1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License, Version 1.0 only 6 * (the "License"). You may not use this file except in compliance 7 * with the License. 8 * 9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 10 * or http://www.opensolaris.org/os/licensing. 11 * See the License for the specific language governing permissions 12 * and limitations under the License. 13 * 14 * When distributing Covered Code, include this CDDL HEADER in each 15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 16 * If applicable, add the following below this CDDL HEADER, with the 17 * fields enclosed by brackets "[]" replaced with your own identifying 18 * information: Portions Copyright [yyyy] [name of copyright owner] 19 * 20 * CDDL HEADER END 21 */ 22 /* 23 * Copyright 2005 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 #include <sys/types.h> 30 #include <sys/param.h> 31 #include <sys/sysmacros.h> 32 #include <sys/cred.h> 33 #include <sys/proc.h> 34 #include <sys/strsubr.h> 35 #include <sys/priocntl.h> 36 #include <sys/class.h> 37 #include <sys/disp.h> 38 #include <sys/procset.h> 39 #include <sys/debug.h> 40 #include <sys/kmem.h> 41 #include <sys/errno.h> 42 #include <sys/systm.h> 43 #include <sys/schedctl.h> 44 #include <sys/vmsystm.h> 45 #include <sys/atomic.h> 46 #include <sys/project.h> 47 #include <sys/modctl.h> 48 #include <sys/fss.h> 49 #include <sys/fsspriocntl.h> 50 #include <sys/cpupart.h> 51 #include <sys/zone.h> 52 #include <vm/rm.h> 53 #include <vm/seg_kmem.h> 54 #include <sys/tnf_probe.h> 55 #include <sys/policy.h> 56 #include <sys/sdt.h> 57 58 /* 59 * FSS Data Structures: 60 * 61 * fsszone 62 * ----- ----- 63 * ----- | | | | 64 * | |-------->| |<------->| |<---->... 65 * | | ----- ----- 66 * | | ^ ^ ^ 67 * | |--- | \ \ 68 * ----- | | \ \ 69 * fsspset | | \ \ 70 * | | \ \ 71 * | ----- ----- ----- 72 * -->| |<--->| |<--->| | 73 * | | | | | | 74 * ----- ----- ----- 75 * fssproj 76 * 77 * 78 * That is, fsspsets contain a list of fsszone's that are currently active in 79 * the pset, and a list of fssproj's, corresponding to projects with runnable 80 * threads on the pset. fssproj's in turn point to the fsszone which they 81 * are a member of. 82 * 83 * An fssproj_t is removed when there are no threads in it. 84 * 85 * An fsszone_t is removed when there are no projects with threads in it. 86 * 87 * Projects in a zone compete with each other for cpu time, receiving cpu 88 * allocation within a zone proportional to fssproj->fssp_shares 89 * (project.cpu-shares); at a higher level zones compete with each other, 90 * receiving allocation in a pset proportional to fsszone->fssz_shares 91 * (zone.cpu-shares). See fss_decay_usage() for the precise formula. 92 */ 93 94 static pri_t fss_init(id_t, int, classfuncs_t **); 95 96 static struct sclass fss = { 97 "FSS", 98 fss_init, 99 0 100 }; 101 102 extern struct mod_ops mod_schedops; 103 104 /* 105 * Module linkage information for the kernel. 106 */ 107 static struct modlsched modlsched = { 108 &mod_schedops, "fair share scheduling class", &fss 109 }; 110 111 static struct modlinkage modlinkage = { 112 MODREV_1, (void *)&modlsched, NULL 113 }; 114 115 #define FSS_MAXUPRI 60 116 117 /* 118 * The fssproc_t structures are kept in an array of circular doubly linked 119 * lists. A hash on the thread pointer is used to determine which list each 120 * thread should be placed in. Each list has a dummy "head" which is never 121 * removed, so the list is never empty. fss_update traverses these lists to 122 * update the priorities of threads that have been waiting on the run queue. 123 */ 124 #define FSS_LISTS 16 /* number of lists, must be power of 2 */ 125 #define FSS_LIST_HASH(t) (((uintptr_t)(t) >> 9) & (FSS_LISTS - 1)) 126 #define FSS_LIST_NEXT(i) (((i) + 1) & (FSS_LISTS - 1)) 127 128 #define FSS_LIST_INSERT(fssproc) \ 129 { \ 130 int index = FSS_LIST_HASH(fssproc->fss_tp); \ 131 kmutex_t *lockp = &fss_listlock[index]; \ 132 fssproc_t *headp = &fss_listhead[index]; \ 133 mutex_enter(lockp); \ 134 fssproc->fss_next = headp->fss_next; \ 135 fssproc->fss_prev = headp; \ 136 headp->fss_next->fss_prev = fssproc; \ 137 headp->fss_next = fssproc; \ 138 mutex_exit(lockp); \ 139 } 140 141 #define FSS_LIST_DELETE(fssproc) \ 142 { \ 143 int index = FSS_LIST_HASH(fssproc->fss_tp); \ 144 kmutex_t *lockp = &fss_listlock[index]; \ 145 mutex_enter(lockp); \ 146 fssproc->fss_prev->fss_next = fssproc->fss_next; \ 147 fssproc->fss_next->fss_prev = fssproc->fss_prev; \ 148 mutex_exit(lockp); \ 149 } 150 151 #define FSS_TICK_COST 1000 /* tick cost for threads with nice level = 0 */ 152 153 /* 154 * Decay rate percentages are based on n/128 rather than n/100 so that 155 * calculations can avoid having to do an integer divide by 100 (divide 156 * by FSS_DECAY_BASE == 128 optimizes to an arithmetic shift). 157 * 158 * FSS_DECAY_MIN = 83/128 ~= 65% 159 * FSS_DECAY_MAX = 108/128 ~= 85% 160 * FSS_DECAY_USG = 96/128 ~= 75% 161 */ 162 #define FSS_DECAY_MIN 83 /* fsspri decay pct for threads w/ nice -20 */ 163 #define FSS_DECAY_MAX 108 /* fsspri decay pct for threads w/ nice +19 */ 164 #define FSS_DECAY_USG 96 /* fssusage decay pct for projects */ 165 #define FSS_DECAY_BASE 128 /* base for decay percentages above */ 166 167 #define FSS_NICE_MIN 0 168 #define FSS_NICE_MAX (2 * NZERO - 1) 169 #define FSS_NICE_RANGE (FSS_NICE_MAX - FSS_NICE_MIN + 1) 170 171 static int fss_nice_tick[FSS_NICE_RANGE]; 172 static int fss_nice_decay[FSS_NICE_RANGE]; 173 174 static pri_t fss_maxupri = FSS_MAXUPRI; /* maximum FSS user priority */ 175 static pri_t fss_maxumdpri; /* maximum user mode fss priority */ 176 static pri_t fss_maxglobpri; /* maximum global priority used by fss class */ 177 static pri_t fss_minglobpri; /* minimum global priority */ 178 179 static fssproc_t fss_listhead[FSS_LISTS]; 180 static kmutex_t fss_listlock[FSS_LISTS]; 181 182 static fsspset_t *fsspsets; 183 static kmutex_t fsspsets_lock; /* protects fsspsets */ 184 185 static id_t fss_cid; 186 187 static time_t fss_minrun = 2; /* t_pri becomes 59 within 2 secs */ 188 static time_t fss_minslp = 2; /* min time on sleep queue for hardswap */ 189 static int fss_quantum = 11; 190 191 static void fss_newpri(fssproc_t *); 192 static void fss_update(void *); 193 static int fss_update_list(int); 194 static void fss_change_priority(kthread_t *, fssproc_t *); 195 196 static int fss_admin(caddr_t, cred_t *); 197 static int fss_getclinfo(void *); 198 static int fss_parmsin(void *); 199 static int fss_parmsout(void *, pc_vaparms_t *); 200 static int fss_vaparmsin(void *, pc_vaparms_t *); 201 static int fss_vaparmsout(void *, pc_vaparms_t *); 202 static int fss_getclpri(pcpri_t *); 203 static int fss_alloc(void **, int); 204 static void fss_free(void *); 205 206 static int fss_enterclass(kthread_t *, id_t, void *, cred_t *, void *); 207 static void fss_exitclass(void *); 208 static int fss_canexit(kthread_t *, cred_t *); 209 static int fss_fork(kthread_t *, kthread_t *, void *); 210 static void fss_forkret(kthread_t *, kthread_t *); 211 static void fss_parmsget(kthread_t *, void *); 212 static int fss_parmsset(kthread_t *, void *, id_t, cred_t *); 213 static void fss_stop(kthread_t *, int, int); 214 static void fss_exit(kthread_t *); 215 static void fss_active(kthread_t *); 216 static void fss_inactive(kthread_t *); 217 static pri_t fss_swapin(kthread_t *, int); 218 static pri_t fss_swapout(kthread_t *, int); 219 static void fss_trapret(kthread_t *); 220 static void fss_preempt(kthread_t *); 221 static void fss_setrun(kthread_t *); 222 static void fss_sleep(kthread_t *); 223 static void fss_tick(kthread_t *); 224 static void fss_wakeup(kthread_t *); 225 static int fss_donice(kthread_t *, cred_t *, int, int *); 226 static pri_t fss_globpri(kthread_t *); 227 static void fss_yield(kthread_t *); 228 static void fss_nullsys(); 229 230 static struct classfuncs fss_classfuncs = { 231 /* class functions */ 232 fss_admin, 233 fss_getclinfo, 234 fss_parmsin, 235 fss_parmsout, 236 fss_vaparmsin, 237 fss_vaparmsout, 238 fss_getclpri, 239 fss_alloc, 240 fss_free, 241 242 /* thread functions */ 243 fss_enterclass, 244 fss_exitclass, 245 fss_canexit, 246 fss_fork, 247 fss_forkret, 248 fss_parmsget, 249 fss_parmsset, 250 fss_stop, 251 fss_exit, 252 fss_active, 253 fss_inactive, 254 fss_swapin, 255 fss_swapout, 256 fss_trapret, 257 fss_preempt, 258 fss_setrun, 259 fss_sleep, 260 fss_tick, 261 fss_wakeup, 262 fss_donice, 263 fss_globpri, 264 fss_nullsys, /* set_process_group */ 265 fss_yield 266 }; 267 268 int 269 _init() 270 { 271 return (mod_install(&modlinkage)); 272 } 273 274 int 275 _fini() 276 { 277 return (EBUSY); 278 } 279 280 int 281 _info(struct modinfo *modinfop) 282 { 283 return (mod_info(&modlinkage, modinfop)); 284 } 285 286 /*ARGSUSED*/ 287 static int 288 fss_project_walker(kproject_t *kpj, void *buf) 289 { 290 return (0); 291 } 292 293 void * 294 fss_allocbuf(int op, int type) 295 { 296 fssbuf_t *fssbuf; 297 void **fsslist; 298 int cnt; 299 int i; 300 size_t size; 301 302 ASSERT(op == FSS_NPSET_BUF || op == FSS_NPROJ_BUF || op == FSS_ONE_BUF); 303 ASSERT(type == FSS_ALLOC_PROJ || type == FSS_ALLOC_ZONE); 304 ASSERT(MUTEX_HELD(&cpu_lock)); 305 306 fssbuf = kmem_zalloc(sizeof (fssbuf_t), KM_SLEEP); 307 switch (op) { 308 case FSS_NPSET_BUF: 309 cnt = cpupart_list(NULL, 0, CP_NONEMPTY); 310 break; 311 case FSS_NPROJ_BUF: 312 cnt = project_walk_all(ALL_ZONES, fss_project_walker, NULL); 313 break; 314 case FSS_ONE_BUF: 315 cnt = 1; 316 break; 317 } 318 319 switch (type) { 320 case FSS_ALLOC_PROJ: 321 size = sizeof (fssproj_t); 322 break; 323 case FSS_ALLOC_ZONE: 324 size = sizeof (fsszone_t); 325 break; 326 } 327 fsslist = kmem_zalloc(cnt * sizeof (void *), KM_SLEEP); 328 fssbuf->fssb_size = cnt; 329 fssbuf->fssb_list = fsslist; 330 for (i = 0; i < cnt; i++) 331 fsslist[i] = kmem_zalloc(size, KM_SLEEP); 332 return (fssbuf); 333 } 334 335 void 336 fss_freebuf(fssbuf_t *fssbuf, int type) 337 { 338 void **fsslist; 339 int i; 340 size_t size; 341 342 ASSERT(fssbuf != NULL); 343 ASSERT(type == FSS_ALLOC_PROJ || type == FSS_ALLOC_ZONE); 344 fsslist = fssbuf->fssb_list; 345 346 switch (type) { 347 case FSS_ALLOC_PROJ: 348 size = sizeof (fssproj_t); 349 break; 350 case FSS_ALLOC_ZONE: 351 size = sizeof (fsszone_t); 352 break; 353 } 354 355 for (i = 0; i < fssbuf->fssb_size; i++) { 356 if (fsslist[i] != NULL) 357 kmem_free(fsslist[i], size); 358 } 359 kmem_free(fsslist, sizeof (void *) * fssbuf->fssb_size); 360 kmem_free(fssbuf, sizeof (fssbuf_t)); 361 } 362 363 static fsspset_t * 364 fss_find_fsspset(cpupart_t *cpupart) 365 { 366 int i; 367 fsspset_t *fsspset = NULL; 368 int found = 0; 369 370 ASSERT(cpupart != NULL); 371 ASSERT(MUTEX_HELD(&fsspsets_lock)); 372 373 /* 374 * Search for the cpupart pointer in the array of fsspsets. 375 */ 376 for (i = 0; i < max_ncpus; i++) { 377 fsspset = &fsspsets[i]; 378 if (fsspset->fssps_cpupart == cpupart) { 379 ASSERT(fsspset->fssps_nproj > 0); 380 found = 1; 381 break; 382 } 383 } 384 if (found == 0) { 385 /* 386 * If we didn't find anything, then use the first 387 * available slot in the fsspsets array. 388 */ 389 for (i = 0; i < max_ncpus; i++) { 390 fsspset = &fsspsets[i]; 391 if (fsspset->fssps_cpupart == NULL) { 392 ASSERT(fsspset->fssps_nproj == 0); 393 found = 1; 394 break; 395 } 396 } 397 fsspset->fssps_cpupart = cpupart; 398 } 399 ASSERT(found == 1); 400 return (fsspset); 401 } 402 403 static void 404 fss_del_fsspset(fsspset_t *fsspset) 405 { 406 ASSERT(MUTEX_HELD(&fsspsets_lock)); 407 ASSERT(MUTEX_HELD(&fsspset->fssps_lock)); 408 ASSERT(fsspset->fssps_nproj == 0); 409 ASSERT(fsspset->fssps_list == NULL); 410 ASSERT(fsspset->fssps_zones == NULL); 411 fsspset->fssps_cpupart = NULL; 412 fsspset->fssps_maxfsspri = 0; 413 fsspset->fssps_shares = 0; 414 } 415 416 /* 417 * The following routine returns a pointer to the fsszone structure which 418 * belongs to zone "zone" and cpu partition fsspset, if such structure exists. 419 */ 420 static fsszone_t * 421 fss_find_fsszone(fsspset_t *fsspset, zone_t *zone) 422 { 423 fsszone_t *fsszone; 424 425 ASSERT(MUTEX_HELD(&fsspset->fssps_lock)); 426 427 if (fsspset->fssps_list != NULL) { 428 /* 429 * There are projects/zones active on this cpu partition 430 * already. Try to find our zone among them. 431 */ 432 fsszone = fsspset->fssps_zones; 433 do { 434 if (fsszone->fssz_zone == zone) { 435 return (fsszone); 436 } 437 fsszone = fsszone->fssz_next; 438 } while (fsszone != fsspset->fssps_zones); 439 } 440 return (NULL); 441 } 442 443 /* 444 * The following routine links new fsszone structure into doubly linked list of 445 * zones active on the specified cpu partition. 446 */ 447 static void 448 fss_insert_fsszone(fsspset_t *fsspset, zone_t *zone, fsszone_t *fsszone) 449 { 450 ASSERT(MUTEX_HELD(&fsspset->fssps_lock)); 451 452 fsszone->fssz_zone = zone; 453 fsszone->fssz_rshares = zone->zone_shares; 454 455 if (fsspset->fssps_zones == NULL) { 456 /* 457 * This will be the first fsszone for this fsspset 458 */ 459 fsszone->fssz_next = fsszone->fssz_prev = fsszone; 460 fsspset->fssps_zones = fsszone; 461 } else { 462 /* 463 * Insert this fsszone to the doubly linked list. 464 */ 465 fsszone_t *fssz_head = fsspset->fssps_zones; 466 467 fsszone->fssz_next = fssz_head; 468 fsszone->fssz_prev = fssz_head->fssz_prev; 469 fssz_head->fssz_prev->fssz_next = fsszone; 470 fssz_head->fssz_prev = fsszone; 471 fsspset->fssps_zones = fsszone; 472 } 473 } 474 475 /* 476 * The following routine removes a single fsszone structure from the doubly 477 * linked list of zones active on the specified cpu partition. Note that 478 * global fsspsets_lock must be held in case this fsszone structure is the last 479 * on the above mentioned list. Also note that the fsszone structure is not 480 * freed here, it is the responsibility of the caller to call kmem_free for it. 481 */ 482 static void 483 fss_remove_fsszone(fsspset_t *fsspset, fsszone_t *fsszone) 484 { 485 ASSERT(MUTEX_HELD(&fsspset->fssps_lock)); 486 ASSERT(fsszone->fssz_nproj == 0); 487 ASSERT(fsszone->fssz_shares == 0); 488 ASSERT(fsszone->fssz_runnable == 0); 489 490 if (fsszone->fssz_next != fsszone) { 491 /* 492 * This is not the last zone in the list. 493 */ 494 fsszone->fssz_prev->fssz_next = fsszone->fssz_next; 495 fsszone->fssz_next->fssz_prev = fsszone->fssz_prev; 496 if (fsspset->fssps_zones == fsszone) 497 fsspset->fssps_zones = fsszone->fssz_next; 498 } else { 499 /* 500 * This was the last zone active in this cpu partition. 501 */ 502 fsspset->fssps_zones = NULL; 503 } 504 } 505 506 /* 507 * The following routine returns a pointer to the fssproj structure 508 * which belongs to project kpj and cpu partition fsspset, if such structure 509 * exists. 510 */ 511 static fssproj_t * 512 fss_find_fssproj(fsspset_t *fsspset, kproject_t *kpj) 513 { 514 fssproj_t *fssproj; 515 516 ASSERT(MUTEX_HELD(&fsspset->fssps_lock)); 517 518 if (fsspset->fssps_list != NULL) { 519 /* 520 * There are projects running on this cpu partition already. 521 * Try to find our project among them. 522 */ 523 fssproj = fsspset->fssps_list; 524 do { 525 if (fssproj->fssp_proj == kpj) { 526 ASSERT(fssproj->fssp_pset == fsspset); 527 return (fssproj); 528 } 529 fssproj = fssproj->fssp_next; 530 } while (fssproj != fsspset->fssps_list); 531 } 532 return (NULL); 533 } 534 535 /* 536 * The following routine links new fssproj structure into doubly linked list 537 * of projects running on the specified cpu partition. 538 */ 539 static void 540 fss_insert_fssproj(fsspset_t *fsspset, kproject_t *kpj, fsszone_t *fsszone, 541 fssproj_t *fssproj) 542 { 543 ASSERT(MUTEX_HELD(&fsspset->fssps_lock)); 544 545 fssproj->fssp_pset = fsspset; 546 fssproj->fssp_proj = kpj; 547 fssproj->fssp_shares = kpj->kpj_shares; 548 549 fsspset->fssps_nproj++; 550 551 if (fsspset->fssps_list == NULL) { 552 /* 553 * This will be the first fssproj for this fsspset 554 */ 555 fssproj->fssp_next = fssproj->fssp_prev = fssproj; 556 fsspset->fssps_list = fssproj; 557 } else { 558 /* 559 * Insert this fssproj to the doubly linked list. 560 */ 561 fssproj_t *fssp_head = fsspset->fssps_list; 562 563 fssproj->fssp_next = fssp_head; 564 fssproj->fssp_prev = fssp_head->fssp_prev; 565 fssp_head->fssp_prev->fssp_next = fssproj; 566 fssp_head->fssp_prev = fssproj; 567 fsspset->fssps_list = fssproj; 568 } 569 fssproj->fssp_fsszone = fsszone; 570 fsszone->fssz_nproj++; 571 ASSERT(fsszone->fssz_nproj != 0); 572 } 573 574 /* 575 * The following routine removes a single fssproj structure from the doubly 576 * linked list of projects running on the specified cpu partition. Note that 577 * global fsspsets_lock must be held in case if this fssproj structure is the 578 * last on the above mentioned list. Also note that the fssproj structure is 579 * not freed here, it is the responsibility of the caller to call kmem_free 580 * for it. 581 */ 582 static void 583 fss_remove_fssproj(fsspset_t *fsspset, fssproj_t *fssproj) 584 { 585 fsszone_t *fsszone; 586 587 ASSERT(MUTEX_HELD(&fsspsets_lock)); 588 ASSERT(MUTEX_HELD(&fsspset->fssps_lock)); 589 ASSERT(fssproj->fssp_runnable == 0); 590 591 fsspset->fssps_nproj--; 592 593 fsszone = fssproj->fssp_fsszone; 594 fsszone->fssz_nproj--; 595 596 if (fssproj->fssp_next != fssproj) { 597 /* 598 * This is not the last part in the list. 599 */ 600 fssproj->fssp_prev->fssp_next = fssproj->fssp_next; 601 fssproj->fssp_next->fssp_prev = fssproj->fssp_prev; 602 if (fsspset->fssps_list == fssproj) 603 fsspset->fssps_list = fssproj->fssp_next; 604 if (fsszone->fssz_nproj == 0) 605 fss_remove_fsszone(fsspset, fsszone); 606 } else { 607 /* 608 * This was the last project part running 609 * at this cpu partition. 610 */ 611 fsspset->fssps_list = NULL; 612 ASSERT(fsspset->fssps_nproj == 0); 613 ASSERT(fsszone->fssz_nproj == 0); 614 fss_remove_fsszone(fsspset, fsszone); 615 fss_del_fsspset(fsspset); 616 } 617 } 618 619 static void 620 fss_inactive(kthread_t *t) 621 { 622 fssproc_t *fssproc; 623 fssproj_t *fssproj; 624 fsspset_t *fsspset; 625 fsszone_t *fsszone; 626 627 ASSERT(THREAD_LOCK_HELD(t)); 628 fssproc = FSSPROC(t); 629 fssproj = FSSPROC2FSSPROJ(fssproc); 630 if (fssproj == NULL) /* if this thread already exited */ 631 return; 632 fsspset = FSSPROJ2FSSPSET(fssproj); 633 fsszone = fssproj->fssp_fsszone; 634 disp_lock_enter_high(&fsspset->fssps_displock); 635 ASSERT(fssproj->fssp_runnable > 0); 636 if (--fssproj->fssp_runnable == 0) { 637 fsszone->fssz_shares -= fssproj->fssp_shares; 638 if (--fsszone->fssz_runnable == 0) 639 fsspset->fssps_shares -= fsszone->fssz_rshares; 640 } 641 ASSERT(fssproc->fss_runnable == 1); 642 fssproc->fss_runnable = 0; 643 disp_lock_exit_high(&fsspset->fssps_displock); 644 } 645 646 static void 647 fss_active(kthread_t *t) 648 { 649 fssproc_t *fssproc; 650 fssproj_t *fssproj; 651 fsspset_t *fsspset; 652 fsszone_t *fsszone; 653 654 ASSERT(THREAD_LOCK_HELD(t)); 655 fssproc = FSSPROC(t); 656 fssproj = FSSPROC2FSSPROJ(fssproc); 657 if (fssproj == NULL) /* if this thread already exited */ 658 return; 659 fsspset = FSSPROJ2FSSPSET(fssproj); 660 fsszone = fssproj->fssp_fsszone; 661 disp_lock_enter_high(&fsspset->fssps_displock); 662 if (++fssproj->fssp_runnable == 1) { 663 fsszone->fssz_shares += fssproj->fssp_shares; 664 if (++fsszone->fssz_runnable == 1) 665 fsspset->fssps_shares += fsszone->fssz_rshares; 666 } 667 ASSERT(fssproc->fss_runnable == 0); 668 fssproc->fss_runnable = 1; 669 disp_lock_exit_high(&fsspset->fssps_displock); 670 } 671 672 /* 673 * Fair share scheduler initialization. Called by dispinit() at boot time. 674 * We can ignore clparmsz argument since we know that the smallest possible 675 * parameter buffer is big enough for us. 676 */ 677 /*ARGSUSED*/ 678 static pri_t 679 fss_init(id_t cid, int clparmsz, classfuncs_t **clfuncspp) 680 { 681 int i; 682 683 ASSERT(MUTEX_HELD(&cpu_lock)); 684 685 fss_cid = cid; 686 fss_maxumdpri = minclsyspri - 1; 687 fss_maxglobpri = minclsyspri; 688 fss_minglobpri = 0; 689 fsspsets = kmem_zalloc(sizeof (fsspset_t) * max_ncpus, KM_SLEEP); 690 691 /* 692 * Initialize the fssproc hash table. 693 */ 694 for (i = 0; i < FSS_LISTS; i++) 695 fss_listhead[i].fss_next = fss_listhead[i].fss_prev = 696 &fss_listhead[i]; 697 698 *clfuncspp = &fss_classfuncs; 699 700 /* 701 * Fill in fss_nice_tick and fss_nice_decay arrays: 702 * The cost of a tick is lower at positive nice values (so that it 703 * will not increase its project's usage as much as normal) with 50% 704 * drop at the maximum level and 50% increase at the minimum level. 705 * The fsspri decay is slower at positive nice values. fsspri values 706 * of processes with negative nice levels must decay faster to receive 707 * time slices more frequently than normal. 708 */ 709 for (i = 0; i < FSS_NICE_RANGE; i++) { 710 fss_nice_tick[i] = (FSS_TICK_COST * (((3 * FSS_NICE_RANGE) / 2) 711 - i)) / FSS_NICE_RANGE; 712 fss_nice_decay[i] = FSS_DECAY_MIN + 713 ((FSS_DECAY_MAX - FSS_DECAY_MIN) * i) / 714 (FSS_NICE_RANGE - 1); 715 } 716 717 return (fss_maxglobpri); 718 } 719 720 /* 721 * Calculate the new cpupri based on the usage, the number of shares and 722 * the number of active threads. Reset the tick counter for this thread. 723 */ 724 static void 725 fss_newpri(fssproc_t *fssproc) 726 { 727 kthread_t *tp; 728 fssproj_t *fssproj; 729 fsspset_t *fsspset; 730 fsszone_t *fsszone; 731 fsspri_t fsspri, maxfsspri; 732 pri_t invpri; 733 uint32_t ticks; 734 735 tp = fssproc->fss_tp; 736 ASSERT(tp != NULL); 737 738 if (tp->t_cid != fss_cid) 739 return; 740 741 ASSERT(THREAD_LOCK_HELD(tp)); 742 743 fssproj = FSSPROC2FSSPROJ(fssproc); 744 fsszone = FSSPROJ2FSSZONE(fssproj); 745 if (fssproj == NULL) 746 /* 747 * No need to change priority of exited threads. 748 */ 749 return; 750 751 fsspset = FSSPROJ2FSSPSET(fssproj); 752 disp_lock_enter_high(&fsspset->fssps_displock); 753 754 if (fssproj->fssp_shares == 0 || fsszone->fssz_rshares == 0) { 755 /* 756 * Special case: threads with no shares. 757 */ 758 fssproc->fss_umdpri = fss_minglobpri; 759 fssproc->fss_ticks = 0; 760 disp_lock_exit_high(&fsspset->fssps_displock); 761 return; 762 } 763 764 /* 765 * fsspri += shusage * nrunnable * ticks 766 */ 767 ticks = fssproc->fss_ticks; 768 fssproc->fss_ticks = 0; 769 fsspri = fssproc->fss_fsspri; 770 fsspri += fssproj->fssp_shusage * fssproj->fssp_runnable * ticks; 771 fssproc->fss_fsspri = fsspri; 772 773 if (fsspri < fss_maxumdpri) 774 fsspri = fss_maxumdpri; /* so that maxfsspri is != 0 */ 775 776 /* 777 * The general priority formula: 778 * 779 * (fsspri * umdprirange) 780 * pri = maxumdpri - ------------------------ 781 * maxfsspri 782 * 783 * If this thread's fsspri is greater than the previous largest 784 * fsspri, then record it as the new high and priority for this 785 * thread will be one (the lowest priority assigned to a thread 786 * that has non-zero shares). 787 * Note that this formula cannot produce out of bounds priority 788 * values; if it is changed, additional checks may need to be 789 * added. 790 */ 791 maxfsspri = fsspset->fssps_maxfsspri; 792 if (fsspri >= maxfsspri) { 793 fsspset->fssps_maxfsspri = fsspri; 794 disp_lock_exit_high(&fsspset->fssps_displock); 795 fssproc->fss_umdpri = 1; 796 } else { 797 disp_lock_exit_high(&fsspset->fssps_displock); 798 invpri = (fsspri * (fss_maxumdpri - 1)) / maxfsspri; 799 fssproc->fss_umdpri = fss_maxumdpri - invpri; 800 } 801 } 802 803 /* 804 * Decays usages of all running projects and resets their tick counters. 805 * Called once per second from fss_update() after updating priorities. 806 */ 807 static void 808 fss_decay_usage() 809 { 810 uint32_t zone_ext_shares, zone_int_shares; 811 uint32_t kpj_shares, pset_shares; 812 fsspset_t *fsspset; 813 fssproj_t *fssproj; 814 fsszone_t *fsszone; 815 fsspri_t maxfsspri; 816 int psetid; 817 818 mutex_enter(&fsspsets_lock); 819 /* 820 * Go through all active processor sets and decay usages of projects 821 * running on them. 822 */ 823 for (psetid = 0; psetid < max_ncpus; psetid++) { 824 fsspset = &fsspsets[psetid]; 825 mutex_enter(&fsspset->fssps_lock); 826 827 if (fsspset->fssps_cpupart == NULL || 828 (fssproj = fsspset->fssps_list) == NULL) { 829 mutex_exit(&fsspset->fssps_lock); 830 continue; 831 } 832 833 /* 834 * Decay maxfsspri for this cpu partition with the 835 * fastest possible decay rate. 836 */ 837 disp_lock_enter(&fsspset->fssps_displock); 838 839 maxfsspri = (fsspset->fssps_maxfsspri * 840 fss_nice_decay[NZERO]) / FSS_DECAY_BASE; 841 if (maxfsspri < fss_maxumdpri) 842 maxfsspri = fss_maxumdpri; 843 fsspset->fssps_maxfsspri = maxfsspri; 844 845 do { 846 /* 847 * Decay usage for each project running on 848 * this cpu partition. 849 */ 850 fssproj->fssp_usage = 851 (fssproj->fssp_usage * FSS_DECAY_USG) / 852 FSS_DECAY_BASE + fssproj->fssp_ticks; 853 fssproj->fssp_ticks = 0; 854 855 fsszone = fssproj->fssp_fsszone; 856 /* 857 * Readjust the project's number of shares if it has 858 * changed since we checked it last time. 859 */ 860 kpj_shares = fssproj->fssp_proj->kpj_shares; 861 if (fssproj->fssp_shares != kpj_shares) { 862 if (fssproj->fssp_runnable != 0) { 863 fsszone->fssz_shares -= 864 fssproj->fssp_shares; 865 fsszone->fssz_shares += kpj_shares; 866 } 867 fssproj->fssp_shares = kpj_shares; 868 } 869 870 /* 871 * Readjust the zone's number of shares if it 872 * has changed since we checked it last time. 873 */ 874 zone_ext_shares = fsszone->fssz_zone->zone_shares; 875 if (fsszone->fssz_rshares != zone_ext_shares) { 876 if (fsszone->fssz_runnable != 0) { 877 fsspset->fssps_shares -= 878 fsszone->fssz_rshares; 879 fsspset->fssps_shares += 880 zone_ext_shares; 881 } 882 fsszone->fssz_rshares = zone_ext_shares; 883 } 884 zone_int_shares = fsszone->fssz_shares; 885 pset_shares = fsspset->fssps_shares; 886 /* 887 * Calculate fssp_shusage value to be used 888 * for fsspri increments for the next second. 889 */ 890 if (kpj_shares == 0 || zone_ext_shares == 0) { 891 fssproj->fssp_shusage = 0; 892 } else if (FSSPROJ2KPROJ(fssproj) == proj0p) { 893 /* 894 * Project 0 in the global zone has 50% 895 * of its zone. 896 */ 897 fssproj->fssp_shusage = (fssproj->fssp_usage * 898 zone_int_shares * zone_int_shares) / 899 (zone_ext_shares * zone_ext_shares); 900 } else { 901 /* 902 * Thread's priority is based on its project's 903 * normalized usage (shusage) value which gets 904 * calculated this way: 905 * 906 * pset_shares^2 zone_int_shares^2 907 * usage * ------------- * ------------------ 908 * kpj_shares^2 zone_ext_shares^2 909 * 910 * Where zone_int_shares is the sum of shares 911 * of all active projects within the zone (and 912 * the pset), and zone_ext_shares is the number 913 * of zone shares (ie, zone.cpu-shares). 914 * 915 * If there is only one zone active on the pset 916 * the above reduces to: 917 * 918 * zone_int_shares^2 919 * shusage = usage * --------------------- 920 * kpj_shares^2 921 * 922 * If there's only one project active in the 923 * zone this formula reduces to: 924 * 925 * pset_shares^2 926 * shusage = usage * ---------------------- 927 * zone_ext_shares^2 928 */ 929 fssproj->fssp_shusage = fssproj->fssp_usage * 930 pset_shares * zone_int_shares; 931 fssproj->fssp_shusage /= 932 kpj_shares * zone_ext_shares; 933 fssproj->fssp_shusage *= 934 pset_shares * zone_int_shares; 935 fssproj->fssp_shusage /= 936 kpj_shares * zone_ext_shares; 937 } 938 fssproj = fssproj->fssp_next; 939 } while (fssproj != fsspset->fssps_list); 940 941 disp_lock_exit(&fsspset->fssps_displock); 942 mutex_exit(&fsspset->fssps_lock); 943 } 944 mutex_exit(&fsspsets_lock); 945 } 946 947 static void 948 fss_change_priority(kthread_t *t, fssproc_t *fssproc) 949 { 950 pri_t new_pri; 951 952 ASSERT(THREAD_LOCK_HELD(t)); 953 new_pri = fssproc->fss_umdpri; 954 ASSERT(new_pri >= 0 && new_pri <= fss_maxglobpri); 955 956 if (t == curthread || t->t_state == TS_ONPROC) { 957 /* 958 * curthread is always onproc 959 */ 960 cpu_t *cp = t->t_disp_queue->disp_cpu; 961 THREAD_CHANGE_PRI(t, new_pri); 962 if (t == cp->cpu_dispthread) 963 cp->cpu_dispatch_pri = DISP_PRIO(t); 964 if (DISP_MUST_SURRENDER(t)) { 965 fssproc->fss_flags |= FSSBACKQ; 966 cpu_surrender(t); 967 } else { 968 fssproc->fss_timeleft = fss_quantum; 969 } 970 } else { 971 /* 972 * When the priority of a thread is changed, it may be 973 * necessary to adjust its position on a sleep queue or 974 * dispatch queue. The function thread_change_pri accomplishes 975 * this. 976 */ 977 if (thread_change_pri(t, new_pri, 0)) { 978 /* 979 * The thread was on a run queue. 980 */ 981 fssproc->fss_timeleft = fss_quantum; 982 } else { 983 fssproc->fss_flags |= FSSBACKQ; 984 } 985 } 986 } 987 988 /* 989 * Update priorities of all fair-sharing threads that are currently runnable 990 * at a user mode priority based on the number of shares and current usage. 991 * Called once per second via timeout which we reset here. 992 * 993 * There are several lists of fair-sharing threads broken up by a hash on the 994 * thread pointer. Each list has its own lock. This avoids blocking all 995 * fss_enterclass, fss_fork, and fss_exitclass operations while fss_update runs. 996 * fss_update traverses each list in turn. 997 */ 998 static void 999 fss_update(void *arg) 1000 { 1001 int i; 1002 int new_marker = -1; 1003 static int fss_update_marker; 1004 1005 /* 1006 * Decay and update usages for all projects. 1007 */ 1008 fss_decay_usage(); 1009 1010 /* 1011 * Start with the fss_update_marker list, then do the rest. 1012 */ 1013 i = fss_update_marker; 1014 1015 /* 1016 * Go around all threads, set new priorities and decay 1017 * per-thread CPU usages. 1018 */ 1019 do { 1020 /* 1021 * If this is the first list after the current marker to have 1022 * threads with priorities updates, advance the marker to this 1023 * list for the next time fss_update runs. 1024 */ 1025 if (fss_update_list(i) && 1026 new_marker == -1 && i != fss_update_marker) 1027 new_marker = i; 1028 } while ((i = FSS_LIST_NEXT(i)) != fss_update_marker); 1029 1030 /* 1031 * Advance marker for the next fss_update call 1032 */ 1033 if (new_marker != -1) 1034 fss_update_marker = new_marker; 1035 1036 (void) timeout(fss_update, arg, hz); 1037 } 1038 1039 /* 1040 * Updates priority for a list of threads. Returns 1 if the priority of one 1041 * of the threads was actually updated, 0 if none were for various reasons 1042 * (thread is no longer in the FSS class, is not runnable, has the preemption 1043 * control no-preempt bit set, etc.) 1044 */ 1045 static int 1046 fss_update_list(int i) 1047 { 1048 fssproc_t *fssproc; 1049 fssproj_t *fssproj; 1050 fsspri_t fsspri; 1051 kthread_t *t; 1052 int updated = 0; 1053 1054 mutex_enter(&fss_listlock[i]); 1055 for (fssproc = fss_listhead[i].fss_next; fssproc != &fss_listhead[i]; 1056 fssproc = fssproc->fss_next) { 1057 t = fssproc->fss_tp; 1058 /* 1059 * Lock the thread and verify the state. 1060 */ 1061 thread_lock(t); 1062 /* 1063 * Skip the thread if it is no longer in the FSS class or 1064 * is running with kernel mode priority. 1065 */ 1066 if (t->t_cid != fss_cid) 1067 goto next; 1068 if ((fssproc->fss_flags & FSSKPRI) != 0) 1069 goto next; 1070 fssproj = FSSPROC2FSSPROJ(fssproc); 1071 if (fssproj == NULL) 1072 goto next; 1073 if (fssproj->fssp_shares != 0) { 1074 /* 1075 * Decay fsspri value. 1076 */ 1077 fsspri = fssproc->fss_fsspri; 1078 fsspri = (fsspri * fss_nice_decay[fssproc->fss_nice]) / 1079 FSS_DECAY_BASE; 1080 fssproc->fss_fsspri = fsspri; 1081 } 1082 1083 if (t->t_schedctl && schedctl_get_nopreempt(t)) 1084 goto next; 1085 if (t->t_state != TS_RUN) { 1086 /* 1087 * Make next syscall/trap call fss_trapret 1088 */ 1089 t->t_trapret = 1; 1090 aston(t); 1091 goto next; 1092 } 1093 fss_newpri(fssproc); 1094 updated = 1; 1095 1096 /* 1097 * Only dequeue the thread if it needs to be moved; otherwise 1098 * it should just round-robin here. 1099 */ 1100 if (t->t_pri != fssproc->fss_umdpri) 1101 fss_change_priority(t, fssproc); 1102 next: 1103 thread_unlock(t); 1104 } 1105 mutex_exit(&fss_listlock[i]); 1106 return (updated); 1107 } 1108 1109 /*ARGSUSED*/ 1110 static int 1111 fss_admin(caddr_t uaddr, cred_t *reqpcredp) 1112 { 1113 fssadmin_t fssadmin; 1114 1115 if (copyin(uaddr, &fssadmin, sizeof (fssadmin_t))) 1116 return (EFAULT); 1117 1118 switch (fssadmin.fss_cmd) { 1119 case FSS_SETADMIN: 1120 if (secpolicy_dispadm(reqpcredp) != 0) 1121 return (EPERM); 1122 if (fssadmin.fss_quantum <= 0 || fssadmin.fss_quantum >= hz) 1123 return (EINVAL); 1124 fss_quantum = fssadmin.fss_quantum; 1125 break; 1126 case FSS_GETADMIN: 1127 fssadmin.fss_quantum = fss_quantum; 1128 if (copyout(&fssadmin, uaddr, sizeof (fssadmin_t))) 1129 return (EFAULT); 1130 break; 1131 default: 1132 return (EINVAL); 1133 } 1134 return (0); 1135 } 1136 1137 static int 1138 fss_getclinfo(void *infop) 1139 { 1140 fssinfo_t *fssinfo = (fssinfo_t *)infop; 1141 fssinfo->fss_maxupri = fss_maxupri; 1142 return (0); 1143 } 1144 1145 static int 1146 fss_parmsin(void *parmsp) 1147 { 1148 fssparms_t *fssparmsp = (fssparms_t *)parmsp; 1149 1150 /* 1151 * Check validity of parameters. 1152 */ 1153 if ((fssparmsp->fss_uprilim > fss_maxupri || 1154 fssparmsp->fss_uprilim < -fss_maxupri) && 1155 fssparmsp->fss_uprilim != FSS_NOCHANGE) 1156 return (EINVAL); 1157 1158 if ((fssparmsp->fss_upri > fss_maxupri || 1159 fssparmsp->fss_upri < -fss_maxupri) && 1160 fssparmsp->fss_upri != FSS_NOCHANGE) 1161 return (EINVAL); 1162 1163 return (0); 1164 } 1165 1166 /*ARGSUSED*/ 1167 static int 1168 fss_parmsout(void *parmsp, pc_vaparms_t *vaparmsp) 1169 { 1170 return (0); 1171 } 1172 1173 static int 1174 fss_vaparmsin(void *parmsp, pc_vaparms_t *vaparmsp) 1175 { 1176 fssparms_t *fssparmsp = (fssparms_t *)parmsp; 1177 int priflag = 0; 1178 int limflag = 0; 1179 uint_t cnt; 1180 pc_vaparm_t *vpp = &vaparmsp->pc_parms[0]; 1181 1182 /* 1183 * FSS_NOCHANGE (-32768) is outside of the range of values for 1184 * fss_uprilim and fss_upri. If the structure fssparms_t is changed, 1185 * FSS_NOCHANGE should be replaced by a flag word. 1186 */ 1187 fssparmsp->fss_uprilim = FSS_NOCHANGE; 1188 fssparmsp->fss_upri = FSS_NOCHANGE; 1189 1190 /* 1191 * Get the varargs parameter and check validity of parameters. 1192 */ 1193 if (vaparmsp->pc_vaparmscnt > PC_VAPARMCNT) 1194 return (EINVAL); 1195 1196 for (cnt = 0; cnt < vaparmsp->pc_vaparmscnt; cnt++, vpp++) { 1197 switch (vpp->pc_key) { 1198 case FSS_KY_UPRILIM: 1199 if (limflag++) 1200 return (EINVAL); 1201 fssparmsp->fss_uprilim = (pri_t)vpp->pc_parm; 1202 if (fssparmsp->fss_uprilim > fss_maxupri || 1203 fssparmsp->fss_uprilim < -fss_maxupri) 1204 return (EINVAL); 1205 break; 1206 case FSS_KY_UPRI: 1207 if (priflag++) 1208 return (EINVAL); 1209 fssparmsp->fss_upri = (pri_t)vpp->pc_parm; 1210 if (fssparmsp->fss_upri > fss_maxupri || 1211 fssparmsp->fss_upri < -fss_maxupri) 1212 return (EINVAL); 1213 break; 1214 default: 1215 return (EINVAL); 1216 } 1217 } 1218 1219 if (vaparmsp->pc_vaparmscnt == 0) { 1220 /* 1221 * Use default parameters. 1222 */ 1223 fssparmsp->fss_upri = fssparmsp->fss_uprilim = 0; 1224 } 1225 1226 return (0); 1227 } 1228 1229 /* 1230 * Copy all selected fair-sharing class parameters to the user. The parameters 1231 * are specified by a key. 1232 */ 1233 static int 1234 fss_vaparmsout(void *parmsp, pc_vaparms_t *vaparmsp) 1235 { 1236 fssparms_t *fssparmsp = (fssparms_t *)parmsp; 1237 int priflag = 0; 1238 int limflag = 0; 1239 uint_t cnt; 1240 pc_vaparm_t *vpp = &vaparmsp->pc_parms[0]; 1241 1242 ASSERT(MUTEX_NOT_HELD(&curproc->p_lock)); 1243 1244 if (vaparmsp->pc_vaparmscnt > PC_VAPARMCNT) 1245 return (EINVAL); 1246 1247 for (cnt = 0; cnt < vaparmsp->pc_vaparmscnt; cnt++, vpp++) { 1248 switch (vpp->pc_key) { 1249 case FSS_KY_UPRILIM: 1250 if (limflag++) 1251 return (EINVAL); 1252 if (copyout(&fssparmsp->fss_uprilim, 1253 (caddr_t)(uintptr_t)vpp->pc_parm, sizeof (pri_t))) 1254 return (EFAULT); 1255 break; 1256 case FSS_KY_UPRI: 1257 if (priflag++) 1258 return (EINVAL); 1259 if (copyout(&fssparmsp->fss_upri, 1260 (caddr_t)(uintptr_t)vpp->pc_parm, sizeof (pri_t))) 1261 return (EFAULT); 1262 break; 1263 default: 1264 return (EINVAL); 1265 } 1266 } 1267 1268 return (0); 1269 } 1270 1271 static int 1272 fss_getclpri(pcpri_t *pcprip) 1273 { 1274 pcprip->pc_clpmax = fss_maxumdpri; 1275 pcprip->pc_clpmin = 0; 1276 return (0); 1277 } 1278 1279 static int 1280 fss_alloc(void **p, int flag) 1281 { 1282 void *bufp; 1283 1284 if ((bufp = kmem_zalloc(sizeof (fssproc_t), flag)) == NULL) { 1285 return (ENOMEM); 1286 } else { 1287 *p = bufp; 1288 return (0); 1289 } 1290 } 1291 1292 static void 1293 fss_free(void *bufp) 1294 { 1295 if (bufp) 1296 kmem_free(bufp, sizeof (fssproc_t)); 1297 } 1298 1299 /* 1300 * Thread functions 1301 */ 1302 static int 1303 fss_enterclass(kthread_t *t, id_t cid, void *parmsp, cred_t *reqpcredp, 1304 void *bufp) 1305 { 1306 fssparms_t *fssparmsp = (fssparms_t *)parmsp; 1307 fssproc_t *fssproc; 1308 pri_t reqfssuprilim; 1309 pri_t reqfssupri; 1310 static uint32_t fssexists = 0; 1311 fsspset_t *fsspset; 1312 fssproj_t *fssproj; 1313 fsszone_t *fsszone; 1314 kproject_t *kpj; 1315 zone_t *zone; 1316 int fsszone_allocated = 0; 1317 1318 fssproc = (fssproc_t *)bufp; 1319 ASSERT(fssproc != NULL); 1320 1321 ASSERT(MUTEX_HELD(&ttoproc(t)->p_lock)); 1322 1323 /* 1324 * Only root can move threads to FSS class. 1325 */ 1326 if (reqpcredp != NULL && secpolicy_setpriority(reqpcredp) != 0) 1327 return (EPERM); 1328 /* 1329 * Initialize the fssproc structure. 1330 */ 1331 fssproc->fss_umdpri = fss_maxumdpri / 2; 1332 1333 if (fssparmsp == NULL) { 1334 /* 1335 * Use default values. 1336 */ 1337 fssproc->fss_nice = NZERO; 1338 fssproc->fss_uprilim = fssproc->fss_upri = 0; 1339 } else { 1340 /* 1341 * Use supplied values. 1342 */ 1343 if (fssparmsp->fss_uprilim == FSS_NOCHANGE) { 1344 reqfssuprilim = 0; 1345 } else { 1346 if (fssparmsp->fss_uprilim > 0 && 1347 secpolicy_setpriority(reqpcredp) != 0) 1348 return (EPERM); 1349 reqfssuprilim = fssparmsp->fss_uprilim; 1350 } 1351 if (fssparmsp->fss_upri == FSS_NOCHANGE) { 1352 reqfssupri = reqfssuprilim; 1353 } else { 1354 if (fssparmsp->fss_upri > 0 && 1355 secpolicy_setpriority(reqpcredp) != 0) 1356 return (EPERM); 1357 /* 1358 * Set the user priority to the requested value or 1359 * the upri limit, whichever is lower. 1360 */ 1361 reqfssupri = fssparmsp->fss_upri; 1362 if (reqfssupri > reqfssuprilim) 1363 reqfssupri = reqfssuprilim; 1364 } 1365 fssproc->fss_uprilim = reqfssuprilim; 1366 fssproc->fss_upri = reqfssupri; 1367 fssproc->fss_nice = NZERO - (NZERO * reqfssupri) / fss_maxupri; 1368 if (fssproc->fss_nice > FSS_NICE_MAX) 1369 fssproc->fss_nice = FSS_NICE_MAX; 1370 } 1371 1372 fssproc->fss_timeleft = fss_quantum; 1373 fssproc->fss_tp = t; 1374 1375 /* 1376 * Put a lock on our fsspset structure. 1377 */ 1378 mutex_enter(&fsspsets_lock); 1379 fsspset = fss_find_fsspset(t->t_cpupart); 1380 mutex_enter(&fsspset->fssps_lock); 1381 mutex_exit(&fsspsets_lock); 1382 1383 zone = ttoproc(t)->p_zone; 1384 if ((fsszone = fss_find_fsszone(fsspset, zone)) == NULL) { 1385 if ((fsszone = kmem_zalloc(sizeof (fsszone_t), KM_NOSLEEP)) 1386 == NULL) { 1387 mutex_exit(&fsspset->fssps_lock); 1388 return (ENOMEM); 1389 } else { 1390 fsszone_allocated = 1; 1391 fss_insert_fsszone(fsspset, zone, fsszone); 1392 } 1393 } 1394 kpj = ttoproj(t); 1395 if ((fssproj = fss_find_fssproj(fsspset, kpj)) == NULL) { 1396 if ((fssproj = kmem_zalloc(sizeof (fssproj_t), KM_NOSLEEP)) 1397 == NULL) { 1398 if (fsszone_allocated) { 1399 fss_remove_fsszone(fsspset, fsszone); 1400 kmem_free(fsszone, sizeof (fsszone_t)); 1401 } 1402 mutex_exit(&fsspset->fssps_lock); 1403 return (ENOMEM); 1404 } else { 1405 fss_insert_fssproj(fsspset, kpj, fsszone, fssproj); 1406 } 1407 } 1408 fssproj->fssp_threads++; 1409 fssproc->fss_proj = fssproj; 1410 1411 /* 1412 * Reset priority. Process goes to a "user mode" priority here 1413 * regardless of whether or not it has slept since entering the kernel. 1414 */ 1415 thread_lock(t); 1416 t->t_clfuncs = &(sclass[cid].cl_funcs->thread); 1417 t->t_cid = cid; 1418 t->t_cldata = (void *)fssproc; 1419 t->t_schedflag |= TS_RUNQMATCH; 1420 fss_change_priority(t, fssproc); 1421 if (t->t_state == TS_RUN || t->t_state == TS_ONPROC) 1422 fss_active(t); 1423 thread_unlock(t); 1424 1425 mutex_exit(&fsspset->fssps_lock); 1426 1427 /* 1428 * Link new structure into fssproc list. 1429 */ 1430 FSS_LIST_INSERT(fssproc); 1431 1432 /* 1433 * If this is the first fair-sharing thread to occur since boot, 1434 * we set up the initial call to fss_update() here. Use an atomic 1435 * compare-and-swap since that's easier and faster than a mutex 1436 * (but check with an ordinary load first since most of the time 1437 * this will already be done). 1438 */ 1439 if (fssexists == 0 && cas32(&fssexists, 0, 1) == 0) 1440 (void) timeout(fss_update, NULL, hz); 1441 1442 return (0); 1443 } 1444 1445 /* 1446 * Remove fssproc_t from the list. 1447 */ 1448 static void 1449 fss_exitclass(void *procp) 1450 { 1451 fssproc_t *fssproc = (fssproc_t *)procp; 1452 fssproj_t *fssproj; 1453 fsspset_t *fsspset; 1454 fsszone_t *fsszone; 1455 kthread_t *t = fssproc->fss_tp; 1456 1457 /* 1458 * We should be either getting this thread off the deathrow or 1459 * this thread has already moved to another scheduling class and 1460 * we're being called with its old cldata buffer pointer. In both 1461 * cases, the content of this buffer can not be changed while we're 1462 * here. 1463 */ 1464 mutex_enter(&fsspsets_lock); 1465 thread_lock(t); 1466 if (t->t_cid != fss_cid) { 1467 /* 1468 * We're being called as a result of the priocntl() system 1469 * call -- someone is trying to move our thread to another 1470 * scheduling class. We can't call fss_inactive() here 1471 * because our thread's t_cldata pointer already points 1472 * to another scheduling class specific data. 1473 */ 1474 ASSERT(MUTEX_HELD(&ttoproc(t)->p_lock)); 1475 1476 fssproj = FSSPROC2FSSPROJ(fssproc); 1477 fsspset = FSSPROJ2FSSPSET(fssproj); 1478 fsszone = fssproj->fssp_fsszone; 1479 1480 if (fssproc->fss_runnable) { 1481 disp_lock_enter_high(&fsspset->fssps_displock); 1482 if (--fssproj->fssp_runnable == 0) { 1483 fsszone->fssz_shares -= fssproj->fssp_shares; 1484 if (--fsszone->fssz_runnable == 0) 1485 fsspset->fssps_shares -= 1486 fsszone->fssz_rshares; 1487 } 1488 disp_lock_exit_high(&fsspset->fssps_displock); 1489 } 1490 thread_unlock(t); 1491 1492 mutex_enter(&fsspset->fssps_lock); 1493 if (--fssproj->fssp_threads == 0) { 1494 fss_remove_fssproj(fsspset, fssproj); 1495 if (fsszone->fssz_nproj == 0) 1496 kmem_free(fsszone, sizeof (fsszone_t)); 1497 kmem_free(fssproj, sizeof (fssproj_t)); 1498 } 1499 mutex_exit(&fsspset->fssps_lock); 1500 1501 } else { 1502 ASSERT(t->t_state == TS_FREE); 1503 /* 1504 * We're being called from thread_free() when our thread 1505 * is removed from the deathrow. There is nothing we need 1506 * do here since everything should've been done earlier 1507 * in fss_exit(). 1508 */ 1509 thread_unlock(t); 1510 } 1511 mutex_exit(&fsspsets_lock); 1512 1513 FSS_LIST_DELETE(fssproc); 1514 fss_free(fssproc); 1515 } 1516 1517 /*ARGSUSED*/ 1518 static int 1519 fss_canexit(kthread_t *t, cred_t *credp) 1520 { 1521 /* 1522 * A thread is allowed to exit FSS only if we have sufficient 1523 * privileges. 1524 */ 1525 if (credp != NULL && secpolicy_setpriority(credp) != 0) 1526 return (EPERM); 1527 else 1528 return (0); 1529 } 1530 1531 /* 1532 * Initialize fair-share class specific proc structure for a child. 1533 */ 1534 static int 1535 fss_fork(kthread_t *pt, kthread_t *ct, void *bufp) 1536 { 1537 fssproc_t *pfssproc; /* ptr to parent's fssproc structure */ 1538 fssproc_t *cfssproc; /* ptr to child's fssproc structure */ 1539 fssproj_t *fssproj; 1540 fsspset_t *fsspset; 1541 1542 ASSERT(MUTEX_HELD(&ttoproc(pt)->p_lock)); 1543 ASSERT(ct->t_state == TS_STOPPED); 1544 1545 cfssproc = (fssproc_t *)bufp; 1546 ASSERT(cfssproc != NULL); 1547 bzero(cfssproc, sizeof (fssproc_t)); 1548 1549 thread_lock(pt); 1550 pfssproc = FSSPROC(pt); 1551 fssproj = FSSPROC2FSSPROJ(pfssproc); 1552 fsspset = FSSPROJ2FSSPSET(fssproj); 1553 thread_unlock(pt); 1554 1555 mutex_enter(&fsspset->fssps_lock); 1556 /* 1557 * Initialize child's fssproc structure. 1558 */ 1559 thread_lock(pt); 1560 ASSERT(FSSPROJ(pt) == fssproj); 1561 cfssproc->fss_proj = fssproj; 1562 cfssproc->fss_timeleft = fss_quantum; 1563 cfssproc->fss_umdpri = pfssproc->fss_umdpri; 1564 cfssproc->fss_fsspri = 0; 1565 cfssproc->fss_uprilim = pfssproc->fss_uprilim; 1566 cfssproc->fss_upri = pfssproc->fss_upri; 1567 cfssproc->fss_tp = ct; 1568 cfssproc->fss_nice = pfssproc->fss_nice; 1569 cfssproc->fss_flags = pfssproc->fss_flags & ~(FSSKPRI | FSSBACKQ); 1570 ct->t_cldata = (void *)cfssproc; 1571 ct->t_schedflag |= TS_RUNQMATCH; 1572 thread_unlock(pt); 1573 1574 fssproj->fssp_threads++; 1575 mutex_exit(&fsspset->fssps_lock); 1576 1577 /* 1578 * Link new structure into fssproc hash table. 1579 */ 1580 FSS_LIST_INSERT(cfssproc); 1581 return (0); 1582 } 1583 1584 /* 1585 * Child is placed at back of dispatcher queue and parent gives up processor 1586 * so that the child runs first after the fork. This allows the child 1587 * immediately execing to break the multiple use of copy on write pages with no 1588 * disk home. The parent will get to steal them back rather than uselessly 1589 * copying them. 1590 */ 1591 static void 1592 fss_forkret(kthread_t *t, kthread_t *ct) 1593 { 1594 proc_t *pp = ttoproc(t); 1595 proc_t *cp = ttoproc(ct); 1596 fssproc_t *fssproc; 1597 1598 ASSERT(t == curthread); 1599 ASSERT(MUTEX_HELD(&pidlock)); 1600 1601 /* 1602 * Grab the child's p_lock before dropping pidlock to ensure the 1603 * process does not disappear before we set it running. 1604 */ 1605 mutex_enter(&cp->p_lock); 1606 mutex_exit(&pidlock); 1607 continuelwps(cp); 1608 mutex_exit(&cp->p_lock); 1609 1610 mutex_enter(&pp->p_lock); 1611 continuelwps(pp); 1612 mutex_exit(&pp->p_lock); 1613 1614 thread_lock(t); 1615 1616 fssproc = FSSPROC(t); 1617 fss_newpri(fssproc); 1618 fssproc->fss_timeleft = fss_quantum; 1619 t->t_pri = fssproc->fss_umdpri; 1620 ASSERT(t->t_pri >= 0 && t->t_pri <= fss_maxglobpri); 1621 fssproc->fss_flags &= ~FSSKPRI; 1622 THREAD_TRANSITION(t); 1623 1624 /* 1625 * We don't want to call fss_setrun(t) here because it may call 1626 * fss_active, which we don't need. 1627 */ 1628 fssproc->fss_flags &= ~FSSBACKQ; 1629 1630 if (t->t_disp_time != lbolt) 1631 setbackdq(t); 1632 else 1633 setfrontdq(t); 1634 1635 thread_unlock(t); 1636 1637 swtch(); 1638 } 1639 1640 /* 1641 * Get the fair-sharing parameters of the thread pointed to by fssprocp into 1642 * the buffer pointed by fssparmsp. 1643 */ 1644 static void 1645 fss_parmsget(kthread_t *t, void *parmsp) 1646 { 1647 fssproc_t *fssproc = FSSPROC(t); 1648 fssparms_t *fssparmsp = (fssparms_t *)parmsp; 1649 1650 fssparmsp->fss_uprilim = fssproc->fss_uprilim; 1651 fssparmsp->fss_upri = fssproc->fss_upri; 1652 } 1653 1654 /*ARGSUSED*/ 1655 static int 1656 fss_parmsset(kthread_t *t, void *parmsp, id_t reqpcid, cred_t *reqpcredp) 1657 { 1658 char nice; 1659 pri_t reqfssuprilim; 1660 pri_t reqfssupri; 1661 fssproc_t *fssproc = FSSPROC(t); 1662 fssparms_t *fssparmsp = (fssparms_t *)parmsp; 1663 1664 ASSERT(MUTEX_HELD(&(ttoproc(t))->p_lock)); 1665 1666 if (fssparmsp->fss_uprilim == FSS_NOCHANGE) 1667 reqfssuprilim = fssproc->fss_uprilim; 1668 else 1669 reqfssuprilim = fssparmsp->fss_uprilim; 1670 1671 if (fssparmsp->fss_upri == FSS_NOCHANGE) 1672 reqfssupri = fssproc->fss_upri; 1673 else 1674 reqfssupri = fssparmsp->fss_upri; 1675 1676 /* 1677 * Make sure the user priority doesn't exceed the upri limit. 1678 */ 1679 if (reqfssupri > reqfssuprilim) 1680 reqfssupri = reqfssuprilim; 1681 1682 /* 1683 * Basic permissions enforced by generic kernel code for all classes 1684 * require that a thread attempting to change the scheduling parameters 1685 * of a target thread be privileged or have a real or effective UID 1686 * matching that of the target thread. We are not called unless these 1687 * basic permission checks have already passed. The fair-sharing class 1688 * requires in addition that the calling thread be privileged if it 1689 * is attempting to raise the upri limit above its current value. 1690 * This may have been checked previously but if our caller passed us 1691 * a non-NULL credential pointer we assume it hasn't and we check it 1692 * here. 1693 */ 1694 if ((reqpcredp != NULL) && 1695 (reqfssuprilim > fssproc->fss_uprilim) && 1696 secpolicy_setpriority(reqpcredp) != 0) 1697 return (EPERM); 1698 1699 /* 1700 * Set fss_nice to the nice value corresponding to the user priority we 1701 * are setting. Note that setting the nice field of the parameter 1702 * struct won't affect upri or nice. 1703 */ 1704 nice = NZERO - (reqfssupri * NZERO) / fss_maxupri; 1705 if (nice > FSS_NICE_MAX) 1706 nice = FSS_NICE_MAX; 1707 1708 thread_lock(t); 1709 1710 fssproc->fss_uprilim = reqfssuprilim; 1711 fssproc->fss_upri = reqfssupri; 1712 fssproc->fss_nice = nice; 1713 fss_newpri(fssproc); 1714 1715 if ((fssproc->fss_flags & FSSKPRI) != 0) { 1716 thread_unlock(t); 1717 return (0); 1718 } 1719 1720 fss_change_priority(t, fssproc); 1721 thread_unlock(t); 1722 return (0); 1723 1724 } 1725 1726 /* 1727 * The thread is being stopped. 1728 */ 1729 /*ARGSUSED*/ 1730 static void 1731 fss_stop(kthread_t *t, int why, int what) 1732 { 1733 ASSERT(THREAD_LOCK_HELD(t)); 1734 ASSERT(t == curthread); 1735 1736 fss_inactive(t); 1737 } 1738 1739 /* 1740 * The current thread is exiting, do necessary adjustments to its project 1741 */ 1742 static void 1743 fss_exit(kthread_t *t) 1744 { 1745 fsspset_t *fsspset; 1746 fssproj_t *fssproj; 1747 fssproc_t *fssproc; 1748 fsszone_t *fsszone; 1749 int free = 0; 1750 1751 /* 1752 * Thread t here is either a current thread (in which case we hold 1753 * its process' p_lock), or a thread being destroyed by forklwp_fail(), 1754 * in which case we hold pidlock and thread is no longer on the 1755 * thread list. 1756 */ 1757 ASSERT(MUTEX_HELD(&(ttoproc(t))->p_lock) || MUTEX_HELD(&pidlock)); 1758 1759 fssproc = FSSPROC(t); 1760 fssproj = FSSPROC2FSSPROJ(fssproc); 1761 fsspset = FSSPROJ2FSSPSET(fssproj); 1762 fsszone = fssproj->fssp_fsszone; 1763 1764 mutex_enter(&fsspsets_lock); 1765 mutex_enter(&fsspset->fssps_lock); 1766 1767 thread_lock(t); 1768 disp_lock_enter_high(&fsspset->fssps_displock); 1769 if (t->t_state == TS_ONPROC || t->t_state == TS_RUN) { 1770 if (--fssproj->fssp_runnable == 0) { 1771 fsszone->fssz_shares -= fssproj->fssp_shares; 1772 if (--fsszone->fssz_runnable == 0) 1773 fsspset->fssps_shares -= fsszone->fssz_rshares; 1774 } 1775 ASSERT(fssproc->fss_runnable == 1); 1776 fssproc->fss_runnable = 0; 1777 } 1778 if (--fssproj->fssp_threads == 0) { 1779 fss_remove_fssproj(fsspset, fssproj); 1780 free = 1; 1781 } 1782 disp_lock_exit_high(&fsspset->fssps_displock); 1783 fssproc->fss_proj = NULL; /* mark this thread as already exited */ 1784 thread_unlock(t); 1785 1786 if (free) { 1787 if (fsszone->fssz_nproj == 0) 1788 kmem_free(fsszone, sizeof (fsszone_t)); 1789 kmem_free(fssproj, sizeof (fssproj_t)); 1790 } 1791 mutex_exit(&fsspset->fssps_lock); 1792 mutex_exit(&fsspsets_lock); 1793 } 1794 1795 static void 1796 fss_nullsys() 1797 { 1798 } 1799 1800 /* 1801 * fss_swapin() returns -1 if the thread is loaded or is not eligible to be 1802 * swapped in. Otherwise, it returns the thread's effective priority based 1803 * on swapout time and size of process (0 <= epri <= 0 SHRT_MAX). 1804 */ 1805 /*ARGSUSED*/ 1806 static pri_t 1807 fss_swapin(kthread_t *t, int flags) 1808 { 1809 fssproc_t *fssproc = FSSPROC(t); 1810 long epri = -1; 1811 proc_t *pp = ttoproc(t); 1812 1813 ASSERT(THREAD_LOCK_HELD(t)); 1814 1815 if (t->t_state == TS_RUN && (t->t_schedflag & TS_LOAD) == 0) { 1816 time_t swapout_time; 1817 1818 swapout_time = (lbolt - t->t_stime) / hz; 1819 if (INHERITED(t) || (fssproc->fss_flags & FSSKPRI)) { 1820 epri = (long)DISP_PRIO(t) + swapout_time; 1821 } else { 1822 /* 1823 * Threads which have been out for a long time, 1824 * have high user mode priority and are associated 1825 * with a small address space are more deserving. 1826 */ 1827 epri = fssproc->fss_umdpri; 1828 ASSERT(epri >= 0 && epri <= fss_maxumdpri); 1829 epri += swapout_time - pp->p_swrss / nz(maxpgio)/2; 1830 } 1831 /* 1832 * Scale epri so that SHRT_MAX / 2 represents zero priority. 1833 */ 1834 epri += SHRT_MAX / 2; 1835 if (epri < 0) 1836 epri = 0; 1837 else if (epri > SHRT_MAX) 1838 epri = SHRT_MAX; 1839 } 1840 return ((pri_t)epri); 1841 } 1842 1843 /* 1844 * fss_swapout() returns -1 if the thread isn't loaded or is not eligible to 1845 * be swapped out. Otherwise, it returns the thread's effective priority 1846 * based on if the swapper is in softswap or hardswap mode. 1847 */ 1848 static pri_t 1849 fss_swapout(kthread_t *t, int flags) 1850 { 1851 fssproc_t *fssproc = FSSPROC(t); 1852 long epri = -1; 1853 proc_t *pp = ttoproc(t); 1854 time_t swapin_time; 1855 1856 ASSERT(THREAD_LOCK_HELD(t)); 1857 1858 if (INHERITED(t) || 1859 (fssproc->fss_flags & FSSKPRI) || 1860 (t->t_proc_flag & TP_LWPEXIT) || 1861 (t->t_state & (TS_ZOMB | TS_FREE | TS_STOPPED | TS_ONPROC)) || 1862 !(t->t_schedflag & TS_LOAD) || 1863 !(SWAP_OK(t))) 1864 return (-1); 1865 1866 ASSERT(t->t_state & (TS_SLEEP | TS_RUN)); 1867 1868 swapin_time = (lbolt - t->t_stime) / hz; 1869 1870 if (flags == SOFTSWAP) { 1871 if (t->t_state == TS_SLEEP && swapin_time > maxslp) { 1872 epri = 0; 1873 } else { 1874 return ((pri_t)epri); 1875 } 1876 } else { 1877 pri_t pri; 1878 1879 if ((t->t_state == TS_SLEEP && swapin_time > fss_minslp) || 1880 (t->t_state == TS_RUN && swapin_time > fss_minrun)) { 1881 pri = fss_maxumdpri; 1882 epri = swapin_time - 1883 (rm_asrss(pp->p_as) / nz(maxpgio)/2) - (long)pri; 1884 } else { 1885 return ((pri_t)epri); 1886 } 1887 } 1888 1889 /* 1890 * Scale epri so that SHRT_MAX / 2 represents zero priority. 1891 */ 1892 epri += SHRT_MAX / 2; 1893 if (epri < 0) 1894 epri = 0; 1895 else if (epri > SHRT_MAX) 1896 epri = SHRT_MAX; 1897 1898 return ((pri_t)epri); 1899 } 1900 1901 /* 1902 * If thread is currently at a kernel mode priority (has slept) and is 1903 * returning to the userland we assign it the appropriate user mode priority 1904 * and time quantum here. If we're lowering the thread's priority below that 1905 * of other runnable threads then we will set runrun via cpu_surrender() to 1906 * cause preemption. 1907 */ 1908 static void 1909 fss_trapret(kthread_t *t) 1910 { 1911 fssproc_t *fssproc = FSSPROC(t); 1912 cpu_t *cp = CPU; 1913 1914 ASSERT(THREAD_LOCK_HELD(t)); 1915 ASSERT(t == curthread); 1916 ASSERT(cp->cpu_dispthread == t); 1917 ASSERT(t->t_state == TS_ONPROC); 1918 1919 t->t_kpri_req = 0; 1920 if (fssproc->fss_flags & FSSKPRI) { 1921 /* 1922 * If thread has blocked in the kernel 1923 */ 1924 THREAD_CHANGE_PRI(t, fssproc->fss_umdpri); 1925 cp->cpu_dispatch_pri = DISP_PRIO(t); 1926 ASSERT(t->t_pri >= 0 && t->t_pri <= fss_maxglobpri); 1927 fssproc->fss_flags &= ~FSSKPRI; 1928 1929 if (DISP_MUST_SURRENDER(t)) 1930 cpu_surrender(t); 1931 } 1932 1933 /* 1934 * Swapout lwp if the swapper is waiting for this thread to reach 1935 * a safe point. 1936 */ 1937 if (t->t_schedflag & TS_SWAPENQ) { 1938 thread_unlock(t); 1939 swapout_lwp(ttolwp(t)); 1940 thread_lock(t); 1941 } 1942 } 1943 1944 /* 1945 * Arrange for thread to be placed in appropriate location on dispatcher queue. 1946 * This is called with the current thread in TS_ONPROC and locked. 1947 */ 1948 static void 1949 fss_preempt(kthread_t *t) 1950 { 1951 fssproc_t *fssproc = FSSPROC(t); 1952 klwp_t *lwp; 1953 uint_t flags; 1954 1955 ASSERT(t == curthread); 1956 ASSERT(THREAD_LOCK_HELD(curthread)); 1957 ASSERT(t->t_state == TS_ONPROC); 1958 1959 /* 1960 * If preempted in the kernel, make sure the thread has a kernel 1961 * priority if needed. 1962 */ 1963 lwp = curthread->t_lwp; 1964 if (!(fssproc->fss_flags & FSSKPRI) && lwp != NULL && t->t_kpri_req) { 1965 fssproc->fss_flags |= FSSKPRI; 1966 THREAD_CHANGE_PRI(t, minclsyspri); 1967 ASSERT(t->t_pri >= 0 && t->t_pri <= fss_maxglobpri); 1968 t->t_trapret = 1; /* so that fss_trapret will run */ 1969 aston(t); 1970 } 1971 /* 1972 * If preempted in user-land mark the thread as swappable because it 1973 * cannot be holding any kernel locks. 1974 */ 1975 ASSERT(t->t_schedflag & TS_DONT_SWAP); 1976 if (lwp != NULL && lwp->lwp_state == LWP_USER) 1977 t->t_schedflag &= ~TS_DONT_SWAP; 1978 1979 /* 1980 * Check to see if we're doing "preemption control" here. If 1981 * we are, and if the user has requested that this thread not 1982 * be preempted, and if preemptions haven't been put off for 1983 * too long, let the preemption happen here but try to make 1984 * sure the thread is rescheduled as soon as possible. We d 1985 * this by putting it on the front of the highest priority run 1986 * queue in the FSS class. If the preemption has been put off 1987 * for too long, clear the "nopreempt" bit and let the thread 1988 * be preempted. 1989 */ 1990 if (t->t_schedctl && schedctl_get_nopreempt(t)) { 1991 if (fssproc->fss_timeleft > -SC_MAX_TICKS) { 1992 DTRACE_SCHED1(schedctl__nopreempt, kthread_t *, t); 1993 if (!(fssproc->fss_flags & FSSKPRI)) { 1994 THREAD_CHANGE_PRI(t, fss_maxumdpri); 1995 t->t_schedflag |= TS_DONT_SWAP; 1996 schedctl_set_yield(t, 1); 1997 } 1998 setfrontdq(t); 1999 return; 2000 } else { 2001 schedctl_set_nopreempt(t, 0); 2002 DTRACE_SCHED1(schedctl__preempt, kthread_t *, t); 2003 /* 2004 * Fall through and be preempted below. 2005 */ 2006 } 2007 } 2008 2009 flags = fssproc->fss_flags & (FSSBACKQ | FSSKPRI); 2010 2011 if (flags == FSSBACKQ) { 2012 fssproc->fss_timeleft = fss_quantum; 2013 fssproc->fss_flags &= ~FSSBACKQ; 2014 setbackdq(t); 2015 } else if (flags == (FSSBACKQ | FSSKPRI)) { 2016 fssproc->fss_flags &= ~FSSBACKQ; 2017 setbackdq(t); 2018 } else { 2019 setfrontdq(t); 2020 } 2021 } 2022 2023 /* 2024 * Called when a thread is waking up and is to be placed on the run queue. 2025 */ 2026 static void 2027 fss_setrun(kthread_t *t) 2028 { 2029 fssproc_t *fssproc = FSSPROC(t); 2030 2031 ASSERT(THREAD_LOCK_HELD(t)); /* t should be in transition */ 2032 2033 if (t->t_state == TS_SLEEP || t->t_state == TS_STOPPED) 2034 fss_active(t); 2035 2036 fssproc->fss_timeleft = fss_quantum; 2037 2038 fssproc->fss_flags &= ~FSSBACKQ; 2039 /* 2040 * If previously were running at the kernel priority then keep that 2041 * priority and the fss_timeleft doesn't matter. 2042 */ 2043 if ((fssproc->fss_flags & FSSKPRI) == 0) 2044 THREAD_CHANGE_PRI(t, fssproc->fss_umdpri); 2045 2046 if (t->t_disp_time != lbolt) 2047 setbackdq(t); 2048 else 2049 setfrontdq(t); 2050 } 2051 2052 /* 2053 * Prepare thread for sleep. We reset the thread priority so it will run at the 2054 * kernel priority level when it wakes up. 2055 */ 2056 static void 2057 fss_sleep(kthread_t *t) 2058 { 2059 fssproc_t *fssproc = FSSPROC(t); 2060 2061 ASSERT(t == curthread); 2062 ASSERT(THREAD_LOCK_HELD(t)); 2063 2064 ASSERT(t->t_state == TS_ONPROC); 2065 fss_inactive(t); 2066 2067 /* 2068 * Assign a system priority to the thread and arrange for it to be 2069 * retained when the thread is next placed on the run queue (i.e., 2070 * when it wakes up) instead of being given a new pri. Also arrange 2071 * for trapret processing as the thread leaves the system call so it 2072 * will drop back to normal priority range. 2073 */ 2074 if (t->t_kpri_req) { 2075 THREAD_CHANGE_PRI(t, minclsyspri); 2076 fssproc->fss_flags |= FSSKPRI; 2077 t->t_trapret = 1; /* so that fss_trapret will run */ 2078 aston(t); 2079 } else if (fssproc->fss_flags & FSSKPRI) { 2080 /* 2081 * The thread has done a THREAD_KPRI_REQUEST(), slept, then 2082 * done THREAD_KPRI_RELEASE() (so no t_kpri_req is 0 again), 2083 * then slept again all without finishing the current system 2084 * call so trapret won't have cleared FSSKPRI 2085 */ 2086 fssproc->fss_flags &= ~FSSKPRI; 2087 THREAD_CHANGE_PRI(t, fssproc->fss_umdpri); 2088 if (DISP_MUST_SURRENDER(curthread)) 2089 cpu_surrender(t); 2090 } 2091 t->t_stime = lbolt; /* time stamp for the swapper */ 2092 } 2093 2094 /* 2095 * A tick interrupt has ocurrend on a running thread. Check to see if our 2096 * time slice has expired. We must also clear the TS_DONT_SWAP flag in 2097 * t_schedflag if the thread is eligible to be swapped out. 2098 */ 2099 static void 2100 fss_tick(kthread_t *t) 2101 { 2102 fssproc_t *fssproc; 2103 fssproj_t *fssproj; 2104 klwp_t *lwp; 2105 2106 ASSERT(MUTEX_HELD(&(ttoproc(t))->p_lock)); 2107 2108 /* 2109 * It's safe to access fsspset and fssproj structures because we're 2110 * holding our p_lock here. 2111 */ 2112 thread_lock(t); 2113 fssproc = FSSPROC(t); 2114 fssproj = FSSPROC2FSSPROJ(fssproc); 2115 if (fssproj != NULL) { 2116 fsspset_t *fsspset = FSSPROJ2FSSPSET(fssproj); 2117 disp_lock_enter_high(&fsspset->fssps_displock); 2118 fssproj->fssp_ticks += fss_nice_tick[fssproc->fss_nice]; 2119 fssproc->fss_ticks++; 2120 disp_lock_exit_high(&fsspset->fssps_displock); 2121 } 2122 2123 /* 2124 * A thread's execution time for threads running in the SYS class 2125 * is not tracked. 2126 */ 2127 if ((fssproc->fss_flags & FSSKPRI) == 0) { 2128 /* 2129 * If thread is not in kernel mode, decrement its fss_timeleft 2130 */ 2131 if (--fssproc->fss_timeleft <= 0) { 2132 pri_t new_pri; 2133 2134 /* 2135 * If we're doing preemption control and trying to 2136 * avoid preempting this thread, just note that the 2137 * thread should yield soon and let it keep running 2138 * (unless it's been a while). 2139 */ 2140 if (t->t_schedctl && schedctl_get_nopreempt(t)) { 2141 if (fssproc->fss_timeleft > -SC_MAX_TICKS) { 2142 DTRACE_SCHED1(schedctl__nopreempt, 2143 kthread_t *, t); 2144 schedctl_set_yield(t, 1); 2145 thread_unlock_nopreempt(t); 2146 return; 2147 } 2148 } 2149 2150 fss_newpri(fssproc); 2151 new_pri = fssproc->fss_umdpri; 2152 ASSERT(new_pri >= 0 && new_pri <= fss_maxglobpri); 2153 2154 /* 2155 * When the priority of a thread is changed, it may 2156 * be necessary to adjust its position on a sleep queue 2157 * or dispatch queue. The function thread_change_pri 2158 * accomplishes this. 2159 */ 2160 if (thread_change_pri(t, new_pri, 0)) { 2161 if ((t->t_schedflag & TS_LOAD) && 2162 (lwp = t->t_lwp) && 2163 lwp->lwp_state == LWP_USER) 2164 t->t_schedflag &= ~TS_DONT_SWAP; 2165 fssproc->fss_timeleft = fss_quantum; 2166 } else { 2167 fssproc->fss_flags |= FSSBACKQ; 2168 cpu_surrender(t); 2169 } 2170 } else if (t->t_pri < t->t_disp_queue->disp_maxrunpri) { 2171 /* 2172 * If there is a higher-priority thread which is 2173 * waiting for a processor, then thread surrenders 2174 * the processor. 2175 */ 2176 fssproc->fss_flags |= FSSBACKQ; 2177 cpu_surrender(t); 2178 } 2179 } 2180 thread_unlock_nopreempt(t); /* clock thread can't be preempted */ 2181 } 2182 2183 /* 2184 * Processes waking up go to the back of their queue. We don't need to assign 2185 * a time quantum here because thread is still at a kernel mode priority and 2186 * the time slicing is not done for threads running in the kernel after 2187 * sleeping. The proper time quantum will be assigned by fss_trapret before the 2188 * thread returns to user mode. 2189 */ 2190 static void 2191 fss_wakeup(kthread_t *t) 2192 { 2193 fssproc_t *fssproc; 2194 2195 ASSERT(THREAD_LOCK_HELD(t)); 2196 ASSERT(t->t_state == TS_SLEEP); 2197 2198 fss_active(t); 2199 2200 t->t_stime = lbolt; /* time stamp for the swapper */ 2201 fssproc = FSSPROC(t); 2202 fssproc->fss_flags &= ~FSSBACKQ; 2203 2204 if (fssproc->fss_flags & FSSKPRI) { 2205 /* 2206 * If we already have a kernel priority assigned, then we 2207 * just use it. 2208 */ 2209 setbackdq(t); 2210 } else if (t->t_kpri_req) { 2211 /* 2212 * Give thread a priority boost if we were asked. 2213 */ 2214 fssproc->fss_flags |= FSSKPRI; 2215 THREAD_CHANGE_PRI(t, minclsyspri); 2216 setbackdq(t); 2217 t->t_trapret = 1; /* so that fss_trapret will run */ 2218 aston(t); 2219 } else { 2220 /* 2221 * Otherwise, we recalculate the priority. 2222 */ 2223 if (t->t_disp_time == lbolt) { 2224 setfrontdq(t); 2225 } else { 2226 fssproc->fss_timeleft = fss_quantum; 2227 THREAD_CHANGE_PRI(t, fssproc->fss_umdpri); 2228 setbackdq(t); 2229 } 2230 } 2231 } 2232 2233 /* 2234 * fss_donice() is called when a nice(1) command is issued on the thread to 2235 * alter the priority. The nice(1) command exists in Solaris for compatibility. 2236 * Thread priority adjustments should be done via priocntl(1). 2237 */ 2238 static int 2239 fss_donice(kthread_t *t, cred_t *cr, int incr, int *retvalp) 2240 { 2241 int newnice; 2242 fssproc_t *fssproc = FSSPROC(t); 2243 fssparms_t fssparms; 2244 2245 /* 2246 * If there is no change to priority, just return current setting. 2247 */ 2248 if (incr == 0) { 2249 if (retvalp) 2250 *retvalp = fssproc->fss_nice - NZERO; 2251 return (0); 2252 } 2253 2254 if ((incr < 0 || incr > 2 * NZERO) && secpolicy_setpriority(cr) != 0) 2255 return (EPERM); 2256 2257 /* 2258 * Specifying a nice increment greater than the upper limit of 2259 * FSS_NICE_MAX (== 2 * NZERO - 1) will result in the thread's nice 2260 * value being set to the upper limit. We check for this before 2261 * computing the new value because otherwise we could get overflow 2262 * if a privileged user specified some ridiculous increment. 2263 */ 2264 if (incr > FSS_NICE_MAX) 2265 incr = FSS_NICE_MAX; 2266 2267 newnice = fssproc->fss_nice + incr; 2268 if (newnice > FSS_NICE_MAX) 2269 newnice = FSS_NICE_MAX; 2270 else if (newnice < FSS_NICE_MIN) 2271 newnice = FSS_NICE_MIN; 2272 2273 fssparms.fss_uprilim = fssparms.fss_upri = 2274 -((newnice - NZERO) * fss_maxupri) / NZERO; 2275 2276 /* 2277 * Reset the uprilim and upri values of the thread. 2278 */ 2279 (void) fss_parmsset(t, (void *)&fssparms, (id_t)0, (cred_t *)NULL); 2280 2281 /* 2282 * Although fss_parmsset already reset fss_nice it may not have been 2283 * set to precisely the value calculated above because fss_parmsset 2284 * determines the nice value from the user priority and we may have 2285 * truncated during the integer conversion from nice value to user 2286 * priority and back. We reset fss_nice to the value we calculated 2287 * above. 2288 */ 2289 fssproc->fss_nice = (char)newnice; 2290 2291 if (retvalp) 2292 *retvalp = newnice - NZERO; 2293 return (0); 2294 } 2295 2296 /* 2297 * Return the global scheduling priority that would be assigned to a thread 2298 * entering the fair-sharing class with the fss_upri. 2299 */ 2300 /*ARGSUSED*/ 2301 static pri_t 2302 fss_globpri(kthread_t *t) 2303 { 2304 ASSERT(MUTEX_HELD(&ttoproc(t)->p_lock)); 2305 2306 return (fss_maxumdpri / 2); 2307 } 2308 2309 /* 2310 * Called from the yield(2) system call when a thread is yielding (surrendering) 2311 * the processor. The kernel thread is placed at the back of a dispatch queue. 2312 */ 2313 static void 2314 fss_yield(kthread_t *t) 2315 { 2316 fssproc_t *fssproc = FSSPROC(t); 2317 2318 ASSERT(t == curthread); 2319 ASSERT(THREAD_LOCK_HELD(t)); 2320 2321 /* 2322 * Clear the preemption control "yield" bit since the user is 2323 * doing a yield. 2324 */ 2325 if (t->t_schedctl) 2326 schedctl_set_yield(t, 0); 2327 if (fssproc->fss_timeleft < 0) { 2328 /* 2329 * Time slice was artificially extended to avoid preemption, 2330 * so pretend we're preempting it now. 2331 */ 2332 DTRACE_SCHED1(schedctl__yield, int, -fssproc->fss_timeleft); 2333 fssproc->fss_timeleft = fss_quantum; 2334 } 2335 fssproc->fss_flags &= ~FSSBACKQ; 2336 setbackdq(t); 2337 } 2338 2339 void 2340 fss_changeproj(kthread_t *t, void *kp, void *zp, fssbuf_t *projbuf, 2341 fssbuf_t *zonebuf) 2342 { 2343 kproject_t *kpj_new = kp; 2344 zone_t *zone = zp; 2345 fssproj_t *fssproj_old, *fssproj_new; 2346 fsspset_t *fsspset; 2347 kproject_t *kpj_old; 2348 fssproc_t *fssproc; 2349 fsszone_t *fsszone_old, *fsszone_new; 2350 int free = 0; 2351 int id; 2352 2353 ASSERT(MUTEX_HELD(&cpu_lock)); 2354 ASSERT(MUTEX_HELD(&pidlock)); 2355 ASSERT(MUTEX_HELD(&ttoproc(t)->p_lock)); 2356 2357 if (t->t_cid != fss_cid) 2358 return; 2359 2360 fssproc = FSSPROC(t); 2361 mutex_enter(&fsspsets_lock); 2362 fssproj_old = FSSPROC2FSSPROJ(fssproc); 2363 if (fssproj_old == NULL) { 2364 mutex_exit(&fsspsets_lock); 2365 return; 2366 } 2367 2368 fsspset = FSSPROJ2FSSPSET(fssproj_old); 2369 mutex_enter(&fsspset->fssps_lock); 2370 kpj_old = FSSPROJ2KPROJ(fssproj_old); 2371 fsszone_old = fssproj_old->fssp_fsszone; 2372 2373 ASSERT(t->t_cpupart == fsspset->fssps_cpupart); 2374 2375 if (kpj_old == kpj_new) { 2376 mutex_exit(&fsspset->fssps_lock); 2377 mutex_exit(&fsspsets_lock); 2378 return; 2379 } 2380 2381 if ((fsszone_new = fss_find_fsszone(fsspset, zone)) == NULL) { 2382 /* 2383 * If the zone for the new project is not currently active on 2384 * the cpu partition we're on, get one of the pre-allocated 2385 * buffers and link it in our per-pset zone list. Such buffers 2386 * should already exist. 2387 */ 2388 for (id = 0; id < zonebuf->fssb_size; id++) { 2389 if ((fsszone_new = zonebuf->fssb_list[id]) != NULL) { 2390 fss_insert_fsszone(fsspset, zone, fsszone_new); 2391 zonebuf->fssb_list[id] = NULL; 2392 break; 2393 } 2394 } 2395 } 2396 ASSERT(fsszone_new != NULL); 2397 if ((fssproj_new = fss_find_fssproj(fsspset, kpj_new)) == NULL) { 2398 /* 2399 * If our new project is not currently running 2400 * on the cpu partition we're on, get one of the 2401 * pre-allocated buffers and link it in our new cpu 2402 * partition doubly linked list. Such buffers should already 2403 * exist. 2404 */ 2405 for (id = 0; id < projbuf->fssb_size; id++) { 2406 if ((fssproj_new = projbuf->fssb_list[id]) != NULL) { 2407 fss_insert_fssproj(fsspset, kpj_new, 2408 fsszone_new, fssproj_new); 2409 projbuf->fssb_list[id] = NULL; 2410 break; 2411 } 2412 } 2413 } 2414 ASSERT(fssproj_new != NULL); 2415 2416 thread_lock(t); 2417 if (t->t_state == TS_RUN || t->t_state == TS_ONPROC) 2418 fss_inactive(t); 2419 ASSERT(fssproj_old->fssp_threads > 0); 2420 if (--fssproj_old->fssp_threads == 0) { 2421 fss_remove_fssproj(fsspset, fssproj_old); 2422 free = 1; 2423 } 2424 fssproc->fss_proj = fssproj_new; 2425 fssproc->fss_fsspri = 0; 2426 fssproj_new->fssp_threads++; 2427 if (t->t_state == TS_RUN || t->t_state == TS_ONPROC) 2428 fss_active(t); 2429 thread_unlock(t); 2430 if (free) { 2431 if (fsszone_old->fssz_nproj == 0) 2432 kmem_free(fsszone_old, sizeof (fsszone_t)); 2433 kmem_free(fssproj_old, sizeof (fssproj_t)); 2434 } 2435 2436 mutex_exit(&fsspset->fssps_lock); 2437 mutex_exit(&fsspsets_lock); 2438 } 2439 2440 void 2441 fss_changepset(kthread_t *t, void *newcp, fssbuf_t *projbuf, 2442 fssbuf_t *zonebuf) 2443 { 2444 fsspset_t *fsspset_old, *fsspset_new; 2445 fssproj_t *fssproj_old, *fssproj_new; 2446 fsszone_t *fsszone_old, *fsszone_new; 2447 fssproc_t *fssproc; 2448 kproject_t *kpj; 2449 zone_t *zone; 2450 int id; 2451 2452 ASSERT(MUTEX_HELD(&cpu_lock)); 2453 ASSERT(MUTEX_HELD(&pidlock)); 2454 ASSERT(MUTEX_HELD(&ttoproc(t)->p_lock)); 2455 2456 if (t->t_cid != fss_cid) 2457 return; 2458 2459 fssproc = FSSPROC(t); 2460 zone = ttoproc(t)->p_zone; 2461 mutex_enter(&fsspsets_lock); 2462 fssproj_old = FSSPROC2FSSPROJ(fssproc); 2463 if (fssproj_old == NULL) { 2464 mutex_exit(&fsspsets_lock); 2465 return; 2466 } 2467 fsszone_old = fssproj_old->fssp_fsszone; 2468 fsspset_old = FSSPROJ2FSSPSET(fssproj_old); 2469 kpj = FSSPROJ2KPROJ(fssproj_old); 2470 2471 if (fsspset_old->fssps_cpupart == newcp) { 2472 mutex_exit(&fsspsets_lock); 2473 return; 2474 } 2475 2476 ASSERT(ttoproj(t) == kpj); 2477 2478 fsspset_new = fss_find_fsspset(newcp); 2479 2480 mutex_enter(&fsspset_new->fssps_lock); 2481 if ((fsszone_new = fss_find_fsszone(fsspset_new, zone)) == NULL) { 2482 for (id = 0; id < zonebuf->fssb_size; id++) { 2483 if ((fsszone_new = zonebuf->fssb_list[id]) != NULL) { 2484 fss_insert_fsszone(fsspset_new, zone, 2485 fsszone_new); 2486 zonebuf->fssb_list[id] = NULL; 2487 break; 2488 } 2489 } 2490 } 2491 ASSERT(fsszone_new != NULL); 2492 if ((fssproj_new = fss_find_fssproj(fsspset_new, kpj)) == NULL) { 2493 for (id = 0; id < projbuf->fssb_size; id++) { 2494 if ((fssproj_new = projbuf->fssb_list[id]) != NULL) { 2495 fss_insert_fssproj(fsspset_new, kpj, 2496 fsszone_new, fssproj_new); 2497 projbuf->fssb_list[id] = NULL; 2498 break; 2499 } 2500 } 2501 } 2502 ASSERT(fssproj_new != NULL); 2503 2504 fssproj_new->fssp_threads++; 2505 thread_lock(t); 2506 if (t->t_state == TS_RUN || t->t_state == TS_ONPROC) 2507 fss_inactive(t); 2508 fssproc->fss_proj = fssproj_new; 2509 fssproc->fss_fsspri = 0; 2510 if (t->t_state == TS_RUN || t->t_state == TS_ONPROC) 2511 fss_active(t); 2512 thread_unlock(t); 2513 mutex_exit(&fsspset_new->fssps_lock); 2514 2515 mutex_enter(&fsspset_old->fssps_lock); 2516 if (--fssproj_old->fssp_threads == 0) { 2517 fss_remove_fssproj(fsspset_old, fssproj_old); 2518 if (fsszone_old->fssz_nproj == 0) 2519 kmem_free(fsszone_old, sizeof (fsszone_t)); 2520 kmem_free(fssproj_old, sizeof (fssproj_t)); 2521 } 2522 mutex_exit(&fsspset_old->fssps_lock); 2523 2524 mutex_exit(&fsspsets_lock); 2525 } 2526