xref: /titanic_52/usr/src/uts/common/dtrace/dtrace.c (revision 6319b0c72e1681f79a5f33dfa976a63eedd4a2a4)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2011, Joyent, Inc. All rights reserved.
25  */
26 
27 /*
28  * DTrace - Dynamic Tracing for Solaris
29  *
30  * This is the implementation of the Solaris Dynamic Tracing framework
31  * (DTrace).  The user-visible interface to DTrace is described at length in
32  * the "Solaris Dynamic Tracing Guide".  The interfaces between the libdtrace
33  * library, the in-kernel DTrace framework, and the DTrace providers are
34  * described in the block comments in the <sys/dtrace.h> header file.  The
35  * internal architecture of DTrace is described in the block comments in the
36  * <sys/dtrace_impl.h> header file.  The comments contained within the DTrace
37  * implementation very much assume mastery of all of these sources; if one has
38  * an unanswered question about the implementation, one should consult them
39  * first.
40  *
41  * The functions here are ordered roughly as follows:
42  *
43  *   - Probe context functions
44  *   - Probe hashing functions
45  *   - Non-probe context utility functions
46  *   - Matching functions
47  *   - Provider-to-Framework API functions
48  *   - Probe management functions
49  *   - DIF object functions
50  *   - Format functions
51  *   - Predicate functions
52  *   - ECB functions
53  *   - Buffer functions
54  *   - Enabling functions
55  *   - DOF functions
56  *   - Anonymous enabling functions
57  *   - Consumer state functions
58  *   - Helper functions
59  *   - Hook functions
60  *   - Driver cookbook functions
61  *
62  * Each group of functions begins with a block comment labelled the "DTrace
63  * [Group] Functions", allowing one to find each block by searching forward
64  * on capital-f functions.
65  */
66 #include <sys/errno.h>
67 #include <sys/stat.h>
68 #include <sys/modctl.h>
69 #include <sys/conf.h>
70 #include <sys/systm.h>
71 #include <sys/ddi.h>
72 #include <sys/sunddi.h>
73 #include <sys/cpuvar.h>
74 #include <sys/kmem.h>
75 #include <sys/strsubr.h>
76 #include <sys/sysmacros.h>
77 #include <sys/dtrace_impl.h>
78 #include <sys/atomic.h>
79 #include <sys/cmn_err.h>
80 #include <sys/mutex_impl.h>
81 #include <sys/rwlock_impl.h>
82 #include <sys/ctf_api.h>
83 #include <sys/panic.h>
84 #include <sys/priv_impl.h>
85 #include <sys/policy.h>
86 #include <sys/cred_impl.h>
87 #include <sys/procfs_isa.h>
88 #include <sys/taskq.h>
89 #include <sys/mkdev.h>
90 #include <sys/kdi.h>
91 #include <sys/zone.h>
92 #include <sys/socket.h>
93 #include <netinet/in.h>
94 
95 /*
96  * DTrace Tunable Variables
97  *
98  * The following variables may be tuned by adding a line to /etc/system that
99  * includes both the name of the DTrace module ("dtrace") and the name of the
100  * variable.  For example:
101  *
102  *   set dtrace:dtrace_destructive_disallow = 1
103  *
104  * In general, the only variables that one should be tuning this way are those
105  * that affect system-wide DTrace behavior, and for which the default behavior
106  * is undesirable.  Most of these variables are tunable on a per-consumer
107  * basis using DTrace options, and need not be tuned on a system-wide basis.
108  * When tuning these variables, avoid pathological values; while some attempt
109  * is made to verify the integrity of these variables, they are not considered
110  * part of the supported interface to DTrace, and they are therefore not
111  * checked comprehensively.  Further, these variables should not be tuned
112  * dynamically via "mdb -kw" or other means; they should only be tuned via
113  * /etc/system.
114  */
115 int		dtrace_destructive_disallow = 0;
116 dtrace_optval_t	dtrace_nonroot_maxsize = (16 * 1024 * 1024);
117 size_t		dtrace_difo_maxsize = (256 * 1024);
118 dtrace_optval_t	dtrace_dof_maxsize = (256 * 1024);
119 size_t		dtrace_global_maxsize = (16 * 1024);
120 size_t		dtrace_actions_max = (16 * 1024);
121 size_t		dtrace_retain_max = 1024;
122 dtrace_optval_t	dtrace_helper_actions_max = 32;
123 dtrace_optval_t	dtrace_helper_providers_max = 32;
124 dtrace_optval_t	dtrace_dstate_defsize = (1 * 1024 * 1024);
125 size_t		dtrace_strsize_default = 256;
126 dtrace_optval_t	dtrace_cleanrate_default = 9900990;		/* 101 hz */
127 dtrace_optval_t	dtrace_cleanrate_min = 200000;			/* 5000 hz */
128 dtrace_optval_t	dtrace_cleanrate_max = (uint64_t)60 * NANOSEC;	/* 1/minute */
129 dtrace_optval_t	dtrace_aggrate_default = NANOSEC;		/* 1 hz */
130 dtrace_optval_t	dtrace_statusrate_default = NANOSEC;		/* 1 hz */
131 dtrace_optval_t dtrace_statusrate_max = (hrtime_t)10 * NANOSEC;	 /* 6/minute */
132 dtrace_optval_t	dtrace_switchrate_default = NANOSEC;		/* 1 hz */
133 dtrace_optval_t	dtrace_nspec_default = 1;
134 dtrace_optval_t	dtrace_specsize_default = 32 * 1024;
135 dtrace_optval_t dtrace_stackframes_default = 20;
136 dtrace_optval_t dtrace_ustackframes_default = 20;
137 dtrace_optval_t dtrace_jstackframes_default = 50;
138 dtrace_optval_t dtrace_jstackstrsize_default = 512;
139 int		dtrace_msgdsize_max = 128;
140 hrtime_t	dtrace_chill_max = 500 * (NANOSEC / MILLISEC);	/* 500 ms */
141 hrtime_t	dtrace_chill_interval = NANOSEC;		/* 1000 ms */
142 int		dtrace_devdepth_max = 32;
143 int		dtrace_err_verbose;
144 hrtime_t	dtrace_deadman_interval = NANOSEC;
145 hrtime_t	dtrace_deadman_timeout = (hrtime_t)10 * NANOSEC;
146 hrtime_t	dtrace_deadman_user = (hrtime_t)30 * NANOSEC;
147 hrtime_t	dtrace_unregister_defunct_reap = (hrtime_t)60 * NANOSEC;
148 
149 /*
150  * DTrace External Variables
151  *
152  * As dtrace(7D) is a kernel module, any DTrace variables are obviously
153  * available to DTrace consumers via the backtick (`) syntax.  One of these,
154  * dtrace_zero, is made deliberately so:  it is provided as a source of
155  * well-known, zero-filled memory.  While this variable is not documented,
156  * it is used by some translators as an implementation detail.
157  */
158 const char	dtrace_zero[256] = { 0 };	/* zero-filled memory */
159 
160 /*
161  * DTrace Internal Variables
162  */
163 static dev_info_t	*dtrace_devi;		/* device info */
164 static vmem_t		*dtrace_arena;		/* probe ID arena */
165 static vmem_t		*dtrace_minor;		/* minor number arena */
166 static taskq_t		*dtrace_taskq;		/* task queue */
167 static dtrace_probe_t	**dtrace_probes;	/* array of all probes */
168 static int		dtrace_nprobes;		/* number of probes */
169 static dtrace_provider_t *dtrace_provider;	/* provider list */
170 static dtrace_meta_t	*dtrace_meta_pid;	/* user-land meta provider */
171 static int		dtrace_opens;		/* number of opens */
172 static int		dtrace_helpers;		/* number of helpers */
173 static void		*dtrace_softstate;	/* softstate pointer */
174 static dtrace_hash_t	*dtrace_bymod;		/* probes hashed by module */
175 static dtrace_hash_t	*dtrace_byfunc;		/* probes hashed by function */
176 static dtrace_hash_t	*dtrace_byname;		/* probes hashed by name */
177 static dtrace_toxrange_t *dtrace_toxrange;	/* toxic range array */
178 static int		dtrace_toxranges;	/* number of toxic ranges */
179 static int		dtrace_toxranges_max;	/* size of toxic range array */
180 static dtrace_anon_t	dtrace_anon;		/* anonymous enabling */
181 static kmem_cache_t	*dtrace_state_cache;	/* cache for dynamic state */
182 static uint64_t		dtrace_vtime_references; /* number of vtimestamp refs */
183 static kthread_t	*dtrace_panicked;	/* panicking thread */
184 static dtrace_ecb_t	*dtrace_ecb_create_cache; /* cached created ECB */
185 static dtrace_genid_t	dtrace_probegen;	/* current probe generation */
186 static dtrace_helpers_t *dtrace_deferred_pid;	/* deferred helper list */
187 static dtrace_enabling_t *dtrace_retained;	/* list of retained enablings */
188 static dtrace_genid_t	dtrace_retained_gen;	/* current retained enab gen */
189 static dtrace_dynvar_t	dtrace_dynhash_sink;	/* end of dynamic hash chains */
190 static int		dtrace_dynvar_failclean; /* dynvars failed to clean */
191 
192 /*
193  * DTrace Locking
194  * DTrace is protected by three (relatively coarse-grained) locks:
195  *
196  * (1) dtrace_lock is required to manipulate essentially any DTrace state,
197  *     including enabling state, probes, ECBs, consumer state, helper state,
198  *     etc.  Importantly, dtrace_lock is _not_ required when in probe context;
199  *     probe context is lock-free -- synchronization is handled via the
200  *     dtrace_sync() cross call mechanism.
201  *
202  * (2) dtrace_provider_lock is required when manipulating provider state, or
203  *     when provider state must be held constant.
204  *
205  * (3) dtrace_meta_lock is required when manipulating meta provider state, or
206  *     when meta provider state must be held constant.
207  *
208  * The lock ordering between these three locks is dtrace_meta_lock before
209  * dtrace_provider_lock before dtrace_lock.  (In particular, there are
210  * several places where dtrace_provider_lock is held by the framework as it
211  * calls into the providers -- which then call back into the framework,
212  * grabbing dtrace_lock.)
213  *
214  * There are two other locks in the mix:  mod_lock and cpu_lock.  With respect
215  * to dtrace_provider_lock and dtrace_lock, cpu_lock continues its historical
216  * role as a coarse-grained lock; it is acquired before both of these locks.
217  * With respect to dtrace_meta_lock, its behavior is stranger:  cpu_lock must
218  * be acquired _between_ dtrace_meta_lock and any other DTrace locks.
219  * mod_lock is similar with respect to dtrace_provider_lock in that it must be
220  * acquired _between_ dtrace_provider_lock and dtrace_lock.
221  */
222 static kmutex_t		dtrace_lock;		/* probe state lock */
223 static kmutex_t		dtrace_provider_lock;	/* provider state lock */
224 static kmutex_t		dtrace_meta_lock;	/* meta-provider state lock */
225 
226 /*
227  * DTrace Provider Variables
228  *
229  * These are the variables relating to DTrace as a provider (that is, the
230  * provider of the BEGIN, END, and ERROR probes).
231  */
232 static dtrace_pattr_t	dtrace_provider_attr = {
233 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
234 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN },
235 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN },
236 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
237 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
238 };
239 
240 static void
241 dtrace_nullop(void)
242 {}
243 
244 static int
245 dtrace_enable_nullop(void)
246 {
247 	return (0);
248 }
249 
250 static dtrace_pops_t	dtrace_provider_ops = {
251 	(void (*)(void *, const dtrace_probedesc_t *))dtrace_nullop,
252 	(void (*)(void *, struct modctl *))dtrace_nullop,
253 	(int (*)(void *, dtrace_id_t, void *))dtrace_enable_nullop,
254 	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
255 	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
256 	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
257 	NULL,
258 	NULL,
259 	NULL,
260 	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop
261 };
262 
263 static dtrace_id_t	dtrace_probeid_begin;	/* special BEGIN probe */
264 static dtrace_id_t	dtrace_probeid_end;	/* special END probe */
265 dtrace_id_t		dtrace_probeid_error;	/* special ERROR probe */
266 
267 /*
268  * DTrace Helper Tracing Variables
269  */
270 uint32_t dtrace_helptrace_next = 0;
271 uint32_t dtrace_helptrace_nlocals;
272 char	*dtrace_helptrace_buffer;
273 int	dtrace_helptrace_bufsize = 512 * 1024;
274 
275 #ifdef DEBUG
276 int	dtrace_helptrace_enabled = 1;
277 #else
278 int	dtrace_helptrace_enabled = 0;
279 #endif
280 
281 /*
282  * DTrace Error Hashing
283  *
284  * On DEBUG kernels, DTrace will track the errors that has seen in a hash
285  * table.  This is very useful for checking coverage of tests that are
286  * expected to induce DIF or DOF processing errors, and may be useful for
287  * debugging problems in the DIF code generator or in DOF generation .  The
288  * error hash may be examined with the ::dtrace_errhash MDB dcmd.
289  */
290 #ifdef DEBUG
291 static dtrace_errhash_t	dtrace_errhash[DTRACE_ERRHASHSZ];
292 static const char *dtrace_errlast;
293 static kthread_t *dtrace_errthread;
294 static kmutex_t dtrace_errlock;
295 #endif
296 
297 /*
298  * DTrace Macros and Constants
299  *
300  * These are various macros that are useful in various spots in the
301  * implementation, along with a few random constants that have no meaning
302  * outside of the implementation.  There is no real structure to this cpp
303  * mishmash -- but is there ever?
304  */
305 #define	DTRACE_HASHSTR(hash, probe)	\
306 	dtrace_hash_str(*((char **)((uintptr_t)(probe) + (hash)->dth_stroffs)))
307 
308 #define	DTRACE_HASHNEXT(hash, probe)	\
309 	(dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_nextoffs)
310 
311 #define	DTRACE_HASHPREV(hash, probe)	\
312 	(dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_prevoffs)
313 
314 #define	DTRACE_HASHEQ(hash, lhs, rhs)	\
315 	(strcmp(*((char **)((uintptr_t)(lhs) + (hash)->dth_stroffs)), \
316 	    *((char **)((uintptr_t)(rhs) + (hash)->dth_stroffs))) == 0)
317 
318 #define	DTRACE_AGGHASHSIZE_SLEW		17
319 
320 #define	DTRACE_V4MAPPED_OFFSET		(sizeof (uint32_t) * 3)
321 
322 /*
323  * The key for a thread-local variable consists of the lower 61 bits of the
324  * t_did, plus the 3 bits of the highest active interrupt above LOCK_LEVEL.
325  * We add DIF_VARIABLE_MAX to t_did to assure that the thread key is never
326  * equal to a variable identifier.  This is necessary (but not sufficient) to
327  * assure that global associative arrays never collide with thread-local
328  * variables.  To guarantee that they cannot collide, we must also define the
329  * order for keying dynamic variables.  That order is:
330  *
331  *   [ key0 ] ... [ keyn ] [ variable-key ] [ tls-key ]
332  *
333  * Because the variable-key and the tls-key are in orthogonal spaces, there is
334  * no way for a global variable key signature to match a thread-local key
335  * signature.
336  */
337 #define	DTRACE_TLS_THRKEY(where) { \
338 	uint_t intr = 0; \
339 	uint_t actv = CPU->cpu_intr_actv >> (LOCK_LEVEL + 1); \
340 	for (; actv; actv >>= 1) \
341 		intr++; \
342 	ASSERT(intr < (1 << 3)); \
343 	(where) = ((curthread->t_did + DIF_VARIABLE_MAX) & \
344 	    (((uint64_t)1 << 61) - 1)) | ((uint64_t)intr << 61); \
345 }
346 
347 #define	DT_BSWAP_8(x)	((x) & 0xff)
348 #define	DT_BSWAP_16(x)	((DT_BSWAP_8(x) << 8) | DT_BSWAP_8((x) >> 8))
349 #define	DT_BSWAP_32(x)	((DT_BSWAP_16(x) << 16) | DT_BSWAP_16((x) >> 16))
350 #define	DT_BSWAP_64(x)	((DT_BSWAP_32(x) << 32) | DT_BSWAP_32((x) >> 32))
351 
352 #define	DT_MASK_LO 0x00000000FFFFFFFFULL
353 
354 #define	DTRACE_STORE(type, tomax, offset, what) \
355 	*((type *)((uintptr_t)(tomax) + (uintptr_t)offset)) = (type)(what);
356 
357 #ifndef __i386
358 #define	DTRACE_ALIGNCHECK(addr, size, flags)				\
359 	if (addr & (size - 1)) {					\
360 		*flags |= CPU_DTRACE_BADALIGN;				\
361 		cpu_core[CPU->cpu_id].cpuc_dtrace_illval = addr;	\
362 		return (0);						\
363 	}
364 #else
365 #define	DTRACE_ALIGNCHECK(addr, size, flags)
366 #endif
367 
368 /*
369  * Test whether a range of memory starting at testaddr of size testsz falls
370  * within the range of memory described by addr, sz.  We take care to avoid
371  * problems with overflow and underflow of the unsigned quantities, and
372  * disallow all negative sizes.  Ranges of size 0 are allowed.
373  */
374 #define	DTRACE_INRANGE(testaddr, testsz, baseaddr, basesz) \
375 	((testaddr) - (baseaddr) < (basesz) && \
376 	(testaddr) + (testsz) - (baseaddr) <= (basesz) && \
377 	(testaddr) + (testsz) >= (testaddr))
378 
379 /*
380  * Test whether alloc_sz bytes will fit in the scratch region.  We isolate
381  * alloc_sz on the righthand side of the comparison in order to avoid overflow
382  * or underflow in the comparison with it.  This is simpler than the INRANGE
383  * check above, because we know that the dtms_scratch_ptr is valid in the
384  * range.  Allocations of size zero are allowed.
385  */
386 #define	DTRACE_INSCRATCH(mstate, alloc_sz) \
387 	((mstate)->dtms_scratch_base + (mstate)->dtms_scratch_size - \
388 	(mstate)->dtms_scratch_ptr >= (alloc_sz))
389 
390 #define	DTRACE_LOADFUNC(bits)						\
391 /*CSTYLED*/								\
392 uint##bits##_t								\
393 dtrace_load##bits(uintptr_t addr)					\
394 {									\
395 	size_t size = bits / NBBY;					\
396 	/*CSTYLED*/							\
397 	uint##bits##_t rval;						\
398 	int i;								\
399 	volatile uint16_t *flags = (volatile uint16_t *)		\
400 	    &cpu_core[CPU->cpu_id].cpuc_dtrace_flags;			\
401 									\
402 	DTRACE_ALIGNCHECK(addr, size, flags);				\
403 									\
404 	for (i = 0; i < dtrace_toxranges; i++) {			\
405 		if (addr >= dtrace_toxrange[i].dtt_limit)		\
406 			continue;					\
407 									\
408 		if (addr + size <= dtrace_toxrange[i].dtt_base)		\
409 			continue;					\
410 									\
411 		/*							\
412 		 * This address falls within a toxic region; return 0.	\
413 		 */							\
414 		*flags |= CPU_DTRACE_BADADDR;				\
415 		cpu_core[CPU->cpu_id].cpuc_dtrace_illval = addr;	\
416 		return (0);						\
417 	}								\
418 									\
419 	*flags |= CPU_DTRACE_NOFAULT;					\
420 	/*CSTYLED*/							\
421 	rval = *((volatile uint##bits##_t *)addr);			\
422 	*flags &= ~CPU_DTRACE_NOFAULT;					\
423 									\
424 	return (!(*flags & CPU_DTRACE_FAULT) ? rval : 0);		\
425 }
426 
427 #ifdef _LP64
428 #define	dtrace_loadptr	dtrace_load64
429 #else
430 #define	dtrace_loadptr	dtrace_load32
431 #endif
432 
433 #define	DTRACE_DYNHASH_FREE	0
434 #define	DTRACE_DYNHASH_SINK	1
435 #define	DTRACE_DYNHASH_VALID	2
436 
437 #define	DTRACE_MATCH_FAIL	-1
438 #define	DTRACE_MATCH_NEXT	0
439 #define	DTRACE_MATCH_DONE	1
440 #define	DTRACE_ANCHORED(probe)	((probe)->dtpr_func[0] != '\0')
441 #define	DTRACE_STATE_ALIGN	64
442 
443 #define	DTRACE_FLAGS2FLT(flags)						\
444 	(((flags) & CPU_DTRACE_BADADDR) ? DTRACEFLT_BADADDR :		\
445 	((flags) & CPU_DTRACE_ILLOP) ? DTRACEFLT_ILLOP :		\
446 	((flags) & CPU_DTRACE_DIVZERO) ? DTRACEFLT_DIVZERO :		\
447 	((flags) & CPU_DTRACE_KPRIV) ? DTRACEFLT_KPRIV :		\
448 	((flags) & CPU_DTRACE_UPRIV) ? DTRACEFLT_UPRIV :		\
449 	((flags) & CPU_DTRACE_TUPOFLOW) ?  DTRACEFLT_TUPOFLOW :		\
450 	((flags) & CPU_DTRACE_BADALIGN) ?  DTRACEFLT_BADALIGN :		\
451 	((flags) & CPU_DTRACE_NOSCRATCH) ?  DTRACEFLT_NOSCRATCH :	\
452 	((flags) & CPU_DTRACE_BADSTACK) ?  DTRACEFLT_BADSTACK :		\
453 	DTRACEFLT_UNKNOWN)
454 
455 #define	DTRACEACT_ISSTRING(act)						\
456 	((act)->dta_kind == DTRACEACT_DIFEXPR &&			\
457 	(act)->dta_difo->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING)
458 
459 static size_t dtrace_strlen(const char *, size_t);
460 static dtrace_probe_t *dtrace_probe_lookup_id(dtrace_id_t id);
461 static void dtrace_enabling_provide(dtrace_provider_t *);
462 static int dtrace_enabling_match(dtrace_enabling_t *, int *);
463 static void dtrace_enabling_matchall(void);
464 static void dtrace_enabling_reap(void);
465 static dtrace_state_t *dtrace_anon_grab(void);
466 static uint64_t dtrace_helper(int, dtrace_mstate_t *,
467     dtrace_state_t *, uint64_t, uint64_t);
468 static dtrace_helpers_t *dtrace_helpers_create(proc_t *);
469 static void dtrace_buffer_drop(dtrace_buffer_t *);
470 static int dtrace_buffer_consumed(dtrace_buffer_t *, hrtime_t when);
471 static intptr_t dtrace_buffer_reserve(dtrace_buffer_t *, size_t, size_t,
472     dtrace_state_t *, dtrace_mstate_t *);
473 static int dtrace_state_option(dtrace_state_t *, dtrace_optid_t,
474     dtrace_optval_t);
475 static int dtrace_ecb_create_enable(dtrace_probe_t *, void *);
476 static void dtrace_helper_provider_destroy(dtrace_helper_provider_t *);
477 
478 /*
479  * DTrace Probe Context Functions
480  *
481  * These functions are called from probe context.  Because probe context is
482  * any context in which C may be called, arbitrarily locks may be held,
483  * interrupts may be disabled, we may be in arbitrary dispatched state, etc.
484  * As a result, functions called from probe context may only call other DTrace
485  * support functions -- they may not interact at all with the system at large.
486  * (Note that the ASSERT macro is made probe-context safe by redefining it in
487  * terms of dtrace_assfail(), a probe-context safe function.) If arbitrary
488  * loads are to be performed from probe context, they _must_ be in terms of
489  * the safe dtrace_load*() variants.
490  *
491  * Some functions in this block are not actually called from probe context;
492  * for these functions, there will be a comment above the function reading
493  * "Note:  not called from probe context."
494  */
495 void
496 dtrace_panic(const char *format, ...)
497 {
498 	va_list alist;
499 
500 	va_start(alist, format);
501 	dtrace_vpanic(format, alist);
502 	va_end(alist);
503 }
504 
505 int
506 dtrace_assfail(const char *a, const char *f, int l)
507 {
508 	dtrace_panic("assertion failed: %s, file: %s, line: %d", a, f, l);
509 
510 	/*
511 	 * We just need something here that even the most clever compiler
512 	 * cannot optimize away.
513 	 */
514 	return (a[(uintptr_t)f]);
515 }
516 
517 /*
518  * Atomically increment a specified error counter from probe context.
519  */
520 static void
521 dtrace_error(uint32_t *counter)
522 {
523 	/*
524 	 * Most counters stored to in probe context are per-CPU counters.
525 	 * However, there are some error conditions that are sufficiently
526 	 * arcane that they don't merit per-CPU storage.  If these counters
527 	 * are incremented concurrently on different CPUs, scalability will be
528 	 * adversely affected -- but we don't expect them to be white-hot in a
529 	 * correctly constructed enabling...
530 	 */
531 	uint32_t oval, nval;
532 
533 	do {
534 		oval = *counter;
535 
536 		if ((nval = oval + 1) == 0) {
537 			/*
538 			 * If the counter would wrap, set it to 1 -- assuring
539 			 * that the counter is never zero when we have seen
540 			 * errors.  (The counter must be 32-bits because we
541 			 * aren't guaranteed a 64-bit compare&swap operation.)
542 			 * To save this code both the infamy of being fingered
543 			 * by a priggish news story and the indignity of being
544 			 * the target of a neo-puritan witch trial, we're
545 			 * carefully avoiding any colorful description of the
546 			 * likelihood of this condition -- but suffice it to
547 			 * say that it is only slightly more likely than the
548 			 * overflow of predicate cache IDs, as discussed in
549 			 * dtrace_predicate_create().
550 			 */
551 			nval = 1;
552 		}
553 	} while (dtrace_cas32(counter, oval, nval) != oval);
554 }
555 
556 /*
557  * Use the DTRACE_LOADFUNC macro to define functions for each of loading a
558  * uint8_t, a uint16_t, a uint32_t and a uint64_t.
559  */
560 DTRACE_LOADFUNC(8)
561 DTRACE_LOADFUNC(16)
562 DTRACE_LOADFUNC(32)
563 DTRACE_LOADFUNC(64)
564 
565 static int
566 dtrace_inscratch(uintptr_t dest, size_t size, dtrace_mstate_t *mstate)
567 {
568 	if (dest < mstate->dtms_scratch_base)
569 		return (0);
570 
571 	if (dest + size < dest)
572 		return (0);
573 
574 	if (dest + size > mstate->dtms_scratch_ptr)
575 		return (0);
576 
577 	return (1);
578 }
579 
580 static int
581 dtrace_canstore_statvar(uint64_t addr, size_t sz,
582     dtrace_statvar_t **svars, int nsvars)
583 {
584 	int i;
585 
586 	for (i = 0; i < nsvars; i++) {
587 		dtrace_statvar_t *svar = svars[i];
588 
589 		if (svar == NULL || svar->dtsv_size == 0)
590 			continue;
591 
592 		if (DTRACE_INRANGE(addr, sz, svar->dtsv_data, svar->dtsv_size))
593 			return (1);
594 	}
595 
596 	return (0);
597 }
598 
599 /*
600  * Check to see if the address is within a memory region to which a store may
601  * be issued.  This includes the DTrace scratch areas, and any DTrace variable
602  * region.  The caller of dtrace_canstore() is responsible for performing any
603  * alignment checks that are needed before stores are actually executed.
604  */
605 static int
606 dtrace_canstore(uint64_t addr, size_t sz, dtrace_mstate_t *mstate,
607     dtrace_vstate_t *vstate)
608 {
609 	/*
610 	 * First, check to see if the address is in scratch space...
611 	 */
612 	if (DTRACE_INRANGE(addr, sz, mstate->dtms_scratch_base,
613 	    mstate->dtms_scratch_size))
614 		return (1);
615 
616 	/*
617 	 * Now check to see if it's a dynamic variable.  This check will pick
618 	 * up both thread-local variables and any global dynamically-allocated
619 	 * variables.
620 	 */
621 	if (DTRACE_INRANGE(addr, sz, (uintptr_t)vstate->dtvs_dynvars.dtds_base,
622 	    vstate->dtvs_dynvars.dtds_size)) {
623 		dtrace_dstate_t *dstate = &vstate->dtvs_dynvars;
624 		uintptr_t base = (uintptr_t)dstate->dtds_base +
625 		    (dstate->dtds_hashsize * sizeof (dtrace_dynhash_t));
626 		uintptr_t chunkoffs;
627 
628 		/*
629 		 * Before we assume that we can store here, we need to make
630 		 * sure that it isn't in our metadata -- storing to our
631 		 * dynamic variable metadata would corrupt our state.  For
632 		 * the range to not include any dynamic variable metadata,
633 		 * it must:
634 		 *
635 		 *	(1) Start above the hash table that is at the base of
636 		 *	the dynamic variable space
637 		 *
638 		 *	(2) Have a starting chunk offset that is beyond the
639 		 *	dtrace_dynvar_t that is at the base of every chunk
640 		 *
641 		 *	(3) Not span a chunk boundary
642 		 *
643 		 */
644 		if (addr < base)
645 			return (0);
646 
647 		chunkoffs = (addr - base) % dstate->dtds_chunksize;
648 
649 		if (chunkoffs < sizeof (dtrace_dynvar_t))
650 			return (0);
651 
652 		if (chunkoffs + sz > dstate->dtds_chunksize)
653 			return (0);
654 
655 		return (1);
656 	}
657 
658 	/*
659 	 * Finally, check the static local and global variables.  These checks
660 	 * take the longest, so we perform them last.
661 	 */
662 	if (dtrace_canstore_statvar(addr, sz,
663 	    vstate->dtvs_locals, vstate->dtvs_nlocals))
664 		return (1);
665 
666 	if (dtrace_canstore_statvar(addr, sz,
667 	    vstate->dtvs_globals, vstate->dtvs_nglobals))
668 		return (1);
669 
670 	return (0);
671 }
672 
673 
674 /*
675  * Convenience routine to check to see if the address is within a memory
676  * region in which a load may be issued given the user's privilege level;
677  * if not, it sets the appropriate error flags and loads 'addr' into the
678  * illegal value slot.
679  *
680  * DTrace subroutines (DIF_SUBR_*) should use this helper to implement
681  * appropriate memory access protection.
682  */
683 static int
684 dtrace_canload(uint64_t addr, size_t sz, dtrace_mstate_t *mstate,
685     dtrace_vstate_t *vstate)
686 {
687 	volatile uintptr_t *illval = &cpu_core[CPU->cpu_id].cpuc_dtrace_illval;
688 
689 	/*
690 	 * If we hold the privilege to read from kernel memory, then
691 	 * everything is readable.
692 	 */
693 	if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
694 		return (1);
695 
696 	/*
697 	 * You can obviously read that which you can store.
698 	 */
699 	if (dtrace_canstore(addr, sz, mstate, vstate))
700 		return (1);
701 
702 	/*
703 	 * We're allowed to read from our own string table.
704 	 */
705 	if (DTRACE_INRANGE(addr, sz, (uintptr_t)mstate->dtms_difo->dtdo_strtab,
706 	    mstate->dtms_difo->dtdo_strlen))
707 		return (1);
708 
709 	DTRACE_CPUFLAG_SET(CPU_DTRACE_KPRIV);
710 	*illval = addr;
711 	return (0);
712 }
713 
714 /*
715  * Convenience routine to check to see if a given string is within a memory
716  * region in which a load may be issued given the user's privilege level;
717  * this exists so that we don't need to issue unnecessary dtrace_strlen()
718  * calls in the event that the user has all privileges.
719  */
720 static int
721 dtrace_strcanload(uint64_t addr, size_t sz, dtrace_mstate_t *mstate,
722     dtrace_vstate_t *vstate)
723 {
724 	size_t strsz;
725 
726 	/*
727 	 * If we hold the privilege to read from kernel memory, then
728 	 * everything is readable.
729 	 */
730 	if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
731 		return (1);
732 
733 	strsz = 1 + dtrace_strlen((char *)(uintptr_t)addr, sz);
734 	if (dtrace_canload(addr, strsz, mstate, vstate))
735 		return (1);
736 
737 	return (0);
738 }
739 
740 /*
741  * Convenience routine to check to see if a given variable is within a memory
742  * region in which a load may be issued given the user's privilege level.
743  */
744 static int
745 dtrace_vcanload(void *src, dtrace_diftype_t *type, dtrace_mstate_t *mstate,
746     dtrace_vstate_t *vstate)
747 {
748 	size_t sz;
749 	ASSERT(type->dtdt_flags & DIF_TF_BYREF);
750 
751 	/*
752 	 * If we hold the privilege to read from kernel memory, then
753 	 * everything is readable.
754 	 */
755 	if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
756 		return (1);
757 
758 	if (type->dtdt_kind == DIF_TYPE_STRING)
759 		sz = dtrace_strlen(src,
760 		    vstate->dtvs_state->dts_options[DTRACEOPT_STRSIZE]) + 1;
761 	else
762 		sz = type->dtdt_size;
763 
764 	return (dtrace_canload((uintptr_t)src, sz, mstate, vstate));
765 }
766 
767 /*
768  * Compare two strings using safe loads.
769  */
770 static int
771 dtrace_strncmp(char *s1, char *s2, size_t limit)
772 {
773 	uint8_t c1, c2;
774 	volatile uint16_t *flags;
775 
776 	if (s1 == s2 || limit == 0)
777 		return (0);
778 
779 	flags = (volatile uint16_t *)&cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
780 
781 	do {
782 		if (s1 == NULL) {
783 			c1 = '\0';
784 		} else {
785 			c1 = dtrace_load8((uintptr_t)s1++);
786 		}
787 
788 		if (s2 == NULL) {
789 			c2 = '\0';
790 		} else {
791 			c2 = dtrace_load8((uintptr_t)s2++);
792 		}
793 
794 		if (c1 != c2)
795 			return (c1 - c2);
796 	} while (--limit && c1 != '\0' && !(*flags & CPU_DTRACE_FAULT));
797 
798 	return (0);
799 }
800 
801 /*
802  * Compute strlen(s) for a string using safe memory accesses.  The additional
803  * len parameter is used to specify a maximum length to ensure completion.
804  */
805 static size_t
806 dtrace_strlen(const char *s, size_t lim)
807 {
808 	uint_t len;
809 
810 	for (len = 0; len != lim; len++) {
811 		if (dtrace_load8((uintptr_t)s++) == '\0')
812 			break;
813 	}
814 
815 	return (len);
816 }
817 
818 /*
819  * Check if an address falls within a toxic region.
820  */
821 static int
822 dtrace_istoxic(uintptr_t kaddr, size_t size)
823 {
824 	uintptr_t taddr, tsize;
825 	int i;
826 
827 	for (i = 0; i < dtrace_toxranges; i++) {
828 		taddr = dtrace_toxrange[i].dtt_base;
829 		tsize = dtrace_toxrange[i].dtt_limit - taddr;
830 
831 		if (kaddr - taddr < tsize) {
832 			DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
833 			cpu_core[CPU->cpu_id].cpuc_dtrace_illval = kaddr;
834 			return (1);
835 		}
836 
837 		if (taddr - kaddr < size) {
838 			DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
839 			cpu_core[CPU->cpu_id].cpuc_dtrace_illval = taddr;
840 			return (1);
841 		}
842 	}
843 
844 	return (0);
845 }
846 
847 /*
848  * Copy src to dst using safe memory accesses.  The src is assumed to be unsafe
849  * memory specified by the DIF program.  The dst is assumed to be safe memory
850  * that we can store to directly because it is managed by DTrace.  As with
851  * standard bcopy, overlapping copies are handled properly.
852  */
853 static void
854 dtrace_bcopy(const void *src, void *dst, size_t len)
855 {
856 	if (len != 0) {
857 		uint8_t *s1 = dst;
858 		const uint8_t *s2 = src;
859 
860 		if (s1 <= s2) {
861 			do {
862 				*s1++ = dtrace_load8((uintptr_t)s2++);
863 			} while (--len != 0);
864 		} else {
865 			s2 += len;
866 			s1 += len;
867 
868 			do {
869 				*--s1 = dtrace_load8((uintptr_t)--s2);
870 			} while (--len != 0);
871 		}
872 	}
873 }
874 
875 /*
876  * Copy src to dst using safe memory accesses, up to either the specified
877  * length, or the point that a nul byte is encountered.  The src is assumed to
878  * be unsafe memory specified by the DIF program.  The dst is assumed to be
879  * safe memory that we can store to directly because it is managed by DTrace.
880  * Unlike dtrace_bcopy(), overlapping regions are not handled.
881  */
882 static void
883 dtrace_strcpy(const void *src, void *dst, size_t len)
884 {
885 	if (len != 0) {
886 		uint8_t *s1 = dst, c;
887 		const uint8_t *s2 = src;
888 
889 		do {
890 			*s1++ = c = dtrace_load8((uintptr_t)s2++);
891 		} while (--len != 0 && c != '\0');
892 	}
893 }
894 
895 /*
896  * Copy src to dst, deriving the size and type from the specified (BYREF)
897  * variable type.  The src is assumed to be unsafe memory specified by the DIF
898  * program.  The dst is assumed to be DTrace variable memory that is of the
899  * specified type; we assume that we can store to directly.
900  */
901 static void
902 dtrace_vcopy(void *src, void *dst, dtrace_diftype_t *type)
903 {
904 	ASSERT(type->dtdt_flags & DIF_TF_BYREF);
905 
906 	if (type->dtdt_kind == DIF_TYPE_STRING) {
907 		dtrace_strcpy(src, dst, type->dtdt_size);
908 	} else {
909 		dtrace_bcopy(src, dst, type->dtdt_size);
910 	}
911 }
912 
913 /*
914  * Compare s1 to s2 using safe memory accesses.  The s1 data is assumed to be
915  * unsafe memory specified by the DIF program.  The s2 data is assumed to be
916  * safe memory that we can access directly because it is managed by DTrace.
917  */
918 static int
919 dtrace_bcmp(const void *s1, const void *s2, size_t len)
920 {
921 	volatile uint16_t *flags;
922 
923 	flags = (volatile uint16_t *)&cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
924 
925 	if (s1 == s2)
926 		return (0);
927 
928 	if (s1 == NULL || s2 == NULL)
929 		return (1);
930 
931 	if (s1 != s2 && len != 0) {
932 		const uint8_t *ps1 = s1;
933 		const uint8_t *ps2 = s2;
934 
935 		do {
936 			if (dtrace_load8((uintptr_t)ps1++) != *ps2++)
937 				return (1);
938 		} while (--len != 0 && !(*flags & CPU_DTRACE_FAULT));
939 	}
940 	return (0);
941 }
942 
943 /*
944  * Zero the specified region using a simple byte-by-byte loop.  Note that this
945  * is for safe DTrace-managed memory only.
946  */
947 static void
948 dtrace_bzero(void *dst, size_t len)
949 {
950 	uchar_t *cp;
951 
952 	for (cp = dst; len != 0; len--)
953 		*cp++ = 0;
954 }
955 
956 static void
957 dtrace_add_128(uint64_t *addend1, uint64_t *addend2, uint64_t *sum)
958 {
959 	uint64_t result[2];
960 
961 	result[0] = addend1[0] + addend2[0];
962 	result[1] = addend1[1] + addend2[1] +
963 	    (result[0] < addend1[0] || result[0] < addend2[0] ? 1 : 0);
964 
965 	sum[0] = result[0];
966 	sum[1] = result[1];
967 }
968 
969 /*
970  * Shift the 128-bit value in a by b. If b is positive, shift left.
971  * If b is negative, shift right.
972  */
973 static void
974 dtrace_shift_128(uint64_t *a, int b)
975 {
976 	uint64_t mask;
977 
978 	if (b == 0)
979 		return;
980 
981 	if (b < 0) {
982 		b = -b;
983 		if (b >= 64) {
984 			a[0] = a[1] >> (b - 64);
985 			a[1] = 0;
986 		} else {
987 			a[0] >>= b;
988 			mask = 1LL << (64 - b);
989 			mask -= 1;
990 			a[0] |= ((a[1] & mask) << (64 - b));
991 			a[1] >>= b;
992 		}
993 	} else {
994 		if (b >= 64) {
995 			a[1] = a[0] << (b - 64);
996 			a[0] = 0;
997 		} else {
998 			a[1] <<= b;
999 			mask = a[0] >> (64 - b);
1000 			a[1] |= mask;
1001 			a[0] <<= b;
1002 		}
1003 	}
1004 }
1005 
1006 /*
1007  * The basic idea is to break the 2 64-bit values into 4 32-bit values,
1008  * use native multiplication on those, and then re-combine into the
1009  * resulting 128-bit value.
1010  *
1011  * (hi1 << 32 + lo1) * (hi2 << 32 + lo2) =
1012  *     hi1 * hi2 << 64 +
1013  *     hi1 * lo2 << 32 +
1014  *     hi2 * lo1 << 32 +
1015  *     lo1 * lo2
1016  */
1017 static void
1018 dtrace_multiply_128(uint64_t factor1, uint64_t factor2, uint64_t *product)
1019 {
1020 	uint64_t hi1, hi2, lo1, lo2;
1021 	uint64_t tmp[2];
1022 
1023 	hi1 = factor1 >> 32;
1024 	hi2 = factor2 >> 32;
1025 
1026 	lo1 = factor1 & DT_MASK_LO;
1027 	lo2 = factor2 & DT_MASK_LO;
1028 
1029 	product[0] = lo1 * lo2;
1030 	product[1] = hi1 * hi2;
1031 
1032 	tmp[0] = hi1 * lo2;
1033 	tmp[1] = 0;
1034 	dtrace_shift_128(tmp, 32);
1035 	dtrace_add_128(product, tmp, product);
1036 
1037 	tmp[0] = hi2 * lo1;
1038 	tmp[1] = 0;
1039 	dtrace_shift_128(tmp, 32);
1040 	dtrace_add_128(product, tmp, product);
1041 }
1042 
1043 /*
1044  * This privilege check should be used by actions and subroutines to
1045  * verify that the user credentials of the process that enabled the
1046  * invoking ECB match the target credentials
1047  */
1048 static int
1049 dtrace_priv_proc_common_user(dtrace_state_t *state)
1050 {
1051 	cred_t *cr, *s_cr = state->dts_cred.dcr_cred;
1052 
1053 	/*
1054 	 * We should always have a non-NULL state cred here, since if cred
1055 	 * is null (anonymous tracing), we fast-path bypass this routine.
1056 	 */
1057 	ASSERT(s_cr != NULL);
1058 
1059 	if ((cr = CRED()) != NULL &&
1060 	    s_cr->cr_uid == cr->cr_uid &&
1061 	    s_cr->cr_uid == cr->cr_ruid &&
1062 	    s_cr->cr_uid == cr->cr_suid &&
1063 	    s_cr->cr_gid == cr->cr_gid &&
1064 	    s_cr->cr_gid == cr->cr_rgid &&
1065 	    s_cr->cr_gid == cr->cr_sgid)
1066 		return (1);
1067 
1068 	return (0);
1069 }
1070 
1071 /*
1072  * This privilege check should be used by actions and subroutines to
1073  * verify that the zone of the process that enabled the invoking ECB
1074  * matches the target credentials
1075  */
1076 static int
1077 dtrace_priv_proc_common_zone(dtrace_state_t *state)
1078 {
1079 	cred_t *cr, *s_cr = state->dts_cred.dcr_cred;
1080 
1081 	/*
1082 	 * We should always have a non-NULL state cred here, since if cred
1083 	 * is null (anonymous tracing), we fast-path bypass this routine.
1084 	 */
1085 	ASSERT(s_cr != NULL);
1086 
1087 	if ((cr = CRED()) != NULL &&
1088 	    s_cr->cr_zone == cr->cr_zone)
1089 		return (1);
1090 
1091 	return (0);
1092 }
1093 
1094 /*
1095  * This privilege check should be used by actions and subroutines to
1096  * verify that the process has not setuid or changed credentials.
1097  */
1098 static int
1099 dtrace_priv_proc_common_nocd()
1100 {
1101 	proc_t *proc;
1102 
1103 	if ((proc = ttoproc(curthread)) != NULL &&
1104 	    !(proc->p_flag & SNOCD))
1105 		return (1);
1106 
1107 	return (0);
1108 }
1109 
1110 static int
1111 dtrace_priv_proc_destructive(dtrace_state_t *state)
1112 {
1113 	int action = state->dts_cred.dcr_action;
1114 
1115 	if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE) == 0) &&
1116 	    dtrace_priv_proc_common_zone(state) == 0)
1117 		goto bad;
1118 
1119 	if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER) == 0) &&
1120 	    dtrace_priv_proc_common_user(state) == 0)
1121 		goto bad;
1122 
1123 	if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG) == 0) &&
1124 	    dtrace_priv_proc_common_nocd() == 0)
1125 		goto bad;
1126 
1127 	return (1);
1128 
1129 bad:
1130 	cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
1131 
1132 	return (0);
1133 }
1134 
1135 static int
1136 dtrace_priv_proc_control(dtrace_state_t *state)
1137 {
1138 	if (state->dts_cred.dcr_action & DTRACE_CRA_PROC_CONTROL)
1139 		return (1);
1140 
1141 	if (dtrace_priv_proc_common_zone(state) &&
1142 	    dtrace_priv_proc_common_user(state) &&
1143 	    dtrace_priv_proc_common_nocd())
1144 		return (1);
1145 
1146 	cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
1147 
1148 	return (0);
1149 }
1150 
1151 static int
1152 dtrace_priv_proc(dtrace_state_t *state)
1153 {
1154 	if (state->dts_cred.dcr_action & DTRACE_CRA_PROC)
1155 		return (1);
1156 
1157 	cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
1158 
1159 	return (0);
1160 }
1161 
1162 static int
1163 dtrace_priv_kernel(dtrace_state_t *state)
1164 {
1165 	if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL)
1166 		return (1);
1167 
1168 	cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV;
1169 
1170 	return (0);
1171 }
1172 
1173 static int
1174 dtrace_priv_kernel_destructive(dtrace_state_t *state)
1175 {
1176 	if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL_DESTRUCTIVE)
1177 		return (1);
1178 
1179 	cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV;
1180 
1181 	return (0);
1182 }
1183 
1184 /*
1185  * Note:  not called from probe context.  This function is called
1186  * asynchronously (and at a regular interval) from outside of probe context to
1187  * clean the dirty dynamic variable lists on all CPUs.  Dynamic variable
1188  * cleaning is explained in detail in <sys/dtrace_impl.h>.
1189  */
1190 void
1191 dtrace_dynvar_clean(dtrace_dstate_t *dstate)
1192 {
1193 	dtrace_dynvar_t *dirty;
1194 	dtrace_dstate_percpu_t *dcpu;
1195 	dtrace_dynvar_t **rinsep;
1196 	int i, j, work = 0;
1197 
1198 	for (i = 0; i < NCPU; i++) {
1199 		dcpu = &dstate->dtds_percpu[i];
1200 		rinsep = &dcpu->dtdsc_rinsing;
1201 
1202 		/*
1203 		 * If the dirty list is NULL, there is no dirty work to do.
1204 		 */
1205 		if (dcpu->dtdsc_dirty == NULL)
1206 			continue;
1207 
1208 		if (dcpu->dtdsc_rinsing != NULL) {
1209 			/*
1210 			 * If the rinsing list is non-NULL, then it is because
1211 			 * this CPU was selected to accept another CPU's
1212 			 * dirty list -- and since that time, dirty buffers
1213 			 * have accumulated.  This is a highly unlikely
1214 			 * condition, but we choose to ignore the dirty
1215 			 * buffers -- they'll be picked up a future cleanse.
1216 			 */
1217 			continue;
1218 		}
1219 
1220 		if (dcpu->dtdsc_clean != NULL) {
1221 			/*
1222 			 * If the clean list is non-NULL, then we're in a
1223 			 * situation where a CPU has done deallocations (we
1224 			 * have a non-NULL dirty list) but no allocations (we
1225 			 * also have a non-NULL clean list).  We can't simply
1226 			 * move the dirty list into the clean list on this
1227 			 * CPU, yet we also don't want to allow this condition
1228 			 * to persist, lest a short clean list prevent a
1229 			 * massive dirty list from being cleaned (which in
1230 			 * turn could lead to otherwise avoidable dynamic
1231 			 * drops).  To deal with this, we look for some CPU
1232 			 * with a NULL clean list, NULL dirty list, and NULL
1233 			 * rinsing list -- and then we borrow this CPU to
1234 			 * rinse our dirty list.
1235 			 */
1236 			for (j = 0; j < NCPU; j++) {
1237 				dtrace_dstate_percpu_t *rinser;
1238 
1239 				rinser = &dstate->dtds_percpu[j];
1240 
1241 				if (rinser->dtdsc_rinsing != NULL)
1242 					continue;
1243 
1244 				if (rinser->dtdsc_dirty != NULL)
1245 					continue;
1246 
1247 				if (rinser->dtdsc_clean != NULL)
1248 					continue;
1249 
1250 				rinsep = &rinser->dtdsc_rinsing;
1251 				break;
1252 			}
1253 
1254 			if (j == NCPU) {
1255 				/*
1256 				 * We were unable to find another CPU that
1257 				 * could accept this dirty list -- we are
1258 				 * therefore unable to clean it now.
1259 				 */
1260 				dtrace_dynvar_failclean++;
1261 				continue;
1262 			}
1263 		}
1264 
1265 		work = 1;
1266 
1267 		/*
1268 		 * Atomically move the dirty list aside.
1269 		 */
1270 		do {
1271 			dirty = dcpu->dtdsc_dirty;
1272 
1273 			/*
1274 			 * Before we zap the dirty list, set the rinsing list.
1275 			 * (This allows for a potential assertion in
1276 			 * dtrace_dynvar():  if a free dynamic variable appears
1277 			 * on a hash chain, either the dirty list or the
1278 			 * rinsing list for some CPU must be non-NULL.)
1279 			 */
1280 			*rinsep = dirty;
1281 			dtrace_membar_producer();
1282 		} while (dtrace_casptr(&dcpu->dtdsc_dirty,
1283 		    dirty, NULL) != dirty);
1284 	}
1285 
1286 	if (!work) {
1287 		/*
1288 		 * We have no work to do; we can simply return.
1289 		 */
1290 		return;
1291 	}
1292 
1293 	dtrace_sync();
1294 
1295 	for (i = 0; i < NCPU; i++) {
1296 		dcpu = &dstate->dtds_percpu[i];
1297 
1298 		if (dcpu->dtdsc_rinsing == NULL)
1299 			continue;
1300 
1301 		/*
1302 		 * We are now guaranteed that no hash chain contains a pointer
1303 		 * into this dirty list; we can make it clean.
1304 		 */
1305 		ASSERT(dcpu->dtdsc_clean == NULL);
1306 		dcpu->dtdsc_clean = dcpu->dtdsc_rinsing;
1307 		dcpu->dtdsc_rinsing = NULL;
1308 	}
1309 
1310 	/*
1311 	 * Before we actually set the state to be DTRACE_DSTATE_CLEAN, make
1312 	 * sure that all CPUs have seen all of the dtdsc_clean pointers.
1313 	 * This prevents a race whereby a CPU incorrectly decides that
1314 	 * the state should be something other than DTRACE_DSTATE_CLEAN
1315 	 * after dtrace_dynvar_clean() has completed.
1316 	 */
1317 	dtrace_sync();
1318 
1319 	dstate->dtds_state = DTRACE_DSTATE_CLEAN;
1320 }
1321 
1322 /*
1323  * Depending on the value of the op parameter, this function looks-up,
1324  * allocates or deallocates an arbitrarily-keyed dynamic variable.  If an
1325  * allocation is requested, this function will return a pointer to a
1326  * dtrace_dynvar_t corresponding to the allocated variable -- or NULL if no
1327  * variable can be allocated.  If NULL is returned, the appropriate counter
1328  * will be incremented.
1329  */
1330 dtrace_dynvar_t *
1331 dtrace_dynvar(dtrace_dstate_t *dstate, uint_t nkeys,
1332     dtrace_key_t *key, size_t dsize, dtrace_dynvar_op_t op,
1333     dtrace_mstate_t *mstate, dtrace_vstate_t *vstate)
1334 {
1335 	uint64_t hashval = DTRACE_DYNHASH_VALID;
1336 	dtrace_dynhash_t *hash = dstate->dtds_hash;
1337 	dtrace_dynvar_t *free, *new_free, *next, *dvar, *start, *prev = NULL;
1338 	processorid_t me = CPU->cpu_id, cpu = me;
1339 	dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[me];
1340 	size_t bucket, ksize;
1341 	size_t chunksize = dstate->dtds_chunksize;
1342 	uintptr_t kdata, lock, nstate;
1343 	uint_t i;
1344 
1345 	ASSERT(nkeys != 0);
1346 
1347 	/*
1348 	 * Hash the key.  As with aggregations, we use Jenkins' "One-at-a-time"
1349 	 * algorithm.  For the by-value portions, we perform the algorithm in
1350 	 * 16-bit chunks (as opposed to 8-bit chunks).  This speeds things up a
1351 	 * bit, and seems to have only a minute effect on distribution.  For
1352 	 * the by-reference data, we perform "One-at-a-time" iterating (safely)
1353 	 * over each referenced byte.  It's painful to do this, but it's much
1354 	 * better than pathological hash distribution.  The efficacy of the
1355 	 * hashing algorithm (and a comparison with other algorithms) may be
1356 	 * found by running the ::dtrace_dynstat MDB dcmd.
1357 	 */
1358 	for (i = 0; i < nkeys; i++) {
1359 		if (key[i].dttk_size == 0) {
1360 			uint64_t val = key[i].dttk_value;
1361 
1362 			hashval += (val >> 48) & 0xffff;
1363 			hashval += (hashval << 10);
1364 			hashval ^= (hashval >> 6);
1365 
1366 			hashval += (val >> 32) & 0xffff;
1367 			hashval += (hashval << 10);
1368 			hashval ^= (hashval >> 6);
1369 
1370 			hashval += (val >> 16) & 0xffff;
1371 			hashval += (hashval << 10);
1372 			hashval ^= (hashval >> 6);
1373 
1374 			hashval += val & 0xffff;
1375 			hashval += (hashval << 10);
1376 			hashval ^= (hashval >> 6);
1377 		} else {
1378 			/*
1379 			 * This is incredibly painful, but it beats the hell
1380 			 * out of the alternative.
1381 			 */
1382 			uint64_t j, size = key[i].dttk_size;
1383 			uintptr_t base = (uintptr_t)key[i].dttk_value;
1384 
1385 			if (!dtrace_canload(base, size, mstate, vstate))
1386 				break;
1387 
1388 			for (j = 0; j < size; j++) {
1389 				hashval += dtrace_load8(base + j);
1390 				hashval += (hashval << 10);
1391 				hashval ^= (hashval >> 6);
1392 			}
1393 		}
1394 	}
1395 
1396 	if (DTRACE_CPUFLAG_ISSET(CPU_DTRACE_FAULT))
1397 		return (NULL);
1398 
1399 	hashval += (hashval << 3);
1400 	hashval ^= (hashval >> 11);
1401 	hashval += (hashval << 15);
1402 
1403 	/*
1404 	 * There is a remote chance (ideally, 1 in 2^31) that our hashval
1405 	 * comes out to be one of our two sentinel hash values.  If this
1406 	 * actually happens, we set the hashval to be a value known to be a
1407 	 * non-sentinel value.
1408 	 */
1409 	if (hashval == DTRACE_DYNHASH_FREE || hashval == DTRACE_DYNHASH_SINK)
1410 		hashval = DTRACE_DYNHASH_VALID;
1411 
1412 	/*
1413 	 * Yes, it's painful to do a divide here.  If the cycle count becomes
1414 	 * important here, tricks can be pulled to reduce it.  (However, it's
1415 	 * critical that hash collisions be kept to an absolute minimum;
1416 	 * they're much more painful than a divide.)  It's better to have a
1417 	 * solution that generates few collisions and still keeps things
1418 	 * relatively simple.
1419 	 */
1420 	bucket = hashval % dstate->dtds_hashsize;
1421 
1422 	if (op == DTRACE_DYNVAR_DEALLOC) {
1423 		volatile uintptr_t *lockp = &hash[bucket].dtdh_lock;
1424 
1425 		for (;;) {
1426 			while ((lock = *lockp) & 1)
1427 				continue;
1428 
1429 			if (dtrace_casptr((void *)lockp,
1430 			    (void *)lock, (void *)(lock + 1)) == (void *)lock)
1431 				break;
1432 		}
1433 
1434 		dtrace_membar_producer();
1435 	}
1436 
1437 top:
1438 	prev = NULL;
1439 	lock = hash[bucket].dtdh_lock;
1440 
1441 	dtrace_membar_consumer();
1442 
1443 	start = hash[bucket].dtdh_chain;
1444 	ASSERT(start != NULL && (start->dtdv_hashval == DTRACE_DYNHASH_SINK ||
1445 	    start->dtdv_hashval != DTRACE_DYNHASH_FREE ||
1446 	    op != DTRACE_DYNVAR_DEALLOC));
1447 
1448 	for (dvar = start; dvar != NULL; dvar = dvar->dtdv_next) {
1449 		dtrace_tuple_t *dtuple = &dvar->dtdv_tuple;
1450 		dtrace_key_t *dkey = &dtuple->dtt_key[0];
1451 
1452 		if (dvar->dtdv_hashval != hashval) {
1453 			if (dvar->dtdv_hashval == DTRACE_DYNHASH_SINK) {
1454 				/*
1455 				 * We've reached the sink, and therefore the
1456 				 * end of the hash chain; we can kick out of
1457 				 * the loop knowing that we have seen a valid
1458 				 * snapshot of state.
1459 				 */
1460 				ASSERT(dvar->dtdv_next == NULL);
1461 				ASSERT(dvar == &dtrace_dynhash_sink);
1462 				break;
1463 			}
1464 
1465 			if (dvar->dtdv_hashval == DTRACE_DYNHASH_FREE) {
1466 				/*
1467 				 * We've gone off the rails:  somewhere along
1468 				 * the line, one of the members of this hash
1469 				 * chain was deleted.  Note that we could also
1470 				 * detect this by simply letting this loop run
1471 				 * to completion, as we would eventually hit
1472 				 * the end of the dirty list.  However, we
1473 				 * want to avoid running the length of the
1474 				 * dirty list unnecessarily (it might be quite
1475 				 * long), so we catch this as early as
1476 				 * possible by detecting the hash marker.  In
1477 				 * this case, we simply set dvar to NULL and
1478 				 * break; the conditional after the loop will
1479 				 * send us back to top.
1480 				 */
1481 				dvar = NULL;
1482 				break;
1483 			}
1484 
1485 			goto next;
1486 		}
1487 
1488 		if (dtuple->dtt_nkeys != nkeys)
1489 			goto next;
1490 
1491 		for (i = 0; i < nkeys; i++, dkey++) {
1492 			if (dkey->dttk_size != key[i].dttk_size)
1493 				goto next; /* size or type mismatch */
1494 
1495 			if (dkey->dttk_size != 0) {
1496 				if (dtrace_bcmp(
1497 				    (void *)(uintptr_t)key[i].dttk_value,
1498 				    (void *)(uintptr_t)dkey->dttk_value,
1499 				    dkey->dttk_size))
1500 					goto next;
1501 			} else {
1502 				if (dkey->dttk_value != key[i].dttk_value)
1503 					goto next;
1504 			}
1505 		}
1506 
1507 		if (op != DTRACE_DYNVAR_DEALLOC)
1508 			return (dvar);
1509 
1510 		ASSERT(dvar->dtdv_next == NULL ||
1511 		    dvar->dtdv_next->dtdv_hashval != DTRACE_DYNHASH_FREE);
1512 
1513 		if (prev != NULL) {
1514 			ASSERT(hash[bucket].dtdh_chain != dvar);
1515 			ASSERT(start != dvar);
1516 			ASSERT(prev->dtdv_next == dvar);
1517 			prev->dtdv_next = dvar->dtdv_next;
1518 		} else {
1519 			if (dtrace_casptr(&hash[bucket].dtdh_chain,
1520 			    start, dvar->dtdv_next) != start) {
1521 				/*
1522 				 * We have failed to atomically swing the
1523 				 * hash table head pointer, presumably because
1524 				 * of a conflicting allocation on another CPU.
1525 				 * We need to reread the hash chain and try
1526 				 * again.
1527 				 */
1528 				goto top;
1529 			}
1530 		}
1531 
1532 		dtrace_membar_producer();
1533 
1534 		/*
1535 		 * Now set the hash value to indicate that it's free.
1536 		 */
1537 		ASSERT(hash[bucket].dtdh_chain != dvar);
1538 		dvar->dtdv_hashval = DTRACE_DYNHASH_FREE;
1539 
1540 		dtrace_membar_producer();
1541 
1542 		/*
1543 		 * Set the next pointer to point at the dirty list, and
1544 		 * atomically swing the dirty pointer to the newly freed dvar.
1545 		 */
1546 		do {
1547 			next = dcpu->dtdsc_dirty;
1548 			dvar->dtdv_next = next;
1549 		} while (dtrace_casptr(&dcpu->dtdsc_dirty, next, dvar) != next);
1550 
1551 		/*
1552 		 * Finally, unlock this hash bucket.
1553 		 */
1554 		ASSERT(hash[bucket].dtdh_lock == lock);
1555 		ASSERT(lock & 1);
1556 		hash[bucket].dtdh_lock++;
1557 
1558 		return (NULL);
1559 next:
1560 		prev = dvar;
1561 		continue;
1562 	}
1563 
1564 	if (dvar == NULL) {
1565 		/*
1566 		 * If dvar is NULL, it is because we went off the rails:
1567 		 * one of the elements that we traversed in the hash chain
1568 		 * was deleted while we were traversing it.  In this case,
1569 		 * we assert that we aren't doing a dealloc (deallocs lock
1570 		 * the hash bucket to prevent themselves from racing with
1571 		 * one another), and retry the hash chain traversal.
1572 		 */
1573 		ASSERT(op != DTRACE_DYNVAR_DEALLOC);
1574 		goto top;
1575 	}
1576 
1577 	if (op != DTRACE_DYNVAR_ALLOC) {
1578 		/*
1579 		 * If we are not to allocate a new variable, we want to
1580 		 * return NULL now.  Before we return, check that the value
1581 		 * of the lock word hasn't changed.  If it has, we may have
1582 		 * seen an inconsistent snapshot.
1583 		 */
1584 		if (op == DTRACE_DYNVAR_NOALLOC) {
1585 			if (hash[bucket].dtdh_lock != lock)
1586 				goto top;
1587 		} else {
1588 			ASSERT(op == DTRACE_DYNVAR_DEALLOC);
1589 			ASSERT(hash[bucket].dtdh_lock == lock);
1590 			ASSERT(lock & 1);
1591 			hash[bucket].dtdh_lock++;
1592 		}
1593 
1594 		return (NULL);
1595 	}
1596 
1597 	/*
1598 	 * We need to allocate a new dynamic variable.  The size we need is the
1599 	 * size of dtrace_dynvar plus the size of nkeys dtrace_key_t's plus the
1600 	 * size of any auxiliary key data (rounded up to 8-byte alignment) plus
1601 	 * the size of any referred-to data (dsize).  We then round the final
1602 	 * size up to the chunksize for allocation.
1603 	 */
1604 	for (ksize = 0, i = 0; i < nkeys; i++)
1605 		ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t));
1606 
1607 	/*
1608 	 * This should be pretty much impossible, but could happen if, say,
1609 	 * strange DIF specified the tuple.  Ideally, this should be an
1610 	 * assertion and not an error condition -- but that requires that the
1611 	 * chunksize calculation in dtrace_difo_chunksize() be absolutely
1612 	 * bullet-proof.  (That is, it must not be able to be fooled by
1613 	 * malicious DIF.)  Given the lack of backwards branches in DIF,
1614 	 * solving this would presumably not amount to solving the Halting
1615 	 * Problem -- but it still seems awfully hard.
1616 	 */
1617 	if (sizeof (dtrace_dynvar_t) + sizeof (dtrace_key_t) * (nkeys - 1) +
1618 	    ksize + dsize > chunksize) {
1619 		dcpu->dtdsc_drops++;
1620 		return (NULL);
1621 	}
1622 
1623 	nstate = DTRACE_DSTATE_EMPTY;
1624 
1625 	do {
1626 retry:
1627 		free = dcpu->dtdsc_free;
1628 
1629 		if (free == NULL) {
1630 			dtrace_dynvar_t *clean = dcpu->dtdsc_clean;
1631 			void *rval;
1632 
1633 			if (clean == NULL) {
1634 				/*
1635 				 * We're out of dynamic variable space on
1636 				 * this CPU.  Unless we have tried all CPUs,
1637 				 * we'll try to allocate from a different
1638 				 * CPU.
1639 				 */
1640 				switch (dstate->dtds_state) {
1641 				case DTRACE_DSTATE_CLEAN: {
1642 					void *sp = &dstate->dtds_state;
1643 
1644 					if (++cpu >= NCPU)
1645 						cpu = 0;
1646 
1647 					if (dcpu->dtdsc_dirty != NULL &&
1648 					    nstate == DTRACE_DSTATE_EMPTY)
1649 						nstate = DTRACE_DSTATE_DIRTY;
1650 
1651 					if (dcpu->dtdsc_rinsing != NULL)
1652 						nstate = DTRACE_DSTATE_RINSING;
1653 
1654 					dcpu = &dstate->dtds_percpu[cpu];
1655 
1656 					if (cpu != me)
1657 						goto retry;
1658 
1659 					(void) dtrace_cas32(sp,
1660 					    DTRACE_DSTATE_CLEAN, nstate);
1661 
1662 					/*
1663 					 * To increment the correct bean
1664 					 * counter, take another lap.
1665 					 */
1666 					goto retry;
1667 				}
1668 
1669 				case DTRACE_DSTATE_DIRTY:
1670 					dcpu->dtdsc_dirty_drops++;
1671 					break;
1672 
1673 				case DTRACE_DSTATE_RINSING:
1674 					dcpu->dtdsc_rinsing_drops++;
1675 					break;
1676 
1677 				case DTRACE_DSTATE_EMPTY:
1678 					dcpu->dtdsc_drops++;
1679 					break;
1680 				}
1681 
1682 				DTRACE_CPUFLAG_SET(CPU_DTRACE_DROP);
1683 				return (NULL);
1684 			}
1685 
1686 			/*
1687 			 * The clean list appears to be non-empty.  We want to
1688 			 * move the clean list to the free list; we start by
1689 			 * moving the clean pointer aside.
1690 			 */
1691 			if (dtrace_casptr(&dcpu->dtdsc_clean,
1692 			    clean, NULL) != clean) {
1693 				/*
1694 				 * We are in one of two situations:
1695 				 *
1696 				 *  (a)	The clean list was switched to the
1697 				 *	free list by another CPU.
1698 				 *
1699 				 *  (b)	The clean list was added to by the
1700 				 *	cleansing cyclic.
1701 				 *
1702 				 * In either of these situations, we can
1703 				 * just reattempt the free list allocation.
1704 				 */
1705 				goto retry;
1706 			}
1707 
1708 			ASSERT(clean->dtdv_hashval == DTRACE_DYNHASH_FREE);
1709 
1710 			/*
1711 			 * Now we'll move the clean list to our free list.
1712 			 * It's impossible for this to fail:  the only way
1713 			 * the free list can be updated is through this
1714 			 * code path, and only one CPU can own the clean list.
1715 			 * Thus, it would only be possible for this to fail if
1716 			 * this code were racing with dtrace_dynvar_clean().
1717 			 * (That is, if dtrace_dynvar_clean() updated the clean
1718 			 * list, and we ended up racing to update the free
1719 			 * list.)  This race is prevented by the dtrace_sync()
1720 			 * in dtrace_dynvar_clean() -- which flushes the
1721 			 * owners of the clean lists out before resetting
1722 			 * the clean lists.
1723 			 */
1724 			dcpu = &dstate->dtds_percpu[me];
1725 			rval = dtrace_casptr(&dcpu->dtdsc_free, NULL, clean);
1726 			ASSERT(rval == NULL);
1727 			goto retry;
1728 		}
1729 
1730 		dvar = free;
1731 		new_free = dvar->dtdv_next;
1732 	} while (dtrace_casptr(&dcpu->dtdsc_free, free, new_free) != free);
1733 
1734 	/*
1735 	 * We have now allocated a new chunk.  We copy the tuple keys into the
1736 	 * tuple array and copy any referenced key data into the data space
1737 	 * following the tuple array.  As we do this, we relocate dttk_value
1738 	 * in the final tuple to point to the key data address in the chunk.
1739 	 */
1740 	kdata = (uintptr_t)&dvar->dtdv_tuple.dtt_key[nkeys];
1741 	dvar->dtdv_data = (void *)(kdata + ksize);
1742 	dvar->dtdv_tuple.dtt_nkeys = nkeys;
1743 
1744 	for (i = 0; i < nkeys; i++) {
1745 		dtrace_key_t *dkey = &dvar->dtdv_tuple.dtt_key[i];
1746 		size_t kesize = key[i].dttk_size;
1747 
1748 		if (kesize != 0) {
1749 			dtrace_bcopy(
1750 			    (const void *)(uintptr_t)key[i].dttk_value,
1751 			    (void *)kdata, kesize);
1752 			dkey->dttk_value = kdata;
1753 			kdata += P2ROUNDUP(kesize, sizeof (uint64_t));
1754 		} else {
1755 			dkey->dttk_value = key[i].dttk_value;
1756 		}
1757 
1758 		dkey->dttk_size = kesize;
1759 	}
1760 
1761 	ASSERT(dvar->dtdv_hashval == DTRACE_DYNHASH_FREE);
1762 	dvar->dtdv_hashval = hashval;
1763 	dvar->dtdv_next = start;
1764 
1765 	if (dtrace_casptr(&hash[bucket].dtdh_chain, start, dvar) == start)
1766 		return (dvar);
1767 
1768 	/*
1769 	 * The cas has failed.  Either another CPU is adding an element to
1770 	 * this hash chain, or another CPU is deleting an element from this
1771 	 * hash chain.  The simplest way to deal with both of these cases
1772 	 * (though not necessarily the most efficient) is to free our
1773 	 * allocated block and tail-call ourselves.  Note that the free is
1774 	 * to the dirty list and _not_ to the free list.  This is to prevent
1775 	 * races with allocators, above.
1776 	 */
1777 	dvar->dtdv_hashval = DTRACE_DYNHASH_FREE;
1778 
1779 	dtrace_membar_producer();
1780 
1781 	do {
1782 		free = dcpu->dtdsc_dirty;
1783 		dvar->dtdv_next = free;
1784 	} while (dtrace_casptr(&dcpu->dtdsc_dirty, free, dvar) != free);
1785 
1786 	return (dtrace_dynvar(dstate, nkeys, key, dsize, op, mstate, vstate));
1787 }
1788 
1789 /*ARGSUSED*/
1790 static void
1791 dtrace_aggregate_min(uint64_t *oval, uint64_t nval, uint64_t arg)
1792 {
1793 	if ((int64_t)nval < (int64_t)*oval)
1794 		*oval = nval;
1795 }
1796 
1797 /*ARGSUSED*/
1798 static void
1799 dtrace_aggregate_max(uint64_t *oval, uint64_t nval, uint64_t arg)
1800 {
1801 	if ((int64_t)nval > (int64_t)*oval)
1802 		*oval = nval;
1803 }
1804 
1805 static void
1806 dtrace_aggregate_quantize(uint64_t *quanta, uint64_t nval, uint64_t incr)
1807 {
1808 	int i, zero = DTRACE_QUANTIZE_ZEROBUCKET;
1809 	int64_t val = (int64_t)nval;
1810 
1811 	if (val < 0) {
1812 		for (i = 0; i < zero; i++) {
1813 			if (val <= DTRACE_QUANTIZE_BUCKETVAL(i)) {
1814 				quanta[i] += incr;
1815 				return;
1816 			}
1817 		}
1818 	} else {
1819 		for (i = zero + 1; i < DTRACE_QUANTIZE_NBUCKETS; i++) {
1820 			if (val < DTRACE_QUANTIZE_BUCKETVAL(i)) {
1821 				quanta[i - 1] += incr;
1822 				return;
1823 			}
1824 		}
1825 
1826 		quanta[DTRACE_QUANTIZE_NBUCKETS - 1] += incr;
1827 		return;
1828 	}
1829 
1830 	ASSERT(0);
1831 }
1832 
1833 static void
1834 dtrace_aggregate_lquantize(uint64_t *lquanta, uint64_t nval, uint64_t incr)
1835 {
1836 	uint64_t arg = *lquanta++;
1837 	int32_t base = DTRACE_LQUANTIZE_BASE(arg);
1838 	uint16_t step = DTRACE_LQUANTIZE_STEP(arg);
1839 	uint16_t levels = DTRACE_LQUANTIZE_LEVELS(arg);
1840 	int32_t val = (int32_t)nval, level;
1841 
1842 	ASSERT(step != 0);
1843 	ASSERT(levels != 0);
1844 
1845 	if (val < base) {
1846 		/*
1847 		 * This is an underflow.
1848 		 */
1849 		lquanta[0] += incr;
1850 		return;
1851 	}
1852 
1853 	level = (val - base) / step;
1854 
1855 	if (level < levels) {
1856 		lquanta[level + 1] += incr;
1857 		return;
1858 	}
1859 
1860 	/*
1861 	 * This is an overflow.
1862 	 */
1863 	lquanta[levels + 1] += incr;
1864 }
1865 
1866 static int
1867 dtrace_aggregate_llquantize_bucket(uint16_t factor, uint16_t low,
1868     uint16_t high, uint16_t nsteps, int64_t value)
1869 {
1870 	int64_t this = 1, last, next;
1871 	int base = 1, order;
1872 
1873 	ASSERT(factor <= nsteps);
1874 	ASSERT(nsteps % factor == 0);
1875 
1876 	for (order = 0; order < low; order++)
1877 		this *= factor;
1878 
1879 	/*
1880 	 * If our value is less than our factor taken to the power of the
1881 	 * low order of magnitude, it goes into the zeroth bucket.
1882 	 */
1883 	if (value < (last = this))
1884 		return (0);
1885 
1886 	for (this *= factor; order <= high; order++) {
1887 		int nbuckets = this > nsteps ? nsteps : this;
1888 
1889 		if ((next = this * factor) < this) {
1890 			/*
1891 			 * We should not generally get log/linear quantizations
1892 			 * with a high magnitude that allows 64-bits to
1893 			 * overflow, but we nonetheless protect against this
1894 			 * by explicitly checking for overflow, and clamping
1895 			 * our value accordingly.
1896 			 */
1897 			value = this - 1;
1898 		}
1899 
1900 		if (value < this) {
1901 			/*
1902 			 * If our value lies within this order of magnitude,
1903 			 * determine its position by taking the offset within
1904 			 * the order of magnitude, dividing by the bucket
1905 			 * width, and adding to our (accumulated) base.
1906 			 */
1907 			return (base + (value - last) / (this / nbuckets));
1908 		}
1909 
1910 		base += nbuckets - (nbuckets / factor);
1911 		last = this;
1912 		this = next;
1913 	}
1914 
1915 	/*
1916 	 * Our value is greater than or equal to our factor taken to the
1917 	 * power of one plus the high magnitude -- return the top bucket.
1918 	 */
1919 	return (base);
1920 }
1921 
1922 static void
1923 dtrace_aggregate_llquantize(uint64_t *llquanta, uint64_t nval, uint64_t incr)
1924 {
1925 	uint64_t arg = *llquanta++;
1926 	uint16_t factor = DTRACE_LLQUANTIZE_FACTOR(arg);
1927 	uint16_t low = DTRACE_LLQUANTIZE_LOW(arg);
1928 	uint16_t high = DTRACE_LLQUANTIZE_HIGH(arg);
1929 	uint16_t nsteps = DTRACE_LLQUANTIZE_NSTEP(arg);
1930 
1931 	llquanta[dtrace_aggregate_llquantize_bucket(factor,
1932 	    low, high, nsteps, nval)] += incr;
1933 }
1934 
1935 /*ARGSUSED*/
1936 static void
1937 dtrace_aggregate_avg(uint64_t *data, uint64_t nval, uint64_t arg)
1938 {
1939 	data[0]++;
1940 	data[1] += nval;
1941 }
1942 
1943 /*ARGSUSED*/
1944 static void
1945 dtrace_aggregate_stddev(uint64_t *data, uint64_t nval, uint64_t arg)
1946 {
1947 	int64_t snval = (int64_t)nval;
1948 	uint64_t tmp[2];
1949 
1950 	data[0]++;
1951 	data[1] += nval;
1952 
1953 	/*
1954 	 * What we want to say here is:
1955 	 *
1956 	 * data[2] += nval * nval;
1957 	 *
1958 	 * But given that nval is 64-bit, we could easily overflow, so
1959 	 * we do this as 128-bit arithmetic.
1960 	 */
1961 	if (snval < 0)
1962 		snval = -snval;
1963 
1964 	dtrace_multiply_128((uint64_t)snval, (uint64_t)snval, tmp);
1965 	dtrace_add_128(data + 2, tmp, data + 2);
1966 }
1967 
1968 /*ARGSUSED*/
1969 static void
1970 dtrace_aggregate_count(uint64_t *oval, uint64_t nval, uint64_t arg)
1971 {
1972 	*oval = *oval + 1;
1973 }
1974 
1975 /*ARGSUSED*/
1976 static void
1977 dtrace_aggregate_sum(uint64_t *oval, uint64_t nval, uint64_t arg)
1978 {
1979 	*oval += nval;
1980 }
1981 
1982 /*
1983  * Aggregate given the tuple in the principal data buffer, and the aggregating
1984  * action denoted by the specified dtrace_aggregation_t.  The aggregation
1985  * buffer is specified as the buf parameter.  This routine does not return
1986  * failure; if there is no space in the aggregation buffer, the data will be
1987  * dropped, and a corresponding counter incremented.
1988  */
1989 static void
1990 dtrace_aggregate(dtrace_aggregation_t *agg, dtrace_buffer_t *dbuf,
1991     intptr_t offset, dtrace_buffer_t *buf, uint64_t expr, uint64_t arg)
1992 {
1993 	dtrace_recdesc_t *rec = &agg->dtag_action.dta_rec;
1994 	uint32_t i, ndx, size, fsize;
1995 	uint32_t align = sizeof (uint64_t) - 1;
1996 	dtrace_aggbuffer_t *agb;
1997 	dtrace_aggkey_t *key;
1998 	uint32_t hashval = 0, limit, isstr;
1999 	caddr_t tomax, data, kdata;
2000 	dtrace_actkind_t action;
2001 	dtrace_action_t *act;
2002 	uintptr_t offs;
2003 
2004 	if (buf == NULL)
2005 		return;
2006 
2007 	if (!agg->dtag_hasarg) {
2008 		/*
2009 		 * Currently, only quantize() and lquantize() take additional
2010 		 * arguments, and they have the same semantics:  an increment
2011 		 * value that defaults to 1 when not present.  If additional
2012 		 * aggregating actions take arguments, the setting of the
2013 		 * default argument value will presumably have to become more
2014 		 * sophisticated...
2015 		 */
2016 		arg = 1;
2017 	}
2018 
2019 	action = agg->dtag_action.dta_kind - DTRACEACT_AGGREGATION;
2020 	size = rec->dtrd_offset - agg->dtag_base;
2021 	fsize = size + rec->dtrd_size;
2022 
2023 	ASSERT(dbuf->dtb_tomax != NULL);
2024 	data = dbuf->dtb_tomax + offset + agg->dtag_base;
2025 
2026 	if ((tomax = buf->dtb_tomax) == NULL) {
2027 		dtrace_buffer_drop(buf);
2028 		return;
2029 	}
2030 
2031 	/*
2032 	 * The metastructure is always at the bottom of the buffer.
2033 	 */
2034 	agb = (dtrace_aggbuffer_t *)(tomax + buf->dtb_size -
2035 	    sizeof (dtrace_aggbuffer_t));
2036 
2037 	if (buf->dtb_offset == 0) {
2038 		/*
2039 		 * We just kludge up approximately 1/8th of the size to be
2040 		 * buckets.  If this guess ends up being routinely
2041 		 * off-the-mark, we may need to dynamically readjust this
2042 		 * based on past performance.
2043 		 */
2044 		uintptr_t hashsize = (buf->dtb_size >> 3) / sizeof (uintptr_t);
2045 
2046 		if ((uintptr_t)agb - hashsize * sizeof (dtrace_aggkey_t *) <
2047 		    (uintptr_t)tomax || hashsize == 0) {
2048 			/*
2049 			 * We've been given a ludicrously small buffer;
2050 			 * increment our drop count and leave.
2051 			 */
2052 			dtrace_buffer_drop(buf);
2053 			return;
2054 		}
2055 
2056 		/*
2057 		 * And now, a pathetic attempt to try to get a an odd (or
2058 		 * perchance, a prime) hash size for better hash distribution.
2059 		 */
2060 		if (hashsize > (DTRACE_AGGHASHSIZE_SLEW << 3))
2061 			hashsize -= DTRACE_AGGHASHSIZE_SLEW;
2062 
2063 		agb->dtagb_hashsize = hashsize;
2064 		agb->dtagb_hash = (dtrace_aggkey_t **)((uintptr_t)agb -
2065 		    agb->dtagb_hashsize * sizeof (dtrace_aggkey_t *));
2066 		agb->dtagb_free = (uintptr_t)agb->dtagb_hash;
2067 
2068 		for (i = 0; i < agb->dtagb_hashsize; i++)
2069 			agb->dtagb_hash[i] = NULL;
2070 	}
2071 
2072 	ASSERT(agg->dtag_first != NULL);
2073 	ASSERT(agg->dtag_first->dta_intuple);
2074 
2075 	/*
2076 	 * Calculate the hash value based on the key.  Note that we _don't_
2077 	 * include the aggid in the hashing (but we will store it as part of
2078 	 * the key).  The hashing algorithm is Bob Jenkins' "One-at-a-time"
2079 	 * algorithm: a simple, quick algorithm that has no known funnels, and
2080 	 * gets good distribution in practice.  The efficacy of the hashing
2081 	 * algorithm (and a comparison with other algorithms) may be found by
2082 	 * running the ::dtrace_aggstat MDB dcmd.
2083 	 */
2084 	for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) {
2085 		i = act->dta_rec.dtrd_offset - agg->dtag_base;
2086 		limit = i + act->dta_rec.dtrd_size;
2087 		ASSERT(limit <= size);
2088 		isstr = DTRACEACT_ISSTRING(act);
2089 
2090 		for (; i < limit; i++) {
2091 			hashval += data[i];
2092 			hashval += (hashval << 10);
2093 			hashval ^= (hashval >> 6);
2094 
2095 			if (isstr && data[i] == '\0')
2096 				break;
2097 		}
2098 	}
2099 
2100 	hashval += (hashval << 3);
2101 	hashval ^= (hashval >> 11);
2102 	hashval += (hashval << 15);
2103 
2104 	/*
2105 	 * Yes, the divide here is expensive -- but it's generally the least
2106 	 * of the performance issues given the amount of data that we iterate
2107 	 * over to compute hash values, compare data, etc.
2108 	 */
2109 	ndx = hashval % agb->dtagb_hashsize;
2110 
2111 	for (key = agb->dtagb_hash[ndx]; key != NULL; key = key->dtak_next) {
2112 		ASSERT((caddr_t)key >= tomax);
2113 		ASSERT((caddr_t)key < tomax + buf->dtb_size);
2114 
2115 		if (hashval != key->dtak_hashval || key->dtak_size != size)
2116 			continue;
2117 
2118 		kdata = key->dtak_data;
2119 		ASSERT(kdata >= tomax && kdata < tomax + buf->dtb_size);
2120 
2121 		for (act = agg->dtag_first; act->dta_intuple;
2122 		    act = act->dta_next) {
2123 			i = act->dta_rec.dtrd_offset - agg->dtag_base;
2124 			limit = i + act->dta_rec.dtrd_size;
2125 			ASSERT(limit <= size);
2126 			isstr = DTRACEACT_ISSTRING(act);
2127 
2128 			for (; i < limit; i++) {
2129 				if (kdata[i] != data[i])
2130 					goto next;
2131 
2132 				if (isstr && data[i] == '\0')
2133 					break;
2134 			}
2135 		}
2136 
2137 		if (action != key->dtak_action) {
2138 			/*
2139 			 * We are aggregating on the same value in the same
2140 			 * aggregation with two different aggregating actions.
2141 			 * (This should have been picked up in the compiler,
2142 			 * so we may be dealing with errant or devious DIF.)
2143 			 * This is an error condition; we indicate as much,
2144 			 * and return.
2145 			 */
2146 			DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
2147 			return;
2148 		}
2149 
2150 		/*
2151 		 * This is a hit:  we need to apply the aggregator to
2152 		 * the value at this key.
2153 		 */
2154 		agg->dtag_aggregate((uint64_t *)(kdata + size), expr, arg);
2155 		return;
2156 next:
2157 		continue;
2158 	}
2159 
2160 	/*
2161 	 * We didn't find it.  We need to allocate some zero-filled space,
2162 	 * link it into the hash table appropriately, and apply the aggregator
2163 	 * to the (zero-filled) value.
2164 	 */
2165 	offs = buf->dtb_offset;
2166 	while (offs & (align - 1))
2167 		offs += sizeof (uint32_t);
2168 
2169 	/*
2170 	 * If we don't have enough room to both allocate a new key _and_
2171 	 * its associated data, increment the drop count and return.
2172 	 */
2173 	if ((uintptr_t)tomax + offs + fsize >
2174 	    agb->dtagb_free - sizeof (dtrace_aggkey_t)) {
2175 		dtrace_buffer_drop(buf);
2176 		return;
2177 	}
2178 
2179 	/*CONSTCOND*/
2180 	ASSERT(!(sizeof (dtrace_aggkey_t) & (sizeof (uintptr_t) - 1)));
2181 	key = (dtrace_aggkey_t *)(agb->dtagb_free - sizeof (dtrace_aggkey_t));
2182 	agb->dtagb_free -= sizeof (dtrace_aggkey_t);
2183 
2184 	key->dtak_data = kdata = tomax + offs;
2185 	buf->dtb_offset = offs + fsize;
2186 
2187 	/*
2188 	 * Now copy the data across.
2189 	 */
2190 	*((dtrace_aggid_t *)kdata) = agg->dtag_id;
2191 
2192 	for (i = sizeof (dtrace_aggid_t); i < size; i++)
2193 		kdata[i] = data[i];
2194 
2195 	/*
2196 	 * Because strings are not zeroed out by default, we need to iterate
2197 	 * looking for actions that store strings, and we need to explicitly
2198 	 * pad these strings out with zeroes.
2199 	 */
2200 	for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) {
2201 		int nul;
2202 
2203 		if (!DTRACEACT_ISSTRING(act))
2204 			continue;
2205 
2206 		i = act->dta_rec.dtrd_offset - agg->dtag_base;
2207 		limit = i + act->dta_rec.dtrd_size;
2208 		ASSERT(limit <= size);
2209 
2210 		for (nul = 0; i < limit; i++) {
2211 			if (nul) {
2212 				kdata[i] = '\0';
2213 				continue;
2214 			}
2215 
2216 			if (data[i] != '\0')
2217 				continue;
2218 
2219 			nul = 1;
2220 		}
2221 	}
2222 
2223 	for (i = size; i < fsize; i++)
2224 		kdata[i] = 0;
2225 
2226 	key->dtak_hashval = hashval;
2227 	key->dtak_size = size;
2228 	key->dtak_action = action;
2229 	key->dtak_next = agb->dtagb_hash[ndx];
2230 	agb->dtagb_hash[ndx] = key;
2231 
2232 	/*
2233 	 * Finally, apply the aggregator.
2234 	 */
2235 	*((uint64_t *)(key->dtak_data + size)) = agg->dtag_initial;
2236 	agg->dtag_aggregate((uint64_t *)(key->dtak_data + size), expr, arg);
2237 }
2238 
2239 /*
2240  * Given consumer state, this routine finds a speculation in the INACTIVE
2241  * state and transitions it into the ACTIVE state.  If there is no speculation
2242  * in the INACTIVE state, 0 is returned.  In this case, no error counter is
2243  * incremented -- it is up to the caller to take appropriate action.
2244  */
2245 static int
2246 dtrace_speculation(dtrace_state_t *state)
2247 {
2248 	int i = 0;
2249 	dtrace_speculation_state_t current;
2250 	uint32_t *stat = &state->dts_speculations_unavail, count;
2251 
2252 	while (i < state->dts_nspeculations) {
2253 		dtrace_speculation_t *spec = &state->dts_speculations[i];
2254 
2255 		current = spec->dtsp_state;
2256 
2257 		if (current != DTRACESPEC_INACTIVE) {
2258 			if (current == DTRACESPEC_COMMITTINGMANY ||
2259 			    current == DTRACESPEC_COMMITTING ||
2260 			    current == DTRACESPEC_DISCARDING)
2261 				stat = &state->dts_speculations_busy;
2262 			i++;
2263 			continue;
2264 		}
2265 
2266 		if (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2267 		    current, DTRACESPEC_ACTIVE) == current)
2268 			return (i + 1);
2269 	}
2270 
2271 	/*
2272 	 * We couldn't find a speculation.  If we found as much as a single
2273 	 * busy speculation buffer, we'll attribute this failure as "busy"
2274 	 * instead of "unavail".
2275 	 */
2276 	do {
2277 		count = *stat;
2278 	} while (dtrace_cas32(stat, count, count + 1) != count);
2279 
2280 	return (0);
2281 }
2282 
2283 /*
2284  * This routine commits an active speculation.  If the specified speculation
2285  * is not in a valid state to perform a commit(), this routine will silently do
2286  * nothing.  The state of the specified speculation is transitioned according
2287  * to the state transition diagram outlined in <sys/dtrace_impl.h>
2288  */
2289 static void
2290 dtrace_speculation_commit(dtrace_state_t *state, processorid_t cpu,
2291     dtrace_specid_t which)
2292 {
2293 	dtrace_speculation_t *spec;
2294 	dtrace_buffer_t *src, *dest;
2295 	uintptr_t daddr, saddr, dlimit;
2296 	dtrace_speculation_state_t current, new;
2297 	intptr_t offs;
2298 
2299 	if (which == 0)
2300 		return;
2301 
2302 	if (which > state->dts_nspeculations) {
2303 		cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
2304 		return;
2305 	}
2306 
2307 	spec = &state->dts_speculations[which - 1];
2308 	src = &spec->dtsp_buffer[cpu];
2309 	dest = &state->dts_buffer[cpu];
2310 
2311 	do {
2312 		current = spec->dtsp_state;
2313 
2314 		if (current == DTRACESPEC_COMMITTINGMANY)
2315 			break;
2316 
2317 		switch (current) {
2318 		case DTRACESPEC_INACTIVE:
2319 		case DTRACESPEC_DISCARDING:
2320 			return;
2321 
2322 		case DTRACESPEC_COMMITTING:
2323 			/*
2324 			 * This is only possible if we are (a) commit()'ing
2325 			 * without having done a prior speculate() on this CPU
2326 			 * and (b) racing with another commit() on a different
2327 			 * CPU.  There's nothing to do -- we just assert that
2328 			 * our offset is 0.
2329 			 */
2330 			ASSERT(src->dtb_offset == 0);
2331 			return;
2332 
2333 		case DTRACESPEC_ACTIVE:
2334 			new = DTRACESPEC_COMMITTING;
2335 			break;
2336 
2337 		case DTRACESPEC_ACTIVEONE:
2338 			/*
2339 			 * This speculation is active on one CPU.  If our
2340 			 * buffer offset is non-zero, we know that the one CPU
2341 			 * must be us.  Otherwise, we are committing on a
2342 			 * different CPU from the speculate(), and we must
2343 			 * rely on being asynchronously cleaned.
2344 			 */
2345 			if (src->dtb_offset != 0) {
2346 				new = DTRACESPEC_COMMITTING;
2347 				break;
2348 			}
2349 			/*FALLTHROUGH*/
2350 
2351 		case DTRACESPEC_ACTIVEMANY:
2352 			new = DTRACESPEC_COMMITTINGMANY;
2353 			break;
2354 
2355 		default:
2356 			ASSERT(0);
2357 		}
2358 	} while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2359 	    current, new) != current);
2360 
2361 	/*
2362 	 * We have set the state to indicate that we are committing this
2363 	 * speculation.  Now reserve the necessary space in the destination
2364 	 * buffer.
2365 	 */
2366 	if ((offs = dtrace_buffer_reserve(dest, src->dtb_offset,
2367 	    sizeof (uint64_t), state, NULL)) < 0) {
2368 		dtrace_buffer_drop(dest);
2369 		goto out;
2370 	}
2371 
2372 	/*
2373 	 * We have the space; copy the buffer across.  (Note that this is a
2374 	 * highly subobtimal bcopy(); in the unlikely event that this becomes
2375 	 * a serious performance issue, a high-performance DTrace-specific
2376 	 * bcopy() should obviously be invented.)
2377 	 */
2378 	daddr = (uintptr_t)dest->dtb_tomax + offs;
2379 	dlimit = daddr + src->dtb_offset;
2380 	saddr = (uintptr_t)src->dtb_tomax;
2381 
2382 	/*
2383 	 * First, the aligned portion.
2384 	 */
2385 	while (dlimit - daddr >= sizeof (uint64_t)) {
2386 		*((uint64_t *)daddr) = *((uint64_t *)saddr);
2387 
2388 		daddr += sizeof (uint64_t);
2389 		saddr += sizeof (uint64_t);
2390 	}
2391 
2392 	/*
2393 	 * Now any left-over bit...
2394 	 */
2395 	while (dlimit - daddr)
2396 		*((uint8_t *)daddr++) = *((uint8_t *)saddr++);
2397 
2398 	/*
2399 	 * Finally, commit the reserved space in the destination buffer.
2400 	 */
2401 	dest->dtb_offset = offs + src->dtb_offset;
2402 
2403 out:
2404 	/*
2405 	 * If we're lucky enough to be the only active CPU on this speculation
2406 	 * buffer, we can just set the state back to DTRACESPEC_INACTIVE.
2407 	 */
2408 	if (current == DTRACESPEC_ACTIVE ||
2409 	    (current == DTRACESPEC_ACTIVEONE && new == DTRACESPEC_COMMITTING)) {
2410 		uint32_t rval = dtrace_cas32((uint32_t *)&spec->dtsp_state,
2411 		    DTRACESPEC_COMMITTING, DTRACESPEC_INACTIVE);
2412 
2413 		ASSERT(rval == DTRACESPEC_COMMITTING);
2414 	}
2415 
2416 	src->dtb_offset = 0;
2417 	src->dtb_xamot_drops += src->dtb_drops;
2418 	src->dtb_drops = 0;
2419 }
2420 
2421 /*
2422  * This routine discards an active speculation.  If the specified speculation
2423  * is not in a valid state to perform a discard(), this routine will silently
2424  * do nothing.  The state of the specified speculation is transitioned
2425  * according to the state transition diagram outlined in <sys/dtrace_impl.h>
2426  */
2427 static void
2428 dtrace_speculation_discard(dtrace_state_t *state, processorid_t cpu,
2429     dtrace_specid_t which)
2430 {
2431 	dtrace_speculation_t *spec;
2432 	dtrace_speculation_state_t current, new;
2433 	dtrace_buffer_t *buf;
2434 
2435 	if (which == 0)
2436 		return;
2437 
2438 	if (which > state->dts_nspeculations) {
2439 		cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
2440 		return;
2441 	}
2442 
2443 	spec = &state->dts_speculations[which - 1];
2444 	buf = &spec->dtsp_buffer[cpu];
2445 
2446 	do {
2447 		current = spec->dtsp_state;
2448 
2449 		switch (current) {
2450 		case DTRACESPEC_INACTIVE:
2451 		case DTRACESPEC_COMMITTINGMANY:
2452 		case DTRACESPEC_COMMITTING:
2453 		case DTRACESPEC_DISCARDING:
2454 			return;
2455 
2456 		case DTRACESPEC_ACTIVE:
2457 		case DTRACESPEC_ACTIVEMANY:
2458 			new = DTRACESPEC_DISCARDING;
2459 			break;
2460 
2461 		case DTRACESPEC_ACTIVEONE:
2462 			if (buf->dtb_offset != 0) {
2463 				new = DTRACESPEC_INACTIVE;
2464 			} else {
2465 				new = DTRACESPEC_DISCARDING;
2466 			}
2467 			break;
2468 
2469 		default:
2470 			ASSERT(0);
2471 		}
2472 	} while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2473 	    current, new) != current);
2474 
2475 	buf->dtb_offset = 0;
2476 	buf->dtb_drops = 0;
2477 }
2478 
2479 /*
2480  * Note:  not called from probe context.  This function is called
2481  * asynchronously from cross call context to clean any speculations that are
2482  * in the COMMITTINGMANY or DISCARDING states.  These speculations may not be
2483  * transitioned back to the INACTIVE state until all CPUs have cleaned the
2484  * speculation.
2485  */
2486 static void
2487 dtrace_speculation_clean_here(dtrace_state_t *state)
2488 {
2489 	dtrace_icookie_t cookie;
2490 	processorid_t cpu = CPU->cpu_id;
2491 	dtrace_buffer_t *dest = &state->dts_buffer[cpu];
2492 	dtrace_specid_t i;
2493 
2494 	cookie = dtrace_interrupt_disable();
2495 
2496 	if (dest->dtb_tomax == NULL) {
2497 		dtrace_interrupt_enable(cookie);
2498 		return;
2499 	}
2500 
2501 	for (i = 0; i < state->dts_nspeculations; i++) {
2502 		dtrace_speculation_t *spec = &state->dts_speculations[i];
2503 		dtrace_buffer_t *src = &spec->dtsp_buffer[cpu];
2504 
2505 		if (src->dtb_tomax == NULL)
2506 			continue;
2507 
2508 		if (spec->dtsp_state == DTRACESPEC_DISCARDING) {
2509 			src->dtb_offset = 0;
2510 			continue;
2511 		}
2512 
2513 		if (spec->dtsp_state != DTRACESPEC_COMMITTINGMANY)
2514 			continue;
2515 
2516 		if (src->dtb_offset == 0)
2517 			continue;
2518 
2519 		dtrace_speculation_commit(state, cpu, i + 1);
2520 	}
2521 
2522 	dtrace_interrupt_enable(cookie);
2523 }
2524 
2525 /*
2526  * Note:  not called from probe context.  This function is called
2527  * asynchronously (and at a regular interval) to clean any speculations that
2528  * are in the COMMITTINGMANY or DISCARDING states.  If it discovers that there
2529  * is work to be done, it cross calls all CPUs to perform that work;
2530  * COMMITMANY and DISCARDING speculations may not be transitioned back to the
2531  * INACTIVE state until they have been cleaned by all CPUs.
2532  */
2533 static void
2534 dtrace_speculation_clean(dtrace_state_t *state)
2535 {
2536 	int work = 0, rv;
2537 	dtrace_specid_t i;
2538 
2539 	for (i = 0; i < state->dts_nspeculations; i++) {
2540 		dtrace_speculation_t *spec = &state->dts_speculations[i];
2541 
2542 		ASSERT(!spec->dtsp_cleaning);
2543 
2544 		if (spec->dtsp_state != DTRACESPEC_DISCARDING &&
2545 		    spec->dtsp_state != DTRACESPEC_COMMITTINGMANY)
2546 			continue;
2547 
2548 		work++;
2549 		spec->dtsp_cleaning = 1;
2550 	}
2551 
2552 	if (!work)
2553 		return;
2554 
2555 	dtrace_xcall(DTRACE_CPUALL,
2556 	    (dtrace_xcall_t)dtrace_speculation_clean_here, state);
2557 
2558 	/*
2559 	 * We now know that all CPUs have committed or discarded their
2560 	 * speculation buffers, as appropriate.  We can now set the state
2561 	 * to inactive.
2562 	 */
2563 	for (i = 0; i < state->dts_nspeculations; i++) {
2564 		dtrace_speculation_t *spec = &state->dts_speculations[i];
2565 		dtrace_speculation_state_t current, new;
2566 
2567 		if (!spec->dtsp_cleaning)
2568 			continue;
2569 
2570 		current = spec->dtsp_state;
2571 		ASSERT(current == DTRACESPEC_DISCARDING ||
2572 		    current == DTRACESPEC_COMMITTINGMANY);
2573 
2574 		new = DTRACESPEC_INACTIVE;
2575 
2576 		rv = dtrace_cas32((uint32_t *)&spec->dtsp_state, current, new);
2577 		ASSERT(rv == current);
2578 		spec->dtsp_cleaning = 0;
2579 	}
2580 }
2581 
2582 /*
2583  * Called as part of a speculate() to get the speculative buffer associated
2584  * with a given speculation.  Returns NULL if the specified speculation is not
2585  * in an ACTIVE state.  If the speculation is in the ACTIVEONE state -- and
2586  * the active CPU is not the specified CPU -- the speculation will be
2587  * atomically transitioned into the ACTIVEMANY state.
2588  */
2589 static dtrace_buffer_t *
2590 dtrace_speculation_buffer(dtrace_state_t *state, processorid_t cpuid,
2591     dtrace_specid_t which)
2592 {
2593 	dtrace_speculation_t *spec;
2594 	dtrace_speculation_state_t current, new;
2595 	dtrace_buffer_t *buf;
2596 
2597 	if (which == 0)
2598 		return (NULL);
2599 
2600 	if (which > state->dts_nspeculations) {
2601 		cpu_core[cpuid].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
2602 		return (NULL);
2603 	}
2604 
2605 	spec = &state->dts_speculations[which - 1];
2606 	buf = &spec->dtsp_buffer[cpuid];
2607 
2608 	do {
2609 		current = spec->dtsp_state;
2610 
2611 		switch (current) {
2612 		case DTRACESPEC_INACTIVE:
2613 		case DTRACESPEC_COMMITTINGMANY:
2614 		case DTRACESPEC_DISCARDING:
2615 			return (NULL);
2616 
2617 		case DTRACESPEC_COMMITTING:
2618 			ASSERT(buf->dtb_offset == 0);
2619 			return (NULL);
2620 
2621 		case DTRACESPEC_ACTIVEONE:
2622 			/*
2623 			 * This speculation is currently active on one CPU.
2624 			 * Check the offset in the buffer; if it's non-zero,
2625 			 * that CPU must be us (and we leave the state alone).
2626 			 * If it's zero, assume that we're starting on a new
2627 			 * CPU -- and change the state to indicate that the
2628 			 * speculation is active on more than one CPU.
2629 			 */
2630 			if (buf->dtb_offset != 0)
2631 				return (buf);
2632 
2633 			new = DTRACESPEC_ACTIVEMANY;
2634 			break;
2635 
2636 		case DTRACESPEC_ACTIVEMANY:
2637 			return (buf);
2638 
2639 		case DTRACESPEC_ACTIVE:
2640 			new = DTRACESPEC_ACTIVEONE;
2641 			break;
2642 
2643 		default:
2644 			ASSERT(0);
2645 		}
2646 	} while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2647 	    current, new) != current);
2648 
2649 	ASSERT(new == DTRACESPEC_ACTIVEONE || new == DTRACESPEC_ACTIVEMANY);
2650 	return (buf);
2651 }
2652 
2653 /*
2654  * Return a string.  In the event that the user lacks the privilege to access
2655  * arbitrary kernel memory, we copy the string out to scratch memory so that we
2656  * don't fail access checking.
2657  *
2658  * dtrace_dif_variable() uses this routine as a helper for various
2659  * builtin values such as 'execname' and 'probefunc.'
2660  */
2661 uintptr_t
2662 dtrace_dif_varstr(uintptr_t addr, dtrace_state_t *state,
2663     dtrace_mstate_t *mstate)
2664 {
2665 	uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
2666 	uintptr_t ret;
2667 	size_t strsz;
2668 
2669 	/*
2670 	 * The easy case: this probe is allowed to read all of memory, so
2671 	 * we can just return this as a vanilla pointer.
2672 	 */
2673 	if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
2674 		return (addr);
2675 
2676 	/*
2677 	 * This is the tougher case: we copy the string in question from
2678 	 * kernel memory into scratch memory and return it that way: this
2679 	 * ensures that we won't trip up when access checking tests the
2680 	 * BYREF return value.
2681 	 */
2682 	strsz = dtrace_strlen((char *)addr, size) + 1;
2683 
2684 	if (mstate->dtms_scratch_ptr + strsz >
2685 	    mstate->dtms_scratch_base + mstate->dtms_scratch_size) {
2686 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
2687 		return (NULL);
2688 	}
2689 
2690 	dtrace_strcpy((const void *)addr, (void *)mstate->dtms_scratch_ptr,
2691 	    strsz);
2692 	ret = mstate->dtms_scratch_ptr;
2693 	mstate->dtms_scratch_ptr += strsz;
2694 	return (ret);
2695 }
2696 
2697 /*
2698  * This function implements the DIF emulator's variable lookups.  The emulator
2699  * passes a reserved variable identifier and optional built-in array index.
2700  */
2701 static uint64_t
2702 dtrace_dif_variable(dtrace_mstate_t *mstate, dtrace_state_t *state, uint64_t v,
2703     uint64_t ndx)
2704 {
2705 	/*
2706 	 * If we're accessing one of the uncached arguments, we'll turn this
2707 	 * into a reference in the args array.
2708 	 */
2709 	if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9) {
2710 		ndx = v - DIF_VAR_ARG0;
2711 		v = DIF_VAR_ARGS;
2712 	}
2713 
2714 	switch (v) {
2715 	case DIF_VAR_ARGS:
2716 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_ARGS);
2717 		if (ndx >= sizeof (mstate->dtms_arg) /
2718 		    sizeof (mstate->dtms_arg[0])) {
2719 			int aframes = mstate->dtms_probe->dtpr_aframes + 2;
2720 			dtrace_provider_t *pv;
2721 			uint64_t val;
2722 
2723 			pv = mstate->dtms_probe->dtpr_provider;
2724 			if (pv->dtpv_pops.dtps_getargval != NULL)
2725 				val = pv->dtpv_pops.dtps_getargval(pv->dtpv_arg,
2726 				    mstate->dtms_probe->dtpr_id,
2727 				    mstate->dtms_probe->dtpr_arg, ndx, aframes);
2728 			else
2729 				val = dtrace_getarg(ndx, aframes);
2730 
2731 			/*
2732 			 * This is regrettably required to keep the compiler
2733 			 * from tail-optimizing the call to dtrace_getarg().
2734 			 * The condition always evaluates to true, but the
2735 			 * compiler has no way of figuring that out a priori.
2736 			 * (None of this would be necessary if the compiler
2737 			 * could be relied upon to _always_ tail-optimize
2738 			 * the call to dtrace_getarg() -- but it can't.)
2739 			 */
2740 			if (mstate->dtms_probe != NULL)
2741 				return (val);
2742 
2743 			ASSERT(0);
2744 		}
2745 
2746 		return (mstate->dtms_arg[ndx]);
2747 
2748 	case DIF_VAR_UREGS: {
2749 		klwp_t *lwp;
2750 
2751 		if (!dtrace_priv_proc(state))
2752 			return (0);
2753 
2754 		if ((lwp = curthread->t_lwp) == NULL) {
2755 			DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
2756 			cpu_core[CPU->cpu_id].cpuc_dtrace_illval = NULL;
2757 			return (0);
2758 		}
2759 
2760 		return (dtrace_getreg(lwp->lwp_regs, ndx));
2761 	}
2762 
2763 	case DIF_VAR_VMREGS: {
2764 		uint64_t rval;
2765 
2766 		if (!dtrace_priv_kernel(state))
2767 			return (0);
2768 
2769 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
2770 
2771 		rval = dtrace_getvmreg(ndx,
2772 		    &cpu_core[CPU->cpu_id].cpuc_dtrace_flags);
2773 
2774 		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
2775 
2776 		return (rval);
2777 	}
2778 
2779 	case DIF_VAR_CURTHREAD:
2780 		if (!dtrace_priv_kernel(state))
2781 			return (0);
2782 		return ((uint64_t)(uintptr_t)curthread);
2783 
2784 	case DIF_VAR_TIMESTAMP:
2785 		if (!(mstate->dtms_present & DTRACE_MSTATE_TIMESTAMP)) {
2786 			mstate->dtms_timestamp = dtrace_gethrtime();
2787 			mstate->dtms_present |= DTRACE_MSTATE_TIMESTAMP;
2788 		}
2789 		return (mstate->dtms_timestamp);
2790 
2791 	case DIF_VAR_VTIMESTAMP:
2792 		ASSERT(dtrace_vtime_references != 0);
2793 		return (curthread->t_dtrace_vtime);
2794 
2795 	case DIF_VAR_WALLTIMESTAMP:
2796 		if (!(mstate->dtms_present & DTRACE_MSTATE_WALLTIMESTAMP)) {
2797 			mstate->dtms_walltimestamp = dtrace_gethrestime();
2798 			mstate->dtms_present |= DTRACE_MSTATE_WALLTIMESTAMP;
2799 		}
2800 		return (mstate->dtms_walltimestamp);
2801 
2802 	case DIF_VAR_IPL:
2803 		if (!dtrace_priv_kernel(state))
2804 			return (0);
2805 		if (!(mstate->dtms_present & DTRACE_MSTATE_IPL)) {
2806 			mstate->dtms_ipl = dtrace_getipl();
2807 			mstate->dtms_present |= DTRACE_MSTATE_IPL;
2808 		}
2809 		return (mstate->dtms_ipl);
2810 
2811 	case DIF_VAR_EPID:
2812 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_EPID);
2813 		return (mstate->dtms_epid);
2814 
2815 	case DIF_VAR_ID:
2816 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
2817 		return (mstate->dtms_probe->dtpr_id);
2818 
2819 	case DIF_VAR_STACKDEPTH:
2820 		if (!dtrace_priv_kernel(state))
2821 			return (0);
2822 		if (!(mstate->dtms_present & DTRACE_MSTATE_STACKDEPTH)) {
2823 			int aframes = mstate->dtms_probe->dtpr_aframes + 2;
2824 
2825 			mstate->dtms_stackdepth = dtrace_getstackdepth(aframes);
2826 			mstate->dtms_present |= DTRACE_MSTATE_STACKDEPTH;
2827 		}
2828 		return (mstate->dtms_stackdepth);
2829 
2830 	case DIF_VAR_USTACKDEPTH:
2831 		if (!dtrace_priv_proc(state))
2832 			return (0);
2833 		if (!(mstate->dtms_present & DTRACE_MSTATE_USTACKDEPTH)) {
2834 			/*
2835 			 * See comment in DIF_VAR_PID.
2836 			 */
2837 			if (DTRACE_ANCHORED(mstate->dtms_probe) &&
2838 			    CPU_ON_INTR(CPU)) {
2839 				mstate->dtms_ustackdepth = 0;
2840 			} else {
2841 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
2842 				mstate->dtms_ustackdepth =
2843 				    dtrace_getustackdepth();
2844 				DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
2845 			}
2846 			mstate->dtms_present |= DTRACE_MSTATE_USTACKDEPTH;
2847 		}
2848 		return (mstate->dtms_ustackdepth);
2849 
2850 	case DIF_VAR_CALLER:
2851 		if (!dtrace_priv_kernel(state))
2852 			return (0);
2853 		if (!(mstate->dtms_present & DTRACE_MSTATE_CALLER)) {
2854 			int aframes = mstate->dtms_probe->dtpr_aframes + 2;
2855 
2856 			if (!DTRACE_ANCHORED(mstate->dtms_probe)) {
2857 				/*
2858 				 * If this is an unanchored probe, we are
2859 				 * required to go through the slow path:
2860 				 * dtrace_caller() only guarantees correct
2861 				 * results for anchored probes.
2862 				 */
2863 				pc_t caller[2];
2864 
2865 				dtrace_getpcstack(caller, 2, aframes,
2866 				    (uint32_t *)(uintptr_t)mstate->dtms_arg[0]);
2867 				mstate->dtms_caller = caller[1];
2868 			} else if ((mstate->dtms_caller =
2869 			    dtrace_caller(aframes)) == -1) {
2870 				/*
2871 				 * We have failed to do this the quick way;
2872 				 * we must resort to the slower approach of
2873 				 * calling dtrace_getpcstack().
2874 				 */
2875 				pc_t caller;
2876 
2877 				dtrace_getpcstack(&caller, 1, aframes, NULL);
2878 				mstate->dtms_caller = caller;
2879 			}
2880 
2881 			mstate->dtms_present |= DTRACE_MSTATE_CALLER;
2882 		}
2883 		return (mstate->dtms_caller);
2884 
2885 	case DIF_VAR_UCALLER:
2886 		if (!dtrace_priv_proc(state))
2887 			return (0);
2888 
2889 		if (!(mstate->dtms_present & DTRACE_MSTATE_UCALLER)) {
2890 			uint64_t ustack[3];
2891 
2892 			/*
2893 			 * dtrace_getupcstack() fills in the first uint64_t
2894 			 * with the current PID.  The second uint64_t will
2895 			 * be the program counter at user-level.  The third
2896 			 * uint64_t will contain the caller, which is what
2897 			 * we're after.
2898 			 */
2899 			ustack[2] = NULL;
2900 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
2901 			dtrace_getupcstack(ustack, 3);
2902 			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
2903 			mstate->dtms_ucaller = ustack[2];
2904 			mstate->dtms_present |= DTRACE_MSTATE_UCALLER;
2905 		}
2906 
2907 		return (mstate->dtms_ucaller);
2908 
2909 	case DIF_VAR_PROBEPROV:
2910 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
2911 		return (dtrace_dif_varstr(
2912 		    (uintptr_t)mstate->dtms_probe->dtpr_provider->dtpv_name,
2913 		    state, mstate));
2914 
2915 	case DIF_VAR_PROBEMOD:
2916 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
2917 		return (dtrace_dif_varstr(
2918 		    (uintptr_t)mstate->dtms_probe->dtpr_mod,
2919 		    state, mstate));
2920 
2921 	case DIF_VAR_PROBEFUNC:
2922 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
2923 		return (dtrace_dif_varstr(
2924 		    (uintptr_t)mstate->dtms_probe->dtpr_func,
2925 		    state, mstate));
2926 
2927 	case DIF_VAR_PROBENAME:
2928 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
2929 		return (dtrace_dif_varstr(
2930 		    (uintptr_t)mstate->dtms_probe->dtpr_name,
2931 		    state, mstate));
2932 
2933 	case DIF_VAR_PID:
2934 		if (!dtrace_priv_proc(state))
2935 			return (0);
2936 
2937 		/*
2938 		 * Note that we are assuming that an unanchored probe is
2939 		 * always due to a high-level interrupt.  (And we're assuming
2940 		 * that there is only a single high level interrupt.)
2941 		 */
2942 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
2943 			return (pid0.pid_id);
2944 
2945 		/*
2946 		 * It is always safe to dereference one's own t_procp pointer:
2947 		 * it always points to a valid, allocated proc structure.
2948 		 * Further, it is always safe to dereference the p_pidp member
2949 		 * of one's own proc structure.  (These are truisms becuase
2950 		 * threads and processes don't clean up their own state --
2951 		 * they leave that task to whomever reaps them.)
2952 		 */
2953 		return ((uint64_t)curthread->t_procp->p_pidp->pid_id);
2954 
2955 	case DIF_VAR_PPID:
2956 		if (!dtrace_priv_proc(state))
2957 			return (0);
2958 
2959 		/*
2960 		 * See comment in DIF_VAR_PID.
2961 		 */
2962 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
2963 			return (pid0.pid_id);
2964 
2965 		/*
2966 		 * It is always safe to dereference one's own t_procp pointer:
2967 		 * it always points to a valid, allocated proc structure.
2968 		 * (This is true because threads don't clean up their own
2969 		 * state -- they leave that task to whomever reaps them.)
2970 		 */
2971 		return ((uint64_t)curthread->t_procp->p_ppid);
2972 
2973 	case DIF_VAR_TID:
2974 		/*
2975 		 * See comment in DIF_VAR_PID.
2976 		 */
2977 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
2978 			return (0);
2979 
2980 		return ((uint64_t)curthread->t_tid);
2981 
2982 	case DIF_VAR_EXECNAME:
2983 		if (!dtrace_priv_proc(state))
2984 			return (0);
2985 
2986 		/*
2987 		 * See comment in DIF_VAR_PID.
2988 		 */
2989 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
2990 			return ((uint64_t)(uintptr_t)p0.p_user.u_comm);
2991 
2992 		/*
2993 		 * It is always safe to dereference one's own t_procp pointer:
2994 		 * it always points to a valid, allocated proc structure.
2995 		 * (This is true because threads don't clean up their own
2996 		 * state -- they leave that task to whomever reaps them.)
2997 		 */
2998 		return (dtrace_dif_varstr(
2999 		    (uintptr_t)curthread->t_procp->p_user.u_comm,
3000 		    state, mstate));
3001 
3002 	case DIF_VAR_ZONENAME:
3003 		if (!dtrace_priv_proc(state))
3004 			return (0);
3005 
3006 		/*
3007 		 * See comment in DIF_VAR_PID.
3008 		 */
3009 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3010 			return ((uint64_t)(uintptr_t)p0.p_zone->zone_name);
3011 
3012 		/*
3013 		 * It is always safe to dereference one's own t_procp pointer:
3014 		 * it always points to a valid, allocated proc structure.
3015 		 * (This is true because threads don't clean up their own
3016 		 * state -- they leave that task to whomever reaps them.)
3017 		 */
3018 		return (dtrace_dif_varstr(
3019 		    (uintptr_t)curthread->t_procp->p_zone->zone_name,
3020 		    state, mstate));
3021 
3022 	case DIF_VAR_UID:
3023 		if (!dtrace_priv_proc(state))
3024 			return (0);
3025 
3026 		/*
3027 		 * See comment in DIF_VAR_PID.
3028 		 */
3029 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3030 			return ((uint64_t)p0.p_cred->cr_uid);
3031 
3032 		/*
3033 		 * It is always safe to dereference one's own t_procp pointer:
3034 		 * it always points to a valid, allocated proc structure.
3035 		 * (This is true because threads don't clean up their own
3036 		 * state -- they leave that task to whomever reaps them.)
3037 		 *
3038 		 * Additionally, it is safe to dereference one's own process
3039 		 * credential, since this is never NULL after process birth.
3040 		 */
3041 		return ((uint64_t)curthread->t_procp->p_cred->cr_uid);
3042 
3043 	case DIF_VAR_GID:
3044 		if (!dtrace_priv_proc(state))
3045 			return (0);
3046 
3047 		/*
3048 		 * See comment in DIF_VAR_PID.
3049 		 */
3050 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3051 			return ((uint64_t)p0.p_cred->cr_gid);
3052 
3053 		/*
3054 		 * It is always safe to dereference one's own t_procp pointer:
3055 		 * it always points to a valid, allocated proc structure.
3056 		 * (This is true because threads don't clean up their own
3057 		 * state -- they leave that task to whomever reaps them.)
3058 		 *
3059 		 * Additionally, it is safe to dereference one's own process
3060 		 * credential, since this is never NULL after process birth.
3061 		 */
3062 		return ((uint64_t)curthread->t_procp->p_cred->cr_gid);
3063 
3064 	case DIF_VAR_ERRNO: {
3065 		klwp_t *lwp;
3066 		if (!dtrace_priv_proc(state))
3067 			return (0);
3068 
3069 		/*
3070 		 * See comment in DIF_VAR_PID.
3071 		 */
3072 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3073 			return (0);
3074 
3075 		/*
3076 		 * It is always safe to dereference one's own t_lwp pointer in
3077 		 * the event that this pointer is non-NULL.  (This is true
3078 		 * because threads and lwps don't clean up their own state --
3079 		 * they leave that task to whomever reaps them.)
3080 		 */
3081 		if ((lwp = curthread->t_lwp) == NULL)
3082 			return (0);
3083 
3084 		return ((uint64_t)lwp->lwp_errno);
3085 	}
3086 	default:
3087 		DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
3088 		return (0);
3089 	}
3090 }
3091 
3092 /*
3093  * Emulate the execution of DTrace ID subroutines invoked by the call opcode.
3094  * Notice that we don't bother validating the proper number of arguments or
3095  * their types in the tuple stack.  This isn't needed because all argument
3096  * interpretation is safe because of our load safety -- the worst that can
3097  * happen is that a bogus program can obtain bogus results.
3098  */
3099 static void
3100 dtrace_dif_subr(uint_t subr, uint_t rd, uint64_t *regs,
3101     dtrace_key_t *tupregs, int nargs,
3102     dtrace_mstate_t *mstate, dtrace_state_t *state)
3103 {
3104 	volatile uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
3105 	volatile uintptr_t *illval = &cpu_core[CPU->cpu_id].cpuc_dtrace_illval;
3106 	dtrace_vstate_t *vstate = &state->dts_vstate;
3107 
3108 	union {
3109 		mutex_impl_t mi;
3110 		uint64_t mx;
3111 	} m;
3112 
3113 	union {
3114 		krwlock_t ri;
3115 		uintptr_t rw;
3116 	} r;
3117 
3118 	switch (subr) {
3119 	case DIF_SUBR_RAND:
3120 		regs[rd] = (dtrace_gethrtime() * 2416 + 374441) % 1771875;
3121 		break;
3122 
3123 	case DIF_SUBR_MUTEX_OWNED:
3124 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
3125 		    mstate, vstate)) {
3126 			regs[rd] = NULL;
3127 			break;
3128 		}
3129 
3130 		m.mx = dtrace_load64(tupregs[0].dttk_value);
3131 		if (MUTEX_TYPE_ADAPTIVE(&m.mi))
3132 			regs[rd] = MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER;
3133 		else
3134 			regs[rd] = LOCK_HELD(&m.mi.m_spin.m_spinlock);
3135 		break;
3136 
3137 	case DIF_SUBR_MUTEX_OWNER:
3138 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
3139 		    mstate, vstate)) {
3140 			regs[rd] = NULL;
3141 			break;
3142 		}
3143 
3144 		m.mx = dtrace_load64(tupregs[0].dttk_value);
3145 		if (MUTEX_TYPE_ADAPTIVE(&m.mi) &&
3146 		    MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER)
3147 			regs[rd] = (uintptr_t)MUTEX_OWNER(&m.mi);
3148 		else
3149 			regs[rd] = 0;
3150 		break;
3151 
3152 	case DIF_SUBR_MUTEX_TYPE_ADAPTIVE:
3153 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
3154 		    mstate, vstate)) {
3155 			regs[rd] = NULL;
3156 			break;
3157 		}
3158 
3159 		m.mx = dtrace_load64(tupregs[0].dttk_value);
3160 		regs[rd] = MUTEX_TYPE_ADAPTIVE(&m.mi);
3161 		break;
3162 
3163 	case DIF_SUBR_MUTEX_TYPE_SPIN:
3164 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
3165 		    mstate, vstate)) {
3166 			regs[rd] = NULL;
3167 			break;
3168 		}
3169 
3170 		m.mx = dtrace_load64(tupregs[0].dttk_value);
3171 		regs[rd] = MUTEX_TYPE_SPIN(&m.mi);
3172 		break;
3173 
3174 	case DIF_SUBR_RW_READ_HELD: {
3175 		uintptr_t tmp;
3176 
3177 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t),
3178 		    mstate, vstate)) {
3179 			regs[rd] = NULL;
3180 			break;
3181 		}
3182 
3183 		r.rw = dtrace_loadptr(tupregs[0].dttk_value);
3184 		regs[rd] = _RW_READ_HELD(&r.ri, tmp);
3185 		break;
3186 	}
3187 
3188 	case DIF_SUBR_RW_WRITE_HELD:
3189 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t),
3190 		    mstate, vstate)) {
3191 			regs[rd] = NULL;
3192 			break;
3193 		}
3194 
3195 		r.rw = dtrace_loadptr(tupregs[0].dttk_value);
3196 		regs[rd] = _RW_WRITE_HELD(&r.ri);
3197 		break;
3198 
3199 	case DIF_SUBR_RW_ISWRITER:
3200 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t),
3201 		    mstate, vstate)) {
3202 			regs[rd] = NULL;
3203 			break;
3204 		}
3205 
3206 		r.rw = dtrace_loadptr(tupregs[0].dttk_value);
3207 		regs[rd] = _RW_ISWRITER(&r.ri);
3208 		break;
3209 
3210 	case DIF_SUBR_BCOPY: {
3211 		/*
3212 		 * We need to be sure that the destination is in the scratch
3213 		 * region -- no other region is allowed.
3214 		 */
3215 		uintptr_t src = tupregs[0].dttk_value;
3216 		uintptr_t dest = tupregs[1].dttk_value;
3217 		size_t size = tupregs[2].dttk_value;
3218 
3219 		if (!dtrace_inscratch(dest, size, mstate)) {
3220 			*flags |= CPU_DTRACE_BADADDR;
3221 			*illval = regs[rd];
3222 			break;
3223 		}
3224 
3225 		if (!dtrace_canload(src, size, mstate, vstate)) {
3226 			regs[rd] = NULL;
3227 			break;
3228 		}
3229 
3230 		dtrace_bcopy((void *)src, (void *)dest, size);
3231 		break;
3232 	}
3233 
3234 	case DIF_SUBR_ALLOCA:
3235 	case DIF_SUBR_COPYIN: {
3236 		uintptr_t dest = P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
3237 		uint64_t size =
3238 		    tupregs[subr == DIF_SUBR_ALLOCA ? 0 : 1].dttk_value;
3239 		size_t scratch_size = (dest - mstate->dtms_scratch_ptr) + size;
3240 
3241 		/*
3242 		 * This action doesn't require any credential checks since
3243 		 * probes will not activate in user contexts to which the
3244 		 * enabling user does not have permissions.
3245 		 */
3246 
3247 		/*
3248 		 * Rounding up the user allocation size could have overflowed
3249 		 * a large, bogus allocation (like -1ULL) to 0.
3250 		 */
3251 		if (scratch_size < size ||
3252 		    !DTRACE_INSCRATCH(mstate, scratch_size)) {
3253 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3254 			regs[rd] = NULL;
3255 			break;
3256 		}
3257 
3258 		if (subr == DIF_SUBR_COPYIN) {
3259 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3260 			dtrace_copyin(tupregs[0].dttk_value, dest, size, flags);
3261 			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3262 		}
3263 
3264 		mstate->dtms_scratch_ptr += scratch_size;
3265 		regs[rd] = dest;
3266 		break;
3267 	}
3268 
3269 	case DIF_SUBR_COPYINTO: {
3270 		uint64_t size = tupregs[1].dttk_value;
3271 		uintptr_t dest = tupregs[2].dttk_value;
3272 
3273 		/*
3274 		 * This action doesn't require any credential checks since
3275 		 * probes will not activate in user contexts to which the
3276 		 * enabling user does not have permissions.
3277 		 */
3278 		if (!dtrace_inscratch(dest, size, mstate)) {
3279 			*flags |= CPU_DTRACE_BADADDR;
3280 			*illval = regs[rd];
3281 			break;
3282 		}
3283 
3284 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3285 		dtrace_copyin(tupregs[0].dttk_value, dest, size, flags);
3286 		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3287 		break;
3288 	}
3289 
3290 	case DIF_SUBR_COPYINSTR: {
3291 		uintptr_t dest = mstate->dtms_scratch_ptr;
3292 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
3293 
3294 		if (nargs > 1 && tupregs[1].dttk_value < size)
3295 			size = tupregs[1].dttk_value + 1;
3296 
3297 		/*
3298 		 * This action doesn't require any credential checks since
3299 		 * probes will not activate in user contexts to which the
3300 		 * enabling user does not have permissions.
3301 		 */
3302 		if (!DTRACE_INSCRATCH(mstate, size)) {
3303 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3304 			regs[rd] = NULL;
3305 			break;
3306 		}
3307 
3308 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3309 		dtrace_copyinstr(tupregs[0].dttk_value, dest, size, flags);
3310 		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3311 
3312 		((char *)dest)[size - 1] = '\0';
3313 		mstate->dtms_scratch_ptr += size;
3314 		regs[rd] = dest;
3315 		break;
3316 	}
3317 
3318 	case DIF_SUBR_MSGSIZE:
3319 	case DIF_SUBR_MSGDSIZE: {
3320 		uintptr_t baddr = tupregs[0].dttk_value, daddr;
3321 		uintptr_t wptr, rptr;
3322 		size_t count = 0;
3323 		int cont = 0;
3324 
3325 		while (baddr != NULL && !(*flags & CPU_DTRACE_FAULT)) {
3326 
3327 			if (!dtrace_canload(baddr, sizeof (mblk_t), mstate,
3328 			    vstate)) {
3329 				regs[rd] = NULL;
3330 				break;
3331 			}
3332 
3333 			wptr = dtrace_loadptr(baddr +
3334 			    offsetof(mblk_t, b_wptr));
3335 
3336 			rptr = dtrace_loadptr(baddr +
3337 			    offsetof(mblk_t, b_rptr));
3338 
3339 			if (wptr < rptr) {
3340 				*flags |= CPU_DTRACE_BADADDR;
3341 				*illval = tupregs[0].dttk_value;
3342 				break;
3343 			}
3344 
3345 			daddr = dtrace_loadptr(baddr +
3346 			    offsetof(mblk_t, b_datap));
3347 
3348 			baddr = dtrace_loadptr(baddr +
3349 			    offsetof(mblk_t, b_cont));
3350 
3351 			/*
3352 			 * We want to prevent against denial-of-service here,
3353 			 * so we're only going to search the list for
3354 			 * dtrace_msgdsize_max mblks.
3355 			 */
3356 			if (cont++ > dtrace_msgdsize_max) {
3357 				*flags |= CPU_DTRACE_ILLOP;
3358 				break;
3359 			}
3360 
3361 			if (subr == DIF_SUBR_MSGDSIZE) {
3362 				if (dtrace_load8(daddr +
3363 				    offsetof(dblk_t, db_type)) != M_DATA)
3364 					continue;
3365 			}
3366 
3367 			count += wptr - rptr;
3368 		}
3369 
3370 		if (!(*flags & CPU_DTRACE_FAULT))
3371 			regs[rd] = count;
3372 
3373 		break;
3374 	}
3375 
3376 	case DIF_SUBR_PROGENYOF: {
3377 		pid_t pid = tupregs[0].dttk_value;
3378 		proc_t *p;
3379 		int rval = 0;
3380 
3381 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3382 
3383 		for (p = curthread->t_procp; p != NULL; p = p->p_parent) {
3384 			if (p->p_pidp->pid_id == pid) {
3385 				rval = 1;
3386 				break;
3387 			}
3388 		}
3389 
3390 		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3391 
3392 		regs[rd] = rval;
3393 		break;
3394 	}
3395 
3396 	case DIF_SUBR_SPECULATION:
3397 		regs[rd] = dtrace_speculation(state);
3398 		break;
3399 
3400 	case DIF_SUBR_COPYOUT: {
3401 		uintptr_t kaddr = tupregs[0].dttk_value;
3402 		uintptr_t uaddr = tupregs[1].dttk_value;
3403 		uint64_t size = tupregs[2].dttk_value;
3404 
3405 		if (!dtrace_destructive_disallow &&
3406 		    dtrace_priv_proc_control(state) &&
3407 		    !dtrace_istoxic(kaddr, size)) {
3408 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3409 			dtrace_copyout(kaddr, uaddr, size, flags);
3410 			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3411 		}
3412 		break;
3413 	}
3414 
3415 	case DIF_SUBR_COPYOUTSTR: {
3416 		uintptr_t kaddr = tupregs[0].dttk_value;
3417 		uintptr_t uaddr = tupregs[1].dttk_value;
3418 		uint64_t size = tupregs[2].dttk_value;
3419 
3420 		if (!dtrace_destructive_disallow &&
3421 		    dtrace_priv_proc_control(state) &&
3422 		    !dtrace_istoxic(kaddr, size)) {
3423 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3424 			dtrace_copyoutstr(kaddr, uaddr, size, flags);
3425 			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3426 		}
3427 		break;
3428 	}
3429 
3430 	case DIF_SUBR_STRLEN: {
3431 		size_t sz;
3432 		uintptr_t addr = (uintptr_t)tupregs[0].dttk_value;
3433 		sz = dtrace_strlen((char *)addr,
3434 		    state->dts_options[DTRACEOPT_STRSIZE]);
3435 
3436 		if (!dtrace_canload(addr, sz + 1, mstate, vstate)) {
3437 			regs[rd] = NULL;
3438 			break;
3439 		}
3440 
3441 		regs[rd] = sz;
3442 
3443 		break;
3444 	}
3445 
3446 	case DIF_SUBR_STRCHR:
3447 	case DIF_SUBR_STRRCHR: {
3448 		/*
3449 		 * We're going to iterate over the string looking for the
3450 		 * specified character.  We will iterate until we have reached
3451 		 * the string length or we have found the character.  If this
3452 		 * is DIF_SUBR_STRRCHR, we will look for the last occurrence
3453 		 * of the specified character instead of the first.
3454 		 */
3455 		uintptr_t saddr = tupregs[0].dttk_value;
3456 		uintptr_t addr = tupregs[0].dttk_value;
3457 		uintptr_t limit = addr + state->dts_options[DTRACEOPT_STRSIZE];
3458 		char c, target = (char)tupregs[1].dttk_value;
3459 
3460 		for (regs[rd] = NULL; addr < limit; addr++) {
3461 			if ((c = dtrace_load8(addr)) == target) {
3462 				regs[rd] = addr;
3463 
3464 				if (subr == DIF_SUBR_STRCHR)
3465 					break;
3466 			}
3467 
3468 			if (c == '\0')
3469 				break;
3470 		}
3471 
3472 		if (!dtrace_canload(saddr, addr - saddr, mstate, vstate)) {
3473 			regs[rd] = NULL;
3474 			break;
3475 		}
3476 
3477 		break;
3478 	}
3479 
3480 	case DIF_SUBR_STRSTR:
3481 	case DIF_SUBR_INDEX:
3482 	case DIF_SUBR_RINDEX: {
3483 		/*
3484 		 * We're going to iterate over the string looking for the
3485 		 * specified string.  We will iterate until we have reached
3486 		 * the string length or we have found the string.  (Yes, this
3487 		 * is done in the most naive way possible -- but considering
3488 		 * that the string we're searching for is likely to be
3489 		 * relatively short, the complexity of Rabin-Karp or similar
3490 		 * hardly seems merited.)
3491 		 */
3492 		char *addr = (char *)(uintptr_t)tupregs[0].dttk_value;
3493 		char *substr = (char *)(uintptr_t)tupregs[1].dttk_value;
3494 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
3495 		size_t len = dtrace_strlen(addr, size);
3496 		size_t sublen = dtrace_strlen(substr, size);
3497 		char *limit = addr + len, *orig = addr;
3498 		int notfound = subr == DIF_SUBR_STRSTR ? 0 : -1;
3499 		int inc = 1;
3500 
3501 		regs[rd] = notfound;
3502 
3503 		if (!dtrace_canload((uintptr_t)addr, len + 1, mstate, vstate)) {
3504 			regs[rd] = NULL;
3505 			break;
3506 		}
3507 
3508 		if (!dtrace_canload((uintptr_t)substr, sublen + 1, mstate,
3509 		    vstate)) {
3510 			regs[rd] = NULL;
3511 			break;
3512 		}
3513 
3514 		/*
3515 		 * strstr() and index()/rindex() have similar semantics if
3516 		 * both strings are the empty string: strstr() returns a
3517 		 * pointer to the (empty) string, and index() and rindex()
3518 		 * both return index 0 (regardless of any position argument).
3519 		 */
3520 		if (sublen == 0 && len == 0) {
3521 			if (subr == DIF_SUBR_STRSTR)
3522 				regs[rd] = (uintptr_t)addr;
3523 			else
3524 				regs[rd] = 0;
3525 			break;
3526 		}
3527 
3528 		if (subr != DIF_SUBR_STRSTR) {
3529 			if (subr == DIF_SUBR_RINDEX) {
3530 				limit = orig - 1;
3531 				addr += len;
3532 				inc = -1;
3533 			}
3534 
3535 			/*
3536 			 * Both index() and rindex() take an optional position
3537 			 * argument that denotes the starting position.
3538 			 */
3539 			if (nargs == 3) {
3540 				int64_t pos = (int64_t)tupregs[2].dttk_value;
3541 
3542 				/*
3543 				 * If the position argument to index() is
3544 				 * negative, Perl implicitly clamps it at
3545 				 * zero.  This semantic is a little surprising
3546 				 * given the special meaning of negative
3547 				 * positions to similar Perl functions like
3548 				 * substr(), but it appears to reflect a
3549 				 * notion that index() can start from a
3550 				 * negative index and increment its way up to
3551 				 * the string.  Given this notion, Perl's
3552 				 * rindex() is at least self-consistent in
3553 				 * that it implicitly clamps positions greater
3554 				 * than the string length to be the string
3555 				 * length.  Where Perl completely loses
3556 				 * coherence, however, is when the specified
3557 				 * substring is the empty string ("").  In
3558 				 * this case, even if the position is
3559 				 * negative, rindex() returns 0 -- and even if
3560 				 * the position is greater than the length,
3561 				 * index() returns the string length.  These
3562 				 * semantics violate the notion that index()
3563 				 * should never return a value less than the
3564 				 * specified position and that rindex() should
3565 				 * never return a value greater than the
3566 				 * specified position.  (One assumes that
3567 				 * these semantics are artifacts of Perl's
3568 				 * implementation and not the results of
3569 				 * deliberate design -- it beggars belief that
3570 				 * even Larry Wall could desire such oddness.)
3571 				 * While in the abstract one would wish for
3572 				 * consistent position semantics across
3573 				 * substr(), index() and rindex() -- or at the
3574 				 * very least self-consistent position
3575 				 * semantics for index() and rindex() -- we
3576 				 * instead opt to keep with the extant Perl
3577 				 * semantics, in all their broken glory.  (Do
3578 				 * we have more desire to maintain Perl's
3579 				 * semantics than Perl does?  Probably.)
3580 				 */
3581 				if (subr == DIF_SUBR_RINDEX) {
3582 					if (pos < 0) {
3583 						if (sublen == 0)
3584 							regs[rd] = 0;
3585 						break;
3586 					}
3587 
3588 					if (pos > len)
3589 						pos = len;
3590 				} else {
3591 					if (pos < 0)
3592 						pos = 0;
3593 
3594 					if (pos >= len) {
3595 						if (sublen == 0)
3596 							regs[rd] = len;
3597 						break;
3598 					}
3599 				}
3600 
3601 				addr = orig + pos;
3602 			}
3603 		}
3604 
3605 		for (regs[rd] = notfound; addr != limit; addr += inc) {
3606 			if (dtrace_strncmp(addr, substr, sublen) == 0) {
3607 				if (subr != DIF_SUBR_STRSTR) {
3608 					/*
3609 					 * As D index() and rindex() are
3610 					 * modeled on Perl (and not on awk),
3611 					 * we return a zero-based (and not a
3612 					 * one-based) index.  (For you Perl
3613 					 * weenies: no, we're not going to add
3614 					 * $[ -- and shouldn't you be at a con
3615 					 * or something?)
3616 					 */
3617 					regs[rd] = (uintptr_t)(addr - orig);
3618 					break;
3619 				}
3620 
3621 				ASSERT(subr == DIF_SUBR_STRSTR);
3622 				regs[rd] = (uintptr_t)addr;
3623 				break;
3624 			}
3625 		}
3626 
3627 		break;
3628 	}
3629 
3630 	case DIF_SUBR_STRTOK: {
3631 		uintptr_t addr = tupregs[0].dttk_value;
3632 		uintptr_t tokaddr = tupregs[1].dttk_value;
3633 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
3634 		uintptr_t limit, toklimit = tokaddr + size;
3635 		uint8_t c, tokmap[32];	 /* 256 / 8 */
3636 		char *dest = (char *)mstate->dtms_scratch_ptr;
3637 		int i;
3638 
3639 		/*
3640 		 * Check both the token buffer and (later) the input buffer,
3641 		 * since both could be non-scratch addresses.
3642 		 */
3643 		if (!dtrace_strcanload(tokaddr, size, mstate, vstate)) {
3644 			regs[rd] = NULL;
3645 			break;
3646 		}
3647 
3648 		if (!DTRACE_INSCRATCH(mstate, size)) {
3649 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3650 			regs[rd] = NULL;
3651 			break;
3652 		}
3653 
3654 		if (addr == NULL) {
3655 			/*
3656 			 * If the address specified is NULL, we use our saved
3657 			 * strtok pointer from the mstate.  Note that this
3658 			 * means that the saved strtok pointer is _only_
3659 			 * valid within multiple enablings of the same probe --
3660 			 * it behaves like an implicit clause-local variable.
3661 			 */
3662 			addr = mstate->dtms_strtok;
3663 		} else {
3664 			/*
3665 			 * If the user-specified address is non-NULL we must
3666 			 * access check it.  This is the only time we have
3667 			 * a chance to do so, since this address may reside
3668 			 * in the string table of this clause-- future calls
3669 			 * (when we fetch addr from mstate->dtms_strtok)
3670 			 * would fail this access check.
3671 			 */
3672 			if (!dtrace_strcanload(addr, size, mstate, vstate)) {
3673 				regs[rd] = NULL;
3674 				break;
3675 			}
3676 		}
3677 
3678 		/*
3679 		 * First, zero the token map, and then process the token
3680 		 * string -- setting a bit in the map for every character
3681 		 * found in the token string.
3682 		 */
3683 		for (i = 0; i < sizeof (tokmap); i++)
3684 			tokmap[i] = 0;
3685 
3686 		for (; tokaddr < toklimit; tokaddr++) {
3687 			if ((c = dtrace_load8(tokaddr)) == '\0')
3688 				break;
3689 
3690 			ASSERT((c >> 3) < sizeof (tokmap));
3691 			tokmap[c >> 3] |= (1 << (c & 0x7));
3692 		}
3693 
3694 		for (limit = addr + size; addr < limit; addr++) {
3695 			/*
3696 			 * We're looking for a character that is _not_ contained
3697 			 * in the token string.
3698 			 */
3699 			if ((c = dtrace_load8(addr)) == '\0')
3700 				break;
3701 
3702 			if (!(tokmap[c >> 3] & (1 << (c & 0x7))))
3703 				break;
3704 		}
3705 
3706 		if (c == '\0') {
3707 			/*
3708 			 * We reached the end of the string without finding
3709 			 * any character that was not in the token string.
3710 			 * We return NULL in this case, and we set the saved
3711 			 * address to NULL as well.
3712 			 */
3713 			regs[rd] = NULL;
3714 			mstate->dtms_strtok = NULL;
3715 			break;
3716 		}
3717 
3718 		/*
3719 		 * From here on, we're copying into the destination string.
3720 		 */
3721 		for (i = 0; addr < limit && i < size - 1; addr++) {
3722 			if ((c = dtrace_load8(addr)) == '\0')
3723 				break;
3724 
3725 			if (tokmap[c >> 3] & (1 << (c & 0x7)))
3726 				break;
3727 
3728 			ASSERT(i < size);
3729 			dest[i++] = c;
3730 		}
3731 
3732 		ASSERT(i < size);
3733 		dest[i] = '\0';
3734 		regs[rd] = (uintptr_t)dest;
3735 		mstate->dtms_scratch_ptr += size;
3736 		mstate->dtms_strtok = addr;
3737 		break;
3738 	}
3739 
3740 	case DIF_SUBR_SUBSTR: {
3741 		uintptr_t s = tupregs[0].dttk_value;
3742 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
3743 		char *d = (char *)mstate->dtms_scratch_ptr;
3744 		int64_t index = (int64_t)tupregs[1].dttk_value;
3745 		int64_t remaining = (int64_t)tupregs[2].dttk_value;
3746 		size_t len = dtrace_strlen((char *)s, size);
3747 		int64_t i;
3748 
3749 		if (!dtrace_canload(s, len + 1, mstate, vstate)) {
3750 			regs[rd] = NULL;
3751 			break;
3752 		}
3753 
3754 		if (!DTRACE_INSCRATCH(mstate, size)) {
3755 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3756 			regs[rd] = NULL;
3757 			break;
3758 		}
3759 
3760 		if (nargs <= 2)
3761 			remaining = (int64_t)size;
3762 
3763 		if (index < 0) {
3764 			index += len;
3765 
3766 			if (index < 0 && index + remaining > 0) {
3767 				remaining += index;
3768 				index = 0;
3769 			}
3770 		}
3771 
3772 		if (index >= len || index < 0) {
3773 			remaining = 0;
3774 		} else if (remaining < 0) {
3775 			remaining += len - index;
3776 		} else if (index + remaining > size) {
3777 			remaining = size - index;
3778 		}
3779 
3780 		for (i = 0; i < remaining; i++) {
3781 			if ((d[i] = dtrace_load8(s + index + i)) == '\0')
3782 				break;
3783 		}
3784 
3785 		d[i] = '\0';
3786 
3787 		mstate->dtms_scratch_ptr += size;
3788 		regs[rd] = (uintptr_t)d;
3789 		break;
3790 	}
3791 
3792 	case DIF_SUBR_GETMAJOR:
3793 #ifdef _LP64
3794 		regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR64) & MAXMAJ64;
3795 #else
3796 		regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR) & MAXMAJ;
3797 #endif
3798 		break;
3799 
3800 	case DIF_SUBR_GETMINOR:
3801 #ifdef _LP64
3802 		regs[rd] = tupregs[0].dttk_value & MAXMIN64;
3803 #else
3804 		regs[rd] = tupregs[0].dttk_value & MAXMIN;
3805 #endif
3806 		break;
3807 
3808 	case DIF_SUBR_DDI_PATHNAME: {
3809 		/*
3810 		 * This one is a galactic mess.  We are going to roughly
3811 		 * emulate ddi_pathname(), but it's made more complicated
3812 		 * by the fact that we (a) want to include the minor name and
3813 		 * (b) must proceed iteratively instead of recursively.
3814 		 */
3815 		uintptr_t dest = mstate->dtms_scratch_ptr;
3816 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
3817 		char *start = (char *)dest, *end = start + size - 1;
3818 		uintptr_t daddr = tupregs[0].dttk_value;
3819 		int64_t minor = (int64_t)tupregs[1].dttk_value;
3820 		char *s;
3821 		int i, len, depth = 0;
3822 
3823 		/*
3824 		 * Due to all the pointer jumping we do and context we must
3825 		 * rely upon, we just mandate that the user must have kernel
3826 		 * read privileges to use this routine.
3827 		 */
3828 		if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) == 0) {
3829 			*flags |= CPU_DTRACE_KPRIV;
3830 			*illval = daddr;
3831 			regs[rd] = NULL;
3832 		}
3833 
3834 		if (!DTRACE_INSCRATCH(mstate, size)) {
3835 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3836 			regs[rd] = NULL;
3837 			break;
3838 		}
3839 
3840 		*end = '\0';
3841 
3842 		/*
3843 		 * We want to have a name for the minor.  In order to do this,
3844 		 * we need to walk the minor list from the devinfo.  We want
3845 		 * to be sure that we don't infinitely walk a circular list,
3846 		 * so we check for circularity by sending a scout pointer
3847 		 * ahead two elements for every element that we iterate over;
3848 		 * if the list is circular, these will ultimately point to the
3849 		 * same element.  You may recognize this little trick as the
3850 		 * answer to a stupid interview question -- one that always
3851 		 * seems to be asked by those who had to have it laboriously
3852 		 * explained to them, and who can't even concisely describe
3853 		 * the conditions under which one would be forced to resort to
3854 		 * this technique.  Needless to say, those conditions are
3855 		 * found here -- and probably only here.  Is this the only use
3856 		 * of this infamous trick in shipping, production code?  If it
3857 		 * isn't, it probably should be...
3858 		 */
3859 		if (minor != -1) {
3860 			uintptr_t maddr = dtrace_loadptr(daddr +
3861 			    offsetof(struct dev_info, devi_minor));
3862 
3863 			uintptr_t next = offsetof(struct ddi_minor_data, next);
3864 			uintptr_t name = offsetof(struct ddi_minor_data,
3865 			    d_minor) + offsetof(struct ddi_minor, name);
3866 			uintptr_t dev = offsetof(struct ddi_minor_data,
3867 			    d_minor) + offsetof(struct ddi_minor, dev);
3868 			uintptr_t scout;
3869 
3870 			if (maddr != NULL)
3871 				scout = dtrace_loadptr(maddr + next);
3872 
3873 			while (maddr != NULL && !(*flags & CPU_DTRACE_FAULT)) {
3874 				uint64_t m;
3875 #ifdef _LP64
3876 				m = dtrace_load64(maddr + dev) & MAXMIN64;
3877 #else
3878 				m = dtrace_load32(maddr + dev) & MAXMIN;
3879 #endif
3880 				if (m != minor) {
3881 					maddr = dtrace_loadptr(maddr + next);
3882 
3883 					if (scout == NULL)
3884 						continue;
3885 
3886 					scout = dtrace_loadptr(scout + next);
3887 
3888 					if (scout == NULL)
3889 						continue;
3890 
3891 					scout = dtrace_loadptr(scout + next);
3892 
3893 					if (scout == NULL)
3894 						continue;
3895 
3896 					if (scout == maddr) {
3897 						*flags |= CPU_DTRACE_ILLOP;
3898 						break;
3899 					}
3900 
3901 					continue;
3902 				}
3903 
3904 				/*
3905 				 * We have the minor data.  Now we need to
3906 				 * copy the minor's name into the end of the
3907 				 * pathname.
3908 				 */
3909 				s = (char *)dtrace_loadptr(maddr + name);
3910 				len = dtrace_strlen(s, size);
3911 
3912 				if (*flags & CPU_DTRACE_FAULT)
3913 					break;
3914 
3915 				if (len != 0) {
3916 					if ((end -= (len + 1)) < start)
3917 						break;
3918 
3919 					*end = ':';
3920 				}
3921 
3922 				for (i = 1; i <= len; i++)
3923 					end[i] = dtrace_load8((uintptr_t)s++);
3924 				break;
3925 			}
3926 		}
3927 
3928 		while (daddr != NULL && !(*flags & CPU_DTRACE_FAULT)) {
3929 			ddi_node_state_t devi_state;
3930 
3931 			devi_state = dtrace_load32(daddr +
3932 			    offsetof(struct dev_info, devi_node_state));
3933 
3934 			if (*flags & CPU_DTRACE_FAULT)
3935 				break;
3936 
3937 			if (devi_state >= DS_INITIALIZED) {
3938 				s = (char *)dtrace_loadptr(daddr +
3939 				    offsetof(struct dev_info, devi_addr));
3940 				len = dtrace_strlen(s, size);
3941 
3942 				if (*flags & CPU_DTRACE_FAULT)
3943 					break;
3944 
3945 				if (len != 0) {
3946 					if ((end -= (len + 1)) < start)
3947 						break;
3948 
3949 					*end = '@';
3950 				}
3951 
3952 				for (i = 1; i <= len; i++)
3953 					end[i] = dtrace_load8((uintptr_t)s++);
3954 			}
3955 
3956 			/*
3957 			 * Now for the node name...
3958 			 */
3959 			s = (char *)dtrace_loadptr(daddr +
3960 			    offsetof(struct dev_info, devi_node_name));
3961 
3962 			daddr = dtrace_loadptr(daddr +
3963 			    offsetof(struct dev_info, devi_parent));
3964 
3965 			/*
3966 			 * If our parent is NULL (that is, if we're the root
3967 			 * node), we're going to use the special path
3968 			 * "devices".
3969 			 */
3970 			if (daddr == NULL)
3971 				s = "devices";
3972 
3973 			len = dtrace_strlen(s, size);
3974 			if (*flags & CPU_DTRACE_FAULT)
3975 				break;
3976 
3977 			if ((end -= (len + 1)) < start)
3978 				break;
3979 
3980 			for (i = 1; i <= len; i++)
3981 				end[i] = dtrace_load8((uintptr_t)s++);
3982 			*end = '/';
3983 
3984 			if (depth++ > dtrace_devdepth_max) {
3985 				*flags |= CPU_DTRACE_ILLOP;
3986 				break;
3987 			}
3988 		}
3989 
3990 		if (end < start)
3991 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3992 
3993 		if (daddr == NULL) {
3994 			regs[rd] = (uintptr_t)end;
3995 			mstate->dtms_scratch_ptr += size;
3996 		}
3997 
3998 		break;
3999 	}
4000 
4001 	case DIF_SUBR_STRJOIN: {
4002 		char *d = (char *)mstate->dtms_scratch_ptr;
4003 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4004 		uintptr_t s1 = tupregs[0].dttk_value;
4005 		uintptr_t s2 = tupregs[1].dttk_value;
4006 		int i = 0;
4007 
4008 		if (!dtrace_strcanload(s1, size, mstate, vstate) ||
4009 		    !dtrace_strcanload(s2, size, mstate, vstate)) {
4010 			regs[rd] = NULL;
4011 			break;
4012 		}
4013 
4014 		if (!DTRACE_INSCRATCH(mstate, size)) {
4015 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4016 			regs[rd] = NULL;
4017 			break;
4018 		}
4019 
4020 		for (;;) {
4021 			if (i >= size) {
4022 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4023 				regs[rd] = NULL;
4024 				break;
4025 			}
4026 
4027 			if ((d[i++] = dtrace_load8(s1++)) == '\0') {
4028 				i--;
4029 				break;
4030 			}
4031 		}
4032 
4033 		for (;;) {
4034 			if (i >= size) {
4035 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4036 				regs[rd] = NULL;
4037 				break;
4038 			}
4039 
4040 			if ((d[i++] = dtrace_load8(s2++)) == '\0')
4041 				break;
4042 		}
4043 
4044 		if (i < size) {
4045 			mstate->dtms_scratch_ptr += i;
4046 			regs[rd] = (uintptr_t)d;
4047 		}
4048 
4049 		break;
4050 	}
4051 
4052 	case DIF_SUBR_LLTOSTR: {
4053 		int64_t i = (int64_t)tupregs[0].dttk_value;
4054 		int64_t val = i < 0 ? i * -1 : i;
4055 		uint64_t size = 22;	/* enough room for 2^64 in decimal */
4056 		char *end = (char *)mstate->dtms_scratch_ptr + size - 1;
4057 
4058 		if (!DTRACE_INSCRATCH(mstate, size)) {
4059 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4060 			regs[rd] = NULL;
4061 			break;
4062 		}
4063 
4064 		for (*end-- = '\0'; val; val /= 10)
4065 			*end-- = '0' + (val % 10);
4066 
4067 		if (i == 0)
4068 			*end-- = '0';
4069 
4070 		if (i < 0)
4071 			*end-- = '-';
4072 
4073 		regs[rd] = (uintptr_t)end + 1;
4074 		mstate->dtms_scratch_ptr += size;
4075 		break;
4076 	}
4077 
4078 	case DIF_SUBR_HTONS:
4079 	case DIF_SUBR_NTOHS:
4080 #ifdef _BIG_ENDIAN
4081 		regs[rd] = (uint16_t)tupregs[0].dttk_value;
4082 #else
4083 		regs[rd] = DT_BSWAP_16((uint16_t)tupregs[0].dttk_value);
4084 #endif
4085 		break;
4086 
4087 
4088 	case DIF_SUBR_HTONL:
4089 	case DIF_SUBR_NTOHL:
4090 #ifdef _BIG_ENDIAN
4091 		regs[rd] = (uint32_t)tupregs[0].dttk_value;
4092 #else
4093 		regs[rd] = DT_BSWAP_32((uint32_t)tupregs[0].dttk_value);
4094 #endif
4095 		break;
4096 
4097 
4098 	case DIF_SUBR_HTONLL:
4099 	case DIF_SUBR_NTOHLL:
4100 #ifdef _BIG_ENDIAN
4101 		regs[rd] = (uint64_t)tupregs[0].dttk_value;
4102 #else
4103 		regs[rd] = DT_BSWAP_64((uint64_t)tupregs[0].dttk_value);
4104 #endif
4105 		break;
4106 
4107 
4108 	case DIF_SUBR_DIRNAME:
4109 	case DIF_SUBR_BASENAME: {
4110 		char *dest = (char *)mstate->dtms_scratch_ptr;
4111 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4112 		uintptr_t src = tupregs[0].dttk_value;
4113 		int i, j, len = dtrace_strlen((char *)src, size);
4114 		int lastbase = -1, firstbase = -1, lastdir = -1;
4115 		int start, end;
4116 
4117 		if (!dtrace_canload(src, len + 1, mstate, vstate)) {
4118 			regs[rd] = NULL;
4119 			break;
4120 		}
4121 
4122 		if (!DTRACE_INSCRATCH(mstate, size)) {
4123 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4124 			regs[rd] = NULL;
4125 			break;
4126 		}
4127 
4128 		/*
4129 		 * The basename and dirname for a zero-length string is
4130 		 * defined to be "."
4131 		 */
4132 		if (len == 0) {
4133 			len = 1;
4134 			src = (uintptr_t)".";
4135 		}
4136 
4137 		/*
4138 		 * Start from the back of the string, moving back toward the
4139 		 * front until we see a character that isn't a slash.  That
4140 		 * character is the last character in the basename.
4141 		 */
4142 		for (i = len - 1; i >= 0; i--) {
4143 			if (dtrace_load8(src + i) != '/')
4144 				break;
4145 		}
4146 
4147 		if (i >= 0)
4148 			lastbase = i;
4149 
4150 		/*
4151 		 * Starting from the last character in the basename, move
4152 		 * towards the front until we find a slash.  The character
4153 		 * that we processed immediately before that is the first
4154 		 * character in the basename.
4155 		 */
4156 		for (; i >= 0; i--) {
4157 			if (dtrace_load8(src + i) == '/')
4158 				break;
4159 		}
4160 
4161 		if (i >= 0)
4162 			firstbase = i + 1;
4163 
4164 		/*
4165 		 * Now keep going until we find a non-slash character.  That
4166 		 * character is the last character in the dirname.
4167 		 */
4168 		for (; i >= 0; i--) {
4169 			if (dtrace_load8(src + i) != '/')
4170 				break;
4171 		}
4172 
4173 		if (i >= 0)
4174 			lastdir = i;
4175 
4176 		ASSERT(!(lastbase == -1 && firstbase != -1));
4177 		ASSERT(!(firstbase == -1 && lastdir != -1));
4178 
4179 		if (lastbase == -1) {
4180 			/*
4181 			 * We didn't find a non-slash character.  We know that
4182 			 * the length is non-zero, so the whole string must be
4183 			 * slashes.  In either the dirname or the basename
4184 			 * case, we return '/'.
4185 			 */
4186 			ASSERT(firstbase == -1);
4187 			firstbase = lastbase = lastdir = 0;
4188 		}
4189 
4190 		if (firstbase == -1) {
4191 			/*
4192 			 * The entire string consists only of a basename
4193 			 * component.  If we're looking for dirname, we need
4194 			 * to change our string to be just "."; if we're
4195 			 * looking for a basename, we'll just set the first
4196 			 * character of the basename to be 0.
4197 			 */
4198 			if (subr == DIF_SUBR_DIRNAME) {
4199 				ASSERT(lastdir == -1);
4200 				src = (uintptr_t)".";
4201 				lastdir = 0;
4202 			} else {
4203 				firstbase = 0;
4204 			}
4205 		}
4206 
4207 		if (subr == DIF_SUBR_DIRNAME) {
4208 			if (lastdir == -1) {
4209 				/*
4210 				 * We know that we have a slash in the name --
4211 				 * or lastdir would be set to 0, above.  And
4212 				 * because lastdir is -1, we know that this
4213 				 * slash must be the first character.  (That
4214 				 * is, the full string must be of the form
4215 				 * "/basename".)  In this case, the last
4216 				 * character of the directory name is 0.
4217 				 */
4218 				lastdir = 0;
4219 			}
4220 
4221 			start = 0;
4222 			end = lastdir;
4223 		} else {
4224 			ASSERT(subr == DIF_SUBR_BASENAME);
4225 			ASSERT(firstbase != -1 && lastbase != -1);
4226 			start = firstbase;
4227 			end = lastbase;
4228 		}
4229 
4230 		for (i = start, j = 0; i <= end && j < size - 1; i++, j++)
4231 			dest[j] = dtrace_load8(src + i);
4232 
4233 		dest[j] = '\0';
4234 		regs[rd] = (uintptr_t)dest;
4235 		mstate->dtms_scratch_ptr += size;
4236 		break;
4237 	}
4238 
4239 	case DIF_SUBR_CLEANPATH: {
4240 		char *dest = (char *)mstate->dtms_scratch_ptr, c;
4241 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4242 		uintptr_t src = tupregs[0].dttk_value;
4243 		int i = 0, j = 0;
4244 
4245 		if (!dtrace_strcanload(src, size, mstate, vstate)) {
4246 			regs[rd] = NULL;
4247 			break;
4248 		}
4249 
4250 		if (!DTRACE_INSCRATCH(mstate, size)) {
4251 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4252 			regs[rd] = NULL;
4253 			break;
4254 		}
4255 
4256 		/*
4257 		 * Move forward, loading each character.
4258 		 */
4259 		do {
4260 			c = dtrace_load8(src + i++);
4261 next:
4262 			if (j + 5 >= size)	/* 5 = strlen("/..c\0") */
4263 				break;
4264 
4265 			if (c != '/') {
4266 				dest[j++] = c;
4267 				continue;
4268 			}
4269 
4270 			c = dtrace_load8(src + i++);
4271 
4272 			if (c == '/') {
4273 				/*
4274 				 * We have two slashes -- we can just advance
4275 				 * to the next character.
4276 				 */
4277 				goto next;
4278 			}
4279 
4280 			if (c != '.') {
4281 				/*
4282 				 * This is not "." and it's not ".." -- we can
4283 				 * just store the "/" and this character and
4284 				 * drive on.
4285 				 */
4286 				dest[j++] = '/';
4287 				dest[j++] = c;
4288 				continue;
4289 			}
4290 
4291 			c = dtrace_load8(src + i++);
4292 
4293 			if (c == '/') {
4294 				/*
4295 				 * This is a "/./" component.  We're not going
4296 				 * to store anything in the destination buffer;
4297 				 * we're just going to go to the next component.
4298 				 */
4299 				goto next;
4300 			}
4301 
4302 			if (c != '.') {
4303 				/*
4304 				 * This is not ".." -- we can just store the
4305 				 * "/." and this character and continue
4306 				 * processing.
4307 				 */
4308 				dest[j++] = '/';
4309 				dest[j++] = '.';
4310 				dest[j++] = c;
4311 				continue;
4312 			}
4313 
4314 			c = dtrace_load8(src + i++);
4315 
4316 			if (c != '/' && c != '\0') {
4317 				/*
4318 				 * This is not ".." -- it's "..[mumble]".
4319 				 * We'll store the "/.." and this character
4320 				 * and continue processing.
4321 				 */
4322 				dest[j++] = '/';
4323 				dest[j++] = '.';
4324 				dest[j++] = '.';
4325 				dest[j++] = c;
4326 				continue;
4327 			}
4328 
4329 			/*
4330 			 * This is "/../" or "/..\0".  We need to back up
4331 			 * our destination pointer until we find a "/".
4332 			 */
4333 			i--;
4334 			while (j != 0 && dest[--j] != '/')
4335 				continue;
4336 
4337 			if (c == '\0')
4338 				dest[++j] = '/';
4339 		} while (c != '\0');
4340 
4341 		dest[j] = '\0';
4342 		regs[rd] = (uintptr_t)dest;
4343 		mstate->dtms_scratch_ptr += size;
4344 		break;
4345 	}
4346 
4347 	case DIF_SUBR_INET_NTOA:
4348 	case DIF_SUBR_INET_NTOA6:
4349 	case DIF_SUBR_INET_NTOP: {
4350 		size_t size;
4351 		int af, argi, i;
4352 		char *base, *end;
4353 
4354 		if (subr == DIF_SUBR_INET_NTOP) {
4355 			af = (int)tupregs[0].dttk_value;
4356 			argi = 1;
4357 		} else {
4358 			af = subr == DIF_SUBR_INET_NTOA ? AF_INET: AF_INET6;
4359 			argi = 0;
4360 		}
4361 
4362 		if (af == AF_INET) {
4363 			ipaddr_t ip4;
4364 			uint8_t *ptr8, val;
4365 
4366 			/*
4367 			 * Safely load the IPv4 address.
4368 			 */
4369 			ip4 = dtrace_load32(tupregs[argi].dttk_value);
4370 
4371 			/*
4372 			 * Check an IPv4 string will fit in scratch.
4373 			 */
4374 			size = INET_ADDRSTRLEN;
4375 			if (!DTRACE_INSCRATCH(mstate, size)) {
4376 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4377 				regs[rd] = NULL;
4378 				break;
4379 			}
4380 			base = (char *)mstate->dtms_scratch_ptr;
4381 			end = (char *)mstate->dtms_scratch_ptr + size - 1;
4382 
4383 			/*
4384 			 * Stringify as a dotted decimal quad.
4385 			 */
4386 			*end-- = '\0';
4387 			ptr8 = (uint8_t *)&ip4;
4388 			for (i = 3; i >= 0; i--) {
4389 				val = ptr8[i];
4390 
4391 				if (val == 0) {
4392 					*end-- = '0';
4393 				} else {
4394 					for (; val; val /= 10) {
4395 						*end-- = '0' + (val % 10);
4396 					}
4397 				}
4398 
4399 				if (i > 0)
4400 					*end-- = '.';
4401 			}
4402 			ASSERT(end + 1 >= base);
4403 
4404 		} else if (af == AF_INET6) {
4405 			struct in6_addr ip6;
4406 			int firstzero, tryzero, numzero, v6end;
4407 			uint16_t val;
4408 			const char digits[] = "0123456789abcdef";
4409 
4410 			/*
4411 			 * Stringify using RFC 1884 convention 2 - 16 bit
4412 			 * hexadecimal values with a zero-run compression.
4413 			 * Lower case hexadecimal digits are used.
4414 			 * 	eg, fe80::214:4fff:fe0b:76c8.
4415 			 * The IPv4 embedded form is returned for inet_ntop,
4416 			 * just the IPv4 string is returned for inet_ntoa6.
4417 			 */
4418 
4419 			/*
4420 			 * Safely load the IPv6 address.
4421 			 */
4422 			dtrace_bcopy(
4423 			    (void *)(uintptr_t)tupregs[argi].dttk_value,
4424 			    (void *)(uintptr_t)&ip6, sizeof (struct in6_addr));
4425 
4426 			/*
4427 			 * Check an IPv6 string will fit in scratch.
4428 			 */
4429 			size = INET6_ADDRSTRLEN;
4430 			if (!DTRACE_INSCRATCH(mstate, size)) {
4431 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4432 				regs[rd] = NULL;
4433 				break;
4434 			}
4435 			base = (char *)mstate->dtms_scratch_ptr;
4436 			end = (char *)mstate->dtms_scratch_ptr + size - 1;
4437 			*end-- = '\0';
4438 
4439 			/*
4440 			 * Find the longest run of 16 bit zero values
4441 			 * for the single allowed zero compression - "::".
4442 			 */
4443 			firstzero = -1;
4444 			tryzero = -1;
4445 			numzero = 1;
4446 			for (i = 0; i < sizeof (struct in6_addr); i++) {
4447 				if (ip6._S6_un._S6_u8[i] == 0 &&
4448 				    tryzero == -1 && i % 2 == 0) {
4449 					tryzero = i;
4450 					continue;
4451 				}
4452 
4453 				if (tryzero != -1 &&
4454 				    (ip6._S6_un._S6_u8[i] != 0 ||
4455 				    i == sizeof (struct in6_addr) - 1)) {
4456 
4457 					if (i - tryzero <= numzero) {
4458 						tryzero = -1;
4459 						continue;
4460 					}
4461 
4462 					firstzero = tryzero;
4463 					numzero = i - i % 2 - tryzero;
4464 					tryzero = -1;
4465 
4466 					if (ip6._S6_un._S6_u8[i] == 0 &&
4467 					    i == sizeof (struct in6_addr) - 1)
4468 						numzero += 2;
4469 				}
4470 			}
4471 			ASSERT(firstzero + numzero <= sizeof (struct in6_addr));
4472 
4473 			/*
4474 			 * Check for an IPv4 embedded address.
4475 			 */
4476 			v6end = sizeof (struct in6_addr) - 2;
4477 			if (IN6_IS_ADDR_V4MAPPED(&ip6) ||
4478 			    IN6_IS_ADDR_V4COMPAT(&ip6)) {
4479 				for (i = sizeof (struct in6_addr) - 1;
4480 				    i >= DTRACE_V4MAPPED_OFFSET; i--) {
4481 					ASSERT(end >= base);
4482 
4483 					val = ip6._S6_un._S6_u8[i];
4484 
4485 					if (val == 0) {
4486 						*end-- = '0';
4487 					} else {
4488 						for (; val; val /= 10) {
4489 							*end-- = '0' + val % 10;
4490 						}
4491 					}
4492 
4493 					if (i > DTRACE_V4MAPPED_OFFSET)
4494 						*end-- = '.';
4495 				}
4496 
4497 				if (subr == DIF_SUBR_INET_NTOA6)
4498 					goto inetout;
4499 
4500 				/*
4501 				 * Set v6end to skip the IPv4 address that
4502 				 * we have already stringified.
4503 				 */
4504 				v6end = 10;
4505 			}
4506 
4507 			/*
4508 			 * Build the IPv6 string by working through the
4509 			 * address in reverse.
4510 			 */
4511 			for (i = v6end; i >= 0; i -= 2) {
4512 				ASSERT(end >= base);
4513 
4514 				if (i == firstzero + numzero - 2) {
4515 					*end-- = ':';
4516 					*end-- = ':';
4517 					i -= numzero - 2;
4518 					continue;
4519 				}
4520 
4521 				if (i < 14 && i != firstzero - 2)
4522 					*end-- = ':';
4523 
4524 				val = (ip6._S6_un._S6_u8[i] << 8) +
4525 				    ip6._S6_un._S6_u8[i + 1];
4526 
4527 				if (val == 0) {
4528 					*end-- = '0';
4529 				} else {
4530 					for (; val; val /= 16) {
4531 						*end-- = digits[val % 16];
4532 					}
4533 				}
4534 			}
4535 			ASSERT(end + 1 >= base);
4536 
4537 		} else {
4538 			/*
4539 			 * The user didn't use AH_INET or AH_INET6.
4540 			 */
4541 			DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
4542 			regs[rd] = NULL;
4543 			break;
4544 		}
4545 
4546 inetout:	regs[rd] = (uintptr_t)end + 1;
4547 		mstate->dtms_scratch_ptr += size;
4548 		break;
4549 	}
4550 
4551 	}
4552 }
4553 
4554 /*
4555  * Emulate the execution of DTrace IR instructions specified by the given
4556  * DIF object.  This function is deliberately void of assertions as all of
4557  * the necessary checks are handled by a call to dtrace_difo_validate().
4558  */
4559 static uint64_t
4560 dtrace_dif_emulate(dtrace_difo_t *difo, dtrace_mstate_t *mstate,
4561     dtrace_vstate_t *vstate, dtrace_state_t *state)
4562 {
4563 	const dif_instr_t *text = difo->dtdo_buf;
4564 	const uint_t textlen = difo->dtdo_len;
4565 	const char *strtab = difo->dtdo_strtab;
4566 	const uint64_t *inttab = difo->dtdo_inttab;
4567 
4568 	uint64_t rval = 0;
4569 	dtrace_statvar_t *svar;
4570 	dtrace_dstate_t *dstate = &vstate->dtvs_dynvars;
4571 	dtrace_difv_t *v;
4572 	volatile uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
4573 	volatile uintptr_t *illval = &cpu_core[CPU->cpu_id].cpuc_dtrace_illval;
4574 
4575 	dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */
4576 	uint64_t regs[DIF_DIR_NREGS];
4577 	uint64_t *tmp;
4578 
4579 	uint8_t cc_n = 0, cc_z = 0, cc_v = 0, cc_c = 0;
4580 	int64_t cc_r;
4581 	uint_t pc = 0, id, opc;
4582 	uint8_t ttop = 0;
4583 	dif_instr_t instr;
4584 	uint_t r1, r2, rd;
4585 
4586 	/*
4587 	 * We stash the current DIF object into the machine state: we need it
4588 	 * for subsequent access checking.
4589 	 */
4590 	mstate->dtms_difo = difo;
4591 
4592 	regs[DIF_REG_R0] = 0; 		/* %r0 is fixed at zero */
4593 
4594 	while (pc < textlen && !(*flags & CPU_DTRACE_FAULT)) {
4595 		opc = pc;
4596 
4597 		instr = text[pc++];
4598 		r1 = DIF_INSTR_R1(instr);
4599 		r2 = DIF_INSTR_R2(instr);
4600 		rd = DIF_INSTR_RD(instr);
4601 
4602 		switch (DIF_INSTR_OP(instr)) {
4603 		case DIF_OP_OR:
4604 			regs[rd] = regs[r1] | regs[r2];
4605 			break;
4606 		case DIF_OP_XOR:
4607 			regs[rd] = regs[r1] ^ regs[r2];
4608 			break;
4609 		case DIF_OP_AND:
4610 			regs[rd] = regs[r1] & regs[r2];
4611 			break;
4612 		case DIF_OP_SLL:
4613 			regs[rd] = regs[r1] << regs[r2];
4614 			break;
4615 		case DIF_OP_SRL:
4616 			regs[rd] = regs[r1] >> regs[r2];
4617 			break;
4618 		case DIF_OP_SUB:
4619 			regs[rd] = regs[r1] - regs[r2];
4620 			break;
4621 		case DIF_OP_ADD:
4622 			regs[rd] = regs[r1] + regs[r2];
4623 			break;
4624 		case DIF_OP_MUL:
4625 			regs[rd] = regs[r1] * regs[r2];
4626 			break;
4627 		case DIF_OP_SDIV:
4628 			if (regs[r2] == 0) {
4629 				regs[rd] = 0;
4630 				*flags |= CPU_DTRACE_DIVZERO;
4631 			} else {
4632 				regs[rd] = (int64_t)regs[r1] /
4633 				    (int64_t)regs[r2];
4634 			}
4635 			break;
4636 
4637 		case DIF_OP_UDIV:
4638 			if (regs[r2] == 0) {
4639 				regs[rd] = 0;
4640 				*flags |= CPU_DTRACE_DIVZERO;
4641 			} else {
4642 				regs[rd] = regs[r1] / regs[r2];
4643 			}
4644 			break;
4645 
4646 		case DIF_OP_SREM:
4647 			if (regs[r2] == 0) {
4648 				regs[rd] = 0;
4649 				*flags |= CPU_DTRACE_DIVZERO;
4650 			} else {
4651 				regs[rd] = (int64_t)regs[r1] %
4652 				    (int64_t)regs[r2];
4653 			}
4654 			break;
4655 
4656 		case DIF_OP_UREM:
4657 			if (regs[r2] == 0) {
4658 				regs[rd] = 0;
4659 				*flags |= CPU_DTRACE_DIVZERO;
4660 			} else {
4661 				regs[rd] = regs[r1] % regs[r2];
4662 			}
4663 			break;
4664 
4665 		case DIF_OP_NOT:
4666 			regs[rd] = ~regs[r1];
4667 			break;
4668 		case DIF_OP_MOV:
4669 			regs[rd] = regs[r1];
4670 			break;
4671 		case DIF_OP_CMP:
4672 			cc_r = regs[r1] - regs[r2];
4673 			cc_n = cc_r < 0;
4674 			cc_z = cc_r == 0;
4675 			cc_v = 0;
4676 			cc_c = regs[r1] < regs[r2];
4677 			break;
4678 		case DIF_OP_TST:
4679 			cc_n = cc_v = cc_c = 0;
4680 			cc_z = regs[r1] == 0;
4681 			break;
4682 		case DIF_OP_BA:
4683 			pc = DIF_INSTR_LABEL(instr);
4684 			break;
4685 		case DIF_OP_BE:
4686 			if (cc_z)
4687 				pc = DIF_INSTR_LABEL(instr);
4688 			break;
4689 		case DIF_OP_BNE:
4690 			if (cc_z == 0)
4691 				pc = DIF_INSTR_LABEL(instr);
4692 			break;
4693 		case DIF_OP_BG:
4694 			if ((cc_z | (cc_n ^ cc_v)) == 0)
4695 				pc = DIF_INSTR_LABEL(instr);
4696 			break;
4697 		case DIF_OP_BGU:
4698 			if ((cc_c | cc_z) == 0)
4699 				pc = DIF_INSTR_LABEL(instr);
4700 			break;
4701 		case DIF_OP_BGE:
4702 			if ((cc_n ^ cc_v) == 0)
4703 				pc = DIF_INSTR_LABEL(instr);
4704 			break;
4705 		case DIF_OP_BGEU:
4706 			if (cc_c == 0)
4707 				pc = DIF_INSTR_LABEL(instr);
4708 			break;
4709 		case DIF_OP_BL:
4710 			if (cc_n ^ cc_v)
4711 				pc = DIF_INSTR_LABEL(instr);
4712 			break;
4713 		case DIF_OP_BLU:
4714 			if (cc_c)
4715 				pc = DIF_INSTR_LABEL(instr);
4716 			break;
4717 		case DIF_OP_BLE:
4718 			if (cc_z | (cc_n ^ cc_v))
4719 				pc = DIF_INSTR_LABEL(instr);
4720 			break;
4721 		case DIF_OP_BLEU:
4722 			if (cc_c | cc_z)
4723 				pc = DIF_INSTR_LABEL(instr);
4724 			break;
4725 		case DIF_OP_RLDSB:
4726 			if (!dtrace_canstore(regs[r1], 1, mstate, vstate)) {
4727 				*flags |= CPU_DTRACE_KPRIV;
4728 				*illval = regs[r1];
4729 				break;
4730 			}
4731 			/*FALLTHROUGH*/
4732 		case DIF_OP_LDSB:
4733 			regs[rd] = (int8_t)dtrace_load8(regs[r1]);
4734 			break;
4735 		case DIF_OP_RLDSH:
4736 			if (!dtrace_canstore(regs[r1], 2, mstate, vstate)) {
4737 				*flags |= CPU_DTRACE_KPRIV;
4738 				*illval = regs[r1];
4739 				break;
4740 			}
4741 			/*FALLTHROUGH*/
4742 		case DIF_OP_LDSH:
4743 			regs[rd] = (int16_t)dtrace_load16(regs[r1]);
4744 			break;
4745 		case DIF_OP_RLDSW:
4746 			if (!dtrace_canstore(regs[r1], 4, mstate, vstate)) {
4747 				*flags |= CPU_DTRACE_KPRIV;
4748 				*illval = regs[r1];
4749 				break;
4750 			}
4751 			/*FALLTHROUGH*/
4752 		case DIF_OP_LDSW:
4753 			regs[rd] = (int32_t)dtrace_load32(regs[r1]);
4754 			break;
4755 		case DIF_OP_RLDUB:
4756 			if (!dtrace_canstore(regs[r1], 1, mstate, vstate)) {
4757 				*flags |= CPU_DTRACE_KPRIV;
4758 				*illval = regs[r1];
4759 				break;
4760 			}
4761 			/*FALLTHROUGH*/
4762 		case DIF_OP_LDUB:
4763 			regs[rd] = dtrace_load8(regs[r1]);
4764 			break;
4765 		case DIF_OP_RLDUH:
4766 			if (!dtrace_canstore(regs[r1], 2, mstate, vstate)) {
4767 				*flags |= CPU_DTRACE_KPRIV;
4768 				*illval = regs[r1];
4769 				break;
4770 			}
4771 			/*FALLTHROUGH*/
4772 		case DIF_OP_LDUH:
4773 			regs[rd] = dtrace_load16(regs[r1]);
4774 			break;
4775 		case DIF_OP_RLDUW:
4776 			if (!dtrace_canstore(regs[r1], 4, mstate, vstate)) {
4777 				*flags |= CPU_DTRACE_KPRIV;
4778 				*illval = regs[r1];
4779 				break;
4780 			}
4781 			/*FALLTHROUGH*/
4782 		case DIF_OP_LDUW:
4783 			regs[rd] = dtrace_load32(regs[r1]);
4784 			break;
4785 		case DIF_OP_RLDX:
4786 			if (!dtrace_canstore(regs[r1], 8, mstate, vstate)) {
4787 				*flags |= CPU_DTRACE_KPRIV;
4788 				*illval = regs[r1];
4789 				break;
4790 			}
4791 			/*FALLTHROUGH*/
4792 		case DIF_OP_LDX:
4793 			regs[rd] = dtrace_load64(regs[r1]);
4794 			break;
4795 		case DIF_OP_ULDSB:
4796 			regs[rd] = (int8_t)
4797 			    dtrace_fuword8((void *)(uintptr_t)regs[r1]);
4798 			break;
4799 		case DIF_OP_ULDSH:
4800 			regs[rd] = (int16_t)
4801 			    dtrace_fuword16((void *)(uintptr_t)regs[r1]);
4802 			break;
4803 		case DIF_OP_ULDSW:
4804 			regs[rd] = (int32_t)
4805 			    dtrace_fuword32((void *)(uintptr_t)regs[r1]);
4806 			break;
4807 		case DIF_OP_ULDUB:
4808 			regs[rd] =
4809 			    dtrace_fuword8((void *)(uintptr_t)regs[r1]);
4810 			break;
4811 		case DIF_OP_ULDUH:
4812 			regs[rd] =
4813 			    dtrace_fuword16((void *)(uintptr_t)regs[r1]);
4814 			break;
4815 		case DIF_OP_ULDUW:
4816 			regs[rd] =
4817 			    dtrace_fuword32((void *)(uintptr_t)regs[r1]);
4818 			break;
4819 		case DIF_OP_ULDX:
4820 			regs[rd] =
4821 			    dtrace_fuword64((void *)(uintptr_t)regs[r1]);
4822 			break;
4823 		case DIF_OP_RET:
4824 			rval = regs[rd];
4825 			pc = textlen;
4826 			break;
4827 		case DIF_OP_NOP:
4828 			break;
4829 		case DIF_OP_SETX:
4830 			regs[rd] = inttab[DIF_INSTR_INTEGER(instr)];
4831 			break;
4832 		case DIF_OP_SETS:
4833 			regs[rd] = (uint64_t)(uintptr_t)
4834 			    (strtab + DIF_INSTR_STRING(instr));
4835 			break;
4836 		case DIF_OP_SCMP: {
4837 			size_t sz = state->dts_options[DTRACEOPT_STRSIZE];
4838 			uintptr_t s1 = regs[r1];
4839 			uintptr_t s2 = regs[r2];
4840 
4841 			if (s1 != NULL &&
4842 			    !dtrace_strcanload(s1, sz, mstate, vstate))
4843 				break;
4844 			if (s2 != NULL &&
4845 			    !dtrace_strcanload(s2, sz, mstate, vstate))
4846 				break;
4847 
4848 			cc_r = dtrace_strncmp((char *)s1, (char *)s2, sz);
4849 
4850 			cc_n = cc_r < 0;
4851 			cc_z = cc_r == 0;
4852 			cc_v = cc_c = 0;
4853 			break;
4854 		}
4855 		case DIF_OP_LDGA:
4856 			regs[rd] = dtrace_dif_variable(mstate, state,
4857 			    r1, regs[r2]);
4858 			break;
4859 		case DIF_OP_LDGS:
4860 			id = DIF_INSTR_VAR(instr);
4861 
4862 			if (id >= DIF_VAR_OTHER_UBASE) {
4863 				uintptr_t a;
4864 
4865 				id -= DIF_VAR_OTHER_UBASE;
4866 				svar = vstate->dtvs_globals[id];
4867 				ASSERT(svar != NULL);
4868 				v = &svar->dtsv_var;
4869 
4870 				if (!(v->dtdv_type.dtdt_flags & DIF_TF_BYREF)) {
4871 					regs[rd] = svar->dtsv_data;
4872 					break;
4873 				}
4874 
4875 				a = (uintptr_t)svar->dtsv_data;
4876 
4877 				if (*(uint8_t *)a == UINT8_MAX) {
4878 					/*
4879 					 * If the 0th byte is set to UINT8_MAX
4880 					 * then this is to be treated as a
4881 					 * reference to a NULL variable.
4882 					 */
4883 					regs[rd] = NULL;
4884 				} else {
4885 					regs[rd] = a + sizeof (uint64_t);
4886 				}
4887 
4888 				break;
4889 			}
4890 
4891 			regs[rd] = dtrace_dif_variable(mstate, state, id, 0);
4892 			break;
4893 
4894 		case DIF_OP_STGS:
4895 			id = DIF_INSTR_VAR(instr);
4896 
4897 			ASSERT(id >= DIF_VAR_OTHER_UBASE);
4898 			id -= DIF_VAR_OTHER_UBASE;
4899 
4900 			svar = vstate->dtvs_globals[id];
4901 			ASSERT(svar != NULL);
4902 			v = &svar->dtsv_var;
4903 
4904 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
4905 				uintptr_t a = (uintptr_t)svar->dtsv_data;
4906 
4907 				ASSERT(a != NULL);
4908 				ASSERT(svar->dtsv_size != 0);
4909 
4910 				if (regs[rd] == NULL) {
4911 					*(uint8_t *)a = UINT8_MAX;
4912 					break;
4913 				} else {
4914 					*(uint8_t *)a = 0;
4915 					a += sizeof (uint64_t);
4916 				}
4917 				if (!dtrace_vcanload(
4918 				    (void *)(uintptr_t)regs[rd], &v->dtdv_type,
4919 				    mstate, vstate))
4920 					break;
4921 
4922 				dtrace_vcopy((void *)(uintptr_t)regs[rd],
4923 				    (void *)a, &v->dtdv_type);
4924 				break;
4925 			}
4926 
4927 			svar->dtsv_data = regs[rd];
4928 			break;
4929 
4930 		case DIF_OP_LDTA:
4931 			/*
4932 			 * There are no DTrace built-in thread-local arrays at
4933 			 * present.  This opcode is saved for future work.
4934 			 */
4935 			*flags |= CPU_DTRACE_ILLOP;
4936 			regs[rd] = 0;
4937 			break;
4938 
4939 		case DIF_OP_LDLS:
4940 			id = DIF_INSTR_VAR(instr);
4941 
4942 			if (id < DIF_VAR_OTHER_UBASE) {
4943 				/*
4944 				 * For now, this has no meaning.
4945 				 */
4946 				regs[rd] = 0;
4947 				break;
4948 			}
4949 
4950 			id -= DIF_VAR_OTHER_UBASE;
4951 
4952 			ASSERT(id < vstate->dtvs_nlocals);
4953 			ASSERT(vstate->dtvs_locals != NULL);
4954 
4955 			svar = vstate->dtvs_locals[id];
4956 			ASSERT(svar != NULL);
4957 			v = &svar->dtsv_var;
4958 
4959 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
4960 				uintptr_t a = (uintptr_t)svar->dtsv_data;
4961 				size_t sz = v->dtdv_type.dtdt_size;
4962 
4963 				sz += sizeof (uint64_t);
4964 				ASSERT(svar->dtsv_size == NCPU * sz);
4965 				a += CPU->cpu_id * sz;
4966 
4967 				if (*(uint8_t *)a == UINT8_MAX) {
4968 					/*
4969 					 * If the 0th byte is set to UINT8_MAX
4970 					 * then this is to be treated as a
4971 					 * reference to a NULL variable.
4972 					 */
4973 					regs[rd] = NULL;
4974 				} else {
4975 					regs[rd] = a + sizeof (uint64_t);
4976 				}
4977 
4978 				break;
4979 			}
4980 
4981 			ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t));
4982 			tmp = (uint64_t *)(uintptr_t)svar->dtsv_data;
4983 			regs[rd] = tmp[CPU->cpu_id];
4984 			break;
4985 
4986 		case DIF_OP_STLS:
4987 			id = DIF_INSTR_VAR(instr);
4988 
4989 			ASSERT(id >= DIF_VAR_OTHER_UBASE);
4990 			id -= DIF_VAR_OTHER_UBASE;
4991 			ASSERT(id < vstate->dtvs_nlocals);
4992 
4993 			ASSERT(vstate->dtvs_locals != NULL);
4994 			svar = vstate->dtvs_locals[id];
4995 			ASSERT(svar != NULL);
4996 			v = &svar->dtsv_var;
4997 
4998 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
4999 				uintptr_t a = (uintptr_t)svar->dtsv_data;
5000 				size_t sz = v->dtdv_type.dtdt_size;
5001 
5002 				sz += sizeof (uint64_t);
5003 				ASSERT(svar->dtsv_size == NCPU * sz);
5004 				a += CPU->cpu_id * sz;
5005 
5006 				if (regs[rd] == NULL) {
5007 					*(uint8_t *)a = UINT8_MAX;
5008 					break;
5009 				} else {
5010 					*(uint8_t *)a = 0;
5011 					a += sizeof (uint64_t);
5012 				}
5013 
5014 				if (!dtrace_vcanload(
5015 				    (void *)(uintptr_t)regs[rd], &v->dtdv_type,
5016 				    mstate, vstate))
5017 					break;
5018 
5019 				dtrace_vcopy((void *)(uintptr_t)regs[rd],
5020 				    (void *)a, &v->dtdv_type);
5021 				break;
5022 			}
5023 
5024 			ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t));
5025 			tmp = (uint64_t *)(uintptr_t)svar->dtsv_data;
5026 			tmp[CPU->cpu_id] = regs[rd];
5027 			break;
5028 
5029 		case DIF_OP_LDTS: {
5030 			dtrace_dynvar_t *dvar;
5031 			dtrace_key_t *key;
5032 
5033 			id = DIF_INSTR_VAR(instr);
5034 			ASSERT(id >= DIF_VAR_OTHER_UBASE);
5035 			id -= DIF_VAR_OTHER_UBASE;
5036 			v = &vstate->dtvs_tlocals[id];
5037 
5038 			key = &tupregs[DIF_DTR_NREGS];
5039 			key[0].dttk_value = (uint64_t)id;
5040 			key[0].dttk_size = 0;
5041 			DTRACE_TLS_THRKEY(key[1].dttk_value);
5042 			key[1].dttk_size = 0;
5043 
5044 			dvar = dtrace_dynvar(dstate, 2, key,
5045 			    sizeof (uint64_t), DTRACE_DYNVAR_NOALLOC,
5046 			    mstate, vstate);
5047 
5048 			if (dvar == NULL) {
5049 				regs[rd] = 0;
5050 				break;
5051 			}
5052 
5053 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5054 				regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data;
5055 			} else {
5056 				regs[rd] = *((uint64_t *)dvar->dtdv_data);
5057 			}
5058 
5059 			break;
5060 		}
5061 
5062 		case DIF_OP_STTS: {
5063 			dtrace_dynvar_t *dvar;
5064 			dtrace_key_t *key;
5065 
5066 			id = DIF_INSTR_VAR(instr);
5067 			ASSERT(id >= DIF_VAR_OTHER_UBASE);
5068 			id -= DIF_VAR_OTHER_UBASE;
5069 
5070 			key = &tupregs[DIF_DTR_NREGS];
5071 			key[0].dttk_value = (uint64_t)id;
5072 			key[0].dttk_size = 0;
5073 			DTRACE_TLS_THRKEY(key[1].dttk_value);
5074 			key[1].dttk_size = 0;
5075 			v = &vstate->dtvs_tlocals[id];
5076 
5077 			dvar = dtrace_dynvar(dstate, 2, key,
5078 			    v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
5079 			    v->dtdv_type.dtdt_size : sizeof (uint64_t),
5080 			    regs[rd] ? DTRACE_DYNVAR_ALLOC :
5081 			    DTRACE_DYNVAR_DEALLOC, mstate, vstate);
5082 
5083 			/*
5084 			 * Given that we're storing to thread-local data,
5085 			 * we need to flush our predicate cache.
5086 			 */
5087 			curthread->t_predcache = NULL;
5088 
5089 			if (dvar == NULL)
5090 				break;
5091 
5092 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5093 				if (!dtrace_vcanload(
5094 				    (void *)(uintptr_t)regs[rd],
5095 				    &v->dtdv_type, mstate, vstate))
5096 					break;
5097 
5098 				dtrace_vcopy((void *)(uintptr_t)regs[rd],
5099 				    dvar->dtdv_data, &v->dtdv_type);
5100 			} else {
5101 				*((uint64_t *)dvar->dtdv_data) = regs[rd];
5102 			}
5103 
5104 			break;
5105 		}
5106 
5107 		case DIF_OP_SRA:
5108 			regs[rd] = (int64_t)regs[r1] >> regs[r2];
5109 			break;
5110 
5111 		case DIF_OP_CALL:
5112 			dtrace_dif_subr(DIF_INSTR_SUBR(instr), rd,
5113 			    regs, tupregs, ttop, mstate, state);
5114 			break;
5115 
5116 		case DIF_OP_PUSHTR:
5117 			if (ttop == DIF_DTR_NREGS) {
5118 				*flags |= CPU_DTRACE_TUPOFLOW;
5119 				break;
5120 			}
5121 
5122 			if (r1 == DIF_TYPE_STRING) {
5123 				/*
5124 				 * If this is a string type and the size is 0,
5125 				 * we'll use the system-wide default string
5126 				 * size.  Note that we are _not_ looking at
5127 				 * the value of the DTRACEOPT_STRSIZE option;
5128 				 * had this been set, we would expect to have
5129 				 * a non-zero size value in the "pushtr".
5130 				 */
5131 				tupregs[ttop].dttk_size =
5132 				    dtrace_strlen((char *)(uintptr_t)regs[rd],
5133 				    regs[r2] ? regs[r2] :
5134 				    dtrace_strsize_default) + 1;
5135 			} else {
5136 				tupregs[ttop].dttk_size = regs[r2];
5137 			}
5138 
5139 			tupregs[ttop++].dttk_value = regs[rd];
5140 			break;
5141 
5142 		case DIF_OP_PUSHTV:
5143 			if (ttop == DIF_DTR_NREGS) {
5144 				*flags |= CPU_DTRACE_TUPOFLOW;
5145 				break;
5146 			}
5147 
5148 			tupregs[ttop].dttk_value = regs[rd];
5149 			tupregs[ttop++].dttk_size = 0;
5150 			break;
5151 
5152 		case DIF_OP_POPTS:
5153 			if (ttop != 0)
5154 				ttop--;
5155 			break;
5156 
5157 		case DIF_OP_FLUSHTS:
5158 			ttop = 0;
5159 			break;
5160 
5161 		case DIF_OP_LDGAA:
5162 		case DIF_OP_LDTAA: {
5163 			dtrace_dynvar_t *dvar;
5164 			dtrace_key_t *key = tupregs;
5165 			uint_t nkeys = ttop;
5166 
5167 			id = DIF_INSTR_VAR(instr);
5168 			ASSERT(id >= DIF_VAR_OTHER_UBASE);
5169 			id -= DIF_VAR_OTHER_UBASE;
5170 
5171 			key[nkeys].dttk_value = (uint64_t)id;
5172 			key[nkeys++].dttk_size = 0;
5173 
5174 			if (DIF_INSTR_OP(instr) == DIF_OP_LDTAA) {
5175 				DTRACE_TLS_THRKEY(key[nkeys].dttk_value);
5176 				key[nkeys++].dttk_size = 0;
5177 				v = &vstate->dtvs_tlocals[id];
5178 			} else {
5179 				v = &vstate->dtvs_globals[id]->dtsv_var;
5180 			}
5181 
5182 			dvar = dtrace_dynvar(dstate, nkeys, key,
5183 			    v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
5184 			    v->dtdv_type.dtdt_size : sizeof (uint64_t),
5185 			    DTRACE_DYNVAR_NOALLOC, mstate, vstate);
5186 
5187 			if (dvar == NULL) {
5188 				regs[rd] = 0;
5189 				break;
5190 			}
5191 
5192 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5193 				regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data;
5194 			} else {
5195 				regs[rd] = *((uint64_t *)dvar->dtdv_data);
5196 			}
5197 
5198 			break;
5199 		}
5200 
5201 		case DIF_OP_STGAA:
5202 		case DIF_OP_STTAA: {
5203 			dtrace_dynvar_t *dvar;
5204 			dtrace_key_t *key = tupregs;
5205 			uint_t nkeys = ttop;
5206 
5207 			id = DIF_INSTR_VAR(instr);
5208 			ASSERT(id >= DIF_VAR_OTHER_UBASE);
5209 			id -= DIF_VAR_OTHER_UBASE;
5210 
5211 			key[nkeys].dttk_value = (uint64_t)id;
5212 			key[nkeys++].dttk_size = 0;
5213 
5214 			if (DIF_INSTR_OP(instr) == DIF_OP_STTAA) {
5215 				DTRACE_TLS_THRKEY(key[nkeys].dttk_value);
5216 				key[nkeys++].dttk_size = 0;
5217 				v = &vstate->dtvs_tlocals[id];
5218 			} else {
5219 				v = &vstate->dtvs_globals[id]->dtsv_var;
5220 			}
5221 
5222 			dvar = dtrace_dynvar(dstate, nkeys, key,
5223 			    v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
5224 			    v->dtdv_type.dtdt_size : sizeof (uint64_t),
5225 			    regs[rd] ? DTRACE_DYNVAR_ALLOC :
5226 			    DTRACE_DYNVAR_DEALLOC, mstate, vstate);
5227 
5228 			if (dvar == NULL)
5229 				break;
5230 
5231 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5232 				if (!dtrace_vcanload(
5233 				    (void *)(uintptr_t)regs[rd], &v->dtdv_type,
5234 				    mstate, vstate))
5235 					break;
5236 
5237 				dtrace_vcopy((void *)(uintptr_t)regs[rd],
5238 				    dvar->dtdv_data, &v->dtdv_type);
5239 			} else {
5240 				*((uint64_t *)dvar->dtdv_data) = regs[rd];
5241 			}
5242 
5243 			break;
5244 		}
5245 
5246 		case DIF_OP_ALLOCS: {
5247 			uintptr_t ptr = P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
5248 			size_t size = ptr - mstate->dtms_scratch_ptr + regs[r1];
5249 
5250 			/*
5251 			 * Rounding up the user allocation size could have
5252 			 * overflowed large, bogus allocations (like -1ULL) to
5253 			 * 0.
5254 			 */
5255 			if (size < regs[r1] ||
5256 			    !DTRACE_INSCRATCH(mstate, size)) {
5257 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5258 				regs[rd] = NULL;
5259 				break;
5260 			}
5261 
5262 			dtrace_bzero((void *) mstate->dtms_scratch_ptr, size);
5263 			mstate->dtms_scratch_ptr += size;
5264 			regs[rd] = ptr;
5265 			break;
5266 		}
5267 
5268 		case DIF_OP_COPYS:
5269 			if (!dtrace_canstore(regs[rd], regs[r2],
5270 			    mstate, vstate)) {
5271 				*flags |= CPU_DTRACE_BADADDR;
5272 				*illval = regs[rd];
5273 				break;
5274 			}
5275 
5276 			if (!dtrace_canload(regs[r1], regs[r2], mstate, vstate))
5277 				break;
5278 
5279 			dtrace_bcopy((void *)(uintptr_t)regs[r1],
5280 			    (void *)(uintptr_t)regs[rd], (size_t)regs[r2]);
5281 			break;
5282 
5283 		case DIF_OP_STB:
5284 			if (!dtrace_canstore(regs[rd], 1, mstate, vstate)) {
5285 				*flags |= CPU_DTRACE_BADADDR;
5286 				*illval = regs[rd];
5287 				break;
5288 			}
5289 			*((uint8_t *)(uintptr_t)regs[rd]) = (uint8_t)regs[r1];
5290 			break;
5291 
5292 		case DIF_OP_STH:
5293 			if (!dtrace_canstore(regs[rd], 2, mstate, vstate)) {
5294 				*flags |= CPU_DTRACE_BADADDR;
5295 				*illval = regs[rd];
5296 				break;
5297 			}
5298 			if (regs[rd] & 1) {
5299 				*flags |= CPU_DTRACE_BADALIGN;
5300 				*illval = regs[rd];
5301 				break;
5302 			}
5303 			*((uint16_t *)(uintptr_t)regs[rd]) = (uint16_t)regs[r1];
5304 			break;
5305 
5306 		case DIF_OP_STW:
5307 			if (!dtrace_canstore(regs[rd], 4, mstate, vstate)) {
5308 				*flags |= CPU_DTRACE_BADADDR;
5309 				*illval = regs[rd];
5310 				break;
5311 			}
5312 			if (regs[rd] & 3) {
5313 				*flags |= CPU_DTRACE_BADALIGN;
5314 				*illval = regs[rd];
5315 				break;
5316 			}
5317 			*((uint32_t *)(uintptr_t)regs[rd]) = (uint32_t)regs[r1];
5318 			break;
5319 
5320 		case DIF_OP_STX:
5321 			if (!dtrace_canstore(regs[rd], 8, mstate, vstate)) {
5322 				*flags |= CPU_DTRACE_BADADDR;
5323 				*illval = regs[rd];
5324 				break;
5325 			}
5326 			if (regs[rd] & 7) {
5327 				*flags |= CPU_DTRACE_BADALIGN;
5328 				*illval = regs[rd];
5329 				break;
5330 			}
5331 			*((uint64_t *)(uintptr_t)regs[rd]) = regs[r1];
5332 			break;
5333 		}
5334 	}
5335 
5336 	if (!(*flags & CPU_DTRACE_FAULT))
5337 		return (rval);
5338 
5339 	mstate->dtms_fltoffs = opc * sizeof (dif_instr_t);
5340 	mstate->dtms_present |= DTRACE_MSTATE_FLTOFFS;
5341 
5342 	return (0);
5343 }
5344 
5345 static void
5346 dtrace_action_breakpoint(dtrace_ecb_t *ecb)
5347 {
5348 	dtrace_probe_t *probe = ecb->dte_probe;
5349 	dtrace_provider_t *prov = probe->dtpr_provider;
5350 	char c[DTRACE_FULLNAMELEN + 80], *str;
5351 	char *msg = "dtrace: breakpoint action at probe ";
5352 	char *ecbmsg = " (ecb ";
5353 	uintptr_t mask = (0xf << (sizeof (uintptr_t) * NBBY / 4));
5354 	uintptr_t val = (uintptr_t)ecb;
5355 	int shift = (sizeof (uintptr_t) * NBBY) - 4, i = 0;
5356 
5357 	if (dtrace_destructive_disallow)
5358 		return;
5359 
5360 	/*
5361 	 * It's impossible to be taking action on the NULL probe.
5362 	 */
5363 	ASSERT(probe != NULL);
5364 
5365 	/*
5366 	 * This is a poor man's (destitute man's?) sprintf():  we want to
5367 	 * print the provider name, module name, function name and name of
5368 	 * the probe, along with the hex address of the ECB with the breakpoint
5369 	 * action -- all of which we must place in the character buffer by
5370 	 * hand.
5371 	 */
5372 	while (*msg != '\0')
5373 		c[i++] = *msg++;
5374 
5375 	for (str = prov->dtpv_name; *str != '\0'; str++)
5376 		c[i++] = *str;
5377 	c[i++] = ':';
5378 
5379 	for (str = probe->dtpr_mod; *str != '\0'; str++)
5380 		c[i++] = *str;
5381 	c[i++] = ':';
5382 
5383 	for (str = probe->dtpr_func; *str != '\0'; str++)
5384 		c[i++] = *str;
5385 	c[i++] = ':';
5386 
5387 	for (str = probe->dtpr_name; *str != '\0'; str++)
5388 		c[i++] = *str;
5389 
5390 	while (*ecbmsg != '\0')
5391 		c[i++] = *ecbmsg++;
5392 
5393 	while (shift >= 0) {
5394 		mask = (uintptr_t)0xf << shift;
5395 
5396 		if (val >= ((uintptr_t)1 << shift))
5397 			c[i++] = "0123456789abcdef"[(val & mask) >> shift];
5398 		shift -= 4;
5399 	}
5400 
5401 	c[i++] = ')';
5402 	c[i] = '\0';
5403 
5404 	debug_enter(c);
5405 }
5406 
5407 static void
5408 dtrace_action_panic(dtrace_ecb_t *ecb)
5409 {
5410 	dtrace_probe_t *probe = ecb->dte_probe;
5411 
5412 	/*
5413 	 * It's impossible to be taking action on the NULL probe.
5414 	 */
5415 	ASSERT(probe != NULL);
5416 
5417 	if (dtrace_destructive_disallow)
5418 		return;
5419 
5420 	if (dtrace_panicked != NULL)
5421 		return;
5422 
5423 	if (dtrace_casptr(&dtrace_panicked, NULL, curthread) != NULL)
5424 		return;
5425 
5426 	/*
5427 	 * We won the right to panic.  (We want to be sure that only one
5428 	 * thread calls panic() from dtrace_probe(), and that panic() is
5429 	 * called exactly once.)
5430 	 */
5431 	dtrace_panic("dtrace: panic action at probe %s:%s:%s:%s (ecb %p)",
5432 	    probe->dtpr_provider->dtpv_name, probe->dtpr_mod,
5433 	    probe->dtpr_func, probe->dtpr_name, (void *)ecb);
5434 }
5435 
5436 static void
5437 dtrace_action_raise(uint64_t sig)
5438 {
5439 	if (dtrace_destructive_disallow)
5440 		return;
5441 
5442 	if (sig >= NSIG) {
5443 		DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
5444 		return;
5445 	}
5446 
5447 	/*
5448 	 * raise() has a queue depth of 1 -- we ignore all subsequent
5449 	 * invocations of the raise() action.
5450 	 */
5451 	if (curthread->t_dtrace_sig == 0)
5452 		curthread->t_dtrace_sig = (uint8_t)sig;
5453 
5454 	curthread->t_sig_check = 1;
5455 	aston(curthread);
5456 }
5457 
5458 static void
5459 dtrace_action_stop(void)
5460 {
5461 	if (dtrace_destructive_disallow)
5462 		return;
5463 
5464 	if (!curthread->t_dtrace_stop) {
5465 		curthread->t_dtrace_stop = 1;
5466 		curthread->t_sig_check = 1;
5467 		aston(curthread);
5468 	}
5469 }
5470 
5471 static void
5472 dtrace_action_chill(dtrace_mstate_t *mstate, hrtime_t val)
5473 {
5474 	hrtime_t now;
5475 	volatile uint16_t *flags;
5476 	cpu_t *cpu = CPU;
5477 
5478 	if (dtrace_destructive_disallow)
5479 		return;
5480 
5481 	flags = (volatile uint16_t *)&cpu_core[cpu->cpu_id].cpuc_dtrace_flags;
5482 
5483 	now = dtrace_gethrtime();
5484 
5485 	if (now - cpu->cpu_dtrace_chillmark > dtrace_chill_interval) {
5486 		/*
5487 		 * We need to advance the mark to the current time.
5488 		 */
5489 		cpu->cpu_dtrace_chillmark = now;
5490 		cpu->cpu_dtrace_chilled = 0;
5491 	}
5492 
5493 	/*
5494 	 * Now check to see if the requested chill time would take us over
5495 	 * the maximum amount of time allowed in the chill interval.  (Or
5496 	 * worse, if the calculation itself induces overflow.)
5497 	 */
5498 	if (cpu->cpu_dtrace_chilled + val > dtrace_chill_max ||
5499 	    cpu->cpu_dtrace_chilled + val < cpu->cpu_dtrace_chilled) {
5500 		*flags |= CPU_DTRACE_ILLOP;
5501 		return;
5502 	}
5503 
5504 	while (dtrace_gethrtime() - now < val)
5505 		continue;
5506 
5507 	/*
5508 	 * Normally, we assure that the value of the variable "timestamp" does
5509 	 * not change within an ECB.  The presence of chill() represents an
5510 	 * exception to this rule, however.
5511 	 */
5512 	mstate->dtms_present &= ~DTRACE_MSTATE_TIMESTAMP;
5513 	cpu->cpu_dtrace_chilled += val;
5514 }
5515 
5516 static void
5517 dtrace_action_ustack(dtrace_mstate_t *mstate, dtrace_state_t *state,
5518     uint64_t *buf, uint64_t arg)
5519 {
5520 	int nframes = DTRACE_USTACK_NFRAMES(arg);
5521 	int strsize = DTRACE_USTACK_STRSIZE(arg);
5522 	uint64_t *pcs = &buf[1], *fps;
5523 	char *str = (char *)&pcs[nframes];
5524 	int size, offs = 0, i, j;
5525 	uintptr_t old = mstate->dtms_scratch_ptr, saved;
5526 	uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
5527 	char *sym;
5528 
5529 	/*
5530 	 * Should be taking a faster path if string space has not been
5531 	 * allocated.
5532 	 */
5533 	ASSERT(strsize != 0);
5534 
5535 	/*
5536 	 * We will first allocate some temporary space for the frame pointers.
5537 	 */
5538 	fps = (uint64_t *)P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
5539 	size = (uintptr_t)fps - mstate->dtms_scratch_ptr +
5540 	    (nframes * sizeof (uint64_t));
5541 
5542 	if (!DTRACE_INSCRATCH(mstate, size)) {
5543 		/*
5544 		 * Not enough room for our frame pointers -- need to indicate
5545 		 * that we ran out of scratch space.
5546 		 */
5547 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5548 		return;
5549 	}
5550 
5551 	mstate->dtms_scratch_ptr += size;
5552 	saved = mstate->dtms_scratch_ptr;
5553 
5554 	/*
5555 	 * Now get a stack with both program counters and frame pointers.
5556 	 */
5557 	DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
5558 	dtrace_getufpstack(buf, fps, nframes + 1);
5559 	DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
5560 
5561 	/*
5562 	 * If that faulted, we're cooked.
5563 	 */
5564 	if (*flags & CPU_DTRACE_FAULT)
5565 		goto out;
5566 
5567 	/*
5568 	 * Now we want to walk up the stack, calling the USTACK helper.  For
5569 	 * each iteration, we restore the scratch pointer.
5570 	 */
5571 	for (i = 0; i < nframes; i++) {
5572 		mstate->dtms_scratch_ptr = saved;
5573 
5574 		if (offs >= strsize)
5575 			break;
5576 
5577 		sym = (char *)(uintptr_t)dtrace_helper(
5578 		    DTRACE_HELPER_ACTION_USTACK,
5579 		    mstate, state, pcs[i], fps[i]);
5580 
5581 		/*
5582 		 * If we faulted while running the helper, we're going to
5583 		 * clear the fault and null out the corresponding string.
5584 		 */
5585 		if (*flags & CPU_DTRACE_FAULT) {
5586 			*flags &= ~CPU_DTRACE_FAULT;
5587 			str[offs++] = '\0';
5588 			continue;
5589 		}
5590 
5591 		if (sym == NULL) {
5592 			str[offs++] = '\0';
5593 			continue;
5594 		}
5595 
5596 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
5597 
5598 		/*
5599 		 * Now copy in the string that the helper returned to us.
5600 		 */
5601 		for (j = 0; offs + j < strsize; j++) {
5602 			if ((str[offs + j] = sym[j]) == '\0')
5603 				break;
5604 		}
5605 
5606 		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
5607 
5608 		offs += j + 1;
5609 	}
5610 
5611 	if (offs >= strsize) {
5612 		/*
5613 		 * If we didn't have room for all of the strings, we don't
5614 		 * abort processing -- this needn't be a fatal error -- but we
5615 		 * still want to increment a counter (dts_stkstroverflows) to
5616 		 * allow this condition to be warned about.  (If this is from
5617 		 * a jstack() action, it is easily tuned via jstackstrsize.)
5618 		 */
5619 		dtrace_error(&state->dts_stkstroverflows);
5620 	}
5621 
5622 	while (offs < strsize)
5623 		str[offs++] = '\0';
5624 
5625 out:
5626 	mstate->dtms_scratch_ptr = old;
5627 }
5628 
5629 /*
5630  * If you're looking for the epicenter of DTrace, you just found it.  This
5631  * is the function called by the provider to fire a probe -- from which all
5632  * subsequent probe-context DTrace activity emanates.
5633  */
5634 void
5635 dtrace_probe(dtrace_id_t id, uintptr_t arg0, uintptr_t arg1,
5636     uintptr_t arg2, uintptr_t arg3, uintptr_t arg4)
5637 {
5638 	processorid_t cpuid;
5639 	dtrace_icookie_t cookie;
5640 	dtrace_probe_t *probe;
5641 	dtrace_mstate_t mstate;
5642 	dtrace_ecb_t *ecb;
5643 	dtrace_action_t *act;
5644 	intptr_t offs;
5645 	size_t size;
5646 	int vtime, onintr;
5647 	volatile uint16_t *flags;
5648 	hrtime_t now;
5649 
5650 	/*
5651 	 * Kick out immediately if this CPU is still being born (in which case
5652 	 * curthread will be set to -1) or the current thread can't allow
5653 	 * probes in its current context.
5654 	 */
5655 	if (((uintptr_t)curthread & 1) || (curthread->t_flag & T_DONTDTRACE))
5656 		return;
5657 
5658 	cookie = dtrace_interrupt_disable();
5659 	probe = dtrace_probes[id - 1];
5660 	cpuid = CPU->cpu_id;
5661 	onintr = CPU_ON_INTR(CPU);
5662 
5663 	if (!onintr && probe->dtpr_predcache != DTRACE_CACHEIDNONE &&
5664 	    probe->dtpr_predcache == curthread->t_predcache) {
5665 		/*
5666 		 * We have hit in the predicate cache; we know that
5667 		 * this predicate would evaluate to be false.
5668 		 */
5669 		dtrace_interrupt_enable(cookie);
5670 		return;
5671 	}
5672 
5673 	if (panic_quiesce) {
5674 		/*
5675 		 * We don't trace anything if we're panicking.
5676 		 */
5677 		dtrace_interrupt_enable(cookie);
5678 		return;
5679 	}
5680 
5681 	now = dtrace_gethrtime();
5682 	vtime = dtrace_vtime_references != 0;
5683 
5684 	if (vtime && curthread->t_dtrace_start)
5685 		curthread->t_dtrace_vtime += now - curthread->t_dtrace_start;
5686 
5687 	mstate.dtms_difo = NULL;
5688 	mstate.dtms_probe = probe;
5689 	mstate.dtms_strtok = NULL;
5690 	mstate.dtms_arg[0] = arg0;
5691 	mstate.dtms_arg[1] = arg1;
5692 	mstate.dtms_arg[2] = arg2;
5693 	mstate.dtms_arg[3] = arg3;
5694 	mstate.dtms_arg[4] = arg4;
5695 
5696 	flags = (volatile uint16_t *)&cpu_core[cpuid].cpuc_dtrace_flags;
5697 
5698 	for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) {
5699 		dtrace_predicate_t *pred = ecb->dte_predicate;
5700 		dtrace_state_t *state = ecb->dte_state;
5701 		dtrace_buffer_t *buf = &state->dts_buffer[cpuid];
5702 		dtrace_buffer_t *aggbuf = &state->dts_aggbuffer[cpuid];
5703 		dtrace_vstate_t *vstate = &state->dts_vstate;
5704 		dtrace_provider_t *prov = probe->dtpr_provider;
5705 		int committed = 0;
5706 		caddr_t tomax;
5707 
5708 		/*
5709 		 * A little subtlety with the following (seemingly innocuous)
5710 		 * declaration of the automatic 'val':  by looking at the
5711 		 * code, you might think that it could be declared in the
5712 		 * action processing loop, below.  (That is, it's only used in
5713 		 * the action processing loop.)  However, it must be declared
5714 		 * out of that scope because in the case of DIF expression
5715 		 * arguments to aggregating actions, one iteration of the
5716 		 * action loop will use the last iteration's value.
5717 		 */
5718 #ifdef lint
5719 		uint64_t val = 0;
5720 #else
5721 		uint64_t val;
5722 #endif
5723 
5724 		mstate.dtms_present = DTRACE_MSTATE_ARGS | DTRACE_MSTATE_PROBE;
5725 		*flags &= ~CPU_DTRACE_ERROR;
5726 
5727 		if (prov == dtrace_provider) {
5728 			/*
5729 			 * If dtrace itself is the provider of this probe,
5730 			 * we're only going to continue processing the ECB if
5731 			 * arg0 (the dtrace_state_t) is equal to the ECB's
5732 			 * creating state.  (This prevents disjoint consumers
5733 			 * from seeing one another's metaprobes.)
5734 			 */
5735 			if (arg0 != (uint64_t)(uintptr_t)state)
5736 				continue;
5737 		}
5738 
5739 		if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE) {
5740 			/*
5741 			 * We're not currently active.  If our provider isn't
5742 			 * the dtrace pseudo provider, we're not interested.
5743 			 */
5744 			if (prov != dtrace_provider)
5745 				continue;
5746 
5747 			/*
5748 			 * Now we must further check if we are in the BEGIN
5749 			 * probe.  If we are, we will only continue processing
5750 			 * if we're still in WARMUP -- if one BEGIN enabling
5751 			 * has invoked the exit() action, we don't want to
5752 			 * evaluate subsequent BEGIN enablings.
5753 			 */
5754 			if (probe->dtpr_id == dtrace_probeid_begin &&
5755 			    state->dts_activity != DTRACE_ACTIVITY_WARMUP) {
5756 				ASSERT(state->dts_activity ==
5757 				    DTRACE_ACTIVITY_DRAINING);
5758 				continue;
5759 			}
5760 		}
5761 
5762 		if (ecb->dte_cond) {
5763 			/*
5764 			 * If the dte_cond bits indicate that this
5765 			 * consumer is only allowed to see user-mode firings
5766 			 * of this probe, call the provider's dtps_usermode()
5767 			 * entry point to check that the probe was fired
5768 			 * while in a user context. Skip this ECB if that's
5769 			 * not the case.
5770 			 */
5771 			if ((ecb->dte_cond & DTRACE_COND_USERMODE) &&
5772 			    prov->dtpv_pops.dtps_usermode(prov->dtpv_arg,
5773 			    probe->dtpr_id, probe->dtpr_arg) == 0)
5774 				continue;
5775 
5776 			/*
5777 			 * This is more subtle than it looks. We have to be
5778 			 * absolutely certain that CRED() isn't going to
5779 			 * change out from under us so it's only legit to
5780 			 * examine that structure if we're in constrained
5781 			 * situations. Currently, the only times we'll this
5782 			 * check is if a non-super-user has enabled the
5783 			 * profile or syscall providers -- providers that
5784 			 * allow visibility of all processes. For the
5785 			 * profile case, the check above will ensure that
5786 			 * we're examining a user context.
5787 			 */
5788 			if (ecb->dte_cond & DTRACE_COND_OWNER) {
5789 				cred_t *cr;
5790 				cred_t *s_cr =
5791 				    ecb->dte_state->dts_cred.dcr_cred;
5792 				proc_t *proc;
5793 
5794 				ASSERT(s_cr != NULL);
5795 
5796 				if ((cr = CRED()) == NULL ||
5797 				    s_cr->cr_uid != cr->cr_uid ||
5798 				    s_cr->cr_uid != cr->cr_ruid ||
5799 				    s_cr->cr_uid != cr->cr_suid ||
5800 				    s_cr->cr_gid != cr->cr_gid ||
5801 				    s_cr->cr_gid != cr->cr_rgid ||
5802 				    s_cr->cr_gid != cr->cr_sgid ||
5803 				    (proc = ttoproc(curthread)) == NULL ||
5804 				    (proc->p_flag & SNOCD))
5805 					continue;
5806 			}
5807 
5808 			if (ecb->dte_cond & DTRACE_COND_ZONEOWNER) {
5809 				cred_t *cr;
5810 				cred_t *s_cr =
5811 				    ecb->dte_state->dts_cred.dcr_cred;
5812 
5813 				ASSERT(s_cr != NULL);
5814 
5815 				if ((cr = CRED()) == NULL ||
5816 				    s_cr->cr_zone->zone_id !=
5817 				    cr->cr_zone->zone_id)
5818 					continue;
5819 			}
5820 		}
5821 
5822 		if (now - state->dts_alive > dtrace_deadman_timeout) {
5823 			/*
5824 			 * We seem to be dead.  Unless we (a) have kernel
5825 			 * destructive permissions (b) have expicitly enabled
5826 			 * destructive actions and (c) destructive actions have
5827 			 * not been disabled, we're going to transition into
5828 			 * the KILLED state, from which no further processing
5829 			 * on this state will be performed.
5830 			 */
5831 			if (!dtrace_priv_kernel_destructive(state) ||
5832 			    !state->dts_cred.dcr_destructive ||
5833 			    dtrace_destructive_disallow) {
5834 				void *activity = &state->dts_activity;
5835 				dtrace_activity_t current;
5836 
5837 				do {
5838 					current = state->dts_activity;
5839 				} while (dtrace_cas32(activity, current,
5840 				    DTRACE_ACTIVITY_KILLED) != current);
5841 
5842 				continue;
5843 			}
5844 		}
5845 
5846 		if ((offs = dtrace_buffer_reserve(buf, ecb->dte_needed,
5847 		    ecb->dte_alignment, state, &mstate)) < 0)
5848 			continue;
5849 
5850 		tomax = buf->dtb_tomax;
5851 		ASSERT(tomax != NULL);
5852 
5853 		if (ecb->dte_size != 0)
5854 			DTRACE_STORE(uint32_t, tomax, offs, ecb->dte_epid);
5855 
5856 		mstate.dtms_epid = ecb->dte_epid;
5857 		mstate.dtms_present |= DTRACE_MSTATE_EPID;
5858 
5859 		if (state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL)
5860 			mstate.dtms_access = DTRACE_ACCESS_KERNEL;
5861 		else
5862 			mstate.dtms_access = 0;
5863 
5864 		if (pred != NULL) {
5865 			dtrace_difo_t *dp = pred->dtp_difo;
5866 			int rval;
5867 
5868 			rval = dtrace_dif_emulate(dp, &mstate, vstate, state);
5869 
5870 			if (!(*flags & CPU_DTRACE_ERROR) && !rval) {
5871 				dtrace_cacheid_t cid = probe->dtpr_predcache;
5872 
5873 				if (cid != DTRACE_CACHEIDNONE && !onintr) {
5874 					/*
5875 					 * Update the predicate cache...
5876 					 */
5877 					ASSERT(cid == pred->dtp_cacheid);
5878 					curthread->t_predcache = cid;
5879 				}
5880 
5881 				continue;
5882 			}
5883 		}
5884 
5885 		for (act = ecb->dte_action; !(*flags & CPU_DTRACE_ERROR) &&
5886 		    act != NULL; act = act->dta_next) {
5887 			size_t valoffs;
5888 			dtrace_difo_t *dp;
5889 			dtrace_recdesc_t *rec = &act->dta_rec;
5890 
5891 			size = rec->dtrd_size;
5892 			valoffs = offs + rec->dtrd_offset;
5893 
5894 			if (DTRACEACT_ISAGG(act->dta_kind)) {
5895 				uint64_t v = 0xbad;
5896 				dtrace_aggregation_t *agg;
5897 
5898 				agg = (dtrace_aggregation_t *)act;
5899 
5900 				if ((dp = act->dta_difo) != NULL)
5901 					v = dtrace_dif_emulate(dp,
5902 					    &mstate, vstate, state);
5903 
5904 				if (*flags & CPU_DTRACE_ERROR)
5905 					continue;
5906 
5907 				/*
5908 				 * Note that we always pass the expression
5909 				 * value from the previous iteration of the
5910 				 * action loop.  This value will only be used
5911 				 * if there is an expression argument to the
5912 				 * aggregating action, denoted by the
5913 				 * dtag_hasarg field.
5914 				 */
5915 				dtrace_aggregate(agg, buf,
5916 				    offs, aggbuf, v, val);
5917 				continue;
5918 			}
5919 
5920 			switch (act->dta_kind) {
5921 			case DTRACEACT_STOP:
5922 				if (dtrace_priv_proc_destructive(state))
5923 					dtrace_action_stop();
5924 				continue;
5925 
5926 			case DTRACEACT_BREAKPOINT:
5927 				if (dtrace_priv_kernel_destructive(state))
5928 					dtrace_action_breakpoint(ecb);
5929 				continue;
5930 
5931 			case DTRACEACT_PANIC:
5932 				if (dtrace_priv_kernel_destructive(state))
5933 					dtrace_action_panic(ecb);
5934 				continue;
5935 
5936 			case DTRACEACT_STACK:
5937 				if (!dtrace_priv_kernel(state))
5938 					continue;
5939 
5940 				dtrace_getpcstack((pc_t *)(tomax + valoffs),
5941 				    size / sizeof (pc_t), probe->dtpr_aframes,
5942 				    DTRACE_ANCHORED(probe) ? NULL :
5943 				    (uint32_t *)arg0);
5944 
5945 				continue;
5946 
5947 			case DTRACEACT_JSTACK:
5948 			case DTRACEACT_USTACK:
5949 				if (!dtrace_priv_proc(state))
5950 					continue;
5951 
5952 				/*
5953 				 * See comment in DIF_VAR_PID.
5954 				 */
5955 				if (DTRACE_ANCHORED(mstate.dtms_probe) &&
5956 				    CPU_ON_INTR(CPU)) {
5957 					int depth = DTRACE_USTACK_NFRAMES(
5958 					    rec->dtrd_arg) + 1;
5959 
5960 					dtrace_bzero((void *)(tomax + valoffs),
5961 					    DTRACE_USTACK_STRSIZE(rec->dtrd_arg)
5962 					    + depth * sizeof (uint64_t));
5963 
5964 					continue;
5965 				}
5966 
5967 				if (DTRACE_USTACK_STRSIZE(rec->dtrd_arg) != 0 &&
5968 				    curproc->p_dtrace_helpers != NULL) {
5969 					/*
5970 					 * This is the slow path -- we have
5971 					 * allocated string space, and we're
5972 					 * getting the stack of a process that
5973 					 * has helpers.  Call into a separate
5974 					 * routine to perform this processing.
5975 					 */
5976 					dtrace_action_ustack(&mstate, state,
5977 					    (uint64_t *)(tomax + valoffs),
5978 					    rec->dtrd_arg);
5979 					continue;
5980 				}
5981 
5982 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
5983 				dtrace_getupcstack((uint64_t *)
5984 				    (tomax + valoffs),
5985 				    DTRACE_USTACK_NFRAMES(rec->dtrd_arg) + 1);
5986 				DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
5987 				continue;
5988 
5989 			default:
5990 				break;
5991 			}
5992 
5993 			dp = act->dta_difo;
5994 			ASSERT(dp != NULL);
5995 
5996 			val = dtrace_dif_emulate(dp, &mstate, vstate, state);
5997 
5998 			if (*flags & CPU_DTRACE_ERROR)
5999 				continue;
6000 
6001 			switch (act->dta_kind) {
6002 			case DTRACEACT_SPECULATE:
6003 				ASSERT(buf == &state->dts_buffer[cpuid]);
6004 				buf = dtrace_speculation_buffer(state,
6005 				    cpuid, val);
6006 
6007 				if (buf == NULL) {
6008 					*flags |= CPU_DTRACE_DROP;
6009 					continue;
6010 				}
6011 
6012 				offs = dtrace_buffer_reserve(buf,
6013 				    ecb->dte_needed, ecb->dte_alignment,
6014 				    state, NULL);
6015 
6016 				if (offs < 0) {
6017 					*flags |= CPU_DTRACE_DROP;
6018 					continue;
6019 				}
6020 
6021 				tomax = buf->dtb_tomax;
6022 				ASSERT(tomax != NULL);
6023 
6024 				if (ecb->dte_size != 0)
6025 					DTRACE_STORE(uint32_t, tomax, offs,
6026 					    ecb->dte_epid);
6027 				continue;
6028 
6029 			case DTRACEACT_CHILL:
6030 				if (dtrace_priv_kernel_destructive(state))
6031 					dtrace_action_chill(&mstate, val);
6032 				continue;
6033 
6034 			case DTRACEACT_RAISE:
6035 				if (dtrace_priv_proc_destructive(state))
6036 					dtrace_action_raise(val);
6037 				continue;
6038 
6039 			case DTRACEACT_COMMIT:
6040 				ASSERT(!committed);
6041 
6042 				/*
6043 				 * We need to commit our buffer state.
6044 				 */
6045 				if (ecb->dte_size)
6046 					buf->dtb_offset = offs + ecb->dte_size;
6047 				buf = &state->dts_buffer[cpuid];
6048 				dtrace_speculation_commit(state, cpuid, val);
6049 				committed = 1;
6050 				continue;
6051 
6052 			case DTRACEACT_DISCARD:
6053 				dtrace_speculation_discard(state, cpuid, val);
6054 				continue;
6055 
6056 			case DTRACEACT_DIFEXPR:
6057 			case DTRACEACT_LIBACT:
6058 			case DTRACEACT_PRINTF:
6059 			case DTRACEACT_PRINTA:
6060 			case DTRACEACT_SYSTEM:
6061 			case DTRACEACT_FREOPEN:
6062 				break;
6063 
6064 			case DTRACEACT_SYM:
6065 			case DTRACEACT_MOD:
6066 				if (!dtrace_priv_kernel(state))
6067 					continue;
6068 				break;
6069 
6070 			case DTRACEACT_USYM:
6071 			case DTRACEACT_UMOD:
6072 			case DTRACEACT_UADDR: {
6073 				struct pid *pid = curthread->t_procp->p_pidp;
6074 
6075 				if (!dtrace_priv_proc(state))
6076 					continue;
6077 
6078 				DTRACE_STORE(uint64_t, tomax,
6079 				    valoffs, (uint64_t)pid->pid_id);
6080 				DTRACE_STORE(uint64_t, tomax,
6081 				    valoffs + sizeof (uint64_t), val);
6082 
6083 				continue;
6084 			}
6085 
6086 			case DTRACEACT_EXIT: {
6087 				/*
6088 				 * For the exit action, we are going to attempt
6089 				 * to atomically set our activity to be
6090 				 * draining.  If this fails (either because
6091 				 * another CPU has beat us to the exit action,
6092 				 * or because our current activity is something
6093 				 * other than ACTIVE or WARMUP), we will
6094 				 * continue.  This assures that the exit action
6095 				 * can be successfully recorded at most once
6096 				 * when we're in the ACTIVE state.  If we're
6097 				 * encountering the exit() action while in
6098 				 * COOLDOWN, however, we want to honor the new
6099 				 * status code.  (We know that we're the only
6100 				 * thread in COOLDOWN, so there is no race.)
6101 				 */
6102 				void *activity = &state->dts_activity;
6103 				dtrace_activity_t current = state->dts_activity;
6104 
6105 				if (current == DTRACE_ACTIVITY_COOLDOWN)
6106 					break;
6107 
6108 				if (current != DTRACE_ACTIVITY_WARMUP)
6109 					current = DTRACE_ACTIVITY_ACTIVE;
6110 
6111 				if (dtrace_cas32(activity, current,
6112 				    DTRACE_ACTIVITY_DRAINING) != current) {
6113 					*flags |= CPU_DTRACE_DROP;
6114 					continue;
6115 				}
6116 
6117 				break;
6118 			}
6119 
6120 			default:
6121 				ASSERT(0);
6122 			}
6123 
6124 			if (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF) {
6125 				uintptr_t end = valoffs + size;
6126 
6127 				if (!dtrace_vcanload((void *)(uintptr_t)val,
6128 				    &dp->dtdo_rtype, &mstate, vstate))
6129 					continue;
6130 
6131 				/*
6132 				 * If this is a string, we're going to only
6133 				 * load until we find the zero byte -- after
6134 				 * which we'll store zero bytes.
6135 				 */
6136 				if (dp->dtdo_rtype.dtdt_kind ==
6137 				    DIF_TYPE_STRING) {
6138 					char c = '\0' + 1;
6139 					int intuple = act->dta_intuple;
6140 					size_t s;
6141 
6142 					for (s = 0; s < size; s++) {
6143 						if (c != '\0')
6144 							c = dtrace_load8(val++);
6145 
6146 						DTRACE_STORE(uint8_t, tomax,
6147 						    valoffs++, c);
6148 
6149 						if (c == '\0' && intuple)
6150 							break;
6151 					}
6152 
6153 					continue;
6154 				}
6155 
6156 				while (valoffs < end) {
6157 					DTRACE_STORE(uint8_t, tomax, valoffs++,
6158 					    dtrace_load8(val++));
6159 				}
6160 
6161 				continue;
6162 			}
6163 
6164 			switch (size) {
6165 			case 0:
6166 				break;
6167 
6168 			case sizeof (uint8_t):
6169 				DTRACE_STORE(uint8_t, tomax, valoffs, val);
6170 				break;
6171 			case sizeof (uint16_t):
6172 				DTRACE_STORE(uint16_t, tomax, valoffs, val);
6173 				break;
6174 			case sizeof (uint32_t):
6175 				DTRACE_STORE(uint32_t, tomax, valoffs, val);
6176 				break;
6177 			case sizeof (uint64_t):
6178 				DTRACE_STORE(uint64_t, tomax, valoffs, val);
6179 				break;
6180 			default:
6181 				/*
6182 				 * Any other size should have been returned by
6183 				 * reference, not by value.
6184 				 */
6185 				ASSERT(0);
6186 				break;
6187 			}
6188 		}
6189 
6190 		if (*flags & CPU_DTRACE_DROP)
6191 			continue;
6192 
6193 		if (*flags & CPU_DTRACE_FAULT) {
6194 			int ndx;
6195 			dtrace_action_t *err;
6196 
6197 			buf->dtb_errors++;
6198 
6199 			if (probe->dtpr_id == dtrace_probeid_error) {
6200 				/*
6201 				 * There's nothing we can do -- we had an
6202 				 * error on the error probe.  We bump an
6203 				 * error counter to at least indicate that
6204 				 * this condition happened.
6205 				 */
6206 				dtrace_error(&state->dts_dblerrors);
6207 				continue;
6208 			}
6209 
6210 			if (vtime) {
6211 				/*
6212 				 * Before recursing on dtrace_probe(), we
6213 				 * need to explicitly clear out our start
6214 				 * time to prevent it from being accumulated
6215 				 * into t_dtrace_vtime.
6216 				 */
6217 				curthread->t_dtrace_start = 0;
6218 			}
6219 
6220 			/*
6221 			 * Iterate over the actions to figure out which action
6222 			 * we were processing when we experienced the error.
6223 			 * Note that act points _past_ the faulting action; if
6224 			 * act is ecb->dte_action, the fault was in the
6225 			 * predicate, if it's ecb->dte_action->dta_next it's
6226 			 * in action #1, and so on.
6227 			 */
6228 			for (err = ecb->dte_action, ndx = 0;
6229 			    err != act; err = err->dta_next, ndx++)
6230 				continue;
6231 
6232 			dtrace_probe_error(state, ecb->dte_epid, ndx,
6233 			    (mstate.dtms_present & DTRACE_MSTATE_FLTOFFS) ?
6234 			    mstate.dtms_fltoffs : -1, DTRACE_FLAGS2FLT(*flags),
6235 			    cpu_core[cpuid].cpuc_dtrace_illval);
6236 
6237 			continue;
6238 		}
6239 
6240 		if (!committed)
6241 			buf->dtb_offset = offs + ecb->dte_size;
6242 	}
6243 
6244 	if (vtime)
6245 		curthread->t_dtrace_start = dtrace_gethrtime();
6246 
6247 	dtrace_interrupt_enable(cookie);
6248 }
6249 
6250 /*
6251  * DTrace Probe Hashing Functions
6252  *
6253  * The functions in this section (and indeed, the functions in remaining
6254  * sections) are not _called_ from probe context.  (Any exceptions to this are
6255  * marked with a "Note:".)  Rather, they are called from elsewhere in the
6256  * DTrace framework to look-up probes in, add probes to and remove probes from
6257  * the DTrace probe hashes.  (Each probe is hashed by each element of the
6258  * probe tuple -- allowing for fast lookups, regardless of what was
6259  * specified.)
6260  */
6261 static uint_t
6262 dtrace_hash_str(char *p)
6263 {
6264 	unsigned int g;
6265 	uint_t hval = 0;
6266 
6267 	while (*p) {
6268 		hval = (hval << 4) + *p++;
6269 		if ((g = (hval & 0xf0000000)) != 0)
6270 			hval ^= g >> 24;
6271 		hval &= ~g;
6272 	}
6273 	return (hval);
6274 }
6275 
6276 static dtrace_hash_t *
6277 dtrace_hash_create(uintptr_t stroffs, uintptr_t nextoffs, uintptr_t prevoffs)
6278 {
6279 	dtrace_hash_t *hash = kmem_zalloc(sizeof (dtrace_hash_t), KM_SLEEP);
6280 
6281 	hash->dth_stroffs = stroffs;
6282 	hash->dth_nextoffs = nextoffs;
6283 	hash->dth_prevoffs = prevoffs;
6284 
6285 	hash->dth_size = 1;
6286 	hash->dth_mask = hash->dth_size - 1;
6287 
6288 	hash->dth_tab = kmem_zalloc(hash->dth_size *
6289 	    sizeof (dtrace_hashbucket_t *), KM_SLEEP);
6290 
6291 	return (hash);
6292 }
6293 
6294 static void
6295 dtrace_hash_destroy(dtrace_hash_t *hash)
6296 {
6297 #ifdef DEBUG
6298 	int i;
6299 
6300 	for (i = 0; i < hash->dth_size; i++)
6301 		ASSERT(hash->dth_tab[i] == NULL);
6302 #endif
6303 
6304 	kmem_free(hash->dth_tab,
6305 	    hash->dth_size * sizeof (dtrace_hashbucket_t *));
6306 	kmem_free(hash, sizeof (dtrace_hash_t));
6307 }
6308 
6309 static void
6310 dtrace_hash_resize(dtrace_hash_t *hash)
6311 {
6312 	int size = hash->dth_size, i, ndx;
6313 	int new_size = hash->dth_size << 1;
6314 	int new_mask = new_size - 1;
6315 	dtrace_hashbucket_t **new_tab, *bucket, *next;
6316 
6317 	ASSERT((new_size & new_mask) == 0);
6318 
6319 	new_tab = kmem_zalloc(new_size * sizeof (void *), KM_SLEEP);
6320 
6321 	for (i = 0; i < size; i++) {
6322 		for (bucket = hash->dth_tab[i]; bucket != NULL; bucket = next) {
6323 			dtrace_probe_t *probe = bucket->dthb_chain;
6324 
6325 			ASSERT(probe != NULL);
6326 			ndx = DTRACE_HASHSTR(hash, probe) & new_mask;
6327 
6328 			next = bucket->dthb_next;
6329 			bucket->dthb_next = new_tab[ndx];
6330 			new_tab[ndx] = bucket;
6331 		}
6332 	}
6333 
6334 	kmem_free(hash->dth_tab, hash->dth_size * sizeof (void *));
6335 	hash->dth_tab = new_tab;
6336 	hash->dth_size = new_size;
6337 	hash->dth_mask = new_mask;
6338 }
6339 
6340 static void
6341 dtrace_hash_add(dtrace_hash_t *hash, dtrace_probe_t *new)
6342 {
6343 	int hashval = DTRACE_HASHSTR(hash, new);
6344 	int ndx = hashval & hash->dth_mask;
6345 	dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
6346 	dtrace_probe_t **nextp, **prevp;
6347 
6348 	for (; bucket != NULL; bucket = bucket->dthb_next) {
6349 		if (DTRACE_HASHEQ(hash, bucket->dthb_chain, new))
6350 			goto add;
6351 	}
6352 
6353 	if ((hash->dth_nbuckets >> 1) > hash->dth_size) {
6354 		dtrace_hash_resize(hash);
6355 		dtrace_hash_add(hash, new);
6356 		return;
6357 	}
6358 
6359 	bucket = kmem_zalloc(sizeof (dtrace_hashbucket_t), KM_SLEEP);
6360 	bucket->dthb_next = hash->dth_tab[ndx];
6361 	hash->dth_tab[ndx] = bucket;
6362 	hash->dth_nbuckets++;
6363 
6364 add:
6365 	nextp = DTRACE_HASHNEXT(hash, new);
6366 	ASSERT(*nextp == NULL && *(DTRACE_HASHPREV(hash, new)) == NULL);
6367 	*nextp = bucket->dthb_chain;
6368 
6369 	if (bucket->dthb_chain != NULL) {
6370 		prevp = DTRACE_HASHPREV(hash, bucket->dthb_chain);
6371 		ASSERT(*prevp == NULL);
6372 		*prevp = new;
6373 	}
6374 
6375 	bucket->dthb_chain = new;
6376 	bucket->dthb_len++;
6377 }
6378 
6379 static dtrace_probe_t *
6380 dtrace_hash_lookup(dtrace_hash_t *hash, dtrace_probe_t *template)
6381 {
6382 	int hashval = DTRACE_HASHSTR(hash, template);
6383 	int ndx = hashval & hash->dth_mask;
6384 	dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
6385 
6386 	for (; bucket != NULL; bucket = bucket->dthb_next) {
6387 		if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template))
6388 			return (bucket->dthb_chain);
6389 	}
6390 
6391 	return (NULL);
6392 }
6393 
6394 static int
6395 dtrace_hash_collisions(dtrace_hash_t *hash, dtrace_probe_t *template)
6396 {
6397 	int hashval = DTRACE_HASHSTR(hash, template);
6398 	int ndx = hashval & hash->dth_mask;
6399 	dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
6400 
6401 	for (; bucket != NULL; bucket = bucket->dthb_next) {
6402 		if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template))
6403 			return (bucket->dthb_len);
6404 	}
6405 
6406 	return (NULL);
6407 }
6408 
6409 static void
6410 dtrace_hash_remove(dtrace_hash_t *hash, dtrace_probe_t *probe)
6411 {
6412 	int ndx = DTRACE_HASHSTR(hash, probe) & hash->dth_mask;
6413 	dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
6414 
6415 	dtrace_probe_t **prevp = DTRACE_HASHPREV(hash, probe);
6416 	dtrace_probe_t **nextp = DTRACE_HASHNEXT(hash, probe);
6417 
6418 	/*
6419 	 * Find the bucket that we're removing this probe from.
6420 	 */
6421 	for (; bucket != NULL; bucket = bucket->dthb_next) {
6422 		if (DTRACE_HASHEQ(hash, bucket->dthb_chain, probe))
6423 			break;
6424 	}
6425 
6426 	ASSERT(bucket != NULL);
6427 
6428 	if (*prevp == NULL) {
6429 		if (*nextp == NULL) {
6430 			/*
6431 			 * The removed probe was the only probe on this
6432 			 * bucket; we need to remove the bucket.
6433 			 */
6434 			dtrace_hashbucket_t *b = hash->dth_tab[ndx];
6435 
6436 			ASSERT(bucket->dthb_chain == probe);
6437 			ASSERT(b != NULL);
6438 
6439 			if (b == bucket) {
6440 				hash->dth_tab[ndx] = bucket->dthb_next;
6441 			} else {
6442 				while (b->dthb_next != bucket)
6443 					b = b->dthb_next;
6444 				b->dthb_next = bucket->dthb_next;
6445 			}
6446 
6447 			ASSERT(hash->dth_nbuckets > 0);
6448 			hash->dth_nbuckets--;
6449 			kmem_free(bucket, sizeof (dtrace_hashbucket_t));
6450 			return;
6451 		}
6452 
6453 		bucket->dthb_chain = *nextp;
6454 	} else {
6455 		*(DTRACE_HASHNEXT(hash, *prevp)) = *nextp;
6456 	}
6457 
6458 	if (*nextp != NULL)
6459 		*(DTRACE_HASHPREV(hash, *nextp)) = *prevp;
6460 }
6461 
6462 /*
6463  * DTrace Utility Functions
6464  *
6465  * These are random utility functions that are _not_ called from probe context.
6466  */
6467 static int
6468 dtrace_badattr(const dtrace_attribute_t *a)
6469 {
6470 	return (a->dtat_name > DTRACE_STABILITY_MAX ||
6471 	    a->dtat_data > DTRACE_STABILITY_MAX ||
6472 	    a->dtat_class > DTRACE_CLASS_MAX);
6473 }
6474 
6475 /*
6476  * Return a duplicate copy of a string.  If the specified string is NULL,
6477  * this function returns a zero-length string.
6478  */
6479 static char *
6480 dtrace_strdup(const char *str)
6481 {
6482 	char *new = kmem_zalloc((str != NULL ? strlen(str) : 0) + 1, KM_SLEEP);
6483 
6484 	if (str != NULL)
6485 		(void) strcpy(new, str);
6486 
6487 	return (new);
6488 }
6489 
6490 #define	DTRACE_ISALPHA(c)	\
6491 	(((c) >= 'a' && (c) <= 'z') || ((c) >= 'A' && (c) <= 'Z'))
6492 
6493 static int
6494 dtrace_badname(const char *s)
6495 {
6496 	char c;
6497 
6498 	if (s == NULL || (c = *s++) == '\0')
6499 		return (0);
6500 
6501 	if (!DTRACE_ISALPHA(c) && c != '-' && c != '_' && c != '.')
6502 		return (1);
6503 
6504 	while ((c = *s++) != '\0') {
6505 		if (!DTRACE_ISALPHA(c) && (c < '0' || c > '9') &&
6506 		    c != '-' && c != '_' && c != '.' && c != '`')
6507 			return (1);
6508 	}
6509 
6510 	return (0);
6511 }
6512 
6513 static void
6514 dtrace_cred2priv(cred_t *cr, uint32_t *privp, uid_t *uidp, zoneid_t *zoneidp)
6515 {
6516 	uint32_t priv;
6517 
6518 	if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) {
6519 		/*
6520 		 * For DTRACE_PRIV_ALL, the uid and zoneid don't matter.
6521 		 */
6522 		priv = DTRACE_PRIV_ALL;
6523 	} else {
6524 		*uidp = crgetuid(cr);
6525 		*zoneidp = crgetzoneid(cr);
6526 
6527 		priv = 0;
6528 		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE))
6529 			priv |= DTRACE_PRIV_KERNEL | DTRACE_PRIV_USER;
6530 		else if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE))
6531 			priv |= DTRACE_PRIV_USER;
6532 		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE))
6533 			priv |= DTRACE_PRIV_PROC;
6534 		if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
6535 			priv |= DTRACE_PRIV_OWNER;
6536 		if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
6537 			priv |= DTRACE_PRIV_ZONEOWNER;
6538 	}
6539 
6540 	*privp = priv;
6541 }
6542 
6543 #ifdef DTRACE_ERRDEBUG
6544 static void
6545 dtrace_errdebug(const char *str)
6546 {
6547 	int hval = dtrace_hash_str((char *)str) % DTRACE_ERRHASHSZ;
6548 	int occupied = 0;
6549 
6550 	mutex_enter(&dtrace_errlock);
6551 	dtrace_errlast = str;
6552 	dtrace_errthread = curthread;
6553 
6554 	while (occupied++ < DTRACE_ERRHASHSZ) {
6555 		if (dtrace_errhash[hval].dter_msg == str) {
6556 			dtrace_errhash[hval].dter_count++;
6557 			goto out;
6558 		}
6559 
6560 		if (dtrace_errhash[hval].dter_msg != NULL) {
6561 			hval = (hval + 1) % DTRACE_ERRHASHSZ;
6562 			continue;
6563 		}
6564 
6565 		dtrace_errhash[hval].dter_msg = str;
6566 		dtrace_errhash[hval].dter_count = 1;
6567 		goto out;
6568 	}
6569 
6570 	panic("dtrace: undersized error hash");
6571 out:
6572 	mutex_exit(&dtrace_errlock);
6573 }
6574 #endif
6575 
6576 /*
6577  * DTrace Matching Functions
6578  *
6579  * These functions are used to match groups of probes, given some elements of
6580  * a probe tuple, or some globbed expressions for elements of a probe tuple.
6581  */
6582 static int
6583 dtrace_match_priv(const dtrace_probe_t *prp, uint32_t priv, uid_t uid,
6584     zoneid_t zoneid)
6585 {
6586 	if (priv != DTRACE_PRIV_ALL) {
6587 		uint32_t ppriv = prp->dtpr_provider->dtpv_priv.dtpp_flags;
6588 		uint32_t match = priv & ppriv;
6589 
6590 		/*
6591 		 * No PRIV_DTRACE_* privileges...
6592 		 */
6593 		if ((priv & (DTRACE_PRIV_PROC | DTRACE_PRIV_USER |
6594 		    DTRACE_PRIV_KERNEL)) == 0)
6595 			return (0);
6596 
6597 		/*
6598 		 * No matching bits, but there were bits to match...
6599 		 */
6600 		if (match == 0 && ppriv != 0)
6601 			return (0);
6602 
6603 		/*
6604 		 * Need to have permissions to the process, but don't...
6605 		 */
6606 		if (((ppriv & ~match) & DTRACE_PRIV_OWNER) != 0 &&
6607 		    uid != prp->dtpr_provider->dtpv_priv.dtpp_uid) {
6608 			return (0);
6609 		}
6610 
6611 		/*
6612 		 * Need to be in the same zone unless we possess the
6613 		 * privilege to examine all zones.
6614 		 */
6615 		if (((ppriv & ~match) & DTRACE_PRIV_ZONEOWNER) != 0 &&
6616 		    zoneid != prp->dtpr_provider->dtpv_priv.dtpp_zoneid) {
6617 			return (0);
6618 		}
6619 	}
6620 
6621 	return (1);
6622 }
6623 
6624 /*
6625  * dtrace_match_probe compares a dtrace_probe_t to a pre-compiled key, which
6626  * consists of input pattern strings and an ops-vector to evaluate them.
6627  * This function returns >0 for match, 0 for no match, and <0 for error.
6628  */
6629 static int
6630 dtrace_match_probe(const dtrace_probe_t *prp, const dtrace_probekey_t *pkp,
6631     uint32_t priv, uid_t uid, zoneid_t zoneid)
6632 {
6633 	dtrace_provider_t *pvp = prp->dtpr_provider;
6634 	int rv;
6635 
6636 	if (pvp->dtpv_defunct)
6637 		return (0);
6638 
6639 	if ((rv = pkp->dtpk_pmatch(pvp->dtpv_name, pkp->dtpk_prov, 0)) <= 0)
6640 		return (rv);
6641 
6642 	if ((rv = pkp->dtpk_mmatch(prp->dtpr_mod, pkp->dtpk_mod, 0)) <= 0)
6643 		return (rv);
6644 
6645 	if ((rv = pkp->dtpk_fmatch(prp->dtpr_func, pkp->dtpk_func, 0)) <= 0)
6646 		return (rv);
6647 
6648 	if ((rv = pkp->dtpk_nmatch(prp->dtpr_name, pkp->dtpk_name, 0)) <= 0)
6649 		return (rv);
6650 
6651 	if (dtrace_match_priv(prp, priv, uid, zoneid) == 0)
6652 		return (0);
6653 
6654 	return (rv);
6655 }
6656 
6657 /*
6658  * dtrace_match_glob() is a safe kernel implementation of the gmatch(3GEN)
6659  * interface for matching a glob pattern 'p' to an input string 's'.  Unlike
6660  * libc's version, the kernel version only applies to 8-bit ASCII strings.
6661  * In addition, all of the recursion cases except for '*' matching have been
6662  * unwound.  For '*', we still implement recursive evaluation, but a depth
6663  * counter is maintained and matching is aborted if we recurse too deep.
6664  * The function returns 0 if no match, >0 if match, and <0 if recursion error.
6665  */
6666 static int
6667 dtrace_match_glob(const char *s, const char *p, int depth)
6668 {
6669 	const char *olds;
6670 	char s1, c;
6671 	int gs;
6672 
6673 	if (depth > DTRACE_PROBEKEY_MAXDEPTH)
6674 		return (-1);
6675 
6676 	if (s == NULL)
6677 		s = ""; /* treat NULL as empty string */
6678 
6679 top:
6680 	olds = s;
6681 	s1 = *s++;
6682 
6683 	if (p == NULL)
6684 		return (0);
6685 
6686 	if ((c = *p++) == '\0')
6687 		return (s1 == '\0');
6688 
6689 	switch (c) {
6690 	case '[': {
6691 		int ok = 0, notflag = 0;
6692 		char lc = '\0';
6693 
6694 		if (s1 == '\0')
6695 			return (0);
6696 
6697 		if (*p == '!') {
6698 			notflag = 1;
6699 			p++;
6700 		}
6701 
6702 		if ((c = *p++) == '\0')
6703 			return (0);
6704 
6705 		do {
6706 			if (c == '-' && lc != '\0' && *p != ']') {
6707 				if ((c = *p++) == '\0')
6708 					return (0);
6709 				if (c == '\\' && (c = *p++) == '\0')
6710 					return (0);
6711 
6712 				if (notflag) {
6713 					if (s1 < lc || s1 > c)
6714 						ok++;
6715 					else
6716 						return (0);
6717 				} else if (lc <= s1 && s1 <= c)
6718 					ok++;
6719 
6720 			} else if (c == '\\' && (c = *p++) == '\0')
6721 				return (0);
6722 
6723 			lc = c; /* save left-hand 'c' for next iteration */
6724 
6725 			if (notflag) {
6726 				if (s1 != c)
6727 					ok++;
6728 				else
6729 					return (0);
6730 			} else if (s1 == c)
6731 				ok++;
6732 
6733 			if ((c = *p++) == '\0')
6734 				return (0);
6735 
6736 		} while (c != ']');
6737 
6738 		if (ok)
6739 			goto top;
6740 
6741 		return (0);
6742 	}
6743 
6744 	case '\\':
6745 		if ((c = *p++) == '\0')
6746 			return (0);
6747 		/*FALLTHRU*/
6748 
6749 	default:
6750 		if (c != s1)
6751 			return (0);
6752 		/*FALLTHRU*/
6753 
6754 	case '?':
6755 		if (s1 != '\0')
6756 			goto top;
6757 		return (0);
6758 
6759 	case '*':
6760 		while (*p == '*')
6761 			p++; /* consecutive *'s are identical to a single one */
6762 
6763 		if (*p == '\0')
6764 			return (1);
6765 
6766 		for (s = olds; *s != '\0'; s++) {
6767 			if ((gs = dtrace_match_glob(s, p, depth + 1)) != 0)
6768 				return (gs);
6769 		}
6770 
6771 		return (0);
6772 	}
6773 }
6774 
6775 /*ARGSUSED*/
6776 static int
6777 dtrace_match_string(const char *s, const char *p, int depth)
6778 {
6779 	return (s != NULL && strcmp(s, p) == 0);
6780 }
6781 
6782 /*ARGSUSED*/
6783 static int
6784 dtrace_match_nul(const char *s, const char *p, int depth)
6785 {
6786 	return (1); /* always match the empty pattern */
6787 }
6788 
6789 /*ARGSUSED*/
6790 static int
6791 dtrace_match_nonzero(const char *s, const char *p, int depth)
6792 {
6793 	return (s != NULL && s[0] != '\0');
6794 }
6795 
6796 static int
6797 dtrace_match(const dtrace_probekey_t *pkp, uint32_t priv, uid_t uid,
6798     zoneid_t zoneid, int (*matched)(dtrace_probe_t *, void *), void *arg)
6799 {
6800 	dtrace_probe_t template, *probe;
6801 	dtrace_hash_t *hash = NULL;
6802 	int len, rc, best = INT_MAX, nmatched = 0;
6803 	dtrace_id_t i;
6804 
6805 	ASSERT(MUTEX_HELD(&dtrace_lock));
6806 
6807 	/*
6808 	 * If the probe ID is specified in the key, just lookup by ID and
6809 	 * invoke the match callback once if a matching probe is found.
6810 	 */
6811 	if (pkp->dtpk_id != DTRACE_IDNONE) {
6812 		if ((probe = dtrace_probe_lookup_id(pkp->dtpk_id)) != NULL &&
6813 		    dtrace_match_probe(probe, pkp, priv, uid, zoneid) > 0) {
6814 			if ((*matched)(probe, arg) == DTRACE_MATCH_FAIL)
6815 				return (DTRACE_MATCH_FAIL);
6816 			nmatched++;
6817 		}
6818 		return (nmatched);
6819 	}
6820 
6821 	template.dtpr_mod = (char *)pkp->dtpk_mod;
6822 	template.dtpr_func = (char *)pkp->dtpk_func;
6823 	template.dtpr_name = (char *)pkp->dtpk_name;
6824 
6825 	/*
6826 	 * We want to find the most distinct of the module name, function
6827 	 * name, and name.  So for each one that is not a glob pattern or
6828 	 * empty string, we perform a lookup in the corresponding hash and
6829 	 * use the hash table with the fewest collisions to do our search.
6830 	 */
6831 	if (pkp->dtpk_mmatch == &dtrace_match_string &&
6832 	    (len = dtrace_hash_collisions(dtrace_bymod, &template)) < best) {
6833 		best = len;
6834 		hash = dtrace_bymod;
6835 	}
6836 
6837 	if (pkp->dtpk_fmatch == &dtrace_match_string &&
6838 	    (len = dtrace_hash_collisions(dtrace_byfunc, &template)) < best) {
6839 		best = len;
6840 		hash = dtrace_byfunc;
6841 	}
6842 
6843 	if (pkp->dtpk_nmatch == &dtrace_match_string &&
6844 	    (len = dtrace_hash_collisions(dtrace_byname, &template)) < best) {
6845 		best = len;
6846 		hash = dtrace_byname;
6847 	}
6848 
6849 	/*
6850 	 * If we did not select a hash table, iterate over every probe and
6851 	 * invoke our callback for each one that matches our input probe key.
6852 	 */
6853 	if (hash == NULL) {
6854 		for (i = 0; i < dtrace_nprobes; i++) {
6855 			if ((probe = dtrace_probes[i]) == NULL ||
6856 			    dtrace_match_probe(probe, pkp, priv, uid,
6857 			    zoneid) <= 0)
6858 				continue;
6859 
6860 			nmatched++;
6861 
6862 			if ((rc = (*matched)(probe, arg)) !=
6863 			    DTRACE_MATCH_NEXT) {
6864 				if (rc == DTRACE_MATCH_FAIL)
6865 					return (DTRACE_MATCH_FAIL);
6866 				break;
6867 			}
6868 		}
6869 
6870 		return (nmatched);
6871 	}
6872 
6873 	/*
6874 	 * If we selected a hash table, iterate over each probe of the same key
6875 	 * name and invoke the callback for every probe that matches the other
6876 	 * attributes of our input probe key.
6877 	 */
6878 	for (probe = dtrace_hash_lookup(hash, &template); probe != NULL;
6879 	    probe = *(DTRACE_HASHNEXT(hash, probe))) {
6880 
6881 		if (dtrace_match_probe(probe, pkp, priv, uid, zoneid) <= 0)
6882 			continue;
6883 
6884 		nmatched++;
6885 
6886 		if ((rc = (*matched)(probe, arg)) != DTRACE_MATCH_NEXT) {
6887 			if (rc == DTRACE_MATCH_FAIL)
6888 				return (DTRACE_MATCH_FAIL);
6889 			break;
6890 		}
6891 	}
6892 
6893 	return (nmatched);
6894 }
6895 
6896 /*
6897  * Return the function pointer dtrace_probecmp() should use to compare the
6898  * specified pattern with a string.  For NULL or empty patterns, we select
6899  * dtrace_match_nul().  For glob pattern strings, we use dtrace_match_glob().
6900  * For non-empty non-glob strings, we use dtrace_match_string().
6901  */
6902 static dtrace_probekey_f *
6903 dtrace_probekey_func(const char *p)
6904 {
6905 	char c;
6906 
6907 	if (p == NULL || *p == '\0')
6908 		return (&dtrace_match_nul);
6909 
6910 	while ((c = *p++) != '\0') {
6911 		if (c == '[' || c == '?' || c == '*' || c == '\\')
6912 			return (&dtrace_match_glob);
6913 	}
6914 
6915 	return (&dtrace_match_string);
6916 }
6917 
6918 /*
6919  * Build a probe comparison key for use with dtrace_match_probe() from the
6920  * given probe description.  By convention, a null key only matches anchored
6921  * probes: if each field is the empty string, reset dtpk_fmatch to
6922  * dtrace_match_nonzero().
6923  */
6924 static void
6925 dtrace_probekey(const dtrace_probedesc_t *pdp, dtrace_probekey_t *pkp)
6926 {
6927 	pkp->dtpk_prov = pdp->dtpd_provider;
6928 	pkp->dtpk_pmatch = dtrace_probekey_func(pdp->dtpd_provider);
6929 
6930 	pkp->dtpk_mod = pdp->dtpd_mod;
6931 	pkp->dtpk_mmatch = dtrace_probekey_func(pdp->dtpd_mod);
6932 
6933 	pkp->dtpk_func = pdp->dtpd_func;
6934 	pkp->dtpk_fmatch = dtrace_probekey_func(pdp->dtpd_func);
6935 
6936 	pkp->dtpk_name = pdp->dtpd_name;
6937 	pkp->dtpk_nmatch = dtrace_probekey_func(pdp->dtpd_name);
6938 
6939 	pkp->dtpk_id = pdp->dtpd_id;
6940 
6941 	if (pkp->dtpk_id == DTRACE_IDNONE &&
6942 	    pkp->dtpk_pmatch == &dtrace_match_nul &&
6943 	    pkp->dtpk_mmatch == &dtrace_match_nul &&
6944 	    pkp->dtpk_fmatch == &dtrace_match_nul &&
6945 	    pkp->dtpk_nmatch == &dtrace_match_nul)
6946 		pkp->dtpk_fmatch = &dtrace_match_nonzero;
6947 }
6948 
6949 /*
6950  * DTrace Provider-to-Framework API Functions
6951  *
6952  * These functions implement much of the Provider-to-Framework API, as
6953  * described in <sys/dtrace.h>.  The parts of the API not in this section are
6954  * the functions in the API for probe management (found below), and
6955  * dtrace_probe() itself (found above).
6956  */
6957 
6958 /*
6959  * Register the calling provider with the DTrace framework.  This should
6960  * generally be called by DTrace providers in their attach(9E) entry point.
6961  */
6962 int
6963 dtrace_register(const char *name, const dtrace_pattr_t *pap, uint32_t priv,
6964     cred_t *cr, const dtrace_pops_t *pops, void *arg, dtrace_provider_id_t *idp)
6965 {
6966 	dtrace_provider_t *provider;
6967 
6968 	if (name == NULL || pap == NULL || pops == NULL || idp == NULL) {
6969 		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
6970 		    "arguments", name ? name : "<NULL>");
6971 		return (EINVAL);
6972 	}
6973 
6974 	if (name[0] == '\0' || dtrace_badname(name)) {
6975 		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
6976 		    "provider name", name);
6977 		return (EINVAL);
6978 	}
6979 
6980 	if ((pops->dtps_provide == NULL && pops->dtps_provide_module == NULL) ||
6981 	    pops->dtps_enable == NULL || pops->dtps_disable == NULL ||
6982 	    pops->dtps_destroy == NULL ||
6983 	    ((pops->dtps_resume == NULL) != (pops->dtps_suspend == NULL))) {
6984 		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
6985 		    "provider ops", name);
6986 		return (EINVAL);
6987 	}
6988 
6989 	if (dtrace_badattr(&pap->dtpa_provider) ||
6990 	    dtrace_badattr(&pap->dtpa_mod) ||
6991 	    dtrace_badattr(&pap->dtpa_func) ||
6992 	    dtrace_badattr(&pap->dtpa_name) ||
6993 	    dtrace_badattr(&pap->dtpa_args)) {
6994 		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
6995 		    "provider attributes", name);
6996 		return (EINVAL);
6997 	}
6998 
6999 	if (priv & ~DTRACE_PRIV_ALL) {
7000 		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
7001 		    "privilege attributes", name);
7002 		return (EINVAL);
7003 	}
7004 
7005 	if ((priv & DTRACE_PRIV_KERNEL) &&
7006 	    (priv & (DTRACE_PRIV_USER | DTRACE_PRIV_OWNER)) &&
7007 	    pops->dtps_usermode == NULL) {
7008 		cmn_err(CE_WARN, "failed to register provider '%s': need "
7009 		    "dtps_usermode() op for given privilege attributes", name);
7010 		return (EINVAL);
7011 	}
7012 
7013 	provider = kmem_zalloc(sizeof (dtrace_provider_t), KM_SLEEP);
7014 	provider->dtpv_name = kmem_alloc(strlen(name) + 1, KM_SLEEP);
7015 	(void) strcpy(provider->dtpv_name, name);
7016 
7017 	provider->dtpv_attr = *pap;
7018 	provider->dtpv_priv.dtpp_flags = priv;
7019 	if (cr != NULL) {
7020 		provider->dtpv_priv.dtpp_uid = crgetuid(cr);
7021 		provider->dtpv_priv.dtpp_zoneid = crgetzoneid(cr);
7022 	}
7023 	provider->dtpv_pops = *pops;
7024 
7025 	if (pops->dtps_provide == NULL) {
7026 		ASSERT(pops->dtps_provide_module != NULL);
7027 		provider->dtpv_pops.dtps_provide =
7028 		    (void (*)(void *, const dtrace_probedesc_t *))dtrace_nullop;
7029 	}
7030 
7031 	if (pops->dtps_provide_module == NULL) {
7032 		ASSERT(pops->dtps_provide != NULL);
7033 		provider->dtpv_pops.dtps_provide_module =
7034 		    (void (*)(void *, struct modctl *))dtrace_nullop;
7035 	}
7036 
7037 	if (pops->dtps_suspend == NULL) {
7038 		ASSERT(pops->dtps_resume == NULL);
7039 		provider->dtpv_pops.dtps_suspend =
7040 		    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop;
7041 		provider->dtpv_pops.dtps_resume =
7042 		    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop;
7043 	}
7044 
7045 	provider->dtpv_arg = arg;
7046 	*idp = (dtrace_provider_id_t)provider;
7047 
7048 	if (pops == &dtrace_provider_ops) {
7049 		ASSERT(MUTEX_HELD(&dtrace_provider_lock));
7050 		ASSERT(MUTEX_HELD(&dtrace_lock));
7051 		ASSERT(dtrace_anon.dta_enabling == NULL);
7052 
7053 		/*
7054 		 * We make sure that the DTrace provider is at the head of
7055 		 * the provider chain.
7056 		 */
7057 		provider->dtpv_next = dtrace_provider;
7058 		dtrace_provider = provider;
7059 		return (0);
7060 	}
7061 
7062 	mutex_enter(&dtrace_provider_lock);
7063 	mutex_enter(&dtrace_lock);
7064 
7065 	/*
7066 	 * If there is at least one provider registered, we'll add this
7067 	 * provider after the first provider.
7068 	 */
7069 	if (dtrace_provider != NULL) {
7070 		provider->dtpv_next = dtrace_provider->dtpv_next;
7071 		dtrace_provider->dtpv_next = provider;
7072 	} else {
7073 		dtrace_provider = provider;
7074 	}
7075 
7076 	if (dtrace_retained != NULL) {
7077 		dtrace_enabling_provide(provider);
7078 
7079 		/*
7080 		 * Now we need to call dtrace_enabling_matchall() -- which
7081 		 * will acquire cpu_lock and dtrace_lock.  We therefore need
7082 		 * to drop all of our locks before calling into it...
7083 		 */
7084 		mutex_exit(&dtrace_lock);
7085 		mutex_exit(&dtrace_provider_lock);
7086 		dtrace_enabling_matchall();
7087 
7088 		return (0);
7089 	}
7090 
7091 	mutex_exit(&dtrace_lock);
7092 	mutex_exit(&dtrace_provider_lock);
7093 
7094 	return (0);
7095 }
7096 
7097 /*
7098  * Unregister the specified provider from the DTrace framework.  This should
7099  * generally be called by DTrace providers in their detach(9E) entry point.
7100  */
7101 int
7102 dtrace_unregister(dtrace_provider_id_t id)
7103 {
7104 	dtrace_provider_t *old = (dtrace_provider_t *)id;
7105 	dtrace_provider_t *prev = NULL;
7106 	int i, self = 0, noreap = 0;
7107 	dtrace_probe_t *probe, *first = NULL;
7108 
7109 	if (old->dtpv_pops.dtps_enable ==
7110 	    (int (*)(void *, dtrace_id_t, void *))dtrace_enable_nullop) {
7111 		/*
7112 		 * If DTrace itself is the provider, we're called with locks
7113 		 * already held.
7114 		 */
7115 		ASSERT(old == dtrace_provider);
7116 		ASSERT(dtrace_devi != NULL);
7117 		ASSERT(MUTEX_HELD(&dtrace_provider_lock));
7118 		ASSERT(MUTEX_HELD(&dtrace_lock));
7119 		self = 1;
7120 
7121 		if (dtrace_provider->dtpv_next != NULL) {
7122 			/*
7123 			 * There's another provider here; return failure.
7124 			 */
7125 			return (EBUSY);
7126 		}
7127 	} else {
7128 		mutex_enter(&dtrace_provider_lock);
7129 		mutex_enter(&mod_lock);
7130 		mutex_enter(&dtrace_lock);
7131 	}
7132 
7133 	/*
7134 	 * If anyone has /dev/dtrace open, or if there are anonymous enabled
7135 	 * probes, we refuse to let providers slither away, unless this
7136 	 * provider has already been explicitly invalidated.
7137 	 */
7138 	if (!old->dtpv_defunct &&
7139 	    (dtrace_opens || (dtrace_anon.dta_state != NULL &&
7140 	    dtrace_anon.dta_state->dts_necbs > 0))) {
7141 		if (!self) {
7142 			mutex_exit(&dtrace_lock);
7143 			mutex_exit(&mod_lock);
7144 			mutex_exit(&dtrace_provider_lock);
7145 		}
7146 		return (EBUSY);
7147 	}
7148 
7149 	/*
7150 	 * Attempt to destroy the probes associated with this provider.
7151 	 */
7152 	for (i = 0; i < dtrace_nprobes; i++) {
7153 		if ((probe = dtrace_probes[i]) == NULL)
7154 			continue;
7155 
7156 		if (probe->dtpr_provider != old)
7157 			continue;
7158 
7159 		if (probe->dtpr_ecb == NULL)
7160 			continue;
7161 
7162 		/*
7163 		 * If we are trying to unregister a defunct provider, and the
7164 		 * provider was made defunct within the interval dictated by
7165 		 * dtrace_unregister_defunct_reap, we'll (asynchronously)
7166 		 * attempt to reap our enablings.  To denote that the provider
7167 		 * should reattempt to unregister itself at some point in the
7168 		 * future, we will return a differentiable error code (EAGAIN
7169 		 * instead of EBUSY) in this case.
7170 		 */
7171 		if (dtrace_gethrtime() - old->dtpv_defunct >
7172 		    dtrace_unregister_defunct_reap)
7173 			noreap = 1;
7174 
7175 		if (!self) {
7176 			mutex_exit(&dtrace_lock);
7177 			mutex_exit(&mod_lock);
7178 			mutex_exit(&dtrace_provider_lock);
7179 		}
7180 
7181 		if (noreap)
7182 			return (EBUSY);
7183 
7184 		(void) taskq_dispatch(dtrace_taskq,
7185 		    (task_func_t *)dtrace_enabling_reap, NULL, TQ_SLEEP);
7186 
7187 		return (EAGAIN);
7188 	}
7189 
7190 	/*
7191 	 * All of the probes for this provider are disabled; we can safely
7192 	 * remove all of them from their hash chains and from the probe array.
7193 	 */
7194 	for (i = 0; i < dtrace_nprobes; i++) {
7195 		if ((probe = dtrace_probes[i]) == NULL)
7196 			continue;
7197 
7198 		if (probe->dtpr_provider != old)
7199 			continue;
7200 
7201 		dtrace_probes[i] = NULL;
7202 
7203 		dtrace_hash_remove(dtrace_bymod, probe);
7204 		dtrace_hash_remove(dtrace_byfunc, probe);
7205 		dtrace_hash_remove(dtrace_byname, probe);
7206 
7207 		if (first == NULL) {
7208 			first = probe;
7209 			probe->dtpr_nextmod = NULL;
7210 		} else {
7211 			probe->dtpr_nextmod = first;
7212 			first = probe;
7213 		}
7214 	}
7215 
7216 	/*
7217 	 * The provider's probes have been removed from the hash chains and
7218 	 * from the probe array.  Now issue a dtrace_sync() to be sure that
7219 	 * everyone has cleared out from any probe array processing.
7220 	 */
7221 	dtrace_sync();
7222 
7223 	for (probe = first; probe != NULL; probe = first) {
7224 		first = probe->dtpr_nextmod;
7225 
7226 		old->dtpv_pops.dtps_destroy(old->dtpv_arg, probe->dtpr_id,
7227 		    probe->dtpr_arg);
7228 		kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
7229 		kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
7230 		kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
7231 		vmem_free(dtrace_arena, (void *)(uintptr_t)(probe->dtpr_id), 1);
7232 		kmem_free(probe, sizeof (dtrace_probe_t));
7233 	}
7234 
7235 	if ((prev = dtrace_provider) == old) {
7236 		ASSERT(self || dtrace_devi == NULL);
7237 		ASSERT(old->dtpv_next == NULL || dtrace_devi == NULL);
7238 		dtrace_provider = old->dtpv_next;
7239 	} else {
7240 		while (prev != NULL && prev->dtpv_next != old)
7241 			prev = prev->dtpv_next;
7242 
7243 		if (prev == NULL) {
7244 			panic("attempt to unregister non-existent "
7245 			    "dtrace provider %p\n", (void *)id);
7246 		}
7247 
7248 		prev->dtpv_next = old->dtpv_next;
7249 	}
7250 
7251 	if (!self) {
7252 		mutex_exit(&dtrace_lock);
7253 		mutex_exit(&mod_lock);
7254 		mutex_exit(&dtrace_provider_lock);
7255 	}
7256 
7257 	kmem_free(old->dtpv_name, strlen(old->dtpv_name) + 1);
7258 	kmem_free(old, sizeof (dtrace_provider_t));
7259 
7260 	return (0);
7261 }
7262 
7263 /*
7264  * Invalidate the specified provider.  All subsequent probe lookups for the
7265  * specified provider will fail, but its probes will not be removed.
7266  */
7267 void
7268 dtrace_invalidate(dtrace_provider_id_t id)
7269 {
7270 	dtrace_provider_t *pvp = (dtrace_provider_t *)id;
7271 
7272 	ASSERT(pvp->dtpv_pops.dtps_enable !=
7273 	    (int (*)(void *, dtrace_id_t, void *))dtrace_enable_nullop);
7274 
7275 	mutex_enter(&dtrace_provider_lock);
7276 	mutex_enter(&dtrace_lock);
7277 
7278 	pvp->dtpv_defunct = dtrace_gethrtime();
7279 
7280 	mutex_exit(&dtrace_lock);
7281 	mutex_exit(&dtrace_provider_lock);
7282 }
7283 
7284 /*
7285  * Indicate whether or not DTrace has attached.
7286  */
7287 int
7288 dtrace_attached(void)
7289 {
7290 	/*
7291 	 * dtrace_provider will be non-NULL iff the DTrace driver has
7292 	 * attached.  (It's non-NULL because DTrace is always itself a
7293 	 * provider.)
7294 	 */
7295 	return (dtrace_provider != NULL);
7296 }
7297 
7298 /*
7299  * Remove all the unenabled probes for the given provider.  This function is
7300  * not unlike dtrace_unregister(), except that it doesn't remove the provider
7301  * -- just as many of its associated probes as it can.
7302  */
7303 int
7304 dtrace_condense(dtrace_provider_id_t id)
7305 {
7306 	dtrace_provider_t *prov = (dtrace_provider_t *)id;
7307 	int i;
7308 	dtrace_probe_t *probe;
7309 
7310 	/*
7311 	 * Make sure this isn't the dtrace provider itself.
7312 	 */
7313 	ASSERT(prov->dtpv_pops.dtps_enable !=
7314 	    (int (*)(void *, dtrace_id_t, void *))dtrace_enable_nullop);
7315 
7316 	mutex_enter(&dtrace_provider_lock);
7317 	mutex_enter(&dtrace_lock);
7318 
7319 	/*
7320 	 * Attempt to destroy the probes associated with this provider.
7321 	 */
7322 	for (i = 0; i < dtrace_nprobes; i++) {
7323 		if ((probe = dtrace_probes[i]) == NULL)
7324 			continue;
7325 
7326 		if (probe->dtpr_provider != prov)
7327 			continue;
7328 
7329 		if (probe->dtpr_ecb != NULL)
7330 			continue;
7331 
7332 		dtrace_probes[i] = NULL;
7333 
7334 		dtrace_hash_remove(dtrace_bymod, probe);
7335 		dtrace_hash_remove(dtrace_byfunc, probe);
7336 		dtrace_hash_remove(dtrace_byname, probe);
7337 
7338 		prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, i + 1,
7339 		    probe->dtpr_arg);
7340 		kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
7341 		kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
7342 		kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
7343 		kmem_free(probe, sizeof (dtrace_probe_t));
7344 		vmem_free(dtrace_arena, (void *)((uintptr_t)i + 1), 1);
7345 	}
7346 
7347 	mutex_exit(&dtrace_lock);
7348 	mutex_exit(&dtrace_provider_lock);
7349 
7350 	return (0);
7351 }
7352 
7353 /*
7354  * DTrace Probe Management Functions
7355  *
7356  * The functions in this section perform the DTrace probe management,
7357  * including functions to create probes, look-up probes, and call into the
7358  * providers to request that probes be provided.  Some of these functions are
7359  * in the Provider-to-Framework API; these functions can be identified by the
7360  * fact that they are not declared "static".
7361  */
7362 
7363 /*
7364  * Create a probe with the specified module name, function name, and name.
7365  */
7366 dtrace_id_t
7367 dtrace_probe_create(dtrace_provider_id_t prov, const char *mod,
7368     const char *func, const char *name, int aframes, void *arg)
7369 {
7370 	dtrace_probe_t *probe, **probes;
7371 	dtrace_provider_t *provider = (dtrace_provider_t *)prov;
7372 	dtrace_id_t id;
7373 
7374 	if (provider == dtrace_provider) {
7375 		ASSERT(MUTEX_HELD(&dtrace_lock));
7376 	} else {
7377 		mutex_enter(&dtrace_lock);
7378 	}
7379 
7380 	id = (dtrace_id_t)(uintptr_t)vmem_alloc(dtrace_arena, 1,
7381 	    VM_BESTFIT | VM_SLEEP);
7382 	probe = kmem_zalloc(sizeof (dtrace_probe_t), KM_SLEEP);
7383 
7384 	probe->dtpr_id = id;
7385 	probe->dtpr_gen = dtrace_probegen++;
7386 	probe->dtpr_mod = dtrace_strdup(mod);
7387 	probe->dtpr_func = dtrace_strdup(func);
7388 	probe->dtpr_name = dtrace_strdup(name);
7389 	probe->dtpr_arg = arg;
7390 	probe->dtpr_aframes = aframes;
7391 	probe->dtpr_provider = provider;
7392 
7393 	dtrace_hash_add(dtrace_bymod, probe);
7394 	dtrace_hash_add(dtrace_byfunc, probe);
7395 	dtrace_hash_add(dtrace_byname, probe);
7396 
7397 	if (id - 1 >= dtrace_nprobes) {
7398 		size_t osize = dtrace_nprobes * sizeof (dtrace_probe_t *);
7399 		size_t nsize = osize << 1;
7400 
7401 		if (nsize == 0) {
7402 			ASSERT(osize == 0);
7403 			ASSERT(dtrace_probes == NULL);
7404 			nsize = sizeof (dtrace_probe_t *);
7405 		}
7406 
7407 		probes = kmem_zalloc(nsize, KM_SLEEP);
7408 
7409 		if (dtrace_probes == NULL) {
7410 			ASSERT(osize == 0);
7411 			dtrace_probes = probes;
7412 			dtrace_nprobes = 1;
7413 		} else {
7414 			dtrace_probe_t **oprobes = dtrace_probes;
7415 
7416 			bcopy(oprobes, probes, osize);
7417 			dtrace_membar_producer();
7418 			dtrace_probes = probes;
7419 
7420 			dtrace_sync();
7421 
7422 			/*
7423 			 * All CPUs are now seeing the new probes array; we can
7424 			 * safely free the old array.
7425 			 */
7426 			kmem_free(oprobes, osize);
7427 			dtrace_nprobes <<= 1;
7428 		}
7429 
7430 		ASSERT(id - 1 < dtrace_nprobes);
7431 	}
7432 
7433 	ASSERT(dtrace_probes[id - 1] == NULL);
7434 	dtrace_probes[id - 1] = probe;
7435 
7436 	if (provider != dtrace_provider)
7437 		mutex_exit(&dtrace_lock);
7438 
7439 	return (id);
7440 }
7441 
7442 static dtrace_probe_t *
7443 dtrace_probe_lookup_id(dtrace_id_t id)
7444 {
7445 	ASSERT(MUTEX_HELD(&dtrace_lock));
7446 
7447 	if (id == 0 || id > dtrace_nprobes)
7448 		return (NULL);
7449 
7450 	return (dtrace_probes[id - 1]);
7451 }
7452 
7453 static int
7454 dtrace_probe_lookup_match(dtrace_probe_t *probe, void *arg)
7455 {
7456 	*((dtrace_id_t *)arg) = probe->dtpr_id;
7457 
7458 	return (DTRACE_MATCH_DONE);
7459 }
7460 
7461 /*
7462  * Look up a probe based on provider and one or more of module name, function
7463  * name and probe name.
7464  */
7465 dtrace_id_t
7466 dtrace_probe_lookup(dtrace_provider_id_t prid, const char *mod,
7467     const char *func, const char *name)
7468 {
7469 	dtrace_probekey_t pkey;
7470 	dtrace_id_t id;
7471 	int match;
7472 
7473 	pkey.dtpk_prov = ((dtrace_provider_t *)prid)->dtpv_name;
7474 	pkey.dtpk_pmatch = &dtrace_match_string;
7475 	pkey.dtpk_mod = mod;
7476 	pkey.dtpk_mmatch = mod ? &dtrace_match_string : &dtrace_match_nul;
7477 	pkey.dtpk_func = func;
7478 	pkey.dtpk_fmatch = func ? &dtrace_match_string : &dtrace_match_nul;
7479 	pkey.dtpk_name = name;
7480 	pkey.dtpk_nmatch = name ? &dtrace_match_string : &dtrace_match_nul;
7481 	pkey.dtpk_id = DTRACE_IDNONE;
7482 
7483 	mutex_enter(&dtrace_lock);
7484 	match = dtrace_match(&pkey, DTRACE_PRIV_ALL, 0, 0,
7485 	    dtrace_probe_lookup_match, &id);
7486 	mutex_exit(&dtrace_lock);
7487 
7488 	ASSERT(match == 1 || match == 0);
7489 	return (match ? id : 0);
7490 }
7491 
7492 /*
7493  * Returns the probe argument associated with the specified probe.
7494  */
7495 void *
7496 dtrace_probe_arg(dtrace_provider_id_t id, dtrace_id_t pid)
7497 {
7498 	dtrace_probe_t *probe;
7499 	void *rval = NULL;
7500 
7501 	mutex_enter(&dtrace_lock);
7502 
7503 	if ((probe = dtrace_probe_lookup_id(pid)) != NULL &&
7504 	    probe->dtpr_provider == (dtrace_provider_t *)id)
7505 		rval = probe->dtpr_arg;
7506 
7507 	mutex_exit(&dtrace_lock);
7508 
7509 	return (rval);
7510 }
7511 
7512 /*
7513  * Copy a probe into a probe description.
7514  */
7515 static void
7516 dtrace_probe_description(const dtrace_probe_t *prp, dtrace_probedesc_t *pdp)
7517 {
7518 	bzero(pdp, sizeof (dtrace_probedesc_t));
7519 	pdp->dtpd_id = prp->dtpr_id;
7520 
7521 	(void) strncpy(pdp->dtpd_provider,
7522 	    prp->dtpr_provider->dtpv_name, DTRACE_PROVNAMELEN - 1);
7523 
7524 	(void) strncpy(pdp->dtpd_mod, prp->dtpr_mod, DTRACE_MODNAMELEN - 1);
7525 	(void) strncpy(pdp->dtpd_func, prp->dtpr_func, DTRACE_FUNCNAMELEN - 1);
7526 	(void) strncpy(pdp->dtpd_name, prp->dtpr_name, DTRACE_NAMELEN - 1);
7527 }
7528 
7529 /*
7530  * Called to indicate that a probe -- or probes -- should be provided by a
7531  * specfied provider.  If the specified description is NULL, the provider will
7532  * be told to provide all of its probes.  (This is done whenever a new
7533  * consumer comes along, or whenever a retained enabling is to be matched.) If
7534  * the specified description is non-NULL, the provider is given the
7535  * opportunity to dynamically provide the specified probe, allowing providers
7536  * to support the creation of probes on-the-fly.  (So-called _autocreated_
7537  * probes.)  If the provider is NULL, the operations will be applied to all
7538  * providers; if the provider is non-NULL the operations will only be applied
7539  * to the specified provider.  The dtrace_provider_lock must be held, and the
7540  * dtrace_lock must _not_ be held -- the provider's dtps_provide() operation
7541  * will need to grab the dtrace_lock when it reenters the framework through
7542  * dtrace_probe_lookup(), dtrace_probe_create(), etc.
7543  */
7544 static void
7545 dtrace_probe_provide(dtrace_probedesc_t *desc, dtrace_provider_t *prv)
7546 {
7547 	struct modctl *ctl;
7548 	int all = 0;
7549 
7550 	ASSERT(MUTEX_HELD(&dtrace_provider_lock));
7551 
7552 	if (prv == NULL) {
7553 		all = 1;
7554 		prv = dtrace_provider;
7555 	}
7556 
7557 	do {
7558 		/*
7559 		 * First, call the blanket provide operation.
7560 		 */
7561 		prv->dtpv_pops.dtps_provide(prv->dtpv_arg, desc);
7562 
7563 		/*
7564 		 * Now call the per-module provide operation.  We will grab
7565 		 * mod_lock to prevent the list from being modified.  Note
7566 		 * that this also prevents the mod_busy bits from changing.
7567 		 * (mod_busy can only be changed with mod_lock held.)
7568 		 */
7569 		mutex_enter(&mod_lock);
7570 
7571 		ctl = &modules;
7572 		do {
7573 			if (ctl->mod_busy || ctl->mod_mp == NULL)
7574 				continue;
7575 
7576 			prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl);
7577 
7578 		} while ((ctl = ctl->mod_next) != &modules);
7579 
7580 		mutex_exit(&mod_lock);
7581 	} while (all && (prv = prv->dtpv_next) != NULL);
7582 }
7583 
7584 /*
7585  * Iterate over each probe, and call the Framework-to-Provider API function
7586  * denoted by offs.
7587  */
7588 static void
7589 dtrace_probe_foreach(uintptr_t offs)
7590 {
7591 	dtrace_provider_t *prov;
7592 	void (*func)(void *, dtrace_id_t, void *);
7593 	dtrace_probe_t *probe;
7594 	dtrace_icookie_t cookie;
7595 	int i;
7596 
7597 	/*
7598 	 * We disable interrupts to walk through the probe array.  This is
7599 	 * safe -- the dtrace_sync() in dtrace_unregister() assures that we
7600 	 * won't see stale data.
7601 	 */
7602 	cookie = dtrace_interrupt_disable();
7603 
7604 	for (i = 0; i < dtrace_nprobes; i++) {
7605 		if ((probe = dtrace_probes[i]) == NULL)
7606 			continue;
7607 
7608 		if (probe->dtpr_ecb == NULL) {
7609 			/*
7610 			 * This probe isn't enabled -- don't call the function.
7611 			 */
7612 			continue;
7613 		}
7614 
7615 		prov = probe->dtpr_provider;
7616 		func = *((void(**)(void *, dtrace_id_t, void *))
7617 		    ((uintptr_t)&prov->dtpv_pops + offs));
7618 
7619 		func(prov->dtpv_arg, i + 1, probe->dtpr_arg);
7620 	}
7621 
7622 	dtrace_interrupt_enable(cookie);
7623 }
7624 
7625 static int
7626 dtrace_probe_enable(const dtrace_probedesc_t *desc, dtrace_enabling_t *enab)
7627 {
7628 	dtrace_probekey_t pkey;
7629 	uint32_t priv;
7630 	uid_t uid;
7631 	zoneid_t zoneid;
7632 
7633 	ASSERT(MUTEX_HELD(&dtrace_lock));
7634 	dtrace_ecb_create_cache = NULL;
7635 
7636 	if (desc == NULL) {
7637 		/*
7638 		 * If we're passed a NULL description, we're being asked to
7639 		 * create an ECB with a NULL probe.
7640 		 */
7641 		(void) dtrace_ecb_create_enable(NULL, enab);
7642 		return (0);
7643 	}
7644 
7645 	dtrace_probekey(desc, &pkey);
7646 	dtrace_cred2priv(enab->dten_vstate->dtvs_state->dts_cred.dcr_cred,
7647 	    &priv, &uid, &zoneid);
7648 
7649 	return (dtrace_match(&pkey, priv, uid, zoneid, dtrace_ecb_create_enable,
7650 	    enab));
7651 }
7652 
7653 /*
7654  * DTrace Helper Provider Functions
7655  */
7656 static void
7657 dtrace_dofattr2attr(dtrace_attribute_t *attr, const dof_attr_t dofattr)
7658 {
7659 	attr->dtat_name = DOF_ATTR_NAME(dofattr);
7660 	attr->dtat_data = DOF_ATTR_DATA(dofattr);
7661 	attr->dtat_class = DOF_ATTR_CLASS(dofattr);
7662 }
7663 
7664 static void
7665 dtrace_dofprov2hprov(dtrace_helper_provdesc_t *hprov,
7666     const dof_provider_t *dofprov, char *strtab)
7667 {
7668 	hprov->dthpv_provname = strtab + dofprov->dofpv_name;
7669 	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_provider,
7670 	    dofprov->dofpv_provattr);
7671 	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_mod,
7672 	    dofprov->dofpv_modattr);
7673 	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_func,
7674 	    dofprov->dofpv_funcattr);
7675 	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_name,
7676 	    dofprov->dofpv_nameattr);
7677 	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_args,
7678 	    dofprov->dofpv_argsattr);
7679 }
7680 
7681 static void
7682 dtrace_helper_provide_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid)
7683 {
7684 	uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
7685 	dof_hdr_t *dof = (dof_hdr_t *)daddr;
7686 	dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec;
7687 	dof_provider_t *provider;
7688 	dof_probe_t *probe;
7689 	uint32_t *off, *enoff;
7690 	uint8_t *arg;
7691 	char *strtab;
7692 	uint_t i, nprobes;
7693 	dtrace_helper_provdesc_t dhpv;
7694 	dtrace_helper_probedesc_t dhpb;
7695 	dtrace_meta_t *meta = dtrace_meta_pid;
7696 	dtrace_mops_t *mops = &meta->dtm_mops;
7697 	void *parg;
7698 
7699 	provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
7700 	str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
7701 	    provider->dofpv_strtab * dof->dofh_secsize);
7702 	prb_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
7703 	    provider->dofpv_probes * dof->dofh_secsize);
7704 	arg_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
7705 	    provider->dofpv_prargs * dof->dofh_secsize);
7706 	off_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
7707 	    provider->dofpv_proffs * dof->dofh_secsize);
7708 
7709 	strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
7710 	off = (uint32_t *)(uintptr_t)(daddr + off_sec->dofs_offset);
7711 	arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset);
7712 	enoff = NULL;
7713 
7714 	/*
7715 	 * See dtrace_helper_provider_validate().
7716 	 */
7717 	if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 &&
7718 	    provider->dofpv_prenoffs != DOF_SECT_NONE) {
7719 		enoff_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
7720 		    provider->dofpv_prenoffs * dof->dofh_secsize);
7721 		enoff = (uint32_t *)(uintptr_t)(daddr + enoff_sec->dofs_offset);
7722 	}
7723 
7724 	nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize;
7725 
7726 	/*
7727 	 * Create the provider.
7728 	 */
7729 	dtrace_dofprov2hprov(&dhpv, provider, strtab);
7730 
7731 	if ((parg = mops->dtms_provide_pid(meta->dtm_arg, &dhpv, pid)) == NULL)
7732 		return;
7733 
7734 	meta->dtm_count++;
7735 
7736 	/*
7737 	 * Create the probes.
7738 	 */
7739 	for (i = 0; i < nprobes; i++) {
7740 		probe = (dof_probe_t *)(uintptr_t)(daddr +
7741 		    prb_sec->dofs_offset + i * prb_sec->dofs_entsize);
7742 
7743 		dhpb.dthpb_mod = dhp->dofhp_mod;
7744 		dhpb.dthpb_func = strtab + probe->dofpr_func;
7745 		dhpb.dthpb_name = strtab + probe->dofpr_name;
7746 		dhpb.dthpb_base = probe->dofpr_addr;
7747 		dhpb.dthpb_offs = off + probe->dofpr_offidx;
7748 		dhpb.dthpb_noffs = probe->dofpr_noffs;
7749 		if (enoff != NULL) {
7750 			dhpb.dthpb_enoffs = enoff + probe->dofpr_enoffidx;
7751 			dhpb.dthpb_nenoffs = probe->dofpr_nenoffs;
7752 		} else {
7753 			dhpb.dthpb_enoffs = NULL;
7754 			dhpb.dthpb_nenoffs = 0;
7755 		}
7756 		dhpb.dthpb_args = arg + probe->dofpr_argidx;
7757 		dhpb.dthpb_nargc = probe->dofpr_nargc;
7758 		dhpb.dthpb_xargc = probe->dofpr_xargc;
7759 		dhpb.dthpb_ntypes = strtab + probe->dofpr_nargv;
7760 		dhpb.dthpb_xtypes = strtab + probe->dofpr_xargv;
7761 
7762 		mops->dtms_create_probe(meta->dtm_arg, parg, &dhpb);
7763 	}
7764 }
7765 
7766 static void
7767 dtrace_helper_provide(dof_helper_t *dhp, pid_t pid)
7768 {
7769 	uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
7770 	dof_hdr_t *dof = (dof_hdr_t *)daddr;
7771 	int i;
7772 
7773 	ASSERT(MUTEX_HELD(&dtrace_meta_lock));
7774 
7775 	for (i = 0; i < dof->dofh_secnum; i++) {
7776 		dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
7777 		    dof->dofh_secoff + i * dof->dofh_secsize);
7778 
7779 		if (sec->dofs_type != DOF_SECT_PROVIDER)
7780 			continue;
7781 
7782 		dtrace_helper_provide_one(dhp, sec, pid);
7783 	}
7784 
7785 	/*
7786 	 * We may have just created probes, so we must now rematch against
7787 	 * any retained enablings.  Note that this call will acquire both
7788 	 * cpu_lock and dtrace_lock; the fact that we are holding
7789 	 * dtrace_meta_lock now is what defines the ordering with respect to
7790 	 * these three locks.
7791 	 */
7792 	dtrace_enabling_matchall();
7793 }
7794 
7795 static void
7796 dtrace_helper_provider_remove_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid)
7797 {
7798 	uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
7799 	dof_hdr_t *dof = (dof_hdr_t *)daddr;
7800 	dof_sec_t *str_sec;
7801 	dof_provider_t *provider;
7802 	char *strtab;
7803 	dtrace_helper_provdesc_t dhpv;
7804 	dtrace_meta_t *meta = dtrace_meta_pid;
7805 	dtrace_mops_t *mops = &meta->dtm_mops;
7806 
7807 	provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
7808 	str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
7809 	    provider->dofpv_strtab * dof->dofh_secsize);
7810 
7811 	strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
7812 
7813 	/*
7814 	 * Create the provider.
7815 	 */
7816 	dtrace_dofprov2hprov(&dhpv, provider, strtab);
7817 
7818 	mops->dtms_remove_pid(meta->dtm_arg, &dhpv, pid);
7819 
7820 	meta->dtm_count--;
7821 }
7822 
7823 static void
7824 dtrace_helper_provider_remove(dof_helper_t *dhp, pid_t pid)
7825 {
7826 	uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
7827 	dof_hdr_t *dof = (dof_hdr_t *)daddr;
7828 	int i;
7829 
7830 	ASSERT(MUTEX_HELD(&dtrace_meta_lock));
7831 
7832 	for (i = 0; i < dof->dofh_secnum; i++) {
7833 		dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
7834 		    dof->dofh_secoff + i * dof->dofh_secsize);
7835 
7836 		if (sec->dofs_type != DOF_SECT_PROVIDER)
7837 			continue;
7838 
7839 		dtrace_helper_provider_remove_one(dhp, sec, pid);
7840 	}
7841 }
7842 
7843 /*
7844  * DTrace Meta Provider-to-Framework API Functions
7845  *
7846  * These functions implement the Meta Provider-to-Framework API, as described
7847  * in <sys/dtrace.h>.
7848  */
7849 int
7850 dtrace_meta_register(const char *name, const dtrace_mops_t *mops, void *arg,
7851     dtrace_meta_provider_id_t *idp)
7852 {
7853 	dtrace_meta_t *meta;
7854 	dtrace_helpers_t *help, *next;
7855 	int i;
7856 
7857 	*idp = DTRACE_METAPROVNONE;
7858 
7859 	/*
7860 	 * We strictly don't need the name, but we hold onto it for
7861 	 * debuggability. All hail error queues!
7862 	 */
7863 	if (name == NULL) {
7864 		cmn_err(CE_WARN, "failed to register meta-provider: "
7865 		    "invalid name");
7866 		return (EINVAL);
7867 	}
7868 
7869 	if (mops == NULL ||
7870 	    mops->dtms_create_probe == NULL ||
7871 	    mops->dtms_provide_pid == NULL ||
7872 	    mops->dtms_remove_pid == NULL) {
7873 		cmn_err(CE_WARN, "failed to register meta-register %s: "
7874 		    "invalid ops", name);
7875 		return (EINVAL);
7876 	}
7877 
7878 	meta = kmem_zalloc(sizeof (dtrace_meta_t), KM_SLEEP);
7879 	meta->dtm_mops = *mops;
7880 	meta->dtm_name = kmem_alloc(strlen(name) + 1, KM_SLEEP);
7881 	(void) strcpy(meta->dtm_name, name);
7882 	meta->dtm_arg = arg;
7883 
7884 	mutex_enter(&dtrace_meta_lock);
7885 	mutex_enter(&dtrace_lock);
7886 
7887 	if (dtrace_meta_pid != NULL) {
7888 		mutex_exit(&dtrace_lock);
7889 		mutex_exit(&dtrace_meta_lock);
7890 		cmn_err(CE_WARN, "failed to register meta-register %s: "
7891 		    "user-land meta-provider exists", name);
7892 		kmem_free(meta->dtm_name, strlen(meta->dtm_name) + 1);
7893 		kmem_free(meta, sizeof (dtrace_meta_t));
7894 		return (EINVAL);
7895 	}
7896 
7897 	dtrace_meta_pid = meta;
7898 	*idp = (dtrace_meta_provider_id_t)meta;
7899 
7900 	/*
7901 	 * If there are providers and probes ready to go, pass them
7902 	 * off to the new meta provider now.
7903 	 */
7904 
7905 	help = dtrace_deferred_pid;
7906 	dtrace_deferred_pid = NULL;
7907 
7908 	mutex_exit(&dtrace_lock);
7909 
7910 	while (help != NULL) {
7911 		for (i = 0; i < help->dthps_nprovs; i++) {
7912 			dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov,
7913 			    help->dthps_pid);
7914 		}
7915 
7916 		next = help->dthps_next;
7917 		help->dthps_next = NULL;
7918 		help->dthps_prev = NULL;
7919 		help->dthps_deferred = 0;
7920 		help = next;
7921 	}
7922 
7923 	mutex_exit(&dtrace_meta_lock);
7924 
7925 	return (0);
7926 }
7927 
7928 int
7929 dtrace_meta_unregister(dtrace_meta_provider_id_t id)
7930 {
7931 	dtrace_meta_t **pp, *old = (dtrace_meta_t *)id;
7932 
7933 	mutex_enter(&dtrace_meta_lock);
7934 	mutex_enter(&dtrace_lock);
7935 
7936 	if (old == dtrace_meta_pid) {
7937 		pp = &dtrace_meta_pid;
7938 	} else {
7939 		panic("attempt to unregister non-existent "
7940 		    "dtrace meta-provider %p\n", (void *)old);
7941 	}
7942 
7943 	if (old->dtm_count != 0) {
7944 		mutex_exit(&dtrace_lock);
7945 		mutex_exit(&dtrace_meta_lock);
7946 		return (EBUSY);
7947 	}
7948 
7949 	*pp = NULL;
7950 
7951 	mutex_exit(&dtrace_lock);
7952 	mutex_exit(&dtrace_meta_lock);
7953 
7954 	kmem_free(old->dtm_name, strlen(old->dtm_name) + 1);
7955 	kmem_free(old, sizeof (dtrace_meta_t));
7956 
7957 	return (0);
7958 }
7959 
7960 
7961 /*
7962  * DTrace DIF Object Functions
7963  */
7964 static int
7965 dtrace_difo_err(uint_t pc, const char *format, ...)
7966 {
7967 	if (dtrace_err_verbose) {
7968 		va_list alist;
7969 
7970 		(void) uprintf("dtrace DIF object error: [%u]: ", pc);
7971 		va_start(alist, format);
7972 		(void) vuprintf(format, alist);
7973 		va_end(alist);
7974 	}
7975 
7976 #ifdef DTRACE_ERRDEBUG
7977 	dtrace_errdebug(format);
7978 #endif
7979 	return (1);
7980 }
7981 
7982 /*
7983  * Validate a DTrace DIF object by checking the IR instructions.  The following
7984  * rules are currently enforced by dtrace_difo_validate():
7985  *
7986  * 1. Each instruction must have a valid opcode
7987  * 2. Each register, string, variable, or subroutine reference must be valid
7988  * 3. No instruction can modify register %r0 (must be zero)
7989  * 4. All instruction reserved bits must be set to zero
7990  * 5. The last instruction must be a "ret" instruction
7991  * 6. All branch targets must reference a valid instruction _after_ the branch
7992  */
7993 static int
7994 dtrace_difo_validate(dtrace_difo_t *dp, dtrace_vstate_t *vstate, uint_t nregs,
7995     cred_t *cr)
7996 {
7997 	int err = 0, i;
7998 	int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err;
7999 	int kcheckload;
8000 	uint_t pc;
8001 
8002 	kcheckload = cr == NULL ||
8003 	    (vstate->dtvs_state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) == 0;
8004 
8005 	dp->dtdo_destructive = 0;
8006 
8007 	for (pc = 0; pc < dp->dtdo_len && err == 0; pc++) {
8008 		dif_instr_t instr = dp->dtdo_buf[pc];
8009 
8010 		uint_t r1 = DIF_INSTR_R1(instr);
8011 		uint_t r2 = DIF_INSTR_R2(instr);
8012 		uint_t rd = DIF_INSTR_RD(instr);
8013 		uint_t rs = DIF_INSTR_RS(instr);
8014 		uint_t label = DIF_INSTR_LABEL(instr);
8015 		uint_t v = DIF_INSTR_VAR(instr);
8016 		uint_t subr = DIF_INSTR_SUBR(instr);
8017 		uint_t type = DIF_INSTR_TYPE(instr);
8018 		uint_t op = DIF_INSTR_OP(instr);
8019 
8020 		switch (op) {
8021 		case DIF_OP_OR:
8022 		case DIF_OP_XOR:
8023 		case DIF_OP_AND:
8024 		case DIF_OP_SLL:
8025 		case DIF_OP_SRL:
8026 		case DIF_OP_SRA:
8027 		case DIF_OP_SUB:
8028 		case DIF_OP_ADD:
8029 		case DIF_OP_MUL:
8030 		case DIF_OP_SDIV:
8031 		case DIF_OP_UDIV:
8032 		case DIF_OP_SREM:
8033 		case DIF_OP_UREM:
8034 		case DIF_OP_COPYS:
8035 			if (r1 >= nregs)
8036 				err += efunc(pc, "invalid register %u\n", r1);
8037 			if (r2 >= nregs)
8038 				err += efunc(pc, "invalid register %u\n", r2);
8039 			if (rd >= nregs)
8040 				err += efunc(pc, "invalid register %u\n", rd);
8041 			if (rd == 0)
8042 				err += efunc(pc, "cannot write to %r0\n");
8043 			break;
8044 		case DIF_OP_NOT:
8045 		case DIF_OP_MOV:
8046 		case DIF_OP_ALLOCS:
8047 			if (r1 >= nregs)
8048 				err += efunc(pc, "invalid register %u\n", r1);
8049 			if (r2 != 0)
8050 				err += efunc(pc, "non-zero reserved bits\n");
8051 			if (rd >= nregs)
8052 				err += efunc(pc, "invalid register %u\n", rd);
8053 			if (rd == 0)
8054 				err += efunc(pc, "cannot write to %r0\n");
8055 			break;
8056 		case DIF_OP_LDSB:
8057 		case DIF_OP_LDSH:
8058 		case DIF_OP_LDSW:
8059 		case DIF_OP_LDUB:
8060 		case DIF_OP_LDUH:
8061 		case DIF_OP_LDUW:
8062 		case DIF_OP_LDX:
8063 			if (r1 >= nregs)
8064 				err += efunc(pc, "invalid register %u\n", r1);
8065 			if (r2 != 0)
8066 				err += efunc(pc, "non-zero reserved bits\n");
8067 			if (rd >= nregs)
8068 				err += efunc(pc, "invalid register %u\n", rd);
8069 			if (rd == 0)
8070 				err += efunc(pc, "cannot write to %r0\n");
8071 			if (kcheckload)
8072 				dp->dtdo_buf[pc] = DIF_INSTR_LOAD(op +
8073 				    DIF_OP_RLDSB - DIF_OP_LDSB, r1, rd);
8074 			break;
8075 		case DIF_OP_RLDSB:
8076 		case DIF_OP_RLDSH:
8077 		case DIF_OP_RLDSW:
8078 		case DIF_OP_RLDUB:
8079 		case DIF_OP_RLDUH:
8080 		case DIF_OP_RLDUW:
8081 		case DIF_OP_RLDX:
8082 			if (r1 >= nregs)
8083 				err += efunc(pc, "invalid register %u\n", r1);
8084 			if (r2 != 0)
8085 				err += efunc(pc, "non-zero reserved bits\n");
8086 			if (rd >= nregs)
8087 				err += efunc(pc, "invalid register %u\n", rd);
8088 			if (rd == 0)
8089 				err += efunc(pc, "cannot write to %r0\n");
8090 			break;
8091 		case DIF_OP_ULDSB:
8092 		case DIF_OP_ULDSH:
8093 		case DIF_OP_ULDSW:
8094 		case DIF_OP_ULDUB:
8095 		case DIF_OP_ULDUH:
8096 		case DIF_OP_ULDUW:
8097 		case DIF_OP_ULDX:
8098 			if (r1 >= nregs)
8099 				err += efunc(pc, "invalid register %u\n", r1);
8100 			if (r2 != 0)
8101 				err += efunc(pc, "non-zero reserved bits\n");
8102 			if (rd >= nregs)
8103 				err += efunc(pc, "invalid register %u\n", rd);
8104 			if (rd == 0)
8105 				err += efunc(pc, "cannot write to %r0\n");
8106 			break;
8107 		case DIF_OP_STB:
8108 		case DIF_OP_STH:
8109 		case DIF_OP_STW:
8110 		case DIF_OP_STX:
8111 			if (r1 >= nregs)
8112 				err += efunc(pc, "invalid register %u\n", r1);
8113 			if (r2 != 0)
8114 				err += efunc(pc, "non-zero reserved bits\n");
8115 			if (rd >= nregs)
8116 				err += efunc(pc, "invalid register %u\n", rd);
8117 			if (rd == 0)
8118 				err += efunc(pc, "cannot write to 0 address\n");
8119 			break;
8120 		case DIF_OP_CMP:
8121 		case DIF_OP_SCMP:
8122 			if (r1 >= nregs)
8123 				err += efunc(pc, "invalid register %u\n", r1);
8124 			if (r2 >= nregs)
8125 				err += efunc(pc, "invalid register %u\n", r2);
8126 			if (rd != 0)
8127 				err += efunc(pc, "non-zero reserved bits\n");
8128 			break;
8129 		case DIF_OP_TST:
8130 			if (r1 >= nregs)
8131 				err += efunc(pc, "invalid register %u\n", r1);
8132 			if (r2 != 0 || rd != 0)
8133 				err += efunc(pc, "non-zero reserved bits\n");
8134 			break;
8135 		case DIF_OP_BA:
8136 		case DIF_OP_BE:
8137 		case DIF_OP_BNE:
8138 		case DIF_OP_BG:
8139 		case DIF_OP_BGU:
8140 		case DIF_OP_BGE:
8141 		case DIF_OP_BGEU:
8142 		case DIF_OP_BL:
8143 		case DIF_OP_BLU:
8144 		case DIF_OP_BLE:
8145 		case DIF_OP_BLEU:
8146 			if (label >= dp->dtdo_len) {
8147 				err += efunc(pc, "invalid branch target %u\n",
8148 				    label);
8149 			}
8150 			if (label <= pc) {
8151 				err += efunc(pc, "backward branch to %u\n",
8152 				    label);
8153 			}
8154 			break;
8155 		case DIF_OP_RET:
8156 			if (r1 != 0 || r2 != 0)
8157 				err += efunc(pc, "non-zero reserved bits\n");
8158 			if (rd >= nregs)
8159 				err += efunc(pc, "invalid register %u\n", rd);
8160 			break;
8161 		case DIF_OP_NOP:
8162 		case DIF_OP_POPTS:
8163 		case DIF_OP_FLUSHTS:
8164 			if (r1 != 0 || r2 != 0 || rd != 0)
8165 				err += efunc(pc, "non-zero reserved bits\n");
8166 			break;
8167 		case DIF_OP_SETX:
8168 			if (DIF_INSTR_INTEGER(instr) >= dp->dtdo_intlen) {
8169 				err += efunc(pc, "invalid integer ref %u\n",
8170 				    DIF_INSTR_INTEGER(instr));
8171 			}
8172 			if (rd >= nregs)
8173 				err += efunc(pc, "invalid register %u\n", rd);
8174 			if (rd == 0)
8175 				err += efunc(pc, "cannot write to %r0\n");
8176 			break;
8177 		case DIF_OP_SETS:
8178 			if (DIF_INSTR_STRING(instr) >= dp->dtdo_strlen) {
8179 				err += efunc(pc, "invalid string ref %u\n",
8180 				    DIF_INSTR_STRING(instr));
8181 			}
8182 			if (rd >= nregs)
8183 				err += efunc(pc, "invalid register %u\n", rd);
8184 			if (rd == 0)
8185 				err += efunc(pc, "cannot write to %r0\n");
8186 			break;
8187 		case DIF_OP_LDGA:
8188 		case DIF_OP_LDTA:
8189 			if (r1 > DIF_VAR_ARRAY_MAX)
8190 				err += efunc(pc, "invalid array %u\n", r1);
8191 			if (r2 >= nregs)
8192 				err += efunc(pc, "invalid register %u\n", r2);
8193 			if (rd >= nregs)
8194 				err += efunc(pc, "invalid register %u\n", rd);
8195 			if (rd == 0)
8196 				err += efunc(pc, "cannot write to %r0\n");
8197 			break;
8198 		case DIF_OP_LDGS:
8199 		case DIF_OP_LDTS:
8200 		case DIF_OP_LDLS:
8201 		case DIF_OP_LDGAA:
8202 		case DIF_OP_LDTAA:
8203 			if (v < DIF_VAR_OTHER_MIN || v > DIF_VAR_OTHER_MAX)
8204 				err += efunc(pc, "invalid variable %u\n", v);
8205 			if (rd >= nregs)
8206 				err += efunc(pc, "invalid register %u\n", rd);
8207 			if (rd == 0)
8208 				err += efunc(pc, "cannot write to %r0\n");
8209 			break;
8210 		case DIF_OP_STGS:
8211 		case DIF_OP_STTS:
8212 		case DIF_OP_STLS:
8213 		case DIF_OP_STGAA:
8214 		case DIF_OP_STTAA:
8215 			if (v < DIF_VAR_OTHER_UBASE || v > DIF_VAR_OTHER_MAX)
8216 				err += efunc(pc, "invalid variable %u\n", v);
8217 			if (rs >= nregs)
8218 				err += efunc(pc, "invalid register %u\n", rd);
8219 			break;
8220 		case DIF_OP_CALL:
8221 			if (subr > DIF_SUBR_MAX)
8222 				err += efunc(pc, "invalid subr %u\n", subr);
8223 			if (rd >= nregs)
8224 				err += efunc(pc, "invalid register %u\n", rd);
8225 			if (rd == 0)
8226 				err += efunc(pc, "cannot write to %r0\n");
8227 
8228 			if (subr == DIF_SUBR_COPYOUT ||
8229 			    subr == DIF_SUBR_COPYOUTSTR) {
8230 				dp->dtdo_destructive = 1;
8231 			}
8232 			break;
8233 		case DIF_OP_PUSHTR:
8234 			if (type != DIF_TYPE_STRING && type != DIF_TYPE_CTF)
8235 				err += efunc(pc, "invalid ref type %u\n", type);
8236 			if (r2 >= nregs)
8237 				err += efunc(pc, "invalid register %u\n", r2);
8238 			if (rs >= nregs)
8239 				err += efunc(pc, "invalid register %u\n", rs);
8240 			break;
8241 		case DIF_OP_PUSHTV:
8242 			if (type != DIF_TYPE_CTF)
8243 				err += efunc(pc, "invalid val type %u\n", type);
8244 			if (r2 >= nregs)
8245 				err += efunc(pc, "invalid register %u\n", r2);
8246 			if (rs >= nregs)
8247 				err += efunc(pc, "invalid register %u\n", rs);
8248 			break;
8249 		default:
8250 			err += efunc(pc, "invalid opcode %u\n",
8251 			    DIF_INSTR_OP(instr));
8252 		}
8253 	}
8254 
8255 	if (dp->dtdo_len != 0 &&
8256 	    DIF_INSTR_OP(dp->dtdo_buf[dp->dtdo_len - 1]) != DIF_OP_RET) {
8257 		err += efunc(dp->dtdo_len - 1,
8258 		    "expected 'ret' as last DIF instruction\n");
8259 	}
8260 
8261 	if (!(dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) {
8262 		/*
8263 		 * If we're not returning by reference, the size must be either
8264 		 * 0 or the size of one of the base types.
8265 		 */
8266 		switch (dp->dtdo_rtype.dtdt_size) {
8267 		case 0:
8268 		case sizeof (uint8_t):
8269 		case sizeof (uint16_t):
8270 		case sizeof (uint32_t):
8271 		case sizeof (uint64_t):
8272 			break;
8273 
8274 		default:
8275 			err += efunc(dp->dtdo_len - 1, "bad return size\n");
8276 		}
8277 	}
8278 
8279 	for (i = 0; i < dp->dtdo_varlen && err == 0; i++) {
8280 		dtrace_difv_t *v = &dp->dtdo_vartab[i], *existing = NULL;
8281 		dtrace_diftype_t *vt, *et;
8282 		uint_t id, ndx;
8283 
8284 		if (v->dtdv_scope != DIFV_SCOPE_GLOBAL &&
8285 		    v->dtdv_scope != DIFV_SCOPE_THREAD &&
8286 		    v->dtdv_scope != DIFV_SCOPE_LOCAL) {
8287 			err += efunc(i, "unrecognized variable scope %d\n",
8288 			    v->dtdv_scope);
8289 			break;
8290 		}
8291 
8292 		if (v->dtdv_kind != DIFV_KIND_ARRAY &&
8293 		    v->dtdv_kind != DIFV_KIND_SCALAR) {
8294 			err += efunc(i, "unrecognized variable type %d\n",
8295 			    v->dtdv_kind);
8296 			break;
8297 		}
8298 
8299 		if ((id = v->dtdv_id) > DIF_VARIABLE_MAX) {
8300 			err += efunc(i, "%d exceeds variable id limit\n", id);
8301 			break;
8302 		}
8303 
8304 		if (id < DIF_VAR_OTHER_UBASE)
8305 			continue;
8306 
8307 		/*
8308 		 * For user-defined variables, we need to check that this
8309 		 * definition is identical to any previous definition that we
8310 		 * encountered.
8311 		 */
8312 		ndx = id - DIF_VAR_OTHER_UBASE;
8313 
8314 		switch (v->dtdv_scope) {
8315 		case DIFV_SCOPE_GLOBAL:
8316 			if (ndx < vstate->dtvs_nglobals) {
8317 				dtrace_statvar_t *svar;
8318 
8319 				if ((svar = vstate->dtvs_globals[ndx]) != NULL)
8320 					existing = &svar->dtsv_var;
8321 			}
8322 
8323 			break;
8324 
8325 		case DIFV_SCOPE_THREAD:
8326 			if (ndx < vstate->dtvs_ntlocals)
8327 				existing = &vstate->dtvs_tlocals[ndx];
8328 			break;
8329 
8330 		case DIFV_SCOPE_LOCAL:
8331 			if (ndx < vstate->dtvs_nlocals) {
8332 				dtrace_statvar_t *svar;
8333 
8334 				if ((svar = vstate->dtvs_locals[ndx]) != NULL)
8335 					existing = &svar->dtsv_var;
8336 			}
8337 
8338 			break;
8339 		}
8340 
8341 		vt = &v->dtdv_type;
8342 
8343 		if (vt->dtdt_flags & DIF_TF_BYREF) {
8344 			if (vt->dtdt_size == 0) {
8345 				err += efunc(i, "zero-sized variable\n");
8346 				break;
8347 			}
8348 
8349 			if (v->dtdv_scope == DIFV_SCOPE_GLOBAL &&
8350 			    vt->dtdt_size > dtrace_global_maxsize) {
8351 				err += efunc(i, "oversized by-ref global\n");
8352 				break;
8353 			}
8354 		}
8355 
8356 		if (existing == NULL || existing->dtdv_id == 0)
8357 			continue;
8358 
8359 		ASSERT(existing->dtdv_id == v->dtdv_id);
8360 		ASSERT(existing->dtdv_scope == v->dtdv_scope);
8361 
8362 		if (existing->dtdv_kind != v->dtdv_kind)
8363 			err += efunc(i, "%d changed variable kind\n", id);
8364 
8365 		et = &existing->dtdv_type;
8366 
8367 		if (vt->dtdt_flags != et->dtdt_flags) {
8368 			err += efunc(i, "%d changed variable type flags\n", id);
8369 			break;
8370 		}
8371 
8372 		if (vt->dtdt_size != 0 && vt->dtdt_size != et->dtdt_size) {
8373 			err += efunc(i, "%d changed variable type size\n", id);
8374 			break;
8375 		}
8376 	}
8377 
8378 	return (err);
8379 }
8380 
8381 /*
8382  * Validate a DTrace DIF object that it is to be used as a helper.  Helpers
8383  * are much more constrained than normal DIFOs.  Specifically, they may
8384  * not:
8385  *
8386  * 1. Make calls to subroutines other than copyin(), copyinstr() or
8387  *    miscellaneous string routines
8388  * 2. Access DTrace variables other than the args[] array, and the
8389  *    curthread, pid, ppid, tid, execname, zonename, uid and gid variables.
8390  * 3. Have thread-local variables.
8391  * 4. Have dynamic variables.
8392  */
8393 static int
8394 dtrace_difo_validate_helper(dtrace_difo_t *dp)
8395 {
8396 	int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err;
8397 	int err = 0;
8398 	uint_t pc;
8399 
8400 	for (pc = 0; pc < dp->dtdo_len; pc++) {
8401 		dif_instr_t instr = dp->dtdo_buf[pc];
8402 
8403 		uint_t v = DIF_INSTR_VAR(instr);
8404 		uint_t subr = DIF_INSTR_SUBR(instr);
8405 		uint_t op = DIF_INSTR_OP(instr);
8406 
8407 		switch (op) {
8408 		case DIF_OP_OR:
8409 		case DIF_OP_XOR:
8410 		case DIF_OP_AND:
8411 		case DIF_OP_SLL:
8412 		case DIF_OP_SRL:
8413 		case DIF_OP_SRA:
8414 		case DIF_OP_SUB:
8415 		case DIF_OP_ADD:
8416 		case DIF_OP_MUL:
8417 		case DIF_OP_SDIV:
8418 		case DIF_OP_UDIV:
8419 		case DIF_OP_SREM:
8420 		case DIF_OP_UREM:
8421 		case DIF_OP_COPYS:
8422 		case DIF_OP_NOT:
8423 		case DIF_OP_MOV:
8424 		case DIF_OP_RLDSB:
8425 		case DIF_OP_RLDSH:
8426 		case DIF_OP_RLDSW:
8427 		case DIF_OP_RLDUB:
8428 		case DIF_OP_RLDUH:
8429 		case DIF_OP_RLDUW:
8430 		case DIF_OP_RLDX:
8431 		case DIF_OP_ULDSB:
8432 		case DIF_OP_ULDSH:
8433 		case DIF_OP_ULDSW:
8434 		case DIF_OP_ULDUB:
8435 		case DIF_OP_ULDUH:
8436 		case DIF_OP_ULDUW:
8437 		case DIF_OP_ULDX:
8438 		case DIF_OP_STB:
8439 		case DIF_OP_STH:
8440 		case DIF_OP_STW:
8441 		case DIF_OP_STX:
8442 		case DIF_OP_ALLOCS:
8443 		case DIF_OP_CMP:
8444 		case DIF_OP_SCMP:
8445 		case DIF_OP_TST:
8446 		case DIF_OP_BA:
8447 		case DIF_OP_BE:
8448 		case DIF_OP_BNE:
8449 		case DIF_OP_BG:
8450 		case DIF_OP_BGU:
8451 		case DIF_OP_BGE:
8452 		case DIF_OP_BGEU:
8453 		case DIF_OP_BL:
8454 		case DIF_OP_BLU:
8455 		case DIF_OP_BLE:
8456 		case DIF_OP_BLEU:
8457 		case DIF_OP_RET:
8458 		case DIF_OP_NOP:
8459 		case DIF_OP_POPTS:
8460 		case DIF_OP_FLUSHTS:
8461 		case DIF_OP_SETX:
8462 		case DIF_OP_SETS:
8463 		case DIF_OP_LDGA:
8464 		case DIF_OP_LDLS:
8465 		case DIF_OP_STGS:
8466 		case DIF_OP_STLS:
8467 		case DIF_OP_PUSHTR:
8468 		case DIF_OP_PUSHTV:
8469 			break;
8470 
8471 		case DIF_OP_LDGS:
8472 			if (v >= DIF_VAR_OTHER_UBASE)
8473 				break;
8474 
8475 			if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9)
8476 				break;
8477 
8478 			if (v == DIF_VAR_CURTHREAD || v == DIF_VAR_PID ||
8479 			    v == DIF_VAR_PPID || v == DIF_VAR_TID ||
8480 			    v == DIF_VAR_EXECNAME || v == DIF_VAR_ZONENAME ||
8481 			    v == DIF_VAR_UID || v == DIF_VAR_GID)
8482 				break;
8483 
8484 			err += efunc(pc, "illegal variable %u\n", v);
8485 			break;
8486 
8487 		case DIF_OP_LDTA:
8488 		case DIF_OP_LDTS:
8489 		case DIF_OP_LDGAA:
8490 		case DIF_OP_LDTAA:
8491 			err += efunc(pc, "illegal dynamic variable load\n");
8492 			break;
8493 
8494 		case DIF_OP_STTS:
8495 		case DIF_OP_STGAA:
8496 		case DIF_OP_STTAA:
8497 			err += efunc(pc, "illegal dynamic variable store\n");
8498 			break;
8499 
8500 		case DIF_OP_CALL:
8501 			if (subr == DIF_SUBR_ALLOCA ||
8502 			    subr == DIF_SUBR_BCOPY ||
8503 			    subr == DIF_SUBR_COPYIN ||
8504 			    subr == DIF_SUBR_COPYINTO ||
8505 			    subr == DIF_SUBR_COPYINSTR ||
8506 			    subr == DIF_SUBR_INDEX ||
8507 			    subr == DIF_SUBR_INET_NTOA ||
8508 			    subr == DIF_SUBR_INET_NTOA6 ||
8509 			    subr == DIF_SUBR_INET_NTOP ||
8510 			    subr == DIF_SUBR_LLTOSTR ||
8511 			    subr == DIF_SUBR_RINDEX ||
8512 			    subr == DIF_SUBR_STRCHR ||
8513 			    subr == DIF_SUBR_STRJOIN ||
8514 			    subr == DIF_SUBR_STRRCHR ||
8515 			    subr == DIF_SUBR_STRSTR ||
8516 			    subr == DIF_SUBR_HTONS ||
8517 			    subr == DIF_SUBR_HTONL ||
8518 			    subr == DIF_SUBR_HTONLL ||
8519 			    subr == DIF_SUBR_NTOHS ||
8520 			    subr == DIF_SUBR_NTOHL ||
8521 			    subr == DIF_SUBR_NTOHLL)
8522 				break;
8523 
8524 			err += efunc(pc, "invalid subr %u\n", subr);
8525 			break;
8526 
8527 		default:
8528 			err += efunc(pc, "invalid opcode %u\n",
8529 			    DIF_INSTR_OP(instr));
8530 		}
8531 	}
8532 
8533 	return (err);
8534 }
8535 
8536 /*
8537  * Returns 1 if the expression in the DIF object can be cached on a per-thread
8538  * basis; 0 if not.
8539  */
8540 static int
8541 dtrace_difo_cacheable(dtrace_difo_t *dp)
8542 {
8543 	int i;
8544 
8545 	if (dp == NULL)
8546 		return (0);
8547 
8548 	for (i = 0; i < dp->dtdo_varlen; i++) {
8549 		dtrace_difv_t *v = &dp->dtdo_vartab[i];
8550 
8551 		if (v->dtdv_scope != DIFV_SCOPE_GLOBAL)
8552 			continue;
8553 
8554 		switch (v->dtdv_id) {
8555 		case DIF_VAR_CURTHREAD:
8556 		case DIF_VAR_PID:
8557 		case DIF_VAR_TID:
8558 		case DIF_VAR_EXECNAME:
8559 		case DIF_VAR_ZONENAME:
8560 			break;
8561 
8562 		default:
8563 			return (0);
8564 		}
8565 	}
8566 
8567 	/*
8568 	 * This DIF object may be cacheable.  Now we need to look for any
8569 	 * array loading instructions, any memory loading instructions, or
8570 	 * any stores to thread-local variables.
8571 	 */
8572 	for (i = 0; i < dp->dtdo_len; i++) {
8573 		uint_t op = DIF_INSTR_OP(dp->dtdo_buf[i]);
8574 
8575 		if ((op >= DIF_OP_LDSB && op <= DIF_OP_LDX) ||
8576 		    (op >= DIF_OP_ULDSB && op <= DIF_OP_ULDX) ||
8577 		    (op >= DIF_OP_RLDSB && op <= DIF_OP_RLDX) ||
8578 		    op == DIF_OP_LDGA || op == DIF_OP_STTS)
8579 			return (0);
8580 	}
8581 
8582 	return (1);
8583 }
8584 
8585 static void
8586 dtrace_difo_hold(dtrace_difo_t *dp)
8587 {
8588 	int i;
8589 
8590 	ASSERT(MUTEX_HELD(&dtrace_lock));
8591 
8592 	dp->dtdo_refcnt++;
8593 	ASSERT(dp->dtdo_refcnt != 0);
8594 
8595 	/*
8596 	 * We need to check this DIF object for references to the variable
8597 	 * DIF_VAR_VTIMESTAMP.
8598 	 */
8599 	for (i = 0; i < dp->dtdo_varlen; i++) {
8600 		dtrace_difv_t *v = &dp->dtdo_vartab[i];
8601 
8602 		if (v->dtdv_id != DIF_VAR_VTIMESTAMP)
8603 			continue;
8604 
8605 		if (dtrace_vtime_references++ == 0)
8606 			dtrace_vtime_enable();
8607 	}
8608 }
8609 
8610 /*
8611  * This routine calculates the dynamic variable chunksize for a given DIF
8612  * object.  The calculation is not fool-proof, and can probably be tricked by
8613  * malicious DIF -- but it works for all compiler-generated DIF.  Because this
8614  * calculation is likely imperfect, dtrace_dynvar() is able to gracefully fail
8615  * if a dynamic variable size exceeds the chunksize.
8616  */
8617 static void
8618 dtrace_difo_chunksize(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
8619 {
8620 	uint64_t sval;
8621 	dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */
8622 	const dif_instr_t *text = dp->dtdo_buf;
8623 	uint_t pc, srd = 0;
8624 	uint_t ttop = 0;
8625 	size_t size, ksize;
8626 	uint_t id, i;
8627 
8628 	for (pc = 0; pc < dp->dtdo_len; pc++) {
8629 		dif_instr_t instr = text[pc];
8630 		uint_t op = DIF_INSTR_OP(instr);
8631 		uint_t rd = DIF_INSTR_RD(instr);
8632 		uint_t r1 = DIF_INSTR_R1(instr);
8633 		uint_t nkeys = 0;
8634 		uchar_t scope;
8635 
8636 		dtrace_key_t *key = tupregs;
8637 
8638 		switch (op) {
8639 		case DIF_OP_SETX:
8640 			sval = dp->dtdo_inttab[DIF_INSTR_INTEGER(instr)];
8641 			srd = rd;
8642 			continue;
8643 
8644 		case DIF_OP_STTS:
8645 			key = &tupregs[DIF_DTR_NREGS];
8646 			key[0].dttk_size = 0;
8647 			key[1].dttk_size = 0;
8648 			nkeys = 2;
8649 			scope = DIFV_SCOPE_THREAD;
8650 			break;
8651 
8652 		case DIF_OP_STGAA:
8653 		case DIF_OP_STTAA:
8654 			nkeys = ttop;
8655 
8656 			if (DIF_INSTR_OP(instr) == DIF_OP_STTAA)
8657 				key[nkeys++].dttk_size = 0;
8658 
8659 			key[nkeys++].dttk_size = 0;
8660 
8661 			if (op == DIF_OP_STTAA) {
8662 				scope = DIFV_SCOPE_THREAD;
8663 			} else {
8664 				scope = DIFV_SCOPE_GLOBAL;
8665 			}
8666 
8667 			break;
8668 
8669 		case DIF_OP_PUSHTR:
8670 			if (ttop == DIF_DTR_NREGS)
8671 				return;
8672 
8673 			if ((srd == 0 || sval == 0) && r1 == DIF_TYPE_STRING) {
8674 				/*
8675 				 * If the register for the size of the "pushtr"
8676 				 * is %r0 (or the value is 0) and the type is
8677 				 * a string, we'll use the system-wide default
8678 				 * string size.
8679 				 */
8680 				tupregs[ttop++].dttk_size =
8681 				    dtrace_strsize_default;
8682 			} else {
8683 				if (srd == 0)
8684 					return;
8685 
8686 				tupregs[ttop++].dttk_size = sval;
8687 			}
8688 
8689 			break;
8690 
8691 		case DIF_OP_PUSHTV:
8692 			if (ttop == DIF_DTR_NREGS)
8693 				return;
8694 
8695 			tupregs[ttop++].dttk_size = 0;
8696 			break;
8697 
8698 		case DIF_OP_FLUSHTS:
8699 			ttop = 0;
8700 			break;
8701 
8702 		case DIF_OP_POPTS:
8703 			if (ttop != 0)
8704 				ttop--;
8705 			break;
8706 		}
8707 
8708 		sval = 0;
8709 		srd = 0;
8710 
8711 		if (nkeys == 0)
8712 			continue;
8713 
8714 		/*
8715 		 * We have a dynamic variable allocation; calculate its size.
8716 		 */
8717 		for (ksize = 0, i = 0; i < nkeys; i++)
8718 			ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t));
8719 
8720 		size = sizeof (dtrace_dynvar_t);
8721 		size += sizeof (dtrace_key_t) * (nkeys - 1);
8722 		size += ksize;
8723 
8724 		/*
8725 		 * Now we need to determine the size of the stored data.
8726 		 */
8727 		id = DIF_INSTR_VAR(instr);
8728 
8729 		for (i = 0; i < dp->dtdo_varlen; i++) {
8730 			dtrace_difv_t *v = &dp->dtdo_vartab[i];
8731 
8732 			if (v->dtdv_id == id && v->dtdv_scope == scope) {
8733 				size += v->dtdv_type.dtdt_size;
8734 				break;
8735 			}
8736 		}
8737 
8738 		if (i == dp->dtdo_varlen)
8739 			return;
8740 
8741 		/*
8742 		 * We have the size.  If this is larger than the chunk size
8743 		 * for our dynamic variable state, reset the chunk size.
8744 		 */
8745 		size = P2ROUNDUP(size, sizeof (uint64_t));
8746 
8747 		if (size > vstate->dtvs_dynvars.dtds_chunksize)
8748 			vstate->dtvs_dynvars.dtds_chunksize = size;
8749 	}
8750 }
8751 
8752 static void
8753 dtrace_difo_init(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
8754 {
8755 	int i, oldsvars, osz, nsz, otlocals, ntlocals;
8756 	uint_t id;
8757 
8758 	ASSERT(MUTEX_HELD(&dtrace_lock));
8759 	ASSERT(dp->dtdo_buf != NULL && dp->dtdo_len != 0);
8760 
8761 	for (i = 0; i < dp->dtdo_varlen; i++) {
8762 		dtrace_difv_t *v = &dp->dtdo_vartab[i];
8763 		dtrace_statvar_t *svar, ***svarp;
8764 		size_t dsize = 0;
8765 		uint8_t scope = v->dtdv_scope;
8766 		int *np;
8767 
8768 		if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE)
8769 			continue;
8770 
8771 		id -= DIF_VAR_OTHER_UBASE;
8772 
8773 		switch (scope) {
8774 		case DIFV_SCOPE_THREAD:
8775 			while (id >= (otlocals = vstate->dtvs_ntlocals)) {
8776 				dtrace_difv_t *tlocals;
8777 
8778 				if ((ntlocals = (otlocals << 1)) == 0)
8779 					ntlocals = 1;
8780 
8781 				osz = otlocals * sizeof (dtrace_difv_t);
8782 				nsz = ntlocals * sizeof (dtrace_difv_t);
8783 
8784 				tlocals = kmem_zalloc(nsz, KM_SLEEP);
8785 
8786 				if (osz != 0) {
8787 					bcopy(vstate->dtvs_tlocals,
8788 					    tlocals, osz);
8789 					kmem_free(vstate->dtvs_tlocals, osz);
8790 				}
8791 
8792 				vstate->dtvs_tlocals = tlocals;
8793 				vstate->dtvs_ntlocals = ntlocals;
8794 			}
8795 
8796 			vstate->dtvs_tlocals[id] = *v;
8797 			continue;
8798 
8799 		case DIFV_SCOPE_LOCAL:
8800 			np = &vstate->dtvs_nlocals;
8801 			svarp = &vstate->dtvs_locals;
8802 
8803 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF)
8804 				dsize = NCPU * (v->dtdv_type.dtdt_size +
8805 				    sizeof (uint64_t));
8806 			else
8807 				dsize = NCPU * sizeof (uint64_t);
8808 
8809 			break;
8810 
8811 		case DIFV_SCOPE_GLOBAL:
8812 			np = &vstate->dtvs_nglobals;
8813 			svarp = &vstate->dtvs_globals;
8814 
8815 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF)
8816 				dsize = v->dtdv_type.dtdt_size +
8817 				    sizeof (uint64_t);
8818 
8819 			break;
8820 
8821 		default:
8822 			ASSERT(0);
8823 		}
8824 
8825 		while (id >= (oldsvars = *np)) {
8826 			dtrace_statvar_t **statics;
8827 			int newsvars, oldsize, newsize;
8828 
8829 			if ((newsvars = (oldsvars << 1)) == 0)
8830 				newsvars = 1;
8831 
8832 			oldsize = oldsvars * sizeof (dtrace_statvar_t *);
8833 			newsize = newsvars * sizeof (dtrace_statvar_t *);
8834 
8835 			statics = kmem_zalloc(newsize, KM_SLEEP);
8836 
8837 			if (oldsize != 0) {
8838 				bcopy(*svarp, statics, oldsize);
8839 				kmem_free(*svarp, oldsize);
8840 			}
8841 
8842 			*svarp = statics;
8843 			*np = newsvars;
8844 		}
8845 
8846 		if ((svar = (*svarp)[id]) == NULL) {
8847 			svar = kmem_zalloc(sizeof (dtrace_statvar_t), KM_SLEEP);
8848 			svar->dtsv_var = *v;
8849 
8850 			if ((svar->dtsv_size = dsize) != 0) {
8851 				svar->dtsv_data = (uint64_t)(uintptr_t)
8852 				    kmem_zalloc(dsize, KM_SLEEP);
8853 			}
8854 
8855 			(*svarp)[id] = svar;
8856 		}
8857 
8858 		svar->dtsv_refcnt++;
8859 	}
8860 
8861 	dtrace_difo_chunksize(dp, vstate);
8862 	dtrace_difo_hold(dp);
8863 }
8864 
8865 static dtrace_difo_t *
8866 dtrace_difo_duplicate(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
8867 {
8868 	dtrace_difo_t *new;
8869 	size_t sz;
8870 
8871 	ASSERT(dp->dtdo_buf != NULL);
8872 	ASSERT(dp->dtdo_refcnt != 0);
8873 
8874 	new = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP);
8875 
8876 	ASSERT(dp->dtdo_buf != NULL);
8877 	sz = dp->dtdo_len * sizeof (dif_instr_t);
8878 	new->dtdo_buf = kmem_alloc(sz, KM_SLEEP);
8879 	bcopy(dp->dtdo_buf, new->dtdo_buf, sz);
8880 	new->dtdo_len = dp->dtdo_len;
8881 
8882 	if (dp->dtdo_strtab != NULL) {
8883 		ASSERT(dp->dtdo_strlen != 0);
8884 		new->dtdo_strtab = kmem_alloc(dp->dtdo_strlen, KM_SLEEP);
8885 		bcopy(dp->dtdo_strtab, new->dtdo_strtab, dp->dtdo_strlen);
8886 		new->dtdo_strlen = dp->dtdo_strlen;
8887 	}
8888 
8889 	if (dp->dtdo_inttab != NULL) {
8890 		ASSERT(dp->dtdo_intlen != 0);
8891 		sz = dp->dtdo_intlen * sizeof (uint64_t);
8892 		new->dtdo_inttab = kmem_alloc(sz, KM_SLEEP);
8893 		bcopy(dp->dtdo_inttab, new->dtdo_inttab, sz);
8894 		new->dtdo_intlen = dp->dtdo_intlen;
8895 	}
8896 
8897 	if (dp->dtdo_vartab != NULL) {
8898 		ASSERT(dp->dtdo_varlen != 0);
8899 		sz = dp->dtdo_varlen * sizeof (dtrace_difv_t);
8900 		new->dtdo_vartab = kmem_alloc(sz, KM_SLEEP);
8901 		bcopy(dp->dtdo_vartab, new->dtdo_vartab, sz);
8902 		new->dtdo_varlen = dp->dtdo_varlen;
8903 	}
8904 
8905 	dtrace_difo_init(new, vstate);
8906 	return (new);
8907 }
8908 
8909 static void
8910 dtrace_difo_destroy(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
8911 {
8912 	int i;
8913 
8914 	ASSERT(dp->dtdo_refcnt == 0);
8915 
8916 	for (i = 0; i < dp->dtdo_varlen; i++) {
8917 		dtrace_difv_t *v = &dp->dtdo_vartab[i];
8918 		dtrace_statvar_t *svar, **svarp;
8919 		uint_t id;
8920 		uint8_t scope = v->dtdv_scope;
8921 		int *np;
8922 
8923 		switch (scope) {
8924 		case DIFV_SCOPE_THREAD:
8925 			continue;
8926 
8927 		case DIFV_SCOPE_LOCAL:
8928 			np = &vstate->dtvs_nlocals;
8929 			svarp = vstate->dtvs_locals;
8930 			break;
8931 
8932 		case DIFV_SCOPE_GLOBAL:
8933 			np = &vstate->dtvs_nglobals;
8934 			svarp = vstate->dtvs_globals;
8935 			break;
8936 
8937 		default:
8938 			ASSERT(0);
8939 		}
8940 
8941 		if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE)
8942 			continue;
8943 
8944 		id -= DIF_VAR_OTHER_UBASE;
8945 		ASSERT(id < *np);
8946 
8947 		svar = svarp[id];
8948 		ASSERT(svar != NULL);
8949 		ASSERT(svar->dtsv_refcnt > 0);
8950 
8951 		if (--svar->dtsv_refcnt > 0)
8952 			continue;
8953 
8954 		if (svar->dtsv_size != 0) {
8955 			ASSERT(svar->dtsv_data != NULL);
8956 			kmem_free((void *)(uintptr_t)svar->dtsv_data,
8957 			    svar->dtsv_size);
8958 		}
8959 
8960 		kmem_free(svar, sizeof (dtrace_statvar_t));
8961 		svarp[id] = NULL;
8962 	}
8963 
8964 	kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t));
8965 	kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t));
8966 	kmem_free(dp->dtdo_strtab, dp->dtdo_strlen);
8967 	kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t));
8968 
8969 	kmem_free(dp, sizeof (dtrace_difo_t));
8970 }
8971 
8972 static void
8973 dtrace_difo_release(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
8974 {
8975 	int i;
8976 
8977 	ASSERT(MUTEX_HELD(&dtrace_lock));
8978 	ASSERT(dp->dtdo_refcnt != 0);
8979 
8980 	for (i = 0; i < dp->dtdo_varlen; i++) {
8981 		dtrace_difv_t *v = &dp->dtdo_vartab[i];
8982 
8983 		if (v->dtdv_id != DIF_VAR_VTIMESTAMP)
8984 			continue;
8985 
8986 		ASSERT(dtrace_vtime_references > 0);
8987 		if (--dtrace_vtime_references == 0)
8988 			dtrace_vtime_disable();
8989 	}
8990 
8991 	if (--dp->dtdo_refcnt == 0)
8992 		dtrace_difo_destroy(dp, vstate);
8993 }
8994 
8995 /*
8996  * DTrace Format Functions
8997  */
8998 static uint16_t
8999 dtrace_format_add(dtrace_state_t *state, char *str)
9000 {
9001 	char *fmt, **new;
9002 	uint16_t ndx, len = strlen(str) + 1;
9003 
9004 	fmt = kmem_zalloc(len, KM_SLEEP);
9005 	bcopy(str, fmt, len);
9006 
9007 	for (ndx = 0; ndx < state->dts_nformats; ndx++) {
9008 		if (state->dts_formats[ndx] == NULL) {
9009 			state->dts_formats[ndx] = fmt;
9010 			return (ndx + 1);
9011 		}
9012 	}
9013 
9014 	if (state->dts_nformats == USHRT_MAX) {
9015 		/*
9016 		 * This is only likely if a denial-of-service attack is being
9017 		 * attempted.  As such, it's okay to fail silently here.
9018 		 */
9019 		kmem_free(fmt, len);
9020 		return (0);
9021 	}
9022 
9023 	/*
9024 	 * For simplicity, we always resize the formats array to be exactly the
9025 	 * number of formats.
9026 	 */
9027 	ndx = state->dts_nformats++;
9028 	new = kmem_alloc((ndx + 1) * sizeof (char *), KM_SLEEP);
9029 
9030 	if (state->dts_formats != NULL) {
9031 		ASSERT(ndx != 0);
9032 		bcopy(state->dts_formats, new, ndx * sizeof (char *));
9033 		kmem_free(state->dts_formats, ndx * sizeof (char *));
9034 	}
9035 
9036 	state->dts_formats = new;
9037 	state->dts_formats[ndx] = fmt;
9038 
9039 	return (ndx + 1);
9040 }
9041 
9042 static void
9043 dtrace_format_remove(dtrace_state_t *state, uint16_t format)
9044 {
9045 	char *fmt;
9046 
9047 	ASSERT(state->dts_formats != NULL);
9048 	ASSERT(format <= state->dts_nformats);
9049 	ASSERT(state->dts_formats[format - 1] != NULL);
9050 
9051 	fmt = state->dts_formats[format - 1];
9052 	kmem_free(fmt, strlen(fmt) + 1);
9053 	state->dts_formats[format - 1] = NULL;
9054 }
9055 
9056 static void
9057 dtrace_format_destroy(dtrace_state_t *state)
9058 {
9059 	int i;
9060 
9061 	if (state->dts_nformats == 0) {
9062 		ASSERT(state->dts_formats == NULL);
9063 		return;
9064 	}
9065 
9066 	ASSERT(state->dts_formats != NULL);
9067 
9068 	for (i = 0; i < state->dts_nformats; i++) {
9069 		char *fmt = state->dts_formats[i];
9070 
9071 		if (fmt == NULL)
9072 			continue;
9073 
9074 		kmem_free(fmt, strlen(fmt) + 1);
9075 	}
9076 
9077 	kmem_free(state->dts_formats, state->dts_nformats * sizeof (char *));
9078 	state->dts_nformats = 0;
9079 	state->dts_formats = NULL;
9080 }
9081 
9082 /*
9083  * DTrace Predicate Functions
9084  */
9085 static dtrace_predicate_t *
9086 dtrace_predicate_create(dtrace_difo_t *dp)
9087 {
9088 	dtrace_predicate_t *pred;
9089 
9090 	ASSERT(MUTEX_HELD(&dtrace_lock));
9091 	ASSERT(dp->dtdo_refcnt != 0);
9092 
9093 	pred = kmem_zalloc(sizeof (dtrace_predicate_t), KM_SLEEP);
9094 	pred->dtp_difo = dp;
9095 	pred->dtp_refcnt = 1;
9096 
9097 	if (!dtrace_difo_cacheable(dp))
9098 		return (pred);
9099 
9100 	if (dtrace_predcache_id == DTRACE_CACHEIDNONE) {
9101 		/*
9102 		 * This is only theoretically possible -- we have had 2^32
9103 		 * cacheable predicates on this machine.  We cannot allow any
9104 		 * more predicates to become cacheable:  as unlikely as it is,
9105 		 * there may be a thread caching a (now stale) predicate cache
9106 		 * ID. (N.B.: the temptation is being successfully resisted to
9107 		 * have this cmn_err() "Holy shit -- we executed this code!")
9108 		 */
9109 		return (pred);
9110 	}
9111 
9112 	pred->dtp_cacheid = dtrace_predcache_id++;
9113 
9114 	return (pred);
9115 }
9116 
9117 static void
9118 dtrace_predicate_hold(dtrace_predicate_t *pred)
9119 {
9120 	ASSERT(MUTEX_HELD(&dtrace_lock));
9121 	ASSERT(pred->dtp_difo != NULL && pred->dtp_difo->dtdo_refcnt != 0);
9122 	ASSERT(pred->dtp_refcnt > 0);
9123 
9124 	pred->dtp_refcnt++;
9125 }
9126 
9127 static void
9128 dtrace_predicate_release(dtrace_predicate_t *pred, dtrace_vstate_t *vstate)
9129 {
9130 	dtrace_difo_t *dp = pred->dtp_difo;
9131 
9132 	ASSERT(MUTEX_HELD(&dtrace_lock));
9133 	ASSERT(dp != NULL && dp->dtdo_refcnt != 0);
9134 	ASSERT(pred->dtp_refcnt > 0);
9135 
9136 	if (--pred->dtp_refcnt == 0) {
9137 		dtrace_difo_release(pred->dtp_difo, vstate);
9138 		kmem_free(pred, sizeof (dtrace_predicate_t));
9139 	}
9140 }
9141 
9142 /*
9143  * DTrace Action Description Functions
9144  */
9145 static dtrace_actdesc_t *
9146 dtrace_actdesc_create(dtrace_actkind_t kind, uint32_t ntuple,
9147     uint64_t uarg, uint64_t arg)
9148 {
9149 	dtrace_actdesc_t *act;
9150 
9151 	ASSERT(!DTRACEACT_ISPRINTFLIKE(kind) || (arg != NULL &&
9152 	    arg >= KERNELBASE) || (arg == NULL && kind == DTRACEACT_PRINTA));
9153 
9154 	act = kmem_zalloc(sizeof (dtrace_actdesc_t), KM_SLEEP);
9155 	act->dtad_kind = kind;
9156 	act->dtad_ntuple = ntuple;
9157 	act->dtad_uarg = uarg;
9158 	act->dtad_arg = arg;
9159 	act->dtad_refcnt = 1;
9160 
9161 	return (act);
9162 }
9163 
9164 static void
9165 dtrace_actdesc_hold(dtrace_actdesc_t *act)
9166 {
9167 	ASSERT(act->dtad_refcnt >= 1);
9168 	act->dtad_refcnt++;
9169 }
9170 
9171 static void
9172 dtrace_actdesc_release(dtrace_actdesc_t *act, dtrace_vstate_t *vstate)
9173 {
9174 	dtrace_actkind_t kind = act->dtad_kind;
9175 	dtrace_difo_t *dp;
9176 
9177 	ASSERT(act->dtad_refcnt >= 1);
9178 
9179 	if (--act->dtad_refcnt != 0)
9180 		return;
9181 
9182 	if ((dp = act->dtad_difo) != NULL)
9183 		dtrace_difo_release(dp, vstate);
9184 
9185 	if (DTRACEACT_ISPRINTFLIKE(kind)) {
9186 		char *str = (char *)(uintptr_t)act->dtad_arg;
9187 
9188 		ASSERT((str != NULL && (uintptr_t)str >= KERNELBASE) ||
9189 		    (str == NULL && act->dtad_kind == DTRACEACT_PRINTA));
9190 
9191 		if (str != NULL)
9192 			kmem_free(str, strlen(str) + 1);
9193 	}
9194 
9195 	kmem_free(act, sizeof (dtrace_actdesc_t));
9196 }
9197 
9198 /*
9199  * DTrace ECB Functions
9200  */
9201 static dtrace_ecb_t *
9202 dtrace_ecb_add(dtrace_state_t *state, dtrace_probe_t *probe)
9203 {
9204 	dtrace_ecb_t *ecb;
9205 	dtrace_epid_t epid;
9206 
9207 	ASSERT(MUTEX_HELD(&dtrace_lock));
9208 
9209 	ecb = kmem_zalloc(sizeof (dtrace_ecb_t), KM_SLEEP);
9210 	ecb->dte_predicate = NULL;
9211 	ecb->dte_probe = probe;
9212 
9213 	/*
9214 	 * The default size is the size of the default action: recording
9215 	 * the epid.
9216 	 */
9217 	ecb->dte_size = ecb->dte_needed = sizeof (dtrace_epid_t);
9218 	ecb->dte_alignment = sizeof (dtrace_epid_t);
9219 
9220 	epid = state->dts_epid++;
9221 
9222 	if (epid - 1 >= state->dts_necbs) {
9223 		dtrace_ecb_t **oecbs = state->dts_ecbs, **ecbs;
9224 		int necbs = state->dts_necbs << 1;
9225 
9226 		ASSERT(epid == state->dts_necbs + 1);
9227 
9228 		if (necbs == 0) {
9229 			ASSERT(oecbs == NULL);
9230 			necbs = 1;
9231 		}
9232 
9233 		ecbs = kmem_zalloc(necbs * sizeof (*ecbs), KM_SLEEP);
9234 
9235 		if (oecbs != NULL)
9236 			bcopy(oecbs, ecbs, state->dts_necbs * sizeof (*ecbs));
9237 
9238 		dtrace_membar_producer();
9239 		state->dts_ecbs = ecbs;
9240 
9241 		if (oecbs != NULL) {
9242 			/*
9243 			 * If this state is active, we must dtrace_sync()
9244 			 * before we can free the old dts_ecbs array:  we're
9245 			 * coming in hot, and there may be active ring
9246 			 * buffer processing (which indexes into the dts_ecbs
9247 			 * array) on another CPU.
9248 			 */
9249 			if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
9250 				dtrace_sync();
9251 
9252 			kmem_free(oecbs, state->dts_necbs * sizeof (*ecbs));
9253 		}
9254 
9255 		dtrace_membar_producer();
9256 		state->dts_necbs = necbs;
9257 	}
9258 
9259 	ecb->dte_state = state;
9260 
9261 	ASSERT(state->dts_ecbs[epid - 1] == NULL);
9262 	dtrace_membar_producer();
9263 	state->dts_ecbs[(ecb->dte_epid = epid) - 1] = ecb;
9264 
9265 	return (ecb);
9266 }
9267 
9268 static int
9269 dtrace_ecb_enable(dtrace_ecb_t *ecb)
9270 {
9271 	dtrace_probe_t *probe = ecb->dte_probe;
9272 
9273 	ASSERT(MUTEX_HELD(&cpu_lock));
9274 	ASSERT(MUTEX_HELD(&dtrace_lock));
9275 	ASSERT(ecb->dte_next == NULL);
9276 
9277 	if (probe == NULL) {
9278 		/*
9279 		 * This is the NULL probe -- there's nothing to do.
9280 		 */
9281 		return (0);
9282 	}
9283 
9284 	if (probe->dtpr_ecb == NULL) {
9285 		dtrace_provider_t *prov = probe->dtpr_provider;
9286 
9287 		/*
9288 		 * We're the first ECB on this probe.
9289 		 */
9290 		probe->dtpr_ecb = probe->dtpr_ecb_last = ecb;
9291 
9292 		if (ecb->dte_predicate != NULL)
9293 			probe->dtpr_predcache = ecb->dte_predicate->dtp_cacheid;
9294 
9295 		return (prov->dtpv_pops.dtps_enable(prov->dtpv_arg,
9296 		    probe->dtpr_id, probe->dtpr_arg));
9297 	} else {
9298 		/*
9299 		 * This probe is already active.  Swing the last pointer to
9300 		 * point to the new ECB, and issue a dtrace_sync() to assure
9301 		 * that all CPUs have seen the change.
9302 		 */
9303 		ASSERT(probe->dtpr_ecb_last != NULL);
9304 		probe->dtpr_ecb_last->dte_next = ecb;
9305 		probe->dtpr_ecb_last = ecb;
9306 		probe->dtpr_predcache = 0;
9307 
9308 		dtrace_sync();
9309 		return (0);
9310 	}
9311 }
9312 
9313 static void
9314 dtrace_ecb_resize(dtrace_ecb_t *ecb)
9315 {
9316 	uint32_t maxalign = sizeof (dtrace_epid_t);
9317 	uint32_t align = sizeof (uint8_t), offs, diff;
9318 	dtrace_action_t *act;
9319 	int wastuple = 0;
9320 	uint32_t aggbase = UINT32_MAX;
9321 	dtrace_state_t *state = ecb->dte_state;
9322 
9323 	/*
9324 	 * If we record anything, we always record the epid.  (And we always
9325 	 * record it first.)
9326 	 */
9327 	offs = sizeof (dtrace_epid_t);
9328 	ecb->dte_size = ecb->dte_needed = sizeof (dtrace_epid_t);
9329 
9330 	for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
9331 		dtrace_recdesc_t *rec = &act->dta_rec;
9332 
9333 		if ((align = rec->dtrd_alignment) > maxalign)
9334 			maxalign = align;
9335 
9336 		if (!wastuple && act->dta_intuple) {
9337 			/*
9338 			 * This is the first record in a tuple.  Align the
9339 			 * offset to be at offset 4 in an 8-byte aligned
9340 			 * block.
9341 			 */
9342 			diff = offs + sizeof (dtrace_aggid_t);
9343 
9344 			if (diff = (diff & (sizeof (uint64_t) - 1)))
9345 				offs += sizeof (uint64_t) - diff;
9346 
9347 			aggbase = offs - sizeof (dtrace_aggid_t);
9348 			ASSERT(!(aggbase & (sizeof (uint64_t) - 1)));
9349 		}
9350 
9351 		/*LINTED*/
9352 		if (rec->dtrd_size != 0 && (diff = (offs & (align - 1)))) {
9353 			/*
9354 			 * The current offset is not properly aligned; align it.
9355 			 */
9356 			offs += align - diff;
9357 		}
9358 
9359 		rec->dtrd_offset = offs;
9360 
9361 		if (offs + rec->dtrd_size > ecb->dte_needed) {
9362 			ecb->dte_needed = offs + rec->dtrd_size;
9363 
9364 			if (ecb->dte_needed > state->dts_needed)
9365 				state->dts_needed = ecb->dte_needed;
9366 		}
9367 
9368 		if (DTRACEACT_ISAGG(act->dta_kind)) {
9369 			dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act;
9370 			dtrace_action_t *first = agg->dtag_first, *prev;
9371 
9372 			ASSERT(rec->dtrd_size != 0 && first != NULL);
9373 			ASSERT(wastuple);
9374 			ASSERT(aggbase != UINT32_MAX);
9375 
9376 			agg->dtag_base = aggbase;
9377 
9378 			while ((prev = first->dta_prev) != NULL &&
9379 			    DTRACEACT_ISAGG(prev->dta_kind)) {
9380 				agg = (dtrace_aggregation_t *)prev;
9381 				first = agg->dtag_first;
9382 			}
9383 
9384 			if (prev != NULL) {
9385 				offs = prev->dta_rec.dtrd_offset +
9386 				    prev->dta_rec.dtrd_size;
9387 			} else {
9388 				offs = sizeof (dtrace_epid_t);
9389 			}
9390 			wastuple = 0;
9391 		} else {
9392 			if (!act->dta_intuple)
9393 				ecb->dte_size = offs + rec->dtrd_size;
9394 
9395 			offs += rec->dtrd_size;
9396 		}
9397 
9398 		wastuple = act->dta_intuple;
9399 	}
9400 
9401 	if ((act = ecb->dte_action) != NULL &&
9402 	    !(act->dta_kind == DTRACEACT_SPECULATE && act->dta_next == NULL) &&
9403 	    ecb->dte_size == sizeof (dtrace_epid_t)) {
9404 		/*
9405 		 * If the size is still sizeof (dtrace_epid_t), then all
9406 		 * actions store no data; set the size to 0.
9407 		 */
9408 		ecb->dte_alignment = maxalign;
9409 		ecb->dte_size = 0;
9410 
9411 		/*
9412 		 * If the needed space is still sizeof (dtrace_epid_t), then
9413 		 * all actions need no additional space; set the needed
9414 		 * size to 0.
9415 		 */
9416 		if (ecb->dte_needed == sizeof (dtrace_epid_t))
9417 			ecb->dte_needed = 0;
9418 
9419 		return;
9420 	}
9421 
9422 	/*
9423 	 * Set our alignment, and make sure that the dte_size and dte_needed
9424 	 * are aligned to the size of an EPID.
9425 	 */
9426 	ecb->dte_alignment = maxalign;
9427 	ecb->dte_size = (ecb->dte_size + (sizeof (dtrace_epid_t) - 1)) &
9428 	    ~(sizeof (dtrace_epid_t) - 1);
9429 	ecb->dte_needed = (ecb->dte_needed + (sizeof (dtrace_epid_t) - 1)) &
9430 	    ~(sizeof (dtrace_epid_t) - 1);
9431 	ASSERT(ecb->dte_size <= ecb->dte_needed);
9432 }
9433 
9434 static dtrace_action_t *
9435 dtrace_ecb_aggregation_create(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc)
9436 {
9437 	dtrace_aggregation_t *agg;
9438 	size_t size = sizeof (uint64_t);
9439 	int ntuple = desc->dtad_ntuple;
9440 	dtrace_action_t *act;
9441 	dtrace_recdesc_t *frec;
9442 	dtrace_aggid_t aggid;
9443 	dtrace_state_t *state = ecb->dte_state;
9444 
9445 	agg = kmem_zalloc(sizeof (dtrace_aggregation_t), KM_SLEEP);
9446 	agg->dtag_ecb = ecb;
9447 
9448 	ASSERT(DTRACEACT_ISAGG(desc->dtad_kind));
9449 
9450 	switch (desc->dtad_kind) {
9451 	case DTRACEAGG_MIN:
9452 		agg->dtag_initial = INT64_MAX;
9453 		agg->dtag_aggregate = dtrace_aggregate_min;
9454 		break;
9455 
9456 	case DTRACEAGG_MAX:
9457 		agg->dtag_initial = INT64_MIN;
9458 		agg->dtag_aggregate = dtrace_aggregate_max;
9459 		break;
9460 
9461 	case DTRACEAGG_COUNT:
9462 		agg->dtag_aggregate = dtrace_aggregate_count;
9463 		break;
9464 
9465 	case DTRACEAGG_QUANTIZE:
9466 		agg->dtag_aggregate = dtrace_aggregate_quantize;
9467 		size = (((sizeof (uint64_t) * NBBY) - 1) * 2 + 1) *
9468 		    sizeof (uint64_t);
9469 		break;
9470 
9471 	case DTRACEAGG_LQUANTIZE: {
9472 		uint16_t step = DTRACE_LQUANTIZE_STEP(desc->dtad_arg);
9473 		uint16_t levels = DTRACE_LQUANTIZE_LEVELS(desc->dtad_arg);
9474 
9475 		agg->dtag_initial = desc->dtad_arg;
9476 		agg->dtag_aggregate = dtrace_aggregate_lquantize;
9477 
9478 		if (step == 0 || levels == 0)
9479 			goto err;
9480 
9481 		size = levels * sizeof (uint64_t) + 3 * sizeof (uint64_t);
9482 		break;
9483 	}
9484 
9485 	case DTRACEAGG_LLQUANTIZE: {
9486 		uint16_t factor = DTRACE_LLQUANTIZE_FACTOR(desc->dtad_arg);
9487 		uint16_t low = DTRACE_LLQUANTIZE_LOW(desc->dtad_arg);
9488 		uint16_t high = DTRACE_LLQUANTIZE_HIGH(desc->dtad_arg);
9489 		uint16_t nsteps = DTRACE_LLQUANTIZE_NSTEP(desc->dtad_arg);
9490 		int64_t v;
9491 
9492 		agg->dtag_initial = desc->dtad_arg;
9493 		agg->dtag_aggregate = dtrace_aggregate_llquantize;
9494 
9495 		if (factor < 2 || low >= high || nsteps < factor)
9496 			goto err;
9497 
9498 		/*
9499 		 * Now check that the number of steps evenly divides a power
9500 		 * of the factor.  (This assures both integer bucket size and
9501 		 * linearity within each magnitude.)
9502 		 */
9503 		for (v = factor; v < nsteps; v *= factor)
9504 			continue;
9505 
9506 		if ((v % nsteps) || (nsteps % factor))
9507 			goto err;
9508 
9509 		size = (dtrace_aggregate_llquantize_bucket(factor,
9510 		    low, high, nsteps, INT64_MAX) + 2) * sizeof (uint64_t);
9511 		break;
9512 	}
9513 
9514 	case DTRACEAGG_AVG:
9515 		agg->dtag_aggregate = dtrace_aggregate_avg;
9516 		size = sizeof (uint64_t) * 2;
9517 		break;
9518 
9519 	case DTRACEAGG_STDDEV:
9520 		agg->dtag_aggregate = dtrace_aggregate_stddev;
9521 		size = sizeof (uint64_t) * 4;
9522 		break;
9523 
9524 	case DTRACEAGG_SUM:
9525 		agg->dtag_aggregate = dtrace_aggregate_sum;
9526 		break;
9527 
9528 	default:
9529 		goto err;
9530 	}
9531 
9532 	agg->dtag_action.dta_rec.dtrd_size = size;
9533 
9534 	if (ntuple == 0)
9535 		goto err;
9536 
9537 	/*
9538 	 * We must make sure that we have enough actions for the n-tuple.
9539 	 */
9540 	for (act = ecb->dte_action_last; act != NULL; act = act->dta_prev) {
9541 		if (DTRACEACT_ISAGG(act->dta_kind))
9542 			break;
9543 
9544 		if (--ntuple == 0) {
9545 			/*
9546 			 * This is the action with which our n-tuple begins.
9547 			 */
9548 			agg->dtag_first = act;
9549 			goto success;
9550 		}
9551 	}
9552 
9553 	/*
9554 	 * This n-tuple is short by ntuple elements.  Return failure.
9555 	 */
9556 	ASSERT(ntuple != 0);
9557 err:
9558 	kmem_free(agg, sizeof (dtrace_aggregation_t));
9559 	return (NULL);
9560 
9561 success:
9562 	/*
9563 	 * If the last action in the tuple has a size of zero, it's actually
9564 	 * an expression argument for the aggregating action.
9565 	 */
9566 	ASSERT(ecb->dte_action_last != NULL);
9567 	act = ecb->dte_action_last;
9568 
9569 	if (act->dta_kind == DTRACEACT_DIFEXPR) {
9570 		ASSERT(act->dta_difo != NULL);
9571 
9572 		if (act->dta_difo->dtdo_rtype.dtdt_size == 0)
9573 			agg->dtag_hasarg = 1;
9574 	}
9575 
9576 	/*
9577 	 * We need to allocate an id for this aggregation.
9578 	 */
9579 	aggid = (dtrace_aggid_t)(uintptr_t)vmem_alloc(state->dts_aggid_arena, 1,
9580 	    VM_BESTFIT | VM_SLEEP);
9581 
9582 	if (aggid - 1 >= state->dts_naggregations) {
9583 		dtrace_aggregation_t **oaggs = state->dts_aggregations;
9584 		dtrace_aggregation_t **aggs;
9585 		int naggs = state->dts_naggregations << 1;
9586 		int onaggs = state->dts_naggregations;
9587 
9588 		ASSERT(aggid == state->dts_naggregations + 1);
9589 
9590 		if (naggs == 0) {
9591 			ASSERT(oaggs == NULL);
9592 			naggs = 1;
9593 		}
9594 
9595 		aggs = kmem_zalloc(naggs * sizeof (*aggs), KM_SLEEP);
9596 
9597 		if (oaggs != NULL) {
9598 			bcopy(oaggs, aggs, onaggs * sizeof (*aggs));
9599 			kmem_free(oaggs, onaggs * sizeof (*aggs));
9600 		}
9601 
9602 		state->dts_aggregations = aggs;
9603 		state->dts_naggregations = naggs;
9604 	}
9605 
9606 	ASSERT(state->dts_aggregations[aggid - 1] == NULL);
9607 	state->dts_aggregations[(agg->dtag_id = aggid) - 1] = agg;
9608 
9609 	frec = &agg->dtag_first->dta_rec;
9610 	if (frec->dtrd_alignment < sizeof (dtrace_aggid_t))
9611 		frec->dtrd_alignment = sizeof (dtrace_aggid_t);
9612 
9613 	for (act = agg->dtag_first; act != NULL; act = act->dta_next) {
9614 		ASSERT(!act->dta_intuple);
9615 		act->dta_intuple = 1;
9616 	}
9617 
9618 	return (&agg->dtag_action);
9619 }
9620 
9621 static void
9622 dtrace_ecb_aggregation_destroy(dtrace_ecb_t *ecb, dtrace_action_t *act)
9623 {
9624 	dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act;
9625 	dtrace_state_t *state = ecb->dte_state;
9626 	dtrace_aggid_t aggid = agg->dtag_id;
9627 
9628 	ASSERT(DTRACEACT_ISAGG(act->dta_kind));
9629 	vmem_free(state->dts_aggid_arena, (void *)(uintptr_t)aggid, 1);
9630 
9631 	ASSERT(state->dts_aggregations[aggid - 1] == agg);
9632 	state->dts_aggregations[aggid - 1] = NULL;
9633 
9634 	kmem_free(agg, sizeof (dtrace_aggregation_t));
9635 }
9636 
9637 static int
9638 dtrace_ecb_action_add(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc)
9639 {
9640 	dtrace_action_t *action, *last;
9641 	dtrace_difo_t *dp = desc->dtad_difo;
9642 	uint32_t size = 0, align = sizeof (uint8_t), mask;
9643 	uint16_t format = 0;
9644 	dtrace_recdesc_t *rec;
9645 	dtrace_state_t *state = ecb->dte_state;
9646 	dtrace_optval_t *opt = state->dts_options, nframes, strsize;
9647 	uint64_t arg = desc->dtad_arg;
9648 
9649 	ASSERT(MUTEX_HELD(&dtrace_lock));
9650 	ASSERT(ecb->dte_action == NULL || ecb->dte_action->dta_refcnt == 1);
9651 
9652 	if (DTRACEACT_ISAGG(desc->dtad_kind)) {
9653 		/*
9654 		 * If this is an aggregating action, there must be neither
9655 		 * a speculate nor a commit on the action chain.
9656 		 */
9657 		dtrace_action_t *act;
9658 
9659 		for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
9660 			if (act->dta_kind == DTRACEACT_COMMIT)
9661 				return (EINVAL);
9662 
9663 			if (act->dta_kind == DTRACEACT_SPECULATE)
9664 				return (EINVAL);
9665 		}
9666 
9667 		action = dtrace_ecb_aggregation_create(ecb, desc);
9668 
9669 		if (action == NULL)
9670 			return (EINVAL);
9671 	} else {
9672 		if (DTRACEACT_ISDESTRUCTIVE(desc->dtad_kind) ||
9673 		    (desc->dtad_kind == DTRACEACT_DIFEXPR &&
9674 		    dp != NULL && dp->dtdo_destructive)) {
9675 			state->dts_destructive = 1;
9676 		}
9677 
9678 		switch (desc->dtad_kind) {
9679 		case DTRACEACT_PRINTF:
9680 		case DTRACEACT_PRINTA:
9681 		case DTRACEACT_SYSTEM:
9682 		case DTRACEACT_FREOPEN:
9683 			/*
9684 			 * We know that our arg is a string -- turn it into a
9685 			 * format.
9686 			 */
9687 			if (arg == NULL) {
9688 				ASSERT(desc->dtad_kind == DTRACEACT_PRINTA);
9689 				format = 0;
9690 			} else {
9691 				ASSERT(arg != NULL);
9692 				ASSERT(arg > KERNELBASE);
9693 				format = dtrace_format_add(state,
9694 				    (char *)(uintptr_t)arg);
9695 			}
9696 
9697 			/*FALLTHROUGH*/
9698 		case DTRACEACT_LIBACT:
9699 		case DTRACEACT_DIFEXPR:
9700 			if (dp == NULL)
9701 				return (EINVAL);
9702 
9703 			if ((size = dp->dtdo_rtype.dtdt_size) != 0)
9704 				break;
9705 
9706 			if (dp->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) {
9707 				if (!(dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
9708 					return (EINVAL);
9709 
9710 				size = opt[DTRACEOPT_STRSIZE];
9711 			}
9712 
9713 			break;
9714 
9715 		case DTRACEACT_STACK:
9716 			if ((nframes = arg) == 0) {
9717 				nframes = opt[DTRACEOPT_STACKFRAMES];
9718 				ASSERT(nframes > 0);
9719 				arg = nframes;
9720 			}
9721 
9722 			size = nframes * sizeof (pc_t);
9723 			break;
9724 
9725 		case DTRACEACT_JSTACK:
9726 			if ((strsize = DTRACE_USTACK_STRSIZE(arg)) == 0)
9727 				strsize = opt[DTRACEOPT_JSTACKSTRSIZE];
9728 
9729 			if ((nframes = DTRACE_USTACK_NFRAMES(arg)) == 0)
9730 				nframes = opt[DTRACEOPT_JSTACKFRAMES];
9731 
9732 			arg = DTRACE_USTACK_ARG(nframes, strsize);
9733 
9734 			/*FALLTHROUGH*/
9735 		case DTRACEACT_USTACK:
9736 			if (desc->dtad_kind != DTRACEACT_JSTACK &&
9737 			    (nframes = DTRACE_USTACK_NFRAMES(arg)) == 0) {
9738 				strsize = DTRACE_USTACK_STRSIZE(arg);
9739 				nframes = opt[DTRACEOPT_USTACKFRAMES];
9740 				ASSERT(nframes > 0);
9741 				arg = DTRACE_USTACK_ARG(nframes, strsize);
9742 			}
9743 
9744 			/*
9745 			 * Save a slot for the pid.
9746 			 */
9747 			size = (nframes + 1) * sizeof (uint64_t);
9748 			size += DTRACE_USTACK_STRSIZE(arg);
9749 			size = P2ROUNDUP(size, (uint32_t)(sizeof (uintptr_t)));
9750 
9751 			break;
9752 
9753 		case DTRACEACT_SYM:
9754 		case DTRACEACT_MOD:
9755 			if (dp == NULL || ((size = dp->dtdo_rtype.dtdt_size) !=
9756 			    sizeof (uint64_t)) ||
9757 			    (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
9758 				return (EINVAL);
9759 			break;
9760 
9761 		case DTRACEACT_USYM:
9762 		case DTRACEACT_UMOD:
9763 		case DTRACEACT_UADDR:
9764 			if (dp == NULL ||
9765 			    (dp->dtdo_rtype.dtdt_size != sizeof (uint64_t)) ||
9766 			    (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
9767 				return (EINVAL);
9768 
9769 			/*
9770 			 * We have a slot for the pid, plus a slot for the
9771 			 * argument.  To keep things simple (aligned with
9772 			 * bitness-neutral sizing), we store each as a 64-bit
9773 			 * quantity.
9774 			 */
9775 			size = 2 * sizeof (uint64_t);
9776 			break;
9777 
9778 		case DTRACEACT_STOP:
9779 		case DTRACEACT_BREAKPOINT:
9780 		case DTRACEACT_PANIC:
9781 			break;
9782 
9783 		case DTRACEACT_CHILL:
9784 		case DTRACEACT_DISCARD:
9785 		case DTRACEACT_RAISE:
9786 			if (dp == NULL)
9787 				return (EINVAL);
9788 			break;
9789 
9790 		case DTRACEACT_EXIT:
9791 			if (dp == NULL ||
9792 			    (size = dp->dtdo_rtype.dtdt_size) != sizeof (int) ||
9793 			    (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
9794 				return (EINVAL);
9795 			break;
9796 
9797 		case DTRACEACT_SPECULATE:
9798 			if (ecb->dte_size > sizeof (dtrace_epid_t))
9799 				return (EINVAL);
9800 
9801 			if (dp == NULL)
9802 				return (EINVAL);
9803 
9804 			state->dts_speculates = 1;
9805 			break;
9806 
9807 		case DTRACEACT_COMMIT: {
9808 			dtrace_action_t *act = ecb->dte_action;
9809 
9810 			for (; act != NULL; act = act->dta_next) {
9811 				if (act->dta_kind == DTRACEACT_COMMIT)
9812 					return (EINVAL);
9813 			}
9814 
9815 			if (dp == NULL)
9816 				return (EINVAL);
9817 			break;
9818 		}
9819 
9820 		default:
9821 			return (EINVAL);
9822 		}
9823 
9824 		if (size != 0 || desc->dtad_kind == DTRACEACT_SPECULATE) {
9825 			/*
9826 			 * If this is a data-storing action or a speculate,
9827 			 * we must be sure that there isn't a commit on the
9828 			 * action chain.
9829 			 */
9830 			dtrace_action_t *act = ecb->dte_action;
9831 
9832 			for (; act != NULL; act = act->dta_next) {
9833 				if (act->dta_kind == DTRACEACT_COMMIT)
9834 					return (EINVAL);
9835 			}
9836 		}
9837 
9838 		action = kmem_zalloc(sizeof (dtrace_action_t), KM_SLEEP);
9839 		action->dta_rec.dtrd_size = size;
9840 	}
9841 
9842 	action->dta_refcnt = 1;
9843 	rec = &action->dta_rec;
9844 	size = rec->dtrd_size;
9845 
9846 	for (mask = sizeof (uint64_t) - 1; size != 0 && mask > 0; mask >>= 1) {
9847 		if (!(size & mask)) {
9848 			align = mask + 1;
9849 			break;
9850 		}
9851 	}
9852 
9853 	action->dta_kind = desc->dtad_kind;
9854 
9855 	if ((action->dta_difo = dp) != NULL)
9856 		dtrace_difo_hold(dp);
9857 
9858 	rec->dtrd_action = action->dta_kind;
9859 	rec->dtrd_arg = arg;
9860 	rec->dtrd_uarg = desc->dtad_uarg;
9861 	rec->dtrd_alignment = (uint16_t)align;
9862 	rec->dtrd_format = format;
9863 
9864 	if ((last = ecb->dte_action_last) != NULL) {
9865 		ASSERT(ecb->dte_action != NULL);
9866 		action->dta_prev = last;
9867 		last->dta_next = action;
9868 	} else {
9869 		ASSERT(ecb->dte_action == NULL);
9870 		ecb->dte_action = action;
9871 	}
9872 
9873 	ecb->dte_action_last = action;
9874 
9875 	return (0);
9876 }
9877 
9878 static void
9879 dtrace_ecb_action_remove(dtrace_ecb_t *ecb)
9880 {
9881 	dtrace_action_t *act = ecb->dte_action, *next;
9882 	dtrace_vstate_t *vstate = &ecb->dte_state->dts_vstate;
9883 	dtrace_difo_t *dp;
9884 	uint16_t format;
9885 
9886 	if (act != NULL && act->dta_refcnt > 1) {
9887 		ASSERT(act->dta_next == NULL || act->dta_next->dta_refcnt == 1);
9888 		act->dta_refcnt--;
9889 	} else {
9890 		for (; act != NULL; act = next) {
9891 			next = act->dta_next;
9892 			ASSERT(next != NULL || act == ecb->dte_action_last);
9893 			ASSERT(act->dta_refcnt == 1);
9894 
9895 			if ((format = act->dta_rec.dtrd_format) != 0)
9896 				dtrace_format_remove(ecb->dte_state, format);
9897 
9898 			if ((dp = act->dta_difo) != NULL)
9899 				dtrace_difo_release(dp, vstate);
9900 
9901 			if (DTRACEACT_ISAGG(act->dta_kind)) {
9902 				dtrace_ecb_aggregation_destroy(ecb, act);
9903 			} else {
9904 				kmem_free(act, sizeof (dtrace_action_t));
9905 			}
9906 		}
9907 	}
9908 
9909 	ecb->dte_action = NULL;
9910 	ecb->dte_action_last = NULL;
9911 	ecb->dte_size = sizeof (dtrace_epid_t);
9912 }
9913 
9914 static void
9915 dtrace_ecb_disable(dtrace_ecb_t *ecb)
9916 {
9917 	/*
9918 	 * We disable the ECB by removing it from its probe.
9919 	 */
9920 	dtrace_ecb_t *pecb, *prev = NULL;
9921 	dtrace_probe_t *probe = ecb->dte_probe;
9922 
9923 	ASSERT(MUTEX_HELD(&dtrace_lock));
9924 
9925 	if (probe == NULL) {
9926 		/*
9927 		 * This is the NULL probe; there is nothing to disable.
9928 		 */
9929 		return;
9930 	}
9931 
9932 	for (pecb = probe->dtpr_ecb; pecb != NULL; pecb = pecb->dte_next) {
9933 		if (pecb == ecb)
9934 			break;
9935 		prev = pecb;
9936 	}
9937 
9938 	ASSERT(pecb != NULL);
9939 
9940 	if (prev == NULL) {
9941 		probe->dtpr_ecb = ecb->dte_next;
9942 	} else {
9943 		prev->dte_next = ecb->dte_next;
9944 	}
9945 
9946 	if (ecb == probe->dtpr_ecb_last) {
9947 		ASSERT(ecb->dte_next == NULL);
9948 		probe->dtpr_ecb_last = prev;
9949 	}
9950 
9951 	/*
9952 	 * The ECB has been disconnected from the probe; now sync to assure
9953 	 * that all CPUs have seen the change before returning.
9954 	 */
9955 	dtrace_sync();
9956 
9957 	if (probe->dtpr_ecb == NULL) {
9958 		/*
9959 		 * That was the last ECB on the probe; clear the predicate
9960 		 * cache ID for the probe, disable it and sync one more time
9961 		 * to assure that we'll never hit it again.
9962 		 */
9963 		dtrace_provider_t *prov = probe->dtpr_provider;
9964 
9965 		ASSERT(ecb->dte_next == NULL);
9966 		ASSERT(probe->dtpr_ecb_last == NULL);
9967 		probe->dtpr_predcache = DTRACE_CACHEIDNONE;
9968 		prov->dtpv_pops.dtps_disable(prov->dtpv_arg,
9969 		    probe->dtpr_id, probe->dtpr_arg);
9970 		dtrace_sync();
9971 	} else {
9972 		/*
9973 		 * There is at least one ECB remaining on the probe.  If there
9974 		 * is _exactly_ one, set the probe's predicate cache ID to be
9975 		 * the predicate cache ID of the remaining ECB.
9976 		 */
9977 		ASSERT(probe->dtpr_ecb_last != NULL);
9978 		ASSERT(probe->dtpr_predcache == DTRACE_CACHEIDNONE);
9979 
9980 		if (probe->dtpr_ecb == probe->dtpr_ecb_last) {
9981 			dtrace_predicate_t *p = probe->dtpr_ecb->dte_predicate;
9982 
9983 			ASSERT(probe->dtpr_ecb->dte_next == NULL);
9984 
9985 			if (p != NULL)
9986 				probe->dtpr_predcache = p->dtp_cacheid;
9987 		}
9988 
9989 		ecb->dte_next = NULL;
9990 	}
9991 }
9992 
9993 static void
9994 dtrace_ecb_destroy(dtrace_ecb_t *ecb)
9995 {
9996 	dtrace_state_t *state = ecb->dte_state;
9997 	dtrace_vstate_t *vstate = &state->dts_vstate;
9998 	dtrace_predicate_t *pred;
9999 	dtrace_epid_t epid = ecb->dte_epid;
10000 
10001 	ASSERT(MUTEX_HELD(&dtrace_lock));
10002 	ASSERT(ecb->dte_next == NULL);
10003 	ASSERT(ecb->dte_probe == NULL || ecb->dte_probe->dtpr_ecb != ecb);
10004 
10005 	if ((pred = ecb->dte_predicate) != NULL)
10006 		dtrace_predicate_release(pred, vstate);
10007 
10008 	dtrace_ecb_action_remove(ecb);
10009 
10010 	ASSERT(state->dts_ecbs[epid - 1] == ecb);
10011 	state->dts_ecbs[epid - 1] = NULL;
10012 
10013 	kmem_free(ecb, sizeof (dtrace_ecb_t));
10014 }
10015 
10016 static dtrace_ecb_t *
10017 dtrace_ecb_create(dtrace_state_t *state, dtrace_probe_t *probe,
10018     dtrace_enabling_t *enab)
10019 {
10020 	dtrace_ecb_t *ecb;
10021 	dtrace_predicate_t *pred;
10022 	dtrace_actdesc_t *act;
10023 	dtrace_provider_t *prov;
10024 	dtrace_ecbdesc_t *desc = enab->dten_current;
10025 
10026 	ASSERT(MUTEX_HELD(&dtrace_lock));
10027 	ASSERT(state != NULL);
10028 
10029 	ecb = dtrace_ecb_add(state, probe);
10030 	ecb->dte_uarg = desc->dted_uarg;
10031 
10032 	if ((pred = desc->dted_pred.dtpdd_predicate) != NULL) {
10033 		dtrace_predicate_hold(pred);
10034 		ecb->dte_predicate = pred;
10035 	}
10036 
10037 	if (probe != NULL) {
10038 		/*
10039 		 * If the provider shows more leg than the consumer is old
10040 		 * enough to see, we need to enable the appropriate implicit
10041 		 * predicate bits to prevent the ecb from activating at
10042 		 * revealing times.
10043 		 *
10044 		 * Providers specifying DTRACE_PRIV_USER at register time
10045 		 * are stating that they need the /proc-style privilege
10046 		 * model to be enforced, and this is what DTRACE_COND_OWNER
10047 		 * and DTRACE_COND_ZONEOWNER will then do at probe time.
10048 		 */
10049 		prov = probe->dtpr_provider;
10050 		if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLPROC) &&
10051 		    (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER))
10052 			ecb->dte_cond |= DTRACE_COND_OWNER;
10053 
10054 		if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLZONE) &&
10055 		    (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER))
10056 			ecb->dte_cond |= DTRACE_COND_ZONEOWNER;
10057 
10058 		/*
10059 		 * If the provider shows us kernel innards and the user
10060 		 * is lacking sufficient privilege, enable the
10061 		 * DTRACE_COND_USERMODE implicit predicate.
10062 		 */
10063 		if (!(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) &&
10064 		    (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_KERNEL))
10065 			ecb->dte_cond |= DTRACE_COND_USERMODE;
10066 	}
10067 
10068 	if (dtrace_ecb_create_cache != NULL) {
10069 		/*
10070 		 * If we have a cached ecb, we'll use its action list instead
10071 		 * of creating our own (saving both time and space).
10072 		 */
10073 		dtrace_ecb_t *cached = dtrace_ecb_create_cache;
10074 		dtrace_action_t *act = cached->dte_action;
10075 
10076 		if (act != NULL) {
10077 			ASSERT(act->dta_refcnt > 0);
10078 			act->dta_refcnt++;
10079 			ecb->dte_action = act;
10080 			ecb->dte_action_last = cached->dte_action_last;
10081 			ecb->dte_needed = cached->dte_needed;
10082 			ecb->dte_size = cached->dte_size;
10083 			ecb->dte_alignment = cached->dte_alignment;
10084 		}
10085 
10086 		return (ecb);
10087 	}
10088 
10089 	for (act = desc->dted_action; act != NULL; act = act->dtad_next) {
10090 		if ((enab->dten_error = dtrace_ecb_action_add(ecb, act)) != 0) {
10091 			dtrace_ecb_destroy(ecb);
10092 			return (NULL);
10093 		}
10094 	}
10095 
10096 	dtrace_ecb_resize(ecb);
10097 
10098 	return (dtrace_ecb_create_cache = ecb);
10099 }
10100 
10101 static int
10102 dtrace_ecb_create_enable(dtrace_probe_t *probe, void *arg)
10103 {
10104 	dtrace_ecb_t *ecb;
10105 	dtrace_enabling_t *enab = arg;
10106 	dtrace_state_t *state = enab->dten_vstate->dtvs_state;
10107 
10108 	ASSERT(state != NULL);
10109 
10110 	if (probe != NULL && probe->dtpr_gen < enab->dten_probegen) {
10111 		/*
10112 		 * This probe was created in a generation for which this
10113 		 * enabling has previously created ECBs; we don't want to
10114 		 * enable it again, so just kick out.
10115 		 */
10116 		return (DTRACE_MATCH_NEXT);
10117 	}
10118 
10119 	if ((ecb = dtrace_ecb_create(state, probe, enab)) == NULL)
10120 		return (DTRACE_MATCH_DONE);
10121 
10122 	if (dtrace_ecb_enable(ecb) < 0)
10123 		return (DTRACE_MATCH_FAIL);
10124 
10125 	return (DTRACE_MATCH_NEXT);
10126 }
10127 
10128 static dtrace_ecb_t *
10129 dtrace_epid2ecb(dtrace_state_t *state, dtrace_epid_t id)
10130 {
10131 	dtrace_ecb_t *ecb;
10132 
10133 	ASSERT(MUTEX_HELD(&dtrace_lock));
10134 
10135 	if (id == 0 || id > state->dts_necbs)
10136 		return (NULL);
10137 
10138 	ASSERT(state->dts_necbs > 0 && state->dts_ecbs != NULL);
10139 	ASSERT((ecb = state->dts_ecbs[id - 1]) == NULL || ecb->dte_epid == id);
10140 
10141 	return (state->dts_ecbs[id - 1]);
10142 }
10143 
10144 static dtrace_aggregation_t *
10145 dtrace_aggid2agg(dtrace_state_t *state, dtrace_aggid_t id)
10146 {
10147 	dtrace_aggregation_t *agg;
10148 
10149 	ASSERT(MUTEX_HELD(&dtrace_lock));
10150 
10151 	if (id == 0 || id > state->dts_naggregations)
10152 		return (NULL);
10153 
10154 	ASSERT(state->dts_naggregations > 0 && state->dts_aggregations != NULL);
10155 	ASSERT((agg = state->dts_aggregations[id - 1]) == NULL ||
10156 	    agg->dtag_id == id);
10157 
10158 	return (state->dts_aggregations[id - 1]);
10159 }
10160 
10161 /*
10162  * DTrace Buffer Functions
10163  *
10164  * The following functions manipulate DTrace buffers.  Most of these functions
10165  * are called in the context of establishing or processing consumer state;
10166  * exceptions are explicitly noted.
10167  */
10168 
10169 /*
10170  * Note:  called from cross call context.  This function switches the two
10171  * buffers on a given CPU.  The atomicity of this operation is assured by
10172  * disabling interrupts while the actual switch takes place; the disabling of
10173  * interrupts serializes the execution with any execution of dtrace_probe() on
10174  * the same CPU.
10175  */
10176 static void
10177 dtrace_buffer_switch(dtrace_buffer_t *buf)
10178 {
10179 	caddr_t tomax = buf->dtb_tomax;
10180 	caddr_t xamot = buf->dtb_xamot;
10181 	dtrace_icookie_t cookie;
10182 	hrtime_t now = dtrace_gethrtime();
10183 
10184 	ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
10185 	ASSERT(!(buf->dtb_flags & DTRACEBUF_RING));
10186 
10187 	cookie = dtrace_interrupt_disable();
10188 	buf->dtb_tomax = xamot;
10189 	buf->dtb_xamot = tomax;
10190 	buf->dtb_xamot_drops = buf->dtb_drops;
10191 	buf->dtb_xamot_offset = buf->dtb_offset;
10192 	buf->dtb_xamot_errors = buf->dtb_errors;
10193 	buf->dtb_xamot_flags = buf->dtb_flags;
10194 	buf->dtb_offset = 0;
10195 	buf->dtb_drops = 0;
10196 	buf->dtb_errors = 0;
10197 	buf->dtb_flags &= ~(DTRACEBUF_ERROR | DTRACEBUF_DROPPED);
10198 	buf->dtb_interval = now - buf->dtb_switched;
10199 	buf->dtb_switched = now;
10200 	dtrace_interrupt_enable(cookie);
10201 }
10202 
10203 /*
10204  * Note:  called from cross call context.  This function activates a buffer
10205  * on a CPU.  As with dtrace_buffer_switch(), the atomicity of the operation
10206  * is guaranteed by the disabling of interrupts.
10207  */
10208 static void
10209 dtrace_buffer_activate(dtrace_state_t *state)
10210 {
10211 	dtrace_buffer_t *buf;
10212 	dtrace_icookie_t cookie = dtrace_interrupt_disable();
10213 
10214 	buf = &state->dts_buffer[CPU->cpu_id];
10215 
10216 	if (buf->dtb_tomax != NULL) {
10217 		/*
10218 		 * We might like to assert that the buffer is marked inactive,
10219 		 * but this isn't necessarily true:  the buffer for the CPU
10220 		 * that processes the BEGIN probe has its buffer activated
10221 		 * manually.  In this case, we take the (harmless) action
10222 		 * re-clearing the bit INACTIVE bit.
10223 		 */
10224 		buf->dtb_flags &= ~DTRACEBUF_INACTIVE;
10225 	}
10226 
10227 	dtrace_interrupt_enable(cookie);
10228 }
10229 
10230 static int
10231 dtrace_buffer_alloc(dtrace_buffer_t *bufs, size_t size, int flags,
10232     processorid_t cpu)
10233 {
10234 	cpu_t *cp;
10235 	dtrace_buffer_t *buf;
10236 
10237 	ASSERT(MUTEX_HELD(&cpu_lock));
10238 	ASSERT(MUTEX_HELD(&dtrace_lock));
10239 
10240 	if (size > dtrace_nonroot_maxsize &&
10241 	    !PRIV_POLICY_CHOICE(CRED(), PRIV_ALL, B_FALSE))
10242 		return (EFBIG);
10243 
10244 	cp = cpu_list;
10245 
10246 	do {
10247 		if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id)
10248 			continue;
10249 
10250 		buf = &bufs[cp->cpu_id];
10251 
10252 		/*
10253 		 * If there is already a buffer allocated for this CPU, it
10254 		 * is only possible that this is a DR event.  In this case,
10255 		 * the buffer size must match our specified size.
10256 		 */
10257 		if (buf->dtb_tomax != NULL) {
10258 			ASSERT(buf->dtb_size == size);
10259 			continue;
10260 		}
10261 
10262 		ASSERT(buf->dtb_xamot == NULL);
10263 
10264 		if ((buf->dtb_tomax = kmem_zalloc(size, KM_NOSLEEP)) == NULL)
10265 			goto err;
10266 
10267 		buf->dtb_size = size;
10268 		buf->dtb_flags = flags;
10269 		buf->dtb_offset = 0;
10270 		buf->dtb_drops = 0;
10271 
10272 		if (flags & DTRACEBUF_NOSWITCH)
10273 			continue;
10274 
10275 		if ((buf->dtb_xamot = kmem_zalloc(size, KM_NOSLEEP)) == NULL)
10276 			goto err;
10277 	} while ((cp = cp->cpu_next) != cpu_list);
10278 
10279 	return (0);
10280 
10281 err:
10282 	cp = cpu_list;
10283 
10284 	do {
10285 		if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id)
10286 			continue;
10287 
10288 		buf = &bufs[cp->cpu_id];
10289 
10290 		if (buf->dtb_xamot != NULL) {
10291 			ASSERT(buf->dtb_tomax != NULL);
10292 			ASSERT(buf->dtb_size == size);
10293 			kmem_free(buf->dtb_xamot, size);
10294 		}
10295 
10296 		if (buf->dtb_tomax != NULL) {
10297 			ASSERT(buf->dtb_size == size);
10298 			kmem_free(buf->dtb_tomax, size);
10299 		}
10300 
10301 		buf->dtb_tomax = NULL;
10302 		buf->dtb_xamot = NULL;
10303 		buf->dtb_size = 0;
10304 	} while ((cp = cp->cpu_next) != cpu_list);
10305 
10306 	return (ENOMEM);
10307 }
10308 
10309 /*
10310  * Note:  called from probe context.  This function just increments the drop
10311  * count on a buffer.  It has been made a function to allow for the
10312  * possibility of understanding the source of mysterious drop counts.  (A
10313  * problem for which one may be particularly disappointed that DTrace cannot
10314  * be used to understand DTrace.)
10315  */
10316 static void
10317 dtrace_buffer_drop(dtrace_buffer_t *buf)
10318 {
10319 	buf->dtb_drops++;
10320 }
10321 
10322 /*
10323  * Note:  called from probe context.  This function is called to reserve space
10324  * in a buffer.  If mstate is non-NULL, sets the scratch base and size in the
10325  * mstate.  Returns the new offset in the buffer, or a negative value if an
10326  * error has occurred.
10327  */
10328 static intptr_t
10329 dtrace_buffer_reserve(dtrace_buffer_t *buf, size_t needed, size_t align,
10330     dtrace_state_t *state, dtrace_mstate_t *mstate)
10331 {
10332 	intptr_t offs = buf->dtb_offset, soffs;
10333 	intptr_t woffs;
10334 	caddr_t tomax;
10335 	size_t total;
10336 
10337 	if (buf->dtb_flags & DTRACEBUF_INACTIVE)
10338 		return (-1);
10339 
10340 	if ((tomax = buf->dtb_tomax) == NULL) {
10341 		dtrace_buffer_drop(buf);
10342 		return (-1);
10343 	}
10344 
10345 	if (!(buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL))) {
10346 		while (offs & (align - 1)) {
10347 			/*
10348 			 * Assert that our alignment is off by a number which
10349 			 * is itself sizeof (uint32_t) aligned.
10350 			 */
10351 			ASSERT(!((align - (offs & (align - 1))) &
10352 			    (sizeof (uint32_t) - 1)));
10353 			DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE);
10354 			offs += sizeof (uint32_t);
10355 		}
10356 
10357 		if ((soffs = offs + needed) > buf->dtb_size) {
10358 			dtrace_buffer_drop(buf);
10359 			return (-1);
10360 		}
10361 
10362 		if (mstate == NULL)
10363 			return (offs);
10364 
10365 		mstate->dtms_scratch_base = (uintptr_t)tomax + soffs;
10366 		mstate->dtms_scratch_size = buf->dtb_size - soffs;
10367 		mstate->dtms_scratch_ptr = mstate->dtms_scratch_base;
10368 
10369 		return (offs);
10370 	}
10371 
10372 	if (buf->dtb_flags & DTRACEBUF_FILL) {
10373 		if (state->dts_activity != DTRACE_ACTIVITY_COOLDOWN &&
10374 		    (buf->dtb_flags & DTRACEBUF_FULL))
10375 			return (-1);
10376 		goto out;
10377 	}
10378 
10379 	total = needed + (offs & (align - 1));
10380 
10381 	/*
10382 	 * For a ring buffer, life is quite a bit more complicated.  Before
10383 	 * we can store any padding, we need to adjust our wrapping offset.
10384 	 * (If we've never before wrapped or we're not about to, no adjustment
10385 	 * is required.)
10386 	 */
10387 	if ((buf->dtb_flags & DTRACEBUF_WRAPPED) ||
10388 	    offs + total > buf->dtb_size) {
10389 		woffs = buf->dtb_xamot_offset;
10390 
10391 		if (offs + total > buf->dtb_size) {
10392 			/*
10393 			 * We can't fit in the end of the buffer.  First, a
10394 			 * sanity check that we can fit in the buffer at all.
10395 			 */
10396 			if (total > buf->dtb_size) {
10397 				dtrace_buffer_drop(buf);
10398 				return (-1);
10399 			}
10400 
10401 			/*
10402 			 * We're going to be storing at the top of the buffer,
10403 			 * so now we need to deal with the wrapped offset.  We
10404 			 * only reset our wrapped offset to 0 if it is
10405 			 * currently greater than the current offset.  If it
10406 			 * is less than the current offset, it is because a
10407 			 * previous allocation induced a wrap -- but the
10408 			 * allocation didn't subsequently take the space due
10409 			 * to an error or false predicate evaluation.  In this
10410 			 * case, we'll just leave the wrapped offset alone: if
10411 			 * the wrapped offset hasn't been advanced far enough
10412 			 * for this allocation, it will be adjusted in the
10413 			 * lower loop.
10414 			 */
10415 			if (buf->dtb_flags & DTRACEBUF_WRAPPED) {
10416 				if (woffs >= offs)
10417 					woffs = 0;
10418 			} else {
10419 				woffs = 0;
10420 			}
10421 
10422 			/*
10423 			 * Now we know that we're going to be storing to the
10424 			 * top of the buffer and that there is room for us
10425 			 * there.  We need to clear the buffer from the current
10426 			 * offset to the end (there may be old gunk there).
10427 			 */
10428 			while (offs < buf->dtb_size)
10429 				tomax[offs++] = 0;
10430 
10431 			/*
10432 			 * We need to set our offset to zero.  And because we
10433 			 * are wrapping, we need to set the bit indicating as
10434 			 * much.  We can also adjust our needed space back
10435 			 * down to the space required by the ECB -- we know
10436 			 * that the top of the buffer is aligned.
10437 			 */
10438 			offs = 0;
10439 			total = needed;
10440 			buf->dtb_flags |= DTRACEBUF_WRAPPED;
10441 		} else {
10442 			/*
10443 			 * There is room for us in the buffer, so we simply
10444 			 * need to check the wrapped offset.
10445 			 */
10446 			if (woffs < offs) {
10447 				/*
10448 				 * The wrapped offset is less than the offset.
10449 				 * This can happen if we allocated buffer space
10450 				 * that induced a wrap, but then we didn't
10451 				 * subsequently take the space due to an error
10452 				 * or false predicate evaluation.  This is
10453 				 * okay; we know that _this_ allocation isn't
10454 				 * going to induce a wrap.  We still can't
10455 				 * reset the wrapped offset to be zero,
10456 				 * however: the space may have been trashed in
10457 				 * the previous failed probe attempt.  But at
10458 				 * least the wrapped offset doesn't need to
10459 				 * be adjusted at all...
10460 				 */
10461 				goto out;
10462 			}
10463 		}
10464 
10465 		while (offs + total > woffs) {
10466 			dtrace_epid_t epid = *(uint32_t *)(tomax + woffs);
10467 			size_t size;
10468 
10469 			if (epid == DTRACE_EPIDNONE) {
10470 				size = sizeof (uint32_t);
10471 			} else {
10472 				ASSERT(epid <= state->dts_necbs);
10473 				ASSERT(state->dts_ecbs[epid - 1] != NULL);
10474 
10475 				size = state->dts_ecbs[epid - 1]->dte_size;
10476 			}
10477 
10478 			ASSERT(woffs + size <= buf->dtb_size);
10479 			ASSERT(size != 0);
10480 
10481 			if (woffs + size == buf->dtb_size) {
10482 				/*
10483 				 * We've reached the end of the buffer; we want
10484 				 * to set the wrapped offset to 0 and break
10485 				 * out.  However, if the offs is 0, then we're
10486 				 * in a strange edge-condition:  the amount of
10487 				 * space that we want to reserve plus the size
10488 				 * of the record that we're overwriting is
10489 				 * greater than the size of the buffer.  This
10490 				 * is problematic because if we reserve the
10491 				 * space but subsequently don't consume it (due
10492 				 * to a failed predicate or error) the wrapped
10493 				 * offset will be 0 -- yet the EPID at offset 0
10494 				 * will not be committed.  This situation is
10495 				 * relatively easy to deal with:  if we're in
10496 				 * this case, the buffer is indistinguishable
10497 				 * from one that hasn't wrapped; we need only
10498 				 * finish the job by clearing the wrapped bit,
10499 				 * explicitly setting the offset to be 0, and
10500 				 * zero'ing out the old data in the buffer.
10501 				 */
10502 				if (offs == 0) {
10503 					buf->dtb_flags &= ~DTRACEBUF_WRAPPED;
10504 					buf->dtb_offset = 0;
10505 					woffs = total;
10506 
10507 					while (woffs < buf->dtb_size)
10508 						tomax[woffs++] = 0;
10509 				}
10510 
10511 				woffs = 0;
10512 				break;
10513 			}
10514 
10515 			woffs += size;
10516 		}
10517 
10518 		/*
10519 		 * We have a wrapped offset.  It may be that the wrapped offset
10520 		 * has become zero -- that's okay.
10521 		 */
10522 		buf->dtb_xamot_offset = woffs;
10523 	}
10524 
10525 out:
10526 	/*
10527 	 * Now we can plow the buffer with any necessary padding.
10528 	 */
10529 	while (offs & (align - 1)) {
10530 		/*
10531 		 * Assert that our alignment is off by a number which
10532 		 * is itself sizeof (uint32_t) aligned.
10533 		 */
10534 		ASSERT(!((align - (offs & (align - 1))) &
10535 		    (sizeof (uint32_t) - 1)));
10536 		DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE);
10537 		offs += sizeof (uint32_t);
10538 	}
10539 
10540 	if (buf->dtb_flags & DTRACEBUF_FILL) {
10541 		if (offs + needed > buf->dtb_size - state->dts_reserve) {
10542 			buf->dtb_flags |= DTRACEBUF_FULL;
10543 			return (-1);
10544 		}
10545 	}
10546 
10547 	if (mstate == NULL)
10548 		return (offs);
10549 
10550 	/*
10551 	 * For ring buffers and fill buffers, the scratch space is always
10552 	 * the inactive buffer.
10553 	 */
10554 	mstate->dtms_scratch_base = (uintptr_t)buf->dtb_xamot;
10555 	mstate->dtms_scratch_size = buf->dtb_size;
10556 	mstate->dtms_scratch_ptr = mstate->dtms_scratch_base;
10557 
10558 	return (offs);
10559 }
10560 
10561 static void
10562 dtrace_buffer_polish(dtrace_buffer_t *buf)
10563 {
10564 	ASSERT(buf->dtb_flags & DTRACEBUF_RING);
10565 	ASSERT(MUTEX_HELD(&dtrace_lock));
10566 
10567 	if (!(buf->dtb_flags & DTRACEBUF_WRAPPED))
10568 		return;
10569 
10570 	/*
10571 	 * We need to polish the ring buffer.  There are three cases:
10572 	 *
10573 	 * - The first (and presumably most common) is that there is no gap
10574 	 *   between the buffer offset and the wrapped offset.  In this case,
10575 	 *   there is nothing in the buffer that isn't valid data; we can
10576 	 *   mark the buffer as polished and return.
10577 	 *
10578 	 * - The second (less common than the first but still more common
10579 	 *   than the third) is that there is a gap between the buffer offset
10580 	 *   and the wrapped offset, and the wrapped offset is larger than the
10581 	 *   buffer offset.  This can happen because of an alignment issue, or
10582 	 *   can happen because of a call to dtrace_buffer_reserve() that
10583 	 *   didn't subsequently consume the buffer space.  In this case,
10584 	 *   we need to zero the data from the buffer offset to the wrapped
10585 	 *   offset.
10586 	 *
10587 	 * - The third (and least common) is that there is a gap between the
10588 	 *   buffer offset and the wrapped offset, but the wrapped offset is
10589 	 *   _less_ than the buffer offset.  This can only happen because a
10590 	 *   call to dtrace_buffer_reserve() induced a wrap, but the space
10591 	 *   was not subsequently consumed.  In this case, we need to zero the
10592 	 *   space from the offset to the end of the buffer _and_ from the
10593 	 *   top of the buffer to the wrapped offset.
10594 	 */
10595 	if (buf->dtb_offset < buf->dtb_xamot_offset) {
10596 		bzero(buf->dtb_tomax + buf->dtb_offset,
10597 		    buf->dtb_xamot_offset - buf->dtb_offset);
10598 	}
10599 
10600 	if (buf->dtb_offset > buf->dtb_xamot_offset) {
10601 		bzero(buf->dtb_tomax + buf->dtb_offset,
10602 		    buf->dtb_size - buf->dtb_offset);
10603 		bzero(buf->dtb_tomax, buf->dtb_xamot_offset);
10604 	}
10605 }
10606 
10607 /*
10608  * This routine determines if data generated at the specified time has likely
10609  * been entirely consumed at user-level.  This routine is called to determine
10610  * if an ECB on a defunct probe (but for an active enabling) can be safely
10611  * disabled and destroyed.
10612  */
10613 static int
10614 dtrace_buffer_consumed(dtrace_buffer_t *bufs, hrtime_t when)
10615 {
10616 	int i;
10617 
10618 	for (i = 0; i < NCPU; i++) {
10619 		dtrace_buffer_t *buf = &bufs[i];
10620 
10621 		if (buf->dtb_size == 0)
10622 			continue;
10623 
10624 		if (buf->dtb_flags & DTRACEBUF_RING)
10625 			return (0);
10626 
10627 		if (!buf->dtb_switched && buf->dtb_offset != 0)
10628 			return (0);
10629 
10630 		if (buf->dtb_switched - buf->dtb_interval < when)
10631 			return (0);
10632 	}
10633 
10634 	return (1);
10635 }
10636 
10637 static void
10638 dtrace_buffer_free(dtrace_buffer_t *bufs)
10639 {
10640 	int i;
10641 
10642 	for (i = 0; i < NCPU; i++) {
10643 		dtrace_buffer_t *buf = &bufs[i];
10644 
10645 		if (buf->dtb_tomax == NULL) {
10646 			ASSERT(buf->dtb_xamot == NULL);
10647 			ASSERT(buf->dtb_size == 0);
10648 			continue;
10649 		}
10650 
10651 		if (buf->dtb_xamot != NULL) {
10652 			ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
10653 			kmem_free(buf->dtb_xamot, buf->dtb_size);
10654 		}
10655 
10656 		kmem_free(buf->dtb_tomax, buf->dtb_size);
10657 		buf->dtb_size = 0;
10658 		buf->dtb_tomax = NULL;
10659 		buf->dtb_xamot = NULL;
10660 	}
10661 }
10662 
10663 /*
10664  * DTrace Enabling Functions
10665  */
10666 static dtrace_enabling_t *
10667 dtrace_enabling_create(dtrace_vstate_t *vstate)
10668 {
10669 	dtrace_enabling_t *enab;
10670 
10671 	enab = kmem_zalloc(sizeof (dtrace_enabling_t), KM_SLEEP);
10672 	enab->dten_vstate = vstate;
10673 
10674 	return (enab);
10675 }
10676 
10677 static void
10678 dtrace_enabling_add(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb)
10679 {
10680 	dtrace_ecbdesc_t **ndesc;
10681 	size_t osize, nsize;
10682 
10683 	/*
10684 	 * We can't add to enablings after we've enabled them, or after we've
10685 	 * retained them.
10686 	 */
10687 	ASSERT(enab->dten_probegen == 0);
10688 	ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL);
10689 
10690 	if (enab->dten_ndesc < enab->dten_maxdesc) {
10691 		enab->dten_desc[enab->dten_ndesc++] = ecb;
10692 		return;
10693 	}
10694 
10695 	osize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *);
10696 
10697 	if (enab->dten_maxdesc == 0) {
10698 		enab->dten_maxdesc = 1;
10699 	} else {
10700 		enab->dten_maxdesc <<= 1;
10701 	}
10702 
10703 	ASSERT(enab->dten_ndesc < enab->dten_maxdesc);
10704 
10705 	nsize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *);
10706 	ndesc = kmem_zalloc(nsize, KM_SLEEP);
10707 	bcopy(enab->dten_desc, ndesc, osize);
10708 	kmem_free(enab->dten_desc, osize);
10709 
10710 	enab->dten_desc = ndesc;
10711 	enab->dten_desc[enab->dten_ndesc++] = ecb;
10712 }
10713 
10714 static void
10715 dtrace_enabling_addlike(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb,
10716     dtrace_probedesc_t *pd)
10717 {
10718 	dtrace_ecbdesc_t *new;
10719 	dtrace_predicate_t *pred;
10720 	dtrace_actdesc_t *act;
10721 
10722 	/*
10723 	 * We're going to create a new ECB description that matches the
10724 	 * specified ECB in every way, but has the specified probe description.
10725 	 */
10726 	new = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP);
10727 
10728 	if ((pred = ecb->dted_pred.dtpdd_predicate) != NULL)
10729 		dtrace_predicate_hold(pred);
10730 
10731 	for (act = ecb->dted_action; act != NULL; act = act->dtad_next)
10732 		dtrace_actdesc_hold(act);
10733 
10734 	new->dted_action = ecb->dted_action;
10735 	new->dted_pred = ecb->dted_pred;
10736 	new->dted_probe = *pd;
10737 	new->dted_uarg = ecb->dted_uarg;
10738 
10739 	dtrace_enabling_add(enab, new);
10740 }
10741 
10742 static void
10743 dtrace_enabling_dump(dtrace_enabling_t *enab)
10744 {
10745 	int i;
10746 
10747 	for (i = 0; i < enab->dten_ndesc; i++) {
10748 		dtrace_probedesc_t *desc = &enab->dten_desc[i]->dted_probe;
10749 
10750 		cmn_err(CE_NOTE, "enabling probe %d (%s:%s:%s:%s)", i,
10751 		    desc->dtpd_provider, desc->dtpd_mod,
10752 		    desc->dtpd_func, desc->dtpd_name);
10753 	}
10754 }
10755 
10756 static void
10757 dtrace_enabling_destroy(dtrace_enabling_t *enab)
10758 {
10759 	int i;
10760 	dtrace_ecbdesc_t *ep;
10761 	dtrace_vstate_t *vstate = enab->dten_vstate;
10762 
10763 	ASSERT(MUTEX_HELD(&dtrace_lock));
10764 
10765 	for (i = 0; i < enab->dten_ndesc; i++) {
10766 		dtrace_actdesc_t *act, *next;
10767 		dtrace_predicate_t *pred;
10768 
10769 		ep = enab->dten_desc[i];
10770 
10771 		if ((pred = ep->dted_pred.dtpdd_predicate) != NULL)
10772 			dtrace_predicate_release(pred, vstate);
10773 
10774 		for (act = ep->dted_action; act != NULL; act = next) {
10775 			next = act->dtad_next;
10776 			dtrace_actdesc_release(act, vstate);
10777 		}
10778 
10779 		kmem_free(ep, sizeof (dtrace_ecbdesc_t));
10780 	}
10781 
10782 	kmem_free(enab->dten_desc,
10783 	    enab->dten_maxdesc * sizeof (dtrace_enabling_t *));
10784 
10785 	/*
10786 	 * If this was a retained enabling, decrement the dts_nretained count
10787 	 * and take it off of the dtrace_retained list.
10788 	 */
10789 	if (enab->dten_prev != NULL || enab->dten_next != NULL ||
10790 	    dtrace_retained == enab) {
10791 		ASSERT(enab->dten_vstate->dtvs_state != NULL);
10792 		ASSERT(enab->dten_vstate->dtvs_state->dts_nretained > 0);
10793 		enab->dten_vstate->dtvs_state->dts_nretained--;
10794 		dtrace_retained_gen++;
10795 	}
10796 
10797 	if (enab->dten_prev == NULL) {
10798 		if (dtrace_retained == enab) {
10799 			dtrace_retained = enab->dten_next;
10800 
10801 			if (dtrace_retained != NULL)
10802 				dtrace_retained->dten_prev = NULL;
10803 		}
10804 	} else {
10805 		ASSERT(enab != dtrace_retained);
10806 		ASSERT(dtrace_retained != NULL);
10807 		enab->dten_prev->dten_next = enab->dten_next;
10808 	}
10809 
10810 	if (enab->dten_next != NULL) {
10811 		ASSERT(dtrace_retained != NULL);
10812 		enab->dten_next->dten_prev = enab->dten_prev;
10813 	}
10814 
10815 	kmem_free(enab, sizeof (dtrace_enabling_t));
10816 }
10817 
10818 static int
10819 dtrace_enabling_retain(dtrace_enabling_t *enab)
10820 {
10821 	dtrace_state_t *state;
10822 
10823 	ASSERT(MUTEX_HELD(&dtrace_lock));
10824 	ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL);
10825 	ASSERT(enab->dten_vstate != NULL);
10826 
10827 	state = enab->dten_vstate->dtvs_state;
10828 	ASSERT(state != NULL);
10829 
10830 	/*
10831 	 * We only allow each state to retain dtrace_retain_max enablings.
10832 	 */
10833 	if (state->dts_nretained >= dtrace_retain_max)
10834 		return (ENOSPC);
10835 
10836 	state->dts_nretained++;
10837 	dtrace_retained_gen++;
10838 
10839 	if (dtrace_retained == NULL) {
10840 		dtrace_retained = enab;
10841 		return (0);
10842 	}
10843 
10844 	enab->dten_next = dtrace_retained;
10845 	dtrace_retained->dten_prev = enab;
10846 	dtrace_retained = enab;
10847 
10848 	return (0);
10849 }
10850 
10851 static int
10852 dtrace_enabling_replicate(dtrace_state_t *state, dtrace_probedesc_t *match,
10853     dtrace_probedesc_t *create)
10854 {
10855 	dtrace_enabling_t *new, *enab;
10856 	int found = 0, err = ENOENT;
10857 
10858 	ASSERT(MUTEX_HELD(&dtrace_lock));
10859 	ASSERT(strlen(match->dtpd_provider) < DTRACE_PROVNAMELEN);
10860 	ASSERT(strlen(match->dtpd_mod) < DTRACE_MODNAMELEN);
10861 	ASSERT(strlen(match->dtpd_func) < DTRACE_FUNCNAMELEN);
10862 	ASSERT(strlen(match->dtpd_name) < DTRACE_NAMELEN);
10863 
10864 	new = dtrace_enabling_create(&state->dts_vstate);
10865 
10866 	/*
10867 	 * Iterate over all retained enablings, looking for enablings that
10868 	 * match the specified state.
10869 	 */
10870 	for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
10871 		int i;
10872 
10873 		/*
10874 		 * dtvs_state can only be NULL for helper enablings -- and
10875 		 * helper enablings can't be retained.
10876 		 */
10877 		ASSERT(enab->dten_vstate->dtvs_state != NULL);
10878 
10879 		if (enab->dten_vstate->dtvs_state != state)
10880 			continue;
10881 
10882 		/*
10883 		 * Now iterate over each probe description; we're looking for
10884 		 * an exact match to the specified probe description.
10885 		 */
10886 		for (i = 0; i < enab->dten_ndesc; i++) {
10887 			dtrace_ecbdesc_t *ep = enab->dten_desc[i];
10888 			dtrace_probedesc_t *pd = &ep->dted_probe;
10889 
10890 			if (strcmp(pd->dtpd_provider, match->dtpd_provider))
10891 				continue;
10892 
10893 			if (strcmp(pd->dtpd_mod, match->dtpd_mod))
10894 				continue;
10895 
10896 			if (strcmp(pd->dtpd_func, match->dtpd_func))
10897 				continue;
10898 
10899 			if (strcmp(pd->dtpd_name, match->dtpd_name))
10900 				continue;
10901 
10902 			/*
10903 			 * We have a winning probe!  Add it to our growing
10904 			 * enabling.
10905 			 */
10906 			found = 1;
10907 			dtrace_enabling_addlike(new, ep, create);
10908 		}
10909 	}
10910 
10911 	if (!found || (err = dtrace_enabling_retain(new)) != 0) {
10912 		dtrace_enabling_destroy(new);
10913 		return (err);
10914 	}
10915 
10916 	return (0);
10917 }
10918 
10919 static void
10920 dtrace_enabling_retract(dtrace_state_t *state)
10921 {
10922 	dtrace_enabling_t *enab, *next;
10923 
10924 	ASSERT(MUTEX_HELD(&dtrace_lock));
10925 
10926 	/*
10927 	 * Iterate over all retained enablings, destroy the enablings retained
10928 	 * for the specified state.
10929 	 */
10930 	for (enab = dtrace_retained; enab != NULL; enab = next) {
10931 		next = enab->dten_next;
10932 
10933 		/*
10934 		 * dtvs_state can only be NULL for helper enablings -- and
10935 		 * helper enablings can't be retained.
10936 		 */
10937 		ASSERT(enab->dten_vstate->dtvs_state != NULL);
10938 
10939 		if (enab->dten_vstate->dtvs_state == state) {
10940 			ASSERT(state->dts_nretained > 0);
10941 			dtrace_enabling_destroy(enab);
10942 		}
10943 	}
10944 
10945 	ASSERT(state->dts_nretained == 0);
10946 }
10947 
10948 static int
10949 dtrace_enabling_match(dtrace_enabling_t *enab, int *nmatched)
10950 {
10951 	int i = 0;
10952 	int total_matched = 0, matched = 0;
10953 
10954 	ASSERT(MUTEX_HELD(&cpu_lock));
10955 	ASSERT(MUTEX_HELD(&dtrace_lock));
10956 
10957 	for (i = 0; i < enab->dten_ndesc; i++) {
10958 		dtrace_ecbdesc_t *ep = enab->dten_desc[i];
10959 
10960 		enab->dten_current = ep;
10961 		enab->dten_error = 0;
10962 
10963 		/*
10964 		 * If a provider failed to enable a probe then get out and
10965 		 * let the consumer know we failed.
10966 		 */
10967 		if ((matched = dtrace_probe_enable(&ep->dted_probe, enab)) < 0)
10968 			return (EBUSY);
10969 
10970 		total_matched += matched;
10971 
10972 		if (enab->dten_error != 0) {
10973 			/*
10974 			 * If we get an error half-way through enabling the
10975 			 * probes, we kick out -- perhaps with some number of
10976 			 * them enabled.  Leaving enabled probes enabled may
10977 			 * be slightly confusing for user-level, but we expect
10978 			 * that no one will attempt to actually drive on in
10979 			 * the face of such errors.  If this is an anonymous
10980 			 * enabling (indicated with a NULL nmatched pointer),
10981 			 * we cmn_err() a message.  We aren't expecting to
10982 			 * get such an error -- such as it can exist at all,
10983 			 * it would be a result of corrupted DOF in the driver
10984 			 * properties.
10985 			 */
10986 			if (nmatched == NULL) {
10987 				cmn_err(CE_WARN, "dtrace_enabling_match() "
10988 				    "error on %p: %d", (void *)ep,
10989 				    enab->dten_error);
10990 			}
10991 
10992 			return (enab->dten_error);
10993 		}
10994 	}
10995 
10996 	enab->dten_probegen = dtrace_probegen;
10997 	if (nmatched != NULL)
10998 		*nmatched = total_matched;
10999 
11000 	return (0);
11001 }
11002 
11003 static void
11004 dtrace_enabling_matchall(void)
11005 {
11006 	dtrace_enabling_t *enab;
11007 
11008 	mutex_enter(&cpu_lock);
11009 	mutex_enter(&dtrace_lock);
11010 
11011 	/*
11012 	 * Iterate over all retained enablings to see if any probes match
11013 	 * against them.  We only perform this operation on enablings for which
11014 	 * we have sufficient permissions by virtue of being in the global zone
11015 	 * or in the same zone as the DTrace client.  Because we can be called
11016 	 * after dtrace_detach() has been called, we cannot assert that there
11017 	 * are retained enablings.  We can safely load from dtrace_retained,
11018 	 * however:  the taskq_destroy() at the end of dtrace_detach() will
11019 	 * block pending our completion.
11020 	 */
11021 	for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
11022 		dtrace_cred_t *dcr = &enab->dten_vstate->dtvs_state->dts_cred;
11023 		cred_t *cr = dcr->dcr_cred;
11024 		zoneid_t zone = cr != NULL ? crgetzoneid(cr) : 0;
11025 
11026 		if ((dcr->dcr_visible & DTRACE_CRV_ALLZONE) || (cr != NULL &&
11027 		    (zone == GLOBAL_ZONEID || getzoneid() == zone)))
11028 			(void) dtrace_enabling_match(enab, NULL);
11029 	}
11030 
11031 	mutex_exit(&dtrace_lock);
11032 	mutex_exit(&cpu_lock);
11033 }
11034 
11035 /*
11036  * If an enabling is to be enabled without having matched probes (that is, if
11037  * dtrace_state_go() is to be called on the underlying dtrace_state_t), the
11038  * enabling must be _primed_ by creating an ECB for every ECB description.
11039  * This must be done to assure that we know the number of speculations, the
11040  * number of aggregations, the minimum buffer size needed, etc. before we
11041  * transition out of DTRACE_ACTIVITY_INACTIVE.  To do this without actually
11042  * enabling any probes, we create ECBs for every ECB decription, but with a
11043  * NULL probe -- which is exactly what this function does.
11044  */
11045 static void
11046 dtrace_enabling_prime(dtrace_state_t *state)
11047 {
11048 	dtrace_enabling_t *enab;
11049 	int i;
11050 
11051 	for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
11052 		ASSERT(enab->dten_vstate->dtvs_state != NULL);
11053 
11054 		if (enab->dten_vstate->dtvs_state != state)
11055 			continue;
11056 
11057 		/*
11058 		 * We don't want to prime an enabling more than once, lest
11059 		 * we allow a malicious user to induce resource exhaustion.
11060 		 * (The ECBs that result from priming an enabling aren't
11061 		 * leaked -- but they also aren't deallocated until the
11062 		 * consumer state is destroyed.)
11063 		 */
11064 		if (enab->dten_primed)
11065 			continue;
11066 
11067 		for (i = 0; i < enab->dten_ndesc; i++) {
11068 			enab->dten_current = enab->dten_desc[i];
11069 			(void) dtrace_probe_enable(NULL, enab);
11070 		}
11071 
11072 		enab->dten_primed = 1;
11073 	}
11074 }
11075 
11076 /*
11077  * Called to indicate that probes should be provided due to retained
11078  * enablings.  This is implemented in terms of dtrace_probe_provide(), but it
11079  * must take an initial lap through the enabling calling the dtps_provide()
11080  * entry point explicitly to allow for autocreated probes.
11081  */
11082 static void
11083 dtrace_enabling_provide(dtrace_provider_t *prv)
11084 {
11085 	int i, all = 0;
11086 	dtrace_probedesc_t desc;
11087 	dtrace_genid_t gen;
11088 
11089 	ASSERT(MUTEX_HELD(&dtrace_lock));
11090 	ASSERT(MUTEX_HELD(&dtrace_provider_lock));
11091 
11092 	if (prv == NULL) {
11093 		all = 1;
11094 		prv = dtrace_provider;
11095 	}
11096 
11097 	do {
11098 		dtrace_enabling_t *enab;
11099 		void *parg = prv->dtpv_arg;
11100 
11101 retry:
11102 		gen = dtrace_retained_gen;
11103 		for (enab = dtrace_retained; enab != NULL;
11104 		    enab = enab->dten_next) {
11105 			for (i = 0; i < enab->dten_ndesc; i++) {
11106 				desc = enab->dten_desc[i]->dted_probe;
11107 				mutex_exit(&dtrace_lock);
11108 				prv->dtpv_pops.dtps_provide(parg, &desc);
11109 				mutex_enter(&dtrace_lock);
11110 				/*
11111 				 * Process the retained enablings again if
11112 				 * they have changed while we weren't holding
11113 				 * dtrace_lock.
11114 				 */
11115 				if (gen != dtrace_retained_gen)
11116 					goto retry;
11117 			}
11118 		}
11119 	} while (all && (prv = prv->dtpv_next) != NULL);
11120 
11121 	mutex_exit(&dtrace_lock);
11122 	dtrace_probe_provide(NULL, all ? NULL : prv);
11123 	mutex_enter(&dtrace_lock);
11124 }
11125 
11126 /*
11127  * Called to reap ECBs that are attached to probes from defunct providers.
11128  */
11129 static void
11130 dtrace_enabling_reap(void)
11131 {
11132 	dtrace_provider_t *prov;
11133 	dtrace_probe_t *probe;
11134 	dtrace_ecb_t *ecb;
11135 	hrtime_t when;
11136 	int i;
11137 
11138 	mutex_enter(&cpu_lock);
11139 	mutex_enter(&dtrace_lock);
11140 
11141 	for (i = 0; i < dtrace_nprobes; i++) {
11142 		if ((probe = dtrace_probes[i]) == NULL)
11143 			continue;
11144 
11145 		if (probe->dtpr_ecb == NULL)
11146 			continue;
11147 
11148 		prov = probe->dtpr_provider;
11149 
11150 		if ((when = prov->dtpv_defunct) == 0)
11151 			continue;
11152 
11153 		/*
11154 		 * We have ECBs on a defunct provider:  we want to reap these
11155 		 * ECBs to allow the provider to unregister.  The destruction
11156 		 * of these ECBs must be done carefully:  if we destroy the ECB
11157 		 * and the consumer later wishes to consume an EPID that
11158 		 * corresponds to the destroyed ECB (and if the EPID metadata
11159 		 * has not been previously consumed), the consumer will abort
11160 		 * processing on the unknown EPID.  To reduce (but not, sadly,
11161 		 * eliminate) the possibility of this, we will only destroy an
11162 		 * ECB for a defunct provider if, for the state that
11163 		 * corresponds to the ECB:
11164 		 *
11165 		 *  (a)	There is no speculative tracing (which can effectively
11166 		 *	cache an EPID for an arbitrary amount of time).
11167 		 *
11168 		 *  (b)	The principal buffers have been switched twice since the
11169 		 *	provider became defunct.
11170 		 *
11171 		 *  (c)	The aggregation buffers are of zero size or have been
11172 		 *	switched twice since the provider became defunct.
11173 		 *
11174 		 * We use dts_speculates to determine (a) and call a function
11175 		 * (dtrace_buffer_consumed()) to determine (b) and (c).  Note
11176 		 * that as soon as we've been unable to destroy one of the ECBs
11177 		 * associated with the probe, we quit trying -- reaping is only
11178 		 * fruitful in as much as we can destroy all ECBs associated
11179 		 * with the defunct provider's probes.
11180 		 */
11181 		while ((ecb = probe->dtpr_ecb) != NULL) {
11182 			dtrace_state_t *state = ecb->dte_state;
11183 			dtrace_buffer_t *buf = state->dts_buffer;
11184 			dtrace_buffer_t *aggbuf = state->dts_aggbuffer;
11185 
11186 			if (state->dts_speculates)
11187 				break;
11188 
11189 			if (!dtrace_buffer_consumed(buf, when))
11190 				break;
11191 
11192 			if (!dtrace_buffer_consumed(aggbuf, when))
11193 				break;
11194 
11195 			dtrace_ecb_disable(ecb);
11196 			ASSERT(probe->dtpr_ecb != ecb);
11197 			dtrace_ecb_destroy(ecb);
11198 		}
11199 	}
11200 
11201 	mutex_exit(&dtrace_lock);
11202 	mutex_exit(&cpu_lock);
11203 }
11204 
11205 /*
11206  * DTrace DOF Functions
11207  */
11208 /*ARGSUSED*/
11209 static void
11210 dtrace_dof_error(dof_hdr_t *dof, const char *str)
11211 {
11212 	if (dtrace_err_verbose)
11213 		cmn_err(CE_WARN, "failed to process DOF: %s", str);
11214 
11215 #ifdef DTRACE_ERRDEBUG
11216 	dtrace_errdebug(str);
11217 #endif
11218 }
11219 
11220 /*
11221  * Create DOF out of a currently enabled state.  Right now, we only create
11222  * DOF containing the run-time options -- but this could be expanded to create
11223  * complete DOF representing the enabled state.
11224  */
11225 static dof_hdr_t *
11226 dtrace_dof_create(dtrace_state_t *state)
11227 {
11228 	dof_hdr_t *dof;
11229 	dof_sec_t *sec;
11230 	dof_optdesc_t *opt;
11231 	int i, len = sizeof (dof_hdr_t) +
11232 	    roundup(sizeof (dof_sec_t), sizeof (uint64_t)) +
11233 	    sizeof (dof_optdesc_t) * DTRACEOPT_MAX;
11234 
11235 	ASSERT(MUTEX_HELD(&dtrace_lock));
11236 
11237 	dof = kmem_zalloc(len, KM_SLEEP);
11238 	dof->dofh_ident[DOF_ID_MAG0] = DOF_MAG_MAG0;
11239 	dof->dofh_ident[DOF_ID_MAG1] = DOF_MAG_MAG1;
11240 	dof->dofh_ident[DOF_ID_MAG2] = DOF_MAG_MAG2;
11241 	dof->dofh_ident[DOF_ID_MAG3] = DOF_MAG_MAG3;
11242 
11243 	dof->dofh_ident[DOF_ID_MODEL] = DOF_MODEL_NATIVE;
11244 	dof->dofh_ident[DOF_ID_ENCODING] = DOF_ENCODE_NATIVE;
11245 	dof->dofh_ident[DOF_ID_VERSION] = DOF_VERSION;
11246 	dof->dofh_ident[DOF_ID_DIFVERS] = DIF_VERSION;
11247 	dof->dofh_ident[DOF_ID_DIFIREG] = DIF_DIR_NREGS;
11248 	dof->dofh_ident[DOF_ID_DIFTREG] = DIF_DTR_NREGS;
11249 
11250 	dof->dofh_flags = 0;
11251 	dof->dofh_hdrsize = sizeof (dof_hdr_t);
11252 	dof->dofh_secsize = sizeof (dof_sec_t);
11253 	dof->dofh_secnum = 1;	/* only DOF_SECT_OPTDESC */
11254 	dof->dofh_secoff = sizeof (dof_hdr_t);
11255 	dof->dofh_loadsz = len;
11256 	dof->dofh_filesz = len;
11257 	dof->dofh_pad = 0;
11258 
11259 	/*
11260 	 * Fill in the option section header...
11261 	 */
11262 	sec = (dof_sec_t *)((uintptr_t)dof + sizeof (dof_hdr_t));
11263 	sec->dofs_type = DOF_SECT_OPTDESC;
11264 	sec->dofs_align = sizeof (uint64_t);
11265 	sec->dofs_flags = DOF_SECF_LOAD;
11266 	sec->dofs_entsize = sizeof (dof_optdesc_t);
11267 
11268 	opt = (dof_optdesc_t *)((uintptr_t)sec +
11269 	    roundup(sizeof (dof_sec_t), sizeof (uint64_t)));
11270 
11271 	sec->dofs_offset = (uintptr_t)opt - (uintptr_t)dof;
11272 	sec->dofs_size = sizeof (dof_optdesc_t) * DTRACEOPT_MAX;
11273 
11274 	for (i = 0; i < DTRACEOPT_MAX; i++) {
11275 		opt[i].dofo_option = i;
11276 		opt[i].dofo_strtab = DOF_SECIDX_NONE;
11277 		opt[i].dofo_value = state->dts_options[i];
11278 	}
11279 
11280 	return (dof);
11281 }
11282 
11283 static dof_hdr_t *
11284 dtrace_dof_copyin(uintptr_t uarg, int *errp)
11285 {
11286 	dof_hdr_t hdr, *dof;
11287 
11288 	ASSERT(!MUTEX_HELD(&dtrace_lock));
11289 
11290 	/*
11291 	 * First, we're going to copyin() the sizeof (dof_hdr_t).
11292 	 */
11293 	if (copyin((void *)uarg, &hdr, sizeof (hdr)) != 0) {
11294 		dtrace_dof_error(NULL, "failed to copyin DOF header");
11295 		*errp = EFAULT;
11296 		return (NULL);
11297 	}
11298 
11299 	/*
11300 	 * Now we'll allocate the entire DOF and copy it in -- provided
11301 	 * that the length isn't outrageous.
11302 	 */
11303 	if (hdr.dofh_loadsz >= dtrace_dof_maxsize) {
11304 		dtrace_dof_error(&hdr, "load size exceeds maximum");
11305 		*errp = E2BIG;
11306 		return (NULL);
11307 	}
11308 
11309 	if (hdr.dofh_loadsz < sizeof (hdr)) {
11310 		dtrace_dof_error(&hdr, "invalid load size");
11311 		*errp = EINVAL;
11312 		return (NULL);
11313 	}
11314 
11315 	dof = kmem_alloc(hdr.dofh_loadsz, KM_SLEEP);
11316 
11317 	if (copyin((void *)uarg, dof, hdr.dofh_loadsz) != 0 ||
11318 	    dof->dofh_loadsz != hdr.dofh_loadsz) {
11319 		kmem_free(dof, hdr.dofh_loadsz);
11320 		*errp = EFAULT;
11321 		return (NULL);
11322 	}
11323 
11324 	return (dof);
11325 }
11326 
11327 static dof_hdr_t *
11328 dtrace_dof_property(const char *name)
11329 {
11330 	uchar_t *buf;
11331 	uint64_t loadsz;
11332 	unsigned int len, i;
11333 	dof_hdr_t *dof;
11334 
11335 	/*
11336 	 * Unfortunately, array of values in .conf files are always (and
11337 	 * only) interpreted to be integer arrays.  We must read our DOF
11338 	 * as an integer array, and then squeeze it into a byte array.
11339 	 */
11340 	if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, dtrace_devi, 0,
11341 	    (char *)name, (int **)&buf, &len) != DDI_PROP_SUCCESS)
11342 		return (NULL);
11343 
11344 	for (i = 0; i < len; i++)
11345 		buf[i] = (uchar_t)(((int *)buf)[i]);
11346 
11347 	if (len < sizeof (dof_hdr_t)) {
11348 		ddi_prop_free(buf);
11349 		dtrace_dof_error(NULL, "truncated header");
11350 		return (NULL);
11351 	}
11352 
11353 	if (len < (loadsz = ((dof_hdr_t *)buf)->dofh_loadsz)) {
11354 		ddi_prop_free(buf);
11355 		dtrace_dof_error(NULL, "truncated DOF");
11356 		return (NULL);
11357 	}
11358 
11359 	if (loadsz >= dtrace_dof_maxsize) {
11360 		ddi_prop_free(buf);
11361 		dtrace_dof_error(NULL, "oversized DOF");
11362 		return (NULL);
11363 	}
11364 
11365 	dof = kmem_alloc(loadsz, KM_SLEEP);
11366 	bcopy(buf, dof, loadsz);
11367 	ddi_prop_free(buf);
11368 
11369 	return (dof);
11370 }
11371 
11372 static void
11373 dtrace_dof_destroy(dof_hdr_t *dof)
11374 {
11375 	kmem_free(dof, dof->dofh_loadsz);
11376 }
11377 
11378 /*
11379  * Return the dof_sec_t pointer corresponding to a given section index.  If the
11380  * index is not valid, dtrace_dof_error() is called and NULL is returned.  If
11381  * a type other than DOF_SECT_NONE is specified, the header is checked against
11382  * this type and NULL is returned if the types do not match.
11383  */
11384 static dof_sec_t *
11385 dtrace_dof_sect(dof_hdr_t *dof, uint32_t type, dof_secidx_t i)
11386 {
11387 	dof_sec_t *sec = (dof_sec_t *)(uintptr_t)
11388 	    ((uintptr_t)dof + dof->dofh_secoff + i * dof->dofh_secsize);
11389 
11390 	if (i >= dof->dofh_secnum) {
11391 		dtrace_dof_error(dof, "referenced section index is invalid");
11392 		return (NULL);
11393 	}
11394 
11395 	if (!(sec->dofs_flags & DOF_SECF_LOAD)) {
11396 		dtrace_dof_error(dof, "referenced section is not loadable");
11397 		return (NULL);
11398 	}
11399 
11400 	if (type != DOF_SECT_NONE && type != sec->dofs_type) {
11401 		dtrace_dof_error(dof, "referenced section is the wrong type");
11402 		return (NULL);
11403 	}
11404 
11405 	return (sec);
11406 }
11407 
11408 static dtrace_probedesc_t *
11409 dtrace_dof_probedesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_probedesc_t *desc)
11410 {
11411 	dof_probedesc_t *probe;
11412 	dof_sec_t *strtab;
11413 	uintptr_t daddr = (uintptr_t)dof;
11414 	uintptr_t str;
11415 	size_t size;
11416 
11417 	if (sec->dofs_type != DOF_SECT_PROBEDESC) {
11418 		dtrace_dof_error(dof, "invalid probe section");
11419 		return (NULL);
11420 	}
11421 
11422 	if (sec->dofs_align != sizeof (dof_secidx_t)) {
11423 		dtrace_dof_error(dof, "bad alignment in probe description");
11424 		return (NULL);
11425 	}
11426 
11427 	if (sec->dofs_offset + sizeof (dof_probedesc_t) > dof->dofh_loadsz) {
11428 		dtrace_dof_error(dof, "truncated probe description");
11429 		return (NULL);
11430 	}
11431 
11432 	probe = (dof_probedesc_t *)(uintptr_t)(daddr + sec->dofs_offset);
11433 	strtab = dtrace_dof_sect(dof, DOF_SECT_STRTAB, probe->dofp_strtab);
11434 
11435 	if (strtab == NULL)
11436 		return (NULL);
11437 
11438 	str = daddr + strtab->dofs_offset;
11439 	size = strtab->dofs_size;
11440 
11441 	if (probe->dofp_provider >= strtab->dofs_size) {
11442 		dtrace_dof_error(dof, "corrupt probe provider");
11443 		return (NULL);
11444 	}
11445 
11446 	(void) strncpy(desc->dtpd_provider,
11447 	    (char *)(str + probe->dofp_provider),
11448 	    MIN(DTRACE_PROVNAMELEN - 1, size - probe->dofp_provider));
11449 
11450 	if (probe->dofp_mod >= strtab->dofs_size) {
11451 		dtrace_dof_error(dof, "corrupt probe module");
11452 		return (NULL);
11453 	}
11454 
11455 	(void) strncpy(desc->dtpd_mod, (char *)(str + probe->dofp_mod),
11456 	    MIN(DTRACE_MODNAMELEN - 1, size - probe->dofp_mod));
11457 
11458 	if (probe->dofp_func >= strtab->dofs_size) {
11459 		dtrace_dof_error(dof, "corrupt probe function");
11460 		return (NULL);
11461 	}
11462 
11463 	(void) strncpy(desc->dtpd_func, (char *)(str + probe->dofp_func),
11464 	    MIN(DTRACE_FUNCNAMELEN - 1, size - probe->dofp_func));
11465 
11466 	if (probe->dofp_name >= strtab->dofs_size) {
11467 		dtrace_dof_error(dof, "corrupt probe name");
11468 		return (NULL);
11469 	}
11470 
11471 	(void) strncpy(desc->dtpd_name, (char *)(str + probe->dofp_name),
11472 	    MIN(DTRACE_NAMELEN - 1, size - probe->dofp_name));
11473 
11474 	return (desc);
11475 }
11476 
11477 static dtrace_difo_t *
11478 dtrace_dof_difo(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
11479     cred_t *cr)
11480 {
11481 	dtrace_difo_t *dp;
11482 	size_t ttl = 0;
11483 	dof_difohdr_t *dofd;
11484 	uintptr_t daddr = (uintptr_t)dof;
11485 	size_t max = dtrace_difo_maxsize;
11486 	int i, l, n;
11487 
11488 	static const struct {
11489 		int section;
11490 		int bufoffs;
11491 		int lenoffs;
11492 		int entsize;
11493 		int align;
11494 		const char *msg;
11495 	} difo[] = {
11496 		{ DOF_SECT_DIF, offsetof(dtrace_difo_t, dtdo_buf),
11497 		offsetof(dtrace_difo_t, dtdo_len), sizeof (dif_instr_t),
11498 		sizeof (dif_instr_t), "multiple DIF sections" },
11499 
11500 		{ DOF_SECT_INTTAB, offsetof(dtrace_difo_t, dtdo_inttab),
11501 		offsetof(dtrace_difo_t, dtdo_intlen), sizeof (uint64_t),
11502 		sizeof (uint64_t), "multiple integer tables" },
11503 
11504 		{ DOF_SECT_STRTAB, offsetof(dtrace_difo_t, dtdo_strtab),
11505 		offsetof(dtrace_difo_t, dtdo_strlen), 0,
11506 		sizeof (char), "multiple string tables" },
11507 
11508 		{ DOF_SECT_VARTAB, offsetof(dtrace_difo_t, dtdo_vartab),
11509 		offsetof(dtrace_difo_t, dtdo_varlen), sizeof (dtrace_difv_t),
11510 		sizeof (uint_t), "multiple variable tables" },
11511 
11512 		{ DOF_SECT_NONE, 0, 0, 0, NULL }
11513 	};
11514 
11515 	if (sec->dofs_type != DOF_SECT_DIFOHDR) {
11516 		dtrace_dof_error(dof, "invalid DIFO header section");
11517 		return (NULL);
11518 	}
11519 
11520 	if (sec->dofs_align != sizeof (dof_secidx_t)) {
11521 		dtrace_dof_error(dof, "bad alignment in DIFO header");
11522 		return (NULL);
11523 	}
11524 
11525 	if (sec->dofs_size < sizeof (dof_difohdr_t) ||
11526 	    sec->dofs_size % sizeof (dof_secidx_t)) {
11527 		dtrace_dof_error(dof, "bad size in DIFO header");
11528 		return (NULL);
11529 	}
11530 
11531 	dofd = (dof_difohdr_t *)(uintptr_t)(daddr + sec->dofs_offset);
11532 	n = (sec->dofs_size - sizeof (*dofd)) / sizeof (dof_secidx_t) + 1;
11533 
11534 	dp = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP);
11535 	dp->dtdo_rtype = dofd->dofd_rtype;
11536 
11537 	for (l = 0; l < n; l++) {
11538 		dof_sec_t *subsec;
11539 		void **bufp;
11540 		uint32_t *lenp;
11541 
11542 		if ((subsec = dtrace_dof_sect(dof, DOF_SECT_NONE,
11543 		    dofd->dofd_links[l])) == NULL)
11544 			goto err; /* invalid section link */
11545 
11546 		if (ttl + subsec->dofs_size > max) {
11547 			dtrace_dof_error(dof, "exceeds maximum size");
11548 			goto err;
11549 		}
11550 
11551 		ttl += subsec->dofs_size;
11552 
11553 		for (i = 0; difo[i].section != DOF_SECT_NONE; i++) {
11554 			if (subsec->dofs_type != difo[i].section)
11555 				continue;
11556 
11557 			if (!(subsec->dofs_flags & DOF_SECF_LOAD)) {
11558 				dtrace_dof_error(dof, "section not loaded");
11559 				goto err;
11560 			}
11561 
11562 			if (subsec->dofs_align != difo[i].align) {
11563 				dtrace_dof_error(dof, "bad alignment");
11564 				goto err;
11565 			}
11566 
11567 			bufp = (void **)((uintptr_t)dp + difo[i].bufoffs);
11568 			lenp = (uint32_t *)((uintptr_t)dp + difo[i].lenoffs);
11569 
11570 			if (*bufp != NULL) {
11571 				dtrace_dof_error(dof, difo[i].msg);
11572 				goto err;
11573 			}
11574 
11575 			if (difo[i].entsize != subsec->dofs_entsize) {
11576 				dtrace_dof_error(dof, "entry size mismatch");
11577 				goto err;
11578 			}
11579 
11580 			if (subsec->dofs_entsize != 0 &&
11581 			    (subsec->dofs_size % subsec->dofs_entsize) != 0) {
11582 				dtrace_dof_error(dof, "corrupt entry size");
11583 				goto err;
11584 			}
11585 
11586 			*lenp = subsec->dofs_size;
11587 			*bufp = kmem_alloc(subsec->dofs_size, KM_SLEEP);
11588 			bcopy((char *)(uintptr_t)(daddr + subsec->dofs_offset),
11589 			    *bufp, subsec->dofs_size);
11590 
11591 			if (subsec->dofs_entsize != 0)
11592 				*lenp /= subsec->dofs_entsize;
11593 
11594 			break;
11595 		}
11596 
11597 		/*
11598 		 * If we encounter a loadable DIFO sub-section that is not
11599 		 * known to us, assume this is a broken program and fail.
11600 		 */
11601 		if (difo[i].section == DOF_SECT_NONE &&
11602 		    (subsec->dofs_flags & DOF_SECF_LOAD)) {
11603 			dtrace_dof_error(dof, "unrecognized DIFO subsection");
11604 			goto err;
11605 		}
11606 	}
11607 
11608 	if (dp->dtdo_buf == NULL) {
11609 		/*
11610 		 * We can't have a DIF object without DIF text.
11611 		 */
11612 		dtrace_dof_error(dof, "missing DIF text");
11613 		goto err;
11614 	}
11615 
11616 	/*
11617 	 * Before we validate the DIF object, run through the variable table
11618 	 * looking for the strings -- if any of their size are under, we'll set
11619 	 * their size to be the system-wide default string size.  Note that
11620 	 * this should _not_ happen if the "strsize" option has been set --
11621 	 * in this case, the compiler should have set the size to reflect the
11622 	 * setting of the option.
11623 	 */
11624 	for (i = 0; i < dp->dtdo_varlen; i++) {
11625 		dtrace_difv_t *v = &dp->dtdo_vartab[i];
11626 		dtrace_diftype_t *t = &v->dtdv_type;
11627 
11628 		if (v->dtdv_id < DIF_VAR_OTHER_UBASE)
11629 			continue;
11630 
11631 		if (t->dtdt_kind == DIF_TYPE_STRING && t->dtdt_size == 0)
11632 			t->dtdt_size = dtrace_strsize_default;
11633 	}
11634 
11635 	if (dtrace_difo_validate(dp, vstate, DIF_DIR_NREGS, cr) != 0)
11636 		goto err;
11637 
11638 	dtrace_difo_init(dp, vstate);
11639 	return (dp);
11640 
11641 err:
11642 	kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t));
11643 	kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t));
11644 	kmem_free(dp->dtdo_strtab, dp->dtdo_strlen);
11645 	kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t));
11646 
11647 	kmem_free(dp, sizeof (dtrace_difo_t));
11648 	return (NULL);
11649 }
11650 
11651 static dtrace_predicate_t *
11652 dtrace_dof_predicate(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
11653     cred_t *cr)
11654 {
11655 	dtrace_difo_t *dp;
11656 
11657 	if ((dp = dtrace_dof_difo(dof, sec, vstate, cr)) == NULL)
11658 		return (NULL);
11659 
11660 	return (dtrace_predicate_create(dp));
11661 }
11662 
11663 static dtrace_actdesc_t *
11664 dtrace_dof_actdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
11665     cred_t *cr)
11666 {
11667 	dtrace_actdesc_t *act, *first = NULL, *last = NULL, *next;
11668 	dof_actdesc_t *desc;
11669 	dof_sec_t *difosec;
11670 	size_t offs;
11671 	uintptr_t daddr = (uintptr_t)dof;
11672 	uint64_t arg;
11673 	dtrace_actkind_t kind;
11674 
11675 	if (sec->dofs_type != DOF_SECT_ACTDESC) {
11676 		dtrace_dof_error(dof, "invalid action section");
11677 		return (NULL);
11678 	}
11679 
11680 	if (sec->dofs_offset + sizeof (dof_actdesc_t) > dof->dofh_loadsz) {
11681 		dtrace_dof_error(dof, "truncated action description");
11682 		return (NULL);
11683 	}
11684 
11685 	if (sec->dofs_align != sizeof (uint64_t)) {
11686 		dtrace_dof_error(dof, "bad alignment in action description");
11687 		return (NULL);
11688 	}
11689 
11690 	if (sec->dofs_size < sec->dofs_entsize) {
11691 		dtrace_dof_error(dof, "section entry size exceeds total size");
11692 		return (NULL);
11693 	}
11694 
11695 	if (sec->dofs_entsize != sizeof (dof_actdesc_t)) {
11696 		dtrace_dof_error(dof, "bad entry size in action description");
11697 		return (NULL);
11698 	}
11699 
11700 	if (sec->dofs_size / sec->dofs_entsize > dtrace_actions_max) {
11701 		dtrace_dof_error(dof, "actions exceed dtrace_actions_max");
11702 		return (NULL);
11703 	}
11704 
11705 	for (offs = 0; offs < sec->dofs_size; offs += sec->dofs_entsize) {
11706 		desc = (dof_actdesc_t *)(daddr +
11707 		    (uintptr_t)sec->dofs_offset + offs);
11708 		kind = (dtrace_actkind_t)desc->dofa_kind;
11709 
11710 		if (DTRACEACT_ISPRINTFLIKE(kind) &&
11711 		    (kind != DTRACEACT_PRINTA ||
11712 		    desc->dofa_strtab != DOF_SECIDX_NONE)) {
11713 			dof_sec_t *strtab;
11714 			char *str, *fmt;
11715 			uint64_t i;
11716 
11717 			/*
11718 			 * printf()-like actions must have a format string.
11719 			 */
11720 			if ((strtab = dtrace_dof_sect(dof,
11721 			    DOF_SECT_STRTAB, desc->dofa_strtab)) == NULL)
11722 				goto err;
11723 
11724 			str = (char *)((uintptr_t)dof +
11725 			    (uintptr_t)strtab->dofs_offset);
11726 
11727 			for (i = desc->dofa_arg; i < strtab->dofs_size; i++) {
11728 				if (str[i] == '\0')
11729 					break;
11730 			}
11731 
11732 			if (i >= strtab->dofs_size) {
11733 				dtrace_dof_error(dof, "bogus format string");
11734 				goto err;
11735 			}
11736 
11737 			if (i == desc->dofa_arg) {
11738 				dtrace_dof_error(dof, "empty format string");
11739 				goto err;
11740 			}
11741 
11742 			i -= desc->dofa_arg;
11743 			fmt = kmem_alloc(i + 1, KM_SLEEP);
11744 			bcopy(&str[desc->dofa_arg], fmt, i + 1);
11745 			arg = (uint64_t)(uintptr_t)fmt;
11746 		} else {
11747 			if (kind == DTRACEACT_PRINTA) {
11748 				ASSERT(desc->dofa_strtab == DOF_SECIDX_NONE);
11749 				arg = 0;
11750 			} else {
11751 				arg = desc->dofa_arg;
11752 			}
11753 		}
11754 
11755 		act = dtrace_actdesc_create(kind, desc->dofa_ntuple,
11756 		    desc->dofa_uarg, arg);
11757 
11758 		if (last != NULL) {
11759 			last->dtad_next = act;
11760 		} else {
11761 			first = act;
11762 		}
11763 
11764 		last = act;
11765 
11766 		if (desc->dofa_difo == DOF_SECIDX_NONE)
11767 			continue;
11768 
11769 		if ((difosec = dtrace_dof_sect(dof,
11770 		    DOF_SECT_DIFOHDR, desc->dofa_difo)) == NULL)
11771 			goto err;
11772 
11773 		act->dtad_difo = dtrace_dof_difo(dof, difosec, vstate, cr);
11774 
11775 		if (act->dtad_difo == NULL)
11776 			goto err;
11777 	}
11778 
11779 	ASSERT(first != NULL);
11780 	return (first);
11781 
11782 err:
11783 	for (act = first; act != NULL; act = next) {
11784 		next = act->dtad_next;
11785 		dtrace_actdesc_release(act, vstate);
11786 	}
11787 
11788 	return (NULL);
11789 }
11790 
11791 static dtrace_ecbdesc_t *
11792 dtrace_dof_ecbdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
11793     cred_t *cr)
11794 {
11795 	dtrace_ecbdesc_t *ep;
11796 	dof_ecbdesc_t *ecb;
11797 	dtrace_probedesc_t *desc;
11798 	dtrace_predicate_t *pred = NULL;
11799 
11800 	if (sec->dofs_size < sizeof (dof_ecbdesc_t)) {
11801 		dtrace_dof_error(dof, "truncated ECB description");
11802 		return (NULL);
11803 	}
11804 
11805 	if (sec->dofs_align != sizeof (uint64_t)) {
11806 		dtrace_dof_error(dof, "bad alignment in ECB description");
11807 		return (NULL);
11808 	}
11809 
11810 	ecb = (dof_ecbdesc_t *)((uintptr_t)dof + (uintptr_t)sec->dofs_offset);
11811 	sec = dtrace_dof_sect(dof, DOF_SECT_PROBEDESC, ecb->dofe_probes);
11812 
11813 	if (sec == NULL)
11814 		return (NULL);
11815 
11816 	ep = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP);
11817 	ep->dted_uarg = ecb->dofe_uarg;
11818 	desc = &ep->dted_probe;
11819 
11820 	if (dtrace_dof_probedesc(dof, sec, desc) == NULL)
11821 		goto err;
11822 
11823 	if (ecb->dofe_pred != DOF_SECIDX_NONE) {
11824 		if ((sec = dtrace_dof_sect(dof,
11825 		    DOF_SECT_DIFOHDR, ecb->dofe_pred)) == NULL)
11826 			goto err;
11827 
11828 		if ((pred = dtrace_dof_predicate(dof, sec, vstate, cr)) == NULL)
11829 			goto err;
11830 
11831 		ep->dted_pred.dtpdd_predicate = pred;
11832 	}
11833 
11834 	if (ecb->dofe_actions != DOF_SECIDX_NONE) {
11835 		if ((sec = dtrace_dof_sect(dof,
11836 		    DOF_SECT_ACTDESC, ecb->dofe_actions)) == NULL)
11837 			goto err;
11838 
11839 		ep->dted_action = dtrace_dof_actdesc(dof, sec, vstate, cr);
11840 
11841 		if (ep->dted_action == NULL)
11842 			goto err;
11843 	}
11844 
11845 	return (ep);
11846 
11847 err:
11848 	if (pred != NULL)
11849 		dtrace_predicate_release(pred, vstate);
11850 	kmem_free(ep, sizeof (dtrace_ecbdesc_t));
11851 	return (NULL);
11852 }
11853 
11854 /*
11855  * Apply the relocations from the specified 'sec' (a DOF_SECT_URELHDR) to the
11856  * specified DOF.  At present, this amounts to simply adding 'ubase' to the
11857  * site of any user SETX relocations to account for load object base address.
11858  * In the future, if we need other relocations, this function can be extended.
11859  */
11860 static int
11861 dtrace_dof_relocate(dof_hdr_t *dof, dof_sec_t *sec, uint64_t ubase)
11862 {
11863 	uintptr_t daddr = (uintptr_t)dof;
11864 	dof_relohdr_t *dofr =
11865 	    (dof_relohdr_t *)(uintptr_t)(daddr + sec->dofs_offset);
11866 	dof_sec_t *ss, *rs, *ts;
11867 	dof_relodesc_t *r;
11868 	uint_t i, n;
11869 
11870 	if (sec->dofs_size < sizeof (dof_relohdr_t) ||
11871 	    sec->dofs_align != sizeof (dof_secidx_t)) {
11872 		dtrace_dof_error(dof, "invalid relocation header");
11873 		return (-1);
11874 	}
11875 
11876 	ss = dtrace_dof_sect(dof, DOF_SECT_STRTAB, dofr->dofr_strtab);
11877 	rs = dtrace_dof_sect(dof, DOF_SECT_RELTAB, dofr->dofr_relsec);
11878 	ts = dtrace_dof_sect(dof, DOF_SECT_NONE, dofr->dofr_tgtsec);
11879 
11880 	if (ss == NULL || rs == NULL || ts == NULL)
11881 		return (-1); /* dtrace_dof_error() has been called already */
11882 
11883 	if (rs->dofs_entsize < sizeof (dof_relodesc_t) ||
11884 	    rs->dofs_align != sizeof (uint64_t)) {
11885 		dtrace_dof_error(dof, "invalid relocation section");
11886 		return (-1);
11887 	}
11888 
11889 	r = (dof_relodesc_t *)(uintptr_t)(daddr + rs->dofs_offset);
11890 	n = rs->dofs_size / rs->dofs_entsize;
11891 
11892 	for (i = 0; i < n; i++) {
11893 		uintptr_t taddr = daddr + ts->dofs_offset + r->dofr_offset;
11894 
11895 		switch (r->dofr_type) {
11896 		case DOF_RELO_NONE:
11897 			break;
11898 		case DOF_RELO_SETX:
11899 			if (r->dofr_offset >= ts->dofs_size || r->dofr_offset +
11900 			    sizeof (uint64_t) > ts->dofs_size) {
11901 				dtrace_dof_error(dof, "bad relocation offset");
11902 				return (-1);
11903 			}
11904 
11905 			if (!IS_P2ALIGNED(taddr, sizeof (uint64_t))) {
11906 				dtrace_dof_error(dof, "misaligned setx relo");
11907 				return (-1);
11908 			}
11909 
11910 			*(uint64_t *)taddr += ubase;
11911 			break;
11912 		default:
11913 			dtrace_dof_error(dof, "invalid relocation type");
11914 			return (-1);
11915 		}
11916 
11917 		r = (dof_relodesc_t *)((uintptr_t)r + rs->dofs_entsize);
11918 	}
11919 
11920 	return (0);
11921 }
11922 
11923 /*
11924  * The dof_hdr_t passed to dtrace_dof_slurp() should be a partially validated
11925  * header:  it should be at the front of a memory region that is at least
11926  * sizeof (dof_hdr_t) in size -- and then at least dof_hdr.dofh_loadsz in
11927  * size.  It need not be validated in any other way.
11928  */
11929 static int
11930 dtrace_dof_slurp(dof_hdr_t *dof, dtrace_vstate_t *vstate, cred_t *cr,
11931     dtrace_enabling_t **enabp, uint64_t ubase, int noprobes)
11932 {
11933 	uint64_t len = dof->dofh_loadsz, seclen;
11934 	uintptr_t daddr = (uintptr_t)dof;
11935 	dtrace_ecbdesc_t *ep;
11936 	dtrace_enabling_t *enab;
11937 	uint_t i;
11938 
11939 	ASSERT(MUTEX_HELD(&dtrace_lock));
11940 	ASSERT(dof->dofh_loadsz >= sizeof (dof_hdr_t));
11941 
11942 	/*
11943 	 * Check the DOF header identification bytes.  In addition to checking
11944 	 * valid settings, we also verify that unused bits/bytes are zeroed so
11945 	 * we can use them later without fear of regressing existing binaries.
11946 	 */
11947 	if (bcmp(&dof->dofh_ident[DOF_ID_MAG0],
11948 	    DOF_MAG_STRING, DOF_MAG_STRLEN) != 0) {
11949 		dtrace_dof_error(dof, "DOF magic string mismatch");
11950 		return (-1);
11951 	}
11952 
11953 	if (dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_ILP32 &&
11954 	    dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_LP64) {
11955 		dtrace_dof_error(dof, "DOF has invalid data model");
11956 		return (-1);
11957 	}
11958 
11959 	if (dof->dofh_ident[DOF_ID_ENCODING] != DOF_ENCODE_NATIVE) {
11960 		dtrace_dof_error(dof, "DOF encoding mismatch");
11961 		return (-1);
11962 	}
11963 
11964 	if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 &&
11965 	    dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_2) {
11966 		dtrace_dof_error(dof, "DOF version mismatch");
11967 		return (-1);
11968 	}
11969 
11970 	if (dof->dofh_ident[DOF_ID_DIFVERS] != DIF_VERSION_2) {
11971 		dtrace_dof_error(dof, "DOF uses unsupported instruction set");
11972 		return (-1);
11973 	}
11974 
11975 	if (dof->dofh_ident[DOF_ID_DIFIREG] > DIF_DIR_NREGS) {
11976 		dtrace_dof_error(dof, "DOF uses too many integer registers");
11977 		return (-1);
11978 	}
11979 
11980 	if (dof->dofh_ident[DOF_ID_DIFTREG] > DIF_DTR_NREGS) {
11981 		dtrace_dof_error(dof, "DOF uses too many tuple registers");
11982 		return (-1);
11983 	}
11984 
11985 	for (i = DOF_ID_PAD; i < DOF_ID_SIZE; i++) {
11986 		if (dof->dofh_ident[i] != 0) {
11987 			dtrace_dof_error(dof, "DOF has invalid ident byte set");
11988 			return (-1);
11989 		}
11990 	}
11991 
11992 	if (dof->dofh_flags & ~DOF_FL_VALID) {
11993 		dtrace_dof_error(dof, "DOF has invalid flag bits set");
11994 		return (-1);
11995 	}
11996 
11997 	if (dof->dofh_secsize == 0) {
11998 		dtrace_dof_error(dof, "zero section header size");
11999 		return (-1);
12000 	}
12001 
12002 	/*
12003 	 * Check that the section headers don't exceed the amount of DOF
12004 	 * data.  Note that we cast the section size and number of sections
12005 	 * to uint64_t's to prevent possible overflow in the multiplication.
12006 	 */
12007 	seclen = (uint64_t)dof->dofh_secnum * (uint64_t)dof->dofh_secsize;
12008 
12009 	if (dof->dofh_secoff > len || seclen > len ||
12010 	    dof->dofh_secoff + seclen > len) {
12011 		dtrace_dof_error(dof, "truncated section headers");
12012 		return (-1);
12013 	}
12014 
12015 	if (!IS_P2ALIGNED(dof->dofh_secoff, sizeof (uint64_t))) {
12016 		dtrace_dof_error(dof, "misaligned section headers");
12017 		return (-1);
12018 	}
12019 
12020 	if (!IS_P2ALIGNED(dof->dofh_secsize, sizeof (uint64_t))) {
12021 		dtrace_dof_error(dof, "misaligned section size");
12022 		return (-1);
12023 	}
12024 
12025 	/*
12026 	 * Take an initial pass through the section headers to be sure that
12027 	 * the headers don't have stray offsets.  If the 'noprobes' flag is
12028 	 * set, do not permit sections relating to providers, probes, or args.
12029 	 */
12030 	for (i = 0; i < dof->dofh_secnum; i++) {
12031 		dof_sec_t *sec = (dof_sec_t *)(daddr +
12032 		    (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
12033 
12034 		if (noprobes) {
12035 			switch (sec->dofs_type) {
12036 			case DOF_SECT_PROVIDER:
12037 			case DOF_SECT_PROBES:
12038 			case DOF_SECT_PRARGS:
12039 			case DOF_SECT_PROFFS:
12040 				dtrace_dof_error(dof, "illegal sections "
12041 				    "for enabling");
12042 				return (-1);
12043 			}
12044 		}
12045 
12046 		if (DOF_SEC_ISLOADABLE(sec->dofs_type) &&
12047 		    !(sec->dofs_flags & DOF_SECF_LOAD)) {
12048 			dtrace_dof_error(dof, "loadable section with load "
12049 			    "flag unset");
12050 			return (-1);
12051 		}
12052 
12053 		if (!(sec->dofs_flags & DOF_SECF_LOAD))
12054 			continue; /* just ignore non-loadable sections */
12055 
12056 		if (sec->dofs_align & (sec->dofs_align - 1)) {
12057 			dtrace_dof_error(dof, "bad section alignment");
12058 			return (-1);
12059 		}
12060 
12061 		if (sec->dofs_offset & (sec->dofs_align - 1)) {
12062 			dtrace_dof_error(dof, "misaligned section");
12063 			return (-1);
12064 		}
12065 
12066 		if (sec->dofs_offset > len || sec->dofs_size > len ||
12067 		    sec->dofs_offset + sec->dofs_size > len) {
12068 			dtrace_dof_error(dof, "corrupt section header");
12069 			return (-1);
12070 		}
12071 
12072 		if (sec->dofs_type == DOF_SECT_STRTAB && *((char *)daddr +
12073 		    sec->dofs_offset + sec->dofs_size - 1) != '\0') {
12074 			dtrace_dof_error(dof, "non-terminating string table");
12075 			return (-1);
12076 		}
12077 	}
12078 
12079 	/*
12080 	 * Take a second pass through the sections and locate and perform any
12081 	 * relocations that are present.  We do this after the first pass to
12082 	 * be sure that all sections have had their headers validated.
12083 	 */
12084 	for (i = 0; i < dof->dofh_secnum; i++) {
12085 		dof_sec_t *sec = (dof_sec_t *)(daddr +
12086 		    (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
12087 
12088 		if (!(sec->dofs_flags & DOF_SECF_LOAD))
12089 			continue; /* skip sections that are not loadable */
12090 
12091 		switch (sec->dofs_type) {
12092 		case DOF_SECT_URELHDR:
12093 			if (dtrace_dof_relocate(dof, sec, ubase) != 0)
12094 				return (-1);
12095 			break;
12096 		}
12097 	}
12098 
12099 	if ((enab = *enabp) == NULL)
12100 		enab = *enabp = dtrace_enabling_create(vstate);
12101 
12102 	for (i = 0; i < dof->dofh_secnum; i++) {
12103 		dof_sec_t *sec = (dof_sec_t *)(daddr +
12104 		    (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
12105 
12106 		if (sec->dofs_type != DOF_SECT_ECBDESC)
12107 			continue;
12108 
12109 		if ((ep = dtrace_dof_ecbdesc(dof, sec, vstate, cr)) == NULL) {
12110 			dtrace_enabling_destroy(enab);
12111 			*enabp = NULL;
12112 			return (-1);
12113 		}
12114 
12115 		dtrace_enabling_add(enab, ep);
12116 	}
12117 
12118 	return (0);
12119 }
12120 
12121 /*
12122  * Process DOF for any options.  This routine assumes that the DOF has been
12123  * at least processed by dtrace_dof_slurp().
12124  */
12125 static int
12126 dtrace_dof_options(dof_hdr_t *dof, dtrace_state_t *state)
12127 {
12128 	int i, rval;
12129 	uint32_t entsize;
12130 	size_t offs;
12131 	dof_optdesc_t *desc;
12132 
12133 	for (i = 0; i < dof->dofh_secnum; i++) {
12134 		dof_sec_t *sec = (dof_sec_t *)((uintptr_t)dof +
12135 		    (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
12136 
12137 		if (sec->dofs_type != DOF_SECT_OPTDESC)
12138 			continue;
12139 
12140 		if (sec->dofs_align != sizeof (uint64_t)) {
12141 			dtrace_dof_error(dof, "bad alignment in "
12142 			    "option description");
12143 			return (EINVAL);
12144 		}
12145 
12146 		if ((entsize = sec->dofs_entsize) == 0) {
12147 			dtrace_dof_error(dof, "zeroed option entry size");
12148 			return (EINVAL);
12149 		}
12150 
12151 		if (entsize < sizeof (dof_optdesc_t)) {
12152 			dtrace_dof_error(dof, "bad option entry size");
12153 			return (EINVAL);
12154 		}
12155 
12156 		for (offs = 0; offs < sec->dofs_size; offs += entsize) {
12157 			desc = (dof_optdesc_t *)((uintptr_t)dof +
12158 			    (uintptr_t)sec->dofs_offset + offs);
12159 
12160 			if (desc->dofo_strtab != DOF_SECIDX_NONE) {
12161 				dtrace_dof_error(dof, "non-zero option string");
12162 				return (EINVAL);
12163 			}
12164 
12165 			if (desc->dofo_value == DTRACEOPT_UNSET) {
12166 				dtrace_dof_error(dof, "unset option");
12167 				return (EINVAL);
12168 			}
12169 
12170 			if ((rval = dtrace_state_option(state,
12171 			    desc->dofo_option, desc->dofo_value)) != 0) {
12172 				dtrace_dof_error(dof, "rejected option");
12173 				return (rval);
12174 			}
12175 		}
12176 	}
12177 
12178 	return (0);
12179 }
12180 
12181 /*
12182  * DTrace Consumer State Functions
12183  */
12184 int
12185 dtrace_dstate_init(dtrace_dstate_t *dstate, size_t size)
12186 {
12187 	size_t hashsize, maxper, min, chunksize = dstate->dtds_chunksize;
12188 	void *base;
12189 	uintptr_t limit;
12190 	dtrace_dynvar_t *dvar, *next, *start;
12191 	int i;
12192 
12193 	ASSERT(MUTEX_HELD(&dtrace_lock));
12194 	ASSERT(dstate->dtds_base == NULL && dstate->dtds_percpu == NULL);
12195 
12196 	bzero(dstate, sizeof (dtrace_dstate_t));
12197 
12198 	if ((dstate->dtds_chunksize = chunksize) == 0)
12199 		dstate->dtds_chunksize = DTRACE_DYNVAR_CHUNKSIZE;
12200 
12201 	if (size < (min = dstate->dtds_chunksize + sizeof (dtrace_dynhash_t)))
12202 		size = min;
12203 
12204 	if ((base = kmem_zalloc(size, KM_NOSLEEP)) == NULL)
12205 		return (ENOMEM);
12206 
12207 	dstate->dtds_size = size;
12208 	dstate->dtds_base = base;
12209 	dstate->dtds_percpu = kmem_cache_alloc(dtrace_state_cache, KM_SLEEP);
12210 	bzero(dstate->dtds_percpu, NCPU * sizeof (dtrace_dstate_percpu_t));
12211 
12212 	hashsize = size / (dstate->dtds_chunksize + sizeof (dtrace_dynhash_t));
12213 
12214 	if (hashsize != 1 && (hashsize & 1))
12215 		hashsize--;
12216 
12217 	dstate->dtds_hashsize = hashsize;
12218 	dstate->dtds_hash = dstate->dtds_base;
12219 
12220 	/*
12221 	 * Set all of our hash buckets to point to the single sink, and (if
12222 	 * it hasn't already been set), set the sink's hash value to be the
12223 	 * sink sentinel value.  The sink is needed for dynamic variable
12224 	 * lookups to know that they have iterated over an entire, valid hash
12225 	 * chain.
12226 	 */
12227 	for (i = 0; i < hashsize; i++)
12228 		dstate->dtds_hash[i].dtdh_chain = &dtrace_dynhash_sink;
12229 
12230 	if (dtrace_dynhash_sink.dtdv_hashval != DTRACE_DYNHASH_SINK)
12231 		dtrace_dynhash_sink.dtdv_hashval = DTRACE_DYNHASH_SINK;
12232 
12233 	/*
12234 	 * Determine number of active CPUs.  Divide free list evenly among
12235 	 * active CPUs.
12236 	 */
12237 	start = (dtrace_dynvar_t *)
12238 	    ((uintptr_t)base + hashsize * sizeof (dtrace_dynhash_t));
12239 	limit = (uintptr_t)base + size;
12240 
12241 	maxper = (limit - (uintptr_t)start) / NCPU;
12242 	maxper = (maxper / dstate->dtds_chunksize) * dstate->dtds_chunksize;
12243 
12244 	for (i = 0; i < NCPU; i++) {
12245 		dstate->dtds_percpu[i].dtdsc_free = dvar = start;
12246 
12247 		/*
12248 		 * If we don't even have enough chunks to make it once through
12249 		 * NCPUs, we're just going to allocate everything to the first
12250 		 * CPU.  And if we're on the last CPU, we're going to allocate
12251 		 * whatever is left over.  In either case, we set the limit to
12252 		 * be the limit of the dynamic variable space.
12253 		 */
12254 		if (maxper == 0 || i == NCPU - 1) {
12255 			limit = (uintptr_t)base + size;
12256 			start = NULL;
12257 		} else {
12258 			limit = (uintptr_t)start + maxper;
12259 			start = (dtrace_dynvar_t *)limit;
12260 		}
12261 
12262 		ASSERT(limit <= (uintptr_t)base + size);
12263 
12264 		for (;;) {
12265 			next = (dtrace_dynvar_t *)((uintptr_t)dvar +
12266 			    dstate->dtds_chunksize);
12267 
12268 			if ((uintptr_t)next + dstate->dtds_chunksize >= limit)
12269 				break;
12270 
12271 			dvar->dtdv_next = next;
12272 			dvar = next;
12273 		}
12274 
12275 		if (maxper == 0)
12276 			break;
12277 	}
12278 
12279 	return (0);
12280 }
12281 
12282 void
12283 dtrace_dstate_fini(dtrace_dstate_t *dstate)
12284 {
12285 	ASSERT(MUTEX_HELD(&cpu_lock));
12286 
12287 	if (dstate->dtds_base == NULL)
12288 		return;
12289 
12290 	kmem_free(dstate->dtds_base, dstate->dtds_size);
12291 	kmem_cache_free(dtrace_state_cache, dstate->dtds_percpu);
12292 }
12293 
12294 static void
12295 dtrace_vstate_fini(dtrace_vstate_t *vstate)
12296 {
12297 	/*
12298 	 * Logical XOR, where are you?
12299 	 */
12300 	ASSERT((vstate->dtvs_nglobals == 0) ^ (vstate->dtvs_globals != NULL));
12301 
12302 	if (vstate->dtvs_nglobals > 0) {
12303 		kmem_free(vstate->dtvs_globals, vstate->dtvs_nglobals *
12304 		    sizeof (dtrace_statvar_t *));
12305 	}
12306 
12307 	if (vstate->dtvs_ntlocals > 0) {
12308 		kmem_free(vstate->dtvs_tlocals, vstate->dtvs_ntlocals *
12309 		    sizeof (dtrace_difv_t));
12310 	}
12311 
12312 	ASSERT((vstate->dtvs_nlocals == 0) ^ (vstate->dtvs_locals != NULL));
12313 
12314 	if (vstate->dtvs_nlocals > 0) {
12315 		kmem_free(vstate->dtvs_locals, vstate->dtvs_nlocals *
12316 		    sizeof (dtrace_statvar_t *));
12317 	}
12318 }
12319 
12320 static void
12321 dtrace_state_clean(dtrace_state_t *state)
12322 {
12323 	if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE)
12324 		return;
12325 
12326 	dtrace_dynvar_clean(&state->dts_vstate.dtvs_dynvars);
12327 	dtrace_speculation_clean(state);
12328 }
12329 
12330 static void
12331 dtrace_state_deadman(dtrace_state_t *state)
12332 {
12333 	hrtime_t now;
12334 
12335 	dtrace_sync();
12336 
12337 	now = dtrace_gethrtime();
12338 
12339 	if (state != dtrace_anon.dta_state &&
12340 	    now - state->dts_laststatus >= dtrace_deadman_user)
12341 		return;
12342 
12343 	/*
12344 	 * We must be sure that dts_alive never appears to be less than the
12345 	 * value upon entry to dtrace_state_deadman(), and because we lack a
12346 	 * dtrace_cas64(), we cannot store to it atomically.  We thus instead
12347 	 * store INT64_MAX to it, followed by a memory barrier, followed by
12348 	 * the new value.  This assures that dts_alive never appears to be
12349 	 * less than its true value, regardless of the order in which the
12350 	 * stores to the underlying storage are issued.
12351 	 */
12352 	state->dts_alive = INT64_MAX;
12353 	dtrace_membar_producer();
12354 	state->dts_alive = now;
12355 }
12356 
12357 dtrace_state_t *
12358 dtrace_state_create(dev_t *devp, cred_t *cr)
12359 {
12360 	minor_t minor;
12361 	major_t major;
12362 	char c[30];
12363 	dtrace_state_t *state;
12364 	dtrace_optval_t *opt;
12365 	int bufsize = NCPU * sizeof (dtrace_buffer_t), i;
12366 
12367 	ASSERT(MUTEX_HELD(&dtrace_lock));
12368 	ASSERT(MUTEX_HELD(&cpu_lock));
12369 
12370 	minor = (minor_t)(uintptr_t)vmem_alloc(dtrace_minor, 1,
12371 	    VM_BESTFIT | VM_SLEEP);
12372 
12373 	if (ddi_soft_state_zalloc(dtrace_softstate, minor) != DDI_SUCCESS) {
12374 		vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1);
12375 		return (NULL);
12376 	}
12377 
12378 	state = ddi_get_soft_state(dtrace_softstate, minor);
12379 	state->dts_epid = DTRACE_EPIDNONE + 1;
12380 
12381 	(void) snprintf(c, sizeof (c), "dtrace_aggid_%d", minor);
12382 	state->dts_aggid_arena = vmem_create(c, (void *)1, UINT32_MAX, 1,
12383 	    NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER);
12384 
12385 	if (devp != NULL) {
12386 		major = getemajor(*devp);
12387 	} else {
12388 		major = ddi_driver_major(dtrace_devi);
12389 	}
12390 
12391 	state->dts_dev = makedevice(major, minor);
12392 
12393 	if (devp != NULL)
12394 		*devp = state->dts_dev;
12395 
12396 	/*
12397 	 * We allocate NCPU buffers.  On the one hand, this can be quite
12398 	 * a bit of memory per instance (nearly 36K on a Starcat).  On the
12399 	 * other hand, it saves an additional memory reference in the probe
12400 	 * path.
12401 	 */
12402 	state->dts_buffer = kmem_zalloc(bufsize, KM_SLEEP);
12403 	state->dts_aggbuffer = kmem_zalloc(bufsize, KM_SLEEP);
12404 	state->dts_cleaner = CYCLIC_NONE;
12405 	state->dts_deadman = CYCLIC_NONE;
12406 	state->dts_vstate.dtvs_state = state;
12407 
12408 	for (i = 0; i < DTRACEOPT_MAX; i++)
12409 		state->dts_options[i] = DTRACEOPT_UNSET;
12410 
12411 	/*
12412 	 * Set the default options.
12413 	 */
12414 	opt = state->dts_options;
12415 	opt[DTRACEOPT_BUFPOLICY] = DTRACEOPT_BUFPOLICY_SWITCH;
12416 	opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_AUTO;
12417 	opt[DTRACEOPT_NSPEC] = dtrace_nspec_default;
12418 	opt[DTRACEOPT_SPECSIZE] = dtrace_specsize_default;
12419 	opt[DTRACEOPT_CPU] = (dtrace_optval_t)DTRACE_CPUALL;
12420 	opt[DTRACEOPT_STRSIZE] = dtrace_strsize_default;
12421 	opt[DTRACEOPT_STACKFRAMES] = dtrace_stackframes_default;
12422 	opt[DTRACEOPT_USTACKFRAMES] = dtrace_ustackframes_default;
12423 	opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_default;
12424 	opt[DTRACEOPT_AGGRATE] = dtrace_aggrate_default;
12425 	opt[DTRACEOPT_SWITCHRATE] = dtrace_switchrate_default;
12426 	opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_default;
12427 	opt[DTRACEOPT_JSTACKFRAMES] = dtrace_jstackframes_default;
12428 	opt[DTRACEOPT_JSTACKSTRSIZE] = dtrace_jstackstrsize_default;
12429 
12430 	state->dts_activity = DTRACE_ACTIVITY_INACTIVE;
12431 
12432 	/*
12433 	 * Depending on the user credentials, we set flag bits which alter probe
12434 	 * visibility or the amount of destructiveness allowed.  In the case of
12435 	 * actual anonymous tracing, or the possession of all privileges, all of
12436 	 * the normal checks are bypassed.
12437 	 */
12438 	if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) {
12439 		state->dts_cred.dcr_visible = DTRACE_CRV_ALL;
12440 		state->dts_cred.dcr_action = DTRACE_CRA_ALL;
12441 	} else {
12442 		/*
12443 		 * Set up the credentials for this instantiation.  We take a
12444 		 * hold on the credential to prevent it from disappearing on
12445 		 * us; this in turn prevents the zone_t referenced by this
12446 		 * credential from disappearing.  This means that we can
12447 		 * examine the credential and the zone from probe context.
12448 		 */
12449 		crhold(cr);
12450 		state->dts_cred.dcr_cred = cr;
12451 
12452 		/*
12453 		 * CRA_PROC means "we have *some* privilege for dtrace" and
12454 		 * unlocks the use of variables like pid, zonename, etc.
12455 		 */
12456 		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE) ||
12457 		    PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) {
12458 			state->dts_cred.dcr_action |= DTRACE_CRA_PROC;
12459 		}
12460 
12461 		/*
12462 		 * dtrace_user allows use of syscall and profile providers.
12463 		 * If the user also has proc_owner and/or proc_zone, we
12464 		 * extend the scope to include additional visibility and
12465 		 * destructive power.
12466 		 */
12467 		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE)) {
12468 			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) {
12469 				state->dts_cred.dcr_visible |=
12470 				    DTRACE_CRV_ALLPROC;
12471 
12472 				state->dts_cred.dcr_action |=
12473 				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER;
12474 			}
12475 
12476 			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) {
12477 				state->dts_cred.dcr_visible |=
12478 				    DTRACE_CRV_ALLZONE;
12479 
12480 				state->dts_cred.dcr_action |=
12481 				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE;
12482 			}
12483 
12484 			/*
12485 			 * If we have all privs in whatever zone this is,
12486 			 * we can do destructive things to processes which
12487 			 * have altered credentials.
12488 			 */
12489 			if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE),
12490 			    cr->cr_zone->zone_privset)) {
12491 				state->dts_cred.dcr_action |=
12492 				    DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG;
12493 			}
12494 		}
12495 
12496 		/*
12497 		 * Holding the dtrace_kernel privilege also implies that
12498 		 * the user has the dtrace_user privilege from a visibility
12499 		 * perspective.  But without further privileges, some
12500 		 * destructive actions are not available.
12501 		 */
12502 		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE)) {
12503 			/*
12504 			 * Make all probes in all zones visible.  However,
12505 			 * this doesn't mean that all actions become available
12506 			 * to all zones.
12507 			 */
12508 			state->dts_cred.dcr_visible |= DTRACE_CRV_KERNEL |
12509 			    DTRACE_CRV_ALLPROC | DTRACE_CRV_ALLZONE;
12510 
12511 			state->dts_cred.dcr_action |= DTRACE_CRA_KERNEL |
12512 			    DTRACE_CRA_PROC;
12513 			/*
12514 			 * Holding proc_owner means that destructive actions
12515 			 * for *this* zone are allowed.
12516 			 */
12517 			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
12518 				state->dts_cred.dcr_action |=
12519 				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER;
12520 
12521 			/*
12522 			 * Holding proc_zone means that destructive actions
12523 			 * for this user/group ID in all zones is allowed.
12524 			 */
12525 			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
12526 				state->dts_cred.dcr_action |=
12527 				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE;
12528 
12529 			/*
12530 			 * If we have all privs in whatever zone this is,
12531 			 * we can do destructive things to processes which
12532 			 * have altered credentials.
12533 			 */
12534 			if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE),
12535 			    cr->cr_zone->zone_privset)) {
12536 				state->dts_cred.dcr_action |=
12537 				    DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG;
12538 			}
12539 		}
12540 
12541 		/*
12542 		 * Holding the dtrace_proc privilege gives control over fasttrap
12543 		 * and pid providers.  We need to grant wider destructive
12544 		 * privileges in the event that the user has proc_owner and/or
12545 		 * proc_zone.
12546 		 */
12547 		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) {
12548 			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
12549 				state->dts_cred.dcr_action |=
12550 				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER;
12551 
12552 			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
12553 				state->dts_cred.dcr_action |=
12554 				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE;
12555 		}
12556 	}
12557 
12558 	return (state);
12559 }
12560 
12561 static int
12562 dtrace_state_buffer(dtrace_state_t *state, dtrace_buffer_t *buf, int which)
12563 {
12564 	dtrace_optval_t *opt = state->dts_options, size;
12565 	processorid_t cpu;
12566 	int flags = 0, rval;
12567 
12568 	ASSERT(MUTEX_HELD(&dtrace_lock));
12569 	ASSERT(MUTEX_HELD(&cpu_lock));
12570 	ASSERT(which < DTRACEOPT_MAX);
12571 	ASSERT(state->dts_activity == DTRACE_ACTIVITY_INACTIVE ||
12572 	    (state == dtrace_anon.dta_state &&
12573 	    state->dts_activity == DTRACE_ACTIVITY_ACTIVE));
12574 
12575 	if (opt[which] == DTRACEOPT_UNSET || opt[which] == 0)
12576 		return (0);
12577 
12578 	if (opt[DTRACEOPT_CPU] != DTRACEOPT_UNSET)
12579 		cpu = opt[DTRACEOPT_CPU];
12580 
12581 	if (which == DTRACEOPT_SPECSIZE)
12582 		flags |= DTRACEBUF_NOSWITCH;
12583 
12584 	if (which == DTRACEOPT_BUFSIZE) {
12585 		if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_RING)
12586 			flags |= DTRACEBUF_RING;
12587 
12588 		if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_FILL)
12589 			flags |= DTRACEBUF_FILL;
12590 
12591 		if (state != dtrace_anon.dta_state ||
12592 		    state->dts_activity != DTRACE_ACTIVITY_ACTIVE)
12593 			flags |= DTRACEBUF_INACTIVE;
12594 	}
12595 
12596 	for (size = opt[which]; size >= sizeof (uint64_t); size >>= 1) {
12597 		/*
12598 		 * The size must be 8-byte aligned.  If the size is not 8-byte
12599 		 * aligned, drop it down by the difference.
12600 		 */
12601 		if (size & (sizeof (uint64_t) - 1))
12602 			size -= size & (sizeof (uint64_t) - 1);
12603 
12604 		if (size < state->dts_reserve) {
12605 			/*
12606 			 * Buffers always must be large enough to accommodate
12607 			 * their prereserved space.  We return E2BIG instead
12608 			 * of ENOMEM in this case to allow for user-level
12609 			 * software to differentiate the cases.
12610 			 */
12611 			return (E2BIG);
12612 		}
12613 
12614 		rval = dtrace_buffer_alloc(buf, size, flags, cpu);
12615 
12616 		if (rval != ENOMEM) {
12617 			opt[which] = size;
12618 			return (rval);
12619 		}
12620 
12621 		if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL)
12622 			return (rval);
12623 	}
12624 
12625 	return (ENOMEM);
12626 }
12627 
12628 static int
12629 dtrace_state_buffers(dtrace_state_t *state)
12630 {
12631 	dtrace_speculation_t *spec = state->dts_speculations;
12632 	int rval, i;
12633 
12634 	if ((rval = dtrace_state_buffer(state, state->dts_buffer,
12635 	    DTRACEOPT_BUFSIZE)) != 0)
12636 		return (rval);
12637 
12638 	if ((rval = dtrace_state_buffer(state, state->dts_aggbuffer,
12639 	    DTRACEOPT_AGGSIZE)) != 0)
12640 		return (rval);
12641 
12642 	for (i = 0; i < state->dts_nspeculations; i++) {
12643 		if ((rval = dtrace_state_buffer(state,
12644 		    spec[i].dtsp_buffer, DTRACEOPT_SPECSIZE)) != 0)
12645 			return (rval);
12646 	}
12647 
12648 	return (0);
12649 }
12650 
12651 static void
12652 dtrace_state_prereserve(dtrace_state_t *state)
12653 {
12654 	dtrace_ecb_t *ecb;
12655 	dtrace_probe_t *probe;
12656 
12657 	state->dts_reserve = 0;
12658 
12659 	if (state->dts_options[DTRACEOPT_BUFPOLICY] != DTRACEOPT_BUFPOLICY_FILL)
12660 		return;
12661 
12662 	/*
12663 	 * If our buffer policy is a "fill" buffer policy, we need to set the
12664 	 * prereserved space to be the space required by the END probes.
12665 	 */
12666 	probe = dtrace_probes[dtrace_probeid_end - 1];
12667 	ASSERT(probe != NULL);
12668 
12669 	for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) {
12670 		if (ecb->dte_state != state)
12671 			continue;
12672 
12673 		state->dts_reserve += ecb->dte_needed + ecb->dte_alignment;
12674 	}
12675 }
12676 
12677 static int
12678 dtrace_state_go(dtrace_state_t *state, processorid_t *cpu)
12679 {
12680 	dtrace_optval_t *opt = state->dts_options, sz, nspec;
12681 	dtrace_speculation_t *spec;
12682 	dtrace_buffer_t *buf;
12683 	cyc_handler_t hdlr;
12684 	cyc_time_t when;
12685 	int rval = 0, i, bufsize = NCPU * sizeof (dtrace_buffer_t);
12686 	dtrace_icookie_t cookie;
12687 
12688 	mutex_enter(&cpu_lock);
12689 	mutex_enter(&dtrace_lock);
12690 
12691 	if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) {
12692 		rval = EBUSY;
12693 		goto out;
12694 	}
12695 
12696 	/*
12697 	 * Before we can perform any checks, we must prime all of the
12698 	 * retained enablings that correspond to this state.
12699 	 */
12700 	dtrace_enabling_prime(state);
12701 
12702 	if (state->dts_destructive && !state->dts_cred.dcr_destructive) {
12703 		rval = EACCES;
12704 		goto out;
12705 	}
12706 
12707 	dtrace_state_prereserve(state);
12708 
12709 	/*
12710 	 * Now we want to do is try to allocate our speculations.
12711 	 * We do not automatically resize the number of speculations; if
12712 	 * this fails, we will fail the operation.
12713 	 */
12714 	nspec = opt[DTRACEOPT_NSPEC];
12715 	ASSERT(nspec != DTRACEOPT_UNSET);
12716 
12717 	if (nspec > INT_MAX) {
12718 		rval = ENOMEM;
12719 		goto out;
12720 	}
12721 
12722 	spec = kmem_zalloc(nspec * sizeof (dtrace_speculation_t), KM_NOSLEEP);
12723 
12724 	if (spec == NULL) {
12725 		rval = ENOMEM;
12726 		goto out;
12727 	}
12728 
12729 	state->dts_speculations = spec;
12730 	state->dts_nspeculations = (int)nspec;
12731 
12732 	for (i = 0; i < nspec; i++) {
12733 		if ((buf = kmem_zalloc(bufsize, KM_NOSLEEP)) == NULL) {
12734 			rval = ENOMEM;
12735 			goto err;
12736 		}
12737 
12738 		spec[i].dtsp_buffer = buf;
12739 	}
12740 
12741 	if (opt[DTRACEOPT_GRABANON] != DTRACEOPT_UNSET) {
12742 		if (dtrace_anon.dta_state == NULL) {
12743 			rval = ENOENT;
12744 			goto out;
12745 		}
12746 
12747 		if (state->dts_necbs != 0) {
12748 			rval = EALREADY;
12749 			goto out;
12750 		}
12751 
12752 		state->dts_anon = dtrace_anon_grab();
12753 		ASSERT(state->dts_anon != NULL);
12754 		state = state->dts_anon;
12755 
12756 		/*
12757 		 * We want "grabanon" to be set in the grabbed state, so we'll
12758 		 * copy that option value from the grabbing state into the
12759 		 * grabbed state.
12760 		 */
12761 		state->dts_options[DTRACEOPT_GRABANON] =
12762 		    opt[DTRACEOPT_GRABANON];
12763 
12764 		*cpu = dtrace_anon.dta_beganon;
12765 
12766 		/*
12767 		 * If the anonymous state is active (as it almost certainly
12768 		 * is if the anonymous enabling ultimately matched anything),
12769 		 * we don't allow any further option processing -- but we
12770 		 * don't return failure.
12771 		 */
12772 		if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
12773 			goto out;
12774 	}
12775 
12776 	if (opt[DTRACEOPT_AGGSIZE] != DTRACEOPT_UNSET &&
12777 	    opt[DTRACEOPT_AGGSIZE] != 0) {
12778 		if (state->dts_aggregations == NULL) {
12779 			/*
12780 			 * We're not going to create an aggregation buffer
12781 			 * because we don't have any ECBs that contain
12782 			 * aggregations -- set this option to 0.
12783 			 */
12784 			opt[DTRACEOPT_AGGSIZE] = 0;
12785 		} else {
12786 			/*
12787 			 * If we have an aggregation buffer, we must also have
12788 			 * a buffer to use as scratch.
12789 			 */
12790 			if (opt[DTRACEOPT_BUFSIZE] == DTRACEOPT_UNSET ||
12791 			    opt[DTRACEOPT_BUFSIZE] < state->dts_needed) {
12792 				opt[DTRACEOPT_BUFSIZE] = state->dts_needed;
12793 			}
12794 		}
12795 	}
12796 
12797 	if (opt[DTRACEOPT_SPECSIZE] != DTRACEOPT_UNSET &&
12798 	    opt[DTRACEOPT_SPECSIZE] != 0) {
12799 		if (!state->dts_speculates) {
12800 			/*
12801 			 * We're not going to create speculation buffers
12802 			 * because we don't have any ECBs that actually
12803 			 * speculate -- set the speculation size to 0.
12804 			 */
12805 			opt[DTRACEOPT_SPECSIZE] = 0;
12806 		}
12807 	}
12808 
12809 	/*
12810 	 * The bare minimum size for any buffer that we're actually going to
12811 	 * do anything to is sizeof (uint64_t).
12812 	 */
12813 	sz = sizeof (uint64_t);
12814 
12815 	if ((state->dts_needed != 0 && opt[DTRACEOPT_BUFSIZE] < sz) ||
12816 	    (state->dts_speculates && opt[DTRACEOPT_SPECSIZE] < sz) ||
12817 	    (state->dts_aggregations != NULL && opt[DTRACEOPT_AGGSIZE] < sz)) {
12818 		/*
12819 		 * A buffer size has been explicitly set to 0 (or to a size
12820 		 * that will be adjusted to 0) and we need the space -- we
12821 		 * need to return failure.  We return ENOSPC to differentiate
12822 		 * it from failing to allocate a buffer due to failure to meet
12823 		 * the reserve (for which we return E2BIG).
12824 		 */
12825 		rval = ENOSPC;
12826 		goto out;
12827 	}
12828 
12829 	if ((rval = dtrace_state_buffers(state)) != 0)
12830 		goto err;
12831 
12832 	if ((sz = opt[DTRACEOPT_DYNVARSIZE]) == DTRACEOPT_UNSET)
12833 		sz = dtrace_dstate_defsize;
12834 
12835 	do {
12836 		rval = dtrace_dstate_init(&state->dts_vstate.dtvs_dynvars, sz);
12837 
12838 		if (rval == 0)
12839 			break;
12840 
12841 		if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL)
12842 			goto err;
12843 	} while (sz >>= 1);
12844 
12845 	opt[DTRACEOPT_DYNVARSIZE] = sz;
12846 
12847 	if (rval != 0)
12848 		goto err;
12849 
12850 	if (opt[DTRACEOPT_STATUSRATE] > dtrace_statusrate_max)
12851 		opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_max;
12852 
12853 	if (opt[DTRACEOPT_CLEANRATE] == 0)
12854 		opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max;
12855 
12856 	if (opt[DTRACEOPT_CLEANRATE] < dtrace_cleanrate_min)
12857 		opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_min;
12858 
12859 	if (opt[DTRACEOPT_CLEANRATE] > dtrace_cleanrate_max)
12860 		opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max;
12861 
12862 	hdlr.cyh_func = (cyc_func_t)dtrace_state_clean;
12863 	hdlr.cyh_arg = state;
12864 	hdlr.cyh_level = CY_LOW_LEVEL;
12865 
12866 	when.cyt_when = 0;
12867 	when.cyt_interval = opt[DTRACEOPT_CLEANRATE];
12868 
12869 	state->dts_cleaner = cyclic_add(&hdlr, &when);
12870 
12871 	hdlr.cyh_func = (cyc_func_t)dtrace_state_deadman;
12872 	hdlr.cyh_arg = state;
12873 	hdlr.cyh_level = CY_LOW_LEVEL;
12874 
12875 	when.cyt_when = 0;
12876 	when.cyt_interval = dtrace_deadman_interval;
12877 
12878 	state->dts_alive = state->dts_laststatus = dtrace_gethrtime();
12879 	state->dts_deadman = cyclic_add(&hdlr, &when);
12880 
12881 	state->dts_activity = DTRACE_ACTIVITY_WARMUP;
12882 
12883 	/*
12884 	 * Now it's time to actually fire the BEGIN probe.  We need to disable
12885 	 * interrupts here both to record the CPU on which we fired the BEGIN
12886 	 * probe (the data from this CPU will be processed first at user
12887 	 * level) and to manually activate the buffer for this CPU.
12888 	 */
12889 	cookie = dtrace_interrupt_disable();
12890 	*cpu = CPU->cpu_id;
12891 	ASSERT(state->dts_buffer[*cpu].dtb_flags & DTRACEBUF_INACTIVE);
12892 	state->dts_buffer[*cpu].dtb_flags &= ~DTRACEBUF_INACTIVE;
12893 
12894 	dtrace_probe(dtrace_probeid_begin,
12895 	    (uint64_t)(uintptr_t)state, 0, 0, 0, 0);
12896 	dtrace_interrupt_enable(cookie);
12897 	/*
12898 	 * We may have had an exit action from a BEGIN probe; only change our
12899 	 * state to ACTIVE if we're still in WARMUP.
12900 	 */
12901 	ASSERT(state->dts_activity == DTRACE_ACTIVITY_WARMUP ||
12902 	    state->dts_activity == DTRACE_ACTIVITY_DRAINING);
12903 
12904 	if (state->dts_activity == DTRACE_ACTIVITY_WARMUP)
12905 		state->dts_activity = DTRACE_ACTIVITY_ACTIVE;
12906 
12907 	/*
12908 	 * Regardless of whether or not now we're in ACTIVE or DRAINING, we
12909 	 * want each CPU to transition its principal buffer out of the
12910 	 * INACTIVE state.  Doing this assures that no CPU will suddenly begin
12911 	 * processing an ECB halfway down a probe's ECB chain; all CPUs will
12912 	 * atomically transition from processing none of a state's ECBs to
12913 	 * processing all of them.
12914 	 */
12915 	dtrace_xcall(DTRACE_CPUALL,
12916 	    (dtrace_xcall_t)dtrace_buffer_activate, state);
12917 	goto out;
12918 
12919 err:
12920 	dtrace_buffer_free(state->dts_buffer);
12921 	dtrace_buffer_free(state->dts_aggbuffer);
12922 
12923 	if ((nspec = state->dts_nspeculations) == 0) {
12924 		ASSERT(state->dts_speculations == NULL);
12925 		goto out;
12926 	}
12927 
12928 	spec = state->dts_speculations;
12929 	ASSERT(spec != NULL);
12930 
12931 	for (i = 0; i < state->dts_nspeculations; i++) {
12932 		if ((buf = spec[i].dtsp_buffer) == NULL)
12933 			break;
12934 
12935 		dtrace_buffer_free(buf);
12936 		kmem_free(buf, bufsize);
12937 	}
12938 
12939 	kmem_free(spec, nspec * sizeof (dtrace_speculation_t));
12940 	state->dts_nspeculations = 0;
12941 	state->dts_speculations = NULL;
12942 
12943 out:
12944 	mutex_exit(&dtrace_lock);
12945 	mutex_exit(&cpu_lock);
12946 
12947 	return (rval);
12948 }
12949 
12950 static int
12951 dtrace_state_stop(dtrace_state_t *state, processorid_t *cpu)
12952 {
12953 	dtrace_icookie_t cookie;
12954 
12955 	ASSERT(MUTEX_HELD(&dtrace_lock));
12956 
12957 	if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE &&
12958 	    state->dts_activity != DTRACE_ACTIVITY_DRAINING)
12959 		return (EINVAL);
12960 
12961 	/*
12962 	 * We'll set the activity to DTRACE_ACTIVITY_DRAINING, and issue a sync
12963 	 * to be sure that every CPU has seen it.  See below for the details
12964 	 * on why this is done.
12965 	 */
12966 	state->dts_activity = DTRACE_ACTIVITY_DRAINING;
12967 	dtrace_sync();
12968 
12969 	/*
12970 	 * By this point, it is impossible for any CPU to be still processing
12971 	 * with DTRACE_ACTIVITY_ACTIVE.  We can thus set our activity to
12972 	 * DTRACE_ACTIVITY_COOLDOWN and know that we're not racing with any
12973 	 * other CPU in dtrace_buffer_reserve().  This allows dtrace_probe()
12974 	 * and callees to know that the activity is DTRACE_ACTIVITY_COOLDOWN
12975 	 * iff we're in the END probe.
12976 	 */
12977 	state->dts_activity = DTRACE_ACTIVITY_COOLDOWN;
12978 	dtrace_sync();
12979 	ASSERT(state->dts_activity == DTRACE_ACTIVITY_COOLDOWN);
12980 
12981 	/*
12982 	 * Finally, we can release the reserve and call the END probe.  We
12983 	 * disable interrupts across calling the END probe to allow us to
12984 	 * return the CPU on which we actually called the END probe.  This
12985 	 * allows user-land to be sure that this CPU's principal buffer is
12986 	 * processed last.
12987 	 */
12988 	state->dts_reserve = 0;
12989 
12990 	cookie = dtrace_interrupt_disable();
12991 	*cpu = CPU->cpu_id;
12992 	dtrace_probe(dtrace_probeid_end,
12993 	    (uint64_t)(uintptr_t)state, 0, 0, 0, 0);
12994 	dtrace_interrupt_enable(cookie);
12995 
12996 	state->dts_activity = DTRACE_ACTIVITY_STOPPED;
12997 	dtrace_sync();
12998 
12999 	return (0);
13000 }
13001 
13002 static int
13003 dtrace_state_option(dtrace_state_t *state, dtrace_optid_t option,
13004     dtrace_optval_t val)
13005 {
13006 	ASSERT(MUTEX_HELD(&dtrace_lock));
13007 
13008 	if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
13009 		return (EBUSY);
13010 
13011 	if (option >= DTRACEOPT_MAX)
13012 		return (EINVAL);
13013 
13014 	if (option != DTRACEOPT_CPU && val < 0)
13015 		return (EINVAL);
13016 
13017 	switch (option) {
13018 	case DTRACEOPT_DESTRUCTIVE:
13019 		if (dtrace_destructive_disallow)
13020 			return (EACCES);
13021 
13022 		state->dts_cred.dcr_destructive = 1;
13023 		break;
13024 
13025 	case DTRACEOPT_BUFSIZE:
13026 	case DTRACEOPT_DYNVARSIZE:
13027 	case DTRACEOPT_AGGSIZE:
13028 	case DTRACEOPT_SPECSIZE:
13029 	case DTRACEOPT_STRSIZE:
13030 		if (val < 0)
13031 			return (EINVAL);
13032 
13033 		if (val >= LONG_MAX) {
13034 			/*
13035 			 * If this is an otherwise negative value, set it to
13036 			 * the highest multiple of 128m less than LONG_MAX.
13037 			 * Technically, we're adjusting the size without
13038 			 * regard to the buffer resizing policy, but in fact,
13039 			 * this has no effect -- if we set the buffer size to
13040 			 * ~LONG_MAX and the buffer policy is ultimately set to
13041 			 * be "manual", the buffer allocation is guaranteed to
13042 			 * fail, if only because the allocation requires two
13043 			 * buffers.  (We set the the size to the highest
13044 			 * multiple of 128m because it ensures that the size
13045 			 * will remain a multiple of a megabyte when
13046 			 * repeatedly halved -- all the way down to 15m.)
13047 			 */
13048 			val = LONG_MAX - (1 << 27) + 1;
13049 		}
13050 	}
13051 
13052 	state->dts_options[option] = val;
13053 
13054 	return (0);
13055 }
13056 
13057 static void
13058 dtrace_state_destroy(dtrace_state_t *state)
13059 {
13060 	dtrace_ecb_t *ecb;
13061 	dtrace_vstate_t *vstate = &state->dts_vstate;
13062 	minor_t minor = getminor(state->dts_dev);
13063 	int i, bufsize = NCPU * sizeof (dtrace_buffer_t);
13064 	dtrace_speculation_t *spec = state->dts_speculations;
13065 	int nspec = state->dts_nspeculations;
13066 	uint32_t match;
13067 
13068 	ASSERT(MUTEX_HELD(&dtrace_lock));
13069 	ASSERT(MUTEX_HELD(&cpu_lock));
13070 
13071 	/*
13072 	 * First, retract any retained enablings for this state.
13073 	 */
13074 	dtrace_enabling_retract(state);
13075 	ASSERT(state->dts_nretained == 0);
13076 
13077 	if (state->dts_activity == DTRACE_ACTIVITY_ACTIVE ||
13078 	    state->dts_activity == DTRACE_ACTIVITY_DRAINING) {
13079 		/*
13080 		 * We have managed to come into dtrace_state_destroy() on a
13081 		 * hot enabling -- almost certainly because of a disorderly
13082 		 * shutdown of a consumer.  (That is, a consumer that is
13083 		 * exiting without having called dtrace_stop().) In this case,
13084 		 * we're going to set our activity to be KILLED, and then
13085 		 * issue a sync to be sure that everyone is out of probe
13086 		 * context before we start blowing away ECBs.
13087 		 */
13088 		state->dts_activity = DTRACE_ACTIVITY_KILLED;
13089 		dtrace_sync();
13090 	}
13091 
13092 	/*
13093 	 * Release the credential hold we took in dtrace_state_create().
13094 	 */
13095 	if (state->dts_cred.dcr_cred != NULL)
13096 		crfree(state->dts_cred.dcr_cred);
13097 
13098 	/*
13099 	 * Now we can safely disable and destroy any enabled probes.  Because
13100 	 * any DTRACE_PRIV_KERNEL probes may actually be slowing our progress
13101 	 * (especially if they're all enabled), we take two passes through the
13102 	 * ECBs:  in the first, we disable just DTRACE_PRIV_KERNEL probes, and
13103 	 * in the second we disable whatever is left over.
13104 	 */
13105 	for (match = DTRACE_PRIV_KERNEL; ; match = 0) {
13106 		for (i = 0; i < state->dts_necbs; i++) {
13107 			if ((ecb = state->dts_ecbs[i]) == NULL)
13108 				continue;
13109 
13110 			if (match && ecb->dte_probe != NULL) {
13111 				dtrace_probe_t *probe = ecb->dte_probe;
13112 				dtrace_provider_t *prov = probe->dtpr_provider;
13113 
13114 				if (!(prov->dtpv_priv.dtpp_flags & match))
13115 					continue;
13116 			}
13117 
13118 			dtrace_ecb_disable(ecb);
13119 			dtrace_ecb_destroy(ecb);
13120 		}
13121 
13122 		if (!match)
13123 			break;
13124 	}
13125 
13126 	/*
13127 	 * Before we free the buffers, perform one more sync to assure that
13128 	 * every CPU is out of probe context.
13129 	 */
13130 	dtrace_sync();
13131 
13132 	dtrace_buffer_free(state->dts_buffer);
13133 	dtrace_buffer_free(state->dts_aggbuffer);
13134 
13135 	for (i = 0; i < nspec; i++)
13136 		dtrace_buffer_free(spec[i].dtsp_buffer);
13137 
13138 	if (state->dts_cleaner != CYCLIC_NONE)
13139 		cyclic_remove(state->dts_cleaner);
13140 
13141 	if (state->dts_deadman != CYCLIC_NONE)
13142 		cyclic_remove(state->dts_deadman);
13143 
13144 	dtrace_dstate_fini(&vstate->dtvs_dynvars);
13145 	dtrace_vstate_fini(vstate);
13146 	kmem_free(state->dts_ecbs, state->dts_necbs * sizeof (dtrace_ecb_t *));
13147 
13148 	if (state->dts_aggregations != NULL) {
13149 #ifdef DEBUG
13150 		for (i = 0; i < state->dts_naggregations; i++)
13151 			ASSERT(state->dts_aggregations[i] == NULL);
13152 #endif
13153 		ASSERT(state->dts_naggregations > 0);
13154 		kmem_free(state->dts_aggregations,
13155 		    state->dts_naggregations * sizeof (dtrace_aggregation_t *));
13156 	}
13157 
13158 	kmem_free(state->dts_buffer, bufsize);
13159 	kmem_free(state->dts_aggbuffer, bufsize);
13160 
13161 	for (i = 0; i < nspec; i++)
13162 		kmem_free(spec[i].dtsp_buffer, bufsize);
13163 
13164 	kmem_free(spec, nspec * sizeof (dtrace_speculation_t));
13165 
13166 	dtrace_format_destroy(state);
13167 
13168 	vmem_destroy(state->dts_aggid_arena);
13169 	ddi_soft_state_free(dtrace_softstate, minor);
13170 	vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1);
13171 }
13172 
13173 /*
13174  * DTrace Anonymous Enabling Functions
13175  */
13176 static dtrace_state_t *
13177 dtrace_anon_grab(void)
13178 {
13179 	dtrace_state_t *state;
13180 
13181 	ASSERT(MUTEX_HELD(&dtrace_lock));
13182 
13183 	if ((state = dtrace_anon.dta_state) == NULL) {
13184 		ASSERT(dtrace_anon.dta_enabling == NULL);
13185 		return (NULL);
13186 	}
13187 
13188 	ASSERT(dtrace_anon.dta_enabling != NULL);
13189 	ASSERT(dtrace_retained != NULL);
13190 
13191 	dtrace_enabling_destroy(dtrace_anon.dta_enabling);
13192 	dtrace_anon.dta_enabling = NULL;
13193 	dtrace_anon.dta_state = NULL;
13194 
13195 	return (state);
13196 }
13197 
13198 static void
13199 dtrace_anon_property(void)
13200 {
13201 	int i, rv;
13202 	dtrace_state_t *state;
13203 	dof_hdr_t *dof;
13204 	char c[32];		/* enough for "dof-data-" + digits */
13205 
13206 	ASSERT(MUTEX_HELD(&dtrace_lock));
13207 	ASSERT(MUTEX_HELD(&cpu_lock));
13208 
13209 	for (i = 0; ; i++) {
13210 		(void) snprintf(c, sizeof (c), "dof-data-%d", i);
13211 
13212 		dtrace_err_verbose = 1;
13213 
13214 		if ((dof = dtrace_dof_property(c)) == NULL) {
13215 			dtrace_err_verbose = 0;
13216 			break;
13217 		}
13218 
13219 		/*
13220 		 * We want to create anonymous state, so we need to transition
13221 		 * the kernel debugger to indicate that DTrace is active.  If
13222 		 * this fails (e.g. because the debugger has modified text in
13223 		 * some way), we won't continue with the processing.
13224 		 */
13225 		if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) {
13226 			cmn_err(CE_NOTE, "kernel debugger active; anonymous "
13227 			    "enabling ignored.");
13228 			dtrace_dof_destroy(dof);
13229 			break;
13230 		}
13231 
13232 		/*
13233 		 * If we haven't allocated an anonymous state, we'll do so now.
13234 		 */
13235 		if ((state = dtrace_anon.dta_state) == NULL) {
13236 			state = dtrace_state_create(NULL, NULL);
13237 			dtrace_anon.dta_state = state;
13238 
13239 			if (state == NULL) {
13240 				/*
13241 				 * This basically shouldn't happen:  the only
13242 				 * failure mode from dtrace_state_create() is a
13243 				 * failure of ddi_soft_state_zalloc() that
13244 				 * itself should never happen.  Still, the
13245 				 * interface allows for a failure mode, and
13246 				 * we want to fail as gracefully as possible:
13247 				 * we'll emit an error message and cease
13248 				 * processing anonymous state in this case.
13249 				 */
13250 				cmn_err(CE_WARN, "failed to create "
13251 				    "anonymous state");
13252 				dtrace_dof_destroy(dof);
13253 				break;
13254 			}
13255 		}
13256 
13257 		rv = dtrace_dof_slurp(dof, &state->dts_vstate, CRED(),
13258 		    &dtrace_anon.dta_enabling, 0, B_TRUE);
13259 
13260 		if (rv == 0)
13261 			rv = dtrace_dof_options(dof, state);
13262 
13263 		dtrace_err_verbose = 0;
13264 		dtrace_dof_destroy(dof);
13265 
13266 		if (rv != 0) {
13267 			/*
13268 			 * This is malformed DOF; chuck any anonymous state
13269 			 * that we created.
13270 			 */
13271 			ASSERT(dtrace_anon.dta_enabling == NULL);
13272 			dtrace_state_destroy(state);
13273 			dtrace_anon.dta_state = NULL;
13274 			break;
13275 		}
13276 
13277 		ASSERT(dtrace_anon.dta_enabling != NULL);
13278 	}
13279 
13280 	if (dtrace_anon.dta_enabling != NULL) {
13281 		int rval;
13282 
13283 		/*
13284 		 * dtrace_enabling_retain() can only fail because we are
13285 		 * trying to retain more enablings than are allowed -- but
13286 		 * we only have one anonymous enabling, and we are guaranteed
13287 		 * to be allowed at least one retained enabling; we assert
13288 		 * that dtrace_enabling_retain() returns success.
13289 		 */
13290 		rval = dtrace_enabling_retain(dtrace_anon.dta_enabling);
13291 		ASSERT(rval == 0);
13292 
13293 		dtrace_enabling_dump(dtrace_anon.dta_enabling);
13294 	}
13295 }
13296 
13297 /*
13298  * DTrace Helper Functions
13299  */
13300 static void
13301 dtrace_helper_trace(dtrace_helper_action_t *helper,
13302     dtrace_mstate_t *mstate, dtrace_vstate_t *vstate, int where)
13303 {
13304 	uint32_t size, next, nnext, i;
13305 	dtrace_helptrace_t *ent;
13306 	uint16_t flags = cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
13307 
13308 	if (!dtrace_helptrace_enabled)
13309 		return;
13310 
13311 	ASSERT(vstate->dtvs_nlocals <= dtrace_helptrace_nlocals);
13312 
13313 	/*
13314 	 * What would a tracing framework be without its own tracing
13315 	 * framework?  (Well, a hell of a lot simpler, for starters...)
13316 	 */
13317 	size = sizeof (dtrace_helptrace_t) + dtrace_helptrace_nlocals *
13318 	    sizeof (uint64_t) - sizeof (uint64_t);
13319 
13320 	/*
13321 	 * Iterate until we can allocate a slot in the trace buffer.
13322 	 */
13323 	do {
13324 		next = dtrace_helptrace_next;
13325 
13326 		if (next + size < dtrace_helptrace_bufsize) {
13327 			nnext = next + size;
13328 		} else {
13329 			nnext = size;
13330 		}
13331 	} while (dtrace_cas32(&dtrace_helptrace_next, next, nnext) != next);
13332 
13333 	/*
13334 	 * We have our slot; fill it in.
13335 	 */
13336 	if (nnext == size)
13337 		next = 0;
13338 
13339 	ent = (dtrace_helptrace_t *)&dtrace_helptrace_buffer[next];
13340 	ent->dtht_helper = helper;
13341 	ent->dtht_where = where;
13342 	ent->dtht_nlocals = vstate->dtvs_nlocals;
13343 
13344 	ent->dtht_fltoffs = (mstate->dtms_present & DTRACE_MSTATE_FLTOFFS) ?
13345 	    mstate->dtms_fltoffs : -1;
13346 	ent->dtht_fault = DTRACE_FLAGS2FLT(flags);
13347 	ent->dtht_illval = cpu_core[CPU->cpu_id].cpuc_dtrace_illval;
13348 
13349 	for (i = 0; i < vstate->dtvs_nlocals; i++) {
13350 		dtrace_statvar_t *svar;
13351 
13352 		if ((svar = vstate->dtvs_locals[i]) == NULL)
13353 			continue;
13354 
13355 		ASSERT(svar->dtsv_size >= NCPU * sizeof (uint64_t));
13356 		ent->dtht_locals[i] =
13357 		    ((uint64_t *)(uintptr_t)svar->dtsv_data)[CPU->cpu_id];
13358 	}
13359 }
13360 
13361 static uint64_t
13362 dtrace_helper(int which, dtrace_mstate_t *mstate,
13363     dtrace_state_t *state, uint64_t arg0, uint64_t arg1)
13364 {
13365 	uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
13366 	uint64_t sarg0 = mstate->dtms_arg[0];
13367 	uint64_t sarg1 = mstate->dtms_arg[1];
13368 	uint64_t rval;
13369 	dtrace_helpers_t *helpers = curproc->p_dtrace_helpers;
13370 	dtrace_helper_action_t *helper;
13371 	dtrace_vstate_t *vstate;
13372 	dtrace_difo_t *pred;
13373 	int i, trace = dtrace_helptrace_enabled;
13374 
13375 	ASSERT(which >= 0 && which < DTRACE_NHELPER_ACTIONS);
13376 
13377 	if (helpers == NULL)
13378 		return (0);
13379 
13380 	if ((helper = helpers->dthps_actions[which]) == NULL)
13381 		return (0);
13382 
13383 	vstate = &helpers->dthps_vstate;
13384 	mstate->dtms_arg[0] = arg0;
13385 	mstate->dtms_arg[1] = arg1;
13386 
13387 	/*
13388 	 * Now iterate over each helper.  If its predicate evaluates to 'true',
13389 	 * we'll call the corresponding actions.  Note that the below calls
13390 	 * to dtrace_dif_emulate() may set faults in machine state.  This is
13391 	 * okay:  our caller (the outer dtrace_dif_emulate()) will simply plow
13392 	 * the stored DIF offset with its own (which is the desired behavior).
13393 	 * Also, note the calls to dtrace_dif_emulate() may allocate scratch
13394 	 * from machine state; this is okay, too.
13395 	 */
13396 	for (; helper != NULL; helper = helper->dtha_next) {
13397 		if ((pred = helper->dtha_predicate) != NULL) {
13398 			if (trace)
13399 				dtrace_helper_trace(helper, mstate, vstate, 0);
13400 
13401 			if (!dtrace_dif_emulate(pred, mstate, vstate, state))
13402 				goto next;
13403 
13404 			if (*flags & CPU_DTRACE_FAULT)
13405 				goto err;
13406 		}
13407 
13408 		for (i = 0; i < helper->dtha_nactions; i++) {
13409 			if (trace)
13410 				dtrace_helper_trace(helper,
13411 				    mstate, vstate, i + 1);
13412 
13413 			rval = dtrace_dif_emulate(helper->dtha_actions[i],
13414 			    mstate, vstate, state);
13415 
13416 			if (*flags & CPU_DTRACE_FAULT)
13417 				goto err;
13418 		}
13419 
13420 next:
13421 		if (trace)
13422 			dtrace_helper_trace(helper, mstate, vstate,
13423 			    DTRACE_HELPTRACE_NEXT);
13424 	}
13425 
13426 	if (trace)
13427 		dtrace_helper_trace(helper, mstate, vstate,
13428 		    DTRACE_HELPTRACE_DONE);
13429 
13430 	/*
13431 	 * Restore the arg0 that we saved upon entry.
13432 	 */
13433 	mstate->dtms_arg[0] = sarg0;
13434 	mstate->dtms_arg[1] = sarg1;
13435 
13436 	return (rval);
13437 
13438 err:
13439 	if (trace)
13440 		dtrace_helper_trace(helper, mstate, vstate,
13441 		    DTRACE_HELPTRACE_ERR);
13442 
13443 	/*
13444 	 * Restore the arg0 that we saved upon entry.
13445 	 */
13446 	mstate->dtms_arg[0] = sarg0;
13447 	mstate->dtms_arg[1] = sarg1;
13448 
13449 	return (NULL);
13450 }
13451 
13452 static void
13453 dtrace_helper_action_destroy(dtrace_helper_action_t *helper,
13454     dtrace_vstate_t *vstate)
13455 {
13456 	int i;
13457 
13458 	if (helper->dtha_predicate != NULL)
13459 		dtrace_difo_release(helper->dtha_predicate, vstate);
13460 
13461 	for (i = 0; i < helper->dtha_nactions; i++) {
13462 		ASSERT(helper->dtha_actions[i] != NULL);
13463 		dtrace_difo_release(helper->dtha_actions[i], vstate);
13464 	}
13465 
13466 	kmem_free(helper->dtha_actions,
13467 	    helper->dtha_nactions * sizeof (dtrace_difo_t *));
13468 	kmem_free(helper, sizeof (dtrace_helper_action_t));
13469 }
13470 
13471 static int
13472 dtrace_helper_destroygen(int gen)
13473 {
13474 	proc_t *p = curproc;
13475 	dtrace_helpers_t *help = p->p_dtrace_helpers;
13476 	dtrace_vstate_t *vstate;
13477 	int i;
13478 
13479 	ASSERT(MUTEX_HELD(&dtrace_lock));
13480 
13481 	if (help == NULL || gen > help->dthps_generation)
13482 		return (EINVAL);
13483 
13484 	vstate = &help->dthps_vstate;
13485 
13486 	for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
13487 		dtrace_helper_action_t *last = NULL, *h, *next;
13488 
13489 		for (h = help->dthps_actions[i]; h != NULL; h = next) {
13490 			next = h->dtha_next;
13491 
13492 			if (h->dtha_generation == gen) {
13493 				if (last != NULL) {
13494 					last->dtha_next = next;
13495 				} else {
13496 					help->dthps_actions[i] = next;
13497 				}
13498 
13499 				dtrace_helper_action_destroy(h, vstate);
13500 			} else {
13501 				last = h;
13502 			}
13503 		}
13504 	}
13505 
13506 	/*
13507 	 * Interate until we've cleared out all helper providers with the
13508 	 * given generation number.
13509 	 */
13510 	for (;;) {
13511 		dtrace_helper_provider_t *prov;
13512 
13513 		/*
13514 		 * Look for a helper provider with the right generation. We
13515 		 * have to start back at the beginning of the list each time
13516 		 * because we drop dtrace_lock. It's unlikely that we'll make
13517 		 * more than two passes.
13518 		 */
13519 		for (i = 0; i < help->dthps_nprovs; i++) {
13520 			prov = help->dthps_provs[i];
13521 
13522 			if (prov->dthp_generation == gen)
13523 				break;
13524 		}
13525 
13526 		/*
13527 		 * If there were no matches, we're done.
13528 		 */
13529 		if (i == help->dthps_nprovs)
13530 			break;
13531 
13532 		/*
13533 		 * Move the last helper provider into this slot.
13534 		 */
13535 		help->dthps_nprovs--;
13536 		help->dthps_provs[i] = help->dthps_provs[help->dthps_nprovs];
13537 		help->dthps_provs[help->dthps_nprovs] = NULL;
13538 
13539 		mutex_exit(&dtrace_lock);
13540 
13541 		/*
13542 		 * If we have a meta provider, remove this helper provider.
13543 		 */
13544 		mutex_enter(&dtrace_meta_lock);
13545 		if (dtrace_meta_pid != NULL) {
13546 			ASSERT(dtrace_deferred_pid == NULL);
13547 			dtrace_helper_provider_remove(&prov->dthp_prov,
13548 			    p->p_pid);
13549 		}
13550 		mutex_exit(&dtrace_meta_lock);
13551 
13552 		dtrace_helper_provider_destroy(prov);
13553 
13554 		mutex_enter(&dtrace_lock);
13555 	}
13556 
13557 	return (0);
13558 }
13559 
13560 static int
13561 dtrace_helper_validate(dtrace_helper_action_t *helper)
13562 {
13563 	int err = 0, i;
13564 	dtrace_difo_t *dp;
13565 
13566 	if ((dp = helper->dtha_predicate) != NULL)
13567 		err += dtrace_difo_validate_helper(dp);
13568 
13569 	for (i = 0; i < helper->dtha_nactions; i++)
13570 		err += dtrace_difo_validate_helper(helper->dtha_actions[i]);
13571 
13572 	return (err == 0);
13573 }
13574 
13575 static int
13576 dtrace_helper_action_add(int which, dtrace_ecbdesc_t *ep)
13577 {
13578 	dtrace_helpers_t *help;
13579 	dtrace_helper_action_t *helper, *last;
13580 	dtrace_actdesc_t *act;
13581 	dtrace_vstate_t *vstate;
13582 	dtrace_predicate_t *pred;
13583 	int count = 0, nactions = 0, i;
13584 
13585 	if (which < 0 || which >= DTRACE_NHELPER_ACTIONS)
13586 		return (EINVAL);
13587 
13588 	help = curproc->p_dtrace_helpers;
13589 	last = help->dthps_actions[which];
13590 	vstate = &help->dthps_vstate;
13591 
13592 	for (count = 0; last != NULL; last = last->dtha_next) {
13593 		count++;
13594 		if (last->dtha_next == NULL)
13595 			break;
13596 	}
13597 
13598 	/*
13599 	 * If we already have dtrace_helper_actions_max helper actions for this
13600 	 * helper action type, we'll refuse to add a new one.
13601 	 */
13602 	if (count >= dtrace_helper_actions_max)
13603 		return (ENOSPC);
13604 
13605 	helper = kmem_zalloc(sizeof (dtrace_helper_action_t), KM_SLEEP);
13606 	helper->dtha_generation = help->dthps_generation;
13607 
13608 	if ((pred = ep->dted_pred.dtpdd_predicate) != NULL) {
13609 		ASSERT(pred->dtp_difo != NULL);
13610 		dtrace_difo_hold(pred->dtp_difo);
13611 		helper->dtha_predicate = pred->dtp_difo;
13612 	}
13613 
13614 	for (act = ep->dted_action; act != NULL; act = act->dtad_next) {
13615 		if (act->dtad_kind != DTRACEACT_DIFEXPR)
13616 			goto err;
13617 
13618 		if (act->dtad_difo == NULL)
13619 			goto err;
13620 
13621 		nactions++;
13622 	}
13623 
13624 	helper->dtha_actions = kmem_zalloc(sizeof (dtrace_difo_t *) *
13625 	    (helper->dtha_nactions = nactions), KM_SLEEP);
13626 
13627 	for (act = ep->dted_action, i = 0; act != NULL; act = act->dtad_next) {
13628 		dtrace_difo_hold(act->dtad_difo);
13629 		helper->dtha_actions[i++] = act->dtad_difo;
13630 	}
13631 
13632 	if (!dtrace_helper_validate(helper))
13633 		goto err;
13634 
13635 	if (last == NULL) {
13636 		help->dthps_actions[which] = helper;
13637 	} else {
13638 		last->dtha_next = helper;
13639 	}
13640 
13641 	if (vstate->dtvs_nlocals > dtrace_helptrace_nlocals) {
13642 		dtrace_helptrace_nlocals = vstate->dtvs_nlocals;
13643 		dtrace_helptrace_next = 0;
13644 	}
13645 
13646 	return (0);
13647 err:
13648 	dtrace_helper_action_destroy(helper, vstate);
13649 	return (EINVAL);
13650 }
13651 
13652 static void
13653 dtrace_helper_provider_register(proc_t *p, dtrace_helpers_t *help,
13654     dof_helper_t *dofhp)
13655 {
13656 	ASSERT(MUTEX_NOT_HELD(&dtrace_lock));
13657 
13658 	mutex_enter(&dtrace_meta_lock);
13659 	mutex_enter(&dtrace_lock);
13660 
13661 	if (!dtrace_attached() || dtrace_meta_pid == NULL) {
13662 		/*
13663 		 * If the dtrace module is loaded but not attached, or if
13664 		 * there aren't isn't a meta provider registered to deal with
13665 		 * these provider descriptions, we need to postpone creating
13666 		 * the actual providers until later.
13667 		 */
13668 
13669 		if (help->dthps_next == NULL && help->dthps_prev == NULL &&
13670 		    dtrace_deferred_pid != help) {
13671 			help->dthps_deferred = 1;
13672 			help->dthps_pid = p->p_pid;
13673 			help->dthps_next = dtrace_deferred_pid;
13674 			help->dthps_prev = NULL;
13675 			if (dtrace_deferred_pid != NULL)
13676 				dtrace_deferred_pid->dthps_prev = help;
13677 			dtrace_deferred_pid = help;
13678 		}
13679 
13680 		mutex_exit(&dtrace_lock);
13681 
13682 	} else if (dofhp != NULL) {
13683 		/*
13684 		 * If the dtrace module is loaded and we have a particular
13685 		 * helper provider description, pass that off to the
13686 		 * meta provider.
13687 		 */
13688 
13689 		mutex_exit(&dtrace_lock);
13690 
13691 		dtrace_helper_provide(dofhp, p->p_pid);
13692 
13693 	} else {
13694 		/*
13695 		 * Otherwise, just pass all the helper provider descriptions
13696 		 * off to the meta provider.
13697 		 */
13698 
13699 		int i;
13700 		mutex_exit(&dtrace_lock);
13701 
13702 		for (i = 0; i < help->dthps_nprovs; i++) {
13703 			dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov,
13704 			    p->p_pid);
13705 		}
13706 	}
13707 
13708 	mutex_exit(&dtrace_meta_lock);
13709 }
13710 
13711 static int
13712 dtrace_helper_provider_add(dof_helper_t *dofhp, int gen)
13713 {
13714 	dtrace_helpers_t *help;
13715 	dtrace_helper_provider_t *hprov, **tmp_provs;
13716 	uint_t tmp_maxprovs, i;
13717 
13718 	ASSERT(MUTEX_HELD(&dtrace_lock));
13719 
13720 	help = curproc->p_dtrace_helpers;
13721 	ASSERT(help != NULL);
13722 
13723 	/*
13724 	 * If we already have dtrace_helper_providers_max helper providers,
13725 	 * we're refuse to add a new one.
13726 	 */
13727 	if (help->dthps_nprovs >= dtrace_helper_providers_max)
13728 		return (ENOSPC);
13729 
13730 	/*
13731 	 * Check to make sure this isn't a duplicate.
13732 	 */
13733 	for (i = 0; i < help->dthps_nprovs; i++) {
13734 		if (dofhp->dofhp_addr ==
13735 		    help->dthps_provs[i]->dthp_prov.dofhp_addr)
13736 			return (EALREADY);
13737 	}
13738 
13739 	hprov = kmem_zalloc(sizeof (dtrace_helper_provider_t), KM_SLEEP);
13740 	hprov->dthp_prov = *dofhp;
13741 	hprov->dthp_ref = 1;
13742 	hprov->dthp_generation = gen;
13743 
13744 	/*
13745 	 * Allocate a bigger table for helper providers if it's already full.
13746 	 */
13747 	if (help->dthps_maxprovs == help->dthps_nprovs) {
13748 		tmp_maxprovs = help->dthps_maxprovs;
13749 		tmp_provs = help->dthps_provs;
13750 
13751 		if (help->dthps_maxprovs == 0)
13752 			help->dthps_maxprovs = 2;
13753 		else
13754 			help->dthps_maxprovs *= 2;
13755 		if (help->dthps_maxprovs > dtrace_helper_providers_max)
13756 			help->dthps_maxprovs = dtrace_helper_providers_max;
13757 
13758 		ASSERT(tmp_maxprovs < help->dthps_maxprovs);
13759 
13760 		help->dthps_provs = kmem_zalloc(help->dthps_maxprovs *
13761 		    sizeof (dtrace_helper_provider_t *), KM_SLEEP);
13762 
13763 		if (tmp_provs != NULL) {
13764 			bcopy(tmp_provs, help->dthps_provs, tmp_maxprovs *
13765 			    sizeof (dtrace_helper_provider_t *));
13766 			kmem_free(tmp_provs, tmp_maxprovs *
13767 			    sizeof (dtrace_helper_provider_t *));
13768 		}
13769 	}
13770 
13771 	help->dthps_provs[help->dthps_nprovs] = hprov;
13772 	help->dthps_nprovs++;
13773 
13774 	return (0);
13775 }
13776 
13777 static void
13778 dtrace_helper_provider_destroy(dtrace_helper_provider_t *hprov)
13779 {
13780 	mutex_enter(&dtrace_lock);
13781 
13782 	if (--hprov->dthp_ref == 0) {
13783 		dof_hdr_t *dof;
13784 		mutex_exit(&dtrace_lock);
13785 		dof = (dof_hdr_t *)(uintptr_t)hprov->dthp_prov.dofhp_dof;
13786 		dtrace_dof_destroy(dof);
13787 		kmem_free(hprov, sizeof (dtrace_helper_provider_t));
13788 	} else {
13789 		mutex_exit(&dtrace_lock);
13790 	}
13791 }
13792 
13793 static int
13794 dtrace_helper_provider_validate(dof_hdr_t *dof, dof_sec_t *sec)
13795 {
13796 	uintptr_t daddr = (uintptr_t)dof;
13797 	dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec;
13798 	dof_provider_t *provider;
13799 	dof_probe_t *probe;
13800 	uint8_t *arg;
13801 	char *strtab, *typestr;
13802 	dof_stridx_t typeidx;
13803 	size_t typesz;
13804 	uint_t nprobes, j, k;
13805 
13806 	ASSERT(sec->dofs_type == DOF_SECT_PROVIDER);
13807 
13808 	if (sec->dofs_offset & (sizeof (uint_t) - 1)) {
13809 		dtrace_dof_error(dof, "misaligned section offset");
13810 		return (-1);
13811 	}
13812 
13813 	/*
13814 	 * The section needs to be large enough to contain the DOF provider
13815 	 * structure appropriate for the given version.
13816 	 */
13817 	if (sec->dofs_size <
13818 	    ((dof->dofh_ident[DOF_ID_VERSION] == DOF_VERSION_1) ?
13819 	    offsetof(dof_provider_t, dofpv_prenoffs) :
13820 	    sizeof (dof_provider_t))) {
13821 		dtrace_dof_error(dof, "provider section too small");
13822 		return (-1);
13823 	}
13824 
13825 	provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
13826 	str_sec = dtrace_dof_sect(dof, DOF_SECT_STRTAB, provider->dofpv_strtab);
13827 	prb_sec = dtrace_dof_sect(dof, DOF_SECT_PROBES, provider->dofpv_probes);
13828 	arg_sec = dtrace_dof_sect(dof, DOF_SECT_PRARGS, provider->dofpv_prargs);
13829 	off_sec = dtrace_dof_sect(dof, DOF_SECT_PROFFS, provider->dofpv_proffs);
13830 
13831 	if (str_sec == NULL || prb_sec == NULL ||
13832 	    arg_sec == NULL || off_sec == NULL)
13833 		return (-1);
13834 
13835 	enoff_sec = NULL;
13836 
13837 	if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 &&
13838 	    provider->dofpv_prenoffs != DOF_SECT_NONE &&
13839 	    (enoff_sec = dtrace_dof_sect(dof, DOF_SECT_PRENOFFS,
13840 	    provider->dofpv_prenoffs)) == NULL)
13841 		return (-1);
13842 
13843 	strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
13844 
13845 	if (provider->dofpv_name >= str_sec->dofs_size ||
13846 	    strlen(strtab + provider->dofpv_name) >= DTRACE_PROVNAMELEN) {
13847 		dtrace_dof_error(dof, "invalid provider name");
13848 		return (-1);
13849 	}
13850 
13851 	if (prb_sec->dofs_entsize == 0 ||
13852 	    prb_sec->dofs_entsize > prb_sec->dofs_size) {
13853 		dtrace_dof_error(dof, "invalid entry size");
13854 		return (-1);
13855 	}
13856 
13857 	if (prb_sec->dofs_entsize & (sizeof (uintptr_t) - 1)) {
13858 		dtrace_dof_error(dof, "misaligned entry size");
13859 		return (-1);
13860 	}
13861 
13862 	if (off_sec->dofs_entsize != sizeof (uint32_t)) {
13863 		dtrace_dof_error(dof, "invalid entry size");
13864 		return (-1);
13865 	}
13866 
13867 	if (off_sec->dofs_offset & (sizeof (uint32_t) - 1)) {
13868 		dtrace_dof_error(dof, "misaligned section offset");
13869 		return (-1);
13870 	}
13871 
13872 	if (arg_sec->dofs_entsize != sizeof (uint8_t)) {
13873 		dtrace_dof_error(dof, "invalid entry size");
13874 		return (-1);
13875 	}
13876 
13877 	arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset);
13878 
13879 	nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize;
13880 
13881 	/*
13882 	 * Take a pass through the probes to check for errors.
13883 	 */
13884 	for (j = 0; j < nprobes; j++) {
13885 		probe = (dof_probe_t *)(uintptr_t)(daddr +
13886 		    prb_sec->dofs_offset + j * prb_sec->dofs_entsize);
13887 
13888 		if (probe->dofpr_func >= str_sec->dofs_size) {
13889 			dtrace_dof_error(dof, "invalid function name");
13890 			return (-1);
13891 		}
13892 
13893 		if (strlen(strtab + probe->dofpr_func) >= DTRACE_FUNCNAMELEN) {
13894 			dtrace_dof_error(dof, "function name too long");
13895 			return (-1);
13896 		}
13897 
13898 		if (probe->dofpr_name >= str_sec->dofs_size ||
13899 		    strlen(strtab + probe->dofpr_name) >= DTRACE_NAMELEN) {
13900 			dtrace_dof_error(dof, "invalid probe name");
13901 			return (-1);
13902 		}
13903 
13904 		/*
13905 		 * The offset count must not wrap the index, and the offsets
13906 		 * must also not overflow the section's data.
13907 		 */
13908 		if (probe->dofpr_offidx + probe->dofpr_noffs <
13909 		    probe->dofpr_offidx ||
13910 		    (probe->dofpr_offidx + probe->dofpr_noffs) *
13911 		    off_sec->dofs_entsize > off_sec->dofs_size) {
13912 			dtrace_dof_error(dof, "invalid probe offset");
13913 			return (-1);
13914 		}
13915 
13916 		if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1) {
13917 			/*
13918 			 * If there's no is-enabled offset section, make sure
13919 			 * there aren't any is-enabled offsets. Otherwise
13920 			 * perform the same checks as for probe offsets
13921 			 * (immediately above).
13922 			 */
13923 			if (enoff_sec == NULL) {
13924 				if (probe->dofpr_enoffidx != 0 ||
13925 				    probe->dofpr_nenoffs != 0) {
13926 					dtrace_dof_error(dof, "is-enabled "
13927 					    "offsets with null section");
13928 					return (-1);
13929 				}
13930 			} else if (probe->dofpr_enoffidx +
13931 			    probe->dofpr_nenoffs < probe->dofpr_enoffidx ||
13932 			    (probe->dofpr_enoffidx + probe->dofpr_nenoffs) *
13933 			    enoff_sec->dofs_entsize > enoff_sec->dofs_size) {
13934 				dtrace_dof_error(dof, "invalid is-enabled "
13935 				    "offset");
13936 				return (-1);
13937 			}
13938 
13939 			if (probe->dofpr_noffs + probe->dofpr_nenoffs == 0) {
13940 				dtrace_dof_error(dof, "zero probe and "
13941 				    "is-enabled offsets");
13942 				return (-1);
13943 			}
13944 		} else if (probe->dofpr_noffs == 0) {
13945 			dtrace_dof_error(dof, "zero probe offsets");
13946 			return (-1);
13947 		}
13948 
13949 		if (probe->dofpr_argidx + probe->dofpr_xargc <
13950 		    probe->dofpr_argidx ||
13951 		    (probe->dofpr_argidx + probe->dofpr_xargc) *
13952 		    arg_sec->dofs_entsize > arg_sec->dofs_size) {
13953 			dtrace_dof_error(dof, "invalid args");
13954 			return (-1);
13955 		}
13956 
13957 		typeidx = probe->dofpr_nargv;
13958 		typestr = strtab + probe->dofpr_nargv;
13959 		for (k = 0; k < probe->dofpr_nargc; k++) {
13960 			if (typeidx >= str_sec->dofs_size) {
13961 				dtrace_dof_error(dof, "bad "
13962 				    "native argument type");
13963 				return (-1);
13964 			}
13965 
13966 			typesz = strlen(typestr) + 1;
13967 			if (typesz > DTRACE_ARGTYPELEN) {
13968 				dtrace_dof_error(dof, "native "
13969 				    "argument type too long");
13970 				return (-1);
13971 			}
13972 			typeidx += typesz;
13973 			typestr += typesz;
13974 		}
13975 
13976 		typeidx = probe->dofpr_xargv;
13977 		typestr = strtab + probe->dofpr_xargv;
13978 		for (k = 0; k < probe->dofpr_xargc; k++) {
13979 			if (arg[probe->dofpr_argidx + k] > probe->dofpr_nargc) {
13980 				dtrace_dof_error(dof, "bad "
13981 				    "native argument index");
13982 				return (-1);
13983 			}
13984 
13985 			if (typeidx >= str_sec->dofs_size) {
13986 				dtrace_dof_error(dof, "bad "
13987 				    "translated argument type");
13988 				return (-1);
13989 			}
13990 
13991 			typesz = strlen(typestr) + 1;
13992 			if (typesz > DTRACE_ARGTYPELEN) {
13993 				dtrace_dof_error(dof, "translated argument "
13994 				    "type too long");
13995 				return (-1);
13996 			}
13997 
13998 			typeidx += typesz;
13999 			typestr += typesz;
14000 		}
14001 	}
14002 
14003 	return (0);
14004 }
14005 
14006 static int
14007 dtrace_helper_slurp(dof_hdr_t *dof, dof_helper_t *dhp)
14008 {
14009 	dtrace_helpers_t *help;
14010 	dtrace_vstate_t *vstate;
14011 	dtrace_enabling_t *enab = NULL;
14012 	int i, gen, rv, nhelpers = 0, nprovs = 0, destroy = 1;
14013 	uintptr_t daddr = (uintptr_t)dof;
14014 
14015 	ASSERT(MUTEX_HELD(&dtrace_lock));
14016 
14017 	if ((help = curproc->p_dtrace_helpers) == NULL)
14018 		help = dtrace_helpers_create(curproc);
14019 
14020 	vstate = &help->dthps_vstate;
14021 
14022 	if ((rv = dtrace_dof_slurp(dof, vstate, NULL, &enab,
14023 	    dhp != NULL ? dhp->dofhp_addr : 0, B_FALSE)) != 0) {
14024 		dtrace_dof_destroy(dof);
14025 		return (rv);
14026 	}
14027 
14028 	/*
14029 	 * Look for helper providers and validate their descriptions.
14030 	 */
14031 	if (dhp != NULL) {
14032 		for (i = 0; i < dof->dofh_secnum; i++) {
14033 			dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
14034 			    dof->dofh_secoff + i * dof->dofh_secsize);
14035 
14036 			if (sec->dofs_type != DOF_SECT_PROVIDER)
14037 				continue;
14038 
14039 			if (dtrace_helper_provider_validate(dof, sec) != 0) {
14040 				dtrace_enabling_destroy(enab);
14041 				dtrace_dof_destroy(dof);
14042 				return (-1);
14043 			}
14044 
14045 			nprovs++;
14046 		}
14047 	}
14048 
14049 	/*
14050 	 * Now we need to walk through the ECB descriptions in the enabling.
14051 	 */
14052 	for (i = 0; i < enab->dten_ndesc; i++) {
14053 		dtrace_ecbdesc_t *ep = enab->dten_desc[i];
14054 		dtrace_probedesc_t *desc = &ep->dted_probe;
14055 
14056 		if (strcmp(desc->dtpd_provider, "dtrace") != 0)
14057 			continue;
14058 
14059 		if (strcmp(desc->dtpd_mod, "helper") != 0)
14060 			continue;
14061 
14062 		if (strcmp(desc->dtpd_func, "ustack") != 0)
14063 			continue;
14064 
14065 		if ((rv = dtrace_helper_action_add(DTRACE_HELPER_ACTION_USTACK,
14066 		    ep)) != 0) {
14067 			/*
14068 			 * Adding this helper action failed -- we are now going
14069 			 * to rip out the entire generation and return failure.
14070 			 */
14071 			(void) dtrace_helper_destroygen(help->dthps_generation);
14072 			dtrace_enabling_destroy(enab);
14073 			dtrace_dof_destroy(dof);
14074 			return (-1);
14075 		}
14076 
14077 		nhelpers++;
14078 	}
14079 
14080 	if (nhelpers < enab->dten_ndesc)
14081 		dtrace_dof_error(dof, "unmatched helpers");
14082 
14083 	gen = help->dthps_generation++;
14084 	dtrace_enabling_destroy(enab);
14085 
14086 	if (dhp != NULL && nprovs > 0) {
14087 		dhp->dofhp_dof = (uint64_t)(uintptr_t)dof;
14088 		if (dtrace_helper_provider_add(dhp, gen) == 0) {
14089 			mutex_exit(&dtrace_lock);
14090 			dtrace_helper_provider_register(curproc, help, dhp);
14091 			mutex_enter(&dtrace_lock);
14092 
14093 			destroy = 0;
14094 		}
14095 	}
14096 
14097 	if (destroy)
14098 		dtrace_dof_destroy(dof);
14099 
14100 	return (gen);
14101 }
14102 
14103 static dtrace_helpers_t *
14104 dtrace_helpers_create(proc_t *p)
14105 {
14106 	dtrace_helpers_t *help;
14107 
14108 	ASSERT(MUTEX_HELD(&dtrace_lock));
14109 	ASSERT(p->p_dtrace_helpers == NULL);
14110 
14111 	help = kmem_zalloc(sizeof (dtrace_helpers_t), KM_SLEEP);
14112 	help->dthps_actions = kmem_zalloc(sizeof (dtrace_helper_action_t *) *
14113 	    DTRACE_NHELPER_ACTIONS, KM_SLEEP);
14114 
14115 	p->p_dtrace_helpers = help;
14116 	dtrace_helpers++;
14117 
14118 	return (help);
14119 }
14120 
14121 static void
14122 dtrace_helpers_destroy(void)
14123 {
14124 	dtrace_helpers_t *help;
14125 	dtrace_vstate_t *vstate;
14126 	proc_t *p = curproc;
14127 	int i;
14128 
14129 	mutex_enter(&dtrace_lock);
14130 
14131 	ASSERT(p->p_dtrace_helpers != NULL);
14132 	ASSERT(dtrace_helpers > 0);
14133 
14134 	help = p->p_dtrace_helpers;
14135 	vstate = &help->dthps_vstate;
14136 
14137 	/*
14138 	 * We're now going to lose the help from this process.
14139 	 */
14140 	p->p_dtrace_helpers = NULL;
14141 	dtrace_sync();
14142 
14143 	/*
14144 	 * Destory the helper actions.
14145 	 */
14146 	for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
14147 		dtrace_helper_action_t *h, *next;
14148 
14149 		for (h = help->dthps_actions[i]; h != NULL; h = next) {
14150 			next = h->dtha_next;
14151 			dtrace_helper_action_destroy(h, vstate);
14152 			h = next;
14153 		}
14154 	}
14155 
14156 	mutex_exit(&dtrace_lock);
14157 
14158 	/*
14159 	 * Destroy the helper providers.
14160 	 */
14161 	if (help->dthps_maxprovs > 0) {
14162 		mutex_enter(&dtrace_meta_lock);
14163 		if (dtrace_meta_pid != NULL) {
14164 			ASSERT(dtrace_deferred_pid == NULL);
14165 
14166 			for (i = 0; i < help->dthps_nprovs; i++) {
14167 				dtrace_helper_provider_remove(
14168 				    &help->dthps_provs[i]->dthp_prov, p->p_pid);
14169 			}
14170 		} else {
14171 			mutex_enter(&dtrace_lock);
14172 			ASSERT(help->dthps_deferred == 0 ||
14173 			    help->dthps_next != NULL ||
14174 			    help->dthps_prev != NULL ||
14175 			    help == dtrace_deferred_pid);
14176 
14177 			/*
14178 			 * Remove the helper from the deferred list.
14179 			 */
14180 			if (help->dthps_next != NULL)
14181 				help->dthps_next->dthps_prev = help->dthps_prev;
14182 			if (help->dthps_prev != NULL)
14183 				help->dthps_prev->dthps_next = help->dthps_next;
14184 			if (dtrace_deferred_pid == help) {
14185 				dtrace_deferred_pid = help->dthps_next;
14186 				ASSERT(help->dthps_prev == NULL);
14187 			}
14188 
14189 			mutex_exit(&dtrace_lock);
14190 		}
14191 
14192 		mutex_exit(&dtrace_meta_lock);
14193 
14194 		for (i = 0; i < help->dthps_nprovs; i++) {
14195 			dtrace_helper_provider_destroy(help->dthps_provs[i]);
14196 		}
14197 
14198 		kmem_free(help->dthps_provs, help->dthps_maxprovs *
14199 		    sizeof (dtrace_helper_provider_t *));
14200 	}
14201 
14202 	mutex_enter(&dtrace_lock);
14203 
14204 	dtrace_vstate_fini(&help->dthps_vstate);
14205 	kmem_free(help->dthps_actions,
14206 	    sizeof (dtrace_helper_action_t *) * DTRACE_NHELPER_ACTIONS);
14207 	kmem_free(help, sizeof (dtrace_helpers_t));
14208 
14209 	--dtrace_helpers;
14210 	mutex_exit(&dtrace_lock);
14211 }
14212 
14213 static void
14214 dtrace_helpers_duplicate(proc_t *from, proc_t *to)
14215 {
14216 	dtrace_helpers_t *help, *newhelp;
14217 	dtrace_helper_action_t *helper, *new, *last;
14218 	dtrace_difo_t *dp;
14219 	dtrace_vstate_t *vstate;
14220 	int i, j, sz, hasprovs = 0;
14221 
14222 	mutex_enter(&dtrace_lock);
14223 	ASSERT(from->p_dtrace_helpers != NULL);
14224 	ASSERT(dtrace_helpers > 0);
14225 
14226 	help = from->p_dtrace_helpers;
14227 	newhelp = dtrace_helpers_create(to);
14228 	ASSERT(to->p_dtrace_helpers != NULL);
14229 
14230 	newhelp->dthps_generation = help->dthps_generation;
14231 	vstate = &newhelp->dthps_vstate;
14232 
14233 	/*
14234 	 * Duplicate the helper actions.
14235 	 */
14236 	for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
14237 		if ((helper = help->dthps_actions[i]) == NULL)
14238 			continue;
14239 
14240 		for (last = NULL; helper != NULL; helper = helper->dtha_next) {
14241 			new = kmem_zalloc(sizeof (dtrace_helper_action_t),
14242 			    KM_SLEEP);
14243 			new->dtha_generation = helper->dtha_generation;
14244 
14245 			if ((dp = helper->dtha_predicate) != NULL) {
14246 				dp = dtrace_difo_duplicate(dp, vstate);
14247 				new->dtha_predicate = dp;
14248 			}
14249 
14250 			new->dtha_nactions = helper->dtha_nactions;
14251 			sz = sizeof (dtrace_difo_t *) * new->dtha_nactions;
14252 			new->dtha_actions = kmem_alloc(sz, KM_SLEEP);
14253 
14254 			for (j = 0; j < new->dtha_nactions; j++) {
14255 				dtrace_difo_t *dp = helper->dtha_actions[j];
14256 
14257 				ASSERT(dp != NULL);
14258 				dp = dtrace_difo_duplicate(dp, vstate);
14259 				new->dtha_actions[j] = dp;
14260 			}
14261 
14262 			if (last != NULL) {
14263 				last->dtha_next = new;
14264 			} else {
14265 				newhelp->dthps_actions[i] = new;
14266 			}
14267 
14268 			last = new;
14269 		}
14270 	}
14271 
14272 	/*
14273 	 * Duplicate the helper providers and register them with the
14274 	 * DTrace framework.
14275 	 */
14276 	if (help->dthps_nprovs > 0) {
14277 		newhelp->dthps_nprovs = help->dthps_nprovs;
14278 		newhelp->dthps_maxprovs = help->dthps_nprovs;
14279 		newhelp->dthps_provs = kmem_alloc(newhelp->dthps_nprovs *
14280 		    sizeof (dtrace_helper_provider_t *), KM_SLEEP);
14281 		for (i = 0; i < newhelp->dthps_nprovs; i++) {
14282 			newhelp->dthps_provs[i] = help->dthps_provs[i];
14283 			newhelp->dthps_provs[i]->dthp_ref++;
14284 		}
14285 
14286 		hasprovs = 1;
14287 	}
14288 
14289 	mutex_exit(&dtrace_lock);
14290 
14291 	if (hasprovs)
14292 		dtrace_helper_provider_register(to, newhelp, NULL);
14293 }
14294 
14295 /*
14296  * DTrace Hook Functions
14297  */
14298 static void
14299 dtrace_module_loaded(struct modctl *ctl)
14300 {
14301 	dtrace_provider_t *prv;
14302 
14303 	mutex_enter(&dtrace_provider_lock);
14304 	mutex_enter(&mod_lock);
14305 
14306 	ASSERT(ctl->mod_busy);
14307 
14308 	/*
14309 	 * We're going to call each providers per-module provide operation
14310 	 * specifying only this module.
14311 	 */
14312 	for (prv = dtrace_provider; prv != NULL; prv = prv->dtpv_next)
14313 		prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl);
14314 
14315 	mutex_exit(&mod_lock);
14316 	mutex_exit(&dtrace_provider_lock);
14317 
14318 	/*
14319 	 * If we have any retained enablings, we need to match against them.
14320 	 * Enabling probes requires that cpu_lock be held, and we cannot hold
14321 	 * cpu_lock here -- it is legal for cpu_lock to be held when loading a
14322 	 * module.  (In particular, this happens when loading scheduling
14323 	 * classes.)  So if we have any retained enablings, we need to dispatch
14324 	 * our task queue to do the match for us.
14325 	 */
14326 	mutex_enter(&dtrace_lock);
14327 
14328 	if (dtrace_retained == NULL) {
14329 		mutex_exit(&dtrace_lock);
14330 		return;
14331 	}
14332 
14333 	(void) taskq_dispatch(dtrace_taskq,
14334 	    (task_func_t *)dtrace_enabling_matchall, NULL, TQ_SLEEP);
14335 
14336 	mutex_exit(&dtrace_lock);
14337 
14338 	/*
14339 	 * And now, for a little heuristic sleaze:  in general, we want to
14340 	 * match modules as soon as they load.  However, we cannot guarantee
14341 	 * this, because it would lead us to the lock ordering violation
14342 	 * outlined above.  The common case, of course, is that cpu_lock is
14343 	 * _not_ held -- so we delay here for a clock tick, hoping that that's
14344 	 * long enough for the task queue to do its work.  If it's not, it's
14345 	 * not a serious problem -- it just means that the module that we
14346 	 * just loaded may not be immediately instrumentable.
14347 	 */
14348 	delay(1);
14349 }
14350 
14351 static void
14352 dtrace_module_unloaded(struct modctl *ctl)
14353 {
14354 	dtrace_probe_t template, *probe, *first, *next;
14355 	dtrace_provider_t *prov;
14356 
14357 	template.dtpr_mod = ctl->mod_modname;
14358 
14359 	mutex_enter(&dtrace_provider_lock);
14360 	mutex_enter(&mod_lock);
14361 	mutex_enter(&dtrace_lock);
14362 
14363 	if (dtrace_bymod == NULL) {
14364 		/*
14365 		 * The DTrace module is loaded (obviously) but not attached;
14366 		 * we don't have any work to do.
14367 		 */
14368 		mutex_exit(&dtrace_provider_lock);
14369 		mutex_exit(&mod_lock);
14370 		mutex_exit(&dtrace_lock);
14371 		return;
14372 	}
14373 
14374 	for (probe = first = dtrace_hash_lookup(dtrace_bymod, &template);
14375 	    probe != NULL; probe = probe->dtpr_nextmod) {
14376 		if (probe->dtpr_ecb != NULL) {
14377 			mutex_exit(&dtrace_provider_lock);
14378 			mutex_exit(&mod_lock);
14379 			mutex_exit(&dtrace_lock);
14380 
14381 			/*
14382 			 * This shouldn't _actually_ be possible -- we're
14383 			 * unloading a module that has an enabled probe in it.
14384 			 * (It's normally up to the provider to make sure that
14385 			 * this can't happen.)  However, because dtps_enable()
14386 			 * doesn't have a failure mode, there can be an
14387 			 * enable/unload race.  Upshot:  we don't want to
14388 			 * assert, but we're not going to disable the
14389 			 * probe, either.
14390 			 */
14391 			if (dtrace_err_verbose) {
14392 				cmn_err(CE_WARN, "unloaded module '%s' had "
14393 				    "enabled probes", ctl->mod_modname);
14394 			}
14395 
14396 			return;
14397 		}
14398 	}
14399 
14400 	probe = first;
14401 
14402 	for (first = NULL; probe != NULL; probe = next) {
14403 		ASSERT(dtrace_probes[probe->dtpr_id - 1] == probe);
14404 
14405 		dtrace_probes[probe->dtpr_id - 1] = NULL;
14406 
14407 		next = probe->dtpr_nextmod;
14408 		dtrace_hash_remove(dtrace_bymod, probe);
14409 		dtrace_hash_remove(dtrace_byfunc, probe);
14410 		dtrace_hash_remove(dtrace_byname, probe);
14411 
14412 		if (first == NULL) {
14413 			first = probe;
14414 			probe->dtpr_nextmod = NULL;
14415 		} else {
14416 			probe->dtpr_nextmod = first;
14417 			first = probe;
14418 		}
14419 	}
14420 
14421 	/*
14422 	 * We've removed all of the module's probes from the hash chains and
14423 	 * from the probe array.  Now issue a dtrace_sync() to be sure that
14424 	 * everyone has cleared out from any probe array processing.
14425 	 */
14426 	dtrace_sync();
14427 
14428 	for (probe = first; probe != NULL; probe = first) {
14429 		first = probe->dtpr_nextmod;
14430 		prov = probe->dtpr_provider;
14431 		prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, probe->dtpr_id,
14432 		    probe->dtpr_arg);
14433 		kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
14434 		kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
14435 		kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
14436 		vmem_free(dtrace_arena, (void *)(uintptr_t)probe->dtpr_id, 1);
14437 		kmem_free(probe, sizeof (dtrace_probe_t));
14438 	}
14439 
14440 	mutex_exit(&dtrace_lock);
14441 	mutex_exit(&mod_lock);
14442 	mutex_exit(&dtrace_provider_lock);
14443 }
14444 
14445 void
14446 dtrace_suspend(void)
14447 {
14448 	dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_suspend));
14449 }
14450 
14451 void
14452 dtrace_resume(void)
14453 {
14454 	dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_resume));
14455 }
14456 
14457 static int
14458 dtrace_cpu_setup(cpu_setup_t what, processorid_t cpu)
14459 {
14460 	ASSERT(MUTEX_HELD(&cpu_lock));
14461 	mutex_enter(&dtrace_lock);
14462 
14463 	switch (what) {
14464 	case CPU_CONFIG: {
14465 		dtrace_state_t *state;
14466 		dtrace_optval_t *opt, rs, c;
14467 
14468 		/*
14469 		 * For now, we only allocate a new buffer for anonymous state.
14470 		 */
14471 		if ((state = dtrace_anon.dta_state) == NULL)
14472 			break;
14473 
14474 		if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE)
14475 			break;
14476 
14477 		opt = state->dts_options;
14478 		c = opt[DTRACEOPT_CPU];
14479 
14480 		if (c != DTRACE_CPUALL && c != DTRACEOPT_UNSET && c != cpu)
14481 			break;
14482 
14483 		/*
14484 		 * Regardless of what the actual policy is, we're going to
14485 		 * temporarily set our resize policy to be manual.  We're
14486 		 * also going to temporarily set our CPU option to denote
14487 		 * the newly configured CPU.
14488 		 */
14489 		rs = opt[DTRACEOPT_BUFRESIZE];
14490 		opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_MANUAL;
14491 		opt[DTRACEOPT_CPU] = (dtrace_optval_t)cpu;
14492 
14493 		(void) dtrace_state_buffers(state);
14494 
14495 		opt[DTRACEOPT_BUFRESIZE] = rs;
14496 		opt[DTRACEOPT_CPU] = c;
14497 
14498 		break;
14499 	}
14500 
14501 	case CPU_UNCONFIG:
14502 		/*
14503 		 * We don't free the buffer in the CPU_UNCONFIG case.  (The
14504 		 * buffer will be freed when the consumer exits.)
14505 		 */
14506 		break;
14507 
14508 	default:
14509 		break;
14510 	}
14511 
14512 	mutex_exit(&dtrace_lock);
14513 	return (0);
14514 }
14515 
14516 static void
14517 dtrace_cpu_setup_initial(processorid_t cpu)
14518 {
14519 	(void) dtrace_cpu_setup(CPU_CONFIG, cpu);
14520 }
14521 
14522 static void
14523 dtrace_toxrange_add(uintptr_t base, uintptr_t limit)
14524 {
14525 	if (dtrace_toxranges >= dtrace_toxranges_max) {
14526 		int osize, nsize;
14527 		dtrace_toxrange_t *range;
14528 
14529 		osize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t);
14530 
14531 		if (osize == 0) {
14532 			ASSERT(dtrace_toxrange == NULL);
14533 			ASSERT(dtrace_toxranges_max == 0);
14534 			dtrace_toxranges_max = 1;
14535 		} else {
14536 			dtrace_toxranges_max <<= 1;
14537 		}
14538 
14539 		nsize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t);
14540 		range = kmem_zalloc(nsize, KM_SLEEP);
14541 
14542 		if (dtrace_toxrange != NULL) {
14543 			ASSERT(osize != 0);
14544 			bcopy(dtrace_toxrange, range, osize);
14545 			kmem_free(dtrace_toxrange, osize);
14546 		}
14547 
14548 		dtrace_toxrange = range;
14549 	}
14550 
14551 	ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_base == NULL);
14552 	ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_limit == NULL);
14553 
14554 	dtrace_toxrange[dtrace_toxranges].dtt_base = base;
14555 	dtrace_toxrange[dtrace_toxranges].dtt_limit = limit;
14556 	dtrace_toxranges++;
14557 }
14558 
14559 /*
14560  * DTrace Driver Cookbook Functions
14561  */
14562 /*ARGSUSED*/
14563 static int
14564 dtrace_attach(dev_info_t *devi, ddi_attach_cmd_t cmd)
14565 {
14566 	dtrace_provider_id_t id;
14567 	dtrace_state_t *state = NULL;
14568 	dtrace_enabling_t *enab;
14569 
14570 	mutex_enter(&cpu_lock);
14571 	mutex_enter(&dtrace_provider_lock);
14572 	mutex_enter(&dtrace_lock);
14573 
14574 	if (ddi_soft_state_init(&dtrace_softstate,
14575 	    sizeof (dtrace_state_t), 0) != 0) {
14576 		cmn_err(CE_NOTE, "/dev/dtrace failed to initialize soft state");
14577 		mutex_exit(&cpu_lock);
14578 		mutex_exit(&dtrace_provider_lock);
14579 		mutex_exit(&dtrace_lock);
14580 		return (DDI_FAILURE);
14581 	}
14582 
14583 	if (ddi_create_minor_node(devi, DTRACEMNR_DTRACE, S_IFCHR,
14584 	    DTRACEMNRN_DTRACE, DDI_PSEUDO, NULL) == DDI_FAILURE ||
14585 	    ddi_create_minor_node(devi, DTRACEMNR_HELPER, S_IFCHR,
14586 	    DTRACEMNRN_HELPER, DDI_PSEUDO, NULL) == DDI_FAILURE) {
14587 		cmn_err(CE_NOTE, "/dev/dtrace couldn't create minor nodes");
14588 		ddi_remove_minor_node(devi, NULL);
14589 		ddi_soft_state_fini(&dtrace_softstate);
14590 		mutex_exit(&cpu_lock);
14591 		mutex_exit(&dtrace_provider_lock);
14592 		mutex_exit(&dtrace_lock);
14593 		return (DDI_FAILURE);
14594 	}
14595 
14596 	ddi_report_dev(devi);
14597 	dtrace_devi = devi;
14598 
14599 	dtrace_modload = dtrace_module_loaded;
14600 	dtrace_modunload = dtrace_module_unloaded;
14601 	dtrace_cpu_init = dtrace_cpu_setup_initial;
14602 	dtrace_helpers_cleanup = dtrace_helpers_destroy;
14603 	dtrace_helpers_fork = dtrace_helpers_duplicate;
14604 	dtrace_cpustart_init = dtrace_suspend;
14605 	dtrace_cpustart_fini = dtrace_resume;
14606 	dtrace_debugger_init = dtrace_suspend;
14607 	dtrace_debugger_fini = dtrace_resume;
14608 
14609 	register_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL);
14610 
14611 	ASSERT(MUTEX_HELD(&cpu_lock));
14612 
14613 	dtrace_arena = vmem_create("dtrace", (void *)1, UINT32_MAX, 1,
14614 	    NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER);
14615 	dtrace_minor = vmem_create("dtrace_minor", (void *)DTRACEMNRN_CLONE,
14616 	    UINT32_MAX - DTRACEMNRN_CLONE, 1, NULL, NULL, NULL, 0,
14617 	    VM_SLEEP | VMC_IDENTIFIER);
14618 	dtrace_taskq = taskq_create("dtrace_taskq", 1, maxclsyspri,
14619 	    1, INT_MAX, 0);
14620 
14621 	dtrace_state_cache = kmem_cache_create("dtrace_state_cache",
14622 	    sizeof (dtrace_dstate_percpu_t) * NCPU, DTRACE_STATE_ALIGN,
14623 	    NULL, NULL, NULL, NULL, NULL, 0);
14624 
14625 	ASSERT(MUTEX_HELD(&cpu_lock));
14626 	dtrace_bymod = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_mod),
14627 	    offsetof(dtrace_probe_t, dtpr_nextmod),
14628 	    offsetof(dtrace_probe_t, dtpr_prevmod));
14629 
14630 	dtrace_byfunc = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_func),
14631 	    offsetof(dtrace_probe_t, dtpr_nextfunc),
14632 	    offsetof(dtrace_probe_t, dtpr_prevfunc));
14633 
14634 	dtrace_byname = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_name),
14635 	    offsetof(dtrace_probe_t, dtpr_nextname),
14636 	    offsetof(dtrace_probe_t, dtpr_prevname));
14637 
14638 	if (dtrace_retain_max < 1) {
14639 		cmn_err(CE_WARN, "illegal value (%lu) for dtrace_retain_max; "
14640 		    "setting to 1", dtrace_retain_max);
14641 		dtrace_retain_max = 1;
14642 	}
14643 
14644 	/*
14645 	 * Now discover our toxic ranges.
14646 	 */
14647 	dtrace_toxic_ranges(dtrace_toxrange_add);
14648 
14649 	/*
14650 	 * Before we register ourselves as a provider to our own framework,
14651 	 * we would like to assert that dtrace_provider is NULL -- but that's
14652 	 * not true if we were loaded as a dependency of a DTrace provider.
14653 	 * Once we've registered, we can assert that dtrace_provider is our
14654 	 * pseudo provider.
14655 	 */
14656 	(void) dtrace_register("dtrace", &dtrace_provider_attr,
14657 	    DTRACE_PRIV_NONE, 0, &dtrace_provider_ops, NULL, &id);
14658 
14659 	ASSERT(dtrace_provider != NULL);
14660 	ASSERT((dtrace_provider_id_t)dtrace_provider == id);
14661 
14662 	dtrace_probeid_begin = dtrace_probe_create((dtrace_provider_id_t)
14663 	    dtrace_provider, NULL, NULL, "BEGIN", 0, NULL);
14664 	dtrace_probeid_end = dtrace_probe_create((dtrace_provider_id_t)
14665 	    dtrace_provider, NULL, NULL, "END", 0, NULL);
14666 	dtrace_probeid_error = dtrace_probe_create((dtrace_provider_id_t)
14667 	    dtrace_provider, NULL, NULL, "ERROR", 1, NULL);
14668 
14669 	dtrace_anon_property();
14670 	mutex_exit(&cpu_lock);
14671 
14672 	/*
14673 	 * If DTrace helper tracing is enabled, we need to allocate the
14674 	 * trace buffer and initialize the values.
14675 	 */
14676 	if (dtrace_helptrace_enabled) {
14677 		ASSERT(dtrace_helptrace_buffer == NULL);
14678 		dtrace_helptrace_buffer =
14679 		    kmem_zalloc(dtrace_helptrace_bufsize, KM_SLEEP);
14680 		dtrace_helptrace_next = 0;
14681 	}
14682 
14683 	/*
14684 	 * If there are already providers, we must ask them to provide their
14685 	 * probes, and then match any anonymous enabling against them.  Note
14686 	 * that there should be no other retained enablings at this time:
14687 	 * the only retained enablings at this time should be the anonymous
14688 	 * enabling.
14689 	 */
14690 	if (dtrace_anon.dta_enabling != NULL) {
14691 		ASSERT(dtrace_retained == dtrace_anon.dta_enabling);
14692 
14693 		dtrace_enabling_provide(NULL);
14694 		state = dtrace_anon.dta_state;
14695 
14696 		/*
14697 		 * We couldn't hold cpu_lock across the above call to
14698 		 * dtrace_enabling_provide(), but we must hold it to actually
14699 		 * enable the probes.  We have to drop all of our locks, pick
14700 		 * up cpu_lock, and regain our locks before matching the
14701 		 * retained anonymous enabling.
14702 		 */
14703 		mutex_exit(&dtrace_lock);
14704 		mutex_exit(&dtrace_provider_lock);
14705 
14706 		mutex_enter(&cpu_lock);
14707 		mutex_enter(&dtrace_provider_lock);
14708 		mutex_enter(&dtrace_lock);
14709 
14710 		if ((enab = dtrace_anon.dta_enabling) != NULL)
14711 			(void) dtrace_enabling_match(enab, NULL);
14712 
14713 		mutex_exit(&cpu_lock);
14714 	}
14715 
14716 	mutex_exit(&dtrace_lock);
14717 	mutex_exit(&dtrace_provider_lock);
14718 
14719 	if (state != NULL) {
14720 		/*
14721 		 * If we created any anonymous state, set it going now.
14722 		 */
14723 		(void) dtrace_state_go(state, &dtrace_anon.dta_beganon);
14724 	}
14725 
14726 	return (DDI_SUCCESS);
14727 }
14728 
14729 /*ARGSUSED*/
14730 static int
14731 dtrace_open(dev_t *devp, int flag, int otyp, cred_t *cred_p)
14732 {
14733 	dtrace_state_t *state;
14734 	uint32_t priv;
14735 	uid_t uid;
14736 	zoneid_t zoneid;
14737 
14738 	if (getminor(*devp) == DTRACEMNRN_HELPER)
14739 		return (0);
14740 
14741 	/*
14742 	 * If this wasn't an open with the "helper" minor, then it must be
14743 	 * the "dtrace" minor.
14744 	 */
14745 	if (getminor(*devp) != DTRACEMNRN_DTRACE)
14746 		return (ENXIO);
14747 
14748 	/*
14749 	 * If no DTRACE_PRIV_* bits are set in the credential, then the
14750 	 * caller lacks sufficient permission to do anything with DTrace.
14751 	 */
14752 	dtrace_cred2priv(cred_p, &priv, &uid, &zoneid);
14753 	if (priv == DTRACE_PRIV_NONE)
14754 		return (EACCES);
14755 
14756 	/*
14757 	 * Ask all providers to provide all their probes.
14758 	 */
14759 	mutex_enter(&dtrace_provider_lock);
14760 	dtrace_probe_provide(NULL, NULL);
14761 	mutex_exit(&dtrace_provider_lock);
14762 
14763 	mutex_enter(&cpu_lock);
14764 	mutex_enter(&dtrace_lock);
14765 	dtrace_opens++;
14766 	dtrace_membar_producer();
14767 
14768 	/*
14769 	 * If the kernel debugger is active (that is, if the kernel debugger
14770 	 * modified text in some way), we won't allow the open.
14771 	 */
14772 	if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) {
14773 		dtrace_opens--;
14774 		mutex_exit(&cpu_lock);
14775 		mutex_exit(&dtrace_lock);
14776 		return (EBUSY);
14777 	}
14778 
14779 	state = dtrace_state_create(devp, cred_p);
14780 	mutex_exit(&cpu_lock);
14781 
14782 	if (state == NULL) {
14783 		if (--dtrace_opens == 0 && dtrace_anon.dta_enabling == NULL)
14784 			(void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
14785 		mutex_exit(&dtrace_lock);
14786 		return (EAGAIN);
14787 	}
14788 
14789 	mutex_exit(&dtrace_lock);
14790 
14791 	return (0);
14792 }
14793 
14794 /*ARGSUSED*/
14795 static int
14796 dtrace_close(dev_t dev, int flag, int otyp, cred_t *cred_p)
14797 {
14798 	minor_t minor = getminor(dev);
14799 	dtrace_state_t *state;
14800 
14801 	if (minor == DTRACEMNRN_HELPER)
14802 		return (0);
14803 
14804 	state = ddi_get_soft_state(dtrace_softstate, minor);
14805 
14806 	mutex_enter(&cpu_lock);
14807 	mutex_enter(&dtrace_lock);
14808 
14809 	if (state->dts_anon) {
14810 		/*
14811 		 * There is anonymous state. Destroy that first.
14812 		 */
14813 		ASSERT(dtrace_anon.dta_state == NULL);
14814 		dtrace_state_destroy(state->dts_anon);
14815 	}
14816 
14817 	dtrace_state_destroy(state);
14818 	ASSERT(dtrace_opens > 0);
14819 
14820 	/*
14821 	 * Only relinquish control of the kernel debugger interface when there
14822 	 * are no consumers and no anonymous enablings.
14823 	 */
14824 	if (--dtrace_opens == 0 && dtrace_anon.dta_enabling == NULL)
14825 		(void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
14826 
14827 	mutex_exit(&dtrace_lock);
14828 	mutex_exit(&cpu_lock);
14829 
14830 	return (0);
14831 }
14832 
14833 /*ARGSUSED*/
14834 static int
14835 dtrace_ioctl_helper(int cmd, intptr_t arg, int *rv)
14836 {
14837 	int rval;
14838 	dof_helper_t help, *dhp = NULL;
14839 
14840 	switch (cmd) {
14841 	case DTRACEHIOC_ADDDOF:
14842 		if (copyin((void *)arg, &help, sizeof (help)) != 0) {
14843 			dtrace_dof_error(NULL, "failed to copyin DOF helper");
14844 			return (EFAULT);
14845 		}
14846 
14847 		dhp = &help;
14848 		arg = (intptr_t)help.dofhp_dof;
14849 		/*FALLTHROUGH*/
14850 
14851 	case DTRACEHIOC_ADD: {
14852 		dof_hdr_t *dof = dtrace_dof_copyin(arg, &rval);
14853 
14854 		if (dof == NULL)
14855 			return (rval);
14856 
14857 		mutex_enter(&dtrace_lock);
14858 
14859 		/*
14860 		 * dtrace_helper_slurp() takes responsibility for the dof --
14861 		 * it may free it now or it may save it and free it later.
14862 		 */
14863 		if ((rval = dtrace_helper_slurp(dof, dhp)) != -1) {
14864 			*rv = rval;
14865 			rval = 0;
14866 		} else {
14867 			rval = EINVAL;
14868 		}
14869 
14870 		mutex_exit(&dtrace_lock);
14871 		return (rval);
14872 	}
14873 
14874 	case DTRACEHIOC_REMOVE: {
14875 		mutex_enter(&dtrace_lock);
14876 		rval = dtrace_helper_destroygen(arg);
14877 		mutex_exit(&dtrace_lock);
14878 
14879 		return (rval);
14880 	}
14881 
14882 	default:
14883 		break;
14884 	}
14885 
14886 	return (ENOTTY);
14887 }
14888 
14889 /*ARGSUSED*/
14890 static int
14891 dtrace_ioctl(dev_t dev, int cmd, intptr_t arg, int md, cred_t *cr, int *rv)
14892 {
14893 	minor_t minor = getminor(dev);
14894 	dtrace_state_t *state;
14895 	int rval;
14896 
14897 	if (minor == DTRACEMNRN_HELPER)
14898 		return (dtrace_ioctl_helper(cmd, arg, rv));
14899 
14900 	state = ddi_get_soft_state(dtrace_softstate, minor);
14901 
14902 	if (state->dts_anon) {
14903 		ASSERT(dtrace_anon.dta_state == NULL);
14904 		state = state->dts_anon;
14905 	}
14906 
14907 	switch (cmd) {
14908 	case DTRACEIOC_PROVIDER: {
14909 		dtrace_providerdesc_t pvd;
14910 		dtrace_provider_t *pvp;
14911 
14912 		if (copyin((void *)arg, &pvd, sizeof (pvd)) != 0)
14913 			return (EFAULT);
14914 
14915 		pvd.dtvd_name[DTRACE_PROVNAMELEN - 1] = '\0';
14916 		mutex_enter(&dtrace_provider_lock);
14917 
14918 		for (pvp = dtrace_provider; pvp != NULL; pvp = pvp->dtpv_next) {
14919 			if (strcmp(pvp->dtpv_name, pvd.dtvd_name) == 0)
14920 				break;
14921 		}
14922 
14923 		mutex_exit(&dtrace_provider_lock);
14924 
14925 		if (pvp == NULL)
14926 			return (ESRCH);
14927 
14928 		bcopy(&pvp->dtpv_priv, &pvd.dtvd_priv, sizeof (dtrace_ppriv_t));
14929 		bcopy(&pvp->dtpv_attr, &pvd.dtvd_attr, sizeof (dtrace_pattr_t));
14930 		if (copyout(&pvd, (void *)arg, sizeof (pvd)) != 0)
14931 			return (EFAULT);
14932 
14933 		return (0);
14934 	}
14935 
14936 	case DTRACEIOC_EPROBE: {
14937 		dtrace_eprobedesc_t epdesc;
14938 		dtrace_ecb_t *ecb;
14939 		dtrace_action_t *act;
14940 		void *buf;
14941 		size_t size;
14942 		uintptr_t dest;
14943 		int nrecs;
14944 
14945 		if (copyin((void *)arg, &epdesc, sizeof (epdesc)) != 0)
14946 			return (EFAULT);
14947 
14948 		mutex_enter(&dtrace_lock);
14949 
14950 		if ((ecb = dtrace_epid2ecb(state, epdesc.dtepd_epid)) == NULL) {
14951 			mutex_exit(&dtrace_lock);
14952 			return (EINVAL);
14953 		}
14954 
14955 		if (ecb->dte_probe == NULL) {
14956 			mutex_exit(&dtrace_lock);
14957 			return (EINVAL);
14958 		}
14959 
14960 		epdesc.dtepd_probeid = ecb->dte_probe->dtpr_id;
14961 		epdesc.dtepd_uarg = ecb->dte_uarg;
14962 		epdesc.dtepd_size = ecb->dte_size;
14963 
14964 		nrecs = epdesc.dtepd_nrecs;
14965 		epdesc.dtepd_nrecs = 0;
14966 		for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
14967 			if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple)
14968 				continue;
14969 
14970 			epdesc.dtepd_nrecs++;
14971 		}
14972 
14973 		/*
14974 		 * Now that we have the size, we need to allocate a temporary
14975 		 * buffer in which to store the complete description.  We need
14976 		 * the temporary buffer to be able to drop dtrace_lock()
14977 		 * across the copyout(), below.
14978 		 */
14979 		size = sizeof (dtrace_eprobedesc_t) +
14980 		    (epdesc.dtepd_nrecs * sizeof (dtrace_recdesc_t));
14981 
14982 		buf = kmem_alloc(size, KM_SLEEP);
14983 		dest = (uintptr_t)buf;
14984 
14985 		bcopy(&epdesc, (void *)dest, sizeof (epdesc));
14986 		dest += offsetof(dtrace_eprobedesc_t, dtepd_rec[0]);
14987 
14988 		for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
14989 			if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple)
14990 				continue;
14991 
14992 			if (nrecs-- == 0)
14993 				break;
14994 
14995 			bcopy(&act->dta_rec, (void *)dest,
14996 			    sizeof (dtrace_recdesc_t));
14997 			dest += sizeof (dtrace_recdesc_t);
14998 		}
14999 
15000 		mutex_exit(&dtrace_lock);
15001 
15002 		if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) {
15003 			kmem_free(buf, size);
15004 			return (EFAULT);
15005 		}
15006 
15007 		kmem_free(buf, size);
15008 		return (0);
15009 	}
15010 
15011 	case DTRACEIOC_AGGDESC: {
15012 		dtrace_aggdesc_t aggdesc;
15013 		dtrace_action_t *act;
15014 		dtrace_aggregation_t *agg;
15015 		int nrecs;
15016 		uint32_t offs;
15017 		dtrace_recdesc_t *lrec;
15018 		void *buf;
15019 		size_t size;
15020 		uintptr_t dest;
15021 
15022 		if (copyin((void *)arg, &aggdesc, sizeof (aggdesc)) != 0)
15023 			return (EFAULT);
15024 
15025 		mutex_enter(&dtrace_lock);
15026 
15027 		if ((agg = dtrace_aggid2agg(state, aggdesc.dtagd_id)) == NULL) {
15028 			mutex_exit(&dtrace_lock);
15029 			return (EINVAL);
15030 		}
15031 
15032 		aggdesc.dtagd_epid = agg->dtag_ecb->dte_epid;
15033 
15034 		nrecs = aggdesc.dtagd_nrecs;
15035 		aggdesc.dtagd_nrecs = 0;
15036 
15037 		offs = agg->dtag_base;
15038 		lrec = &agg->dtag_action.dta_rec;
15039 		aggdesc.dtagd_size = lrec->dtrd_offset + lrec->dtrd_size - offs;
15040 
15041 		for (act = agg->dtag_first; ; act = act->dta_next) {
15042 			ASSERT(act->dta_intuple ||
15043 			    DTRACEACT_ISAGG(act->dta_kind));
15044 
15045 			/*
15046 			 * If this action has a record size of zero, it
15047 			 * denotes an argument to the aggregating action.
15048 			 * Because the presence of this record doesn't (or
15049 			 * shouldn't) affect the way the data is interpreted,
15050 			 * we don't copy it out to save user-level the
15051 			 * confusion of dealing with a zero-length record.
15052 			 */
15053 			if (act->dta_rec.dtrd_size == 0) {
15054 				ASSERT(agg->dtag_hasarg);
15055 				continue;
15056 			}
15057 
15058 			aggdesc.dtagd_nrecs++;
15059 
15060 			if (act == &agg->dtag_action)
15061 				break;
15062 		}
15063 
15064 		/*
15065 		 * Now that we have the size, we need to allocate a temporary
15066 		 * buffer in which to store the complete description.  We need
15067 		 * the temporary buffer to be able to drop dtrace_lock()
15068 		 * across the copyout(), below.
15069 		 */
15070 		size = sizeof (dtrace_aggdesc_t) +
15071 		    (aggdesc.dtagd_nrecs * sizeof (dtrace_recdesc_t));
15072 
15073 		buf = kmem_alloc(size, KM_SLEEP);
15074 		dest = (uintptr_t)buf;
15075 
15076 		bcopy(&aggdesc, (void *)dest, sizeof (aggdesc));
15077 		dest += offsetof(dtrace_aggdesc_t, dtagd_rec[0]);
15078 
15079 		for (act = agg->dtag_first; ; act = act->dta_next) {
15080 			dtrace_recdesc_t rec = act->dta_rec;
15081 
15082 			/*
15083 			 * See the comment in the above loop for why we pass
15084 			 * over zero-length records.
15085 			 */
15086 			if (rec.dtrd_size == 0) {
15087 				ASSERT(agg->dtag_hasarg);
15088 				continue;
15089 			}
15090 
15091 			if (nrecs-- == 0)
15092 				break;
15093 
15094 			rec.dtrd_offset -= offs;
15095 			bcopy(&rec, (void *)dest, sizeof (rec));
15096 			dest += sizeof (dtrace_recdesc_t);
15097 
15098 			if (act == &agg->dtag_action)
15099 				break;
15100 		}
15101 
15102 		mutex_exit(&dtrace_lock);
15103 
15104 		if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) {
15105 			kmem_free(buf, size);
15106 			return (EFAULT);
15107 		}
15108 
15109 		kmem_free(buf, size);
15110 		return (0);
15111 	}
15112 
15113 	case DTRACEIOC_ENABLE: {
15114 		dof_hdr_t *dof;
15115 		dtrace_enabling_t *enab = NULL;
15116 		dtrace_vstate_t *vstate;
15117 		int err = 0;
15118 
15119 		*rv = 0;
15120 
15121 		/*
15122 		 * If a NULL argument has been passed, we take this as our
15123 		 * cue to reevaluate our enablings.
15124 		 */
15125 		if (arg == NULL) {
15126 			dtrace_enabling_matchall();
15127 
15128 			return (0);
15129 		}
15130 
15131 		if ((dof = dtrace_dof_copyin(arg, &rval)) == NULL)
15132 			return (rval);
15133 
15134 		mutex_enter(&cpu_lock);
15135 		mutex_enter(&dtrace_lock);
15136 		vstate = &state->dts_vstate;
15137 
15138 		if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) {
15139 			mutex_exit(&dtrace_lock);
15140 			mutex_exit(&cpu_lock);
15141 			dtrace_dof_destroy(dof);
15142 			return (EBUSY);
15143 		}
15144 
15145 		if (dtrace_dof_slurp(dof, vstate, cr, &enab, 0, B_TRUE) != 0) {
15146 			mutex_exit(&dtrace_lock);
15147 			mutex_exit(&cpu_lock);
15148 			dtrace_dof_destroy(dof);
15149 			return (EINVAL);
15150 		}
15151 
15152 		if ((rval = dtrace_dof_options(dof, state)) != 0) {
15153 			dtrace_enabling_destroy(enab);
15154 			mutex_exit(&dtrace_lock);
15155 			mutex_exit(&cpu_lock);
15156 			dtrace_dof_destroy(dof);
15157 			return (rval);
15158 		}
15159 
15160 		if ((err = dtrace_enabling_match(enab, rv)) == 0) {
15161 			err = dtrace_enabling_retain(enab);
15162 		} else {
15163 			dtrace_enabling_destroy(enab);
15164 		}
15165 
15166 		mutex_exit(&cpu_lock);
15167 		mutex_exit(&dtrace_lock);
15168 		dtrace_dof_destroy(dof);
15169 
15170 		return (err);
15171 	}
15172 
15173 	case DTRACEIOC_REPLICATE: {
15174 		dtrace_repldesc_t desc;
15175 		dtrace_probedesc_t *match = &desc.dtrpd_match;
15176 		dtrace_probedesc_t *create = &desc.dtrpd_create;
15177 		int err;
15178 
15179 		if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
15180 			return (EFAULT);
15181 
15182 		match->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
15183 		match->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
15184 		match->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
15185 		match->dtpd_name[DTRACE_NAMELEN - 1] = '\0';
15186 
15187 		create->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
15188 		create->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
15189 		create->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
15190 		create->dtpd_name[DTRACE_NAMELEN - 1] = '\0';
15191 
15192 		mutex_enter(&dtrace_lock);
15193 		err = dtrace_enabling_replicate(state, match, create);
15194 		mutex_exit(&dtrace_lock);
15195 
15196 		return (err);
15197 	}
15198 
15199 	case DTRACEIOC_PROBEMATCH:
15200 	case DTRACEIOC_PROBES: {
15201 		dtrace_probe_t *probe = NULL;
15202 		dtrace_probedesc_t desc;
15203 		dtrace_probekey_t pkey;
15204 		dtrace_id_t i;
15205 		int m = 0;
15206 		uint32_t priv;
15207 		uid_t uid;
15208 		zoneid_t zoneid;
15209 
15210 		if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
15211 			return (EFAULT);
15212 
15213 		desc.dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
15214 		desc.dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
15215 		desc.dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
15216 		desc.dtpd_name[DTRACE_NAMELEN - 1] = '\0';
15217 
15218 		/*
15219 		 * Before we attempt to match this probe, we want to give
15220 		 * all providers the opportunity to provide it.
15221 		 */
15222 		if (desc.dtpd_id == DTRACE_IDNONE) {
15223 			mutex_enter(&dtrace_provider_lock);
15224 			dtrace_probe_provide(&desc, NULL);
15225 			mutex_exit(&dtrace_provider_lock);
15226 			desc.dtpd_id++;
15227 		}
15228 
15229 		if (cmd == DTRACEIOC_PROBEMATCH)  {
15230 			dtrace_probekey(&desc, &pkey);
15231 			pkey.dtpk_id = DTRACE_IDNONE;
15232 		}
15233 
15234 		dtrace_cred2priv(cr, &priv, &uid, &zoneid);
15235 
15236 		mutex_enter(&dtrace_lock);
15237 
15238 		if (cmd == DTRACEIOC_PROBEMATCH) {
15239 			for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) {
15240 				if ((probe = dtrace_probes[i - 1]) != NULL &&
15241 				    (m = dtrace_match_probe(probe, &pkey,
15242 				    priv, uid, zoneid)) != 0)
15243 					break;
15244 			}
15245 
15246 			if (m < 0) {
15247 				mutex_exit(&dtrace_lock);
15248 				return (EINVAL);
15249 			}
15250 
15251 		} else {
15252 			for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) {
15253 				if ((probe = dtrace_probes[i - 1]) != NULL &&
15254 				    dtrace_match_priv(probe, priv, uid, zoneid))
15255 					break;
15256 			}
15257 		}
15258 
15259 		if (probe == NULL) {
15260 			mutex_exit(&dtrace_lock);
15261 			return (ESRCH);
15262 		}
15263 
15264 		dtrace_probe_description(probe, &desc);
15265 		mutex_exit(&dtrace_lock);
15266 
15267 		if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
15268 			return (EFAULT);
15269 
15270 		return (0);
15271 	}
15272 
15273 	case DTRACEIOC_PROBEARG: {
15274 		dtrace_argdesc_t desc;
15275 		dtrace_probe_t *probe;
15276 		dtrace_provider_t *prov;
15277 
15278 		if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
15279 			return (EFAULT);
15280 
15281 		if (desc.dtargd_id == DTRACE_IDNONE)
15282 			return (EINVAL);
15283 
15284 		if (desc.dtargd_ndx == DTRACE_ARGNONE)
15285 			return (EINVAL);
15286 
15287 		mutex_enter(&dtrace_provider_lock);
15288 		mutex_enter(&mod_lock);
15289 		mutex_enter(&dtrace_lock);
15290 
15291 		if (desc.dtargd_id > dtrace_nprobes) {
15292 			mutex_exit(&dtrace_lock);
15293 			mutex_exit(&mod_lock);
15294 			mutex_exit(&dtrace_provider_lock);
15295 			return (EINVAL);
15296 		}
15297 
15298 		if ((probe = dtrace_probes[desc.dtargd_id - 1]) == NULL) {
15299 			mutex_exit(&dtrace_lock);
15300 			mutex_exit(&mod_lock);
15301 			mutex_exit(&dtrace_provider_lock);
15302 			return (EINVAL);
15303 		}
15304 
15305 		mutex_exit(&dtrace_lock);
15306 
15307 		prov = probe->dtpr_provider;
15308 
15309 		if (prov->dtpv_pops.dtps_getargdesc == NULL) {
15310 			/*
15311 			 * There isn't any typed information for this probe.
15312 			 * Set the argument number to DTRACE_ARGNONE.
15313 			 */
15314 			desc.dtargd_ndx = DTRACE_ARGNONE;
15315 		} else {
15316 			desc.dtargd_native[0] = '\0';
15317 			desc.dtargd_xlate[0] = '\0';
15318 			desc.dtargd_mapping = desc.dtargd_ndx;
15319 
15320 			prov->dtpv_pops.dtps_getargdesc(prov->dtpv_arg,
15321 			    probe->dtpr_id, probe->dtpr_arg, &desc);
15322 		}
15323 
15324 		mutex_exit(&mod_lock);
15325 		mutex_exit(&dtrace_provider_lock);
15326 
15327 		if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
15328 			return (EFAULT);
15329 
15330 		return (0);
15331 	}
15332 
15333 	case DTRACEIOC_GO: {
15334 		processorid_t cpuid;
15335 		rval = dtrace_state_go(state, &cpuid);
15336 
15337 		if (rval != 0)
15338 			return (rval);
15339 
15340 		if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0)
15341 			return (EFAULT);
15342 
15343 		return (0);
15344 	}
15345 
15346 	case DTRACEIOC_STOP: {
15347 		processorid_t cpuid;
15348 
15349 		mutex_enter(&dtrace_lock);
15350 		rval = dtrace_state_stop(state, &cpuid);
15351 		mutex_exit(&dtrace_lock);
15352 
15353 		if (rval != 0)
15354 			return (rval);
15355 
15356 		if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0)
15357 			return (EFAULT);
15358 
15359 		return (0);
15360 	}
15361 
15362 	case DTRACEIOC_DOFGET: {
15363 		dof_hdr_t hdr, *dof;
15364 		uint64_t len;
15365 
15366 		if (copyin((void *)arg, &hdr, sizeof (hdr)) != 0)
15367 			return (EFAULT);
15368 
15369 		mutex_enter(&dtrace_lock);
15370 		dof = dtrace_dof_create(state);
15371 		mutex_exit(&dtrace_lock);
15372 
15373 		len = MIN(hdr.dofh_loadsz, dof->dofh_loadsz);
15374 		rval = copyout(dof, (void *)arg, len);
15375 		dtrace_dof_destroy(dof);
15376 
15377 		return (rval == 0 ? 0 : EFAULT);
15378 	}
15379 
15380 	case DTRACEIOC_AGGSNAP:
15381 	case DTRACEIOC_BUFSNAP: {
15382 		dtrace_bufdesc_t desc;
15383 		caddr_t cached;
15384 		dtrace_buffer_t *buf;
15385 
15386 		if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
15387 			return (EFAULT);
15388 
15389 		if (desc.dtbd_cpu < 0 || desc.dtbd_cpu >= NCPU)
15390 			return (EINVAL);
15391 
15392 		mutex_enter(&dtrace_lock);
15393 
15394 		if (cmd == DTRACEIOC_BUFSNAP) {
15395 			buf = &state->dts_buffer[desc.dtbd_cpu];
15396 		} else {
15397 			buf = &state->dts_aggbuffer[desc.dtbd_cpu];
15398 		}
15399 
15400 		if (buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL)) {
15401 			size_t sz = buf->dtb_offset;
15402 
15403 			if (state->dts_activity != DTRACE_ACTIVITY_STOPPED) {
15404 				mutex_exit(&dtrace_lock);
15405 				return (EBUSY);
15406 			}
15407 
15408 			/*
15409 			 * If this buffer has already been consumed, we're
15410 			 * going to indicate that there's nothing left here
15411 			 * to consume.
15412 			 */
15413 			if (buf->dtb_flags & DTRACEBUF_CONSUMED) {
15414 				mutex_exit(&dtrace_lock);
15415 
15416 				desc.dtbd_size = 0;
15417 				desc.dtbd_drops = 0;
15418 				desc.dtbd_errors = 0;
15419 				desc.dtbd_oldest = 0;
15420 				sz = sizeof (desc);
15421 
15422 				if (copyout(&desc, (void *)arg, sz) != 0)
15423 					return (EFAULT);
15424 
15425 				return (0);
15426 			}
15427 
15428 			/*
15429 			 * If this is a ring buffer that has wrapped, we want
15430 			 * to copy the whole thing out.
15431 			 */
15432 			if (buf->dtb_flags & DTRACEBUF_WRAPPED) {
15433 				dtrace_buffer_polish(buf);
15434 				sz = buf->dtb_size;
15435 			}
15436 
15437 			if (copyout(buf->dtb_tomax, desc.dtbd_data, sz) != 0) {
15438 				mutex_exit(&dtrace_lock);
15439 				return (EFAULT);
15440 			}
15441 
15442 			desc.dtbd_size = sz;
15443 			desc.dtbd_drops = buf->dtb_drops;
15444 			desc.dtbd_errors = buf->dtb_errors;
15445 			desc.dtbd_oldest = buf->dtb_xamot_offset;
15446 
15447 			mutex_exit(&dtrace_lock);
15448 
15449 			if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
15450 				return (EFAULT);
15451 
15452 			buf->dtb_flags |= DTRACEBUF_CONSUMED;
15453 
15454 			return (0);
15455 		}
15456 
15457 		if (buf->dtb_tomax == NULL) {
15458 			ASSERT(buf->dtb_xamot == NULL);
15459 			mutex_exit(&dtrace_lock);
15460 			return (ENOENT);
15461 		}
15462 
15463 		cached = buf->dtb_tomax;
15464 		ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
15465 
15466 		dtrace_xcall(desc.dtbd_cpu,
15467 		    (dtrace_xcall_t)dtrace_buffer_switch, buf);
15468 
15469 		state->dts_errors += buf->dtb_xamot_errors;
15470 
15471 		/*
15472 		 * If the buffers did not actually switch, then the cross call
15473 		 * did not take place -- presumably because the given CPU is
15474 		 * not in the ready set.  If this is the case, we'll return
15475 		 * ENOENT.
15476 		 */
15477 		if (buf->dtb_tomax == cached) {
15478 			ASSERT(buf->dtb_xamot != cached);
15479 			mutex_exit(&dtrace_lock);
15480 			return (ENOENT);
15481 		}
15482 
15483 		ASSERT(cached == buf->dtb_xamot);
15484 
15485 		/*
15486 		 * We have our snapshot; now copy it out.
15487 		 */
15488 		if (copyout(buf->dtb_xamot, desc.dtbd_data,
15489 		    buf->dtb_xamot_offset) != 0) {
15490 			mutex_exit(&dtrace_lock);
15491 			return (EFAULT);
15492 		}
15493 
15494 		desc.dtbd_size = buf->dtb_xamot_offset;
15495 		desc.dtbd_drops = buf->dtb_xamot_drops;
15496 		desc.dtbd_errors = buf->dtb_xamot_errors;
15497 		desc.dtbd_oldest = 0;
15498 
15499 		mutex_exit(&dtrace_lock);
15500 
15501 		/*
15502 		 * Finally, copy out the buffer description.
15503 		 */
15504 		if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
15505 			return (EFAULT);
15506 
15507 		return (0);
15508 	}
15509 
15510 	case DTRACEIOC_CONF: {
15511 		dtrace_conf_t conf;
15512 
15513 		bzero(&conf, sizeof (conf));
15514 		conf.dtc_difversion = DIF_VERSION;
15515 		conf.dtc_difintregs = DIF_DIR_NREGS;
15516 		conf.dtc_diftupregs = DIF_DTR_NREGS;
15517 		conf.dtc_ctfmodel = CTF_MODEL_NATIVE;
15518 
15519 		if (copyout(&conf, (void *)arg, sizeof (conf)) != 0)
15520 			return (EFAULT);
15521 
15522 		return (0);
15523 	}
15524 
15525 	case DTRACEIOC_STATUS: {
15526 		dtrace_status_t stat;
15527 		dtrace_dstate_t *dstate;
15528 		int i, j;
15529 		uint64_t nerrs;
15530 
15531 		/*
15532 		 * See the comment in dtrace_state_deadman() for the reason
15533 		 * for setting dts_laststatus to INT64_MAX before setting
15534 		 * it to the correct value.
15535 		 */
15536 		state->dts_laststatus = INT64_MAX;
15537 		dtrace_membar_producer();
15538 		state->dts_laststatus = dtrace_gethrtime();
15539 
15540 		bzero(&stat, sizeof (stat));
15541 
15542 		mutex_enter(&dtrace_lock);
15543 
15544 		if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE) {
15545 			mutex_exit(&dtrace_lock);
15546 			return (ENOENT);
15547 		}
15548 
15549 		if (state->dts_activity == DTRACE_ACTIVITY_DRAINING)
15550 			stat.dtst_exiting = 1;
15551 
15552 		nerrs = state->dts_errors;
15553 		dstate = &state->dts_vstate.dtvs_dynvars;
15554 
15555 		for (i = 0; i < NCPU; i++) {
15556 			dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[i];
15557 
15558 			stat.dtst_dyndrops += dcpu->dtdsc_drops;
15559 			stat.dtst_dyndrops_dirty += dcpu->dtdsc_dirty_drops;
15560 			stat.dtst_dyndrops_rinsing += dcpu->dtdsc_rinsing_drops;
15561 
15562 			if (state->dts_buffer[i].dtb_flags & DTRACEBUF_FULL)
15563 				stat.dtst_filled++;
15564 
15565 			nerrs += state->dts_buffer[i].dtb_errors;
15566 
15567 			for (j = 0; j < state->dts_nspeculations; j++) {
15568 				dtrace_speculation_t *spec;
15569 				dtrace_buffer_t *buf;
15570 
15571 				spec = &state->dts_speculations[j];
15572 				buf = &spec->dtsp_buffer[i];
15573 				stat.dtst_specdrops += buf->dtb_xamot_drops;
15574 			}
15575 		}
15576 
15577 		stat.dtst_specdrops_busy = state->dts_speculations_busy;
15578 		stat.dtst_specdrops_unavail = state->dts_speculations_unavail;
15579 		stat.dtst_stkstroverflows = state->dts_stkstroverflows;
15580 		stat.dtst_dblerrors = state->dts_dblerrors;
15581 		stat.dtst_killed =
15582 		    (state->dts_activity == DTRACE_ACTIVITY_KILLED);
15583 		stat.dtst_errors = nerrs;
15584 
15585 		mutex_exit(&dtrace_lock);
15586 
15587 		if (copyout(&stat, (void *)arg, sizeof (stat)) != 0)
15588 			return (EFAULT);
15589 
15590 		return (0);
15591 	}
15592 
15593 	case DTRACEIOC_FORMAT: {
15594 		dtrace_fmtdesc_t fmt;
15595 		char *str;
15596 		int len;
15597 
15598 		if (copyin((void *)arg, &fmt, sizeof (fmt)) != 0)
15599 			return (EFAULT);
15600 
15601 		mutex_enter(&dtrace_lock);
15602 
15603 		if (fmt.dtfd_format == 0 ||
15604 		    fmt.dtfd_format > state->dts_nformats) {
15605 			mutex_exit(&dtrace_lock);
15606 			return (EINVAL);
15607 		}
15608 
15609 		/*
15610 		 * Format strings are allocated contiguously and they are
15611 		 * never freed; if a format index is less than the number
15612 		 * of formats, we can assert that the format map is non-NULL
15613 		 * and that the format for the specified index is non-NULL.
15614 		 */
15615 		ASSERT(state->dts_formats != NULL);
15616 		str = state->dts_formats[fmt.dtfd_format - 1];
15617 		ASSERT(str != NULL);
15618 
15619 		len = strlen(str) + 1;
15620 
15621 		if (len > fmt.dtfd_length) {
15622 			fmt.dtfd_length = len;
15623 
15624 			if (copyout(&fmt, (void *)arg, sizeof (fmt)) != 0) {
15625 				mutex_exit(&dtrace_lock);
15626 				return (EINVAL);
15627 			}
15628 		} else {
15629 			if (copyout(str, fmt.dtfd_string, len) != 0) {
15630 				mutex_exit(&dtrace_lock);
15631 				return (EINVAL);
15632 			}
15633 		}
15634 
15635 		mutex_exit(&dtrace_lock);
15636 		return (0);
15637 	}
15638 
15639 	default:
15640 		break;
15641 	}
15642 
15643 	return (ENOTTY);
15644 }
15645 
15646 /*ARGSUSED*/
15647 static int
15648 dtrace_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
15649 {
15650 	dtrace_state_t *state;
15651 
15652 	switch (cmd) {
15653 	case DDI_DETACH:
15654 		break;
15655 
15656 	case DDI_SUSPEND:
15657 		return (DDI_SUCCESS);
15658 
15659 	default:
15660 		return (DDI_FAILURE);
15661 	}
15662 
15663 	mutex_enter(&cpu_lock);
15664 	mutex_enter(&dtrace_provider_lock);
15665 	mutex_enter(&dtrace_lock);
15666 
15667 	ASSERT(dtrace_opens == 0);
15668 
15669 	if (dtrace_helpers > 0) {
15670 		mutex_exit(&dtrace_provider_lock);
15671 		mutex_exit(&dtrace_lock);
15672 		mutex_exit(&cpu_lock);
15673 		return (DDI_FAILURE);
15674 	}
15675 
15676 	if (dtrace_unregister((dtrace_provider_id_t)dtrace_provider) != 0) {
15677 		mutex_exit(&dtrace_provider_lock);
15678 		mutex_exit(&dtrace_lock);
15679 		mutex_exit(&cpu_lock);
15680 		return (DDI_FAILURE);
15681 	}
15682 
15683 	dtrace_provider = NULL;
15684 
15685 	if ((state = dtrace_anon_grab()) != NULL) {
15686 		/*
15687 		 * If there were ECBs on this state, the provider should
15688 		 * have not been allowed to detach; assert that there is
15689 		 * none.
15690 		 */
15691 		ASSERT(state->dts_necbs == 0);
15692 		dtrace_state_destroy(state);
15693 
15694 		/*
15695 		 * If we're being detached with anonymous state, we need to
15696 		 * indicate to the kernel debugger that DTrace is now inactive.
15697 		 */
15698 		(void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
15699 	}
15700 
15701 	bzero(&dtrace_anon, sizeof (dtrace_anon_t));
15702 	unregister_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL);
15703 	dtrace_cpu_init = NULL;
15704 	dtrace_helpers_cleanup = NULL;
15705 	dtrace_helpers_fork = NULL;
15706 	dtrace_cpustart_init = NULL;
15707 	dtrace_cpustart_fini = NULL;
15708 	dtrace_debugger_init = NULL;
15709 	dtrace_debugger_fini = NULL;
15710 	dtrace_modload = NULL;
15711 	dtrace_modunload = NULL;
15712 
15713 	mutex_exit(&cpu_lock);
15714 
15715 	if (dtrace_helptrace_enabled) {
15716 		kmem_free(dtrace_helptrace_buffer, dtrace_helptrace_bufsize);
15717 		dtrace_helptrace_buffer = NULL;
15718 	}
15719 
15720 	kmem_free(dtrace_probes, dtrace_nprobes * sizeof (dtrace_probe_t *));
15721 	dtrace_probes = NULL;
15722 	dtrace_nprobes = 0;
15723 
15724 	dtrace_hash_destroy(dtrace_bymod);
15725 	dtrace_hash_destroy(dtrace_byfunc);
15726 	dtrace_hash_destroy(dtrace_byname);
15727 	dtrace_bymod = NULL;
15728 	dtrace_byfunc = NULL;
15729 	dtrace_byname = NULL;
15730 
15731 	kmem_cache_destroy(dtrace_state_cache);
15732 	vmem_destroy(dtrace_minor);
15733 	vmem_destroy(dtrace_arena);
15734 
15735 	if (dtrace_toxrange != NULL) {
15736 		kmem_free(dtrace_toxrange,
15737 		    dtrace_toxranges_max * sizeof (dtrace_toxrange_t));
15738 		dtrace_toxrange = NULL;
15739 		dtrace_toxranges = 0;
15740 		dtrace_toxranges_max = 0;
15741 	}
15742 
15743 	ddi_remove_minor_node(dtrace_devi, NULL);
15744 	dtrace_devi = NULL;
15745 
15746 	ddi_soft_state_fini(&dtrace_softstate);
15747 
15748 	ASSERT(dtrace_vtime_references == 0);
15749 	ASSERT(dtrace_opens == 0);
15750 	ASSERT(dtrace_retained == NULL);
15751 
15752 	mutex_exit(&dtrace_lock);
15753 	mutex_exit(&dtrace_provider_lock);
15754 
15755 	/*
15756 	 * We don't destroy the task queue until after we have dropped our
15757 	 * locks (taskq_destroy() may block on running tasks).  To prevent
15758 	 * attempting to do work after we have effectively detached but before
15759 	 * the task queue has been destroyed, all tasks dispatched via the
15760 	 * task queue must check that DTrace is still attached before
15761 	 * performing any operation.
15762 	 */
15763 	taskq_destroy(dtrace_taskq);
15764 	dtrace_taskq = NULL;
15765 
15766 	return (DDI_SUCCESS);
15767 }
15768 
15769 /*ARGSUSED*/
15770 static int
15771 dtrace_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result)
15772 {
15773 	int error;
15774 
15775 	switch (infocmd) {
15776 	case DDI_INFO_DEVT2DEVINFO:
15777 		*result = (void *)dtrace_devi;
15778 		error = DDI_SUCCESS;
15779 		break;
15780 	case DDI_INFO_DEVT2INSTANCE:
15781 		*result = (void *)0;
15782 		error = DDI_SUCCESS;
15783 		break;
15784 	default:
15785 		error = DDI_FAILURE;
15786 	}
15787 	return (error);
15788 }
15789 
15790 static struct cb_ops dtrace_cb_ops = {
15791 	dtrace_open,		/* open */
15792 	dtrace_close,		/* close */
15793 	nulldev,		/* strategy */
15794 	nulldev,		/* print */
15795 	nodev,			/* dump */
15796 	nodev,			/* read */
15797 	nodev,			/* write */
15798 	dtrace_ioctl,		/* ioctl */
15799 	nodev,			/* devmap */
15800 	nodev,			/* mmap */
15801 	nodev,			/* segmap */
15802 	nochpoll,		/* poll */
15803 	ddi_prop_op,		/* cb_prop_op */
15804 	0,			/* streamtab  */
15805 	D_NEW | D_MP		/* Driver compatibility flag */
15806 };
15807 
15808 static struct dev_ops dtrace_ops = {
15809 	DEVO_REV,		/* devo_rev */
15810 	0,			/* refcnt */
15811 	dtrace_info,		/* get_dev_info */
15812 	nulldev,		/* identify */
15813 	nulldev,		/* probe */
15814 	dtrace_attach,		/* attach */
15815 	dtrace_detach,		/* detach */
15816 	nodev,			/* reset */
15817 	&dtrace_cb_ops,		/* driver operations */
15818 	NULL,			/* bus operations */
15819 	nodev,			/* dev power */
15820 	ddi_quiesce_not_needed,		/* quiesce */
15821 };
15822 
15823 static struct modldrv modldrv = {
15824 	&mod_driverops,		/* module type (this is a pseudo driver) */
15825 	"Dynamic Tracing",	/* name of module */
15826 	&dtrace_ops,		/* driver ops */
15827 };
15828 
15829 static struct modlinkage modlinkage = {
15830 	MODREV_1,
15831 	(void *)&modldrv,
15832 	NULL
15833 };
15834 
15835 int
15836 _init(void)
15837 {
15838 	return (mod_install(&modlinkage));
15839 }
15840 
15841 int
15842 _info(struct modinfo *modinfop)
15843 {
15844 	return (mod_info(&modlinkage, modinfop));
15845 }
15846 
15847 int
15848 _fini(void)
15849 {
15850 	return (mod_remove(&modlinkage));
15851 }
15852