xref: /titanic_52/usr/src/uts/common/dtrace/dcpc.c (revision e2eaebfbad27744e022534ec4d60f3a56fcbbc8e)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #include <sys/errno.h>
28 #include <sys/cpuvar.h>
29 #include <sys/stat.h>
30 #include <sys/modctl.h>
31 #include <sys/cmn_err.h>
32 #include <sys/ddi.h>
33 #include <sys/sunddi.h>
34 #include <sys/ksynch.h>
35 #include <sys/conf.h>
36 #include <sys/kmem.h>
37 #include <sys/kcpc.h>
38 #include <sys/cap_util.h>
39 #include <sys/cpc_pcbe.h>
40 #include <sys/cpc_impl.h>
41 #include <sys/dtrace_impl.h>
42 
43 /*
44  * DTrace CPU Performance Counter Provider
45  * ---------------------------------------
46  *
47  * The DTrace cpc provider allows DTrace consumers to access the CPU
48  * performance counter overflow mechanism of a CPU. The configuration
49  * presented in a probe specification is programmed into the performance
50  * counter hardware of all available CPUs on a system. Programming the
51  * hardware causes a counter on each CPU to begin counting events of the
52  * given type. When the specified number of events have occurred, an overflow
53  * interrupt will be generated and the probe is fired.
54  *
55  * The required configuration for the performance counter is encoded into
56  * the probe specification and this includes the performance counter event
57  * name, processor mode, overflow rate and an optional unit mask.
58  *
59  * Most processors provide several counters (PICs) which can count all or a
60  * subset of the events available for a given CPU. However, when overflow
61  * profiling is being used, not all CPUs can detect which counter generated the
62  * overflow interrupt. In this case we cannot reliably determine which counter
63  * overflowed and we therefore only allow such CPUs to configure one event at
64  * a time. Processors that can determine the counter which overflowed are
65  * allowed to program as many events at one time as possible (in theory up to
66  * the number of instrumentation counters supported by that platform).
67  * Therefore, multiple consumers can enable multiple probes at the same time
68  * on such platforms. Platforms which cannot determine the source of an
69  * overflow interrupt are only allowed to program a single event at one time.
70  *
71  * The performance counter hardware is made available to consumers on a
72  * first-come, first-served basis. Only a finite amount of hardware resource
73  * is available and, while we make every attempt to accomodate requests from
74  * consumers, we must deny requests when hardware resources have been exhausted.
75  * A consumer will fail to enable probes when resources are currently in use.
76  *
77  * The cpc provider contends for shared hardware resources along with other
78  * consumers of the kernel CPU performance counter subsystem (e.g. cpustat(1M)).
79  * Only one such consumer can use the performance counters at any one time and
80  * counters are made available on a first-come, first-served basis. As with
81  * cpustat, the cpc provider has priority over per-LWP libcpc usage (e.g.
82  * cputrack(1)). Invoking the cpc provider will cause all existing per-LWP
83  * counter contexts to be invalidated.
84  */
85 
86 typedef struct dcpc_probe {
87 	char		dcpc_event_name[CPC_MAX_EVENT_LEN];
88 	int		dcpc_flag;	/* flags (USER/SYS) */
89 	uint32_t	dcpc_ovfval;	/* overflow value */
90 	int64_t		dcpc_umask;	/* umask/emask for this event */
91 	int		dcpc_picno;	/* pic this event is programmed in */
92 	int		dcpc_enabled;	/* probe is actually enabled? */
93 	int		dcpc_disabling;	/* probe is currently being disabled */
94 	dtrace_id_t	dcpc_id;	/* probeid this request is enabling */
95 	int		dcpc_actv_req_idx;	/* idx into dcpc_actv_reqs[] */
96 } dcpc_probe_t;
97 
98 static dev_info_t			*dcpc_devi;
99 static dtrace_provider_id_t		dcpc_pid;
100 static dcpc_probe_t			**dcpc_actv_reqs;
101 static uint32_t				dcpc_enablings = 0;
102 static int				dcpc_ovf_mask = 0;
103 static int				dcpc_mult_ovf_cap = 0;
104 static int				dcpc_mask_type = 0;
105 
106 /*
107  * When the dcpc provider is loaded, dcpc_min_overflow is set to either
108  * DCPC_MIN_OVF_DEFAULT or the value that dcpc-min-overflow is set to in
109  * the dcpc.conf file. Decrease this value to set probes with smaller
110  * overflow values. Remember that very small values could render a system
111  * unusable with frequently occurring events.
112  */
113 #define	DCPC_MIN_OVF_DEFAULT		5000
114 static uint32_t				dcpc_min_overflow;
115 
116 static int dcpc_aframes = 0;	/* override for artificial frame setting */
117 #if defined(__x86)
118 #define	DCPC_ARTIFICIAL_FRAMES	8
119 #elif defined(__sparc)
120 #define	DCPC_ARTIFICIAL_FRAMES	2
121 #endif
122 
123 /*
124  * Called from the platform overflow interrupt handler. 'bitmap' is a mask
125  * which contains the pic(s) that have overflowed.
126  */
127 static void
128 dcpc_fire(uint64_t bitmap)
129 {
130 	int i;
131 
132 	/*
133 	 * No counter was marked as overflowing. Shout about it and get out.
134 	 */
135 	if ((bitmap & dcpc_ovf_mask) == 0) {
136 		cmn_err(CE_NOTE, "dcpc_fire: no counter overflow found\n");
137 		return;
138 	}
139 
140 	/*
141 	 * This is the common case of a processor that doesn't support
142 	 * multiple overflow events. Such systems are only allowed a single
143 	 * enabling and therefore we just look for the first entry in
144 	 * the active request array.
145 	 */
146 	if (!dcpc_mult_ovf_cap) {
147 		for (i = 0; i < cpc_ncounters; i++) {
148 			if (dcpc_actv_reqs[i] != NULL) {
149 				dtrace_probe(dcpc_actv_reqs[i]->dcpc_id,
150 				    CPU->cpu_cpcprofile_pc,
151 				    CPU->cpu_cpcprofile_upc, 0, 0, 0);
152 				return;
153 			}
154 		}
155 		return;
156 	}
157 
158 	/*
159 	 * This is a processor capable of handling multiple overflow events.
160 	 * Iterate over the array of active requests and locate the counters
161 	 * that overflowed (note: it is possible for more than one counter to
162 	 * have overflowed at the same time).
163 	 */
164 	for (i = 0; i < cpc_ncounters; i++) {
165 		if (dcpc_actv_reqs[i] != NULL &&
166 		    (bitmap & (1ULL << dcpc_actv_reqs[i]->dcpc_picno))) {
167 			dtrace_probe(dcpc_actv_reqs[i]->dcpc_id,
168 			    CPU->cpu_cpcprofile_pc,
169 			    CPU->cpu_cpcprofile_upc, 0, 0, 0);
170 		}
171 	}
172 }
173 
174 static void
175 dcpc_create_probe(dtrace_provider_id_t id, const char *probename,
176     char *eventname, int64_t umask, uint32_t ovfval, char flag)
177 {
178 	dcpc_probe_t *pp;
179 	int nr_frames = DCPC_ARTIFICIAL_FRAMES + dtrace_mach_aframes();
180 
181 	if (dcpc_aframes)
182 		nr_frames = dcpc_aframes;
183 
184 	if (dtrace_probe_lookup(id, NULL, NULL, probename) != 0)
185 		return;
186 
187 	pp = kmem_zalloc(sizeof (dcpc_probe_t), KM_SLEEP);
188 	(void) strncpy(pp->dcpc_event_name, eventname,
189 	    sizeof (pp->dcpc_event_name) - 1);
190 	pp->dcpc_event_name[sizeof (pp->dcpc_event_name) - 1] = '\0';
191 	pp->dcpc_flag = flag | CPC_OVF_NOTIFY_EMT;
192 	pp->dcpc_ovfval = ovfval;
193 	pp->dcpc_umask = umask;
194 	pp->dcpc_actv_req_idx = pp->dcpc_picno = pp->dcpc_disabling = -1;
195 
196 	pp->dcpc_id = dtrace_probe_create(id, NULL, NULL, probename,
197 	    nr_frames, pp);
198 }
199 
200 /*ARGSUSED*/
201 static void
202 dcpc_provide(void *arg, const dtrace_probedesc_t *desc)
203 {
204 	/*
205 	 * The format of a probe is:
206 	 *
207 	 *	event_name-mode-{optional_umask}-overflow_rate
208 	 * e.g.
209 	 *	DC_refill_from_system-user-0x1e-50000, or,
210 	 *	DC_refill_from_system-all-10000
211 	 *
212 	 */
213 	char *str, *end, *p;
214 	int i, flag = 0;
215 	char event[CPC_MAX_EVENT_LEN];
216 	long umask = -1, val = 0;
217 	size_t evlen, len;
218 
219 	/*
220 	 * The 'cpc' provider offers no probes by default.
221 	 */
222 	if (desc == NULL)
223 		return;
224 
225 	len = strlen(desc->dtpd_name);
226 	p = str = kmem_alloc(len + 1, KM_SLEEP);
227 	(void) strcpy(str, desc->dtpd_name);
228 
229 	/*
230 	 * We have a poor man's strtok() going on here. Replace any hyphens
231 	 * in the the probe name with NULL characters in order to make it
232 	 * easy to parse the string with regular string functions.
233 	 */
234 	for (i = 0; i < len; i++) {
235 		if (str[i] == '-')
236 			str[i] = '\0';
237 	}
238 
239 	/*
240 	 * The first part of the string must be either a platform event
241 	 * name or a generic event name.
242 	 */
243 	evlen = strlen(p);
244 	(void) strncpy(event, p, CPC_MAX_EVENT_LEN - 1);
245 	event[CPC_MAX_EVENT_LEN - 1] = '\0';
246 
247 	/*
248 	 * The next part of the name is the mode specification. Valid
249 	 * settings are "user", "kernel" or "all".
250 	 */
251 	p += evlen + 1;
252 
253 	if (strcmp(p, "user") == 0)
254 		flag |= CPC_COUNT_USER;
255 	else if (strcmp(p, "kernel") == 0)
256 		flag |= CPC_COUNT_SYSTEM;
257 	else if (strcmp(p, "all") == 0)
258 		flag |= CPC_COUNT_USER | CPC_COUNT_SYSTEM;
259 	else
260 		goto err;
261 
262 	/*
263 	 * Next we either have a mask specification followed by an overflow
264 	 * rate or just an overflow rate on its own.
265 	 */
266 	p += strlen(p) + 1;
267 	if (p[0] == '0' && (p[1] == 'x' || p[1] == 'X')) {
268 		/*
269 		 * A unit mask can only be specified if:
270 		 * 1) this performance counter back end supports masks.
271 		 * 2) the specified event is platform specific.
272 		 * 3) a valid hex number is converted.
273 		 * 4) no extraneous characters follow the mask specification.
274 		 */
275 		if (dcpc_mask_type != 0 && strncmp(event, "PAPI", 4) != 0 &&
276 		    ddi_strtol(p, &end, 16, &umask) == 0 &&
277 		    end == p + strlen(p)) {
278 			p += strlen(p) + 1;
279 		} else {
280 			goto err;
281 		}
282 	}
283 
284 	/*
285 	 * This final part must be an overflow value which has to be greater
286 	 * than the minimum permissible overflow rate.
287 	 */
288 	if ((ddi_strtol(p, &end, 10, &val) != 0) || end != p + strlen(p) ||
289 	    val < dcpc_min_overflow)
290 		goto err;
291 
292 	/*
293 	 * Validate the event and create the probe.
294 	 */
295 	for (i = 0; i < cpc_ncounters; i++) {
296 		char *events, *cp, *p, *end;
297 		int found = 0, j;
298 		size_t llen;
299 
300 		if ((events = kcpc_list_events(i)) == NULL)
301 			goto err;
302 
303 		llen = strlen(events);
304 		p = cp = ddi_strdup(events, KM_NOSLEEP);
305 		end = cp + llen;
306 
307 		for (j = 0; j < llen; j++) {
308 			if (cp[j] == ',')
309 				cp[j] = '\0';
310 		}
311 
312 		while (p < end && found == 0) {
313 			if (strcmp(p, event) == 0) {
314 				dcpc_create_probe(dcpc_pid, desc->dtpd_name,
315 				    event, umask, (uint32_t)val, flag);
316 				found = 1;
317 			}
318 			p += strlen(p) + 1;
319 		}
320 		kmem_free(cp, llen + 1);
321 
322 		if (found)
323 			break;
324 	}
325 
326 err:
327 	kmem_free(str, len + 1);
328 }
329 
330 /*ARGSUSED*/
331 static void
332 dcpc_destroy(void *arg, dtrace_id_t id, void *parg)
333 {
334 	dcpc_probe_t *pp = parg;
335 
336 	ASSERT(pp->dcpc_enabled == 0);
337 	kmem_free(pp, sizeof (dcpc_probe_t));
338 }
339 
340 /*ARGSUSED*/
341 static int
342 dcpc_usermode(void *arg, dtrace_id_t id, void *parg)
343 {
344 	return (CPU->cpu_cpcprofile_pc == 0);
345 }
346 
347 static void
348 dcpc_populate_set(cpu_t *c, dcpc_probe_t *pp, kcpc_set_t *set, int reqno)
349 {
350 	kcpc_set_t *oset;
351 	int i;
352 
353 	(void) strncpy(set->ks_req[reqno].kr_event, pp->dcpc_event_name,
354 	    CPC_MAX_EVENT_LEN);
355 	set->ks_req[reqno].kr_config = NULL;
356 	set->ks_req[reqno].kr_index = reqno;
357 	set->ks_req[reqno].kr_picnum = -1;
358 	set->ks_req[reqno].kr_flags =  pp->dcpc_flag;
359 
360 	/*
361 	 * If a unit mask has been specified then detect which attribute
362 	 * the platform needs. For now, it's either "umask" or "emask".
363 	 */
364 	if (pp->dcpc_umask >= 0) {
365 		set->ks_req[reqno].kr_attr =
366 		    kmem_zalloc(sizeof (kcpc_attr_t), KM_SLEEP);
367 		set->ks_req[reqno].kr_nattrs = 1;
368 		if (dcpc_mask_type & DCPC_UMASK)
369 			(void) strncpy(set->ks_req[reqno].kr_attr->ka_name,
370 			    "umask", 5);
371 		else
372 			(void) strncpy(set->ks_req[reqno].kr_attr->ka_name,
373 			    "emask", 5);
374 		set->ks_req[reqno].kr_attr->ka_val = pp->dcpc_umask;
375 	} else {
376 		set->ks_req[reqno].kr_attr = NULL;
377 		set->ks_req[reqno].kr_nattrs = 0;
378 	}
379 
380 	/*
381 	 * If this probe is enabled, obtain its current countdown value
382 	 * and use that. The CPUs cpc context might not exist yet if we
383 	 * are dealing with a CPU that is just coming online.
384 	 */
385 	if (pp->dcpc_enabled && (c->cpu_cpc_ctx != NULL)) {
386 		oset = c->cpu_cpc_ctx->kc_set;
387 
388 		for (i = 0; i < oset->ks_nreqs; i++) {
389 			if (strcmp(oset->ks_req[i].kr_event,
390 			    set->ks_req[reqno].kr_event) == 0) {
391 				set->ks_req[reqno].kr_preset =
392 				    *(oset->ks_req[i].kr_data);
393 			}
394 		}
395 	} else {
396 		set->ks_req[reqno].kr_preset = UINT64_MAX - pp->dcpc_ovfval;
397 	}
398 
399 	set->ks_nreqs++;
400 }
401 
402 
403 /*
404  * Create a fresh request set for the enablings represented in the
405  * 'dcpc_actv_reqs' array which contains the probes we want to be
406  * in the set. This can be called for several reasons:
407  *
408  * 1)	We are on a single or multi overflow platform and we have no
409  *	current events so we can just create the set and initialize it.
410  * 2)	We are on a multi-overflow platform and we already have one or
411  *	more existing events and we are adding a new enabling. Create a
412  *	new set and copy old requests in and then add the new request.
413  * 3)	We are on a multi-overflow platform and we have just removed an
414  *	enabling but we still have enablings whch are valid. Create a new
415  *	set and copy in still valid requests.
416  */
417 static kcpc_set_t *
418 dcpc_create_set(cpu_t *c)
419 {
420 	int i, reqno = 0;
421 	int active_requests = 0;
422 	kcpc_set_t *set;
423 
424 	/*
425 	 * First get a count of the number of currently active requests.
426 	 * Note that dcpc_actv_reqs[] should always reflect which requests
427 	 * we want to be in the set that is to be created. It is the
428 	 * responsibility of the caller of dcpc_create_set() to adjust that
429 	 * array accordingly beforehand.
430 	 */
431 	for (i = 0; i < cpc_ncounters; i++) {
432 		if (dcpc_actv_reqs[i] != NULL)
433 			active_requests++;
434 	}
435 
436 	set = kmem_zalloc(sizeof (kcpc_set_t), KM_SLEEP);
437 
438 	set->ks_req =
439 	    kmem_zalloc(sizeof (kcpc_request_t) * active_requests, KM_SLEEP);
440 
441 	set->ks_data =
442 	    kmem_zalloc(active_requests * sizeof (uint64_t), KM_SLEEP);
443 
444 	/*
445 	 * Look for valid entries in the active requests array and populate
446 	 * the request set for any entries found.
447 	 */
448 	for (i = 0; i < cpc_ncounters; i++) {
449 		if (dcpc_actv_reqs[i] != NULL) {
450 			dcpc_populate_set(c, dcpc_actv_reqs[i], set, reqno);
451 			reqno++;
452 		}
453 	}
454 
455 	return (set);
456 }
457 
458 static int
459 dcpc_program_cpu_event(cpu_t *c)
460 {
461 	int i, j, subcode;
462 	kcpc_ctx_t *ctx, *octx;
463 	kcpc_set_t *set;
464 
465 	set = dcpc_create_set(c);
466 
467 	set->ks_ctx = ctx = kcpc_ctx_alloc(KM_SLEEP);
468 	ctx->kc_set = set;
469 	ctx->kc_cpuid = c->cpu_id;
470 
471 	if (kcpc_assign_reqs(set, ctx) != 0)
472 		goto err;
473 
474 	if (kcpc_configure_reqs(ctx, set, &subcode) != 0)
475 		goto err;
476 
477 	for (i = 0; i < set->ks_nreqs; i++) {
478 		for (j = 0; j < cpc_ncounters; j++) {
479 			if (dcpc_actv_reqs[j] != NULL &&
480 			    strcmp(set->ks_req[i].kr_event,
481 			    dcpc_actv_reqs[j]->dcpc_event_name) == 0) {
482 				dcpc_actv_reqs[j]->dcpc_picno =
483 				    set->ks_req[i].kr_picnum;
484 			}
485 		}
486 	}
487 
488 	/*
489 	 * If we already have an active enabling then save the current cpc
490 	 * context away.
491 	 */
492 	octx = c->cpu_cpc_ctx;
493 
494 	kcpc_cpu_program(c, ctx);
495 
496 	if (octx != NULL) {
497 		kcpc_set_t *oset = octx->kc_set;
498 		kmem_free(oset->ks_data, oset->ks_nreqs * sizeof (uint64_t));
499 		kcpc_free_set(oset);
500 		kcpc_ctx_free(octx);
501 	}
502 
503 	return (0);
504 
505 err:
506 	/*
507 	 * We failed to configure this request up so free things up and
508 	 * get out.
509 	 */
510 	kmem_free(set->ks_data, set->ks_nreqs * sizeof (uint64_t));
511 	kcpc_free_set(set);
512 	kcpc_ctx_free(ctx);
513 
514 	return (-1);
515 }
516 
517 static void
518 dcpc_disable_cpu(cpu_t *c)
519 {
520 	kcpc_ctx_t *ctx;
521 	kcpc_set_t *set;
522 
523 	/*
524 	 * Leave this CPU alone if it's already offline.
525 	 */
526 	if (c->cpu_flags & CPU_OFFLINE)
527 		return;
528 
529 	/*
530 	 * Grab CPUs CPC context before kcpc_cpu_stop() stops counters and
531 	 * changes it.
532 	 */
533 	ctx = c->cpu_cpc_ctx;
534 
535 	kcpc_cpu_stop(c, B_FALSE);
536 
537 	set = ctx->kc_set;
538 
539 	kcpc_free_configs(set);
540 
541 	kmem_free(set->ks_data, set->ks_nreqs * sizeof (uint64_t));
542 	kcpc_free_set(set);
543 	kcpc_ctx_free(ctx);
544 }
545 
546 /*
547  * Stop overflow interrupts being actively processed so that per-CPU
548  * configuration state can be changed safely and correctly. Each CPU has a
549  * dcpc interrupt state byte which is transitioned from DCPC_INTR_FREE (the
550  * "free" state) to DCPC_INTR_CONFIG (the "configuration in process" state)
551  * before any configuration state is changed on any CPUs. The hardware overflow
552  * handler, kcpc_hw_overflow_intr(), will only process an interrupt when a
553  * configuration is not in process (i.e. the state is marked as free). During
554  * interrupt processing the state is set to DCPC_INTR_PROCESSING by the
555  * overflow handler.
556  */
557 static void
558 dcpc_block_interrupts(void)
559 {
560 	cpu_t *c;
561 	uint8_t *state;
562 
563 	c = cpu_list;
564 
565 	do {
566 		state = &cpu_core[c->cpu_id].cpuc_dcpc_intr_state;
567 
568 		while (atomic_cas_8(state, DCPC_INTR_FREE,
569 		    DCPC_INTR_CONFIG) != DCPC_INTR_FREE)
570 			continue;
571 
572 	} while ((c = c->cpu_next) != cpu_list);
573 }
574 
575 /*
576  * Set all CPUs dcpc interrupt state to DCPC_INTR_FREE to indicate that
577  * overflow interrupts can be processed safely.
578  */
579 static void
580 dcpc_release_interrupts(void)
581 {
582 	cpu_t *c = cpu_list;
583 
584 	do {
585 		cpu_core[c->cpu_id].cpuc_dcpc_intr_state = DCPC_INTR_FREE;
586 		membar_producer();
587 	} while ((c = c->cpu_next) != cpu_list);
588 }
589 
590 /*
591  * dcpc_program_event() can be called owing to a new enabling or if a multi
592  * overflow platform has disabled a request but needs to  program the requests
593  * that are still valid.
594  *
595  * Every invocation of dcpc_program_event() will create a new kcpc_ctx_t
596  * and a new request set which contains the new enabling and any old enablings
597  * which are still valid (possible with multi-overflow platforms).
598  */
599 static int
600 dcpc_program_event(dcpc_probe_t *pp)
601 {
602 	cpu_t *c;
603 	int ret = 0;
604 
605 	ASSERT(MUTEX_HELD(&cpu_lock));
606 
607 	kpreempt_disable();
608 
609 	dcpc_block_interrupts();
610 
611 	c = cpu_list;
612 
613 	do {
614 		/*
615 		 * Skip CPUs that are currently offline.
616 		 */
617 		if (c->cpu_flags & CPU_OFFLINE)
618 			continue;
619 
620 		/*
621 		 * Stop counters but preserve existing DTrace CPC context
622 		 * if there is one.
623 		 *
624 		 * If we come here when the first event is programmed for a CPU,
625 		 * there should be no DTrace CPC context installed. In this
626 		 * case, kcpc_cpu_stop() will ensure that there is no other
627 		 * context on the CPU.
628 		 *
629 		 * If we add new enabling to the original one, the CPU should
630 		 * have the old DTrace CPC context which we need to keep around
631 		 * since dcpc_program_event() will add to it.
632 		 */
633 		if (c->cpu_cpc_ctx != NULL)
634 			kcpc_cpu_stop(c, B_TRUE);
635 	} while ((c = c->cpu_next) != cpu_list);
636 
637 	dcpc_release_interrupts();
638 
639 	/*
640 	 * If this enabling is being removed (in the case of a multi event
641 	 * capable system with more than one active enabling), we can now
642 	 * update the active request array to reflect the enablings that need
643 	 * to be reprogrammed.
644 	 */
645 	if (pp->dcpc_disabling == 1)
646 		dcpc_actv_reqs[pp->dcpc_actv_req_idx] = NULL;
647 
648 	do {
649 		/*
650 		 * Skip CPUs that are currently offline.
651 		 */
652 		if (c->cpu_flags & CPU_OFFLINE)
653 			continue;
654 
655 		ret = dcpc_program_cpu_event(c);
656 	} while ((c = c->cpu_next) != cpu_list && ret == 0);
657 
658 	/*
659 	 * If dcpc_program_cpu_event() fails then it is because we couldn't
660 	 * configure the requests in the set for the CPU and not because of
661 	 * an error programming the hardware. If we have a failure here then
662 	 * we assume no CPUs have been programmed in the above step as they
663 	 * are all configured identically.
664 	 */
665 	if (ret != 0) {
666 		pp->dcpc_enabled = 0;
667 		kpreempt_enable();
668 		return (-1);
669 	}
670 
671 	if (pp->dcpc_disabling != 1)
672 		pp->dcpc_enabled = 1;
673 
674 	kpreempt_enable();
675 
676 	return (0);
677 }
678 
679 /*ARGSUSED*/
680 static int
681 dcpc_enable(void *arg, dtrace_id_t id, void *parg)
682 {
683 	dcpc_probe_t *pp = parg;
684 	int i, found = 0;
685 	cpu_t *c;
686 
687 	ASSERT(MUTEX_HELD(&cpu_lock));
688 
689 	/*
690 	 * Bail out if the counters are being used by a libcpc consumer.
691 	 */
692 	rw_enter(&kcpc_cpuctx_lock, RW_READER);
693 	if (kcpc_cpuctx > 0) {
694 		rw_exit(&kcpc_cpuctx_lock);
695 		return (-1);
696 	}
697 
698 	dtrace_cpc_in_use++;
699 	rw_exit(&kcpc_cpuctx_lock);
700 
701 	/*
702 	 * Locate this enabling in the first free entry of the active
703 	 * request array.
704 	 */
705 	for (i = 0; i < cpc_ncounters; i++) {
706 		if (dcpc_actv_reqs[i] == NULL) {
707 			dcpc_actv_reqs[i] = pp;
708 			pp->dcpc_actv_req_idx = i;
709 			found = 1;
710 			break;
711 		}
712 	}
713 
714 	/*
715 	 * If we couldn't find a slot for this probe then there is no
716 	 * room at the inn.
717 	 */
718 	if (!found) {
719 		dtrace_cpc_in_use--;
720 		return (-1);
721 	}
722 
723 	ASSERT(pp->dcpc_actv_req_idx >= 0);
724 
725 	/*
726 	 * DTrace is taking over CPC contexts, so stop collecting
727 	 * capacity/utilization data for all CPUs.
728 	 */
729 	if (dtrace_cpc_in_use == 1)
730 		cu_disable();
731 
732 	/*
733 	 * The following must hold true if we are to (attempt to) enable
734 	 * this request:
735 	 *
736 	 * 1) No enablings currently exist. We allow all platforms to
737 	 * proceed if this is true.
738 	 *
739 	 * OR
740 	 *
741 	 * 2) If the platform is multi overflow capable and there are
742 	 * less valid enablings than there are counters. There is no
743 	 * guarantee that a platform can accommodate as many events as
744 	 * it has counters for but we will at least try to program
745 	 * up to that many requests.
746 	 *
747 	 * The 'dcpc_enablings' variable is implictly protected by locking
748 	 * provided by the DTrace framework and the cpu management framework.
749 	 */
750 	if (dcpc_enablings == 0 || (dcpc_mult_ovf_cap &&
751 	    dcpc_enablings < cpc_ncounters)) {
752 		/*
753 		 * Before attempting to program the first enabling we need to
754 		 * invalidate any lwp-based contexts.
755 		 */
756 		if (dcpc_enablings == 0)
757 			kcpc_invalidate_all();
758 
759 		if (dcpc_program_event(pp) == 0) {
760 			dcpc_enablings++;
761 			return (0);
762 		}
763 	}
764 
765 	/*
766 	 * If active enablings existed before we failed to enable this probe
767 	 * on a multi event capable platform then we need to restart counters
768 	 * as they will have been stopped in the attempted configuration. The
769 	 * context should now just contain the request prior to this failed
770 	 * enabling.
771 	 */
772 	if (dcpc_enablings > 0 && dcpc_mult_ovf_cap) {
773 		c = cpu_list;
774 
775 		ASSERT(dcpc_mult_ovf_cap == 1);
776 		do {
777 			/*
778 			 * Skip CPUs that are currently offline.
779 			 */
780 			if (c->cpu_flags & CPU_OFFLINE)
781 				continue;
782 
783 			kcpc_cpu_program(c, c->cpu_cpc_ctx);
784 		} while ((c = c->cpu_next) != cpu_list);
785 	}
786 
787 	dtrace_cpc_in_use--;
788 	dcpc_actv_reqs[pp->dcpc_actv_req_idx] = NULL;
789 	pp->dcpc_actv_req_idx = pp->dcpc_picno = -1;
790 
791 	/*
792 	 * If all probes are removed, enable capacity/utilization data
793 	 * collection for every CPU.
794 	 */
795 	if (dtrace_cpc_in_use == 0)
796 		cu_enable();
797 
798 	return (-1);
799 }
800 
801 /*
802  * If only one enabling is active then remove the context and free
803  * everything up. If there are multiple enablings active then remove this
804  * one, its associated meta-data and re-program the hardware.
805  */
806 /*ARGSUSED*/
807 static void
808 dcpc_disable(void *arg, dtrace_id_t id, void *parg)
809 {
810 	cpu_t *c;
811 	dcpc_probe_t *pp = parg;
812 
813 	ASSERT(MUTEX_HELD(&cpu_lock));
814 
815 	kpreempt_disable();
816 
817 	/*
818 	 * This probe didn't actually make it as far as being fully enabled
819 	 * so we needn't do anything with it.
820 	 */
821 	if (pp->dcpc_enabled == 0) {
822 		/*
823 		 * If we actually allocated this request a slot in the
824 		 * request array but failed to enabled it then remove the
825 		 * entry in the array.
826 		 */
827 		if (pp->dcpc_actv_req_idx >= 0) {
828 			dcpc_actv_reqs[pp->dcpc_actv_req_idx] = NULL;
829 			pp->dcpc_actv_req_idx = pp->dcpc_picno =
830 			    pp->dcpc_disabling = -1;
831 		}
832 
833 		kpreempt_enable();
834 		return;
835 	}
836 
837 	/*
838 	 * If this is the only enabling then stop all the counters and
839 	 * free up the meta-data.
840 	 */
841 	if (dcpc_enablings == 1) {
842 		ASSERT(dtrace_cpc_in_use == 1);
843 
844 		dcpc_block_interrupts();
845 
846 		c = cpu_list;
847 
848 		do {
849 			dcpc_disable_cpu(c);
850 		} while ((c = c->cpu_next) != cpu_list);
851 
852 		dcpc_actv_reqs[pp->dcpc_actv_req_idx] = NULL;
853 		dcpc_release_interrupts();
854 	} else {
855 		/*
856 		 * This platform can support multiple overflow events and
857 		 * the enabling being disabled is not the last one. Remove this
858 		 * enabling and re-program the hardware with the new config.
859 		 */
860 		ASSERT(dcpc_mult_ovf_cap);
861 		ASSERT(dcpc_enablings > 1);
862 
863 		pp->dcpc_disabling = 1;
864 		(void) dcpc_program_event(pp);
865 	}
866 
867 	kpreempt_enable();
868 
869 	dcpc_enablings--;
870 	dtrace_cpc_in_use--;
871 	pp->dcpc_enabled = 0;
872 	pp->dcpc_actv_req_idx = pp->dcpc_picno = pp->dcpc_disabling = -1;
873 
874 	/*
875 	 * If all probes are removed, enable capacity/utilization data
876 	 * collection for every CPU
877 	 */
878 	if (dtrace_cpc_in_use == 0)
879 		cu_enable();
880 }
881 
882 /*ARGSUSED*/
883 static int
884 dcpc_cpu_setup(cpu_setup_t what, processorid_t cpu, void *arg)
885 {
886 	cpu_t *c;
887 	uint8_t *state;
888 
889 	ASSERT(MUTEX_HELD(&cpu_lock));
890 
891 	switch (what) {
892 	case CPU_OFF:
893 		/*
894 		 * Offline CPUs are not allowed to take part so remove this
895 		 * CPU if we are actively tracing.
896 		 */
897 		if (dtrace_cpc_in_use) {
898 			c = cpu_get(cpu);
899 			state = &cpu_core[c->cpu_id].cpuc_dcpc_intr_state;
900 
901 			/*
902 			 * Indicate that a configuration is in process in
903 			 * order to stop overflow interrupts being processed
904 			 * on this CPU while we disable it.
905 			 */
906 			while (atomic_cas_8(state, DCPC_INTR_FREE,
907 			    DCPC_INTR_CONFIG) != DCPC_INTR_FREE)
908 				continue;
909 
910 			dcpc_disable_cpu(c);
911 
912 			/*
913 			 * Reset this CPUs interrupt state as the configuration
914 			 * has ended.
915 			 */
916 			cpu_core[c->cpu_id].cpuc_dcpc_intr_state =
917 			    DCPC_INTR_FREE;
918 			membar_producer();
919 		}
920 		break;
921 
922 	case CPU_ON:
923 	case CPU_SETUP:
924 		/*
925 		 * This CPU is being initialized or brought online so program
926 		 * it with the current request set if we are actively tracing.
927 		 */
928 		if (dtrace_cpc_in_use) {
929 			c = cpu_get(cpu);
930 			(void) dcpc_program_cpu_event(c);
931 		}
932 		break;
933 
934 	default:
935 		break;
936 	}
937 
938 	return (0);
939 }
940 
941 static dtrace_pattr_t dcpc_attr = {
942 { DTRACE_STABILITY_EVOLVING, DTRACE_STABILITY_EVOLVING, DTRACE_CLASS_COMMON },
943 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN },
944 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN },
945 { DTRACE_STABILITY_EVOLVING, DTRACE_STABILITY_EVOLVING, DTRACE_CLASS_CPU },
946 { DTRACE_STABILITY_EVOLVING, DTRACE_STABILITY_EVOLVING, DTRACE_CLASS_COMMON },
947 };
948 
949 static dtrace_pops_t dcpc_pops = {
950     dcpc_provide,
951     NULL,
952     dcpc_enable,
953     dcpc_disable,
954     NULL,
955     NULL,
956     NULL,
957     NULL,
958     dcpc_usermode,
959     dcpc_destroy
960 };
961 
962 /*ARGSUSED*/
963 static int
964 dcpc_open(dev_t *devp, int flag, int otyp, cred_t *cred_p)
965 {
966 	return (0);
967 }
968 
969 /*ARGSUSED*/
970 static int
971 dcpc_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result)
972 {
973 	int error;
974 
975 	switch (infocmd) {
976 	case DDI_INFO_DEVT2DEVINFO:
977 		*result = (void *)dcpc_devi;
978 		error = DDI_SUCCESS;
979 		break;
980 	case DDI_INFO_DEVT2INSTANCE:
981 		*result = (void *)0;
982 		error = DDI_SUCCESS;
983 		break;
984 	default:
985 		error = DDI_FAILURE;
986 	}
987 	return (error);
988 }
989 
990 static int
991 dcpc_detach(dev_info_t *devi, ddi_detach_cmd_t cmd)
992 {
993 	switch (cmd) {
994 	case DDI_DETACH:
995 		break;
996 	case DDI_SUSPEND:
997 		return (DDI_SUCCESS);
998 	default:
999 		return (DDI_FAILURE);
1000 	}
1001 
1002 	if (dtrace_unregister(dcpc_pid) != 0)
1003 		return (DDI_FAILURE);
1004 
1005 	ddi_remove_minor_node(devi, NULL);
1006 
1007 	mutex_enter(&cpu_lock);
1008 	unregister_cpu_setup_func(dcpc_cpu_setup, NULL);
1009 	mutex_exit(&cpu_lock);
1010 
1011 	kmem_free(dcpc_actv_reqs, cpc_ncounters * sizeof (dcpc_probe_t *));
1012 
1013 	kcpc_unregister_dcpc();
1014 
1015 	return (DDI_SUCCESS);
1016 }
1017 
1018 static int
1019 dcpc_attach(dev_info_t *devi, ddi_attach_cmd_t cmd)
1020 {
1021 	uint_t caps;
1022 	char *attrs;
1023 
1024 	switch (cmd) {
1025 	case DDI_ATTACH:
1026 		break;
1027 	case DDI_RESUME:
1028 		return (DDI_SUCCESS);
1029 	default:
1030 		return (DDI_FAILURE);
1031 	}
1032 
1033 	if (kcpc_pcbe_loaded() == -1)
1034 		return (DDI_FAILURE);
1035 
1036 	caps = kcpc_pcbe_capabilities();
1037 
1038 	if (!(caps & CPC_CAP_OVERFLOW_INTERRUPT)) {
1039 		cmn_err(CE_NOTE, "!dcpc: Counter Overflow not supported"\
1040 		    " on this processor");
1041 		return (DDI_FAILURE);
1042 	}
1043 
1044 	if (ddi_create_minor_node(devi, "dcpc", S_IFCHR, 0,
1045 	    DDI_PSEUDO, NULL) == DDI_FAILURE ||
1046 	    dtrace_register("cpc", &dcpc_attr, DTRACE_PRIV_KERNEL,
1047 	    NULL, &dcpc_pops, NULL, &dcpc_pid) != 0) {
1048 		ddi_remove_minor_node(devi, NULL);
1049 		return (DDI_FAILURE);
1050 	}
1051 
1052 	mutex_enter(&cpu_lock);
1053 	register_cpu_setup_func(dcpc_cpu_setup, NULL);
1054 	mutex_exit(&cpu_lock);
1055 
1056 	dcpc_ovf_mask = (1 << cpc_ncounters) - 1;
1057 	ASSERT(dcpc_ovf_mask != 0);
1058 
1059 	if (caps & CPC_CAP_OVERFLOW_PRECISE)
1060 		dcpc_mult_ovf_cap = 1;
1061 
1062 	/*
1063 	 * Determine which, if any, mask attribute the back-end can use.
1064 	 */
1065 	attrs = kcpc_list_attrs();
1066 	if (strstr(attrs, "umask") != NULL)
1067 		dcpc_mask_type |= DCPC_UMASK;
1068 	else if (strstr(attrs, "emask") != NULL)
1069 		dcpc_mask_type |= DCPC_EMASK;
1070 
1071 	/*
1072 	 * The dcpc_actv_reqs array is used to store the requests that
1073 	 * we currently have programmed. The order of requests in this
1074 	 * array is not necessarily the order that the event appears in
1075 	 * the kcpc_request_t array. Once entered into a slot in the array
1076 	 * the entry is not moved until it's removed.
1077 	 */
1078 	dcpc_actv_reqs =
1079 	    kmem_zalloc(cpc_ncounters * sizeof (dcpc_probe_t *), KM_SLEEP);
1080 
1081 	dcpc_min_overflow = ddi_prop_get_int(DDI_DEV_T_ANY, devi,
1082 	    DDI_PROP_DONTPASS, "dcpc-min-overflow", DCPC_MIN_OVF_DEFAULT);
1083 
1084 	kcpc_register_dcpc(dcpc_fire);
1085 
1086 	ddi_report_dev(devi);
1087 	dcpc_devi = devi;
1088 
1089 	return (DDI_SUCCESS);
1090 }
1091 
1092 static struct cb_ops dcpc_cb_ops = {
1093 	dcpc_open,		/* open */
1094 	nodev,			/* close */
1095 	nulldev,		/* strategy */
1096 	nulldev,		/* print */
1097 	nodev,			/* dump */
1098 	nodev,			/* read */
1099 	nodev,			/* write */
1100 	nodev,			/* ioctl */
1101 	nodev,			/* devmap */
1102 	nodev,			/* mmap */
1103 	nodev,			/* segmap */
1104 	nochpoll,		/* poll */
1105 	ddi_prop_op,		/* cb_prop_op */
1106 	0,			/* streamtab  */
1107 	D_NEW | D_MP		/* Driver compatibility flag */
1108 };
1109 
1110 static struct dev_ops dcpc_ops = {
1111 	DEVO_REV,		/* devo_rev, */
1112 	0,			/* refcnt  */
1113 	dcpc_info,		/* get_dev_info */
1114 	nulldev,		/* identify */
1115 	nulldev,		/* probe */
1116 	dcpc_attach,		/* attach */
1117 	dcpc_detach,		/* detach */
1118 	nodev,			/* reset */
1119 	&dcpc_cb_ops,		/* driver operations */
1120 	NULL,			/* bus operations */
1121 	nodev,			/* dev power */
1122 	ddi_quiesce_not_needed	/* quiesce */
1123 };
1124 
1125 /*
1126  * Module linkage information for the kernel.
1127  */
1128 static struct modldrv modldrv = {
1129 	&mod_driverops,		/* module type */
1130 	"DTrace CPC Module",	/* name of module */
1131 	&dcpc_ops,		/* driver ops */
1132 };
1133 
1134 static struct modlinkage modlinkage = {
1135 	MODREV_1,
1136 	(void *)&modldrv,
1137 	NULL
1138 };
1139 
1140 int
1141 _init(void)
1142 {
1143 	return (mod_install(&modlinkage));
1144 }
1145 
1146 int
1147 _info(struct modinfo *modinfop)
1148 {
1149 	return (mod_info(&modlinkage, modinfop));
1150 }
1151 
1152 int
1153 _fini(void)
1154 {
1155 	return (mod_remove(&modlinkage));
1156 }
1157