xref: /titanic_52/usr/src/lib/libzpool/common/kernel.c (revision 4e3c9f4489a18514e5e8caeb91d4e6db07c98415)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2012 by Delphix. All rights reserved.
24  */
25 
26 #include <assert.h>
27 #include <fcntl.h>
28 #include <poll.h>
29 #include <stdio.h>
30 #include <stdlib.h>
31 #include <string.h>
32 #include <zlib.h>
33 #include <sys/spa.h>
34 #include <sys/stat.h>
35 #include <sys/processor.h>
36 #include <sys/zfs_context.h>
37 #include <sys/zmod.h>
38 #include <sys/utsname.h>
39 #include <sys/systeminfo.h>
40 
41 /*
42  * Emulation of kernel services in userland.
43  */
44 
45 int aok;
46 uint64_t physmem;
47 vnode_t *rootdir = (vnode_t *)0xabcd1234;
48 char hw_serial[HW_HOSTID_LEN];
49 vmem_t *zio_arena = NULL;
50 
51 struct utsname utsname = {
52 	"userland", "libzpool", "1", "1", "na"
53 };
54 
55 /* this only exists to have its address taken */
56 struct proc p0;
57 
58 /*
59  * =========================================================================
60  * threads
61  * =========================================================================
62  */
63 /*ARGSUSED*/
64 kthread_t *
65 zk_thread_create(void (*func)(), void *arg)
66 {
67 	thread_t tid;
68 
69 	VERIFY(thr_create(0, 0, (void *(*)(void *))func, arg, THR_DETACHED,
70 	    &tid) == 0);
71 
72 	return ((void *)(uintptr_t)tid);
73 }
74 
75 /*
76  * =========================================================================
77  * kstats
78  * =========================================================================
79  */
80 /*ARGSUSED*/
81 kstat_t *
82 kstat_create(char *module, int instance, char *name, char *class,
83     uchar_t type, ulong_t ndata, uchar_t ks_flag)
84 {
85 	return (NULL);
86 }
87 
88 /*ARGSUSED*/
89 void
90 kstat_install(kstat_t *ksp)
91 {}
92 
93 /*ARGSUSED*/
94 void
95 kstat_delete(kstat_t *ksp)
96 {}
97 
98 /*
99  * =========================================================================
100  * mutexes
101  * =========================================================================
102  */
103 void
104 zmutex_init(kmutex_t *mp)
105 {
106 	mp->m_owner = NULL;
107 	mp->initialized = B_TRUE;
108 	(void) _mutex_init(&mp->m_lock, USYNC_THREAD, NULL);
109 }
110 
111 void
112 zmutex_destroy(kmutex_t *mp)
113 {
114 	ASSERT(mp->initialized == B_TRUE);
115 	ASSERT(mp->m_owner == NULL);
116 	(void) _mutex_destroy(&(mp)->m_lock);
117 	mp->m_owner = (void *)-1UL;
118 	mp->initialized = B_FALSE;
119 }
120 
121 void
122 mutex_enter(kmutex_t *mp)
123 {
124 	ASSERT(mp->initialized == B_TRUE);
125 	ASSERT(mp->m_owner != (void *)-1UL);
126 	ASSERT(mp->m_owner != curthread);
127 	VERIFY(mutex_lock(&mp->m_lock) == 0);
128 	ASSERT(mp->m_owner == NULL);
129 	mp->m_owner = curthread;
130 }
131 
132 int
133 mutex_tryenter(kmutex_t *mp)
134 {
135 	ASSERT(mp->initialized == B_TRUE);
136 	ASSERT(mp->m_owner != (void *)-1UL);
137 	if (0 == mutex_trylock(&mp->m_lock)) {
138 		ASSERT(mp->m_owner == NULL);
139 		mp->m_owner = curthread;
140 		return (1);
141 	} else {
142 		return (0);
143 	}
144 }
145 
146 void
147 mutex_exit(kmutex_t *mp)
148 {
149 	ASSERT(mp->initialized == B_TRUE);
150 	ASSERT(mutex_owner(mp) == curthread);
151 	mp->m_owner = NULL;
152 	VERIFY(mutex_unlock(&mp->m_lock) == 0);
153 }
154 
155 void *
156 mutex_owner(kmutex_t *mp)
157 {
158 	ASSERT(mp->initialized == B_TRUE);
159 	return (mp->m_owner);
160 }
161 
162 /*
163  * =========================================================================
164  * rwlocks
165  * =========================================================================
166  */
167 /*ARGSUSED*/
168 void
169 rw_init(krwlock_t *rwlp, char *name, int type, void *arg)
170 {
171 	rwlock_init(&rwlp->rw_lock, USYNC_THREAD, NULL);
172 	rwlp->rw_owner = NULL;
173 	rwlp->initialized = B_TRUE;
174 }
175 
176 void
177 rw_destroy(krwlock_t *rwlp)
178 {
179 	rwlock_destroy(&rwlp->rw_lock);
180 	rwlp->rw_owner = (void *)-1UL;
181 	rwlp->initialized = B_FALSE;
182 }
183 
184 void
185 rw_enter(krwlock_t *rwlp, krw_t rw)
186 {
187 	ASSERT(!RW_LOCK_HELD(rwlp));
188 	ASSERT(rwlp->initialized == B_TRUE);
189 	ASSERT(rwlp->rw_owner != (void *)-1UL);
190 	ASSERT(rwlp->rw_owner != curthread);
191 
192 	if (rw == RW_READER)
193 		VERIFY(rw_rdlock(&rwlp->rw_lock) == 0);
194 	else
195 		VERIFY(rw_wrlock(&rwlp->rw_lock) == 0);
196 
197 	rwlp->rw_owner = curthread;
198 }
199 
200 void
201 rw_exit(krwlock_t *rwlp)
202 {
203 	ASSERT(rwlp->initialized == B_TRUE);
204 	ASSERT(rwlp->rw_owner != (void *)-1UL);
205 
206 	rwlp->rw_owner = NULL;
207 	VERIFY(rw_unlock(&rwlp->rw_lock) == 0);
208 }
209 
210 int
211 rw_tryenter(krwlock_t *rwlp, krw_t rw)
212 {
213 	int rv;
214 
215 	ASSERT(rwlp->initialized == B_TRUE);
216 	ASSERT(rwlp->rw_owner != (void *)-1UL);
217 
218 	if (rw == RW_READER)
219 		rv = rw_tryrdlock(&rwlp->rw_lock);
220 	else
221 		rv = rw_trywrlock(&rwlp->rw_lock);
222 
223 	if (rv == 0) {
224 		rwlp->rw_owner = curthread;
225 		return (1);
226 	}
227 
228 	return (0);
229 }
230 
231 /*ARGSUSED*/
232 int
233 rw_tryupgrade(krwlock_t *rwlp)
234 {
235 	ASSERT(rwlp->initialized == B_TRUE);
236 	ASSERT(rwlp->rw_owner != (void *)-1UL);
237 
238 	return (0);
239 }
240 
241 /*
242  * =========================================================================
243  * condition variables
244  * =========================================================================
245  */
246 /*ARGSUSED*/
247 void
248 cv_init(kcondvar_t *cv, char *name, int type, void *arg)
249 {
250 	VERIFY(cond_init(cv, type, NULL) == 0);
251 }
252 
253 void
254 cv_destroy(kcondvar_t *cv)
255 {
256 	VERIFY(cond_destroy(cv) == 0);
257 }
258 
259 void
260 cv_wait(kcondvar_t *cv, kmutex_t *mp)
261 {
262 	ASSERT(mutex_owner(mp) == curthread);
263 	mp->m_owner = NULL;
264 	int ret = cond_wait(cv, &mp->m_lock);
265 	VERIFY(ret == 0 || ret == EINTR);
266 	mp->m_owner = curthread;
267 }
268 
269 clock_t
270 cv_timedwait(kcondvar_t *cv, kmutex_t *mp, clock_t abstime)
271 {
272 	int error;
273 	timestruc_t ts;
274 	clock_t delta;
275 
276 top:
277 	delta = abstime - ddi_get_lbolt();
278 	if (delta <= 0)
279 		return (-1);
280 
281 	ts.tv_sec = delta / hz;
282 	ts.tv_nsec = (delta % hz) * (NANOSEC / hz);
283 
284 	ASSERT(mutex_owner(mp) == curthread);
285 	mp->m_owner = NULL;
286 	error = cond_reltimedwait(cv, &mp->m_lock, &ts);
287 	mp->m_owner = curthread;
288 
289 	if (error == ETIME)
290 		return (-1);
291 
292 	if (error == EINTR)
293 		goto top;
294 
295 	ASSERT(error == 0);
296 
297 	return (1);
298 }
299 
300 void
301 cv_signal(kcondvar_t *cv)
302 {
303 	VERIFY(cond_signal(cv) == 0);
304 }
305 
306 void
307 cv_broadcast(kcondvar_t *cv)
308 {
309 	VERIFY(cond_broadcast(cv) == 0);
310 }
311 
312 /*
313  * =========================================================================
314  * vnode operations
315  * =========================================================================
316  */
317 /*
318  * Note: for the xxxat() versions of these functions, we assume that the
319  * starting vp is always rootdir (which is true for spa_directory.c, the only
320  * ZFS consumer of these interfaces).  We assert this is true, and then emulate
321  * them by adding '/' in front of the path.
322  */
323 
324 /*ARGSUSED*/
325 int
326 vn_open(char *path, int x1, int flags, int mode, vnode_t **vpp, int x2, int x3)
327 {
328 	int fd;
329 	vnode_t *vp;
330 	int old_umask;
331 	char realpath[MAXPATHLEN];
332 	struct stat64 st;
333 
334 	/*
335 	 * If we're accessing a real disk from userland, we need to use
336 	 * the character interface to avoid caching.  This is particularly
337 	 * important if we're trying to look at a real in-kernel storage
338 	 * pool from userland, e.g. via zdb, because otherwise we won't
339 	 * see the changes occurring under the segmap cache.
340 	 * On the other hand, the stupid character device returns zero
341 	 * for its size.  So -- gag -- we open the block device to get
342 	 * its size, and remember it for subsequent VOP_GETATTR().
343 	 */
344 	if (strncmp(path, "/dev/", 5) == 0) {
345 		char *dsk;
346 		fd = open64(path, O_RDONLY);
347 		if (fd == -1)
348 			return (errno);
349 		if (fstat64(fd, &st) == -1) {
350 			close(fd);
351 			return (errno);
352 		}
353 		close(fd);
354 		(void) sprintf(realpath, "%s", path);
355 		dsk = strstr(path, "/dsk/");
356 		if (dsk != NULL)
357 			(void) sprintf(realpath + (dsk - path) + 1, "r%s",
358 			    dsk + 1);
359 	} else {
360 		(void) sprintf(realpath, "%s", path);
361 		if (!(flags & FCREAT) && stat64(realpath, &st) == -1)
362 			return (errno);
363 	}
364 
365 	if (flags & FCREAT)
366 		old_umask = umask(0);
367 
368 	/*
369 	 * The construct 'flags - FREAD' conveniently maps combinations of
370 	 * FREAD and FWRITE to the corresponding O_RDONLY, O_WRONLY, and O_RDWR.
371 	 */
372 	fd = open64(realpath, flags - FREAD, mode);
373 
374 	if (flags & FCREAT)
375 		(void) umask(old_umask);
376 
377 	if (fd == -1)
378 		return (errno);
379 
380 	if (fstat64(fd, &st) == -1) {
381 		close(fd);
382 		return (errno);
383 	}
384 
385 	(void) fcntl(fd, F_SETFD, FD_CLOEXEC);
386 
387 	*vpp = vp = umem_zalloc(sizeof (vnode_t), UMEM_NOFAIL);
388 
389 	vp->v_fd = fd;
390 	vp->v_size = st.st_size;
391 	vp->v_path = spa_strdup(path);
392 
393 	return (0);
394 }
395 
396 /*ARGSUSED*/
397 int
398 vn_openat(char *path, int x1, int flags, int mode, vnode_t **vpp, int x2,
399     int x3, vnode_t *startvp, int fd)
400 {
401 	char *realpath = umem_alloc(strlen(path) + 2, UMEM_NOFAIL);
402 	int ret;
403 
404 	ASSERT(startvp == rootdir);
405 	(void) sprintf(realpath, "/%s", path);
406 
407 	/* fd ignored for now, need if want to simulate nbmand support */
408 	ret = vn_open(realpath, x1, flags, mode, vpp, x2, x3);
409 
410 	umem_free(realpath, strlen(path) + 2);
411 
412 	return (ret);
413 }
414 
415 /*ARGSUSED*/
416 int
417 vn_rdwr(int uio, vnode_t *vp, void *addr, ssize_t len, offset_t offset,
418 	int x1, int x2, rlim64_t x3, void *x4, ssize_t *residp)
419 {
420 	ssize_t iolen, split;
421 
422 	if (uio == UIO_READ) {
423 		iolen = pread64(vp->v_fd, addr, len, offset);
424 	} else {
425 		/*
426 		 * To simulate partial disk writes, we split writes into two
427 		 * system calls so that the process can be killed in between.
428 		 */
429 		split = (len > 0 ? rand() % len : 0);
430 		iolen = pwrite64(vp->v_fd, addr, split, offset);
431 		iolen += pwrite64(vp->v_fd, (char *)addr + split,
432 		    len - split, offset + split);
433 	}
434 
435 	if (iolen == -1)
436 		return (errno);
437 	if (residp)
438 		*residp = len - iolen;
439 	else if (iolen != len)
440 		return (EIO);
441 	return (0);
442 }
443 
444 void
445 vn_close(vnode_t *vp)
446 {
447 	close(vp->v_fd);
448 	spa_strfree(vp->v_path);
449 	umem_free(vp, sizeof (vnode_t));
450 }
451 
452 /*
453  * At a minimum we need to update the size since vdev_reopen()
454  * will no longer call vn_openat().
455  */
456 int
457 fop_getattr(vnode_t *vp, vattr_t *vap)
458 {
459 	struct stat64 st;
460 
461 	if (fstat64(vp->v_fd, &st) == -1) {
462 		close(vp->v_fd);
463 		return (errno);
464 	}
465 
466 	vap->va_size = st.st_size;
467 	return (0);
468 }
469 
470 #ifdef ZFS_DEBUG
471 
472 /*
473  * =========================================================================
474  * Figure out which debugging statements to print
475  * =========================================================================
476  */
477 
478 static char *dprintf_string;
479 static int dprintf_print_all;
480 
481 int
482 dprintf_find_string(const char *string)
483 {
484 	char *tmp_str = dprintf_string;
485 	int len = strlen(string);
486 
487 	/*
488 	 * Find out if this is a string we want to print.
489 	 * String format: file1.c,function_name1,file2.c,file3.c
490 	 */
491 
492 	while (tmp_str != NULL) {
493 		if (strncmp(tmp_str, string, len) == 0 &&
494 		    (tmp_str[len] == ',' || tmp_str[len] == '\0'))
495 			return (1);
496 		tmp_str = strchr(tmp_str, ',');
497 		if (tmp_str != NULL)
498 			tmp_str++; /* Get rid of , */
499 	}
500 	return (0);
501 }
502 
503 void
504 dprintf_setup(int *argc, char **argv)
505 {
506 	int i, j;
507 
508 	/*
509 	 * Debugging can be specified two ways: by setting the
510 	 * environment variable ZFS_DEBUG, or by including a
511 	 * "debug=..."  argument on the command line.  The command
512 	 * line setting overrides the environment variable.
513 	 */
514 
515 	for (i = 1; i < *argc; i++) {
516 		int len = strlen("debug=");
517 		/* First look for a command line argument */
518 		if (strncmp("debug=", argv[i], len) == 0) {
519 			dprintf_string = argv[i] + len;
520 			/* Remove from args */
521 			for (j = i; j < *argc; j++)
522 				argv[j] = argv[j+1];
523 			argv[j] = NULL;
524 			(*argc)--;
525 		}
526 	}
527 
528 	if (dprintf_string == NULL) {
529 		/* Look for ZFS_DEBUG environment variable */
530 		dprintf_string = getenv("ZFS_DEBUG");
531 	}
532 
533 	/*
534 	 * Are we just turning on all debugging?
535 	 */
536 	if (dprintf_find_string("on"))
537 		dprintf_print_all = 1;
538 }
539 
540 /*
541  * =========================================================================
542  * debug printfs
543  * =========================================================================
544  */
545 void
546 __dprintf(const char *file, const char *func, int line, const char *fmt, ...)
547 {
548 	const char *newfile;
549 	va_list adx;
550 
551 	/*
552 	 * Get rid of annoying "../common/" prefix to filename.
553 	 */
554 	newfile = strrchr(file, '/');
555 	if (newfile != NULL) {
556 		newfile = newfile + 1; /* Get rid of leading / */
557 	} else {
558 		newfile = file;
559 	}
560 
561 	if (dprintf_print_all ||
562 	    dprintf_find_string(newfile) ||
563 	    dprintf_find_string(func)) {
564 		/* Print out just the function name if requested */
565 		flockfile(stdout);
566 		if (dprintf_find_string("pid"))
567 			(void) printf("%d ", getpid());
568 		if (dprintf_find_string("tid"))
569 			(void) printf("%u ", thr_self());
570 		if (dprintf_find_string("cpu"))
571 			(void) printf("%u ", getcpuid());
572 		if (dprintf_find_string("time"))
573 			(void) printf("%llu ", gethrtime());
574 		if (dprintf_find_string("long"))
575 			(void) printf("%s, line %d: ", newfile, line);
576 		(void) printf("%s: ", func);
577 		va_start(adx, fmt);
578 		(void) vprintf(fmt, adx);
579 		va_end(adx);
580 		funlockfile(stdout);
581 	}
582 }
583 
584 #endif /* ZFS_DEBUG */
585 
586 /*
587  * =========================================================================
588  * cmn_err() and panic()
589  * =========================================================================
590  */
591 static char ce_prefix[CE_IGNORE][10] = { "", "NOTICE: ", "WARNING: ", "" };
592 static char ce_suffix[CE_IGNORE][2] = { "", "\n", "\n", "" };
593 
594 void
595 vpanic(const char *fmt, va_list adx)
596 {
597 	(void) fprintf(stderr, "error: ");
598 	(void) vfprintf(stderr, fmt, adx);
599 	(void) fprintf(stderr, "\n");
600 
601 	abort();	/* think of it as a "user-level crash dump" */
602 }
603 
604 void
605 panic(const char *fmt, ...)
606 {
607 	va_list adx;
608 
609 	va_start(adx, fmt);
610 	vpanic(fmt, adx);
611 	va_end(adx);
612 }
613 
614 void
615 vcmn_err(int ce, const char *fmt, va_list adx)
616 {
617 	if (ce == CE_PANIC)
618 		vpanic(fmt, adx);
619 	if (ce != CE_NOTE) {	/* suppress noise in userland stress testing */
620 		(void) fprintf(stderr, "%s", ce_prefix[ce]);
621 		(void) vfprintf(stderr, fmt, adx);
622 		(void) fprintf(stderr, "%s", ce_suffix[ce]);
623 	}
624 }
625 
626 /*PRINTFLIKE2*/
627 void
628 cmn_err(int ce, const char *fmt, ...)
629 {
630 	va_list adx;
631 
632 	va_start(adx, fmt);
633 	vcmn_err(ce, fmt, adx);
634 	va_end(adx);
635 }
636 
637 /*
638  * =========================================================================
639  * kobj interfaces
640  * =========================================================================
641  */
642 struct _buf *
643 kobj_open_file(char *name)
644 {
645 	struct _buf *file;
646 	vnode_t *vp;
647 
648 	/* set vp as the _fd field of the file */
649 	if (vn_openat(name, UIO_SYSSPACE, FREAD, 0, &vp, 0, 0, rootdir,
650 	    -1) != 0)
651 		return ((void *)-1UL);
652 
653 	file = umem_zalloc(sizeof (struct _buf), UMEM_NOFAIL);
654 	file->_fd = (intptr_t)vp;
655 	return (file);
656 }
657 
658 int
659 kobj_read_file(struct _buf *file, char *buf, unsigned size, unsigned off)
660 {
661 	ssize_t resid;
662 
663 	vn_rdwr(UIO_READ, (vnode_t *)file->_fd, buf, size, (offset_t)off,
664 	    UIO_SYSSPACE, 0, 0, 0, &resid);
665 
666 	return (size - resid);
667 }
668 
669 void
670 kobj_close_file(struct _buf *file)
671 {
672 	vn_close((vnode_t *)file->_fd);
673 	umem_free(file, sizeof (struct _buf));
674 }
675 
676 int
677 kobj_get_filesize(struct _buf *file, uint64_t *size)
678 {
679 	struct stat64 st;
680 	vnode_t *vp = (vnode_t *)file->_fd;
681 
682 	if (fstat64(vp->v_fd, &st) == -1) {
683 		vn_close(vp);
684 		return (errno);
685 	}
686 	*size = st.st_size;
687 	return (0);
688 }
689 
690 /*
691  * =========================================================================
692  * misc routines
693  * =========================================================================
694  */
695 
696 void
697 delay(clock_t ticks)
698 {
699 	poll(0, 0, ticks * (1000 / hz));
700 }
701 
702 /*
703  * Find highest one bit set.
704  *	Returns bit number + 1 of highest bit that is set, otherwise returns 0.
705  * High order bit is 31 (or 63 in _LP64 kernel).
706  */
707 int
708 highbit(ulong_t i)
709 {
710 	register int h = 1;
711 
712 	if (i == 0)
713 		return (0);
714 #ifdef _LP64
715 	if (i & 0xffffffff00000000ul) {
716 		h += 32; i >>= 32;
717 	}
718 #endif
719 	if (i & 0xffff0000) {
720 		h += 16; i >>= 16;
721 	}
722 	if (i & 0xff00) {
723 		h += 8; i >>= 8;
724 	}
725 	if (i & 0xf0) {
726 		h += 4; i >>= 4;
727 	}
728 	if (i & 0xc) {
729 		h += 2; i >>= 2;
730 	}
731 	if (i & 0x2) {
732 		h += 1;
733 	}
734 	return (h);
735 }
736 
737 static int random_fd = -1, urandom_fd = -1;
738 
739 static int
740 random_get_bytes_common(uint8_t *ptr, size_t len, int fd)
741 {
742 	size_t resid = len;
743 	ssize_t bytes;
744 
745 	ASSERT(fd != -1);
746 
747 	while (resid != 0) {
748 		bytes = read(fd, ptr, resid);
749 		ASSERT3S(bytes, >=, 0);
750 		ptr += bytes;
751 		resid -= bytes;
752 	}
753 
754 	return (0);
755 }
756 
757 int
758 random_get_bytes(uint8_t *ptr, size_t len)
759 {
760 	return (random_get_bytes_common(ptr, len, random_fd));
761 }
762 
763 int
764 random_get_pseudo_bytes(uint8_t *ptr, size_t len)
765 {
766 	return (random_get_bytes_common(ptr, len, urandom_fd));
767 }
768 
769 int
770 ddi_strtoul(const char *hw_serial, char **nptr, int base, unsigned long *result)
771 {
772 	char *end;
773 
774 	*result = strtoul(hw_serial, &end, base);
775 	if (*result == 0)
776 		return (errno);
777 	return (0);
778 }
779 
780 int
781 ddi_strtoull(const char *str, char **nptr, int base, u_longlong_t *result)
782 {
783 	char *end;
784 
785 	*result = strtoull(str, &end, base);
786 	if (*result == 0)
787 		return (errno);
788 	return (0);
789 }
790 
791 /*
792  * =========================================================================
793  * kernel emulation setup & teardown
794  * =========================================================================
795  */
796 static int
797 umem_out_of_memory(void)
798 {
799 	char errmsg[] = "out of memory -- generating core dump\n";
800 
801 	write(fileno(stderr), errmsg, sizeof (errmsg));
802 	abort();
803 	return (0);
804 }
805 
806 void
807 kernel_init(int mode)
808 {
809 	umem_nofail_callback(umem_out_of_memory);
810 
811 	physmem = sysconf(_SC_PHYS_PAGES);
812 
813 	dprintf("physmem = %llu pages (%.2f GB)\n", physmem,
814 	    (double)physmem * sysconf(_SC_PAGE_SIZE) / (1ULL << 30));
815 
816 	(void) snprintf(hw_serial, sizeof (hw_serial), "%ld",
817 	    (mode & FWRITE) ? gethostid() : 0);
818 
819 	VERIFY((random_fd = open("/dev/random", O_RDONLY)) != -1);
820 	VERIFY((urandom_fd = open("/dev/urandom", O_RDONLY)) != -1);
821 
822 	system_taskq_init();
823 
824 	spa_init(mode);
825 }
826 
827 void
828 kernel_fini(void)
829 {
830 	spa_fini();
831 
832 	system_taskq_fini();
833 
834 	close(random_fd);
835 	close(urandom_fd);
836 
837 	random_fd = -1;
838 	urandom_fd = -1;
839 }
840 
841 int
842 z_uncompress(void *dst, size_t *dstlen, const void *src, size_t srclen)
843 {
844 	int ret;
845 	uLongf len = *dstlen;
846 
847 	if ((ret = uncompress(dst, &len, src, srclen)) == Z_OK)
848 		*dstlen = (size_t)len;
849 
850 	return (ret);
851 }
852 
853 int
854 z_compress_level(void *dst, size_t *dstlen, const void *src, size_t srclen,
855     int level)
856 {
857 	int ret;
858 	uLongf len = *dstlen;
859 
860 	if ((ret = compress2(dst, &len, src, srclen, level)) == Z_OK)
861 		*dstlen = (size_t)len;
862 
863 	return (ret);
864 }
865 
866 uid_t
867 crgetuid(cred_t *cr)
868 {
869 	return (0);
870 }
871 
872 gid_t
873 crgetgid(cred_t *cr)
874 {
875 	return (0);
876 }
877 
878 int
879 crgetngroups(cred_t *cr)
880 {
881 	return (0);
882 }
883 
884 gid_t *
885 crgetgroups(cred_t *cr)
886 {
887 	return (NULL);
888 }
889 
890 int
891 zfs_secpolicy_snapshot_perms(const char *name, cred_t *cr)
892 {
893 	return (0);
894 }
895 
896 int
897 zfs_secpolicy_rename_perms(const char *from, const char *to, cred_t *cr)
898 {
899 	return (0);
900 }
901 
902 int
903 zfs_secpolicy_destroy_perms(const char *name, cred_t *cr)
904 {
905 	return (0);
906 }
907 
908 ksiddomain_t *
909 ksid_lookupdomain(const char *dom)
910 {
911 	ksiddomain_t *kd;
912 
913 	kd = umem_zalloc(sizeof (ksiddomain_t), UMEM_NOFAIL);
914 	kd->kd_name = spa_strdup(dom);
915 	return (kd);
916 }
917 
918 void
919 ksiddomain_rele(ksiddomain_t *ksid)
920 {
921 	spa_strfree(ksid->kd_name);
922 	umem_free(ksid, sizeof (ksiddomain_t));
923 }
924 
925 /*
926  * Do not change the length of the returned string; it must be freed
927  * with strfree().
928  */
929 char *
930 kmem_asprintf(const char *fmt, ...)
931 {
932 	int size;
933 	va_list adx;
934 	char *buf;
935 
936 	va_start(adx, fmt);
937 	size = vsnprintf(NULL, 0, fmt, adx) + 1;
938 	va_end(adx);
939 
940 	buf = kmem_alloc(size, KM_SLEEP);
941 
942 	va_start(adx, fmt);
943 	size = vsnprintf(buf, size, fmt, adx);
944 	va_end(adx);
945 
946 	return (buf);
947 }
948 
949 /* ARGSUSED */
950 int
951 zfs_onexit_fd_hold(int fd, minor_t *minorp)
952 {
953 	*minorp = 0;
954 	return (0);
955 }
956 
957 /* ARGSUSED */
958 void
959 zfs_onexit_fd_rele(int fd)
960 {
961 }
962 
963 /* ARGSUSED */
964 int
965 zfs_onexit_add_cb(minor_t minor, void (*func)(void *), void *data,
966     uint64_t *action_handle)
967 {
968 	return (0);
969 }
970 
971 /* ARGSUSED */
972 int
973 zfs_onexit_del_cb(minor_t minor, uint64_t action_handle, boolean_t fire)
974 {
975 	return (0);
976 }
977 
978 /* ARGSUSED */
979 int
980 zfs_onexit_cb_data(minor_t minor, uint64_t action_handle, void **data)
981 {
982 	return (0);
983 }
984