xref: /titanic_52/usr/src/uts/common/crypto/io/swrand.c (revision f48205be61a214698b763ff550ab9e657525104c)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 /*
29  * Software based random number provider for the Kernel Cryptographic
30  * Framework (KCF). This provider periodically collects unpredictable input
31  * from external sources and processes it into a pool of entropy (randomness)
32  * in order to satisfy requests for random bits from kCF. It implements
33  * software-based mixing, extraction, and generation algorithms.
34  *
35  * A history note: The software-based algorithms in this file used to be
36  * part of the /dev/random driver.
37  */
38 
39 #include <sys/types.h>
40 #include <sys/errno.h>
41 #include <sys/debug.h>
42 #include <vm/seg_kmem.h>
43 #include <vm/hat.h>
44 #include <sys/systm.h>
45 #include <sys/memlist.h>
46 #include <sys/cmn_err.h>
47 #include <sys/ksynch.h>
48 #include <sys/random.h>
49 #include <sys/ddi.h>
50 #include <sys/mman.h>
51 #include <sys/sysmacros.h>
52 #include <sys/mem_config.h>
53 #include <sys/time.h>
54 #include <sys/crypto/spi.h>
55 #include <sys/sha1.h>
56 #include <sys/sunddi.h>
57 #include <sys/modctl.h>
58 #include <sys/hold_page.h>
59 
60 #define	RNDPOOLSIZE		1024	/* Pool size in bytes */
61 #define	HASHBUFSIZE		64	/* Buffer size used for pool mixing */
62 #define	MAXMEMBLOCKS		16384	/* Number of memory blocks to scan */
63 #define	MEMBLOCKSIZE		4096	/* Size of memory block to read */
64 #define	MINEXTRACTBITS		160	/* Min entropy level for extraction */
65 #define	TIMEOUT_INTERVAL	5	/* Periodic mixing interval in secs */
66 
67 /* Hash-algo generic definitions. For now, they are SHA1's. */
68 #define	HASHSIZE		20
69 #define	HASH_CTX		SHA1_CTX
70 #define	HashInit(ctx)		SHA1Init((ctx))
71 #define	HashUpdate(ctx, p, s)	SHA1Update((ctx), (p), (s))
72 #define	HashFinal(d, ctx)	SHA1Final((d), (ctx))
73 
74 /* Physical memory entropy source */
75 typedef struct physmem_entsrc_s {
76 	uint8_t *parity;		/* parity bit vector */
77 	caddr_t pmbuf;			/* buffer for memory block */
78 	uint32_t nblocks;		/* number of  memory blocks */
79 	int entperblock;		/* entropy bits per block read */
80 	hrtime_t last_diff;		/* previous time to process a block */
81 	hrtime_t last_delta;		/* previous time delta */
82 	hrtime_t last_delta2;		/* previous 2nd order time delta */
83 } physmem_entsrc_t;
84 
85 static uint32_t srndpool[RNDPOOLSIZE/4];	/* Pool of random bits */
86 static uint32_t buffer[RNDPOOLSIZE/4];	/* entropy mixed in later */
87 static int buffer_bytes;		/* bytes written to buffer */
88 static uint32_t entropy_bits;		/* pool's current amount of entropy */
89 static kmutex_t srndpool_lock;		/* protects r/w accesses to the pool, */
90 					/* and the global variables */
91 static kmutex_t buffer_lock;		/* protects r/w accesses to buffer */
92 static kcondvar_t srndpool_read_cv;	/* serializes poll/read syscalls */
93 static int pindex;			/* Global index for adding/extracting */
94 					/* from the pool */
95 static int bstart, bindex;		/* Global vars for adding/extracting */
96 					/* from the buffer */
97 static uint8_t leftover[HASHSIZE];	/* leftover output */
98 static int leftover_bytes;		/* leftover length */
99 
100 static physmem_entsrc_t entsrc;		/* Physical mem as an entropy source */
101 static timeout_id_t rnd_timeout_id;
102 static int snum_waiters;
103 static crypto_kcf_provider_handle_t swrand_prov_handle = NULL;
104 swrand_stats_t swrand_stats;
105 
106 static int physmem_ent_init(physmem_entsrc_t *);
107 static void physmem_ent_fini(physmem_entsrc_t *);
108 static void physmem_ent_gen(physmem_entsrc_t *);
109 static int physmem_parity_update(uint8_t *, uint32_t, int);
110 static void physmem_count_blocks();
111 static void rnd_dr_callback_post_add(void *, pgcnt_t);
112 static int rnd_dr_callback_pre_del(void *, pgcnt_t);
113 static void rnd_dr_callback_post_del(void *, pgcnt_t, int);
114 static void rnd_handler(void *arg);
115 static void swrand_init();
116 static void swrand_schedule_timeout(void);
117 static int swrand_get_entropy(uint8_t *ptr, size_t len, boolean_t);
118 static void swrand_add_entropy(uint8_t *ptr, size_t len, uint16_t entropy_est);
119 static void swrand_add_entropy_later(uint8_t *ptr, size_t len);
120 
121 /* Dynamic Reconfiguration related declarations */
122 kphysm_setup_vector_t rnd_dr_callback_vec = {
123 	KPHYSM_SETUP_VECTOR_VERSION,
124 	rnd_dr_callback_post_add,
125 	rnd_dr_callback_pre_del,
126 	rnd_dr_callback_post_del
127 };
128 
129 extern struct mod_ops mod_cryptoops;
130 
131 /*
132  * Module linkage information for the kernel.
133  */
134 static struct modlcrypto modlcrypto = {
135 	&mod_cryptoops,
136 	"Kernel Random number Provider %I%"
137 };
138 
139 static struct modlinkage modlinkage = {
140 	MODREV_1,
141 	(void *)&modlcrypto,
142 	NULL
143 };
144 
145 /*
146  * CSPI information (entry points, provider info, etc.)
147  */
148 static void swrand_provider_status(crypto_provider_handle_t, uint_t *);
149 
150 static crypto_control_ops_t swrand_control_ops = {
151 	swrand_provider_status
152 };
153 
154 static int swrand_seed_random(crypto_provider_handle_t, crypto_session_id_t,
155     uchar_t *, size_t, uint_t, uint32_t, crypto_req_handle_t);
156 static int swrand_generate_random(crypto_provider_handle_t,
157     crypto_session_id_t, uchar_t *, size_t, crypto_req_handle_t);
158 
159 static crypto_random_number_ops_t swrand_random_number_ops = {
160 	swrand_seed_random,
161 	swrand_generate_random
162 };
163 
164 static crypto_ops_t swrand_crypto_ops = {
165 	&swrand_control_ops,
166 	NULL,
167 	NULL,
168 	NULL,
169 	NULL,
170 	NULL,
171 	NULL,
172 	NULL,
173 	&swrand_random_number_ops,
174 	NULL,
175 	NULL,
176 	NULL,
177 	NULL,
178 	NULL
179 };
180 
181 static crypto_provider_info_t swrand_prov_info = {
182 	CRYPTO_SPI_VERSION_1,
183 	"Kernel Random Number Provider",
184 	CRYPTO_SW_PROVIDER,
185 	{&modlinkage},
186 	NULL,
187 	&swrand_crypto_ops,
188 	0,
189 	NULL
190 };
191 
192 int
193 _init(void)
194 {
195 	int ret;
196 	hrtime_t ts;
197 	time_t now;
198 
199 	/*
200 	 * Register with KCF. If the registration fails, return error.
201 	 */
202 	if ((ret = crypto_register_provider(&swrand_prov_info,
203 	    &swrand_prov_handle)) != CRYPTO_SUCCESS) {
204 		cmn_err(CE_WARN, "swrand : Kernel Random Number Provider "
205 		    "disabled for /dev/random use");
206 		return (EACCES);
207 	}
208 
209 	mutex_init(&srndpool_lock, NULL, MUTEX_DEFAULT, NULL);
210 	mutex_init(&buffer_lock, NULL, MUTEX_DEFAULT, NULL);
211 	cv_init(&srndpool_read_cv, NULL, CV_DEFAULT, NULL);
212 	entropy_bits = 0;
213 	pindex = 0;
214 	bindex = 0;
215 	bstart = 0;
216 	snum_waiters = 0;
217 	leftover_bytes = 0;
218 	buffer_bytes = 0;
219 
220 	/*
221 	 * Initialize the pool using
222 	 * . 2 unpredictable times: high resolution time since the boot-time,
223 	 *   and the current time-of-the day.
224 	 * . The initial physical memory state.
225 	 */
226 	ts = gethrtime();
227 	swrand_add_entropy((uint8_t *)&ts, sizeof (ts), 0);
228 
229 	(void) drv_getparm(TIME, &now);
230 	swrand_add_entropy((uint8_t *)&now, sizeof (now), 0);
231 
232 	ret = kphysm_setup_func_register(&rnd_dr_callback_vec, NULL);
233 	ASSERT(ret == 0);
234 
235 	if (physmem_ent_init(&entsrc) != 0) {
236 		mutex_destroy(&srndpool_lock);
237 		mutex_destroy(&buffer_lock);
238 		cv_destroy(&srndpool_read_cv);
239 		(void) crypto_unregister_provider(swrand_prov_handle);
240 		return (ENOMEM);
241 	}
242 
243 	if ((ret = mod_install(&modlinkage)) != 0) {
244 		mutex_destroy(&srndpool_lock);
245 		mutex_destroy(&buffer_lock);
246 		cv_destroy(&srndpool_read_cv);
247 		physmem_ent_fini(&entsrc);
248 		(void) crypto_unregister_provider(swrand_prov_handle);
249 		return (ret);
250 	}
251 
252 	/* Schedule periodic mixing of the pool. */
253 	mutex_enter(&srndpool_lock);
254 	swrand_schedule_timeout();
255 	mutex_exit(&srndpool_lock);
256 
257 	return (0);
258 }
259 
260 int
261 _info(struct modinfo *modinfop)
262 {
263 	return (mod_info(&modlinkage, modinfop));
264 }
265 
266 /*
267  * Control entry points.
268  */
269 /* ARGSUSED */
270 static void
271 swrand_provider_status(crypto_provider_handle_t provider, uint_t *status)
272 {
273 	*status = CRYPTO_PROVIDER_READY;
274 }
275 
276 /*
277  * Random number entry points.
278  */
279 /* ARGSUSED */
280 static int
281 swrand_seed_random(crypto_provider_handle_t provider, crypto_session_id_t sid,
282     uchar_t *buf, size_t len, uint_t entropy_est, uint32_t flags,
283     crypto_req_handle_t req)
284 {
285 	/* The entropy estimate is always 0 in this path */
286 	if (flags & CRYPTO_SEED_NOW)
287 		swrand_add_entropy(buf, len, 0);
288 	else
289 		swrand_add_entropy_later(buf, len);
290 	return (CRYPTO_SUCCESS);
291 }
292 
293 /* ARGSUSED */
294 static int
295 swrand_generate_random(crypto_provider_handle_t provider,
296     crypto_session_id_t sid, uchar_t *buf, size_t len, crypto_req_handle_t req)
297 {
298 	if (crypto_kmflag(req) == KM_NOSLEEP)
299 		(void) swrand_get_entropy(buf, len, B_TRUE);
300 	else
301 		(void) swrand_get_entropy(buf, len, B_FALSE);
302 
303 	return (CRYPTO_SUCCESS);
304 }
305 
306 
307 /*
308  * Extraction of entropy from the pool.
309  *
310  * Returns "len" random bytes in *ptr.
311  * Try to gather some more entropy by calling physmem_ent_gen() when less than
312  * MINEXTRACTBITS are present in the pool.
313  * Will block if not enough entropy was available and the call is blocking.
314  */
315 static int
316 swrand_get_entropy(uint8_t *ptr, size_t len, boolean_t nonblock)
317 {
318 	int i, bytes;
319 	HASH_CTX hashctx;
320 	uint8_t digest[HASHSIZE], *pool;
321 
322 	mutex_enter(&srndpool_lock);
323 	if (leftover_bytes > 0) {
324 		bytes = min(len, leftover_bytes);
325 		bcopy(leftover, ptr, bytes);
326 		len -= bytes;
327 		ptr += bytes;
328 		leftover_bytes -= bytes;
329 		if (leftover_bytes > 0)
330 			ovbcopy(leftover+bytes, leftover, leftover_bytes);
331 	}
332 
333 	while (len > 0) {
334 
335 		/* Check if there is enough entropy */
336 		while (entropy_bits < MINEXTRACTBITS) {
337 
338 			physmem_ent_gen(&entsrc);
339 
340 			if (entropy_bits < MINEXTRACTBITS &&
341 			    nonblock == B_TRUE) {
342 				mutex_exit(&srndpool_lock);
343 				return (EAGAIN);
344 			}
345 
346 			if (entropy_bits < MINEXTRACTBITS) {
347 				ASSERT(nonblock == B_FALSE);
348 				snum_waiters++;
349 				if (cv_wait_sig(&srndpool_read_cv,
350 				    &srndpool_lock) == 0) {
351 					snum_waiters--;
352 					mutex_exit(&srndpool_lock);
353 					return (EINTR);
354 				}
355 				snum_waiters--;
356 			}
357 		}
358 
359 		/* Figure out how many bytes to extract */
360 		bytes = min(HASHSIZE, len);
361 		bytes = min(bytes, entropy_bits/8);
362 		entropy_bits -= bytes * 8;
363 		BUMP_SWRAND_STATS(ss_entOut, bytes * 8);
364 		swrand_stats.ss_entEst = entropy_bits;
365 
366 		/* Extract entropy by hashing pool content */
367 		HashInit(&hashctx);
368 		HashUpdate(&hashctx, (uint8_t *)srndpool, RNDPOOLSIZE);
369 		HashFinal(digest, &hashctx);
370 
371 		/*
372 		 * Feed the digest back into the pool so next
373 		 * extraction produces different result
374 		 */
375 		pool = (uint8_t *)srndpool;
376 		for (i = 0; i < HASHSIZE; i++) {
377 			pool[pindex++] ^= digest[i];
378 			/* pindex modulo RNDPOOLSIZE */
379 			pindex &= (RNDPOOLSIZE - 1);
380 		}
381 
382 		/*
383 		 * Hash the digest again before output to obscure
384 		 * what was fed back to the pool.
385 		 */
386 		HashInit(&hashctx);
387 		HashUpdate(&hashctx, digest, HASHSIZE);
388 		if (len >= HASHSIZE)
389 			HashFinal(ptr, &hashctx);
390 		else {
391 			HashFinal(digest, &hashctx);
392 			bcopy(digest, ptr, bytes);
393 			leftover_bytes = HASHSIZE - bytes;
394 			bcopy(digest + bytes, leftover, leftover_bytes);
395 		}
396 
397 		len -= bytes;
398 		ptr += bytes;
399 		BUMP_SWRAND_STATS(ss_bytesOut, bytes);
400 	}
401 	mutex_exit(&srndpool_lock);
402 	return (0);
403 }
404 
405 #define	SWRAND_ADD_BYTES(ptr, len, i, pool)		\
406 	ASSERT((ptr) != NULL && (len) > 0);		\
407 	BUMP_SWRAND_STATS(ss_bytesIn, (len));		\
408 	while ((len)--) {				\
409 		(pool)[(i)++] ^= *(ptr);		\
410 		(ptr)++;				\
411 		(i) &= (RNDPOOLSIZE - 1);		\
412 	}
413 
414 /* Write some more user-provided entropy to the pool */
415 static void
416 swrand_add_bytes(uint8_t *ptr, size_t len)
417 {
418 	uint8_t *pool = (uint8_t *)srndpool;
419 
420 	ASSERT(MUTEX_HELD(&srndpool_lock));
421 	SWRAND_ADD_BYTES(ptr, len, pindex, pool);
422 }
423 
424 /*
425  * Add bytes to buffer. Adding the buffer to the random pool
426  * is deferred until the random pool is mixed.
427  */
428 static void
429 swrand_add_bytes_later(uint8_t *ptr, size_t len)
430 {
431 	uint8_t *pool = (uint8_t *)buffer;
432 
433 	ASSERT(MUTEX_HELD(&buffer_lock));
434 	SWRAND_ADD_BYTES(ptr, len, bindex, pool);
435 	buffer_bytes += len;
436 }
437 
438 #undef SWRAND_ADD_BYTES
439 
440 /* Mix the pool */
441 static void
442 swrand_mix_pool(uint16_t entropy_est)
443 {
444 	int i, j, k, start;
445 	HASH_CTX hashctx;
446 	uint8_t digest[HASHSIZE];
447 	uint8_t *pool = (uint8_t *)srndpool;
448 	uint8_t *bp = (uint8_t *)buffer;
449 
450 	ASSERT(MUTEX_HELD(&srndpool_lock));
451 
452 	/* add deferred bytes */
453 	mutex_enter(&buffer_lock);
454 	if (buffer_bytes > 0) {
455 		if (buffer_bytes >= RNDPOOLSIZE) {
456 			for (i = 0; i < RNDPOOLSIZE/4; i++) {
457 				srndpool[i] ^= buffer[i];
458 				buffer[i] = 0;
459 			}
460 			bstart = bindex = 0;
461 		} else {
462 			for (i = 0; i < buffer_bytes; i++) {
463 				pool[pindex++] ^= bp[bstart];
464 				bp[bstart++] = 0;
465 				pindex &= (RNDPOOLSIZE - 1);
466 				bstart &= (RNDPOOLSIZE - 1);
467 			}
468 			ASSERT(bstart == bindex);
469 		}
470 		buffer_bytes = 0;
471 	}
472 	mutex_exit(&buffer_lock);
473 
474 	start = 0;
475 	for (i = 0; i < RNDPOOLSIZE/HASHSIZE + 1; i++) {
476 		HashInit(&hashctx);
477 
478 		/* Hash a buffer centered on a block in the pool */
479 		if (start + HASHBUFSIZE <= RNDPOOLSIZE)
480 			HashUpdate(&hashctx, &pool[start], HASHBUFSIZE);
481 		else {
482 			HashUpdate(&hashctx, &pool[start],
483 			    RNDPOOLSIZE - start);
484 			HashUpdate(&hashctx, pool,
485 			    HASHBUFSIZE - RNDPOOLSIZE + start);
486 		}
487 		HashFinal(digest, &hashctx);
488 
489 		/* XOR the hash result back into the block */
490 		k = (start + HASHSIZE) & (RNDPOOLSIZE - 1);
491 		for (j = 0; j < HASHSIZE; j++) {
492 			pool[k++] ^= digest[j];
493 			k &= (RNDPOOLSIZE - 1);
494 		}
495 
496 		/* Slide the hash buffer and repeat with next block */
497 		start = (start + HASHSIZE) & (RNDPOOLSIZE - 1);
498 	}
499 
500 	entropy_bits += entropy_est;
501 	if (entropy_bits > RNDPOOLSIZE * 8)
502 		entropy_bits = RNDPOOLSIZE * 8;
503 
504 	swrand_stats.ss_entEst = entropy_bits;
505 	BUMP_SWRAND_STATS(ss_entIn, entropy_est);
506 }
507 
508 static void
509 swrand_add_entropy_later(uint8_t *ptr, size_t len)
510 {
511 	mutex_enter(&buffer_lock);
512 	swrand_add_bytes_later(ptr, len);
513 	mutex_exit(&buffer_lock);
514 }
515 
516 static void
517 swrand_add_entropy(uint8_t *ptr, size_t len, uint16_t entropy_est)
518 {
519 	mutex_enter(&srndpool_lock);
520 	swrand_add_bytes(ptr, len);
521 	swrand_mix_pool(entropy_est);
522 	mutex_exit(&srndpool_lock);
523 }
524 
525 /*
526  * The physmem_* routines below generate entropy by reading blocks of
527  * physical memory.  Entropy is gathered in a couple of ways:
528  *
529  *  - By reading blocks of physical memory and detecting if changes
530  *    occurred in the blocks read.
531  *
532  *  - By measuring the time it takes to load and hash a block of memory
533  *    and computing the differences in the measured time.
534  *
535  * The first method was used in the CryptoRand implementation.  Physical
536  * memory is divided into blocks of fixed size.  A block of memory is
537  * chosen from the possible blocks and hashed to produce a digest.  This
538  * digest is then mixed into the pool.  A single bit from the digest is
539  * used as a parity bit or "checksum" and compared against the previous
540  * "checksum" computed for the block.  If the single-bit checksum has not
541  * changed, no entropy is credited to the pool.  If there is a change,
542  * then the assumption is that at least one bit in the block has changed.
543  * The possible locations within the memory block of where the bit change
544  * occurred is used as a measure of entropy.  For example, if a block
545  * size of 4096 bytes is used, about log_2(4096*8)=15 bits worth of
546  * entropy is available.  Because the single-bit checksum will miss half
547  * of the changes, the amount of entropy credited to the pool is doubled
548  * when a change is detected.  With a 4096 byte block size, a block
549  * change will add a total of 30 bits of entropy to the pool.
550  *
551  * The second method measures the amount of time it takes to read and
552  * hash a physical memory block (as described above).  The time measured
553  * can vary depending on system load, scheduling and other factors.
554  * Differences between consecutive measurements are computed to come up
555  * with an entropy estimate.  The first, second, and third order delta is
556  * calculated to determine the minimum delta value.  The number of bits
557  * present in this minimum delta value is the entropy estimate.  This
558  * entropy estimation technique using time deltas is similar to that used
559  * in /dev/random implementations from Linux/BSD.
560  */
561 
562 static int
563 physmem_ent_init(physmem_entsrc_t *entsrc)
564 {
565 	uint8_t *ptr;
566 	int i;
567 
568 	bzero(entsrc, sizeof (*entsrc));
569 
570 	/*
571 	 * The maximum entropy amount in bits per block of memory read is
572 	 * log_2(MEMBLOCKSIZE * 8);
573 	 */
574 	i = MEMBLOCKSIZE << 3;
575 	while (i >>= 1)
576 		entsrc->entperblock++;
577 
578 	/* Initialize entsrc->nblocks */
579 	physmem_count_blocks();
580 
581 	if (entsrc->nblocks == 0) {
582 		cmn_err(CE_WARN, "no memory blocks to scan!");
583 		return (-1);
584 	}
585 
586 	/* Allocate space for the parity vector and memory page */
587 	entsrc->parity = kmem_alloc(howmany(entsrc->nblocks, 8),
588 	    KM_SLEEP);
589 	entsrc->pmbuf = vmem_alloc(heap_arena, PAGESIZE, VM_SLEEP);
590 
591 
592 	/* Initialize parity vector with bits from the pool */
593 	i = howmany(entsrc->nblocks, 8);
594 	ptr = entsrc->parity;
595 	while (i > 0) {
596 		if (i > RNDPOOLSIZE) {
597 			bcopy(srndpool, ptr, RNDPOOLSIZE);
598 			mutex_enter(&srndpool_lock);
599 			swrand_mix_pool(0);
600 			mutex_exit(&srndpool_lock);
601 			ptr += RNDPOOLSIZE;
602 			i -= RNDPOOLSIZE;
603 		} else {
604 			bcopy(srndpool, ptr, i);
605 			break;
606 		}
607 	}
608 
609 	/* Generate some entropy to further initialize the pool */
610 	mutex_enter(&srndpool_lock);
611 	physmem_ent_gen(entsrc);
612 	entropy_bits = 0;
613 	mutex_exit(&srndpool_lock);
614 
615 	return (0);
616 }
617 
618 static void
619 physmem_ent_fini(physmem_entsrc_t *entsrc)
620 {
621 	if (entsrc->pmbuf != NULL)
622 		vmem_free(heap_arena, entsrc->pmbuf, PAGESIZE);
623 	if (entsrc->parity != NULL)
624 		kmem_free(entsrc->parity, howmany(entsrc->nblocks, 8));
625 	bzero(entsrc, sizeof (*entsrc));
626 }
627 
628 static void
629 physmem_ent_gen(physmem_entsrc_t *entsrc)
630 {
631 	struct memlist *pmem;
632 	offset_t offset, poffset;
633 	pfn_t pfn;
634 	int i, nbytes, len, ent = 0;
635 	uint32_t block, oblock;
636 	hrtime_t ts1, ts2, diff, delta, delta2, delta3;
637 	uint8_t digest[HASHSIZE];
638 	HASH_CTX ctx;
639 	page_t *pp;
640 
641 	/*
642 	 * Use each 32-bit quantity in the pool to pick a memory
643 	 * block to read.
644 	 */
645 	for (i = 0; i < RNDPOOLSIZE/4; i++) {
646 
647 		/* If the pool is "full", stop after one block */
648 		if (entropy_bits + ent >= RNDPOOLSIZE * 8) {
649 			if (i > 0)
650 				break;
651 		}
652 
653 		/*
654 		 * This lock protects reading of phys_install.
655 		 * Any changes to this list, by DR, are done while
656 		 * holding this lock. So, holding this lock is sufficient
657 		 * to handle DR also.
658 		 */
659 		memlist_read_lock();
660 
661 		/* We're left with less than 4K of memory after DR */
662 		ASSERT(entsrc->nblocks > 0);
663 
664 		/* Pick a memory block to read */
665 		block = oblock = srndpool[i] % entsrc->nblocks;
666 
667 		for (pmem = phys_install; pmem != NULL; pmem = pmem->next) {
668 			if (block < pmem->size / MEMBLOCKSIZE)
669 				break;
670 			block -= pmem->size / MEMBLOCKSIZE;
671 		}
672 
673 		ASSERT(pmem != NULL);
674 
675 		offset = pmem->address + block * MEMBLOCKSIZE;
676 
677 		if (!address_in_memlist(phys_install, offset, MEMBLOCKSIZE)) {
678 			memlist_read_unlock();
679 			continue;
680 		}
681 
682 		/*
683 		 * Do an initial check to see if the address is safe
684 		 */
685 		if (plat_hold_page(offset >> PAGESHIFT, PLAT_HOLD_NO_LOCK, NULL)
686 		    == PLAT_HOLD_FAIL) {
687 			memlist_read_unlock();
688 			continue;
689 		}
690 
691 		/*
692 		 * Figure out which page to load to read the
693 		 * memory block.  Load the page and compute the
694 		 * hash of the memory block.
695 		 */
696 		len = MEMBLOCKSIZE;
697 		ts1 = gethrtime();
698 		HashInit(&ctx);
699 		while (len) {
700 			pfn = offset >> PAGESHIFT;
701 			poffset = offset & PAGEOFFSET;
702 			nbytes = PAGESIZE - poffset < len ?
703 			    PAGESIZE - poffset : len;
704 
705 			/*
706 			 * Re-check the offset, and lock the frame.  If the
707 			 * page was given away after the above check, we'll
708 			 * just bail out.
709 			 */
710 			if (plat_hold_page(pfn, PLAT_HOLD_LOCK, &pp) ==
711 			    PLAT_HOLD_FAIL)
712 				break;
713 
714 			hat_devload(kas.a_hat, entsrc->pmbuf,
715 			    PAGESIZE, pfn, PROT_READ,
716 			    HAT_LOAD_NOCONSIST | HAT_LOAD_LOCK);
717 
718 			HashUpdate(&ctx, (uint8_t *)entsrc->pmbuf + poffset,
719 			    nbytes);
720 
721 			hat_unload(kas.a_hat, entsrc->pmbuf, PAGESIZE,
722 			    HAT_UNLOAD_UNLOCK);
723 
724 			plat_release_page(pp);
725 
726 			len -= nbytes;
727 			offset += nbytes;
728 		}
729 		/* We got our pages. Let the DR roll */
730 		memlist_read_unlock();
731 
732 		/* See if we had to bail out due to a page being given away */
733 		if (len)
734 			continue;
735 
736 		HashFinal(digest, &ctx);
737 		ts2 = gethrtime();
738 
739 		/*
740 		 * Compute the time it took to load and hash the
741 		 * block and compare it against the previous
742 		 * measurement. The delta of the time values
743 		 * provides a small amount of entropy.  The
744 		 * minimum of the first, second, and third order
745 		 * delta is used to estimate how much entropy
746 		 * is present.
747 		 */
748 		diff = ts2 - ts1;
749 		delta = diff - entsrc->last_diff;
750 		if (delta < 0)
751 			delta = -delta;
752 		delta2 = delta - entsrc->last_delta;
753 		if (delta2 < 0)
754 			delta2 = -delta2;
755 		delta3 = delta2 - entsrc->last_delta2;
756 		if (delta3 < 0)
757 			delta3 = -delta3;
758 		entsrc->last_diff = diff;
759 		entsrc->last_delta = delta;
760 		entsrc->last_delta2 = delta2;
761 
762 		if (delta > delta2)
763 			delta = delta2;
764 		if (delta > delta3)
765 			delta = delta3;
766 		delta2 = 0;
767 		while (delta >>= 1)
768 			delta2++;
769 		ent += delta2;
770 
771 		/*
772 		 * If the memory block has changed, credit the pool with
773 		 * the entropy estimate.  The entropy estimate is doubled
774 		 * because the single-bit checksum misses half the change
775 		 * on average.
776 		 */
777 		if (physmem_parity_update(entsrc->parity, oblock,
778 		    digest[0] & 1))
779 			ent += 2 * entsrc->entperblock;
780 
781 		/* Add the entropy bytes to the pool */
782 		swrand_add_bytes(digest, HASHSIZE);
783 		swrand_add_bytes((uint8_t *)&ts1, sizeof (ts1));
784 		swrand_add_bytes((uint8_t *)&ts2, sizeof (ts2));
785 	}
786 
787 	swrand_mix_pool(ent);
788 }
789 
790 static int
791 physmem_parity_update(uint8_t *parity_vec, uint32_t block, int parity)
792 {
793 	/* Test and set the parity bit, return 1 if changed */
794 	if (parity == ((parity_vec[block >> 3] >> (block & 7)) & 1))
795 		return (0);
796 	parity_vec[block >> 3] ^= 1 << (block & 7);
797 	return (1);
798 }
799 
800 /* Compute number of memory blocks available to scan */
801 static void
802 physmem_count_blocks()
803 {
804 	struct memlist *pmem;
805 
806 	memlist_read_lock();
807 	entsrc.nblocks = 0;
808 	for (pmem = phys_install; pmem != NULL; pmem = pmem->next) {
809 		entsrc.nblocks += pmem->size / MEMBLOCKSIZE;
810 		if (entsrc.nblocks > MAXMEMBLOCKS) {
811 			entsrc.nblocks = MAXMEMBLOCKS;
812 			break;
813 		}
814 	}
815 	memlist_read_unlock();
816 }
817 
818 /*
819  * Dynamic Reconfiguration call-back functions
820  */
821 
822 /* ARGSUSED */
823 static void
824 rnd_dr_callback_post_add(void *arg, pgcnt_t delta)
825 {
826 	/* More memory is available now, so update entsrc->nblocks. */
827 	physmem_count_blocks();
828 }
829 
830 /* Call-back routine invoked before the DR starts a memory removal. */
831 /* ARGSUSED */
832 static int
833 rnd_dr_callback_pre_del(void *arg, pgcnt_t delta)
834 {
835 	return (0);
836 }
837 
838 /* Call-back routine invoked after the DR starts a memory removal. */
839 /* ARGSUSED */
840 static void
841 rnd_dr_callback_post_del(void *arg, pgcnt_t delta, int cancelled)
842 {
843 	/* Memory has shrunk, so update entsrc->nblocks. */
844 	physmem_count_blocks();
845 }
846 
847 /* Timeout handling to gather entropy from physmem events */
848 static void
849 swrand_schedule_timeout(void)
850 {
851 	clock_t ut;	/* time in microseconds */
852 
853 	ASSERT(MUTEX_HELD(&srndpool_lock));
854 	/*
855 	 * The new timeout value is taken from the pool of random bits.
856 	 * We're merely reading the first 32 bits from the pool here, not
857 	 * consuming any entropy.
858 	 * This routine is usually called right after stirring the pool, so
859 	 * srndpool[0] will have a *fresh* random value each time.
860 	 * The timeout multiplier value is a random value between 0.7 sec and
861 	 * 1.748575 sec (0.7 sec + 0xFFFFF microseconds).
862 	 * The new timeout is TIMEOUT_INTERVAL times that multiplier.
863 	 */
864 	ut = 700000 + (clock_t)(srndpool[0] & 0xFFFFF);
865 	rnd_timeout_id = timeout(rnd_handler, NULL,
866 	    TIMEOUT_INTERVAL * drv_usectohz(ut));
867 }
868 
869 /*ARGSUSED*/
870 static void
871 rnd_handler(void *arg)
872 {
873 	mutex_enter(&srndpool_lock);
874 
875 	physmem_ent_gen(&entsrc);
876 	if (snum_waiters > 0)
877 		cv_broadcast(&srndpool_read_cv);
878 	swrand_schedule_timeout();
879 
880 	mutex_exit(&srndpool_lock);
881 }
882