1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 #include <sys/types.h> 29 #include <sys/param.h> 30 #include <sys/sysmacros.h> 31 #include <sys/signal.h> 32 #include <sys/stack.h> 33 #include <sys/pcb.h> 34 #include <sys/user.h> 35 #include <sys/systm.h> 36 #include <sys/sysinfo.h> 37 #include <sys/var.h> 38 #include <sys/errno.h> 39 #include <sys/cmn_err.h> 40 #include <sys/cred.h> 41 #include <sys/resource.h> 42 #include <sys/task.h> 43 #include <sys/project.h> 44 #include <sys/proc.h> 45 #include <sys/debug.h> 46 #include <sys/inline.h> 47 #include <sys/disp.h> 48 #include <sys/class.h> 49 #include <vm/seg_kmem.h> 50 #include <vm/seg_kp.h> 51 #include <sys/machlock.h> 52 #include <sys/kmem.h> 53 #include <sys/varargs.h> 54 #include <sys/turnstile.h> 55 #include <sys/poll.h> 56 #include <sys/vtrace.h> 57 #include <sys/callb.h> 58 #include <c2/audit.h> 59 #include <sys/tnf.h> 60 #include <sys/sobject.h> 61 #include <sys/cpupart.h> 62 #include <sys/pset.h> 63 #include <sys/door.h> 64 #include <sys/spl.h> 65 #include <sys/copyops.h> 66 #include <sys/rctl.h> 67 #include <sys/pool.h> 68 #include <sys/zone.h> 69 #include <sys/tsol/label.h> 70 #include <sys/tsol/tndb.h> 71 #include <sys/cpc_impl.h> 72 #include <sys/sdt.h> 73 #include <sys/reboot.h> 74 #include <sys/kdi.h> 75 76 struct kmem_cache *thread_cache; /* cache of free threads */ 77 struct kmem_cache *lwp_cache; /* cache of free lwps */ 78 struct kmem_cache *turnstile_cache; /* cache of free turnstiles */ 79 80 /* 81 * allthreads is only for use by kmem_readers. All kernel loops can use 82 * the current thread as a start/end point. 83 */ 84 static kthread_t *allthreads = &t0; /* circular list of all threads */ 85 86 static kcondvar_t reaper_cv; /* synchronization var */ 87 kthread_t *thread_deathrow; /* circular list of reapable threads */ 88 kthread_t *lwp_deathrow; /* circular list of reapable threads */ 89 kmutex_t reaplock; /* protects lwp and thread deathrows */ 90 kmutex_t thread_free_lock; /* protects clock from reaper */ 91 int thread_reapcnt = 0; /* number of threads on deathrow */ 92 int lwp_reapcnt = 0; /* number of lwps on deathrow */ 93 int reaplimit = 16; /* delay reaping until reaplimit */ 94 95 extern int nthread; 96 97 id_t syscid; /* system scheduling class ID */ 98 void *segkp_thread; /* cookie for segkp pool */ 99 100 int lwp_cache_sz = 32; 101 int t_cache_sz = 8; 102 static kt_did_t next_t_id = 1; 103 104 /* 105 * Min/Max stack sizes for stack size parameters 106 */ 107 #define MAX_STKSIZE (32 * DEFAULTSTKSZ) 108 #define MIN_STKSIZE DEFAULTSTKSZ 109 110 /* 111 * default_stksize overrides lwp_default_stksize if it is set. 112 */ 113 int default_stksize; 114 int lwp_default_stksize; 115 116 static zone_key_t zone_thread_key; 117 118 /* 119 * forward declarations for internal thread specific data (tsd) 120 */ 121 static void *tsd_realloc(void *, size_t, size_t); 122 123 /*ARGSUSED*/ 124 static int 125 turnstile_constructor(void *buf, void *cdrarg, int kmflags) 126 { 127 bzero(buf, sizeof (turnstile_t)); 128 return (0); 129 } 130 131 /*ARGSUSED*/ 132 static void 133 turnstile_destructor(void *buf, void *cdrarg) 134 { 135 turnstile_t *ts = buf; 136 137 ASSERT(ts->ts_free == NULL); 138 ASSERT(ts->ts_waiters == 0); 139 ASSERT(ts->ts_inheritor == NULL); 140 ASSERT(ts->ts_sleepq[0].sq_first == NULL); 141 ASSERT(ts->ts_sleepq[1].sq_first == NULL); 142 } 143 144 void 145 thread_init(void) 146 { 147 kthread_t *tp; 148 extern char sys_name[]; 149 extern void idle(); 150 struct cpu *cpu = CPU; 151 152 mutex_init(&reaplock, NULL, MUTEX_SPIN, (void *)ipltospl(DISP_LEVEL)); 153 154 #if defined(__i386) || defined(__amd64) 155 thread_cache = kmem_cache_create("thread_cache", sizeof (kthread_t), 156 PTR24_ALIGN, NULL, NULL, NULL, NULL, NULL, 0); 157 158 /* 159 * "struct _klwp" includes a "struct pcb", which includes a 160 * "struct fpu", which needs to be 16-byte aligned on amd64 161 * (and even on i386 for fxsave/fxrstor). 162 */ 163 lwp_cache = kmem_cache_create("lwp_cache", sizeof (klwp_t), 164 16, NULL, NULL, NULL, NULL, NULL, 0); 165 #else 166 /* 167 * Allocate thread structures from static_arena. This prevents 168 * issues where a thread tries to relocate its own thread 169 * structure and touches it after the mapping has been suspended. 170 */ 171 thread_cache = kmem_cache_create("thread_cache", sizeof (kthread_t), 172 PTR24_ALIGN, NULL, NULL, NULL, NULL, static_arena, 0); 173 174 lwp_stk_cache_init(); 175 176 lwp_cache = kmem_cache_create("lwp_cache", sizeof (klwp_t), 177 0, NULL, NULL, NULL, NULL, NULL, 0); 178 #endif 179 180 turnstile_cache = kmem_cache_create("turnstile_cache", 181 sizeof (turnstile_t), 0, 182 turnstile_constructor, turnstile_destructor, NULL, NULL, NULL, 0); 183 184 label_init(); 185 cred_init(); 186 187 rctl_init(); 188 project_init(); 189 zone_init(); 190 task_init(); 191 tcache_init(); 192 pool_init(); 193 194 curthread->t_ts = kmem_cache_alloc(turnstile_cache, KM_SLEEP); 195 196 /* 197 * Originally, we had two parameters to set default stack 198 * size: one for lwp's (lwp_default_stksize), and one for 199 * kernel-only threads (DEFAULTSTKSZ, a.k.a. _defaultstksz). 200 * Now we have a third parameter that overrides both if it is 201 * set to a legal stack size, called default_stksize. 202 */ 203 204 if (default_stksize == 0) { 205 default_stksize = DEFAULTSTKSZ; 206 } else if (default_stksize % PAGESIZE != 0 || 207 default_stksize > MAX_STKSIZE || 208 default_stksize < MIN_STKSIZE) { 209 cmn_err(CE_WARN, "Illegal stack size. Using %d", 210 (int)DEFAULTSTKSZ); 211 default_stksize = DEFAULTSTKSZ; 212 } else { 213 lwp_default_stksize = default_stksize; 214 } 215 216 if (lwp_default_stksize == 0) { 217 lwp_default_stksize = default_stksize; 218 } else if (lwp_default_stksize % PAGESIZE != 0 || 219 lwp_default_stksize > MAX_STKSIZE || 220 lwp_default_stksize < MIN_STKSIZE) { 221 cmn_err(CE_WARN, "Illegal stack size. Using %d", 222 default_stksize); 223 lwp_default_stksize = default_stksize; 224 } 225 226 segkp_lwp = segkp_cache_init(segkp, lwp_cache_sz, 227 lwp_default_stksize, 228 (KPD_NOWAIT | KPD_HASREDZONE | KPD_LOCKED)); 229 230 segkp_thread = segkp_cache_init(segkp, t_cache_sz, 231 default_stksize, KPD_HASREDZONE | KPD_LOCKED | KPD_NO_ANON); 232 233 (void) getcid(sys_name, &syscid); 234 curthread->t_cid = syscid; /* current thread is t0 */ 235 236 /* 237 * Set up the first CPU's idle thread. 238 * It runs whenever the CPU has nothing worthwhile to do. 239 */ 240 tp = thread_create(NULL, 0, idle, NULL, 0, &p0, TS_STOPPED, -1); 241 cpu->cpu_idle_thread = tp; 242 tp->t_preempt = 1; 243 tp->t_disp_queue = cpu->cpu_disp; 244 ASSERT(tp->t_disp_queue != NULL); 245 tp->t_bound_cpu = cpu; 246 tp->t_affinitycnt = 1; 247 248 /* 249 * Registering a thread in the callback table is usually 250 * done in the initialization code of the thread. In this 251 * case, we do it right after thread creation to avoid 252 * blocking idle thread while registering itself. It also 253 * avoids the possibility of reregistration in case a CPU 254 * restarts its idle thread. 255 */ 256 CALLB_CPR_INIT_SAFE(tp, "idle"); 257 258 /* 259 * Finish initializing the kernel memory allocator now that 260 * thread_create() is available. 261 */ 262 kmem_thread_init(); 263 264 if (boothowto & RB_DEBUG) 265 kdi_dvec_thravail(); 266 } 267 268 /* 269 * Create a thread. 270 * 271 * thread_create() blocks for memory if necessary. It never fails. 272 * 273 * If stk is NULL, the thread is created at the base of the stack 274 * and cannot be swapped. 275 */ 276 kthread_t * 277 thread_create( 278 caddr_t stk, 279 size_t stksize, 280 void (*proc)(), 281 void *arg, 282 size_t len, 283 proc_t *pp, 284 int state, 285 pri_t pri) 286 { 287 kthread_t *t; 288 extern struct classfuncs sys_classfuncs; 289 turnstile_t *ts; 290 291 /* 292 * Every thread keeps a turnstile around in case it needs to block. 293 * The only reason the turnstile is not simply part of the thread 294 * structure is that we may have to break the association whenever 295 * more than one thread blocks on a given synchronization object. 296 * From a memory-management standpoint, turnstiles are like the 297 * "attached mblks" that hang off dblks in the streams allocator. 298 */ 299 ts = kmem_cache_alloc(turnstile_cache, KM_SLEEP); 300 301 if (stk == NULL) { 302 /* 303 * alloc both thread and stack in segkp chunk 304 */ 305 306 if (stksize < default_stksize) 307 stksize = default_stksize; 308 309 if (stksize == default_stksize) { 310 stk = (caddr_t)segkp_cache_get(segkp_thread); 311 } else { 312 stksize = roundup(stksize, PAGESIZE); 313 stk = (caddr_t)segkp_get(segkp, stksize, 314 (KPD_HASREDZONE | KPD_NO_ANON | KPD_LOCKED)); 315 } 316 317 ASSERT(stk != NULL); 318 319 /* 320 * The machine-dependent mutex code may require that 321 * thread pointers (since they may be used for mutex owner 322 * fields) have certain alignment requirements. 323 * PTR24_ALIGN is the size of the alignment quanta. 324 * XXX - assumes stack grows toward low addresses. 325 */ 326 if (stksize <= sizeof (kthread_t) + PTR24_ALIGN) 327 cmn_err(CE_PANIC, "thread_create: proposed stack size" 328 " too small to hold thread."); 329 #ifdef STACK_GROWTH_DOWN 330 stksize -= SA(sizeof (kthread_t) + PTR24_ALIGN - 1); 331 stksize &= -PTR24_ALIGN; /* make thread aligned */ 332 t = (kthread_t *)(stk + stksize); 333 bzero(t, sizeof (kthread_t)); 334 #ifdef C2_AUDIT 335 if (audit_active) 336 audit_thread_create(t); 337 #endif 338 t->t_stk = stk + stksize; 339 t->t_stkbase = stk; 340 #else /* stack grows to larger addresses */ 341 stksize -= SA(sizeof (kthread_t)); 342 t = (kthread_t *)(stk); 343 bzero(t, sizeof (kthread_t)); 344 t->t_stk = stk + sizeof (kthread_t); 345 t->t_stkbase = stk + stksize + sizeof (kthread_t); 346 #endif /* STACK_GROWTH_DOWN */ 347 t->t_flag |= T_TALLOCSTK; 348 t->t_swap = stk; 349 } else { 350 t = kmem_cache_alloc(thread_cache, KM_SLEEP); 351 bzero(t, sizeof (kthread_t)); 352 ASSERT(((uintptr_t)t & (PTR24_ALIGN - 1)) == 0); 353 #ifdef C2_AUDIT 354 if (audit_active) 355 audit_thread_create(t); 356 #endif 357 /* 358 * Initialize t_stk to the kernel stack pointer to use 359 * upon entry to the kernel 360 */ 361 #ifdef STACK_GROWTH_DOWN 362 t->t_stk = stk + stksize; 363 t->t_stkbase = stk; 364 #else 365 t->t_stk = stk; /* 3b2-like */ 366 t->t_stkbase = stk + stksize; 367 #endif /* STACK_GROWTH_DOWN */ 368 } 369 370 /* set default stack flag */ 371 if (stksize == lwp_default_stksize) 372 t->t_flag |= T_DFLTSTK; 373 374 t->t_ts = ts; 375 376 /* 377 * p_cred could be NULL if it thread_create is called before cred_init 378 * is called in main. 379 */ 380 mutex_enter(&pp->p_crlock); 381 if (pp->p_cred) 382 crhold(t->t_cred = pp->p_cred); 383 mutex_exit(&pp->p_crlock); 384 t->t_start = gethrestime_sec(); 385 t->t_startpc = proc; 386 t->t_procp = pp; 387 t->t_clfuncs = &sys_classfuncs.thread; 388 t->t_cid = syscid; 389 t->t_pri = pri; 390 t->t_stime = lbolt; 391 t->t_schedflag = TS_LOAD | TS_DONT_SWAP; 392 t->t_bind_cpu = PBIND_NONE; 393 t->t_bind_pset = PS_NONE; 394 t->t_plockp = &pp->p_lock; 395 t->t_copyops = NULL; 396 t->t_taskq = NULL; 397 t->t_anttime = 0; 398 t->t_hatdepth = 0; 399 400 t->t_dtrace_vtime = 1; /* assure vtimestamp is always non-zero */ 401 402 CPU_STATS_ADDQ(CPU, sys, nthreads, 1); 403 #ifndef NPROBE 404 /* Kernel probe */ 405 tnf_thread_create(t); 406 #endif /* NPROBE */ 407 LOCK_INIT_CLEAR(&t->t_lock); 408 409 /* 410 * Callers who give us a NULL proc must do their own 411 * stack initialization. e.g. lwp_create() 412 */ 413 if (proc != NULL) { 414 t->t_stk = thread_stk_init(t->t_stk); 415 thread_load(t, proc, arg, len); 416 } 417 418 /* 419 * Put a hold on project0. If this thread is actually in a 420 * different project, then t_proj will be changed later in 421 * lwp_create(). All kernel-only threads must be in project 0. 422 */ 423 t->t_proj = project_hold(proj0p); 424 425 lgrp_affinity_init(&t->t_lgrp_affinity); 426 427 mutex_enter(&pidlock); 428 nthread++; 429 t->t_did = next_t_id++; 430 t->t_prev = curthread->t_prev; 431 t->t_next = curthread; 432 433 /* 434 * Add the thread to the list of all threads, and initialize 435 * its t_cpu pointer. We need to block preemption since 436 * cpu_offline walks the thread list looking for threads 437 * with t_cpu pointing to the CPU being offlined. We want 438 * to make sure that the list is consistent and that if t_cpu 439 * is set, the thread is on the list. 440 */ 441 kpreempt_disable(); 442 curthread->t_prev->t_next = t; 443 curthread->t_prev = t; 444 445 /* 446 * Threads should never have a NULL t_cpu pointer so assign it 447 * here. If the thread is being created with state TS_RUN a 448 * better CPU may be chosen when it is placed on the run queue. 449 * 450 * We need to keep kernel preemption disabled when setting all 451 * three fields to keep them in sync. Also, always create in 452 * the default partition since that's where kernel threads go 453 * (if this isn't a kernel thread, t_cpupart will be changed 454 * in lwp_create before setting the thread runnable). 455 */ 456 t->t_cpupart = &cp_default; 457 458 /* 459 * For now, affiliate this thread with the root lgroup. 460 * Since the kernel does not (presently) allocate its memory 461 * in a locality aware fashion, the root is an appropriate home. 462 * If this thread is later associated with an lwp, it will have 463 * it's lgroup re-assigned at that time. 464 */ 465 lgrp_move_thread(t, &cp_default.cp_lgrploads[LGRP_ROOTID], 1); 466 467 /* 468 * Inherit the current cpu. If this cpu isn't part of the chosen 469 * lgroup, a new cpu will be chosen by cpu_choose when the thread 470 * is ready to run. 471 */ 472 if (CPU->cpu_part == &cp_default) 473 t->t_cpu = CPU; 474 else 475 t->t_cpu = disp_lowpri_cpu(cp_default.cp_cpulist, t->t_lpl, 476 t->t_pri, NULL); 477 478 t->t_disp_queue = t->t_cpu->cpu_disp; 479 kpreempt_enable(); 480 481 /* 482 * Initialize thread state and the dispatcher lock pointer. 483 * Need to hold onto pidlock to block allthreads walkers until 484 * the state is set. 485 */ 486 switch (state) { 487 case TS_RUN: 488 curthread->t_oldspl = splhigh(); /* get dispatcher spl */ 489 THREAD_SET_STATE(t, TS_STOPPED, &transition_lock); 490 CL_SETRUN(t); 491 thread_unlock(t); 492 break; 493 494 case TS_ONPROC: 495 THREAD_ONPROC(t, t->t_cpu); 496 break; 497 498 case TS_FREE: 499 /* 500 * Free state will be used for intr threads. 501 * The interrupt routine must set the thread dispatcher 502 * lock pointer (t_lockp) if starting on a CPU 503 * other than the current one. 504 */ 505 THREAD_FREEINTR(t, CPU); 506 break; 507 508 case TS_STOPPED: 509 THREAD_SET_STATE(t, TS_STOPPED, &stop_lock); 510 break; 511 512 default: /* TS_SLEEP, TS_ZOMB or TS_TRANS */ 513 cmn_err(CE_PANIC, "thread_create: invalid state %d", state); 514 } 515 mutex_exit(&pidlock); 516 return (t); 517 } 518 519 /* 520 * Move thread to project0 and take care of project reference counters. 521 */ 522 void 523 thread_rele(kthread_t *t) 524 { 525 kproject_t *kpj; 526 527 thread_lock(t); 528 529 ASSERT(t == curthread || t->t_state == TS_FREE || t->t_procp == &p0); 530 kpj = ttoproj(t); 531 t->t_proj = proj0p; 532 533 thread_unlock(t); 534 535 if (kpj != proj0p) { 536 project_rele(kpj); 537 (void) project_hold(proj0p); 538 } 539 } 540 541 542 void (*ip_cleanup_func)(void); 543 544 void 545 thread_exit() 546 { 547 kthread_t *t = curthread; 548 549 if ((t->t_proc_flag & TP_ZTHREAD) != 0) 550 cmn_err(CE_PANIC, "thread_exit: zthread_exit() not called"); 551 552 if (ip_cleanup_func != NULL) 553 (*ip_cleanup_func)(); 554 555 tsd_exit(); /* Clean up this thread's TSD */ 556 557 kcpc_passivate(); /* clean up performance counter state */ 558 559 /* 560 * No kernel thread should have called poll() without arranging 561 * calling pollcleanup() here. 562 */ 563 ASSERT(t->t_pollstate == NULL); 564 ASSERT(t->t_schedctl == NULL); 565 if (t->t_door) 566 door_slam(); /* in case thread did an upcall */ 567 568 #ifndef NPROBE 569 /* Kernel probe */ 570 if (t->t_tnf_tpdp) 571 tnf_thread_exit(); 572 #endif /* NPROBE */ 573 574 thread_rele(t); 575 t->t_preempt++; 576 577 /* 578 * remove thread from the all threads list so that 579 * death-row can use the same pointers. 580 */ 581 mutex_enter(&pidlock); 582 t->t_next->t_prev = t->t_prev; 583 t->t_prev->t_next = t->t_next; 584 ASSERT(allthreads != t); /* t0 never exits */ 585 cv_broadcast(&t->t_joincv); /* wake up anyone in thread_join */ 586 mutex_exit(&pidlock); 587 588 if (t->t_ctx != NULL) 589 exitctx(t); 590 if (t->t_procp->p_pctx != NULL) 591 exitpctx(t->t_procp); 592 593 t->t_state = TS_ZOMB; /* set zombie thread */ 594 595 swtch_from_zombie(); /* give up the CPU */ 596 /* NOTREACHED */ 597 } 598 599 /* 600 * Check to see if the specified thread is active (defined as being on 601 * the thread list). This is certainly a slow way to do this; if there's 602 * ever a reason to speed it up, we could maintain a hash table of active 603 * threads indexed by their t_did. 604 */ 605 static kthread_t * 606 did_to_thread(kt_did_t tid) 607 { 608 kthread_t *t; 609 610 ASSERT(MUTEX_HELD(&pidlock)); 611 for (t = curthread->t_next; t != curthread; t = t->t_next) { 612 if (t->t_did == tid) 613 break; 614 } 615 if (t->t_did == tid) 616 return (t); 617 else 618 return (NULL); 619 } 620 621 /* 622 * Wait for specified thread to exit. Returns immediately if the thread 623 * could not be found, meaning that it has either already exited or never 624 * existed. 625 */ 626 void 627 thread_join(kt_did_t tid) 628 { 629 kthread_t *t; 630 631 ASSERT(tid != curthread->t_did); 632 ASSERT(tid != t0.t_did); 633 634 mutex_enter(&pidlock); 635 /* 636 * Make sure we check that the thread is on the thread list 637 * before blocking on it; otherwise we could end up blocking on 638 * a cv that's already been freed. In other words, don't cache 639 * the thread pointer across calls to cv_wait. 640 * 641 * The choice of loop invariant means that whenever a thread 642 * is taken off the allthreads list, a cv_broadcast must be 643 * performed on that thread's t_joincv to wake up any waiters. 644 * The broadcast doesn't have to happen right away, but it 645 * shouldn't be postponed indefinitely (e.g., by doing it in 646 * thread_free which may only be executed when the deathrow 647 * queue is processed. 648 */ 649 while (t = did_to_thread(tid)) 650 cv_wait(&t->t_joincv, &pidlock); 651 mutex_exit(&pidlock); 652 } 653 654 void 655 thread_free(kthread_t *t) 656 { 657 ASSERT(t != &t0 && t->t_state == TS_FREE); 658 ASSERT(t->t_door == NULL); 659 ASSERT(t->t_schedctl == NULL); 660 ASSERT(t->t_pollstate == NULL); 661 662 t->t_pri = 0; 663 t->t_pc = 0; 664 t->t_sp = 0; 665 t->t_wchan0 = NULL; 666 t->t_wchan = NULL; 667 if (t->t_cred != NULL) { 668 crfree(t->t_cred); 669 t->t_cred = 0; 670 } 671 if (t->t_pdmsg) { 672 kmem_free(t->t_pdmsg, strlen(t->t_pdmsg) + 1); 673 t->t_pdmsg = NULL; 674 } 675 #ifdef C2_AUDIT 676 if (audit_active) 677 audit_thread_free(t); 678 #endif 679 #ifndef NPROBE 680 if (t->t_tnf_tpdp) 681 tnf_thread_free(t); 682 #endif /* NPROBE */ 683 if (t->t_cldata) { 684 CL_EXITCLASS(t->t_cid, (caddr_t *)t->t_cldata); 685 } 686 if (t->t_rprof != NULL) { 687 kmem_free(t->t_rprof, sizeof (*t->t_rprof)); 688 t->t_rprof = NULL; 689 } 690 t->t_lockp = NULL; /* nothing should try to lock this thread now */ 691 if (t->t_lwp) 692 lwp_freeregs(t->t_lwp, 0); 693 if (t->t_ctx) 694 freectx(t, 0); 695 if (t->t_procp->p_pctx) 696 freepctx(t->t_procp, 0); 697 t->t_stk = NULL; 698 if (t->t_lwp) 699 lwp_stk_fini(t->t_lwp); 700 lock_clear(&t->t_lock); 701 702 if (t->t_ts->ts_waiters > 0) 703 panic("thread_free: turnstile still active"); 704 705 kmem_cache_free(turnstile_cache, t->t_ts); 706 707 free_afd(&t->t_activefd); 708 709 /* 710 * Barrier for clock thread. The clock holds this lock to 711 * keep the thread from going away while it's looking at it. 712 */ 713 mutex_enter(&thread_free_lock); 714 mutex_exit(&thread_free_lock); 715 716 ASSERT(ttoproj(t) == proj0p); 717 project_rele(ttoproj(t)); 718 719 lgrp_affinity_free(&t->t_lgrp_affinity); 720 721 /* 722 * Free thread struct and its stack. 723 */ 724 if (t->t_flag & T_TALLOCSTK) { 725 /* thread struct is embedded in stack */ 726 segkp_release(segkp, t->t_swap); 727 mutex_enter(&pidlock); 728 nthread--; 729 mutex_exit(&pidlock); 730 } else { 731 if (t->t_swap) { 732 segkp_release(segkp, t->t_swap); 733 t->t_swap = NULL; 734 } 735 if (t->t_lwp) { 736 kmem_cache_free(lwp_cache, t->t_lwp); 737 t->t_lwp = NULL; 738 } 739 mutex_enter(&pidlock); 740 nthread--; 741 mutex_exit(&pidlock); 742 kmem_cache_free(thread_cache, t); 743 } 744 } 745 746 /* 747 * Removes threads associated with the given zone from a deathrow queue. 748 * tp is a pointer to the head of the deathrow queue, and countp is a 749 * pointer to the current deathrow count. Returns a linked list of 750 * threads removed from the list. 751 */ 752 static kthread_t * 753 thread_zone_cleanup(kthread_t **tp, int *countp, zoneid_t zoneid) 754 { 755 kthread_t *tmp, *list = NULL; 756 cred_t *cr; 757 758 ASSERT(MUTEX_HELD(&reaplock)); 759 while (*tp != NULL) { 760 if ((cr = (*tp)->t_cred) != NULL && crgetzoneid(cr) == zoneid) { 761 tmp = *tp; 762 *tp = tmp->t_forw; 763 tmp->t_forw = list; 764 list = tmp; 765 (*countp)--; 766 } else { 767 tp = &(*tp)->t_forw; 768 } 769 } 770 return (list); 771 } 772 773 static void 774 thread_reap_list(kthread_t *t) 775 { 776 kthread_t *next; 777 778 while (t != NULL) { 779 next = t->t_forw; 780 thread_free(t); 781 t = next; 782 } 783 } 784 785 /* ARGSUSED */ 786 static void 787 thread_zone_destroy(zoneid_t zoneid, void *unused) 788 { 789 kthread_t *t, *l; 790 791 mutex_enter(&reaplock); 792 /* 793 * Pull threads and lwps associated with zone off deathrow lists. 794 */ 795 t = thread_zone_cleanup(&thread_deathrow, &thread_reapcnt, zoneid); 796 l = thread_zone_cleanup(&lwp_deathrow, &lwp_reapcnt, zoneid); 797 mutex_exit(&reaplock); 798 799 /* 800 * Reap threads 801 */ 802 thread_reap_list(t); 803 804 /* 805 * Reap lwps 806 */ 807 thread_reap_list(l); 808 } 809 810 /* 811 * cleanup zombie threads that are on deathrow. 812 */ 813 void 814 thread_reaper() 815 { 816 kthread_t *t, *l; 817 callb_cpr_t cprinfo; 818 819 /* 820 * Register callback to clean up threads when zone is destroyed. 821 */ 822 zone_key_create(&zone_thread_key, NULL, NULL, thread_zone_destroy); 823 824 CALLB_CPR_INIT(&cprinfo, &reaplock, callb_generic_cpr, "t_reaper"); 825 for (;;) { 826 mutex_enter(&reaplock); 827 while (thread_deathrow == NULL && lwp_deathrow == NULL) { 828 CALLB_CPR_SAFE_BEGIN(&cprinfo); 829 cv_wait(&reaper_cv, &reaplock); 830 CALLB_CPR_SAFE_END(&cprinfo, &reaplock); 831 } 832 t = thread_deathrow; 833 l = lwp_deathrow; 834 thread_deathrow = NULL; 835 lwp_deathrow = NULL; 836 thread_reapcnt = 0; 837 lwp_reapcnt = 0; 838 mutex_exit(&reaplock); 839 840 /* 841 * Reap threads 842 */ 843 thread_reap_list(t); 844 845 /* 846 * Reap lwps 847 */ 848 thread_reap_list(l); 849 } 850 } 851 852 /* 853 * This is called by resume() to put a zombie thread onto deathrow. 854 * The thread's state is changed to TS_FREE to indicate that is reapable. 855 * This is called from the idle thread so it must not block (just spin). 856 */ 857 void 858 reapq_add(kthread_t *t) 859 { 860 mutex_enter(&reaplock); 861 862 /* 863 * lwp_deathrow contains only threads with lwp linkage 864 * that are of the default stacksize. Anything else goes 865 * on thread_deathrow. 866 */ 867 if (ttolwp(t) && (t->t_flag & T_DFLTSTK)) { 868 t->t_forw = lwp_deathrow; 869 lwp_deathrow = t; 870 lwp_reapcnt++; 871 } else { 872 t->t_forw = thread_deathrow; 873 thread_deathrow = t; 874 thread_reapcnt++; 875 } 876 if (lwp_reapcnt + thread_reapcnt > reaplimit) 877 cv_signal(&reaper_cv); /* wake the reaper */ 878 t->t_state = TS_FREE; 879 lock_clear(&t->t_lock); 880 mutex_exit(&reaplock); 881 } 882 883 /* 884 * Install thread context ops for the current thread. 885 */ 886 void 887 installctx( 888 kthread_t *t, 889 void *arg, 890 void (*save)(void *), 891 void (*restore)(void *), 892 void (*fork)(void *, void *), 893 void (*lwp_create)(void *, void *), 894 void (*exit)(void *), 895 void (*free)(void *, int)) 896 { 897 struct ctxop *ctx; 898 899 ctx = kmem_alloc(sizeof (struct ctxop), KM_SLEEP); 900 ctx->save_op = save; 901 ctx->restore_op = restore; 902 ctx->fork_op = fork; 903 ctx->lwp_create_op = lwp_create; 904 ctx->exit_op = exit; 905 ctx->free_op = free; 906 ctx->arg = arg; 907 ctx->next = t->t_ctx; 908 t->t_ctx = ctx; 909 } 910 911 /* 912 * Remove the thread context ops from a thread. 913 */ 914 int 915 removectx( 916 kthread_t *t, 917 void *arg, 918 void (*save)(void *), 919 void (*restore)(void *), 920 void (*fork)(void *, void *), 921 void (*lwp_create)(void *, void *), 922 void (*exit)(void *), 923 void (*free)(void *, int)) 924 { 925 struct ctxop *ctx, *prev_ctx; 926 927 /* 928 * The incoming kthread_t (which is the thread for which the 929 * context ops will be removed) should be one of the following: 930 * 931 * a) the current thread, 932 * 933 * b) a thread of a process that's being forked (SIDL), 934 * 935 * c) a thread that belongs to the same process as the current 936 * thread and for which the current thread is the agent thread, 937 * 938 * d) a thread that is TS_STOPPED which is indicative of it 939 * being (if curthread is not an agent) a thread being created 940 * as part of an lwp creation. 941 */ 942 ASSERT(t == curthread || ttoproc(t)->p_stat == SIDL || 943 ttoproc(t)->p_agenttp == curthread || t->t_state == TS_STOPPED); 944 945 /* 946 * Serialize modifications to t->t_ctx to prevent the agent thread 947 * and the target thread from racing with each other during lwp exit. 948 */ 949 mutex_enter(&t->t_ctx_lock); 950 prev_ctx = NULL; 951 for (ctx = t->t_ctx; ctx != NULL; ctx = ctx->next) { 952 if (ctx->save_op == save && ctx->restore_op == restore && 953 ctx->fork_op == fork && ctx->lwp_create_op == lwp_create && 954 ctx->exit_op == exit && ctx->free_op == free && 955 ctx->arg == arg) { 956 if (prev_ctx) 957 prev_ctx->next = ctx->next; 958 else 959 t->t_ctx = ctx->next; 960 mutex_exit(&t->t_ctx_lock); 961 if (ctx->free_op != NULL) 962 (ctx->free_op)(ctx->arg, 0); 963 kmem_free(ctx, sizeof (struct ctxop)); 964 return (1); 965 } 966 prev_ctx = ctx; 967 } 968 mutex_exit(&t->t_ctx_lock); 969 970 return (0); 971 } 972 973 void 974 savectx(kthread_t *t) 975 { 976 struct ctxop *ctx; 977 978 ASSERT(t == curthread); 979 for (ctx = t->t_ctx; ctx != 0; ctx = ctx->next) 980 if (ctx->save_op != NULL) 981 (ctx->save_op)(ctx->arg); 982 } 983 984 void 985 restorectx(kthread_t *t) 986 { 987 struct ctxop *ctx; 988 989 ASSERT(t == curthread); 990 for (ctx = t->t_ctx; ctx != 0; ctx = ctx->next) 991 if (ctx->restore_op != NULL) 992 (ctx->restore_op)(ctx->arg); 993 } 994 995 void 996 forkctx(kthread_t *t, kthread_t *ct) 997 { 998 struct ctxop *ctx; 999 1000 for (ctx = t->t_ctx; ctx != NULL; ctx = ctx->next) 1001 if (ctx->fork_op != NULL) 1002 (ctx->fork_op)(t, ct); 1003 } 1004 1005 /* 1006 * Note that this operator is only invoked via the _lwp_create 1007 * system call. The system may have other reasons to create lwps 1008 * e.g. the agent lwp or the doors unreferenced lwp. 1009 */ 1010 void 1011 lwp_createctx(kthread_t *t, kthread_t *ct) 1012 { 1013 struct ctxop *ctx; 1014 1015 for (ctx = t->t_ctx; ctx != NULL; ctx = ctx->next) 1016 if (ctx->lwp_create_op != NULL) 1017 (ctx->lwp_create_op)(t, ct); 1018 } 1019 1020 /* 1021 * exitctx is called from thread_exit() and lwp_exit() to perform any actions 1022 * needed when the thread/LWP leaves the processor for the last time. This 1023 * routine is not intended to deal with freeing memory; freectx() is used for 1024 * that purpose during thread_free(). This routine is provided to allow for 1025 * clean-up that can't wait until thread_free(). 1026 */ 1027 void 1028 exitctx(kthread_t *t) 1029 { 1030 struct ctxop *ctx; 1031 1032 for (ctx = t->t_ctx; ctx != NULL; ctx = ctx->next) 1033 if (ctx->exit_op != NULL) 1034 (ctx->exit_op)(t); 1035 } 1036 1037 /* 1038 * freectx is called from thread_free() and exec() to get 1039 * rid of old thread context ops. 1040 */ 1041 void 1042 freectx(kthread_t *t, int isexec) 1043 { 1044 struct ctxop *ctx; 1045 1046 while ((ctx = t->t_ctx) != NULL) { 1047 t->t_ctx = ctx->next; 1048 if (ctx->free_op != NULL) 1049 (ctx->free_op)(ctx->arg, isexec); 1050 kmem_free(ctx, sizeof (struct ctxop)); 1051 } 1052 } 1053 1054 /* 1055 * Set the thread running; arrange for it to be swapped in if necessary. 1056 */ 1057 void 1058 setrun_locked(kthread_t *t) 1059 { 1060 ASSERT(THREAD_LOCK_HELD(t)); 1061 if (t->t_state == TS_SLEEP) { 1062 /* 1063 * Take off sleep queue. 1064 */ 1065 SOBJ_UNSLEEP(t->t_sobj_ops, t); 1066 } else if (t->t_state & (TS_RUN | TS_ONPROC)) { 1067 /* 1068 * Already on dispatcher queue. 1069 */ 1070 return; 1071 } else if (t->t_state == TS_STOPPED) { 1072 /* 1073 * All of the sending of SIGCONT (TC_XSTART) and /proc 1074 * (TC_PSTART) and lwp_continue() (TC_CSTART) must have 1075 * requested that the thread be run. 1076 * Just calling setrun() is not sufficient to set a stopped 1077 * thread running. TP_TXSTART is always set if the thread 1078 * is not stopped by a jobcontrol stop signal. 1079 * TP_TPSTART is always set if /proc is not controlling it. 1080 * TP_TCSTART is always set if lwp_suspend() didn't stop it. 1081 * The thread won't be stopped unless one of these 1082 * three mechanisms did it. 1083 * 1084 * These flags must be set before calling setrun_locked(t). 1085 * They can't be passed as arguments because the streams 1086 * code calls setrun() indirectly and the mechanism for 1087 * doing so admits only one argument. Note that the 1088 * thread must be locked in order to change t_schedflags. 1089 */ 1090 if ((t->t_schedflag & TS_ALLSTART) != TS_ALLSTART) 1091 return; 1092 /* 1093 * Process is no longer stopped (a thread is running). 1094 */ 1095 t->t_whystop = 0; 1096 t->t_whatstop = 0; 1097 /* 1098 * Strictly speaking, we do not have to clear these 1099 * flags here; they are cleared on entry to stop(). 1100 * However, they are confusing when doing kernel 1101 * debugging or when they are revealed by ps(1). 1102 */ 1103 t->t_schedflag &= ~TS_ALLSTART; 1104 THREAD_TRANSITION(t); /* drop stopped-thread lock */ 1105 ASSERT(t->t_lockp == &transition_lock); 1106 ASSERT(t->t_wchan0 == NULL && t->t_wchan == NULL); 1107 /* 1108 * Let the class put the process on the dispatcher queue. 1109 */ 1110 CL_SETRUN(t); 1111 } 1112 1113 1114 } 1115 1116 void 1117 setrun(kthread_t *t) 1118 { 1119 thread_lock(t); 1120 setrun_locked(t); 1121 thread_unlock(t); 1122 } 1123 1124 /* 1125 * Unpin an interrupted thread. 1126 * When an interrupt occurs, the interrupt is handled on the stack 1127 * of an interrupt thread, taken from a pool linked to the CPU structure. 1128 * 1129 * When swtch() is switching away from an interrupt thread because it 1130 * blocked or was preempted, this routine is called to complete the 1131 * saving of the interrupted thread state, and returns the interrupted 1132 * thread pointer so it may be resumed. 1133 * 1134 * Called by swtch() only at high spl. 1135 */ 1136 kthread_t * 1137 thread_unpin() 1138 { 1139 kthread_t *t = curthread; /* current thread */ 1140 kthread_t *itp; /* interrupted thread */ 1141 int i; /* interrupt level */ 1142 extern int intr_passivate(); 1143 1144 ASSERT(t->t_intr != NULL); 1145 1146 itp = t->t_intr; /* interrupted thread */ 1147 t->t_intr = NULL; /* clear interrupt ptr */ 1148 1149 /* 1150 * Get state from interrupt thread for the one 1151 * it interrupted. 1152 */ 1153 1154 i = intr_passivate(t, itp); 1155 1156 TRACE_5(TR_FAC_INTR, TR_INTR_PASSIVATE, 1157 "intr_passivate:level %d curthread %p (%T) ithread %p (%T)", 1158 i, t, t, itp, itp); 1159 1160 /* 1161 * Dissociate the current thread from the interrupted thread's LWP. 1162 */ 1163 t->t_lwp = NULL; 1164 1165 /* 1166 * Interrupt handlers above the level that spinlocks block must 1167 * not block. 1168 */ 1169 #if DEBUG 1170 if (i < 0 || i > LOCK_LEVEL) 1171 cmn_err(CE_PANIC, "thread_unpin: ipl out of range %x", i); 1172 #endif 1173 1174 /* 1175 * Compute the CPU's base interrupt level based on the active 1176 * interrupts. 1177 */ 1178 ASSERT(CPU->cpu_intr_actv & (1 << i)); 1179 set_base_spl(); 1180 1181 return (itp); 1182 } 1183 1184 /* 1185 * Create and initialize an interrupt thread. 1186 * Returns non-zero on error. 1187 * Called at spl7() or better. 1188 */ 1189 void 1190 thread_create_intr(struct cpu *cp) 1191 { 1192 kthread_t *tp; 1193 1194 tp = thread_create(NULL, 0, 1195 (void (*)())thread_create_intr, NULL, 0, &p0, TS_ONPROC, 0); 1196 1197 /* 1198 * Set the thread in the TS_FREE state. The state will change 1199 * to TS_ONPROC only while the interrupt is active. Think of these 1200 * as being on a private free list for the CPU. Being TS_FREE keeps 1201 * inactive interrupt threads out of debugger thread lists. 1202 * 1203 * We cannot call thread_create with TS_FREE because of the current 1204 * checks there for ONPROC. Fix this when thread_create takes flags. 1205 */ 1206 THREAD_FREEINTR(tp, cp); 1207 1208 /* 1209 * Nobody should ever reference the credentials of an interrupt 1210 * thread so make it NULL to catch any such references. 1211 */ 1212 tp->t_cred = NULL; 1213 tp->t_flag |= T_INTR_THREAD; 1214 tp->t_cpu = cp; 1215 tp->t_bound_cpu = cp; 1216 tp->t_disp_queue = cp->cpu_disp; 1217 tp->t_affinitycnt = 1; 1218 tp->t_preempt = 1; 1219 1220 /* 1221 * Don't make a user-requested binding on this thread so that 1222 * the processor can be offlined. 1223 */ 1224 tp->t_bind_cpu = PBIND_NONE; /* no USER-requested binding */ 1225 tp->t_bind_pset = PS_NONE; 1226 1227 #if defined(__i386) || defined(__amd64) 1228 tp->t_stk -= STACK_ALIGN; 1229 *(tp->t_stk) = 0; /* terminate intr thread stack */ 1230 #endif 1231 1232 /* 1233 * Link onto CPU's interrupt pool. 1234 */ 1235 tp->t_link = cp->cpu_intr_thread; 1236 cp->cpu_intr_thread = tp; 1237 } 1238 1239 /* 1240 * TSD -- THREAD SPECIFIC DATA 1241 */ 1242 static kmutex_t tsd_mutex; /* linked list spin lock */ 1243 static uint_t tsd_nkeys; /* size of destructor array */ 1244 /* per-key destructor funcs */ 1245 static void (**tsd_destructor)(void *); 1246 /* list of tsd_thread's */ 1247 static struct tsd_thread *tsd_list; 1248 1249 /* 1250 * Default destructor 1251 * Needed because NULL destructor means that the key is unused 1252 */ 1253 /* ARGSUSED */ 1254 void 1255 tsd_defaultdestructor(void *value) 1256 {} 1257 1258 /* 1259 * Create a key (index into per thread array) 1260 * Locks out tsd_create, tsd_destroy, and tsd_exit 1261 * May allocate memory with lock held 1262 */ 1263 void 1264 tsd_create(uint_t *keyp, void (*destructor)(void *)) 1265 { 1266 int i; 1267 uint_t nkeys; 1268 1269 /* 1270 * if key is allocated, do nothing 1271 */ 1272 mutex_enter(&tsd_mutex); 1273 if (*keyp) { 1274 mutex_exit(&tsd_mutex); 1275 return; 1276 } 1277 /* 1278 * find an unused key 1279 */ 1280 if (destructor == NULL) 1281 destructor = tsd_defaultdestructor; 1282 1283 for (i = 0; i < tsd_nkeys; ++i) 1284 if (tsd_destructor[i] == NULL) 1285 break; 1286 1287 /* 1288 * if no unused keys, increase the size of the destructor array 1289 */ 1290 if (i == tsd_nkeys) { 1291 if ((nkeys = (tsd_nkeys << 1)) == 0) 1292 nkeys = 1; 1293 tsd_destructor = 1294 (void (**)(void *))tsd_realloc((void *)tsd_destructor, 1295 (size_t)(tsd_nkeys * sizeof (void (*)(void *))), 1296 (size_t)(nkeys * sizeof (void (*)(void *)))); 1297 tsd_nkeys = nkeys; 1298 } 1299 1300 /* 1301 * allocate the next available unused key 1302 */ 1303 tsd_destructor[i] = destructor; 1304 *keyp = i + 1; 1305 mutex_exit(&tsd_mutex); 1306 } 1307 1308 /* 1309 * Destroy a key -- this is for unloadable modules 1310 * 1311 * Assumes that the caller is preventing tsd_set and tsd_get 1312 * Locks out tsd_create, tsd_destroy, and tsd_exit 1313 * May free memory with lock held 1314 */ 1315 void 1316 tsd_destroy(uint_t *keyp) 1317 { 1318 uint_t key; 1319 struct tsd_thread *tsd; 1320 1321 /* 1322 * protect the key namespace and our destructor lists 1323 */ 1324 mutex_enter(&tsd_mutex); 1325 key = *keyp; 1326 *keyp = 0; 1327 1328 ASSERT(key <= tsd_nkeys); 1329 1330 /* 1331 * if the key is valid 1332 */ 1333 if (key != 0) { 1334 uint_t k = key - 1; 1335 /* 1336 * for every thread with TSD, call key's destructor 1337 */ 1338 for (tsd = tsd_list; tsd; tsd = tsd->ts_next) { 1339 /* 1340 * no TSD for key in this thread 1341 */ 1342 if (key > tsd->ts_nkeys) 1343 continue; 1344 /* 1345 * call destructor for key 1346 */ 1347 if (tsd->ts_value[k] && tsd_destructor[k]) 1348 (*tsd_destructor[k])(tsd->ts_value[k]); 1349 /* 1350 * reset value for key 1351 */ 1352 tsd->ts_value[k] = NULL; 1353 } 1354 /* 1355 * actually free the key (NULL destructor == unused) 1356 */ 1357 tsd_destructor[k] = NULL; 1358 } 1359 1360 mutex_exit(&tsd_mutex); 1361 } 1362 1363 /* 1364 * Quickly return the per thread value that was stored with the specified key 1365 * Assumes the caller is protecting key from tsd_create and tsd_destroy 1366 */ 1367 void * 1368 tsd_get(uint_t key) 1369 { 1370 return (tsd_agent_get(curthread, key)); 1371 } 1372 1373 /* 1374 * Set a per thread value indexed with the specified key 1375 */ 1376 int 1377 tsd_set(uint_t key, void *value) 1378 { 1379 return (tsd_agent_set(curthread, key, value)); 1380 } 1381 1382 /* 1383 * Like tsd_get(), except that the agent lwp can get the tsd of 1384 * another thread in the same process (the agent thread only runs when the 1385 * process is completely stopped by /proc), or syslwp is creating a new lwp. 1386 */ 1387 void * 1388 tsd_agent_get(kthread_t *t, uint_t key) 1389 { 1390 struct tsd_thread *tsd = t->t_tsd; 1391 1392 ASSERT(t == curthread || 1393 ttoproc(t)->p_agenttp == curthread || t->t_state == TS_STOPPED); 1394 1395 if (key && tsd != NULL && key <= tsd->ts_nkeys) 1396 return (tsd->ts_value[key - 1]); 1397 return (NULL); 1398 } 1399 1400 /* 1401 * Like tsd_set(), except that the agent lwp can set the tsd of 1402 * another thread in the same process, or syslwp can set the tsd 1403 * of a thread it's in the middle of creating. 1404 * 1405 * Assumes the caller is protecting key from tsd_create and tsd_destroy 1406 * May lock out tsd_destroy (and tsd_create), may allocate memory with 1407 * lock held 1408 */ 1409 int 1410 tsd_agent_set(kthread_t *t, uint_t key, void *value) 1411 { 1412 struct tsd_thread *tsd = t->t_tsd; 1413 1414 ASSERT(t == curthread || 1415 ttoproc(t)->p_agenttp == curthread || t->t_state == TS_STOPPED); 1416 1417 if (key == 0) 1418 return (EINVAL); 1419 if (tsd == NULL) 1420 tsd = t->t_tsd = kmem_zalloc(sizeof (*tsd), KM_SLEEP); 1421 if (key <= tsd->ts_nkeys) { 1422 tsd->ts_value[key - 1] = value; 1423 return (0); 1424 } 1425 1426 ASSERT(key <= tsd_nkeys); 1427 1428 /* 1429 * lock out tsd_destroy() 1430 */ 1431 mutex_enter(&tsd_mutex); 1432 if (tsd->ts_nkeys == 0) { 1433 /* 1434 * Link onto list of threads with TSD 1435 */ 1436 if ((tsd->ts_next = tsd_list) != NULL) 1437 tsd_list->ts_prev = tsd; 1438 tsd_list = tsd; 1439 } 1440 1441 /* 1442 * Allocate thread local storage and set the value for key 1443 */ 1444 tsd->ts_value = tsd_realloc(tsd->ts_value, 1445 tsd->ts_nkeys * sizeof (void *), 1446 key * sizeof (void *)); 1447 tsd->ts_nkeys = key; 1448 tsd->ts_value[key - 1] = value; 1449 mutex_exit(&tsd_mutex); 1450 1451 return (0); 1452 } 1453 1454 1455 /* 1456 * Return the per thread value that was stored with the specified key 1457 * If necessary, create the key and the value 1458 * Assumes the caller is protecting *keyp from tsd_destroy 1459 */ 1460 void * 1461 tsd_getcreate(uint_t *keyp, void (*destroy)(void *), void *(*allocate)(void)) 1462 { 1463 void *value; 1464 uint_t key = *keyp; 1465 struct tsd_thread *tsd = curthread->t_tsd; 1466 1467 if (tsd == NULL) 1468 tsd = curthread->t_tsd = kmem_zalloc(sizeof (*tsd), KM_SLEEP); 1469 if (key && key <= tsd->ts_nkeys && (value = tsd->ts_value[key - 1])) 1470 return (value); 1471 if (key == 0) 1472 tsd_create(keyp, destroy); 1473 (void) tsd_set(*keyp, value = (*allocate)()); 1474 1475 return (value); 1476 } 1477 1478 /* 1479 * Called from thread_exit() to run the destructor function for each tsd 1480 * Locks out tsd_create and tsd_destroy 1481 * Assumes that the destructor *DOES NOT* use tsd 1482 */ 1483 void 1484 tsd_exit(void) 1485 { 1486 int i; 1487 struct tsd_thread *tsd = curthread->t_tsd; 1488 1489 if (tsd == NULL) 1490 return; 1491 1492 if (tsd->ts_nkeys == 0) { 1493 kmem_free(tsd, sizeof (*tsd)); 1494 curthread->t_tsd = NULL; 1495 return; 1496 } 1497 1498 /* 1499 * lock out tsd_create and tsd_destroy, call 1500 * the destructor, and mark the value as destroyed. 1501 */ 1502 mutex_enter(&tsd_mutex); 1503 1504 for (i = 0; i < tsd->ts_nkeys; i++) { 1505 if (tsd->ts_value[i] && tsd_destructor[i]) 1506 (*tsd_destructor[i])(tsd->ts_value[i]); 1507 tsd->ts_value[i] = NULL; 1508 } 1509 1510 /* 1511 * remove from linked list of threads with TSD 1512 */ 1513 if (tsd->ts_next) 1514 tsd->ts_next->ts_prev = tsd->ts_prev; 1515 if (tsd->ts_prev) 1516 tsd->ts_prev->ts_next = tsd->ts_next; 1517 if (tsd_list == tsd) 1518 tsd_list = tsd->ts_next; 1519 1520 mutex_exit(&tsd_mutex); 1521 1522 /* 1523 * free up the TSD 1524 */ 1525 kmem_free(tsd->ts_value, tsd->ts_nkeys * sizeof (void *)); 1526 kmem_free(tsd, sizeof (struct tsd_thread)); 1527 curthread->t_tsd = NULL; 1528 } 1529 1530 /* 1531 * realloc 1532 */ 1533 static void * 1534 tsd_realloc(void *old, size_t osize, size_t nsize) 1535 { 1536 void *new; 1537 1538 new = kmem_zalloc(nsize, KM_SLEEP); 1539 if (old) { 1540 bcopy(old, new, osize); 1541 kmem_free(old, osize); 1542 } 1543 return (new); 1544 } 1545 1546 /* 1547 * Check to see if an interrupt thread might be active at a given ipl. 1548 * If so return true. 1549 * We must be conservative--it is ok to give a false yes, but a false no 1550 * will cause disaster. (But if the situation changes after we check it is 1551 * ok--the caller is trying to ensure that an interrupt routine has been 1552 * exited). 1553 * This is used when trying to remove an interrupt handler from an autovector 1554 * list in avintr.c. 1555 */ 1556 int 1557 intr_active(struct cpu *cp, int level) 1558 { 1559 if (level <= LOCK_LEVEL) 1560 return (cp->cpu_thread != cp->cpu_dispthread); 1561 else 1562 return (CPU_ON_INTR(cp)); 1563 } 1564 1565 /* 1566 * Return non-zero if an interrupt is being serviced. 1567 */ 1568 int 1569 servicing_interrupt() 1570 { 1571 int onintr = 0; 1572 1573 /* Are we an interrupt thread */ 1574 if (curthread->t_flag & T_INTR_THREAD) 1575 return (1); 1576 /* Are we servicing a high level interrupt? */ 1577 if (CPU_ON_INTR(CPU)) { 1578 kpreempt_disable(); 1579 onintr = CPU_ON_INTR(CPU); 1580 kpreempt_enable(); 1581 } 1582 return (onintr); 1583 } 1584 1585 1586 /* 1587 * Change the dispatch priority of a thread in the system. 1588 * Used when raising or lowering a thread's priority. 1589 * (E.g., priority inheritance) 1590 * 1591 * Since threads are queued according to their priority, we 1592 * we must check the thread's state to determine whether it 1593 * is on a queue somewhere. If it is, we've got to: 1594 * 1595 * o Dequeue the thread. 1596 * o Change its effective priority. 1597 * o Enqueue the thread. 1598 * 1599 * Assumptions: The thread whose priority we wish to change 1600 * must be locked before we call thread_change_(e)pri(). 1601 * The thread_change(e)pri() function doesn't drop the thread 1602 * lock--that must be done by its caller. 1603 */ 1604 void 1605 thread_change_epri(kthread_t *t, pri_t disp_pri) 1606 { 1607 uint_t state; 1608 1609 ASSERT(THREAD_LOCK_HELD(t)); 1610 1611 /* 1612 * If the inherited priority hasn't actually changed, 1613 * just return. 1614 */ 1615 if (t->t_epri == disp_pri) 1616 return; 1617 1618 state = t->t_state; 1619 1620 /* 1621 * If it's not on a queue, change the priority with 1622 * impunity. 1623 */ 1624 if ((state & (TS_SLEEP | TS_RUN)) == 0) { 1625 t->t_epri = disp_pri; 1626 1627 if (state == TS_ONPROC) { 1628 cpu_t *cp = t->t_disp_queue->disp_cpu; 1629 1630 if (t == cp->cpu_dispthread) 1631 cp->cpu_dispatch_pri = DISP_PRIO(t); 1632 } 1633 return; 1634 } 1635 1636 /* 1637 * It's either on a sleep queue or a run queue. 1638 */ 1639 if (state == TS_SLEEP) { 1640 1641 /* 1642 * Take the thread out of its sleep queue. 1643 * Change the inherited priority. 1644 * Re-enqueue the thread. 1645 * Each synchronization object exports a function 1646 * to do this in an appropriate manner. 1647 */ 1648 SOBJ_CHANGE_EPRI(t->t_sobj_ops, t, disp_pri); 1649 } else { 1650 /* 1651 * The thread is on a run queue. 1652 * Note: setbackdq() may not put the thread 1653 * back on the same run queue where it originally 1654 * resided. 1655 */ 1656 (void) dispdeq(t); 1657 t->t_epri = disp_pri; 1658 setbackdq(t); 1659 } 1660 } /* end of thread_change_epri */ 1661 1662 /* 1663 * Function: Change the t_pri field of a thread. 1664 * Side Effects: Adjust the thread ordering on a run queue 1665 * or sleep queue, if necessary. 1666 * Returns: 1 if the thread was on a run queue, else 0. 1667 */ 1668 int 1669 thread_change_pri(kthread_t *t, pri_t disp_pri, int front) 1670 { 1671 uint_t state; 1672 int on_rq = 0; 1673 1674 ASSERT(THREAD_LOCK_HELD(t)); 1675 1676 state = t->t_state; 1677 THREAD_WILLCHANGE_PRI(t, disp_pri); 1678 1679 /* 1680 * If it's not on a queue, change the priority with 1681 * impunity. 1682 */ 1683 if ((state & (TS_SLEEP | TS_RUN)) == 0) { 1684 t->t_pri = disp_pri; 1685 1686 if (state == TS_ONPROC) { 1687 cpu_t *cp = t->t_disp_queue->disp_cpu; 1688 1689 if (t == cp->cpu_dispthread) 1690 cp->cpu_dispatch_pri = DISP_PRIO(t); 1691 } 1692 return (0); 1693 } 1694 1695 /* 1696 * It's either on a sleep queue or a run queue. 1697 */ 1698 if (state == TS_SLEEP) { 1699 /* 1700 * If the priority has changed, take the thread out of 1701 * its sleep queue and change the priority. 1702 * Re-enqueue the thread. 1703 * Each synchronization object exports a function 1704 * to do this in an appropriate manner. 1705 */ 1706 if (disp_pri != t->t_pri) 1707 SOBJ_CHANGE_PRI(t->t_sobj_ops, t, disp_pri); 1708 } else { 1709 /* 1710 * The thread is on a run queue. 1711 * Note: setbackdq() may not put the thread 1712 * back on the same run queue where it originally 1713 * resided. 1714 * 1715 * We still requeue the thread even if the priority 1716 * is unchanged to preserve round-robin (and other) 1717 * effects between threads of the same priority. 1718 */ 1719 on_rq = dispdeq(t); 1720 ASSERT(on_rq); 1721 t->t_pri = disp_pri; 1722 if (front) { 1723 setfrontdq(t); 1724 } else { 1725 setbackdq(t); 1726 } 1727 } 1728 return (on_rq); 1729 } 1730