1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2015, Joyent, Inc. All rights reserved. 25 * Copyright (c) 2012, 2014 by Delphix. All rights reserved. 26 */ 27 28 /* 29 * DTrace - Dynamic Tracing for Solaris 30 * 31 * This is the implementation of the Solaris Dynamic Tracing framework 32 * (DTrace). The user-visible interface to DTrace is described at length in 33 * the "Solaris Dynamic Tracing Guide". The interfaces between the libdtrace 34 * library, the in-kernel DTrace framework, and the DTrace providers are 35 * described in the block comments in the <sys/dtrace.h> header file. The 36 * internal architecture of DTrace is described in the block comments in the 37 * <sys/dtrace_impl.h> header file. The comments contained within the DTrace 38 * implementation very much assume mastery of all of these sources; if one has 39 * an unanswered question about the implementation, one should consult them 40 * first. 41 * 42 * The functions here are ordered roughly as follows: 43 * 44 * - Probe context functions 45 * - Probe hashing functions 46 * - Non-probe context utility functions 47 * - Matching functions 48 * - Provider-to-Framework API functions 49 * - Probe management functions 50 * - DIF object functions 51 * - Format functions 52 * - Predicate functions 53 * - ECB functions 54 * - Buffer functions 55 * - Enabling functions 56 * - DOF functions 57 * - Anonymous enabling functions 58 * - Consumer state functions 59 * - Helper functions 60 * - Hook functions 61 * - Driver cookbook functions 62 * 63 * Each group of functions begins with a block comment labelled the "DTrace 64 * [Group] Functions", allowing one to find each block by searching forward 65 * on capital-f functions. 66 */ 67 #include <sys/errno.h> 68 #include <sys/stat.h> 69 #include <sys/modctl.h> 70 #include <sys/conf.h> 71 #include <sys/systm.h> 72 #include <sys/ddi.h> 73 #include <sys/sunddi.h> 74 #include <sys/cpuvar.h> 75 #include <sys/kmem.h> 76 #include <sys/strsubr.h> 77 #include <sys/sysmacros.h> 78 #include <sys/dtrace_impl.h> 79 #include <sys/atomic.h> 80 #include <sys/cmn_err.h> 81 #include <sys/mutex_impl.h> 82 #include <sys/rwlock_impl.h> 83 #include <sys/ctf_api.h> 84 #include <sys/panic.h> 85 #include <sys/priv_impl.h> 86 #include <sys/policy.h> 87 #include <sys/cred_impl.h> 88 #include <sys/procfs_isa.h> 89 #include <sys/taskq.h> 90 #include <sys/mkdev.h> 91 #include <sys/kdi.h> 92 #include <sys/zone.h> 93 #include <sys/socket.h> 94 #include <netinet/in.h> 95 #include "strtolctype.h" 96 97 /* 98 * DTrace Tunable Variables 99 * 100 * The following variables may be tuned by adding a line to /etc/system that 101 * includes both the name of the DTrace module ("dtrace") and the name of the 102 * variable. For example: 103 * 104 * set dtrace:dtrace_destructive_disallow = 1 105 * 106 * In general, the only variables that one should be tuning this way are those 107 * that affect system-wide DTrace behavior, and for which the default behavior 108 * is undesirable. Most of these variables are tunable on a per-consumer 109 * basis using DTrace options, and need not be tuned on a system-wide basis. 110 * When tuning these variables, avoid pathological values; while some attempt 111 * is made to verify the integrity of these variables, they are not considered 112 * part of the supported interface to DTrace, and they are therefore not 113 * checked comprehensively. Further, these variables should not be tuned 114 * dynamically via "mdb -kw" or other means; they should only be tuned via 115 * /etc/system. 116 */ 117 int dtrace_destructive_disallow = 0; 118 dtrace_optval_t dtrace_nonroot_maxsize = (16 * 1024 * 1024); 119 size_t dtrace_difo_maxsize = (256 * 1024); 120 dtrace_optval_t dtrace_dof_maxsize = (8 * 1024 * 1024); 121 size_t dtrace_statvar_maxsize = (16 * 1024); 122 size_t dtrace_actions_max = (16 * 1024); 123 size_t dtrace_retain_max = 1024; 124 dtrace_optval_t dtrace_helper_actions_max = 1024; 125 dtrace_optval_t dtrace_helper_providers_max = 32; 126 dtrace_optval_t dtrace_dstate_defsize = (1 * 1024 * 1024); 127 size_t dtrace_strsize_default = 256; 128 dtrace_optval_t dtrace_cleanrate_default = 9900990; /* 101 hz */ 129 dtrace_optval_t dtrace_cleanrate_min = 200000; /* 5000 hz */ 130 dtrace_optval_t dtrace_cleanrate_max = (uint64_t)60 * NANOSEC; /* 1/minute */ 131 dtrace_optval_t dtrace_aggrate_default = NANOSEC; /* 1 hz */ 132 dtrace_optval_t dtrace_statusrate_default = NANOSEC; /* 1 hz */ 133 dtrace_optval_t dtrace_statusrate_max = (hrtime_t)10 * NANOSEC; /* 6/minute */ 134 dtrace_optval_t dtrace_switchrate_default = NANOSEC; /* 1 hz */ 135 dtrace_optval_t dtrace_nspec_default = 1; 136 dtrace_optval_t dtrace_specsize_default = 32 * 1024; 137 dtrace_optval_t dtrace_stackframes_default = 20; 138 dtrace_optval_t dtrace_ustackframes_default = 20; 139 dtrace_optval_t dtrace_jstackframes_default = 50; 140 dtrace_optval_t dtrace_jstackstrsize_default = 512; 141 int dtrace_msgdsize_max = 128; 142 hrtime_t dtrace_chill_max = MSEC2NSEC(500); /* 500 ms */ 143 hrtime_t dtrace_chill_interval = NANOSEC; /* 1000 ms */ 144 int dtrace_devdepth_max = 32; 145 int dtrace_err_verbose; 146 hrtime_t dtrace_deadman_interval = NANOSEC; 147 hrtime_t dtrace_deadman_timeout = (hrtime_t)10 * NANOSEC; 148 hrtime_t dtrace_deadman_user = (hrtime_t)30 * NANOSEC; 149 hrtime_t dtrace_unregister_defunct_reap = (hrtime_t)60 * NANOSEC; 150 151 /* 152 * DTrace External Variables 153 * 154 * As dtrace(7D) is a kernel module, any DTrace variables are obviously 155 * available to DTrace consumers via the backtick (`) syntax. One of these, 156 * dtrace_zero, is made deliberately so: it is provided as a source of 157 * well-known, zero-filled memory. While this variable is not documented, 158 * it is used by some translators as an implementation detail. 159 */ 160 const char dtrace_zero[256] = { 0 }; /* zero-filled memory */ 161 162 /* 163 * DTrace Internal Variables 164 */ 165 static dev_info_t *dtrace_devi; /* device info */ 166 static vmem_t *dtrace_arena; /* probe ID arena */ 167 static vmem_t *dtrace_minor; /* minor number arena */ 168 static taskq_t *dtrace_taskq; /* task queue */ 169 static dtrace_probe_t **dtrace_probes; /* array of all probes */ 170 static int dtrace_nprobes; /* number of probes */ 171 static dtrace_provider_t *dtrace_provider; /* provider list */ 172 static dtrace_meta_t *dtrace_meta_pid; /* user-land meta provider */ 173 static int dtrace_opens; /* number of opens */ 174 static int dtrace_helpers; /* number of helpers */ 175 static int dtrace_getf; /* number of unpriv getf()s */ 176 static void *dtrace_softstate; /* softstate pointer */ 177 static dtrace_hash_t *dtrace_bymod; /* probes hashed by module */ 178 static dtrace_hash_t *dtrace_byfunc; /* probes hashed by function */ 179 static dtrace_hash_t *dtrace_byname; /* probes hashed by name */ 180 static dtrace_toxrange_t *dtrace_toxrange; /* toxic range array */ 181 static int dtrace_toxranges; /* number of toxic ranges */ 182 static int dtrace_toxranges_max; /* size of toxic range array */ 183 static dtrace_anon_t dtrace_anon; /* anonymous enabling */ 184 static kmem_cache_t *dtrace_state_cache; /* cache for dynamic state */ 185 static uint64_t dtrace_vtime_references; /* number of vtimestamp refs */ 186 static kthread_t *dtrace_panicked; /* panicking thread */ 187 static dtrace_ecb_t *dtrace_ecb_create_cache; /* cached created ECB */ 188 static dtrace_genid_t dtrace_probegen; /* current probe generation */ 189 static dtrace_helpers_t *dtrace_deferred_pid; /* deferred helper list */ 190 static dtrace_enabling_t *dtrace_retained; /* list of retained enablings */ 191 static dtrace_genid_t dtrace_retained_gen; /* current retained enab gen */ 192 static dtrace_dynvar_t dtrace_dynhash_sink; /* end of dynamic hash chains */ 193 static int dtrace_dynvar_failclean; /* dynvars failed to clean */ 194 195 /* 196 * DTrace Locking 197 * DTrace is protected by three (relatively coarse-grained) locks: 198 * 199 * (1) dtrace_lock is required to manipulate essentially any DTrace state, 200 * including enabling state, probes, ECBs, consumer state, helper state, 201 * etc. Importantly, dtrace_lock is _not_ required when in probe context; 202 * probe context is lock-free -- synchronization is handled via the 203 * dtrace_sync() cross call mechanism. 204 * 205 * (2) dtrace_provider_lock is required when manipulating provider state, or 206 * when provider state must be held constant. 207 * 208 * (3) dtrace_meta_lock is required when manipulating meta provider state, or 209 * when meta provider state must be held constant. 210 * 211 * The lock ordering between these three locks is dtrace_meta_lock before 212 * dtrace_provider_lock before dtrace_lock. (In particular, there are 213 * several places where dtrace_provider_lock is held by the framework as it 214 * calls into the providers -- which then call back into the framework, 215 * grabbing dtrace_lock.) 216 * 217 * There are two other locks in the mix: mod_lock and cpu_lock. With respect 218 * to dtrace_provider_lock and dtrace_lock, cpu_lock continues its historical 219 * role as a coarse-grained lock; it is acquired before both of these locks. 220 * With respect to dtrace_meta_lock, its behavior is stranger: cpu_lock must 221 * be acquired _between_ dtrace_meta_lock and any other DTrace locks. 222 * mod_lock is similar with respect to dtrace_provider_lock in that it must be 223 * acquired _between_ dtrace_provider_lock and dtrace_lock. 224 */ 225 static kmutex_t dtrace_lock; /* probe state lock */ 226 static kmutex_t dtrace_provider_lock; /* provider state lock */ 227 static kmutex_t dtrace_meta_lock; /* meta-provider state lock */ 228 229 /* 230 * DTrace Provider Variables 231 * 232 * These are the variables relating to DTrace as a provider (that is, the 233 * provider of the BEGIN, END, and ERROR probes). 234 */ 235 static dtrace_pattr_t dtrace_provider_attr = { 236 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON }, 237 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN }, 238 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN }, 239 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON }, 240 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON }, 241 }; 242 243 static void 244 dtrace_nullop(void) 245 {} 246 247 static int 248 dtrace_enable_nullop(void) 249 { 250 return (0); 251 } 252 253 static dtrace_pops_t dtrace_provider_ops = { 254 (void (*)(void *, const dtrace_probedesc_t *))dtrace_nullop, 255 (void (*)(void *, struct modctl *))dtrace_nullop, 256 (int (*)(void *, dtrace_id_t, void *))dtrace_enable_nullop, 257 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop, 258 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop, 259 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop, 260 NULL, 261 NULL, 262 NULL, 263 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop 264 }; 265 266 static dtrace_id_t dtrace_probeid_begin; /* special BEGIN probe */ 267 static dtrace_id_t dtrace_probeid_end; /* special END probe */ 268 dtrace_id_t dtrace_probeid_error; /* special ERROR probe */ 269 270 /* 271 * DTrace Helper Tracing Variables 272 * 273 * These variables should be set dynamically to enable helper tracing. The 274 * only variables that should be set are dtrace_helptrace_enable (which should 275 * be set to a non-zero value to allocate helper tracing buffers on the next 276 * open of /dev/dtrace) and dtrace_helptrace_disable (which should be set to a 277 * non-zero value to deallocate helper tracing buffers on the next close of 278 * /dev/dtrace). When (and only when) helper tracing is disabled, the 279 * buffer size may also be set via dtrace_helptrace_bufsize. 280 */ 281 int dtrace_helptrace_enable = 0; 282 int dtrace_helptrace_disable = 0; 283 int dtrace_helptrace_bufsize = 16 * 1024 * 1024; 284 uint32_t dtrace_helptrace_nlocals; 285 static dtrace_helptrace_t *dtrace_helptrace_buffer; 286 static uint32_t dtrace_helptrace_next = 0; 287 static int dtrace_helptrace_wrapped = 0; 288 289 /* 290 * DTrace Error Hashing 291 * 292 * On DEBUG kernels, DTrace will track the errors that has seen in a hash 293 * table. This is very useful for checking coverage of tests that are 294 * expected to induce DIF or DOF processing errors, and may be useful for 295 * debugging problems in the DIF code generator or in DOF generation . The 296 * error hash may be examined with the ::dtrace_errhash MDB dcmd. 297 */ 298 #ifdef DEBUG 299 static dtrace_errhash_t dtrace_errhash[DTRACE_ERRHASHSZ]; 300 static const char *dtrace_errlast; 301 static kthread_t *dtrace_errthread; 302 static kmutex_t dtrace_errlock; 303 #endif 304 305 /* 306 * DTrace Macros and Constants 307 * 308 * These are various macros that are useful in various spots in the 309 * implementation, along with a few random constants that have no meaning 310 * outside of the implementation. There is no real structure to this cpp 311 * mishmash -- but is there ever? 312 */ 313 #define DTRACE_HASHSTR(hash, probe) \ 314 dtrace_hash_str(*((char **)((uintptr_t)(probe) + (hash)->dth_stroffs))) 315 316 #define DTRACE_HASHNEXT(hash, probe) \ 317 (dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_nextoffs) 318 319 #define DTRACE_HASHPREV(hash, probe) \ 320 (dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_prevoffs) 321 322 #define DTRACE_HASHEQ(hash, lhs, rhs) \ 323 (strcmp(*((char **)((uintptr_t)(lhs) + (hash)->dth_stroffs)), \ 324 *((char **)((uintptr_t)(rhs) + (hash)->dth_stroffs))) == 0) 325 326 #define DTRACE_AGGHASHSIZE_SLEW 17 327 328 #define DTRACE_V4MAPPED_OFFSET (sizeof (uint32_t) * 3) 329 330 /* 331 * The key for a thread-local variable consists of the lower 61 bits of the 332 * t_did, plus the 3 bits of the highest active interrupt above LOCK_LEVEL. 333 * We add DIF_VARIABLE_MAX to t_did to assure that the thread key is never 334 * equal to a variable identifier. This is necessary (but not sufficient) to 335 * assure that global associative arrays never collide with thread-local 336 * variables. To guarantee that they cannot collide, we must also define the 337 * order for keying dynamic variables. That order is: 338 * 339 * [ key0 ] ... [ keyn ] [ variable-key ] [ tls-key ] 340 * 341 * Because the variable-key and the tls-key are in orthogonal spaces, there is 342 * no way for a global variable key signature to match a thread-local key 343 * signature. 344 */ 345 #define DTRACE_TLS_THRKEY(where) { \ 346 uint_t intr = 0; \ 347 uint_t actv = CPU->cpu_intr_actv >> (LOCK_LEVEL + 1); \ 348 for (; actv; actv >>= 1) \ 349 intr++; \ 350 ASSERT(intr < (1 << 3)); \ 351 (where) = ((curthread->t_did + DIF_VARIABLE_MAX) & \ 352 (((uint64_t)1 << 61) - 1)) | ((uint64_t)intr << 61); \ 353 } 354 355 #define DT_BSWAP_8(x) ((x) & 0xff) 356 #define DT_BSWAP_16(x) ((DT_BSWAP_8(x) << 8) | DT_BSWAP_8((x) >> 8)) 357 #define DT_BSWAP_32(x) ((DT_BSWAP_16(x) << 16) | DT_BSWAP_16((x) >> 16)) 358 #define DT_BSWAP_64(x) ((DT_BSWAP_32(x) << 32) | DT_BSWAP_32((x) >> 32)) 359 360 #define DT_MASK_LO 0x00000000FFFFFFFFULL 361 362 #define DTRACE_STORE(type, tomax, offset, what) \ 363 *((type *)((uintptr_t)(tomax) + (uintptr_t)offset)) = (type)(what); 364 365 #ifndef __x86 366 #define DTRACE_ALIGNCHECK(addr, size, flags) \ 367 if (addr & (size - 1)) { \ 368 *flags |= CPU_DTRACE_BADALIGN; \ 369 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = addr; \ 370 return (0); \ 371 } 372 #else 373 #define DTRACE_ALIGNCHECK(addr, size, flags) 374 #endif 375 376 /* 377 * Test whether a range of memory starting at testaddr of size testsz falls 378 * within the range of memory described by addr, sz. We take care to avoid 379 * problems with overflow and underflow of the unsigned quantities, and 380 * disallow all negative sizes. Ranges of size 0 are allowed. 381 */ 382 #define DTRACE_INRANGE(testaddr, testsz, baseaddr, basesz) \ 383 ((testaddr) - (uintptr_t)(baseaddr) < (basesz) && \ 384 (testaddr) + (testsz) - (uintptr_t)(baseaddr) <= (basesz) && \ 385 (testaddr) + (testsz) >= (testaddr)) 386 387 /* 388 * Test whether alloc_sz bytes will fit in the scratch region. We isolate 389 * alloc_sz on the righthand side of the comparison in order to avoid overflow 390 * or underflow in the comparison with it. This is simpler than the INRANGE 391 * check above, because we know that the dtms_scratch_ptr is valid in the 392 * range. Allocations of size zero are allowed. 393 */ 394 #define DTRACE_INSCRATCH(mstate, alloc_sz) \ 395 ((mstate)->dtms_scratch_base + (mstate)->dtms_scratch_size - \ 396 (mstate)->dtms_scratch_ptr >= (alloc_sz)) 397 398 #define DTRACE_LOADFUNC(bits) \ 399 /*CSTYLED*/ \ 400 uint##bits##_t \ 401 dtrace_load##bits(uintptr_t addr) \ 402 { \ 403 size_t size = bits / NBBY; \ 404 /*CSTYLED*/ \ 405 uint##bits##_t rval; \ 406 int i; \ 407 volatile uint16_t *flags = (volatile uint16_t *) \ 408 &cpu_core[CPU->cpu_id].cpuc_dtrace_flags; \ 409 \ 410 DTRACE_ALIGNCHECK(addr, size, flags); \ 411 \ 412 for (i = 0; i < dtrace_toxranges; i++) { \ 413 if (addr >= dtrace_toxrange[i].dtt_limit) \ 414 continue; \ 415 \ 416 if (addr + size <= dtrace_toxrange[i].dtt_base) \ 417 continue; \ 418 \ 419 /* \ 420 * This address falls within a toxic region; return 0. \ 421 */ \ 422 *flags |= CPU_DTRACE_BADADDR; \ 423 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = addr; \ 424 return (0); \ 425 } \ 426 \ 427 *flags |= CPU_DTRACE_NOFAULT; \ 428 /*CSTYLED*/ \ 429 rval = *((volatile uint##bits##_t *)addr); \ 430 *flags &= ~CPU_DTRACE_NOFAULT; \ 431 \ 432 return (!(*flags & CPU_DTRACE_FAULT) ? rval : 0); \ 433 } 434 435 #ifdef _LP64 436 #define dtrace_loadptr dtrace_load64 437 #else 438 #define dtrace_loadptr dtrace_load32 439 #endif 440 441 #define DTRACE_DYNHASH_FREE 0 442 #define DTRACE_DYNHASH_SINK 1 443 #define DTRACE_DYNHASH_VALID 2 444 445 #define DTRACE_MATCH_FAIL -1 446 #define DTRACE_MATCH_NEXT 0 447 #define DTRACE_MATCH_DONE 1 448 #define DTRACE_ANCHORED(probe) ((probe)->dtpr_func[0] != '\0') 449 #define DTRACE_STATE_ALIGN 64 450 451 #define DTRACE_FLAGS2FLT(flags) \ 452 (((flags) & CPU_DTRACE_BADADDR) ? DTRACEFLT_BADADDR : \ 453 ((flags) & CPU_DTRACE_ILLOP) ? DTRACEFLT_ILLOP : \ 454 ((flags) & CPU_DTRACE_DIVZERO) ? DTRACEFLT_DIVZERO : \ 455 ((flags) & CPU_DTRACE_KPRIV) ? DTRACEFLT_KPRIV : \ 456 ((flags) & CPU_DTRACE_UPRIV) ? DTRACEFLT_UPRIV : \ 457 ((flags) & CPU_DTRACE_TUPOFLOW) ? DTRACEFLT_TUPOFLOW : \ 458 ((flags) & CPU_DTRACE_BADALIGN) ? DTRACEFLT_BADALIGN : \ 459 ((flags) & CPU_DTRACE_NOSCRATCH) ? DTRACEFLT_NOSCRATCH : \ 460 ((flags) & CPU_DTRACE_BADSTACK) ? DTRACEFLT_BADSTACK : \ 461 DTRACEFLT_UNKNOWN) 462 463 #define DTRACEACT_ISSTRING(act) \ 464 ((act)->dta_kind == DTRACEACT_DIFEXPR && \ 465 (act)->dta_difo->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) 466 467 static size_t dtrace_strlen(const char *, size_t); 468 static dtrace_probe_t *dtrace_probe_lookup_id(dtrace_id_t id); 469 static void dtrace_enabling_provide(dtrace_provider_t *); 470 static int dtrace_enabling_match(dtrace_enabling_t *, int *); 471 static void dtrace_enabling_matchall(void); 472 static void dtrace_enabling_reap(void); 473 static dtrace_state_t *dtrace_anon_grab(void); 474 static uint64_t dtrace_helper(int, dtrace_mstate_t *, 475 dtrace_state_t *, uint64_t, uint64_t); 476 static dtrace_helpers_t *dtrace_helpers_create(proc_t *); 477 static void dtrace_buffer_drop(dtrace_buffer_t *); 478 static int dtrace_buffer_consumed(dtrace_buffer_t *, hrtime_t when); 479 static intptr_t dtrace_buffer_reserve(dtrace_buffer_t *, size_t, size_t, 480 dtrace_state_t *, dtrace_mstate_t *); 481 static int dtrace_state_option(dtrace_state_t *, dtrace_optid_t, 482 dtrace_optval_t); 483 static int dtrace_ecb_create_enable(dtrace_probe_t *, void *); 484 static void dtrace_helper_provider_destroy(dtrace_helper_provider_t *); 485 static int dtrace_priv_proc(dtrace_state_t *, dtrace_mstate_t *); 486 static void dtrace_getf_barrier(void); 487 488 /* 489 * DTrace Probe Context Functions 490 * 491 * These functions are called from probe context. Because probe context is 492 * any context in which C may be called, arbitrarily locks may be held, 493 * interrupts may be disabled, we may be in arbitrary dispatched state, etc. 494 * As a result, functions called from probe context may only call other DTrace 495 * support functions -- they may not interact at all with the system at large. 496 * (Note that the ASSERT macro is made probe-context safe by redefining it in 497 * terms of dtrace_assfail(), a probe-context safe function.) If arbitrary 498 * loads are to be performed from probe context, they _must_ be in terms of 499 * the safe dtrace_load*() variants. 500 * 501 * Some functions in this block are not actually called from probe context; 502 * for these functions, there will be a comment above the function reading 503 * "Note: not called from probe context." 504 */ 505 void 506 dtrace_panic(const char *format, ...) 507 { 508 va_list alist; 509 510 va_start(alist, format); 511 dtrace_vpanic(format, alist); 512 va_end(alist); 513 } 514 515 int 516 dtrace_assfail(const char *a, const char *f, int l) 517 { 518 dtrace_panic("assertion failed: %s, file: %s, line: %d", a, f, l); 519 520 /* 521 * We just need something here that even the most clever compiler 522 * cannot optimize away. 523 */ 524 return (a[(uintptr_t)f]); 525 } 526 527 /* 528 * Atomically increment a specified error counter from probe context. 529 */ 530 static void 531 dtrace_error(uint32_t *counter) 532 { 533 /* 534 * Most counters stored to in probe context are per-CPU counters. 535 * However, there are some error conditions that are sufficiently 536 * arcane that they don't merit per-CPU storage. If these counters 537 * are incremented concurrently on different CPUs, scalability will be 538 * adversely affected -- but we don't expect them to be white-hot in a 539 * correctly constructed enabling... 540 */ 541 uint32_t oval, nval; 542 543 do { 544 oval = *counter; 545 546 if ((nval = oval + 1) == 0) { 547 /* 548 * If the counter would wrap, set it to 1 -- assuring 549 * that the counter is never zero when we have seen 550 * errors. (The counter must be 32-bits because we 551 * aren't guaranteed a 64-bit compare&swap operation.) 552 * To save this code both the infamy of being fingered 553 * by a priggish news story and the indignity of being 554 * the target of a neo-puritan witch trial, we're 555 * carefully avoiding any colorful description of the 556 * likelihood of this condition -- but suffice it to 557 * say that it is only slightly more likely than the 558 * overflow of predicate cache IDs, as discussed in 559 * dtrace_predicate_create(). 560 */ 561 nval = 1; 562 } 563 } while (dtrace_cas32(counter, oval, nval) != oval); 564 } 565 566 /* 567 * Use the DTRACE_LOADFUNC macro to define functions for each of loading a 568 * uint8_t, a uint16_t, a uint32_t and a uint64_t. 569 */ 570 DTRACE_LOADFUNC(8) 571 DTRACE_LOADFUNC(16) 572 DTRACE_LOADFUNC(32) 573 DTRACE_LOADFUNC(64) 574 575 static int 576 dtrace_inscratch(uintptr_t dest, size_t size, dtrace_mstate_t *mstate) 577 { 578 if (dest < mstate->dtms_scratch_base) 579 return (0); 580 581 if (dest + size < dest) 582 return (0); 583 584 if (dest + size > mstate->dtms_scratch_ptr) 585 return (0); 586 587 return (1); 588 } 589 590 static int 591 dtrace_canstore_statvar(uint64_t addr, size_t sz, 592 dtrace_statvar_t **svars, int nsvars) 593 { 594 int i; 595 size_t maxglobalsize, maxlocalsize; 596 597 if (nsvars == 0) 598 return (0); 599 600 maxglobalsize = dtrace_statvar_maxsize; 601 maxlocalsize = (maxglobalsize + sizeof (uint64_t)) * NCPU; 602 603 for (i = 0; i < nsvars; i++) { 604 dtrace_statvar_t *svar = svars[i]; 605 uint8_t scope; 606 size_t size; 607 608 if (svar == NULL || (size = svar->dtsv_size) == 0) 609 continue; 610 611 scope = svar->dtsv_var.dtdv_scope; 612 613 /* 614 * We verify that our size is valid in the spirit of providing 615 * defense in depth: we want to prevent attackers from using 616 * DTrace to escalate an orthogonal kernel heap corruption bug 617 * into the ability to store to arbitrary locations in memory. 618 */ 619 VERIFY((scope == DIFV_SCOPE_GLOBAL && size < maxglobalsize) || 620 (scope == DIFV_SCOPE_LOCAL && size < maxlocalsize)); 621 622 if (DTRACE_INRANGE(addr, sz, svar->dtsv_data, svar->dtsv_size)) 623 return (1); 624 } 625 626 return (0); 627 } 628 629 /* 630 * Check to see if the address is within a memory region to which a store may 631 * be issued. This includes the DTrace scratch areas, and any DTrace variable 632 * region. The caller of dtrace_canstore() is responsible for performing any 633 * alignment checks that are needed before stores are actually executed. 634 */ 635 static int 636 dtrace_canstore(uint64_t addr, size_t sz, dtrace_mstate_t *mstate, 637 dtrace_vstate_t *vstate) 638 { 639 /* 640 * First, check to see if the address is in scratch space... 641 */ 642 if (DTRACE_INRANGE(addr, sz, mstate->dtms_scratch_base, 643 mstate->dtms_scratch_size)) 644 return (1); 645 646 /* 647 * Now check to see if it's a dynamic variable. This check will pick 648 * up both thread-local variables and any global dynamically-allocated 649 * variables. 650 */ 651 if (DTRACE_INRANGE(addr, sz, vstate->dtvs_dynvars.dtds_base, 652 vstate->dtvs_dynvars.dtds_size)) { 653 dtrace_dstate_t *dstate = &vstate->dtvs_dynvars; 654 uintptr_t base = (uintptr_t)dstate->dtds_base + 655 (dstate->dtds_hashsize * sizeof (dtrace_dynhash_t)); 656 uintptr_t chunkoffs; 657 658 /* 659 * Before we assume that we can store here, we need to make 660 * sure that it isn't in our metadata -- storing to our 661 * dynamic variable metadata would corrupt our state. For 662 * the range to not include any dynamic variable metadata, 663 * it must: 664 * 665 * (1) Start above the hash table that is at the base of 666 * the dynamic variable space 667 * 668 * (2) Have a starting chunk offset that is beyond the 669 * dtrace_dynvar_t that is at the base of every chunk 670 * 671 * (3) Not span a chunk boundary 672 * 673 */ 674 if (addr < base) 675 return (0); 676 677 chunkoffs = (addr - base) % dstate->dtds_chunksize; 678 679 if (chunkoffs < sizeof (dtrace_dynvar_t)) 680 return (0); 681 682 if (chunkoffs + sz > dstate->dtds_chunksize) 683 return (0); 684 685 return (1); 686 } 687 688 /* 689 * Finally, check the static local and global variables. These checks 690 * take the longest, so we perform them last. 691 */ 692 if (dtrace_canstore_statvar(addr, sz, 693 vstate->dtvs_locals, vstate->dtvs_nlocals)) 694 return (1); 695 696 if (dtrace_canstore_statvar(addr, sz, 697 vstate->dtvs_globals, vstate->dtvs_nglobals)) 698 return (1); 699 700 return (0); 701 } 702 703 704 /* 705 * Convenience routine to check to see if the address is within a memory 706 * region in which a load may be issued given the user's privilege level; 707 * if not, it sets the appropriate error flags and loads 'addr' into the 708 * illegal value slot. 709 * 710 * DTrace subroutines (DIF_SUBR_*) should use this helper to implement 711 * appropriate memory access protection. 712 */ 713 static int 714 dtrace_canload(uint64_t addr, size_t sz, dtrace_mstate_t *mstate, 715 dtrace_vstate_t *vstate) 716 { 717 volatile uintptr_t *illval = &cpu_core[CPU->cpu_id].cpuc_dtrace_illval; 718 file_t *fp; 719 720 /* 721 * If we hold the privilege to read from kernel memory, then 722 * everything is readable. 723 */ 724 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) 725 return (1); 726 727 /* 728 * You can obviously read that which you can store. 729 */ 730 if (dtrace_canstore(addr, sz, mstate, vstate)) 731 return (1); 732 733 /* 734 * We're allowed to read from our own string table. 735 */ 736 if (DTRACE_INRANGE(addr, sz, mstate->dtms_difo->dtdo_strtab, 737 mstate->dtms_difo->dtdo_strlen)) 738 return (1); 739 740 if (vstate->dtvs_state != NULL && 741 dtrace_priv_proc(vstate->dtvs_state, mstate)) { 742 proc_t *p; 743 744 /* 745 * When we have privileges to the current process, there are 746 * several context-related kernel structures that are safe to 747 * read, even absent the privilege to read from kernel memory. 748 * These reads are safe because these structures contain only 749 * state that (1) we're permitted to read, (2) is harmless or 750 * (3) contains pointers to additional kernel state that we're 751 * not permitted to read (and as such, do not present an 752 * opportunity for privilege escalation). Finally (and 753 * critically), because of the nature of their relation with 754 * the current thread context, the memory associated with these 755 * structures cannot change over the duration of probe context, 756 * and it is therefore impossible for this memory to be 757 * deallocated and reallocated as something else while it's 758 * being operated upon. 759 */ 760 if (DTRACE_INRANGE(addr, sz, curthread, sizeof (kthread_t))) 761 return (1); 762 763 if ((p = curthread->t_procp) != NULL && DTRACE_INRANGE(addr, 764 sz, curthread->t_procp, sizeof (proc_t))) { 765 return (1); 766 } 767 768 if (curthread->t_cred != NULL && DTRACE_INRANGE(addr, sz, 769 curthread->t_cred, sizeof (cred_t))) { 770 return (1); 771 } 772 773 if (p != NULL && p->p_pidp != NULL && DTRACE_INRANGE(addr, sz, 774 &(p->p_pidp->pid_id), sizeof (pid_t))) { 775 return (1); 776 } 777 778 if (curthread->t_cpu != NULL && DTRACE_INRANGE(addr, sz, 779 curthread->t_cpu, offsetof(cpu_t, cpu_pause_thread))) { 780 return (1); 781 } 782 } 783 784 if ((fp = mstate->dtms_getf) != NULL) { 785 uintptr_t psz = sizeof (void *); 786 vnode_t *vp; 787 vnodeops_t *op; 788 789 /* 790 * When getf() returns a file_t, the enabling is implicitly 791 * granted the (transient) right to read the returned file_t 792 * as well as the v_path and v_op->vnop_name of the underlying 793 * vnode. These accesses are allowed after a successful 794 * getf() because the members that they refer to cannot change 795 * once set -- and the barrier logic in the kernel's closef() 796 * path assures that the file_t and its referenced vode_t 797 * cannot themselves be stale (that is, it impossible for 798 * either dtms_getf itself or its f_vnode member to reference 799 * freed memory). 800 */ 801 if (DTRACE_INRANGE(addr, sz, fp, sizeof (file_t))) 802 return (1); 803 804 if ((vp = fp->f_vnode) != NULL) { 805 if (DTRACE_INRANGE(addr, sz, &vp->v_path, psz)) 806 return (1); 807 808 if (vp->v_path != NULL && DTRACE_INRANGE(addr, sz, 809 vp->v_path, strlen(vp->v_path) + 1)) { 810 return (1); 811 } 812 813 if (DTRACE_INRANGE(addr, sz, &vp->v_op, psz)) 814 return (1); 815 816 if ((op = vp->v_op) != NULL && 817 DTRACE_INRANGE(addr, sz, &op->vnop_name, psz)) { 818 return (1); 819 } 820 821 if (op != NULL && op->vnop_name != NULL && 822 DTRACE_INRANGE(addr, sz, op->vnop_name, 823 strlen(op->vnop_name) + 1)) { 824 return (1); 825 } 826 } 827 } 828 829 DTRACE_CPUFLAG_SET(CPU_DTRACE_KPRIV); 830 *illval = addr; 831 return (0); 832 } 833 834 /* 835 * Convenience routine to check to see if a given string is within a memory 836 * region in which a load may be issued given the user's privilege level; 837 * this exists so that we don't need to issue unnecessary dtrace_strlen() 838 * calls in the event that the user has all privileges. 839 */ 840 static int 841 dtrace_strcanload(uint64_t addr, size_t sz, dtrace_mstate_t *mstate, 842 dtrace_vstate_t *vstate) 843 { 844 size_t strsz; 845 846 /* 847 * If we hold the privilege to read from kernel memory, then 848 * everything is readable. 849 */ 850 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) 851 return (1); 852 853 strsz = 1 + dtrace_strlen((char *)(uintptr_t)addr, sz); 854 if (dtrace_canload(addr, strsz, mstate, vstate)) 855 return (1); 856 857 return (0); 858 } 859 860 /* 861 * Convenience routine to check to see if a given variable is within a memory 862 * region in which a load may be issued given the user's privilege level. 863 */ 864 static int 865 dtrace_vcanload(void *src, dtrace_diftype_t *type, dtrace_mstate_t *mstate, 866 dtrace_vstate_t *vstate) 867 { 868 size_t sz; 869 ASSERT(type->dtdt_flags & DIF_TF_BYREF); 870 871 /* 872 * If we hold the privilege to read from kernel memory, then 873 * everything is readable. 874 */ 875 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) 876 return (1); 877 878 if (type->dtdt_kind == DIF_TYPE_STRING) 879 sz = dtrace_strlen(src, 880 vstate->dtvs_state->dts_options[DTRACEOPT_STRSIZE]) + 1; 881 else 882 sz = type->dtdt_size; 883 884 return (dtrace_canload((uintptr_t)src, sz, mstate, vstate)); 885 } 886 887 /* 888 * Convert a string to a signed integer using safe loads. 889 * 890 * NOTE: This function uses various macros from strtolctype.h to manipulate 891 * digit values, etc -- these have all been checked to ensure they make 892 * no additional function calls. 893 */ 894 static int64_t 895 dtrace_strtoll(char *input, int base, size_t limit) 896 { 897 uintptr_t pos = (uintptr_t)input; 898 int64_t val = 0; 899 int x; 900 boolean_t neg = B_FALSE; 901 char c, cc, ccc; 902 uintptr_t end = pos + limit; 903 904 /* 905 * Consume any whitespace preceding digits. 906 */ 907 while ((c = dtrace_load8(pos)) == ' ' || c == '\t') 908 pos++; 909 910 /* 911 * Handle an explicit sign if one is present. 912 */ 913 if (c == '-' || c == '+') { 914 if (c == '-') 915 neg = B_TRUE; 916 c = dtrace_load8(++pos); 917 } 918 919 /* 920 * Check for an explicit hexadecimal prefix ("0x" or "0X") and skip it 921 * if present. 922 */ 923 if (base == 16 && c == '0' && ((cc = dtrace_load8(pos + 1)) == 'x' || 924 cc == 'X') && isxdigit(ccc = dtrace_load8(pos + 2))) { 925 pos += 2; 926 c = ccc; 927 } 928 929 /* 930 * Read in contiguous digits until the first non-digit character. 931 */ 932 for (; pos < end && c != '\0' && lisalnum(c) && (x = DIGIT(c)) < base; 933 c = dtrace_load8(++pos)) 934 val = val * base + x; 935 936 return (neg ? -val : val); 937 } 938 939 /* 940 * Compare two strings using safe loads. 941 */ 942 static int 943 dtrace_strncmp(char *s1, char *s2, size_t limit) 944 { 945 uint8_t c1, c2; 946 volatile uint16_t *flags; 947 948 if (s1 == s2 || limit == 0) 949 return (0); 950 951 flags = (volatile uint16_t *)&cpu_core[CPU->cpu_id].cpuc_dtrace_flags; 952 953 do { 954 if (s1 == NULL) { 955 c1 = '\0'; 956 } else { 957 c1 = dtrace_load8((uintptr_t)s1++); 958 } 959 960 if (s2 == NULL) { 961 c2 = '\0'; 962 } else { 963 c2 = dtrace_load8((uintptr_t)s2++); 964 } 965 966 if (c1 != c2) 967 return (c1 - c2); 968 } while (--limit && c1 != '\0' && !(*flags & CPU_DTRACE_FAULT)); 969 970 return (0); 971 } 972 973 /* 974 * Compute strlen(s) for a string using safe memory accesses. The additional 975 * len parameter is used to specify a maximum length to ensure completion. 976 */ 977 static size_t 978 dtrace_strlen(const char *s, size_t lim) 979 { 980 uint_t len; 981 982 for (len = 0; len != lim; len++) { 983 if (dtrace_load8((uintptr_t)s++) == '\0') 984 break; 985 } 986 987 return (len); 988 } 989 990 /* 991 * Check if an address falls within a toxic region. 992 */ 993 static int 994 dtrace_istoxic(uintptr_t kaddr, size_t size) 995 { 996 uintptr_t taddr, tsize; 997 int i; 998 999 for (i = 0; i < dtrace_toxranges; i++) { 1000 taddr = dtrace_toxrange[i].dtt_base; 1001 tsize = dtrace_toxrange[i].dtt_limit - taddr; 1002 1003 if (kaddr - taddr < tsize) { 1004 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); 1005 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = kaddr; 1006 return (1); 1007 } 1008 1009 if (taddr - kaddr < size) { 1010 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); 1011 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = taddr; 1012 return (1); 1013 } 1014 } 1015 1016 return (0); 1017 } 1018 1019 /* 1020 * Copy src to dst using safe memory accesses. The src is assumed to be unsafe 1021 * memory specified by the DIF program. The dst is assumed to be safe memory 1022 * that we can store to directly because it is managed by DTrace. As with 1023 * standard bcopy, overlapping copies are handled properly. 1024 */ 1025 static void 1026 dtrace_bcopy(const void *src, void *dst, size_t len) 1027 { 1028 if (len != 0) { 1029 uint8_t *s1 = dst; 1030 const uint8_t *s2 = src; 1031 1032 if (s1 <= s2) { 1033 do { 1034 *s1++ = dtrace_load8((uintptr_t)s2++); 1035 } while (--len != 0); 1036 } else { 1037 s2 += len; 1038 s1 += len; 1039 1040 do { 1041 *--s1 = dtrace_load8((uintptr_t)--s2); 1042 } while (--len != 0); 1043 } 1044 } 1045 } 1046 1047 /* 1048 * Copy src to dst using safe memory accesses, up to either the specified 1049 * length, or the point that a nul byte is encountered. The src is assumed to 1050 * be unsafe memory specified by the DIF program. The dst is assumed to be 1051 * safe memory that we can store to directly because it is managed by DTrace. 1052 * Unlike dtrace_bcopy(), overlapping regions are not handled. 1053 */ 1054 static void 1055 dtrace_strcpy(const void *src, void *dst, size_t len) 1056 { 1057 if (len != 0) { 1058 uint8_t *s1 = dst, c; 1059 const uint8_t *s2 = src; 1060 1061 do { 1062 *s1++ = c = dtrace_load8((uintptr_t)s2++); 1063 } while (--len != 0 && c != '\0'); 1064 } 1065 } 1066 1067 /* 1068 * Copy src to dst, deriving the size and type from the specified (BYREF) 1069 * variable type. The src is assumed to be unsafe memory specified by the DIF 1070 * program. The dst is assumed to be DTrace variable memory that is of the 1071 * specified type; we assume that we can store to directly. 1072 */ 1073 static void 1074 dtrace_vcopy(void *src, void *dst, dtrace_diftype_t *type) 1075 { 1076 ASSERT(type->dtdt_flags & DIF_TF_BYREF); 1077 1078 if (type->dtdt_kind == DIF_TYPE_STRING) { 1079 dtrace_strcpy(src, dst, type->dtdt_size); 1080 } else { 1081 dtrace_bcopy(src, dst, type->dtdt_size); 1082 } 1083 } 1084 1085 /* 1086 * Compare s1 to s2 using safe memory accesses. The s1 data is assumed to be 1087 * unsafe memory specified by the DIF program. The s2 data is assumed to be 1088 * safe memory that we can access directly because it is managed by DTrace. 1089 */ 1090 static int 1091 dtrace_bcmp(const void *s1, const void *s2, size_t len) 1092 { 1093 volatile uint16_t *flags; 1094 1095 flags = (volatile uint16_t *)&cpu_core[CPU->cpu_id].cpuc_dtrace_flags; 1096 1097 if (s1 == s2) 1098 return (0); 1099 1100 if (s1 == NULL || s2 == NULL) 1101 return (1); 1102 1103 if (s1 != s2 && len != 0) { 1104 const uint8_t *ps1 = s1; 1105 const uint8_t *ps2 = s2; 1106 1107 do { 1108 if (dtrace_load8((uintptr_t)ps1++) != *ps2++) 1109 return (1); 1110 } while (--len != 0 && !(*flags & CPU_DTRACE_FAULT)); 1111 } 1112 return (0); 1113 } 1114 1115 /* 1116 * Zero the specified region using a simple byte-by-byte loop. Note that this 1117 * is for safe DTrace-managed memory only. 1118 */ 1119 static void 1120 dtrace_bzero(void *dst, size_t len) 1121 { 1122 uchar_t *cp; 1123 1124 for (cp = dst; len != 0; len--) 1125 *cp++ = 0; 1126 } 1127 1128 static void 1129 dtrace_add_128(uint64_t *addend1, uint64_t *addend2, uint64_t *sum) 1130 { 1131 uint64_t result[2]; 1132 1133 result[0] = addend1[0] + addend2[0]; 1134 result[1] = addend1[1] + addend2[1] + 1135 (result[0] < addend1[0] || result[0] < addend2[0] ? 1 : 0); 1136 1137 sum[0] = result[0]; 1138 sum[1] = result[1]; 1139 } 1140 1141 /* 1142 * Shift the 128-bit value in a by b. If b is positive, shift left. 1143 * If b is negative, shift right. 1144 */ 1145 static void 1146 dtrace_shift_128(uint64_t *a, int b) 1147 { 1148 uint64_t mask; 1149 1150 if (b == 0) 1151 return; 1152 1153 if (b < 0) { 1154 b = -b; 1155 if (b >= 64) { 1156 a[0] = a[1] >> (b - 64); 1157 a[1] = 0; 1158 } else { 1159 a[0] >>= b; 1160 mask = 1LL << (64 - b); 1161 mask -= 1; 1162 a[0] |= ((a[1] & mask) << (64 - b)); 1163 a[1] >>= b; 1164 } 1165 } else { 1166 if (b >= 64) { 1167 a[1] = a[0] << (b - 64); 1168 a[0] = 0; 1169 } else { 1170 a[1] <<= b; 1171 mask = a[0] >> (64 - b); 1172 a[1] |= mask; 1173 a[0] <<= b; 1174 } 1175 } 1176 } 1177 1178 /* 1179 * The basic idea is to break the 2 64-bit values into 4 32-bit values, 1180 * use native multiplication on those, and then re-combine into the 1181 * resulting 128-bit value. 1182 * 1183 * (hi1 << 32 + lo1) * (hi2 << 32 + lo2) = 1184 * hi1 * hi2 << 64 + 1185 * hi1 * lo2 << 32 + 1186 * hi2 * lo1 << 32 + 1187 * lo1 * lo2 1188 */ 1189 static void 1190 dtrace_multiply_128(uint64_t factor1, uint64_t factor2, uint64_t *product) 1191 { 1192 uint64_t hi1, hi2, lo1, lo2; 1193 uint64_t tmp[2]; 1194 1195 hi1 = factor1 >> 32; 1196 hi2 = factor2 >> 32; 1197 1198 lo1 = factor1 & DT_MASK_LO; 1199 lo2 = factor2 & DT_MASK_LO; 1200 1201 product[0] = lo1 * lo2; 1202 product[1] = hi1 * hi2; 1203 1204 tmp[0] = hi1 * lo2; 1205 tmp[1] = 0; 1206 dtrace_shift_128(tmp, 32); 1207 dtrace_add_128(product, tmp, product); 1208 1209 tmp[0] = hi2 * lo1; 1210 tmp[1] = 0; 1211 dtrace_shift_128(tmp, 32); 1212 dtrace_add_128(product, tmp, product); 1213 } 1214 1215 /* 1216 * This privilege check should be used by actions and subroutines to 1217 * verify that the user credentials of the process that enabled the 1218 * invoking ECB match the target credentials 1219 */ 1220 static int 1221 dtrace_priv_proc_common_user(dtrace_state_t *state) 1222 { 1223 cred_t *cr, *s_cr = state->dts_cred.dcr_cred; 1224 1225 /* 1226 * We should always have a non-NULL state cred here, since if cred 1227 * is null (anonymous tracing), we fast-path bypass this routine. 1228 */ 1229 ASSERT(s_cr != NULL); 1230 1231 if ((cr = CRED()) != NULL && 1232 s_cr->cr_uid == cr->cr_uid && 1233 s_cr->cr_uid == cr->cr_ruid && 1234 s_cr->cr_uid == cr->cr_suid && 1235 s_cr->cr_gid == cr->cr_gid && 1236 s_cr->cr_gid == cr->cr_rgid && 1237 s_cr->cr_gid == cr->cr_sgid) 1238 return (1); 1239 1240 return (0); 1241 } 1242 1243 /* 1244 * This privilege check should be used by actions and subroutines to 1245 * verify that the zone of the process that enabled the invoking ECB 1246 * matches the target credentials 1247 */ 1248 static int 1249 dtrace_priv_proc_common_zone(dtrace_state_t *state) 1250 { 1251 cred_t *cr, *s_cr = state->dts_cred.dcr_cred; 1252 1253 /* 1254 * We should always have a non-NULL state cred here, since if cred 1255 * is null (anonymous tracing), we fast-path bypass this routine. 1256 */ 1257 ASSERT(s_cr != NULL); 1258 1259 if ((cr = CRED()) != NULL && s_cr->cr_zone == cr->cr_zone) 1260 return (1); 1261 1262 return (0); 1263 } 1264 1265 /* 1266 * This privilege check should be used by actions and subroutines to 1267 * verify that the process has not setuid or changed credentials. 1268 */ 1269 static int 1270 dtrace_priv_proc_common_nocd() 1271 { 1272 proc_t *proc; 1273 1274 if ((proc = ttoproc(curthread)) != NULL && 1275 !(proc->p_flag & SNOCD)) 1276 return (1); 1277 1278 return (0); 1279 } 1280 1281 static int 1282 dtrace_priv_proc_destructive(dtrace_state_t *state, dtrace_mstate_t *mstate) 1283 { 1284 int action = state->dts_cred.dcr_action; 1285 1286 if (!(mstate->dtms_access & DTRACE_ACCESS_PROC)) 1287 goto bad; 1288 1289 if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE) == 0) && 1290 dtrace_priv_proc_common_zone(state) == 0) 1291 goto bad; 1292 1293 if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER) == 0) && 1294 dtrace_priv_proc_common_user(state) == 0) 1295 goto bad; 1296 1297 if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG) == 0) && 1298 dtrace_priv_proc_common_nocd() == 0) 1299 goto bad; 1300 1301 return (1); 1302 1303 bad: 1304 cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV; 1305 1306 return (0); 1307 } 1308 1309 static int 1310 dtrace_priv_proc_control(dtrace_state_t *state, dtrace_mstate_t *mstate) 1311 { 1312 if (mstate->dtms_access & DTRACE_ACCESS_PROC) { 1313 if (state->dts_cred.dcr_action & DTRACE_CRA_PROC_CONTROL) 1314 return (1); 1315 1316 if (dtrace_priv_proc_common_zone(state) && 1317 dtrace_priv_proc_common_user(state) && 1318 dtrace_priv_proc_common_nocd()) 1319 return (1); 1320 } 1321 1322 cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV; 1323 1324 return (0); 1325 } 1326 1327 static int 1328 dtrace_priv_proc(dtrace_state_t *state, dtrace_mstate_t *mstate) 1329 { 1330 if ((mstate->dtms_access & DTRACE_ACCESS_PROC) && 1331 (state->dts_cred.dcr_action & DTRACE_CRA_PROC)) 1332 return (1); 1333 1334 cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV; 1335 1336 return (0); 1337 } 1338 1339 static int 1340 dtrace_priv_kernel(dtrace_state_t *state) 1341 { 1342 if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL) 1343 return (1); 1344 1345 cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV; 1346 1347 return (0); 1348 } 1349 1350 static int 1351 dtrace_priv_kernel_destructive(dtrace_state_t *state) 1352 { 1353 if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL_DESTRUCTIVE) 1354 return (1); 1355 1356 cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV; 1357 1358 return (0); 1359 } 1360 1361 /* 1362 * Determine if the dte_cond of the specified ECB allows for processing of 1363 * the current probe to continue. Note that this routine may allow continued 1364 * processing, but with access(es) stripped from the mstate's dtms_access 1365 * field. 1366 */ 1367 static int 1368 dtrace_priv_probe(dtrace_state_t *state, dtrace_mstate_t *mstate, 1369 dtrace_ecb_t *ecb) 1370 { 1371 dtrace_probe_t *probe = ecb->dte_probe; 1372 dtrace_provider_t *prov = probe->dtpr_provider; 1373 dtrace_pops_t *pops = &prov->dtpv_pops; 1374 int mode = DTRACE_MODE_NOPRIV_DROP; 1375 1376 ASSERT(ecb->dte_cond); 1377 1378 if (pops->dtps_mode != NULL) { 1379 mode = pops->dtps_mode(prov->dtpv_arg, 1380 probe->dtpr_id, probe->dtpr_arg); 1381 1382 ASSERT(mode & (DTRACE_MODE_USER | DTRACE_MODE_KERNEL)); 1383 ASSERT(mode & (DTRACE_MODE_NOPRIV_RESTRICT | 1384 DTRACE_MODE_NOPRIV_DROP)); 1385 } 1386 1387 /* 1388 * If the dte_cond bits indicate that this consumer is only allowed to 1389 * see user-mode firings of this probe, check that the probe was fired 1390 * while in a user context. If that's not the case, use the policy 1391 * specified by the provider to determine if we drop the probe or 1392 * merely restrict operation. 1393 */ 1394 if (ecb->dte_cond & DTRACE_COND_USERMODE) { 1395 ASSERT(mode != DTRACE_MODE_NOPRIV_DROP); 1396 1397 if (!(mode & DTRACE_MODE_USER)) { 1398 if (mode & DTRACE_MODE_NOPRIV_DROP) 1399 return (0); 1400 1401 mstate->dtms_access &= ~DTRACE_ACCESS_ARGS; 1402 } 1403 } 1404 1405 /* 1406 * This is more subtle than it looks. We have to be absolutely certain 1407 * that CRED() isn't going to change out from under us so it's only 1408 * legit to examine that structure if we're in constrained situations. 1409 * Currently, the only times we'll this check is if a non-super-user 1410 * has enabled the profile or syscall providers -- providers that 1411 * allow visibility of all processes. For the profile case, the check 1412 * above will ensure that we're examining a user context. 1413 */ 1414 if (ecb->dte_cond & DTRACE_COND_OWNER) { 1415 cred_t *cr; 1416 cred_t *s_cr = state->dts_cred.dcr_cred; 1417 proc_t *proc; 1418 1419 ASSERT(s_cr != NULL); 1420 1421 if ((cr = CRED()) == NULL || 1422 s_cr->cr_uid != cr->cr_uid || 1423 s_cr->cr_uid != cr->cr_ruid || 1424 s_cr->cr_uid != cr->cr_suid || 1425 s_cr->cr_gid != cr->cr_gid || 1426 s_cr->cr_gid != cr->cr_rgid || 1427 s_cr->cr_gid != cr->cr_sgid || 1428 (proc = ttoproc(curthread)) == NULL || 1429 (proc->p_flag & SNOCD)) { 1430 if (mode & DTRACE_MODE_NOPRIV_DROP) 1431 return (0); 1432 1433 mstate->dtms_access &= ~DTRACE_ACCESS_PROC; 1434 } 1435 } 1436 1437 /* 1438 * If our dte_cond is set to DTRACE_COND_ZONEOWNER and we are not 1439 * in our zone, check to see if our mode policy is to restrict rather 1440 * than to drop; if to restrict, strip away both DTRACE_ACCESS_PROC 1441 * and DTRACE_ACCESS_ARGS 1442 */ 1443 if (ecb->dte_cond & DTRACE_COND_ZONEOWNER) { 1444 cred_t *cr; 1445 cred_t *s_cr = state->dts_cred.dcr_cred; 1446 1447 ASSERT(s_cr != NULL); 1448 1449 if ((cr = CRED()) == NULL || 1450 s_cr->cr_zone->zone_id != cr->cr_zone->zone_id) { 1451 if (mode & DTRACE_MODE_NOPRIV_DROP) 1452 return (0); 1453 1454 mstate->dtms_access &= 1455 ~(DTRACE_ACCESS_PROC | DTRACE_ACCESS_ARGS); 1456 } 1457 } 1458 1459 /* 1460 * By merits of being in this code path at all, we have limited 1461 * privileges. If the provider has indicated that limited privileges 1462 * are to denote restricted operation, strip off the ability to access 1463 * arguments. 1464 */ 1465 if (mode & DTRACE_MODE_LIMITEDPRIV_RESTRICT) 1466 mstate->dtms_access &= ~DTRACE_ACCESS_ARGS; 1467 1468 return (1); 1469 } 1470 1471 /* 1472 * Note: not called from probe context. This function is called 1473 * asynchronously (and at a regular interval) from outside of probe context to 1474 * clean the dirty dynamic variable lists on all CPUs. Dynamic variable 1475 * cleaning is explained in detail in <sys/dtrace_impl.h>. 1476 */ 1477 void 1478 dtrace_dynvar_clean(dtrace_dstate_t *dstate) 1479 { 1480 dtrace_dynvar_t *dirty; 1481 dtrace_dstate_percpu_t *dcpu; 1482 dtrace_dynvar_t **rinsep; 1483 int i, j, work = 0; 1484 1485 for (i = 0; i < NCPU; i++) { 1486 dcpu = &dstate->dtds_percpu[i]; 1487 rinsep = &dcpu->dtdsc_rinsing; 1488 1489 /* 1490 * If the dirty list is NULL, there is no dirty work to do. 1491 */ 1492 if (dcpu->dtdsc_dirty == NULL) 1493 continue; 1494 1495 if (dcpu->dtdsc_rinsing != NULL) { 1496 /* 1497 * If the rinsing list is non-NULL, then it is because 1498 * this CPU was selected to accept another CPU's 1499 * dirty list -- and since that time, dirty buffers 1500 * have accumulated. This is a highly unlikely 1501 * condition, but we choose to ignore the dirty 1502 * buffers -- they'll be picked up a future cleanse. 1503 */ 1504 continue; 1505 } 1506 1507 if (dcpu->dtdsc_clean != NULL) { 1508 /* 1509 * If the clean list is non-NULL, then we're in a 1510 * situation where a CPU has done deallocations (we 1511 * have a non-NULL dirty list) but no allocations (we 1512 * also have a non-NULL clean list). We can't simply 1513 * move the dirty list into the clean list on this 1514 * CPU, yet we also don't want to allow this condition 1515 * to persist, lest a short clean list prevent a 1516 * massive dirty list from being cleaned (which in 1517 * turn could lead to otherwise avoidable dynamic 1518 * drops). To deal with this, we look for some CPU 1519 * with a NULL clean list, NULL dirty list, and NULL 1520 * rinsing list -- and then we borrow this CPU to 1521 * rinse our dirty list. 1522 */ 1523 for (j = 0; j < NCPU; j++) { 1524 dtrace_dstate_percpu_t *rinser; 1525 1526 rinser = &dstate->dtds_percpu[j]; 1527 1528 if (rinser->dtdsc_rinsing != NULL) 1529 continue; 1530 1531 if (rinser->dtdsc_dirty != NULL) 1532 continue; 1533 1534 if (rinser->dtdsc_clean != NULL) 1535 continue; 1536 1537 rinsep = &rinser->dtdsc_rinsing; 1538 break; 1539 } 1540 1541 if (j == NCPU) { 1542 /* 1543 * We were unable to find another CPU that 1544 * could accept this dirty list -- we are 1545 * therefore unable to clean it now. 1546 */ 1547 dtrace_dynvar_failclean++; 1548 continue; 1549 } 1550 } 1551 1552 work = 1; 1553 1554 /* 1555 * Atomically move the dirty list aside. 1556 */ 1557 do { 1558 dirty = dcpu->dtdsc_dirty; 1559 1560 /* 1561 * Before we zap the dirty list, set the rinsing list. 1562 * (This allows for a potential assertion in 1563 * dtrace_dynvar(): if a free dynamic variable appears 1564 * on a hash chain, either the dirty list or the 1565 * rinsing list for some CPU must be non-NULL.) 1566 */ 1567 *rinsep = dirty; 1568 dtrace_membar_producer(); 1569 } while (dtrace_casptr(&dcpu->dtdsc_dirty, 1570 dirty, NULL) != dirty); 1571 } 1572 1573 if (!work) { 1574 /* 1575 * We have no work to do; we can simply return. 1576 */ 1577 return; 1578 } 1579 1580 dtrace_sync(); 1581 1582 for (i = 0; i < NCPU; i++) { 1583 dcpu = &dstate->dtds_percpu[i]; 1584 1585 if (dcpu->dtdsc_rinsing == NULL) 1586 continue; 1587 1588 /* 1589 * We are now guaranteed that no hash chain contains a pointer 1590 * into this dirty list; we can make it clean. 1591 */ 1592 ASSERT(dcpu->dtdsc_clean == NULL); 1593 dcpu->dtdsc_clean = dcpu->dtdsc_rinsing; 1594 dcpu->dtdsc_rinsing = NULL; 1595 } 1596 1597 /* 1598 * Before we actually set the state to be DTRACE_DSTATE_CLEAN, make 1599 * sure that all CPUs have seen all of the dtdsc_clean pointers. 1600 * This prevents a race whereby a CPU incorrectly decides that 1601 * the state should be something other than DTRACE_DSTATE_CLEAN 1602 * after dtrace_dynvar_clean() has completed. 1603 */ 1604 dtrace_sync(); 1605 1606 dstate->dtds_state = DTRACE_DSTATE_CLEAN; 1607 } 1608 1609 /* 1610 * Depending on the value of the op parameter, this function looks-up, 1611 * allocates or deallocates an arbitrarily-keyed dynamic variable. If an 1612 * allocation is requested, this function will return a pointer to a 1613 * dtrace_dynvar_t corresponding to the allocated variable -- or NULL if no 1614 * variable can be allocated. If NULL is returned, the appropriate counter 1615 * will be incremented. 1616 */ 1617 dtrace_dynvar_t * 1618 dtrace_dynvar(dtrace_dstate_t *dstate, uint_t nkeys, 1619 dtrace_key_t *key, size_t dsize, dtrace_dynvar_op_t op, 1620 dtrace_mstate_t *mstate, dtrace_vstate_t *vstate) 1621 { 1622 uint64_t hashval = DTRACE_DYNHASH_VALID; 1623 dtrace_dynhash_t *hash = dstate->dtds_hash; 1624 dtrace_dynvar_t *free, *new_free, *next, *dvar, *start, *prev = NULL; 1625 processorid_t me = CPU->cpu_id, cpu = me; 1626 dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[me]; 1627 size_t bucket, ksize; 1628 size_t chunksize = dstate->dtds_chunksize; 1629 uintptr_t kdata, lock, nstate; 1630 uint_t i; 1631 1632 ASSERT(nkeys != 0); 1633 1634 /* 1635 * Hash the key. As with aggregations, we use Jenkins' "One-at-a-time" 1636 * algorithm. For the by-value portions, we perform the algorithm in 1637 * 16-bit chunks (as opposed to 8-bit chunks). This speeds things up a 1638 * bit, and seems to have only a minute effect on distribution. For 1639 * the by-reference data, we perform "One-at-a-time" iterating (safely) 1640 * over each referenced byte. It's painful to do this, but it's much 1641 * better than pathological hash distribution. The efficacy of the 1642 * hashing algorithm (and a comparison with other algorithms) may be 1643 * found by running the ::dtrace_dynstat MDB dcmd. 1644 */ 1645 for (i = 0; i < nkeys; i++) { 1646 if (key[i].dttk_size == 0) { 1647 uint64_t val = key[i].dttk_value; 1648 1649 hashval += (val >> 48) & 0xffff; 1650 hashval += (hashval << 10); 1651 hashval ^= (hashval >> 6); 1652 1653 hashval += (val >> 32) & 0xffff; 1654 hashval += (hashval << 10); 1655 hashval ^= (hashval >> 6); 1656 1657 hashval += (val >> 16) & 0xffff; 1658 hashval += (hashval << 10); 1659 hashval ^= (hashval >> 6); 1660 1661 hashval += val & 0xffff; 1662 hashval += (hashval << 10); 1663 hashval ^= (hashval >> 6); 1664 } else { 1665 /* 1666 * This is incredibly painful, but it beats the hell 1667 * out of the alternative. 1668 */ 1669 uint64_t j, size = key[i].dttk_size; 1670 uintptr_t base = (uintptr_t)key[i].dttk_value; 1671 1672 if (!dtrace_canload(base, size, mstate, vstate)) 1673 break; 1674 1675 for (j = 0; j < size; j++) { 1676 hashval += dtrace_load8(base + j); 1677 hashval += (hashval << 10); 1678 hashval ^= (hashval >> 6); 1679 } 1680 } 1681 } 1682 1683 if (DTRACE_CPUFLAG_ISSET(CPU_DTRACE_FAULT)) 1684 return (NULL); 1685 1686 hashval += (hashval << 3); 1687 hashval ^= (hashval >> 11); 1688 hashval += (hashval << 15); 1689 1690 /* 1691 * There is a remote chance (ideally, 1 in 2^31) that our hashval 1692 * comes out to be one of our two sentinel hash values. If this 1693 * actually happens, we set the hashval to be a value known to be a 1694 * non-sentinel value. 1695 */ 1696 if (hashval == DTRACE_DYNHASH_FREE || hashval == DTRACE_DYNHASH_SINK) 1697 hashval = DTRACE_DYNHASH_VALID; 1698 1699 /* 1700 * Yes, it's painful to do a divide here. If the cycle count becomes 1701 * important here, tricks can be pulled to reduce it. (However, it's 1702 * critical that hash collisions be kept to an absolute minimum; 1703 * they're much more painful than a divide.) It's better to have a 1704 * solution that generates few collisions and still keeps things 1705 * relatively simple. 1706 */ 1707 bucket = hashval % dstate->dtds_hashsize; 1708 1709 if (op == DTRACE_DYNVAR_DEALLOC) { 1710 volatile uintptr_t *lockp = &hash[bucket].dtdh_lock; 1711 1712 for (;;) { 1713 while ((lock = *lockp) & 1) 1714 continue; 1715 1716 if (dtrace_casptr((void *)lockp, 1717 (void *)lock, (void *)(lock + 1)) == (void *)lock) 1718 break; 1719 } 1720 1721 dtrace_membar_producer(); 1722 } 1723 1724 top: 1725 prev = NULL; 1726 lock = hash[bucket].dtdh_lock; 1727 1728 dtrace_membar_consumer(); 1729 1730 start = hash[bucket].dtdh_chain; 1731 ASSERT(start != NULL && (start->dtdv_hashval == DTRACE_DYNHASH_SINK || 1732 start->dtdv_hashval != DTRACE_DYNHASH_FREE || 1733 op != DTRACE_DYNVAR_DEALLOC)); 1734 1735 for (dvar = start; dvar != NULL; dvar = dvar->dtdv_next) { 1736 dtrace_tuple_t *dtuple = &dvar->dtdv_tuple; 1737 dtrace_key_t *dkey = &dtuple->dtt_key[0]; 1738 1739 if (dvar->dtdv_hashval != hashval) { 1740 if (dvar->dtdv_hashval == DTRACE_DYNHASH_SINK) { 1741 /* 1742 * We've reached the sink, and therefore the 1743 * end of the hash chain; we can kick out of 1744 * the loop knowing that we have seen a valid 1745 * snapshot of state. 1746 */ 1747 ASSERT(dvar->dtdv_next == NULL); 1748 ASSERT(dvar == &dtrace_dynhash_sink); 1749 break; 1750 } 1751 1752 if (dvar->dtdv_hashval == DTRACE_DYNHASH_FREE) { 1753 /* 1754 * We've gone off the rails: somewhere along 1755 * the line, one of the members of this hash 1756 * chain was deleted. Note that we could also 1757 * detect this by simply letting this loop run 1758 * to completion, as we would eventually hit 1759 * the end of the dirty list. However, we 1760 * want to avoid running the length of the 1761 * dirty list unnecessarily (it might be quite 1762 * long), so we catch this as early as 1763 * possible by detecting the hash marker. In 1764 * this case, we simply set dvar to NULL and 1765 * break; the conditional after the loop will 1766 * send us back to top. 1767 */ 1768 dvar = NULL; 1769 break; 1770 } 1771 1772 goto next; 1773 } 1774 1775 if (dtuple->dtt_nkeys != nkeys) 1776 goto next; 1777 1778 for (i = 0; i < nkeys; i++, dkey++) { 1779 if (dkey->dttk_size != key[i].dttk_size) 1780 goto next; /* size or type mismatch */ 1781 1782 if (dkey->dttk_size != 0) { 1783 if (dtrace_bcmp( 1784 (void *)(uintptr_t)key[i].dttk_value, 1785 (void *)(uintptr_t)dkey->dttk_value, 1786 dkey->dttk_size)) 1787 goto next; 1788 } else { 1789 if (dkey->dttk_value != key[i].dttk_value) 1790 goto next; 1791 } 1792 } 1793 1794 if (op != DTRACE_DYNVAR_DEALLOC) 1795 return (dvar); 1796 1797 ASSERT(dvar->dtdv_next == NULL || 1798 dvar->dtdv_next->dtdv_hashval != DTRACE_DYNHASH_FREE); 1799 1800 if (prev != NULL) { 1801 ASSERT(hash[bucket].dtdh_chain != dvar); 1802 ASSERT(start != dvar); 1803 ASSERT(prev->dtdv_next == dvar); 1804 prev->dtdv_next = dvar->dtdv_next; 1805 } else { 1806 if (dtrace_casptr(&hash[bucket].dtdh_chain, 1807 start, dvar->dtdv_next) != start) { 1808 /* 1809 * We have failed to atomically swing the 1810 * hash table head pointer, presumably because 1811 * of a conflicting allocation on another CPU. 1812 * We need to reread the hash chain and try 1813 * again. 1814 */ 1815 goto top; 1816 } 1817 } 1818 1819 dtrace_membar_producer(); 1820 1821 /* 1822 * Now set the hash value to indicate that it's free. 1823 */ 1824 ASSERT(hash[bucket].dtdh_chain != dvar); 1825 dvar->dtdv_hashval = DTRACE_DYNHASH_FREE; 1826 1827 dtrace_membar_producer(); 1828 1829 /* 1830 * Set the next pointer to point at the dirty list, and 1831 * atomically swing the dirty pointer to the newly freed dvar. 1832 */ 1833 do { 1834 next = dcpu->dtdsc_dirty; 1835 dvar->dtdv_next = next; 1836 } while (dtrace_casptr(&dcpu->dtdsc_dirty, next, dvar) != next); 1837 1838 /* 1839 * Finally, unlock this hash bucket. 1840 */ 1841 ASSERT(hash[bucket].dtdh_lock == lock); 1842 ASSERT(lock & 1); 1843 hash[bucket].dtdh_lock++; 1844 1845 return (NULL); 1846 next: 1847 prev = dvar; 1848 continue; 1849 } 1850 1851 if (dvar == NULL) { 1852 /* 1853 * If dvar is NULL, it is because we went off the rails: 1854 * one of the elements that we traversed in the hash chain 1855 * was deleted while we were traversing it. In this case, 1856 * we assert that we aren't doing a dealloc (deallocs lock 1857 * the hash bucket to prevent themselves from racing with 1858 * one another), and retry the hash chain traversal. 1859 */ 1860 ASSERT(op != DTRACE_DYNVAR_DEALLOC); 1861 goto top; 1862 } 1863 1864 if (op != DTRACE_DYNVAR_ALLOC) { 1865 /* 1866 * If we are not to allocate a new variable, we want to 1867 * return NULL now. Before we return, check that the value 1868 * of the lock word hasn't changed. If it has, we may have 1869 * seen an inconsistent snapshot. 1870 */ 1871 if (op == DTRACE_DYNVAR_NOALLOC) { 1872 if (hash[bucket].dtdh_lock != lock) 1873 goto top; 1874 } else { 1875 ASSERT(op == DTRACE_DYNVAR_DEALLOC); 1876 ASSERT(hash[bucket].dtdh_lock == lock); 1877 ASSERT(lock & 1); 1878 hash[bucket].dtdh_lock++; 1879 } 1880 1881 return (NULL); 1882 } 1883 1884 /* 1885 * We need to allocate a new dynamic variable. The size we need is the 1886 * size of dtrace_dynvar plus the size of nkeys dtrace_key_t's plus the 1887 * size of any auxiliary key data (rounded up to 8-byte alignment) plus 1888 * the size of any referred-to data (dsize). We then round the final 1889 * size up to the chunksize for allocation. 1890 */ 1891 for (ksize = 0, i = 0; i < nkeys; i++) 1892 ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t)); 1893 1894 /* 1895 * This should be pretty much impossible, but could happen if, say, 1896 * strange DIF specified the tuple. Ideally, this should be an 1897 * assertion and not an error condition -- but that requires that the 1898 * chunksize calculation in dtrace_difo_chunksize() be absolutely 1899 * bullet-proof. (That is, it must not be able to be fooled by 1900 * malicious DIF.) Given the lack of backwards branches in DIF, 1901 * solving this would presumably not amount to solving the Halting 1902 * Problem -- but it still seems awfully hard. 1903 */ 1904 if (sizeof (dtrace_dynvar_t) + sizeof (dtrace_key_t) * (nkeys - 1) + 1905 ksize + dsize > chunksize) { 1906 dcpu->dtdsc_drops++; 1907 return (NULL); 1908 } 1909 1910 nstate = DTRACE_DSTATE_EMPTY; 1911 1912 do { 1913 retry: 1914 free = dcpu->dtdsc_free; 1915 1916 if (free == NULL) { 1917 dtrace_dynvar_t *clean = dcpu->dtdsc_clean; 1918 void *rval; 1919 1920 if (clean == NULL) { 1921 /* 1922 * We're out of dynamic variable space on 1923 * this CPU. Unless we have tried all CPUs, 1924 * we'll try to allocate from a different 1925 * CPU. 1926 */ 1927 switch (dstate->dtds_state) { 1928 case DTRACE_DSTATE_CLEAN: { 1929 void *sp = &dstate->dtds_state; 1930 1931 if (++cpu >= NCPU) 1932 cpu = 0; 1933 1934 if (dcpu->dtdsc_dirty != NULL && 1935 nstate == DTRACE_DSTATE_EMPTY) 1936 nstate = DTRACE_DSTATE_DIRTY; 1937 1938 if (dcpu->dtdsc_rinsing != NULL) 1939 nstate = DTRACE_DSTATE_RINSING; 1940 1941 dcpu = &dstate->dtds_percpu[cpu]; 1942 1943 if (cpu != me) 1944 goto retry; 1945 1946 (void) dtrace_cas32(sp, 1947 DTRACE_DSTATE_CLEAN, nstate); 1948 1949 /* 1950 * To increment the correct bean 1951 * counter, take another lap. 1952 */ 1953 goto retry; 1954 } 1955 1956 case DTRACE_DSTATE_DIRTY: 1957 dcpu->dtdsc_dirty_drops++; 1958 break; 1959 1960 case DTRACE_DSTATE_RINSING: 1961 dcpu->dtdsc_rinsing_drops++; 1962 break; 1963 1964 case DTRACE_DSTATE_EMPTY: 1965 dcpu->dtdsc_drops++; 1966 break; 1967 } 1968 1969 DTRACE_CPUFLAG_SET(CPU_DTRACE_DROP); 1970 return (NULL); 1971 } 1972 1973 /* 1974 * The clean list appears to be non-empty. We want to 1975 * move the clean list to the free list; we start by 1976 * moving the clean pointer aside. 1977 */ 1978 if (dtrace_casptr(&dcpu->dtdsc_clean, 1979 clean, NULL) != clean) { 1980 /* 1981 * We are in one of two situations: 1982 * 1983 * (a) The clean list was switched to the 1984 * free list by another CPU. 1985 * 1986 * (b) The clean list was added to by the 1987 * cleansing cyclic. 1988 * 1989 * In either of these situations, we can 1990 * just reattempt the free list allocation. 1991 */ 1992 goto retry; 1993 } 1994 1995 ASSERT(clean->dtdv_hashval == DTRACE_DYNHASH_FREE); 1996 1997 /* 1998 * Now we'll move the clean list to our free list. 1999 * It's impossible for this to fail: the only way 2000 * the free list can be updated is through this 2001 * code path, and only one CPU can own the clean list. 2002 * Thus, it would only be possible for this to fail if 2003 * this code were racing with dtrace_dynvar_clean(). 2004 * (That is, if dtrace_dynvar_clean() updated the clean 2005 * list, and we ended up racing to update the free 2006 * list.) This race is prevented by the dtrace_sync() 2007 * in dtrace_dynvar_clean() -- which flushes the 2008 * owners of the clean lists out before resetting 2009 * the clean lists. 2010 */ 2011 dcpu = &dstate->dtds_percpu[me]; 2012 rval = dtrace_casptr(&dcpu->dtdsc_free, NULL, clean); 2013 ASSERT(rval == NULL); 2014 goto retry; 2015 } 2016 2017 dvar = free; 2018 new_free = dvar->dtdv_next; 2019 } while (dtrace_casptr(&dcpu->dtdsc_free, free, new_free) != free); 2020 2021 /* 2022 * We have now allocated a new chunk. We copy the tuple keys into the 2023 * tuple array and copy any referenced key data into the data space 2024 * following the tuple array. As we do this, we relocate dttk_value 2025 * in the final tuple to point to the key data address in the chunk. 2026 */ 2027 kdata = (uintptr_t)&dvar->dtdv_tuple.dtt_key[nkeys]; 2028 dvar->dtdv_data = (void *)(kdata + ksize); 2029 dvar->dtdv_tuple.dtt_nkeys = nkeys; 2030 2031 for (i = 0; i < nkeys; i++) { 2032 dtrace_key_t *dkey = &dvar->dtdv_tuple.dtt_key[i]; 2033 size_t kesize = key[i].dttk_size; 2034 2035 if (kesize != 0) { 2036 dtrace_bcopy( 2037 (const void *)(uintptr_t)key[i].dttk_value, 2038 (void *)kdata, kesize); 2039 dkey->dttk_value = kdata; 2040 kdata += P2ROUNDUP(kesize, sizeof (uint64_t)); 2041 } else { 2042 dkey->dttk_value = key[i].dttk_value; 2043 } 2044 2045 dkey->dttk_size = kesize; 2046 } 2047 2048 ASSERT(dvar->dtdv_hashval == DTRACE_DYNHASH_FREE); 2049 dvar->dtdv_hashval = hashval; 2050 dvar->dtdv_next = start; 2051 2052 if (dtrace_casptr(&hash[bucket].dtdh_chain, start, dvar) == start) 2053 return (dvar); 2054 2055 /* 2056 * The cas has failed. Either another CPU is adding an element to 2057 * this hash chain, or another CPU is deleting an element from this 2058 * hash chain. The simplest way to deal with both of these cases 2059 * (though not necessarily the most efficient) is to free our 2060 * allocated block and re-attempt it all. Note that the free is 2061 * to the dirty list and _not_ to the free list. This is to prevent 2062 * races with allocators, above. 2063 */ 2064 dvar->dtdv_hashval = DTRACE_DYNHASH_FREE; 2065 2066 dtrace_membar_producer(); 2067 2068 do { 2069 free = dcpu->dtdsc_dirty; 2070 dvar->dtdv_next = free; 2071 } while (dtrace_casptr(&dcpu->dtdsc_dirty, free, dvar) != free); 2072 2073 goto top; 2074 } 2075 2076 /*ARGSUSED*/ 2077 static void 2078 dtrace_aggregate_min(uint64_t *oval, uint64_t nval, uint64_t arg) 2079 { 2080 if ((int64_t)nval < (int64_t)*oval) 2081 *oval = nval; 2082 } 2083 2084 /*ARGSUSED*/ 2085 static void 2086 dtrace_aggregate_max(uint64_t *oval, uint64_t nval, uint64_t arg) 2087 { 2088 if ((int64_t)nval > (int64_t)*oval) 2089 *oval = nval; 2090 } 2091 2092 static void 2093 dtrace_aggregate_quantize(uint64_t *quanta, uint64_t nval, uint64_t incr) 2094 { 2095 int i, zero = DTRACE_QUANTIZE_ZEROBUCKET; 2096 int64_t val = (int64_t)nval; 2097 2098 if (val < 0) { 2099 for (i = 0; i < zero; i++) { 2100 if (val <= DTRACE_QUANTIZE_BUCKETVAL(i)) { 2101 quanta[i] += incr; 2102 return; 2103 } 2104 } 2105 } else { 2106 for (i = zero + 1; i < DTRACE_QUANTIZE_NBUCKETS; i++) { 2107 if (val < DTRACE_QUANTIZE_BUCKETVAL(i)) { 2108 quanta[i - 1] += incr; 2109 return; 2110 } 2111 } 2112 2113 quanta[DTRACE_QUANTIZE_NBUCKETS - 1] += incr; 2114 return; 2115 } 2116 2117 ASSERT(0); 2118 } 2119 2120 static void 2121 dtrace_aggregate_lquantize(uint64_t *lquanta, uint64_t nval, uint64_t incr) 2122 { 2123 uint64_t arg = *lquanta++; 2124 int32_t base = DTRACE_LQUANTIZE_BASE(arg); 2125 uint16_t step = DTRACE_LQUANTIZE_STEP(arg); 2126 uint16_t levels = DTRACE_LQUANTIZE_LEVELS(arg); 2127 int32_t val = (int32_t)nval, level; 2128 2129 ASSERT(step != 0); 2130 ASSERT(levels != 0); 2131 2132 if (val < base) { 2133 /* 2134 * This is an underflow. 2135 */ 2136 lquanta[0] += incr; 2137 return; 2138 } 2139 2140 level = (val - base) / step; 2141 2142 if (level < levels) { 2143 lquanta[level + 1] += incr; 2144 return; 2145 } 2146 2147 /* 2148 * This is an overflow. 2149 */ 2150 lquanta[levels + 1] += incr; 2151 } 2152 2153 static int 2154 dtrace_aggregate_llquantize_bucket(uint16_t factor, uint16_t low, 2155 uint16_t high, uint16_t nsteps, int64_t value) 2156 { 2157 int64_t this = 1, last, next; 2158 int base = 1, order; 2159 2160 ASSERT(factor <= nsteps); 2161 ASSERT(nsteps % factor == 0); 2162 2163 for (order = 0; order < low; order++) 2164 this *= factor; 2165 2166 /* 2167 * If our value is less than our factor taken to the power of the 2168 * low order of magnitude, it goes into the zeroth bucket. 2169 */ 2170 if (value < (last = this)) 2171 return (0); 2172 2173 for (this *= factor; order <= high; order++) { 2174 int nbuckets = this > nsteps ? nsteps : this; 2175 2176 if ((next = this * factor) < this) { 2177 /* 2178 * We should not generally get log/linear quantizations 2179 * with a high magnitude that allows 64-bits to 2180 * overflow, but we nonetheless protect against this 2181 * by explicitly checking for overflow, and clamping 2182 * our value accordingly. 2183 */ 2184 value = this - 1; 2185 } 2186 2187 if (value < this) { 2188 /* 2189 * If our value lies within this order of magnitude, 2190 * determine its position by taking the offset within 2191 * the order of magnitude, dividing by the bucket 2192 * width, and adding to our (accumulated) base. 2193 */ 2194 return (base + (value - last) / (this / nbuckets)); 2195 } 2196 2197 base += nbuckets - (nbuckets / factor); 2198 last = this; 2199 this = next; 2200 } 2201 2202 /* 2203 * Our value is greater than or equal to our factor taken to the 2204 * power of one plus the high magnitude -- return the top bucket. 2205 */ 2206 return (base); 2207 } 2208 2209 static void 2210 dtrace_aggregate_llquantize(uint64_t *llquanta, uint64_t nval, uint64_t incr) 2211 { 2212 uint64_t arg = *llquanta++; 2213 uint16_t factor = DTRACE_LLQUANTIZE_FACTOR(arg); 2214 uint16_t low = DTRACE_LLQUANTIZE_LOW(arg); 2215 uint16_t high = DTRACE_LLQUANTIZE_HIGH(arg); 2216 uint16_t nsteps = DTRACE_LLQUANTIZE_NSTEP(arg); 2217 2218 llquanta[dtrace_aggregate_llquantize_bucket(factor, 2219 low, high, nsteps, nval)] += incr; 2220 } 2221 2222 /*ARGSUSED*/ 2223 static void 2224 dtrace_aggregate_avg(uint64_t *data, uint64_t nval, uint64_t arg) 2225 { 2226 data[0]++; 2227 data[1] += nval; 2228 } 2229 2230 /*ARGSUSED*/ 2231 static void 2232 dtrace_aggregate_stddev(uint64_t *data, uint64_t nval, uint64_t arg) 2233 { 2234 int64_t snval = (int64_t)nval; 2235 uint64_t tmp[2]; 2236 2237 data[0]++; 2238 data[1] += nval; 2239 2240 /* 2241 * What we want to say here is: 2242 * 2243 * data[2] += nval * nval; 2244 * 2245 * But given that nval is 64-bit, we could easily overflow, so 2246 * we do this as 128-bit arithmetic. 2247 */ 2248 if (snval < 0) 2249 snval = -snval; 2250 2251 dtrace_multiply_128((uint64_t)snval, (uint64_t)snval, tmp); 2252 dtrace_add_128(data + 2, tmp, data + 2); 2253 } 2254 2255 /*ARGSUSED*/ 2256 static void 2257 dtrace_aggregate_count(uint64_t *oval, uint64_t nval, uint64_t arg) 2258 { 2259 *oval = *oval + 1; 2260 } 2261 2262 /*ARGSUSED*/ 2263 static void 2264 dtrace_aggregate_sum(uint64_t *oval, uint64_t nval, uint64_t arg) 2265 { 2266 *oval += nval; 2267 } 2268 2269 /* 2270 * Aggregate given the tuple in the principal data buffer, and the aggregating 2271 * action denoted by the specified dtrace_aggregation_t. The aggregation 2272 * buffer is specified as the buf parameter. This routine does not return 2273 * failure; if there is no space in the aggregation buffer, the data will be 2274 * dropped, and a corresponding counter incremented. 2275 */ 2276 static void 2277 dtrace_aggregate(dtrace_aggregation_t *agg, dtrace_buffer_t *dbuf, 2278 intptr_t offset, dtrace_buffer_t *buf, uint64_t expr, uint64_t arg) 2279 { 2280 dtrace_recdesc_t *rec = &agg->dtag_action.dta_rec; 2281 uint32_t i, ndx, size, fsize; 2282 uint32_t align = sizeof (uint64_t) - 1; 2283 dtrace_aggbuffer_t *agb; 2284 dtrace_aggkey_t *key; 2285 uint32_t hashval = 0, limit, isstr; 2286 caddr_t tomax, data, kdata; 2287 dtrace_actkind_t action; 2288 dtrace_action_t *act; 2289 uintptr_t offs; 2290 2291 if (buf == NULL) 2292 return; 2293 2294 if (!agg->dtag_hasarg) { 2295 /* 2296 * Currently, only quantize() and lquantize() take additional 2297 * arguments, and they have the same semantics: an increment 2298 * value that defaults to 1 when not present. If additional 2299 * aggregating actions take arguments, the setting of the 2300 * default argument value will presumably have to become more 2301 * sophisticated... 2302 */ 2303 arg = 1; 2304 } 2305 2306 action = agg->dtag_action.dta_kind - DTRACEACT_AGGREGATION; 2307 size = rec->dtrd_offset - agg->dtag_base; 2308 fsize = size + rec->dtrd_size; 2309 2310 ASSERT(dbuf->dtb_tomax != NULL); 2311 data = dbuf->dtb_tomax + offset + agg->dtag_base; 2312 2313 if ((tomax = buf->dtb_tomax) == NULL) { 2314 dtrace_buffer_drop(buf); 2315 return; 2316 } 2317 2318 /* 2319 * The metastructure is always at the bottom of the buffer. 2320 */ 2321 agb = (dtrace_aggbuffer_t *)(tomax + buf->dtb_size - 2322 sizeof (dtrace_aggbuffer_t)); 2323 2324 if (buf->dtb_offset == 0) { 2325 /* 2326 * We just kludge up approximately 1/8th of the size to be 2327 * buckets. If this guess ends up being routinely 2328 * off-the-mark, we may need to dynamically readjust this 2329 * based on past performance. 2330 */ 2331 uintptr_t hashsize = (buf->dtb_size >> 3) / sizeof (uintptr_t); 2332 2333 if ((uintptr_t)agb - hashsize * sizeof (dtrace_aggkey_t *) < 2334 (uintptr_t)tomax || hashsize == 0) { 2335 /* 2336 * We've been given a ludicrously small buffer; 2337 * increment our drop count and leave. 2338 */ 2339 dtrace_buffer_drop(buf); 2340 return; 2341 } 2342 2343 /* 2344 * And now, a pathetic attempt to try to get a an odd (or 2345 * perchance, a prime) hash size for better hash distribution. 2346 */ 2347 if (hashsize > (DTRACE_AGGHASHSIZE_SLEW << 3)) 2348 hashsize -= DTRACE_AGGHASHSIZE_SLEW; 2349 2350 agb->dtagb_hashsize = hashsize; 2351 agb->dtagb_hash = (dtrace_aggkey_t **)((uintptr_t)agb - 2352 agb->dtagb_hashsize * sizeof (dtrace_aggkey_t *)); 2353 agb->dtagb_free = (uintptr_t)agb->dtagb_hash; 2354 2355 for (i = 0; i < agb->dtagb_hashsize; i++) 2356 agb->dtagb_hash[i] = NULL; 2357 } 2358 2359 ASSERT(agg->dtag_first != NULL); 2360 ASSERT(agg->dtag_first->dta_intuple); 2361 2362 /* 2363 * Calculate the hash value based on the key. Note that we _don't_ 2364 * include the aggid in the hashing (but we will store it as part of 2365 * the key). The hashing algorithm is Bob Jenkins' "One-at-a-time" 2366 * algorithm: a simple, quick algorithm that has no known funnels, and 2367 * gets good distribution in practice. The efficacy of the hashing 2368 * algorithm (and a comparison with other algorithms) may be found by 2369 * running the ::dtrace_aggstat MDB dcmd. 2370 */ 2371 for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) { 2372 i = act->dta_rec.dtrd_offset - agg->dtag_base; 2373 limit = i + act->dta_rec.dtrd_size; 2374 ASSERT(limit <= size); 2375 isstr = DTRACEACT_ISSTRING(act); 2376 2377 for (; i < limit; i++) { 2378 hashval += data[i]; 2379 hashval += (hashval << 10); 2380 hashval ^= (hashval >> 6); 2381 2382 if (isstr && data[i] == '\0') 2383 break; 2384 } 2385 } 2386 2387 hashval += (hashval << 3); 2388 hashval ^= (hashval >> 11); 2389 hashval += (hashval << 15); 2390 2391 /* 2392 * Yes, the divide here is expensive -- but it's generally the least 2393 * of the performance issues given the amount of data that we iterate 2394 * over to compute hash values, compare data, etc. 2395 */ 2396 ndx = hashval % agb->dtagb_hashsize; 2397 2398 for (key = agb->dtagb_hash[ndx]; key != NULL; key = key->dtak_next) { 2399 ASSERT((caddr_t)key >= tomax); 2400 ASSERT((caddr_t)key < tomax + buf->dtb_size); 2401 2402 if (hashval != key->dtak_hashval || key->dtak_size != size) 2403 continue; 2404 2405 kdata = key->dtak_data; 2406 ASSERT(kdata >= tomax && kdata < tomax + buf->dtb_size); 2407 2408 for (act = agg->dtag_first; act->dta_intuple; 2409 act = act->dta_next) { 2410 i = act->dta_rec.dtrd_offset - agg->dtag_base; 2411 limit = i + act->dta_rec.dtrd_size; 2412 ASSERT(limit <= size); 2413 isstr = DTRACEACT_ISSTRING(act); 2414 2415 for (; i < limit; i++) { 2416 if (kdata[i] != data[i]) 2417 goto next; 2418 2419 if (isstr && data[i] == '\0') 2420 break; 2421 } 2422 } 2423 2424 if (action != key->dtak_action) { 2425 /* 2426 * We are aggregating on the same value in the same 2427 * aggregation with two different aggregating actions. 2428 * (This should have been picked up in the compiler, 2429 * so we may be dealing with errant or devious DIF.) 2430 * This is an error condition; we indicate as much, 2431 * and return. 2432 */ 2433 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); 2434 return; 2435 } 2436 2437 /* 2438 * This is a hit: we need to apply the aggregator to 2439 * the value at this key. 2440 */ 2441 agg->dtag_aggregate((uint64_t *)(kdata + size), expr, arg); 2442 return; 2443 next: 2444 continue; 2445 } 2446 2447 /* 2448 * We didn't find it. We need to allocate some zero-filled space, 2449 * link it into the hash table appropriately, and apply the aggregator 2450 * to the (zero-filled) value. 2451 */ 2452 offs = buf->dtb_offset; 2453 while (offs & (align - 1)) 2454 offs += sizeof (uint32_t); 2455 2456 /* 2457 * If we don't have enough room to both allocate a new key _and_ 2458 * its associated data, increment the drop count and return. 2459 */ 2460 if ((uintptr_t)tomax + offs + fsize > 2461 agb->dtagb_free - sizeof (dtrace_aggkey_t)) { 2462 dtrace_buffer_drop(buf); 2463 return; 2464 } 2465 2466 /*CONSTCOND*/ 2467 ASSERT(!(sizeof (dtrace_aggkey_t) & (sizeof (uintptr_t) - 1))); 2468 key = (dtrace_aggkey_t *)(agb->dtagb_free - sizeof (dtrace_aggkey_t)); 2469 agb->dtagb_free -= sizeof (dtrace_aggkey_t); 2470 2471 key->dtak_data = kdata = tomax + offs; 2472 buf->dtb_offset = offs + fsize; 2473 2474 /* 2475 * Now copy the data across. 2476 */ 2477 *((dtrace_aggid_t *)kdata) = agg->dtag_id; 2478 2479 for (i = sizeof (dtrace_aggid_t); i < size; i++) 2480 kdata[i] = data[i]; 2481 2482 /* 2483 * Because strings are not zeroed out by default, we need to iterate 2484 * looking for actions that store strings, and we need to explicitly 2485 * pad these strings out with zeroes. 2486 */ 2487 for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) { 2488 int nul; 2489 2490 if (!DTRACEACT_ISSTRING(act)) 2491 continue; 2492 2493 i = act->dta_rec.dtrd_offset - agg->dtag_base; 2494 limit = i + act->dta_rec.dtrd_size; 2495 ASSERT(limit <= size); 2496 2497 for (nul = 0; i < limit; i++) { 2498 if (nul) { 2499 kdata[i] = '\0'; 2500 continue; 2501 } 2502 2503 if (data[i] != '\0') 2504 continue; 2505 2506 nul = 1; 2507 } 2508 } 2509 2510 for (i = size; i < fsize; i++) 2511 kdata[i] = 0; 2512 2513 key->dtak_hashval = hashval; 2514 key->dtak_size = size; 2515 key->dtak_action = action; 2516 key->dtak_next = agb->dtagb_hash[ndx]; 2517 agb->dtagb_hash[ndx] = key; 2518 2519 /* 2520 * Finally, apply the aggregator. 2521 */ 2522 *((uint64_t *)(key->dtak_data + size)) = agg->dtag_initial; 2523 agg->dtag_aggregate((uint64_t *)(key->dtak_data + size), expr, arg); 2524 } 2525 2526 /* 2527 * Given consumer state, this routine finds a speculation in the INACTIVE 2528 * state and transitions it into the ACTIVE state. If there is no speculation 2529 * in the INACTIVE state, 0 is returned. In this case, no error counter is 2530 * incremented -- it is up to the caller to take appropriate action. 2531 */ 2532 static int 2533 dtrace_speculation(dtrace_state_t *state) 2534 { 2535 int i = 0; 2536 dtrace_speculation_state_t current; 2537 uint32_t *stat = &state->dts_speculations_unavail, count; 2538 2539 while (i < state->dts_nspeculations) { 2540 dtrace_speculation_t *spec = &state->dts_speculations[i]; 2541 2542 current = spec->dtsp_state; 2543 2544 if (current != DTRACESPEC_INACTIVE) { 2545 if (current == DTRACESPEC_COMMITTINGMANY || 2546 current == DTRACESPEC_COMMITTING || 2547 current == DTRACESPEC_DISCARDING) 2548 stat = &state->dts_speculations_busy; 2549 i++; 2550 continue; 2551 } 2552 2553 if (dtrace_cas32((uint32_t *)&spec->dtsp_state, 2554 current, DTRACESPEC_ACTIVE) == current) 2555 return (i + 1); 2556 } 2557 2558 /* 2559 * We couldn't find a speculation. If we found as much as a single 2560 * busy speculation buffer, we'll attribute this failure as "busy" 2561 * instead of "unavail". 2562 */ 2563 do { 2564 count = *stat; 2565 } while (dtrace_cas32(stat, count, count + 1) != count); 2566 2567 return (0); 2568 } 2569 2570 /* 2571 * This routine commits an active speculation. If the specified speculation 2572 * is not in a valid state to perform a commit(), this routine will silently do 2573 * nothing. The state of the specified speculation is transitioned according 2574 * to the state transition diagram outlined in <sys/dtrace_impl.h> 2575 */ 2576 static void 2577 dtrace_speculation_commit(dtrace_state_t *state, processorid_t cpu, 2578 dtrace_specid_t which) 2579 { 2580 dtrace_speculation_t *spec; 2581 dtrace_buffer_t *src, *dest; 2582 uintptr_t daddr, saddr, dlimit, slimit; 2583 dtrace_speculation_state_t current, new; 2584 intptr_t offs; 2585 uint64_t timestamp; 2586 2587 if (which == 0) 2588 return; 2589 2590 if (which > state->dts_nspeculations) { 2591 cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP; 2592 return; 2593 } 2594 2595 spec = &state->dts_speculations[which - 1]; 2596 src = &spec->dtsp_buffer[cpu]; 2597 dest = &state->dts_buffer[cpu]; 2598 2599 do { 2600 current = spec->dtsp_state; 2601 2602 if (current == DTRACESPEC_COMMITTINGMANY) 2603 break; 2604 2605 switch (current) { 2606 case DTRACESPEC_INACTIVE: 2607 case DTRACESPEC_DISCARDING: 2608 return; 2609 2610 case DTRACESPEC_COMMITTING: 2611 /* 2612 * This is only possible if we are (a) commit()'ing 2613 * without having done a prior speculate() on this CPU 2614 * and (b) racing with another commit() on a different 2615 * CPU. There's nothing to do -- we just assert that 2616 * our offset is 0. 2617 */ 2618 ASSERT(src->dtb_offset == 0); 2619 return; 2620 2621 case DTRACESPEC_ACTIVE: 2622 new = DTRACESPEC_COMMITTING; 2623 break; 2624 2625 case DTRACESPEC_ACTIVEONE: 2626 /* 2627 * This speculation is active on one CPU. If our 2628 * buffer offset is non-zero, we know that the one CPU 2629 * must be us. Otherwise, we are committing on a 2630 * different CPU from the speculate(), and we must 2631 * rely on being asynchronously cleaned. 2632 */ 2633 if (src->dtb_offset != 0) { 2634 new = DTRACESPEC_COMMITTING; 2635 break; 2636 } 2637 /*FALLTHROUGH*/ 2638 2639 case DTRACESPEC_ACTIVEMANY: 2640 new = DTRACESPEC_COMMITTINGMANY; 2641 break; 2642 2643 default: 2644 ASSERT(0); 2645 } 2646 } while (dtrace_cas32((uint32_t *)&spec->dtsp_state, 2647 current, new) != current); 2648 2649 /* 2650 * We have set the state to indicate that we are committing this 2651 * speculation. Now reserve the necessary space in the destination 2652 * buffer. 2653 */ 2654 if ((offs = dtrace_buffer_reserve(dest, src->dtb_offset, 2655 sizeof (uint64_t), state, NULL)) < 0) { 2656 dtrace_buffer_drop(dest); 2657 goto out; 2658 } 2659 2660 /* 2661 * We have sufficient space to copy the speculative buffer into the 2662 * primary buffer. First, modify the speculative buffer, filling 2663 * in the timestamp of all entries with the current time. The data 2664 * must have the commit() time rather than the time it was traced, 2665 * so that all entries in the primary buffer are in timestamp order. 2666 */ 2667 timestamp = dtrace_gethrtime(); 2668 saddr = (uintptr_t)src->dtb_tomax; 2669 slimit = saddr + src->dtb_offset; 2670 while (saddr < slimit) { 2671 size_t size; 2672 dtrace_rechdr_t *dtrh = (dtrace_rechdr_t *)saddr; 2673 2674 if (dtrh->dtrh_epid == DTRACE_EPIDNONE) { 2675 saddr += sizeof (dtrace_epid_t); 2676 continue; 2677 } 2678 ASSERT3U(dtrh->dtrh_epid, <=, state->dts_necbs); 2679 size = state->dts_ecbs[dtrh->dtrh_epid - 1]->dte_size; 2680 2681 ASSERT3U(saddr + size, <=, slimit); 2682 ASSERT3U(size, >=, sizeof (dtrace_rechdr_t)); 2683 ASSERT3U(DTRACE_RECORD_LOAD_TIMESTAMP(dtrh), ==, UINT64_MAX); 2684 2685 DTRACE_RECORD_STORE_TIMESTAMP(dtrh, timestamp); 2686 2687 saddr += size; 2688 } 2689 2690 /* 2691 * Copy the buffer across. (Note that this is a 2692 * highly subobtimal bcopy(); in the unlikely event that this becomes 2693 * a serious performance issue, a high-performance DTrace-specific 2694 * bcopy() should obviously be invented.) 2695 */ 2696 daddr = (uintptr_t)dest->dtb_tomax + offs; 2697 dlimit = daddr + src->dtb_offset; 2698 saddr = (uintptr_t)src->dtb_tomax; 2699 2700 /* 2701 * First, the aligned portion. 2702 */ 2703 while (dlimit - daddr >= sizeof (uint64_t)) { 2704 *((uint64_t *)daddr) = *((uint64_t *)saddr); 2705 2706 daddr += sizeof (uint64_t); 2707 saddr += sizeof (uint64_t); 2708 } 2709 2710 /* 2711 * Now any left-over bit... 2712 */ 2713 while (dlimit - daddr) 2714 *((uint8_t *)daddr++) = *((uint8_t *)saddr++); 2715 2716 /* 2717 * Finally, commit the reserved space in the destination buffer. 2718 */ 2719 dest->dtb_offset = offs + src->dtb_offset; 2720 2721 out: 2722 /* 2723 * If we're lucky enough to be the only active CPU on this speculation 2724 * buffer, we can just set the state back to DTRACESPEC_INACTIVE. 2725 */ 2726 if (current == DTRACESPEC_ACTIVE || 2727 (current == DTRACESPEC_ACTIVEONE && new == DTRACESPEC_COMMITTING)) { 2728 uint32_t rval = dtrace_cas32((uint32_t *)&spec->dtsp_state, 2729 DTRACESPEC_COMMITTING, DTRACESPEC_INACTIVE); 2730 2731 ASSERT(rval == DTRACESPEC_COMMITTING); 2732 } 2733 2734 src->dtb_offset = 0; 2735 src->dtb_xamot_drops += src->dtb_drops; 2736 src->dtb_drops = 0; 2737 } 2738 2739 /* 2740 * This routine discards an active speculation. If the specified speculation 2741 * is not in a valid state to perform a discard(), this routine will silently 2742 * do nothing. The state of the specified speculation is transitioned 2743 * according to the state transition diagram outlined in <sys/dtrace_impl.h> 2744 */ 2745 static void 2746 dtrace_speculation_discard(dtrace_state_t *state, processorid_t cpu, 2747 dtrace_specid_t which) 2748 { 2749 dtrace_speculation_t *spec; 2750 dtrace_speculation_state_t current, new; 2751 dtrace_buffer_t *buf; 2752 2753 if (which == 0) 2754 return; 2755 2756 if (which > state->dts_nspeculations) { 2757 cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP; 2758 return; 2759 } 2760 2761 spec = &state->dts_speculations[which - 1]; 2762 buf = &spec->dtsp_buffer[cpu]; 2763 2764 do { 2765 current = spec->dtsp_state; 2766 2767 switch (current) { 2768 case DTRACESPEC_INACTIVE: 2769 case DTRACESPEC_COMMITTINGMANY: 2770 case DTRACESPEC_COMMITTING: 2771 case DTRACESPEC_DISCARDING: 2772 return; 2773 2774 case DTRACESPEC_ACTIVE: 2775 case DTRACESPEC_ACTIVEMANY: 2776 new = DTRACESPEC_DISCARDING; 2777 break; 2778 2779 case DTRACESPEC_ACTIVEONE: 2780 if (buf->dtb_offset != 0) { 2781 new = DTRACESPEC_INACTIVE; 2782 } else { 2783 new = DTRACESPEC_DISCARDING; 2784 } 2785 break; 2786 2787 default: 2788 ASSERT(0); 2789 } 2790 } while (dtrace_cas32((uint32_t *)&spec->dtsp_state, 2791 current, new) != current); 2792 2793 buf->dtb_offset = 0; 2794 buf->dtb_drops = 0; 2795 } 2796 2797 /* 2798 * Note: not called from probe context. This function is called 2799 * asynchronously from cross call context to clean any speculations that are 2800 * in the COMMITTINGMANY or DISCARDING states. These speculations may not be 2801 * transitioned back to the INACTIVE state until all CPUs have cleaned the 2802 * speculation. 2803 */ 2804 static void 2805 dtrace_speculation_clean_here(dtrace_state_t *state) 2806 { 2807 dtrace_icookie_t cookie; 2808 processorid_t cpu = CPU->cpu_id; 2809 dtrace_buffer_t *dest = &state->dts_buffer[cpu]; 2810 dtrace_specid_t i; 2811 2812 cookie = dtrace_interrupt_disable(); 2813 2814 if (dest->dtb_tomax == NULL) { 2815 dtrace_interrupt_enable(cookie); 2816 return; 2817 } 2818 2819 for (i = 0; i < state->dts_nspeculations; i++) { 2820 dtrace_speculation_t *spec = &state->dts_speculations[i]; 2821 dtrace_buffer_t *src = &spec->dtsp_buffer[cpu]; 2822 2823 if (src->dtb_tomax == NULL) 2824 continue; 2825 2826 if (spec->dtsp_state == DTRACESPEC_DISCARDING) { 2827 src->dtb_offset = 0; 2828 continue; 2829 } 2830 2831 if (spec->dtsp_state != DTRACESPEC_COMMITTINGMANY) 2832 continue; 2833 2834 if (src->dtb_offset == 0) 2835 continue; 2836 2837 dtrace_speculation_commit(state, cpu, i + 1); 2838 } 2839 2840 dtrace_interrupt_enable(cookie); 2841 } 2842 2843 /* 2844 * Note: not called from probe context. This function is called 2845 * asynchronously (and at a regular interval) to clean any speculations that 2846 * are in the COMMITTINGMANY or DISCARDING states. If it discovers that there 2847 * is work to be done, it cross calls all CPUs to perform that work; 2848 * COMMITMANY and DISCARDING speculations may not be transitioned back to the 2849 * INACTIVE state until they have been cleaned by all CPUs. 2850 */ 2851 static void 2852 dtrace_speculation_clean(dtrace_state_t *state) 2853 { 2854 int work = 0, rv; 2855 dtrace_specid_t i; 2856 2857 for (i = 0; i < state->dts_nspeculations; i++) { 2858 dtrace_speculation_t *spec = &state->dts_speculations[i]; 2859 2860 ASSERT(!spec->dtsp_cleaning); 2861 2862 if (spec->dtsp_state != DTRACESPEC_DISCARDING && 2863 spec->dtsp_state != DTRACESPEC_COMMITTINGMANY) 2864 continue; 2865 2866 work++; 2867 spec->dtsp_cleaning = 1; 2868 } 2869 2870 if (!work) 2871 return; 2872 2873 dtrace_xcall(DTRACE_CPUALL, 2874 (dtrace_xcall_t)dtrace_speculation_clean_here, state); 2875 2876 /* 2877 * We now know that all CPUs have committed or discarded their 2878 * speculation buffers, as appropriate. We can now set the state 2879 * to inactive. 2880 */ 2881 for (i = 0; i < state->dts_nspeculations; i++) { 2882 dtrace_speculation_t *spec = &state->dts_speculations[i]; 2883 dtrace_speculation_state_t current, new; 2884 2885 if (!spec->dtsp_cleaning) 2886 continue; 2887 2888 current = spec->dtsp_state; 2889 ASSERT(current == DTRACESPEC_DISCARDING || 2890 current == DTRACESPEC_COMMITTINGMANY); 2891 2892 new = DTRACESPEC_INACTIVE; 2893 2894 rv = dtrace_cas32((uint32_t *)&spec->dtsp_state, current, new); 2895 ASSERT(rv == current); 2896 spec->dtsp_cleaning = 0; 2897 } 2898 } 2899 2900 /* 2901 * Called as part of a speculate() to get the speculative buffer associated 2902 * with a given speculation. Returns NULL if the specified speculation is not 2903 * in an ACTIVE state. If the speculation is in the ACTIVEONE state -- and 2904 * the active CPU is not the specified CPU -- the speculation will be 2905 * atomically transitioned into the ACTIVEMANY state. 2906 */ 2907 static dtrace_buffer_t * 2908 dtrace_speculation_buffer(dtrace_state_t *state, processorid_t cpuid, 2909 dtrace_specid_t which) 2910 { 2911 dtrace_speculation_t *spec; 2912 dtrace_speculation_state_t current, new; 2913 dtrace_buffer_t *buf; 2914 2915 if (which == 0) 2916 return (NULL); 2917 2918 if (which > state->dts_nspeculations) { 2919 cpu_core[cpuid].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP; 2920 return (NULL); 2921 } 2922 2923 spec = &state->dts_speculations[which - 1]; 2924 buf = &spec->dtsp_buffer[cpuid]; 2925 2926 do { 2927 current = spec->dtsp_state; 2928 2929 switch (current) { 2930 case DTRACESPEC_INACTIVE: 2931 case DTRACESPEC_COMMITTINGMANY: 2932 case DTRACESPEC_DISCARDING: 2933 return (NULL); 2934 2935 case DTRACESPEC_COMMITTING: 2936 ASSERT(buf->dtb_offset == 0); 2937 return (NULL); 2938 2939 case DTRACESPEC_ACTIVEONE: 2940 /* 2941 * This speculation is currently active on one CPU. 2942 * Check the offset in the buffer; if it's non-zero, 2943 * that CPU must be us (and we leave the state alone). 2944 * If it's zero, assume that we're starting on a new 2945 * CPU -- and change the state to indicate that the 2946 * speculation is active on more than one CPU. 2947 */ 2948 if (buf->dtb_offset != 0) 2949 return (buf); 2950 2951 new = DTRACESPEC_ACTIVEMANY; 2952 break; 2953 2954 case DTRACESPEC_ACTIVEMANY: 2955 return (buf); 2956 2957 case DTRACESPEC_ACTIVE: 2958 new = DTRACESPEC_ACTIVEONE; 2959 break; 2960 2961 default: 2962 ASSERT(0); 2963 } 2964 } while (dtrace_cas32((uint32_t *)&spec->dtsp_state, 2965 current, new) != current); 2966 2967 ASSERT(new == DTRACESPEC_ACTIVEONE || new == DTRACESPEC_ACTIVEMANY); 2968 return (buf); 2969 } 2970 2971 /* 2972 * Return a string. In the event that the user lacks the privilege to access 2973 * arbitrary kernel memory, we copy the string out to scratch memory so that we 2974 * don't fail access checking. 2975 * 2976 * dtrace_dif_variable() uses this routine as a helper for various 2977 * builtin values such as 'execname' and 'probefunc.' 2978 */ 2979 uintptr_t 2980 dtrace_dif_varstr(uintptr_t addr, dtrace_state_t *state, 2981 dtrace_mstate_t *mstate) 2982 { 2983 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 2984 uintptr_t ret; 2985 size_t strsz; 2986 2987 /* 2988 * The easy case: this probe is allowed to read all of memory, so 2989 * we can just return this as a vanilla pointer. 2990 */ 2991 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) 2992 return (addr); 2993 2994 /* 2995 * This is the tougher case: we copy the string in question from 2996 * kernel memory into scratch memory and return it that way: this 2997 * ensures that we won't trip up when access checking tests the 2998 * BYREF return value. 2999 */ 3000 strsz = dtrace_strlen((char *)addr, size) + 1; 3001 3002 if (mstate->dtms_scratch_ptr + strsz > 3003 mstate->dtms_scratch_base + mstate->dtms_scratch_size) { 3004 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 3005 return (NULL); 3006 } 3007 3008 dtrace_strcpy((const void *)addr, (void *)mstate->dtms_scratch_ptr, 3009 strsz); 3010 ret = mstate->dtms_scratch_ptr; 3011 mstate->dtms_scratch_ptr += strsz; 3012 return (ret); 3013 } 3014 3015 /* 3016 * This function implements the DIF emulator's variable lookups. The emulator 3017 * passes a reserved variable identifier and optional built-in array index. 3018 */ 3019 static uint64_t 3020 dtrace_dif_variable(dtrace_mstate_t *mstate, dtrace_state_t *state, uint64_t v, 3021 uint64_t ndx) 3022 { 3023 /* 3024 * If we're accessing one of the uncached arguments, we'll turn this 3025 * into a reference in the args array. 3026 */ 3027 if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9) { 3028 ndx = v - DIF_VAR_ARG0; 3029 v = DIF_VAR_ARGS; 3030 } 3031 3032 switch (v) { 3033 case DIF_VAR_ARGS: 3034 if (!(mstate->dtms_access & DTRACE_ACCESS_ARGS)) { 3035 cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= 3036 CPU_DTRACE_KPRIV; 3037 return (0); 3038 } 3039 3040 ASSERT(mstate->dtms_present & DTRACE_MSTATE_ARGS); 3041 if (ndx >= sizeof (mstate->dtms_arg) / 3042 sizeof (mstate->dtms_arg[0])) { 3043 int aframes = mstate->dtms_probe->dtpr_aframes + 2; 3044 dtrace_provider_t *pv; 3045 uint64_t val; 3046 3047 pv = mstate->dtms_probe->dtpr_provider; 3048 if (pv->dtpv_pops.dtps_getargval != NULL) 3049 val = pv->dtpv_pops.dtps_getargval(pv->dtpv_arg, 3050 mstate->dtms_probe->dtpr_id, 3051 mstate->dtms_probe->dtpr_arg, ndx, aframes); 3052 else 3053 val = dtrace_getarg(ndx, aframes); 3054 3055 /* 3056 * This is regrettably required to keep the compiler 3057 * from tail-optimizing the call to dtrace_getarg(). 3058 * The condition always evaluates to true, but the 3059 * compiler has no way of figuring that out a priori. 3060 * (None of this would be necessary if the compiler 3061 * could be relied upon to _always_ tail-optimize 3062 * the call to dtrace_getarg() -- but it can't.) 3063 */ 3064 if (mstate->dtms_probe != NULL) 3065 return (val); 3066 3067 ASSERT(0); 3068 } 3069 3070 return (mstate->dtms_arg[ndx]); 3071 3072 case DIF_VAR_UREGS: { 3073 klwp_t *lwp; 3074 3075 if (!dtrace_priv_proc(state, mstate)) 3076 return (0); 3077 3078 if ((lwp = curthread->t_lwp) == NULL) { 3079 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); 3080 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = NULL; 3081 return (0); 3082 } 3083 3084 return (dtrace_getreg(lwp->lwp_regs, ndx)); 3085 } 3086 3087 case DIF_VAR_VMREGS: { 3088 uint64_t rval; 3089 3090 if (!dtrace_priv_kernel(state)) 3091 return (0); 3092 3093 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 3094 3095 rval = dtrace_getvmreg(ndx, 3096 &cpu_core[CPU->cpu_id].cpuc_dtrace_flags); 3097 3098 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 3099 3100 return (rval); 3101 } 3102 3103 case DIF_VAR_CURTHREAD: 3104 if (!dtrace_priv_proc(state, mstate)) 3105 return (0); 3106 return ((uint64_t)(uintptr_t)curthread); 3107 3108 case DIF_VAR_TIMESTAMP: 3109 if (!(mstate->dtms_present & DTRACE_MSTATE_TIMESTAMP)) { 3110 mstate->dtms_timestamp = dtrace_gethrtime(); 3111 mstate->dtms_present |= DTRACE_MSTATE_TIMESTAMP; 3112 } 3113 return (mstate->dtms_timestamp); 3114 3115 case DIF_VAR_VTIMESTAMP: 3116 ASSERT(dtrace_vtime_references != 0); 3117 return (curthread->t_dtrace_vtime); 3118 3119 case DIF_VAR_WALLTIMESTAMP: 3120 if (!(mstate->dtms_present & DTRACE_MSTATE_WALLTIMESTAMP)) { 3121 mstate->dtms_walltimestamp = dtrace_gethrestime(); 3122 mstate->dtms_present |= DTRACE_MSTATE_WALLTIMESTAMP; 3123 } 3124 return (mstate->dtms_walltimestamp); 3125 3126 case DIF_VAR_IPL: 3127 if (!dtrace_priv_kernel(state)) 3128 return (0); 3129 if (!(mstate->dtms_present & DTRACE_MSTATE_IPL)) { 3130 mstate->dtms_ipl = dtrace_getipl(); 3131 mstate->dtms_present |= DTRACE_MSTATE_IPL; 3132 } 3133 return (mstate->dtms_ipl); 3134 3135 case DIF_VAR_EPID: 3136 ASSERT(mstate->dtms_present & DTRACE_MSTATE_EPID); 3137 return (mstate->dtms_epid); 3138 3139 case DIF_VAR_ID: 3140 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); 3141 return (mstate->dtms_probe->dtpr_id); 3142 3143 case DIF_VAR_STACKDEPTH: 3144 if (!dtrace_priv_kernel(state)) 3145 return (0); 3146 if (!(mstate->dtms_present & DTRACE_MSTATE_STACKDEPTH)) { 3147 int aframes = mstate->dtms_probe->dtpr_aframes + 2; 3148 3149 mstate->dtms_stackdepth = dtrace_getstackdepth(aframes); 3150 mstate->dtms_present |= DTRACE_MSTATE_STACKDEPTH; 3151 } 3152 return (mstate->dtms_stackdepth); 3153 3154 case DIF_VAR_USTACKDEPTH: 3155 if (!dtrace_priv_proc(state, mstate)) 3156 return (0); 3157 if (!(mstate->dtms_present & DTRACE_MSTATE_USTACKDEPTH)) { 3158 /* 3159 * See comment in DIF_VAR_PID. 3160 */ 3161 if (DTRACE_ANCHORED(mstate->dtms_probe) && 3162 CPU_ON_INTR(CPU)) { 3163 mstate->dtms_ustackdepth = 0; 3164 } else { 3165 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 3166 mstate->dtms_ustackdepth = 3167 dtrace_getustackdepth(); 3168 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 3169 } 3170 mstate->dtms_present |= DTRACE_MSTATE_USTACKDEPTH; 3171 } 3172 return (mstate->dtms_ustackdepth); 3173 3174 case DIF_VAR_CALLER: 3175 if (!dtrace_priv_kernel(state)) 3176 return (0); 3177 if (!(mstate->dtms_present & DTRACE_MSTATE_CALLER)) { 3178 int aframes = mstate->dtms_probe->dtpr_aframes + 2; 3179 3180 if (!DTRACE_ANCHORED(mstate->dtms_probe)) { 3181 /* 3182 * If this is an unanchored probe, we are 3183 * required to go through the slow path: 3184 * dtrace_caller() only guarantees correct 3185 * results for anchored probes. 3186 */ 3187 pc_t caller[2]; 3188 3189 dtrace_getpcstack(caller, 2, aframes, 3190 (uint32_t *)(uintptr_t)mstate->dtms_arg[0]); 3191 mstate->dtms_caller = caller[1]; 3192 } else if ((mstate->dtms_caller = 3193 dtrace_caller(aframes)) == -1) { 3194 /* 3195 * We have failed to do this the quick way; 3196 * we must resort to the slower approach of 3197 * calling dtrace_getpcstack(). 3198 */ 3199 pc_t caller; 3200 3201 dtrace_getpcstack(&caller, 1, aframes, NULL); 3202 mstate->dtms_caller = caller; 3203 } 3204 3205 mstate->dtms_present |= DTRACE_MSTATE_CALLER; 3206 } 3207 return (mstate->dtms_caller); 3208 3209 case DIF_VAR_UCALLER: 3210 if (!dtrace_priv_proc(state, mstate)) 3211 return (0); 3212 3213 if (!(mstate->dtms_present & DTRACE_MSTATE_UCALLER)) { 3214 uint64_t ustack[3]; 3215 3216 /* 3217 * dtrace_getupcstack() fills in the first uint64_t 3218 * with the current PID. The second uint64_t will 3219 * be the program counter at user-level. The third 3220 * uint64_t will contain the caller, which is what 3221 * we're after. 3222 */ 3223 ustack[2] = NULL; 3224 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 3225 dtrace_getupcstack(ustack, 3); 3226 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 3227 mstate->dtms_ucaller = ustack[2]; 3228 mstate->dtms_present |= DTRACE_MSTATE_UCALLER; 3229 } 3230 3231 return (mstate->dtms_ucaller); 3232 3233 case DIF_VAR_PROBEPROV: 3234 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); 3235 return (dtrace_dif_varstr( 3236 (uintptr_t)mstate->dtms_probe->dtpr_provider->dtpv_name, 3237 state, mstate)); 3238 3239 case DIF_VAR_PROBEMOD: 3240 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); 3241 return (dtrace_dif_varstr( 3242 (uintptr_t)mstate->dtms_probe->dtpr_mod, 3243 state, mstate)); 3244 3245 case DIF_VAR_PROBEFUNC: 3246 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); 3247 return (dtrace_dif_varstr( 3248 (uintptr_t)mstate->dtms_probe->dtpr_func, 3249 state, mstate)); 3250 3251 case DIF_VAR_PROBENAME: 3252 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); 3253 return (dtrace_dif_varstr( 3254 (uintptr_t)mstate->dtms_probe->dtpr_name, 3255 state, mstate)); 3256 3257 case DIF_VAR_PID: 3258 if (!dtrace_priv_proc(state, mstate)) 3259 return (0); 3260 3261 /* 3262 * Note that we are assuming that an unanchored probe is 3263 * always due to a high-level interrupt. (And we're assuming 3264 * that there is only a single high level interrupt.) 3265 */ 3266 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3267 return (pid0.pid_id); 3268 3269 /* 3270 * It is always safe to dereference one's own t_procp pointer: 3271 * it always points to a valid, allocated proc structure. 3272 * Further, it is always safe to dereference the p_pidp member 3273 * of one's own proc structure. (These are truisms becuase 3274 * threads and processes don't clean up their own state -- 3275 * they leave that task to whomever reaps them.) 3276 */ 3277 return ((uint64_t)curthread->t_procp->p_pidp->pid_id); 3278 3279 case DIF_VAR_PPID: 3280 if (!dtrace_priv_proc(state, mstate)) 3281 return (0); 3282 3283 /* 3284 * See comment in DIF_VAR_PID. 3285 */ 3286 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3287 return (pid0.pid_id); 3288 3289 /* 3290 * It is always safe to dereference one's own t_procp pointer: 3291 * it always points to a valid, allocated proc structure. 3292 * (This is true because threads don't clean up their own 3293 * state -- they leave that task to whomever reaps them.) 3294 */ 3295 return ((uint64_t)curthread->t_procp->p_ppid); 3296 3297 case DIF_VAR_TID: 3298 /* 3299 * See comment in DIF_VAR_PID. 3300 */ 3301 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3302 return (0); 3303 3304 return ((uint64_t)curthread->t_tid); 3305 3306 case DIF_VAR_EXECNAME: 3307 if (!dtrace_priv_proc(state, mstate)) 3308 return (0); 3309 3310 /* 3311 * See comment in DIF_VAR_PID. 3312 */ 3313 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3314 return ((uint64_t)(uintptr_t)p0.p_user.u_comm); 3315 3316 /* 3317 * It is always safe to dereference one's own t_procp pointer: 3318 * it always points to a valid, allocated proc structure. 3319 * (This is true because threads don't clean up their own 3320 * state -- they leave that task to whomever reaps them.) 3321 */ 3322 return (dtrace_dif_varstr( 3323 (uintptr_t)curthread->t_procp->p_user.u_comm, 3324 state, mstate)); 3325 3326 case DIF_VAR_ZONENAME: 3327 if (!dtrace_priv_proc(state, mstate)) 3328 return (0); 3329 3330 /* 3331 * See comment in DIF_VAR_PID. 3332 */ 3333 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3334 return ((uint64_t)(uintptr_t)p0.p_zone->zone_name); 3335 3336 /* 3337 * It is always safe to dereference one's own t_procp pointer: 3338 * it always points to a valid, allocated proc structure. 3339 * (This is true because threads don't clean up their own 3340 * state -- they leave that task to whomever reaps them.) 3341 */ 3342 return (dtrace_dif_varstr( 3343 (uintptr_t)curthread->t_procp->p_zone->zone_name, 3344 state, mstate)); 3345 3346 case DIF_VAR_UID: 3347 if (!dtrace_priv_proc(state, mstate)) 3348 return (0); 3349 3350 /* 3351 * See comment in DIF_VAR_PID. 3352 */ 3353 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3354 return ((uint64_t)p0.p_cred->cr_uid); 3355 3356 /* 3357 * It is always safe to dereference one's own t_procp pointer: 3358 * it always points to a valid, allocated proc structure. 3359 * (This is true because threads don't clean up their own 3360 * state -- they leave that task to whomever reaps them.) 3361 * 3362 * Additionally, it is safe to dereference one's own process 3363 * credential, since this is never NULL after process birth. 3364 */ 3365 return ((uint64_t)curthread->t_procp->p_cred->cr_uid); 3366 3367 case DIF_VAR_GID: 3368 if (!dtrace_priv_proc(state, mstate)) 3369 return (0); 3370 3371 /* 3372 * See comment in DIF_VAR_PID. 3373 */ 3374 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3375 return ((uint64_t)p0.p_cred->cr_gid); 3376 3377 /* 3378 * It is always safe to dereference one's own t_procp pointer: 3379 * it always points to a valid, allocated proc structure. 3380 * (This is true because threads don't clean up their own 3381 * state -- they leave that task to whomever reaps them.) 3382 * 3383 * Additionally, it is safe to dereference one's own process 3384 * credential, since this is never NULL after process birth. 3385 */ 3386 return ((uint64_t)curthread->t_procp->p_cred->cr_gid); 3387 3388 case DIF_VAR_ERRNO: { 3389 klwp_t *lwp; 3390 if (!dtrace_priv_proc(state, mstate)) 3391 return (0); 3392 3393 /* 3394 * See comment in DIF_VAR_PID. 3395 */ 3396 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3397 return (0); 3398 3399 /* 3400 * It is always safe to dereference one's own t_lwp pointer in 3401 * the event that this pointer is non-NULL. (This is true 3402 * because threads and lwps don't clean up their own state -- 3403 * they leave that task to whomever reaps them.) 3404 */ 3405 if ((lwp = curthread->t_lwp) == NULL) 3406 return (0); 3407 3408 return ((uint64_t)lwp->lwp_errno); 3409 } 3410 default: 3411 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); 3412 return (0); 3413 } 3414 } 3415 3416 3417 typedef enum dtrace_json_state { 3418 DTRACE_JSON_REST = 1, 3419 DTRACE_JSON_OBJECT, 3420 DTRACE_JSON_STRING, 3421 DTRACE_JSON_STRING_ESCAPE, 3422 DTRACE_JSON_STRING_ESCAPE_UNICODE, 3423 DTRACE_JSON_COLON, 3424 DTRACE_JSON_COMMA, 3425 DTRACE_JSON_VALUE, 3426 DTRACE_JSON_IDENTIFIER, 3427 DTRACE_JSON_NUMBER, 3428 DTRACE_JSON_NUMBER_FRAC, 3429 DTRACE_JSON_NUMBER_EXP, 3430 DTRACE_JSON_COLLECT_OBJECT 3431 } dtrace_json_state_t; 3432 3433 /* 3434 * This function possesses just enough knowledge about JSON to extract a single 3435 * value from a JSON string and store it in the scratch buffer. It is able 3436 * to extract nested object values, and members of arrays by index. 3437 * 3438 * elemlist is a list of JSON keys, stored as packed NUL-terminated strings, to 3439 * be looked up as we descend into the object tree. e.g. 3440 * 3441 * foo[0].bar.baz[32] --> "foo" NUL "0" NUL "bar" NUL "baz" NUL "32" NUL 3442 * with nelems = 5. 3443 * 3444 * The run time of this function must be bounded above by strsize to limit the 3445 * amount of work done in probe context. As such, it is implemented as a 3446 * simple state machine, reading one character at a time using safe loads 3447 * until we find the requested element, hit a parsing error or run off the 3448 * end of the object or string. 3449 * 3450 * As there is no way for a subroutine to return an error without interrupting 3451 * clause execution, we simply return NULL in the event of a missing key or any 3452 * other error condition. Each NULL return in this function is commented with 3453 * the error condition it represents -- parsing or otherwise. 3454 * 3455 * The set of states for the state machine closely matches the JSON 3456 * specification (http://json.org/). Briefly: 3457 * 3458 * DTRACE_JSON_REST: 3459 * Skip whitespace until we find either a top-level Object, moving 3460 * to DTRACE_JSON_OBJECT; or an Array, moving to DTRACE_JSON_VALUE. 3461 * 3462 * DTRACE_JSON_OBJECT: 3463 * Locate the next key String in an Object. Sets a flag to denote 3464 * the next String as a key string and moves to DTRACE_JSON_STRING. 3465 * 3466 * DTRACE_JSON_COLON: 3467 * Skip whitespace until we find the colon that separates key Strings 3468 * from their values. Once found, move to DTRACE_JSON_VALUE. 3469 * 3470 * DTRACE_JSON_VALUE: 3471 * Detects the type of the next value (String, Number, Identifier, Object 3472 * or Array) and routes to the states that process that type. Here we also 3473 * deal with the element selector list if we are requested to traverse down 3474 * into the object tree. 3475 * 3476 * DTRACE_JSON_COMMA: 3477 * Skip whitespace until we find the comma that separates key-value pairs 3478 * in Objects (returning to DTRACE_JSON_OBJECT) or values in Arrays 3479 * (similarly DTRACE_JSON_VALUE). All following literal value processing 3480 * states return to this state at the end of their value, unless otherwise 3481 * noted. 3482 * 3483 * DTRACE_JSON_NUMBER, DTRACE_JSON_NUMBER_FRAC, DTRACE_JSON_NUMBER_EXP: 3484 * Processes a Number literal from the JSON, including any exponent 3485 * component that may be present. Numbers are returned as strings, which 3486 * may be passed to strtoll() if an integer is required. 3487 * 3488 * DTRACE_JSON_IDENTIFIER: 3489 * Processes a "true", "false" or "null" literal in the JSON. 3490 * 3491 * DTRACE_JSON_STRING, DTRACE_JSON_STRING_ESCAPE, 3492 * DTRACE_JSON_STRING_ESCAPE_UNICODE: 3493 * Processes a String literal from the JSON, whether the String denotes 3494 * a key, a value or part of a larger Object. Handles all escape sequences 3495 * present in the specification, including four-digit unicode characters, 3496 * but merely includes the escape sequence without converting it to the 3497 * actual escaped character. If the String is flagged as a key, we 3498 * move to DTRACE_JSON_COLON rather than DTRACE_JSON_COMMA. 3499 * 3500 * DTRACE_JSON_COLLECT_OBJECT: 3501 * This state collects an entire Object (or Array), correctly handling 3502 * embedded strings. If the full element selector list matches this nested 3503 * object, we return the Object in full as a string. If not, we use this 3504 * state to skip to the next value at this level and continue processing. 3505 * 3506 * NOTE: This function uses various macros from strtolctype.h to manipulate 3507 * digit values, etc -- these have all been checked to ensure they make 3508 * no additional function calls. 3509 */ 3510 static char * 3511 dtrace_json(uint64_t size, uintptr_t json, char *elemlist, int nelems, 3512 char *dest) 3513 { 3514 dtrace_json_state_t state = DTRACE_JSON_REST; 3515 int64_t array_elem = INT64_MIN; 3516 int64_t array_pos = 0; 3517 uint8_t escape_unicount = 0; 3518 boolean_t string_is_key = B_FALSE; 3519 boolean_t collect_object = B_FALSE; 3520 boolean_t found_key = B_FALSE; 3521 boolean_t in_array = B_FALSE; 3522 uint32_t braces = 0, brackets = 0; 3523 char *elem = elemlist; 3524 char *dd = dest; 3525 uintptr_t cur; 3526 3527 for (cur = json; cur < json + size; cur++) { 3528 char cc = dtrace_load8(cur); 3529 if (cc == '\0') 3530 return (NULL); 3531 3532 switch (state) { 3533 case DTRACE_JSON_REST: 3534 if (isspace(cc)) 3535 break; 3536 3537 if (cc == '{') { 3538 state = DTRACE_JSON_OBJECT; 3539 break; 3540 } 3541 3542 if (cc == '[') { 3543 in_array = B_TRUE; 3544 array_pos = 0; 3545 array_elem = dtrace_strtoll(elem, 10, size); 3546 found_key = array_elem == 0 ? B_TRUE : B_FALSE; 3547 state = DTRACE_JSON_VALUE; 3548 break; 3549 } 3550 3551 /* 3552 * ERROR: expected to find a top-level object or array. 3553 */ 3554 return (NULL); 3555 case DTRACE_JSON_OBJECT: 3556 if (isspace(cc)) 3557 break; 3558 3559 if (cc == '"') { 3560 state = DTRACE_JSON_STRING; 3561 string_is_key = B_TRUE; 3562 break; 3563 } 3564 3565 /* 3566 * ERROR: either the object did not start with a key 3567 * string, or we've run off the end of the object 3568 * without finding the requested key. 3569 */ 3570 return (NULL); 3571 case DTRACE_JSON_STRING: 3572 if (cc == '\\') { 3573 *dd++ = '\\'; 3574 state = DTRACE_JSON_STRING_ESCAPE; 3575 break; 3576 } 3577 3578 if (cc == '"') { 3579 if (collect_object) { 3580 /* 3581 * We don't reset the dest here, as 3582 * the string is part of a larger 3583 * object being collected. 3584 */ 3585 *dd++ = cc; 3586 collect_object = B_FALSE; 3587 state = DTRACE_JSON_COLLECT_OBJECT; 3588 break; 3589 } 3590 *dd = '\0'; 3591 dd = dest; /* reset string buffer */ 3592 if (string_is_key) { 3593 if (dtrace_strncmp(dest, elem, 3594 size) == 0) 3595 found_key = B_TRUE; 3596 } else if (found_key) { 3597 if (nelems > 1) { 3598 /* 3599 * We expected an object, not 3600 * this string. 3601 */ 3602 return (NULL); 3603 } 3604 return (dest); 3605 } 3606 state = string_is_key ? DTRACE_JSON_COLON : 3607 DTRACE_JSON_COMMA; 3608 string_is_key = B_FALSE; 3609 break; 3610 } 3611 3612 *dd++ = cc; 3613 break; 3614 case DTRACE_JSON_STRING_ESCAPE: 3615 *dd++ = cc; 3616 if (cc == 'u') { 3617 escape_unicount = 0; 3618 state = DTRACE_JSON_STRING_ESCAPE_UNICODE; 3619 } else { 3620 state = DTRACE_JSON_STRING; 3621 } 3622 break; 3623 case DTRACE_JSON_STRING_ESCAPE_UNICODE: 3624 if (!isxdigit(cc)) { 3625 /* 3626 * ERROR: invalid unicode escape, expected 3627 * four valid hexidecimal digits. 3628 */ 3629 return (NULL); 3630 } 3631 3632 *dd++ = cc; 3633 if (++escape_unicount == 4) 3634 state = DTRACE_JSON_STRING; 3635 break; 3636 case DTRACE_JSON_COLON: 3637 if (isspace(cc)) 3638 break; 3639 3640 if (cc == ':') { 3641 state = DTRACE_JSON_VALUE; 3642 break; 3643 } 3644 3645 /* 3646 * ERROR: expected a colon. 3647 */ 3648 return (NULL); 3649 case DTRACE_JSON_COMMA: 3650 if (isspace(cc)) 3651 break; 3652 3653 if (cc == ',') { 3654 if (in_array) { 3655 state = DTRACE_JSON_VALUE; 3656 if (++array_pos == array_elem) 3657 found_key = B_TRUE; 3658 } else { 3659 state = DTRACE_JSON_OBJECT; 3660 } 3661 break; 3662 } 3663 3664 /* 3665 * ERROR: either we hit an unexpected character, or 3666 * we reached the end of the object or array without 3667 * finding the requested key. 3668 */ 3669 return (NULL); 3670 case DTRACE_JSON_IDENTIFIER: 3671 if (islower(cc)) { 3672 *dd++ = cc; 3673 break; 3674 } 3675 3676 *dd = '\0'; 3677 dd = dest; /* reset string buffer */ 3678 3679 if (dtrace_strncmp(dest, "true", 5) == 0 || 3680 dtrace_strncmp(dest, "false", 6) == 0 || 3681 dtrace_strncmp(dest, "null", 5) == 0) { 3682 if (found_key) { 3683 if (nelems > 1) { 3684 /* 3685 * ERROR: We expected an object, 3686 * not this identifier. 3687 */ 3688 return (NULL); 3689 } 3690 return (dest); 3691 } else { 3692 cur--; 3693 state = DTRACE_JSON_COMMA; 3694 break; 3695 } 3696 } 3697 3698 /* 3699 * ERROR: we did not recognise the identifier as one 3700 * of those in the JSON specification. 3701 */ 3702 return (NULL); 3703 case DTRACE_JSON_NUMBER: 3704 if (cc == '.') { 3705 *dd++ = cc; 3706 state = DTRACE_JSON_NUMBER_FRAC; 3707 break; 3708 } 3709 3710 if (cc == 'x' || cc == 'X') { 3711 /* 3712 * ERROR: specification explicitly excludes 3713 * hexidecimal or octal numbers. 3714 */ 3715 return (NULL); 3716 } 3717 3718 /* FALLTHRU */ 3719 case DTRACE_JSON_NUMBER_FRAC: 3720 if (cc == 'e' || cc == 'E') { 3721 *dd++ = cc; 3722 state = DTRACE_JSON_NUMBER_EXP; 3723 break; 3724 } 3725 3726 if (cc == '+' || cc == '-') { 3727 /* 3728 * ERROR: expect sign as part of exponent only. 3729 */ 3730 return (NULL); 3731 } 3732 /* FALLTHRU */ 3733 case DTRACE_JSON_NUMBER_EXP: 3734 if (isdigit(cc) || cc == '+' || cc == '-') { 3735 *dd++ = cc; 3736 break; 3737 } 3738 3739 *dd = '\0'; 3740 dd = dest; /* reset string buffer */ 3741 if (found_key) { 3742 if (nelems > 1) { 3743 /* 3744 * ERROR: We expected an object, not 3745 * this number. 3746 */ 3747 return (NULL); 3748 } 3749 return (dest); 3750 } 3751 3752 cur--; 3753 state = DTRACE_JSON_COMMA; 3754 break; 3755 case DTRACE_JSON_VALUE: 3756 if (isspace(cc)) 3757 break; 3758 3759 if (cc == '{' || cc == '[') { 3760 if (nelems > 1 && found_key) { 3761 in_array = cc == '[' ? B_TRUE : B_FALSE; 3762 /* 3763 * If our element selector directs us 3764 * to descend into this nested object, 3765 * then move to the next selector 3766 * element in the list and restart the 3767 * state machine. 3768 */ 3769 while (*elem != '\0') 3770 elem++; 3771 elem++; /* skip the inter-element NUL */ 3772 nelems--; 3773 dd = dest; 3774 if (in_array) { 3775 state = DTRACE_JSON_VALUE; 3776 array_pos = 0; 3777 array_elem = dtrace_strtoll( 3778 elem, 10, size); 3779 found_key = array_elem == 0 ? 3780 B_TRUE : B_FALSE; 3781 } else { 3782 found_key = B_FALSE; 3783 state = DTRACE_JSON_OBJECT; 3784 } 3785 break; 3786 } 3787 3788 /* 3789 * Otherwise, we wish to either skip this 3790 * nested object or return it in full. 3791 */ 3792 if (cc == '[') 3793 brackets = 1; 3794 else 3795 braces = 1; 3796 *dd++ = cc; 3797 state = DTRACE_JSON_COLLECT_OBJECT; 3798 break; 3799 } 3800 3801 if (cc == '"') { 3802 state = DTRACE_JSON_STRING; 3803 break; 3804 } 3805 3806 if (islower(cc)) { 3807 /* 3808 * Here we deal with true, false and null. 3809 */ 3810 *dd++ = cc; 3811 state = DTRACE_JSON_IDENTIFIER; 3812 break; 3813 } 3814 3815 if (cc == '-' || isdigit(cc)) { 3816 *dd++ = cc; 3817 state = DTRACE_JSON_NUMBER; 3818 break; 3819 } 3820 3821 /* 3822 * ERROR: unexpected character at start of value. 3823 */ 3824 return (NULL); 3825 case DTRACE_JSON_COLLECT_OBJECT: 3826 if (cc == '\0') 3827 /* 3828 * ERROR: unexpected end of input. 3829 */ 3830 return (NULL); 3831 3832 *dd++ = cc; 3833 if (cc == '"') { 3834 collect_object = B_TRUE; 3835 state = DTRACE_JSON_STRING; 3836 break; 3837 } 3838 3839 if (cc == ']') { 3840 if (brackets-- == 0) { 3841 /* 3842 * ERROR: unbalanced brackets. 3843 */ 3844 return (NULL); 3845 } 3846 } else if (cc == '}') { 3847 if (braces-- == 0) { 3848 /* 3849 * ERROR: unbalanced braces. 3850 */ 3851 return (NULL); 3852 } 3853 } else if (cc == '{') { 3854 braces++; 3855 } else if (cc == '[') { 3856 brackets++; 3857 } 3858 3859 if (brackets == 0 && braces == 0) { 3860 if (found_key) { 3861 *dd = '\0'; 3862 return (dest); 3863 } 3864 dd = dest; /* reset string buffer */ 3865 state = DTRACE_JSON_COMMA; 3866 } 3867 break; 3868 } 3869 } 3870 return (NULL); 3871 } 3872 3873 /* 3874 * Emulate the execution of DTrace ID subroutines invoked by the call opcode. 3875 * Notice that we don't bother validating the proper number of arguments or 3876 * their types in the tuple stack. This isn't needed because all argument 3877 * interpretation is safe because of our load safety -- the worst that can 3878 * happen is that a bogus program can obtain bogus results. 3879 */ 3880 static void 3881 dtrace_dif_subr(uint_t subr, uint_t rd, uint64_t *regs, 3882 dtrace_key_t *tupregs, int nargs, 3883 dtrace_mstate_t *mstate, dtrace_state_t *state) 3884 { 3885 volatile uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags; 3886 volatile uintptr_t *illval = &cpu_core[CPU->cpu_id].cpuc_dtrace_illval; 3887 dtrace_vstate_t *vstate = &state->dts_vstate; 3888 3889 union { 3890 mutex_impl_t mi; 3891 uint64_t mx; 3892 } m; 3893 3894 union { 3895 krwlock_t ri; 3896 uintptr_t rw; 3897 } r; 3898 3899 switch (subr) { 3900 case DIF_SUBR_RAND: 3901 regs[rd] = (dtrace_gethrtime() * 2416 + 374441) % 1771875; 3902 break; 3903 3904 case DIF_SUBR_MUTEX_OWNED: 3905 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t), 3906 mstate, vstate)) { 3907 regs[rd] = NULL; 3908 break; 3909 } 3910 3911 m.mx = dtrace_load64(tupregs[0].dttk_value); 3912 if (MUTEX_TYPE_ADAPTIVE(&m.mi)) 3913 regs[rd] = MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER; 3914 else 3915 regs[rd] = LOCK_HELD(&m.mi.m_spin.m_spinlock); 3916 break; 3917 3918 case DIF_SUBR_MUTEX_OWNER: 3919 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t), 3920 mstate, vstate)) { 3921 regs[rd] = NULL; 3922 break; 3923 } 3924 3925 m.mx = dtrace_load64(tupregs[0].dttk_value); 3926 if (MUTEX_TYPE_ADAPTIVE(&m.mi) && 3927 MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER) 3928 regs[rd] = (uintptr_t)MUTEX_OWNER(&m.mi); 3929 else 3930 regs[rd] = 0; 3931 break; 3932 3933 case DIF_SUBR_MUTEX_TYPE_ADAPTIVE: 3934 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t), 3935 mstate, vstate)) { 3936 regs[rd] = NULL; 3937 break; 3938 } 3939 3940 m.mx = dtrace_load64(tupregs[0].dttk_value); 3941 regs[rd] = MUTEX_TYPE_ADAPTIVE(&m.mi); 3942 break; 3943 3944 case DIF_SUBR_MUTEX_TYPE_SPIN: 3945 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t), 3946 mstate, vstate)) { 3947 regs[rd] = NULL; 3948 break; 3949 } 3950 3951 m.mx = dtrace_load64(tupregs[0].dttk_value); 3952 regs[rd] = MUTEX_TYPE_SPIN(&m.mi); 3953 break; 3954 3955 case DIF_SUBR_RW_READ_HELD: { 3956 uintptr_t tmp; 3957 3958 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t), 3959 mstate, vstate)) { 3960 regs[rd] = NULL; 3961 break; 3962 } 3963 3964 r.rw = dtrace_loadptr(tupregs[0].dttk_value); 3965 regs[rd] = _RW_READ_HELD(&r.ri, tmp); 3966 break; 3967 } 3968 3969 case DIF_SUBR_RW_WRITE_HELD: 3970 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t), 3971 mstate, vstate)) { 3972 regs[rd] = NULL; 3973 break; 3974 } 3975 3976 r.rw = dtrace_loadptr(tupregs[0].dttk_value); 3977 regs[rd] = _RW_WRITE_HELD(&r.ri); 3978 break; 3979 3980 case DIF_SUBR_RW_ISWRITER: 3981 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t), 3982 mstate, vstate)) { 3983 regs[rd] = NULL; 3984 break; 3985 } 3986 3987 r.rw = dtrace_loadptr(tupregs[0].dttk_value); 3988 regs[rd] = _RW_ISWRITER(&r.ri); 3989 break; 3990 3991 case DIF_SUBR_BCOPY: { 3992 /* 3993 * We need to be sure that the destination is in the scratch 3994 * region -- no other region is allowed. 3995 */ 3996 uintptr_t src = tupregs[0].dttk_value; 3997 uintptr_t dest = tupregs[1].dttk_value; 3998 size_t size = tupregs[2].dttk_value; 3999 4000 if (!dtrace_inscratch(dest, size, mstate)) { 4001 *flags |= CPU_DTRACE_BADADDR; 4002 *illval = regs[rd]; 4003 break; 4004 } 4005 4006 if (!dtrace_canload(src, size, mstate, vstate)) { 4007 regs[rd] = NULL; 4008 break; 4009 } 4010 4011 dtrace_bcopy((void *)src, (void *)dest, size); 4012 break; 4013 } 4014 4015 case DIF_SUBR_ALLOCA: 4016 case DIF_SUBR_COPYIN: { 4017 uintptr_t dest = P2ROUNDUP(mstate->dtms_scratch_ptr, 8); 4018 uint64_t size = 4019 tupregs[subr == DIF_SUBR_ALLOCA ? 0 : 1].dttk_value; 4020 size_t scratch_size = (dest - mstate->dtms_scratch_ptr) + size; 4021 4022 /* 4023 * This action doesn't require any credential checks since 4024 * probes will not activate in user contexts to which the 4025 * enabling user does not have permissions. 4026 */ 4027 4028 /* 4029 * Rounding up the user allocation size could have overflowed 4030 * a large, bogus allocation (like -1ULL) to 0. 4031 */ 4032 if (scratch_size < size || 4033 !DTRACE_INSCRATCH(mstate, scratch_size)) { 4034 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4035 regs[rd] = NULL; 4036 break; 4037 } 4038 4039 if (subr == DIF_SUBR_COPYIN) { 4040 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4041 dtrace_copyin(tupregs[0].dttk_value, dest, size, flags); 4042 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4043 } 4044 4045 mstate->dtms_scratch_ptr += scratch_size; 4046 regs[rd] = dest; 4047 break; 4048 } 4049 4050 case DIF_SUBR_COPYINTO: { 4051 uint64_t size = tupregs[1].dttk_value; 4052 uintptr_t dest = tupregs[2].dttk_value; 4053 4054 /* 4055 * This action doesn't require any credential checks since 4056 * probes will not activate in user contexts to which the 4057 * enabling user does not have permissions. 4058 */ 4059 if (!dtrace_inscratch(dest, size, mstate)) { 4060 *flags |= CPU_DTRACE_BADADDR; 4061 *illval = regs[rd]; 4062 break; 4063 } 4064 4065 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4066 dtrace_copyin(tupregs[0].dttk_value, dest, size, flags); 4067 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4068 break; 4069 } 4070 4071 case DIF_SUBR_COPYINSTR: { 4072 uintptr_t dest = mstate->dtms_scratch_ptr; 4073 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 4074 4075 if (nargs > 1 && tupregs[1].dttk_value < size) 4076 size = tupregs[1].dttk_value + 1; 4077 4078 /* 4079 * This action doesn't require any credential checks since 4080 * probes will not activate in user contexts to which the 4081 * enabling user does not have permissions. 4082 */ 4083 if (!DTRACE_INSCRATCH(mstate, size)) { 4084 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4085 regs[rd] = NULL; 4086 break; 4087 } 4088 4089 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4090 dtrace_copyinstr(tupregs[0].dttk_value, dest, size, flags); 4091 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4092 4093 ((char *)dest)[size - 1] = '\0'; 4094 mstate->dtms_scratch_ptr += size; 4095 regs[rd] = dest; 4096 break; 4097 } 4098 4099 case DIF_SUBR_MSGSIZE: 4100 case DIF_SUBR_MSGDSIZE: { 4101 uintptr_t baddr = tupregs[0].dttk_value, daddr; 4102 uintptr_t wptr, rptr; 4103 size_t count = 0; 4104 int cont = 0; 4105 4106 while (baddr != NULL && !(*flags & CPU_DTRACE_FAULT)) { 4107 4108 if (!dtrace_canload(baddr, sizeof (mblk_t), mstate, 4109 vstate)) { 4110 regs[rd] = NULL; 4111 break; 4112 } 4113 4114 wptr = dtrace_loadptr(baddr + 4115 offsetof(mblk_t, b_wptr)); 4116 4117 rptr = dtrace_loadptr(baddr + 4118 offsetof(mblk_t, b_rptr)); 4119 4120 if (wptr < rptr) { 4121 *flags |= CPU_DTRACE_BADADDR; 4122 *illval = tupregs[0].dttk_value; 4123 break; 4124 } 4125 4126 daddr = dtrace_loadptr(baddr + 4127 offsetof(mblk_t, b_datap)); 4128 4129 baddr = dtrace_loadptr(baddr + 4130 offsetof(mblk_t, b_cont)); 4131 4132 /* 4133 * We want to prevent against denial-of-service here, 4134 * so we're only going to search the list for 4135 * dtrace_msgdsize_max mblks. 4136 */ 4137 if (cont++ > dtrace_msgdsize_max) { 4138 *flags |= CPU_DTRACE_ILLOP; 4139 break; 4140 } 4141 4142 if (subr == DIF_SUBR_MSGDSIZE) { 4143 if (dtrace_load8(daddr + 4144 offsetof(dblk_t, db_type)) != M_DATA) 4145 continue; 4146 } 4147 4148 count += wptr - rptr; 4149 } 4150 4151 if (!(*flags & CPU_DTRACE_FAULT)) 4152 regs[rd] = count; 4153 4154 break; 4155 } 4156 4157 case DIF_SUBR_PROGENYOF: { 4158 pid_t pid = tupregs[0].dttk_value; 4159 proc_t *p; 4160 int rval = 0; 4161 4162 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4163 4164 for (p = curthread->t_procp; p != NULL; p = p->p_parent) { 4165 if (p->p_pidp->pid_id == pid) { 4166 rval = 1; 4167 break; 4168 } 4169 } 4170 4171 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4172 4173 regs[rd] = rval; 4174 break; 4175 } 4176 4177 case DIF_SUBR_SPECULATION: 4178 regs[rd] = dtrace_speculation(state); 4179 break; 4180 4181 case DIF_SUBR_COPYOUT: { 4182 uintptr_t kaddr = tupregs[0].dttk_value; 4183 uintptr_t uaddr = tupregs[1].dttk_value; 4184 uint64_t size = tupregs[2].dttk_value; 4185 4186 if (!dtrace_destructive_disallow && 4187 dtrace_priv_proc_control(state, mstate) && 4188 !dtrace_istoxic(kaddr, size) && 4189 dtrace_canload(kaddr, size, mstate, vstate)) { 4190 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4191 dtrace_copyout(kaddr, uaddr, size, flags); 4192 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4193 } 4194 break; 4195 } 4196 4197 case DIF_SUBR_COPYOUTSTR: { 4198 uintptr_t kaddr = tupregs[0].dttk_value; 4199 uintptr_t uaddr = tupregs[1].dttk_value; 4200 uint64_t size = tupregs[2].dttk_value; 4201 4202 if (!dtrace_destructive_disallow && 4203 dtrace_priv_proc_control(state, mstate) && 4204 !dtrace_istoxic(kaddr, size) && 4205 dtrace_strcanload(kaddr, size, mstate, vstate)) { 4206 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4207 dtrace_copyoutstr(kaddr, uaddr, size, flags); 4208 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4209 } 4210 break; 4211 } 4212 4213 case DIF_SUBR_STRLEN: { 4214 size_t sz; 4215 uintptr_t addr = (uintptr_t)tupregs[0].dttk_value; 4216 sz = dtrace_strlen((char *)addr, 4217 state->dts_options[DTRACEOPT_STRSIZE]); 4218 4219 if (!dtrace_canload(addr, sz + 1, mstate, vstate)) { 4220 regs[rd] = NULL; 4221 break; 4222 } 4223 4224 regs[rd] = sz; 4225 4226 break; 4227 } 4228 4229 case DIF_SUBR_STRCHR: 4230 case DIF_SUBR_STRRCHR: { 4231 /* 4232 * We're going to iterate over the string looking for the 4233 * specified character. We will iterate until we have reached 4234 * the string length or we have found the character. If this 4235 * is DIF_SUBR_STRRCHR, we will look for the last occurrence 4236 * of the specified character instead of the first. 4237 */ 4238 uintptr_t saddr = tupregs[0].dttk_value; 4239 uintptr_t addr = tupregs[0].dttk_value; 4240 uintptr_t limit = addr + state->dts_options[DTRACEOPT_STRSIZE]; 4241 char c, target = (char)tupregs[1].dttk_value; 4242 4243 for (regs[rd] = NULL; addr < limit; addr++) { 4244 if ((c = dtrace_load8(addr)) == target) { 4245 regs[rd] = addr; 4246 4247 if (subr == DIF_SUBR_STRCHR) 4248 break; 4249 } 4250 4251 if (c == '\0') 4252 break; 4253 } 4254 4255 if (!dtrace_canload(saddr, addr - saddr, mstate, vstate)) { 4256 regs[rd] = NULL; 4257 break; 4258 } 4259 4260 break; 4261 } 4262 4263 case DIF_SUBR_STRSTR: 4264 case DIF_SUBR_INDEX: 4265 case DIF_SUBR_RINDEX: { 4266 /* 4267 * We're going to iterate over the string looking for the 4268 * specified string. We will iterate until we have reached 4269 * the string length or we have found the string. (Yes, this 4270 * is done in the most naive way possible -- but considering 4271 * that the string we're searching for is likely to be 4272 * relatively short, the complexity of Rabin-Karp or similar 4273 * hardly seems merited.) 4274 */ 4275 char *addr = (char *)(uintptr_t)tupregs[0].dttk_value; 4276 char *substr = (char *)(uintptr_t)tupregs[1].dttk_value; 4277 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 4278 size_t len = dtrace_strlen(addr, size); 4279 size_t sublen = dtrace_strlen(substr, size); 4280 char *limit = addr + len, *orig = addr; 4281 int notfound = subr == DIF_SUBR_STRSTR ? 0 : -1; 4282 int inc = 1; 4283 4284 regs[rd] = notfound; 4285 4286 if (!dtrace_canload((uintptr_t)addr, len + 1, mstate, vstate)) { 4287 regs[rd] = NULL; 4288 break; 4289 } 4290 4291 if (!dtrace_canload((uintptr_t)substr, sublen + 1, mstate, 4292 vstate)) { 4293 regs[rd] = NULL; 4294 break; 4295 } 4296 4297 /* 4298 * strstr() and index()/rindex() have similar semantics if 4299 * both strings are the empty string: strstr() returns a 4300 * pointer to the (empty) string, and index() and rindex() 4301 * both return index 0 (regardless of any position argument). 4302 */ 4303 if (sublen == 0 && len == 0) { 4304 if (subr == DIF_SUBR_STRSTR) 4305 regs[rd] = (uintptr_t)addr; 4306 else 4307 regs[rd] = 0; 4308 break; 4309 } 4310 4311 if (subr != DIF_SUBR_STRSTR) { 4312 if (subr == DIF_SUBR_RINDEX) { 4313 limit = orig - 1; 4314 addr += len; 4315 inc = -1; 4316 } 4317 4318 /* 4319 * Both index() and rindex() take an optional position 4320 * argument that denotes the starting position. 4321 */ 4322 if (nargs == 3) { 4323 int64_t pos = (int64_t)tupregs[2].dttk_value; 4324 4325 /* 4326 * If the position argument to index() is 4327 * negative, Perl implicitly clamps it at 4328 * zero. This semantic is a little surprising 4329 * given the special meaning of negative 4330 * positions to similar Perl functions like 4331 * substr(), but it appears to reflect a 4332 * notion that index() can start from a 4333 * negative index and increment its way up to 4334 * the string. Given this notion, Perl's 4335 * rindex() is at least self-consistent in 4336 * that it implicitly clamps positions greater 4337 * than the string length to be the string 4338 * length. Where Perl completely loses 4339 * coherence, however, is when the specified 4340 * substring is the empty string (""). In 4341 * this case, even if the position is 4342 * negative, rindex() returns 0 -- and even if 4343 * the position is greater than the length, 4344 * index() returns the string length. These 4345 * semantics violate the notion that index() 4346 * should never return a value less than the 4347 * specified position and that rindex() should 4348 * never return a value greater than the 4349 * specified position. (One assumes that 4350 * these semantics are artifacts of Perl's 4351 * implementation and not the results of 4352 * deliberate design -- it beggars belief that 4353 * even Larry Wall could desire such oddness.) 4354 * While in the abstract one would wish for 4355 * consistent position semantics across 4356 * substr(), index() and rindex() -- or at the 4357 * very least self-consistent position 4358 * semantics for index() and rindex() -- we 4359 * instead opt to keep with the extant Perl 4360 * semantics, in all their broken glory. (Do 4361 * we have more desire to maintain Perl's 4362 * semantics than Perl does? Probably.) 4363 */ 4364 if (subr == DIF_SUBR_RINDEX) { 4365 if (pos < 0) { 4366 if (sublen == 0) 4367 regs[rd] = 0; 4368 break; 4369 } 4370 4371 if (pos > len) 4372 pos = len; 4373 } else { 4374 if (pos < 0) 4375 pos = 0; 4376 4377 if (pos >= len) { 4378 if (sublen == 0) 4379 regs[rd] = len; 4380 break; 4381 } 4382 } 4383 4384 addr = orig + pos; 4385 } 4386 } 4387 4388 for (regs[rd] = notfound; addr != limit; addr += inc) { 4389 if (dtrace_strncmp(addr, substr, sublen) == 0) { 4390 if (subr != DIF_SUBR_STRSTR) { 4391 /* 4392 * As D index() and rindex() are 4393 * modeled on Perl (and not on awk), 4394 * we return a zero-based (and not a 4395 * one-based) index. (For you Perl 4396 * weenies: no, we're not going to add 4397 * $[ -- and shouldn't you be at a con 4398 * or something?) 4399 */ 4400 regs[rd] = (uintptr_t)(addr - orig); 4401 break; 4402 } 4403 4404 ASSERT(subr == DIF_SUBR_STRSTR); 4405 regs[rd] = (uintptr_t)addr; 4406 break; 4407 } 4408 } 4409 4410 break; 4411 } 4412 4413 case DIF_SUBR_STRTOK: { 4414 uintptr_t addr = tupregs[0].dttk_value; 4415 uintptr_t tokaddr = tupregs[1].dttk_value; 4416 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 4417 uintptr_t limit, toklimit = tokaddr + size; 4418 uint8_t c, tokmap[32]; /* 256 / 8 */ 4419 char *dest = (char *)mstate->dtms_scratch_ptr; 4420 int i; 4421 4422 /* 4423 * Check both the token buffer and (later) the input buffer, 4424 * since both could be non-scratch addresses. 4425 */ 4426 if (!dtrace_strcanload(tokaddr, size, mstate, vstate)) { 4427 regs[rd] = NULL; 4428 break; 4429 } 4430 4431 if (!DTRACE_INSCRATCH(mstate, size)) { 4432 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4433 regs[rd] = NULL; 4434 break; 4435 } 4436 4437 if (addr == NULL) { 4438 /* 4439 * If the address specified is NULL, we use our saved 4440 * strtok pointer from the mstate. Note that this 4441 * means that the saved strtok pointer is _only_ 4442 * valid within multiple enablings of the same probe -- 4443 * it behaves like an implicit clause-local variable. 4444 */ 4445 addr = mstate->dtms_strtok; 4446 } else { 4447 /* 4448 * If the user-specified address is non-NULL we must 4449 * access check it. This is the only time we have 4450 * a chance to do so, since this address may reside 4451 * in the string table of this clause-- future calls 4452 * (when we fetch addr from mstate->dtms_strtok) 4453 * would fail this access check. 4454 */ 4455 if (!dtrace_strcanload(addr, size, mstate, vstate)) { 4456 regs[rd] = NULL; 4457 break; 4458 } 4459 } 4460 4461 /* 4462 * First, zero the token map, and then process the token 4463 * string -- setting a bit in the map for every character 4464 * found in the token string. 4465 */ 4466 for (i = 0; i < sizeof (tokmap); i++) 4467 tokmap[i] = 0; 4468 4469 for (; tokaddr < toklimit; tokaddr++) { 4470 if ((c = dtrace_load8(tokaddr)) == '\0') 4471 break; 4472 4473 ASSERT((c >> 3) < sizeof (tokmap)); 4474 tokmap[c >> 3] |= (1 << (c & 0x7)); 4475 } 4476 4477 for (limit = addr + size; addr < limit; addr++) { 4478 /* 4479 * We're looking for a character that is _not_ contained 4480 * in the token string. 4481 */ 4482 if ((c = dtrace_load8(addr)) == '\0') 4483 break; 4484 4485 if (!(tokmap[c >> 3] & (1 << (c & 0x7)))) 4486 break; 4487 } 4488 4489 if (c == '\0') { 4490 /* 4491 * We reached the end of the string without finding 4492 * any character that was not in the token string. 4493 * We return NULL in this case, and we set the saved 4494 * address to NULL as well. 4495 */ 4496 regs[rd] = NULL; 4497 mstate->dtms_strtok = NULL; 4498 break; 4499 } 4500 4501 /* 4502 * From here on, we're copying into the destination string. 4503 */ 4504 for (i = 0; addr < limit && i < size - 1; addr++) { 4505 if ((c = dtrace_load8(addr)) == '\0') 4506 break; 4507 4508 if (tokmap[c >> 3] & (1 << (c & 0x7))) 4509 break; 4510 4511 ASSERT(i < size); 4512 dest[i++] = c; 4513 } 4514 4515 ASSERT(i < size); 4516 dest[i] = '\0'; 4517 regs[rd] = (uintptr_t)dest; 4518 mstate->dtms_scratch_ptr += size; 4519 mstate->dtms_strtok = addr; 4520 break; 4521 } 4522 4523 case DIF_SUBR_SUBSTR: { 4524 uintptr_t s = tupregs[0].dttk_value; 4525 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 4526 char *d = (char *)mstate->dtms_scratch_ptr; 4527 int64_t index = (int64_t)tupregs[1].dttk_value; 4528 int64_t remaining = (int64_t)tupregs[2].dttk_value; 4529 size_t len = dtrace_strlen((char *)s, size); 4530 int64_t i; 4531 4532 if (!dtrace_canload(s, len + 1, mstate, vstate)) { 4533 regs[rd] = NULL; 4534 break; 4535 } 4536 4537 if (!DTRACE_INSCRATCH(mstate, size)) { 4538 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4539 regs[rd] = NULL; 4540 break; 4541 } 4542 4543 if (nargs <= 2) 4544 remaining = (int64_t)size; 4545 4546 if (index < 0) { 4547 index += len; 4548 4549 if (index < 0 && index + remaining > 0) { 4550 remaining += index; 4551 index = 0; 4552 } 4553 } 4554 4555 if (index >= len || index < 0) { 4556 remaining = 0; 4557 } else if (remaining < 0) { 4558 remaining += len - index; 4559 } else if (index + remaining > size) { 4560 remaining = size - index; 4561 } 4562 4563 for (i = 0; i < remaining; i++) { 4564 if ((d[i] = dtrace_load8(s + index + i)) == '\0') 4565 break; 4566 } 4567 4568 d[i] = '\0'; 4569 4570 mstate->dtms_scratch_ptr += size; 4571 regs[rd] = (uintptr_t)d; 4572 break; 4573 } 4574 4575 case DIF_SUBR_JSON: { 4576 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 4577 uintptr_t json = tupregs[0].dttk_value; 4578 size_t jsonlen = dtrace_strlen((char *)json, size); 4579 uintptr_t elem = tupregs[1].dttk_value; 4580 size_t elemlen = dtrace_strlen((char *)elem, size); 4581 4582 char *dest = (char *)mstate->dtms_scratch_ptr; 4583 char *elemlist = (char *)mstate->dtms_scratch_ptr + jsonlen + 1; 4584 char *ee = elemlist; 4585 int nelems = 1; 4586 uintptr_t cur; 4587 4588 if (!dtrace_canload(json, jsonlen + 1, mstate, vstate) || 4589 !dtrace_canload(elem, elemlen + 1, mstate, vstate)) { 4590 regs[rd] = NULL; 4591 break; 4592 } 4593 4594 if (!DTRACE_INSCRATCH(mstate, jsonlen + 1 + elemlen + 1)) { 4595 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4596 regs[rd] = NULL; 4597 break; 4598 } 4599 4600 /* 4601 * Read the element selector and split it up into a packed list 4602 * of strings. 4603 */ 4604 for (cur = elem; cur < elem + elemlen; cur++) { 4605 char cc = dtrace_load8(cur); 4606 4607 if (cur == elem && cc == '[') { 4608 /* 4609 * If the first element selector key is 4610 * actually an array index then ignore the 4611 * bracket. 4612 */ 4613 continue; 4614 } 4615 4616 if (cc == ']') 4617 continue; 4618 4619 if (cc == '.' || cc == '[') { 4620 nelems++; 4621 cc = '\0'; 4622 } 4623 4624 *ee++ = cc; 4625 } 4626 *ee++ = '\0'; 4627 4628 if ((regs[rd] = (uintptr_t)dtrace_json(size, json, elemlist, 4629 nelems, dest)) != NULL) 4630 mstate->dtms_scratch_ptr += jsonlen + 1; 4631 break; 4632 } 4633 4634 case DIF_SUBR_TOUPPER: 4635 case DIF_SUBR_TOLOWER: { 4636 uintptr_t s = tupregs[0].dttk_value; 4637 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 4638 char *dest = (char *)mstate->dtms_scratch_ptr, c; 4639 size_t len = dtrace_strlen((char *)s, size); 4640 char lower, upper, convert; 4641 int64_t i; 4642 4643 if (subr == DIF_SUBR_TOUPPER) { 4644 lower = 'a'; 4645 upper = 'z'; 4646 convert = 'A'; 4647 } else { 4648 lower = 'A'; 4649 upper = 'Z'; 4650 convert = 'a'; 4651 } 4652 4653 if (!dtrace_canload(s, len + 1, mstate, vstate)) { 4654 regs[rd] = NULL; 4655 break; 4656 } 4657 4658 if (!DTRACE_INSCRATCH(mstate, size)) { 4659 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4660 regs[rd] = NULL; 4661 break; 4662 } 4663 4664 for (i = 0; i < size - 1; i++) { 4665 if ((c = dtrace_load8(s + i)) == '\0') 4666 break; 4667 4668 if (c >= lower && c <= upper) 4669 c = convert + (c - lower); 4670 4671 dest[i] = c; 4672 } 4673 4674 ASSERT(i < size); 4675 dest[i] = '\0'; 4676 regs[rd] = (uintptr_t)dest; 4677 mstate->dtms_scratch_ptr += size; 4678 break; 4679 } 4680 4681 case DIF_SUBR_GETMAJOR: 4682 #ifdef _LP64 4683 regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR64) & MAXMAJ64; 4684 #else 4685 regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR) & MAXMAJ; 4686 #endif 4687 break; 4688 4689 case DIF_SUBR_GETMINOR: 4690 #ifdef _LP64 4691 regs[rd] = tupregs[0].dttk_value & MAXMIN64; 4692 #else 4693 regs[rd] = tupregs[0].dttk_value & MAXMIN; 4694 #endif 4695 break; 4696 4697 case DIF_SUBR_DDI_PATHNAME: { 4698 /* 4699 * This one is a galactic mess. We are going to roughly 4700 * emulate ddi_pathname(), but it's made more complicated 4701 * by the fact that we (a) want to include the minor name and 4702 * (b) must proceed iteratively instead of recursively. 4703 */ 4704 uintptr_t dest = mstate->dtms_scratch_ptr; 4705 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 4706 char *start = (char *)dest, *end = start + size - 1; 4707 uintptr_t daddr = tupregs[0].dttk_value; 4708 int64_t minor = (int64_t)tupregs[1].dttk_value; 4709 char *s; 4710 int i, len, depth = 0; 4711 4712 /* 4713 * Due to all the pointer jumping we do and context we must 4714 * rely upon, we just mandate that the user must have kernel 4715 * read privileges to use this routine. 4716 */ 4717 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) == 0) { 4718 *flags |= CPU_DTRACE_KPRIV; 4719 *illval = daddr; 4720 regs[rd] = NULL; 4721 } 4722 4723 if (!DTRACE_INSCRATCH(mstate, size)) { 4724 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4725 regs[rd] = NULL; 4726 break; 4727 } 4728 4729 *end = '\0'; 4730 4731 /* 4732 * We want to have a name for the minor. In order to do this, 4733 * we need to walk the minor list from the devinfo. We want 4734 * to be sure that we don't infinitely walk a circular list, 4735 * so we check for circularity by sending a scout pointer 4736 * ahead two elements for every element that we iterate over; 4737 * if the list is circular, these will ultimately point to the 4738 * same element. You may recognize this little trick as the 4739 * answer to a stupid interview question -- one that always 4740 * seems to be asked by those who had to have it laboriously 4741 * explained to them, and who can't even concisely describe 4742 * the conditions under which one would be forced to resort to 4743 * this technique. Needless to say, those conditions are 4744 * found here -- and probably only here. Is this the only use 4745 * of this infamous trick in shipping, production code? If it 4746 * isn't, it probably should be... 4747 */ 4748 if (minor != -1) { 4749 uintptr_t maddr = dtrace_loadptr(daddr + 4750 offsetof(struct dev_info, devi_minor)); 4751 4752 uintptr_t next = offsetof(struct ddi_minor_data, next); 4753 uintptr_t name = offsetof(struct ddi_minor_data, 4754 d_minor) + offsetof(struct ddi_minor, name); 4755 uintptr_t dev = offsetof(struct ddi_minor_data, 4756 d_minor) + offsetof(struct ddi_minor, dev); 4757 uintptr_t scout; 4758 4759 if (maddr != NULL) 4760 scout = dtrace_loadptr(maddr + next); 4761 4762 while (maddr != NULL && !(*flags & CPU_DTRACE_FAULT)) { 4763 uint64_t m; 4764 #ifdef _LP64 4765 m = dtrace_load64(maddr + dev) & MAXMIN64; 4766 #else 4767 m = dtrace_load32(maddr + dev) & MAXMIN; 4768 #endif 4769 if (m != minor) { 4770 maddr = dtrace_loadptr(maddr + next); 4771 4772 if (scout == NULL) 4773 continue; 4774 4775 scout = dtrace_loadptr(scout + next); 4776 4777 if (scout == NULL) 4778 continue; 4779 4780 scout = dtrace_loadptr(scout + next); 4781 4782 if (scout == NULL) 4783 continue; 4784 4785 if (scout == maddr) { 4786 *flags |= CPU_DTRACE_ILLOP; 4787 break; 4788 } 4789 4790 continue; 4791 } 4792 4793 /* 4794 * We have the minor data. Now we need to 4795 * copy the minor's name into the end of the 4796 * pathname. 4797 */ 4798 s = (char *)dtrace_loadptr(maddr + name); 4799 len = dtrace_strlen(s, size); 4800 4801 if (*flags & CPU_DTRACE_FAULT) 4802 break; 4803 4804 if (len != 0) { 4805 if ((end -= (len + 1)) < start) 4806 break; 4807 4808 *end = ':'; 4809 } 4810 4811 for (i = 1; i <= len; i++) 4812 end[i] = dtrace_load8((uintptr_t)s++); 4813 break; 4814 } 4815 } 4816 4817 while (daddr != NULL && !(*flags & CPU_DTRACE_FAULT)) { 4818 ddi_node_state_t devi_state; 4819 4820 devi_state = dtrace_load32(daddr + 4821 offsetof(struct dev_info, devi_node_state)); 4822 4823 if (*flags & CPU_DTRACE_FAULT) 4824 break; 4825 4826 if (devi_state >= DS_INITIALIZED) { 4827 s = (char *)dtrace_loadptr(daddr + 4828 offsetof(struct dev_info, devi_addr)); 4829 len = dtrace_strlen(s, size); 4830 4831 if (*flags & CPU_DTRACE_FAULT) 4832 break; 4833 4834 if (len != 0) { 4835 if ((end -= (len + 1)) < start) 4836 break; 4837 4838 *end = '@'; 4839 } 4840 4841 for (i = 1; i <= len; i++) 4842 end[i] = dtrace_load8((uintptr_t)s++); 4843 } 4844 4845 /* 4846 * Now for the node name... 4847 */ 4848 s = (char *)dtrace_loadptr(daddr + 4849 offsetof(struct dev_info, devi_node_name)); 4850 4851 daddr = dtrace_loadptr(daddr + 4852 offsetof(struct dev_info, devi_parent)); 4853 4854 /* 4855 * If our parent is NULL (that is, if we're the root 4856 * node), we're going to use the special path 4857 * "devices". 4858 */ 4859 if (daddr == NULL) 4860 s = "devices"; 4861 4862 len = dtrace_strlen(s, size); 4863 if (*flags & CPU_DTRACE_FAULT) 4864 break; 4865 4866 if ((end -= (len + 1)) < start) 4867 break; 4868 4869 for (i = 1; i <= len; i++) 4870 end[i] = dtrace_load8((uintptr_t)s++); 4871 *end = '/'; 4872 4873 if (depth++ > dtrace_devdepth_max) { 4874 *flags |= CPU_DTRACE_ILLOP; 4875 break; 4876 } 4877 } 4878 4879 if (end < start) 4880 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4881 4882 if (daddr == NULL) { 4883 regs[rd] = (uintptr_t)end; 4884 mstate->dtms_scratch_ptr += size; 4885 } 4886 4887 break; 4888 } 4889 4890 case DIF_SUBR_STRJOIN: { 4891 char *d = (char *)mstate->dtms_scratch_ptr; 4892 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 4893 uintptr_t s1 = tupregs[0].dttk_value; 4894 uintptr_t s2 = tupregs[1].dttk_value; 4895 int i = 0; 4896 4897 if (!dtrace_strcanload(s1, size, mstate, vstate) || 4898 !dtrace_strcanload(s2, size, mstate, vstate)) { 4899 regs[rd] = NULL; 4900 break; 4901 } 4902 4903 if (!DTRACE_INSCRATCH(mstate, size)) { 4904 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4905 regs[rd] = NULL; 4906 break; 4907 } 4908 4909 for (;;) { 4910 if (i >= size) { 4911 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4912 regs[rd] = NULL; 4913 break; 4914 } 4915 4916 if ((d[i++] = dtrace_load8(s1++)) == '\0') { 4917 i--; 4918 break; 4919 } 4920 } 4921 4922 for (;;) { 4923 if (i >= size) { 4924 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4925 regs[rd] = NULL; 4926 break; 4927 } 4928 4929 if ((d[i++] = dtrace_load8(s2++)) == '\0') 4930 break; 4931 } 4932 4933 if (i < size) { 4934 mstate->dtms_scratch_ptr += i; 4935 regs[rd] = (uintptr_t)d; 4936 } 4937 4938 break; 4939 } 4940 4941 case DIF_SUBR_STRTOLL: { 4942 uintptr_t s = tupregs[0].dttk_value; 4943 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 4944 int base = 10; 4945 4946 if (nargs > 1) { 4947 if ((base = tupregs[1].dttk_value) <= 1 || 4948 base > ('z' - 'a' + 1) + ('9' - '0' + 1)) { 4949 *flags |= CPU_DTRACE_ILLOP; 4950 break; 4951 } 4952 } 4953 4954 if (!dtrace_strcanload(s, size, mstate, vstate)) { 4955 regs[rd] = INT64_MIN; 4956 break; 4957 } 4958 4959 regs[rd] = dtrace_strtoll((char *)s, base, size); 4960 break; 4961 } 4962 4963 case DIF_SUBR_LLTOSTR: { 4964 int64_t i = (int64_t)tupregs[0].dttk_value; 4965 uint64_t val, digit; 4966 uint64_t size = 65; /* enough room for 2^64 in binary */ 4967 char *end = (char *)mstate->dtms_scratch_ptr + size - 1; 4968 int base = 10; 4969 4970 if (nargs > 1) { 4971 if ((base = tupregs[1].dttk_value) <= 1 || 4972 base > ('z' - 'a' + 1) + ('9' - '0' + 1)) { 4973 *flags |= CPU_DTRACE_ILLOP; 4974 break; 4975 } 4976 } 4977 4978 val = (base == 10 && i < 0) ? i * -1 : i; 4979 4980 if (!DTRACE_INSCRATCH(mstate, size)) { 4981 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4982 regs[rd] = NULL; 4983 break; 4984 } 4985 4986 for (*end-- = '\0'; val; val /= base) { 4987 if ((digit = val % base) <= '9' - '0') { 4988 *end-- = '0' + digit; 4989 } else { 4990 *end-- = 'a' + (digit - ('9' - '0') - 1); 4991 } 4992 } 4993 4994 if (i == 0 && base == 16) 4995 *end-- = '0'; 4996 4997 if (base == 16) 4998 *end-- = 'x'; 4999 5000 if (i == 0 || base == 8 || base == 16) 5001 *end-- = '0'; 5002 5003 if (i < 0 && base == 10) 5004 *end-- = '-'; 5005 5006 regs[rd] = (uintptr_t)end + 1; 5007 mstate->dtms_scratch_ptr += size; 5008 break; 5009 } 5010 5011 case DIF_SUBR_HTONS: 5012 case DIF_SUBR_NTOHS: 5013 #ifdef _BIG_ENDIAN 5014 regs[rd] = (uint16_t)tupregs[0].dttk_value; 5015 #else 5016 regs[rd] = DT_BSWAP_16((uint16_t)tupregs[0].dttk_value); 5017 #endif 5018 break; 5019 5020 5021 case DIF_SUBR_HTONL: 5022 case DIF_SUBR_NTOHL: 5023 #ifdef _BIG_ENDIAN 5024 regs[rd] = (uint32_t)tupregs[0].dttk_value; 5025 #else 5026 regs[rd] = DT_BSWAP_32((uint32_t)tupregs[0].dttk_value); 5027 #endif 5028 break; 5029 5030 5031 case DIF_SUBR_HTONLL: 5032 case DIF_SUBR_NTOHLL: 5033 #ifdef _BIG_ENDIAN 5034 regs[rd] = (uint64_t)tupregs[0].dttk_value; 5035 #else 5036 regs[rd] = DT_BSWAP_64((uint64_t)tupregs[0].dttk_value); 5037 #endif 5038 break; 5039 5040 5041 case DIF_SUBR_DIRNAME: 5042 case DIF_SUBR_BASENAME: { 5043 char *dest = (char *)mstate->dtms_scratch_ptr; 5044 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 5045 uintptr_t src = tupregs[0].dttk_value; 5046 int i, j, len = dtrace_strlen((char *)src, size); 5047 int lastbase = -1, firstbase = -1, lastdir = -1; 5048 int start, end; 5049 5050 if (!dtrace_canload(src, len + 1, mstate, vstate)) { 5051 regs[rd] = NULL; 5052 break; 5053 } 5054 5055 if (!DTRACE_INSCRATCH(mstate, size)) { 5056 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5057 regs[rd] = NULL; 5058 break; 5059 } 5060 5061 /* 5062 * The basename and dirname for a zero-length string is 5063 * defined to be "." 5064 */ 5065 if (len == 0) { 5066 len = 1; 5067 src = (uintptr_t)"."; 5068 } 5069 5070 /* 5071 * Start from the back of the string, moving back toward the 5072 * front until we see a character that isn't a slash. That 5073 * character is the last character in the basename. 5074 */ 5075 for (i = len - 1; i >= 0; i--) { 5076 if (dtrace_load8(src + i) != '/') 5077 break; 5078 } 5079 5080 if (i >= 0) 5081 lastbase = i; 5082 5083 /* 5084 * Starting from the last character in the basename, move 5085 * towards the front until we find a slash. The character 5086 * that we processed immediately before that is the first 5087 * character in the basename. 5088 */ 5089 for (; i >= 0; i--) { 5090 if (dtrace_load8(src + i) == '/') 5091 break; 5092 } 5093 5094 if (i >= 0) 5095 firstbase = i + 1; 5096 5097 /* 5098 * Now keep going until we find a non-slash character. That 5099 * character is the last character in the dirname. 5100 */ 5101 for (; i >= 0; i--) { 5102 if (dtrace_load8(src + i) != '/') 5103 break; 5104 } 5105 5106 if (i >= 0) 5107 lastdir = i; 5108 5109 ASSERT(!(lastbase == -1 && firstbase != -1)); 5110 ASSERT(!(firstbase == -1 && lastdir != -1)); 5111 5112 if (lastbase == -1) { 5113 /* 5114 * We didn't find a non-slash character. We know that 5115 * the length is non-zero, so the whole string must be 5116 * slashes. In either the dirname or the basename 5117 * case, we return '/'. 5118 */ 5119 ASSERT(firstbase == -1); 5120 firstbase = lastbase = lastdir = 0; 5121 } 5122 5123 if (firstbase == -1) { 5124 /* 5125 * The entire string consists only of a basename 5126 * component. If we're looking for dirname, we need 5127 * to change our string to be just "."; if we're 5128 * looking for a basename, we'll just set the first 5129 * character of the basename to be 0. 5130 */ 5131 if (subr == DIF_SUBR_DIRNAME) { 5132 ASSERT(lastdir == -1); 5133 src = (uintptr_t)"."; 5134 lastdir = 0; 5135 } else { 5136 firstbase = 0; 5137 } 5138 } 5139 5140 if (subr == DIF_SUBR_DIRNAME) { 5141 if (lastdir == -1) { 5142 /* 5143 * We know that we have a slash in the name -- 5144 * or lastdir would be set to 0, above. And 5145 * because lastdir is -1, we know that this 5146 * slash must be the first character. (That 5147 * is, the full string must be of the form 5148 * "/basename".) In this case, the last 5149 * character of the directory name is 0. 5150 */ 5151 lastdir = 0; 5152 } 5153 5154 start = 0; 5155 end = lastdir; 5156 } else { 5157 ASSERT(subr == DIF_SUBR_BASENAME); 5158 ASSERT(firstbase != -1 && lastbase != -1); 5159 start = firstbase; 5160 end = lastbase; 5161 } 5162 5163 for (i = start, j = 0; i <= end && j < size - 1; i++, j++) 5164 dest[j] = dtrace_load8(src + i); 5165 5166 dest[j] = '\0'; 5167 regs[rd] = (uintptr_t)dest; 5168 mstate->dtms_scratch_ptr += size; 5169 break; 5170 } 5171 5172 case DIF_SUBR_GETF: { 5173 uintptr_t fd = tupregs[0].dttk_value; 5174 uf_info_t *finfo = &curthread->t_procp->p_user.u_finfo; 5175 file_t *fp; 5176 5177 if (!dtrace_priv_proc(state, mstate)) { 5178 regs[rd] = NULL; 5179 break; 5180 } 5181 5182 /* 5183 * This is safe because fi_nfiles only increases, and the 5184 * fi_list array is not freed when the array size doubles. 5185 * (See the comment in flist_grow() for details on the 5186 * management of the u_finfo structure.) 5187 */ 5188 fp = fd < finfo->fi_nfiles ? finfo->fi_list[fd].uf_file : NULL; 5189 5190 mstate->dtms_getf = fp; 5191 regs[rd] = (uintptr_t)fp; 5192 break; 5193 } 5194 5195 case DIF_SUBR_CLEANPATH: { 5196 char *dest = (char *)mstate->dtms_scratch_ptr, c; 5197 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 5198 uintptr_t src = tupregs[0].dttk_value; 5199 int i = 0, j = 0; 5200 zone_t *z; 5201 5202 if (!dtrace_strcanload(src, size, mstate, vstate)) { 5203 regs[rd] = NULL; 5204 break; 5205 } 5206 5207 if (!DTRACE_INSCRATCH(mstate, size)) { 5208 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5209 regs[rd] = NULL; 5210 break; 5211 } 5212 5213 /* 5214 * Move forward, loading each character. 5215 */ 5216 do { 5217 c = dtrace_load8(src + i++); 5218 next: 5219 if (j + 5 >= size) /* 5 = strlen("/..c\0") */ 5220 break; 5221 5222 if (c != '/') { 5223 dest[j++] = c; 5224 continue; 5225 } 5226 5227 c = dtrace_load8(src + i++); 5228 5229 if (c == '/') { 5230 /* 5231 * We have two slashes -- we can just advance 5232 * to the next character. 5233 */ 5234 goto next; 5235 } 5236 5237 if (c != '.') { 5238 /* 5239 * This is not "." and it's not ".." -- we can 5240 * just store the "/" and this character and 5241 * drive on. 5242 */ 5243 dest[j++] = '/'; 5244 dest[j++] = c; 5245 continue; 5246 } 5247 5248 c = dtrace_load8(src + i++); 5249 5250 if (c == '/') { 5251 /* 5252 * This is a "/./" component. We're not going 5253 * to store anything in the destination buffer; 5254 * we're just going to go to the next component. 5255 */ 5256 goto next; 5257 } 5258 5259 if (c != '.') { 5260 /* 5261 * This is not ".." -- we can just store the 5262 * "/." and this character and continue 5263 * processing. 5264 */ 5265 dest[j++] = '/'; 5266 dest[j++] = '.'; 5267 dest[j++] = c; 5268 continue; 5269 } 5270 5271 c = dtrace_load8(src + i++); 5272 5273 if (c != '/' && c != '\0') { 5274 /* 5275 * This is not ".." -- it's "..[mumble]". 5276 * We'll store the "/.." and this character 5277 * and continue processing. 5278 */ 5279 dest[j++] = '/'; 5280 dest[j++] = '.'; 5281 dest[j++] = '.'; 5282 dest[j++] = c; 5283 continue; 5284 } 5285 5286 /* 5287 * This is "/../" or "/..\0". We need to back up 5288 * our destination pointer until we find a "/". 5289 */ 5290 i--; 5291 while (j != 0 && dest[--j] != '/') 5292 continue; 5293 5294 if (c == '\0') 5295 dest[++j] = '/'; 5296 } while (c != '\0'); 5297 5298 dest[j] = '\0'; 5299 5300 if (mstate->dtms_getf != NULL && 5301 !(mstate->dtms_access & DTRACE_ACCESS_KERNEL) && 5302 (z = state->dts_cred.dcr_cred->cr_zone) != kcred->cr_zone) { 5303 /* 5304 * If we've done a getf() as a part of this ECB and we 5305 * don't have kernel access (and we're not in the global 5306 * zone), check if the path we cleaned up begins with 5307 * the zone's root path, and trim it off if so. Note 5308 * that this is an output cleanliness issue, not a 5309 * security issue: knowing one's zone root path does 5310 * not enable privilege escalation. 5311 */ 5312 if (strstr(dest, z->zone_rootpath) == dest) 5313 dest += strlen(z->zone_rootpath) - 1; 5314 } 5315 5316 regs[rd] = (uintptr_t)dest; 5317 mstate->dtms_scratch_ptr += size; 5318 break; 5319 } 5320 5321 case DIF_SUBR_INET_NTOA: 5322 case DIF_SUBR_INET_NTOA6: 5323 case DIF_SUBR_INET_NTOP: { 5324 size_t size; 5325 int af, argi, i; 5326 char *base, *end; 5327 5328 if (subr == DIF_SUBR_INET_NTOP) { 5329 af = (int)tupregs[0].dttk_value; 5330 argi = 1; 5331 } else { 5332 af = subr == DIF_SUBR_INET_NTOA ? AF_INET: AF_INET6; 5333 argi = 0; 5334 } 5335 5336 if (af == AF_INET) { 5337 ipaddr_t ip4; 5338 uint8_t *ptr8, val; 5339 5340 /* 5341 * Safely load the IPv4 address. 5342 */ 5343 ip4 = dtrace_load32(tupregs[argi].dttk_value); 5344 5345 /* 5346 * Check an IPv4 string will fit in scratch. 5347 */ 5348 size = INET_ADDRSTRLEN; 5349 if (!DTRACE_INSCRATCH(mstate, size)) { 5350 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5351 regs[rd] = NULL; 5352 break; 5353 } 5354 base = (char *)mstate->dtms_scratch_ptr; 5355 end = (char *)mstate->dtms_scratch_ptr + size - 1; 5356 5357 /* 5358 * Stringify as a dotted decimal quad. 5359 */ 5360 *end-- = '\0'; 5361 ptr8 = (uint8_t *)&ip4; 5362 for (i = 3; i >= 0; i--) { 5363 val = ptr8[i]; 5364 5365 if (val == 0) { 5366 *end-- = '0'; 5367 } else { 5368 for (; val; val /= 10) { 5369 *end-- = '0' + (val % 10); 5370 } 5371 } 5372 5373 if (i > 0) 5374 *end-- = '.'; 5375 } 5376 ASSERT(end + 1 >= base); 5377 5378 } else if (af == AF_INET6) { 5379 struct in6_addr ip6; 5380 int firstzero, tryzero, numzero, v6end; 5381 uint16_t val; 5382 const char digits[] = "0123456789abcdef"; 5383 5384 /* 5385 * Stringify using RFC 1884 convention 2 - 16 bit 5386 * hexadecimal values with a zero-run compression. 5387 * Lower case hexadecimal digits are used. 5388 * eg, fe80::214:4fff:fe0b:76c8. 5389 * The IPv4 embedded form is returned for inet_ntop, 5390 * just the IPv4 string is returned for inet_ntoa6. 5391 */ 5392 5393 /* 5394 * Safely load the IPv6 address. 5395 */ 5396 dtrace_bcopy( 5397 (void *)(uintptr_t)tupregs[argi].dttk_value, 5398 (void *)(uintptr_t)&ip6, sizeof (struct in6_addr)); 5399 5400 /* 5401 * Check an IPv6 string will fit in scratch. 5402 */ 5403 size = INET6_ADDRSTRLEN; 5404 if (!DTRACE_INSCRATCH(mstate, size)) { 5405 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5406 regs[rd] = NULL; 5407 break; 5408 } 5409 base = (char *)mstate->dtms_scratch_ptr; 5410 end = (char *)mstate->dtms_scratch_ptr + size - 1; 5411 *end-- = '\0'; 5412 5413 /* 5414 * Find the longest run of 16 bit zero values 5415 * for the single allowed zero compression - "::". 5416 */ 5417 firstzero = -1; 5418 tryzero = -1; 5419 numzero = 1; 5420 for (i = 0; i < sizeof (struct in6_addr); i++) { 5421 if (ip6._S6_un._S6_u8[i] == 0 && 5422 tryzero == -1 && i % 2 == 0) { 5423 tryzero = i; 5424 continue; 5425 } 5426 5427 if (tryzero != -1 && 5428 (ip6._S6_un._S6_u8[i] != 0 || 5429 i == sizeof (struct in6_addr) - 1)) { 5430 5431 if (i - tryzero <= numzero) { 5432 tryzero = -1; 5433 continue; 5434 } 5435 5436 firstzero = tryzero; 5437 numzero = i - i % 2 - tryzero; 5438 tryzero = -1; 5439 5440 if (ip6._S6_un._S6_u8[i] == 0 && 5441 i == sizeof (struct in6_addr) - 1) 5442 numzero += 2; 5443 } 5444 } 5445 ASSERT(firstzero + numzero <= sizeof (struct in6_addr)); 5446 5447 /* 5448 * Check for an IPv4 embedded address. 5449 */ 5450 v6end = sizeof (struct in6_addr) - 2; 5451 if (IN6_IS_ADDR_V4MAPPED(&ip6) || 5452 IN6_IS_ADDR_V4COMPAT(&ip6)) { 5453 for (i = sizeof (struct in6_addr) - 1; 5454 i >= DTRACE_V4MAPPED_OFFSET; i--) { 5455 ASSERT(end >= base); 5456 5457 val = ip6._S6_un._S6_u8[i]; 5458 5459 if (val == 0) { 5460 *end-- = '0'; 5461 } else { 5462 for (; val; val /= 10) { 5463 *end-- = '0' + val % 10; 5464 } 5465 } 5466 5467 if (i > DTRACE_V4MAPPED_OFFSET) 5468 *end-- = '.'; 5469 } 5470 5471 if (subr == DIF_SUBR_INET_NTOA6) 5472 goto inetout; 5473 5474 /* 5475 * Set v6end to skip the IPv4 address that 5476 * we have already stringified. 5477 */ 5478 v6end = 10; 5479 } 5480 5481 /* 5482 * Build the IPv6 string by working through the 5483 * address in reverse. 5484 */ 5485 for (i = v6end; i >= 0; i -= 2) { 5486 ASSERT(end >= base); 5487 5488 if (i == firstzero + numzero - 2) { 5489 *end-- = ':'; 5490 *end-- = ':'; 5491 i -= numzero - 2; 5492 continue; 5493 } 5494 5495 if (i < 14 && i != firstzero - 2) 5496 *end-- = ':'; 5497 5498 val = (ip6._S6_un._S6_u8[i] << 8) + 5499 ip6._S6_un._S6_u8[i + 1]; 5500 5501 if (val == 0) { 5502 *end-- = '0'; 5503 } else { 5504 for (; val; val /= 16) { 5505 *end-- = digits[val % 16]; 5506 } 5507 } 5508 } 5509 ASSERT(end + 1 >= base); 5510 5511 } else { 5512 /* 5513 * The user didn't use AH_INET or AH_INET6. 5514 */ 5515 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); 5516 regs[rd] = NULL; 5517 break; 5518 } 5519 5520 inetout: regs[rd] = (uintptr_t)end + 1; 5521 mstate->dtms_scratch_ptr += size; 5522 break; 5523 } 5524 5525 } 5526 } 5527 5528 /* 5529 * Emulate the execution of DTrace IR instructions specified by the given 5530 * DIF object. This function is deliberately void of assertions as all of 5531 * the necessary checks are handled by a call to dtrace_difo_validate(). 5532 */ 5533 static uint64_t 5534 dtrace_dif_emulate(dtrace_difo_t *difo, dtrace_mstate_t *mstate, 5535 dtrace_vstate_t *vstate, dtrace_state_t *state) 5536 { 5537 const dif_instr_t *text = difo->dtdo_buf; 5538 const uint_t textlen = difo->dtdo_len; 5539 const char *strtab = difo->dtdo_strtab; 5540 const uint64_t *inttab = difo->dtdo_inttab; 5541 5542 uint64_t rval = 0; 5543 dtrace_statvar_t *svar; 5544 dtrace_dstate_t *dstate = &vstate->dtvs_dynvars; 5545 dtrace_difv_t *v; 5546 volatile uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags; 5547 volatile uintptr_t *illval = &cpu_core[CPU->cpu_id].cpuc_dtrace_illval; 5548 5549 dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */ 5550 uint64_t regs[DIF_DIR_NREGS]; 5551 uint64_t *tmp; 5552 5553 uint8_t cc_n = 0, cc_z = 0, cc_v = 0, cc_c = 0; 5554 int64_t cc_r; 5555 uint_t pc = 0, id, opc; 5556 uint8_t ttop = 0; 5557 dif_instr_t instr; 5558 uint_t r1, r2, rd; 5559 5560 /* 5561 * We stash the current DIF object into the machine state: we need it 5562 * for subsequent access checking. 5563 */ 5564 mstate->dtms_difo = difo; 5565 5566 regs[DIF_REG_R0] = 0; /* %r0 is fixed at zero */ 5567 5568 while (pc < textlen && !(*flags & CPU_DTRACE_FAULT)) { 5569 opc = pc; 5570 5571 instr = text[pc++]; 5572 r1 = DIF_INSTR_R1(instr); 5573 r2 = DIF_INSTR_R2(instr); 5574 rd = DIF_INSTR_RD(instr); 5575 5576 switch (DIF_INSTR_OP(instr)) { 5577 case DIF_OP_OR: 5578 regs[rd] = regs[r1] | regs[r2]; 5579 break; 5580 case DIF_OP_XOR: 5581 regs[rd] = regs[r1] ^ regs[r2]; 5582 break; 5583 case DIF_OP_AND: 5584 regs[rd] = regs[r1] & regs[r2]; 5585 break; 5586 case DIF_OP_SLL: 5587 regs[rd] = regs[r1] << regs[r2]; 5588 break; 5589 case DIF_OP_SRL: 5590 regs[rd] = regs[r1] >> regs[r2]; 5591 break; 5592 case DIF_OP_SUB: 5593 regs[rd] = regs[r1] - regs[r2]; 5594 break; 5595 case DIF_OP_ADD: 5596 regs[rd] = regs[r1] + regs[r2]; 5597 break; 5598 case DIF_OP_MUL: 5599 regs[rd] = regs[r1] * regs[r2]; 5600 break; 5601 case DIF_OP_SDIV: 5602 if (regs[r2] == 0) { 5603 regs[rd] = 0; 5604 *flags |= CPU_DTRACE_DIVZERO; 5605 } else { 5606 regs[rd] = (int64_t)regs[r1] / 5607 (int64_t)regs[r2]; 5608 } 5609 break; 5610 5611 case DIF_OP_UDIV: 5612 if (regs[r2] == 0) { 5613 regs[rd] = 0; 5614 *flags |= CPU_DTRACE_DIVZERO; 5615 } else { 5616 regs[rd] = regs[r1] / regs[r2]; 5617 } 5618 break; 5619 5620 case DIF_OP_SREM: 5621 if (regs[r2] == 0) { 5622 regs[rd] = 0; 5623 *flags |= CPU_DTRACE_DIVZERO; 5624 } else { 5625 regs[rd] = (int64_t)regs[r1] % 5626 (int64_t)regs[r2]; 5627 } 5628 break; 5629 5630 case DIF_OP_UREM: 5631 if (regs[r2] == 0) { 5632 regs[rd] = 0; 5633 *flags |= CPU_DTRACE_DIVZERO; 5634 } else { 5635 regs[rd] = regs[r1] % regs[r2]; 5636 } 5637 break; 5638 5639 case DIF_OP_NOT: 5640 regs[rd] = ~regs[r1]; 5641 break; 5642 case DIF_OP_MOV: 5643 regs[rd] = regs[r1]; 5644 break; 5645 case DIF_OP_CMP: 5646 cc_r = regs[r1] - regs[r2]; 5647 cc_n = cc_r < 0; 5648 cc_z = cc_r == 0; 5649 cc_v = 0; 5650 cc_c = regs[r1] < regs[r2]; 5651 break; 5652 case DIF_OP_TST: 5653 cc_n = cc_v = cc_c = 0; 5654 cc_z = regs[r1] == 0; 5655 break; 5656 case DIF_OP_BA: 5657 pc = DIF_INSTR_LABEL(instr); 5658 break; 5659 case DIF_OP_BE: 5660 if (cc_z) 5661 pc = DIF_INSTR_LABEL(instr); 5662 break; 5663 case DIF_OP_BNE: 5664 if (cc_z == 0) 5665 pc = DIF_INSTR_LABEL(instr); 5666 break; 5667 case DIF_OP_BG: 5668 if ((cc_z | (cc_n ^ cc_v)) == 0) 5669 pc = DIF_INSTR_LABEL(instr); 5670 break; 5671 case DIF_OP_BGU: 5672 if ((cc_c | cc_z) == 0) 5673 pc = DIF_INSTR_LABEL(instr); 5674 break; 5675 case DIF_OP_BGE: 5676 if ((cc_n ^ cc_v) == 0) 5677 pc = DIF_INSTR_LABEL(instr); 5678 break; 5679 case DIF_OP_BGEU: 5680 if (cc_c == 0) 5681 pc = DIF_INSTR_LABEL(instr); 5682 break; 5683 case DIF_OP_BL: 5684 if (cc_n ^ cc_v) 5685 pc = DIF_INSTR_LABEL(instr); 5686 break; 5687 case DIF_OP_BLU: 5688 if (cc_c) 5689 pc = DIF_INSTR_LABEL(instr); 5690 break; 5691 case DIF_OP_BLE: 5692 if (cc_z | (cc_n ^ cc_v)) 5693 pc = DIF_INSTR_LABEL(instr); 5694 break; 5695 case DIF_OP_BLEU: 5696 if (cc_c | cc_z) 5697 pc = DIF_INSTR_LABEL(instr); 5698 break; 5699 case DIF_OP_RLDSB: 5700 if (!dtrace_canload(regs[r1], 1, mstate, vstate)) 5701 break; 5702 /*FALLTHROUGH*/ 5703 case DIF_OP_LDSB: 5704 regs[rd] = (int8_t)dtrace_load8(regs[r1]); 5705 break; 5706 case DIF_OP_RLDSH: 5707 if (!dtrace_canload(regs[r1], 2, mstate, vstate)) 5708 break; 5709 /*FALLTHROUGH*/ 5710 case DIF_OP_LDSH: 5711 regs[rd] = (int16_t)dtrace_load16(regs[r1]); 5712 break; 5713 case DIF_OP_RLDSW: 5714 if (!dtrace_canload(regs[r1], 4, mstate, vstate)) 5715 break; 5716 /*FALLTHROUGH*/ 5717 case DIF_OP_LDSW: 5718 regs[rd] = (int32_t)dtrace_load32(regs[r1]); 5719 break; 5720 case DIF_OP_RLDUB: 5721 if (!dtrace_canload(regs[r1], 1, mstate, vstate)) 5722 break; 5723 /*FALLTHROUGH*/ 5724 case DIF_OP_LDUB: 5725 regs[rd] = dtrace_load8(regs[r1]); 5726 break; 5727 case DIF_OP_RLDUH: 5728 if (!dtrace_canload(regs[r1], 2, mstate, vstate)) 5729 break; 5730 /*FALLTHROUGH*/ 5731 case DIF_OP_LDUH: 5732 regs[rd] = dtrace_load16(regs[r1]); 5733 break; 5734 case DIF_OP_RLDUW: 5735 if (!dtrace_canload(regs[r1], 4, mstate, vstate)) 5736 break; 5737 /*FALLTHROUGH*/ 5738 case DIF_OP_LDUW: 5739 regs[rd] = dtrace_load32(regs[r1]); 5740 break; 5741 case DIF_OP_RLDX: 5742 if (!dtrace_canload(regs[r1], 8, mstate, vstate)) 5743 break; 5744 /*FALLTHROUGH*/ 5745 case DIF_OP_LDX: 5746 regs[rd] = dtrace_load64(regs[r1]); 5747 break; 5748 case DIF_OP_ULDSB: 5749 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 5750 regs[rd] = (int8_t) 5751 dtrace_fuword8((void *)(uintptr_t)regs[r1]); 5752 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 5753 break; 5754 case DIF_OP_ULDSH: 5755 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 5756 regs[rd] = (int16_t) 5757 dtrace_fuword16((void *)(uintptr_t)regs[r1]); 5758 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 5759 break; 5760 case DIF_OP_ULDSW: 5761 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 5762 regs[rd] = (int32_t) 5763 dtrace_fuword32((void *)(uintptr_t)regs[r1]); 5764 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 5765 break; 5766 case DIF_OP_ULDUB: 5767 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 5768 regs[rd] = 5769 dtrace_fuword8((void *)(uintptr_t)regs[r1]); 5770 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 5771 break; 5772 case DIF_OP_ULDUH: 5773 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 5774 regs[rd] = 5775 dtrace_fuword16((void *)(uintptr_t)regs[r1]); 5776 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 5777 break; 5778 case DIF_OP_ULDUW: 5779 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 5780 regs[rd] = 5781 dtrace_fuword32((void *)(uintptr_t)regs[r1]); 5782 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 5783 break; 5784 case DIF_OP_ULDX: 5785 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 5786 regs[rd] = 5787 dtrace_fuword64((void *)(uintptr_t)regs[r1]); 5788 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 5789 break; 5790 case DIF_OP_RET: 5791 rval = regs[rd]; 5792 pc = textlen; 5793 break; 5794 case DIF_OP_NOP: 5795 break; 5796 case DIF_OP_SETX: 5797 regs[rd] = inttab[DIF_INSTR_INTEGER(instr)]; 5798 break; 5799 case DIF_OP_SETS: 5800 regs[rd] = (uint64_t)(uintptr_t) 5801 (strtab + DIF_INSTR_STRING(instr)); 5802 break; 5803 case DIF_OP_SCMP: { 5804 size_t sz = state->dts_options[DTRACEOPT_STRSIZE]; 5805 uintptr_t s1 = regs[r1]; 5806 uintptr_t s2 = regs[r2]; 5807 5808 if (s1 != NULL && 5809 !dtrace_strcanload(s1, sz, mstate, vstate)) 5810 break; 5811 if (s2 != NULL && 5812 !dtrace_strcanload(s2, sz, mstate, vstate)) 5813 break; 5814 5815 cc_r = dtrace_strncmp((char *)s1, (char *)s2, sz); 5816 5817 cc_n = cc_r < 0; 5818 cc_z = cc_r == 0; 5819 cc_v = cc_c = 0; 5820 break; 5821 } 5822 case DIF_OP_LDGA: 5823 regs[rd] = dtrace_dif_variable(mstate, state, 5824 r1, regs[r2]); 5825 break; 5826 case DIF_OP_LDGS: 5827 id = DIF_INSTR_VAR(instr); 5828 5829 if (id >= DIF_VAR_OTHER_UBASE) { 5830 uintptr_t a; 5831 5832 id -= DIF_VAR_OTHER_UBASE; 5833 svar = vstate->dtvs_globals[id]; 5834 ASSERT(svar != NULL); 5835 v = &svar->dtsv_var; 5836 5837 if (!(v->dtdv_type.dtdt_flags & DIF_TF_BYREF)) { 5838 regs[rd] = svar->dtsv_data; 5839 break; 5840 } 5841 5842 a = (uintptr_t)svar->dtsv_data; 5843 5844 if (*(uint8_t *)a == UINT8_MAX) { 5845 /* 5846 * If the 0th byte is set to UINT8_MAX 5847 * then this is to be treated as a 5848 * reference to a NULL variable. 5849 */ 5850 regs[rd] = NULL; 5851 } else { 5852 regs[rd] = a + sizeof (uint64_t); 5853 } 5854 5855 break; 5856 } 5857 5858 regs[rd] = dtrace_dif_variable(mstate, state, id, 0); 5859 break; 5860 5861 case DIF_OP_STGS: 5862 id = DIF_INSTR_VAR(instr); 5863 5864 ASSERT(id >= DIF_VAR_OTHER_UBASE); 5865 id -= DIF_VAR_OTHER_UBASE; 5866 5867 svar = vstate->dtvs_globals[id]; 5868 ASSERT(svar != NULL); 5869 v = &svar->dtsv_var; 5870 5871 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 5872 uintptr_t a = (uintptr_t)svar->dtsv_data; 5873 5874 ASSERT(a != NULL); 5875 ASSERT(svar->dtsv_size != 0); 5876 5877 if (regs[rd] == NULL) { 5878 *(uint8_t *)a = UINT8_MAX; 5879 break; 5880 } else { 5881 *(uint8_t *)a = 0; 5882 a += sizeof (uint64_t); 5883 } 5884 if (!dtrace_vcanload( 5885 (void *)(uintptr_t)regs[rd], &v->dtdv_type, 5886 mstate, vstate)) 5887 break; 5888 5889 dtrace_vcopy((void *)(uintptr_t)regs[rd], 5890 (void *)a, &v->dtdv_type); 5891 break; 5892 } 5893 5894 svar->dtsv_data = regs[rd]; 5895 break; 5896 5897 case DIF_OP_LDTA: 5898 /* 5899 * There are no DTrace built-in thread-local arrays at 5900 * present. This opcode is saved for future work. 5901 */ 5902 *flags |= CPU_DTRACE_ILLOP; 5903 regs[rd] = 0; 5904 break; 5905 5906 case DIF_OP_LDLS: 5907 id = DIF_INSTR_VAR(instr); 5908 5909 if (id < DIF_VAR_OTHER_UBASE) { 5910 /* 5911 * For now, this has no meaning. 5912 */ 5913 regs[rd] = 0; 5914 break; 5915 } 5916 5917 id -= DIF_VAR_OTHER_UBASE; 5918 5919 ASSERT(id < vstate->dtvs_nlocals); 5920 ASSERT(vstate->dtvs_locals != NULL); 5921 5922 svar = vstate->dtvs_locals[id]; 5923 ASSERT(svar != NULL); 5924 v = &svar->dtsv_var; 5925 5926 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 5927 uintptr_t a = (uintptr_t)svar->dtsv_data; 5928 size_t sz = v->dtdv_type.dtdt_size; 5929 5930 sz += sizeof (uint64_t); 5931 ASSERT(svar->dtsv_size == NCPU * sz); 5932 a += CPU->cpu_id * sz; 5933 5934 if (*(uint8_t *)a == UINT8_MAX) { 5935 /* 5936 * If the 0th byte is set to UINT8_MAX 5937 * then this is to be treated as a 5938 * reference to a NULL variable. 5939 */ 5940 regs[rd] = NULL; 5941 } else { 5942 regs[rd] = a + sizeof (uint64_t); 5943 } 5944 5945 break; 5946 } 5947 5948 ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t)); 5949 tmp = (uint64_t *)(uintptr_t)svar->dtsv_data; 5950 regs[rd] = tmp[CPU->cpu_id]; 5951 break; 5952 5953 case DIF_OP_STLS: 5954 id = DIF_INSTR_VAR(instr); 5955 5956 ASSERT(id >= DIF_VAR_OTHER_UBASE); 5957 id -= DIF_VAR_OTHER_UBASE; 5958 ASSERT(id < vstate->dtvs_nlocals); 5959 5960 ASSERT(vstate->dtvs_locals != NULL); 5961 svar = vstate->dtvs_locals[id]; 5962 ASSERT(svar != NULL); 5963 v = &svar->dtsv_var; 5964 5965 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 5966 uintptr_t a = (uintptr_t)svar->dtsv_data; 5967 size_t sz = v->dtdv_type.dtdt_size; 5968 5969 sz += sizeof (uint64_t); 5970 ASSERT(svar->dtsv_size == NCPU * sz); 5971 a += CPU->cpu_id * sz; 5972 5973 if (regs[rd] == NULL) { 5974 *(uint8_t *)a = UINT8_MAX; 5975 break; 5976 } else { 5977 *(uint8_t *)a = 0; 5978 a += sizeof (uint64_t); 5979 } 5980 5981 if (!dtrace_vcanload( 5982 (void *)(uintptr_t)regs[rd], &v->dtdv_type, 5983 mstate, vstate)) 5984 break; 5985 5986 dtrace_vcopy((void *)(uintptr_t)regs[rd], 5987 (void *)a, &v->dtdv_type); 5988 break; 5989 } 5990 5991 ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t)); 5992 tmp = (uint64_t *)(uintptr_t)svar->dtsv_data; 5993 tmp[CPU->cpu_id] = regs[rd]; 5994 break; 5995 5996 case DIF_OP_LDTS: { 5997 dtrace_dynvar_t *dvar; 5998 dtrace_key_t *key; 5999 6000 id = DIF_INSTR_VAR(instr); 6001 ASSERT(id >= DIF_VAR_OTHER_UBASE); 6002 id -= DIF_VAR_OTHER_UBASE; 6003 v = &vstate->dtvs_tlocals[id]; 6004 6005 key = &tupregs[DIF_DTR_NREGS]; 6006 key[0].dttk_value = (uint64_t)id; 6007 key[0].dttk_size = 0; 6008 DTRACE_TLS_THRKEY(key[1].dttk_value); 6009 key[1].dttk_size = 0; 6010 6011 dvar = dtrace_dynvar(dstate, 2, key, 6012 sizeof (uint64_t), DTRACE_DYNVAR_NOALLOC, 6013 mstate, vstate); 6014 6015 if (dvar == NULL) { 6016 regs[rd] = 0; 6017 break; 6018 } 6019 6020 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 6021 regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data; 6022 } else { 6023 regs[rd] = *((uint64_t *)dvar->dtdv_data); 6024 } 6025 6026 break; 6027 } 6028 6029 case DIF_OP_STTS: { 6030 dtrace_dynvar_t *dvar; 6031 dtrace_key_t *key; 6032 6033 id = DIF_INSTR_VAR(instr); 6034 ASSERT(id >= DIF_VAR_OTHER_UBASE); 6035 id -= DIF_VAR_OTHER_UBASE; 6036 6037 key = &tupregs[DIF_DTR_NREGS]; 6038 key[0].dttk_value = (uint64_t)id; 6039 key[0].dttk_size = 0; 6040 DTRACE_TLS_THRKEY(key[1].dttk_value); 6041 key[1].dttk_size = 0; 6042 v = &vstate->dtvs_tlocals[id]; 6043 6044 dvar = dtrace_dynvar(dstate, 2, key, 6045 v->dtdv_type.dtdt_size > sizeof (uint64_t) ? 6046 v->dtdv_type.dtdt_size : sizeof (uint64_t), 6047 regs[rd] ? DTRACE_DYNVAR_ALLOC : 6048 DTRACE_DYNVAR_DEALLOC, mstate, vstate); 6049 6050 /* 6051 * Given that we're storing to thread-local data, 6052 * we need to flush our predicate cache. 6053 */ 6054 curthread->t_predcache = NULL; 6055 6056 if (dvar == NULL) 6057 break; 6058 6059 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 6060 if (!dtrace_vcanload( 6061 (void *)(uintptr_t)regs[rd], 6062 &v->dtdv_type, mstate, vstate)) 6063 break; 6064 6065 dtrace_vcopy((void *)(uintptr_t)regs[rd], 6066 dvar->dtdv_data, &v->dtdv_type); 6067 } else { 6068 *((uint64_t *)dvar->dtdv_data) = regs[rd]; 6069 } 6070 6071 break; 6072 } 6073 6074 case DIF_OP_SRA: 6075 regs[rd] = (int64_t)regs[r1] >> regs[r2]; 6076 break; 6077 6078 case DIF_OP_CALL: 6079 dtrace_dif_subr(DIF_INSTR_SUBR(instr), rd, 6080 regs, tupregs, ttop, mstate, state); 6081 break; 6082 6083 case DIF_OP_PUSHTR: 6084 if (ttop == DIF_DTR_NREGS) { 6085 *flags |= CPU_DTRACE_TUPOFLOW; 6086 break; 6087 } 6088 6089 if (r1 == DIF_TYPE_STRING) { 6090 /* 6091 * If this is a string type and the size is 0, 6092 * we'll use the system-wide default string 6093 * size. Note that we are _not_ looking at 6094 * the value of the DTRACEOPT_STRSIZE option; 6095 * had this been set, we would expect to have 6096 * a non-zero size value in the "pushtr". 6097 */ 6098 tupregs[ttop].dttk_size = 6099 dtrace_strlen((char *)(uintptr_t)regs[rd], 6100 regs[r2] ? regs[r2] : 6101 dtrace_strsize_default) + 1; 6102 } else { 6103 if (regs[r2] > LONG_MAX) { 6104 *flags |= CPU_DTRACE_ILLOP; 6105 break; 6106 } 6107 6108 tupregs[ttop].dttk_size = regs[r2]; 6109 } 6110 6111 tupregs[ttop++].dttk_value = regs[rd]; 6112 break; 6113 6114 case DIF_OP_PUSHTV: 6115 if (ttop == DIF_DTR_NREGS) { 6116 *flags |= CPU_DTRACE_TUPOFLOW; 6117 break; 6118 } 6119 6120 tupregs[ttop].dttk_value = regs[rd]; 6121 tupregs[ttop++].dttk_size = 0; 6122 break; 6123 6124 case DIF_OP_POPTS: 6125 if (ttop != 0) 6126 ttop--; 6127 break; 6128 6129 case DIF_OP_FLUSHTS: 6130 ttop = 0; 6131 break; 6132 6133 case DIF_OP_LDGAA: 6134 case DIF_OP_LDTAA: { 6135 dtrace_dynvar_t *dvar; 6136 dtrace_key_t *key = tupregs; 6137 uint_t nkeys = ttop; 6138 6139 id = DIF_INSTR_VAR(instr); 6140 ASSERT(id >= DIF_VAR_OTHER_UBASE); 6141 id -= DIF_VAR_OTHER_UBASE; 6142 6143 key[nkeys].dttk_value = (uint64_t)id; 6144 key[nkeys++].dttk_size = 0; 6145 6146 if (DIF_INSTR_OP(instr) == DIF_OP_LDTAA) { 6147 DTRACE_TLS_THRKEY(key[nkeys].dttk_value); 6148 key[nkeys++].dttk_size = 0; 6149 v = &vstate->dtvs_tlocals[id]; 6150 } else { 6151 v = &vstate->dtvs_globals[id]->dtsv_var; 6152 } 6153 6154 dvar = dtrace_dynvar(dstate, nkeys, key, 6155 v->dtdv_type.dtdt_size > sizeof (uint64_t) ? 6156 v->dtdv_type.dtdt_size : sizeof (uint64_t), 6157 DTRACE_DYNVAR_NOALLOC, mstate, vstate); 6158 6159 if (dvar == NULL) { 6160 regs[rd] = 0; 6161 break; 6162 } 6163 6164 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 6165 regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data; 6166 } else { 6167 regs[rd] = *((uint64_t *)dvar->dtdv_data); 6168 } 6169 6170 break; 6171 } 6172 6173 case DIF_OP_STGAA: 6174 case DIF_OP_STTAA: { 6175 dtrace_dynvar_t *dvar; 6176 dtrace_key_t *key = tupregs; 6177 uint_t nkeys = ttop; 6178 6179 id = DIF_INSTR_VAR(instr); 6180 ASSERT(id >= DIF_VAR_OTHER_UBASE); 6181 id -= DIF_VAR_OTHER_UBASE; 6182 6183 key[nkeys].dttk_value = (uint64_t)id; 6184 key[nkeys++].dttk_size = 0; 6185 6186 if (DIF_INSTR_OP(instr) == DIF_OP_STTAA) { 6187 DTRACE_TLS_THRKEY(key[nkeys].dttk_value); 6188 key[nkeys++].dttk_size = 0; 6189 v = &vstate->dtvs_tlocals[id]; 6190 } else { 6191 v = &vstate->dtvs_globals[id]->dtsv_var; 6192 } 6193 6194 dvar = dtrace_dynvar(dstate, nkeys, key, 6195 v->dtdv_type.dtdt_size > sizeof (uint64_t) ? 6196 v->dtdv_type.dtdt_size : sizeof (uint64_t), 6197 regs[rd] ? DTRACE_DYNVAR_ALLOC : 6198 DTRACE_DYNVAR_DEALLOC, mstate, vstate); 6199 6200 if (dvar == NULL) 6201 break; 6202 6203 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 6204 if (!dtrace_vcanload( 6205 (void *)(uintptr_t)regs[rd], &v->dtdv_type, 6206 mstate, vstate)) 6207 break; 6208 6209 dtrace_vcopy((void *)(uintptr_t)regs[rd], 6210 dvar->dtdv_data, &v->dtdv_type); 6211 } else { 6212 *((uint64_t *)dvar->dtdv_data) = regs[rd]; 6213 } 6214 6215 break; 6216 } 6217 6218 case DIF_OP_ALLOCS: { 6219 uintptr_t ptr = P2ROUNDUP(mstate->dtms_scratch_ptr, 8); 6220 size_t size = ptr - mstate->dtms_scratch_ptr + regs[r1]; 6221 6222 /* 6223 * Rounding up the user allocation size could have 6224 * overflowed large, bogus allocations (like -1ULL) to 6225 * 0. 6226 */ 6227 if (size < regs[r1] || 6228 !DTRACE_INSCRATCH(mstate, size)) { 6229 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 6230 regs[rd] = NULL; 6231 break; 6232 } 6233 6234 dtrace_bzero((void *) mstate->dtms_scratch_ptr, size); 6235 mstate->dtms_scratch_ptr += size; 6236 regs[rd] = ptr; 6237 break; 6238 } 6239 6240 case DIF_OP_COPYS: 6241 if (!dtrace_canstore(regs[rd], regs[r2], 6242 mstate, vstate)) { 6243 *flags |= CPU_DTRACE_BADADDR; 6244 *illval = regs[rd]; 6245 break; 6246 } 6247 6248 if (!dtrace_canload(regs[r1], regs[r2], mstate, vstate)) 6249 break; 6250 6251 dtrace_bcopy((void *)(uintptr_t)regs[r1], 6252 (void *)(uintptr_t)regs[rd], (size_t)regs[r2]); 6253 break; 6254 6255 case DIF_OP_STB: 6256 if (!dtrace_canstore(regs[rd], 1, mstate, vstate)) { 6257 *flags |= CPU_DTRACE_BADADDR; 6258 *illval = regs[rd]; 6259 break; 6260 } 6261 *((uint8_t *)(uintptr_t)regs[rd]) = (uint8_t)regs[r1]; 6262 break; 6263 6264 case DIF_OP_STH: 6265 if (!dtrace_canstore(regs[rd], 2, mstate, vstate)) { 6266 *flags |= CPU_DTRACE_BADADDR; 6267 *illval = regs[rd]; 6268 break; 6269 } 6270 if (regs[rd] & 1) { 6271 *flags |= CPU_DTRACE_BADALIGN; 6272 *illval = regs[rd]; 6273 break; 6274 } 6275 *((uint16_t *)(uintptr_t)regs[rd]) = (uint16_t)regs[r1]; 6276 break; 6277 6278 case DIF_OP_STW: 6279 if (!dtrace_canstore(regs[rd], 4, mstate, vstate)) { 6280 *flags |= CPU_DTRACE_BADADDR; 6281 *illval = regs[rd]; 6282 break; 6283 } 6284 if (regs[rd] & 3) { 6285 *flags |= CPU_DTRACE_BADALIGN; 6286 *illval = regs[rd]; 6287 break; 6288 } 6289 *((uint32_t *)(uintptr_t)regs[rd]) = (uint32_t)regs[r1]; 6290 break; 6291 6292 case DIF_OP_STX: 6293 if (!dtrace_canstore(regs[rd], 8, mstate, vstate)) { 6294 *flags |= CPU_DTRACE_BADADDR; 6295 *illval = regs[rd]; 6296 break; 6297 } 6298 if (regs[rd] & 7) { 6299 *flags |= CPU_DTRACE_BADALIGN; 6300 *illval = regs[rd]; 6301 break; 6302 } 6303 *((uint64_t *)(uintptr_t)regs[rd]) = regs[r1]; 6304 break; 6305 } 6306 } 6307 6308 if (!(*flags & CPU_DTRACE_FAULT)) 6309 return (rval); 6310 6311 mstate->dtms_fltoffs = opc * sizeof (dif_instr_t); 6312 mstate->dtms_present |= DTRACE_MSTATE_FLTOFFS; 6313 6314 return (0); 6315 } 6316 6317 static void 6318 dtrace_action_breakpoint(dtrace_ecb_t *ecb) 6319 { 6320 dtrace_probe_t *probe = ecb->dte_probe; 6321 dtrace_provider_t *prov = probe->dtpr_provider; 6322 char c[DTRACE_FULLNAMELEN + 80], *str; 6323 char *msg = "dtrace: breakpoint action at probe "; 6324 char *ecbmsg = " (ecb "; 6325 uintptr_t mask = (0xf << (sizeof (uintptr_t) * NBBY / 4)); 6326 uintptr_t val = (uintptr_t)ecb; 6327 int shift = (sizeof (uintptr_t) * NBBY) - 4, i = 0; 6328 6329 if (dtrace_destructive_disallow) 6330 return; 6331 6332 /* 6333 * It's impossible to be taking action on the NULL probe. 6334 */ 6335 ASSERT(probe != NULL); 6336 6337 /* 6338 * This is a poor man's (destitute man's?) sprintf(): we want to 6339 * print the provider name, module name, function name and name of 6340 * the probe, along with the hex address of the ECB with the breakpoint 6341 * action -- all of which we must place in the character buffer by 6342 * hand. 6343 */ 6344 while (*msg != '\0') 6345 c[i++] = *msg++; 6346 6347 for (str = prov->dtpv_name; *str != '\0'; str++) 6348 c[i++] = *str; 6349 c[i++] = ':'; 6350 6351 for (str = probe->dtpr_mod; *str != '\0'; str++) 6352 c[i++] = *str; 6353 c[i++] = ':'; 6354 6355 for (str = probe->dtpr_func; *str != '\0'; str++) 6356 c[i++] = *str; 6357 c[i++] = ':'; 6358 6359 for (str = probe->dtpr_name; *str != '\0'; str++) 6360 c[i++] = *str; 6361 6362 while (*ecbmsg != '\0') 6363 c[i++] = *ecbmsg++; 6364 6365 while (shift >= 0) { 6366 mask = (uintptr_t)0xf << shift; 6367 6368 if (val >= ((uintptr_t)1 << shift)) 6369 c[i++] = "0123456789abcdef"[(val & mask) >> shift]; 6370 shift -= 4; 6371 } 6372 6373 c[i++] = ')'; 6374 c[i] = '\0'; 6375 6376 debug_enter(c); 6377 } 6378 6379 static void 6380 dtrace_action_panic(dtrace_ecb_t *ecb) 6381 { 6382 dtrace_probe_t *probe = ecb->dte_probe; 6383 6384 /* 6385 * It's impossible to be taking action on the NULL probe. 6386 */ 6387 ASSERT(probe != NULL); 6388 6389 if (dtrace_destructive_disallow) 6390 return; 6391 6392 if (dtrace_panicked != NULL) 6393 return; 6394 6395 if (dtrace_casptr(&dtrace_panicked, NULL, curthread) != NULL) 6396 return; 6397 6398 /* 6399 * We won the right to panic. (We want to be sure that only one 6400 * thread calls panic() from dtrace_probe(), and that panic() is 6401 * called exactly once.) 6402 */ 6403 dtrace_panic("dtrace: panic action at probe %s:%s:%s:%s (ecb %p)", 6404 probe->dtpr_provider->dtpv_name, probe->dtpr_mod, 6405 probe->dtpr_func, probe->dtpr_name, (void *)ecb); 6406 } 6407 6408 static void 6409 dtrace_action_raise(uint64_t sig) 6410 { 6411 if (dtrace_destructive_disallow) 6412 return; 6413 6414 if (sig >= NSIG) { 6415 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); 6416 return; 6417 } 6418 6419 /* 6420 * raise() has a queue depth of 1 -- we ignore all subsequent 6421 * invocations of the raise() action. 6422 */ 6423 if (curthread->t_dtrace_sig == 0) 6424 curthread->t_dtrace_sig = (uint8_t)sig; 6425 6426 curthread->t_sig_check = 1; 6427 aston(curthread); 6428 } 6429 6430 static void 6431 dtrace_action_stop(void) 6432 { 6433 if (dtrace_destructive_disallow) 6434 return; 6435 6436 if (!curthread->t_dtrace_stop) { 6437 curthread->t_dtrace_stop = 1; 6438 curthread->t_sig_check = 1; 6439 aston(curthread); 6440 } 6441 } 6442 6443 static void 6444 dtrace_action_chill(dtrace_mstate_t *mstate, hrtime_t val) 6445 { 6446 hrtime_t now; 6447 volatile uint16_t *flags; 6448 cpu_t *cpu = CPU; 6449 6450 if (dtrace_destructive_disallow) 6451 return; 6452 6453 flags = (volatile uint16_t *)&cpu_core[cpu->cpu_id].cpuc_dtrace_flags; 6454 6455 now = dtrace_gethrtime(); 6456 6457 if (now - cpu->cpu_dtrace_chillmark > dtrace_chill_interval) { 6458 /* 6459 * We need to advance the mark to the current time. 6460 */ 6461 cpu->cpu_dtrace_chillmark = now; 6462 cpu->cpu_dtrace_chilled = 0; 6463 } 6464 6465 /* 6466 * Now check to see if the requested chill time would take us over 6467 * the maximum amount of time allowed in the chill interval. (Or 6468 * worse, if the calculation itself induces overflow.) 6469 */ 6470 if (cpu->cpu_dtrace_chilled + val > dtrace_chill_max || 6471 cpu->cpu_dtrace_chilled + val < cpu->cpu_dtrace_chilled) { 6472 *flags |= CPU_DTRACE_ILLOP; 6473 return; 6474 } 6475 6476 while (dtrace_gethrtime() - now < val) 6477 continue; 6478 6479 /* 6480 * Normally, we assure that the value of the variable "timestamp" does 6481 * not change within an ECB. The presence of chill() represents an 6482 * exception to this rule, however. 6483 */ 6484 mstate->dtms_present &= ~DTRACE_MSTATE_TIMESTAMP; 6485 cpu->cpu_dtrace_chilled += val; 6486 } 6487 6488 static void 6489 dtrace_action_ustack(dtrace_mstate_t *mstate, dtrace_state_t *state, 6490 uint64_t *buf, uint64_t arg) 6491 { 6492 int nframes = DTRACE_USTACK_NFRAMES(arg); 6493 int strsize = DTRACE_USTACK_STRSIZE(arg); 6494 uint64_t *pcs = &buf[1], *fps; 6495 char *str = (char *)&pcs[nframes]; 6496 int size, offs = 0, i, j; 6497 uintptr_t old = mstate->dtms_scratch_ptr, saved; 6498 uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags; 6499 char *sym; 6500 6501 /* 6502 * Should be taking a faster path if string space has not been 6503 * allocated. 6504 */ 6505 ASSERT(strsize != 0); 6506 6507 /* 6508 * We will first allocate some temporary space for the frame pointers. 6509 */ 6510 fps = (uint64_t *)P2ROUNDUP(mstate->dtms_scratch_ptr, 8); 6511 size = (uintptr_t)fps - mstate->dtms_scratch_ptr + 6512 (nframes * sizeof (uint64_t)); 6513 6514 if (!DTRACE_INSCRATCH(mstate, size)) { 6515 /* 6516 * Not enough room for our frame pointers -- need to indicate 6517 * that we ran out of scratch space. 6518 */ 6519 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 6520 return; 6521 } 6522 6523 mstate->dtms_scratch_ptr += size; 6524 saved = mstate->dtms_scratch_ptr; 6525 6526 /* 6527 * Now get a stack with both program counters and frame pointers. 6528 */ 6529 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 6530 dtrace_getufpstack(buf, fps, nframes + 1); 6531 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 6532 6533 /* 6534 * If that faulted, we're cooked. 6535 */ 6536 if (*flags & CPU_DTRACE_FAULT) 6537 goto out; 6538 6539 /* 6540 * Now we want to walk up the stack, calling the USTACK helper. For 6541 * each iteration, we restore the scratch pointer. 6542 */ 6543 for (i = 0; i < nframes; i++) { 6544 mstate->dtms_scratch_ptr = saved; 6545 6546 if (offs >= strsize) 6547 break; 6548 6549 sym = (char *)(uintptr_t)dtrace_helper( 6550 DTRACE_HELPER_ACTION_USTACK, 6551 mstate, state, pcs[i], fps[i]); 6552 6553 /* 6554 * If we faulted while running the helper, we're going to 6555 * clear the fault and null out the corresponding string. 6556 */ 6557 if (*flags & CPU_DTRACE_FAULT) { 6558 *flags &= ~CPU_DTRACE_FAULT; 6559 str[offs++] = '\0'; 6560 continue; 6561 } 6562 6563 if (sym == NULL) { 6564 str[offs++] = '\0'; 6565 continue; 6566 } 6567 6568 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 6569 6570 /* 6571 * Now copy in the string that the helper returned to us. 6572 */ 6573 for (j = 0; offs + j < strsize; j++) { 6574 if ((str[offs + j] = sym[j]) == '\0') 6575 break; 6576 } 6577 6578 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 6579 6580 offs += j + 1; 6581 } 6582 6583 if (offs >= strsize) { 6584 /* 6585 * If we didn't have room for all of the strings, we don't 6586 * abort processing -- this needn't be a fatal error -- but we 6587 * still want to increment a counter (dts_stkstroverflows) to 6588 * allow this condition to be warned about. (If this is from 6589 * a jstack() action, it is easily tuned via jstackstrsize.) 6590 */ 6591 dtrace_error(&state->dts_stkstroverflows); 6592 } 6593 6594 while (offs < strsize) 6595 str[offs++] = '\0'; 6596 6597 out: 6598 mstate->dtms_scratch_ptr = old; 6599 } 6600 6601 static void 6602 dtrace_store_by_ref(dtrace_difo_t *dp, caddr_t tomax, size_t size, 6603 size_t *valoffsp, uint64_t *valp, uint64_t end, int intuple, int dtkind) 6604 { 6605 volatile uint16_t *flags; 6606 uint64_t val = *valp; 6607 size_t valoffs = *valoffsp; 6608 6609 flags = (volatile uint16_t *)&cpu_core[CPU->cpu_id].cpuc_dtrace_flags; 6610 ASSERT(dtkind == DIF_TF_BYREF || dtkind == DIF_TF_BYUREF); 6611 6612 /* 6613 * If this is a string, we're going to only load until we find the zero 6614 * byte -- after which we'll store zero bytes. 6615 */ 6616 if (dp->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) { 6617 char c = '\0' + 1; 6618 size_t s; 6619 6620 for (s = 0; s < size; s++) { 6621 if (c != '\0' && dtkind == DIF_TF_BYREF) { 6622 c = dtrace_load8(val++); 6623 } else if (c != '\0' && dtkind == DIF_TF_BYUREF) { 6624 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 6625 c = dtrace_fuword8((void *)(uintptr_t)val++); 6626 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 6627 if (*flags & CPU_DTRACE_FAULT) 6628 break; 6629 } 6630 6631 DTRACE_STORE(uint8_t, tomax, valoffs++, c); 6632 6633 if (c == '\0' && intuple) 6634 break; 6635 } 6636 } else { 6637 uint8_t c; 6638 while (valoffs < end) { 6639 if (dtkind == DIF_TF_BYREF) { 6640 c = dtrace_load8(val++); 6641 } else if (dtkind == DIF_TF_BYUREF) { 6642 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 6643 c = dtrace_fuword8((void *)(uintptr_t)val++); 6644 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 6645 if (*flags & CPU_DTRACE_FAULT) 6646 break; 6647 } 6648 6649 DTRACE_STORE(uint8_t, tomax, 6650 valoffs++, c); 6651 } 6652 } 6653 6654 *valp = val; 6655 *valoffsp = valoffs; 6656 } 6657 6658 /* 6659 * If you're looking for the epicenter of DTrace, you just found it. This 6660 * is the function called by the provider to fire a probe -- from which all 6661 * subsequent probe-context DTrace activity emanates. 6662 */ 6663 void 6664 dtrace_probe(dtrace_id_t id, uintptr_t arg0, uintptr_t arg1, 6665 uintptr_t arg2, uintptr_t arg3, uintptr_t arg4) 6666 { 6667 processorid_t cpuid; 6668 dtrace_icookie_t cookie; 6669 dtrace_probe_t *probe; 6670 dtrace_mstate_t mstate; 6671 dtrace_ecb_t *ecb; 6672 dtrace_action_t *act; 6673 intptr_t offs; 6674 size_t size; 6675 int vtime, onintr; 6676 volatile uint16_t *flags; 6677 hrtime_t now, end; 6678 6679 /* 6680 * Kick out immediately if this CPU is still being born (in which case 6681 * curthread will be set to -1) or the current thread can't allow 6682 * probes in its current context. 6683 */ 6684 if (((uintptr_t)curthread & 1) || (curthread->t_flag & T_DONTDTRACE)) 6685 return; 6686 6687 cookie = dtrace_interrupt_disable(); 6688 probe = dtrace_probes[id - 1]; 6689 cpuid = CPU->cpu_id; 6690 onintr = CPU_ON_INTR(CPU); 6691 6692 CPU->cpu_dtrace_probes++; 6693 6694 if (!onintr && probe->dtpr_predcache != DTRACE_CACHEIDNONE && 6695 probe->dtpr_predcache == curthread->t_predcache) { 6696 /* 6697 * We have hit in the predicate cache; we know that 6698 * this predicate would evaluate to be false. 6699 */ 6700 dtrace_interrupt_enable(cookie); 6701 return; 6702 } 6703 6704 if (panic_quiesce) { 6705 /* 6706 * We don't trace anything if we're panicking. 6707 */ 6708 dtrace_interrupt_enable(cookie); 6709 return; 6710 } 6711 6712 now = mstate.dtms_timestamp = dtrace_gethrtime(); 6713 mstate.dtms_present |= DTRACE_MSTATE_TIMESTAMP; 6714 vtime = dtrace_vtime_references != 0; 6715 6716 if (vtime && curthread->t_dtrace_start) 6717 curthread->t_dtrace_vtime += now - curthread->t_dtrace_start; 6718 6719 mstate.dtms_difo = NULL; 6720 mstate.dtms_probe = probe; 6721 mstate.dtms_strtok = NULL; 6722 mstate.dtms_arg[0] = arg0; 6723 mstate.dtms_arg[1] = arg1; 6724 mstate.dtms_arg[2] = arg2; 6725 mstate.dtms_arg[3] = arg3; 6726 mstate.dtms_arg[4] = arg4; 6727 6728 flags = (volatile uint16_t *)&cpu_core[cpuid].cpuc_dtrace_flags; 6729 6730 for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) { 6731 dtrace_predicate_t *pred = ecb->dte_predicate; 6732 dtrace_state_t *state = ecb->dte_state; 6733 dtrace_buffer_t *buf = &state->dts_buffer[cpuid]; 6734 dtrace_buffer_t *aggbuf = &state->dts_aggbuffer[cpuid]; 6735 dtrace_vstate_t *vstate = &state->dts_vstate; 6736 dtrace_provider_t *prov = probe->dtpr_provider; 6737 uint64_t tracememsize = 0; 6738 int committed = 0; 6739 caddr_t tomax; 6740 6741 /* 6742 * A little subtlety with the following (seemingly innocuous) 6743 * declaration of the automatic 'val': by looking at the 6744 * code, you might think that it could be declared in the 6745 * action processing loop, below. (That is, it's only used in 6746 * the action processing loop.) However, it must be declared 6747 * out of that scope because in the case of DIF expression 6748 * arguments to aggregating actions, one iteration of the 6749 * action loop will use the last iteration's value. 6750 */ 6751 #ifdef lint 6752 uint64_t val = 0; 6753 #else 6754 uint64_t val; 6755 #endif 6756 6757 mstate.dtms_present = DTRACE_MSTATE_ARGS | DTRACE_MSTATE_PROBE; 6758 mstate.dtms_access = DTRACE_ACCESS_ARGS | DTRACE_ACCESS_PROC; 6759 mstate.dtms_getf = NULL; 6760 6761 *flags &= ~CPU_DTRACE_ERROR; 6762 6763 if (prov == dtrace_provider) { 6764 /* 6765 * If dtrace itself is the provider of this probe, 6766 * we're only going to continue processing the ECB if 6767 * arg0 (the dtrace_state_t) is equal to the ECB's 6768 * creating state. (This prevents disjoint consumers 6769 * from seeing one another's metaprobes.) 6770 */ 6771 if (arg0 != (uint64_t)(uintptr_t)state) 6772 continue; 6773 } 6774 6775 if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE) { 6776 /* 6777 * We're not currently active. If our provider isn't 6778 * the dtrace pseudo provider, we're not interested. 6779 */ 6780 if (prov != dtrace_provider) 6781 continue; 6782 6783 /* 6784 * Now we must further check if we are in the BEGIN 6785 * probe. If we are, we will only continue processing 6786 * if we're still in WARMUP -- if one BEGIN enabling 6787 * has invoked the exit() action, we don't want to 6788 * evaluate subsequent BEGIN enablings. 6789 */ 6790 if (probe->dtpr_id == dtrace_probeid_begin && 6791 state->dts_activity != DTRACE_ACTIVITY_WARMUP) { 6792 ASSERT(state->dts_activity == 6793 DTRACE_ACTIVITY_DRAINING); 6794 continue; 6795 } 6796 } 6797 6798 if (ecb->dte_cond && !dtrace_priv_probe(state, &mstate, ecb)) 6799 continue; 6800 6801 if (now - state->dts_alive > dtrace_deadman_timeout) { 6802 /* 6803 * We seem to be dead. Unless we (a) have kernel 6804 * destructive permissions (b) have explicitly enabled 6805 * destructive actions and (c) destructive actions have 6806 * not been disabled, we're going to transition into 6807 * the KILLED state, from which no further processing 6808 * on this state will be performed. 6809 */ 6810 if (!dtrace_priv_kernel_destructive(state) || 6811 !state->dts_cred.dcr_destructive || 6812 dtrace_destructive_disallow) { 6813 void *activity = &state->dts_activity; 6814 dtrace_activity_t current; 6815 6816 do { 6817 current = state->dts_activity; 6818 } while (dtrace_cas32(activity, current, 6819 DTRACE_ACTIVITY_KILLED) != current); 6820 6821 continue; 6822 } 6823 } 6824 6825 if ((offs = dtrace_buffer_reserve(buf, ecb->dte_needed, 6826 ecb->dte_alignment, state, &mstate)) < 0) 6827 continue; 6828 6829 tomax = buf->dtb_tomax; 6830 ASSERT(tomax != NULL); 6831 6832 if (ecb->dte_size != 0) { 6833 dtrace_rechdr_t dtrh; 6834 if (!(mstate.dtms_present & DTRACE_MSTATE_TIMESTAMP)) { 6835 mstate.dtms_timestamp = dtrace_gethrtime(); 6836 mstate.dtms_present |= DTRACE_MSTATE_TIMESTAMP; 6837 } 6838 ASSERT3U(ecb->dte_size, >=, sizeof (dtrace_rechdr_t)); 6839 dtrh.dtrh_epid = ecb->dte_epid; 6840 DTRACE_RECORD_STORE_TIMESTAMP(&dtrh, 6841 mstate.dtms_timestamp); 6842 *((dtrace_rechdr_t *)(tomax + offs)) = dtrh; 6843 } 6844 6845 mstate.dtms_epid = ecb->dte_epid; 6846 mstate.dtms_present |= DTRACE_MSTATE_EPID; 6847 6848 if (state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) 6849 mstate.dtms_access |= DTRACE_ACCESS_KERNEL; 6850 6851 if (pred != NULL) { 6852 dtrace_difo_t *dp = pred->dtp_difo; 6853 int rval; 6854 6855 rval = dtrace_dif_emulate(dp, &mstate, vstate, state); 6856 6857 if (!(*flags & CPU_DTRACE_ERROR) && !rval) { 6858 dtrace_cacheid_t cid = probe->dtpr_predcache; 6859 6860 if (cid != DTRACE_CACHEIDNONE && !onintr) { 6861 /* 6862 * Update the predicate cache... 6863 */ 6864 ASSERT(cid == pred->dtp_cacheid); 6865 curthread->t_predcache = cid; 6866 } 6867 6868 continue; 6869 } 6870 } 6871 6872 for (act = ecb->dte_action; !(*flags & CPU_DTRACE_ERROR) && 6873 act != NULL; act = act->dta_next) { 6874 size_t valoffs; 6875 dtrace_difo_t *dp; 6876 dtrace_recdesc_t *rec = &act->dta_rec; 6877 6878 size = rec->dtrd_size; 6879 valoffs = offs + rec->dtrd_offset; 6880 6881 if (DTRACEACT_ISAGG(act->dta_kind)) { 6882 uint64_t v = 0xbad; 6883 dtrace_aggregation_t *agg; 6884 6885 agg = (dtrace_aggregation_t *)act; 6886 6887 if ((dp = act->dta_difo) != NULL) 6888 v = dtrace_dif_emulate(dp, 6889 &mstate, vstate, state); 6890 6891 if (*flags & CPU_DTRACE_ERROR) 6892 continue; 6893 6894 /* 6895 * Note that we always pass the expression 6896 * value from the previous iteration of the 6897 * action loop. This value will only be used 6898 * if there is an expression argument to the 6899 * aggregating action, denoted by the 6900 * dtag_hasarg field. 6901 */ 6902 dtrace_aggregate(agg, buf, 6903 offs, aggbuf, v, val); 6904 continue; 6905 } 6906 6907 switch (act->dta_kind) { 6908 case DTRACEACT_STOP: 6909 if (dtrace_priv_proc_destructive(state, 6910 &mstate)) 6911 dtrace_action_stop(); 6912 continue; 6913 6914 case DTRACEACT_BREAKPOINT: 6915 if (dtrace_priv_kernel_destructive(state)) 6916 dtrace_action_breakpoint(ecb); 6917 continue; 6918 6919 case DTRACEACT_PANIC: 6920 if (dtrace_priv_kernel_destructive(state)) 6921 dtrace_action_panic(ecb); 6922 continue; 6923 6924 case DTRACEACT_STACK: 6925 if (!dtrace_priv_kernel(state)) 6926 continue; 6927 6928 dtrace_getpcstack((pc_t *)(tomax + valoffs), 6929 size / sizeof (pc_t), probe->dtpr_aframes, 6930 DTRACE_ANCHORED(probe) ? NULL : 6931 (uint32_t *)arg0); 6932 6933 continue; 6934 6935 case DTRACEACT_JSTACK: 6936 case DTRACEACT_USTACK: 6937 if (!dtrace_priv_proc(state, &mstate)) 6938 continue; 6939 6940 /* 6941 * See comment in DIF_VAR_PID. 6942 */ 6943 if (DTRACE_ANCHORED(mstate.dtms_probe) && 6944 CPU_ON_INTR(CPU)) { 6945 int depth = DTRACE_USTACK_NFRAMES( 6946 rec->dtrd_arg) + 1; 6947 6948 dtrace_bzero((void *)(tomax + valoffs), 6949 DTRACE_USTACK_STRSIZE(rec->dtrd_arg) 6950 + depth * sizeof (uint64_t)); 6951 6952 continue; 6953 } 6954 6955 if (DTRACE_USTACK_STRSIZE(rec->dtrd_arg) != 0 && 6956 curproc->p_dtrace_helpers != NULL) { 6957 /* 6958 * This is the slow path -- we have 6959 * allocated string space, and we're 6960 * getting the stack of a process that 6961 * has helpers. Call into a separate 6962 * routine to perform this processing. 6963 */ 6964 dtrace_action_ustack(&mstate, state, 6965 (uint64_t *)(tomax + valoffs), 6966 rec->dtrd_arg); 6967 continue; 6968 } 6969 6970 /* 6971 * Clear the string space, since there's no 6972 * helper to do it for us. 6973 */ 6974 if (DTRACE_USTACK_STRSIZE(rec->dtrd_arg) != 0) { 6975 int depth = DTRACE_USTACK_NFRAMES( 6976 rec->dtrd_arg); 6977 size_t strsize = DTRACE_USTACK_STRSIZE( 6978 rec->dtrd_arg); 6979 uint64_t *buf = (uint64_t *)(tomax + 6980 valoffs); 6981 void *strspace = &buf[depth + 1]; 6982 6983 dtrace_bzero(strspace, 6984 MIN(depth, strsize)); 6985 } 6986 6987 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 6988 dtrace_getupcstack((uint64_t *) 6989 (tomax + valoffs), 6990 DTRACE_USTACK_NFRAMES(rec->dtrd_arg) + 1); 6991 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 6992 continue; 6993 6994 default: 6995 break; 6996 } 6997 6998 dp = act->dta_difo; 6999 ASSERT(dp != NULL); 7000 7001 val = dtrace_dif_emulate(dp, &mstate, vstate, state); 7002 7003 if (*flags & CPU_DTRACE_ERROR) 7004 continue; 7005 7006 switch (act->dta_kind) { 7007 case DTRACEACT_SPECULATE: { 7008 dtrace_rechdr_t *dtrh; 7009 7010 ASSERT(buf == &state->dts_buffer[cpuid]); 7011 buf = dtrace_speculation_buffer(state, 7012 cpuid, val); 7013 7014 if (buf == NULL) { 7015 *flags |= CPU_DTRACE_DROP; 7016 continue; 7017 } 7018 7019 offs = dtrace_buffer_reserve(buf, 7020 ecb->dte_needed, ecb->dte_alignment, 7021 state, NULL); 7022 7023 if (offs < 0) { 7024 *flags |= CPU_DTRACE_DROP; 7025 continue; 7026 } 7027 7028 tomax = buf->dtb_tomax; 7029 ASSERT(tomax != NULL); 7030 7031 if (ecb->dte_size == 0) 7032 continue; 7033 7034 ASSERT3U(ecb->dte_size, >=, 7035 sizeof (dtrace_rechdr_t)); 7036 dtrh = ((void *)(tomax + offs)); 7037 dtrh->dtrh_epid = ecb->dte_epid; 7038 /* 7039 * When the speculation is committed, all of 7040 * the records in the speculative buffer will 7041 * have their timestamps set to the commit 7042 * time. Until then, it is set to a sentinel 7043 * value, for debugability. 7044 */ 7045 DTRACE_RECORD_STORE_TIMESTAMP(dtrh, UINT64_MAX); 7046 continue; 7047 } 7048 7049 case DTRACEACT_CHILL: 7050 if (dtrace_priv_kernel_destructive(state)) 7051 dtrace_action_chill(&mstate, val); 7052 continue; 7053 7054 case DTRACEACT_RAISE: 7055 if (dtrace_priv_proc_destructive(state, 7056 &mstate)) 7057 dtrace_action_raise(val); 7058 continue; 7059 7060 case DTRACEACT_COMMIT: 7061 ASSERT(!committed); 7062 7063 /* 7064 * We need to commit our buffer state. 7065 */ 7066 if (ecb->dte_size) 7067 buf->dtb_offset = offs + ecb->dte_size; 7068 buf = &state->dts_buffer[cpuid]; 7069 dtrace_speculation_commit(state, cpuid, val); 7070 committed = 1; 7071 continue; 7072 7073 case DTRACEACT_DISCARD: 7074 dtrace_speculation_discard(state, cpuid, val); 7075 continue; 7076 7077 case DTRACEACT_DIFEXPR: 7078 case DTRACEACT_LIBACT: 7079 case DTRACEACT_PRINTF: 7080 case DTRACEACT_PRINTA: 7081 case DTRACEACT_SYSTEM: 7082 case DTRACEACT_FREOPEN: 7083 case DTRACEACT_TRACEMEM: 7084 break; 7085 7086 case DTRACEACT_TRACEMEM_DYNSIZE: 7087 tracememsize = val; 7088 break; 7089 7090 case DTRACEACT_SYM: 7091 case DTRACEACT_MOD: 7092 if (!dtrace_priv_kernel(state)) 7093 continue; 7094 break; 7095 7096 case DTRACEACT_USYM: 7097 case DTRACEACT_UMOD: 7098 case DTRACEACT_UADDR: { 7099 struct pid *pid = curthread->t_procp->p_pidp; 7100 7101 if (!dtrace_priv_proc(state, &mstate)) 7102 continue; 7103 7104 DTRACE_STORE(uint64_t, tomax, 7105 valoffs, (uint64_t)pid->pid_id); 7106 DTRACE_STORE(uint64_t, tomax, 7107 valoffs + sizeof (uint64_t), val); 7108 7109 continue; 7110 } 7111 7112 case DTRACEACT_EXIT: { 7113 /* 7114 * For the exit action, we are going to attempt 7115 * to atomically set our activity to be 7116 * draining. If this fails (either because 7117 * another CPU has beat us to the exit action, 7118 * or because our current activity is something 7119 * other than ACTIVE or WARMUP), we will 7120 * continue. This assures that the exit action 7121 * can be successfully recorded at most once 7122 * when we're in the ACTIVE state. If we're 7123 * encountering the exit() action while in 7124 * COOLDOWN, however, we want to honor the new 7125 * status code. (We know that we're the only 7126 * thread in COOLDOWN, so there is no race.) 7127 */ 7128 void *activity = &state->dts_activity; 7129 dtrace_activity_t current = state->dts_activity; 7130 7131 if (current == DTRACE_ACTIVITY_COOLDOWN) 7132 break; 7133 7134 if (current != DTRACE_ACTIVITY_WARMUP) 7135 current = DTRACE_ACTIVITY_ACTIVE; 7136 7137 if (dtrace_cas32(activity, current, 7138 DTRACE_ACTIVITY_DRAINING) != current) { 7139 *flags |= CPU_DTRACE_DROP; 7140 continue; 7141 } 7142 7143 break; 7144 } 7145 7146 default: 7147 ASSERT(0); 7148 } 7149 7150 if (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF || 7151 dp->dtdo_rtype.dtdt_flags & DIF_TF_BYUREF) { 7152 uintptr_t end = valoffs + size; 7153 7154 if (tracememsize != 0 && 7155 valoffs + tracememsize < end) { 7156 end = valoffs + tracememsize; 7157 tracememsize = 0; 7158 } 7159 7160 if (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF && 7161 !dtrace_vcanload((void *)(uintptr_t)val, 7162 &dp->dtdo_rtype, &mstate, vstate)) 7163 continue; 7164 7165 dtrace_store_by_ref(dp, tomax, size, &valoffs, 7166 &val, end, act->dta_intuple, 7167 dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF ? 7168 DIF_TF_BYREF: DIF_TF_BYUREF); 7169 continue; 7170 } 7171 7172 switch (size) { 7173 case 0: 7174 break; 7175 7176 case sizeof (uint8_t): 7177 DTRACE_STORE(uint8_t, tomax, valoffs, val); 7178 break; 7179 case sizeof (uint16_t): 7180 DTRACE_STORE(uint16_t, tomax, valoffs, val); 7181 break; 7182 case sizeof (uint32_t): 7183 DTRACE_STORE(uint32_t, tomax, valoffs, val); 7184 break; 7185 case sizeof (uint64_t): 7186 DTRACE_STORE(uint64_t, tomax, valoffs, val); 7187 break; 7188 default: 7189 /* 7190 * Any other size should have been returned by 7191 * reference, not by value. 7192 */ 7193 ASSERT(0); 7194 break; 7195 } 7196 } 7197 7198 if (*flags & CPU_DTRACE_DROP) 7199 continue; 7200 7201 if (*flags & CPU_DTRACE_FAULT) { 7202 int ndx; 7203 dtrace_action_t *err; 7204 7205 buf->dtb_errors++; 7206 7207 if (probe->dtpr_id == dtrace_probeid_error) { 7208 /* 7209 * There's nothing we can do -- we had an 7210 * error on the error probe. We bump an 7211 * error counter to at least indicate that 7212 * this condition happened. 7213 */ 7214 dtrace_error(&state->dts_dblerrors); 7215 continue; 7216 } 7217 7218 if (vtime) { 7219 /* 7220 * Before recursing on dtrace_probe(), we 7221 * need to explicitly clear out our start 7222 * time to prevent it from being accumulated 7223 * into t_dtrace_vtime. 7224 */ 7225 curthread->t_dtrace_start = 0; 7226 } 7227 7228 /* 7229 * Iterate over the actions to figure out which action 7230 * we were processing when we experienced the error. 7231 * Note that act points _past_ the faulting action; if 7232 * act is ecb->dte_action, the fault was in the 7233 * predicate, if it's ecb->dte_action->dta_next it's 7234 * in action #1, and so on. 7235 */ 7236 for (err = ecb->dte_action, ndx = 0; 7237 err != act; err = err->dta_next, ndx++) 7238 continue; 7239 7240 dtrace_probe_error(state, ecb->dte_epid, ndx, 7241 (mstate.dtms_present & DTRACE_MSTATE_FLTOFFS) ? 7242 mstate.dtms_fltoffs : -1, DTRACE_FLAGS2FLT(*flags), 7243 cpu_core[cpuid].cpuc_dtrace_illval); 7244 7245 continue; 7246 } 7247 7248 if (!committed) 7249 buf->dtb_offset = offs + ecb->dte_size; 7250 } 7251 7252 end = dtrace_gethrtime(); 7253 if (vtime) 7254 curthread->t_dtrace_start = end; 7255 7256 CPU->cpu_dtrace_nsec += end - now; 7257 7258 dtrace_interrupt_enable(cookie); 7259 } 7260 7261 /* 7262 * DTrace Probe Hashing Functions 7263 * 7264 * The functions in this section (and indeed, the functions in remaining 7265 * sections) are not _called_ from probe context. (Any exceptions to this are 7266 * marked with a "Note:".) Rather, they are called from elsewhere in the 7267 * DTrace framework to look-up probes in, add probes to and remove probes from 7268 * the DTrace probe hashes. (Each probe is hashed by each element of the 7269 * probe tuple -- allowing for fast lookups, regardless of what was 7270 * specified.) 7271 */ 7272 static uint_t 7273 dtrace_hash_str(char *p) 7274 { 7275 unsigned int g; 7276 uint_t hval = 0; 7277 7278 while (*p) { 7279 hval = (hval << 4) + *p++; 7280 if ((g = (hval & 0xf0000000)) != 0) 7281 hval ^= g >> 24; 7282 hval &= ~g; 7283 } 7284 return (hval); 7285 } 7286 7287 static dtrace_hash_t * 7288 dtrace_hash_create(uintptr_t stroffs, uintptr_t nextoffs, uintptr_t prevoffs) 7289 { 7290 dtrace_hash_t *hash = kmem_zalloc(sizeof (dtrace_hash_t), KM_SLEEP); 7291 7292 hash->dth_stroffs = stroffs; 7293 hash->dth_nextoffs = nextoffs; 7294 hash->dth_prevoffs = prevoffs; 7295 7296 hash->dth_size = 1; 7297 hash->dth_mask = hash->dth_size - 1; 7298 7299 hash->dth_tab = kmem_zalloc(hash->dth_size * 7300 sizeof (dtrace_hashbucket_t *), KM_SLEEP); 7301 7302 return (hash); 7303 } 7304 7305 static void 7306 dtrace_hash_destroy(dtrace_hash_t *hash) 7307 { 7308 #ifdef DEBUG 7309 int i; 7310 7311 for (i = 0; i < hash->dth_size; i++) 7312 ASSERT(hash->dth_tab[i] == NULL); 7313 #endif 7314 7315 kmem_free(hash->dth_tab, 7316 hash->dth_size * sizeof (dtrace_hashbucket_t *)); 7317 kmem_free(hash, sizeof (dtrace_hash_t)); 7318 } 7319 7320 static void 7321 dtrace_hash_resize(dtrace_hash_t *hash) 7322 { 7323 int size = hash->dth_size, i, ndx; 7324 int new_size = hash->dth_size << 1; 7325 int new_mask = new_size - 1; 7326 dtrace_hashbucket_t **new_tab, *bucket, *next; 7327 7328 ASSERT((new_size & new_mask) == 0); 7329 7330 new_tab = kmem_zalloc(new_size * sizeof (void *), KM_SLEEP); 7331 7332 for (i = 0; i < size; i++) { 7333 for (bucket = hash->dth_tab[i]; bucket != NULL; bucket = next) { 7334 dtrace_probe_t *probe = bucket->dthb_chain; 7335 7336 ASSERT(probe != NULL); 7337 ndx = DTRACE_HASHSTR(hash, probe) & new_mask; 7338 7339 next = bucket->dthb_next; 7340 bucket->dthb_next = new_tab[ndx]; 7341 new_tab[ndx] = bucket; 7342 } 7343 } 7344 7345 kmem_free(hash->dth_tab, hash->dth_size * sizeof (void *)); 7346 hash->dth_tab = new_tab; 7347 hash->dth_size = new_size; 7348 hash->dth_mask = new_mask; 7349 } 7350 7351 static void 7352 dtrace_hash_add(dtrace_hash_t *hash, dtrace_probe_t *new) 7353 { 7354 int hashval = DTRACE_HASHSTR(hash, new); 7355 int ndx = hashval & hash->dth_mask; 7356 dtrace_hashbucket_t *bucket = hash->dth_tab[ndx]; 7357 dtrace_probe_t **nextp, **prevp; 7358 7359 for (; bucket != NULL; bucket = bucket->dthb_next) { 7360 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, new)) 7361 goto add; 7362 } 7363 7364 if ((hash->dth_nbuckets >> 1) > hash->dth_size) { 7365 dtrace_hash_resize(hash); 7366 dtrace_hash_add(hash, new); 7367 return; 7368 } 7369 7370 bucket = kmem_zalloc(sizeof (dtrace_hashbucket_t), KM_SLEEP); 7371 bucket->dthb_next = hash->dth_tab[ndx]; 7372 hash->dth_tab[ndx] = bucket; 7373 hash->dth_nbuckets++; 7374 7375 add: 7376 nextp = DTRACE_HASHNEXT(hash, new); 7377 ASSERT(*nextp == NULL && *(DTRACE_HASHPREV(hash, new)) == NULL); 7378 *nextp = bucket->dthb_chain; 7379 7380 if (bucket->dthb_chain != NULL) { 7381 prevp = DTRACE_HASHPREV(hash, bucket->dthb_chain); 7382 ASSERT(*prevp == NULL); 7383 *prevp = new; 7384 } 7385 7386 bucket->dthb_chain = new; 7387 bucket->dthb_len++; 7388 } 7389 7390 static dtrace_probe_t * 7391 dtrace_hash_lookup(dtrace_hash_t *hash, dtrace_probe_t *template) 7392 { 7393 int hashval = DTRACE_HASHSTR(hash, template); 7394 int ndx = hashval & hash->dth_mask; 7395 dtrace_hashbucket_t *bucket = hash->dth_tab[ndx]; 7396 7397 for (; bucket != NULL; bucket = bucket->dthb_next) { 7398 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template)) 7399 return (bucket->dthb_chain); 7400 } 7401 7402 return (NULL); 7403 } 7404 7405 static int 7406 dtrace_hash_collisions(dtrace_hash_t *hash, dtrace_probe_t *template) 7407 { 7408 int hashval = DTRACE_HASHSTR(hash, template); 7409 int ndx = hashval & hash->dth_mask; 7410 dtrace_hashbucket_t *bucket = hash->dth_tab[ndx]; 7411 7412 for (; bucket != NULL; bucket = bucket->dthb_next) { 7413 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template)) 7414 return (bucket->dthb_len); 7415 } 7416 7417 return (NULL); 7418 } 7419 7420 static void 7421 dtrace_hash_remove(dtrace_hash_t *hash, dtrace_probe_t *probe) 7422 { 7423 int ndx = DTRACE_HASHSTR(hash, probe) & hash->dth_mask; 7424 dtrace_hashbucket_t *bucket = hash->dth_tab[ndx]; 7425 7426 dtrace_probe_t **prevp = DTRACE_HASHPREV(hash, probe); 7427 dtrace_probe_t **nextp = DTRACE_HASHNEXT(hash, probe); 7428 7429 /* 7430 * Find the bucket that we're removing this probe from. 7431 */ 7432 for (; bucket != NULL; bucket = bucket->dthb_next) { 7433 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, probe)) 7434 break; 7435 } 7436 7437 ASSERT(bucket != NULL); 7438 7439 if (*prevp == NULL) { 7440 if (*nextp == NULL) { 7441 /* 7442 * The removed probe was the only probe on this 7443 * bucket; we need to remove the bucket. 7444 */ 7445 dtrace_hashbucket_t *b = hash->dth_tab[ndx]; 7446 7447 ASSERT(bucket->dthb_chain == probe); 7448 ASSERT(b != NULL); 7449 7450 if (b == bucket) { 7451 hash->dth_tab[ndx] = bucket->dthb_next; 7452 } else { 7453 while (b->dthb_next != bucket) 7454 b = b->dthb_next; 7455 b->dthb_next = bucket->dthb_next; 7456 } 7457 7458 ASSERT(hash->dth_nbuckets > 0); 7459 hash->dth_nbuckets--; 7460 kmem_free(bucket, sizeof (dtrace_hashbucket_t)); 7461 return; 7462 } 7463 7464 bucket->dthb_chain = *nextp; 7465 } else { 7466 *(DTRACE_HASHNEXT(hash, *prevp)) = *nextp; 7467 } 7468 7469 if (*nextp != NULL) 7470 *(DTRACE_HASHPREV(hash, *nextp)) = *prevp; 7471 } 7472 7473 /* 7474 * DTrace Utility Functions 7475 * 7476 * These are random utility functions that are _not_ called from probe context. 7477 */ 7478 static int 7479 dtrace_badattr(const dtrace_attribute_t *a) 7480 { 7481 return (a->dtat_name > DTRACE_STABILITY_MAX || 7482 a->dtat_data > DTRACE_STABILITY_MAX || 7483 a->dtat_class > DTRACE_CLASS_MAX); 7484 } 7485 7486 /* 7487 * Return a duplicate copy of a string. If the specified string is NULL, 7488 * this function returns a zero-length string. 7489 */ 7490 static char * 7491 dtrace_strdup(const char *str) 7492 { 7493 char *new = kmem_zalloc((str != NULL ? strlen(str) : 0) + 1, KM_SLEEP); 7494 7495 if (str != NULL) 7496 (void) strcpy(new, str); 7497 7498 return (new); 7499 } 7500 7501 #define DTRACE_ISALPHA(c) \ 7502 (((c) >= 'a' && (c) <= 'z') || ((c) >= 'A' && (c) <= 'Z')) 7503 7504 static int 7505 dtrace_badname(const char *s) 7506 { 7507 char c; 7508 7509 if (s == NULL || (c = *s++) == '\0') 7510 return (0); 7511 7512 if (!DTRACE_ISALPHA(c) && c != '-' && c != '_' && c != '.') 7513 return (1); 7514 7515 while ((c = *s++) != '\0') { 7516 if (!DTRACE_ISALPHA(c) && (c < '0' || c > '9') && 7517 c != '-' && c != '_' && c != '.' && c != '`') 7518 return (1); 7519 } 7520 7521 return (0); 7522 } 7523 7524 static void 7525 dtrace_cred2priv(cred_t *cr, uint32_t *privp, uid_t *uidp, zoneid_t *zoneidp) 7526 { 7527 uint32_t priv; 7528 7529 if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) { 7530 /* 7531 * For DTRACE_PRIV_ALL, the uid and zoneid don't matter. 7532 */ 7533 priv = DTRACE_PRIV_ALL; 7534 } else { 7535 *uidp = crgetuid(cr); 7536 *zoneidp = crgetzoneid(cr); 7537 7538 priv = 0; 7539 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE)) 7540 priv |= DTRACE_PRIV_KERNEL | DTRACE_PRIV_USER; 7541 else if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE)) 7542 priv |= DTRACE_PRIV_USER; 7543 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) 7544 priv |= DTRACE_PRIV_PROC; 7545 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) 7546 priv |= DTRACE_PRIV_OWNER; 7547 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) 7548 priv |= DTRACE_PRIV_ZONEOWNER; 7549 } 7550 7551 *privp = priv; 7552 } 7553 7554 #ifdef DTRACE_ERRDEBUG 7555 static void 7556 dtrace_errdebug(const char *str) 7557 { 7558 int hval = dtrace_hash_str((char *)str) % DTRACE_ERRHASHSZ; 7559 int occupied = 0; 7560 7561 mutex_enter(&dtrace_errlock); 7562 dtrace_errlast = str; 7563 dtrace_errthread = curthread; 7564 7565 while (occupied++ < DTRACE_ERRHASHSZ) { 7566 if (dtrace_errhash[hval].dter_msg == str) { 7567 dtrace_errhash[hval].dter_count++; 7568 goto out; 7569 } 7570 7571 if (dtrace_errhash[hval].dter_msg != NULL) { 7572 hval = (hval + 1) % DTRACE_ERRHASHSZ; 7573 continue; 7574 } 7575 7576 dtrace_errhash[hval].dter_msg = str; 7577 dtrace_errhash[hval].dter_count = 1; 7578 goto out; 7579 } 7580 7581 panic("dtrace: undersized error hash"); 7582 out: 7583 mutex_exit(&dtrace_errlock); 7584 } 7585 #endif 7586 7587 /* 7588 * DTrace Matching Functions 7589 * 7590 * These functions are used to match groups of probes, given some elements of 7591 * a probe tuple, or some globbed expressions for elements of a probe tuple. 7592 */ 7593 static int 7594 dtrace_match_priv(const dtrace_probe_t *prp, uint32_t priv, uid_t uid, 7595 zoneid_t zoneid) 7596 { 7597 if (priv != DTRACE_PRIV_ALL) { 7598 uint32_t ppriv = prp->dtpr_provider->dtpv_priv.dtpp_flags; 7599 uint32_t match = priv & ppriv; 7600 7601 /* 7602 * No PRIV_DTRACE_* privileges... 7603 */ 7604 if ((priv & (DTRACE_PRIV_PROC | DTRACE_PRIV_USER | 7605 DTRACE_PRIV_KERNEL)) == 0) 7606 return (0); 7607 7608 /* 7609 * No matching bits, but there were bits to match... 7610 */ 7611 if (match == 0 && ppriv != 0) 7612 return (0); 7613 7614 /* 7615 * Need to have permissions to the process, but don't... 7616 */ 7617 if (((ppriv & ~match) & DTRACE_PRIV_OWNER) != 0 && 7618 uid != prp->dtpr_provider->dtpv_priv.dtpp_uid) { 7619 return (0); 7620 } 7621 7622 /* 7623 * Need to be in the same zone unless we possess the 7624 * privilege to examine all zones. 7625 */ 7626 if (((ppriv & ~match) & DTRACE_PRIV_ZONEOWNER) != 0 && 7627 zoneid != prp->dtpr_provider->dtpv_priv.dtpp_zoneid) { 7628 return (0); 7629 } 7630 } 7631 7632 return (1); 7633 } 7634 7635 /* 7636 * dtrace_match_probe compares a dtrace_probe_t to a pre-compiled key, which 7637 * consists of input pattern strings and an ops-vector to evaluate them. 7638 * This function returns >0 for match, 0 for no match, and <0 for error. 7639 */ 7640 static int 7641 dtrace_match_probe(const dtrace_probe_t *prp, const dtrace_probekey_t *pkp, 7642 uint32_t priv, uid_t uid, zoneid_t zoneid) 7643 { 7644 dtrace_provider_t *pvp = prp->dtpr_provider; 7645 int rv; 7646 7647 if (pvp->dtpv_defunct) 7648 return (0); 7649 7650 if ((rv = pkp->dtpk_pmatch(pvp->dtpv_name, pkp->dtpk_prov, 0)) <= 0) 7651 return (rv); 7652 7653 if ((rv = pkp->dtpk_mmatch(prp->dtpr_mod, pkp->dtpk_mod, 0)) <= 0) 7654 return (rv); 7655 7656 if ((rv = pkp->dtpk_fmatch(prp->dtpr_func, pkp->dtpk_func, 0)) <= 0) 7657 return (rv); 7658 7659 if ((rv = pkp->dtpk_nmatch(prp->dtpr_name, pkp->dtpk_name, 0)) <= 0) 7660 return (rv); 7661 7662 if (dtrace_match_priv(prp, priv, uid, zoneid) == 0) 7663 return (0); 7664 7665 return (rv); 7666 } 7667 7668 /* 7669 * dtrace_match_glob() is a safe kernel implementation of the gmatch(3GEN) 7670 * interface for matching a glob pattern 'p' to an input string 's'. Unlike 7671 * libc's version, the kernel version only applies to 8-bit ASCII strings. 7672 * In addition, all of the recursion cases except for '*' matching have been 7673 * unwound. For '*', we still implement recursive evaluation, but a depth 7674 * counter is maintained and matching is aborted if we recurse too deep. 7675 * The function returns 0 if no match, >0 if match, and <0 if recursion error. 7676 */ 7677 static int 7678 dtrace_match_glob(const char *s, const char *p, int depth) 7679 { 7680 const char *olds; 7681 char s1, c; 7682 int gs; 7683 7684 if (depth > DTRACE_PROBEKEY_MAXDEPTH) 7685 return (-1); 7686 7687 if (s == NULL) 7688 s = ""; /* treat NULL as empty string */ 7689 7690 top: 7691 olds = s; 7692 s1 = *s++; 7693 7694 if (p == NULL) 7695 return (0); 7696 7697 if ((c = *p++) == '\0') 7698 return (s1 == '\0'); 7699 7700 switch (c) { 7701 case '[': { 7702 int ok = 0, notflag = 0; 7703 char lc = '\0'; 7704 7705 if (s1 == '\0') 7706 return (0); 7707 7708 if (*p == '!') { 7709 notflag = 1; 7710 p++; 7711 } 7712 7713 if ((c = *p++) == '\0') 7714 return (0); 7715 7716 do { 7717 if (c == '-' && lc != '\0' && *p != ']') { 7718 if ((c = *p++) == '\0') 7719 return (0); 7720 if (c == '\\' && (c = *p++) == '\0') 7721 return (0); 7722 7723 if (notflag) { 7724 if (s1 < lc || s1 > c) 7725 ok++; 7726 else 7727 return (0); 7728 } else if (lc <= s1 && s1 <= c) 7729 ok++; 7730 7731 } else if (c == '\\' && (c = *p++) == '\0') 7732 return (0); 7733 7734 lc = c; /* save left-hand 'c' for next iteration */ 7735 7736 if (notflag) { 7737 if (s1 != c) 7738 ok++; 7739 else 7740 return (0); 7741 } else if (s1 == c) 7742 ok++; 7743 7744 if ((c = *p++) == '\0') 7745 return (0); 7746 7747 } while (c != ']'); 7748 7749 if (ok) 7750 goto top; 7751 7752 return (0); 7753 } 7754 7755 case '\\': 7756 if ((c = *p++) == '\0') 7757 return (0); 7758 /*FALLTHRU*/ 7759 7760 default: 7761 if (c != s1) 7762 return (0); 7763 /*FALLTHRU*/ 7764 7765 case '?': 7766 if (s1 != '\0') 7767 goto top; 7768 return (0); 7769 7770 case '*': 7771 while (*p == '*') 7772 p++; /* consecutive *'s are identical to a single one */ 7773 7774 if (*p == '\0') 7775 return (1); 7776 7777 for (s = olds; *s != '\0'; s++) { 7778 if ((gs = dtrace_match_glob(s, p, depth + 1)) != 0) 7779 return (gs); 7780 } 7781 7782 return (0); 7783 } 7784 } 7785 7786 /*ARGSUSED*/ 7787 static int 7788 dtrace_match_string(const char *s, const char *p, int depth) 7789 { 7790 return (s != NULL && strcmp(s, p) == 0); 7791 } 7792 7793 /*ARGSUSED*/ 7794 static int 7795 dtrace_match_nul(const char *s, const char *p, int depth) 7796 { 7797 return (1); /* always match the empty pattern */ 7798 } 7799 7800 /*ARGSUSED*/ 7801 static int 7802 dtrace_match_nonzero(const char *s, const char *p, int depth) 7803 { 7804 return (s != NULL && s[0] != '\0'); 7805 } 7806 7807 static int 7808 dtrace_match(const dtrace_probekey_t *pkp, uint32_t priv, uid_t uid, 7809 zoneid_t zoneid, int (*matched)(dtrace_probe_t *, void *), void *arg) 7810 { 7811 dtrace_probe_t template, *probe; 7812 dtrace_hash_t *hash = NULL; 7813 int len, rc, best = INT_MAX, nmatched = 0; 7814 dtrace_id_t i; 7815 7816 ASSERT(MUTEX_HELD(&dtrace_lock)); 7817 7818 /* 7819 * If the probe ID is specified in the key, just lookup by ID and 7820 * invoke the match callback once if a matching probe is found. 7821 */ 7822 if (pkp->dtpk_id != DTRACE_IDNONE) { 7823 if ((probe = dtrace_probe_lookup_id(pkp->dtpk_id)) != NULL && 7824 dtrace_match_probe(probe, pkp, priv, uid, zoneid) > 0) { 7825 if ((*matched)(probe, arg) == DTRACE_MATCH_FAIL) 7826 return (DTRACE_MATCH_FAIL); 7827 nmatched++; 7828 } 7829 return (nmatched); 7830 } 7831 7832 template.dtpr_mod = (char *)pkp->dtpk_mod; 7833 template.dtpr_func = (char *)pkp->dtpk_func; 7834 template.dtpr_name = (char *)pkp->dtpk_name; 7835 7836 /* 7837 * We want to find the most distinct of the module name, function 7838 * name, and name. So for each one that is not a glob pattern or 7839 * empty string, we perform a lookup in the corresponding hash and 7840 * use the hash table with the fewest collisions to do our search. 7841 */ 7842 if (pkp->dtpk_mmatch == &dtrace_match_string && 7843 (len = dtrace_hash_collisions(dtrace_bymod, &template)) < best) { 7844 best = len; 7845 hash = dtrace_bymod; 7846 } 7847 7848 if (pkp->dtpk_fmatch == &dtrace_match_string && 7849 (len = dtrace_hash_collisions(dtrace_byfunc, &template)) < best) { 7850 best = len; 7851 hash = dtrace_byfunc; 7852 } 7853 7854 if (pkp->dtpk_nmatch == &dtrace_match_string && 7855 (len = dtrace_hash_collisions(dtrace_byname, &template)) < best) { 7856 best = len; 7857 hash = dtrace_byname; 7858 } 7859 7860 /* 7861 * If we did not select a hash table, iterate over every probe and 7862 * invoke our callback for each one that matches our input probe key. 7863 */ 7864 if (hash == NULL) { 7865 for (i = 0; i < dtrace_nprobes; i++) { 7866 if ((probe = dtrace_probes[i]) == NULL || 7867 dtrace_match_probe(probe, pkp, priv, uid, 7868 zoneid) <= 0) 7869 continue; 7870 7871 nmatched++; 7872 7873 if ((rc = (*matched)(probe, arg)) != 7874 DTRACE_MATCH_NEXT) { 7875 if (rc == DTRACE_MATCH_FAIL) 7876 return (DTRACE_MATCH_FAIL); 7877 break; 7878 } 7879 } 7880 7881 return (nmatched); 7882 } 7883 7884 /* 7885 * If we selected a hash table, iterate over each probe of the same key 7886 * name and invoke the callback for every probe that matches the other 7887 * attributes of our input probe key. 7888 */ 7889 for (probe = dtrace_hash_lookup(hash, &template); probe != NULL; 7890 probe = *(DTRACE_HASHNEXT(hash, probe))) { 7891 7892 if (dtrace_match_probe(probe, pkp, priv, uid, zoneid) <= 0) 7893 continue; 7894 7895 nmatched++; 7896 7897 if ((rc = (*matched)(probe, arg)) != DTRACE_MATCH_NEXT) { 7898 if (rc == DTRACE_MATCH_FAIL) 7899 return (DTRACE_MATCH_FAIL); 7900 break; 7901 } 7902 } 7903 7904 return (nmatched); 7905 } 7906 7907 /* 7908 * Return the function pointer dtrace_probecmp() should use to compare the 7909 * specified pattern with a string. For NULL or empty patterns, we select 7910 * dtrace_match_nul(). For glob pattern strings, we use dtrace_match_glob(). 7911 * For non-empty non-glob strings, we use dtrace_match_string(). 7912 */ 7913 static dtrace_probekey_f * 7914 dtrace_probekey_func(const char *p) 7915 { 7916 char c; 7917 7918 if (p == NULL || *p == '\0') 7919 return (&dtrace_match_nul); 7920 7921 while ((c = *p++) != '\0') { 7922 if (c == '[' || c == '?' || c == '*' || c == '\\') 7923 return (&dtrace_match_glob); 7924 } 7925 7926 return (&dtrace_match_string); 7927 } 7928 7929 /* 7930 * Build a probe comparison key for use with dtrace_match_probe() from the 7931 * given probe description. By convention, a null key only matches anchored 7932 * probes: if each field is the empty string, reset dtpk_fmatch to 7933 * dtrace_match_nonzero(). 7934 */ 7935 static void 7936 dtrace_probekey(const dtrace_probedesc_t *pdp, dtrace_probekey_t *pkp) 7937 { 7938 pkp->dtpk_prov = pdp->dtpd_provider; 7939 pkp->dtpk_pmatch = dtrace_probekey_func(pdp->dtpd_provider); 7940 7941 pkp->dtpk_mod = pdp->dtpd_mod; 7942 pkp->dtpk_mmatch = dtrace_probekey_func(pdp->dtpd_mod); 7943 7944 pkp->dtpk_func = pdp->dtpd_func; 7945 pkp->dtpk_fmatch = dtrace_probekey_func(pdp->dtpd_func); 7946 7947 pkp->dtpk_name = pdp->dtpd_name; 7948 pkp->dtpk_nmatch = dtrace_probekey_func(pdp->dtpd_name); 7949 7950 pkp->dtpk_id = pdp->dtpd_id; 7951 7952 if (pkp->dtpk_id == DTRACE_IDNONE && 7953 pkp->dtpk_pmatch == &dtrace_match_nul && 7954 pkp->dtpk_mmatch == &dtrace_match_nul && 7955 pkp->dtpk_fmatch == &dtrace_match_nul && 7956 pkp->dtpk_nmatch == &dtrace_match_nul) 7957 pkp->dtpk_fmatch = &dtrace_match_nonzero; 7958 } 7959 7960 /* 7961 * DTrace Provider-to-Framework API Functions 7962 * 7963 * These functions implement much of the Provider-to-Framework API, as 7964 * described in <sys/dtrace.h>. The parts of the API not in this section are 7965 * the functions in the API for probe management (found below), and 7966 * dtrace_probe() itself (found above). 7967 */ 7968 7969 /* 7970 * Register the calling provider with the DTrace framework. This should 7971 * generally be called by DTrace providers in their attach(9E) entry point. 7972 */ 7973 int 7974 dtrace_register(const char *name, const dtrace_pattr_t *pap, uint32_t priv, 7975 cred_t *cr, const dtrace_pops_t *pops, void *arg, dtrace_provider_id_t *idp) 7976 { 7977 dtrace_provider_t *provider; 7978 7979 if (name == NULL || pap == NULL || pops == NULL || idp == NULL) { 7980 cmn_err(CE_WARN, "failed to register provider '%s': invalid " 7981 "arguments", name ? name : "<NULL>"); 7982 return (EINVAL); 7983 } 7984 7985 if (name[0] == '\0' || dtrace_badname(name)) { 7986 cmn_err(CE_WARN, "failed to register provider '%s': invalid " 7987 "provider name", name); 7988 return (EINVAL); 7989 } 7990 7991 if ((pops->dtps_provide == NULL && pops->dtps_provide_module == NULL) || 7992 pops->dtps_enable == NULL || pops->dtps_disable == NULL || 7993 pops->dtps_destroy == NULL || 7994 ((pops->dtps_resume == NULL) != (pops->dtps_suspend == NULL))) { 7995 cmn_err(CE_WARN, "failed to register provider '%s': invalid " 7996 "provider ops", name); 7997 return (EINVAL); 7998 } 7999 8000 if (dtrace_badattr(&pap->dtpa_provider) || 8001 dtrace_badattr(&pap->dtpa_mod) || 8002 dtrace_badattr(&pap->dtpa_func) || 8003 dtrace_badattr(&pap->dtpa_name) || 8004 dtrace_badattr(&pap->dtpa_args)) { 8005 cmn_err(CE_WARN, "failed to register provider '%s': invalid " 8006 "provider attributes", name); 8007 return (EINVAL); 8008 } 8009 8010 if (priv & ~DTRACE_PRIV_ALL) { 8011 cmn_err(CE_WARN, "failed to register provider '%s': invalid " 8012 "privilege attributes", name); 8013 return (EINVAL); 8014 } 8015 8016 if ((priv & DTRACE_PRIV_KERNEL) && 8017 (priv & (DTRACE_PRIV_USER | DTRACE_PRIV_OWNER)) && 8018 pops->dtps_mode == NULL) { 8019 cmn_err(CE_WARN, "failed to register provider '%s': need " 8020 "dtps_mode() op for given privilege attributes", name); 8021 return (EINVAL); 8022 } 8023 8024 provider = kmem_zalloc(sizeof (dtrace_provider_t), KM_SLEEP); 8025 provider->dtpv_name = kmem_alloc(strlen(name) + 1, KM_SLEEP); 8026 (void) strcpy(provider->dtpv_name, name); 8027 8028 provider->dtpv_attr = *pap; 8029 provider->dtpv_priv.dtpp_flags = priv; 8030 if (cr != NULL) { 8031 provider->dtpv_priv.dtpp_uid = crgetuid(cr); 8032 provider->dtpv_priv.dtpp_zoneid = crgetzoneid(cr); 8033 } 8034 provider->dtpv_pops = *pops; 8035 8036 if (pops->dtps_provide == NULL) { 8037 ASSERT(pops->dtps_provide_module != NULL); 8038 provider->dtpv_pops.dtps_provide = 8039 (void (*)(void *, const dtrace_probedesc_t *))dtrace_nullop; 8040 } 8041 8042 if (pops->dtps_provide_module == NULL) { 8043 ASSERT(pops->dtps_provide != NULL); 8044 provider->dtpv_pops.dtps_provide_module = 8045 (void (*)(void *, struct modctl *))dtrace_nullop; 8046 } 8047 8048 if (pops->dtps_suspend == NULL) { 8049 ASSERT(pops->dtps_resume == NULL); 8050 provider->dtpv_pops.dtps_suspend = 8051 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop; 8052 provider->dtpv_pops.dtps_resume = 8053 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop; 8054 } 8055 8056 provider->dtpv_arg = arg; 8057 *idp = (dtrace_provider_id_t)provider; 8058 8059 if (pops == &dtrace_provider_ops) { 8060 ASSERT(MUTEX_HELD(&dtrace_provider_lock)); 8061 ASSERT(MUTEX_HELD(&dtrace_lock)); 8062 ASSERT(dtrace_anon.dta_enabling == NULL); 8063 8064 /* 8065 * We make sure that the DTrace provider is at the head of 8066 * the provider chain. 8067 */ 8068 provider->dtpv_next = dtrace_provider; 8069 dtrace_provider = provider; 8070 return (0); 8071 } 8072 8073 mutex_enter(&dtrace_provider_lock); 8074 mutex_enter(&dtrace_lock); 8075 8076 /* 8077 * If there is at least one provider registered, we'll add this 8078 * provider after the first provider. 8079 */ 8080 if (dtrace_provider != NULL) { 8081 provider->dtpv_next = dtrace_provider->dtpv_next; 8082 dtrace_provider->dtpv_next = provider; 8083 } else { 8084 dtrace_provider = provider; 8085 } 8086 8087 if (dtrace_retained != NULL) { 8088 dtrace_enabling_provide(provider); 8089 8090 /* 8091 * Now we need to call dtrace_enabling_matchall() -- which 8092 * will acquire cpu_lock and dtrace_lock. We therefore need 8093 * to drop all of our locks before calling into it... 8094 */ 8095 mutex_exit(&dtrace_lock); 8096 mutex_exit(&dtrace_provider_lock); 8097 dtrace_enabling_matchall(); 8098 8099 return (0); 8100 } 8101 8102 mutex_exit(&dtrace_lock); 8103 mutex_exit(&dtrace_provider_lock); 8104 8105 return (0); 8106 } 8107 8108 /* 8109 * Unregister the specified provider from the DTrace framework. This should 8110 * generally be called by DTrace providers in their detach(9E) entry point. 8111 */ 8112 int 8113 dtrace_unregister(dtrace_provider_id_t id) 8114 { 8115 dtrace_provider_t *old = (dtrace_provider_t *)id; 8116 dtrace_provider_t *prev = NULL; 8117 int i, self = 0, noreap = 0; 8118 dtrace_probe_t *probe, *first = NULL; 8119 8120 if (old->dtpv_pops.dtps_enable == 8121 (int (*)(void *, dtrace_id_t, void *))dtrace_enable_nullop) { 8122 /* 8123 * If DTrace itself is the provider, we're called with locks 8124 * already held. 8125 */ 8126 ASSERT(old == dtrace_provider); 8127 ASSERT(dtrace_devi != NULL); 8128 ASSERT(MUTEX_HELD(&dtrace_provider_lock)); 8129 ASSERT(MUTEX_HELD(&dtrace_lock)); 8130 self = 1; 8131 8132 if (dtrace_provider->dtpv_next != NULL) { 8133 /* 8134 * There's another provider here; return failure. 8135 */ 8136 return (EBUSY); 8137 } 8138 } else { 8139 mutex_enter(&dtrace_provider_lock); 8140 mutex_enter(&mod_lock); 8141 mutex_enter(&dtrace_lock); 8142 } 8143 8144 /* 8145 * If anyone has /dev/dtrace open, or if there are anonymous enabled 8146 * probes, we refuse to let providers slither away, unless this 8147 * provider has already been explicitly invalidated. 8148 */ 8149 if (!old->dtpv_defunct && 8150 (dtrace_opens || (dtrace_anon.dta_state != NULL && 8151 dtrace_anon.dta_state->dts_necbs > 0))) { 8152 if (!self) { 8153 mutex_exit(&dtrace_lock); 8154 mutex_exit(&mod_lock); 8155 mutex_exit(&dtrace_provider_lock); 8156 } 8157 return (EBUSY); 8158 } 8159 8160 /* 8161 * Attempt to destroy the probes associated with this provider. 8162 */ 8163 for (i = 0; i < dtrace_nprobes; i++) { 8164 if ((probe = dtrace_probes[i]) == NULL) 8165 continue; 8166 8167 if (probe->dtpr_provider != old) 8168 continue; 8169 8170 if (probe->dtpr_ecb == NULL) 8171 continue; 8172 8173 /* 8174 * If we are trying to unregister a defunct provider, and the 8175 * provider was made defunct within the interval dictated by 8176 * dtrace_unregister_defunct_reap, we'll (asynchronously) 8177 * attempt to reap our enablings. To denote that the provider 8178 * should reattempt to unregister itself at some point in the 8179 * future, we will return a differentiable error code (EAGAIN 8180 * instead of EBUSY) in this case. 8181 */ 8182 if (dtrace_gethrtime() - old->dtpv_defunct > 8183 dtrace_unregister_defunct_reap) 8184 noreap = 1; 8185 8186 if (!self) { 8187 mutex_exit(&dtrace_lock); 8188 mutex_exit(&mod_lock); 8189 mutex_exit(&dtrace_provider_lock); 8190 } 8191 8192 if (noreap) 8193 return (EBUSY); 8194 8195 (void) taskq_dispatch(dtrace_taskq, 8196 (task_func_t *)dtrace_enabling_reap, NULL, TQ_SLEEP); 8197 8198 return (EAGAIN); 8199 } 8200 8201 /* 8202 * All of the probes for this provider are disabled; we can safely 8203 * remove all of them from their hash chains and from the probe array. 8204 */ 8205 for (i = 0; i < dtrace_nprobes; i++) { 8206 if ((probe = dtrace_probes[i]) == NULL) 8207 continue; 8208 8209 if (probe->dtpr_provider != old) 8210 continue; 8211 8212 dtrace_probes[i] = NULL; 8213 8214 dtrace_hash_remove(dtrace_bymod, probe); 8215 dtrace_hash_remove(dtrace_byfunc, probe); 8216 dtrace_hash_remove(dtrace_byname, probe); 8217 8218 if (first == NULL) { 8219 first = probe; 8220 probe->dtpr_nextmod = NULL; 8221 } else { 8222 probe->dtpr_nextmod = first; 8223 first = probe; 8224 } 8225 } 8226 8227 /* 8228 * The provider's probes have been removed from the hash chains and 8229 * from the probe array. Now issue a dtrace_sync() to be sure that 8230 * everyone has cleared out from any probe array processing. 8231 */ 8232 dtrace_sync(); 8233 8234 for (probe = first; probe != NULL; probe = first) { 8235 first = probe->dtpr_nextmod; 8236 8237 old->dtpv_pops.dtps_destroy(old->dtpv_arg, probe->dtpr_id, 8238 probe->dtpr_arg); 8239 kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1); 8240 kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1); 8241 kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1); 8242 vmem_free(dtrace_arena, (void *)(uintptr_t)(probe->dtpr_id), 1); 8243 kmem_free(probe, sizeof (dtrace_probe_t)); 8244 } 8245 8246 if ((prev = dtrace_provider) == old) { 8247 ASSERT(self || dtrace_devi == NULL); 8248 ASSERT(old->dtpv_next == NULL || dtrace_devi == NULL); 8249 dtrace_provider = old->dtpv_next; 8250 } else { 8251 while (prev != NULL && prev->dtpv_next != old) 8252 prev = prev->dtpv_next; 8253 8254 if (prev == NULL) { 8255 panic("attempt to unregister non-existent " 8256 "dtrace provider %p\n", (void *)id); 8257 } 8258 8259 prev->dtpv_next = old->dtpv_next; 8260 } 8261 8262 if (!self) { 8263 mutex_exit(&dtrace_lock); 8264 mutex_exit(&mod_lock); 8265 mutex_exit(&dtrace_provider_lock); 8266 } 8267 8268 kmem_free(old->dtpv_name, strlen(old->dtpv_name) + 1); 8269 kmem_free(old, sizeof (dtrace_provider_t)); 8270 8271 return (0); 8272 } 8273 8274 /* 8275 * Invalidate the specified provider. All subsequent probe lookups for the 8276 * specified provider will fail, but its probes will not be removed. 8277 */ 8278 void 8279 dtrace_invalidate(dtrace_provider_id_t id) 8280 { 8281 dtrace_provider_t *pvp = (dtrace_provider_t *)id; 8282 8283 ASSERT(pvp->dtpv_pops.dtps_enable != 8284 (int (*)(void *, dtrace_id_t, void *))dtrace_enable_nullop); 8285 8286 mutex_enter(&dtrace_provider_lock); 8287 mutex_enter(&dtrace_lock); 8288 8289 pvp->dtpv_defunct = dtrace_gethrtime(); 8290 8291 mutex_exit(&dtrace_lock); 8292 mutex_exit(&dtrace_provider_lock); 8293 } 8294 8295 /* 8296 * Indicate whether or not DTrace has attached. 8297 */ 8298 int 8299 dtrace_attached(void) 8300 { 8301 /* 8302 * dtrace_provider will be non-NULL iff the DTrace driver has 8303 * attached. (It's non-NULL because DTrace is always itself a 8304 * provider.) 8305 */ 8306 return (dtrace_provider != NULL); 8307 } 8308 8309 /* 8310 * Remove all the unenabled probes for the given provider. This function is 8311 * not unlike dtrace_unregister(), except that it doesn't remove the provider 8312 * -- just as many of its associated probes as it can. 8313 */ 8314 int 8315 dtrace_condense(dtrace_provider_id_t id) 8316 { 8317 dtrace_provider_t *prov = (dtrace_provider_t *)id; 8318 int i; 8319 dtrace_probe_t *probe; 8320 8321 /* 8322 * Make sure this isn't the dtrace provider itself. 8323 */ 8324 ASSERT(prov->dtpv_pops.dtps_enable != 8325 (int (*)(void *, dtrace_id_t, void *))dtrace_enable_nullop); 8326 8327 mutex_enter(&dtrace_provider_lock); 8328 mutex_enter(&dtrace_lock); 8329 8330 /* 8331 * Attempt to destroy the probes associated with this provider. 8332 */ 8333 for (i = 0; i < dtrace_nprobes; i++) { 8334 if ((probe = dtrace_probes[i]) == NULL) 8335 continue; 8336 8337 if (probe->dtpr_provider != prov) 8338 continue; 8339 8340 if (probe->dtpr_ecb != NULL) 8341 continue; 8342 8343 dtrace_probes[i] = NULL; 8344 8345 dtrace_hash_remove(dtrace_bymod, probe); 8346 dtrace_hash_remove(dtrace_byfunc, probe); 8347 dtrace_hash_remove(dtrace_byname, probe); 8348 8349 prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, i + 1, 8350 probe->dtpr_arg); 8351 kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1); 8352 kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1); 8353 kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1); 8354 kmem_free(probe, sizeof (dtrace_probe_t)); 8355 vmem_free(dtrace_arena, (void *)((uintptr_t)i + 1), 1); 8356 } 8357 8358 mutex_exit(&dtrace_lock); 8359 mutex_exit(&dtrace_provider_lock); 8360 8361 return (0); 8362 } 8363 8364 /* 8365 * DTrace Probe Management Functions 8366 * 8367 * The functions in this section perform the DTrace probe management, 8368 * including functions to create probes, look-up probes, and call into the 8369 * providers to request that probes be provided. Some of these functions are 8370 * in the Provider-to-Framework API; these functions can be identified by the 8371 * fact that they are not declared "static". 8372 */ 8373 8374 /* 8375 * Create a probe with the specified module name, function name, and name. 8376 */ 8377 dtrace_id_t 8378 dtrace_probe_create(dtrace_provider_id_t prov, const char *mod, 8379 const char *func, const char *name, int aframes, void *arg) 8380 { 8381 dtrace_probe_t *probe, **probes; 8382 dtrace_provider_t *provider = (dtrace_provider_t *)prov; 8383 dtrace_id_t id; 8384 8385 if (provider == dtrace_provider) { 8386 ASSERT(MUTEX_HELD(&dtrace_lock)); 8387 } else { 8388 mutex_enter(&dtrace_lock); 8389 } 8390 8391 id = (dtrace_id_t)(uintptr_t)vmem_alloc(dtrace_arena, 1, 8392 VM_BESTFIT | VM_SLEEP); 8393 probe = kmem_zalloc(sizeof (dtrace_probe_t), KM_SLEEP); 8394 8395 probe->dtpr_id = id; 8396 probe->dtpr_gen = dtrace_probegen++; 8397 probe->dtpr_mod = dtrace_strdup(mod); 8398 probe->dtpr_func = dtrace_strdup(func); 8399 probe->dtpr_name = dtrace_strdup(name); 8400 probe->dtpr_arg = arg; 8401 probe->dtpr_aframes = aframes; 8402 probe->dtpr_provider = provider; 8403 8404 dtrace_hash_add(dtrace_bymod, probe); 8405 dtrace_hash_add(dtrace_byfunc, probe); 8406 dtrace_hash_add(dtrace_byname, probe); 8407 8408 if (id - 1 >= dtrace_nprobes) { 8409 size_t osize = dtrace_nprobes * sizeof (dtrace_probe_t *); 8410 size_t nsize = osize << 1; 8411 8412 if (nsize == 0) { 8413 ASSERT(osize == 0); 8414 ASSERT(dtrace_probes == NULL); 8415 nsize = sizeof (dtrace_probe_t *); 8416 } 8417 8418 probes = kmem_zalloc(nsize, KM_SLEEP); 8419 8420 if (dtrace_probes == NULL) { 8421 ASSERT(osize == 0); 8422 dtrace_probes = probes; 8423 dtrace_nprobes = 1; 8424 } else { 8425 dtrace_probe_t **oprobes = dtrace_probes; 8426 8427 bcopy(oprobes, probes, osize); 8428 dtrace_membar_producer(); 8429 dtrace_probes = probes; 8430 8431 dtrace_sync(); 8432 8433 /* 8434 * All CPUs are now seeing the new probes array; we can 8435 * safely free the old array. 8436 */ 8437 kmem_free(oprobes, osize); 8438 dtrace_nprobes <<= 1; 8439 } 8440 8441 ASSERT(id - 1 < dtrace_nprobes); 8442 } 8443 8444 ASSERT(dtrace_probes[id - 1] == NULL); 8445 dtrace_probes[id - 1] = probe; 8446 8447 if (provider != dtrace_provider) 8448 mutex_exit(&dtrace_lock); 8449 8450 return (id); 8451 } 8452 8453 static dtrace_probe_t * 8454 dtrace_probe_lookup_id(dtrace_id_t id) 8455 { 8456 ASSERT(MUTEX_HELD(&dtrace_lock)); 8457 8458 if (id == 0 || id > dtrace_nprobes) 8459 return (NULL); 8460 8461 return (dtrace_probes[id - 1]); 8462 } 8463 8464 static int 8465 dtrace_probe_lookup_match(dtrace_probe_t *probe, void *arg) 8466 { 8467 *((dtrace_id_t *)arg) = probe->dtpr_id; 8468 8469 return (DTRACE_MATCH_DONE); 8470 } 8471 8472 /* 8473 * Look up a probe based on provider and one or more of module name, function 8474 * name and probe name. 8475 */ 8476 dtrace_id_t 8477 dtrace_probe_lookup(dtrace_provider_id_t prid, const char *mod, 8478 const char *func, const char *name) 8479 { 8480 dtrace_probekey_t pkey; 8481 dtrace_id_t id; 8482 int match; 8483 8484 pkey.dtpk_prov = ((dtrace_provider_t *)prid)->dtpv_name; 8485 pkey.dtpk_pmatch = &dtrace_match_string; 8486 pkey.dtpk_mod = mod; 8487 pkey.dtpk_mmatch = mod ? &dtrace_match_string : &dtrace_match_nul; 8488 pkey.dtpk_func = func; 8489 pkey.dtpk_fmatch = func ? &dtrace_match_string : &dtrace_match_nul; 8490 pkey.dtpk_name = name; 8491 pkey.dtpk_nmatch = name ? &dtrace_match_string : &dtrace_match_nul; 8492 pkey.dtpk_id = DTRACE_IDNONE; 8493 8494 mutex_enter(&dtrace_lock); 8495 match = dtrace_match(&pkey, DTRACE_PRIV_ALL, 0, 0, 8496 dtrace_probe_lookup_match, &id); 8497 mutex_exit(&dtrace_lock); 8498 8499 ASSERT(match == 1 || match == 0); 8500 return (match ? id : 0); 8501 } 8502 8503 /* 8504 * Returns the probe argument associated with the specified probe. 8505 */ 8506 void * 8507 dtrace_probe_arg(dtrace_provider_id_t id, dtrace_id_t pid) 8508 { 8509 dtrace_probe_t *probe; 8510 void *rval = NULL; 8511 8512 mutex_enter(&dtrace_lock); 8513 8514 if ((probe = dtrace_probe_lookup_id(pid)) != NULL && 8515 probe->dtpr_provider == (dtrace_provider_t *)id) 8516 rval = probe->dtpr_arg; 8517 8518 mutex_exit(&dtrace_lock); 8519 8520 return (rval); 8521 } 8522 8523 /* 8524 * Copy a probe into a probe description. 8525 */ 8526 static void 8527 dtrace_probe_description(const dtrace_probe_t *prp, dtrace_probedesc_t *pdp) 8528 { 8529 bzero(pdp, sizeof (dtrace_probedesc_t)); 8530 pdp->dtpd_id = prp->dtpr_id; 8531 8532 (void) strncpy(pdp->dtpd_provider, 8533 prp->dtpr_provider->dtpv_name, DTRACE_PROVNAMELEN - 1); 8534 8535 (void) strncpy(pdp->dtpd_mod, prp->dtpr_mod, DTRACE_MODNAMELEN - 1); 8536 (void) strncpy(pdp->dtpd_func, prp->dtpr_func, DTRACE_FUNCNAMELEN - 1); 8537 (void) strncpy(pdp->dtpd_name, prp->dtpr_name, DTRACE_NAMELEN - 1); 8538 } 8539 8540 /* 8541 * Called to indicate that a probe -- or probes -- should be provided by a 8542 * specfied provider. If the specified description is NULL, the provider will 8543 * be told to provide all of its probes. (This is done whenever a new 8544 * consumer comes along, or whenever a retained enabling is to be matched.) If 8545 * the specified description is non-NULL, the provider is given the 8546 * opportunity to dynamically provide the specified probe, allowing providers 8547 * to support the creation of probes on-the-fly. (So-called _autocreated_ 8548 * probes.) If the provider is NULL, the operations will be applied to all 8549 * providers; if the provider is non-NULL the operations will only be applied 8550 * to the specified provider. The dtrace_provider_lock must be held, and the 8551 * dtrace_lock must _not_ be held -- the provider's dtps_provide() operation 8552 * will need to grab the dtrace_lock when it reenters the framework through 8553 * dtrace_probe_lookup(), dtrace_probe_create(), etc. 8554 */ 8555 static void 8556 dtrace_probe_provide(dtrace_probedesc_t *desc, dtrace_provider_t *prv) 8557 { 8558 struct modctl *ctl; 8559 int all = 0; 8560 8561 ASSERT(MUTEX_HELD(&dtrace_provider_lock)); 8562 8563 if (prv == NULL) { 8564 all = 1; 8565 prv = dtrace_provider; 8566 } 8567 8568 do { 8569 /* 8570 * First, call the blanket provide operation. 8571 */ 8572 prv->dtpv_pops.dtps_provide(prv->dtpv_arg, desc); 8573 8574 /* 8575 * Now call the per-module provide operation. We will grab 8576 * mod_lock to prevent the list from being modified. Note 8577 * that this also prevents the mod_busy bits from changing. 8578 * (mod_busy can only be changed with mod_lock held.) 8579 */ 8580 mutex_enter(&mod_lock); 8581 8582 ctl = &modules; 8583 do { 8584 if (ctl->mod_busy || ctl->mod_mp == NULL) 8585 continue; 8586 8587 prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl); 8588 8589 } while ((ctl = ctl->mod_next) != &modules); 8590 8591 mutex_exit(&mod_lock); 8592 } while (all && (prv = prv->dtpv_next) != NULL); 8593 } 8594 8595 /* 8596 * Iterate over each probe, and call the Framework-to-Provider API function 8597 * denoted by offs. 8598 */ 8599 static void 8600 dtrace_probe_foreach(uintptr_t offs) 8601 { 8602 dtrace_provider_t *prov; 8603 void (*func)(void *, dtrace_id_t, void *); 8604 dtrace_probe_t *probe; 8605 dtrace_icookie_t cookie; 8606 int i; 8607 8608 /* 8609 * We disable interrupts to walk through the probe array. This is 8610 * safe -- the dtrace_sync() in dtrace_unregister() assures that we 8611 * won't see stale data. 8612 */ 8613 cookie = dtrace_interrupt_disable(); 8614 8615 for (i = 0; i < dtrace_nprobes; i++) { 8616 if ((probe = dtrace_probes[i]) == NULL) 8617 continue; 8618 8619 if (probe->dtpr_ecb == NULL) { 8620 /* 8621 * This probe isn't enabled -- don't call the function. 8622 */ 8623 continue; 8624 } 8625 8626 prov = probe->dtpr_provider; 8627 func = *((void(**)(void *, dtrace_id_t, void *)) 8628 ((uintptr_t)&prov->dtpv_pops + offs)); 8629 8630 func(prov->dtpv_arg, i + 1, probe->dtpr_arg); 8631 } 8632 8633 dtrace_interrupt_enable(cookie); 8634 } 8635 8636 static int 8637 dtrace_probe_enable(const dtrace_probedesc_t *desc, dtrace_enabling_t *enab) 8638 { 8639 dtrace_probekey_t pkey; 8640 uint32_t priv; 8641 uid_t uid; 8642 zoneid_t zoneid; 8643 8644 ASSERT(MUTEX_HELD(&dtrace_lock)); 8645 dtrace_ecb_create_cache = NULL; 8646 8647 if (desc == NULL) { 8648 /* 8649 * If we're passed a NULL description, we're being asked to 8650 * create an ECB with a NULL probe. 8651 */ 8652 (void) dtrace_ecb_create_enable(NULL, enab); 8653 return (0); 8654 } 8655 8656 dtrace_probekey(desc, &pkey); 8657 dtrace_cred2priv(enab->dten_vstate->dtvs_state->dts_cred.dcr_cred, 8658 &priv, &uid, &zoneid); 8659 8660 return (dtrace_match(&pkey, priv, uid, zoneid, dtrace_ecb_create_enable, 8661 enab)); 8662 } 8663 8664 /* 8665 * DTrace Helper Provider Functions 8666 */ 8667 static void 8668 dtrace_dofattr2attr(dtrace_attribute_t *attr, const dof_attr_t dofattr) 8669 { 8670 attr->dtat_name = DOF_ATTR_NAME(dofattr); 8671 attr->dtat_data = DOF_ATTR_DATA(dofattr); 8672 attr->dtat_class = DOF_ATTR_CLASS(dofattr); 8673 } 8674 8675 static void 8676 dtrace_dofprov2hprov(dtrace_helper_provdesc_t *hprov, 8677 const dof_provider_t *dofprov, char *strtab) 8678 { 8679 hprov->dthpv_provname = strtab + dofprov->dofpv_name; 8680 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_provider, 8681 dofprov->dofpv_provattr); 8682 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_mod, 8683 dofprov->dofpv_modattr); 8684 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_func, 8685 dofprov->dofpv_funcattr); 8686 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_name, 8687 dofprov->dofpv_nameattr); 8688 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_args, 8689 dofprov->dofpv_argsattr); 8690 } 8691 8692 static void 8693 dtrace_helper_provide_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid) 8694 { 8695 uintptr_t daddr = (uintptr_t)dhp->dofhp_dof; 8696 dof_hdr_t *dof = (dof_hdr_t *)daddr; 8697 dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec; 8698 dof_provider_t *provider; 8699 dof_probe_t *probe; 8700 uint32_t *off, *enoff; 8701 uint8_t *arg; 8702 char *strtab; 8703 uint_t i, nprobes; 8704 dtrace_helper_provdesc_t dhpv; 8705 dtrace_helper_probedesc_t dhpb; 8706 dtrace_meta_t *meta = dtrace_meta_pid; 8707 dtrace_mops_t *mops = &meta->dtm_mops; 8708 void *parg; 8709 8710 provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset); 8711 str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 8712 provider->dofpv_strtab * dof->dofh_secsize); 8713 prb_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 8714 provider->dofpv_probes * dof->dofh_secsize); 8715 arg_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 8716 provider->dofpv_prargs * dof->dofh_secsize); 8717 off_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 8718 provider->dofpv_proffs * dof->dofh_secsize); 8719 8720 strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset); 8721 off = (uint32_t *)(uintptr_t)(daddr + off_sec->dofs_offset); 8722 arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset); 8723 enoff = NULL; 8724 8725 /* 8726 * See dtrace_helper_provider_validate(). 8727 */ 8728 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 && 8729 provider->dofpv_prenoffs != DOF_SECT_NONE) { 8730 enoff_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 8731 provider->dofpv_prenoffs * dof->dofh_secsize); 8732 enoff = (uint32_t *)(uintptr_t)(daddr + enoff_sec->dofs_offset); 8733 } 8734 8735 nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize; 8736 8737 /* 8738 * Create the provider. 8739 */ 8740 dtrace_dofprov2hprov(&dhpv, provider, strtab); 8741 8742 if ((parg = mops->dtms_provide_pid(meta->dtm_arg, &dhpv, pid)) == NULL) 8743 return; 8744 8745 meta->dtm_count++; 8746 8747 /* 8748 * Create the probes. 8749 */ 8750 for (i = 0; i < nprobes; i++) { 8751 probe = (dof_probe_t *)(uintptr_t)(daddr + 8752 prb_sec->dofs_offset + i * prb_sec->dofs_entsize); 8753 8754 dhpb.dthpb_mod = dhp->dofhp_mod; 8755 dhpb.dthpb_func = strtab + probe->dofpr_func; 8756 dhpb.dthpb_name = strtab + probe->dofpr_name; 8757 dhpb.dthpb_base = probe->dofpr_addr; 8758 dhpb.dthpb_offs = off + probe->dofpr_offidx; 8759 dhpb.dthpb_noffs = probe->dofpr_noffs; 8760 if (enoff != NULL) { 8761 dhpb.dthpb_enoffs = enoff + probe->dofpr_enoffidx; 8762 dhpb.dthpb_nenoffs = probe->dofpr_nenoffs; 8763 } else { 8764 dhpb.dthpb_enoffs = NULL; 8765 dhpb.dthpb_nenoffs = 0; 8766 } 8767 dhpb.dthpb_args = arg + probe->dofpr_argidx; 8768 dhpb.dthpb_nargc = probe->dofpr_nargc; 8769 dhpb.dthpb_xargc = probe->dofpr_xargc; 8770 dhpb.dthpb_ntypes = strtab + probe->dofpr_nargv; 8771 dhpb.dthpb_xtypes = strtab + probe->dofpr_xargv; 8772 8773 mops->dtms_create_probe(meta->dtm_arg, parg, &dhpb); 8774 } 8775 } 8776 8777 static void 8778 dtrace_helper_provide(dof_helper_t *dhp, pid_t pid) 8779 { 8780 uintptr_t daddr = (uintptr_t)dhp->dofhp_dof; 8781 dof_hdr_t *dof = (dof_hdr_t *)daddr; 8782 int i; 8783 8784 ASSERT(MUTEX_HELD(&dtrace_meta_lock)); 8785 8786 for (i = 0; i < dof->dofh_secnum; i++) { 8787 dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr + 8788 dof->dofh_secoff + i * dof->dofh_secsize); 8789 8790 if (sec->dofs_type != DOF_SECT_PROVIDER) 8791 continue; 8792 8793 dtrace_helper_provide_one(dhp, sec, pid); 8794 } 8795 8796 /* 8797 * We may have just created probes, so we must now rematch against 8798 * any retained enablings. Note that this call will acquire both 8799 * cpu_lock and dtrace_lock; the fact that we are holding 8800 * dtrace_meta_lock now is what defines the ordering with respect to 8801 * these three locks. 8802 */ 8803 dtrace_enabling_matchall(); 8804 } 8805 8806 static void 8807 dtrace_helper_provider_remove_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid) 8808 { 8809 uintptr_t daddr = (uintptr_t)dhp->dofhp_dof; 8810 dof_hdr_t *dof = (dof_hdr_t *)daddr; 8811 dof_sec_t *str_sec; 8812 dof_provider_t *provider; 8813 char *strtab; 8814 dtrace_helper_provdesc_t dhpv; 8815 dtrace_meta_t *meta = dtrace_meta_pid; 8816 dtrace_mops_t *mops = &meta->dtm_mops; 8817 8818 provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset); 8819 str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 8820 provider->dofpv_strtab * dof->dofh_secsize); 8821 8822 strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset); 8823 8824 /* 8825 * Create the provider. 8826 */ 8827 dtrace_dofprov2hprov(&dhpv, provider, strtab); 8828 8829 mops->dtms_remove_pid(meta->dtm_arg, &dhpv, pid); 8830 8831 meta->dtm_count--; 8832 } 8833 8834 static void 8835 dtrace_helper_provider_remove(dof_helper_t *dhp, pid_t pid) 8836 { 8837 uintptr_t daddr = (uintptr_t)dhp->dofhp_dof; 8838 dof_hdr_t *dof = (dof_hdr_t *)daddr; 8839 int i; 8840 8841 ASSERT(MUTEX_HELD(&dtrace_meta_lock)); 8842 8843 for (i = 0; i < dof->dofh_secnum; i++) { 8844 dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr + 8845 dof->dofh_secoff + i * dof->dofh_secsize); 8846 8847 if (sec->dofs_type != DOF_SECT_PROVIDER) 8848 continue; 8849 8850 dtrace_helper_provider_remove_one(dhp, sec, pid); 8851 } 8852 } 8853 8854 /* 8855 * DTrace Meta Provider-to-Framework API Functions 8856 * 8857 * These functions implement the Meta Provider-to-Framework API, as described 8858 * in <sys/dtrace.h>. 8859 */ 8860 int 8861 dtrace_meta_register(const char *name, const dtrace_mops_t *mops, void *arg, 8862 dtrace_meta_provider_id_t *idp) 8863 { 8864 dtrace_meta_t *meta; 8865 dtrace_helpers_t *help, *next; 8866 int i; 8867 8868 *idp = DTRACE_METAPROVNONE; 8869 8870 /* 8871 * We strictly don't need the name, but we hold onto it for 8872 * debuggability. All hail error queues! 8873 */ 8874 if (name == NULL) { 8875 cmn_err(CE_WARN, "failed to register meta-provider: " 8876 "invalid name"); 8877 return (EINVAL); 8878 } 8879 8880 if (mops == NULL || 8881 mops->dtms_create_probe == NULL || 8882 mops->dtms_provide_pid == NULL || 8883 mops->dtms_remove_pid == NULL) { 8884 cmn_err(CE_WARN, "failed to register meta-register %s: " 8885 "invalid ops", name); 8886 return (EINVAL); 8887 } 8888 8889 meta = kmem_zalloc(sizeof (dtrace_meta_t), KM_SLEEP); 8890 meta->dtm_mops = *mops; 8891 meta->dtm_name = kmem_alloc(strlen(name) + 1, KM_SLEEP); 8892 (void) strcpy(meta->dtm_name, name); 8893 meta->dtm_arg = arg; 8894 8895 mutex_enter(&dtrace_meta_lock); 8896 mutex_enter(&dtrace_lock); 8897 8898 if (dtrace_meta_pid != NULL) { 8899 mutex_exit(&dtrace_lock); 8900 mutex_exit(&dtrace_meta_lock); 8901 cmn_err(CE_WARN, "failed to register meta-register %s: " 8902 "user-land meta-provider exists", name); 8903 kmem_free(meta->dtm_name, strlen(meta->dtm_name) + 1); 8904 kmem_free(meta, sizeof (dtrace_meta_t)); 8905 return (EINVAL); 8906 } 8907 8908 dtrace_meta_pid = meta; 8909 *idp = (dtrace_meta_provider_id_t)meta; 8910 8911 /* 8912 * If there are providers and probes ready to go, pass them 8913 * off to the new meta provider now. 8914 */ 8915 8916 help = dtrace_deferred_pid; 8917 dtrace_deferred_pid = NULL; 8918 8919 mutex_exit(&dtrace_lock); 8920 8921 while (help != NULL) { 8922 for (i = 0; i < help->dthps_nprovs; i++) { 8923 dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov, 8924 help->dthps_pid); 8925 } 8926 8927 next = help->dthps_next; 8928 help->dthps_next = NULL; 8929 help->dthps_prev = NULL; 8930 help->dthps_deferred = 0; 8931 help = next; 8932 } 8933 8934 mutex_exit(&dtrace_meta_lock); 8935 8936 return (0); 8937 } 8938 8939 int 8940 dtrace_meta_unregister(dtrace_meta_provider_id_t id) 8941 { 8942 dtrace_meta_t **pp, *old = (dtrace_meta_t *)id; 8943 8944 mutex_enter(&dtrace_meta_lock); 8945 mutex_enter(&dtrace_lock); 8946 8947 if (old == dtrace_meta_pid) { 8948 pp = &dtrace_meta_pid; 8949 } else { 8950 panic("attempt to unregister non-existent " 8951 "dtrace meta-provider %p\n", (void *)old); 8952 } 8953 8954 if (old->dtm_count != 0) { 8955 mutex_exit(&dtrace_lock); 8956 mutex_exit(&dtrace_meta_lock); 8957 return (EBUSY); 8958 } 8959 8960 *pp = NULL; 8961 8962 mutex_exit(&dtrace_lock); 8963 mutex_exit(&dtrace_meta_lock); 8964 8965 kmem_free(old->dtm_name, strlen(old->dtm_name) + 1); 8966 kmem_free(old, sizeof (dtrace_meta_t)); 8967 8968 return (0); 8969 } 8970 8971 8972 /* 8973 * DTrace DIF Object Functions 8974 */ 8975 static int 8976 dtrace_difo_err(uint_t pc, const char *format, ...) 8977 { 8978 if (dtrace_err_verbose) { 8979 va_list alist; 8980 8981 (void) uprintf("dtrace DIF object error: [%u]: ", pc); 8982 va_start(alist, format); 8983 (void) vuprintf(format, alist); 8984 va_end(alist); 8985 } 8986 8987 #ifdef DTRACE_ERRDEBUG 8988 dtrace_errdebug(format); 8989 #endif 8990 return (1); 8991 } 8992 8993 /* 8994 * Validate a DTrace DIF object by checking the IR instructions. The following 8995 * rules are currently enforced by dtrace_difo_validate(): 8996 * 8997 * 1. Each instruction must have a valid opcode 8998 * 2. Each register, string, variable, or subroutine reference must be valid 8999 * 3. No instruction can modify register %r0 (must be zero) 9000 * 4. All instruction reserved bits must be set to zero 9001 * 5. The last instruction must be a "ret" instruction 9002 * 6. All branch targets must reference a valid instruction _after_ the branch 9003 */ 9004 static int 9005 dtrace_difo_validate(dtrace_difo_t *dp, dtrace_vstate_t *vstate, uint_t nregs, 9006 cred_t *cr) 9007 { 9008 int err = 0, i; 9009 int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err; 9010 int kcheckload; 9011 uint_t pc; 9012 9013 kcheckload = cr == NULL || 9014 (vstate->dtvs_state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) == 0; 9015 9016 dp->dtdo_destructive = 0; 9017 9018 for (pc = 0; pc < dp->dtdo_len && err == 0; pc++) { 9019 dif_instr_t instr = dp->dtdo_buf[pc]; 9020 9021 uint_t r1 = DIF_INSTR_R1(instr); 9022 uint_t r2 = DIF_INSTR_R2(instr); 9023 uint_t rd = DIF_INSTR_RD(instr); 9024 uint_t rs = DIF_INSTR_RS(instr); 9025 uint_t label = DIF_INSTR_LABEL(instr); 9026 uint_t v = DIF_INSTR_VAR(instr); 9027 uint_t subr = DIF_INSTR_SUBR(instr); 9028 uint_t type = DIF_INSTR_TYPE(instr); 9029 uint_t op = DIF_INSTR_OP(instr); 9030 9031 switch (op) { 9032 case DIF_OP_OR: 9033 case DIF_OP_XOR: 9034 case DIF_OP_AND: 9035 case DIF_OP_SLL: 9036 case DIF_OP_SRL: 9037 case DIF_OP_SRA: 9038 case DIF_OP_SUB: 9039 case DIF_OP_ADD: 9040 case DIF_OP_MUL: 9041 case DIF_OP_SDIV: 9042 case DIF_OP_UDIV: 9043 case DIF_OP_SREM: 9044 case DIF_OP_UREM: 9045 case DIF_OP_COPYS: 9046 if (r1 >= nregs) 9047 err += efunc(pc, "invalid register %u\n", r1); 9048 if (r2 >= nregs) 9049 err += efunc(pc, "invalid register %u\n", r2); 9050 if (rd >= nregs) 9051 err += efunc(pc, "invalid register %u\n", rd); 9052 if (rd == 0) 9053 err += efunc(pc, "cannot write to %r0\n"); 9054 break; 9055 case DIF_OP_NOT: 9056 case DIF_OP_MOV: 9057 case DIF_OP_ALLOCS: 9058 if (r1 >= nregs) 9059 err += efunc(pc, "invalid register %u\n", r1); 9060 if (r2 != 0) 9061 err += efunc(pc, "non-zero reserved bits\n"); 9062 if (rd >= nregs) 9063 err += efunc(pc, "invalid register %u\n", rd); 9064 if (rd == 0) 9065 err += efunc(pc, "cannot write to %r0\n"); 9066 break; 9067 case DIF_OP_LDSB: 9068 case DIF_OP_LDSH: 9069 case DIF_OP_LDSW: 9070 case DIF_OP_LDUB: 9071 case DIF_OP_LDUH: 9072 case DIF_OP_LDUW: 9073 case DIF_OP_LDX: 9074 if (r1 >= nregs) 9075 err += efunc(pc, "invalid register %u\n", r1); 9076 if (r2 != 0) 9077 err += efunc(pc, "non-zero reserved bits\n"); 9078 if (rd >= nregs) 9079 err += efunc(pc, "invalid register %u\n", rd); 9080 if (rd == 0) 9081 err += efunc(pc, "cannot write to %r0\n"); 9082 if (kcheckload) 9083 dp->dtdo_buf[pc] = DIF_INSTR_LOAD(op + 9084 DIF_OP_RLDSB - DIF_OP_LDSB, r1, rd); 9085 break; 9086 case DIF_OP_RLDSB: 9087 case DIF_OP_RLDSH: 9088 case DIF_OP_RLDSW: 9089 case DIF_OP_RLDUB: 9090 case DIF_OP_RLDUH: 9091 case DIF_OP_RLDUW: 9092 case DIF_OP_RLDX: 9093 if (r1 >= nregs) 9094 err += efunc(pc, "invalid register %u\n", r1); 9095 if (r2 != 0) 9096 err += efunc(pc, "non-zero reserved bits\n"); 9097 if (rd >= nregs) 9098 err += efunc(pc, "invalid register %u\n", rd); 9099 if (rd == 0) 9100 err += efunc(pc, "cannot write to %r0\n"); 9101 break; 9102 case DIF_OP_ULDSB: 9103 case DIF_OP_ULDSH: 9104 case DIF_OP_ULDSW: 9105 case DIF_OP_ULDUB: 9106 case DIF_OP_ULDUH: 9107 case DIF_OP_ULDUW: 9108 case DIF_OP_ULDX: 9109 if (r1 >= nregs) 9110 err += efunc(pc, "invalid register %u\n", r1); 9111 if (r2 != 0) 9112 err += efunc(pc, "non-zero reserved bits\n"); 9113 if (rd >= nregs) 9114 err += efunc(pc, "invalid register %u\n", rd); 9115 if (rd == 0) 9116 err += efunc(pc, "cannot write to %r0\n"); 9117 break; 9118 case DIF_OP_STB: 9119 case DIF_OP_STH: 9120 case DIF_OP_STW: 9121 case DIF_OP_STX: 9122 if (r1 >= nregs) 9123 err += efunc(pc, "invalid register %u\n", r1); 9124 if (r2 != 0) 9125 err += efunc(pc, "non-zero reserved bits\n"); 9126 if (rd >= nregs) 9127 err += efunc(pc, "invalid register %u\n", rd); 9128 if (rd == 0) 9129 err += efunc(pc, "cannot write to 0 address\n"); 9130 break; 9131 case DIF_OP_CMP: 9132 case DIF_OP_SCMP: 9133 if (r1 >= nregs) 9134 err += efunc(pc, "invalid register %u\n", r1); 9135 if (r2 >= nregs) 9136 err += efunc(pc, "invalid register %u\n", r2); 9137 if (rd != 0) 9138 err += efunc(pc, "non-zero reserved bits\n"); 9139 break; 9140 case DIF_OP_TST: 9141 if (r1 >= nregs) 9142 err += efunc(pc, "invalid register %u\n", r1); 9143 if (r2 != 0 || rd != 0) 9144 err += efunc(pc, "non-zero reserved bits\n"); 9145 break; 9146 case DIF_OP_BA: 9147 case DIF_OP_BE: 9148 case DIF_OP_BNE: 9149 case DIF_OP_BG: 9150 case DIF_OP_BGU: 9151 case DIF_OP_BGE: 9152 case DIF_OP_BGEU: 9153 case DIF_OP_BL: 9154 case DIF_OP_BLU: 9155 case DIF_OP_BLE: 9156 case DIF_OP_BLEU: 9157 if (label >= dp->dtdo_len) { 9158 err += efunc(pc, "invalid branch target %u\n", 9159 label); 9160 } 9161 if (label <= pc) { 9162 err += efunc(pc, "backward branch to %u\n", 9163 label); 9164 } 9165 break; 9166 case DIF_OP_RET: 9167 if (r1 != 0 || r2 != 0) 9168 err += efunc(pc, "non-zero reserved bits\n"); 9169 if (rd >= nregs) 9170 err += efunc(pc, "invalid register %u\n", rd); 9171 break; 9172 case DIF_OP_NOP: 9173 case DIF_OP_POPTS: 9174 case DIF_OP_FLUSHTS: 9175 if (r1 != 0 || r2 != 0 || rd != 0) 9176 err += efunc(pc, "non-zero reserved bits\n"); 9177 break; 9178 case DIF_OP_SETX: 9179 if (DIF_INSTR_INTEGER(instr) >= dp->dtdo_intlen) { 9180 err += efunc(pc, "invalid integer ref %u\n", 9181 DIF_INSTR_INTEGER(instr)); 9182 } 9183 if (rd >= nregs) 9184 err += efunc(pc, "invalid register %u\n", rd); 9185 if (rd == 0) 9186 err += efunc(pc, "cannot write to %r0\n"); 9187 break; 9188 case DIF_OP_SETS: 9189 if (DIF_INSTR_STRING(instr) >= dp->dtdo_strlen) { 9190 err += efunc(pc, "invalid string ref %u\n", 9191 DIF_INSTR_STRING(instr)); 9192 } 9193 if (rd >= nregs) 9194 err += efunc(pc, "invalid register %u\n", rd); 9195 if (rd == 0) 9196 err += efunc(pc, "cannot write to %r0\n"); 9197 break; 9198 case DIF_OP_LDGA: 9199 case DIF_OP_LDTA: 9200 if (r1 > DIF_VAR_ARRAY_MAX) 9201 err += efunc(pc, "invalid array %u\n", r1); 9202 if (r2 >= nregs) 9203 err += efunc(pc, "invalid register %u\n", r2); 9204 if (rd >= nregs) 9205 err += efunc(pc, "invalid register %u\n", rd); 9206 if (rd == 0) 9207 err += efunc(pc, "cannot write to %r0\n"); 9208 break; 9209 case DIF_OP_LDGS: 9210 case DIF_OP_LDTS: 9211 case DIF_OP_LDLS: 9212 case DIF_OP_LDGAA: 9213 case DIF_OP_LDTAA: 9214 if (v < DIF_VAR_OTHER_MIN || v > DIF_VAR_OTHER_MAX) 9215 err += efunc(pc, "invalid variable %u\n", v); 9216 if (rd >= nregs) 9217 err += efunc(pc, "invalid register %u\n", rd); 9218 if (rd == 0) 9219 err += efunc(pc, "cannot write to %r0\n"); 9220 break; 9221 case DIF_OP_STGS: 9222 case DIF_OP_STTS: 9223 case DIF_OP_STLS: 9224 case DIF_OP_STGAA: 9225 case DIF_OP_STTAA: 9226 if (v < DIF_VAR_OTHER_UBASE || v > DIF_VAR_OTHER_MAX) 9227 err += efunc(pc, "invalid variable %u\n", v); 9228 if (rs >= nregs) 9229 err += efunc(pc, "invalid register %u\n", rd); 9230 break; 9231 case DIF_OP_CALL: 9232 if (subr > DIF_SUBR_MAX) 9233 err += efunc(pc, "invalid subr %u\n", subr); 9234 if (rd >= nregs) 9235 err += efunc(pc, "invalid register %u\n", rd); 9236 if (rd == 0) 9237 err += efunc(pc, "cannot write to %r0\n"); 9238 9239 if (subr == DIF_SUBR_COPYOUT || 9240 subr == DIF_SUBR_COPYOUTSTR) { 9241 dp->dtdo_destructive = 1; 9242 } 9243 9244 if (subr == DIF_SUBR_GETF) { 9245 /* 9246 * If we have a getf() we need to record that 9247 * in our state. Note that our state can be 9248 * NULL if this is a helper -- but in that 9249 * case, the call to getf() is itself illegal, 9250 * and will be caught (slightly later) when 9251 * the helper is validated. 9252 */ 9253 if (vstate->dtvs_state != NULL) 9254 vstate->dtvs_state->dts_getf++; 9255 } 9256 9257 break; 9258 case DIF_OP_PUSHTR: 9259 if (type != DIF_TYPE_STRING && type != DIF_TYPE_CTF) 9260 err += efunc(pc, "invalid ref type %u\n", type); 9261 if (r2 >= nregs) 9262 err += efunc(pc, "invalid register %u\n", r2); 9263 if (rs >= nregs) 9264 err += efunc(pc, "invalid register %u\n", rs); 9265 break; 9266 case DIF_OP_PUSHTV: 9267 if (type != DIF_TYPE_CTF) 9268 err += efunc(pc, "invalid val type %u\n", type); 9269 if (r2 >= nregs) 9270 err += efunc(pc, "invalid register %u\n", r2); 9271 if (rs >= nregs) 9272 err += efunc(pc, "invalid register %u\n", rs); 9273 break; 9274 default: 9275 err += efunc(pc, "invalid opcode %u\n", 9276 DIF_INSTR_OP(instr)); 9277 } 9278 } 9279 9280 if (dp->dtdo_len != 0 && 9281 DIF_INSTR_OP(dp->dtdo_buf[dp->dtdo_len - 1]) != DIF_OP_RET) { 9282 err += efunc(dp->dtdo_len - 1, 9283 "expected 'ret' as last DIF instruction\n"); 9284 } 9285 9286 if (!(dp->dtdo_rtype.dtdt_flags & (DIF_TF_BYREF | DIF_TF_BYUREF))) { 9287 /* 9288 * If we're not returning by reference, the size must be either 9289 * 0 or the size of one of the base types. 9290 */ 9291 switch (dp->dtdo_rtype.dtdt_size) { 9292 case 0: 9293 case sizeof (uint8_t): 9294 case sizeof (uint16_t): 9295 case sizeof (uint32_t): 9296 case sizeof (uint64_t): 9297 break; 9298 9299 default: 9300 err += efunc(dp->dtdo_len - 1, "bad return size\n"); 9301 } 9302 } 9303 9304 for (i = 0; i < dp->dtdo_varlen && err == 0; i++) { 9305 dtrace_difv_t *v = &dp->dtdo_vartab[i], *existing = NULL; 9306 dtrace_diftype_t *vt, *et; 9307 uint_t id, ndx; 9308 9309 if (v->dtdv_scope != DIFV_SCOPE_GLOBAL && 9310 v->dtdv_scope != DIFV_SCOPE_THREAD && 9311 v->dtdv_scope != DIFV_SCOPE_LOCAL) { 9312 err += efunc(i, "unrecognized variable scope %d\n", 9313 v->dtdv_scope); 9314 break; 9315 } 9316 9317 if (v->dtdv_kind != DIFV_KIND_ARRAY && 9318 v->dtdv_kind != DIFV_KIND_SCALAR) { 9319 err += efunc(i, "unrecognized variable type %d\n", 9320 v->dtdv_kind); 9321 break; 9322 } 9323 9324 if ((id = v->dtdv_id) > DIF_VARIABLE_MAX) { 9325 err += efunc(i, "%d exceeds variable id limit\n", id); 9326 break; 9327 } 9328 9329 if (id < DIF_VAR_OTHER_UBASE) 9330 continue; 9331 9332 /* 9333 * For user-defined variables, we need to check that this 9334 * definition is identical to any previous definition that we 9335 * encountered. 9336 */ 9337 ndx = id - DIF_VAR_OTHER_UBASE; 9338 9339 switch (v->dtdv_scope) { 9340 case DIFV_SCOPE_GLOBAL: 9341 if (ndx < vstate->dtvs_nglobals) { 9342 dtrace_statvar_t *svar; 9343 9344 if ((svar = vstate->dtvs_globals[ndx]) != NULL) 9345 existing = &svar->dtsv_var; 9346 } 9347 9348 break; 9349 9350 case DIFV_SCOPE_THREAD: 9351 if (ndx < vstate->dtvs_ntlocals) 9352 existing = &vstate->dtvs_tlocals[ndx]; 9353 break; 9354 9355 case DIFV_SCOPE_LOCAL: 9356 if (ndx < vstate->dtvs_nlocals) { 9357 dtrace_statvar_t *svar; 9358 9359 if ((svar = vstate->dtvs_locals[ndx]) != NULL) 9360 existing = &svar->dtsv_var; 9361 } 9362 9363 break; 9364 } 9365 9366 vt = &v->dtdv_type; 9367 9368 if (vt->dtdt_flags & DIF_TF_BYREF) { 9369 if (vt->dtdt_size == 0) { 9370 err += efunc(i, "zero-sized variable\n"); 9371 break; 9372 } 9373 9374 if ((v->dtdv_scope == DIFV_SCOPE_GLOBAL || 9375 v->dtdv_scope == DIFV_SCOPE_LOCAL) && 9376 vt->dtdt_size > dtrace_statvar_maxsize) { 9377 err += efunc(i, "oversized by-ref static\n"); 9378 break; 9379 } 9380 } 9381 9382 if (existing == NULL || existing->dtdv_id == 0) 9383 continue; 9384 9385 ASSERT(existing->dtdv_id == v->dtdv_id); 9386 ASSERT(existing->dtdv_scope == v->dtdv_scope); 9387 9388 if (existing->dtdv_kind != v->dtdv_kind) 9389 err += efunc(i, "%d changed variable kind\n", id); 9390 9391 et = &existing->dtdv_type; 9392 9393 if (vt->dtdt_flags != et->dtdt_flags) { 9394 err += efunc(i, "%d changed variable type flags\n", id); 9395 break; 9396 } 9397 9398 if (vt->dtdt_size != 0 && vt->dtdt_size != et->dtdt_size) { 9399 err += efunc(i, "%d changed variable type size\n", id); 9400 break; 9401 } 9402 } 9403 9404 return (err); 9405 } 9406 9407 /* 9408 * Validate a DTrace DIF object that it is to be used as a helper. Helpers 9409 * are much more constrained than normal DIFOs. Specifically, they may 9410 * not: 9411 * 9412 * 1. Make calls to subroutines other than copyin(), copyinstr() or 9413 * miscellaneous string routines 9414 * 2. Access DTrace variables other than the args[] array, and the 9415 * curthread, pid, ppid, tid, execname, zonename, uid and gid variables. 9416 * 3. Have thread-local variables. 9417 * 4. Have dynamic variables. 9418 */ 9419 static int 9420 dtrace_difo_validate_helper(dtrace_difo_t *dp) 9421 { 9422 int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err; 9423 int err = 0; 9424 uint_t pc; 9425 9426 for (pc = 0; pc < dp->dtdo_len; pc++) { 9427 dif_instr_t instr = dp->dtdo_buf[pc]; 9428 9429 uint_t v = DIF_INSTR_VAR(instr); 9430 uint_t subr = DIF_INSTR_SUBR(instr); 9431 uint_t op = DIF_INSTR_OP(instr); 9432 9433 switch (op) { 9434 case DIF_OP_OR: 9435 case DIF_OP_XOR: 9436 case DIF_OP_AND: 9437 case DIF_OP_SLL: 9438 case DIF_OP_SRL: 9439 case DIF_OP_SRA: 9440 case DIF_OP_SUB: 9441 case DIF_OP_ADD: 9442 case DIF_OP_MUL: 9443 case DIF_OP_SDIV: 9444 case DIF_OP_UDIV: 9445 case DIF_OP_SREM: 9446 case DIF_OP_UREM: 9447 case DIF_OP_COPYS: 9448 case DIF_OP_NOT: 9449 case DIF_OP_MOV: 9450 case DIF_OP_RLDSB: 9451 case DIF_OP_RLDSH: 9452 case DIF_OP_RLDSW: 9453 case DIF_OP_RLDUB: 9454 case DIF_OP_RLDUH: 9455 case DIF_OP_RLDUW: 9456 case DIF_OP_RLDX: 9457 case DIF_OP_ULDSB: 9458 case DIF_OP_ULDSH: 9459 case DIF_OP_ULDSW: 9460 case DIF_OP_ULDUB: 9461 case DIF_OP_ULDUH: 9462 case DIF_OP_ULDUW: 9463 case DIF_OP_ULDX: 9464 case DIF_OP_STB: 9465 case DIF_OP_STH: 9466 case DIF_OP_STW: 9467 case DIF_OP_STX: 9468 case DIF_OP_ALLOCS: 9469 case DIF_OP_CMP: 9470 case DIF_OP_SCMP: 9471 case DIF_OP_TST: 9472 case DIF_OP_BA: 9473 case DIF_OP_BE: 9474 case DIF_OP_BNE: 9475 case DIF_OP_BG: 9476 case DIF_OP_BGU: 9477 case DIF_OP_BGE: 9478 case DIF_OP_BGEU: 9479 case DIF_OP_BL: 9480 case DIF_OP_BLU: 9481 case DIF_OP_BLE: 9482 case DIF_OP_BLEU: 9483 case DIF_OP_RET: 9484 case DIF_OP_NOP: 9485 case DIF_OP_POPTS: 9486 case DIF_OP_FLUSHTS: 9487 case DIF_OP_SETX: 9488 case DIF_OP_SETS: 9489 case DIF_OP_LDGA: 9490 case DIF_OP_LDLS: 9491 case DIF_OP_STGS: 9492 case DIF_OP_STLS: 9493 case DIF_OP_PUSHTR: 9494 case DIF_OP_PUSHTV: 9495 break; 9496 9497 case DIF_OP_LDGS: 9498 if (v >= DIF_VAR_OTHER_UBASE) 9499 break; 9500 9501 if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9) 9502 break; 9503 9504 if (v == DIF_VAR_CURTHREAD || v == DIF_VAR_PID || 9505 v == DIF_VAR_PPID || v == DIF_VAR_TID || 9506 v == DIF_VAR_EXECNAME || v == DIF_VAR_ZONENAME || 9507 v == DIF_VAR_UID || v == DIF_VAR_GID) 9508 break; 9509 9510 err += efunc(pc, "illegal variable %u\n", v); 9511 break; 9512 9513 case DIF_OP_LDTA: 9514 case DIF_OP_LDTS: 9515 case DIF_OP_LDGAA: 9516 case DIF_OP_LDTAA: 9517 err += efunc(pc, "illegal dynamic variable load\n"); 9518 break; 9519 9520 case DIF_OP_STTS: 9521 case DIF_OP_STGAA: 9522 case DIF_OP_STTAA: 9523 err += efunc(pc, "illegal dynamic variable store\n"); 9524 break; 9525 9526 case DIF_OP_CALL: 9527 if (subr == DIF_SUBR_ALLOCA || 9528 subr == DIF_SUBR_BCOPY || 9529 subr == DIF_SUBR_COPYIN || 9530 subr == DIF_SUBR_COPYINTO || 9531 subr == DIF_SUBR_COPYINSTR || 9532 subr == DIF_SUBR_INDEX || 9533 subr == DIF_SUBR_INET_NTOA || 9534 subr == DIF_SUBR_INET_NTOA6 || 9535 subr == DIF_SUBR_INET_NTOP || 9536 subr == DIF_SUBR_JSON || 9537 subr == DIF_SUBR_LLTOSTR || 9538 subr == DIF_SUBR_STRTOLL || 9539 subr == DIF_SUBR_RINDEX || 9540 subr == DIF_SUBR_STRCHR || 9541 subr == DIF_SUBR_STRJOIN || 9542 subr == DIF_SUBR_STRRCHR || 9543 subr == DIF_SUBR_STRSTR || 9544 subr == DIF_SUBR_HTONS || 9545 subr == DIF_SUBR_HTONL || 9546 subr == DIF_SUBR_HTONLL || 9547 subr == DIF_SUBR_NTOHS || 9548 subr == DIF_SUBR_NTOHL || 9549 subr == DIF_SUBR_NTOHLL) 9550 break; 9551 9552 err += efunc(pc, "invalid subr %u\n", subr); 9553 break; 9554 9555 default: 9556 err += efunc(pc, "invalid opcode %u\n", 9557 DIF_INSTR_OP(instr)); 9558 } 9559 } 9560 9561 return (err); 9562 } 9563 9564 /* 9565 * Returns 1 if the expression in the DIF object can be cached on a per-thread 9566 * basis; 0 if not. 9567 */ 9568 static int 9569 dtrace_difo_cacheable(dtrace_difo_t *dp) 9570 { 9571 int i; 9572 9573 if (dp == NULL) 9574 return (0); 9575 9576 for (i = 0; i < dp->dtdo_varlen; i++) { 9577 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 9578 9579 if (v->dtdv_scope != DIFV_SCOPE_GLOBAL) 9580 continue; 9581 9582 switch (v->dtdv_id) { 9583 case DIF_VAR_CURTHREAD: 9584 case DIF_VAR_PID: 9585 case DIF_VAR_TID: 9586 case DIF_VAR_EXECNAME: 9587 case DIF_VAR_ZONENAME: 9588 break; 9589 9590 default: 9591 return (0); 9592 } 9593 } 9594 9595 /* 9596 * This DIF object may be cacheable. Now we need to look for any 9597 * array loading instructions, any memory loading instructions, or 9598 * any stores to thread-local variables. 9599 */ 9600 for (i = 0; i < dp->dtdo_len; i++) { 9601 uint_t op = DIF_INSTR_OP(dp->dtdo_buf[i]); 9602 9603 if ((op >= DIF_OP_LDSB && op <= DIF_OP_LDX) || 9604 (op >= DIF_OP_ULDSB && op <= DIF_OP_ULDX) || 9605 (op >= DIF_OP_RLDSB && op <= DIF_OP_RLDX) || 9606 op == DIF_OP_LDGA || op == DIF_OP_STTS) 9607 return (0); 9608 } 9609 9610 return (1); 9611 } 9612 9613 static void 9614 dtrace_difo_hold(dtrace_difo_t *dp) 9615 { 9616 int i; 9617 9618 ASSERT(MUTEX_HELD(&dtrace_lock)); 9619 9620 dp->dtdo_refcnt++; 9621 ASSERT(dp->dtdo_refcnt != 0); 9622 9623 /* 9624 * We need to check this DIF object for references to the variable 9625 * DIF_VAR_VTIMESTAMP. 9626 */ 9627 for (i = 0; i < dp->dtdo_varlen; i++) { 9628 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 9629 9630 if (v->dtdv_id != DIF_VAR_VTIMESTAMP) 9631 continue; 9632 9633 if (dtrace_vtime_references++ == 0) 9634 dtrace_vtime_enable(); 9635 } 9636 } 9637 9638 /* 9639 * This routine calculates the dynamic variable chunksize for a given DIF 9640 * object. The calculation is not fool-proof, and can probably be tricked by 9641 * malicious DIF -- but it works for all compiler-generated DIF. Because this 9642 * calculation is likely imperfect, dtrace_dynvar() is able to gracefully fail 9643 * if a dynamic variable size exceeds the chunksize. 9644 */ 9645 static void 9646 dtrace_difo_chunksize(dtrace_difo_t *dp, dtrace_vstate_t *vstate) 9647 { 9648 uint64_t sval; 9649 dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */ 9650 const dif_instr_t *text = dp->dtdo_buf; 9651 uint_t pc, srd = 0; 9652 uint_t ttop = 0; 9653 size_t size, ksize; 9654 uint_t id, i; 9655 9656 for (pc = 0; pc < dp->dtdo_len; pc++) { 9657 dif_instr_t instr = text[pc]; 9658 uint_t op = DIF_INSTR_OP(instr); 9659 uint_t rd = DIF_INSTR_RD(instr); 9660 uint_t r1 = DIF_INSTR_R1(instr); 9661 uint_t nkeys = 0; 9662 uchar_t scope; 9663 9664 dtrace_key_t *key = tupregs; 9665 9666 switch (op) { 9667 case DIF_OP_SETX: 9668 sval = dp->dtdo_inttab[DIF_INSTR_INTEGER(instr)]; 9669 srd = rd; 9670 continue; 9671 9672 case DIF_OP_STTS: 9673 key = &tupregs[DIF_DTR_NREGS]; 9674 key[0].dttk_size = 0; 9675 key[1].dttk_size = 0; 9676 nkeys = 2; 9677 scope = DIFV_SCOPE_THREAD; 9678 break; 9679 9680 case DIF_OP_STGAA: 9681 case DIF_OP_STTAA: 9682 nkeys = ttop; 9683 9684 if (DIF_INSTR_OP(instr) == DIF_OP_STTAA) 9685 key[nkeys++].dttk_size = 0; 9686 9687 key[nkeys++].dttk_size = 0; 9688 9689 if (op == DIF_OP_STTAA) { 9690 scope = DIFV_SCOPE_THREAD; 9691 } else { 9692 scope = DIFV_SCOPE_GLOBAL; 9693 } 9694 9695 break; 9696 9697 case DIF_OP_PUSHTR: 9698 if (ttop == DIF_DTR_NREGS) 9699 return; 9700 9701 if ((srd == 0 || sval == 0) && r1 == DIF_TYPE_STRING) { 9702 /* 9703 * If the register for the size of the "pushtr" 9704 * is %r0 (or the value is 0) and the type is 9705 * a string, we'll use the system-wide default 9706 * string size. 9707 */ 9708 tupregs[ttop++].dttk_size = 9709 dtrace_strsize_default; 9710 } else { 9711 if (srd == 0) 9712 return; 9713 9714 if (sval > LONG_MAX) 9715 return; 9716 9717 tupregs[ttop++].dttk_size = sval; 9718 } 9719 9720 break; 9721 9722 case DIF_OP_PUSHTV: 9723 if (ttop == DIF_DTR_NREGS) 9724 return; 9725 9726 tupregs[ttop++].dttk_size = 0; 9727 break; 9728 9729 case DIF_OP_FLUSHTS: 9730 ttop = 0; 9731 break; 9732 9733 case DIF_OP_POPTS: 9734 if (ttop != 0) 9735 ttop--; 9736 break; 9737 } 9738 9739 sval = 0; 9740 srd = 0; 9741 9742 if (nkeys == 0) 9743 continue; 9744 9745 /* 9746 * We have a dynamic variable allocation; calculate its size. 9747 */ 9748 for (ksize = 0, i = 0; i < nkeys; i++) 9749 ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t)); 9750 9751 size = sizeof (dtrace_dynvar_t); 9752 size += sizeof (dtrace_key_t) * (nkeys - 1); 9753 size += ksize; 9754 9755 /* 9756 * Now we need to determine the size of the stored data. 9757 */ 9758 id = DIF_INSTR_VAR(instr); 9759 9760 for (i = 0; i < dp->dtdo_varlen; i++) { 9761 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 9762 9763 if (v->dtdv_id == id && v->dtdv_scope == scope) { 9764 size += v->dtdv_type.dtdt_size; 9765 break; 9766 } 9767 } 9768 9769 if (i == dp->dtdo_varlen) 9770 return; 9771 9772 /* 9773 * We have the size. If this is larger than the chunk size 9774 * for our dynamic variable state, reset the chunk size. 9775 */ 9776 size = P2ROUNDUP(size, sizeof (uint64_t)); 9777 9778 /* 9779 * Before setting the chunk size, check that we're not going 9780 * to set it to a negative value... 9781 */ 9782 if (size > LONG_MAX) 9783 return; 9784 9785 /* 9786 * ...and make certain that we didn't badly overflow. 9787 */ 9788 if (size < ksize || size < sizeof (dtrace_dynvar_t)) 9789 return; 9790 9791 if (size > vstate->dtvs_dynvars.dtds_chunksize) 9792 vstate->dtvs_dynvars.dtds_chunksize = size; 9793 } 9794 } 9795 9796 static void 9797 dtrace_difo_init(dtrace_difo_t *dp, dtrace_vstate_t *vstate) 9798 { 9799 int i, oldsvars, osz, nsz, otlocals, ntlocals; 9800 uint_t id; 9801 9802 ASSERT(MUTEX_HELD(&dtrace_lock)); 9803 ASSERT(dp->dtdo_buf != NULL && dp->dtdo_len != 0); 9804 9805 for (i = 0; i < dp->dtdo_varlen; i++) { 9806 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 9807 dtrace_statvar_t *svar, ***svarp; 9808 size_t dsize = 0; 9809 uint8_t scope = v->dtdv_scope; 9810 int *np; 9811 9812 if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE) 9813 continue; 9814 9815 id -= DIF_VAR_OTHER_UBASE; 9816 9817 switch (scope) { 9818 case DIFV_SCOPE_THREAD: 9819 while (id >= (otlocals = vstate->dtvs_ntlocals)) { 9820 dtrace_difv_t *tlocals; 9821 9822 if ((ntlocals = (otlocals << 1)) == 0) 9823 ntlocals = 1; 9824 9825 osz = otlocals * sizeof (dtrace_difv_t); 9826 nsz = ntlocals * sizeof (dtrace_difv_t); 9827 9828 tlocals = kmem_zalloc(nsz, KM_SLEEP); 9829 9830 if (osz != 0) { 9831 bcopy(vstate->dtvs_tlocals, 9832 tlocals, osz); 9833 kmem_free(vstate->dtvs_tlocals, osz); 9834 } 9835 9836 vstate->dtvs_tlocals = tlocals; 9837 vstate->dtvs_ntlocals = ntlocals; 9838 } 9839 9840 vstate->dtvs_tlocals[id] = *v; 9841 continue; 9842 9843 case DIFV_SCOPE_LOCAL: 9844 np = &vstate->dtvs_nlocals; 9845 svarp = &vstate->dtvs_locals; 9846 9847 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) 9848 dsize = NCPU * (v->dtdv_type.dtdt_size + 9849 sizeof (uint64_t)); 9850 else 9851 dsize = NCPU * sizeof (uint64_t); 9852 9853 break; 9854 9855 case DIFV_SCOPE_GLOBAL: 9856 np = &vstate->dtvs_nglobals; 9857 svarp = &vstate->dtvs_globals; 9858 9859 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) 9860 dsize = v->dtdv_type.dtdt_size + 9861 sizeof (uint64_t); 9862 9863 break; 9864 9865 default: 9866 ASSERT(0); 9867 } 9868 9869 while (id >= (oldsvars = *np)) { 9870 dtrace_statvar_t **statics; 9871 int newsvars, oldsize, newsize; 9872 9873 if ((newsvars = (oldsvars << 1)) == 0) 9874 newsvars = 1; 9875 9876 oldsize = oldsvars * sizeof (dtrace_statvar_t *); 9877 newsize = newsvars * sizeof (dtrace_statvar_t *); 9878 9879 statics = kmem_zalloc(newsize, KM_SLEEP); 9880 9881 if (oldsize != 0) { 9882 bcopy(*svarp, statics, oldsize); 9883 kmem_free(*svarp, oldsize); 9884 } 9885 9886 *svarp = statics; 9887 *np = newsvars; 9888 } 9889 9890 if ((svar = (*svarp)[id]) == NULL) { 9891 svar = kmem_zalloc(sizeof (dtrace_statvar_t), KM_SLEEP); 9892 svar->dtsv_var = *v; 9893 9894 if ((svar->dtsv_size = dsize) != 0) { 9895 svar->dtsv_data = (uint64_t)(uintptr_t) 9896 kmem_zalloc(dsize, KM_SLEEP); 9897 } 9898 9899 (*svarp)[id] = svar; 9900 } 9901 9902 svar->dtsv_refcnt++; 9903 } 9904 9905 dtrace_difo_chunksize(dp, vstate); 9906 dtrace_difo_hold(dp); 9907 } 9908 9909 static dtrace_difo_t * 9910 dtrace_difo_duplicate(dtrace_difo_t *dp, dtrace_vstate_t *vstate) 9911 { 9912 dtrace_difo_t *new; 9913 size_t sz; 9914 9915 ASSERT(dp->dtdo_buf != NULL); 9916 ASSERT(dp->dtdo_refcnt != 0); 9917 9918 new = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP); 9919 9920 ASSERT(dp->dtdo_buf != NULL); 9921 sz = dp->dtdo_len * sizeof (dif_instr_t); 9922 new->dtdo_buf = kmem_alloc(sz, KM_SLEEP); 9923 bcopy(dp->dtdo_buf, new->dtdo_buf, sz); 9924 new->dtdo_len = dp->dtdo_len; 9925 9926 if (dp->dtdo_strtab != NULL) { 9927 ASSERT(dp->dtdo_strlen != 0); 9928 new->dtdo_strtab = kmem_alloc(dp->dtdo_strlen, KM_SLEEP); 9929 bcopy(dp->dtdo_strtab, new->dtdo_strtab, dp->dtdo_strlen); 9930 new->dtdo_strlen = dp->dtdo_strlen; 9931 } 9932 9933 if (dp->dtdo_inttab != NULL) { 9934 ASSERT(dp->dtdo_intlen != 0); 9935 sz = dp->dtdo_intlen * sizeof (uint64_t); 9936 new->dtdo_inttab = kmem_alloc(sz, KM_SLEEP); 9937 bcopy(dp->dtdo_inttab, new->dtdo_inttab, sz); 9938 new->dtdo_intlen = dp->dtdo_intlen; 9939 } 9940 9941 if (dp->dtdo_vartab != NULL) { 9942 ASSERT(dp->dtdo_varlen != 0); 9943 sz = dp->dtdo_varlen * sizeof (dtrace_difv_t); 9944 new->dtdo_vartab = kmem_alloc(sz, KM_SLEEP); 9945 bcopy(dp->dtdo_vartab, new->dtdo_vartab, sz); 9946 new->dtdo_varlen = dp->dtdo_varlen; 9947 } 9948 9949 dtrace_difo_init(new, vstate); 9950 return (new); 9951 } 9952 9953 static void 9954 dtrace_difo_destroy(dtrace_difo_t *dp, dtrace_vstate_t *vstate) 9955 { 9956 int i; 9957 9958 ASSERT(dp->dtdo_refcnt == 0); 9959 9960 for (i = 0; i < dp->dtdo_varlen; i++) { 9961 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 9962 dtrace_statvar_t *svar, **svarp; 9963 uint_t id; 9964 uint8_t scope = v->dtdv_scope; 9965 int *np; 9966 9967 switch (scope) { 9968 case DIFV_SCOPE_THREAD: 9969 continue; 9970 9971 case DIFV_SCOPE_LOCAL: 9972 np = &vstate->dtvs_nlocals; 9973 svarp = vstate->dtvs_locals; 9974 break; 9975 9976 case DIFV_SCOPE_GLOBAL: 9977 np = &vstate->dtvs_nglobals; 9978 svarp = vstate->dtvs_globals; 9979 break; 9980 9981 default: 9982 ASSERT(0); 9983 } 9984 9985 if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE) 9986 continue; 9987 9988 id -= DIF_VAR_OTHER_UBASE; 9989 ASSERT(id < *np); 9990 9991 svar = svarp[id]; 9992 ASSERT(svar != NULL); 9993 ASSERT(svar->dtsv_refcnt > 0); 9994 9995 if (--svar->dtsv_refcnt > 0) 9996 continue; 9997 9998 if (svar->dtsv_size != 0) { 9999 ASSERT(svar->dtsv_data != NULL); 10000 kmem_free((void *)(uintptr_t)svar->dtsv_data, 10001 svar->dtsv_size); 10002 } 10003 10004 kmem_free(svar, sizeof (dtrace_statvar_t)); 10005 svarp[id] = NULL; 10006 } 10007 10008 kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t)); 10009 kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t)); 10010 kmem_free(dp->dtdo_strtab, dp->dtdo_strlen); 10011 kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t)); 10012 10013 kmem_free(dp, sizeof (dtrace_difo_t)); 10014 } 10015 10016 static void 10017 dtrace_difo_release(dtrace_difo_t *dp, dtrace_vstate_t *vstate) 10018 { 10019 int i; 10020 10021 ASSERT(MUTEX_HELD(&dtrace_lock)); 10022 ASSERT(dp->dtdo_refcnt != 0); 10023 10024 for (i = 0; i < dp->dtdo_varlen; i++) { 10025 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 10026 10027 if (v->dtdv_id != DIF_VAR_VTIMESTAMP) 10028 continue; 10029 10030 ASSERT(dtrace_vtime_references > 0); 10031 if (--dtrace_vtime_references == 0) 10032 dtrace_vtime_disable(); 10033 } 10034 10035 if (--dp->dtdo_refcnt == 0) 10036 dtrace_difo_destroy(dp, vstate); 10037 } 10038 10039 /* 10040 * DTrace Format Functions 10041 */ 10042 static uint16_t 10043 dtrace_format_add(dtrace_state_t *state, char *str) 10044 { 10045 char *fmt, **new; 10046 uint16_t ndx, len = strlen(str) + 1; 10047 10048 fmt = kmem_zalloc(len, KM_SLEEP); 10049 bcopy(str, fmt, len); 10050 10051 for (ndx = 0; ndx < state->dts_nformats; ndx++) { 10052 if (state->dts_formats[ndx] == NULL) { 10053 state->dts_formats[ndx] = fmt; 10054 return (ndx + 1); 10055 } 10056 } 10057 10058 if (state->dts_nformats == USHRT_MAX) { 10059 /* 10060 * This is only likely if a denial-of-service attack is being 10061 * attempted. As such, it's okay to fail silently here. 10062 */ 10063 kmem_free(fmt, len); 10064 return (0); 10065 } 10066 10067 /* 10068 * For simplicity, we always resize the formats array to be exactly the 10069 * number of formats. 10070 */ 10071 ndx = state->dts_nformats++; 10072 new = kmem_alloc((ndx + 1) * sizeof (char *), KM_SLEEP); 10073 10074 if (state->dts_formats != NULL) { 10075 ASSERT(ndx != 0); 10076 bcopy(state->dts_formats, new, ndx * sizeof (char *)); 10077 kmem_free(state->dts_formats, ndx * sizeof (char *)); 10078 } 10079 10080 state->dts_formats = new; 10081 state->dts_formats[ndx] = fmt; 10082 10083 return (ndx + 1); 10084 } 10085 10086 static void 10087 dtrace_format_remove(dtrace_state_t *state, uint16_t format) 10088 { 10089 char *fmt; 10090 10091 ASSERT(state->dts_formats != NULL); 10092 ASSERT(format <= state->dts_nformats); 10093 ASSERT(state->dts_formats[format - 1] != NULL); 10094 10095 fmt = state->dts_formats[format - 1]; 10096 kmem_free(fmt, strlen(fmt) + 1); 10097 state->dts_formats[format - 1] = NULL; 10098 } 10099 10100 static void 10101 dtrace_format_destroy(dtrace_state_t *state) 10102 { 10103 int i; 10104 10105 if (state->dts_nformats == 0) { 10106 ASSERT(state->dts_formats == NULL); 10107 return; 10108 } 10109 10110 ASSERT(state->dts_formats != NULL); 10111 10112 for (i = 0; i < state->dts_nformats; i++) { 10113 char *fmt = state->dts_formats[i]; 10114 10115 if (fmt == NULL) 10116 continue; 10117 10118 kmem_free(fmt, strlen(fmt) + 1); 10119 } 10120 10121 kmem_free(state->dts_formats, state->dts_nformats * sizeof (char *)); 10122 state->dts_nformats = 0; 10123 state->dts_formats = NULL; 10124 } 10125 10126 /* 10127 * DTrace Predicate Functions 10128 */ 10129 static dtrace_predicate_t * 10130 dtrace_predicate_create(dtrace_difo_t *dp) 10131 { 10132 dtrace_predicate_t *pred; 10133 10134 ASSERT(MUTEX_HELD(&dtrace_lock)); 10135 ASSERT(dp->dtdo_refcnt != 0); 10136 10137 pred = kmem_zalloc(sizeof (dtrace_predicate_t), KM_SLEEP); 10138 pred->dtp_difo = dp; 10139 pred->dtp_refcnt = 1; 10140 10141 if (!dtrace_difo_cacheable(dp)) 10142 return (pred); 10143 10144 if (dtrace_predcache_id == DTRACE_CACHEIDNONE) { 10145 /* 10146 * This is only theoretically possible -- we have had 2^32 10147 * cacheable predicates on this machine. We cannot allow any 10148 * more predicates to become cacheable: as unlikely as it is, 10149 * there may be a thread caching a (now stale) predicate cache 10150 * ID. (N.B.: the temptation is being successfully resisted to 10151 * have this cmn_err() "Holy shit -- we executed this code!") 10152 */ 10153 return (pred); 10154 } 10155 10156 pred->dtp_cacheid = dtrace_predcache_id++; 10157 10158 return (pred); 10159 } 10160 10161 static void 10162 dtrace_predicate_hold(dtrace_predicate_t *pred) 10163 { 10164 ASSERT(MUTEX_HELD(&dtrace_lock)); 10165 ASSERT(pred->dtp_difo != NULL && pred->dtp_difo->dtdo_refcnt != 0); 10166 ASSERT(pred->dtp_refcnt > 0); 10167 10168 pred->dtp_refcnt++; 10169 } 10170 10171 static void 10172 dtrace_predicate_release(dtrace_predicate_t *pred, dtrace_vstate_t *vstate) 10173 { 10174 dtrace_difo_t *dp = pred->dtp_difo; 10175 10176 ASSERT(MUTEX_HELD(&dtrace_lock)); 10177 ASSERT(dp != NULL && dp->dtdo_refcnt != 0); 10178 ASSERT(pred->dtp_refcnt > 0); 10179 10180 if (--pred->dtp_refcnt == 0) { 10181 dtrace_difo_release(pred->dtp_difo, vstate); 10182 kmem_free(pred, sizeof (dtrace_predicate_t)); 10183 } 10184 } 10185 10186 /* 10187 * DTrace Action Description Functions 10188 */ 10189 static dtrace_actdesc_t * 10190 dtrace_actdesc_create(dtrace_actkind_t kind, uint32_t ntuple, 10191 uint64_t uarg, uint64_t arg) 10192 { 10193 dtrace_actdesc_t *act; 10194 10195 ASSERT(!DTRACEACT_ISPRINTFLIKE(kind) || (arg != NULL && 10196 arg >= KERNELBASE) || (arg == NULL && kind == DTRACEACT_PRINTA)); 10197 10198 act = kmem_zalloc(sizeof (dtrace_actdesc_t), KM_SLEEP); 10199 act->dtad_kind = kind; 10200 act->dtad_ntuple = ntuple; 10201 act->dtad_uarg = uarg; 10202 act->dtad_arg = arg; 10203 act->dtad_refcnt = 1; 10204 10205 return (act); 10206 } 10207 10208 static void 10209 dtrace_actdesc_hold(dtrace_actdesc_t *act) 10210 { 10211 ASSERT(act->dtad_refcnt >= 1); 10212 act->dtad_refcnt++; 10213 } 10214 10215 static void 10216 dtrace_actdesc_release(dtrace_actdesc_t *act, dtrace_vstate_t *vstate) 10217 { 10218 dtrace_actkind_t kind = act->dtad_kind; 10219 dtrace_difo_t *dp; 10220 10221 ASSERT(act->dtad_refcnt >= 1); 10222 10223 if (--act->dtad_refcnt != 0) 10224 return; 10225 10226 if ((dp = act->dtad_difo) != NULL) 10227 dtrace_difo_release(dp, vstate); 10228 10229 if (DTRACEACT_ISPRINTFLIKE(kind)) { 10230 char *str = (char *)(uintptr_t)act->dtad_arg; 10231 10232 ASSERT((str != NULL && (uintptr_t)str >= KERNELBASE) || 10233 (str == NULL && act->dtad_kind == DTRACEACT_PRINTA)); 10234 10235 if (str != NULL) 10236 kmem_free(str, strlen(str) + 1); 10237 } 10238 10239 kmem_free(act, sizeof (dtrace_actdesc_t)); 10240 } 10241 10242 /* 10243 * DTrace ECB Functions 10244 */ 10245 static dtrace_ecb_t * 10246 dtrace_ecb_add(dtrace_state_t *state, dtrace_probe_t *probe) 10247 { 10248 dtrace_ecb_t *ecb; 10249 dtrace_epid_t epid; 10250 10251 ASSERT(MUTEX_HELD(&dtrace_lock)); 10252 10253 ecb = kmem_zalloc(sizeof (dtrace_ecb_t), KM_SLEEP); 10254 ecb->dte_predicate = NULL; 10255 ecb->dte_probe = probe; 10256 10257 /* 10258 * The default size is the size of the default action: recording 10259 * the header. 10260 */ 10261 ecb->dte_size = ecb->dte_needed = sizeof (dtrace_rechdr_t); 10262 ecb->dte_alignment = sizeof (dtrace_epid_t); 10263 10264 epid = state->dts_epid++; 10265 10266 if (epid - 1 >= state->dts_necbs) { 10267 dtrace_ecb_t **oecbs = state->dts_ecbs, **ecbs; 10268 int necbs = state->dts_necbs << 1; 10269 10270 ASSERT(epid == state->dts_necbs + 1); 10271 10272 if (necbs == 0) { 10273 ASSERT(oecbs == NULL); 10274 necbs = 1; 10275 } 10276 10277 ecbs = kmem_zalloc(necbs * sizeof (*ecbs), KM_SLEEP); 10278 10279 if (oecbs != NULL) 10280 bcopy(oecbs, ecbs, state->dts_necbs * sizeof (*ecbs)); 10281 10282 dtrace_membar_producer(); 10283 state->dts_ecbs = ecbs; 10284 10285 if (oecbs != NULL) { 10286 /* 10287 * If this state is active, we must dtrace_sync() 10288 * before we can free the old dts_ecbs array: we're 10289 * coming in hot, and there may be active ring 10290 * buffer processing (which indexes into the dts_ecbs 10291 * array) on another CPU. 10292 */ 10293 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) 10294 dtrace_sync(); 10295 10296 kmem_free(oecbs, state->dts_necbs * sizeof (*ecbs)); 10297 } 10298 10299 dtrace_membar_producer(); 10300 state->dts_necbs = necbs; 10301 } 10302 10303 ecb->dte_state = state; 10304 10305 ASSERT(state->dts_ecbs[epid - 1] == NULL); 10306 dtrace_membar_producer(); 10307 state->dts_ecbs[(ecb->dte_epid = epid) - 1] = ecb; 10308 10309 return (ecb); 10310 } 10311 10312 static int 10313 dtrace_ecb_enable(dtrace_ecb_t *ecb) 10314 { 10315 dtrace_probe_t *probe = ecb->dte_probe; 10316 10317 ASSERT(MUTEX_HELD(&cpu_lock)); 10318 ASSERT(MUTEX_HELD(&dtrace_lock)); 10319 ASSERT(ecb->dte_next == NULL); 10320 10321 if (probe == NULL) { 10322 /* 10323 * This is the NULL probe -- there's nothing to do. 10324 */ 10325 return (0); 10326 } 10327 10328 if (probe->dtpr_ecb == NULL) { 10329 dtrace_provider_t *prov = probe->dtpr_provider; 10330 10331 /* 10332 * We're the first ECB on this probe. 10333 */ 10334 probe->dtpr_ecb = probe->dtpr_ecb_last = ecb; 10335 10336 if (ecb->dte_predicate != NULL) 10337 probe->dtpr_predcache = ecb->dte_predicate->dtp_cacheid; 10338 10339 return (prov->dtpv_pops.dtps_enable(prov->dtpv_arg, 10340 probe->dtpr_id, probe->dtpr_arg)); 10341 } else { 10342 /* 10343 * This probe is already active. Swing the last pointer to 10344 * point to the new ECB, and issue a dtrace_sync() to assure 10345 * that all CPUs have seen the change. 10346 */ 10347 ASSERT(probe->dtpr_ecb_last != NULL); 10348 probe->dtpr_ecb_last->dte_next = ecb; 10349 probe->dtpr_ecb_last = ecb; 10350 probe->dtpr_predcache = 0; 10351 10352 dtrace_sync(); 10353 return (0); 10354 } 10355 } 10356 10357 static void 10358 dtrace_ecb_resize(dtrace_ecb_t *ecb) 10359 { 10360 dtrace_action_t *act; 10361 uint32_t curneeded = UINT32_MAX; 10362 uint32_t aggbase = UINT32_MAX; 10363 10364 /* 10365 * If we record anything, we always record the dtrace_rechdr_t. (And 10366 * we always record it first.) 10367 */ 10368 ecb->dte_size = sizeof (dtrace_rechdr_t); 10369 ecb->dte_alignment = sizeof (dtrace_epid_t); 10370 10371 for (act = ecb->dte_action; act != NULL; act = act->dta_next) { 10372 dtrace_recdesc_t *rec = &act->dta_rec; 10373 ASSERT(rec->dtrd_size > 0 || rec->dtrd_alignment == 1); 10374 10375 ecb->dte_alignment = MAX(ecb->dte_alignment, 10376 rec->dtrd_alignment); 10377 10378 if (DTRACEACT_ISAGG(act->dta_kind)) { 10379 dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act; 10380 10381 ASSERT(rec->dtrd_size != 0); 10382 ASSERT(agg->dtag_first != NULL); 10383 ASSERT(act->dta_prev->dta_intuple); 10384 ASSERT(aggbase != UINT32_MAX); 10385 ASSERT(curneeded != UINT32_MAX); 10386 10387 agg->dtag_base = aggbase; 10388 10389 curneeded = P2ROUNDUP(curneeded, rec->dtrd_alignment); 10390 rec->dtrd_offset = curneeded; 10391 curneeded += rec->dtrd_size; 10392 ecb->dte_needed = MAX(ecb->dte_needed, curneeded); 10393 10394 aggbase = UINT32_MAX; 10395 curneeded = UINT32_MAX; 10396 } else if (act->dta_intuple) { 10397 if (curneeded == UINT32_MAX) { 10398 /* 10399 * This is the first record in a tuple. Align 10400 * curneeded to be at offset 4 in an 8-byte 10401 * aligned block. 10402 */ 10403 ASSERT(act->dta_prev == NULL || 10404 !act->dta_prev->dta_intuple); 10405 ASSERT3U(aggbase, ==, UINT32_MAX); 10406 curneeded = P2PHASEUP(ecb->dte_size, 10407 sizeof (uint64_t), sizeof (dtrace_aggid_t)); 10408 10409 aggbase = curneeded - sizeof (dtrace_aggid_t); 10410 ASSERT(IS_P2ALIGNED(aggbase, 10411 sizeof (uint64_t))); 10412 } 10413 curneeded = P2ROUNDUP(curneeded, rec->dtrd_alignment); 10414 rec->dtrd_offset = curneeded; 10415 curneeded += rec->dtrd_size; 10416 } else { 10417 /* tuples must be followed by an aggregation */ 10418 ASSERT(act->dta_prev == NULL || 10419 !act->dta_prev->dta_intuple); 10420 10421 ecb->dte_size = P2ROUNDUP(ecb->dte_size, 10422 rec->dtrd_alignment); 10423 rec->dtrd_offset = ecb->dte_size; 10424 ecb->dte_size += rec->dtrd_size; 10425 ecb->dte_needed = MAX(ecb->dte_needed, ecb->dte_size); 10426 } 10427 } 10428 10429 if ((act = ecb->dte_action) != NULL && 10430 !(act->dta_kind == DTRACEACT_SPECULATE && act->dta_next == NULL) && 10431 ecb->dte_size == sizeof (dtrace_rechdr_t)) { 10432 /* 10433 * If the size is still sizeof (dtrace_rechdr_t), then all 10434 * actions store no data; set the size to 0. 10435 */ 10436 ecb->dte_size = 0; 10437 } 10438 10439 ecb->dte_size = P2ROUNDUP(ecb->dte_size, sizeof (dtrace_epid_t)); 10440 ecb->dte_needed = P2ROUNDUP(ecb->dte_needed, (sizeof (dtrace_epid_t))); 10441 ecb->dte_state->dts_needed = MAX(ecb->dte_state->dts_needed, 10442 ecb->dte_needed); 10443 } 10444 10445 static dtrace_action_t * 10446 dtrace_ecb_aggregation_create(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc) 10447 { 10448 dtrace_aggregation_t *agg; 10449 size_t size = sizeof (uint64_t); 10450 int ntuple = desc->dtad_ntuple; 10451 dtrace_action_t *act; 10452 dtrace_recdesc_t *frec; 10453 dtrace_aggid_t aggid; 10454 dtrace_state_t *state = ecb->dte_state; 10455 10456 agg = kmem_zalloc(sizeof (dtrace_aggregation_t), KM_SLEEP); 10457 agg->dtag_ecb = ecb; 10458 10459 ASSERT(DTRACEACT_ISAGG(desc->dtad_kind)); 10460 10461 switch (desc->dtad_kind) { 10462 case DTRACEAGG_MIN: 10463 agg->dtag_initial = INT64_MAX; 10464 agg->dtag_aggregate = dtrace_aggregate_min; 10465 break; 10466 10467 case DTRACEAGG_MAX: 10468 agg->dtag_initial = INT64_MIN; 10469 agg->dtag_aggregate = dtrace_aggregate_max; 10470 break; 10471 10472 case DTRACEAGG_COUNT: 10473 agg->dtag_aggregate = dtrace_aggregate_count; 10474 break; 10475 10476 case DTRACEAGG_QUANTIZE: 10477 agg->dtag_aggregate = dtrace_aggregate_quantize; 10478 size = (((sizeof (uint64_t) * NBBY) - 1) * 2 + 1) * 10479 sizeof (uint64_t); 10480 break; 10481 10482 case DTRACEAGG_LQUANTIZE: { 10483 uint16_t step = DTRACE_LQUANTIZE_STEP(desc->dtad_arg); 10484 uint16_t levels = DTRACE_LQUANTIZE_LEVELS(desc->dtad_arg); 10485 10486 agg->dtag_initial = desc->dtad_arg; 10487 agg->dtag_aggregate = dtrace_aggregate_lquantize; 10488 10489 if (step == 0 || levels == 0) 10490 goto err; 10491 10492 size = levels * sizeof (uint64_t) + 3 * sizeof (uint64_t); 10493 break; 10494 } 10495 10496 case DTRACEAGG_LLQUANTIZE: { 10497 uint16_t factor = DTRACE_LLQUANTIZE_FACTOR(desc->dtad_arg); 10498 uint16_t low = DTRACE_LLQUANTIZE_LOW(desc->dtad_arg); 10499 uint16_t high = DTRACE_LLQUANTIZE_HIGH(desc->dtad_arg); 10500 uint16_t nsteps = DTRACE_LLQUANTIZE_NSTEP(desc->dtad_arg); 10501 int64_t v; 10502 10503 agg->dtag_initial = desc->dtad_arg; 10504 agg->dtag_aggregate = dtrace_aggregate_llquantize; 10505 10506 if (factor < 2 || low >= high || nsteps < factor) 10507 goto err; 10508 10509 /* 10510 * Now check that the number of steps evenly divides a power 10511 * of the factor. (This assures both integer bucket size and 10512 * linearity within each magnitude.) 10513 */ 10514 for (v = factor; v < nsteps; v *= factor) 10515 continue; 10516 10517 if ((v % nsteps) || (nsteps % factor)) 10518 goto err; 10519 10520 size = (dtrace_aggregate_llquantize_bucket(factor, 10521 low, high, nsteps, INT64_MAX) + 2) * sizeof (uint64_t); 10522 break; 10523 } 10524 10525 case DTRACEAGG_AVG: 10526 agg->dtag_aggregate = dtrace_aggregate_avg; 10527 size = sizeof (uint64_t) * 2; 10528 break; 10529 10530 case DTRACEAGG_STDDEV: 10531 agg->dtag_aggregate = dtrace_aggregate_stddev; 10532 size = sizeof (uint64_t) * 4; 10533 break; 10534 10535 case DTRACEAGG_SUM: 10536 agg->dtag_aggregate = dtrace_aggregate_sum; 10537 break; 10538 10539 default: 10540 goto err; 10541 } 10542 10543 agg->dtag_action.dta_rec.dtrd_size = size; 10544 10545 if (ntuple == 0) 10546 goto err; 10547 10548 /* 10549 * We must make sure that we have enough actions for the n-tuple. 10550 */ 10551 for (act = ecb->dte_action_last; act != NULL; act = act->dta_prev) { 10552 if (DTRACEACT_ISAGG(act->dta_kind)) 10553 break; 10554 10555 if (--ntuple == 0) { 10556 /* 10557 * This is the action with which our n-tuple begins. 10558 */ 10559 agg->dtag_first = act; 10560 goto success; 10561 } 10562 } 10563 10564 /* 10565 * This n-tuple is short by ntuple elements. Return failure. 10566 */ 10567 ASSERT(ntuple != 0); 10568 err: 10569 kmem_free(agg, sizeof (dtrace_aggregation_t)); 10570 return (NULL); 10571 10572 success: 10573 /* 10574 * If the last action in the tuple has a size of zero, it's actually 10575 * an expression argument for the aggregating action. 10576 */ 10577 ASSERT(ecb->dte_action_last != NULL); 10578 act = ecb->dte_action_last; 10579 10580 if (act->dta_kind == DTRACEACT_DIFEXPR) { 10581 ASSERT(act->dta_difo != NULL); 10582 10583 if (act->dta_difo->dtdo_rtype.dtdt_size == 0) 10584 agg->dtag_hasarg = 1; 10585 } 10586 10587 /* 10588 * We need to allocate an id for this aggregation. 10589 */ 10590 aggid = (dtrace_aggid_t)(uintptr_t)vmem_alloc(state->dts_aggid_arena, 1, 10591 VM_BESTFIT | VM_SLEEP); 10592 10593 if (aggid - 1 >= state->dts_naggregations) { 10594 dtrace_aggregation_t **oaggs = state->dts_aggregations; 10595 dtrace_aggregation_t **aggs; 10596 int naggs = state->dts_naggregations << 1; 10597 int onaggs = state->dts_naggregations; 10598 10599 ASSERT(aggid == state->dts_naggregations + 1); 10600 10601 if (naggs == 0) { 10602 ASSERT(oaggs == NULL); 10603 naggs = 1; 10604 } 10605 10606 aggs = kmem_zalloc(naggs * sizeof (*aggs), KM_SLEEP); 10607 10608 if (oaggs != NULL) { 10609 bcopy(oaggs, aggs, onaggs * sizeof (*aggs)); 10610 kmem_free(oaggs, onaggs * sizeof (*aggs)); 10611 } 10612 10613 state->dts_aggregations = aggs; 10614 state->dts_naggregations = naggs; 10615 } 10616 10617 ASSERT(state->dts_aggregations[aggid - 1] == NULL); 10618 state->dts_aggregations[(agg->dtag_id = aggid) - 1] = agg; 10619 10620 frec = &agg->dtag_first->dta_rec; 10621 if (frec->dtrd_alignment < sizeof (dtrace_aggid_t)) 10622 frec->dtrd_alignment = sizeof (dtrace_aggid_t); 10623 10624 for (act = agg->dtag_first; act != NULL; act = act->dta_next) { 10625 ASSERT(!act->dta_intuple); 10626 act->dta_intuple = 1; 10627 } 10628 10629 return (&agg->dtag_action); 10630 } 10631 10632 static void 10633 dtrace_ecb_aggregation_destroy(dtrace_ecb_t *ecb, dtrace_action_t *act) 10634 { 10635 dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act; 10636 dtrace_state_t *state = ecb->dte_state; 10637 dtrace_aggid_t aggid = agg->dtag_id; 10638 10639 ASSERT(DTRACEACT_ISAGG(act->dta_kind)); 10640 vmem_free(state->dts_aggid_arena, (void *)(uintptr_t)aggid, 1); 10641 10642 ASSERT(state->dts_aggregations[aggid - 1] == agg); 10643 state->dts_aggregations[aggid - 1] = NULL; 10644 10645 kmem_free(agg, sizeof (dtrace_aggregation_t)); 10646 } 10647 10648 static int 10649 dtrace_ecb_action_add(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc) 10650 { 10651 dtrace_action_t *action, *last; 10652 dtrace_difo_t *dp = desc->dtad_difo; 10653 uint32_t size = 0, align = sizeof (uint8_t), mask; 10654 uint16_t format = 0; 10655 dtrace_recdesc_t *rec; 10656 dtrace_state_t *state = ecb->dte_state; 10657 dtrace_optval_t *opt = state->dts_options, nframes, strsize; 10658 uint64_t arg = desc->dtad_arg; 10659 10660 ASSERT(MUTEX_HELD(&dtrace_lock)); 10661 ASSERT(ecb->dte_action == NULL || ecb->dte_action->dta_refcnt == 1); 10662 10663 if (DTRACEACT_ISAGG(desc->dtad_kind)) { 10664 /* 10665 * If this is an aggregating action, there must be neither 10666 * a speculate nor a commit on the action chain. 10667 */ 10668 dtrace_action_t *act; 10669 10670 for (act = ecb->dte_action; act != NULL; act = act->dta_next) { 10671 if (act->dta_kind == DTRACEACT_COMMIT) 10672 return (EINVAL); 10673 10674 if (act->dta_kind == DTRACEACT_SPECULATE) 10675 return (EINVAL); 10676 } 10677 10678 action = dtrace_ecb_aggregation_create(ecb, desc); 10679 10680 if (action == NULL) 10681 return (EINVAL); 10682 } else { 10683 if (DTRACEACT_ISDESTRUCTIVE(desc->dtad_kind) || 10684 (desc->dtad_kind == DTRACEACT_DIFEXPR && 10685 dp != NULL && dp->dtdo_destructive)) { 10686 state->dts_destructive = 1; 10687 } 10688 10689 switch (desc->dtad_kind) { 10690 case DTRACEACT_PRINTF: 10691 case DTRACEACT_PRINTA: 10692 case DTRACEACT_SYSTEM: 10693 case DTRACEACT_FREOPEN: 10694 case DTRACEACT_DIFEXPR: 10695 /* 10696 * We know that our arg is a string -- turn it into a 10697 * format. 10698 */ 10699 if (arg == NULL) { 10700 ASSERT(desc->dtad_kind == DTRACEACT_PRINTA || 10701 desc->dtad_kind == DTRACEACT_DIFEXPR); 10702 format = 0; 10703 } else { 10704 ASSERT(arg != NULL); 10705 ASSERT(arg > KERNELBASE); 10706 format = dtrace_format_add(state, 10707 (char *)(uintptr_t)arg); 10708 } 10709 10710 /*FALLTHROUGH*/ 10711 case DTRACEACT_LIBACT: 10712 case DTRACEACT_TRACEMEM: 10713 case DTRACEACT_TRACEMEM_DYNSIZE: 10714 if (dp == NULL) 10715 return (EINVAL); 10716 10717 if ((size = dp->dtdo_rtype.dtdt_size) != 0) 10718 break; 10719 10720 if (dp->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) { 10721 if (!(dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) 10722 return (EINVAL); 10723 10724 size = opt[DTRACEOPT_STRSIZE]; 10725 } 10726 10727 break; 10728 10729 case DTRACEACT_STACK: 10730 if ((nframes = arg) == 0) { 10731 nframes = opt[DTRACEOPT_STACKFRAMES]; 10732 ASSERT(nframes > 0); 10733 arg = nframes; 10734 } 10735 10736 size = nframes * sizeof (pc_t); 10737 break; 10738 10739 case DTRACEACT_JSTACK: 10740 if ((strsize = DTRACE_USTACK_STRSIZE(arg)) == 0) 10741 strsize = opt[DTRACEOPT_JSTACKSTRSIZE]; 10742 10743 if ((nframes = DTRACE_USTACK_NFRAMES(arg)) == 0) 10744 nframes = opt[DTRACEOPT_JSTACKFRAMES]; 10745 10746 arg = DTRACE_USTACK_ARG(nframes, strsize); 10747 10748 /*FALLTHROUGH*/ 10749 case DTRACEACT_USTACK: 10750 if (desc->dtad_kind != DTRACEACT_JSTACK && 10751 (nframes = DTRACE_USTACK_NFRAMES(arg)) == 0) { 10752 strsize = DTRACE_USTACK_STRSIZE(arg); 10753 nframes = opt[DTRACEOPT_USTACKFRAMES]; 10754 ASSERT(nframes > 0); 10755 arg = DTRACE_USTACK_ARG(nframes, strsize); 10756 } 10757 10758 /* 10759 * Save a slot for the pid. 10760 */ 10761 size = (nframes + 1) * sizeof (uint64_t); 10762 size += DTRACE_USTACK_STRSIZE(arg); 10763 size = P2ROUNDUP(size, (uint32_t)(sizeof (uintptr_t))); 10764 10765 break; 10766 10767 case DTRACEACT_SYM: 10768 case DTRACEACT_MOD: 10769 if (dp == NULL || ((size = dp->dtdo_rtype.dtdt_size) != 10770 sizeof (uint64_t)) || 10771 (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) 10772 return (EINVAL); 10773 break; 10774 10775 case DTRACEACT_USYM: 10776 case DTRACEACT_UMOD: 10777 case DTRACEACT_UADDR: 10778 if (dp == NULL || 10779 (dp->dtdo_rtype.dtdt_size != sizeof (uint64_t)) || 10780 (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) 10781 return (EINVAL); 10782 10783 /* 10784 * We have a slot for the pid, plus a slot for the 10785 * argument. To keep things simple (aligned with 10786 * bitness-neutral sizing), we store each as a 64-bit 10787 * quantity. 10788 */ 10789 size = 2 * sizeof (uint64_t); 10790 break; 10791 10792 case DTRACEACT_STOP: 10793 case DTRACEACT_BREAKPOINT: 10794 case DTRACEACT_PANIC: 10795 break; 10796 10797 case DTRACEACT_CHILL: 10798 case DTRACEACT_DISCARD: 10799 case DTRACEACT_RAISE: 10800 if (dp == NULL) 10801 return (EINVAL); 10802 break; 10803 10804 case DTRACEACT_EXIT: 10805 if (dp == NULL || 10806 (size = dp->dtdo_rtype.dtdt_size) != sizeof (int) || 10807 (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) 10808 return (EINVAL); 10809 break; 10810 10811 case DTRACEACT_SPECULATE: 10812 if (ecb->dte_size > sizeof (dtrace_rechdr_t)) 10813 return (EINVAL); 10814 10815 if (dp == NULL) 10816 return (EINVAL); 10817 10818 state->dts_speculates = 1; 10819 break; 10820 10821 case DTRACEACT_COMMIT: { 10822 dtrace_action_t *act = ecb->dte_action; 10823 10824 for (; act != NULL; act = act->dta_next) { 10825 if (act->dta_kind == DTRACEACT_COMMIT) 10826 return (EINVAL); 10827 } 10828 10829 if (dp == NULL) 10830 return (EINVAL); 10831 break; 10832 } 10833 10834 default: 10835 return (EINVAL); 10836 } 10837 10838 if (size != 0 || desc->dtad_kind == DTRACEACT_SPECULATE) { 10839 /* 10840 * If this is a data-storing action or a speculate, 10841 * we must be sure that there isn't a commit on the 10842 * action chain. 10843 */ 10844 dtrace_action_t *act = ecb->dte_action; 10845 10846 for (; act != NULL; act = act->dta_next) { 10847 if (act->dta_kind == DTRACEACT_COMMIT) 10848 return (EINVAL); 10849 } 10850 } 10851 10852 action = kmem_zalloc(sizeof (dtrace_action_t), KM_SLEEP); 10853 action->dta_rec.dtrd_size = size; 10854 } 10855 10856 action->dta_refcnt = 1; 10857 rec = &action->dta_rec; 10858 size = rec->dtrd_size; 10859 10860 for (mask = sizeof (uint64_t) - 1; size != 0 && mask > 0; mask >>= 1) { 10861 if (!(size & mask)) { 10862 align = mask + 1; 10863 break; 10864 } 10865 } 10866 10867 action->dta_kind = desc->dtad_kind; 10868 10869 if ((action->dta_difo = dp) != NULL) 10870 dtrace_difo_hold(dp); 10871 10872 rec->dtrd_action = action->dta_kind; 10873 rec->dtrd_arg = arg; 10874 rec->dtrd_uarg = desc->dtad_uarg; 10875 rec->dtrd_alignment = (uint16_t)align; 10876 rec->dtrd_format = format; 10877 10878 if ((last = ecb->dte_action_last) != NULL) { 10879 ASSERT(ecb->dte_action != NULL); 10880 action->dta_prev = last; 10881 last->dta_next = action; 10882 } else { 10883 ASSERT(ecb->dte_action == NULL); 10884 ecb->dte_action = action; 10885 } 10886 10887 ecb->dte_action_last = action; 10888 10889 return (0); 10890 } 10891 10892 static void 10893 dtrace_ecb_action_remove(dtrace_ecb_t *ecb) 10894 { 10895 dtrace_action_t *act = ecb->dte_action, *next; 10896 dtrace_vstate_t *vstate = &ecb->dte_state->dts_vstate; 10897 dtrace_difo_t *dp; 10898 uint16_t format; 10899 10900 if (act != NULL && act->dta_refcnt > 1) { 10901 ASSERT(act->dta_next == NULL || act->dta_next->dta_refcnt == 1); 10902 act->dta_refcnt--; 10903 } else { 10904 for (; act != NULL; act = next) { 10905 next = act->dta_next; 10906 ASSERT(next != NULL || act == ecb->dte_action_last); 10907 ASSERT(act->dta_refcnt == 1); 10908 10909 if ((format = act->dta_rec.dtrd_format) != 0) 10910 dtrace_format_remove(ecb->dte_state, format); 10911 10912 if ((dp = act->dta_difo) != NULL) 10913 dtrace_difo_release(dp, vstate); 10914 10915 if (DTRACEACT_ISAGG(act->dta_kind)) { 10916 dtrace_ecb_aggregation_destroy(ecb, act); 10917 } else { 10918 kmem_free(act, sizeof (dtrace_action_t)); 10919 } 10920 } 10921 } 10922 10923 ecb->dte_action = NULL; 10924 ecb->dte_action_last = NULL; 10925 ecb->dte_size = 0; 10926 } 10927 10928 static void 10929 dtrace_ecb_disable(dtrace_ecb_t *ecb) 10930 { 10931 /* 10932 * We disable the ECB by removing it from its probe. 10933 */ 10934 dtrace_ecb_t *pecb, *prev = NULL; 10935 dtrace_probe_t *probe = ecb->dte_probe; 10936 10937 ASSERT(MUTEX_HELD(&dtrace_lock)); 10938 10939 if (probe == NULL) { 10940 /* 10941 * This is the NULL probe; there is nothing to disable. 10942 */ 10943 return; 10944 } 10945 10946 for (pecb = probe->dtpr_ecb; pecb != NULL; pecb = pecb->dte_next) { 10947 if (pecb == ecb) 10948 break; 10949 prev = pecb; 10950 } 10951 10952 ASSERT(pecb != NULL); 10953 10954 if (prev == NULL) { 10955 probe->dtpr_ecb = ecb->dte_next; 10956 } else { 10957 prev->dte_next = ecb->dte_next; 10958 } 10959 10960 if (ecb == probe->dtpr_ecb_last) { 10961 ASSERT(ecb->dte_next == NULL); 10962 probe->dtpr_ecb_last = prev; 10963 } 10964 10965 /* 10966 * The ECB has been disconnected from the probe; now sync to assure 10967 * that all CPUs have seen the change before returning. 10968 */ 10969 dtrace_sync(); 10970 10971 if (probe->dtpr_ecb == NULL) { 10972 /* 10973 * That was the last ECB on the probe; clear the predicate 10974 * cache ID for the probe, disable it and sync one more time 10975 * to assure that we'll never hit it again. 10976 */ 10977 dtrace_provider_t *prov = probe->dtpr_provider; 10978 10979 ASSERT(ecb->dte_next == NULL); 10980 ASSERT(probe->dtpr_ecb_last == NULL); 10981 probe->dtpr_predcache = DTRACE_CACHEIDNONE; 10982 prov->dtpv_pops.dtps_disable(prov->dtpv_arg, 10983 probe->dtpr_id, probe->dtpr_arg); 10984 dtrace_sync(); 10985 } else { 10986 /* 10987 * There is at least one ECB remaining on the probe. If there 10988 * is _exactly_ one, set the probe's predicate cache ID to be 10989 * the predicate cache ID of the remaining ECB. 10990 */ 10991 ASSERT(probe->dtpr_ecb_last != NULL); 10992 ASSERT(probe->dtpr_predcache == DTRACE_CACHEIDNONE); 10993 10994 if (probe->dtpr_ecb == probe->dtpr_ecb_last) { 10995 dtrace_predicate_t *p = probe->dtpr_ecb->dte_predicate; 10996 10997 ASSERT(probe->dtpr_ecb->dte_next == NULL); 10998 10999 if (p != NULL) 11000 probe->dtpr_predcache = p->dtp_cacheid; 11001 } 11002 11003 ecb->dte_next = NULL; 11004 } 11005 } 11006 11007 static void 11008 dtrace_ecb_destroy(dtrace_ecb_t *ecb) 11009 { 11010 dtrace_state_t *state = ecb->dte_state; 11011 dtrace_vstate_t *vstate = &state->dts_vstate; 11012 dtrace_predicate_t *pred; 11013 dtrace_epid_t epid = ecb->dte_epid; 11014 11015 ASSERT(MUTEX_HELD(&dtrace_lock)); 11016 ASSERT(ecb->dte_next == NULL); 11017 ASSERT(ecb->dte_probe == NULL || ecb->dte_probe->dtpr_ecb != ecb); 11018 11019 if ((pred = ecb->dte_predicate) != NULL) 11020 dtrace_predicate_release(pred, vstate); 11021 11022 dtrace_ecb_action_remove(ecb); 11023 11024 ASSERT(state->dts_ecbs[epid - 1] == ecb); 11025 state->dts_ecbs[epid - 1] = NULL; 11026 11027 kmem_free(ecb, sizeof (dtrace_ecb_t)); 11028 } 11029 11030 static dtrace_ecb_t * 11031 dtrace_ecb_create(dtrace_state_t *state, dtrace_probe_t *probe, 11032 dtrace_enabling_t *enab) 11033 { 11034 dtrace_ecb_t *ecb; 11035 dtrace_predicate_t *pred; 11036 dtrace_actdesc_t *act; 11037 dtrace_provider_t *prov; 11038 dtrace_ecbdesc_t *desc = enab->dten_current; 11039 11040 ASSERT(MUTEX_HELD(&dtrace_lock)); 11041 ASSERT(state != NULL); 11042 11043 ecb = dtrace_ecb_add(state, probe); 11044 ecb->dte_uarg = desc->dted_uarg; 11045 11046 if ((pred = desc->dted_pred.dtpdd_predicate) != NULL) { 11047 dtrace_predicate_hold(pred); 11048 ecb->dte_predicate = pred; 11049 } 11050 11051 if (probe != NULL) { 11052 /* 11053 * If the provider shows more leg than the consumer is old 11054 * enough to see, we need to enable the appropriate implicit 11055 * predicate bits to prevent the ecb from activating at 11056 * revealing times. 11057 * 11058 * Providers specifying DTRACE_PRIV_USER at register time 11059 * are stating that they need the /proc-style privilege 11060 * model to be enforced, and this is what DTRACE_COND_OWNER 11061 * and DTRACE_COND_ZONEOWNER will then do at probe time. 11062 */ 11063 prov = probe->dtpr_provider; 11064 if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLPROC) && 11065 (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER)) 11066 ecb->dte_cond |= DTRACE_COND_OWNER; 11067 11068 if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLZONE) && 11069 (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER)) 11070 ecb->dte_cond |= DTRACE_COND_ZONEOWNER; 11071 11072 /* 11073 * If the provider shows us kernel innards and the user 11074 * is lacking sufficient privilege, enable the 11075 * DTRACE_COND_USERMODE implicit predicate. 11076 */ 11077 if (!(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) && 11078 (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_KERNEL)) 11079 ecb->dte_cond |= DTRACE_COND_USERMODE; 11080 } 11081 11082 if (dtrace_ecb_create_cache != NULL) { 11083 /* 11084 * If we have a cached ecb, we'll use its action list instead 11085 * of creating our own (saving both time and space). 11086 */ 11087 dtrace_ecb_t *cached = dtrace_ecb_create_cache; 11088 dtrace_action_t *act = cached->dte_action; 11089 11090 if (act != NULL) { 11091 ASSERT(act->dta_refcnt > 0); 11092 act->dta_refcnt++; 11093 ecb->dte_action = act; 11094 ecb->dte_action_last = cached->dte_action_last; 11095 ecb->dte_needed = cached->dte_needed; 11096 ecb->dte_size = cached->dte_size; 11097 ecb->dte_alignment = cached->dte_alignment; 11098 } 11099 11100 return (ecb); 11101 } 11102 11103 for (act = desc->dted_action; act != NULL; act = act->dtad_next) { 11104 if ((enab->dten_error = dtrace_ecb_action_add(ecb, act)) != 0) { 11105 dtrace_ecb_destroy(ecb); 11106 return (NULL); 11107 } 11108 } 11109 11110 dtrace_ecb_resize(ecb); 11111 11112 return (dtrace_ecb_create_cache = ecb); 11113 } 11114 11115 static int 11116 dtrace_ecb_create_enable(dtrace_probe_t *probe, void *arg) 11117 { 11118 dtrace_ecb_t *ecb; 11119 dtrace_enabling_t *enab = arg; 11120 dtrace_state_t *state = enab->dten_vstate->dtvs_state; 11121 11122 ASSERT(state != NULL); 11123 11124 if (probe != NULL && probe->dtpr_gen < enab->dten_probegen) { 11125 /* 11126 * This probe was created in a generation for which this 11127 * enabling has previously created ECBs; we don't want to 11128 * enable it again, so just kick out. 11129 */ 11130 return (DTRACE_MATCH_NEXT); 11131 } 11132 11133 if ((ecb = dtrace_ecb_create(state, probe, enab)) == NULL) 11134 return (DTRACE_MATCH_DONE); 11135 11136 if (dtrace_ecb_enable(ecb) < 0) 11137 return (DTRACE_MATCH_FAIL); 11138 11139 return (DTRACE_MATCH_NEXT); 11140 } 11141 11142 static dtrace_ecb_t * 11143 dtrace_epid2ecb(dtrace_state_t *state, dtrace_epid_t id) 11144 { 11145 dtrace_ecb_t *ecb; 11146 11147 ASSERT(MUTEX_HELD(&dtrace_lock)); 11148 11149 if (id == 0 || id > state->dts_necbs) 11150 return (NULL); 11151 11152 ASSERT(state->dts_necbs > 0 && state->dts_ecbs != NULL); 11153 ASSERT((ecb = state->dts_ecbs[id - 1]) == NULL || ecb->dte_epid == id); 11154 11155 return (state->dts_ecbs[id - 1]); 11156 } 11157 11158 static dtrace_aggregation_t * 11159 dtrace_aggid2agg(dtrace_state_t *state, dtrace_aggid_t id) 11160 { 11161 dtrace_aggregation_t *agg; 11162 11163 ASSERT(MUTEX_HELD(&dtrace_lock)); 11164 11165 if (id == 0 || id > state->dts_naggregations) 11166 return (NULL); 11167 11168 ASSERT(state->dts_naggregations > 0 && state->dts_aggregations != NULL); 11169 ASSERT((agg = state->dts_aggregations[id - 1]) == NULL || 11170 agg->dtag_id == id); 11171 11172 return (state->dts_aggregations[id - 1]); 11173 } 11174 11175 /* 11176 * DTrace Buffer Functions 11177 * 11178 * The following functions manipulate DTrace buffers. Most of these functions 11179 * are called in the context of establishing or processing consumer state; 11180 * exceptions are explicitly noted. 11181 */ 11182 11183 /* 11184 * Note: called from cross call context. This function switches the two 11185 * buffers on a given CPU. The atomicity of this operation is assured by 11186 * disabling interrupts while the actual switch takes place; the disabling of 11187 * interrupts serializes the execution with any execution of dtrace_probe() on 11188 * the same CPU. 11189 */ 11190 static void 11191 dtrace_buffer_switch(dtrace_buffer_t *buf) 11192 { 11193 caddr_t tomax = buf->dtb_tomax; 11194 caddr_t xamot = buf->dtb_xamot; 11195 dtrace_icookie_t cookie; 11196 hrtime_t now; 11197 11198 ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH)); 11199 ASSERT(!(buf->dtb_flags & DTRACEBUF_RING)); 11200 11201 cookie = dtrace_interrupt_disable(); 11202 now = dtrace_gethrtime(); 11203 buf->dtb_tomax = xamot; 11204 buf->dtb_xamot = tomax; 11205 buf->dtb_xamot_drops = buf->dtb_drops; 11206 buf->dtb_xamot_offset = buf->dtb_offset; 11207 buf->dtb_xamot_errors = buf->dtb_errors; 11208 buf->dtb_xamot_flags = buf->dtb_flags; 11209 buf->dtb_offset = 0; 11210 buf->dtb_drops = 0; 11211 buf->dtb_errors = 0; 11212 buf->dtb_flags &= ~(DTRACEBUF_ERROR | DTRACEBUF_DROPPED); 11213 buf->dtb_interval = now - buf->dtb_switched; 11214 buf->dtb_switched = now; 11215 dtrace_interrupt_enable(cookie); 11216 } 11217 11218 /* 11219 * Note: called from cross call context. This function activates a buffer 11220 * on a CPU. As with dtrace_buffer_switch(), the atomicity of the operation 11221 * is guaranteed by the disabling of interrupts. 11222 */ 11223 static void 11224 dtrace_buffer_activate(dtrace_state_t *state) 11225 { 11226 dtrace_buffer_t *buf; 11227 dtrace_icookie_t cookie = dtrace_interrupt_disable(); 11228 11229 buf = &state->dts_buffer[CPU->cpu_id]; 11230 11231 if (buf->dtb_tomax != NULL) { 11232 /* 11233 * We might like to assert that the buffer is marked inactive, 11234 * but this isn't necessarily true: the buffer for the CPU 11235 * that processes the BEGIN probe has its buffer activated 11236 * manually. In this case, we take the (harmless) action 11237 * re-clearing the bit INACTIVE bit. 11238 */ 11239 buf->dtb_flags &= ~DTRACEBUF_INACTIVE; 11240 } 11241 11242 dtrace_interrupt_enable(cookie); 11243 } 11244 11245 static int 11246 dtrace_buffer_alloc(dtrace_buffer_t *bufs, size_t size, int flags, 11247 processorid_t cpu, int *factor) 11248 { 11249 cpu_t *cp; 11250 dtrace_buffer_t *buf; 11251 int allocated = 0, desired = 0; 11252 11253 ASSERT(MUTEX_HELD(&cpu_lock)); 11254 ASSERT(MUTEX_HELD(&dtrace_lock)); 11255 11256 *factor = 1; 11257 11258 if (size > dtrace_nonroot_maxsize && 11259 !PRIV_POLICY_CHOICE(CRED(), PRIV_ALL, B_FALSE)) 11260 return (EFBIG); 11261 11262 cp = cpu_list; 11263 11264 do { 11265 if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id) 11266 continue; 11267 11268 buf = &bufs[cp->cpu_id]; 11269 11270 /* 11271 * If there is already a buffer allocated for this CPU, it 11272 * is only possible that this is a DR event. In this case, 11273 * the buffer size must match our specified size. 11274 */ 11275 if (buf->dtb_tomax != NULL) { 11276 ASSERT(buf->dtb_size == size); 11277 continue; 11278 } 11279 11280 ASSERT(buf->dtb_xamot == NULL); 11281 11282 if ((buf->dtb_tomax = kmem_zalloc(size, 11283 KM_NOSLEEP | KM_NORMALPRI)) == NULL) 11284 goto err; 11285 11286 buf->dtb_size = size; 11287 buf->dtb_flags = flags; 11288 buf->dtb_offset = 0; 11289 buf->dtb_drops = 0; 11290 11291 if (flags & DTRACEBUF_NOSWITCH) 11292 continue; 11293 11294 if ((buf->dtb_xamot = kmem_zalloc(size, 11295 KM_NOSLEEP | KM_NORMALPRI)) == NULL) 11296 goto err; 11297 } while ((cp = cp->cpu_next) != cpu_list); 11298 11299 return (0); 11300 11301 err: 11302 cp = cpu_list; 11303 11304 do { 11305 if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id) 11306 continue; 11307 11308 buf = &bufs[cp->cpu_id]; 11309 desired += 2; 11310 11311 if (buf->dtb_xamot != NULL) { 11312 ASSERT(buf->dtb_tomax != NULL); 11313 ASSERT(buf->dtb_size == size); 11314 kmem_free(buf->dtb_xamot, size); 11315 allocated++; 11316 } 11317 11318 if (buf->dtb_tomax != NULL) { 11319 ASSERT(buf->dtb_size == size); 11320 kmem_free(buf->dtb_tomax, size); 11321 allocated++; 11322 } 11323 11324 buf->dtb_tomax = NULL; 11325 buf->dtb_xamot = NULL; 11326 buf->dtb_size = 0; 11327 } while ((cp = cp->cpu_next) != cpu_list); 11328 11329 *factor = desired / (allocated > 0 ? allocated : 1); 11330 11331 return (ENOMEM); 11332 } 11333 11334 /* 11335 * Note: called from probe context. This function just increments the drop 11336 * count on a buffer. It has been made a function to allow for the 11337 * possibility of understanding the source of mysterious drop counts. (A 11338 * problem for which one may be particularly disappointed that DTrace cannot 11339 * be used to understand DTrace.) 11340 */ 11341 static void 11342 dtrace_buffer_drop(dtrace_buffer_t *buf) 11343 { 11344 buf->dtb_drops++; 11345 } 11346 11347 /* 11348 * Note: called from probe context. This function is called to reserve space 11349 * in a buffer. If mstate is non-NULL, sets the scratch base and size in the 11350 * mstate. Returns the new offset in the buffer, or a negative value if an 11351 * error has occurred. 11352 */ 11353 static intptr_t 11354 dtrace_buffer_reserve(dtrace_buffer_t *buf, size_t needed, size_t align, 11355 dtrace_state_t *state, dtrace_mstate_t *mstate) 11356 { 11357 intptr_t offs = buf->dtb_offset, soffs; 11358 intptr_t woffs; 11359 caddr_t tomax; 11360 size_t total; 11361 11362 if (buf->dtb_flags & DTRACEBUF_INACTIVE) 11363 return (-1); 11364 11365 if ((tomax = buf->dtb_tomax) == NULL) { 11366 dtrace_buffer_drop(buf); 11367 return (-1); 11368 } 11369 11370 if (!(buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL))) { 11371 while (offs & (align - 1)) { 11372 /* 11373 * Assert that our alignment is off by a number which 11374 * is itself sizeof (uint32_t) aligned. 11375 */ 11376 ASSERT(!((align - (offs & (align - 1))) & 11377 (sizeof (uint32_t) - 1))); 11378 DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE); 11379 offs += sizeof (uint32_t); 11380 } 11381 11382 if ((soffs = offs + needed) > buf->dtb_size) { 11383 dtrace_buffer_drop(buf); 11384 return (-1); 11385 } 11386 11387 if (mstate == NULL) 11388 return (offs); 11389 11390 mstate->dtms_scratch_base = (uintptr_t)tomax + soffs; 11391 mstate->dtms_scratch_size = buf->dtb_size - soffs; 11392 mstate->dtms_scratch_ptr = mstate->dtms_scratch_base; 11393 11394 return (offs); 11395 } 11396 11397 if (buf->dtb_flags & DTRACEBUF_FILL) { 11398 if (state->dts_activity != DTRACE_ACTIVITY_COOLDOWN && 11399 (buf->dtb_flags & DTRACEBUF_FULL)) 11400 return (-1); 11401 goto out; 11402 } 11403 11404 total = needed + (offs & (align - 1)); 11405 11406 /* 11407 * For a ring buffer, life is quite a bit more complicated. Before 11408 * we can store any padding, we need to adjust our wrapping offset. 11409 * (If we've never before wrapped or we're not about to, no adjustment 11410 * is required.) 11411 */ 11412 if ((buf->dtb_flags & DTRACEBUF_WRAPPED) || 11413 offs + total > buf->dtb_size) { 11414 woffs = buf->dtb_xamot_offset; 11415 11416 if (offs + total > buf->dtb_size) { 11417 /* 11418 * We can't fit in the end of the buffer. First, a 11419 * sanity check that we can fit in the buffer at all. 11420 */ 11421 if (total > buf->dtb_size) { 11422 dtrace_buffer_drop(buf); 11423 return (-1); 11424 } 11425 11426 /* 11427 * We're going to be storing at the top of the buffer, 11428 * so now we need to deal with the wrapped offset. We 11429 * only reset our wrapped offset to 0 if it is 11430 * currently greater than the current offset. If it 11431 * is less than the current offset, it is because a 11432 * previous allocation induced a wrap -- but the 11433 * allocation didn't subsequently take the space due 11434 * to an error or false predicate evaluation. In this 11435 * case, we'll just leave the wrapped offset alone: if 11436 * the wrapped offset hasn't been advanced far enough 11437 * for this allocation, it will be adjusted in the 11438 * lower loop. 11439 */ 11440 if (buf->dtb_flags & DTRACEBUF_WRAPPED) { 11441 if (woffs >= offs) 11442 woffs = 0; 11443 } else { 11444 woffs = 0; 11445 } 11446 11447 /* 11448 * Now we know that we're going to be storing to the 11449 * top of the buffer and that there is room for us 11450 * there. We need to clear the buffer from the current 11451 * offset to the end (there may be old gunk there). 11452 */ 11453 while (offs < buf->dtb_size) 11454 tomax[offs++] = 0; 11455 11456 /* 11457 * We need to set our offset to zero. And because we 11458 * are wrapping, we need to set the bit indicating as 11459 * much. We can also adjust our needed space back 11460 * down to the space required by the ECB -- we know 11461 * that the top of the buffer is aligned. 11462 */ 11463 offs = 0; 11464 total = needed; 11465 buf->dtb_flags |= DTRACEBUF_WRAPPED; 11466 } else { 11467 /* 11468 * There is room for us in the buffer, so we simply 11469 * need to check the wrapped offset. 11470 */ 11471 if (woffs < offs) { 11472 /* 11473 * The wrapped offset is less than the offset. 11474 * This can happen if we allocated buffer space 11475 * that induced a wrap, but then we didn't 11476 * subsequently take the space due to an error 11477 * or false predicate evaluation. This is 11478 * okay; we know that _this_ allocation isn't 11479 * going to induce a wrap. We still can't 11480 * reset the wrapped offset to be zero, 11481 * however: the space may have been trashed in 11482 * the previous failed probe attempt. But at 11483 * least the wrapped offset doesn't need to 11484 * be adjusted at all... 11485 */ 11486 goto out; 11487 } 11488 } 11489 11490 while (offs + total > woffs) { 11491 dtrace_epid_t epid = *(uint32_t *)(tomax + woffs); 11492 size_t size; 11493 11494 if (epid == DTRACE_EPIDNONE) { 11495 size = sizeof (uint32_t); 11496 } else { 11497 ASSERT3U(epid, <=, state->dts_necbs); 11498 ASSERT(state->dts_ecbs[epid - 1] != NULL); 11499 11500 size = state->dts_ecbs[epid - 1]->dte_size; 11501 } 11502 11503 ASSERT(woffs + size <= buf->dtb_size); 11504 ASSERT(size != 0); 11505 11506 if (woffs + size == buf->dtb_size) { 11507 /* 11508 * We've reached the end of the buffer; we want 11509 * to set the wrapped offset to 0 and break 11510 * out. However, if the offs is 0, then we're 11511 * in a strange edge-condition: the amount of 11512 * space that we want to reserve plus the size 11513 * of the record that we're overwriting is 11514 * greater than the size of the buffer. This 11515 * is problematic because if we reserve the 11516 * space but subsequently don't consume it (due 11517 * to a failed predicate or error) the wrapped 11518 * offset will be 0 -- yet the EPID at offset 0 11519 * will not be committed. This situation is 11520 * relatively easy to deal with: if we're in 11521 * this case, the buffer is indistinguishable 11522 * from one that hasn't wrapped; we need only 11523 * finish the job by clearing the wrapped bit, 11524 * explicitly setting the offset to be 0, and 11525 * zero'ing out the old data in the buffer. 11526 */ 11527 if (offs == 0) { 11528 buf->dtb_flags &= ~DTRACEBUF_WRAPPED; 11529 buf->dtb_offset = 0; 11530 woffs = total; 11531 11532 while (woffs < buf->dtb_size) 11533 tomax[woffs++] = 0; 11534 } 11535 11536 woffs = 0; 11537 break; 11538 } 11539 11540 woffs += size; 11541 } 11542 11543 /* 11544 * We have a wrapped offset. It may be that the wrapped offset 11545 * has become zero -- that's okay. 11546 */ 11547 buf->dtb_xamot_offset = woffs; 11548 } 11549 11550 out: 11551 /* 11552 * Now we can plow the buffer with any necessary padding. 11553 */ 11554 while (offs & (align - 1)) { 11555 /* 11556 * Assert that our alignment is off by a number which 11557 * is itself sizeof (uint32_t) aligned. 11558 */ 11559 ASSERT(!((align - (offs & (align - 1))) & 11560 (sizeof (uint32_t) - 1))); 11561 DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE); 11562 offs += sizeof (uint32_t); 11563 } 11564 11565 if (buf->dtb_flags & DTRACEBUF_FILL) { 11566 if (offs + needed > buf->dtb_size - state->dts_reserve) { 11567 buf->dtb_flags |= DTRACEBUF_FULL; 11568 return (-1); 11569 } 11570 } 11571 11572 if (mstate == NULL) 11573 return (offs); 11574 11575 /* 11576 * For ring buffers and fill buffers, the scratch space is always 11577 * the inactive buffer. 11578 */ 11579 mstate->dtms_scratch_base = (uintptr_t)buf->dtb_xamot; 11580 mstate->dtms_scratch_size = buf->dtb_size; 11581 mstate->dtms_scratch_ptr = mstate->dtms_scratch_base; 11582 11583 return (offs); 11584 } 11585 11586 static void 11587 dtrace_buffer_polish(dtrace_buffer_t *buf) 11588 { 11589 ASSERT(buf->dtb_flags & DTRACEBUF_RING); 11590 ASSERT(MUTEX_HELD(&dtrace_lock)); 11591 11592 if (!(buf->dtb_flags & DTRACEBUF_WRAPPED)) 11593 return; 11594 11595 /* 11596 * We need to polish the ring buffer. There are three cases: 11597 * 11598 * - The first (and presumably most common) is that there is no gap 11599 * between the buffer offset and the wrapped offset. In this case, 11600 * there is nothing in the buffer that isn't valid data; we can 11601 * mark the buffer as polished and return. 11602 * 11603 * - The second (less common than the first but still more common 11604 * than the third) is that there is a gap between the buffer offset 11605 * and the wrapped offset, and the wrapped offset is larger than the 11606 * buffer offset. This can happen because of an alignment issue, or 11607 * can happen because of a call to dtrace_buffer_reserve() that 11608 * didn't subsequently consume the buffer space. In this case, 11609 * we need to zero the data from the buffer offset to the wrapped 11610 * offset. 11611 * 11612 * - The third (and least common) is that there is a gap between the 11613 * buffer offset and the wrapped offset, but the wrapped offset is 11614 * _less_ than the buffer offset. This can only happen because a 11615 * call to dtrace_buffer_reserve() induced a wrap, but the space 11616 * was not subsequently consumed. In this case, we need to zero the 11617 * space from the offset to the end of the buffer _and_ from the 11618 * top of the buffer to the wrapped offset. 11619 */ 11620 if (buf->dtb_offset < buf->dtb_xamot_offset) { 11621 bzero(buf->dtb_tomax + buf->dtb_offset, 11622 buf->dtb_xamot_offset - buf->dtb_offset); 11623 } 11624 11625 if (buf->dtb_offset > buf->dtb_xamot_offset) { 11626 bzero(buf->dtb_tomax + buf->dtb_offset, 11627 buf->dtb_size - buf->dtb_offset); 11628 bzero(buf->dtb_tomax, buf->dtb_xamot_offset); 11629 } 11630 } 11631 11632 /* 11633 * This routine determines if data generated at the specified time has likely 11634 * been entirely consumed at user-level. This routine is called to determine 11635 * if an ECB on a defunct probe (but for an active enabling) can be safely 11636 * disabled and destroyed. 11637 */ 11638 static int 11639 dtrace_buffer_consumed(dtrace_buffer_t *bufs, hrtime_t when) 11640 { 11641 int i; 11642 11643 for (i = 0; i < NCPU; i++) { 11644 dtrace_buffer_t *buf = &bufs[i]; 11645 11646 if (buf->dtb_size == 0) 11647 continue; 11648 11649 if (buf->dtb_flags & DTRACEBUF_RING) 11650 return (0); 11651 11652 if (!buf->dtb_switched && buf->dtb_offset != 0) 11653 return (0); 11654 11655 if (buf->dtb_switched - buf->dtb_interval < when) 11656 return (0); 11657 } 11658 11659 return (1); 11660 } 11661 11662 static void 11663 dtrace_buffer_free(dtrace_buffer_t *bufs) 11664 { 11665 int i; 11666 11667 for (i = 0; i < NCPU; i++) { 11668 dtrace_buffer_t *buf = &bufs[i]; 11669 11670 if (buf->dtb_tomax == NULL) { 11671 ASSERT(buf->dtb_xamot == NULL); 11672 ASSERT(buf->dtb_size == 0); 11673 continue; 11674 } 11675 11676 if (buf->dtb_xamot != NULL) { 11677 ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH)); 11678 kmem_free(buf->dtb_xamot, buf->dtb_size); 11679 } 11680 11681 kmem_free(buf->dtb_tomax, buf->dtb_size); 11682 buf->dtb_size = 0; 11683 buf->dtb_tomax = NULL; 11684 buf->dtb_xamot = NULL; 11685 } 11686 } 11687 11688 /* 11689 * DTrace Enabling Functions 11690 */ 11691 static dtrace_enabling_t * 11692 dtrace_enabling_create(dtrace_vstate_t *vstate) 11693 { 11694 dtrace_enabling_t *enab; 11695 11696 enab = kmem_zalloc(sizeof (dtrace_enabling_t), KM_SLEEP); 11697 enab->dten_vstate = vstate; 11698 11699 return (enab); 11700 } 11701 11702 static void 11703 dtrace_enabling_add(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb) 11704 { 11705 dtrace_ecbdesc_t **ndesc; 11706 size_t osize, nsize; 11707 11708 /* 11709 * We can't add to enablings after we've enabled them, or after we've 11710 * retained them. 11711 */ 11712 ASSERT(enab->dten_probegen == 0); 11713 ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL); 11714 11715 if (enab->dten_ndesc < enab->dten_maxdesc) { 11716 enab->dten_desc[enab->dten_ndesc++] = ecb; 11717 return; 11718 } 11719 11720 osize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *); 11721 11722 if (enab->dten_maxdesc == 0) { 11723 enab->dten_maxdesc = 1; 11724 } else { 11725 enab->dten_maxdesc <<= 1; 11726 } 11727 11728 ASSERT(enab->dten_ndesc < enab->dten_maxdesc); 11729 11730 nsize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *); 11731 ndesc = kmem_zalloc(nsize, KM_SLEEP); 11732 bcopy(enab->dten_desc, ndesc, osize); 11733 kmem_free(enab->dten_desc, osize); 11734 11735 enab->dten_desc = ndesc; 11736 enab->dten_desc[enab->dten_ndesc++] = ecb; 11737 } 11738 11739 static void 11740 dtrace_enabling_addlike(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb, 11741 dtrace_probedesc_t *pd) 11742 { 11743 dtrace_ecbdesc_t *new; 11744 dtrace_predicate_t *pred; 11745 dtrace_actdesc_t *act; 11746 11747 /* 11748 * We're going to create a new ECB description that matches the 11749 * specified ECB in every way, but has the specified probe description. 11750 */ 11751 new = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP); 11752 11753 if ((pred = ecb->dted_pred.dtpdd_predicate) != NULL) 11754 dtrace_predicate_hold(pred); 11755 11756 for (act = ecb->dted_action; act != NULL; act = act->dtad_next) 11757 dtrace_actdesc_hold(act); 11758 11759 new->dted_action = ecb->dted_action; 11760 new->dted_pred = ecb->dted_pred; 11761 new->dted_probe = *pd; 11762 new->dted_uarg = ecb->dted_uarg; 11763 11764 dtrace_enabling_add(enab, new); 11765 } 11766 11767 static void 11768 dtrace_enabling_dump(dtrace_enabling_t *enab) 11769 { 11770 int i; 11771 11772 for (i = 0; i < enab->dten_ndesc; i++) { 11773 dtrace_probedesc_t *desc = &enab->dten_desc[i]->dted_probe; 11774 11775 cmn_err(CE_NOTE, "enabling probe %d (%s:%s:%s:%s)", i, 11776 desc->dtpd_provider, desc->dtpd_mod, 11777 desc->dtpd_func, desc->dtpd_name); 11778 } 11779 } 11780 11781 static void 11782 dtrace_enabling_destroy(dtrace_enabling_t *enab) 11783 { 11784 int i; 11785 dtrace_ecbdesc_t *ep; 11786 dtrace_vstate_t *vstate = enab->dten_vstate; 11787 11788 ASSERT(MUTEX_HELD(&dtrace_lock)); 11789 11790 for (i = 0; i < enab->dten_ndesc; i++) { 11791 dtrace_actdesc_t *act, *next; 11792 dtrace_predicate_t *pred; 11793 11794 ep = enab->dten_desc[i]; 11795 11796 if ((pred = ep->dted_pred.dtpdd_predicate) != NULL) 11797 dtrace_predicate_release(pred, vstate); 11798 11799 for (act = ep->dted_action; act != NULL; act = next) { 11800 next = act->dtad_next; 11801 dtrace_actdesc_release(act, vstate); 11802 } 11803 11804 kmem_free(ep, sizeof (dtrace_ecbdesc_t)); 11805 } 11806 11807 kmem_free(enab->dten_desc, 11808 enab->dten_maxdesc * sizeof (dtrace_enabling_t *)); 11809 11810 /* 11811 * If this was a retained enabling, decrement the dts_nretained count 11812 * and take it off of the dtrace_retained list. 11813 */ 11814 if (enab->dten_prev != NULL || enab->dten_next != NULL || 11815 dtrace_retained == enab) { 11816 ASSERT(enab->dten_vstate->dtvs_state != NULL); 11817 ASSERT(enab->dten_vstate->dtvs_state->dts_nretained > 0); 11818 enab->dten_vstate->dtvs_state->dts_nretained--; 11819 dtrace_retained_gen++; 11820 } 11821 11822 if (enab->dten_prev == NULL) { 11823 if (dtrace_retained == enab) { 11824 dtrace_retained = enab->dten_next; 11825 11826 if (dtrace_retained != NULL) 11827 dtrace_retained->dten_prev = NULL; 11828 } 11829 } else { 11830 ASSERT(enab != dtrace_retained); 11831 ASSERT(dtrace_retained != NULL); 11832 enab->dten_prev->dten_next = enab->dten_next; 11833 } 11834 11835 if (enab->dten_next != NULL) { 11836 ASSERT(dtrace_retained != NULL); 11837 enab->dten_next->dten_prev = enab->dten_prev; 11838 } 11839 11840 kmem_free(enab, sizeof (dtrace_enabling_t)); 11841 } 11842 11843 static int 11844 dtrace_enabling_retain(dtrace_enabling_t *enab) 11845 { 11846 dtrace_state_t *state; 11847 11848 ASSERT(MUTEX_HELD(&dtrace_lock)); 11849 ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL); 11850 ASSERT(enab->dten_vstate != NULL); 11851 11852 state = enab->dten_vstate->dtvs_state; 11853 ASSERT(state != NULL); 11854 11855 /* 11856 * We only allow each state to retain dtrace_retain_max enablings. 11857 */ 11858 if (state->dts_nretained >= dtrace_retain_max) 11859 return (ENOSPC); 11860 11861 state->dts_nretained++; 11862 dtrace_retained_gen++; 11863 11864 if (dtrace_retained == NULL) { 11865 dtrace_retained = enab; 11866 return (0); 11867 } 11868 11869 enab->dten_next = dtrace_retained; 11870 dtrace_retained->dten_prev = enab; 11871 dtrace_retained = enab; 11872 11873 return (0); 11874 } 11875 11876 static int 11877 dtrace_enabling_replicate(dtrace_state_t *state, dtrace_probedesc_t *match, 11878 dtrace_probedesc_t *create) 11879 { 11880 dtrace_enabling_t *new, *enab; 11881 int found = 0, err = ENOENT; 11882 11883 ASSERT(MUTEX_HELD(&dtrace_lock)); 11884 ASSERT(strlen(match->dtpd_provider) < DTRACE_PROVNAMELEN); 11885 ASSERT(strlen(match->dtpd_mod) < DTRACE_MODNAMELEN); 11886 ASSERT(strlen(match->dtpd_func) < DTRACE_FUNCNAMELEN); 11887 ASSERT(strlen(match->dtpd_name) < DTRACE_NAMELEN); 11888 11889 new = dtrace_enabling_create(&state->dts_vstate); 11890 11891 /* 11892 * Iterate over all retained enablings, looking for enablings that 11893 * match the specified state. 11894 */ 11895 for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) { 11896 int i; 11897 11898 /* 11899 * dtvs_state can only be NULL for helper enablings -- and 11900 * helper enablings can't be retained. 11901 */ 11902 ASSERT(enab->dten_vstate->dtvs_state != NULL); 11903 11904 if (enab->dten_vstate->dtvs_state != state) 11905 continue; 11906 11907 /* 11908 * Now iterate over each probe description; we're looking for 11909 * an exact match to the specified probe description. 11910 */ 11911 for (i = 0; i < enab->dten_ndesc; i++) { 11912 dtrace_ecbdesc_t *ep = enab->dten_desc[i]; 11913 dtrace_probedesc_t *pd = &ep->dted_probe; 11914 11915 if (strcmp(pd->dtpd_provider, match->dtpd_provider)) 11916 continue; 11917 11918 if (strcmp(pd->dtpd_mod, match->dtpd_mod)) 11919 continue; 11920 11921 if (strcmp(pd->dtpd_func, match->dtpd_func)) 11922 continue; 11923 11924 if (strcmp(pd->dtpd_name, match->dtpd_name)) 11925 continue; 11926 11927 /* 11928 * We have a winning probe! Add it to our growing 11929 * enabling. 11930 */ 11931 found = 1; 11932 dtrace_enabling_addlike(new, ep, create); 11933 } 11934 } 11935 11936 if (!found || (err = dtrace_enabling_retain(new)) != 0) { 11937 dtrace_enabling_destroy(new); 11938 return (err); 11939 } 11940 11941 return (0); 11942 } 11943 11944 static void 11945 dtrace_enabling_retract(dtrace_state_t *state) 11946 { 11947 dtrace_enabling_t *enab, *next; 11948 11949 ASSERT(MUTEX_HELD(&dtrace_lock)); 11950 11951 /* 11952 * Iterate over all retained enablings, destroy the enablings retained 11953 * for the specified state. 11954 */ 11955 for (enab = dtrace_retained; enab != NULL; enab = next) { 11956 next = enab->dten_next; 11957 11958 /* 11959 * dtvs_state can only be NULL for helper enablings -- and 11960 * helper enablings can't be retained. 11961 */ 11962 ASSERT(enab->dten_vstate->dtvs_state != NULL); 11963 11964 if (enab->dten_vstate->dtvs_state == state) { 11965 ASSERT(state->dts_nretained > 0); 11966 dtrace_enabling_destroy(enab); 11967 } 11968 } 11969 11970 ASSERT(state->dts_nretained == 0); 11971 } 11972 11973 static int 11974 dtrace_enabling_match(dtrace_enabling_t *enab, int *nmatched) 11975 { 11976 int i = 0; 11977 int total_matched = 0, matched = 0; 11978 11979 ASSERT(MUTEX_HELD(&cpu_lock)); 11980 ASSERT(MUTEX_HELD(&dtrace_lock)); 11981 11982 for (i = 0; i < enab->dten_ndesc; i++) { 11983 dtrace_ecbdesc_t *ep = enab->dten_desc[i]; 11984 11985 enab->dten_current = ep; 11986 enab->dten_error = 0; 11987 11988 /* 11989 * If a provider failed to enable a probe then get out and 11990 * let the consumer know we failed. 11991 */ 11992 if ((matched = dtrace_probe_enable(&ep->dted_probe, enab)) < 0) 11993 return (EBUSY); 11994 11995 total_matched += matched; 11996 11997 if (enab->dten_error != 0) { 11998 /* 11999 * If we get an error half-way through enabling the 12000 * probes, we kick out -- perhaps with some number of 12001 * them enabled. Leaving enabled probes enabled may 12002 * be slightly confusing for user-level, but we expect 12003 * that no one will attempt to actually drive on in 12004 * the face of such errors. If this is an anonymous 12005 * enabling (indicated with a NULL nmatched pointer), 12006 * we cmn_err() a message. We aren't expecting to 12007 * get such an error -- such as it can exist at all, 12008 * it would be a result of corrupted DOF in the driver 12009 * properties. 12010 */ 12011 if (nmatched == NULL) { 12012 cmn_err(CE_WARN, "dtrace_enabling_match() " 12013 "error on %p: %d", (void *)ep, 12014 enab->dten_error); 12015 } 12016 12017 return (enab->dten_error); 12018 } 12019 } 12020 12021 enab->dten_probegen = dtrace_probegen; 12022 if (nmatched != NULL) 12023 *nmatched = total_matched; 12024 12025 return (0); 12026 } 12027 12028 static void 12029 dtrace_enabling_matchall(void) 12030 { 12031 dtrace_enabling_t *enab; 12032 12033 mutex_enter(&cpu_lock); 12034 mutex_enter(&dtrace_lock); 12035 12036 /* 12037 * Iterate over all retained enablings to see if any probes match 12038 * against them. We only perform this operation on enablings for which 12039 * we have sufficient permissions by virtue of being in the global zone 12040 * or in the same zone as the DTrace client. Because we can be called 12041 * after dtrace_detach() has been called, we cannot assert that there 12042 * are retained enablings. We can safely load from dtrace_retained, 12043 * however: the taskq_destroy() at the end of dtrace_detach() will 12044 * block pending our completion. 12045 */ 12046 for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) { 12047 dtrace_cred_t *dcr = &enab->dten_vstate->dtvs_state->dts_cred; 12048 cred_t *cr = dcr->dcr_cred; 12049 zoneid_t zone = cr != NULL ? crgetzoneid(cr) : 0; 12050 12051 if ((dcr->dcr_visible & DTRACE_CRV_ALLZONE) || (cr != NULL && 12052 (zone == GLOBAL_ZONEID || getzoneid() == zone))) 12053 (void) dtrace_enabling_match(enab, NULL); 12054 } 12055 12056 mutex_exit(&dtrace_lock); 12057 mutex_exit(&cpu_lock); 12058 } 12059 12060 /* 12061 * If an enabling is to be enabled without having matched probes (that is, if 12062 * dtrace_state_go() is to be called on the underlying dtrace_state_t), the 12063 * enabling must be _primed_ by creating an ECB for every ECB description. 12064 * This must be done to assure that we know the number of speculations, the 12065 * number of aggregations, the minimum buffer size needed, etc. before we 12066 * transition out of DTRACE_ACTIVITY_INACTIVE. To do this without actually 12067 * enabling any probes, we create ECBs for every ECB decription, but with a 12068 * NULL probe -- which is exactly what this function does. 12069 */ 12070 static void 12071 dtrace_enabling_prime(dtrace_state_t *state) 12072 { 12073 dtrace_enabling_t *enab; 12074 int i; 12075 12076 for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) { 12077 ASSERT(enab->dten_vstate->dtvs_state != NULL); 12078 12079 if (enab->dten_vstate->dtvs_state != state) 12080 continue; 12081 12082 /* 12083 * We don't want to prime an enabling more than once, lest 12084 * we allow a malicious user to induce resource exhaustion. 12085 * (The ECBs that result from priming an enabling aren't 12086 * leaked -- but they also aren't deallocated until the 12087 * consumer state is destroyed.) 12088 */ 12089 if (enab->dten_primed) 12090 continue; 12091 12092 for (i = 0; i < enab->dten_ndesc; i++) { 12093 enab->dten_current = enab->dten_desc[i]; 12094 (void) dtrace_probe_enable(NULL, enab); 12095 } 12096 12097 enab->dten_primed = 1; 12098 } 12099 } 12100 12101 /* 12102 * Called to indicate that probes should be provided due to retained 12103 * enablings. This is implemented in terms of dtrace_probe_provide(), but it 12104 * must take an initial lap through the enabling calling the dtps_provide() 12105 * entry point explicitly to allow for autocreated probes. 12106 */ 12107 static void 12108 dtrace_enabling_provide(dtrace_provider_t *prv) 12109 { 12110 int i, all = 0; 12111 dtrace_probedesc_t desc; 12112 dtrace_genid_t gen; 12113 12114 ASSERT(MUTEX_HELD(&dtrace_lock)); 12115 ASSERT(MUTEX_HELD(&dtrace_provider_lock)); 12116 12117 if (prv == NULL) { 12118 all = 1; 12119 prv = dtrace_provider; 12120 } 12121 12122 do { 12123 dtrace_enabling_t *enab; 12124 void *parg = prv->dtpv_arg; 12125 12126 retry: 12127 gen = dtrace_retained_gen; 12128 for (enab = dtrace_retained; enab != NULL; 12129 enab = enab->dten_next) { 12130 for (i = 0; i < enab->dten_ndesc; i++) { 12131 desc = enab->dten_desc[i]->dted_probe; 12132 mutex_exit(&dtrace_lock); 12133 prv->dtpv_pops.dtps_provide(parg, &desc); 12134 mutex_enter(&dtrace_lock); 12135 /* 12136 * Process the retained enablings again if 12137 * they have changed while we weren't holding 12138 * dtrace_lock. 12139 */ 12140 if (gen != dtrace_retained_gen) 12141 goto retry; 12142 } 12143 } 12144 } while (all && (prv = prv->dtpv_next) != NULL); 12145 12146 mutex_exit(&dtrace_lock); 12147 dtrace_probe_provide(NULL, all ? NULL : prv); 12148 mutex_enter(&dtrace_lock); 12149 } 12150 12151 /* 12152 * Called to reap ECBs that are attached to probes from defunct providers. 12153 */ 12154 static void 12155 dtrace_enabling_reap(void) 12156 { 12157 dtrace_provider_t *prov; 12158 dtrace_probe_t *probe; 12159 dtrace_ecb_t *ecb; 12160 hrtime_t when; 12161 int i; 12162 12163 mutex_enter(&cpu_lock); 12164 mutex_enter(&dtrace_lock); 12165 12166 for (i = 0; i < dtrace_nprobes; i++) { 12167 if ((probe = dtrace_probes[i]) == NULL) 12168 continue; 12169 12170 if (probe->dtpr_ecb == NULL) 12171 continue; 12172 12173 prov = probe->dtpr_provider; 12174 12175 if ((when = prov->dtpv_defunct) == 0) 12176 continue; 12177 12178 /* 12179 * We have ECBs on a defunct provider: we want to reap these 12180 * ECBs to allow the provider to unregister. The destruction 12181 * of these ECBs must be done carefully: if we destroy the ECB 12182 * and the consumer later wishes to consume an EPID that 12183 * corresponds to the destroyed ECB (and if the EPID metadata 12184 * has not been previously consumed), the consumer will abort 12185 * processing on the unknown EPID. To reduce (but not, sadly, 12186 * eliminate) the possibility of this, we will only destroy an 12187 * ECB for a defunct provider if, for the state that 12188 * corresponds to the ECB: 12189 * 12190 * (a) There is no speculative tracing (which can effectively 12191 * cache an EPID for an arbitrary amount of time). 12192 * 12193 * (b) The principal buffers have been switched twice since the 12194 * provider became defunct. 12195 * 12196 * (c) The aggregation buffers are of zero size or have been 12197 * switched twice since the provider became defunct. 12198 * 12199 * We use dts_speculates to determine (a) and call a function 12200 * (dtrace_buffer_consumed()) to determine (b) and (c). Note 12201 * that as soon as we've been unable to destroy one of the ECBs 12202 * associated with the probe, we quit trying -- reaping is only 12203 * fruitful in as much as we can destroy all ECBs associated 12204 * with the defunct provider's probes. 12205 */ 12206 while ((ecb = probe->dtpr_ecb) != NULL) { 12207 dtrace_state_t *state = ecb->dte_state; 12208 dtrace_buffer_t *buf = state->dts_buffer; 12209 dtrace_buffer_t *aggbuf = state->dts_aggbuffer; 12210 12211 if (state->dts_speculates) 12212 break; 12213 12214 if (!dtrace_buffer_consumed(buf, when)) 12215 break; 12216 12217 if (!dtrace_buffer_consumed(aggbuf, when)) 12218 break; 12219 12220 dtrace_ecb_disable(ecb); 12221 ASSERT(probe->dtpr_ecb != ecb); 12222 dtrace_ecb_destroy(ecb); 12223 } 12224 } 12225 12226 mutex_exit(&dtrace_lock); 12227 mutex_exit(&cpu_lock); 12228 } 12229 12230 /* 12231 * DTrace DOF Functions 12232 */ 12233 /*ARGSUSED*/ 12234 static void 12235 dtrace_dof_error(dof_hdr_t *dof, const char *str) 12236 { 12237 if (dtrace_err_verbose) 12238 cmn_err(CE_WARN, "failed to process DOF: %s", str); 12239 12240 #ifdef DTRACE_ERRDEBUG 12241 dtrace_errdebug(str); 12242 #endif 12243 } 12244 12245 /* 12246 * Create DOF out of a currently enabled state. Right now, we only create 12247 * DOF containing the run-time options -- but this could be expanded to create 12248 * complete DOF representing the enabled state. 12249 */ 12250 static dof_hdr_t * 12251 dtrace_dof_create(dtrace_state_t *state) 12252 { 12253 dof_hdr_t *dof; 12254 dof_sec_t *sec; 12255 dof_optdesc_t *opt; 12256 int i, len = sizeof (dof_hdr_t) + 12257 roundup(sizeof (dof_sec_t), sizeof (uint64_t)) + 12258 sizeof (dof_optdesc_t) * DTRACEOPT_MAX; 12259 12260 ASSERT(MUTEX_HELD(&dtrace_lock)); 12261 12262 dof = kmem_zalloc(len, KM_SLEEP); 12263 dof->dofh_ident[DOF_ID_MAG0] = DOF_MAG_MAG0; 12264 dof->dofh_ident[DOF_ID_MAG1] = DOF_MAG_MAG1; 12265 dof->dofh_ident[DOF_ID_MAG2] = DOF_MAG_MAG2; 12266 dof->dofh_ident[DOF_ID_MAG3] = DOF_MAG_MAG3; 12267 12268 dof->dofh_ident[DOF_ID_MODEL] = DOF_MODEL_NATIVE; 12269 dof->dofh_ident[DOF_ID_ENCODING] = DOF_ENCODE_NATIVE; 12270 dof->dofh_ident[DOF_ID_VERSION] = DOF_VERSION; 12271 dof->dofh_ident[DOF_ID_DIFVERS] = DIF_VERSION; 12272 dof->dofh_ident[DOF_ID_DIFIREG] = DIF_DIR_NREGS; 12273 dof->dofh_ident[DOF_ID_DIFTREG] = DIF_DTR_NREGS; 12274 12275 dof->dofh_flags = 0; 12276 dof->dofh_hdrsize = sizeof (dof_hdr_t); 12277 dof->dofh_secsize = sizeof (dof_sec_t); 12278 dof->dofh_secnum = 1; /* only DOF_SECT_OPTDESC */ 12279 dof->dofh_secoff = sizeof (dof_hdr_t); 12280 dof->dofh_loadsz = len; 12281 dof->dofh_filesz = len; 12282 dof->dofh_pad = 0; 12283 12284 /* 12285 * Fill in the option section header... 12286 */ 12287 sec = (dof_sec_t *)((uintptr_t)dof + sizeof (dof_hdr_t)); 12288 sec->dofs_type = DOF_SECT_OPTDESC; 12289 sec->dofs_align = sizeof (uint64_t); 12290 sec->dofs_flags = DOF_SECF_LOAD; 12291 sec->dofs_entsize = sizeof (dof_optdesc_t); 12292 12293 opt = (dof_optdesc_t *)((uintptr_t)sec + 12294 roundup(sizeof (dof_sec_t), sizeof (uint64_t))); 12295 12296 sec->dofs_offset = (uintptr_t)opt - (uintptr_t)dof; 12297 sec->dofs_size = sizeof (dof_optdesc_t) * DTRACEOPT_MAX; 12298 12299 for (i = 0; i < DTRACEOPT_MAX; i++) { 12300 opt[i].dofo_option = i; 12301 opt[i].dofo_strtab = DOF_SECIDX_NONE; 12302 opt[i].dofo_value = state->dts_options[i]; 12303 } 12304 12305 return (dof); 12306 } 12307 12308 static dof_hdr_t * 12309 dtrace_dof_copyin(uintptr_t uarg, int *errp) 12310 { 12311 dof_hdr_t hdr, *dof; 12312 12313 ASSERT(!MUTEX_HELD(&dtrace_lock)); 12314 12315 /* 12316 * First, we're going to copyin() the sizeof (dof_hdr_t). 12317 */ 12318 if (copyin((void *)uarg, &hdr, sizeof (hdr)) != 0) { 12319 dtrace_dof_error(NULL, "failed to copyin DOF header"); 12320 *errp = EFAULT; 12321 return (NULL); 12322 } 12323 12324 /* 12325 * Now we'll allocate the entire DOF and copy it in -- provided 12326 * that the length isn't outrageous. 12327 */ 12328 if (hdr.dofh_loadsz >= dtrace_dof_maxsize) { 12329 dtrace_dof_error(&hdr, "load size exceeds maximum"); 12330 *errp = E2BIG; 12331 return (NULL); 12332 } 12333 12334 if (hdr.dofh_loadsz < sizeof (hdr)) { 12335 dtrace_dof_error(&hdr, "invalid load size"); 12336 *errp = EINVAL; 12337 return (NULL); 12338 } 12339 12340 dof = kmem_alloc(hdr.dofh_loadsz, KM_SLEEP); 12341 12342 if (copyin((void *)uarg, dof, hdr.dofh_loadsz) != 0 || 12343 dof->dofh_loadsz != hdr.dofh_loadsz) { 12344 kmem_free(dof, hdr.dofh_loadsz); 12345 *errp = EFAULT; 12346 return (NULL); 12347 } 12348 12349 return (dof); 12350 } 12351 12352 static dof_hdr_t * 12353 dtrace_dof_property(const char *name) 12354 { 12355 uchar_t *buf; 12356 uint64_t loadsz; 12357 unsigned int len, i; 12358 dof_hdr_t *dof; 12359 12360 /* 12361 * Unfortunately, array of values in .conf files are always (and 12362 * only) interpreted to be integer arrays. We must read our DOF 12363 * as an integer array, and then squeeze it into a byte array. 12364 */ 12365 if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, dtrace_devi, 0, 12366 (char *)name, (int **)&buf, &len) != DDI_PROP_SUCCESS) 12367 return (NULL); 12368 12369 for (i = 0; i < len; i++) 12370 buf[i] = (uchar_t)(((int *)buf)[i]); 12371 12372 if (len < sizeof (dof_hdr_t)) { 12373 ddi_prop_free(buf); 12374 dtrace_dof_error(NULL, "truncated header"); 12375 return (NULL); 12376 } 12377 12378 if (len < (loadsz = ((dof_hdr_t *)buf)->dofh_loadsz)) { 12379 ddi_prop_free(buf); 12380 dtrace_dof_error(NULL, "truncated DOF"); 12381 return (NULL); 12382 } 12383 12384 if (loadsz >= dtrace_dof_maxsize) { 12385 ddi_prop_free(buf); 12386 dtrace_dof_error(NULL, "oversized DOF"); 12387 return (NULL); 12388 } 12389 12390 dof = kmem_alloc(loadsz, KM_SLEEP); 12391 bcopy(buf, dof, loadsz); 12392 ddi_prop_free(buf); 12393 12394 return (dof); 12395 } 12396 12397 static void 12398 dtrace_dof_destroy(dof_hdr_t *dof) 12399 { 12400 kmem_free(dof, dof->dofh_loadsz); 12401 } 12402 12403 /* 12404 * Return the dof_sec_t pointer corresponding to a given section index. If the 12405 * index is not valid, dtrace_dof_error() is called and NULL is returned. If 12406 * a type other than DOF_SECT_NONE is specified, the header is checked against 12407 * this type and NULL is returned if the types do not match. 12408 */ 12409 static dof_sec_t * 12410 dtrace_dof_sect(dof_hdr_t *dof, uint32_t type, dof_secidx_t i) 12411 { 12412 dof_sec_t *sec = (dof_sec_t *)(uintptr_t) 12413 ((uintptr_t)dof + dof->dofh_secoff + i * dof->dofh_secsize); 12414 12415 if (i >= dof->dofh_secnum) { 12416 dtrace_dof_error(dof, "referenced section index is invalid"); 12417 return (NULL); 12418 } 12419 12420 if (!(sec->dofs_flags & DOF_SECF_LOAD)) { 12421 dtrace_dof_error(dof, "referenced section is not loadable"); 12422 return (NULL); 12423 } 12424 12425 if (type != DOF_SECT_NONE && type != sec->dofs_type) { 12426 dtrace_dof_error(dof, "referenced section is the wrong type"); 12427 return (NULL); 12428 } 12429 12430 return (sec); 12431 } 12432 12433 static dtrace_probedesc_t * 12434 dtrace_dof_probedesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_probedesc_t *desc) 12435 { 12436 dof_probedesc_t *probe; 12437 dof_sec_t *strtab; 12438 uintptr_t daddr = (uintptr_t)dof; 12439 uintptr_t str; 12440 size_t size; 12441 12442 if (sec->dofs_type != DOF_SECT_PROBEDESC) { 12443 dtrace_dof_error(dof, "invalid probe section"); 12444 return (NULL); 12445 } 12446 12447 if (sec->dofs_align != sizeof (dof_secidx_t)) { 12448 dtrace_dof_error(dof, "bad alignment in probe description"); 12449 return (NULL); 12450 } 12451 12452 if (sec->dofs_offset + sizeof (dof_probedesc_t) > dof->dofh_loadsz) { 12453 dtrace_dof_error(dof, "truncated probe description"); 12454 return (NULL); 12455 } 12456 12457 probe = (dof_probedesc_t *)(uintptr_t)(daddr + sec->dofs_offset); 12458 strtab = dtrace_dof_sect(dof, DOF_SECT_STRTAB, probe->dofp_strtab); 12459 12460 if (strtab == NULL) 12461 return (NULL); 12462 12463 str = daddr + strtab->dofs_offset; 12464 size = strtab->dofs_size; 12465 12466 if (probe->dofp_provider >= strtab->dofs_size) { 12467 dtrace_dof_error(dof, "corrupt probe provider"); 12468 return (NULL); 12469 } 12470 12471 (void) strncpy(desc->dtpd_provider, 12472 (char *)(str + probe->dofp_provider), 12473 MIN(DTRACE_PROVNAMELEN - 1, size - probe->dofp_provider)); 12474 12475 if (probe->dofp_mod >= strtab->dofs_size) { 12476 dtrace_dof_error(dof, "corrupt probe module"); 12477 return (NULL); 12478 } 12479 12480 (void) strncpy(desc->dtpd_mod, (char *)(str + probe->dofp_mod), 12481 MIN(DTRACE_MODNAMELEN - 1, size - probe->dofp_mod)); 12482 12483 if (probe->dofp_func >= strtab->dofs_size) { 12484 dtrace_dof_error(dof, "corrupt probe function"); 12485 return (NULL); 12486 } 12487 12488 (void) strncpy(desc->dtpd_func, (char *)(str + probe->dofp_func), 12489 MIN(DTRACE_FUNCNAMELEN - 1, size - probe->dofp_func)); 12490 12491 if (probe->dofp_name >= strtab->dofs_size) { 12492 dtrace_dof_error(dof, "corrupt probe name"); 12493 return (NULL); 12494 } 12495 12496 (void) strncpy(desc->dtpd_name, (char *)(str + probe->dofp_name), 12497 MIN(DTRACE_NAMELEN - 1, size - probe->dofp_name)); 12498 12499 return (desc); 12500 } 12501 12502 static dtrace_difo_t * 12503 dtrace_dof_difo(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate, 12504 cred_t *cr) 12505 { 12506 dtrace_difo_t *dp; 12507 size_t ttl = 0; 12508 dof_difohdr_t *dofd; 12509 uintptr_t daddr = (uintptr_t)dof; 12510 size_t max = dtrace_difo_maxsize; 12511 int i, l, n; 12512 12513 static const struct { 12514 int section; 12515 int bufoffs; 12516 int lenoffs; 12517 int entsize; 12518 int align; 12519 const char *msg; 12520 } difo[] = { 12521 { DOF_SECT_DIF, offsetof(dtrace_difo_t, dtdo_buf), 12522 offsetof(dtrace_difo_t, dtdo_len), sizeof (dif_instr_t), 12523 sizeof (dif_instr_t), "multiple DIF sections" }, 12524 12525 { DOF_SECT_INTTAB, offsetof(dtrace_difo_t, dtdo_inttab), 12526 offsetof(dtrace_difo_t, dtdo_intlen), sizeof (uint64_t), 12527 sizeof (uint64_t), "multiple integer tables" }, 12528 12529 { DOF_SECT_STRTAB, offsetof(dtrace_difo_t, dtdo_strtab), 12530 offsetof(dtrace_difo_t, dtdo_strlen), 0, 12531 sizeof (char), "multiple string tables" }, 12532 12533 { DOF_SECT_VARTAB, offsetof(dtrace_difo_t, dtdo_vartab), 12534 offsetof(dtrace_difo_t, dtdo_varlen), sizeof (dtrace_difv_t), 12535 sizeof (uint_t), "multiple variable tables" }, 12536 12537 { DOF_SECT_NONE, 0, 0, 0, NULL } 12538 }; 12539 12540 if (sec->dofs_type != DOF_SECT_DIFOHDR) { 12541 dtrace_dof_error(dof, "invalid DIFO header section"); 12542 return (NULL); 12543 } 12544 12545 if (sec->dofs_align != sizeof (dof_secidx_t)) { 12546 dtrace_dof_error(dof, "bad alignment in DIFO header"); 12547 return (NULL); 12548 } 12549 12550 if (sec->dofs_size < sizeof (dof_difohdr_t) || 12551 sec->dofs_size % sizeof (dof_secidx_t)) { 12552 dtrace_dof_error(dof, "bad size in DIFO header"); 12553 return (NULL); 12554 } 12555 12556 dofd = (dof_difohdr_t *)(uintptr_t)(daddr + sec->dofs_offset); 12557 n = (sec->dofs_size - sizeof (*dofd)) / sizeof (dof_secidx_t) + 1; 12558 12559 dp = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP); 12560 dp->dtdo_rtype = dofd->dofd_rtype; 12561 12562 for (l = 0; l < n; l++) { 12563 dof_sec_t *subsec; 12564 void **bufp; 12565 uint32_t *lenp; 12566 12567 if ((subsec = dtrace_dof_sect(dof, DOF_SECT_NONE, 12568 dofd->dofd_links[l])) == NULL) 12569 goto err; /* invalid section link */ 12570 12571 if (ttl + subsec->dofs_size > max) { 12572 dtrace_dof_error(dof, "exceeds maximum size"); 12573 goto err; 12574 } 12575 12576 ttl += subsec->dofs_size; 12577 12578 for (i = 0; difo[i].section != DOF_SECT_NONE; i++) { 12579 if (subsec->dofs_type != difo[i].section) 12580 continue; 12581 12582 if (!(subsec->dofs_flags & DOF_SECF_LOAD)) { 12583 dtrace_dof_error(dof, "section not loaded"); 12584 goto err; 12585 } 12586 12587 if (subsec->dofs_align != difo[i].align) { 12588 dtrace_dof_error(dof, "bad alignment"); 12589 goto err; 12590 } 12591 12592 bufp = (void **)((uintptr_t)dp + difo[i].bufoffs); 12593 lenp = (uint32_t *)((uintptr_t)dp + difo[i].lenoffs); 12594 12595 if (*bufp != NULL) { 12596 dtrace_dof_error(dof, difo[i].msg); 12597 goto err; 12598 } 12599 12600 if (difo[i].entsize != subsec->dofs_entsize) { 12601 dtrace_dof_error(dof, "entry size mismatch"); 12602 goto err; 12603 } 12604 12605 if (subsec->dofs_entsize != 0 && 12606 (subsec->dofs_size % subsec->dofs_entsize) != 0) { 12607 dtrace_dof_error(dof, "corrupt entry size"); 12608 goto err; 12609 } 12610 12611 *lenp = subsec->dofs_size; 12612 *bufp = kmem_alloc(subsec->dofs_size, KM_SLEEP); 12613 bcopy((char *)(uintptr_t)(daddr + subsec->dofs_offset), 12614 *bufp, subsec->dofs_size); 12615 12616 if (subsec->dofs_entsize != 0) 12617 *lenp /= subsec->dofs_entsize; 12618 12619 break; 12620 } 12621 12622 /* 12623 * If we encounter a loadable DIFO sub-section that is not 12624 * known to us, assume this is a broken program and fail. 12625 */ 12626 if (difo[i].section == DOF_SECT_NONE && 12627 (subsec->dofs_flags & DOF_SECF_LOAD)) { 12628 dtrace_dof_error(dof, "unrecognized DIFO subsection"); 12629 goto err; 12630 } 12631 } 12632 12633 if (dp->dtdo_buf == NULL) { 12634 /* 12635 * We can't have a DIF object without DIF text. 12636 */ 12637 dtrace_dof_error(dof, "missing DIF text"); 12638 goto err; 12639 } 12640 12641 /* 12642 * Before we validate the DIF object, run through the variable table 12643 * looking for the strings -- if any of their size are under, we'll set 12644 * their size to be the system-wide default string size. Note that 12645 * this should _not_ happen if the "strsize" option has been set -- 12646 * in this case, the compiler should have set the size to reflect the 12647 * setting of the option. 12648 */ 12649 for (i = 0; i < dp->dtdo_varlen; i++) { 12650 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 12651 dtrace_diftype_t *t = &v->dtdv_type; 12652 12653 if (v->dtdv_id < DIF_VAR_OTHER_UBASE) 12654 continue; 12655 12656 if (t->dtdt_kind == DIF_TYPE_STRING && t->dtdt_size == 0) 12657 t->dtdt_size = dtrace_strsize_default; 12658 } 12659 12660 if (dtrace_difo_validate(dp, vstate, DIF_DIR_NREGS, cr) != 0) 12661 goto err; 12662 12663 dtrace_difo_init(dp, vstate); 12664 return (dp); 12665 12666 err: 12667 kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t)); 12668 kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t)); 12669 kmem_free(dp->dtdo_strtab, dp->dtdo_strlen); 12670 kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t)); 12671 12672 kmem_free(dp, sizeof (dtrace_difo_t)); 12673 return (NULL); 12674 } 12675 12676 static dtrace_predicate_t * 12677 dtrace_dof_predicate(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate, 12678 cred_t *cr) 12679 { 12680 dtrace_difo_t *dp; 12681 12682 if ((dp = dtrace_dof_difo(dof, sec, vstate, cr)) == NULL) 12683 return (NULL); 12684 12685 return (dtrace_predicate_create(dp)); 12686 } 12687 12688 static dtrace_actdesc_t * 12689 dtrace_dof_actdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate, 12690 cred_t *cr) 12691 { 12692 dtrace_actdesc_t *act, *first = NULL, *last = NULL, *next; 12693 dof_actdesc_t *desc; 12694 dof_sec_t *difosec; 12695 size_t offs; 12696 uintptr_t daddr = (uintptr_t)dof; 12697 uint64_t arg; 12698 dtrace_actkind_t kind; 12699 12700 if (sec->dofs_type != DOF_SECT_ACTDESC) { 12701 dtrace_dof_error(dof, "invalid action section"); 12702 return (NULL); 12703 } 12704 12705 if (sec->dofs_offset + sizeof (dof_actdesc_t) > dof->dofh_loadsz) { 12706 dtrace_dof_error(dof, "truncated action description"); 12707 return (NULL); 12708 } 12709 12710 if (sec->dofs_align != sizeof (uint64_t)) { 12711 dtrace_dof_error(dof, "bad alignment in action description"); 12712 return (NULL); 12713 } 12714 12715 if (sec->dofs_size < sec->dofs_entsize) { 12716 dtrace_dof_error(dof, "section entry size exceeds total size"); 12717 return (NULL); 12718 } 12719 12720 if (sec->dofs_entsize != sizeof (dof_actdesc_t)) { 12721 dtrace_dof_error(dof, "bad entry size in action description"); 12722 return (NULL); 12723 } 12724 12725 if (sec->dofs_size / sec->dofs_entsize > dtrace_actions_max) { 12726 dtrace_dof_error(dof, "actions exceed dtrace_actions_max"); 12727 return (NULL); 12728 } 12729 12730 for (offs = 0; offs < sec->dofs_size; offs += sec->dofs_entsize) { 12731 desc = (dof_actdesc_t *)(daddr + 12732 (uintptr_t)sec->dofs_offset + offs); 12733 kind = (dtrace_actkind_t)desc->dofa_kind; 12734 12735 if ((DTRACEACT_ISPRINTFLIKE(kind) && 12736 (kind != DTRACEACT_PRINTA || 12737 desc->dofa_strtab != DOF_SECIDX_NONE)) || 12738 (kind == DTRACEACT_DIFEXPR && 12739 desc->dofa_strtab != DOF_SECIDX_NONE)) { 12740 dof_sec_t *strtab; 12741 char *str, *fmt; 12742 uint64_t i; 12743 12744 /* 12745 * The argument to these actions is an index into the 12746 * DOF string table. For printf()-like actions, this 12747 * is the format string. For print(), this is the 12748 * CTF type of the expression result. 12749 */ 12750 if ((strtab = dtrace_dof_sect(dof, 12751 DOF_SECT_STRTAB, desc->dofa_strtab)) == NULL) 12752 goto err; 12753 12754 str = (char *)((uintptr_t)dof + 12755 (uintptr_t)strtab->dofs_offset); 12756 12757 for (i = desc->dofa_arg; i < strtab->dofs_size; i++) { 12758 if (str[i] == '\0') 12759 break; 12760 } 12761 12762 if (i >= strtab->dofs_size) { 12763 dtrace_dof_error(dof, "bogus format string"); 12764 goto err; 12765 } 12766 12767 if (i == desc->dofa_arg) { 12768 dtrace_dof_error(dof, "empty format string"); 12769 goto err; 12770 } 12771 12772 i -= desc->dofa_arg; 12773 fmt = kmem_alloc(i + 1, KM_SLEEP); 12774 bcopy(&str[desc->dofa_arg], fmt, i + 1); 12775 arg = (uint64_t)(uintptr_t)fmt; 12776 } else { 12777 if (kind == DTRACEACT_PRINTA) { 12778 ASSERT(desc->dofa_strtab == DOF_SECIDX_NONE); 12779 arg = 0; 12780 } else { 12781 arg = desc->dofa_arg; 12782 } 12783 } 12784 12785 act = dtrace_actdesc_create(kind, desc->dofa_ntuple, 12786 desc->dofa_uarg, arg); 12787 12788 if (last != NULL) { 12789 last->dtad_next = act; 12790 } else { 12791 first = act; 12792 } 12793 12794 last = act; 12795 12796 if (desc->dofa_difo == DOF_SECIDX_NONE) 12797 continue; 12798 12799 if ((difosec = dtrace_dof_sect(dof, 12800 DOF_SECT_DIFOHDR, desc->dofa_difo)) == NULL) 12801 goto err; 12802 12803 act->dtad_difo = dtrace_dof_difo(dof, difosec, vstate, cr); 12804 12805 if (act->dtad_difo == NULL) 12806 goto err; 12807 } 12808 12809 ASSERT(first != NULL); 12810 return (first); 12811 12812 err: 12813 for (act = first; act != NULL; act = next) { 12814 next = act->dtad_next; 12815 dtrace_actdesc_release(act, vstate); 12816 } 12817 12818 return (NULL); 12819 } 12820 12821 static dtrace_ecbdesc_t * 12822 dtrace_dof_ecbdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate, 12823 cred_t *cr) 12824 { 12825 dtrace_ecbdesc_t *ep; 12826 dof_ecbdesc_t *ecb; 12827 dtrace_probedesc_t *desc; 12828 dtrace_predicate_t *pred = NULL; 12829 12830 if (sec->dofs_size < sizeof (dof_ecbdesc_t)) { 12831 dtrace_dof_error(dof, "truncated ECB description"); 12832 return (NULL); 12833 } 12834 12835 if (sec->dofs_align != sizeof (uint64_t)) { 12836 dtrace_dof_error(dof, "bad alignment in ECB description"); 12837 return (NULL); 12838 } 12839 12840 ecb = (dof_ecbdesc_t *)((uintptr_t)dof + (uintptr_t)sec->dofs_offset); 12841 sec = dtrace_dof_sect(dof, DOF_SECT_PROBEDESC, ecb->dofe_probes); 12842 12843 if (sec == NULL) 12844 return (NULL); 12845 12846 ep = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP); 12847 ep->dted_uarg = ecb->dofe_uarg; 12848 desc = &ep->dted_probe; 12849 12850 if (dtrace_dof_probedesc(dof, sec, desc) == NULL) 12851 goto err; 12852 12853 if (ecb->dofe_pred != DOF_SECIDX_NONE) { 12854 if ((sec = dtrace_dof_sect(dof, 12855 DOF_SECT_DIFOHDR, ecb->dofe_pred)) == NULL) 12856 goto err; 12857 12858 if ((pred = dtrace_dof_predicate(dof, sec, vstate, cr)) == NULL) 12859 goto err; 12860 12861 ep->dted_pred.dtpdd_predicate = pred; 12862 } 12863 12864 if (ecb->dofe_actions != DOF_SECIDX_NONE) { 12865 if ((sec = dtrace_dof_sect(dof, 12866 DOF_SECT_ACTDESC, ecb->dofe_actions)) == NULL) 12867 goto err; 12868 12869 ep->dted_action = dtrace_dof_actdesc(dof, sec, vstate, cr); 12870 12871 if (ep->dted_action == NULL) 12872 goto err; 12873 } 12874 12875 return (ep); 12876 12877 err: 12878 if (pred != NULL) 12879 dtrace_predicate_release(pred, vstate); 12880 kmem_free(ep, sizeof (dtrace_ecbdesc_t)); 12881 return (NULL); 12882 } 12883 12884 /* 12885 * Apply the relocations from the specified 'sec' (a DOF_SECT_URELHDR) to the 12886 * specified DOF. At present, this amounts to simply adding 'ubase' to the 12887 * site of any user SETX relocations to account for load object base address. 12888 * In the future, if we need other relocations, this function can be extended. 12889 */ 12890 static int 12891 dtrace_dof_relocate(dof_hdr_t *dof, dof_sec_t *sec, uint64_t ubase) 12892 { 12893 uintptr_t daddr = (uintptr_t)dof; 12894 dof_relohdr_t *dofr = 12895 (dof_relohdr_t *)(uintptr_t)(daddr + sec->dofs_offset); 12896 dof_sec_t *ss, *rs, *ts; 12897 dof_relodesc_t *r; 12898 uint_t i, n; 12899 12900 if (sec->dofs_size < sizeof (dof_relohdr_t) || 12901 sec->dofs_align != sizeof (dof_secidx_t)) { 12902 dtrace_dof_error(dof, "invalid relocation header"); 12903 return (-1); 12904 } 12905 12906 ss = dtrace_dof_sect(dof, DOF_SECT_STRTAB, dofr->dofr_strtab); 12907 rs = dtrace_dof_sect(dof, DOF_SECT_RELTAB, dofr->dofr_relsec); 12908 ts = dtrace_dof_sect(dof, DOF_SECT_NONE, dofr->dofr_tgtsec); 12909 12910 if (ss == NULL || rs == NULL || ts == NULL) 12911 return (-1); /* dtrace_dof_error() has been called already */ 12912 12913 if (rs->dofs_entsize < sizeof (dof_relodesc_t) || 12914 rs->dofs_align != sizeof (uint64_t)) { 12915 dtrace_dof_error(dof, "invalid relocation section"); 12916 return (-1); 12917 } 12918 12919 r = (dof_relodesc_t *)(uintptr_t)(daddr + rs->dofs_offset); 12920 n = rs->dofs_size / rs->dofs_entsize; 12921 12922 for (i = 0; i < n; i++) { 12923 uintptr_t taddr = daddr + ts->dofs_offset + r->dofr_offset; 12924 12925 switch (r->dofr_type) { 12926 case DOF_RELO_NONE: 12927 break; 12928 case DOF_RELO_SETX: 12929 if (r->dofr_offset >= ts->dofs_size || r->dofr_offset + 12930 sizeof (uint64_t) > ts->dofs_size) { 12931 dtrace_dof_error(dof, "bad relocation offset"); 12932 return (-1); 12933 } 12934 12935 if (!IS_P2ALIGNED(taddr, sizeof (uint64_t))) { 12936 dtrace_dof_error(dof, "misaligned setx relo"); 12937 return (-1); 12938 } 12939 12940 *(uint64_t *)taddr += ubase; 12941 break; 12942 default: 12943 dtrace_dof_error(dof, "invalid relocation type"); 12944 return (-1); 12945 } 12946 12947 r = (dof_relodesc_t *)((uintptr_t)r + rs->dofs_entsize); 12948 } 12949 12950 return (0); 12951 } 12952 12953 /* 12954 * The dof_hdr_t passed to dtrace_dof_slurp() should be a partially validated 12955 * header: it should be at the front of a memory region that is at least 12956 * sizeof (dof_hdr_t) in size -- and then at least dof_hdr.dofh_loadsz in 12957 * size. It need not be validated in any other way. 12958 */ 12959 static int 12960 dtrace_dof_slurp(dof_hdr_t *dof, dtrace_vstate_t *vstate, cred_t *cr, 12961 dtrace_enabling_t **enabp, uint64_t ubase, int noprobes) 12962 { 12963 uint64_t len = dof->dofh_loadsz, seclen; 12964 uintptr_t daddr = (uintptr_t)dof; 12965 dtrace_ecbdesc_t *ep; 12966 dtrace_enabling_t *enab; 12967 uint_t i; 12968 12969 ASSERT(MUTEX_HELD(&dtrace_lock)); 12970 ASSERT(dof->dofh_loadsz >= sizeof (dof_hdr_t)); 12971 12972 /* 12973 * Check the DOF header identification bytes. In addition to checking 12974 * valid settings, we also verify that unused bits/bytes are zeroed so 12975 * we can use them later without fear of regressing existing binaries. 12976 */ 12977 if (bcmp(&dof->dofh_ident[DOF_ID_MAG0], 12978 DOF_MAG_STRING, DOF_MAG_STRLEN) != 0) { 12979 dtrace_dof_error(dof, "DOF magic string mismatch"); 12980 return (-1); 12981 } 12982 12983 if (dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_ILP32 && 12984 dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_LP64) { 12985 dtrace_dof_error(dof, "DOF has invalid data model"); 12986 return (-1); 12987 } 12988 12989 if (dof->dofh_ident[DOF_ID_ENCODING] != DOF_ENCODE_NATIVE) { 12990 dtrace_dof_error(dof, "DOF encoding mismatch"); 12991 return (-1); 12992 } 12993 12994 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 && 12995 dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_2) { 12996 dtrace_dof_error(dof, "DOF version mismatch"); 12997 return (-1); 12998 } 12999 13000 if (dof->dofh_ident[DOF_ID_DIFVERS] != DIF_VERSION_2) { 13001 dtrace_dof_error(dof, "DOF uses unsupported instruction set"); 13002 return (-1); 13003 } 13004 13005 if (dof->dofh_ident[DOF_ID_DIFIREG] > DIF_DIR_NREGS) { 13006 dtrace_dof_error(dof, "DOF uses too many integer registers"); 13007 return (-1); 13008 } 13009 13010 if (dof->dofh_ident[DOF_ID_DIFTREG] > DIF_DTR_NREGS) { 13011 dtrace_dof_error(dof, "DOF uses too many tuple registers"); 13012 return (-1); 13013 } 13014 13015 for (i = DOF_ID_PAD; i < DOF_ID_SIZE; i++) { 13016 if (dof->dofh_ident[i] != 0) { 13017 dtrace_dof_error(dof, "DOF has invalid ident byte set"); 13018 return (-1); 13019 } 13020 } 13021 13022 if (dof->dofh_flags & ~DOF_FL_VALID) { 13023 dtrace_dof_error(dof, "DOF has invalid flag bits set"); 13024 return (-1); 13025 } 13026 13027 if (dof->dofh_secsize == 0) { 13028 dtrace_dof_error(dof, "zero section header size"); 13029 return (-1); 13030 } 13031 13032 /* 13033 * Check that the section headers don't exceed the amount of DOF 13034 * data. Note that we cast the section size and number of sections 13035 * to uint64_t's to prevent possible overflow in the multiplication. 13036 */ 13037 seclen = (uint64_t)dof->dofh_secnum * (uint64_t)dof->dofh_secsize; 13038 13039 if (dof->dofh_secoff > len || seclen > len || 13040 dof->dofh_secoff + seclen > len) { 13041 dtrace_dof_error(dof, "truncated section headers"); 13042 return (-1); 13043 } 13044 13045 if (!IS_P2ALIGNED(dof->dofh_secoff, sizeof (uint64_t))) { 13046 dtrace_dof_error(dof, "misaligned section headers"); 13047 return (-1); 13048 } 13049 13050 if (!IS_P2ALIGNED(dof->dofh_secsize, sizeof (uint64_t))) { 13051 dtrace_dof_error(dof, "misaligned section size"); 13052 return (-1); 13053 } 13054 13055 /* 13056 * Take an initial pass through the section headers to be sure that 13057 * the headers don't have stray offsets. If the 'noprobes' flag is 13058 * set, do not permit sections relating to providers, probes, or args. 13059 */ 13060 for (i = 0; i < dof->dofh_secnum; i++) { 13061 dof_sec_t *sec = (dof_sec_t *)(daddr + 13062 (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize); 13063 13064 if (noprobes) { 13065 switch (sec->dofs_type) { 13066 case DOF_SECT_PROVIDER: 13067 case DOF_SECT_PROBES: 13068 case DOF_SECT_PRARGS: 13069 case DOF_SECT_PROFFS: 13070 dtrace_dof_error(dof, "illegal sections " 13071 "for enabling"); 13072 return (-1); 13073 } 13074 } 13075 13076 if (DOF_SEC_ISLOADABLE(sec->dofs_type) && 13077 !(sec->dofs_flags & DOF_SECF_LOAD)) { 13078 dtrace_dof_error(dof, "loadable section with load " 13079 "flag unset"); 13080 return (-1); 13081 } 13082 13083 if (!(sec->dofs_flags & DOF_SECF_LOAD)) 13084 continue; /* just ignore non-loadable sections */ 13085 13086 if (!ISP2(sec->dofs_align)) { 13087 dtrace_dof_error(dof, "bad section alignment"); 13088 return (-1); 13089 } 13090 13091 if (sec->dofs_offset & (sec->dofs_align - 1)) { 13092 dtrace_dof_error(dof, "misaligned section"); 13093 return (-1); 13094 } 13095 13096 if (sec->dofs_offset > len || sec->dofs_size > len || 13097 sec->dofs_offset + sec->dofs_size > len) { 13098 dtrace_dof_error(dof, "corrupt section header"); 13099 return (-1); 13100 } 13101 13102 if (sec->dofs_type == DOF_SECT_STRTAB && *((char *)daddr + 13103 sec->dofs_offset + sec->dofs_size - 1) != '\0') { 13104 dtrace_dof_error(dof, "non-terminating string table"); 13105 return (-1); 13106 } 13107 } 13108 13109 /* 13110 * Take a second pass through the sections and locate and perform any 13111 * relocations that are present. We do this after the first pass to 13112 * be sure that all sections have had their headers validated. 13113 */ 13114 for (i = 0; i < dof->dofh_secnum; i++) { 13115 dof_sec_t *sec = (dof_sec_t *)(daddr + 13116 (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize); 13117 13118 if (!(sec->dofs_flags & DOF_SECF_LOAD)) 13119 continue; /* skip sections that are not loadable */ 13120 13121 switch (sec->dofs_type) { 13122 case DOF_SECT_URELHDR: 13123 if (dtrace_dof_relocate(dof, sec, ubase) != 0) 13124 return (-1); 13125 break; 13126 } 13127 } 13128 13129 if ((enab = *enabp) == NULL) 13130 enab = *enabp = dtrace_enabling_create(vstate); 13131 13132 for (i = 0; i < dof->dofh_secnum; i++) { 13133 dof_sec_t *sec = (dof_sec_t *)(daddr + 13134 (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize); 13135 13136 if (sec->dofs_type != DOF_SECT_ECBDESC) 13137 continue; 13138 13139 if ((ep = dtrace_dof_ecbdesc(dof, sec, vstate, cr)) == NULL) { 13140 dtrace_enabling_destroy(enab); 13141 *enabp = NULL; 13142 return (-1); 13143 } 13144 13145 dtrace_enabling_add(enab, ep); 13146 } 13147 13148 return (0); 13149 } 13150 13151 /* 13152 * Process DOF for any options. This routine assumes that the DOF has been 13153 * at least processed by dtrace_dof_slurp(). 13154 */ 13155 static int 13156 dtrace_dof_options(dof_hdr_t *dof, dtrace_state_t *state) 13157 { 13158 int i, rval; 13159 uint32_t entsize; 13160 size_t offs; 13161 dof_optdesc_t *desc; 13162 13163 for (i = 0; i < dof->dofh_secnum; i++) { 13164 dof_sec_t *sec = (dof_sec_t *)((uintptr_t)dof + 13165 (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize); 13166 13167 if (sec->dofs_type != DOF_SECT_OPTDESC) 13168 continue; 13169 13170 if (sec->dofs_align != sizeof (uint64_t)) { 13171 dtrace_dof_error(dof, "bad alignment in " 13172 "option description"); 13173 return (EINVAL); 13174 } 13175 13176 if ((entsize = sec->dofs_entsize) == 0) { 13177 dtrace_dof_error(dof, "zeroed option entry size"); 13178 return (EINVAL); 13179 } 13180 13181 if (entsize < sizeof (dof_optdesc_t)) { 13182 dtrace_dof_error(dof, "bad option entry size"); 13183 return (EINVAL); 13184 } 13185 13186 for (offs = 0; offs < sec->dofs_size; offs += entsize) { 13187 desc = (dof_optdesc_t *)((uintptr_t)dof + 13188 (uintptr_t)sec->dofs_offset + offs); 13189 13190 if (desc->dofo_strtab != DOF_SECIDX_NONE) { 13191 dtrace_dof_error(dof, "non-zero option string"); 13192 return (EINVAL); 13193 } 13194 13195 if (desc->dofo_value == DTRACEOPT_UNSET) { 13196 dtrace_dof_error(dof, "unset option"); 13197 return (EINVAL); 13198 } 13199 13200 if ((rval = dtrace_state_option(state, 13201 desc->dofo_option, desc->dofo_value)) != 0) { 13202 dtrace_dof_error(dof, "rejected option"); 13203 return (rval); 13204 } 13205 } 13206 } 13207 13208 return (0); 13209 } 13210 13211 /* 13212 * DTrace Consumer State Functions 13213 */ 13214 int 13215 dtrace_dstate_init(dtrace_dstate_t *dstate, size_t size) 13216 { 13217 size_t hashsize, maxper, min, chunksize = dstate->dtds_chunksize; 13218 void *base; 13219 uintptr_t limit; 13220 dtrace_dynvar_t *dvar, *next, *start; 13221 int i; 13222 13223 ASSERT(MUTEX_HELD(&dtrace_lock)); 13224 ASSERT(dstate->dtds_base == NULL && dstate->dtds_percpu == NULL); 13225 13226 bzero(dstate, sizeof (dtrace_dstate_t)); 13227 13228 if ((dstate->dtds_chunksize = chunksize) == 0) 13229 dstate->dtds_chunksize = DTRACE_DYNVAR_CHUNKSIZE; 13230 13231 VERIFY(dstate->dtds_chunksize < LONG_MAX); 13232 13233 if (size < (min = dstate->dtds_chunksize + sizeof (dtrace_dynhash_t))) 13234 size = min; 13235 13236 if ((base = kmem_zalloc(size, KM_NOSLEEP | KM_NORMALPRI)) == NULL) 13237 return (ENOMEM); 13238 13239 dstate->dtds_size = size; 13240 dstate->dtds_base = base; 13241 dstate->dtds_percpu = kmem_cache_alloc(dtrace_state_cache, KM_SLEEP); 13242 bzero(dstate->dtds_percpu, NCPU * sizeof (dtrace_dstate_percpu_t)); 13243 13244 hashsize = size / (dstate->dtds_chunksize + sizeof (dtrace_dynhash_t)); 13245 13246 if (hashsize != 1 && (hashsize & 1)) 13247 hashsize--; 13248 13249 dstate->dtds_hashsize = hashsize; 13250 dstate->dtds_hash = dstate->dtds_base; 13251 13252 /* 13253 * Set all of our hash buckets to point to the single sink, and (if 13254 * it hasn't already been set), set the sink's hash value to be the 13255 * sink sentinel value. The sink is needed for dynamic variable 13256 * lookups to know that they have iterated over an entire, valid hash 13257 * chain. 13258 */ 13259 for (i = 0; i < hashsize; i++) 13260 dstate->dtds_hash[i].dtdh_chain = &dtrace_dynhash_sink; 13261 13262 if (dtrace_dynhash_sink.dtdv_hashval != DTRACE_DYNHASH_SINK) 13263 dtrace_dynhash_sink.dtdv_hashval = DTRACE_DYNHASH_SINK; 13264 13265 /* 13266 * Determine number of active CPUs. Divide free list evenly among 13267 * active CPUs. 13268 */ 13269 start = (dtrace_dynvar_t *) 13270 ((uintptr_t)base + hashsize * sizeof (dtrace_dynhash_t)); 13271 limit = (uintptr_t)base + size; 13272 13273 VERIFY((uintptr_t)start < limit); 13274 VERIFY((uintptr_t)start >= (uintptr_t)base); 13275 13276 maxper = (limit - (uintptr_t)start) / NCPU; 13277 maxper = (maxper / dstate->dtds_chunksize) * dstate->dtds_chunksize; 13278 13279 for (i = 0; i < NCPU; i++) { 13280 dstate->dtds_percpu[i].dtdsc_free = dvar = start; 13281 13282 /* 13283 * If we don't even have enough chunks to make it once through 13284 * NCPUs, we're just going to allocate everything to the first 13285 * CPU. And if we're on the last CPU, we're going to allocate 13286 * whatever is left over. In either case, we set the limit to 13287 * be the limit of the dynamic variable space. 13288 */ 13289 if (maxper == 0 || i == NCPU - 1) { 13290 limit = (uintptr_t)base + size; 13291 start = NULL; 13292 } else { 13293 limit = (uintptr_t)start + maxper; 13294 start = (dtrace_dynvar_t *)limit; 13295 } 13296 13297 VERIFY(limit <= (uintptr_t)base + size); 13298 13299 for (;;) { 13300 next = (dtrace_dynvar_t *)((uintptr_t)dvar + 13301 dstate->dtds_chunksize); 13302 13303 if ((uintptr_t)next + dstate->dtds_chunksize >= limit) 13304 break; 13305 13306 VERIFY((uintptr_t)dvar >= (uintptr_t)base && 13307 (uintptr_t)dvar <= (uintptr_t)base + size); 13308 dvar->dtdv_next = next; 13309 dvar = next; 13310 } 13311 13312 if (maxper == 0) 13313 break; 13314 } 13315 13316 return (0); 13317 } 13318 13319 void 13320 dtrace_dstate_fini(dtrace_dstate_t *dstate) 13321 { 13322 ASSERT(MUTEX_HELD(&cpu_lock)); 13323 13324 if (dstate->dtds_base == NULL) 13325 return; 13326 13327 kmem_free(dstate->dtds_base, dstate->dtds_size); 13328 kmem_cache_free(dtrace_state_cache, dstate->dtds_percpu); 13329 } 13330 13331 static void 13332 dtrace_vstate_fini(dtrace_vstate_t *vstate) 13333 { 13334 /* 13335 * Logical XOR, where are you? 13336 */ 13337 ASSERT((vstate->dtvs_nglobals == 0) ^ (vstate->dtvs_globals != NULL)); 13338 13339 if (vstate->dtvs_nglobals > 0) { 13340 kmem_free(vstate->dtvs_globals, vstate->dtvs_nglobals * 13341 sizeof (dtrace_statvar_t *)); 13342 } 13343 13344 if (vstate->dtvs_ntlocals > 0) { 13345 kmem_free(vstate->dtvs_tlocals, vstate->dtvs_ntlocals * 13346 sizeof (dtrace_difv_t)); 13347 } 13348 13349 ASSERT((vstate->dtvs_nlocals == 0) ^ (vstate->dtvs_locals != NULL)); 13350 13351 if (vstate->dtvs_nlocals > 0) { 13352 kmem_free(vstate->dtvs_locals, vstate->dtvs_nlocals * 13353 sizeof (dtrace_statvar_t *)); 13354 } 13355 } 13356 13357 static void 13358 dtrace_state_clean(dtrace_state_t *state) 13359 { 13360 if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE) 13361 return; 13362 13363 dtrace_dynvar_clean(&state->dts_vstate.dtvs_dynvars); 13364 dtrace_speculation_clean(state); 13365 } 13366 13367 static void 13368 dtrace_state_deadman(dtrace_state_t *state) 13369 { 13370 hrtime_t now; 13371 13372 dtrace_sync(); 13373 13374 now = dtrace_gethrtime(); 13375 13376 if (state != dtrace_anon.dta_state && 13377 now - state->dts_laststatus >= dtrace_deadman_user) 13378 return; 13379 13380 /* 13381 * We must be sure that dts_alive never appears to be less than the 13382 * value upon entry to dtrace_state_deadman(), and because we lack a 13383 * dtrace_cas64(), we cannot store to it atomically. We thus instead 13384 * store INT64_MAX to it, followed by a memory barrier, followed by 13385 * the new value. This assures that dts_alive never appears to be 13386 * less than its true value, regardless of the order in which the 13387 * stores to the underlying storage are issued. 13388 */ 13389 state->dts_alive = INT64_MAX; 13390 dtrace_membar_producer(); 13391 state->dts_alive = now; 13392 } 13393 13394 dtrace_state_t * 13395 dtrace_state_create(dev_t *devp, cred_t *cr) 13396 { 13397 minor_t minor; 13398 major_t major; 13399 char c[30]; 13400 dtrace_state_t *state; 13401 dtrace_optval_t *opt; 13402 int bufsize = NCPU * sizeof (dtrace_buffer_t), i; 13403 13404 ASSERT(MUTEX_HELD(&dtrace_lock)); 13405 ASSERT(MUTEX_HELD(&cpu_lock)); 13406 13407 minor = (minor_t)(uintptr_t)vmem_alloc(dtrace_minor, 1, 13408 VM_BESTFIT | VM_SLEEP); 13409 13410 if (ddi_soft_state_zalloc(dtrace_softstate, minor) != DDI_SUCCESS) { 13411 vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1); 13412 return (NULL); 13413 } 13414 13415 state = ddi_get_soft_state(dtrace_softstate, minor); 13416 state->dts_epid = DTRACE_EPIDNONE + 1; 13417 13418 (void) snprintf(c, sizeof (c), "dtrace_aggid_%d", minor); 13419 state->dts_aggid_arena = vmem_create(c, (void *)1, UINT32_MAX, 1, 13420 NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER); 13421 13422 if (devp != NULL) { 13423 major = getemajor(*devp); 13424 } else { 13425 major = ddi_driver_major(dtrace_devi); 13426 } 13427 13428 state->dts_dev = makedevice(major, minor); 13429 13430 if (devp != NULL) 13431 *devp = state->dts_dev; 13432 13433 /* 13434 * We allocate NCPU buffers. On the one hand, this can be quite 13435 * a bit of memory per instance (nearly 36K on a Starcat). On the 13436 * other hand, it saves an additional memory reference in the probe 13437 * path. 13438 */ 13439 state->dts_buffer = kmem_zalloc(bufsize, KM_SLEEP); 13440 state->dts_aggbuffer = kmem_zalloc(bufsize, KM_SLEEP); 13441 state->dts_cleaner = CYCLIC_NONE; 13442 state->dts_deadman = CYCLIC_NONE; 13443 state->dts_vstate.dtvs_state = state; 13444 13445 for (i = 0; i < DTRACEOPT_MAX; i++) 13446 state->dts_options[i] = DTRACEOPT_UNSET; 13447 13448 /* 13449 * Set the default options. 13450 */ 13451 opt = state->dts_options; 13452 opt[DTRACEOPT_BUFPOLICY] = DTRACEOPT_BUFPOLICY_SWITCH; 13453 opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_AUTO; 13454 opt[DTRACEOPT_NSPEC] = dtrace_nspec_default; 13455 opt[DTRACEOPT_SPECSIZE] = dtrace_specsize_default; 13456 opt[DTRACEOPT_CPU] = (dtrace_optval_t)DTRACE_CPUALL; 13457 opt[DTRACEOPT_STRSIZE] = dtrace_strsize_default; 13458 opt[DTRACEOPT_STACKFRAMES] = dtrace_stackframes_default; 13459 opt[DTRACEOPT_USTACKFRAMES] = dtrace_ustackframes_default; 13460 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_default; 13461 opt[DTRACEOPT_AGGRATE] = dtrace_aggrate_default; 13462 opt[DTRACEOPT_SWITCHRATE] = dtrace_switchrate_default; 13463 opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_default; 13464 opt[DTRACEOPT_JSTACKFRAMES] = dtrace_jstackframes_default; 13465 opt[DTRACEOPT_JSTACKSTRSIZE] = dtrace_jstackstrsize_default; 13466 13467 state->dts_activity = DTRACE_ACTIVITY_INACTIVE; 13468 13469 /* 13470 * Depending on the user credentials, we set flag bits which alter probe 13471 * visibility or the amount of destructiveness allowed. In the case of 13472 * actual anonymous tracing, or the possession of all privileges, all of 13473 * the normal checks are bypassed. 13474 */ 13475 if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) { 13476 state->dts_cred.dcr_visible = DTRACE_CRV_ALL; 13477 state->dts_cred.dcr_action = DTRACE_CRA_ALL; 13478 } else { 13479 /* 13480 * Set up the credentials for this instantiation. We take a 13481 * hold on the credential to prevent it from disappearing on 13482 * us; this in turn prevents the zone_t referenced by this 13483 * credential from disappearing. This means that we can 13484 * examine the credential and the zone from probe context. 13485 */ 13486 crhold(cr); 13487 state->dts_cred.dcr_cred = cr; 13488 13489 /* 13490 * CRA_PROC means "we have *some* privilege for dtrace" and 13491 * unlocks the use of variables like pid, zonename, etc. 13492 */ 13493 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE) || 13494 PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) { 13495 state->dts_cred.dcr_action |= DTRACE_CRA_PROC; 13496 } 13497 13498 /* 13499 * dtrace_user allows use of syscall and profile providers. 13500 * If the user also has proc_owner and/or proc_zone, we 13501 * extend the scope to include additional visibility and 13502 * destructive power. 13503 */ 13504 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE)) { 13505 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) { 13506 state->dts_cred.dcr_visible |= 13507 DTRACE_CRV_ALLPROC; 13508 13509 state->dts_cred.dcr_action |= 13510 DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER; 13511 } 13512 13513 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) { 13514 state->dts_cred.dcr_visible |= 13515 DTRACE_CRV_ALLZONE; 13516 13517 state->dts_cred.dcr_action |= 13518 DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE; 13519 } 13520 13521 /* 13522 * If we have all privs in whatever zone this is, 13523 * we can do destructive things to processes which 13524 * have altered credentials. 13525 */ 13526 if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE), 13527 cr->cr_zone->zone_privset)) { 13528 state->dts_cred.dcr_action |= 13529 DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG; 13530 } 13531 } 13532 13533 /* 13534 * Holding the dtrace_kernel privilege also implies that 13535 * the user has the dtrace_user privilege from a visibility 13536 * perspective. But without further privileges, some 13537 * destructive actions are not available. 13538 */ 13539 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE)) { 13540 /* 13541 * Make all probes in all zones visible. However, 13542 * this doesn't mean that all actions become available 13543 * to all zones. 13544 */ 13545 state->dts_cred.dcr_visible |= DTRACE_CRV_KERNEL | 13546 DTRACE_CRV_ALLPROC | DTRACE_CRV_ALLZONE; 13547 13548 state->dts_cred.dcr_action |= DTRACE_CRA_KERNEL | 13549 DTRACE_CRA_PROC; 13550 /* 13551 * Holding proc_owner means that destructive actions 13552 * for *this* zone are allowed. 13553 */ 13554 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) 13555 state->dts_cred.dcr_action |= 13556 DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER; 13557 13558 /* 13559 * Holding proc_zone means that destructive actions 13560 * for this user/group ID in all zones is allowed. 13561 */ 13562 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) 13563 state->dts_cred.dcr_action |= 13564 DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE; 13565 13566 /* 13567 * If we have all privs in whatever zone this is, 13568 * we can do destructive things to processes which 13569 * have altered credentials. 13570 */ 13571 if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE), 13572 cr->cr_zone->zone_privset)) { 13573 state->dts_cred.dcr_action |= 13574 DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG; 13575 } 13576 } 13577 13578 /* 13579 * Holding the dtrace_proc privilege gives control over fasttrap 13580 * and pid providers. We need to grant wider destructive 13581 * privileges in the event that the user has proc_owner and/or 13582 * proc_zone. 13583 */ 13584 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) { 13585 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) 13586 state->dts_cred.dcr_action |= 13587 DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER; 13588 13589 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) 13590 state->dts_cred.dcr_action |= 13591 DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE; 13592 } 13593 } 13594 13595 return (state); 13596 } 13597 13598 static int 13599 dtrace_state_buffer(dtrace_state_t *state, dtrace_buffer_t *buf, int which) 13600 { 13601 dtrace_optval_t *opt = state->dts_options, size; 13602 processorid_t cpu; 13603 int flags = 0, rval, factor, divisor = 1; 13604 13605 ASSERT(MUTEX_HELD(&dtrace_lock)); 13606 ASSERT(MUTEX_HELD(&cpu_lock)); 13607 ASSERT(which < DTRACEOPT_MAX); 13608 ASSERT(state->dts_activity == DTRACE_ACTIVITY_INACTIVE || 13609 (state == dtrace_anon.dta_state && 13610 state->dts_activity == DTRACE_ACTIVITY_ACTIVE)); 13611 13612 if (opt[which] == DTRACEOPT_UNSET || opt[which] == 0) 13613 return (0); 13614 13615 if (opt[DTRACEOPT_CPU] != DTRACEOPT_UNSET) 13616 cpu = opt[DTRACEOPT_CPU]; 13617 13618 if (which == DTRACEOPT_SPECSIZE) 13619 flags |= DTRACEBUF_NOSWITCH; 13620 13621 if (which == DTRACEOPT_BUFSIZE) { 13622 if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_RING) 13623 flags |= DTRACEBUF_RING; 13624 13625 if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_FILL) 13626 flags |= DTRACEBUF_FILL; 13627 13628 if (state != dtrace_anon.dta_state || 13629 state->dts_activity != DTRACE_ACTIVITY_ACTIVE) 13630 flags |= DTRACEBUF_INACTIVE; 13631 } 13632 13633 for (size = opt[which]; size >= sizeof (uint64_t); size /= divisor) { 13634 /* 13635 * The size must be 8-byte aligned. If the size is not 8-byte 13636 * aligned, drop it down by the difference. 13637 */ 13638 if (size & (sizeof (uint64_t) - 1)) 13639 size -= size & (sizeof (uint64_t) - 1); 13640 13641 if (size < state->dts_reserve) { 13642 /* 13643 * Buffers always must be large enough to accommodate 13644 * their prereserved space. We return E2BIG instead 13645 * of ENOMEM in this case to allow for user-level 13646 * software to differentiate the cases. 13647 */ 13648 return (E2BIG); 13649 } 13650 13651 rval = dtrace_buffer_alloc(buf, size, flags, cpu, &factor); 13652 13653 if (rval != ENOMEM) { 13654 opt[which] = size; 13655 return (rval); 13656 } 13657 13658 if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL) 13659 return (rval); 13660 13661 for (divisor = 2; divisor < factor; divisor <<= 1) 13662 continue; 13663 } 13664 13665 return (ENOMEM); 13666 } 13667 13668 static int 13669 dtrace_state_buffers(dtrace_state_t *state) 13670 { 13671 dtrace_speculation_t *spec = state->dts_speculations; 13672 int rval, i; 13673 13674 if ((rval = dtrace_state_buffer(state, state->dts_buffer, 13675 DTRACEOPT_BUFSIZE)) != 0) 13676 return (rval); 13677 13678 if ((rval = dtrace_state_buffer(state, state->dts_aggbuffer, 13679 DTRACEOPT_AGGSIZE)) != 0) 13680 return (rval); 13681 13682 for (i = 0; i < state->dts_nspeculations; i++) { 13683 if ((rval = dtrace_state_buffer(state, 13684 spec[i].dtsp_buffer, DTRACEOPT_SPECSIZE)) != 0) 13685 return (rval); 13686 } 13687 13688 return (0); 13689 } 13690 13691 static void 13692 dtrace_state_prereserve(dtrace_state_t *state) 13693 { 13694 dtrace_ecb_t *ecb; 13695 dtrace_probe_t *probe; 13696 13697 state->dts_reserve = 0; 13698 13699 if (state->dts_options[DTRACEOPT_BUFPOLICY] != DTRACEOPT_BUFPOLICY_FILL) 13700 return; 13701 13702 /* 13703 * If our buffer policy is a "fill" buffer policy, we need to set the 13704 * prereserved space to be the space required by the END probes. 13705 */ 13706 probe = dtrace_probes[dtrace_probeid_end - 1]; 13707 ASSERT(probe != NULL); 13708 13709 for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) { 13710 if (ecb->dte_state != state) 13711 continue; 13712 13713 state->dts_reserve += ecb->dte_needed + ecb->dte_alignment; 13714 } 13715 } 13716 13717 static int 13718 dtrace_state_go(dtrace_state_t *state, processorid_t *cpu) 13719 { 13720 dtrace_optval_t *opt = state->dts_options, sz, nspec; 13721 dtrace_speculation_t *spec; 13722 dtrace_buffer_t *buf; 13723 cyc_handler_t hdlr; 13724 cyc_time_t when; 13725 int rval = 0, i, bufsize = NCPU * sizeof (dtrace_buffer_t); 13726 dtrace_icookie_t cookie; 13727 13728 mutex_enter(&cpu_lock); 13729 mutex_enter(&dtrace_lock); 13730 13731 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) { 13732 rval = EBUSY; 13733 goto out; 13734 } 13735 13736 /* 13737 * Before we can perform any checks, we must prime all of the 13738 * retained enablings that correspond to this state. 13739 */ 13740 dtrace_enabling_prime(state); 13741 13742 if (state->dts_destructive && !state->dts_cred.dcr_destructive) { 13743 rval = EACCES; 13744 goto out; 13745 } 13746 13747 dtrace_state_prereserve(state); 13748 13749 /* 13750 * Now we want to do is try to allocate our speculations. 13751 * We do not automatically resize the number of speculations; if 13752 * this fails, we will fail the operation. 13753 */ 13754 nspec = opt[DTRACEOPT_NSPEC]; 13755 ASSERT(nspec != DTRACEOPT_UNSET); 13756 13757 if (nspec > INT_MAX) { 13758 rval = ENOMEM; 13759 goto out; 13760 } 13761 13762 spec = kmem_zalloc(nspec * sizeof (dtrace_speculation_t), 13763 KM_NOSLEEP | KM_NORMALPRI); 13764 13765 if (spec == NULL) { 13766 rval = ENOMEM; 13767 goto out; 13768 } 13769 13770 state->dts_speculations = spec; 13771 state->dts_nspeculations = (int)nspec; 13772 13773 for (i = 0; i < nspec; i++) { 13774 if ((buf = kmem_zalloc(bufsize, 13775 KM_NOSLEEP | KM_NORMALPRI)) == NULL) { 13776 rval = ENOMEM; 13777 goto err; 13778 } 13779 13780 spec[i].dtsp_buffer = buf; 13781 } 13782 13783 if (opt[DTRACEOPT_GRABANON] != DTRACEOPT_UNSET) { 13784 if (dtrace_anon.dta_state == NULL) { 13785 rval = ENOENT; 13786 goto out; 13787 } 13788 13789 if (state->dts_necbs != 0) { 13790 rval = EALREADY; 13791 goto out; 13792 } 13793 13794 state->dts_anon = dtrace_anon_grab(); 13795 ASSERT(state->dts_anon != NULL); 13796 state = state->dts_anon; 13797 13798 /* 13799 * We want "grabanon" to be set in the grabbed state, so we'll 13800 * copy that option value from the grabbing state into the 13801 * grabbed state. 13802 */ 13803 state->dts_options[DTRACEOPT_GRABANON] = 13804 opt[DTRACEOPT_GRABANON]; 13805 13806 *cpu = dtrace_anon.dta_beganon; 13807 13808 /* 13809 * If the anonymous state is active (as it almost certainly 13810 * is if the anonymous enabling ultimately matched anything), 13811 * we don't allow any further option processing -- but we 13812 * don't return failure. 13813 */ 13814 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) 13815 goto out; 13816 } 13817 13818 if (opt[DTRACEOPT_AGGSIZE] != DTRACEOPT_UNSET && 13819 opt[DTRACEOPT_AGGSIZE] != 0) { 13820 if (state->dts_aggregations == NULL) { 13821 /* 13822 * We're not going to create an aggregation buffer 13823 * because we don't have any ECBs that contain 13824 * aggregations -- set this option to 0. 13825 */ 13826 opt[DTRACEOPT_AGGSIZE] = 0; 13827 } else { 13828 /* 13829 * If we have an aggregation buffer, we must also have 13830 * a buffer to use as scratch. 13831 */ 13832 if (opt[DTRACEOPT_BUFSIZE] == DTRACEOPT_UNSET || 13833 opt[DTRACEOPT_BUFSIZE] < state->dts_needed) { 13834 opt[DTRACEOPT_BUFSIZE] = state->dts_needed; 13835 } 13836 } 13837 } 13838 13839 if (opt[DTRACEOPT_SPECSIZE] != DTRACEOPT_UNSET && 13840 opt[DTRACEOPT_SPECSIZE] != 0) { 13841 if (!state->dts_speculates) { 13842 /* 13843 * We're not going to create speculation buffers 13844 * because we don't have any ECBs that actually 13845 * speculate -- set the speculation size to 0. 13846 */ 13847 opt[DTRACEOPT_SPECSIZE] = 0; 13848 } 13849 } 13850 13851 /* 13852 * The bare minimum size for any buffer that we're actually going to 13853 * do anything to is sizeof (uint64_t). 13854 */ 13855 sz = sizeof (uint64_t); 13856 13857 if ((state->dts_needed != 0 && opt[DTRACEOPT_BUFSIZE] < sz) || 13858 (state->dts_speculates && opt[DTRACEOPT_SPECSIZE] < sz) || 13859 (state->dts_aggregations != NULL && opt[DTRACEOPT_AGGSIZE] < sz)) { 13860 /* 13861 * A buffer size has been explicitly set to 0 (or to a size 13862 * that will be adjusted to 0) and we need the space -- we 13863 * need to return failure. We return ENOSPC to differentiate 13864 * it from failing to allocate a buffer due to failure to meet 13865 * the reserve (for which we return E2BIG). 13866 */ 13867 rval = ENOSPC; 13868 goto out; 13869 } 13870 13871 if ((rval = dtrace_state_buffers(state)) != 0) 13872 goto err; 13873 13874 if ((sz = opt[DTRACEOPT_DYNVARSIZE]) == DTRACEOPT_UNSET) 13875 sz = dtrace_dstate_defsize; 13876 13877 do { 13878 rval = dtrace_dstate_init(&state->dts_vstate.dtvs_dynvars, sz); 13879 13880 if (rval == 0) 13881 break; 13882 13883 if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL) 13884 goto err; 13885 } while (sz >>= 1); 13886 13887 opt[DTRACEOPT_DYNVARSIZE] = sz; 13888 13889 if (rval != 0) 13890 goto err; 13891 13892 if (opt[DTRACEOPT_STATUSRATE] > dtrace_statusrate_max) 13893 opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_max; 13894 13895 if (opt[DTRACEOPT_CLEANRATE] == 0) 13896 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max; 13897 13898 if (opt[DTRACEOPT_CLEANRATE] < dtrace_cleanrate_min) 13899 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_min; 13900 13901 if (opt[DTRACEOPT_CLEANRATE] > dtrace_cleanrate_max) 13902 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max; 13903 13904 hdlr.cyh_func = (cyc_func_t)dtrace_state_clean; 13905 hdlr.cyh_arg = state; 13906 hdlr.cyh_level = CY_LOW_LEVEL; 13907 13908 when.cyt_when = 0; 13909 when.cyt_interval = opt[DTRACEOPT_CLEANRATE]; 13910 13911 state->dts_cleaner = cyclic_add(&hdlr, &when); 13912 13913 hdlr.cyh_func = (cyc_func_t)dtrace_state_deadman; 13914 hdlr.cyh_arg = state; 13915 hdlr.cyh_level = CY_LOW_LEVEL; 13916 13917 when.cyt_when = 0; 13918 when.cyt_interval = dtrace_deadman_interval; 13919 13920 state->dts_alive = state->dts_laststatus = dtrace_gethrtime(); 13921 state->dts_deadman = cyclic_add(&hdlr, &when); 13922 13923 state->dts_activity = DTRACE_ACTIVITY_WARMUP; 13924 13925 if (state->dts_getf != 0 && 13926 !(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL)) { 13927 /* 13928 * We don't have kernel privs but we have at least one call 13929 * to getf(); we need to bump our zone's count, and (if 13930 * this is the first enabling to have an unprivileged call 13931 * to getf()) we need to hook into closef(). 13932 */ 13933 state->dts_cred.dcr_cred->cr_zone->zone_dtrace_getf++; 13934 13935 if (dtrace_getf++ == 0) { 13936 ASSERT(dtrace_closef == NULL); 13937 dtrace_closef = dtrace_getf_barrier; 13938 } 13939 } 13940 13941 /* 13942 * Now it's time to actually fire the BEGIN probe. We need to disable 13943 * interrupts here both to record the CPU on which we fired the BEGIN 13944 * probe (the data from this CPU will be processed first at user 13945 * level) and to manually activate the buffer for this CPU. 13946 */ 13947 cookie = dtrace_interrupt_disable(); 13948 *cpu = CPU->cpu_id; 13949 ASSERT(state->dts_buffer[*cpu].dtb_flags & DTRACEBUF_INACTIVE); 13950 state->dts_buffer[*cpu].dtb_flags &= ~DTRACEBUF_INACTIVE; 13951 13952 dtrace_probe(dtrace_probeid_begin, 13953 (uint64_t)(uintptr_t)state, 0, 0, 0, 0); 13954 dtrace_interrupt_enable(cookie); 13955 /* 13956 * We may have had an exit action from a BEGIN probe; only change our 13957 * state to ACTIVE if we're still in WARMUP. 13958 */ 13959 ASSERT(state->dts_activity == DTRACE_ACTIVITY_WARMUP || 13960 state->dts_activity == DTRACE_ACTIVITY_DRAINING); 13961 13962 if (state->dts_activity == DTRACE_ACTIVITY_WARMUP) 13963 state->dts_activity = DTRACE_ACTIVITY_ACTIVE; 13964 13965 /* 13966 * Regardless of whether or not now we're in ACTIVE or DRAINING, we 13967 * want each CPU to transition its principal buffer out of the 13968 * INACTIVE state. Doing this assures that no CPU will suddenly begin 13969 * processing an ECB halfway down a probe's ECB chain; all CPUs will 13970 * atomically transition from processing none of a state's ECBs to 13971 * processing all of them. 13972 */ 13973 dtrace_xcall(DTRACE_CPUALL, 13974 (dtrace_xcall_t)dtrace_buffer_activate, state); 13975 goto out; 13976 13977 err: 13978 dtrace_buffer_free(state->dts_buffer); 13979 dtrace_buffer_free(state->dts_aggbuffer); 13980 13981 if ((nspec = state->dts_nspeculations) == 0) { 13982 ASSERT(state->dts_speculations == NULL); 13983 goto out; 13984 } 13985 13986 spec = state->dts_speculations; 13987 ASSERT(spec != NULL); 13988 13989 for (i = 0; i < state->dts_nspeculations; i++) { 13990 if ((buf = spec[i].dtsp_buffer) == NULL) 13991 break; 13992 13993 dtrace_buffer_free(buf); 13994 kmem_free(buf, bufsize); 13995 } 13996 13997 kmem_free(spec, nspec * sizeof (dtrace_speculation_t)); 13998 state->dts_nspeculations = 0; 13999 state->dts_speculations = NULL; 14000 14001 out: 14002 mutex_exit(&dtrace_lock); 14003 mutex_exit(&cpu_lock); 14004 14005 return (rval); 14006 } 14007 14008 static int 14009 dtrace_state_stop(dtrace_state_t *state, processorid_t *cpu) 14010 { 14011 dtrace_icookie_t cookie; 14012 14013 ASSERT(MUTEX_HELD(&dtrace_lock)); 14014 14015 if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE && 14016 state->dts_activity != DTRACE_ACTIVITY_DRAINING) 14017 return (EINVAL); 14018 14019 /* 14020 * We'll set the activity to DTRACE_ACTIVITY_DRAINING, and issue a sync 14021 * to be sure that every CPU has seen it. See below for the details 14022 * on why this is done. 14023 */ 14024 state->dts_activity = DTRACE_ACTIVITY_DRAINING; 14025 dtrace_sync(); 14026 14027 /* 14028 * By this point, it is impossible for any CPU to be still processing 14029 * with DTRACE_ACTIVITY_ACTIVE. We can thus set our activity to 14030 * DTRACE_ACTIVITY_COOLDOWN and know that we're not racing with any 14031 * other CPU in dtrace_buffer_reserve(). This allows dtrace_probe() 14032 * and callees to know that the activity is DTRACE_ACTIVITY_COOLDOWN 14033 * iff we're in the END probe. 14034 */ 14035 state->dts_activity = DTRACE_ACTIVITY_COOLDOWN; 14036 dtrace_sync(); 14037 ASSERT(state->dts_activity == DTRACE_ACTIVITY_COOLDOWN); 14038 14039 /* 14040 * Finally, we can release the reserve and call the END probe. We 14041 * disable interrupts across calling the END probe to allow us to 14042 * return the CPU on which we actually called the END probe. This 14043 * allows user-land to be sure that this CPU's principal buffer is 14044 * processed last. 14045 */ 14046 state->dts_reserve = 0; 14047 14048 cookie = dtrace_interrupt_disable(); 14049 *cpu = CPU->cpu_id; 14050 dtrace_probe(dtrace_probeid_end, 14051 (uint64_t)(uintptr_t)state, 0, 0, 0, 0); 14052 dtrace_interrupt_enable(cookie); 14053 14054 state->dts_activity = DTRACE_ACTIVITY_STOPPED; 14055 dtrace_sync(); 14056 14057 if (state->dts_getf != 0 && 14058 !(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL)) { 14059 /* 14060 * We don't have kernel privs but we have at least one call 14061 * to getf(); we need to lower our zone's count, and (if 14062 * this is the last enabling to have an unprivileged call 14063 * to getf()) we need to clear the closef() hook. 14064 */ 14065 ASSERT(state->dts_cred.dcr_cred->cr_zone->zone_dtrace_getf > 0); 14066 ASSERT(dtrace_closef == dtrace_getf_barrier); 14067 ASSERT(dtrace_getf > 0); 14068 14069 state->dts_cred.dcr_cred->cr_zone->zone_dtrace_getf--; 14070 14071 if (--dtrace_getf == 0) 14072 dtrace_closef = NULL; 14073 } 14074 14075 return (0); 14076 } 14077 14078 static int 14079 dtrace_state_option(dtrace_state_t *state, dtrace_optid_t option, 14080 dtrace_optval_t val) 14081 { 14082 ASSERT(MUTEX_HELD(&dtrace_lock)); 14083 14084 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) 14085 return (EBUSY); 14086 14087 if (option >= DTRACEOPT_MAX) 14088 return (EINVAL); 14089 14090 if (option != DTRACEOPT_CPU && val < 0) 14091 return (EINVAL); 14092 14093 switch (option) { 14094 case DTRACEOPT_DESTRUCTIVE: 14095 if (dtrace_destructive_disallow) 14096 return (EACCES); 14097 14098 state->dts_cred.dcr_destructive = 1; 14099 break; 14100 14101 case DTRACEOPT_BUFSIZE: 14102 case DTRACEOPT_DYNVARSIZE: 14103 case DTRACEOPT_AGGSIZE: 14104 case DTRACEOPT_SPECSIZE: 14105 case DTRACEOPT_STRSIZE: 14106 if (val < 0) 14107 return (EINVAL); 14108 14109 if (val >= LONG_MAX) { 14110 /* 14111 * If this is an otherwise negative value, set it to 14112 * the highest multiple of 128m less than LONG_MAX. 14113 * Technically, we're adjusting the size without 14114 * regard to the buffer resizing policy, but in fact, 14115 * this has no effect -- if we set the buffer size to 14116 * ~LONG_MAX and the buffer policy is ultimately set to 14117 * be "manual", the buffer allocation is guaranteed to 14118 * fail, if only because the allocation requires two 14119 * buffers. (We set the the size to the highest 14120 * multiple of 128m because it ensures that the size 14121 * will remain a multiple of a megabyte when 14122 * repeatedly halved -- all the way down to 15m.) 14123 */ 14124 val = LONG_MAX - (1 << 27) + 1; 14125 } 14126 } 14127 14128 state->dts_options[option] = val; 14129 14130 return (0); 14131 } 14132 14133 static void 14134 dtrace_state_destroy(dtrace_state_t *state) 14135 { 14136 dtrace_ecb_t *ecb; 14137 dtrace_vstate_t *vstate = &state->dts_vstate; 14138 minor_t minor = getminor(state->dts_dev); 14139 int i, bufsize = NCPU * sizeof (dtrace_buffer_t); 14140 dtrace_speculation_t *spec = state->dts_speculations; 14141 int nspec = state->dts_nspeculations; 14142 uint32_t match; 14143 14144 ASSERT(MUTEX_HELD(&dtrace_lock)); 14145 ASSERT(MUTEX_HELD(&cpu_lock)); 14146 14147 /* 14148 * First, retract any retained enablings for this state. 14149 */ 14150 dtrace_enabling_retract(state); 14151 ASSERT(state->dts_nretained == 0); 14152 14153 if (state->dts_activity == DTRACE_ACTIVITY_ACTIVE || 14154 state->dts_activity == DTRACE_ACTIVITY_DRAINING) { 14155 /* 14156 * We have managed to come into dtrace_state_destroy() on a 14157 * hot enabling -- almost certainly because of a disorderly 14158 * shutdown of a consumer. (That is, a consumer that is 14159 * exiting without having called dtrace_stop().) In this case, 14160 * we're going to set our activity to be KILLED, and then 14161 * issue a sync to be sure that everyone is out of probe 14162 * context before we start blowing away ECBs. 14163 */ 14164 state->dts_activity = DTRACE_ACTIVITY_KILLED; 14165 dtrace_sync(); 14166 } 14167 14168 /* 14169 * Release the credential hold we took in dtrace_state_create(). 14170 */ 14171 if (state->dts_cred.dcr_cred != NULL) 14172 crfree(state->dts_cred.dcr_cred); 14173 14174 /* 14175 * Now we can safely disable and destroy any enabled probes. Because 14176 * any DTRACE_PRIV_KERNEL probes may actually be slowing our progress 14177 * (especially if they're all enabled), we take two passes through the 14178 * ECBs: in the first, we disable just DTRACE_PRIV_KERNEL probes, and 14179 * in the second we disable whatever is left over. 14180 */ 14181 for (match = DTRACE_PRIV_KERNEL; ; match = 0) { 14182 for (i = 0; i < state->dts_necbs; i++) { 14183 if ((ecb = state->dts_ecbs[i]) == NULL) 14184 continue; 14185 14186 if (match && ecb->dte_probe != NULL) { 14187 dtrace_probe_t *probe = ecb->dte_probe; 14188 dtrace_provider_t *prov = probe->dtpr_provider; 14189 14190 if (!(prov->dtpv_priv.dtpp_flags & match)) 14191 continue; 14192 } 14193 14194 dtrace_ecb_disable(ecb); 14195 dtrace_ecb_destroy(ecb); 14196 } 14197 14198 if (!match) 14199 break; 14200 } 14201 14202 /* 14203 * Before we free the buffers, perform one more sync to assure that 14204 * every CPU is out of probe context. 14205 */ 14206 dtrace_sync(); 14207 14208 dtrace_buffer_free(state->dts_buffer); 14209 dtrace_buffer_free(state->dts_aggbuffer); 14210 14211 for (i = 0; i < nspec; i++) 14212 dtrace_buffer_free(spec[i].dtsp_buffer); 14213 14214 if (state->dts_cleaner != CYCLIC_NONE) 14215 cyclic_remove(state->dts_cleaner); 14216 14217 if (state->dts_deadman != CYCLIC_NONE) 14218 cyclic_remove(state->dts_deadman); 14219 14220 dtrace_dstate_fini(&vstate->dtvs_dynvars); 14221 dtrace_vstate_fini(vstate); 14222 kmem_free(state->dts_ecbs, state->dts_necbs * sizeof (dtrace_ecb_t *)); 14223 14224 if (state->dts_aggregations != NULL) { 14225 #ifdef DEBUG 14226 for (i = 0; i < state->dts_naggregations; i++) 14227 ASSERT(state->dts_aggregations[i] == NULL); 14228 #endif 14229 ASSERT(state->dts_naggregations > 0); 14230 kmem_free(state->dts_aggregations, 14231 state->dts_naggregations * sizeof (dtrace_aggregation_t *)); 14232 } 14233 14234 kmem_free(state->dts_buffer, bufsize); 14235 kmem_free(state->dts_aggbuffer, bufsize); 14236 14237 for (i = 0; i < nspec; i++) 14238 kmem_free(spec[i].dtsp_buffer, bufsize); 14239 14240 kmem_free(spec, nspec * sizeof (dtrace_speculation_t)); 14241 14242 dtrace_format_destroy(state); 14243 14244 vmem_destroy(state->dts_aggid_arena); 14245 ddi_soft_state_free(dtrace_softstate, minor); 14246 vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1); 14247 } 14248 14249 /* 14250 * DTrace Anonymous Enabling Functions 14251 */ 14252 static dtrace_state_t * 14253 dtrace_anon_grab(void) 14254 { 14255 dtrace_state_t *state; 14256 14257 ASSERT(MUTEX_HELD(&dtrace_lock)); 14258 14259 if ((state = dtrace_anon.dta_state) == NULL) { 14260 ASSERT(dtrace_anon.dta_enabling == NULL); 14261 return (NULL); 14262 } 14263 14264 ASSERT(dtrace_anon.dta_enabling != NULL); 14265 ASSERT(dtrace_retained != NULL); 14266 14267 dtrace_enabling_destroy(dtrace_anon.dta_enabling); 14268 dtrace_anon.dta_enabling = NULL; 14269 dtrace_anon.dta_state = NULL; 14270 14271 return (state); 14272 } 14273 14274 static void 14275 dtrace_anon_property(void) 14276 { 14277 int i, rv; 14278 dtrace_state_t *state; 14279 dof_hdr_t *dof; 14280 char c[32]; /* enough for "dof-data-" + digits */ 14281 14282 ASSERT(MUTEX_HELD(&dtrace_lock)); 14283 ASSERT(MUTEX_HELD(&cpu_lock)); 14284 14285 for (i = 0; ; i++) { 14286 (void) snprintf(c, sizeof (c), "dof-data-%d", i); 14287 14288 dtrace_err_verbose = 1; 14289 14290 if ((dof = dtrace_dof_property(c)) == NULL) { 14291 dtrace_err_verbose = 0; 14292 break; 14293 } 14294 14295 /* 14296 * We want to create anonymous state, so we need to transition 14297 * the kernel debugger to indicate that DTrace is active. If 14298 * this fails (e.g. because the debugger has modified text in 14299 * some way), we won't continue with the processing. 14300 */ 14301 if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) { 14302 cmn_err(CE_NOTE, "kernel debugger active; anonymous " 14303 "enabling ignored."); 14304 dtrace_dof_destroy(dof); 14305 break; 14306 } 14307 14308 /* 14309 * If we haven't allocated an anonymous state, we'll do so now. 14310 */ 14311 if ((state = dtrace_anon.dta_state) == NULL) { 14312 state = dtrace_state_create(NULL, NULL); 14313 dtrace_anon.dta_state = state; 14314 14315 if (state == NULL) { 14316 /* 14317 * This basically shouldn't happen: the only 14318 * failure mode from dtrace_state_create() is a 14319 * failure of ddi_soft_state_zalloc() that 14320 * itself should never happen. Still, the 14321 * interface allows for a failure mode, and 14322 * we want to fail as gracefully as possible: 14323 * we'll emit an error message and cease 14324 * processing anonymous state in this case. 14325 */ 14326 cmn_err(CE_WARN, "failed to create " 14327 "anonymous state"); 14328 dtrace_dof_destroy(dof); 14329 break; 14330 } 14331 } 14332 14333 rv = dtrace_dof_slurp(dof, &state->dts_vstate, CRED(), 14334 &dtrace_anon.dta_enabling, 0, B_TRUE); 14335 14336 if (rv == 0) 14337 rv = dtrace_dof_options(dof, state); 14338 14339 dtrace_err_verbose = 0; 14340 dtrace_dof_destroy(dof); 14341 14342 if (rv != 0) { 14343 /* 14344 * This is malformed DOF; chuck any anonymous state 14345 * that we created. 14346 */ 14347 ASSERT(dtrace_anon.dta_enabling == NULL); 14348 dtrace_state_destroy(state); 14349 dtrace_anon.dta_state = NULL; 14350 break; 14351 } 14352 14353 ASSERT(dtrace_anon.dta_enabling != NULL); 14354 } 14355 14356 if (dtrace_anon.dta_enabling != NULL) { 14357 int rval; 14358 14359 /* 14360 * dtrace_enabling_retain() can only fail because we are 14361 * trying to retain more enablings than are allowed -- but 14362 * we only have one anonymous enabling, and we are guaranteed 14363 * to be allowed at least one retained enabling; we assert 14364 * that dtrace_enabling_retain() returns success. 14365 */ 14366 rval = dtrace_enabling_retain(dtrace_anon.dta_enabling); 14367 ASSERT(rval == 0); 14368 14369 dtrace_enabling_dump(dtrace_anon.dta_enabling); 14370 } 14371 } 14372 14373 /* 14374 * DTrace Helper Functions 14375 */ 14376 static void 14377 dtrace_helper_trace(dtrace_helper_action_t *helper, 14378 dtrace_mstate_t *mstate, dtrace_vstate_t *vstate, int where) 14379 { 14380 uint32_t size, next, nnext, i; 14381 dtrace_helptrace_t *ent, *buffer; 14382 uint16_t flags = cpu_core[CPU->cpu_id].cpuc_dtrace_flags; 14383 14384 if ((buffer = dtrace_helptrace_buffer) == NULL) 14385 return; 14386 14387 ASSERT(vstate->dtvs_nlocals <= dtrace_helptrace_nlocals); 14388 14389 /* 14390 * What would a tracing framework be without its own tracing 14391 * framework? (Well, a hell of a lot simpler, for starters...) 14392 */ 14393 size = sizeof (dtrace_helptrace_t) + dtrace_helptrace_nlocals * 14394 sizeof (uint64_t) - sizeof (uint64_t); 14395 14396 /* 14397 * Iterate until we can allocate a slot in the trace buffer. 14398 */ 14399 do { 14400 next = dtrace_helptrace_next; 14401 14402 if (next + size < dtrace_helptrace_bufsize) { 14403 nnext = next + size; 14404 } else { 14405 nnext = size; 14406 } 14407 } while (dtrace_cas32(&dtrace_helptrace_next, next, nnext) != next); 14408 14409 /* 14410 * We have our slot; fill it in. 14411 */ 14412 if (nnext == size) { 14413 dtrace_helptrace_wrapped++; 14414 next = 0; 14415 } 14416 14417 ent = (dtrace_helptrace_t *)((uintptr_t)buffer + next); 14418 ent->dtht_helper = helper; 14419 ent->dtht_where = where; 14420 ent->dtht_nlocals = vstate->dtvs_nlocals; 14421 14422 ent->dtht_fltoffs = (mstate->dtms_present & DTRACE_MSTATE_FLTOFFS) ? 14423 mstate->dtms_fltoffs : -1; 14424 ent->dtht_fault = DTRACE_FLAGS2FLT(flags); 14425 ent->dtht_illval = cpu_core[CPU->cpu_id].cpuc_dtrace_illval; 14426 14427 for (i = 0; i < vstate->dtvs_nlocals; i++) { 14428 dtrace_statvar_t *svar; 14429 14430 if ((svar = vstate->dtvs_locals[i]) == NULL) 14431 continue; 14432 14433 ASSERT(svar->dtsv_size >= NCPU * sizeof (uint64_t)); 14434 ent->dtht_locals[i] = 14435 ((uint64_t *)(uintptr_t)svar->dtsv_data)[CPU->cpu_id]; 14436 } 14437 } 14438 14439 static uint64_t 14440 dtrace_helper(int which, dtrace_mstate_t *mstate, 14441 dtrace_state_t *state, uint64_t arg0, uint64_t arg1) 14442 { 14443 uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags; 14444 uint64_t sarg0 = mstate->dtms_arg[0]; 14445 uint64_t sarg1 = mstate->dtms_arg[1]; 14446 uint64_t rval; 14447 dtrace_helpers_t *helpers = curproc->p_dtrace_helpers; 14448 dtrace_helper_action_t *helper; 14449 dtrace_vstate_t *vstate; 14450 dtrace_difo_t *pred; 14451 int i, trace = dtrace_helptrace_buffer != NULL; 14452 14453 ASSERT(which >= 0 && which < DTRACE_NHELPER_ACTIONS); 14454 14455 if (helpers == NULL) 14456 return (0); 14457 14458 if ((helper = helpers->dthps_actions[which]) == NULL) 14459 return (0); 14460 14461 vstate = &helpers->dthps_vstate; 14462 mstate->dtms_arg[0] = arg0; 14463 mstate->dtms_arg[1] = arg1; 14464 14465 /* 14466 * Now iterate over each helper. If its predicate evaluates to 'true', 14467 * we'll call the corresponding actions. Note that the below calls 14468 * to dtrace_dif_emulate() may set faults in machine state. This is 14469 * okay: our caller (the outer dtrace_dif_emulate()) will simply plow 14470 * the stored DIF offset with its own (which is the desired behavior). 14471 * Also, note the calls to dtrace_dif_emulate() may allocate scratch 14472 * from machine state; this is okay, too. 14473 */ 14474 for (; helper != NULL; helper = helper->dtha_next) { 14475 if ((pred = helper->dtha_predicate) != NULL) { 14476 if (trace) 14477 dtrace_helper_trace(helper, mstate, vstate, 0); 14478 14479 if (!dtrace_dif_emulate(pred, mstate, vstate, state)) 14480 goto next; 14481 14482 if (*flags & CPU_DTRACE_FAULT) 14483 goto err; 14484 } 14485 14486 for (i = 0; i < helper->dtha_nactions; i++) { 14487 if (trace) 14488 dtrace_helper_trace(helper, 14489 mstate, vstate, i + 1); 14490 14491 rval = dtrace_dif_emulate(helper->dtha_actions[i], 14492 mstate, vstate, state); 14493 14494 if (*flags & CPU_DTRACE_FAULT) 14495 goto err; 14496 } 14497 14498 next: 14499 if (trace) 14500 dtrace_helper_trace(helper, mstate, vstate, 14501 DTRACE_HELPTRACE_NEXT); 14502 } 14503 14504 if (trace) 14505 dtrace_helper_trace(helper, mstate, vstate, 14506 DTRACE_HELPTRACE_DONE); 14507 14508 /* 14509 * Restore the arg0 that we saved upon entry. 14510 */ 14511 mstate->dtms_arg[0] = sarg0; 14512 mstate->dtms_arg[1] = sarg1; 14513 14514 return (rval); 14515 14516 err: 14517 if (trace) 14518 dtrace_helper_trace(helper, mstate, vstate, 14519 DTRACE_HELPTRACE_ERR); 14520 14521 /* 14522 * Restore the arg0 that we saved upon entry. 14523 */ 14524 mstate->dtms_arg[0] = sarg0; 14525 mstate->dtms_arg[1] = sarg1; 14526 14527 return (NULL); 14528 } 14529 14530 static void 14531 dtrace_helper_action_destroy(dtrace_helper_action_t *helper, 14532 dtrace_vstate_t *vstate) 14533 { 14534 int i; 14535 14536 if (helper->dtha_predicate != NULL) 14537 dtrace_difo_release(helper->dtha_predicate, vstate); 14538 14539 for (i = 0; i < helper->dtha_nactions; i++) { 14540 ASSERT(helper->dtha_actions[i] != NULL); 14541 dtrace_difo_release(helper->dtha_actions[i], vstate); 14542 } 14543 14544 kmem_free(helper->dtha_actions, 14545 helper->dtha_nactions * sizeof (dtrace_difo_t *)); 14546 kmem_free(helper, sizeof (dtrace_helper_action_t)); 14547 } 14548 14549 static int 14550 dtrace_helper_destroygen(int gen) 14551 { 14552 proc_t *p = curproc; 14553 dtrace_helpers_t *help = p->p_dtrace_helpers; 14554 dtrace_vstate_t *vstate; 14555 int i; 14556 14557 ASSERT(MUTEX_HELD(&dtrace_lock)); 14558 14559 if (help == NULL || gen > help->dthps_generation) 14560 return (EINVAL); 14561 14562 vstate = &help->dthps_vstate; 14563 14564 for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) { 14565 dtrace_helper_action_t *last = NULL, *h, *next; 14566 14567 for (h = help->dthps_actions[i]; h != NULL; h = next) { 14568 next = h->dtha_next; 14569 14570 if (h->dtha_generation == gen) { 14571 if (last != NULL) { 14572 last->dtha_next = next; 14573 } else { 14574 help->dthps_actions[i] = next; 14575 } 14576 14577 dtrace_helper_action_destroy(h, vstate); 14578 } else { 14579 last = h; 14580 } 14581 } 14582 } 14583 14584 /* 14585 * Interate until we've cleared out all helper providers with the 14586 * given generation number. 14587 */ 14588 for (;;) { 14589 dtrace_helper_provider_t *prov; 14590 14591 /* 14592 * Look for a helper provider with the right generation. We 14593 * have to start back at the beginning of the list each time 14594 * because we drop dtrace_lock. It's unlikely that we'll make 14595 * more than two passes. 14596 */ 14597 for (i = 0; i < help->dthps_nprovs; i++) { 14598 prov = help->dthps_provs[i]; 14599 14600 if (prov->dthp_generation == gen) 14601 break; 14602 } 14603 14604 /* 14605 * If there were no matches, we're done. 14606 */ 14607 if (i == help->dthps_nprovs) 14608 break; 14609 14610 /* 14611 * Move the last helper provider into this slot. 14612 */ 14613 help->dthps_nprovs--; 14614 help->dthps_provs[i] = help->dthps_provs[help->dthps_nprovs]; 14615 help->dthps_provs[help->dthps_nprovs] = NULL; 14616 14617 mutex_exit(&dtrace_lock); 14618 14619 /* 14620 * If we have a meta provider, remove this helper provider. 14621 */ 14622 mutex_enter(&dtrace_meta_lock); 14623 if (dtrace_meta_pid != NULL) { 14624 ASSERT(dtrace_deferred_pid == NULL); 14625 dtrace_helper_provider_remove(&prov->dthp_prov, 14626 p->p_pid); 14627 } 14628 mutex_exit(&dtrace_meta_lock); 14629 14630 dtrace_helper_provider_destroy(prov); 14631 14632 mutex_enter(&dtrace_lock); 14633 } 14634 14635 return (0); 14636 } 14637 14638 static int 14639 dtrace_helper_validate(dtrace_helper_action_t *helper) 14640 { 14641 int err = 0, i; 14642 dtrace_difo_t *dp; 14643 14644 if ((dp = helper->dtha_predicate) != NULL) 14645 err += dtrace_difo_validate_helper(dp); 14646 14647 for (i = 0; i < helper->dtha_nactions; i++) 14648 err += dtrace_difo_validate_helper(helper->dtha_actions[i]); 14649 14650 return (err == 0); 14651 } 14652 14653 static int 14654 dtrace_helper_action_add(int which, dtrace_ecbdesc_t *ep) 14655 { 14656 dtrace_helpers_t *help; 14657 dtrace_helper_action_t *helper, *last; 14658 dtrace_actdesc_t *act; 14659 dtrace_vstate_t *vstate; 14660 dtrace_predicate_t *pred; 14661 int count = 0, nactions = 0, i; 14662 14663 if (which < 0 || which >= DTRACE_NHELPER_ACTIONS) 14664 return (EINVAL); 14665 14666 help = curproc->p_dtrace_helpers; 14667 last = help->dthps_actions[which]; 14668 vstate = &help->dthps_vstate; 14669 14670 for (count = 0; last != NULL; last = last->dtha_next) { 14671 count++; 14672 if (last->dtha_next == NULL) 14673 break; 14674 } 14675 14676 /* 14677 * If we already have dtrace_helper_actions_max helper actions for this 14678 * helper action type, we'll refuse to add a new one. 14679 */ 14680 if (count >= dtrace_helper_actions_max) 14681 return (ENOSPC); 14682 14683 helper = kmem_zalloc(sizeof (dtrace_helper_action_t), KM_SLEEP); 14684 helper->dtha_generation = help->dthps_generation; 14685 14686 if ((pred = ep->dted_pred.dtpdd_predicate) != NULL) { 14687 ASSERT(pred->dtp_difo != NULL); 14688 dtrace_difo_hold(pred->dtp_difo); 14689 helper->dtha_predicate = pred->dtp_difo; 14690 } 14691 14692 for (act = ep->dted_action; act != NULL; act = act->dtad_next) { 14693 if (act->dtad_kind != DTRACEACT_DIFEXPR) 14694 goto err; 14695 14696 if (act->dtad_difo == NULL) 14697 goto err; 14698 14699 nactions++; 14700 } 14701 14702 helper->dtha_actions = kmem_zalloc(sizeof (dtrace_difo_t *) * 14703 (helper->dtha_nactions = nactions), KM_SLEEP); 14704 14705 for (act = ep->dted_action, i = 0; act != NULL; act = act->dtad_next) { 14706 dtrace_difo_hold(act->dtad_difo); 14707 helper->dtha_actions[i++] = act->dtad_difo; 14708 } 14709 14710 if (!dtrace_helper_validate(helper)) 14711 goto err; 14712 14713 if (last == NULL) { 14714 help->dthps_actions[which] = helper; 14715 } else { 14716 last->dtha_next = helper; 14717 } 14718 14719 if (vstate->dtvs_nlocals > dtrace_helptrace_nlocals) { 14720 dtrace_helptrace_nlocals = vstate->dtvs_nlocals; 14721 dtrace_helptrace_next = 0; 14722 } 14723 14724 return (0); 14725 err: 14726 dtrace_helper_action_destroy(helper, vstate); 14727 return (EINVAL); 14728 } 14729 14730 static void 14731 dtrace_helper_provider_register(proc_t *p, dtrace_helpers_t *help, 14732 dof_helper_t *dofhp) 14733 { 14734 ASSERT(MUTEX_NOT_HELD(&dtrace_lock)); 14735 14736 mutex_enter(&dtrace_meta_lock); 14737 mutex_enter(&dtrace_lock); 14738 14739 if (!dtrace_attached() || dtrace_meta_pid == NULL) { 14740 /* 14741 * If the dtrace module is loaded but not attached, or if 14742 * there aren't isn't a meta provider registered to deal with 14743 * these provider descriptions, we need to postpone creating 14744 * the actual providers until later. 14745 */ 14746 14747 if (help->dthps_next == NULL && help->dthps_prev == NULL && 14748 dtrace_deferred_pid != help) { 14749 help->dthps_deferred = 1; 14750 help->dthps_pid = p->p_pid; 14751 help->dthps_next = dtrace_deferred_pid; 14752 help->dthps_prev = NULL; 14753 if (dtrace_deferred_pid != NULL) 14754 dtrace_deferred_pid->dthps_prev = help; 14755 dtrace_deferred_pid = help; 14756 } 14757 14758 mutex_exit(&dtrace_lock); 14759 14760 } else if (dofhp != NULL) { 14761 /* 14762 * If the dtrace module is loaded and we have a particular 14763 * helper provider description, pass that off to the 14764 * meta provider. 14765 */ 14766 14767 mutex_exit(&dtrace_lock); 14768 14769 dtrace_helper_provide(dofhp, p->p_pid); 14770 14771 } else { 14772 /* 14773 * Otherwise, just pass all the helper provider descriptions 14774 * off to the meta provider. 14775 */ 14776 14777 int i; 14778 mutex_exit(&dtrace_lock); 14779 14780 for (i = 0; i < help->dthps_nprovs; i++) { 14781 dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov, 14782 p->p_pid); 14783 } 14784 } 14785 14786 mutex_exit(&dtrace_meta_lock); 14787 } 14788 14789 static int 14790 dtrace_helper_provider_add(dof_helper_t *dofhp, int gen) 14791 { 14792 dtrace_helpers_t *help; 14793 dtrace_helper_provider_t *hprov, **tmp_provs; 14794 uint_t tmp_maxprovs, i; 14795 14796 ASSERT(MUTEX_HELD(&dtrace_lock)); 14797 14798 help = curproc->p_dtrace_helpers; 14799 ASSERT(help != NULL); 14800 14801 /* 14802 * If we already have dtrace_helper_providers_max helper providers, 14803 * we're refuse to add a new one. 14804 */ 14805 if (help->dthps_nprovs >= dtrace_helper_providers_max) 14806 return (ENOSPC); 14807 14808 /* 14809 * Check to make sure this isn't a duplicate. 14810 */ 14811 for (i = 0; i < help->dthps_nprovs; i++) { 14812 if (dofhp->dofhp_dof == 14813 help->dthps_provs[i]->dthp_prov.dofhp_dof) 14814 return (EALREADY); 14815 } 14816 14817 hprov = kmem_zalloc(sizeof (dtrace_helper_provider_t), KM_SLEEP); 14818 hprov->dthp_prov = *dofhp; 14819 hprov->dthp_ref = 1; 14820 hprov->dthp_generation = gen; 14821 14822 /* 14823 * Allocate a bigger table for helper providers if it's already full. 14824 */ 14825 if (help->dthps_maxprovs == help->dthps_nprovs) { 14826 tmp_maxprovs = help->dthps_maxprovs; 14827 tmp_provs = help->dthps_provs; 14828 14829 if (help->dthps_maxprovs == 0) 14830 help->dthps_maxprovs = 2; 14831 else 14832 help->dthps_maxprovs *= 2; 14833 if (help->dthps_maxprovs > dtrace_helper_providers_max) 14834 help->dthps_maxprovs = dtrace_helper_providers_max; 14835 14836 ASSERT(tmp_maxprovs < help->dthps_maxprovs); 14837 14838 help->dthps_provs = kmem_zalloc(help->dthps_maxprovs * 14839 sizeof (dtrace_helper_provider_t *), KM_SLEEP); 14840 14841 if (tmp_provs != NULL) { 14842 bcopy(tmp_provs, help->dthps_provs, tmp_maxprovs * 14843 sizeof (dtrace_helper_provider_t *)); 14844 kmem_free(tmp_provs, tmp_maxprovs * 14845 sizeof (dtrace_helper_provider_t *)); 14846 } 14847 } 14848 14849 help->dthps_provs[help->dthps_nprovs] = hprov; 14850 help->dthps_nprovs++; 14851 14852 return (0); 14853 } 14854 14855 static void 14856 dtrace_helper_provider_destroy(dtrace_helper_provider_t *hprov) 14857 { 14858 mutex_enter(&dtrace_lock); 14859 14860 if (--hprov->dthp_ref == 0) { 14861 dof_hdr_t *dof; 14862 mutex_exit(&dtrace_lock); 14863 dof = (dof_hdr_t *)(uintptr_t)hprov->dthp_prov.dofhp_dof; 14864 dtrace_dof_destroy(dof); 14865 kmem_free(hprov, sizeof (dtrace_helper_provider_t)); 14866 } else { 14867 mutex_exit(&dtrace_lock); 14868 } 14869 } 14870 14871 static int 14872 dtrace_helper_provider_validate(dof_hdr_t *dof, dof_sec_t *sec) 14873 { 14874 uintptr_t daddr = (uintptr_t)dof; 14875 dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec; 14876 dof_provider_t *provider; 14877 dof_probe_t *probe; 14878 uint8_t *arg; 14879 char *strtab, *typestr; 14880 dof_stridx_t typeidx; 14881 size_t typesz; 14882 uint_t nprobes, j, k; 14883 14884 ASSERT(sec->dofs_type == DOF_SECT_PROVIDER); 14885 14886 if (sec->dofs_offset & (sizeof (uint_t) - 1)) { 14887 dtrace_dof_error(dof, "misaligned section offset"); 14888 return (-1); 14889 } 14890 14891 /* 14892 * The section needs to be large enough to contain the DOF provider 14893 * structure appropriate for the given version. 14894 */ 14895 if (sec->dofs_size < 14896 ((dof->dofh_ident[DOF_ID_VERSION] == DOF_VERSION_1) ? 14897 offsetof(dof_provider_t, dofpv_prenoffs) : 14898 sizeof (dof_provider_t))) { 14899 dtrace_dof_error(dof, "provider section too small"); 14900 return (-1); 14901 } 14902 14903 provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset); 14904 str_sec = dtrace_dof_sect(dof, DOF_SECT_STRTAB, provider->dofpv_strtab); 14905 prb_sec = dtrace_dof_sect(dof, DOF_SECT_PROBES, provider->dofpv_probes); 14906 arg_sec = dtrace_dof_sect(dof, DOF_SECT_PRARGS, provider->dofpv_prargs); 14907 off_sec = dtrace_dof_sect(dof, DOF_SECT_PROFFS, provider->dofpv_proffs); 14908 14909 if (str_sec == NULL || prb_sec == NULL || 14910 arg_sec == NULL || off_sec == NULL) 14911 return (-1); 14912 14913 enoff_sec = NULL; 14914 14915 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 && 14916 provider->dofpv_prenoffs != DOF_SECT_NONE && 14917 (enoff_sec = dtrace_dof_sect(dof, DOF_SECT_PRENOFFS, 14918 provider->dofpv_prenoffs)) == NULL) 14919 return (-1); 14920 14921 strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset); 14922 14923 if (provider->dofpv_name >= str_sec->dofs_size || 14924 strlen(strtab + provider->dofpv_name) >= DTRACE_PROVNAMELEN) { 14925 dtrace_dof_error(dof, "invalid provider name"); 14926 return (-1); 14927 } 14928 14929 if (prb_sec->dofs_entsize == 0 || 14930 prb_sec->dofs_entsize > prb_sec->dofs_size) { 14931 dtrace_dof_error(dof, "invalid entry size"); 14932 return (-1); 14933 } 14934 14935 if (prb_sec->dofs_entsize & (sizeof (uintptr_t) - 1)) { 14936 dtrace_dof_error(dof, "misaligned entry size"); 14937 return (-1); 14938 } 14939 14940 if (off_sec->dofs_entsize != sizeof (uint32_t)) { 14941 dtrace_dof_error(dof, "invalid entry size"); 14942 return (-1); 14943 } 14944 14945 if (off_sec->dofs_offset & (sizeof (uint32_t) - 1)) { 14946 dtrace_dof_error(dof, "misaligned section offset"); 14947 return (-1); 14948 } 14949 14950 if (arg_sec->dofs_entsize != sizeof (uint8_t)) { 14951 dtrace_dof_error(dof, "invalid entry size"); 14952 return (-1); 14953 } 14954 14955 arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset); 14956 14957 nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize; 14958 14959 /* 14960 * Take a pass through the probes to check for errors. 14961 */ 14962 for (j = 0; j < nprobes; j++) { 14963 probe = (dof_probe_t *)(uintptr_t)(daddr + 14964 prb_sec->dofs_offset + j * prb_sec->dofs_entsize); 14965 14966 if (probe->dofpr_func >= str_sec->dofs_size) { 14967 dtrace_dof_error(dof, "invalid function name"); 14968 return (-1); 14969 } 14970 14971 if (strlen(strtab + probe->dofpr_func) >= DTRACE_FUNCNAMELEN) { 14972 dtrace_dof_error(dof, "function name too long"); 14973 return (-1); 14974 } 14975 14976 if (probe->dofpr_name >= str_sec->dofs_size || 14977 strlen(strtab + probe->dofpr_name) >= DTRACE_NAMELEN) { 14978 dtrace_dof_error(dof, "invalid probe name"); 14979 return (-1); 14980 } 14981 14982 /* 14983 * The offset count must not wrap the index, and the offsets 14984 * must also not overflow the section's data. 14985 */ 14986 if (probe->dofpr_offidx + probe->dofpr_noffs < 14987 probe->dofpr_offidx || 14988 (probe->dofpr_offidx + probe->dofpr_noffs) * 14989 off_sec->dofs_entsize > off_sec->dofs_size) { 14990 dtrace_dof_error(dof, "invalid probe offset"); 14991 return (-1); 14992 } 14993 14994 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1) { 14995 /* 14996 * If there's no is-enabled offset section, make sure 14997 * there aren't any is-enabled offsets. Otherwise 14998 * perform the same checks as for probe offsets 14999 * (immediately above). 15000 */ 15001 if (enoff_sec == NULL) { 15002 if (probe->dofpr_enoffidx != 0 || 15003 probe->dofpr_nenoffs != 0) { 15004 dtrace_dof_error(dof, "is-enabled " 15005 "offsets with null section"); 15006 return (-1); 15007 } 15008 } else if (probe->dofpr_enoffidx + 15009 probe->dofpr_nenoffs < probe->dofpr_enoffidx || 15010 (probe->dofpr_enoffidx + probe->dofpr_nenoffs) * 15011 enoff_sec->dofs_entsize > enoff_sec->dofs_size) { 15012 dtrace_dof_error(dof, "invalid is-enabled " 15013 "offset"); 15014 return (-1); 15015 } 15016 15017 if (probe->dofpr_noffs + probe->dofpr_nenoffs == 0) { 15018 dtrace_dof_error(dof, "zero probe and " 15019 "is-enabled offsets"); 15020 return (-1); 15021 } 15022 } else if (probe->dofpr_noffs == 0) { 15023 dtrace_dof_error(dof, "zero probe offsets"); 15024 return (-1); 15025 } 15026 15027 if (probe->dofpr_argidx + probe->dofpr_xargc < 15028 probe->dofpr_argidx || 15029 (probe->dofpr_argidx + probe->dofpr_xargc) * 15030 arg_sec->dofs_entsize > arg_sec->dofs_size) { 15031 dtrace_dof_error(dof, "invalid args"); 15032 return (-1); 15033 } 15034 15035 typeidx = probe->dofpr_nargv; 15036 typestr = strtab + probe->dofpr_nargv; 15037 for (k = 0; k < probe->dofpr_nargc; k++) { 15038 if (typeidx >= str_sec->dofs_size) { 15039 dtrace_dof_error(dof, "bad " 15040 "native argument type"); 15041 return (-1); 15042 } 15043 15044 typesz = strlen(typestr) + 1; 15045 if (typesz > DTRACE_ARGTYPELEN) { 15046 dtrace_dof_error(dof, "native " 15047 "argument type too long"); 15048 return (-1); 15049 } 15050 typeidx += typesz; 15051 typestr += typesz; 15052 } 15053 15054 typeidx = probe->dofpr_xargv; 15055 typestr = strtab + probe->dofpr_xargv; 15056 for (k = 0; k < probe->dofpr_xargc; k++) { 15057 if (arg[probe->dofpr_argidx + k] > probe->dofpr_nargc) { 15058 dtrace_dof_error(dof, "bad " 15059 "native argument index"); 15060 return (-1); 15061 } 15062 15063 if (typeidx >= str_sec->dofs_size) { 15064 dtrace_dof_error(dof, "bad " 15065 "translated argument type"); 15066 return (-1); 15067 } 15068 15069 typesz = strlen(typestr) + 1; 15070 if (typesz > DTRACE_ARGTYPELEN) { 15071 dtrace_dof_error(dof, "translated argument " 15072 "type too long"); 15073 return (-1); 15074 } 15075 15076 typeidx += typesz; 15077 typestr += typesz; 15078 } 15079 } 15080 15081 return (0); 15082 } 15083 15084 static int 15085 dtrace_helper_slurp(dof_hdr_t *dof, dof_helper_t *dhp) 15086 { 15087 dtrace_helpers_t *help; 15088 dtrace_vstate_t *vstate; 15089 dtrace_enabling_t *enab = NULL; 15090 int i, gen, rv, nhelpers = 0, nprovs = 0, destroy = 1; 15091 uintptr_t daddr = (uintptr_t)dof; 15092 15093 ASSERT(MUTEX_HELD(&dtrace_lock)); 15094 15095 if ((help = curproc->p_dtrace_helpers) == NULL) 15096 help = dtrace_helpers_create(curproc); 15097 15098 vstate = &help->dthps_vstate; 15099 15100 if ((rv = dtrace_dof_slurp(dof, vstate, NULL, &enab, 15101 dhp != NULL ? dhp->dofhp_addr : 0, B_FALSE)) != 0) { 15102 dtrace_dof_destroy(dof); 15103 return (rv); 15104 } 15105 15106 /* 15107 * Look for helper providers and validate their descriptions. 15108 */ 15109 if (dhp != NULL) { 15110 for (i = 0; i < dof->dofh_secnum; i++) { 15111 dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr + 15112 dof->dofh_secoff + i * dof->dofh_secsize); 15113 15114 if (sec->dofs_type != DOF_SECT_PROVIDER) 15115 continue; 15116 15117 if (dtrace_helper_provider_validate(dof, sec) != 0) { 15118 dtrace_enabling_destroy(enab); 15119 dtrace_dof_destroy(dof); 15120 return (-1); 15121 } 15122 15123 nprovs++; 15124 } 15125 } 15126 15127 /* 15128 * Now we need to walk through the ECB descriptions in the enabling. 15129 */ 15130 for (i = 0; i < enab->dten_ndesc; i++) { 15131 dtrace_ecbdesc_t *ep = enab->dten_desc[i]; 15132 dtrace_probedesc_t *desc = &ep->dted_probe; 15133 15134 if (strcmp(desc->dtpd_provider, "dtrace") != 0) 15135 continue; 15136 15137 if (strcmp(desc->dtpd_mod, "helper") != 0) 15138 continue; 15139 15140 if (strcmp(desc->dtpd_func, "ustack") != 0) 15141 continue; 15142 15143 if ((rv = dtrace_helper_action_add(DTRACE_HELPER_ACTION_USTACK, 15144 ep)) != 0) { 15145 /* 15146 * Adding this helper action failed -- we are now going 15147 * to rip out the entire generation and return failure. 15148 */ 15149 (void) dtrace_helper_destroygen(help->dthps_generation); 15150 dtrace_enabling_destroy(enab); 15151 dtrace_dof_destroy(dof); 15152 return (-1); 15153 } 15154 15155 nhelpers++; 15156 } 15157 15158 if (nhelpers < enab->dten_ndesc) 15159 dtrace_dof_error(dof, "unmatched helpers"); 15160 15161 gen = help->dthps_generation++; 15162 dtrace_enabling_destroy(enab); 15163 15164 if (dhp != NULL && nprovs > 0) { 15165 dhp->dofhp_dof = (uint64_t)(uintptr_t)dof; 15166 if (dtrace_helper_provider_add(dhp, gen) == 0) { 15167 mutex_exit(&dtrace_lock); 15168 dtrace_helper_provider_register(curproc, help, dhp); 15169 mutex_enter(&dtrace_lock); 15170 15171 destroy = 0; 15172 } 15173 } 15174 15175 if (destroy) 15176 dtrace_dof_destroy(dof); 15177 15178 return (gen); 15179 } 15180 15181 static dtrace_helpers_t * 15182 dtrace_helpers_create(proc_t *p) 15183 { 15184 dtrace_helpers_t *help; 15185 15186 ASSERT(MUTEX_HELD(&dtrace_lock)); 15187 ASSERT(p->p_dtrace_helpers == NULL); 15188 15189 help = kmem_zalloc(sizeof (dtrace_helpers_t), KM_SLEEP); 15190 help->dthps_actions = kmem_zalloc(sizeof (dtrace_helper_action_t *) * 15191 DTRACE_NHELPER_ACTIONS, KM_SLEEP); 15192 15193 p->p_dtrace_helpers = help; 15194 dtrace_helpers++; 15195 15196 return (help); 15197 } 15198 15199 static void 15200 dtrace_helpers_destroy(void) 15201 { 15202 dtrace_helpers_t *help; 15203 dtrace_vstate_t *vstate; 15204 proc_t *p = curproc; 15205 int i; 15206 15207 mutex_enter(&dtrace_lock); 15208 15209 ASSERT(p->p_dtrace_helpers != NULL); 15210 ASSERT(dtrace_helpers > 0); 15211 15212 help = p->p_dtrace_helpers; 15213 vstate = &help->dthps_vstate; 15214 15215 /* 15216 * We're now going to lose the help from this process. 15217 */ 15218 p->p_dtrace_helpers = NULL; 15219 dtrace_sync(); 15220 15221 /* 15222 * Destory the helper actions. 15223 */ 15224 for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) { 15225 dtrace_helper_action_t *h, *next; 15226 15227 for (h = help->dthps_actions[i]; h != NULL; h = next) { 15228 next = h->dtha_next; 15229 dtrace_helper_action_destroy(h, vstate); 15230 h = next; 15231 } 15232 } 15233 15234 mutex_exit(&dtrace_lock); 15235 15236 /* 15237 * Destroy the helper providers. 15238 */ 15239 if (help->dthps_maxprovs > 0) { 15240 mutex_enter(&dtrace_meta_lock); 15241 if (dtrace_meta_pid != NULL) { 15242 ASSERT(dtrace_deferred_pid == NULL); 15243 15244 for (i = 0; i < help->dthps_nprovs; i++) { 15245 dtrace_helper_provider_remove( 15246 &help->dthps_provs[i]->dthp_prov, p->p_pid); 15247 } 15248 } else { 15249 mutex_enter(&dtrace_lock); 15250 ASSERT(help->dthps_deferred == 0 || 15251 help->dthps_next != NULL || 15252 help->dthps_prev != NULL || 15253 help == dtrace_deferred_pid); 15254 15255 /* 15256 * Remove the helper from the deferred list. 15257 */ 15258 if (help->dthps_next != NULL) 15259 help->dthps_next->dthps_prev = help->dthps_prev; 15260 if (help->dthps_prev != NULL) 15261 help->dthps_prev->dthps_next = help->dthps_next; 15262 if (dtrace_deferred_pid == help) { 15263 dtrace_deferred_pid = help->dthps_next; 15264 ASSERT(help->dthps_prev == NULL); 15265 } 15266 15267 mutex_exit(&dtrace_lock); 15268 } 15269 15270 mutex_exit(&dtrace_meta_lock); 15271 15272 for (i = 0; i < help->dthps_nprovs; i++) { 15273 dtrace_helper_provider_destroy(help->dthps_provs[i]); 15274 } 15275 15276 kmem_free(help->dthps_provs, help->dthps_maxprovs * 15277 sizeof (dtrace_helper_provider_t *)); 15278 } 15279 15280 mutex_enter(&dtrace_lock); 15281 15282 dtrace_vstate_fini(&help->dthps_vstate); 15283 kmem_free(help->dthps_actions, 15284 sizeof (dtrace_helper_action_t *) * DTRACE_NHELPER_ACTIONS); 15285 kmem_free(help, sizeof (dtrace_helpers_t)); 15286 15287 --dtrace_helpers; 15288 mutex_exit(&dtrace_lock); 15289 } 15290 15291 static void 15292 dtrace_helpers_duplicate(proc_t *from, proc_t *to) 15293 { 15294 dtrace_helpers_t *help, *newhelp; 15295 dtrace_helper_action_t *helper, *new, *last; 15296 dtrace_difo_t *dp; 15297 dtrace_vstate_t *vstate; 15298 int i, j, sz, hasprovs = 0; 15299 15300 mutex_enter(&dtrace_lock); 15301 ASSERT(from->p_dtrace_helpers != NULL); 15302 ASSERT(dtrace_helpers > 0); 15303 15304 help = from->p_dtrace_helpers; 15305 newhelp = dtrace_helpers_create(to); 15306 ASSERT(to->p_dtrace_helpers != NULL); 15307 15308 newhelp->dthps_generation = help->dthps_generation; 15309 vstate = &newhelp->dthps_vstate; 15310 15311 /* 15312 * Duplicate the helper actions. 15313 */ 15314 for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) { 15315 if ((helper = help->dthps_actions[i]) == NULL) 15316 continue; 15317 15318 for (last = NULL; helper != NULL; helper = helper->dtha_next) { 15319 new = kmem_zalloc(sizeof (dtrace_helper_action_t), 15320 KM_SLEEP); 15321 new->dtha_generation = helper->dtha_generation; 15322 15323 if ((dp = helper->dtha_predicate) != NULL) { 15324 dp = dtrace_difo_duplicate(dp, vstate); 15325 new->dtha_predicate = dp; 15326 } 15327 15328 new->dtha_nactions = helper->dtha_nactions; 15329 sz = sizeof (dtrace_difo_t *) * new->dtha_nactions; 15330 new->dtha_actions = kmem_alloc(sz, KM_SLEEP); 15331 15332 for (j = 0; j < new->dtha_nactions; j++) { 15333 dtrace_difo_t *dp = helper->dtha_actions[j]; 15334 15335 ASSERT(dp != NULL); 15336 dp = dtrace_difo_duplicate(dp, vstate); 15337 new->dtha_actions[j] = dp; 15338 } 15339 15340 if (last != NULL) { 15341 last->dtha_next = new; 15342 } else { 15343 newhelp->dthps_actions[i] = new; 15344 } 15345 15346 last = new; 15347 } 15348 } 15349 15350 /* 15351 * Duplicate the helper providers and register them with the 15352 * DTrace framework. 15353 */ 15354 if (help->dthps_nprovs > 0) { 15355 newhelp->dthps_nprovs = help->dthps_nprovs; 15356 newhelp->dthps_maxprovs = help->dthps_nprovs; 15357 newhelp->dthps_provs = kmem_alloc(newhelp->dthps_nprovs * 15358 sizeof (dtrace_helper_provider_t *), KM_SLEEP); 15359 for (i = 0; i < newhelp->dthps_nprovs; i++) { 15360 newhelp->dthps_provs[i] = help->dthps_provs[i]; 15361 newhelp->dthps_provs[i]->dthp_ref++; 15362 } 15363 15364 hasprovs = 1; 15365 } 15366 15367 mutex_exit(&dtrace_lock); 15368 15369 if (hasprovs) 15370 dtrace_helper_provider_register(to, newhelp, NULL); 15371 } 15372 15373 /* 15374 * DTrace Hook Functions 15375 */ 15376 static void 15377 dtrace_module_loaded(struct modctl *ctl) 15378 { 15379 dtrace_provider_t *prv; 15380 15381 mutex_enter(&dtrace_provider_lock); 15382 mutex_enter(&mod_lock); 15383 15384 ASSERT(ctl->mod_busy); 15385 15386 /* 15387 * We're going to call each providers per-module provide operation 15388 * specifying only this module. 15389 */ 15390 for (prv = dtrace_provider; prv != NULL; prv = prv->dtpv_next) 15391 prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl); 15392 15393 mutex_exit(&mod_lock); 15394 mutex_exit(&dtrace_provider_lock); 15395 15396 /* 15397 * If we have any retained enablings, we need to match against them. 15398 * Enabling probes requires that cpu_lock be held, and we cannot hold 15399 * cpu_lock here -- it is legal for cpu_lock to be held when loading a 15400 * module. (In particular, this happens when loading scheduling 15401 * classes.) So if we have any retained enablings, we need to dispatch 15402 * our task queue to do the match for us. 15403 */ 15404 mutex_enter(&dtrace_lock); 15405 15406 if (dtrace_retained == NULL) { 15407 mutex_exit(&dtrace_lock); 15408 return; 15409 } 15410 15411 (void) taskq_dispatch(dtrace_taskq, 15412 (task_func_t *)dtrace_enabling_matchall, NULL, TQ_SLEEP); 15413 15414 mutex_exit(&dtrace_lock); 15415 15416 /* 15417 * And now, for a little heuristic sleaze: in general, we want to 15418 * match modules as soon as they load. However, we cannot guarantee 15419 * this, because it would lead us to the lock ordering violation 15420 * outlined above. The common case, of course, is that cpu_lock is 15421 * _not_ held -- so we delay here for a clock tick, hoping that that's 15422 * long enough for the task queue to do its work. If it's not, it's 15423 * not a serious problem -- it just means that the module that we 15424 * just loaded may not be immediately instrumentable. 15425 */ 15426 delay(1); 15427 } 15428 15429 static void 15430 dtrace_module_unloaded(struct modctl *ctl) 15431 { 15432 dtrace_probe_t template, *probe, *first, *next; 15433 dtrace_provider_t *prov; 15434 15435 template.dtpr_mod = ctl->mod_modname; 15436 15437 mutex_enter(&dtrace_provider_lock); 15438 mutex_enter(&mod_lock); 15439 mutex_enter(&dtrace_lock); 15440 15441 if (dtrace_bymod == NULL) { 15442 /* 15443 * The DTrace module is loaded (obviously) but not attached; 15444 * we don't have any work to do. 15445 */ 15446 mutex_exit(&dtrace_provider_lock); 15447 mutex_exit(&mod_lock); 15448 mutex_exit(&dtrace_lock); 15449 return; 15450 } 15451 15452 for (probe = first = dtrace_hash_lookup(dtrace_bymod, &template); 15453 probe != NULL; probe = probe->dtpr_nextmod) { 15454 if (probe->dtpr_ecb != NULL) { 15455 mutex_exit(&dtrace_provider_lock); 15456 mutex_exit(&mod_lock); 15457 mutex_exit(&dtrace_lock); 15458 15459 /* 15460 * This shouldn't _actually_ be possible -- we're 15461 * unloading a module that has an enabled probe in it. 15462 * (It's normally up to the provider to make sure that 15463 * this can't happen.) However, because dtps_enable() 15464 * doesn't have a failure mode, there can be an 15465 * enable/unload race. Upshot: we don't want to 15466 * assert, but we're not going to disable the 15467 * probe, either. 15468 */ 15469 if (dtrace_err_verbose) { 15470 cmn_err(CE_WARN, "unloaded module '%s' had " 15471 "enabled probes", ctl->mod_modname); 15472 } 15473 15474 return; 15475 } 15476 } 15477 15478 probe = first; 15479 15480 for (first = NULL; probe != NULL; probe = next) { 15481 ASSERT(dtrace_probes[probe->dtpr_id - 1] == probe); 15482 15483 dtrace_probes[probe->dtpr_id - 1] = NULL; 15484 15485 next = probe->dtpr_nextmod; 15486 dtrace_hash_remove(dtrace_bymod, probe); 15487 dtrace_hash_remove(dtrace_byfunc, probe); 15488 dtrace_hash_remove(dtrace_byname, probe); 15489 15490 if (first == NULL) { 15491 first = probe; 15492 probe->dtpr_nextmod = NULL; 15493 } else { 15494 probe->dtpr_nextmod = first; 15495 first = probe; 15496 } 15497 } 15498 15499 /* 15500 * We've removed all of the module's probes from the hash chains and 15501 * from the probe array. Now issue a dtrace_sync() to be sure that 15502 * everyone has cleared out from any probe array processing. 15503 */ 15504 dtrace_sync(); 15505 15506 for (probe = first; probe != NULL; probe = first) { 15507 first = probe->dtpr_nextmod; 15508 prov = probe->dtpr_provider; 15509 prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, probe->dtpr_id, 15510 probe->dtpr_arg); 15511 kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1); 15512 kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1); 15513 kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1); 15514 vmem_free(dtrace_arena, (void *)(uintptr_t)probe->dtpr_id, 1); 15515 kmem_free(probe, sizeof (dtrace_probe_t)); 15516 } 15517 15518 mutex_exit(&dtrace_lock); 15519 mutex_exit(&mod_lock); 15520 mutex_exit(&dtrace_provider_lock); 15521 } 15522 15523 void 15524 dtrace_suspend(void) 15525 { 15526 dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_suspend)); 15527 } 15528 15529 void 15530 dtrace_resume(void) 15531 { 15532 dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_resume)); 15533 } 15534 15535 static int 15536 dtrace_cpu_setup(cpu_setup_t what, processorid_t cpu) 15537 { 15538 ASSERT(MUTEX_HELD(&cpu_lock)); 15539 mutex_enter(&dtrace_lock); 15540 15541 switch (what) { 15542 case CPU_CONFIG: { 15543 dtrace_state_t *state; 15544 dtrace_optval_t *opt, rs, c; 15545 15546 /* 15547 * For now, we only allocate a new buffer for anonymous state. 15548 */ 15549 if ((state = dtrace_anon.dta_state) == NULL) 15550 break; 15551 15552 if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE) 15553 break; 15554 15555 opt = state->dts_options; 15556 c = opt[DTRACEOPT_CPU]; 15557 15558 if (c != DTRACE_CPUALL && c != DTRACEOPT_UNSET && c != cpu) 15559 break; 15560 15561 /* 15562 * Regardless of what the actual policy is, we're going to 15563 * temporarily set our resize policy to be manual. We're 15564 * also going to temporarily set our CPU option to denote 15565 * the newly configured CPU. 15566 */ 15567 rs = opt[DTRACEOPT_BUFRESIZE]; 15568 opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_MANUAL; 15569 opt[DTRACEOPT_CPU] = (dtrace_optval_t)cpu; 15570 15571 (void) dtrace_state_buffers(state); 15572 15573 opt[DTRACEOPT_BUFRESIZE] = rs; 15574 opt[DTRACEOPT_CPU] = c; 15575 15576 break; 15577 } 15578 15579 case CPU_UNCONFIG: 15580 /* 15581 * We don't free the buffer in the CPU_UNCONFIG case. (The 15582 * buffer will be freed when the consumer exits.) 15583 */ 15584 break; 15585 15586 default: 15587 break; 15588 } 15589 15590 mutex_exit(&dtrace_lock); 15591 return (0); 15592 } 15593 15594 static void 15595 dtrace_cpu_setup_initial(processorid_t cpu) 15596 { 15597 (void) dtrace_cpu_setup(CPU_CONFIG, cpu); 15598 } 15599 15600 static void 15601 dtrace_toxrange_add(uintptr_t base, uintptr_t limit) 15602 { 15603 if (dtrace_toxranges >= dtrace_toxranges_max) { 15604 int osize, nsize; 15605 dtrace_toxrange_t *range; 15606 15607 osize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t); 15608 15609 if (osize == 0) { 15610 ASSERT(dtrace_toxrange == NULL); 15611 ASSERT(dtrace_toxranges_max == 0); 15612 dtrace_toxranges_max = 1; 15613 } else { 15614 dtrace_toxranges_max <<= 1; 15615 } 15616 15617 nsize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t); 15618 range = kmem_zalloc(nsize, KM_SLEEP); 15619 15620 if (dtrace_toxrange != NULL) { 15621 ASSERT(osize != 0); 15622 bcopy(dtrace_toxrange, range, osize); 15623 kmem_free(dtrace_toxrange, osize); 15624 } 15625 15626 dtrace_toxrange = range; 15627 } 15628 15629 ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_base == NULL); 15630 ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_limit == NULL); 15631 15632 dtrace_toxrange[dtrace_toxranges].dtt_base = base; 15633 dtrace_toxrange[dtrace_toxranges].dtt_limit = limit; 15634 dtrace_toxranges++; 15635 } 15636 15637 static void 15638 dtrace_getf_barrier() 15639 { 15640 /* 15641 * When we have unprivileged (that is, non-DTRACE_CRV_KERNEL) enablings 15642 * that contain calls to getf(), this routine will be called on every 15643 * closef() before either the underlying vnode is released or the 15644 * file_t itself is freed. By the time we are here, it is essential 15645 * that the file_t can no longer be accessed from a call to getf() 15646 * in probe context -- that assures that a dtrace_sync() can be used 15647 * to clear out any enablings referring to the old structures. 15648 */ 15649 if (curthread->t_procp->p_zone->zone_dtrace_getf != 0 || 15650 kcred->cr_zone->zone_dtrace_getf != 0) 15651 dtrace_sync(); 15652 } 15653 15654 /* 15655 * DTrace Driver Cookbook Functions 15656 */ 15657 /*ARGSUSED*/ 15658 static int 15659 dtrace_attach(dev_info_t *devi, ddi_attach_cmd_t cmd) 15660 { 15661 dtrace_provider_id_t id; 15662 dtrace_state_t *state = NULL; 15663 dtrace_enabling_t *enab; 15664 15665 mutex_enter(&cpu_lock); 15666 mutex_enter(&dtrace_provider_lock); 15667 mutex_enter(&dtrace_lock); 15668 15669 if (ddi_soft_state_init(&dtrace_softstate, 15670 sizeof (dtrace_state_t), 0) != 0) { 15671 cmn_err(CE_NOTE, "/dev/dtrace failed to initialize soft state"); 15672 mutex_exit(&cpu_lock); 15673 mutex_exit(&dtrace_provider_lock); 15674 mutex_exit(&dtrace_lock); 15675 return (DDI_FAILURE); 15676 } 15677 15678 if (ddi_create_minor_node(devi, DTRACEMNR_DTRACE, S_IFCHR, 15679 DTRACEMNRN_DTRACE, DDI_PSEUDO, NULL) == DDI_FAILURE || 15680 ddi_create_minor_node(devi, DTRACEMNR_HELPER, S_IFCHR, 15681 DTRACEMNRN_HELPER, DDI_PSEUDO, NULL) == DDI_FAILURE) { 15682 cmn_err(CE_NOTE, "/dev/dtrace couldn't create minor nodes"); 15683 ddi_remove_minor_node(devi, NULL); 15684 ddi_soft_state_fini(&dtrace_softstate); 15685 mutex_exit(&cpu_lock); 15686 mutex_exit(&dtrace_provider_lock); 15687 mutex_exit(&dtrace_lock); 15688 return (DDI_FAILURE); 15689 } 15690 15691 ddi_report_dev(devi); 15692 dtrace_devi = devi; 15693 15694 dtrace_modload = dtrace_module_loaded; 15695 dtrace_modunload = dtrace_module_unloaded; 15696 dtrace_cpu_init = dtrace_cpu_setup_initial; 15697 dtrace_helpers_cleanup = dtrace_helpers_destroy; 15698 dtrace_helpers_fork = dtrace_helpers_duplicate; 15699 dtrace_cpustart_init = dtrace_suspend; 15700 dtrace_cpustart_fini = dtrace_resume; 15701 dtrace_debugger_init = dtrace_suspend; 15702 dtrace_debugger_fini = dtrace_resume; 15703 15704 register_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL); 15705 15706 ASSERT(MUTEX_HELD(&cpu_lock)); 15707 15708 dtrace_arena = vmem_create("dtrace", (void *)1, UINT32_MAX, 1, 15709 NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER); 15710 dtrace_minor = vmem_create("dtrace_minor", (void *)DTRACEMNRN_CLONE, 15711 UINT32_MAX - DTRACEMNRN_CLONE, 1, NULL, NULL, NULL, 0, 15712 VM_SLEEP | VMC_IDENTIFIER); 15713 dtrace_taskq = taskq_create("dtrace_taskq", 1, maxclsyspri, 15714 1, INT_MAX, 0); 15715 15716 dtrace_state_cache = kmem_cache_create("dtrace_state_cache", 15717 sizeof (dtrace_dstate_percpu_t) * NCPU, DTRACE_STATE_ALIGN, 15718 NULL, NULL, NULL, NULL, NULL, 0); 15719 15720 ASSERT(MUTEX_HELD(&cpu_lock)); 15721 dtrace_bymod = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_mod), 15722 offsetof(dtrace_probe_t, dtpr_nextmod), 15723 offsetof(dtrace_probe_t, dtpr_prevmod)); 15724 15725 dtrace_byfunc = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_func), 15726 offsetof(dtrace_probe_t, dtpr_nextfunc), 15727 offsetof(dtrace_probe_t, dtpr_prevfunc)); 15728 15729 dtrace_byname = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_name), 15730 offsetof(dtrace_probe_t, dtpr_nextname), 15731 offsetof(dtrace_probe_t, dtpr_prevname)); 15732 15733 if (dtrace_retain_max < 1) { 15734 cmn_err(CE_WARN, "illegal value (%lu) for dtrace_retain_max; " 15735 "setting to 1", dtrace_retain_max); 15736 dtrace_retain_max = 1; 15737 } 15738 15739 /* 15740 * Now discover our toxic ranges. 15741 */ 15742 dtrace_toxic_ranges(dtrace_toxrange_add); 15743 15744 /* 15745 * Before we register ourselves as a provider to our own framework, 15746 * we would like to assert that dtrace_provider is NULL -- but that's 15747 * not true if we were loaded as a dependency of a DTrace provider. 15748 * Once we've registered, we can assert that dtrace_provider is our 15749 * pseudo provider. 15750 */ 15751 (void) dtrace_register("dtrace", &dtrace_provider_attr, 15752 DTRACE_PRIV_NONE, 0, &dtrace_provider_ops, NULL, &id); 15753 15754 ASSERT(dtrace_provider != NULL); 15755 ASSERT((dtrace_provider_id_t)dtrace_provider == id); 15756 15757 dtrace_probeid_begin = dtrace_probe_create((dtrace_provider_id_t) 15758 dtrace_provider, NULL, NULL, "BEGIN", 0, NULL); 15759 dtrace_probeid_end = dtrace_probe_create((dtrace_provider_id_t) 15760 dtrace_provider, NULL, NULL, "END", 0, NULL); 15761 dtrace_probeid_error = dtrace_probe_create((dtrace_provider_id_t) 15762 dtrace_provider, NULL, NULL, "ERROR", 1, NULL); 15763 15764 dtrace_anon_property(); 15765 mutex_exit(&cpu_lock); 15766 15767 /* 15768 * If there are already providers, we must ask them to provide their 15769 * probes, and then match any anonymous enabling against them. Note 15770 * that there should be no other retained enablings at this time: 15771 * the only retained enablings at this time should be the anonymous 15772 * enabling. 15773 */ 15774 if (dtrace_anon.dta_enabling != NULL) { 15775 ASSERT(dtrace_retained == dtrace_anon.dta_enabling); 15776 15777 dtrace_enabling_provide(NULL); 15778 state = dtrace_anon.dta_state; 15779 15780 /* 15781 * We couldn't hold cpu_lock across the above call to 15782 * dtrace_enabling_provide(), but we must hold it to actually 15783 * enable the probes. We have to drop all of our locks, pick 15784 * up cpu_lock, and regain our locks before matching the 15785 * retained anonymous enabling. 15786 */ 15787 mutex_exit(&dtrace_lock); 15788 mutex_exit(&dtrace_provider_lock); 15789 15790 mutex_enter(&cpu_lock); 15791 mutex_enter(&dtrace_provider_lock); 15792 mutex_enter(&dtrace_lock); 15793 15794 if ((enab = dtrace_anon.dta_enabling) != NULL) 15795 (void) dtrace_enabling_match(enab, NULL); 15796 15797 mutex_exit(&cpu_lock); 15798 } 15799 15800 mutex_exit(&dtrace_lock); 15801 mutex_exit(&dtrace_provider_lock); 15802 15803 if (state != NULL) { 15804 /* 15805 * If we created any anonymous state, set it going now. 15806 */ 15807 (void) dtrace_state_go(state, &dtrace_anon.dta_beganon); 15808 } 15809 15810 return (DDI_SUCCESS); 15811 } 15812 15813 /*ARGSUSED*/ 15814 static int 15815 dtrace_open(dev_t *devp, int flag, int otyp, cred_t *cred_p) 15816 { 15817 dtrace_state_t *state; 15818 uint32_t priv; 15819 uid_t uid; 15820 zoneid_t zoneid; 15821 15822 if (getminor(*devp) == DTRACEMNRN_HELPER) 15823 return (0); 15824 15825 /* 15826 * If this wasn't an open with the "helper" minor, then it must be 15827 * the "dtrace" minor. 15828 */ 15829 if (getminor(*devp) != DTRACEMNRN_DTRACE) 15830 return (ENXIO); 15831 15832 /* 15833 * If no DTRACE_PRIV_* bits are set in the credential, then the 15834 * caller lacks sufficient permission to do anything with DTrace. 15835 */ 15836 dtrace_cred2priv(cred_p, &priv, &uid, &zoneid); 15837 if (priv == DTRACE_PRIV_NONE) 15838 return (EACCES); 15839 15840 /* 15841 * Ask all providers to provide all their probes. 15842 */ 15843 mutex_enter(&dtrace_provider_lock); 15844 dtrace_probe_provide(NULL, NULL); 15845 mutex_exit(&dtrace_provider_lock); 15846 15847 mutex_enter(&cpu_lock); 15848 mutex_enter(&dtrace_lock); 15849 dtrace_opens++; 15850 dtrace_membar_producer(); 15851 15852 /* 15853 * If the kernel debugger is active (that is, if the kernel debugger 15854 * modified text in some way), we won't allow the open. 15855 */ 15856 if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) { 15857 dtrace_opens--; 15858 mutex_exit(&cpu_lock); 15859 mutex_exit(&dtrace_lock); 15860 return (EBUSY); 15861 } 15862 15863 if (dtrace_helptrace_enable && dtrace_helptrace_buffer == NULL) { 15864 /* 15865 * If DTrace helper tracing is enabled, we need to allocate the 15866 * trace buffer and initialize the values. 15867 */ 15868 dtrace_helptrace_buffer = 15869 kmem_zalloc(dtrace_helptrace_bufsize, KM_SLEEP); 15870 dtrace_helptrace_next = 0; 15871 dtrace_helptrace_wrapped = 0; 15872 dtrace_helptrace_enable = 0; 15873 } 15874 15875 state = dtrace_state_create(devp, cred_p); 15876 mutex_exit(&cpu_lock); 15877 15878 if (state == NULL) { 15879 if (--dtrace_opens == 0 && dtrace_anon.dta_enabling == NULL) 15880 (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE); 15881 mutex_exit(&dtrace_lock); 15882 return (EAGAIN); 15883 } 15884 15885 mutex_exit(&dtrace_lock); 15886 15887 return (0); 15888 } 15889 15890 /*ARGSUSED*/ 15891 static int 15892 dtrace_close(dev_t dev, int flag, int otyp, cred_t *cred_p) 15893 { 15894 minor_t minor = getminor(dev); 15895 dtrace_state_t *state; 15896 dtrace_helptrace_t *buf = NULL; 15897 15898 if (minor == DTRACEMNRN_HELPER) 15899 return (0); 15900 15901 state = ddi_get_soft_state(dtrace_softstate, minor); 15902 15903 mutex_enter(&cpu_lock); 15904 mutex_enter(&dtrace_lock); 15905 15906 if (state->dts_anon) { 15907 /* 15908 * There is anonymous state. Destroy that first. 15909 */ 15910 ASSERT(dtrace_anon.dta_state == NULL); 15911 dtrace_state_destroy(state->dts_anon); 15912 } 15913 15914 if (dtrace_helptrace_disable) { 15915 /* 15916 * If we have been told to disable helper tracing, set the 15917 * buffer to NULL before calling into dtrace_state_destroy(); 15918 * we take advantage of its dtrace_sync() to know that no 15919 * CPU is in probe context with enabled helper tracing 15920 * after it returns. 15921 */ 15922 buf = dtrace_helptrace_buffer; 15923 dtrace_helptrace_buffer = NULL; 15924 } 15925 15926 dtrace_state_destroy(state); 15927 ASSERT(dtrace_opens > 0); 15928 15929 /* 15930 * Only relinquish control of the kernel debugger interface when there 15931 * are no consumers and no anonymous enablings. 15932 */ 15933 if (--dtrace_opens == 0 && dtrace_anon.dta_enabling == NULL) 15934 (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE); 15935 15936 if (buf != NULL) { 15937 kmem_free(buf, dtrace_helptrace_bufsize); 15938 dtrace_helptrace_disable = 0; 15939 } 15940 15941 mutex_exit(&dtrace_lock); 15942 mutex_exit(&cpu_lock); 15943 15944 return (0); 15945 } 15946 15947 /*ARGSUSED*/ 15948 static int 15949 dtrace_ioctl_helper(int cmd, intptr_t arg, int *rv) 15950 { 15951 int rval; 15952 dof_helper_t help, *dhp = NULL; 15953 15954 switch (cmd) { 15955 case DTRACEHIOC_ADDDOF: 15956 if (copyin((void *)arg, &help, sizeof (help)) != 0) { 15957 dtrace_dof_error(NULL, "failed to copyin DOF helper"); 15958 return (EFAULT); 15959 } 15960 15961 dhp = &help; 15962 arg = (intptr_t)help.dofhp_dof; 15963 /*FALLTHROUGH*/ 15964 15965 case DTRACEHIOC_ADD: { 15966 dof_hdr_t *dof = dtrace_dof_copyin(arg, &rval); 15967 15968 if (dof == NULL) 15969 return (rval); 15970 15971 mutex_enter(&dtrace_lock); 15972 15973 /* 15974 * dtrace_helper_slurp() takes responsibility for the dof -- 15975 * it may free it now or it may save it and free it later. 15976 */ 15977 if ((rval = dtrace_helper_slurp(dof, dhp)) != -1) { 15978 *rv = rval; 15979 rval = 0; 15980 } else { 15981 rval = EINVAL; 15982 } 15983 15984 mutex_exit(&dtrace_lock); 15985 return (rval); 15986 } 15987 15988 case DTRACEHIOC_REMOVE: { 15989 mutex_enter(&dtrace_lock); 15990 rval = dtrace_helper_destroygen(arg); 15991 mutex_exit(&dtrace_lock); 15992 15993 return (rval); 15994 } 15995 15996 default: 15997 break; 15998 } 15999 16000 return (ENOTTY); 16001 } 16002 16003 /*ARGSUSED*/ 16004 static int 16005 dtrace_ioctl(dev_t dev, int cmd, intptr_t arg, int md, cred_t *cr, int *rv) 16006 { 16007 minor_t minor = getminor(dev); 16008 dtrace_state_t *state; 16009 int rval; 16010 16011 if (minor == DTRACEMNRN_HELPER) 16012 return (dtrace_ioctl_helper(cmd, arg, rv)); 16013 16014 state = ddi_get_soft_state(dtrace_softstate, minor); 16015 16016 if (state->dts_anon) { 16017 ASSERT(dtrace_anon.dta_state == NULL); 16018 state = state->dts_anon; 16019 } 16020 16021 switch (cmd) { 16022 case DTRACEIOC_PROVIDER: { 16023 dtrace_providerdesc_t pvd; 16024 dtrace_provider_t *pvp; 16025 16026 if (copyin((void *)arg, &pvd, sizeof (pvd)) != 0) 16027 return (EFAULT); 16028 16029 pvd.dtvd_name[DTRACE_PROVNAMELEN - 1] = '\0'; 16030 mutex_enter(&dtrace_provider_lock); 16031 16032 for (pvp = dtrace_provider; pvp != NULL; pvp = pvp->dtpv_next) { 16033 if (strcmp(pvp->dtpv_name, pvd.dtvd_name) == 0) 16034 break; 16035 } 16036 16037 mutex_exit(&dtrace_provider_lock); 16038 16039 if (pvp == NULL) 16040 return (ESRCH); 16041 16042 bcopy(&pvp->dtpv_priv, &pvd.dtvd_priv, sizeof (dtrace_ppriv_t)); 16043 bcopy(&pvp->dtpv_attr, &pvd.dtvd_attr, sizeof (dtrace_pattr_t)); 16044 if (copyout(&pvd, (void *)arg, sizeof (pvd)) != 0) 16045 return (EFAULT); 16046 16047 return (0); 16048 } 16049 16050 case DTRACEIOC_EPROBE: { 16051 dtrace_eprobedesc_t epdesc; 16052 dtrace_ecb_t *ecb; 16053 dtrace_action_t *act; 16054 void *buf; 16055 size_t size; 16056 uintptr_t dest; 16057 int nrecs; 16058 16059 if (copyin((void *)arg, &epdesc, sizeof (epdesc)) != 0) 16060 return (EFAULT); 16061 16062 mutex_enter(&dtrace_lock); 16063 16064 if ((ecb = dtrace_epid2ecb(state, epdesc.dtepd_epid)) == NULL) { 16065 mutex_exit(&dtrace_lock); 16066 return (EINVAL); 16067 } 16068 16069 if (ecb->dte_probe == NULL) { 16070 mutex_exit(&dtrace_lock); 16071 return (EINVAL); 16072 } 16073 16074 epdesc.dtepd_probeid = ecb->dte_probe->dtpr_id; 16075 epdesc.dtepd_uarg = ecb->dte_uarg; 16076 epdesc.dtepd_size = ecb->dte_size; 16077 16078 nrecs = epdesc.dtepd_nrecs; 16079 epdesc.dtepd_nrecs = 0; 16080 for (act = ecb->dte_action; act != NULL; act = act->dta_next) { 16081 if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple) 16082 continue; 16083 16084 epdesc.dtepd_nrecs++; 16085 } 16086 16087 /* 16088 * Now that we have the size, we need to allocate a temporary 16089 * buffer in which to store the complete description. We need 16090 * the temporary buffer to be able to drop dtrace_lock() 16091 * across the copyout(), below. 16092 */ 16093 size = sizeof (dtrace_eprobedesc_t) + 16094 (epdesc.dtepd_nrecs * sizeof (dtrace_recdesc_t)); 16095 16096 buf = kmem_alloc(size, KM_SLEEP); 16097 dest = (uintptr_t)buf; 16098 16099 bcopy(&epdesc, (void *)dest, sizeof (epdesc)); 16100 dest += offsetof(dtrace_eprobedesc_t, dtepd_rec[0]); 16101 16102 for (act = ecb->dte_action; act != NULL; act = act->dta_next) { 16103 if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple) 16104 continue; 16105 16106 if (nrecs-- == 0) 16107 break; 16108 16109 bcopy(&act->dta_rec, (void *)dest, 16110 sizeof (dtrace_recdesc_t)); 16111 dest += sizeof (dtrace_recdesc_t); 16112 } 16113 16114 mutex_exit(&dtrace_lock); 16115 16116 if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) { 16117 kmem_free(buf, size); 16118 return (EFAULT); 16119 } 16120 16121 kmem_free(buf, size); 16122 return (0); 16123 } 16124 16125 case DTRACEIOC_AGGDESC: { 16126 dtrace_aggdesc_t aggdesc; 16127 dtrace_action_t *act; 16128 dtrace_aggregation_t *agg; 16129 int nrecs; 16130 uint32_t offs; 16131 dtrace_recdesc_t *lrec; 16132 void *buf; 16133 size_t size; 16134 uintptr_t dest; 16135 16136 if (copyin((void *)arg, &aggdesc, sizeof (aggdesc)) != 0) 16137 return (EFAULT); 16138 16139 mutex_enter(&dtrace_lock); 16140 16141 if ((agg = dtrace_aggid2agg(state, aggdesc.dtagd_id)) == NULL) { 16142 mutex_exit(&dtrace_lock); 16143 return (EINVAL); 16144 } 16145 16146 aggdesc.dtagd_epid = agg->dtag_ecb->dte_epid; 16147 16148 nrecs = aggdesc.dtagd_nrecs; 16149 aggdesc.dtagd_nrecs = 0; 16150 16151 offs = agg->dtag_base; 16152 lrec = &agg->dtag_action.dta_rec; 16153 aggdesc.dtagd_size = lrec->dtrd_offset + lrec->dtrd_size - offs; 16154 16155 for (act = agg->dtag_first; ; act = act->dta_next) { 16156 ASSERT(act->dta_intuple || 16157 DTRACEACT_ISAGG(act->dta_kind)); 16158 16159 /* 16160 * If this action has a record size of zero, it 16161 * denotes an argument to the aggregating action. 16162 * Because the presence of this record doesn't (or 16163 * shouldn't) affect the way the data is interpreted, 16164 * we don't copy it out to save user-level the 16165 * confusion of dealing with a zero-length record. 16166 */ 16167 if (act->dta_rec.dtrd_size == 0) { 16168 ASSERT(agg->dtag_hasarg); 16169 continue; 16170 } 16171 16172 aggdesc.dtagd_nrecs++; 16173 16174 if (act == &agg->dtag_action) 16175 break; 16176 } 16177 16178 /* 16179 * Now that we have the size, we need to allocate a temporary 16180 * buffer in which to store the complete description. We need 16181 * the temporary buffer to be able to drop dtrace_lock() 16182 * across the copyout(), below. 16183 */ 16184 size = sizeof (dtrace_aggdesc_t) + 16185 (aggdesc.dtagd_nrecs * sizeof (dtrace_recdesc_t)); 16186 16187 buf = kmem_alloc(size, KM_SLEEP); 16188 dest = (uintptr_t)buf; 16189 16190 bcopy(&aggdesc, (void *)dest, sizeof (aggdesc)); 16191 dest += offsetof(dtrace_aggdesc_t, dtagd_rec[0]); 16192 16193 for (act = agg->dtag_first; ; act = act->dta_next) { 16194 dtrace_recdesc_t rec = act->dta_rec; 16195 16196 /* 16197 * See the comment in the above loop for why we pass 16198 * over zero-length records. 16199 */ 16200 if (rec.dtrd_size == 0) { 16201 ASSERT(agg->dtag_hasarg); 16202 continue; 16203 } 16204 16205 if (nrecs-- == 0) 16206 break; 16207 16208 rec.dtrd_offset -= offs; 16209 bcopy(&rec, (void *)dest, sizeof (rec)); 16210 dest += sizeof (dtrace_recdesc_t); 16211 16212 if (act == &agg->dtag_action) 16213 break; 16214 } 16215 16216 mutex_exit(&dtrace_lock); 16217 16218 if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) { 16219 kmem_free(buf, size); 16220 return (EFAULT); 16221 } 16222 16223 kmem_free(buf, size); 16224 return (0); 16225 } 16226 16227 case DTRACEIOC_ENABLE: { 16228 dof_hdr_t *dof; 16229 dtrace_enabling_t *enab = NULL; 16230 dtrace_vstate_t *vstate; 16231 int err = 0; 16232 16233 *rv = 0; 16234 16235 /* 16236 * If a NULL argument has been passed, we take this as our 16237 * cue to reevaluate our enablings. 16238 */ 16239 if (arg == NULL) { 16240 dtrace_enabling_matchall(); 16241 16242 return (0); 16243 } 16244 16245 if ((dof = dtrace_dof_copyin(arg, &rval)) == NULL) 16246 return (rval); 16247 16248 mutex_enter(&cpu_lock); 16249 mutex_enter(&dtrace_lock); 16250 vstate = &state->dts_vstate; 16251 16252 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) { 16253 mutex_exit(&dtrace_lock); 16254 mutex_exit(&cpu_lock); 16255 dtrace_dof_destroy(dof); 16256 return (EBUSY); 16257 } 16258 16259 if (dtrace_dof_slurp(dof, vstate, cr, &enab, 0, B_TRUE) != 0) { 16260 mutex_exit(&dtrace_lock); 16261 mutex_exit(&cpu_lock); 16262 dtrace_dof_destroy(dof); 16263 return (EINVAL); 16264 } 16265 16266 if ((rval = dtrace_dof_options(dof, state)) != 0) { 16267 dtrace_enabling_destroy(enab); 16268 mutex_exit(&dtrace_lock); 16269 mutex_exit(&cpu_lock); 16270 dtrace_dof_destroy(dof); 16271 return (rval); 16272 } 16273 16274 if ((err = dtrace_enabling_match(enab, rv)) == 0) { 16275 err = dtrace_enabling_retain(enab); 16276 } else { 16277 dtrace_enabling_destroy(enab); 16278 } 16279 16280 mutex_exit(&cpu_lock); 16281 mutex_exit(&dtrace_lock); 16282 dtrace_dof_destroy(dof); 16283 16284 return (err); 16285 } 16286 16287 case DTRACEIOC_REPLICATE: { 16288 dtrace_repldesc_t desc; 16289 dtrace_probedesc_t *match = &desc.dtrpd_match; 16290 dtrace_probedesc_t *create = &desc.dtrpd_create; 16291 int err; 16292 16293 if (copyin((void *)arg, &desc, sizeof (desc)) != 0) 16294 return (EFAULT); 16295 16296 match->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0'; 16297 match->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0'; 16298 match->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0'; 16299 match->dtpd_name[DTRACE_NAMELEN - 1] = '\0'; 16300 16301 create->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0'; 16302 create->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0'; 16303 create->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0'; 16304 create->dtpd_name[DTRACE_NAMELEN - 1] = '\0'; 16305 16306 mutex_enter(&dtrace_lock); 16307 err = dtrace_enabling_replicate(state, match, create); 16308 mutex_exit(&dtrace_lock); 16309 16310 return (err); 16311 } 16312 16313 case DTRACEIOC_PROBEMATCH: 16314 case DTRACEIOC_PROBES: { 16315 dtrace_probe_t *probe = NULL; 16316 dtrace_probedesc_t desc; 16317 dtrace_probekey_t pkey; 16318 dtrace_id_t i; 16319 int m = 0; 16320 uint32_t priv; 16321 uid_t uid; 16322 zoneid_t zoneid; 16323 16324 if (copyin((void *)arg, &desc, sizeof (desc)) != 0) 16325 return (EFAULT); 16326 16327 desc.dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0'; 16328 desc.dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0'; 16329 desc.dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0'; 16330 desc.dtpd_name[DTRACE_NAMELEN - 1] = '\0'; 16331 16332 /* 16333 * Before we attempt to match this probe, we want to give 16334 * all providers the opportunity to provide it. 16335 */ 16336 if (desc.dtpd_id == DTRACE_IDNONE) { 16337 mutex_enter(&dtrace_provider_lock); 16338 dtrace_probe_provide(&desc, NULL); 16339 mutex_exit(&dtrace_provider_lock); 16340 desc.dtpd_id++; 16341 } 16342 16343 if (cmd == DTRACEIOC_PROBEMATCH) { 16344 dtrace_probekey(&desc, &pkey); 16345 pkey.dtpk_id = DTRACE_IDNONE; 16346 } 16347 16348 dtrace_cred2priv(cr, &priv, &uid, &zoneid); 16349 16350 mutex_enter(&dtrace_lock); 16351 16352 if (cmd == DTRACEIOC_PROBEMATCH) { 16353 for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) { 16354 if ((probe = dtrace_probes[i - 1]) != NULL && 16355 (m = dtrace_match_probe(probe, &pkey, 16356 priv, uid, zoneid)) != 0) 16357 break; 16358 } 16359 16360 if (m < 0) { 16361 mutex_exit(&dtrace_lock); 16362 return (EINVAL); 16363 } 16364 16365 } else { 16366 for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) { 16367 if ((probe = dtrace_probes[i - 1]) != NULL && 16368 dtrace_match_priv(probe, priv, uid, zoneid)) 16369 break; 16370 } 16371 } 16372 16373 if (probe == NULL) { 16374 mutex_exit(&dtrace_lock); 16375 return (ESRCH); 16376 } 16377 16378 dtrace_probe_description(probe, &desc); 16379 mutex_exit(&dtrace_lock); 16380 16381 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0) 16382 return (EFAULT); 16383 16384 return (0); 16385 } 16386 16387 case DTRACEIOC_PROBEARG: { 16388 dtrace_argdesc_t desc; 16389 dtrace_probe_t *probe; 16390 dtrace_provider_t *prov; 16391 16392 if (copyin((void *)arg, &desc, sizeof (desc)) != 0) 16393 return (EFAULT); 16394 16395 if (desc.dtargd_id == DTRACE_IDNONE) 16396 return (EINVAL); 16397 16398 if (desc.dtargd_ndx == DTRACE_ARGNONE) 16399 return (EINVAL); 16400 16401 mutex_enter(&dtrace_provider_lock); 16402 mutex_enter(&mod_lock); 16403 mutex_enter(&dtrace_lock); 16404 16405 if (desc.dtargd_id > dtrace_nprobes) { 16406 mutex_exit(&dtrace_lock); 16407 mutex_exit(&mod_lock); 16408 mutex_exit(&dtrace_provider_lock); 16409 return (EINVAL); 16410 } 16411 16412 if ((probe = dtrace_probes[desc.dtargd_id - 1]) == NULL) { 16413 mutex_exit(&dtrace_lock); 16414 mutex_exit(&mod_lock); 16415 mutex_exit(&dtrace_provider_lock); 16416 return (EINVAL); 16417 } 16418 16419 mutex_exit(&dtrace_lock); 16420 16421 prov = probe->dtpr_provider; 16422 16423 if (prov->dtpv_pops.dtps_getargdesc == NULL) { 16424 /* 16425 * There isn't any typed information for this probe. 16426 * Set the argument number to DTRACE_ARGNONE. 16427 */ 16428 desc.dtargd_ndx = DTRACE_ARGNONE; 16429 } else { 16430 desc.dtargd_native[0] = '\0'; 16431 desc.dtargd_xlate[0] = '\0'; 16432 desc.dtargd_mapping = desc.dtargd_ndx; 16433 16434 prov->dtpv_pops.dtps_getargdesc(prov->dtpv_arg, 16435 probe->dtpr_id, probe->dtpr_arg, &desc); 16436 } 16437 16438 mutex_exit(&mod_lock); 16439 mutex_exit(&dtrace_provider_lock); 16440 16441 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0) 16442 return (EFAULT); 16443 16444 return (0); 16445 } 16446 16447 case DTRACEIOC_GO: { 16448 processorid_t cpuid; 16449 rval = dtrace_state_go(state, &cpuid); 16450 16451 if (rval != 0) 16452 return (rval); 16453 16454 if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0) 16455 return (EFAULT); 16456 16457 return (0); 16458 } 16459 16460 case DTRACEIOC_STOP: { 16461 processorid_t cpuid; 16462 16463 mutex_enter(&dtrace_lock); 16464 rval = dtrace_state_stop(state, &cpuid); 16465 mutex_exit(&dtrace_lock); 16466 16467 if (rval != 0) 16468 return (rval); 16469 16470 if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0) 16471 return (EFAULT); 16472 16473 return (0); 16474 } 16475 16476 case DTRACEIOC_DOFGET: { 16477 dof_hdr_t hdr, *dof; 16478 uint64_t len; 16479 16480 if (copyin((void *)arg, &hdr, sizeof (hdr)) != 0) 16481 return (EFAULT); 16482 16483 mutex_enter(&dtrace_lock); 16484 dof = dtrace_dof_create(state); 16485 mutex_exit(&dtrace_lock); 16486 16487 len = MIN(hdr.dofh_loadsz, dof->dofh_loadsz); 16488 rval = copyout(dof, (void *)arg, len); 16489 dtrace_dof_destroy(dof); 16490 16491 return (rval == 0 ? 0 : EFAULT); 16492 } 16493 16494 case DTRACEIOC_AGGSNAP: 16495 case DTRACEIOC_BUFSNAP: { 16496 dtrace_bufdesc_t desc; 16497 caddr_t cached; 16498 dtrace_buffer_t *buf; 16499 16500 if (copyin((void *)arg, &desc, sizeof (desc)) != 0) 16501 return (EFAULT); 16502 16503 if (desc.dtbd_cpu < 0 || desc.dtbd_cpu >= NCPU) 16504 return (EINVAL); 16505 16506 mutex_enter(&dtrace_lock); 16507 16508 if (cmd == DTRACEIOC_BUFSNAP) { 16509 buf = &state->dts_buffer[desc.dtbd_cpu]; 16510 } else { 16511 buf = &state->dts_aggbuffer[desc.dtbd_cpu]; 16512 } 16513 16514 if (buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL)) { 16515 size_t sz = buf->dtb_offset; 16516 16517 if (state->dts_activity != DTRACE_ACTIVITY_STOPPED) { 16518 mutex_exit(&dtrace_lock); 16519 return (EBUSY); 16520 } 16521 16522 /* 16523 * If this buffer has already been consumed, we're 16524 * going to indicate that there's nothing left here 16525 * to consume. 16526 */ 16527 if (buf->dtb_flags & DTRACEBUF_CONSUMED) { 16528 mutex_exit(&dtrace_lock); 16529 16530 desc.dtbd_size = 0; 16531 desc.dtbd_drops = 0; 16532 desc.dtbd_errors = 0; 16533 desc.dtbd_oldest = 0; 16534 sz = sizeof (desc); 16535 16536 if (copyout(&desc, (void *)arg, sz) != 0) 16537 return (EFAULT); 16538 16539 return (0); 16540 } 16541 16542 /* 16543 * If this is a ring buffer that has wrapped, we want 16544 * to copy the whole thing out. 16545 */ 16546 if (buf->dtb_flags & DTRACEBUF_WRAPPED) { 16547 dtrace_buffer_polish(buf); 16548 sz = buf->dtb_size; 16549 } 16550 16551 if (copyout(buf->dtb_tomax, desc.dtbd_data, sz) != 0) { 16552 mutex_exit(&dtrace_lock); 16553 return (EFAULT); 16554 } 16555 16556 desc.dtbd_size = sz; 16557 desc.dtbd_drops = buf->dtb_drops; 16558 desc.dtbd_errors = buf->dtb_errors; 16559 desc.dtbd_oldest = buf->dtb_xamot_offset; 16560 desc.dtbd_timestamp = dtrace_gethrtime(); 16561 16562 mutex_exit(&dtrace_lock); 16563 16564 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0) 16565 return (EFAULT); 16566 16567 buf->dtb_flags |= DTRACEBUF_CONSUMED; 16568 16569 return (0); 16570 } 16571 16572 if (buf->dtb_tomax == NULL) { 16573 ASSERT(buf->dtb_xamot == NULL); 16574 mutex_exit(&dtrace_lock); 16575 return (ENOENT); 16576 } 16577 16578 cached = buf->dtb_tomax; 16579 ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH)); 16580 16581 dtrace_xcall(desc.dtbd_cpu, 16582 (dtrace_xcall_t)dtrace_buffer_switch, buf); 16583 16584 state->dts_errors += buf->dtb_xamot_errors; 16585 16586 /* 16587 * If the buffers did not actually switch, then the cross call 16588 * did not take place -- presumably because the given CPU is 16589 * not in the ready set. If this is the case, we'll return 16590 * ENOENT. 16591 */ 16592 if (buf->dtb_tomax == cached) { 16593 ASSERT(buf->dtb_xamot != cached); 16594 mutex_exit(&dtrace_lock); 16595 return (ENOENT); 16596 } 16597 16598 ASSERT(cached == buf->dtb_xamot); 16599 16600 /* 16601 * We have our snapshot; now copy it out. 16602 */ 16603 if (copyout(buf->dtb_xamot, desc.dtbd_data, 16604 buf->dtb_xamot_offset) != 0) { 16605 mutex_exit(&dtrace_lock); 16606 return (EFAULT); 16607 } 16608 16609 desc.dtbd_size = buf->dtb_xamot_offset; 16610 desc.dtbd_drops = buf->dtb_xamot_drops; 16611 desc.dtbd_errors = buf->dtb_xamot_errors; 16612 desc.dtbd_oldest = 0; 16613 desc.dtbd_timestamp = buf->dtb_switched; 16614 16615 mutex_exit(&dtrace_lock); 16616 16617 /* 16618 * Finally, copy out the buffer description. 16619 */ 16620 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0) 16621 return (EFAULT); 16622 16623 return (0); 16624 } 16625 16626 case DTRACEIOC_CONF: { 16627 dtrace_conf_t conf; 16628 16629 bzero(&conf, sizeof (conf)); 16630 conf.dtc_difversion = DIF_VERSION; 16631 conf.dtc_difintregs = DIF_DIR_NREGS; 16632 conf.dtc_diftupregs = DIF_DTR_NREGS; 16633 conf.dtc_ctfmodel = CTF_MODEL_NATIVE; 16634 16635 if (copyout(&conf, (void *)arg, sizeof (conf)) != 0) 16636 return (EFAULT); 16637 16638 return (0); 16639 } 16640 16641 case DTRACEIOC_STATUS: { 16642 dtrace_status_t stat; 16643 dtrace_dstate_t *dstate; 16644 int i, j; 16645 uint64_t nerrs; 16646 16647 /* 16648 * See the comment in dtrace_state_deadman() for the reason 16649 * for setting dts_laststatus to INT64_MAX before setting 16650 * it to the correct value. 16651 */ 16652 state->dts_laststatus = INT64_MAX; 16653 dtrace_membar_producer(); 16654 state->dts_laststatus = dtrace_gethrtime(); 16655 16656 bzero(&stat, sizeof (stat)); 16657 16658 mutex_enter(&dtrace_lock); 16659 16660 if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE) { 16661 mutex_exit(&dtrace_lock); 16662 return (ENOENT); 16663 } 16664 16665 if (state->dts_activity == DTRACE_ACTIVITY_DRAINING) 16666 stat.dtst_exiting = 1; 16667 16668 nerrs = state->dts_errors; 16669 dstate = &state->dts_vstate.dtvs_dynvars; 16670 16671 for (i = 0; i < NCPU; i++) { 16672 dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[i]; 16673 16674 stat.dtst_dyndrops += dcpu->dtdsc_drops; 16675 stat.dtst_dyndrops_dirty += dcpu->dtdsc_dirty_drops; 16676 stat.dtst_dyndrops_rinsing += dcpu->dtdsc_rinsing_drops; 16677 16678 if (state->dts_buffer[i].dtb_flags & DTRACEBUF_FULL) 16679 stat.dtst_filled++; 16680 16681 nerrs += state->dts_buffer[i].dtb_errors; 16682 16683 for (j = 0; j < state->dts_nspeculations; j++) { 16684 dtrace_speculation_t *spec; 16685 dtrace_buffer_t *buf; 16686 16687 spec = &state->dts_speculations[j]; 16688 buf = &spec->dtsp_buffer[i]; 16689 stat.dtst_specdrops += buf->dtb_xamot_drops; 16690 } 16691 } 16692 16693 stat.dtst_specdrops_busy = state->dts_speculations_busy; 16694 stat.dtst_specdrops_unavail = state->dts_speculations_unavail; 16695 stat.dtst_stkstroverflows = state->dts_stkstroverflows; 16696 stat.dtst_dblerrors = state->dts_dblerrors; 16697 stat.dtst_killed = 16698 (state->dts_activity == DTRACE_ACTIVITY_KILLED); 16699 stat.dtst_errors = nerrs; 16700 16701 mutex_exit(&dtrace_lock); 16702 16703 if (copyout(&stat, (void *)arg, sizeof (stat)) != 0) 16704 return (EFAULT); 16705 16706 return (0); 16707 } 16708 16709 case DTRACEIOC_FORMAT: { 16710 dtrace_fmtdesc_t fmt; 16711 char *str; 16712 int len; 16713 16714 if (copyin((void *)arg, &fmt, sizeof (fmt)) != 0) 16715 return (EFAULT); 16716 16717 mutex_enter(&dtrace_lock); 16718 16719 if (fmt.dtfd_format == 0 || 16720 fmt.dtfd_format > state->dts_nformats) { 16721 mutex_exit(&dtrace_lock); 16722 return (EINVAL); 16723 } 16724 16725 /* 16726 * Format strings are allocated contiguously and they are 16727 * never freed; if a format index is less than the number 16728 * of formats, we can assert that the format map is non-NULL 16729 * and that the format for the specified index is non-NULL. 16730 */ 16731 ASSERT(state->dts_formats != NULL); 16732 str = state->dts_formats[fmt.dtfd_format - 1]; 16733 ASSERT(str != NULL); 16734 16735 len = strlen(str) + 1; 16736 16737 if (len > fmt.dtfd_length) { 16738 fmt.dtfd_length = len; 16739 16740 if (copyout(&fmt, (void *)arg, sizeof (fmt)) != 0) { 16741 mutex_exit(&dtrace_lock); 16742 return (EINVAL); 16743 } 16744 } else { 16745 if (copyout(str, fmt.dtfd_string, len) != 0) { 16746 mutex_exit(&dtrace_lock); 16747 return (EINVAL); 16748 } 16749 } 16750 16751 mutex_exit(&dtrace_lock); 16752 return (0); 16753 } 16754 16755 default: 16756 break; 16757 } 16758 16759 return (ENOTTY); 16760 } 16761 16762 /*ARGSUSED*/ 16763 static int 16764 dtrace_detach(dev_info_t *dip, ddi_detach_cmd_t cmd) 16765 { 16766 dtrace_state_t *state; 16767 16768 switch (cmd) { 16769 case DDI_DETACH: 16770 break; 16771 16772 case DDI_SUSPEND: 16773 return (DDI_SUCCESS); 16774 16775 default: 16776 return (DDI_FAILURE); 16777 } 16778 16779 mutex_enter(&cpu_lock); 16780 mutex_enter(&dtrace_provider_lock); 16781 mutex_enter(&dtrace_lock); 16782 16783 ASSERT(dtrace_opens == 0); 16784 16785 if (dtrace_helpers > 0) { 16786 mutex_exit(&dtrace_provider_lock); 16787 mutex_exit(&dtrace_lock); 16788 mutex_exit(&cpu_lock); 16789 return (DDI_FAILURE); 16790 } 16791 16792 if (dtrace_unregister((dtrace_provider_id_t)dtrace_provider) != 0) { 16793 mutex_exit(&dtrace_provider_lock); 16794 mutex_exit(&dtrace_lock); 16795 mutex_exit(&cpu_lock); 16796 return (DDI_FAILURE); 16797 } 16798 16799 dtrace_provider = NULL; 16800 16801 if ((state = dtrace_anon_grab()) != NULL) { 16802 /* 16803 * If there were ECBs on this state, the provider should 16804 * have not been allowed to detach; assert that there is 16805 * none. 16806 */ 16807 ASSERT(state->dts_necbs == 0); 16808 dtrace_state_destroy(state); 16809 16810 /* 16811 * If we're being detached with anonymous state, we need to 16812 * indicate to the kernel debugger that DTrace is now inactive. 16813 */ 16814 (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE); 16815 } 16816 16817 bzero(&dtrace_anon, sizeof (dtrace_anon_t)); 16818 unregister_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL); 16819 dtrace_cpu_init = NULL; 16820 dtrace_helpers_cleanup = NULL; 16821 dtrace_helpers_fork = NULL; 16822 dtrace_cpustart_init = NULL; 16823 dtrace_cpustart_fini = NULL; 16824 dtrace_debugger_init = NULL; 16825 dtrace_debugger_fini = NULL; 16826 dtrace_modload = NULL; 16827 dtrace_modunload = NULL; 16828 16829 ASSERT(dtrace_getf == 0); 16830 ASSERT(dtrace_closef == NULL); 16831 16832 mutex_exit(&cpu_lock); 16833 16834 kmem_free(dtrace_probes, dtrace_nprobes * sizeof (dtrace_probe_t *)); 16835 dtrace_probes = NULL; 16836 dtrace_nprobes = 0; 16837 16838 dtrace_hash_destroy(dtrace_bymod); 16839 dtrace_hash_destroy(dtrace_byfunc); 16840 dtrace_hash_destroy(dtrace_byname); 16841 dtrace_bymod = NULL; 16842 dtrace_byfunc = NULL; 16843 dtrace_byname = NULL; 16844 16845 kmem_cache_destroy(dtrace_state_cache); 16846 vmem_destroy(dtrace_minor); 16847 vmem_destroy(dtrace_arena); 16848 16849 if (dtrace_toxrange != NULL) { 16850 kmem_free(dtrace_toxrange, 16851 dtrace_toxranges_max * sizeof (dtrace_toxrange_t)); 16852 dtrace_toxrange = NULL; 16853 dtrace_toxranges = 0; 16854 dtrace_toxranges_max = 0; 16855 } 16856 16857 ddi_remove_minor_node(dtrace_devi, NULL); 16858 dtrace_devi = NULL; 16859 16860 ddi_soft_state_fini(&dtrace_softstate); 16861 16862 ASSERT(dtrace_vtime_references == 0); 16863 ASSERT(dtrace_opens == 0); 16864 ASSERT(dtrace_retained == NULL); 16865 16866 mutex_exit(&dtrace_lock); 16867 mutex_exit(&dtrace_provider_lock); 16868 16869 /* 16870 * We don't destroy the task queue until after we have dropped our 16871 * locks (taskq_destroy() may block on running tasks). To prevent 16872 * attempting to do work after we have effectively detached but before 16873 * the task queue has been destroyed, all tasks dispatched via the 16874 * task queue must check that DTrace is still attached before 16875 * performing any operation. 16876 */ 16877 taskq_destroy(dtrace_taskq); 16878 dtrace_taskq = NULL; 16879 16880 return (DDI_SUCCESS); 16881 } 16882 16883 /*ARGSUSED*/ 16884 static int 16885 dtrace_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result) 16886 { 16887 int error; 16888 16889 switch (infocmd) { 16890 case DDI_INFO_DEVT2DEVINFO: 16891 *result = (void *)dtrace_devi; 16892 error = DDI_SUCCESS; 16893 break; 16894 case DDI_INFO_DEVT2INSTANCE: 16895 *result = (void *)0; 16896 error = DDI_SUCCESS; 16897 break; 16898 default: 16899 error = DDI_FAILURE; 16900 } 16901 return (error); 16902 } 16903 16904 static struct cb_ops dtrace_cb_ops = { 16905 dtrace_open, /* open */ 16906 dtrace_close, /* close */ 16907 nulldev, /* strategy */ 16908 nulldev, /* print */ 16909 nodev, /* dump */ 16910 nodev, /* read */ 16911 nodev, /* write */ 16912 dtrace_ioctl, /* ioctl */ 16913 nodev, /* devmap */ 16914 nodev, /* mmap */ 16915 nodev, /* segmap */ 16916 nochpoll, /* poll */ 16917 ddi_prop_op, /* cb_prop_op */ 16918 0, /* streamtab */ 16919 D_NEW | D_MP /* Driver compatibility flag */ 16920 }; 16921 16922 static struct dev_ops dtrace_ops = { 16923 DEVO_REV, /* devo_rev */ 16924 0, /* refcnt */ 16925 dtrace_info, /* get_dev_info */ 16926 nulldev, /* identify */ 16927 nulldev, /* probe */ 16928 dtrace_attach, /* attach */ 16929 dtrace_detach, /* detach */ 16930 nodev, /* reset */ 16931 &dtrace_cb_ops, /* driver operations */ 16932 NULL, /* bus operations */ 16933 nodev, /* dev power */ 16934 ddi_quiesce_not_needed, /* quiesce */ 16935 }; 16936 16937 static struct modldrv modldrv = { 16938 &mod_driverops, /* module type (this is a pseudo driver) */ 16939 "Dynamic Tracing", /* name of module */ 16940 &dtrace_ops, /* driver ops */ 16941 }; 16942 16943 static struct modlinkage modlinkage = { 16944 MODREV_1, 16945 (void *)&modldrv, 16946 NULL 16947 }; 16948 16949 int 16950 _init(void) 16951 { 16952 return (mod_install(&modlinkage)); 16953 } 16954 16955 int 16956 _info(struct modinfo *modinfop) 16957 { 16958 return (mod_info(&modlinkage, modinfop)); 16959 } 16960 16961 int 16962 _fini(void) 16963 { 16964 return (mod_remove(&modlinkage)); 16965 } 16966