xref: /titanic_52/usr/src/uts/common/crypto/api/kcf_random.c (revision 3b133bec939f5230f040960ee1503dadd3dff343)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2010 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 /*
27  * This file implements the interfaces that the /dev/random
28  * driver uses for read(2), write(2) and poll(2) on /dev/random or
29  * /dev/urandom. It also implements the kernel API - random_add_entropy(),
30  * random_add_pseudo_entropy(), random_get_pseudo_bytes()
31  * and random_get_bytes().
32  *
33  * We periodically collect random bits from providers which are registered
34  * with the Kernel Cryptographic Framework (kCF) as capable of random
35  * number generation. The random bits are maintained in a cache and
36  * it is used for high quality random numbers (/dev/random) requests.
37  * We pick a provider and call its SPI routine, if the cache does not have
38  * enough bytes to satisfy a request.
39  *
40  * /dev/urandom requests use a software-based generator algorithm that uses the
41  * random bits in the cache as a seed. We create one pseudo-random generator
42  * (for /dev/urandom) per possible CPU on the system, and use it,
43  * kmem-magazine-style, to avoid cache line contention.
44  *
45  * LOCKING HIERARCHY:
46  *	1) rmp->rm_mag.rm_lock protects the per-cpu pseudo-random generators.
47  * 	2) rndpool_lock protects the high-quality randomness pool.
48  *		It may be locked while a rmp->rm_mag.rm_lock is held.
49  *
50  * A history note: The kernel API and the software-based algorithms in this
51  * file used to be part of the /dev/random driver.
52  */
53 
54 #include <sys/types.h>
55 #include <sys/conf.h>
56 #include <sys/sunddi.h>
57 #include <sys/disp.h>
58 #include <sys/modctl.h>
59 #include <sys/ddi.h>
60 #include <sys/crypto/common.h>
61 #include <sys/crypto/api.h>
62 #include <sys/crypto/impl.h>
63 #include <sys/crypto/sched_impl.h>
64 #include <sys/crypto/ioctladmin.h>
65 #include <sys/random.h>
66 #include <sys/sha1.h>
67 #include <sys/time.h>
68 #include <sys/sysmacros.h>
69 #include <sys/cpuvar.h>
70 #include <sys/taskq.h>
71 #include <rng/fips_random.h>
72 
73 #define	RNDPOOLSIZE		1024	/* Pool size in bytes */
74 #define	MINEXTRACTBYTES		20
75 #define	MAXEXTRACTBYTES		1024
76 #define	PRNG_MAXOBLOCKS		1310720	/* Max output block per prng key */
77 #define	TIMEOUT_INTERVAL	5	/* Periodic mixing interval in secs */
78 
79 typedef enum    extract_type {
80 	NONBLOCK_EXTRACT,
81 	BLOCKING_EXTRACT,
82 	ALWAYS_EXTRACT
83 } extract_type_t;
84 
85 /*
86  * Hash-algo generic definitions. For now, they are SHA1's. We use SHA1
87  * routines directly instead of using k-API because we can't return any
88  * error code in /dev/urandom case and we can get an error using k-API
89  * if a mechanism is disabled.
90  */
91 #define	HASHSIZE		20
92 #define	HASH_CTX		SHA1_CTX
93 #define	HashInit(ctx)		SHA1Init((ctx))
94 #define	HashUpdate(ctx, p, s)	SHA1Update((ctx), (p), (s))
95 #define	HashFinal(d, ctx)	SHA1Final((d), (ctx))
96 
97 /* HMAC-SHA1 */
98 #define	HMAC_KEYSIZE			20
99 
100 /*
101  * Cache of random bytes implemented as a circular buffer. findex and rindex
102  * track the front and back of the circular buffer.
103  */
104 uint8_t rndpool[RNDPOOLSIZE];
105 static int findex, rindex;
106 static int rnbyte_cnt;		/* Number of bytes in the cache */
107 
108 static kmutex_t rndpool_lock;	/* protects r/w accesses to the cache, */
109 				/* and the global variables */
110 static kcondvar_t rndpool_read_cv; /* serializes poll/read syscalls */
111 static int num_waiters;		/* #threads waiting to read from /dev/random */
112 
113 static struct pollhead rnd_pollhead;
114 /* LINTED E_STATIC_UNUSED */
115 static timeout_id_t kcf_rndtimeout_id;
116 static crypto_mech_type_t rngmech_type = CRYPTO_MECH_INVALID;
117 rnd_stats_t rnd_stats;
118 static boolean_t rng_prov_found = B_TRUE;
119 static boolean_t rng_ok_to_log = B_TRUE;
120 static boolean_t rngprov_task_idle = B_TRUE;
121 
122 static void rndc_addbytes(uint8_t *, size_t);
123 static void rndc_getbytes(uint8_t *ptr, size_t len);
124 static void rnd_handler(void *);
125 static void rnd_alloc_magazines();
126 
127 void
128 kcf_rnd_init()
129 {
130 	hrtime_t ts;
131 	time_t now;
132 
133 	mutex_init(&rndpool_lock, NULL, MUTEX_DEFAULT, NULL);
134 	cv_init(&rndpool_read_cv, NULL, CV_DEFAULT, NULL);
135 
136 	/*
137 	 * Add bytes to the cache using
138 	 * . 2 unpredictable times: high resolution time since the boot-time,
139 	 *   and the current time-of-the day.
140 	 * This is used only to make the timeout value in the timer
141 	 * unpredictable.
142 	 */
143 	ts = gethrtime();
144 	rndc_addbytes((uint8_t *)&ts, sizeof (ts));
145 
146 	(void) drv_getparm(TIME, &now);
147 	rndc_addbytes((uint8_t *)&now, sizeof (now));
148 
149 	rnbyte_cnt = 0;
150 	findex = rindex = 0;
151 	num_waiters = 0;
152 	rngmech_type = KCF_MECHID(KCF_MISC_CLASS, 0);
153 
154 	rnd_alloc_magazines();
155 }
156 
157 /*
158  * Return TRUE if at least one provider exists that can
159  * supply random numbers.
160  */
161 boolean_t
162 kcf_rngprov_check(void)
163 {
164 	int rv;
165 	kcf_provider_desc_t *pd;
166 
167 	if ((pd = kcf_get_mech_provider(rngmech_type, NULL, NULL, &rv,
168 	    NULL, CRYPTO_FG_RANDOM, B_FALSE, 0)) != NULL) {
169 		KCF_PROV_REFRELE(pd);
170 		/*
171 		 * We logged a warning once about no provider being available
172 		 * and now a provider became available. So, set the flag so
173 		 * that we can log again if the problem recurs.
174 		 */
175 		rng_ok_to_log = B_TRUE;
176 		rng_prov_found = B_TRUE;
177 		return (B_TRUE);
178 	} else {
179 		rng_prov_found = B_FALSE;
180 		return (B_FALSE);
181 	}
182 }
183 
184 /*
185  * Pick a software-based provider and submit a request to seed
186  * its random number generator.
187  */
188 static void
189 rngprov_seed(uint8_t *buf, int len, uint_t entropy_est, uint32_t flags)
190 {
191 	kcf_provider_desc_t *pd = NULL;
192 
193 	if (kcf_get_sw_prov(rngmech_type, &pd, NULL, B_FALSE) ==
194 	    CRYPTO_SUCCESS) {
195 		(void) KCF_PROV_SEED_RANDOM(pd, pd->pd_sid, buf, len,
196 		    entropy_est, flags, NULL);
197 		KCF_PROV_REFRELE(pd);
198 	}
199 }
200 
201 /*
202  * This routine is called for blocking reads.
203  *
204  * The argument is_taskq_thr indicates whether the caller is
205  * the taskq thread dispatched by the timeout handler routine.
206  * In this case, we cycle through all the providers
207  * submitting a request to each provider to generate random numbers.
208  *
209  * For other cases, we pick a provider and submit a request to generate
210  * random numbers. We retry using another provider if we get an error.
211  *
212  * Returns the number of bytes that are written to 'ptr'. Returns -1
213  * if no provider is found. ptr and need are unchanged.
214  */
215 static int
216 rngprov_getbytes(uint8_t *ptr, size_t need, boolean_t is_taskq_thr)
217 {
218 	int rv;
219 	int prov_cnt = 0;
220 	int total_bytes = 0;
221 	kcf_provider_desc_t *pd;
222 	kcf_req_params_t params;
223 	kcf_prov_tried_t *list = NULL;
224 
225 	while ((pd = kcf_get_mech_provider(rngmech_type, NULL, NULL, &rv,
226 	    list, CRYPTO_FG_RANDOM, B_FALSE, 0)) != NULL) {
227 
228 		prov_cnt++;
229 
230 		KCF_WRAP_RANDOM_OPS_PARAMS(&params, KCF_OP_RANDOM_GENERATE,
231 		    pd->pd_sid, ptr, need, 0, 0);
232 		rv = kcf_submit_request(pd, NULL, NULL, &params, B_FALSE);
233 		ASSERT(rv != CRYPTO_QUEUED);
234 
235 		if (rv == CRYPTO_SUCCESS) {
236 			total_bytes += need;
237 			if (is_taskq_thr)
238 				rndc_addbytes(ptr, need);
239 			else {
240 				KCF_PROV_REFRELE(pd);
241 				break;
242 			}
243 		}
244 
245 		if (is_taskq_thr || rv != CRYPTO_SUCCESS) {
246 			/* Add pd to the linked list of providers tried. */
247 			if (kcf_insert_triedlist(&list, pd, KM_SLEEP) == NULL) {
248 				KCF_PROV_REFRELE(pd);
249 				break;
250 			}
251 		}
252 
253 	}
254 
255 	if (list != NULL)
256 		kcf_free_triedlist(list);
257 
258 	if (prov_cnt == 0) { /* no provider could be found. */
259 		rng_prov_found = B_FALSE;
260 		return (-1);
261 	} else {
262 		rng_prov_found = B_TRUE;
263 		/* See comments in kcf_rngprov_check() */
264 		rng_ok_to_log = B_TRUE;
265 	}
266 
267 	return (total_bytes);
268 }
269 
270 static void
271 notify_done(void *arg, int rv)
272 {
273 	uchar_t *rndbuf = arg;
274 
275 	if (rv == CRYPTO_SUCCESS)
276 		rndc_addbytes(rndbuf, MINEXTRACTBYTES);
277 
278 	bzero(rndbuf, MINEXTRACTBYTES);
279 	kmem_free(rndbuf, MINEXTRACTBYTES);
280 }
281 
282 /*
283  * Cycle through all the providers submitting a request to each provider
284  * to generate random numbers. This is called for the modes - NONBLOCK_EXTRACT
285  * and ALWAYS_EXTRACT.
286  *
287  * Returns the number of bytes that are written to 'ptr'. Returns -1
288  * if no provider is found. ptr and len are unchanged.
289  */
290 static int
291 rngprov_getbytes_nblk(uint8_t *ptr, size_t len)
292 {
293 	int rv, total_bytes;
294 	size_t blen;
295 	uchar_t *rndbuf;
296 	kcf_provider_desc_t *pd;
297 	kcf_req_params_t params;
298 	crypto_call_req_t req;
299 	kcf_prov_tried_t *list = NULL;
300 	int prov_cnt = 0;
301 
302 	blen = 0;
303 	total_bytes = 0;
304 	req.cr_flag = CRYPTO_SKIP_REQID;
305 	req.cr_callback_func = notify_done;
306 
307 	while ((pd = kcf_get_mech_provider(rngmech_type, NULL, NULL, &rv,
308 	    list, CRYPTO_FG_RANDOM, CHECK_RESTRICT(&req), 0)) != NULL) {
309 
310 		prov_cnt ++;
311 		switch (pd->pd_prov_type) {
312 		case CRYPTO_HW_PROVIDER:
313 			/*
314 			 * We have to allocate a buffer here as we can not
315 			 * assume that the input buffer will remain valid
316 			 * when the callback comes. We use a fixed size buffer
317 			 * to simplify the book keeping.
318 			 */
319 			rndbuf = kmem_alloc(MINEXTRACTBYTES, KM_NOSLEEP);
320 			if (rndbuf == NULL) {
321 				KCF_PROV_REFRELE(pd);
322 				if (list != NULL)
323 					kcf_free_triedlist(list);
324 				return (total_bytes);
325 			}
326 			req.cr_callback_arg = rndbuf;
327 			KCF_WRAP_RANDOM_OPS_PARAMS(&params,
328 			    KCF_OP_RANDOM_GENERATE,
329 			    pd->pd_sid, rndbuf, MINEXTRACTBYTES, 0, 0);
330 			break;
331 
332 		case CRYPTO_SW_PROVIDER:
333 			/*
334 			 * We do not need to allocate a buffer in the software
335 			 * provider case as there is no callback involved. We
336 			 * avoid any extra data copy by directly passing 'ptr'.
337 			 */
338 			KCF_WRAP_RANDOM_OPS_PARAMS(&params,
339 			    KCF_OP_RANDOM_GENERATE,
340 			    pd->pd_sid, ptr, len, 0, 0);
341 			break;
342 		}
343 
344 		rv = kcf_submit_request(pd, NULL, &req, &params, B_FALSE);
345 		if (rv == CRYPTO_SUCCESS) {
346 			switch (pd->pd_prov_type) {
347 			case CRYPTO_HW_PROVIDER:
348 				/*
349 				 * Since we have the input buffer handy,
350 				 * we directly copy to it rather than
351 				 * adding to the pool.
352 				 */
353 				blen = min(MINEXTRACTBYTES, len);
354 				bcopy(rndbuf, ptr, blen);
355 				if (len < MINEXTRACTBYTES)
356 					rndc_addbytes(rndbuf + len,
357 					    MINEXTRACTBYTES - len);
358 				ptr += blen;
359 				len -= blen;
360 				total_bytes += blen;
361 				break;
362 
363 			case CRYPTO_SW_PROVIDER:
364 				total_bytes += len;
365 				len = 0;
366 				break;
367 			}
368 		}
369 
370 		/*
371 		 * We free the buffer in the callback routine
372 		 * for the CRYPTO_QUEUED case.
373 		 */
374 		if (pd->pd_prov_type == CRYPTO_HW_PROVIDER &&
375 		    rv != CRYPTO_QUEUED) {
376 			bzero(rndbuf, MINEXTRACTBYTES);
377 			kmem_free(rndbuf, MINEXTRACTBYTES);
378 		}
379 
380 		if (len == 0) {
381 			KCF_PROV_REFRELE(pd);
382 			break;
383 		}
384 
385 		if (rv != CRYPTO_SUCCESS) {
386 			/* Add pd to the linked list of providers tried. */
387 			if (kcf_insert_triedlist(&list, pd, KM_NOSLEEP) ==
388 			    NULL) {
389 				KCF_PROV_REFRELE(pd);
390 				break;
391 			}
392 		}
393 	}
394 
395 	if (list != NULL) {
396 		kcf_free_triedlist(list);
397 	}
398 
399 	if (prov_cnt == 0) { /* no provider could be found. */
400 		rng_prov_found = B_FALSE;
401 		return (-1);
402 	} else {
403 		rng_prov_found = B_TRUE;
404 		/* See comments in kcf_rngprov_check() */
405 		rng_ok_to_log = B_TRUE;
406 	}
407 
408 	return (total_bytes);
409 }
410 
411 static void
412 rngprov_task(void *arg)
413 {
414 	int len = (int)(uintptr_t)arg;
415 	uchar_t tbuf[MAXEXTRACTBYTES];
416 
417 	ASSERT(len <= MAXEXTRACTBYTES);
418 	(void) rngprov_getbytes(tbuf, len, B_TRUE);
419 	rngprov_task_idle = B_TRUE;
420 }
421 
422 /*
423  * Returns "len" random or pseudo-random bytes in *ptr.
424  * Will block if not enough random bytes are available and the
425  * call is blocking.
426  *
427  * Called with rndpool_lock held (allowing caller to do optimistic locking;
428  * releases the lock before return).
429  */
430 static int
431 rnd_get_bytes(uint8_t *ptr, size_t len, extract_type_t how)
432 {
433 	size_t	bytes;
434 	int	got;
435 
436 	ASSERT(mutex_owned(&rndpool_lock));
437 	/*
438 	 * Check if the request can be satisfied from the cache
439 	 * of random bytes.
440 	 */
441 	if (len <= rnbyte_cnt) {
442 		rndc_getbytes(ptr, len);
443 		mutex_exit(&rndpool_lock);
444 		return (0);
445 	}
446 	mutex_exit(&rndpool_lock);
447 
448 	switch (how) {
449 	case BLOCKING_EXTRACT:
450 		if ((got = rngprov_getbytes(ptr, len, B_FALSE)) == -1)
451 			break;	/* No provider found */
452 
453 		if (got == len)
454 			return (0);
455 		len -= got;
456 		ptr += got;
457 		break;
458 
459 	case NONBLOCK_EXTRACT:
460 	case ALWAYS_EXTRACT:
461 		if ((got = rngprov_getbytes_nblk(ptr, len)) == -1) {
462 			/* No provider found */
463 			if (how == NONBLOCK_EXTRACT) {
464 				return (EAGAIN);
465 			}
466 		} else {
467 			if (got == len)
468 				return (0);
469 			len -= got;
470 			ptr += got;
471 		}
472 		if (how == NONBLOCK_EXTRACT && (rnbyte_cnt < len))
473 			return (EAGAIN);
474 		break;
475 	}
476 
477 	mutex_enter(&rndpool_lock);
478 	while (len > 0) {
479 		if (how == BLOCKING_EXTRACT) {
480 			/* Check if there is enough */
481 			while (rnbyte_cnt < MINEXTRACTBYTES) {
482 				num_waiters++;
483 				if (cv_wait_sig(&rndpool_read_cv,
484 				    &rndpool_lock) == 0) {
485 					num_waiters--;
486 					mutex_exit(&rndpool_lock);
487 					return (EINTR);
488 				}
489 				num_waiters--;
490 			}
491 		}
492 
493 		/* Figure out how many bytes to extract */
494 		bytes = min(len, rnbyte_cnt);
495 		rndc_getbytes(ptr, bytes);
496 
497 		len -= bytes;
498 		ptr += bytes;
499 
500 		if (len > 0 && how == ALWAYS_EXTRACT) {
501 			/*
502 			 * There are not enough bytes, but we can not block.
503 			 * This only happens in the case of /dev/urandom which
504 			 * runs an additional generation algorithm. So, there
505 			 * is no problem.
506 			 */
507 			while (len > 0) {
508 				*ptr = rndpool[findex];
509 				ptr++; len--;
510 				rindex = findex = (findex + 1) &
511 				    (RNDPOOLSIZE - 1);
512 			}
513 			break;
514 		}
515 	}
516 
517 	mutex_exit(&rndpool_lock);
518 	return (0);
519 }
520 
521 int
522 kcf_rnd_get_bytes(uint8_t *ptr, size_t len, boolean_t noblock)
523 {
524 	extract_type_t how;
525 	int error;
526 
527 	how = noblock ? NONBLOCK_EXTRACT : BLOCKING_EXTRACT;
528 	mutex_enter(&rndpool_lock);
529 	if ((error = rnd_get_bytes(ptr, len, how)) != 0)
530 		return (error);
531 
532 	BUMP_RND_STATS(rs_rndOut, len);
533 	return (0);
534 }
535 
536 /*
537  * Revisit this if the structs grow or we come up with a better way
538  * of cache-line-padding structures.
539  */
540 #define	RND_CPU_CACHE_SIZE	64
541 #define	RND_CPU_PAD_SIZE	RND_CPU_CACHE_SIZE*6
542 #define	RND_CPU_PAD (RND_CPU_PAD_SIZE - \
543 	sizeof (rndmag_t))
544 /*
545  * Per-CPU random state.  Somewhat like like kmem's magazines, this provides
546  * a per-CPU instance of the pseudo-random generator.  We have it much easier
547  * than kmem, as we can afford to "leak" random bits if a CPU is DR'ed out.
548  *
549  * Note that this usage is preemption-safe; a thread
550  * entering a critical section remembers which generator it locked
551  * and unlocks the same one; should it be preempted and wind up running on
552  * a different CPU, there will be a brief period of increased contention
553  * before it exits the critical section but nothing will melt.
554  */
555 typedef struct rndmag_s
556 {
557 	kmutex_t	rm_lock;
558 	uint8_t		*rm_buffer;	/* Start of buffer */
559 	uint8_t		*rm_eptr;	/* End of buffer */
560 	uint8_t		*rm_rptr;	/* Current read pointer */
561 	uint32_t	rm_oblocks;	/* time to rekey? */
562 	uint32_t	rm_ofuzz;	/* Rekey backoff state */
563 	uint32_t	rm_olimit;	/* Hard rekey limit */
564 	rnd_stats_t	rm_stats;	/* Per-CPU Statistics */
565 	uint32_t	rm_key[HASHSIZE/BYTES_IN_WORD];	/* FIPS XKEY */
566 	uint32_t	rm_seed[HASHSIZE/BYTES_IN_WORD]; /* seed for rekey */
567 	uint32_t	rm_previous[HASHSIZE/BYTES_IN_WORD]; /* prev random */
568 } rndmag_t;
569 
570 typedef struct rndmag_pad_s
571 {
572 	rndmag_t	rm_mag;
573 	uint8_t		rm_pad[RND_CPU_PAD];
574 } rndmag_pad_t;
575 
576 /*
577  * Generate random bytes for /dev/urandom by applying the
578  * FIPS 186-2 algorithm with a key created from bytes extracted
579  * from the pool.  A maximum of PRNG_MAXOBLOCKS output blocks
580  * is generated before a new key is obtained.
581  *
582  * Note that callers to this routine are likely to assume it can't fail.
583  *
584  * Called with rmp locked; releases lock.
585  */
586 static int
587 rnd_generate_pseudo_bytes(rndmag_pad_t *rmp, uint8_t *ptr, size_t len)
588 {
589 	size_t bytes = len, size;
590 	int nblock;
591 	uint32_t oblocks;
592 	uint32_t tempout[HASHSIZE/BYTES_IN_WORD];
593 	uint32_t seed[HASHSIZE/BYTES_IN_WORD];
594 	int i;
595 	hrtime_t timestamp;
596 	uint8_t *src, *dst;
597 
598 	ASSERT(mutex_owned(&rmp->rm_mag.rm_lock));
599 
600 	/* Nothing is being asked */
601 	if (len == 0) {
602 		mutex_exit(&rmp->rm_mag.rm_lock);
603 		return (0);
604 	}
605 
606 	nblock = howmany(len, HASHSIZE);
607 
608 	rmp->rm_mag.rm_oblocks += nblock;
609 	oblocks = rmp->rm_mag.rm_oblocks;
610 
611 	do {
612 		if (oblocks >= rmp->rm_mag.rm_olimit) {
613 
614 			/*
615 			 * Contention-avoiding rekey: see if
616 			 * the pool is locked, and if so, wait a bit.
617 			 * Do an 'exponential back-in' to ensure we don't
618 			 * run too long without rekey.
619 			 */
620 			if (rmp->rm_mag.rm_ofuzz) {
621 				/*
622 				 * Decaying exponential back-in for rekey.
623 				 */
624 				if ((rnbyte_cnt < MINEXTRACTBYTES) ||
625 				    (!mutex_tryenter(&rndpool_lock))) {
626 					rmp->rm_mag.rm_olimit +=
627 					    rmp->rm_mag.rm_ofuzz;
628 					rmp->rm_mag.rm_ofuzz >>= 1;
629 					goto punt;
630 				}
631 			} else {
632 				mutex_enter(&rndpool_lock);
633 			}
634 
635 			/* Get a new chunk of entropy */
636 			(void) rnd_get_bytes((uint8_t *)rmp->rm_mag.rm_key,
637 			    HMAC_KEYSIZE, ALWAYS_EXTRACT);
638 
639 			rmp->rm_mag.rm_olimit = PRNG_MAXOBLOCKS/2;
640 			rmp->rm_mag.rm_ofuzz = PRNG_MAXOBLOCKS/4;
641 			oblocks = 0;
642 			rmp->rm_mag.rm_oblocks = nblock;
643 		}
644 punt:
645 		timestamp = gethrtime();
646 
647 		src = (uint8_t *)&timestamp;
648 		dst = (uint8_t *)rmp->rm_mag.rm_seed;
649 
650 		for (i = 0; i < HASHSIZE; i++) {
651 			dst[i] ^= src[i % sizeof (timestamp)];
652 		}
653 
654 		bcopy(rmp->rm_mag.rm_seed, seed, HASHSIZE);
655 
656 		fips_random_inner(rmp->rm_mag.rm_key, tempout,
657 		    seed);
658 
659 		if (bytes >= HASHSIZE) {
660 			size = HASHSIZE;
661 		} else {
662 			size = min(bytes, HASHSIZE);
663 		}
664 
665 		/*
666 		 * FIPS 140-2: Continuous RNG test - each generation
667 		 * of an n-bit block shall be compared with the previously
668 		 * generated block. Test shall fail if any two compared
669 		 * n-bit blocks are equal.
670 		 */
671 		for (i = 0; i < HASHSIZE/BYTES_IN_WORD; i++) {
672 			if (tempout[i] != rmp->rm_mag.rm_previous[i])
673 				break;
674 		}
675 		if (i == HASHSIZE/BYTES_IN_WORD) {
676 			cmn_err(CE_WARN, "kcf_random: The value of 160-bit "
677 			    "block random bytes are same as the previous "
678 			    "one.\n");
679 			/* discard random bytes and return error */
680 			return (EIO);
681 		}
682 
683 		bcopy(tempout, rmp->rm_mag.rm_previous,
684 		    HASHSIZE);
685 
686 		bcopy(tempout, ptr, size);
687 		ptr += size;
688 		bytes -= size;
689 		oblocks++;
690 		nblock--;
691 	} while (bytes > 0);
692 
693 	/* Zero out sensitive information */
694 	bzero(seed, HASHSIZE);
695 	bzero(tempout, HASHSIZE);
696 	mutex_exit(&rmp->rm_mag.rm_lock);
697 	return (0);
698 }
699 
700 /*
701  * Per-CPU Random magazines.
702  */
703 static rndmag_pad_t *rndmag;
704 static uint8_t	*rndbuf;
705 static size_t 	rndmag_total;
706 /*
707  * common/os/cpu.c says that platform support code can shrinkwrap
708  * max_ncpus.  On the off chance that we get loaded very early, we
709  * read it exactly once, to copy it here.
710  */
711 static uint32_t	random_max_ncpus = 0;
712 
713 /*
714  * Boot-time tunables, for experimentation.
715  */
716 size_t	rndmag_threshold = 2560;
717 size_t	rndbuf_len = 5120;
718 size_t	rndmag_size = 1280;
719 
720 
721 int
722 kcf_rnd_get_pseudo_bytes(uint8_t *ptr, size_t len)
723 {
724 	rndmag_pad_t *rmp;
725 	uint8_t *cptr, *eptr;
726 
727 	/*
728 	 * Anyone who asks for zero bytes of randomness should get slapped.
729 	 */
730 	ASSERT(len > 0);
731 
732 	/*
733 	 * Fast path.
734 	 */
735 	for (;;) {
736 		rmp = &rndmag[CPU->cpu_seqid];
737 		mutex_enter(&rmp->rm_mag.rm_lock);
738 
739 		/*
740 		 * Big requests bypass buffer and tail-call the
741 		 * generate routine directly.
742 		 */
743 		if (len > rndmag_threshold) {
744 			BUMP_CPU_RND_STATS(rmp, rs_urndOut, len);
745 			return (rnd_generate_pseudo_bytes(rmp, ptr, len));
746 		}
747 
748 		cptr = rmp->rm_mag.rm_rptr;
749 		eptr = cptr + len;
750 
751 		if (eptr <= rmp->rm_mag.rm_eptr) {
752 			rmp->rm_mag.rm_rptr = eptr;
753 			bcopy(cptr, ptr, len);
754 			BUMP_CPU_RND_STATS(rmp, rs_urndOut, len);
755 			mutex_exit(&rmp->rm_mag.rm_lock);
756 
757 			return (0);
758 		}
759 		/*
760 		 * End fast path.
761 		 */
762 		rmp->rm_mag.rm_rptr = rmp->rm_mag.rm_buffer;
763 		/*
764 		 * Note:  We assume the generate routine always succeeds
765 		 * in this case (because it does at present..)
766 		 * It also always releases rm_lock.
767 		 */
768 		(void) rnd_generate_pseudo_bytes(rmp, rmp->rm_mag.rm_buffer,
769 		    rndbuf_len);
770 	}
771 }
772 
773 /*
774  * We set up (empty) magazines for all of max_ncpus, possibly wasting a
775  * little memory on big systems that don't have the full set installed.
776  * See above;  "empty" means "rptr equal to eptr"; this will trigger the
777  * refill path in rnd_get_pseudo_bytes above on the first call for each CPU.
778  *
779  * TODO: make rndmag_size tunable at run time!
780  */
781 static void
782 rnd_alloc_magazines()
783 {
784 	rndmag_pad_t *rmp;
785 	int i;
786 	uint8_t discard_buf[HASHSIZE];
787 
788 	rndbuf_len = roundup(rndbuf_len, HASHSIZE);
789 	if (rndmag_size < rndbuf_len)
790 		rndmag_size = rndbuf_len;
791 	rndmag_size = roundup(rndmag_size, RND_CPU_CACHE_SIZE);
792 
793 	random_max_ncpus = max_ncpus;
794 	rndmag_total = rndmag_size * random_max_ncpus;
795 
796 	rndbuf = kmem_alloc(rndmag_total, KM_SLEEP);
797 	rndmag = kmem_zalloc(sizeof (rndmag_pad_t) * random_max_ncpus,
798 	    KM_SLEEP);
799 
800 	for (i = 0; i < random_max_ncpus; i++) {
801 		uint8_t *buf;
802 
803 		rmp = &rndmag[i];
804 		mutex_init(&rmp->rm_mag.rm_lock, NULL, MUTEX_DRIVER, NULL);
805 
806 		buf = rndbuf + i * rndmag_size;
807 
808 		rmp->rm_mag.rm_buffer = buf;
809 		rmp->rm_mag.rm_eptr = buf + rndbuf_len;
810 		rmp->rm_mag.rm_rptr = buf + rndbuf_len;
811 		rmp->rm_mag.rm_oblocks = 1;
812 
813 		mutex_enter(&rndpool_lock);
814 		/*
815 		 * FIPS 140-2: the first n-bit (n > 15) block generated
816 		 * after power-up, initialization, or reset shall not
817 		 * be used, but shall be saved for comparison.
818 		 */
819 		(void) rnd_get_bytes(discard_buf,
820 		    HMAC_KEYSIZE, ALWAYS_EXTRACT);
821 		bcopy(discard_buf, rmp->rm_mag.rm_previous,
822 		    HMAC_KEYSIZE);
823 		/* rnd_get_bytes() will call mutex_exit(&rndpool_lock) */
824 		mutex_enter(&rndpool_lock);
825 		(void) rnd_get_bytes((uint8_t *)rmp->rm_mag.rm_key,
826 		    HMAC_KEYSIZE, ALWAYS_EXTRACT);
827 		/* rnd_get_bytes() will call mutex_exit(&rndpool_lock) */
828 		mutex_enter(&rndpool_lock);
829 		(void) rnd_get_bytes((uint8_t *)rmp->rm_mag.rm_seed,
830 		    HMAC_KEYSIZE, ALWAYS_EXTRACT);
831 	}
832 }
833 
834 void
835 kcf_rnd_schedule_timeout(boolean_t do_mech2id)
836 {
837 	clock_t ut;	/* time in microseconds */
838 
839 	if (do_mech2id)
840 		rngmech_type = crypto_mech2id(SUN_RANDOM);
841 
842 	/*
843 	 * The new timeout value is taken from the buffer of random bytes.
844 	 * We're merely reading the first 32 bits from the buffer here, not
845 	 * consuming any random bytes.
846 	 * The timeout multiplier value is a random value between 0.5 sec and
847 	 * 1.544480 sec (0.5 sec + 0xFF000 microseconds).
848 	 * The new timeout is TIMEOUT_INTERVAL times that multiplier.
849 	 */
850 	ut = 500000 + (clock_t)((((uint32_t)rndpool[findex]) << 12) & 0xFF000);
851 	kcf_rndtimeout_id = timeout(rnd_handler, NULL,
852 	    TIMEOUT_INTERVAL * drv_usectohz(ut));
853 }
854 
855 /*
856  * Called from the driver for a poll on /dev/random
857  * . POLLOUT always succeeds.
858  * . POLLIN and POLLRDNORM will block until a
859  *   minimum amount of entropy is available.
860  *
861  * &rnd_pollhead is passed in *phpp in order to indicate the calling thread
862  * will block. When enough random bytes are available, later, the timeout
863  * handler routine will issue the pollwakeup() calls.
864  */
865 void
866 kcf_rnd_chpoll(short events, int anyyet, short *reventsp,
867     struct pollhead **phpp)
868 {
869 	*reventsp = events & POLLOUT;
870 
871 	if (events & (POLLIN | POLLRDNORM)) {
872 		/*
873 		 * Sampling of rnbyte_cnt is an atomic
874 		 * operation. Hence we do not need any locking.
875 		 */
876 		if (rnbyte_cnt >= MINEXTRACTBYTES)
877 			*reventsp |= (events & (POLLIN | POLLRDNORM));
878 	}
879 
880 	if (*reventsp == 0 && !anyyet)
881 		*phpp = &rnd_pollhead;
882 }
883 
884 /*ARGSUSED*/
885 static void
886 rnd_handler(void *arg)
887 {
888 	int len = 0;
889 
890 	if (!rng_prov_found && rng_ok_to_log) {
891 		cmn_err(CE_WARN, "No randomness provider enabled for "
892 		    "/dev/random. Use cryptoadm(1M) to enable a provider.");
893 		rng_ok_to_log = B_FALSE;
894 	}
895 
896 	if (num_waiters > 0)
897 		/*
898 		 * Note: len has no relationship with how many bytes
899 		 * a poll thread needs.
900 		 */
901 		len = MAXEXTRACTBYTES;
902 	else if (rnbyte_cnt < RNDPOOLSIZE)
903 		len = MINEXTRACTBYTES;
904 
905 	/*
906 	 * Only one thread gets to set rngprov_task_idle at a given point
907 	 * of time and the order of the writes is defined. Also, it is OK
908 	 * if we read an older value of it and skip the dispatch once
909 	 * since we will get the correct value during the next time here.
910 	 * So, no locking is needed here.
911 	 */
912 	if (len > 0 && rngprov_task_idle) {
913 		rngprov_task_idle = B_FALSE;
914 
915 		/*
916 		 * It is OK if taskq_dispatch fails here. We will retry
917 		 * the next time around. Meanwhile, a thread doing a
918 		 * read() will go to the provider directly, if the
919 		 * cache becomes empty.
920 		 */
921 		if (taskq_dispatch(system_taskq, rngprov_task,
922 		    (void *)(uintptr_t)len, TQ_NOSLEEP | TQ_NOQUEUE) == 0) {
923 			rngprov_task_idle = B_TRUE;
924 		}
925 	}
926 
927 	mutex_enter(&rndpool_lock);
928 	/*
929 	 * Wake up threads waiting in poll() or for enough accumulated
930 	 * random bytes to read from /dev/random. In case a poll() is
931 	 * concurrent with a read(), the polling process may be woken up
932 	 * indicating that enough randomness is now available for reading,
933 	 * and another process *steals* the bits from the pool, causing the
934 	 * subsequent read() from the first process to block. It is acceptable
935 	 * since the blocking will eventually end, after the timeout
936 	 * has expired enough times to honor the read.
937 	 *
938 	 * Note - Since we hold the rndpool_lock across the pollwakeup() call
939 	 * we MUST NOT grab the rndpool_lock in kcf_rndchpoll().
940 	 */
941 	if (rnbyte_cnt >= MINEXTRACTBYTES)
942 		pollwakeup(&rnd_pollhead, POLLIN | POLLRDNORM);
943 
944 	if (num_waiters > 0)
945 		cv_broadcast(&rndpool_read_cv);
946 	mutex_exit(&rndpool_lock);
947 
948 	kcf_rnd_schedule_timeout(B_FALSE);
949 }
950 
951 static void
952 rndc_addbytes(uint8_t *ptr, size_t len)
953 {
954 	ASSERT(ptr != NULL && len > 0);
955 	ASSERT(rnbyte_cnt <= RNDPOOLSIZE);
956 
957 	mutex_enter(&rndpool_lock);
958 	while ((len > 0) && (rnbyte_cnt < RNDPOOLSIZE)) {
959 		rndpool[rindex] ^= *ptr;
960 		ptr++; len--;
961 		rindex = (rindex + 1) & (RNDPOOLSIZE - 1);
962 		rnbyte_cnt++;
963 	}
964 
965 	/* Handle buffer full case */
966 	while (len > 0) {
967 		rndpool[rindex] ^= *ptr;
968 		ptr++; len--;
969 		findex = rindex = (rindex + 1) & (RNDPOOLSIZE - 1);
970 	}
971 	mutex_exit(&rndpool_lock);
972 }
973 
974 /*
975  * Caller should check len <= rnbyte_cnt under the
976  * rndpool_lock before calling.
977  */
978 static void
979 rndc_getbytes(uint8_t *ptr, size_t len)
980 {
981 	ASSERT(MUTEX_HELD(&rndpool_lock));
982 	ASSERT(len <= rnbyte_cnt && rnbyte_cnt <= RNDPOOLSIZE);
983 
984 	BUMP_RND_STATS(rs_rndcOut, len);
985 
986 	while (len > 0) {
987 		*ptr = rndpool[findex];
988 		ptr++; len--;
989 		findex = (findex + 1) & (RNDPOOLSIZE - 1);
990 		rnbyte_cnt--;
991 	}
992 }
993 
994 /* Random number exported entry points */
995 
996 /*
997  * Mix the supplied bytes into the entropy pool of a kCF
998  * RNG provider.
999  */
1000 int
1001 random_add_pseudo_entropy(uint8_t *ptr, size_t len, uint_t entropy_est)
1002 {
1003 	if (len < 1)
1004 		return (-1);
1005 
1006 	rngprov_seed(ptr, len, entropy_est, 0);
1007 
1008 	return (0);
1009 }
1010 
1011 /*
1012  * Mix the supplied bytes into the entropy pool of a kCF
1013  * RNG provider. Mix immediately.
1014  */
1015 int
1016 random_add_entropy(uint8_t *ptr, size_t len, uint_t entropy_est)
1017 {
1018 	if (len < 1)
1019 		return (-1);
1020 
1021 	rngprov_seed(ptr, len, entropy_est, CRYPTO_SEED_NOW);
1022 
1023 	return (0);
1024 }
1025 
1026 /*
1027  * Get bytes from the /dev/urandom generator. This function
1028  * always succeeds. Returns 0.
1029  */
1030 int
1031 random_get_pseudo_bytes(uint8_t *ptr, size_t len)
1032 {
1033 	ASSERT(!mutex_owned(&rndpool_lock));
1034 
1035 	if (len < 1)
1036 		return (0);
1037 	return (kcf_rnd_get_pseudo_bytes(ptr, len));
1038 }
1039 
1040 /*
1041  * Get bytes from the /dev/random generator. Returns 0
1042  * on success. Returns EAGAIN if there is insufficient entropy.
1043  */
1044 int
1045 random_get_bytes(uint8_t *ptr, size_t len)
1046 {
1047 	ASSERT(!mutex_owned(&rndpool_lock));
1048 
1049 	if (len < 1)
1050 		return (0);
1051 	return (kcf_rnd_get_bytes(ptr, len, B_TRUE));
1052 }
1053 
1054 /*
1055  * The two functions below are identical to random_get_pseudo_bytes() and
1056  * random_get_bytes_fips, this function is called for consumers that want
1057  * FIPS 140-2.  This function waits until the FIPS boundary can be verified.
1058  */
1059 
1060 /*
1061  * Get bytes from the /dev/urandom generator. This function
1062  * always succeeds. Returns 0.
1063  */
1064 int
1065 random_get_pseudo_bytes_fips140(uint8_t *ptr, size_t len)
1066 {
1067 	ASSERT(!mutex_owned(&rndpool_lock));
1068 
1069 	mutex_enter(&fips140_mode_lock);
1070 	while (global_fips140_mode < FIPS140_MODE_ENABLED) {
1071 		cv_wait(&cv_fips140, &fips140_mode_lock);
1072 	}
1073 	mutex_exit(&fips140_mode_lock);
1074 
1075 	if (len < 1)
1076 		return (0);
1077 	return (kcf_rnd_get_pseudo_bytes(ptr, len));
1078 }
1079 
1080 /*
1081  * Get bytes from the /dev/random generator. Returns 0
1082  * on success. Returns EAGAIN if there is insufficient entropy.
1083  */
1084 int
1085 random_get_bytes_fips140(uint8_t *ptr, size_t len)
1086 {
1087 	ASSERT(!mutex_owned(&rndpool_lock));
1088 
1089 	mutex_enter(&fips140_mode_lock);
1090 	while (global_fips140_mode < FIPS140_MODE_ENABLED) {
1091 		cv_wait(&cv_fips140, &fips140_mode_lock);
1092 	}
1093 	mutex_exit(&fips140_mode_lock);
1094 
1095 	if (len < 1)
1096 		return (0);
1097 	return (kcf_rnd_get_bytes(ptr, len, B_TRUE));
1098 }
1099