xref: /titanic_52/usr/src/uts/common/contract/device.c (revision d14d7d31f2a70b1e0a9c933607d6627f5718980e)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 #include <sys/mutex.h>
29 #include <sys/debug.h>
30 #include <sys/types.h>
31 #include <sys/param.h>
32 #include <sys/kmem.h>
33 #include <sys/thread.h>
34 #include <sys/id_space.h>
35 #include <sys/avl.h>
36 #include <sys/list.h>
37 #include <sys/sysmacros.h>
38 #include <sys/proc.h>
39 #include <sys/contract.h>
40 #include <sys/contract_impl.h>
41 #include <sys/contract/device.h>
42 #include <sys/contract/device_impl.h>
43 #include <sys/cmn_err.h>
44 #include <sys/nvpair.h>
45 #include <sys/policy.h>
46 #include <sys/ddi_impldefs.h>
47 #include <sys/ddi_implfuncs.h>
48 #include <sys/systm.h>
49 #include <sys/stat.h>
50 #include <sys/sunddi.h>
51 #include <sys/esunddi.h>
52 #include <sys/ddi.h>
53 #include <sys/fs/dv_node.h>
54 #include <sys/sunndi.h>
55 #undef ct_lock	/* needed because clnt.h defines ct_lock as a macro */
56 
57 /*
58  * Device Contracts
59  * -----------------
60  * This file contains the core code for the device contracts framework.
61  * A device contract is an agreement or a contract between a process and
62  * the kernel regarding the state of the device. A device contract may be
63  * created when a relationship is formed between a device and a process
64  * i.e. at open(2) time, or it may be created at some point after the device
65  * has been opened. A device contract once formed may be broken by either party.
66  * A device contract can be broken by the process by an explicit abandon of the
67  * contract or by an implicit abandon when the process exits. A device contract
68  * can be broken by the kernel either asynchronously (without negotiation) or
69  * synchronously (with negotiation). Exactly which happens depends on the device
70  * state transition. The following state diagram shows the transitions between
71  * device states. Only device state transitions currently supported by device
72  * contracts is shown.
73  *
74  *                              <-- A -->
75  *                       /-----------------> DEGRADED
76  *                       |                      |
77  *                       |                      |
78  *                       |                      | S
79  *                       |                      | |
80  *                       |                      | v
81  *                       v       S -->          v
82  *                      ONLINE ------------> OFFLINE
83  *
84  *
85  * In the figure above, the arrows indicate the direction of transition. The
86  * letter S refers to transitions which are inherently synchronous i.e.
87  * require negotiation and the letter A indicates transitions which are
88  * asynchronous i.e. are done without contract negotiations. A good example
89  * of a synchronous transition is the ONLINE -> OFFLINE transition. This
90  * transition cannot happen as long as there are consumers which have the
91  * device open. Thus some form of negotiation needs to happen between the
92  * consumers and the kernel to ensure that consumers either close devices
93  * or disallow the move to OFFLINE. Certain other transitions such as
94  * ONLINE --> DEGRADED for example, are inherently asynchronous i.e.
95  * non-negotiable. A device that suffers a fault that degrades its
96  * capabilities will become degraded irrespective of what consumers it has,
97  * so a negotiation in this case is pointless.
98  *
99  * The following device states are currently defined for device contracts:
100  *
101  *      CT_DEV_EV_ONLINE
102  *              The device is online and functioning normally
103  *      CT_DEV_EV_DEGRADED
104  *              The device is online but is functioning in a degraded capacity
105  *      CT_DEV_EV_OFFLINE
106  *              The device is offline and is no longer configured
107  *
108  * A typical consumer of device contracts starts out with a contract
109  * template and adds terms to that template. These include the
110  * "acceptable set" (A-set) term, which is a bitset of device states which
111  * are guaranteed by the contract. If the device moves out of a state in
112  * the A-set, the contract is broken. The breaking of the contract can
113  * be asynchronous in which case a critical contract event is sent to the
114  * contract holder but no negotiations take place. If the breaking of the
115  * contract is synchronous, negotations are opened between the affected
116  * consumer and the kernel. The kernel does this by sending a critical
117  * event to the consumer with the CTE_NEG flag set indicating that this
118  * is a negotiation event. The consumer can accept this change by sending
119  * a ACK message to the kernel. Alternatively, if it has the necessary
120  * privileges, it can send a NACK message to the kernel which will block
121  * the device state change. To NACK a negotiable event, a process must
122  * have the {PRIV_SYS_DEVICES} privilege asserted in its effective set.
123  *
124  * Other terms include the "minor path" term, specified explicitly if the
125  * contract is not being created at open(2) time or specified implicitly
126  * if the contract is being created at open time via an activated template.
127  *
128  * A contract event is sent on any state change to which the contract
129  * owner has subscribed via the informative or critical event sets. Only
130  * critical events are guaranteed to be delivered. Since all device state
131  * changes are controlled by the kernel and cannot be arbitrarily generated
132  * by a non-privileged user, the {PRIV_CONTRACT_EVENT} privilege does not
133  * need to be asserted in a process's effective set to designate an event as
134  * critical. To ensure privacy, a process must either have the same effective
135  * userid as the contract holder or have the {PRIV_CONTRACT_OBSERVER} privilege
136  * asserted in its effective set in order to observe device contract events
137  * off the device contract type specific endpoint.
138  *
139  * Yet another term available with device contracts is the "non-negotiable"
140  * term. This term is used to pre-specify a NACK to any contract negotiation.
141  * This term is ignored for asynchronous state changes. For example, a
142  * provcess may have the A-set {ONLINE|DEGRADED} and make the contract
143  * non-negotiable. In this case, the device contract framework assumes a
144  * NACK for any transition to OFFLINE and blocks the offline. If the A-set
145  * is {ONLINE} and the non-negotiable term is set, transitions to OFFLINE
146  * are NACKed but transitions to DEGRADE succeed.
147  *
148  * The OFFLINE negotiation (if OFFLINE state is not in the A-set for a contract)
149  * happens just before the I/O framework attempts to offline a device
150  * (i.e. detach a device and set the offline flag so that it cannot be
151  * reattached). A device contract holder is expected to either NACK the offline
152  * (if privileged) or release the device and allow the offline to proceed.
153  *
154  * The DEGRADE contract event (if DEGRADE is not in the A-set for a contract)
155  * is generated just before the I/O framework transitions the device state
156  * to "degraded" (i.e. DEVI_DEVICE_DEGRADED in I/O framework terminology).
157  *
158  * The contract holder is expected to ACK or NACK a negotiation event
159  * within a certain period of time. If the ACK/NACK is not received
160  * within the timeout period, the device contract framework will behave
161  * as if the contract does not exist and will proceed with the event.
162  *
163  * Unlike a process contract a device contract does not need to exist
164  * once it is abandoned, since it does not define a fault boundary. It
165  * merely represents an agreement between a process and the kernel
166  * regarding the state of the device. Once the process has abandoned
167  * the contract (either implicitly via a process exit or explicitly)
168  * the kernel has no reason to retain the contract. As a result
169  * device contracts are neither inheritable nor need to exist in an
170  * orphan state.
171  *
172  * A device unlike a process may exist in multiple contracts and has
173  * a "life" outside a device contract. A device unlike a process
174  * may exist without an associated contract. Unlike a process contract
175  * a device contract may be formed after a binding relationship is
176  * formed between a process and a device.
177  *
178  *	IMPLEMENTATION NOTES
179  *	====================
180  * DATA STRUCTURES
181  * ----------------
182  * 	The heart of the device contracts implementation is the device contract
183  * 	private cont_device_t (or ctd for short) data structure. It encapsulates
184  * 	the generic contract_t data structure and has a number of private
185  *	fields.
186  * 	These include:
187  *		cond_minor: The minor device that is the subject of the contract
188  *		cond_aset:  The bitset of states which are guaranteed by the
189  *			   contract
190  *		cond_noneg: If set, indicates that the result of negotiation has
191  *			    been predefined to be a NACK
192  * 	In addition, there are other device identifiers such the devinfo node,
193  * 	dev_t and spec_type of the minor node. There are also a few fields that
194  * 	are used during negotiation to maintain state. See
195  *		uts/common/sys/contract/device_impl.h
196  * 	for details.
197  * 	The ctd structure represents the device private part of a contract of
198  * 	type "device"
199  *
200  * 	Another data structure used by device contracts is ctmpl_device. It is
201  * 	the device contracts private part of the contract template structure. It
202  *	encapsulates the generic template structure "ct_template_t" and includes
203  *	the following device contract specific fields
204  *		ctd_aset:   The bitset of states that should be guaranteed by a
205  *			    contract
206  *		ctd_noneg:  If set, indicates that contract should NACK a
207  *			    negotiation
208  *		ctd_minor:  The devfs_path (without the /devices prefix) of the
209  *			    minor node that is the subject of the contract.
210  *
211  * ALGORITHMS
212  * ---------
213  * There are three sets of routines in this file
214  * 	Template related routines
215  * 	-------------------------
216  *	These routines provide support for template related operations initated
217  *	via the generic template operations. These include routines that dup
218  *	a template, free it, and set various terms in the template
219  *	(such as the minor node path, the acceptable state set (or A-set)
220  *	and the non-negotiable term) as well as a routine to query the
221  *	device specific portion of the template for the abovementioned terms.
222  *	There is also a routine to create (ctmpl_device_create) that is used to
223  *	create a contract from a template. This routine calls (after initial
224  *	setup) the common function used to create a device contract
225  *	(contract_device_create).
226  *
227  *	core device contract implementation
228  *	----------------------------------
229  *	These routines support the generic contract framework to provide
230  *	functionality that allows contracts to be created, managed and
231  *	destroyed. The contract_device_create() routine is a routine used
232  *	to create a contract from a template (either via an explicit create
233  *	operation on a template or implicitly via an open with an
234  *	activated template.). The contract_device_free() routine assists
235  *	in freeing the device contract specific parts. There are routines
236  *	used to abandon (contract_device_abandon) a device contract as well
237  *	as a routine to destroy (which despite its name does not destroy,
238  *	it only moves a contract to a dead state) a contract.
239  *	There is also a routine to return status information about a
240  *	contract - the level of detail depends on what is requested by the
241  *	user. A value of CTD_FIXED only returns fixed length fields such
242  *	as the A-set, state of device and value of the "noneg" term. If
243  *	CTD_ALL is specified, the minor node path is returned as well.
244  *
245  *	In addition there are interfaces (contract_device_ack/nack) which
246  *	are used to support negotiation between userland processes and
247  *	device contracts. These interfaces record the acknowledgement
248  *	or lack thereof for negotiation events and help determine if the
249  *	negotiated event should occur.
250  *
251  *	"backend routines"
252  *	-----------------
253  *	The backend routines form the interface between the I/O framework
254  *	and the device contract subsystem. These routines, allow the I/O
255  *	framework to call into the device contract subsystem to notify it of
256  *	impending changes to a device state as well as to inform of the
257  *	final disposition of such attempted state changes. Routines in this
258  *	class include contract_device_offline() that indicates an attempt to
259  *	offline a device, contract_device_degrade() that indicates that
260  *	a device is moving to the degraded state and contract_device_negend()
261  *	that is used by the I/O framework to inform the contracts subsystem of
262  *	the final disposition of an attempted operation.
263  *
264  *	SUMMARY
265  *	-------
266  *      A contract starts its life as a template. A process allocates a device
267  *	contract template and sets various terms:
268  *		The A-set
269  *		The device minor node
270  *		Critical and informative events
271  *		The noneg i.e. no negotition term
272  *	Setting of these terms in the template is done via the
273  *	ctmpl_device_set() entry point in this file. A process can query a
274  *	template to determine the terms already set in the template - this is
275  *	facilitated by the ctmpl_device_get() routine.
276  *
277  *	Once all the appropriate terms are set, the contract is instantiated via
278  *	one of two methods
279  *	- via an explicit create operation - this is facilitated by the
280  *	  ctmpl_device_create() entry point
281  *	- synchronously with the open(2) system call - this is achieved via the
282  *	  contract_device_open() routine.
283  *	The core work for both these above functions is done by
284  *	contract_device_create()
285  *
286  *	A contract once created can be queried for its status. Support for
287  *	status info is provided by both the common contracts framework and by
288  *	the "device" contract type. If the level of detail requested is
289  *	CTD_COMMON, only the common contract framework data is used. Higher
290  *	levels of detail result in calls to contract_device_status() to supply
291  *	device contract type specific status information.
292  *
293  *	A contract once created may be abandoned either explicitly or implictly.
294  *	In either case, the contract_device_abandon() function is invoked. This
295  * 	function merely calls contract_destroy() which moves the contract to
296  *	the DEAD state. The device contract portion of destroy processing is
297  *	provided by contract_device_destroy() which merely disassociates the
298  *	contract from its device devinfo node. A contract in the DEAD state is
299  *	not freed. It hanbgs around until all references to the contract are
300  *	gone. When that happens, the contract is finally deallocated. The
301  *	device contract specific portion of the free is done by
302  *	contract_device_free() which finally frees the device contract specific
303  *	data structure (cont_device_t).
304  *
305  *	When a device undergoes a state change, the I/O framework calls the
306  *	corresponding device contract entry point. For example, when a device
307  *	is about to go OFFLINE, the routine contract_device_offline() is
308  *	invoked. Similarly if a device moves to DEGRADED state, the routine
309  *	contract_device_degrade() function is called. These functions call the
310  *	core routine contract_device_publish(). This function determines via
311  *	the function is_sync_neg() whether an event is a synchronous (i.e.
312  *	negotiable) event or not. In the former case contract_device_publish()
313  *	publishes a CTE_NEG event and then waits in wait_for_acks() for ACKs
314  *	and/or NACKs from contract holders. In the latter case, it simply
315  *	publishes the event and does not wait. In the negotiation case, ACKs or
316  *	NACKs from userland consumers results in contract_device_ack_nack()
317  *	being called where the result of the negotiation is recorded in the
318  *	contract data structure. Once all outstanding contract owners have
319  *	responded, the device contract code in wait_for_acks() determines the
320  *	final result of the negotiation. A single NACK overrides all other ACKs
321  *	If there is no NACK, then a single ACK will result in an overall ACK
322  *	result. If there are no ACKs or NACKs, then the result CT_NONE is
323  *	returned back to the I/O framework. Once the event is permitted or
324  *	blocked, the I/O framework proceeds or aborts the state change. The
325  *	I/O framework then calls contract_device_negend() with a result code
326  *	indicating final disposition of the event. This call releases the
327  *	barrier and other state associated with the previous negotiation,
328  *	which permits the next event (if any) to come into the device contract
329  *	framework.
330  *
331  *	Finally, a device that has outstanding contracts may be removed from
332  *	the system which results in its devinfo node being freed. The devinfo
333  *	free routine in the I/O framework, calls into the device contract
334  *	function - contract_device_remove_dip(). This routine, disassociates
335  *	the dip from all contracts associated with the contract being freed,
336  *	allowing the devinfo node to be freed.
337  *
338  * LOCKING
339  * ---------
340  * 	There are four sets of data that need to be protected by locks
341  *
342  *	i) device contract specific portion of the contract template - This data
343  *	is protected by the template lock ctmpl_lock.
344  *
345  *	ii) device contract specific portion of the contract - This data is
346  *	protected by the contract lock ct_lock
347  *
348  *	iii) The linked list of contracts hanging off a devinfo node - This
349  *	list is protected by the per-devinfo node lock devi_ct_lock
350  *
351  *	iv) Finally there is a barrier, controlled by devi_ct_lock, devi_ct_cv
352  *	and devi_ct_count that controls state changes to a dip
353  *
354  *	The template lock is independent in that none of the other locks in this
355  *	file may be taken while holding the template lock (and vice versa).
356  *
357  *	The remaining three locks have the following lock order
358  *
359  *	devi_ct_lock  -> ct_count barrier ->  ct_lock
360  *
361  */
362 
363 static cont_device_t *contract_device_create(ctmpl_device_t *dtmpl, dev_t dev,
364     int spec_type, proc_t *owner, int *errorp);
365 
366 /* barrier routines */
367 static void ct_barrier_acquire(dev_info_t *dip);
368 static void ct_barrier_release(dev_info_t *dip);
369 static int ct_barrier_held(dev_info_t *dip);
370 static int ct_barrier_empty(dev_info_t *dip);
371 static void ct_barrier_wait_for_release(dev_info_t *dip);
372 static int ct_barrier_wait_for_empty(dev_info_t *dip, int secs);
373 static void ct_barrier_decr(dev_info_t *dip);
374 static void ct_barrier_incr(dev_info_t *dip);
375 
376 ct_type_t *device_type;
377 
378 /*
379  * Macro predicates for determining when events should be sent and how.
380  */
381 #define	EVSENDP(ctd, flag) \
382 	((ctd->cond_contract.ct_ev_info | ctd->cond_contract.ct_ev_crit) & flag)
383 
384 #define	EVINFOP(ctd, flag) \
385 	((ctd->cond_contract.ct_ev_crit & flag) == 0)
386 
387 /*
388  * State transition table showing which transitions are synchronous and which
389  * are not.
390  */
391 struct ct_dev_negtable {
392 	uint_t	st_old;
393 	uint_t	st_new;
394 	uint_t	st_neg;
395 } ct_dev_negtable[] = {
396 	{CT_DEV_EV_ONLINE, CT_DEV_EV_OFFLINE,	1},
397 	{CT_DEV_EV_ONLINE, CT_DEV_EV_DEGRADED,	0},
398 	{CT_DEV_EV_DEGRADED, CT_DEV_EV_ONLINE,	0},
399 	{CT_DEV_EV_DEGRADED, CT_DEV_EV_OFFLINE,	1},
400 	{0}
401 };
402 
403 /*
404  * Device contract template implementation
405  */
406 
407 /*
408  * ctmpl_device_dup
409  *
410  * The device contract template dup entry point.
411  * This simply copies all the fields (generic as well as device contract
412  * specific) fields of the original.
413  */
414 static struct ct_template *
415 ctmpl_device_dup(struct ct_template *template)
416 {
417 	ctmpl_device_t *new;
418 	ctmpl_device_t *old = template->ctmpl_data;
419 	char *buf;
420 	char *minor;
421 
422 	new = kmem_zalloc(sizeof (ctmpl_device_t), KM_SLEEP);
423 	buf = kmem_alloc(MAXPATHLEN, KM_SLEEP);
424 
425 	/*
426 	 * copy generic fields.
427 	 * ctmpl_copy returns with old template lock held
428 	 */
429 	ctmpl_copy(&new->ctd_ctmpl, template);
430 
431 	new->ctd_ctmpl.ctmpl_data = new;
432 	new->ctd_aset = old->ctd_aset;
433 	new->ctd_minor = NULL;
434 	new->ctd_noneg = old->ctd_noneg;
435 
436 	if (old->ctd_minor) {
437 		ASSERT(strlen(old->ctd_minor) + 1 <= MAXPATHLEN);
438 		bcopy(old->ctd_minor, buf, strlen(old->ctd_minor) + 1);
439 	} else {
440 		kmem_free(buf, MAXPATHLEN);
441 		buf = NULL;
442 	}
443 
444 	mutex_exit(&template->ctmpl_lock);
445 	if (buf) {
446 		minor = i_ddi_strdup(buf, KM_SLEEP);
447 		kmem_free(buf, MAXPATHLEN);
448 		buf = NULL;
449 	} else {
450 		minor = NULL;
451 	}
452 	mutex_enter(&template->ctmpl_lock);
453 
454 	if (minor) {
455 		new->ctd_minor = minor;
456 	}
457 
458 	ASSERT(buf == NULL);
459 	return (&new->ctd_ctmpl);
460 }
461 
462 /*
463  * ctmpl_device_free
464  *
465  * The device contract template free entry point.  Just
466  * frees the template.
467  */
468 static void
469 ctmpl_device_free(struct ct_template *template)
470 {
471 	ctmpl_device_t *dtmpl = template->ctmpl_data;
472 
473 	if (dtmpl->ctd_minor)
474 		kmem_free(dtmpl->ctd_minor, strlen(dtmpl->ctd_minor) + 1);
475 
476 	kmem_free(dtmpl, sizeof (ctmpl_device_t));
477 }
478 
479 /*
480  * SAFE_EV is the set of events which a non-privileged process is
481  * allowed to make critical. An unprivileged device contract owner has
482  * no control over when a device changes state, so all device events
483  * can be in the critical set.
484  *
485  * EXCESS tells us if "value", a critical event set, requires
486  * additional privilege. For device contracts EXCESS currently
487  * evaluates to 0.
488  */
489 #define	SAFE_EV		(CT_DEV_ALLEVENT)
490 #define	EXCESS(value)	((value) & ~SAFE_EV)
491 
492 
493 /*
494  * ctmpl_device_set
495  *
496  * The device contract template set entry point. Sets various terms in the
497  * template. The non-negotiable  term can only be set if the process has
498  * the {PRIV_SYS_DEVICES} privilege asserted in its effective set.
499  */
500 static int
501 ctmpl_device_set(struct ct_template *tmpl, ct_param_t *param, const cred_t *cr)
502 {
503 	ctmpl_device_t *dtmpl = tmpl->ctmpl_data;
504 	char *buf;
505 	int error;
506 	dev_info_t *dip;
507 	int spec_type;
508 
509 	ASSERT(MUTEX_HELD(&tmpl->ctmpl_lock));
510 
511 	switch (param->ctpm_id) {
512 	case CTDP_ACCEPT:
513 		if (param->ctpm_value & ~CT_DEV_ALLEVENT)
514 			return (EINVAL);
515 		if (param->ctpm_value == 0)
516 			return (EINVAL);
517 		if (param->ctpm_value == CT_DEV_ALLEVENT)
518 			return (EINVAL);
519 
520 		dtmpl->ctd_aset = param->ctpm_value;
521 		break;
522 	case CTDP_NONEG:
523 		if (param->ctpm_value != CTDP_NONEG_SET &&
524 		    param->ctpm_value != CTDP_NONEG_CLEAR)
525 			return (EINVAL);
526 
527 		/*
528 		 * only privileged processes can designate a contract
529 		 * non-negotiatble.
530 		 */
531 		if (param->ctpm_value == CTDP_NONEG_SET &&
532 		    (error = secpolicy_sys_devices(cr)) != 0) {
533 			return (error);
534 		}
535 
536 		dtmpl->ctd_noneg = param->ctpm_value;
537 		break;
538 
539 	case CTDP_MINOR:
540 		if (param->ctpm_value == NULL)
541 			return (EINVAL);
542 
543 		buf = kmem_alloc(MAXPATHLEN, KM_SLEEP);
544 
545 		/*
546 		 * Copyin the device path
547 		 */
548 		error = copyinstr((char *)(uintptr_t)param->ctpm_value, buf,
549 		    MAXPATHLEN, NULL);
550 		if (error != 0) {
551 			kmem_free(buf, MAXPATHLEN);
552 			return (error);
553 		}
554 		buf[MAXPATHLEN - 1] = '\0';
555 
556 		if (*buf != '/' ||
557 		    strncmp(buf, "/devices/", strlen("/devices/")) == 0 ||
558 		    strstr(buf, "../devices/") || strchr(buf, ':') == NULL) {
559 			kmem_free(buf, MAXPATHLEN);
560 			return (EINVAL);
561 		}
562 
563 		spec_type = 0;
564 		dip = NULL;
565 		if (resolve_pathname(buf, &dip, NULL, &spec_type) != 0) {
566 			kmem_free(buf, MAXPATHLEN);
567 			return (ERANGE);
568 		}
569 		ddi_release_devi(dip);
570 
571 		if (spec_type != S_IFCHR && spec_type != S_IFBLK) {
572 			kmem_free(buf, MAXPATHLEN);
573 			return (EINVAL);
574 		}
575 
576 		if (dtmpl->ctd_minor != NULL) {
577 			kmem_free(dtmpl->ctd_minor,
578 			    strlen(dtmpl->ctd_minor) + 1);
579 		}
580 		dtmpl->ctd_minor = i_ddi_strdup(buf, KM_SLEEP);
581 		kmem_free(buf, MAXPATHLEN);
582 		break;
583 	case CTP_EV_CRITICAL:
584 		/*
585 		 * Currently for device contracts, any event
586 		 * may be added to the critical set. We retain the
587 		 * following code however for future enhancements.
588 		 */
589 		if (EXCESS(param->ctpm_value) &&
590 		    (error = secpolicy_contract_event(cr)) != 0)
591 			return (error);
592 		tmpl->ctmpl_ev_crit = param->ctpm_value;
593 		break;
594 	default:
595 		return (EINVAL);
596 	}
597 
598 	return (0);
599 }
600 
601 /*
602  * ctmpl_device_get
603  *
604  * The device contract template get entry point.  Simply fetches and
605  * returns the value of the requested term.
606  */
607 static int
608 ctmpl_device_get(struct ct_template *template, ct_param_t *param)
609 {
610 	ctmpl_device_t *dtmpl = template->ctmpl_data;
611 	int		error;
612 
613 	ASSERT(MUTEX_HELD(&template->ctmpl_lock));
614 
615 	switch (param->ctpm_id) {
616 	case CTDP_ACCEPT:
617 		param->ctpm_value = dtmpl->ctd_aset;
618 		break;
619 	case CTDP_NONEG:
620 		param->ctpm_value = dtmpl->ctd_noneg;
621 		break;
622 	case CTDP_MINOR:
623 		if (dtmpl->ctd_minor) {
624 			error = copyoutstr(dtmpl->ctd_minor,
625 			    (char *)(uintptr_t)param->ctpm_value,
626 			    MAXPATHLEN, NULL);
627 			if (error != 0)
628 				return (error);
629 		} else {
630 			return (ENOENT);
631 		}
632 		break;
633 	default:
634 		return (EINVAL);
635 	}
636 
637 	return (0);
638 }
639 
640 /*
641  * Device contract type specific portion of creating a contract using
642  * a specified template
643  */
644 /*ARGSUSED*/
645 int
646 ctmpl_device_create(ct_template_t *template, ctid_t *ctidp)
647 {
648 	ctmpl_device_t *dtmpl;
649 	char *buf;
650 	dev_t dev;
651 	int spec_type;
652 	int error;
653 	cont_device_t *ctd;
654 
655 	if (ctidp == NULL)
656 		return (EINVAL);
657 
658 	buf = kmem_alloc(MAXPATHLEN, KM_SLEEP);
659 
660 	dtmpl = template->ctmpl_data;
661 
662 	mutex_enter(&template->ctmpl_lock);
663 	if (dtmpl->ctd_minor == NULL) {
664 		/* incomplete template */
665 		mutex_exit(&template->ctmpl_lock);
666 		kmem_free(buf, MAXPATHLEN);
667 		return (EINVAL);
668 	} else {
669 		ASSERT(strlen(dtmpl->ctd_minor) < MAXPATHLEN);
670 		bcopy(dtmpl->ctd_minor, buf, strlen(dtmpl->ctd_minor) + 1);
671 	}
672 	mutex_exit(&template->ctmpl_lock);
673 
674 	spec_type = 0;
675 	dev = NODEV;
676 	if (resolve_pathname(buf, NULL, &dev, &spec_type) != 0 ||
677 	    dev == NODEV || dev == DDI_DEV_T_ANY || dev == DDI_DEV_T_NONE ||
678 	    (spec_type != S_IFCHR && spec_type != S_IFBLK)) {
679 		CT_DEBUG((CE_WARN,
680 		    "tmpl_create: failed to find device: %s", buf));
681 		kmem_free(buf, MAXPATHLEN);
682 		return (ERANGE);
683 	}
684 	kmem_free(buf, MAXPATHLEN);
685 
686 	ctd = contract_device_create(template->ctmpl_data,
687 	    dev, spec_type, curproc, &error);
688 
689 	if (ctd == NULL) {
690 		CT_DEBUG((CE_WARN, "Failed to create device contract for "
691 		    "process (%d) with device (devt = %lu, spec_type = %s)",
692 		    curproc->p_pid, dev,
693 		    spec_type == S_IFCHR ? "S_IFCHR" : "S_IFBLK"));
694 		return (error);
695 	}
696 
697 	mutex_enter(&ctd->cond_contract.ct_lock);
698 	*ctidp = ctd->cond_contract.ct_id;
699 	mutex_exit(&ctd->cond_contract.ct_lock);
700 
701 	return (0);
702 }
703 
704 /*
705  * Device contract specific template entry points
706  */
707 static ctmplops_t ctmpl_device_ops = {
708 	ctmpl_device_dup,		/* ctop_dup */
709 	ctmpl_device_free,		/* ctop_free */
710 	ctmpl_device_set,		/* ctop_set */
711 	ctmpl_device_get,		/* ctop_get */
712 	ctmpl_device_create,		/* ctop_create */
713 	CT_DEV_ALLEVENT			/* all device events bitmask */
714 };
715 
716 
717 /*
718  * Device contract implementation
719  */
720 
721 /*
722  * contract_device_default
723  *
724  * The device contract default template entry point.  Creates a
725  * device contract template with a default A-set and no "noneg" ,
726  * with informative degrade events and critical offline events.
727  * There is no default minor path.
728  */
729 static ct_template_t *
730 contract_device_default(void)
731 {
732 	ctmpl_device_t *new;
733 
734 	new = kmem_zalloc(sizeof (ctmpl_device_t), KM_SLEEP);
735 	ctmpl_init(&new->ctd_ctmpl, &ctmpl_device_ops, device_type, new);
736 
737 	new->ctd_aset = CT_DEV_EV_ONLINE | CT_DEV_EV_DEGRADED;
738 	new->ctd_noneg = 0;
739 	new->ctd_ctmpl.ctmpl_ev_info = CT_DEV_EV_DEGRADED;
740 	new->ctd_ctmpl.ctmpl_ev_crit = CT_DEV_EV_OFFLINE;
741 
742 	return (&new->ctd_ctmpl);
743 }
744 
745 /*
746  * contract_device_free
747  *
748  * Destroys the device contract specific portion of a contract and
749  * frees the contract.
750  */
751 static void
752 contract_device_free(contract_t *ct)
753 {
754 	cont_device_t *ctd = ct->ct_data;
755 
756 	ASSERT(ctd->cond_minor);
757 	ASSERT(strlen(ctd->cond_minor) < MAXPATHLEN);
758 	kmem_free(ctd->cond_minor, strlen(ctd->cond_minor) + 1);
759 
760 	ASSERT(ctd->cond_devt != DDI_DEV_T_ANY &&
761 	    ctd->cond_devt != DDI_DEV_T_NONE && ctd->cond_devt != NODEV);
762 
763 	ASSERT(ctd->cond_spec == S_IFBLK || ctd->cond_spec == S_IFCHR);
764 
765 	ASSERT(!(ctd->cond_aset & ~CT_DEV_ALLEVENT));
766 	ASSERT(ctd->cond_noneg == 0 || ctd->cond_noneg == 1);
767 
768 	ASSERT(!(ctd->cond_currev_type & ~CT_DEV_ALLEVENT));
769 	ASSERT(!(ctd->cond_currev_ack & ~(CT_ACK | CT_NACK)));
770 
771 	ASSERT((ctd->cond_currev_id > 0) ^ (ctd->cond_currev_type == 0));
772 	ASSERT((ctd->cond_currev_id > 0) || (ctd->cond_currev_ack == 0));
773 
774 	ASSERT(!list_link_active(&ctd->cond_next));
775 
776 	kmem_free(ctd, sizeof (cont_device_t));
777 }
778 
779 /*
780  * contract_device_abandon
781  *
782  * The device contract abandon entry point.
783  */
784 static void
785 contract_device_abandon(contract_t *ct)
786 {
787 	ASSERT(MUTEX_HELD(&ct->ct_lock));
788 
789 	/*
790 	 * device contracts cannot be inherited or orphaned.
791 	 * Move the contract to the DEAD_STATE. It will be freed
792 	 * once all references to it are gone.
793 	 */
794 	contract_destroy(ct);
795 }
796 
797 /*
798  * contract_device_destroy
799  *
800  * The device contract destroy entry point.
801  * Called from contract_destroy() to do any type specific destroy. Note
802  * that destroy is a misnomer - this does not free the contract, it only
803  * moves it to the dead state. A contract is actually freed via
804  * 	contract_rele() -> contract_dtor(), contop_free()
805  */
806 static void
807 contract_device_destroy(contract_t *ct)
808 {
809 	cont_device_t	*ctd = ct->ct_data;
810 	dev_info_t	*dip = ctd->cond_dip;
811 
812 	ASSERT(MUTEX_HELD(&ct->ct_lock));
813 
814 	if (dip == NULL) {
815 		/*
816 		 * The dip has been removed, this is a dangling contract
817 		 * Check that dip linkages are NULL
818 		 */
819 		ASSERT(!list_link_active(&ctd->cond_next));
820 		CT_DEBUG((CE_NOTE, "contract_device_destroy: contract has no "
821 		    "devinfo node. contract ctid : %d", ct->ct_id));
822 		return;
823 	}
824 
825 	/*
826 	 * Need to have lock order: devi_ct_lock -> ct_count barrier -> ct_lock
827 	 */
828 	mutex_exit(&ct->ct_lock);
829 
830 	/*
831 	 * Waiting for the barrier to be released is strictly speaking not
832 	 * necessary. But it simplifies the implementation of
833 	 * contract_device_publish() by establishing the invariant that
834 	 * device contracts cannot go away during negotiation.
835 	 */
836 	mutex_enter(&(DEVI(dip)->devi_ct_lock));
837 	ct_barrier_wait_for_release(dip);
838 	mutex_enter(&ct->ct_lock);
839 
840 	list_remove(&(DEVI(dip)->devi_ct), ctd);
841 	ctd->cond_dip = NULL; /* no longer linked to dip */
842 	contract_rele(ct);	/* remove hold for dip linkage */
843 
844 	mutex_exit(&ct->ct_lock);
845 	mutex_exit(&(DEVI(dip)->devi_ct_lock));
846 	mutex_enter(&ct->ct_lock);
847 }
848 
849 /*
850  * contract_device_status
851  *
852  * The device contract status entry point. Called when level of "detail"
853  * is either CTD_FIXED or CTD_ALL
854  *
855  */
856 static void
857 contract_device_status(contract_t *ct, zone_t *zone, int detail, nvlist_t *nvl,
858     void *status, model_t model)
859 {
860 	cont_device_t *ctd = ct->ct_data;
861 
862 	ASSERT(detail == CTD_FIXED || detail == CTD_ALL);
863 
864 	mutex_enter(&ct->ct_lock);
865 	contract_status_common(ct, zone, status, model);
866 
867 	/*
868 	 * There's no need to hold the contract lock while accessing static
869 	 * data like aset or noneg. But since we need the lock to access other
870 	 * data like state, we hold it anyway.
871 	 */
872 	VERIFY(nvlist_add_uint32(nvl, CTDS_STATE, ctd->cond_state) == 0);
873 	VERIFY(nvlist_add_uint32(nvl, CTDS_ASET, ctd->cond_aset) == 0);
874 	VERIFY(nvlist_add_uint32(nvl, CTDS_NONEG, ctd->cond_noneg) == 0);
875 
876 	if (detail == CTD_FIXED) {
877 		mutex_exit(&ct->ct_lock);
878 		return;
879 	}
880 
881 	ASSERT(ctd->cond_minor);
882 	VERIFY(nvlist_add_string(nvl, CTDS_MINOR, ctd->cond_minor) == 0);
883 
884 	mutex_exit(&ct->ct_lock);
885 }
886 
887 /*
888  * Converts a result integer into the corresponding string. Used for printing
889  * messages
890  */
891 static char *
892 result_str(uint_t result)
893 {
894 	switch (result) {
895 	case CT_ACK:
896 		return ("CT_ACK");
897 	case CT_NACK:
898 		return ("CT_NACK");
899 	case CT_NONE:
900 		return ("CT_NONE");
901 	default:
902 		return ("UNKNOWN");
903 	}
904 }
905 
906 /*
907  * Converts a device state integer constant into the corresponding string.
908  * Used to print messages.
909  */
910 static char *
911 state_str(uint_t state)
912 {
913 	switch (state) {
914 	case CT_DEV_EV_ONLINE:
915 		return ("ONLINE");
916 	case CT_DEV_EV_DEGRADED:
917 		return ("DEGRADED");
918 	case CT_DEV_EV_OFFLINE:
919 		return ("OFFLINE");
920 	default:
921 		return ("UNKNOWN");
922 	}
923 }
924 
925 /*
926  * Routine that determines if a particular CT_DEV_EV_? event corresponds to a
927  * synchronous state change or not.
928  */
929 static int
930 is_sync_neg(uint_t old, uint_t new)
931 {
932 	int	i;
933 
934 	ASSERT(old & CT_DEV_ALLEVENT);
935 	ASSERT(new & CT_DEV_ALLEVENT);
936 
937 	if (old == new) {
938 		CT_DEBUG((CE_WARN, "is_sync_neg: transition to same state: %s",
939 		    state_str(new)));
940 		return (-2);
941 	}
942 
943 	for (i = 0; ct_dev_negtable[i].st_new != 0; i++) {
944 		if (old == ct_dev_negtable[i].st_old &&
945 		    new == ct_dev_negtable[i].st_new) {
946 			return (ct_dev_negtable[i].st_neg);
947 		}
948 	}
949 
950 	CT_DEBUG((CE_WARN, "is_sync_neg: Unsupported state transition: "
951 	    "old = %s -> new = %s", state_str(old), state_str(new)));
952 
953 	return (-1);
954 }
955 
956 /*
957  * Used to cleanup cached dv_nodes so that when a device is released by
958  * a contract holder, its devinfo node can be successfully detached.
959  */
960 static int
961 contract_device_dvclean(dev_info_t *dip)
962 {
963 	char		*devnm;
964 	dev_info_t	*pdip;
965 	int		error;
966 
967 	ASSERT(dip);
968 
969 	/* pdip can be NULL if we have contracts against the root dip */
970 	pdip = ddi_get_parent(dip);
971 
972 	if (pdip && DEVI_BUSY_OWNED(pdip) || !pdip && DEVI_BUSY_OWNED(dip)) {
973 		char		*path;
974 
975 		path = kmem_alloc(MAXPATHLEN, KM_SLEEP);
976 		(void) ddi_pathname(dip, path);
977 		CT_DEBUG((CE_WARN, "ct_dv_clean: Parent node is busy owned, "
978 		    "device=%s", path));
979 		kmem_free(path, MAXPATHLEN);
980 		return (EDEADLOCK);
981 	}
982 
983 	if (pdip) {
984 		devnm = kmem_alloc(MAXNAMELEN + 1, KM_SLEEP);
985 		(void) ddi_deviname(dip, devnm);
986 		error = devfs_clean(pdip, devnm + 1, DV_CLEAN_FORCE);
987 		kmem_free(devnm, MAXNAMELEN + 1);
988 	} else {
989 		error = devfs_clean(dip, NULL, DV_CLEAN_FORCE);
990 	}
991 
992 	return (error);
993 }
994 
995 /*
996  * Endpoint of a ct_ctl_ack() or ct_ctl_nack() call from userland.
997  * Results in the ACK or NACK being recorded on the dip for one particular
998  * contract. The device contracts framework evaluates the ACK/NACKs for all
999  * contracts against a device to determine if a particular device state change
1000  * should be allowed.
1001  */
1002 static int
1003 contract_device_ack_nack(contract_t *ct, uint_t evtype, uint64_t evid,
1004     uint_t cmd)
1005 {
1006 	cont_device_t *ctd = ct->ct_data;
1007 	dev_info_t *dip;
1008 	ctid_t	ctid;
1009 	int error;
1010 
1011 	ctid = ct->ct_id;
1012 
1013 	CT_DEBUG((CE_NOTE, "ack_nack: entered: ctid %d", ctid));
1014 
1015 	mutex_enter(&ct->ct_lock);
1016 	CT_DEBUG((CE_NOTE, "ack_nack: contract lock acquired: %d", ctid));
1017 
1018 	dip = ctd->cond_dip;
1019 
1020 	ASSERT(ctd->cond_minor);
1021 	ASSERT(strlen(ctd->cond_minor) < MAXPATHLEN);
1022 
1023 	/*
1024 	 * Negotiation only if new state is not in A-set
1025 	 */
1026 	ASSERT(!(ctd->cond_aset & evtype));
1027 
1028 	/*
1029 	 * Negotiation only if transition is synchronous
1030 	 */
1031 	ASSERT(is_sync_neg(ctd->cond_state, evtype));
1032 
1033 	/*
1034 	 * We shouldn't be negotiating if the "noneg" flag is set
1035 	 */
1036 	ASSERT(!ctd->cond_noneg);
1037 
1038 	if (dip)
1039 		ndi_hold_devi(dip);
1040 
1041 	mutex_exit(&ct->ct_lock);
1042 
1043 	/*
1044 	 * dv_clean only if !NACK and offline state change
1045 	 */
1046 	if (cmd != CT_NACK && evtype == CT_DEV_EV_OFFLINE && dip) {
1047 		CT_DEBUG((CE_NOTE, "ack_nack: dv_clean: %d", ctid));
1048 		error = contract_device_dvclean(dip);
1049 		if (error != 0) {
1050 			CT_DEBUG((CE_NOTE, "ack_nack: dv_clean: failed: %d",
1051 			    ctid));
1052 			ddi_release_devi(dip);
1053 		}
1054 	}
1055 
1056 	mutex_enter(&ct->ct_lock);
1057 
1058 	if (dip)
1059 		ddi_release_devi(dip);
1060 
1061 	if (dip == NULL) {
1062 		if (ctd->cond_currev_id != evid) {
1063 			CT_DEBUG((CE_WARN, "%sACK for non-current event "
1064 			    "(type=%s, id=%llu) on removed device",
1065 			    cmd == CT_NACK ? "N" : "",
1066 			    state_str(evtype), (unsigned long long)evid));
1067 			CT_DEBUG((CE_NOTE, "ack_nack: error: ESRCH, ctid: %d",
1068 			    ctid));
1069 		} else {
1070 			ASSERT(ctd->cond_currev_type == evtype);
1071 			CT_DEBUG((CE_WARN, "contract_ack: no such device: "
1072 			    "ctid: %d", ctid));
1073 		}
1074 		error = (ct->ct_state == CTS_DEAD) ? ESRCH :
1075 		    ((cmd == CT_NACK) ? ETIMEDOUT : 0);
1076 		mutex_exit(&ct->ct_lock);
1077 		return (error);
1078 	}
1079 
1080 	/*
1081 	 * Must follow lock order: devi_ct_lock -> ct_count barrier - >ct_lock
1082 	 */
1083 	mutex_exit(&ct->ct_lock);
1084 
1085 	mutex_enter(&DEVI(dip)->devi_ct_lock);
1086 	mutex_enter(&ct->ct_lock);
1087 	if (ctd->cond_currev_id != evid) {
1088 		char *buf;
1089 		mutex_exit(&ct->ct_lock);
1090 		mutex_exit(&DEVI(dip)->devi_ct_lock);
1091 		ndi_hold_devi(dip);
1092 		buf = kmem_alloc(MAXPATHLEN, KM_SLEEP);
1093 		(void) ddi_pathname(dip, buf);
1094 		ddi_release_devi(dip);
1095 		CT_DEBUG((CE_WARN, "%sACK for non-current event"
1096 		    "(type=%s, id=%llu) on device %s",
1097 		    cmd == CT_NACK ? "N" : "",
1098 		    state_str(evtype), (unsigned long long)evid, buf));
1099 		kmem_free(buf, MAXPATHLEN);
1100 		CT_DEBUG((CE_NOTE, "ack_nack: error: %d, ctid: %d",
1101 		    cmd == CT_NACK ? ETIMEDOUT : 0, ctid));
1102 		return (cmd == CT_ACK ? 0 : ETIMEDOUT);
1103 	}
1104 
1105 	ASSERT(ctd->cond_currev_type == evtype);
1106 	ASSERT(cmd == CT_ACK || cmd == CT_NACK);
1107 
1108 	CT_DEBUG((CE_NOTE, "ack_nack: setting %sACK for ctid: %d",
1109 	    cmd == CT_NACK ? "N" : "", ctid));
1110 
1111 	ctd->cond_currev_ack = cmd;
1112 	mutex_exit(&ct->ct_lock);
1113 
1114 	ct_barrier_decr(dip);
1115 	mutex_exit(&DEVI(dip)->devi_ct_lock);
1116 
1117 	CT_DEBUG((CE_NOTE, "ack_nack: normal exit: ctid: %d", ctid));
1118 
1119 	return (0);
1120 }
1121 
1122 /*
1123  * Invoked when a userland contract holder approves (i.e. ACKs) a state change
1124  */
1125 static int
1126 contract_device_ack(contract_t *ct, uint_t evtype, uint64_t evid)
1127 {
1128 	return (contract_device_ack_nack(ct, evtype, evid, CT_ACK));
1129 }
1130 
1131 /*
1132  * Invoked when a userland contract holder blocks (i.e. NACKs) a state change
1133  */
1134 static int
1135 contract_device_nack(contract_t *ct, uint_t evtype, uint64_t evid)
1136 {
1137 	return (contract_device_ack_nack(ct, evtype, evid, CT_NACK));
1138 }
1139 
1140 /*
1141  * Creates a new contract synchronously with the breaking of an existing
1142  * contract. Currently not supported.
1143  */
1144 /*ARGSUSED*/
1145 static int
1146 contract_device_newct(contract_t *ct)
1147 {
1148 	return (ENOTSUP);
1149 }
1150 
1151 /*
1152  * Core device contract implementation entry points
1153  */
1154 static contops_t contract_device_ops = {
1155 	contract_device_free,		/* contop_free */
1156 	contract_device_abandon,	/* contop_abandon */
1157 	contract_device_destroy,	/* contop_destroy */
1158 	contract_device_status,		/* contop_status */
1159 	contract_device_ack,		/* contop_ack */
1160 	contract_device_nack,		/* contop_nack */
1161 	contract_qack_notsup,		/* contop_qack */
1162 	contract_device_newct		/* contop_newct */
1163 };
1164 
1165 /*
1166  * contract_device_init
1167  *
1168  * Initializes the device contract type.
1169  */
1170 void
1171 contract_device_init(void)
1172 {
1173 	device_type = contract_type_init(CTT_DEVICE, "device",
1174 	    &contract_device_ops, contract_device_default);
1175 }
1176 
1177 /*
1178  * contract_device_create
1179  *
1180  * create a device contract given template "tmpl" and the "owner" process.
1181  * May fail and return NULL if project.max-contracts would have been exceeded.
1182  *
1183  * Common device contract creation routine called for both open-time and
1184  * non-open time device contract creation
1185  */
1186 static cont_device_t *
1187 contract_device_create(ctmpl_device_t *dtmpl, dev_t dev, int spec_type,
1188     proc_t *owner, int *errorp)
1189 {
1190 	cont_device_t *ctd;
1191 	char *minor;
1192 	char *path;
1193 	dev_info_t *dip;
1194 
1195 	ASSERT(dtmpl != NULL);
1196 	ASSERT(dev != NODEV && dev != DDI_DEV_T_ANY && dev != DDI_DEV_T_NONE);
1197 	ASSERT(spec_type == S_IFCHR || spec_type == S_IFBLK);
1198 	ASSERT(errorp);
1199 
1200 	*errorp = 0;
1201 
1202 	path = kmem_alloc(MAXPATHLEN, KM_SLEEP);
1203 
1204 	mutex_enter(&dtmpl->ctd_ctmpl.ctmpl_lock);
1205 	ASSERT(strlen(dtmpl->ctd_minor) < MAXPATHLEN);
1206 	bcopy(dtmpl->ctd_minor, path, strlen(dtmpl->ctd_minor) + 1);
1207 	mutex_exit(&dtmpl->ctd_ctmpl.ctmpl_lock);
1208 
1209 	dip = e_ddi_hold_devi_by_path(path, 0);
1210 	if (dip == NULL) {
1211 		cmn_err(CE_WARN, "contract_create: Cannot find devinfo node "
1212 		    "for device path (%s)", path);
1213 		kmem_free(path, MAXPATHLEN);
1214 		*errorp = ERANGE;
1215 		return (NULL);
1216 	}
1217 
1218 	/*
1219 	 * Lock out any parallel contract negotiations
1220 	 */
1221 	mutex_enter(&(DEVI(dip)->devi_ct_lock));
1222 	ct_barrier_acquire(dip);
1223 	mutex_exit(&(DEVI(dip)->devi_ct_lock));
1224 
1225 	minor = i_ddi_strdup(path, KM_SLEEP);
1226 	kmem_free(path, MAXPATHLEN);
1227 
1228 	(void) contract_type_pbundle(device_type, owner);
1229 
1230 	ctd = kmem_zalloc(sizeof (cont_device_t), KM_SLEEP);
1231 
1232 	/*
1233 	 * Only we hold a refernce to this contract. Safe to access
1234 	 * the fields without a ct_lock
1235 	 */
1236 	ctd->cond_minor = minor;
1237 	/*
1238 	 * It is safe to set the dip pointer in the contract
1239 	 * as the contract will always be destroyed before the dip
1240 	 * is released
1241 	 */
1242 	ctd->cond_dip = dip;
1243 	ctd->cond_devt = dev;
1244 	ctd->cond_spec = spec_type;
1245 
1246 	/*
1247 	 * Since we are able to lookup the device, it is either
1248 	 * online or degraded
1249 	 */
1250 	ctd->cond_state = DEVI_IS_DEVICE_DEGRADED(dip) ?
1251 	    CT_DEV_EV_DEGRADED : CT_DEV_EV_ONLINE;
1252 
1253 	mutex_enter(&dtmpl->ctd_ctmpl.ctmpl_lock);
1254 	ctd->cond_aset = dtmpl->ctd_aset;
1255 	ctd->cond_noneg = dtmpl->ctd_noneg;
1256 
1257 	/*
1258 	 * contract_ctor() initailizes the common portion of a contract
1259 	 * contract_dtor() destroys the common portion of a contract
1260 	 */
1261 	if (contract_ctor(&ctd->cond_contract, device_type, &dtmpl->ctd_ctmpl,
1262 	    ctd, 0, owner, B_TRUE)) {
1263 		mutex_exit(&dtmpl->ctd_ctmpl.ctmpl_lock);
1264 		/*
1265 		 * contract_device_free() destroys the type specific
1266 		 * portion of a contract and frees the contract.
1267 		 * The "minor" path and "cred" is a part of the type specific
1268 		 * portion of the contract and will be freed by
1269 		 * contract_device_free()
1270 		 */
1271 		contract_device_free(&ctd->cond_contract);
1272 
1273 		/* release barrier */
1274 		mutex_enter(&(DEVI(dip)->devi_ct_lock));
1275 		ct_barrier_release(dip);
1276 		mutex_exit(&(DEVI(dip)->devi_ct_lock));
1277 
1278 		ddi_release_devi(dip);
1279 		*errorp = EAGAIN;
1280 		return (NULL);
1281 	}
1282 	mutex_exit(&dtmpl->ctd_ctmpl.ctmpl_lock);
1283 
1284 	mutex_enter(&ctd->cond_contract.ct_lock);
1285 	ctd->cond_contract.ct_ntime.ctm_total = CT_DEV_ACKTIME;
1286 	ctd->cond_contract.ct_qtime.ctm_total = CT_DEV_ACKTIME;
1287 	ctd->cond_contract.ct_ntime.ctm_start = -1;
1288 	ctd->cond_contract.ct_qtime.ctm_start = -1;
1289 	mutex_exit(&ctd->cond_contract.ct_lock);
1290 
1291 	/*
1292 	 * Insert device contract into list hanging off the dip
1293 	 * Bump up the ref-count on the contract to reflect this
1294 	 */
1295 	contract_hold(&ctd->cond_contract);
1296 	mutex_enter(&(DEVI(dip)->devi_ct_lock));
1297 	list_insert_tail(&(DEVI(dip)->devi_ct), ctd);
1298 
1299 	/* release barrier */
1300 	ct_barrier_release(dip);
1301 	mutex_exit(&(DEVI(dip)->devi_ct_lock));
1302 
1303 	ddi_release_devi(dip);
1304 
1305 	return (ctd);
1306 }
1307 
1308 /*
1309  * Called when a device is successfully opened to create an open-time contract
1310  * i.e. synchronously with a device open.
1311  */
1312 int
1313 contract_device_open(dev_t dev, int spec_type, contract_t **ctpp)
1314 {
1315 	ctmpl_device_t *dtmpl;
1316 	ct_template_t  *tmpl;
1317 	cont_device_t *ctd;
1318 	char *path;
1319 	klwp_t *lwp;
1320 	int error;
1321 
1322 	if (ctpp)
1323 		*ctpp = NULL;
1324 
1325 	/*
1326 	 * Check if we are in user-context i.e. if we have an lwp
1327 	 */
1328 	lwp = ttolwp(curthread);
1329 	if (lwp == NULL) {
1330 		CT_DEBUG((CE_NOTE, "contract_open: Not user-context"));
1331 		return (0);
1332 	}
1333 
1334 	tmpl = ctmpl_dup(lwp->lwp_ct_active[device_type->ct_type_index]);
1335 	if (tmpl == NULL) {
1336 		return (0);
1337 	}
1338 	dtmpl = tmpl->ctmpl_data;
1339 
1340 	/*
1341 	 * If the user set a minor path in the template before an open,
1342 	 * ignore it. We use the minor path of the actual minor opened.
1343 	 */
1344 	mutex_enter(&tmpl->ctmpl_lock);
1345 	if (dtmpl->ctd_minor != NULL) {
1346 		CT_DEBUG((CE_NOTE, "contract_device_open(): Process %d: "
1347 		    "ignoring device minor path in active template: %s",
1348 		    curproc->p_pid, dtmpl->ctd_minor));
1349 		/*
1350 		 * This is a copy of the actual activated template.
1351 		 * Safe to make changes such as freeing the minor
1352 		 * path in the template.
1353 		 */
1354 		kmem_free(dtmpl->ctd_minor, strlen(dtmpl->ctd_minor) + 1);
1355 		dtmpl->ctd_minor = NULL;
1356 	}
1357 	mutex_exit(&tmpl->ctmpl_lock);
1358 
1359 	path = kmem_alloc(MAXPATHLEN, KM_SLEEP);
1360 
1361 	if (ddi_dev_pathname(dev, spec_type, path) != DDI_SUCCESS) {
1362 		CT_DEBUG((CE_NOTE, "contract_device_open(): Failed to derive "
1363 		    "minor path from dev_t,spec {%lu, %d} for process (%d)",
1364 		    dev, spec_type, curproc->p_pid));
1365 		ctmpl_free(tmpl);
1366 		kmem_free(path, MAXPATHLEN);
1367 		return (1);
1368 	}
1369 
1370 	mutex_enter(&tmpl->ctmpl_lock);
1371 	ASSERT(dtmpl->ctd_minor == NULL);
1372 	dtmpl->ctd_minor = path;
1373 	mutex_exit(&tmpl->ctmpl_lock);
1374 
1375 	ctd = contract_device_create(dtmpl, dev, spec_type, curproc, &error);
1376 
1377 	mutex_enter(&tmpl->ctmpl_lock);
1378 	ASSERT(dtmpl->ctd_minor);
1379 	dtmpl->ctd_minor = NULL;
1380 	mutex_exit(&tmpl->ctmpl_lock);
1381 	ctmpl_free(tmpl);
1382 	kmem_free(path, MAXPATHLEN);
1383 
1384 	if (ctd == NULL) {
1385 		cmn_err(CE_NOTE, "contract_device_open(): Failed to "
1386 		    "create device contract for process (%d) holding "
1387 		    "device (devt = %lu, spec_type = %d)",
1388 		    curproc->p_pid, dev, spec_type);
1389 		return (1);
1390 	}
1391 
1392 	if (ctpp) {
1393 		mutex_enter(&ctd->cond_contract.ct_lock);
1394 		*ctpp = &ctd->cond_contract;
1395 		mutex_exit(&ctd->cond_contract.ct_lock);
1396 	}
1397 	return (0);
1398 }
1399 
1400 /*
1401  * Called during contract negotiation by the device contract framework to wait
1402  * for ACKs or NACKs from contract holders. If all responses are not received
1403  * before a specified timeout, this routine times out.
1404  */
1405 static uint_t
1406 wait_for_acks(dev_info_t *dip, dev_t dev, int spec_type, uint_t evtype)
1407 {
1408 	cont_device_t *ctd;
1409 	int timed_out = 0;
1410 	int result = CT_NONE;
1411 	int ack;
1412 	char *f = "wait_for_acks";
1413 
1414 	ASSERT(MUTEX_HELD(&(DEVI(dip)->devi_ct_lock)));
1415 	ASSERT(dip);
1416 	ASSERT(evtype & CT_DEV_ALLEVENT);
1417 	ASSERT(dev != NODEV && dev != DDI_DEV_T_NONE);
1418 	ASSERT((dev == DDI_DEV_T_ANY && spec_type == 0) ||
1419 	    (spec_type == S_IFBLK || spec_type == S_IFCHR));
1420 
1421 	CT_DEBUG((CE_NOTE, "%s: entered: dip: %p", f, (void *)dip));
1422 
1423 	if (ct_barrier_wait_for_empty(dip, CT_DEV_ACKTIME) == -1) {
1424 		/*
1425 		 * some contract owner(s) didn't respond in time
1426 		 */
1427 		CT_DEBUG((CE_NOTE, "%s: timed out: %p", f, (void *)dip));
1428 		timed_out = 1;
1429 	}
1430 
1431 	ack = 0;
1432 	for (ctd = list_head(&(DEVI(dip)->devi_ct)); ctd != NULL;
1433 	    ctd = list_next(&(DEVI(dip)->devi_ct), ctd)) {
1434 
1435 		mutex_enter(&ctd->cond_contract.ct_lock);
1436 
1437 		ASSERT(ctd->cond_dip == dip);
1438 
1439 		if (dev != DDI_DEV_T_ANY && dev != ctd->cond_devt) {
1440 			mutex_exit(&ctd->cond_contract.ct_lock);
1441 			continue;
1442 		}
1443 		if (dev != DDI_DEV_T_ANY && spec_type != ctd->cond_spec) {
1444 			mutex_exit(&ctd->cond_contract.ct_lock);
1445 			continue;
1446 		}
1447 
1448 		/* skip if non-negotiable contract */
1449 		if (ctd->cond_noneg) {
1450 			mutex_exit(&ctd->cond_contract.ct_lock);
1451 			continue;
1452 		}
1453 
1454 		ASSERT(ctd->cond_currev_type == evtype);
1455 		if (ctd->cond_currev_ack == CT_NACK) {
1456 			CT_DEBUG((CE_NOTE, "%s: found a NACK,result = NACK: %p",
1457 			    f, (void *)dip));
1458 			mutex_exit(&ctd->cond_contract.ct_lock);
1459 			return (CT_NACK);
1460 		} else if (ctd->cond_currev_ack == CT_ACK) {
1461 			ack = 1;
1462 			CT_DEBUG((CE_NOTE, "%s: found a ACK: %p",
1463 			    f, (void *)dip));
1464 		}
1465 		mutex_exit(&ctd->cond_contract.ct_lock);
1466 	}
1467 
1468 	if (ack) {
1469 		result = CT_ACK;
1470 		CT_DEBUG((CE_NOTE, "%s: result = ACK, dip=%p", f, (void *)dip));
1471 	} else if (timed_out) {
1472 		result = CT_NONE;
1473 		CT_DEBUG((CE_NOTE, "%s: result = NONE (timed-out), dip=%p",
1474 		    f, (void *)dip));
1475 	} else {
1476 		CT_DEBUG((CE_NOTE, "%s: result = NONE, dip=%p",
1477 		    f, (void *)dip));
1478 	}
1479 
1480 
1481 	return (result);
1482 }
1483 
1484 /*
1485  * Determines the current state of a device (i.e a devinfo node
1486  */
1487 static int
1488 get_state(dev_info_t *dip)
1489 {
1490 	if (DEVI_IS_DEVICE_OFFLINE(dip) || DEVI_IS_DEVICE_DOWN(dip))
1491 		return (CT_DEV_EV_OFFLINE);
1492 	else if (DEVI_IS_DEVICE_DEGRADED(dip))
1493 		return (CT_DEV_EV_DEGRADED);
1494 	else
1495 		return (CT_DEV_EV_ONLINE);
1496 }
1497 
1498 /*
1499  * Sets the current state of a device in a device contract
1500  */
1501 static void
1502 set_cond_state(dev_info_t *dip)
1503 {
1504 	uint_t state = get_state(dip);
1505 	cont_device_t *ctd;
1506 
1507 	/* verify that barrier is held */
1508 	ASSERT(ct_barrier_held(dip));
1509 
1510 	for (ctd = list_head(&(DEVI(dip)->devi_ct)); ctd != NULL;
1511 	    ctd = list_next(&(DEVI(dip)->devi_ct), ctd)) {
1512 		mutex_enter(&ctd->cond_contract.ct_lock);
1513 		ASSERT(ctd->cond_dip == dip);
1514 		ctd->cond_state = state;
1515 		mutex_exit(&ctd->cond_contract.ct_lock);
1516 	}
1517 }
1518 
1519 /*
1520  * Core routine called by event-specific routines when an event occurs.
1521  * Determines if an event should be be published, and if it is to be
1522  * published, whether a negotiation should take place. Also implements
1523  * NEGEND events which publish the final disposition of an event after
1524  * negotiations are complete.
1525  *
1526  * When an event occurs on a minor node, this routine walks the list of
1527  * contracts hanging off a devinfo node and for each contract on the affected
1528  * dip, evaluates the following cases
1529  *
1530  *	a. an event that is synchronous, breaks the contract and NONEG not set
1531  *		- bumps up the outstanding negotiation counts on the dip
1532  *		- marks the dip as undergoing negotiation (devi_ct_neg)
1533  *		- event of type CTE_NEG is published
1534  *	b. an event that is synchronous, breaks the contract and NONEG is set
1535  *		- sets the final result to CT_NACK, event is blocked
1536  *		- does not publish an event
1537  *	c. event is asynchronous and breaks the contract
1538  *		- publishes a critical event irrespect of whether the NONEG
1539  *		  flag is set, since the contract will be broken and contract
1540  *		  owner needs to be informed.
1541  *	d. No contract breakage but the owner has subscribed to the event
1542  *		- publishes the event irrespective of the NONEG event as the
1543  *		  owner has explicitly subscribed to the event.
1544  *	e. NEGEND event
1545  *		- publishes a critical event. Should only be doing this if
1546  *		  if NONEG is not set.
1547  *	f. all other events
1548  *		- Since a contract is not broken and this event has not been
1549  *		  subscribed to, this event does not need to be published for
1550  *		  for this contract.
1551  *
1552  *	Once an event is published, what happens next depends on the type of
1553  *	event:
1554  *
1555  *	a. NEGEND event
1556  *		- cleanup all state associated with the preceding negotiation
1557  *		  and return CT_ACK to the caller of contract_device_publish()
1558  *	b. NACKed event
1559  *		- One or more contracts had the NONEG term, so the event was
1560  *		  blocked. Return CT_NACK to the caller.
1561  *	c. Negotiated event
1562  *		- Call wait_for_acks() to wait for responses from contract
1563  *		holders. The end result is either CT_ACK (event is permitted),
1564  *		CT_NACK (event is blocked) or CT_NONE (no contract owner)
1565  *		responded. This result is returned back to the caller.
1566  *	d. All other events
1567  *		- If the event was asynchronous (i.e. not negotiated) or
1568  *		a contract was not broken return CT_ACK to the caller.
1569  */
1570 static uint_t
1571 contract_device_publish(dev_info_t *dip, dev_t dev, int spec_type,
1572     uint_t evtype, nvlist_t *tnvl)
1573 {
1574 	cont_device_t *ctd;
1575 	uint_t result = CT_NONE;
1576 	uint64_t evid = 0;
1577 	uint64_t nevid = 0;
1578 	char *path = NULL;
1579 	int negend;
1580 	int match;
1581 	int sync = 0;
1582 	contract_t *ct;
1583 	ct_kevent_t *event;
1584 	nvlist_t *nvl;
1585 	int broken = 0;
1586 
1587 	ASSERT(dip);
1588 	ASSERT(dev != NODEV && dev != DDI_DEV_T_NONE);
1589 	ASSERT((dev == DDI_DEV_T_ANY && spec_type == 0) ||
1590 	    (spec_type == S_IFBLK || spec_type == S_IFCHR));
1591 	ASSERT(evtype == 0 || (evtype & CT_DEV_ALLEVENT));
1592 
1593 	/* Is this a synchronous state change ? */
1594 	if (evtype != CT_EV_NEGEND) {
1595 		sync = is_sync_neg(get_state(dip), evtype);
1596 		/* NOP if unsupported transition */
1597 		if (sync == -2 || sync == -1) {
1598 			DEVI(dip)->devi_flags |= DEVI_CT_NOP;
1599 			result = (sync == -2) ? CT_ACK : CT_NONE;
1600 			goto out;
1601 		}
1602 		CT_DEBUG((CE_NOTE, "publish: is%s sync state change",
1603 		    sync ? "" : " not"));
1604 	} else if (DEVI(dip)->devi_flags & DEVI_CT_NOP) {
1605 		DEVI(dip)->devi_flags &= ~DEVI_CT_NOP;
1606 		result = CT_ACK;
1607 		goto out;
1608 	}
1609 
1610 	path = kmem_alloc(MAXPATHLEN, KM_SLEEP);
1611 	(void) ddi_pathname(dip, path);
1612 
1613 	mutex_enter(&(DEVI(dip)->devi_ct_lock));
1614 
1615 	/*
1616 	 * Negotiation end - set the state of the device in the contract
1617 	 */
1618 	if (evtype == CT_EV_NEGEND) {
1619 		CT_DEBUG((CE_NOTE, "publish: negend: setting cond state"));
1620 		set_cond_state(dip);
1621 	}
1622 
1623 	/*
1624 	 * If this device didn't go through negotiation, don't publish
1625 	 * a NEGEND event - simply release the barrier to allow other
1626 	 * device events in.
1627 	 */
1628 	negend = 0;
1629 	if (evtype == CT_EV_NEGEND && !DEVI(dip)->devi_ct_neg) {
1630 		CT_DEBUG((CE_NOTE, "publish: no negend reqd. release barrier"));
1631 		ct_barrier_release(dip);
1632 		mutex_exit(&(DEVI(dip)->devi_ct_lock));
1633 		result = CT_ACK;
1634 		goto out;
1635 	} else if (evtype == CT_EV_NEGEND) {
1636 		/*
1637 		 * There are negotiated contract breakages that
1638 		 * need a NEGEND event
1639 		 */
1640 		ASSERT(ct_barrier_held(dip));
1641 		negend = 1;
1642 		CT_DEBUG((CE_NOTE, "publish: setting negend flag"));
1643 	} else {
1644 		/*
1645 		 * This is a new event, not a NEGEND event. Wait for previous
1646 		 * contract events to complete.
1647 		 */
1648 		ct_barrier_acquire(dip);
1649 	}
1650 
1651 
1652 	match = 0;
1653 	for (ctd = list_head(&(DEVI(dip)->devi_ct)); ctd != NULL;
1654 	    ctd = list_next(&(DEVI(dip)->devi_ct), ctd)) {
1655 
1656 		ctid_t ctid;
1657 		size_t len = strlen(path);
1658 
1659 		mutex_enter(&ctd->cond_contract.ct_lock);
1660 
1661 		ASSERT(ctd->cond_dip == dip);
1662 		ASSERT(ctd->cond_minor);
1663 		ASSERT(strncmp(ctd->cond_minor, path, len) == 0 &&
1664 		    ctd->cond_minor[len] == ':');
1665 
1666 		if (dev != DDI_DEV_T_ANY && dev != ctd->cond_devt) {
1667 			mutex_exit(&ctd->cond_contract.ct_lock);
1668 			continue;
1669 		}
1670 		if (dev != DDI_DEV_T_ANY && spec_type != ctd->cond_spec) {
1671 			mutex_exit(&ctd->cond_contract.ct_lock);
1672 			continue;
1673 		}
1674 
1675 		/* We have a matching contract */
1676 		match = 1;
1677 		ctid = ctd->cond_contract.ct_id;
1678 		CT_DEBUG((CE_NOTE, "publish: found matching contract: %d",
1679 		    ctid));
1680 
1681 		/*
1682 		 * There are 4 possible cases
1683 		 * 1. A contract is broken (dev not in acceptable state) and
1684 		 *    the state change is synchronous - start negotiation
1685 		 *    by sending a CTE_NEG critical event.
1686 		 * 2. A contract is broken and the state change is
1687 		 *    asynchronous - just send a critical event and
1688 		 *    break the contract.
1689 		 * 3. Contract is not broken, but consumer has subscribed
1690 		 *    to the event as a critical or informative event
1691 		 *    - just send the appropriate event
1692 		 * 4. contract waiting for negend event - just send the critical
1693 		 *    NEGEND event.
1694 		 */
1695 		broken = 0;
1696 		if (!negend && !(evtype & ctd->cond_aset)) {
1697 			broken = 1;
1698 			CT_DEBUG((CE_NOTE, "publish: Contract broken: %d",
1699 			    ctid));
1700 		}
1701 
1702 		/*
1703 		 * Don't send event if
1704 		 *	- contract is not broken AND
1705 		 *	- contract holder has not subscribed to this event AND
1706 		 *	- contract not waiting for a NEGEND event
1707 		 */
1708 		if (!broken && !EVSENDP(ctd, evtype) &&
1709 		    !ctd->cond_neg) {
1710 			CT_DEBUG((CE_NOTE, "contract_device_publish(): "
1711 			    "contract (%d): no publish reqd: event %d",
1712 			    ctd->cond_contract.ct_id, evtype));
1713 			mutex_exit(&ctd->cond_contract.ct_lock);
1714 			continue;
1715 		}
1716 
1717 		/*
1718 		 * Note: need to kmem_zalloc() the event so mutexes are
1719 		 * initialized automatically
1720 		 */
1721 		ct = &ctd->cond_contract;
1722 		event = kmem_zalloc(sizeof (ct_kevent_t), KM_SLEEP);
1723 		event->cte_type = evtype;
1724 
1725 		if (broken && sync) {
1726 			CT_DEBUG((CE_NOTE, "publish: broken + sync: "
1727 			    "ctid: %d", ctid));
1728 			ASSERT(!negend);
1729 			ASSERT(ctd->cond_currev_id == 0);
1730 			ASSERT(ctd->cond_currev_type == 0);
1731 			ASSERT(ctd->cond_currev_ack == 0);
1732 			ASSERT(ctd->cond_neg == 0);
1733 			if (ctd->cond_noneg) {
1734 				/* Nothing to publish. Event has been blocked */
1735 				CT_DEBUG((CE_NOTE, "publish: sync and noneg:"
1736 				    "not publishing blocked ev: ctid: %d",
1737 				    ctid));
1738 				result = CT_NACK;
1739 				kmem_free(event, sizeof (ct_kevent_t));
1740 				mutex_exit(&ctd->cond_contract.ct_lock);
1741 				continue;
1742 			}
1743 			event->cte_flags = CTE_NEG; /* critical neg. event */
1744 			ctd->cond_currev_type = event->cte_type;
1745 			ct_barrier_incr(dip);
1746 			DEVI(dip)->devi_ct_neg = 1; /* waiting for negend */
1747 			ctd->cond_neg = 1;
1748 		} else if (broken && !sync) {
1749 			CT_DEBUG((CE_NOTE, "publish: broken + async: ctid: %d",
1750 			    ctid));
1751 			ASSERT(!negend);
1752 			ASSERT(ctd->cond_currev_id == 0);
1753 			ASSERT(ctd->cond_currev_type == 0);
1754 			ASSERT(ctd->cond_currev_ack == 0);
1755 			ASSERT(ctd->cond_neg == 0);
1756 			event->cte_flags = 0; /* critical event */
1757 		} else if (EVSENDP(ctd, event->cte_type)) {
1758 			CT_DEBUG((CE_NOTE, "publish: event suscrib: ctid: %d",
1759 			    ctid));
1760 			ASSERT(!negend);
1761 			ASSERT(ctd->cond_currev_id == 0);
1762 			ASSERT(ctd->cond_currev_type == 0);
1763 			ASSERT(ctd->cond_currev_ack == 0);
1764 			ASSERT(ctd->cond_neg == 0);
1765 			event->cte_flags = EVINFOP(ctd, event->cte_type) ?
1766 			    CTE_INFO : 0;
1767 		} else if (ctd->cond_neg) {
1768 			CT_DEBUG((CE_NOTE, "publish: NEGEND: ctid: %d", ctid));
1769 			ASSERT(negend);
1770 			ASSERT(ctd->cond_noneg == 0);
1771 			nevid = ctd->cond_contract.ct_nevent ?
1772 			    ctd->cond_contract.ct_nevent->cte_id : 0;
1773 			ASSERT(ctd->cond_currev_id == nevid);
1774 			event->cte_flags = 0;	/* NEGEND is always critical */
1775 			ctd->cond_currev_id = 0;
1776 			ctd->cond_currev_type = 0;
1777 			ctd->cond_currev_ack = 0;
1778 			ctd->cond_neg = 0;
1779 		} else {
1780 			CT_DEBUG((CE_NOTE, "publish: not publishing event for "
1781 			    "ctid: %d, evtype: %d",
1782 			    ctd->cond_contract.ct_id, event->cte_type));
1783 			ASSERT(!negend);
1784 			ASSERT(ctd->cond_currev_id == 0);
1785 			ASSERT(ctd->cond_currev_type == 0);
1786 			ASSERT(ctd->cond_currev_ack == 0);
1787 			ASSERT(ctd->cond_neg == 0);
1788 			kmem_free(event, sizeof (ct_kevent_t));
1789 			mutex_exit(&ctd->cond_contract.ct_lock);
1790 			continue;
1791 		}
1792 
1793 		nvl = NULL;
1794 		if (tnvl) {
1795 			VERIFY(nvlist_dup(tnvl, &nvl, 0) == 0);
1796 			if (negend) {
1797 				int32_t newct = 0;
1798 				ASSERT(ctd->cond_noneg == 0);
1799 				VERIFY(nvlist_add_uint64(nvl, CTS_NEVID, nevid)
1800 				    == 0);
1801 				VERIFY(nvlist_lookup_int32(nvl, CTS_NEWCT,
1802 				    &newct) == 0);
1803 				VERIFY(nvlist_add_int32(nvl, CTS_NEWCT,
1804 				    newct == 1 ? 0 :
1805 				    ctd->cond_contract.ct_id) == 0);
1806 				CT_DEBUG((CE_NOTE, "publish: negend: ctid: %d "
1807 				    "CTS_NEVID: %llu, CTS_NEWCT: %s",
1808 				    ctid, (unsigned long long)nevid,
1809 				    newct ? "success" : "failure"));
1810 
1811 			}
1812 		}
1813 
1814 		if (ctd->cond_neg) {
1815 			ASSERT(ctd->cond_contract.ct_ntime.ctm_start == -1);
1816 			ASSERT(ctd->cond_contract.ct_qtime.ctm_start == -1);
1817 			ctd->cond_contract.ct_ntime.ctm_start = ddi_get_lbolt();
1818 			ctd->cond_contract.ct_qtime.ctm_start =
1819 			    ctd->cond_contract.ct_ntime.ctm_start;
1820 		}
1821 
1822 		/*
1823 		 * by holding the dip's devi_ct_lock we ensure that
1824 		 * all ACK/NACKs are held up until we have finished
1825 		 * publishing to all contracts.
1826 		 */
1827 		mutex_exit(&ctd->cond_contract.ct_lock);
1828 		evid = cte_publish_all(ct, event, nvl, NULL);
1829 		mutex_enter(&ctd->cond_contract.ct_lock);
1830 
1831 		if (ctd->cond_neg) {
1832 			ASSERT(!negend);
1833 			ASSERT(broken);
1834 			ASSERT(sync);
1835 			ASSERT(!ctd->cond_noneg);
1836 			CT_DEBUG((CE_NOTE, "publish: sync break, setting evid"
1837 			    ": %d", ctid));
1838 			ctd->cond_currev_id = evid;
1839 		} else if (negend) {
1840 			ctd->cond_contract.ct_ntime.ctm_start = -1;
1841 			ctd->cond_contract.ct_qtime.ctm_start = -1;
1842 		}
1843 		mutex_exit(&ctd->cond_contract.ct_lock);
1844 	}
1845 
1846 	/*
1847 	 * If "negend" set counter back to initial state (-1) so that
1848 	 * other events can be published. Also clear the negotiation flag
1849 	 * on dip.
1850 	 *
1851 	 * 0 .. n are used for counting.
1852 	 * -1 indicates counter is available for use.
1853 	 */
1854 	if (negend) {
1855 		/*
1856 		 * devi_ct_count not necessarily 0. We may have
1857 		 * timed out in which case, count will be non-zero.
1858 		 */
1859 		ct_barrier_release(dip);
1860 		DEVI(dip)->devi_ct_neg = 0;
1861 		CT_DEBUG((CE_NOTE, "publish: negend: reset dip state: dip=%p",
1862 		    (void *)dip));
1863 	} else if (DEVI(dip)->devi_ct_neg) {
1864 		ASSERT(match);
1865 		ASSERT(!ct_barrier_empty(dip));
1866 		CT_DEBUG((CE_NOTE, "publish: sync count=%d, dip=%p",
1867 		    DEVI(dip)->devi_ct_count, (void *)dip));
1868 	} else {
1869 		/*
1870 		 * for non-negotiated events or subscribed events or no
1871 		 * matching contracts
1872 		 */
1873 		ASSERT(ct_barrier_empty(dip));
1874 		ASSERT(DEVI(dip)->devi_ct_neg == 0);
1875 		CT_DEBUG((CE_NOTE, "publish: async/non-nego/subscrib/no-match: "
1876 		    "dip=%p", (void *)dip));
1877 
1878 		/*
1879 		 * only this function when called from contract_device_negend()
1880 		 * can reset the counter to READY state i.e. -1. This function
1881 		 * is so called for every event whether a NEGEND event is needed
1882 		 * or not, but the negend event is only published if the event
1883 		 * whose end they signal is a negotiated event for the contract.
1884 		 */
1885 	}
1886 
1887 	if (!match) {
1888 		/* No matching contracts */
1889 		CT_DEBUG((CE_NOTE, "publish: No matching contract"));
1890 		result = CT_NONE;
1891 	} else if (result == CT_NACK) {
1892 		/* a non-negotiable contract exists and this is a neg. event */
1893 		CT_DEBUG((CE_NOTE, "publish: found 1 or more NONEG contract"));
1894 		(void) wait_for_acks(dip, dev, spec_type, evtype);
1895 	} else if (DEVI(dip)->devi_ct_neg) {
1896 		/* one or more contracts going through negotations  */
1897 		CT_DEBUG((CE_NOTE, "publish: sync contract: waiting"));
1898 		result = wait_for_acks(dip, dev, spec_type, evtype);
1899 	} else {
1900 		/* no negotiated contracts or no broken contracts or NEGEND */
1901 		CT_DEBUG((CE_NOTE, "publish: async/no-break/negend"));
1902 		result = CT_ACK;
1903 	}
1904 
1905 	/*
1906 	 * Release the lock only now so that the only point where we
1907 	 * drop the lock is in wait_for_acks(). This is so that we don't
1908 	 * miss cv_signal/cv_broadcast from contract holders
1909 	 */
1910 	CT_DEBUG((CE_NOTE, "publish: dropping devi_ct_lock"));
1911 	mutex_exit(&(DEVI(dip)->devi_ct_lock));
1912 
1913 out:
1914 	if (tnvl)
1915 		nvlist_free(tnvl);
1916 	if (path)
1917 		kmem_free(path, MAXPATHLEN);
1918 
1919 
1920 	CT_DEBUG((CE_NOTE, "publish: result = %s", result_str(result)));
1921 	return (result);
1922 }
1923 
1924 
1925 /*
1926  * contract_device_offline
1927  *
1928  * Event publishing routine called by I/O framework when a device is offlined.
1929  */
1930 ct_ack_t
1931 contract_device_offline(dev_info_t *dip, dev_t dev, int spec_type)
1932 {
1933 	nvlist_t *nvl;
1934 	uint_t result;
1935 	uint_t evtype;
1936 
1937 	VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) == 0);
1938 
1939 	evtype = CT_DEV_EV_OFFLINE;
1940 	result = contract_device_publish(dip, dev, spec_type, evtype, nvl);
1941 
1942 	/*
1943 	 * If a contract offline is NACKED, the framework expects us to call
1944 	 * NEGEND ourselves, since we know the final result
1945 	 */
1946 	if (result == CT_NACK) {
1947 		contract_device_negend(dip, dev, spec_type, CT_EV_FAILURE);
1948 	}
1949 
1950 	return (result);
1951 }
1952 
1953 /*
1954  * contract_device_degrade
1955  *
1956  * Event publishing routine called by I/O framework when a device
1957  * moves to degrade state.
1958  */
1959 /*ARGSUSED*/
1960 void
1961 contract_device_degrade(dev_info_t *dip, dev_t dev, int spec_type)
1962 {
1963 	nvlist_t *nvl;
1964 	uint_t evtype;
1965 
1966 	VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) == 0);
1967 
1968 	evtype = CT_DEV_EV_DEGRADED;
1969 	(void) contract_device_publish(dip, dev, spec_type, evtype, nvl);
1970 }
1971 
1972 /*
1973  * contract_device_undegrade
1974  *
1975  * Event publishing routine called by I/O framework when a device
1976  * moves from degraded state to online state.
1977  */
1978 /*ARGSUSED*/
1979 void
1980 contract_device_undegrade(dev_info_t *dip, dev_t dev, int spec_type)
1981 {
1982 	nvlist_t *nvl;
1983 	uint_t evtype;
1984 
1985 	VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) == 0);
1986 
1987 	evtype = CT_DEV_EV_ONLINE;
1988 	(void) contract_device_publish(dip, dev, spec_type, evtype, nvl);
1989 }
1990 
1991 /*
1992  * For all contracts which have undergone a negotiation (because the device
1993  * moved out of the acceptable state for that contract and the state
1994  * change is synchronous i.e. requires negotiation) this routine publishes
1995  * a CT_EV_NEGEND event with the final disposition of the event.
1996  *
1997  * This event is always a critical event.
1998  */
1999 void
2000 contract_device_negend(dev_info_t *dip, dev_t dev, int spec_type, int result)
2001 {
2002 	nvlist_t *nvl;
2003 	uint_t evtype;
2004 
2005 	ASSERT(result == CT_EV_SUCCESS || result == CT_EV_FAILURE);
2006 
2007 	CT_DEBUG((CE_NOTE, "contract_device_negend(): entered: result: %d, "
2008 	    "dip: %p", result, (void *)dip));
2009 
2010 	VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) == 0);
2011 	VERIFY(nvlist_add_int32(nvl, CTS_NEWCT,
2012 	    result == CT_EV_SUCCESS ? 1 : 0) == 0);
2013 
2014 	evtype = CT_EV_NEGEND;
2015 	(void) contract_device_publish(dip, dev, spec_type, evtype, nvl);
2016 
2017 	CT_DEBUG((CE_NOTE, "contract_device_negend(): exit dip: %p",
2018 	    (void *)dip));
2019 }
2020 
2021 /*
2022  * Wrapper routine called by other subsystems (such as LDI) to start
2023  * negotiations when a synchronous device state change occurs.
2024  * Returns CT_ACK or CT_NACK.
2025  */
2026 ct_ack_t
2027 contract_device_negotiate(dev_info_t *dip, dev_t dev, int spec_type,
2028     uint_t evtype)
2029 {
2030 	int	result;
2031 
2032 	ASSERT(dip);
2033 	ASSERT(dev != NODEV);
2034 	ASSERT(dev != DDI_DEV_T_ANY);
2035 	ASSERT(dev != DDI_DEV_T_NONE);
2036 	ASSERT(spec_type == S_IFBLK || spec_type == S_IFCHR);
2037 
2038 	switch (evtype) {
2039 	case CT_DEV_EV_OFFLINE:
2040 		result = contract_device_offline(dip, dev, spec_type);
2041 		break;
2042 	default:
2043 		cmn_err(CE_PANIC, "contract_device_negotiate(): Negotiation "
2044 		    "not supported: event (%d) for dev_t (%lu) and spec (%d), "
2045 		    "dip (%p)", evtype, dev, spec_type, (void *)dip);
2046 		result = CT_NACK;
2047 		break;
2048 	}
2049 
2050 	return (result);
2051 }
2052 
2053 /*
2054  * A wrapper routine called by other subsystems (such as the LDI) to
2055  * finalize event processing for a state change event. For synchronous
2056  * state changes, this publishes NEGEND events. For asynchronous i.e.
2057  * non-negotiable events this publishes the event.
2058  */
2059 void
2060 contract_device_finalize(dev_info_t *dip, dev_t dev, int spec_type,
2061     uint_t evtype, int ct_result)
2062 {
2063 	ASSERT(dip);
2064 	ASSERT(dev != NODEV);
2065 	ASSERT(dev != DDI_DEV_T_ANY);
2066 	ASSERT(dev != DDI_DEV_T_NONE);
2067 	ASSERT(spec_type == S_IFBLK || spec_type == S_IFCHR);
2068 
2069 	switch (evtype) {
2070 	case CT_DEV_EV_OFFLINE:
2071 		contract_device_negend(dip, dev, spec_type, ct_result);
2072 		break;
2073 	case CT_DEV_EV_DEGRADED:
2074 		contract_device_degrade(dip, dev, spec_type);
2075 		contract_device_negend(dip, dev, spec_type, ct_result);
2076 		break;
2077 	case CT_DEV_EV_ONLINE:
2078 		contract_device_undegrade(dip, dev, spec_type);
2079 		contract_device_negend(dip, dev, spec_type, ct_result);
2080 		break;
2081 	default:
2082 		cmn_err(CE_PANIC, "contract_device_finalize(): Unsupported "
2083 		    "event (%d) for dev_t (%lu) and spec (%d), dip (%p)",
2084 		    evtype, dev, spec_type, (void *)dip);
2085 		break;
2086 	}
2087 }
2088 
2089 /*
2090  * Called by I/O framework when a devinfo node is freed to remove the
2091  * association between a devinfo node and its contracts.
2092  */
2093 void
2094 contract_device_remove_dip(dev_info_t *dip)
2095 {
2096 	cont_device_t *ctd;
2097 	cont_device_t *next;
2098 	contract_t *ct;
2099 
2100 	mutex_enter(&(DEVI(dip)->devi_ct_lock));
2101 	ct_barrier_wait_for_release(dip);
2102 
2103 	for (ctd = list_head(&(DEVI(dip)->devi_ct)); ctd != NULL; ctd = next) {
2104 		next = list_next(&(DEVI(dip)->devi_ct), ctd);
2105 		list_remove(&(DEVI(dip)->devi_ct), ctd);
2106 		ct = &ctd->cond_contract;
2107 		/*
2108 		 * Unlink the dip associated with this contract
2109 		 */
2110 		mutex_enter(&ct->ct_lock);
2111 		ASSERT(ctd->cond_dip == dip);
2112 		ctd->cond_dip = NULL; /* no longer linked to dip */
2113 		contract_rele(ct);	/* remove hold for dip linkage */
2114 		CT_DEBUG((CE_NOTE, "ct: remove_dip: removed dip from contract: "
2115 		    "ctid: %d", ct->ct_id));
2116 		mutex_exit(&ct->ct_lock);
2117 	}
2118 	ASSERT(list_is_empty(&(DEVI(dip)->devi_ct)));
2119 	mutex_exit(&(DEVI(dip)->devi_ct_lock));
2120 }
2121 
2122 /*
2123  * Barrier related routines
2124  */
2125 static void
2126 ct_barrier_acquire(dev_info_t *dip)
2127 {
2128 	ASSERT(MUTEX_HELD(&(DEVI(dip)->devi_ct_lock)));
2129 	CT_DEBUG((CE_NOTE, "ct_barrier_acquire: waiting for barrier"));
2130 	while (DEVI(dip)->devi_ct_count != -1)
2131 		cv_wait(&(DEVI(dip)->devi_ct_cv), &(DEVI(dip)->devi_ct_lock));
2132 	DEVI(dip)->devi_ct_count = 0;
2133 	CT_DEBUG((CE_NOTE, "ct_barrier_acquire: thread owns barrier"));
2134 }
2135 
2136 static void
2137 ct_barrier_release(dev_info_t *dip)
2138 {
2139 	ASSERT(MUTEX_HELD(&(DEVI(dip)->devi_ct_lock)));
2140 	ASSERT(DEVI(dip)->devi_ct_count != -1);
2141 	DEVI(dip)->devi_ct_count = -1;
2142 	cv_broadcast(&(DEVI(dip)->devi_ct_cv));
2143 	CT_DEBUG((CE_NOTE, "ct_barrier_release: Released barrier"));
2144 }
2145 
2146 static int
2147 ct_barrier_held(dev_info_t *dip)
2148 {
2149 	ASSERT(MUTEX_HELD(&(DEVI(dip)->devi_ct_lock)));
2150 	return (DEVI(dip)->devi_ct_count != -1);
2151 }
2152 
2153 static int
2154 ct_barrier_empty(dev_info_t *dip)
2155 {
2156 	ASSERT(MUTEX_HELD(&(DEVI(dip)->devi_ct_lock)));
2157 	ASSERT(DEVI(dip)->devi_ct_count != -1);
2158 	return (DEVI(dip)->devi_ct_count == 0);
2159 }
2160 
2161 static void
2162 ct_barrier_wait_for_release(dev_info_t *dip)
2163 {
2164 	ASSERT(MUTEX_HELD(&(DEVI(dip)->devi_ct_lock)));
2165 	while (DEVI(dip)->devi_ct_count != -1)
2166 		cv_wait(&(DEVI(dip)->devi_ct_cv), &(DEVI(dip)->devi_ct_lock));
2167 }
2168 
2169 static void
2170 ct_barrier_decr(dev_info_t *dip)
2171 {
2172 	CT_DEBUG((CE_NOTE, "barrier_decr:  ct_count before decr: %d",
2173 	    DEVI(dip)->devi_ct_count));
2174 
2175 	ASSERT(MUTEX_HELD(&(DEVI(dip)->devi_ct_lock)));
2176 	ASSERT(DEVI(dip)->devi_ct_count > 0);
2177 
2178 	DEVI(dip)->devi_ct_count--;
2179 	if (DEVI(dip)->devi_ct_count == 0) {
2180 		cv_broadcast(&DEVI(dip)->devi_ct_cv);
2181 		CT_DEBUG((CE_NOTE, "barrier_decr: cv_broadcast"));
2182 	}
2183 }
2184 
2185 static void
2186 ct_barrier_incr(dev_info_t *dip)
2187 {
2188 	ASSERT(ct_barrier_held(dip));
2189 	DEVI(dip)->devi_ct_count++;
2190 }
2191 
2192 static int
2193 ct_barrier_wait_for_empty(dev_info_t *dip, int secs)
2194 {
2195 	clock_t abstime;
2196 
2197 	ASSERT(MUTEX_HELD(&(DEVI(dip)->devi_ct_lock)));
2198 
2199 	abstime = ddi_get_lbolt() + drv_usectohz(secs*1000000);
2200 	while (DEVI(dip)->devi_ct_count) {
2201 		if (cv_timedwait(&(DEVI(dip)->devi_ct_cv),
2202 		    &(DEVI(dip)->devi_ct_lock), abstime) == -1) {
2203 			return (-1);
2204 		}
2205 	}
2206 	return (0);
2207 }
2208