15047 int rval; 15048 dof_helper_t help, *dhp = NULL; 15049 15050 switch (cmd) { 15051 case DTRACEHIOC_ADDDOF: 15052 if (copyin((void *)arg, &help, sizeof (help)) != 0) { 15053 dtrace_dof_error(NULL, "failed to copyin DOF helper"); 15054 return (EFAULT); 15055 } 15056 15057 dhp = &help; 15058 arg = (intptr_t)help.dofhp_dof; 15059 /*FALLTHROUGH*/ 15060 15061 case DTRACEHIOC_ADD: { 15062 dof_hdr_t *dof = dtrace_dof_copyin(arg, &rval); 15063 15064 if (dof == NULL) 15065 return (rval); 15066 15067 mutex_enter(&dtrace_lock); 15068 15069 /* 15070 * dtrace_helper_slurp() takes responsibility for the dof -- 15071 * it may free it now or it may save it and free it later. 15072 */ 15073 if ((rval = dtrace_helper_slurp(dof, dhp)) != -1) { 15074 *rv = rval; 15075 rval = 0; 15076 } else { 15077 rval = EINVAL; 15078 } 15079 15080 mutex_exit(&dtrace_lock); 15081 return (rval); 15082 } 15083 15084 case DTRACEHIOC_REMOVE: { 15085 mutex_enter(&dtrace_lock); 15086 rval = dtrace_helper_destroygen(arg); 15087 mutex_exit(&dtrace_lock); 15088 15089 return (rval); 15090 } 15091 15092 default: 15093 break; 15094 } 15095 15096 return (ENOTTY); 15097 } 15098 15099 /*ARGSUSED*/ 15100 static int 15101 dtrace_ioctl(dev_t dev, int cmd, intptr_t arg, int md, cred_t *cr, int *rv) 15102 { 15103 minor_t minor = getminor(dev); 15104 dtrace_state_t *state; 15105 int rval; 15106 15107 if (minor == DTRACEMNRN_HELPER) 15108 return (dtrace_ioctl_helper(cmd, arg, rv)); 15109 15110 state = ddi_get_soft_state(dtrace_softstate, minor); 15111 15112 if (state->dts_anon) { 15113 ASSERT(dtrace_anon.dta_state == NULL); 15114 state = state->dts_anon; 15115 } 15116 15117 switch (cmd) { 15118 case DTRACEIOC_PROVIDER: { 15119 dtrace_providerdesc_t pvd; 15120 dtrace_provider_t *pvp; 15121 15122 if (copyin((void *)arg, &pvd, sizeof (pvd)) != 0) 15123 return (EFAULT); 15124 15125 pvd.dtvd_name[DTRACE_PROVNAMELEN - 1] = '\0'; 15126 mutex_enter(&dtrace_provider_lock); 15127 15128 for (pvp = dtrace_provider; pvp != NULL; pvp = pvp->dtpv_next) { 15129 if (strcmp(pvp->dtpv_name, pvd.dtvd_name) == 0) 15130 break; 15131 } 15132 15133 mutex_exit(&dtrace_provider_lock); 15134 15135 if (pvp == NULL) 15136 return (ESRCH); 15137 15138 bcopy(&pvp->dtpv_priv, &pvd.dtvd_priv, sizeof (dtrace_ppriv_t)); 15139 bcopy(&pvp->dtpv_attr, &pvd.dtvd_attr, sizeof (dtrace_pattr_t)); 15140 if (copyout(&pvd, (void *)arg, sizeof (pvd)) != 0) 15141 return (EFAULT); 15142 15143 return (0); 15144 } 15145 15146 case DTRACEIOC_EPROBE: { 15147 dtrace_eprobedesc_t epdesc; 15148 dtrace_ecb_t *ecb; 15149 dtrace_action_t *act; 15150 void *buf; 15151 size_t size; 15152 uintptr_t dest; 15153 int nrecs; 15154 15155 if (copyin((void *)arg, &epdesc, sizeof (epdesc)) != 0) 15156 return (EFAULT); 15157 15158 mutex_enter(&dtrace_lock); 15159 15160 if ((ecb = dtrace_epid2ecb(state, epdesc.dtepd_epid)) == NULL) { 15161 mutex_exit(&dtrace_lock); 15162 return (EINVAL); 15163 } 15164 15165 if (ecb->dte_probe == NULL) { 15166 mutex_exit(&dtrace_lock); 15167 return (EINVAL); 15168 } 15169 15170 epdesc.dtepd_probeid = ecb->dte_probe->dtpr_id; 15171 epdesc.dtepd_uarg = ecb->dte_uarg; 15172 epdesc.dtepd_size = ecb->dte_size; 15173 15174 nrecs = epdesc.dtepd_nrecs; 15175 epdesc.dtepd_nrecs = 0; 15176 for (act = ecb->dte_action; act != NULL; act = act->dta_next) { 15177 if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple) 15178 continue; 15179 15180 epdesc.dtepd_nrecs++; 15181 } 15182 15183 /* 15184 * Now that we have the size, we need to allocate a temporary 15185 * buffer in which to store the complete description. We need 15186 * the temporary buffer to be able to drop dtrace_lock() 15187 * across the copyout(), below. 15188 */ 15189 size = sizeof (dtrace_eprobedesc_t) + 15190 (epdesc.dtepd_nrecs * sizeof (dtrace_recdesc_t)); 15191 15192 buf = kmem_alloc(size, KM_SLEEP); 15193 dest = (uintptr_t)buf; 15194 15195 bcopy(&epdesc, (void *)dest, sizeof (epdesc)); 15196 dest += offsetof(dtrace_eprobedesc_t, dtepd_rec[0]); 15197 15198 for (act = ecb->dte_action; act != NULL; act = act->dta_next) { 15199 if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple) 15200 continue; 15201 15202 if (nrecs-- == 0) 15203 break; 15204 15205 bcopy(&act->dta_rec, (void *)dest, 15206 sizeof (dtrace_recdesc_t)); 15207 dest += sizeof (dtrace_recdesc_t); 15208 } 15209 15210 mutex_exit(&dtrace_lock); 15211 15212 if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) { 15213 kmem_free(buf, size); 15214 return (EFAULT); 15215 } 15216 15217 kmem_free(buf, size); 15218 return (0); 15219 } 15220 15221 case DTRACEIOC_AGGDESC: { 15222 dtrace_aggdesc_t aggdesc; 15223 dtrace_action_t *act; 15224 dtrace_aggregation_t *agg; 15225 int nrecs; 15226 uint32_t offs; 15227 dtrace_recdesc_t *lrec; 15228 void *buf; 15229 size_t size; 15230 uintptr_t dest; 15231 15232 if (copyin((void *)arg, &aggdesc, sizeof (aggdesc)) != 0) 15233 return (EFAULT); 15234 15235 mutex_enter(&dtrace_lock); 15236 15237 if ((agg = dtrace_aggid2agg(state, aggdesc.dtagd_id)) == NULL) { 15238 mutex_exit(&dtrace_lock); 15239 return (EINVAL); 15240 } 15241 15242 aggdesc.dtagd_epid = agg->dtag_ecb->dte_epid; 15243 15244 nrecs = aggdesc.dtagd_nrecs; 15245 aggdesc.dtagd_nrecs = 0; 15246 15247 offs = agg->dtag_base; 15248 lrec = &agg->dtag_action.dta_rec; 15249 aggdesc.dtagd_size = lrec->dtrd_offset + lrec->dtrd_size - offs; 15250 15251 for (act = agg->dtag_first; ; act = act->dta_next) { 15252 ASSERT(act->dta_intuple || 15253 DTRACEACT_ISAGG(act->dta_kind)); 15254 15255 /* 15256 * If this action has a record size of zero, it 15257 * denotes an argument to the aggregating action. 15258 * Because the presence of this record doesn't (or 15259 * shouldn't) affect the way the data is interpreted, 15260 * we don't copy it out to save user-level the 15261 * confusion of dealing with a zero-length record. 15262 */ 15263 if (act->dta_rec.dtrd_size == 0) { 15264 ASSERT(agg->dtag_hasarg); 15265 continue; 15266 } 15267 15268 aggdesc.dtagd_nrecs++; 15269 15270 if (act == &agg->dtag_action) 15271 break; 15272 } 15273 15274 /* 15275 * Now that we have the size, we need to allocate a temporary 15276 * buffer in which to store the complete description. We need 15277 * the temporary buffer to be able to drop dtrace_lock() 15278 * across the copyout(), below. 15279 */ 15280 size = sizeof (dtrace_aggdesc_t) + 15281 (aggdesc.dtagd_nrecs * sizeof (dtrace_recdesc_t)); 15282 15283 buf = kmem_alloc(size, KM_SLEEP); 15284 dest = (uintptr_t)buf; 15285 15286 bcopy(&aggdesc, (void *)dest, sizeof (aggdesc)); 15287 dest += offsetof(dtrace_aggdesc_t, dtagd_rec[0]); 15288 15289 for (act = agg->dtag_first; ; act = act->dta_next) { 15290 dtrace_recdesc_t rec = act->dta_rec; 15291 15292 /* 15293 * See the comment in the above loop for why we pass 15294 * over zero-length records. 15295 */ 15296 if (rec.dtrd_size == 0) { 15297 ASSERT(agg->dtag_hasarg); 15298 continue; 15299 } 15300 15301 if (nrecs-- == 0) 15302 break; 15303 15304 rec.dtrd_offset -= offs; 15305 bcopy(&rec, (void *)dest, sizeof (rec)); 15306 dest += sizeof (dtrace_recdesc_t); 15307 15308 if (act == &agg->dtag_action) 15309 break; 15310 } 15311 15312 mutex_exit(&dtrace_lock); 15313 15314 if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) { 15315 kmem_free(buf, size); 15316 return (EFAULT); 15317 } 15318 15319 kmem_free(buf, size); 15320 return (0); 15321 } 15322 15323 case DTRACEIOC_ENABLE: { 15324 dof_hdr_t *dof; 15325 dtrace_enabling_t *enab = NULL; 15326 dtrace_vstate_t *vstate; 15327 int err = 0; 15328 15329 *rv = 0; 15330 15331 /* 15332 * If a NULL argument has been passed, we take this as our 15333 * cue to reevaluate our enablings. 15334 */ 15335 if (arg == NULL) { 15336 dtrace_enabling_matchall(); 15337 15338 return (0); 15339 } 15340 15341 if ((dof = dtrace_dof_copyin(arg, &rval)) == NULL) 15342 return (rval); 15343 15344 mutex_enter(&cpu_lock); 15345 mutex_enter(&dtrace_lock); 15346 vstate = &state->dts_vstate; 15347 15348 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) { 15349 mutex_exit(&dtrace_lock); 15350 mutex_exit(&cpu_lock); 15351 dtrace_dof_destroy(dof); 15352 return (EBUSY); 15353 } 15354 15355 if (dtrace_dof_slurp(dof, vstate, cr, &enab, 0, B_TRUE) != 0) { 15356 mutex_exit(&dtrace_lock); 15357 mutex_exit(&cpu_lock); 15358 dtrace_dof_destroy(dof); 15359 return (EINVAL); 15360 } 15361 15362 if ((rval = dtrace_dof_options(dof, state)) != 0) { 15363 dtrace_enabling_destroy(enab); 15364 mutex_exit(&dtrace_lock); 15365 mutex_exit(&cpu_lock); 15366 dtrace_dof_destroy(dof); 15367 return (rval); 15368 } 15369 15370 if ((err = dtrace_enabling_match(enab, rv)) == 0) { 15371 err = dtrace_enabling_retain(enab); 15372 } else { 15373 dtrace_enabling_destroy(enab); 15374 } 15375 15376 mutex_exit(&cpu_lock); 15377 mutex_exit(&dtrace_lock); 15378 dtrace_dof_destroy(dof); 15379 15380 return (err); 15381 } 15382 15383 case DTRACEIOC_REPLICATE: { 15384 dtrace_repldesc_t desc; 15385 dtrace_probedesc_t *match = &desc.dtrpd_match; 15386 dtrace_probedesc_t *create = &desc.dtrpd_create; 15387 int err; 15388 15389 if (copyin((void *)arg, &desc, sizeof (desc)) != 0) 15390 return (EFAULT); 15391 15392 match->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0'; 15393 match->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0'; 15394 match->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0'; 15395 match->dtpd_name[DTRACE_NAMELEN - 1] = '\0'; 15396 15397 create->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0'; 15398 create->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0'; 15399 create->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0'; 15400 create->dtpd_name[DTRACE_NAMELEN - 1] = '\0'; 15401 15402 mutex_enter(&dtrace_lock); 15403 err = dtrace_enabling_replicate(state, match, create); 15404 mutex_exit(&dtrace_lock); 15405 15406 return (err); 15407 } 15408 15409 case DTRACEIOC_PROBEMATCH: 15410 case DTRACEIOC_PROBES: { 15411 dtrace_probe_t *probe = NULL; 15412 dtrace_probedesc_t desc; 15413 dtrace_probekey_t pkey; 15414 dtrace_id_t i; 15415 int m = 0; 15416 uint32_t priv; 15417 uid_t uid; 15418 zoneid_t zoneid; 15419 15420 if (copyin((void *)arg, &desc, sizeof (desc)) != 0) 15421 return (EFAULT); 15422 15423 desc.dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0'; 15424 desc.dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0'; 15425 desc.dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0'; 15426 desc.dtpd_name[DTRACE_NAMELEN - 1] = '\0'; 15427 15428 /* 15429 * Before we attempt to match this probe, we want to give 15430 * all providers the opportunity to provide it. 15431 */ 15432 if (desc.dtpd_id == DTRACE_IDNONE) { 15433 mutex_enter(&dtrace_provider_lock); 15434 dtrace_probe_provide(&desc, NULL); 15435 mutex_exit(&dtrace_provider_lock); 15436 desc.dtpd_id++; 15437 } 15438 15439 if (cmd == DTRACEIOC_PROBEMATCH) { 15440 dtrace_probekey(&desc, &pkey); 15441 pkey.dtpk_id = DTRACE_IDNONE; 15442 } 15443 15444 dtrace_cred2priv(cr, &priv, &uid, &zoneid); 15445 15446 mutex_enter(&dtrace_lock); 15447 15448 if (cmd == DTRACEIOC_PROBEMATCH) { 15449 for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) { 15450 if ((probe = dtrace_probes[i - 1]) != NULL && 15451 (m = dtrace_match_probe(probe, &pkey, 15452 priv, uid, zoneid)) != 0) 15453 break; 15454 } 15455 15456 if (m < 0) { 15457 mutex_exit(&dtrace_lock); 15458 return (EINVAL); 15459 } 15460 15461 } else { 15462 for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) { 15463 if ((probe = dtrace_probes[i - 1]) != NULL && 15464 dtrace_match_priv(probe, priv, uid, zoneid)) 15465 break; 15466 } 15467 } 15468 15469 if (probe == NULL) { 15470 mutex_exit(&dtrace_lock); 15471 return (ESRCH); 15472 } 15473 15474 dtrace_probe_description(probe, &desc); 15475 mutex_exit(&dtrace_lock); 15476 15477 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0) 15478 return (EFAULT); 15479 15480 return (0); 15481 } 15482 15483 case DTRACEIOC_PROBEARG: { 15484 dtrace_argdesc_t desc; 15485 dtrace_probe_t *probe; 15486 dtrace_provider_t *prov; 15487 15488 if (copyin((void *)arg, &desc, sizeof (desc)) != 0) 15489 return (EFAULT); 15490 15491 if (desc.dtargd_id == DTRACE_IDNONE) 15492 return (EINVAL); 15493 15494 if (desc.dtargd_ndx == DTRACE_ARGNONE) 15495 return (EINVAL); 15496 15497 mutex_enter(&dtrace_provider_lock); 15498 mutex_enter(&mod_lock); 15499 mutex_enter(&dtrace_lock); 15500 15501 if (desc.dtargd_id > dtrace_nprobes) { 15502 mutex_exit(&dtrace_lock); 15503 mutex_exit(&mod_lock); 15504 mutex_exit(&dtrace_provider_lock); 15505 return (EINVAL); 15506 } 15507 15508 if ((probe = dtrace_probes[desc.dtargd_id - 1]) == NULL) { 15509 mutex_exit(&dtrace_lock); 15510 mutex_exit(&mod_lock); 15511 mutex_exit(&dtrace_provider_lock); 15512 return (EINVAL); 15513 } 15514 15515 mutex_exit(&dtrace_lock); 15516 15517 prov = probe->dtpr_provider; 15518 15519 if (prov->dtpv_pops.dtps_getargdesc == NULL) { 15520 /* 15521 * There isn't any typed information for this probe. 15522 * Set the argument number to DTRACE_ARGNONE. 15523 */ 15524 desc.dtargd_ndx = DTRACE_ARGNONE; 15525 } else { 15526 desc.dtargd_native[0] = '\0'; 15527 desc.dtargd_xlate[0] = '\0'; 15528 desc.dtargd_mapping = desc.dtargd_ndx; 15529 15530 prov->dtpv_pops.dtps_getargdesc(prov->dtpv_arg, 15531 probe->dtpr_id, probe->dtpr_arg, &desc); 15532 } 15533 15534 mutex_exit(&mod_lock); 15535 mutex_exit(&dtrace_provider_lock); 15536 15537 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0) 15538 return (EFAULT); 15539 15540 return (0); 15541 } 15542 15543 case DTRACEIOC_GO: { 15544 processorid_t cpuid; 15545 rval = dtrace_state_go(state, &cpuid); 15546 15547 if (rval != 0) 15548 return (rval); 15549 15550 if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0) 15551 return (EFAULT); 15552 15553 return (0); 15554 } 15555 15556 case DTRACEIOC_STOP: { 15557 processorid_t cpuid; 15558 15559 mutex_enter(&dtrace_lock); 15560 rval = dtrace_state_stop(state, &cpuid); 15561 mutex_exit(&dtrace_lock); 15562 15563 if (rval != 0) 15564 return (rval); 15565 15566 if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0) 15567 return (EFAULT); 15568 15569 return (0); 15570 } 15571 15572 case DTRACEIOC_DOFGET: { 15573 dof_hdr_t hdr, *dof; 15574 uint64_t len; 15575 15576 if (copyin((void *)arg, &hdr, sizeof (hdr)) != 0) 15577 return (EFAULT); 15578 15579 mutex_enter(&dtrace_lock); 15580 dof = dtrace_dof_create(state); 15581 mutex_exit(&dtrace_lock); 15582 15583 len = MIN(hdr.dofh_loadsz, dof->dofh_loadsz); 15584 rval = copyout(dof, (void *)arg, len); 15585 dtrace_dof_destroy(dof); 15586 15587 return (rval == 0 ? 0 : EFAULT); 15588 } 15589 15590 case DTRACEIOC_AGGSNAP: 15591 case DTRACEIOC_BUFSNAP: { 15592 dtrace_bufdesc_t desc; 15593 caddr_t cached; 15594 dtrace_buffer_t *buf; 15595 15596 if (copyin((void *)arg, &desc, sizeof (desc)) != 0) 15597 return (EFAULT); 15598 15599 if (desc.dtbd_cpu < 0 || desc.dtbd_cpu >= NCPU) 15600 return (EINVAL); 15601 15602 mutex_enter(&dtrace_lock); 15603 15604 if (cmd == DTRACEIOC_BUFSNAP) { 15605 buf = &state->dts_buffer[desc.dtbd_cpu]; 15606 } else { 15607 buf = &state->dts_aggbuffer[desc.dtbd_cpu]; 15608 } 15609 15610 if (buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL)) { 15611 size_t sz = buf->dtb_offset; 15612 15613 if (state->dts_activity != DTRACE_ACTIVITY_STOPPED) { 15614 mutex_exit(&dtrace_lock); 15615 return (EBUSY); 15616 } 15617 15618 /* 15619 * If this buffer has already been consumed, we're 15620 * going to indicate that there's nothing left here 15621 * to consume. 15622 */ 15623 if (buf->dtb_flags & DTRACEBUF_CONSUMED) { 15624 mutex_exit(&dtrace_lock); 15625 15626 desc.dtbd_size = 0; 15627 desc.dtbd_drops = 0; 15628 desc.dtbd_errors = 0; 15629 desc.dtbd_oldest = 0; 15630 sz = sizeof (desc); 15631 15632 if (copyout(&desc, (void *)arg, sz) != 0) 15633 return (EFAULT); 15634 15635 return (0); 15636 } 15637 15638 /* 15639 * If this is a ring buffer that has wrapped, we want 15640 * to copy the whole thing out. 15641 */ 15642 if (buf->dtb_flags & DTRACEBUF_WRAPPED) { 15643 dtrace_buffer_polish(buf); 15644 sz = buf->dtb_size; 15645 } 15646 15647 if (copyout(buf->dtb_tomax, desc.dtbd_data, sz) != 0) { 15648 mutex_exit(&dtrace_lock); 15649 return (EFAULT); 15650 } 15651 15652 desc.dtbd_size = sz; 15653 desc.dtbd_drops = buf->dtb_drops; 15654 desc.dtbd_errors = buf->dtb_errors; 15655 desc.dtbd_oldest = buf->dtb_xamot_offset; 15656 desc.dtbd_timestamp = dtrace_gethrtime(); 15657 15658 mutex_exit(&dtrace_lock); 15659 15660 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0) 15661 return (EFAULT); 15662 15663 buf->dtb_flags |= DTRACEBUF_CONSUMED; 15664 15665 return (0); 15666 } 15667 15668 if (buf->dtb_tomax == NULL) { 15669 ASSERT(buf->dtb_xamot == NULL); 15670 mutex_exit(&dtrace_lock); 15671 return (ENOENT); 15672 } 15673 15674 cached = buf->dtb_tomax; 15675 ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH)); 15676 15677 dtrace_xcall(desc.dtbd_cpu, 15678 (dtrace_xcall_t)dtrace_buffer_switch, buf); 15679 15680 state->dts_errors += buf->dtb_xamot_errors; 15681 15682 /* 15683 * If the buffers did not actually switch, then the cross call 15684 * did not take place -- presumably because the given CPU is 15685 * not in the ready set. If this is the case, we'll return 15686 * ENOENT. 15687 */ 15688 if (buf->dtb_tomax == cached) { 15689 ASSERT(buf->dtb_xamot != cached); 15690 mutex_exit(&dtrace_lock); 15691 return (ENOENT); 15692 } 15693 15694 ASSERT(cached == buf->dtb_xamot); 15695 15696 /* 15697 * We have our snapshot; now copy it out. 15698 */ 15699 if (copyout(buf->dtb_xamot, desc.dtbd_data, 15700 buf->dtb_xamot_offset) != 0) { 15701 mutex_exit(&dtrace_lock); 15702 return (EFAULT); 15703 } 15704 15705 desc.dtbd_size = buf->dtb_xamot_offset; 15706 desc.dtbd_drops = buf->dtb_xamot_drops; 15707 desc.dtbd_errors = buf->dtb_xamot_errors; 15708 desc.dtbd_oldest = 0; 15709 desc.dtbd_timestamp = buf->dtb_switched; 15710 15711 mutex_exit(&dtrace_lock); 15712 15713 /* 15714 * Finally, copy out the buffer description. 15715 */ 15716 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0) 15717 return (EFAULT); 15718 15719 return (0); 15720 } 15721 15722 case DTRACEIOC_CONF: { 15723 dtrace_conf_t conf; 15724 15725 bzero(&conf, sizeof (conf)); 15726 conf.dtc_difversion = DIF_VERSION; 15727 conf.dtc_difintregs = DIF_DIR_NREGS; 15728 conf.dtc_diftupregs = DIF_DTR_NREGS; 15729 conf.dtc_ctfmodel = CTF_MODEL_NATIVE; 15730 15731 if (copyout(&conf, (void *)arg, sizeof (conf)) != 0) 15732 return (EFAULT); 15733 15734 return (0); 15735 } 15736 15737 case DTRACEIOC_STATUS: { 15738 dtrace_status_t stat; 15739 dtrace_dstate_t *dstate; 15740 int i, j; 15741 uint64_t nerrs; 15742 15743 /* 15744 * See the comment in dtrace_state_deadman() for the reason 15745 * for setting dts_laststatus to INT64_MAX before setting 15746 * it to the correct value. 15747 */ 15748 state->dts_laststatus = INT64_MAX; 15749 dtrace_membar_producer(); 15750 state->dts_laststatus = dtrace_gethrtime(); 15751 15752 bzero(&stat, sizeof (stat)); 15753 15754 mutex_enter(&dtrace_lock); 15755 15756 if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE) { 15757 mutex_exit(&dtrace_lock); 15758 return (ENOENT); 15759 } 15760 15761 if (state->dts_activity == DTRACE_ACTIVITY_DRAINING) 15762 stat.dtst_exiting = 1; 15763 15764 nerrs = state->dts_errors; 15765 dstate = &state->dts_vstate.dtvs_dynvars; 15766 15767 for (i = 0; i < NCPU; i++) { 15768 dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[i]; 15769 15770 stat.dtst_dyndrops += dcpu->dtdsc_drops; 15771 stat.dtst_dyndrops_dirty += dcpu->dtdsc_dirty_drops; 15772 stat.dtst_dyndrops_rinsing += dcpu->dtdsc_rinsing_drops; 15773 15774 if (state->dts_buffer[i].dtb_flags & DTRACEBUF_FULL) 15775 stat.dtst_filled++; 15776 15777 nerrs += state->dts_buffer[i].dtb_errors; 15778 15779 for (j = 0; j < state->dts_nspeculations; j++) { 15780 dtrace_speculation_t *spec; 15781 dtrace_buffer_t *buf; 15782 15783 spec = &state->dts_speculations[j]; 15784 buf = &spec->dtsp_buffer[i]; 15785 stat.dtst_specdrops += buf->dtb_xamot_drops; 15786 } 15787 } 15788 15789 stat.dtst_specdrops_busy = state->dts_speculations_busy; 15790 stat.dtst_specdrops_unavail = state->dts_speculations_unavail; 15791 stat.dtst_stkstroverflows = state->dts_stkstroverflows; 15792 stat.dtst_dblerrors = state->dts_dblerrors; 15793 stat.dtst_killed = 15794 (state->dts_activity == DTRACE_ACTIVITY_KILLED); 15795 stat.dtst_errors = nerrs; 15796 15797 mutex_exit(&dtrace_lock); 15798 15799 if (copyout(&stat, (void *)arg, sizeof (stat)) != 0) 15800 return (EFAULT); 15801 15802 return (0); 15803 } 15804 15805 case DTRACEIOC_FORMAT: { 15806 dtrace_fmtdesc_t fmt; 15807 char *str; 15808 int len; 15809 15810 if (copyin((void *)arg, &fmt, sizeof (fmt)) != 0) 15811 return (EFAULT); 15812 15813 mutex_enter(&dtrace_lock); 15814 15815 if (fmt.dtfd_format == 0 || 15816 fmt.dtfd_format > state->dts_nformats) { 15817 mutex_exit(&dtrace_lock); 15818 return (EINVAL); 15819 } 15820 15821 /* 15822 * Format strings are allocated contiguously and they are 15823 * never freed; if a format index is less than the number 15824 * of formats, we can assert that the format map is non-NULL 15825 * and that the format for the specified index is non-NULL. 15826 */ 15827 ASSERT(state->dts_formats != NULL); 15828 str = state->dts_formats[fmt.dtfd_format - 1]; 15829 ASSERT(str != NULL); 15830 15831 len = strlen(str) + 1; 15832 15833 if (len > fmt.dtfd_length) { 15834 fmt.dtfd_length = len; 15835 15836 if (copyout(&fmt, (void *)arg, sizeof (fmt)) != 0) { 15837 mutex_exit(&dtrace_lock); 15838 return (EINVAL); 15839 } 15840 } else { 15841 if (copyout(str, fmt.dtfd_string, len) != 0) { 15842 mutex_exit(&dtrace_lock); 15843 return (EINVAL); 15844 } 15845 } 15846 15847 mutex_exit(&dtrace_lock); 15848 return (0); 15849 } 15850 15851 default: 15852 break; 15853 } 15854 15855 return (ENOTTY); 15856 } 15857 15858 /*ARGSUSED*/ 15859 static int 15860 dtrace_detach(dev_info_t *dip, ddi_detach_cmd_t cmd) 15861 { 15862 dtrace_state_t *state; 15863 15864 switch (cmd) { 15865 case DDI_DETACH: 15866 break; 15867 15868 case DDI_SUSPEND: 15869 return (DDI_SUCCESS); 15870 15871 default: 15872 return (DDI_FAILURE); 15873 } 15874 15875 mutex_enter(&cpu_lock); 15876 mutex_enter(&dtrace_provider_lock); 15877 mutex_enter(&dtrace_lock); 15878 15879 ASSERT(dtrace_opens == 0); 15880 15881 if (dtrace_helpers > 0) { 15882 mutex_exit(&dtrace_provider_lock); 15883 mutex_exit(&dtrace_lock); 15884 mutex_exit(&cpu_lock); 15885 return (DDI_FAILURE); 15886 } 15887 15888 if (dtrace_unregister((dtrace_provider_id_t)dtrace_provider) != 0) { 15889 mutex_exit(&dtrace_provider_lock); 15890 mutex_exit(&dtrace_lock); 15891 mutex_exit(&cpu_lock); 15892 return (DDI_FAILURE); 15893 } 15894 15895 dtrace_provider = NULL; 15896 15897 if ((state = dtrace_anon_grab()) != NULL) { 15898 /* 15899 * If there were ECBs on this state, the provider should 15900 * have not been allowed to detach; assert that there is 15901 * none. 15902 */ 15903 ASSERT(state->dts_necbs == 0); 15904 dtrace_state_destroy(state); 15905 15906 /* 15907 * If we're being detached with anonymous state, we need to 15908 * indicate to the kernel debugger that DTrace is now inactive. 15909 */ 15910 (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE); 15911 } 15912 15913 bzero(&dtrace_anon, sizeof (dtrace_anon_t)); 15914 unregister_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL); 15915 dtrace_cpu_init = NULL; 15916 dtrace_helpers_cleanup = NULL; 15917 dtrace_helpers_fork = NULL; 15918 dtrace_cpustart_init = NULL; 15919 dtrace_cpustart_fini = NULL; 15920 dtrace_debugger_init = NULL; 15921 dtrace_debugger_fini = NULL; 15922 dtrace_modload = NULL; 15923 dtrace_modunload = NULL; 15924 15925 mutex_exit(&cpu_lock); 15926 15927 if (dtrace_helptrace_enabled) { 15928 kmem_free(dtrace_helptrace_buffer, dtrace_helptrace_bufsize); 15929 dtrace_helptrace_buffer = NULL; 15930 } 15931 15932 kmem_free(dtrace_probes, dtrace_nprobes * sizeof (dtrace_probe_t *)); 15933 dtrace_probes = NULL; 15934 dtrace_nprobes = 0; 15935 15936 dtrace_hash_destroy(dtrace_bymod); 15937 dtrace_hash_destroy(dtrace_byfunc); 15938 dtrace_hash_destroy(dtrace_byname); 15939 dtrace_bymod = NULL; 15940 dtrace_byfunc = NULL; 15941 dtrace_byname = NULL; 15942 15943 kmem_cache_destroy(dtrace_state_cache); 15944 vmem_destroy(dtrace_minor); 15945 vmem_destroy(dtrace_arena); 15946 15947 if (dtrace_toxrange != NULL) { 15948 kmem_free(dtrace_toxrange, 15949 dtrace_toxranges_max * sizeof (dtrace_toxrange_t)); 15950 dtrace_toxrange = NULL; 15951 dtrace_toxranges = 0; 15952 dtrace_toxranges_max = 0; 15953 } 15954 15955 ddi_remove_minor_node(dtrace_devi, NULL); 15956 dtrace_devi = NULL; 15957 15958 ddi_soft_state_fini(&dtrace_softstate); 15959 15960 ASSERT(dtrace_vtime_references == 0); 15961 ASSERT(dtrace_opens == 0); 15962 ASSERT(dtrace_retained == NULL); 15963 15964 mutex_exit(&dtrace_lock); 15965 mutex_exit(&dtrace_provider_lock); 15966 15967 /* 15968 * We don't destroy the task queue until after we have dropped our 15969 * locks (taskq_destroy() may block on running tasks). To prevent 15970 * attempting to do work after we have effectively detached but before 15971 * the task queue has been destroyed, all tasks dispatched via the 15972 * task queue must check that DTrace is still attached before 15973 * performing any operation. 15974 */ 15975 taskq_destroy(dtrace_taskq); 15976 dtrace_taskq = NULL; 15977 15978 return (DDI_SUCCESS); 15979 } 15980 15981 /*ARGSUSED*/ 15982 static int 15983 dtrace_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result) 15984 { 15985 int error; 15986 15987 switch (infocmd) { 15988 case DDI_INFO_DEVT2DEVINFO: 15989 *result = (void *)dtrace_devi; 15990 error = DDI_SUCCESS; 15991 break; 15992 case DDI_INFO_DEVT2INSTANCE: 15993 *result = (void *)0; 15994 error = DDI_SUCCESS; 15995 break; 15996 default: 15997 error = DDI_FAILURE; 15998 } 15999 return (error); 16000 } 16001 16002 static struct cb_ops dtrace_cb_ops = { 16003 dtrace_open, /* open */ 16004 dtrace_close, /* close */ 16005 nulldev, /* strategy */ 16006 nulldev, /* print */ 16007 nodev, /* dump */ 16008 nodev, /* read */ 16009 nodev, /* write */ 16010 dtrace_ioctl, /* ioctl */ 16011 nodev, /* devmap */ 16012 nodev, /* mmap */ 16013 nodev, /* segmap */ 16014 nochpoll, /* poll */ 16015 ddi_prop_op, /* cb_prop_op */ 16016 0, /* streamtab */ 16017 D_NEW | D_MP /* Driver compatibility flag */ 16018 }; 16019 16020 static struct dev_ops dtrace_ops = { 16021 DEVO_REV, /* devo_rev */ 16022 0, /* refcnt */ 16023 dtrace_info, /* get_dev_info */ 16024 nulldev, /* identify */ 16025 nulldev, /* probe */ 16026 dtrace_attach, /* attach */ 16027 dtrace_detach, /* detach */ 16028 nodev, /* reset */ 16029 &dtrace_cb_ops, /* driver operations */ 16030 NULL, /* bus operations */ 16031 nodev, /* dev power */ 16032 ddi_quiesce_not_needed, /* quiesce */ 16033 }; 16034 16035 static struct modldrv modldrv = { 16036 &mod_driverops, /* module type (this is a pseudo driver) */ 16037 "Dynamic Tracing", /* name of module */ 16038 &dtrace_ops, /* driver ops */ 16039 }; 16040 16041 static struct modlinkage modlinkage = { 16042 MODREV_1, 16043 (void *)&modldrv, 16044 NULL 16045 }; 16046 16047 int 16048 _init(void) 16049 { 16050 return (mod_install(&modlinkage)); 16051 } 16052 16053 int 16054 _info(struct modinfo *modinfop) 16055 { 16056 return (mod_info(&modlinkage, modinfop)); 16057 } 16058 16059 int 16060 _fini(void) 16061 { 16062 return (mod_remove(&modlinkage)); 16063 } 16064