xref: /titanic_52/usr/src/uts/common/dtrace/dcpc.c (revision 7a5aac98bc37534537d4896efd4efd30627d221e)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2010 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #include <sys/errno.h>
28 #include <sys/cpuvar.h>
29 #include <sys/stat.h>
30 #include <sys/modctl.h>
31 #include <sys/cmn_err.h>
32 #include <sys/ddi.h>
33 #include <sys/sunddi.h>
34 #include <sys/ksynch.h>
35 #include <sys/conf.h>
36 #include <sys/kmem.h>
37 #include <sys/kcpc.h>
38 #include <sys/cap_util.h>
39 #include <sys/cpc_pcbe.h>
40 #include <sys/cpc_impl.h>
41 #include <sys/dtrace_impl.h>
42 
43 /*
44  * DTrace CPU Performance Counter Provider
45  * ---------------------------------------
46  *
47  * The DTrace cpc provider allows DTrace consumers to access the CPU
48  * performance counter overflow mechanism of a CPU. The configuration
49  * presented in a probe specification is programmed into the performance
50  * counter hardware of all available CPUs on a system. Programming the
51  * hardware causes a counter on each CPU to begin counting events of the
52  * given type. When the specified number of events have occurred, an overflow
53  * interrupt will be generated and the probe is fired.
54  *
55  * The required configuration for the performance counter is encoded into
56  * the probe specification and this includes the performance counter event
57  * name, processor mode, overflow rate and an optional unit mask.
58  *
59  * Most processors provide several counters (PICs) which can count all or a
60  * subset of the events available for a given CPU. However, when overflow
61  * profiling is being used, not all CPUs can detect which counter generated the
62  * overflow interrupt. In this case we cannot reliably determine which counter
63  * overflowed and we therefore only allow such CPUs to configure one event at
64  * a time. Processors that can determine the counter which overflowed are
65  * allowed to program as many events at one time as possible (in theory up to
66  * the number of instrumentation counters supported by that platform).
67  * Therefore, multiple consumers can enable multiple probes at the same time
68  * on such platforms. Platforms which cannot determine the source of an
69  * overflow interrupt are only allowed to program a single event at one time.
70  *
71  * The performance counter hardware is made available to consumers on a
72  * first-come, first-served basis. Only a finite amount of hardware resource
73  * is available and, while we make every attempt to accomodate requests from
74  * consumers, we must deny requests when hardware resources have been exhausted.
75  * A consumer will fail to enable probes when resources are currently in use.
76  *
77  * The cpc provider contends for shared hardware resources along with other
78  * consumers of the kernel CPU performance counter subsystem (e.g. cpustat(1M)).
79  * Only one such consumer can use the performance counters at any one time and
80  * counters are made available on a first-come, first-served basis. As with
81  * cpustat, the cpc provider has priority over per-LWP libcpc usage (e.g.
82  * cputrack(1)). Invoking the cpc provider will cause all existing per-LWP
83  * counter contexts to be invalidated.
84  */
85 
86 typedef struct dcpc_probe {
87 	char		dcpc_event_name[CPC_MAX_EVENT_LEN];
88 	int		dcpc_flag;	/* flags (USER/SYS) */
89 	uint32_t	dcpc_ovfval;	/* overflow value */
90 	int64_t		dcpc_umask;	/* umask/emask for this event */
91 	int		dcpc_picno;	/* pic this event is programmed in */
92 	int		dcpc_enabled;	/* probe is actually enabled? */
93 	int		dcpc_disabling;	/* probe is currently being disabled */
94 	dtrace_id_t	dcpc_id;	/* probeid this request is enabling */
95 	int		dcpc_actv_req_idx;	/* idx into dcpc_actv_reqs[] */
96 } dcpc_probe_t;
97 
98 static dev_info_t			*dcpc_devi;
99 static dtrace_provider_id_t		dcpc_pid;
100 static dcpc_probe_t			**dcpc_actv_reqs;
101 static uint32_t				dcpc_enablings = 0;
102 static int				dcpc_ovf_mask = 0;
103 static int				dcpc_mult_ovf_cap = 0;
104 static int				dcpc_mask_type = 0;
105 
106 /*
107  * When the dcpc provider is loaded, dcpc_min_overflow is set to either
108  * DCPC_MIN_OVF_DEFAULT or the value that dcpc-min-overflow is set to in
109  * the dcpc.conf file. Decrease this value to set probes with smaller
110  * overflow values. Remember that very small values could render a system
111  * unusable with frequently occurring events.
112  */
113 #define	DCPC_MIN_OVF_DEFAULT		5000
114 static uint32_t				dcpc_min_overflow;
115 
116 static int dcpc_aframes = 0;	/* override for artificial frame setting */
117 #if defined(__x86)
118 #define	DCPC_ARTIFICIAL_FRAMES	8
119 #elif defined(__sparc)
120 #define	DCPC_ARTIFICIAL_FRAMES	2
121 #endif
122 
123 /*
124  * Called from the platform overflow interrupt handler. 'bitmap' is a mask
125  * which contains the pic(s) that have overflowed.
126  */
127 static void
128 dcpc_fire(uint64_t bitmap)
129 {
130 	int i;
131 
132 	/*
133 	 * No counter was marked as overflowing. Shout about it and get out.
134 	 */
135 	if ((bitmap & dcpc_ovf_mask) == 0) {
136 		cmn_err(CE_NOTE, "dcpc_fire: no counter overflow found\n");
137 		return;
138 	}
139 
140 	/*
141 	 * This is the common case of a processor that doesn't support
142 	 * multiple overflow events. Such systems are only allowed a single
143 	 * enabling and therefore we just look for the first entry in
144 	 * the active request array.
145 	 */
146 	if (!dcpc_mult_ovf_cap) {
147 		for (i = 0; i < cpc_ncounters; i++) {
148 			if (dcpc_actv_reqs[i] != NULL) {
149 				dtrace_probe(dcpc_actv_reqs[i]->dcpc_id,
150 				    CPU->cpu_cpcprofile_pc,
151 				    CPU->cpu_cpcprofile_upc, 0, 0, 0);
152 				return;
153 			}
154 		}
155 		return;
156 	}
157 
158 	/*
159 	 * This is a processor capable of handling multiple overflow events.
160 	 * Iterate over the array of active requests and locate the counters
161 	 * that overflowed (note: it is possible for more than one counter to
162 	 * have overflowed at the same time).
163 	 */
164 	for (i = 0; i < cpc_ncounters; i++) {
165 		if (dcpc_actv_reqs[i] != NULL &&
166 		    (bitmap & (1ULL << dcpc_actv_reqs[i]->dcpc_picno))) {
167 			dtrace_probe(dcpc_actv_reqs[i]->dcpc_id,
168 			    CPU->cpu_cpcprofile_pc,
169 			    CPU->cpu_cpcprofile_upc, 0, 0, 0);
170 		}
171 	}
172 }
173 
174 static void
175 dcpc_create_probe(dtrace_provider_id_t id, const char *probename,
176     char *eventname, int64_t umask, uint32_t ovfval, char flag)
177 {
178 	dcpc_probe_t *pp;
179 	int nr_frames = DCPC_ARTIFICIAL_FRAMES + dtrace_mach_aframes();
180 
181 	if (dcpc_aframes)
182 		nr_frames = dcpc_aframes;
183 
184 	if (dtrace_probe_lookup(id, NULL, NULL, probename) != 0)
185 		return;
186 
187 	pp = kmem_zalloc(sizeof (dcpc_probe_t), KM_SLEEP);
188 	(void) strncpy(pp->dcpc_event_name, eventname,
189 	    sizeof (pp->dcpc_event_name) - 1);
190 	pp->dcpc_event_name[sizeof (pp->dcpc_event_name) - 1] = '\0';
191 	pp->dcpc_flag = flag | CPC_OVF_NOTIFY_EMT;
192 	pp->dcpc_ovfval = ovfval;
193 	pp->dcpc_umask = umask;
194 	pp->dcpc_actv_req_idx = pp->dcpc_picno = pp->dcpc_disabling = -1;
195 
196 	pp->dcpc_id = dtrace_probe_create(id, NULL, NULL, probename,
197 	    nr_frames, pp);
198 }
199 
200 /*ARGSUSED*/
201 static void
202 dcpc_provide(void *arg, const dtrace_probedesc_t *desc)
203 {
204 	/*
205 	 * The format of a probe is:
206 	 *
207 	 *	event_name-mode-{optional_umask}-overflow_rate
208 	 * e.g.
209 	 *	DC_refill_from_system-user-0x1e-50000, or,
210 	 *	DC_refill_from_system-all-10000
211 	 *
212 	 */
213 	char *str, *end, *p;
214 	int i, flag = 0;
215 	char event[CPC_MAX_EVENT_LEN];
216 	long umask = -1, val = 0;
217 	size_t evlen, len;
218 
219 	/*
220 	 * The 'cpc' provider offers no probes by default.
221 	 */
222 	if (desc == NULL)
223 		return;
224 
225 	len = strlen(desc->dtpd_name);
226 	p = str = kmem_alloc(len + 1, KM_SLEEP);
227 	(void) strcpy(str, desc->dtpd_name);
228 
229 	/*
230 	 * We have a poor man's strtok() going on here. Replace any hyphens
231 	 * in the the probe name with NULL characters in order to make it
232 	 * easy to parse the string with regular string functions.
233 	 */
234 	for (i = 0; i < len; i++) {
235 		if (str[i] == '-')
236 			str[i] = '\0';
237 	}
238 
239 	/*
240 	 * The first part of the string must be either a platform event
241 	 * name or a generic event name.
242 	 */
243 	evlen = strlen(p);
244 	(void) strncpy(event, p, CPC_MAX_EVENT_LEN - 1);
245 	event[CPC_MAX_EVENT_LEN - 1] = '\0';
246 
247 	/*
248 	 * The next part of the name is the mode specification. Valid
249 	 * settings are "user", "kernel" or "all".
250 	 */
251 	p += evlen + 1;
252 
253 	if (strcmp(p, "user") == 0)
254 		flag |= CPC_COUNT_USER;
255 	else if (strcmp(p, "kernel") == 0)
256 		flag |= CPC_COUNT_SYSTEM;
257 	else if (strcmp(p, "all") == 0)
258 		flag |= CPC_COUNT_USER | CPC_COUNT_SYSTEM;
259 	else
260 		goto err;
261 
262 	/*
263 	 * Next we either have a mask specification followed by an overflow
264 	 * rate or just an overflow rate on its own.
265 	 */
266 	p += strlen(p) + 1;
267 	if (p[0] == '0' && (p[1] == 'x' || p[1] == 'X')) {
268 		/*
269 		 * A unit mask can only be specified if:
270 		 * 1) this performance counter back end supports masks.
271 		 * 2) the specified event is platform specific.
272 		 * 3) a valid hex number is converted.
273 		 * 4) no extraneous characters follow the mask specification.
274 		 */
275 		if (dcpc_mask_type != 0 && strncmp(event, "PAPI", 4) != 0 &&
276 		    ddi_strtol(p, &end, 16, &umask) == 0 &&
277 		    end == p + strlen(p)) {
278 			p += strlen(p) + 1;
279 		} else {
280 			goto err;
281 		}
282 	}
283 
284 	/*
285 	 * This final part must be an overflow value which has to be greater
286 	 * than the minimum permissible overflow rate.
287 	 */
288 	if ((ddi_strtol(p, &end, 10, &val) != 0) || end != p + strlen(p) ||
289 	    val < dcpc_min_overflow)
290 		goto err;
291 
292 	/*
293 	 * Validate the event and create the probe.
294 	 */
295 	for (i = 0; i < cpc_ncounters; i++) {
296 		char *events, *cp, *p, *end;
297 		int found = 0, j;
298 		size_t llen;
299 
300 		if ((events = kcpc_list_events(i)) == NULL)
301 			goto err;
302 
303 		llen = strlen(events);
304 		p = cp = ddi_strdup(events, KM_NOSLEEP);
305 		end = cp + llen;
306 
307 		for (j = 0; j < llen; j++) {
308 			if (cp[j] == ',')
309 				cp[j] = '\0';
310 		}
311 
312 		while (p < end && found == 0) {
313 			if (strcmp(p, event) == 0) {
314 				dcpc_create_probe(dcpc_pid, desc->dtpd_name,
315 				    event, umask, (uint32_t)val, flag);
316 				found = 1;
317 			}
318 			p += strlen(p) + 1;
319 		}
320 		kmem_free(cp, llen + 1);
321 
322 		if (found)
323 			break;
324 	}
325 
326 err:
327 	kmem_free(str, len + 1);
328 }
329 
330 /*ARGSUSED*/
331 static void
332 dcpc_destroy(void *arg, dtrace_id_t id, void *parg)
333 {
334 	dcpc_probe_t *pp = parg;
335 
336 	ASSERT(pp->dcpc_enabled == 0);
337 	kmem_free(pp, sizeof (dcpc_probe_t));
338 }
339 
340 /*ARGSUSED*/
341 static int
342 dcpc_mode(void *arg, dtrace_id_t id, void *parg)
343 {
344 	if (CPU->cpu_cpcprofile_pc == 0) {
345 		return (DTRACE_MODE_NOPRIV_DROP | DTRACE_MODE_USER);
346 	} else {
347 		return (DTRACE_MODE_NOPRIV_DROP | DTRACE_MODE_KERNEL);
348 	}
349 }
350 
351 static void
352 dcpc_populate_set(cpu_t *c, dcpc_probe_t *pp, kcpc_set_t *set, int reqno)
353 {
354 	kcpc_set_t *oset;
355 	int i;
356 
357 	(void) strncpy(set->ks_req[reqno].kr_event, pp->dcpc_event_name,
358 	    CPC_MAX_EVENT_LEN);
359 	set->ks_req[reqno].kr_config = NULL;
360 	set->ks_req[reqno].kr_index = reqno;
361 	set->ks_req[reqno].kr_picnum = -1;
362 	set->ks_req[reqno].kr_flags =  pp->dcpc_flag;
363 
364 	/*
365 	 * If a unit mask has been specified then detect which attribute
366 	 * the platform needs. For now, it's either "umask" or "emask".
367 	 */
368 	if (pp->dcpc_umask >= 0) {
369 		set->ks_req[reqno].kr_attr =
370 		    kmem_zalloc(sizeof (kcpc_attr_t), KM_SLEEP);
371 		set->ks_req[reqno].kr_nattrs = 1;
372 		if (dcpc_mask_type & DCPC_UMASK)
373 			(void) strncpy(set->ks_req[reqno].kr_attr->ka_name,
374 			    "umask", 5);
375 		else
376 			(void) strncpy(set->ks_req[reqno].kr_attr->ka_name,
377 			    "emask", 5);
378 		set->ks_req[reqno].kr_attr->ka_val = pp->dcpc_umask;
379 	} else {
380 		set->ks_req[reqno].kr_attr = NULL;
381 		set->ks_req[reqno].kr_nattrs = 0;
382 	}
383 
384 	/*
385 	 * If this probe is enabled, obtain its current countdown value
386 	 * and use that. The CPUs cpc context might not exist yet if we
387 	 * are dealing with a CPU that is just coming online.
388 	 */
389 	if (pp->dcpc_enabled && (c->cpu_cpc_ctx != NULL)) {
390 		oset = c->cpu_cpc_ctx->kc_set;
391 
392 		for (i = 0; i < oset->ks_nreqs; i++) {
393 			if (strcmp(oset->ks_req[i].kr_event,
394 			    set->ks_req[reqno].kr_event) == 0) {
395 				set->ks_req[reqno].kr_preset =
396 				    *(oset->ks_req[i].kr_data);
397 			}
398 		}
399 	} else {
400 		set->ks_req[reqno].kr_preset = UINT64_MAX - pp->dcpc_ovfval;
401 	}
402 
403 	set->ks_nreqs++;
404 }
405 
406 
407 /*
408  * Create a fresh request set for the enablings represented in the
409  * 'dcpc_actv_reqs' array which contains the probes we want to be
410  * in the set. This can be called for several reasons:
411  *
412  * 1)	We are on a single or multi overflow platform and we have no
413  *	current events so we can just create the set and initialize it.
414  * 2)	We are on a multi-overflow platform and we already have one or
415  *	more existing events and we are adding a new enabling. Create a
416  *	new set and copy old requests in and then add the new request.
417  * 3)	We are on a multi-overflow platform and we have just removed an
418  *	enabling but we still have enablings whch are valid. Create a new
419  *	set and copy in still valid requests.
420  */
421 static kcpc_set_t *
422 dcpc_create_set(cpu_t *c)
423 {
424 	int i, reqno = 0;
425 	int active_requests = 0;
426 	kcpc_set_t *set;
427 
428 	/*
429 	 * First get a count of the number of currently active requests.
430 	 * Note that dcpc_actv_reqs[] should always reflect which requests
431 	 * we want to be in the set that is to be created. It is the
432 	 * responsibility of the caller of dcpc_create_set() to adjust that
433 	 * array accordingly beforehand.
434 	 */
435 	for (i = 0; i < cpc_ncounters; i++) {
436 		if (dcpc_actv_reqs[i] != NULL)
437 			active_requests++;
438 	}
439 
440 	set = kmem_zalloc(sizeof (kcpc_set_t), KM_SLEEP);
441 
442 	set->ks_req =
443 	    kmem_zalloc(sizeof (kcpc_request_t) * active_requests, KM_SLEEP);
444 
445 	set->ks_data =
446 	    kmem_zalloc(active_requests * sizeof (uint64_t), KM_SLEEP);
447 
448 	/*
449 	 * Look for valid entries in the active requests array and populate
450 	 * the request set for any entries found.
451 	 */
452 	for (i = 0; i < cpc_ncounters; i++) {
453 		if (dcpc_actv_reqs[i] != NULL) {
454 			dcpc_populate_set(c, dcpc_actv_reqs[i], set, reqno);
455 			reqno++;
456 		}
457 	}
458 
459 	return (set);
460 }
461 
462 static int
463 dcpc_program_cpu_event(cpu_t *c)
464 {
465 	int i, j, subcode;
466 	kcpc_ctx_t *ctx, *octx;
467 	kcpc_set_t *set;
468 
469 	set = dcpc_create_set(c);
470 
471 	set->ks_ctx = ctx = kcpc_ctx_alloc(KM_SLEEP);
472 	ctx->kc_set = set;
473 	ctx->kc_cpuid = c->cpu_id;
474 
475 	if (kcpc_assign_reqs(set, ctx) != 0)
476 		goto err;
477 
478 	if (kcpc_configure_reqs(ctx, set, &subcode) != 0)
479 		goto err;
480 
481 	for (i = 0; i < set->ks_nreqs; i++) {
482 		for (j = 0; j < cpc_ncounters; j++) {
483 			if (dcpc_actv_reqs[j] != NULL &&
484 			    strcmp(set->ks_req[i].kr_event,
485 			    dcpc_actv_reqs[j]->dcpc_event_name) == 0) {
486 				dcpc_actv_reqs[j]->dcpc_picno =
487 				    set->ks_req[i].kr_picnum;
488 			}
489 		}
490 	}
491 
492 	/*
493 	 * If we already have an active enabling then save the current cpc
494 	 * context away.
495 	 */
496 	octx = c->cpu_cpc_ctx;
497 
498 	kcpc_cpu_program(c, ctx);
499 
500 	if (octx != NULL) {
501 		kcpc_set_t *oset = octx->kc_set;
502 		kmem_free(oset->ks_data, oset->ks_nreqs * sizeof (uint64_t));
503 		kcpc_free_configs(oset);
504 		kcpc_free_set(oset);
505 		kcpc_ctx_free(octx);
506 	}
507 
508 	return (0);
509 
510 err:
511 	/*
512 	 * We failed to configure this request up so free things up and
513 	 * get out.
514 	 */
515 	kcpc_free_configs(set);
516 	kmem_free(set->ks_data, set->ks_nreqs * sizeof (uint64_t));
517 	kcpc_free_set(set);
518 	kcpc_ctx_free(ctx);
519 
520 	return (-1);
521 }
522 
523 static void
524 dcpc_disable_cpu(cpu_t *c)
525 {
526 	kcpc_ctx_t *ctx;
527 	kcpc_set_t *set;
528 
529 	/*
530 	 * Leave this CPU alone if it's already offline.
531 	 */
532 	if (c->cpu_flags & CPU_OFFLINE)
533 		return;
534 
535 	/*
536 	 * Grab CPUs CPC context before kcpc_cpu_stop() stops counters and
537 	 * changes it.
538 	 */
539 	ctx = c->cpu_cpc_ctx;
540 
541 	kcpc_cpu_stop(c, B_FALSE);
542 
543 	set = ctx->kc_set;
544 
545 	kcpc_free_configs(set);
546 	kmem_free(set->ks_data, set->ks_nreqs * sizeof (uint64_t));
547 	kcpc_free_set(set);
548 	kcpc_ctx_free(ctx);
549 }
550 
551 /*
552  * The dcpc_*_interrupts() routines are responsible for manipulating the
553  * per-CPU dcpc interrupt state byte. The purpose of the state byte is to
554  * synchronize processing of hardware overflow interrupts wth configuration
555  * changes made to the CPU performance counter subsystem by the dcpc provider.
556  *
557  * The dcpc provider claims ownership of the overflow interrupt mechanism
558  * by transitioning the state byte from DCPC_INTR_INACTIVE (indicating the
559  * dcpc provider is not in use) to DCPC_INTR_FREE (the dcpc provider owns the
560  * overflow mechanism and interrupts may be processed). Before modifying
561  * a CPUs configuration state the state byte is transitioned from
562  * DCPC_INTR_FREE to DCPC_INTR_CONFIG ("configuration in process" state).
563  * The hardware overflow handler, kcpc_hw_overflow_intr(), will only process
564  * an interrupt when a configuration is not in process (i.e. the state is
565  * marked as free). During interrupt processing the state is set to
566  * DCPC_INTR_PROCESSING by the overflow handler. When the last dcpc based
567  * enabling is removed, the state byte is set to DCPC_INTR_INACTIVE to indicate
568  * the dcpc provider is no longer interested in overflow interrupts.
569  */
570 static void
571 dcpc_block_interrupts(void)
572 {
573 	cpu_t *c = cpu_list;
574 	uint8_t *state;
575 
576 	ASSERT(cpu_core[c->cpu_id].cpuc_dcpc_intr_state != DCPC_INTR_INACTIVE);
577 
578 	do {
579 		state = &cpu_core[c->cpu_id].cpuc_dcpc_intr_state;
580 
581 		while (atomic_cas_8(state, DCPC_INTR_FREE,
582 		    DCPC_INTR_CONFIG) != DCPC_INTR_FREE)
583 			continue;
584 
585 	} while ((c = c->cpu_next) != cpu_list);
586 }
587 
588 /*
589  * Set all CPUs dcpc interrupt state to DCPC_INTR_FREE to indicate that
590  * overflow interrupts can be processed safely.
591  */
592 static void
593 dcpc_release_interrupts(void)
594 {
595 	cpu_t *c = cpu_list;
596 
597 	ASSERT(cpu_core[c->cpu_id].cpuc_dcpc_intr_state != DCPC_INTR_INACTIVE);
598 
599 	do {
600 		cpu_core[c->cpu_id].cpuc_dcpc_intr_state = DCPC_INTR_FREE;
601 		membar_producer();
602 	} while ((c = c->cpu_next) != cpu_list);
603 }
604 
605 /*
606  * Transition all CPUs dcpc interrupt state from DCPC_INTR_INACTIVE to
607  * to DCPC_INTR_FREE. This indicates that the dcpc provider is now
608  * responsible for handling all overflow interrupt activity. Should only be
609  * called before enabling the first dcpc based probe.
610  */
611 static void
612 dcpc_claim_interrupts(void)
613 {
614 	cpu_t *c = cpu_list;
615 
616 	ASSERT(cpu_core[c->cpu_id].cpuc_dcpc_intr_state == DCPC_INTR_INACTIVE);
617 
618 	do {
619 		cpu_core[c->cpu_id].cpuc_dcpc_intr_state = DCPC_INTR_FREE;
620 		membar_producer();
621 	} while ((c = c->cpu_next) != cpu_list);
622 }
623 
624 /*
625  * Set all CPUs dcpc interrupt state to DCPC_INTR_INACTIVE to indicate that
626  * the dcpc provider is no longer processing overflow interrupts. Only called
627  * during removal of the last dcpc based enabling.
628  */
629 static void
630 dcpc_surrender_interrupts(void)
631 {
632 	cpu_t *c = cpu_list;
633 
634 	ASSERT(cpu_core[c->cpu_id].cpuc_dcpc_intr_state != DCPC_INTR_INACTIVE);
635 
636 	do {
637 		cpu_core[c->cpu_id].cpuc_dcpc_intr_state = DCPC_INTR_INACTIVE;
638 		membar_producer();
639 	} while ((c = c->cpu_next) != cpu_list);
640 }
641 
642 /*
643  * dcpc_program_event() can be called owing to a new enabling or if a multi
644  * overflow platform has disabled a request but needs to  program the requests
645  * that are still valid.
646  *
647  * Every invocation of dcpc_program_event() will create a new kcpc_ctx_t
648  * and a new request set which contains the new enabling and any old enablings
649  * which are still valid (possible with multi-overflow platforms).
650  */
651 static int
652 dcpc_program_event(dcpc_probe_t *pp)
653 {
654 	cpu_t *c;
655 	int ret = 0;
656 
657 	ASSERT(MUTEX_HELD(&cpu_lock));
658 
659 	kpreempt_disable();
660 
661 	dcpc_block_interrupts();
662 
663 	c = cpu_list;
664 
665 	do {
666 		/*
667 		 * Skip CPUs that are currently offline.
668 		 */
669 		if (c->cpu_flags & CPU_OFFLINE)
670 			continue;
671 
672 		/*
673 		 * Stop counters but preserve existing DTrace CPC context
674 		 * if there is one.
675 		 *
676 		 * If we come here when the first event is programmed for a CPU,
677 		 * there should be no DTrace CPC context installed. In this
678 		 * case, kcpc_cpu_stop() will ensure that there is no other
679 		 * context on the CPU.
680 		 *
681 		 * If we add new enabling to the original one, the CPU should
682 		 * have the old DTrace CPC context which we need to keep around
683 		 * since dcpc_program_event() will add to it.
684 		 */
685 		if (c->cpu_cpc_ctx != NULL)
686 			kcpc_cpu_stop(c, B_TRUE);
687 	} while ((c = c->cpu_next) != cpu_list);
688 
689 	dcpc_release_interrupts();
690 
691 	/*
692 	 * If this enabling is being removed (in the case of a multi event
693 	 * capable system with more than one active enabling), we can now
694 	 * update the active request array to reflect the enablings that need
695 	 * to be reprogrammed.
696 	 */
697 	if (pp->dcpc_disabling == 1)
698 		dcpc_actv_reqs[pp->dcpc_actv_req_idx] = NULL;
699 
700 	do {
701 		/*
702 		 * Skip CPUs that are currently offline.
703 		 */
704 		if (c->cpu_flags & CPU_OFFLINE)
705 			continue;
706 
707 		ret = dcpc_program_cpu_event(c);
708 	} while ((c = c->cpu_next) != cpu_list && ret == 0);
709 
710 	/*
711 	 * If dcpc_program_cpu_event() fails then it is because we couldn't
712 	 * configure the requests in the set for the CPU and not because of
713 	 * an error programming the hardware. If we have a failure here then
714 	 * we assume no CPUs have been programmed in the above step as they
715 	 * are all configured identically.
716 	 */
717 	if (ret != 0) {
718 		pp->dcpc_enabled = 0;
719 		kpreempt_enable();
720 		return (-1);
721 	}
722 
723 	if (pp->dcpc_disabling != 1)
724 		pp->dcpc_enabled = 1;
725 
726 	kpreempt_enable();
727 
728 	return (0);
729 }
730 
731 /*ARGSUSED*/
732 static int
733 dcpc_enable(void *arg, dtrace_id_t id, void *parg)
734 {
735 	dcpc_probe_t *pp = parg;
736 	int i, found = 0;
737 	cpu_t *c;
738 
739 	ASSERT(MUTEX_HELD(&cpu_lock));
740 
741 	/*
742 	 * Bail out if the counters are being used by a libcpc consumer.
743 	 */
744 	rw_enter(&kcpc_cpuctx_lock, RW_READER);
745 	if (kcpc_cpuctx > 0) {
746 		rw_exit(&kcpc_cpuctx_lock);
747 		return (-1);
748 	}
749 
750 	dtrace_cpc_in_use++;
751 	rw_exit(&kcpc_cpuctx_lock);
752 
753 	/*
754 	 * Locate this enabling in the first free entry of the active
755 	 * request array.
756 	 */
757 	for (i = 0; i < cpc_ncounters; i++) {
758 		if (dcpc_actv_reqs[i] == NULL) {
759 			dcpc_actv_reqs[i] = pp;
760 			pp->dcpc_actv_req_idx = i;
761 			found = 1;
762 			break;
763 		}
764 	}
765 
766 	/*
767 	 * If we couldn't find a slot for this probe then there is no
768 	 * room at the inn.
769 	 */
770 	if (!found) {
771 		dtrace_cpc_in_use--;
772 		return (-1);
773 	}
774 
775 	ASSERT(pp->dcpc_actv_req_idx >= 0);
776 
777 	/*
778 	 * DTrace is taking over CPC contexts, so stop collecting
779 	 * capacity/utilization data for all CPUs.
780 	 */
781 	if (dtrace_cpc_in_use == 1)
782 		cu_disable();
783 
784 	/*
785 	 * The following must hold true if we are to (attempt to) enable
786 	 * this request:
787 	 *
788 	 * 1) No enablings currently exist. We allow all platforms to
789 	 * proceed if this is true.
790 	 *
791 	 * OR
792 	 *
793 	 * 2) If the platform is multi overflow capable and there are
794 	 * less valid enablings than there are counters. There is no
795 	 * guarantee that a platform can accommodate as many events as
796 	 * it has counters for but we will at least try to program
797 	 * up to that many requests.
798 	 *
799 	 * The 'dcpc_enablings' variable is implictly protected by locking
800 	 * provided by the DTrace framework and the cpu management framework.
801 	 */
802 	if (dcpc_enablings == 0 || (dcpc_mult_ovf_cap &&
803 	    dcpc_enablings < cpc_ncounters)) {
804 		/*
805 		 * Before attempting to program the first enabling we need to
806 		 * invalidate any lwp-based contexts and lay claim to the
807 		 * overflow interrupt mechanism.
808 		 */
809 		if (dcpc_enablings == 0) {
810 			kcpc_invalidate_all();
811 			dcpc_claim_interrupts();
812 		}
813 
814 		if (dcpc_program_event(pp) == 0) {
815 			dcpc_enablings++;
816 			return (0);
817 		}
818 	}
819 
820 	/*
821 	 * If active enablings existed before we failed to enable this probe
822 	 * on a multi event capable platform then we need to restart counters
823 	 * as they will have been stopped in the attempted configuration. The
824 	 * context should now just contain the request prior to this failed
825 	 * enabling.
826 	 */
827 	if (dcpc_enablings > 0 && dcpc_mult_ovf_cap) {
828 		c = cpu_list;
829 
830 		ASSERT(dcpc_mult_ovf_cap == 1);
831 		do {
832 			/*
833 			 * Skip CPUs that are currently offline.
834 			 */
835 			if (c->cpu_flags & CPU_OFFLINE)
836 				continue;
837 
838 			kcpc_cpu_program(c, c->cpu_cpc_ctx);
839 		} while ((c = c->cpu_next) != cpu_list);
840 	}
841 
842 	/*
843 	 * Give up any claim to the overflow interrupt mechanism if no
844 	 * dcpc based enablings exist.
845 	 */
846 	if (dcpc_enablings == 0)
847 		dcpc_surrender_interrupts();
848 
849 	dtrace_cpc_in_use--;
850 	dcpc_actv_reqs[pp->dcpc_actv_req_idx] = NULL;
851 	pp->dcpc_actv_req_idx = pp->dcpc_picno = -1;
852 
853 	/*
854 	 * If all probes are removed, enable capacity/utilization data
855 	 * collection for every CPU.
856 	 */
857 	if (dtrace_cpc_in_use == 0)
858 		cu_enable();
859 
860 	return (-1);
861 }
862 
863 /*
864  * If only one enabling is active then remove the context and free
865  * everything up. If there are multiple enablings active then remove this
866  * one, its associated meta-data and re-program the hardware.
867  */
868 /*ARGSUSED*/
869 static void
870 dcpc_disable(void *arg, dtrace_id_t id, void *parg)
871 {
872 	cpu_t *c;
873 	dcpc_probe_t *pp = parg;
874 
875 	ASSERT(MUTEX_HELD(&cpu_lock));
876 
877 	kpreempt_disable();
878 
879 	/*
880 	 * This probe didn't actually make it as far as being fully enabled
881 	 * so we needn't do anything with it.
882 	 */
883 	if (pp->dcpc_enabled == 0) {
884 		/*
885 		 * If we actually allocated this request a slot in the
886 		 * request array but failed to enabled it then remove the
887 		 * entry in the array.
888 		 */
889 		if (pp->dcpc_actv_req_idx >= 0) {
890 			dcpc_actv_reqs[pp->dcpc_actv_req_idx] = NULL;
891 			pp->dcpc_actv_req_idx = pp->dcpc_picno =
892 			    pp->dcpc_disabling = -1;
893 		}
894 
895 		kpreempt_enable();
896 		return;
897 	}
898 
899 	/*
900 	 * If this is the only enabling then stop all the counters and
901 	 * free up the meta-data.
902 	 */
903 	if (dcpc_enablings == 1) {
904 		ASSERT(dtrace_cpc_in_use == 1);
905 
906 		dcpc_block_interrupts();
907 
908 		c = cpu_list;
909 
910 		do {
911 			dcpc_disable_cpu(c);
912 		} while ((c = c->cpu_next) != cpu_list);
913 
914 		dcpc_actv_reqs[pp->dcpc_actv_req_idx] = NULL;
915 		dcpc_surrender_interrupts();
916 	} else {
917 		/*
918 		 * This platform can support multiple overflow events and
919 		 * the enabling being disabled is not the last one. Remove this
920 		 * enabling and re-program the hardware with the new config.
921 		 */
922 		ASSERT(dcpc_mult_ovf_cap);
923 		ASSERT(dcpc_enablings > 1);
924 
925 		pp->dcpc_disabling = 1;
926 		(void) dcpc_program_event(pp);
927 	}
928 
929 	kpreempt_enable();
930 
931 	dcpc_enablings--;
932 	dtrace_cpc_in_use--;
933 	pp->dcpc_enabled = 0;
934 	pp->dcpc_actv_req_idx = pp->dcpc_picno = pp->dcpc_disabling = -1;
935 
936 	/*
937 	 * If all probes are removed, enable capacity/utilization data
938 	 * collection for every CPU
939 	 */
940 	if (dtrace_cpc_in_use == 0)
941 		cu_enable();
942 }
943 
944 /*ARGSUSED*/
945 static int
946 dcpc_cpu_setup(cpu_setup_t what, processorid_t cpu, void *arg)
947 {
948 	cpu_t *c;
949 	uint8_t *state;
950 
951 	ASSERT(MUTEX_HELD(&cpu_lock));
952 
953 	switch (what) {
954 	case CPU_OFF:
955 		/*
956 		 * Offline CPUs are not allowed to take part so remove this
957 		 * CPU if we are actively tracing.
958 		 */
959 		if (dtrace_cpc_in_use) {
960 			c = cpu_get(cpu);
961 			state = &cpu_core[c->cpu_id].cpuc_dcpc_intr_state;
962 
963 			/*
964 			 * Indicate that a configuration is in process in
965 			 * order to stop overflow interrupts being processed
966 			 * on this CPU while we disable it.
967 			 */
968 			while (atomic_cas_8(state, DCPC_INTR_FREE,
969 			    DCPC_INTR_CONFIG) != DCPC_INTR_FREE)
970 				continue;
971 
972 			dcpc_disable_cpu(c);
973 
974 			/*
975 			 * Reset this CPUs interrupt state as the configuration
976 			 * has ended.
977 			 */
978 			cpu_core[c->cpu_id].cpuc_dcpc_intr_state =
979 			    DCPC_INTR_FREE;
980 			membar_producer();
981 		}
982 		break;
983 
984 	case CPU_ON:
985 	case CPU_SETUP:
986 		/*
987 		 * This CPU is being initialized or brought online so program
988 		 * it with the current request set if we are actively tracing.
989 		 */
990 		if (dtrace_cpc_in_use) {
991 			c = cpu_get(cpu);
992 			(void) dcpc_program_cpu_event(c);
993 		}
994 		break;
995 
996 	default:
997 		break;
998 	}
999 
1000 	return (0);
1001 }
1002 
1003 static dtrace_pattr_t dcpc_attr = {
1004 { DTRACE_STABILITY_EVOLVING, DTRACE_STABILITY_EVOLVING, DTRACE_CLASS_COMMON },
1005 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN },
1006 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN },
1007 { DTRACE_STABILITY_EVOLVING, DTRACE_STABILITY_EVOLVING, DTRACE_CLASS_CPU },
1008 { DTRACE_STABILITY_EVOLVING, DTRACE_STABILITY_EVOLVING, DTRACE_CLASS_COMMON },
1009 };
1010 
1011 static dtrace_pops_t dcpc_pops = {
1012     dcpc_provide,
1013     NULL,
1014     dcpc_enable,
1015     dcpc_disable,
1016     NULL,
1017     NULL,
1018     NULL,
1019     NULL,
1020     dcpc_mode,
1021     dcpc_destroy
1022 };
1023 
1024 /*ARGSUSED*/
1025 static int
1026 dcpc_open(dev_t *devp, int flag, int otyp, cred_t *cred_p)
1027 {
1028 	return (0);
1029 }
1030 
1031 /*ARGSUSED*/
1032 static int
1033 dcpc_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result)
1034 {
1035 	int error;
1036 
1037 	switch (infocmd) {
1038 	case DDI_INFO_DEVT2DEVINFO:
1039 		*result = (void *)dcpc_devi;
1040 		error = DDI_SUCCESS;
1041 		break;
1042 	case DDI_INFO_DEVT2INSTANCE:
1043 		*result = (void *)0;
1044 		error = DDI_SUCCESS;
1045 		break;
1046 	default:
1047 		error = DDI_FAILURE;
1048 	}
1049 	return (error);
1050 }
1051 
1052 static int
1053 dcpc_detach(dev_info_t *devi, ddi_detach_cmd_t cmd)
1054 {
1055 	switch (cmd) {
1056 	case DDI_DETACH:
1057 		break;
1058 	case DDI_SUSPEND:
1059 		return (DDI_SUCCESS);
1060 	default:
1061 		return (DDI_FAILURE);
1062 	}
1063 
1064 	if (dtrace_unregister(dcpc_pid) != 0)
1065 		return (DDI_FAILURE);
1066 
1067 	ddi_remove_minor_node(devi, NULL);
1068 
1069 	mutex_enter(&cpu_lock);
1070 	unregister_cpu_setup_func(dcpc_cpu_setup, NULL);
1071 	mutex_exit(&cpu_lock);
1072 
1073 	kmem_free(dcpc_actv_reqs, cpc_ncounters * sizeof (dcpc_probe_t *));
1074 
1075 	kcpc_unregister_dcpc();
1076 
1077 	return (DDI_SUCCESS);
1078 }
1079 
1080 static int
1081 dcpc_attach(dev_info_t *devi, ddi_attach_cmd_t cmd)
1082 {
1083 	uint_t caps;
1084 	char *attrs;
1085 
1086 	switch (cmd) {
1087 	case DDI_ATTACH:
1088 		break;
1089 	case DDI_RESUME:
1090 		return (DDI_SUCCESS);
1091 	default:
1092 		return (DDI_FAILURE);
1093 	}
1094 
1095 	if (kcpc_pcbe_loaded() == -1)
1096 		return (DDI_FAILURE);
1097 
1098 	caps = kcpc_pcbe_capabilities();
1099 
1100 	if (!(caps & CPC_CAP_OVERFLOW_INTERRUPT)) {
1101 		cmn_err(CE_NOTE, "!dcpc: Counter Overflow not supported"\
1102 		    " on this processor");
1103 		return (DDI_FAILURE);
1104 	}
1105 
1106 	if (ddi_create_minor_node(devi, "dcpc", S_IFCHR, 0,
1107 	    DDI_PSEUDO, NULL) == DDI_FAILURE ||
1108 	    dtrace_register("cpc", &dcpc_attr, DTRACE_PRIV_KERNEL,
1109 	    NULL, &dcpc_pops, NULL, &dcpc_pid) != 0) {
1110 		ddi_remove_minor_node(devi, NULL);
1111 		return (DDI_FAILURE);
1112 	}
1113 
1114 	mutex_enter(&cpu_lock);
1115 	register_cpu_setup_func(dcpc_cpu_setup, NULL);
1116 	mutex_exit(&cpu_lock);
1117 
1118 	dcpc_ovf_mask = (1 << cpc_ncounters) - 1;
1119 	ASSERT(dcpc_ovf_mask != 0);
1120 
1121 	if (caps & CPC_CAP_OVERFLOW_PRECISE)
1122 		dcpc_mult_ovf_cap = 1;
1123 
1124 	/*
1125 	 * Determine which, if any, mask attribute the back-end can use.
1126 	 */
1127 	attrs = kcpc_list_attrs();
1128 	if (strstr(attrs, "umask") != NULL)
1129 		dcpc_mask_type |= DCPC_UMASK;
1130 	else if (strstr(attrs, "emask") != NULL)
1131 		dcpc_mask_type |= DCPC_EMASK;
1132 
1133 	/*
1134 	 * The dcpc_actv_reqs array is used to store the requests that
1135 	 * we currently have programmed. The order of requests in this
1136 	 * array is not necessarily the order that the event appears in
1137 	 * the kcpc_request_t array. Once entered into a slot in the array
1138 	 * the entry is not moved until it's removed.
1139 	 */
1140 	dcpc_actv_reqs =
1141 	    kmem_zalloc(cpc_ncounters * sizeof (dcpc_probe_t *), KM_SLEEP);
1142 
1143 	dcpc_min_overflow = ddi_prop_get_int(DDI_DEV_T_ANY, devi,
1144 	    DDI_PROP_DONTPASS, "dcpc-min-overflow", DCPC_MIN_OVF_DEFAULT);
1145 
1146 	kcpc_register_dcpc(dcpc_fire);
1147 
1148 	ddi_report_dev(devi);
1149 	dcpc_devi = devi;
1150 
1151 	return (DDI_SUCCESS);
1152 }
1153 
1154 static struct cb_ops dcpc_cb_ops = {
1155 	dcpc_open,		/* open */
1156 	nodev,			/* close */
1157 	nulldev,		/* strategy */
1158 	nulldev,		/* print */
1159 	nodev,			/* dump */
1160 	nodev,			/* read */
1161 	nodev,			/* write */
1162 	nodev,			/* ioctl */
1163 	nodev,			/* devmap */
1164 	nodev,			/* mmap */
1165 	nodev,			/* segmap */
1166 	nochpoll,		/* poll */
1167 	ddi_prop_op,		/* cb_prop_op */
1168 	0,			/* streamtab  */
1169 	D_NEW | D_MP		/* Driver compatibility flag */
1170 };
1171 
1172 static struct dev_ops dcpc_ops = {
1173 	DEVO_REV,		/* devo_rev, */
1174 	0,			/* refcnt  */
1175 	dcpc_info,		/* get_dev_info */
1176 	nulldev,		/* identify */
1177 	nulldev,		/* probe */
1178 	dcpc_attach,		/* attach */
1179 	dcpc_detach,		/* detach */
1180 	nodev,			/* reset */
1181 	&dcpc_cb_ops,		/* driver operations */
1182 	NULL,			/* bus operations */
1183 	nodev,			/* dev power */
1184 	ddi_quiesce_not_needed	/* quiesce */
1185 };
1186 
1187 /*
1188  * Module linkage information for the kernel.
1189  */
1190 static struct modldrv modldrv = {
1191 	&mod_driverops,		/* module type */
1192 	"DTrace CPC Module",	/* name of module */
1193 	&dcpc_ops,		/* driver ops */
1194 };
1195 
1196 static struct modlinkage modlinkage = {
1197 	MODREV_1,
1198 	(void *)&modldrv,
1199 	NULL
1200 };
1201 
1202 int
1203 _init(void)
1204 {
1205 	return (mod_install(&modlinkage));
1206 }
1207 
1208 int
1209 _info(struct modinfo *modinfop)
1210 {
1211 	return (mod_info(&modlinkage, modinfop));
1212 }
1213 
1214 int
1215 _fini(void)
1216 {
1217 	return (mod_remove(&modlinkage));
1218 }
1219