1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2012 by Delphix. All rights reserved. 24 */ 25 26 #include <assert.h> 27 #include <fcntl.h> 28 #include <poll.h> 29 #include <stdio.h> 30 #include <stdlib.h> 31 #include <string.h> 32 #include <zlib.h> 33 #include <sys/spa.h> 34 #include <sys/stat.h> 35 #include <sys/processor.h> 36 #include <sys/zfs_context.h> 37 #include <sys/zmod.h> 38 #include <sys/utsname.h> 39 #include <sys/systeminfo.h> 40 41 /* 42 * Emulation of kernel services in userland. 43 */ 44 45 int aok; 46 uint64_t physmem; 47 vnode_t *rootdir = (vnode_t *)0xabcd1234; 48 char hw_serial[HW_HOSTID_LEN]; 49 kmutex_t cpu_lock; 50 vmem_t *zio_arena = NULL; 51 52 struct utsname utsname = { 53 "userland", "libzpool", "1", "1", "na" 54 }; 55 56 /* this only exists to have its address taken */ 57 struct proc p0; 58 59 /* 60 * ========================================================================= 61 * threads 62 * ========================================================================= 63 */ 64 /*ARGSUSED*/ 65 kthread_t * 66 zk_thread_create(void (*func)(), void *arg) 67 { 68 thread_t tid; 69 70 VERIFY(thr_create(0, 0, (void *(*)(void *))func, arg, THR_DETACHED, 71 &tid) == 0); 72 73 return ((void *)(uintptr_t)tid); 74 } 75 76 /* 77 * ========================================================================= 78 * kstats 79 * ========================================================================= 80 */ 81 /*ARGSUSED*/ 82 kstat_t * 83 kstat_create(const char *module, int instance, const char *name, 84 const char *class, uchar_t type, ulong_t ndata, uchar_t ks_flag) 85 { 86 return (NULL); 87 } 88 89 /*ARGSUSED*/ 90 void 91 kstat_install(kstat_t *ksp) 92 {} 93 94 /*ARGSUSED*/ 95 void 96 kstat_delete(kstat_t *ksp) 97 {} 98 99 /*ARGSUSED*/ 100 void 101 kstat_waitq_enter(kstat_io_t *kiop) 102 {} 103 104 /*ARGSUSED*/ 105 void 106 kstat_waitq_exit(kstat_io_t *kiop) 107 {} 108 109 /*ARGSUSED*/ 110 void 111 kstat_runq_enter(kstat_io_t *kiop) 112 {} 113 114 /*ARGSUSED*/ 115 void 116 kstat_runq_exit(kstat_io_t *kiop) 117 {} 118 119 /*ARGSUSED*/ 120 void 121 kstat_waitq_to_runq(kstat_io_t *kiop) 122 {} 123 124 /*ARGSUSED*/ 125 void 126 kstat_runq_back_to_waitq(kstat_io_t *kiop) 127 {} 128 129 /* 130 * ========================================================================= 131 * mutexes 132 * ========================================================================= 133 */ 134 void 135 zmutex_init(kmutex_t *mp) 136 { 137 mp->m_owner = NULL; 138 mp->initialized = B_TRUE; 139 (void) _mutex_init(&mp->m_lock, USYNC_THREAD, NULL); 140 } 141 142 void 143 zmutex_destroy(kmutex_t *mp) 144 { 145 ASSERT(mp->initialized == B_TRUE); 146 ASSERT(mp->m_owner == NULL); 147 (void) _mutex_destroy(&(mp)->m_lock); 148 mp->m_owner = (void *)-1UL; 149 mp->initialized = B_FALSE; 150 } 151 152 void 153 mutex_enter(kmutex_t *mp) 154 { 155 ASSERT(mp->initialized == B_TRUE); 156 ASSERT(mp->m_owner != (void *)-1UL); 157 ASSERT(mp->m_owner != curthread); 158 VERIFY(mutex_lock(&mp->m_lock) == 0); 159 ASSERT(mp->m_owner == NULL); 160 mp->m_owner = curthread; 161 } 162 163 int 164 mutex_tryenter(kmutex_t *mp) 165 { 166 ASSERT(mp->initialized == B_TRUE); 167 ASSERT(mp->m_owner != (void *)-1UL); 168 if (0 == mutex_trylock(&mp->m_lock)) { 169 ASSERT(mp->m_owner == NULL); 170 mp->m_owner = curthread; 171 return (1); 172 } else { 173 return (0); 174 } 175 } 176 177 void 178 mutex_exit(kmutex_t *mp) 179 { 180 ASSERT(mp->initialized == B_TRUE); 181 ASSERT(mutex_owner(mp) == curthread); 182 mp->m_owner = NULL; 183 VERIFY(mutex_unlock(&mp->m_lock) == 0); 184 } 185 186 void * 187 mutex_owner(kmutex_t *mp) 188 { 189 ASSERT(mp->initialized == B_TRUE); 190 return (mp->m_owner); 191 } 192 193 /* 194 * ========================================================================= 195 * rwlocks 196 * ========================================================================= 197 */ 198 /*ARGSUSED*/ 199 void 200 rw_init(krwlock_t *rwlp, char *name, int type, void *arg) 201 { 202 rwlock_init(&rwlp->rw_lock, USYNC_THREAD, NULL); 203 rwlp->rw_owner = NULL; 204 rwlp->initialized = B_TRUE; 205 } 206 207 void 208 rw_destroy(krwlock_t *rwlp) 209 { 210 rwlock_destroy(&rwlp->rw_lock); 211 rwlp->rw_owner = (void *)-1UL; 212 rwlp->initialized = B_FALSE; 213 } 214 215 void 216 rw_enter(krwlock_t *rwlp, krw_t rw) 217 { 218 ASSERT(!RW_LOCK_HELD(rwlp)); 219 ASSERT(rwlp->initialized == B_TRUE); 220 ASSERT(rwlp->rw_owner != (void *)-1UL); 221 ASSERT(rwlp->rw_owner != curthread); 222 223 if (rw == RW_READER) 224 VERIFY(rw_rdlock(&rwlp->rw_lock) == 0); 225 else 226 VERIFY(rw_wrlock(&rwlp->rw_lock) == 0); 227 228 rwlp->rw_owner = curthread; 229 } 230 231 void 232 rw_exit(krwlock_t *rwlp) 233 { 234 ASSERT(rwlp->initialized == B_TRUE); 235 ASSERT(rwlp->rw_owner != (void *)-1UL); 236 237 rwlp->rw_owner = NULL; 238 VERIFY(rw_unlock(&rwlp->rw_lock) == 0); 239 } 240 241 int 242 rw_tryenter(krwlock_t *rwlp, krw_t rw) 243 { 244 int rv; 245 246 ASSERT(rwlp->initialized == B_TRUE); 247 ASSERT(rwlp->rw_owner != (void *)-1UL); 248 249 if (rw == RW_READER) 250 rv = rw_tryrdlock(&rwlp->rw_lock); 251 else 252 rv = rw_trywrlock(&rwlp->rw_lock); 253 254 if (rv == 0) { 255 rwlp->rw_owner = curthread; 256 return (1); 257 } 258 259 return (0); 260 } 261 262 /*ARGSUSED*/ 263 int 264 rw_tryupgrade(krwlock_t *rwlp) 265 { 266 ASSERT(rwlp->initialized == B_TRUE); 267 ASSERT(rwlp->rw_owner != (void *)-1UL); 268 269 return (0); 270 } 271 272 /* 273 * ========================================================================= 274 * condition variables 275 * ========================================================================= 276 */ 277 /*ARGSUSED*/ 278 void 279 cv_init(kcondvar_t *cv, char *name, int type, void *arg) 280 { 281 VERIFY(cond_init(cv, type, NULL) == 0); 282 } 283 284 void 285 cv_destroy(kcondvar_t *cv) 286 { 287 VERIFY(cond_destroy(cv) == 0); 288 } 289 290 void 291 cv_wait(kcondvar_t *cv, kmutex_t *mp) 292 { 293 ASSERT(mutex_owner(mp) == curthread); 294 mp->m_owner = NULL; 295 int ret = cond_wait(cv, &mp->m_lock); 296 VERIFY(ret == 0 || ret == EINTR); 297 mp->m_owner = curthread; 298 } 299 300 clock_t 301 cv_timedwait(kcondvar_t *cv, kmutex_t *mp, clock_t abstime) 302 { 303 int error; 304 timestruc_t ts; 305 clock_t delta; 306 307 top: 308 delta = abstime - ddi_get_lbolt(); 309 if (delta <= 0) 310 return (-1); 311 312 ts.tv_sec = delta / hz; 313 ts.tv_nsec = (delta % hz) * (NANOSEC / hz); 314 315 ASSERT(mutex_owner(mp) == curthread); 316 mp->m_owner = NULL; 317 error = cond_reltimedwait(cv, &mp->m_lock, &ts); 318 mp->m_owner = curthread; 319 320 if (error == ETIME) 321 return (-1); 322 323 if (error == EINTR) 324 goto top; 325 326 ASSERT(error == 0); 327 328 return (1); 329 } 330 331 void 332 cv_signal(kcondvar_t *cv) 333 { 334 VERIFY(cond_signal(cv) == 0); 335 } 336 337 void 338 cv_broadcast(kcondvar_t *cv) 339 { 340 VERIFY(cond_broadcast(cv) == 0); 341 } 342 343 /* 344 * ========================================================================= 345 * vnode operations 346 * ========================================================================= 347 */ 348 /* 349 * Note: for the xxxat() versions of these functions, we assume that the 350 * starting vp is always rootdir (which is true for spa_directory.c, the only 351 * ZFS consumer of these interfaces). We assert this is true, and then emulate 352 * them by adding '/' in front of the path. 353 */ 354 355 /*ARGSUSED*/ 356 int 357 vn_open(char *path, int x1, int flags, int mode, vnode_t **vpp, int x2, int x3) 358 { 359 int fd; 360 vnode_t *vp; 361 int old_umask; 362 char realpath[MAXPATHLEN]; 363 struct stat64 st; 364 365 /* 366 * If we're accessing a real disk from userland, we need to use 367 * the character interface to avoid caching. This is particularly 368 * important if we're trying to look at a real in-kernel storage 369 * pool from userland, e.g. via zdb, because otherwise we won't 370 * see the changes occurring under the segmap cache. 371 * On the other hand, the stupid character device returns zero 372 * for its size. So -- gag -- we open the block device to get 373 * its size, and remember it for subsequent VOP_GETATTR(). 374 */ 375 if (strncmp(path, "/dev/", 5) == 0) { 376 char *dsk; 377 fd = open64(path, O_RDONLY); 378 if (fd == -1) 379 return (errno); 380 if (fstat64(fd, &st) == -1) { 381 close(fd); 382 return (errno); 383 } 384 close(fd); 385 (void) sprintf(realpath, "%s", path); 386 dsk = strstr(path, "/dsk/"); 387 if (dsk != NULL) 388 (void) sprintf(realpath + (dsk - path) + 1, "r%s", 389 dsk + 1); 390 } else { 391 (void) sprintf(realpath, "%s", path); 392 if (!(flags & FCREAT) && stat64(realpath, &st) == -1) 393 return (errno); 394 } 395 396 if (flags & FCREAT) 397 old_umask = umask(0); 398 399 /* 400 * The construct 'flags - FREAD' conveniently maps combinations of 401 * FREAD and FWRITE to the corresponding O_RDONLY, O_WRONLY, and O_RDWR. 402 */ 403 fd = open64(realpath, flags - FREAD, mode); 404 405 if (flags & FCREAT) 406 (void) umask(old_umask); 407 408 if (fd == -1) 409 return (errno); 410 411 if (fstat64(fd, &st) == -1) { 412 close(fd); 413 return (errno); 414 } 415 416 (void) fcntl(fd, F_SETFD, FD_CLOEXEC); 417 418 *vpp = vp = umem_zalloc(sizeof (vnode_t), UMEM_NOFAIL); 419 420 vp->v_fd = fd; 421 vp->v_size = st.st_size; 422 vp->v_path = spa_strdup(path); 423 424 return (0); 425 } 426 427 /*ARGSUSED*/ 428 int 429 vn_openat(char *path, int x1, int flags, int mode, vnode_t **vpp, int x2, 430 int x3, vnode_t *startvp, int fd) 431 { 432 char *realpath = umem_alloc(strlen(path) + 2, UMEM_NOFAIL); 433 int ret; 434 435 ASSERT(startvp == rootdir); 436 (void) sprintf(realpath, "/%s", path); 437 438 /* fd ignored for now, need if want to simulate nbmand support */ 439 ret = vn_open(realpath, x1, flags, mode, vpp, x2, x3); 440 441 umem_free(realpath, strlen(path) + 2); 442 443 return (ret); 444 } 445 446 /*ARGSUSED*/ 447 int 448 vn_rdwr(int uio, vnode_t *vp, void *addr, ssize_t len, offset_t offset, 449 int x1, int x2, rlim64_t x3, void *x4, ssize_t *residp) 450 { 451 ssize_t iolen, split; 452 453 if (uio == UIO_READ) { 454 iolen = pread64(vp->v_fd, addr, len, offset); 455 } else { 456 /* 457 * To simulate partial disk writes, we split writes into two 458 * system calls so that the process can be killed in between. 459 */ 460 int sectors = len >> SPA_MINBLOCKSHIFT; 461 split = (sectors > 0 ? rand() % sectors : 0) << 462 SPA_MINBLOCKSHIFT; 463 iolen = pwrite64(vp->v_fd, addr, split, offset); 464 iolen += pwrite64(vp->v_fd, (char *)addr + split, 465 len - split, offset + split); 466 } 467 468 if (iolen == -1) 469 return (errno); 470 if (residp) 471 *residp = len - iolen; 472 else if (iolen != len) 473 return (EIO); 474 return (0); 475 } 476 477 void 478 vn_close(vnode_t *vp) 479 { 480 close(vp->v_fd); 481 spa_strfree(vp->v_path); 482 umem_free(vp, sizeof (vnode_t)); 483 } 484 485 /* 486 * At a minimum we need to update the size since vdev_reopen() 487 * will no longer call vn_openat(). 488 */ 489 int 490 fop_getattr(vnode_t *vp, vattr_t *vap) 491 { 492 struct stat64 st; 493 494 if (fstat64(vp->v_fd, &st) == -1) { 495 close(vp->v_fd); 496 return (errno); 497 } 498 499 vap->va_size = st.st_size; 500 return (0); 501 } 502 503 #ifdef ZFS_DEBUG 504 505 /* 506 * ========================================================================= 507 * Figure out which debugging statements to print 508 * ========================================================================= 509 */ 510 511 static char *dprintf_string; 512 static int dprintf_print_all; 513 514 int 515 dprintf_find_string(const char *string) 516 { 517 char *tmp_str = dprintf_string; 518 int len = strlen(string); 519 520 /* 521 * Find out if this is a string we want to print. 522 * String format: file1.c,function_name1,file2.c,file3.c 523 */ 524 525 while (tmp_str != NULL) { 526 if (strncmp(tmp_str, string, len) == 0 && 527 (tmp_str[len] == ',' || tmp_str[len] == '\0')) 528 return (1); 529 tmp_str = strchr(tmp_str, ','); 530 if (tmp_str != NULL) 531 tmp_str++; /* Get rid of , */ 532 } 533 return (0); 534 } 535 536 void 537 dprintf_setup(int *argc, char **argv) 538 { 539 int i, j; 540 541 /* 542 * Debugging can be specified two ways: by setting the 543 * environment variable ZFS_DEBUG, or by including a 544 * "debug=..." argument on the command line. The command 545 * line setting overrides the environment variable. 546 */ 547 548 for (i = 1; i < *argc; i++) { 549 int len = strlen("debug="); 550 /* First look for a command line argument */ 551 if (strncmp("debug=", argv[i], len) == 0) { 552 dprintf_string = argv[i] + len; 553 /* Remove from args */ 554 for (j = i; j < *argc; j++) 555 argv[j] = argv[j+1]; 556 argv[j] = NULL; 557 (*argc)--; 558 } 559 } 560 561 if (dprintf_string == NULL) { 562 /* Look for ZFS_DEBUG environment variable */ 563 dprintf_string = getenv("ZFS_DEBUG"); 564 } 565 566 /* 567 * Are we just turning on all debugging? 568 */ 569 if (dprintf_find_string("on")) 570 dprintf_print_all = 1; 571 } 572 573 /* 574 * ========================================================================= 575 * debug printfs 576 * ========================================================================= 577 */ 578 void 579 __dprintf(const char *file, const char *func, int line, const char *fmt, ...) 580 { 581 const char *newfile; 582 va_list adx; 583 584 /* 585 * Get rid of annoying "../common/" prefix to filename. 586 */ 587 newfile = strrchr(file, '/'); 588 if (newfile != NULL) { 589 newfile = newfile + 1; /* Get rid of leading / */ 590 } else { 591 newfile = file; 592 } 593 594 if (dprintf_print_all || 595 dprintf_find_string(newfile) || 596 dprintf_find_string(func)) { 597 /* Print out just the function name if requested */ 598 flockfile(stdout); 599 if (dprintf_find_string("pid")) 600 (void) printf("%d ", getpid()); 601 if (dprintf_find_string("tid")) 602 (void) printf("%u ", thr_self()); 603 if (dprintf_find_string("cpu")) 604 (void) printf("%u ", getcpuid()); 605 if (dprintf_find_string("time")) 606 (void) printf("%llu ", gethrtime()); 607 if (dprintf_find_string("long")) 608 (void) printf("%s, line %d: ", newfile, line); 609 (void) printf("%s: ", func); 610 va_start(adx, fmt); 611 (void) vprintf(fmt, adx); 612 va_end(adx); 613 funlockfile(stdout); 614 } 615 } 616 617 #endif /* ZFS_DEBUG */ 618 619 /* 620 * ========================================================================= 621 * cmn_err() and panic() 622 * ========================================================================= 623 */ 624 static char ce_prefix[CE_IGNORE][10] = { "", "NOTICE: ", "WARNING: ", "" }; 625 static char ce_suffix[CE_IGNORE][2] = { "", "\n", "\n", "" }; 626 627 void 628 vpanic(const char *fmt, va_list adx) 629 { 630 (void) fprintf(stderr, "error: "); 631 (void) vfprintf(stderr, fmt, adx); 632 (void) fprintf(stderr, "\n"); 633 634 abort(); /* think of it as a "user-level crash dump" */ 635 } 636 637 void 638 panic(const char *fmt, ...) 639 { 640 va_list adx; 641 642 va_start(adx, fmt); 643 vpanic(fmt, adx); 644 va_end(adx); 645 } 646 647 void 648 vcmn_err(int ce, const char *fmt, va_list adx) 649 { 650 if (ce == CE_PANIC) 651 vpanic(fmt, adx); 652 if (ce != CE_NOTE) { /* suppress noise in userland stress testing */ 653 (void) fprintf(stderr, "%s", ce_prefix[ce]); 654 (void) vfprintf(stderr, fmt, adx); 655 (void) fprintf(stderr, "%s", ce_suffix[ce]); 656 } 657 } 658 659 /*PRINTFLIKE2*/ 660 void 661 cmn_err(int ce, const char *fmt, ...) 662 { 663 va_list adx; 664 665 va_start(adx, fmt); 666 vcmn_err(ce, fmt, adx); 667 va_end(adx); 668 } 669 670 /* 671 * ========================================================================= 672 * kobj interfaces 673 * ========================================================================= 674 */ 675 struct _buf * 676 kobj_open_file(char *name) 677 { 678 struct _buf *file; 679 vnode_t *vp; 680 681 /* set vp as the _fd field of the file */ 682 if (vn_openat(name, UIO_SYSSPACE, FREAD, 0, &vp, 0, 0, rootdir, 683 -1) != 0) 684 return ((void *)-1UL); 685 686 file = umem_zalloc(sizeof (struct _buf), UMEM_NOFAIL); 687 file->_fd = (intptr_t)vp; 688 return (file); 689 } 690 691 int 692 kobj_read_file(struct _buf *file, char *buf, unsigned size, unsigned off) 693 { 694 ssize_t resid; 695 696 vn_rdwr(UIO_READ, (vnode_t *)file->_fd, buf, size, (offset_t)off, 697 UIO_SYSSPACE, 0, 0, 0, &resid); 698 699 return (size - resid); 700 } 701 702 void 703 kobj_close_file(struct _buf *file) 704 { 705 vn_close((vnode_t *)file->_fd); 706 umem_free(file, sizeof (struct _buf)); 707 } 708 709 int 710 kobj_get_filesize(struct _buf *file, uint64_t *size) 711 { 712 struct stat64 st; 713 vnode_t *vp = (vnode_t *)file->_fd; 714 715 if (fstat64(vp->v_fd, &st) == -1) { 716 vn_close(vp); 717 return (errno); 718 } 719 *size = st.st_size; 720 return (0); 721 } 722 723 /* 724 * ========================================================================= 725 * misc routines 726 * ========================================================================= 727 */ 728 729 void 730 delay(clock_t ticks) 731 { 732 poll(0, 0, ticks * (1000 / hz)); 733 } 734 735 /* 736 * Find highest one bit set. 737 * Returns bit number + 1 of highest bit that is set, otherwise returns 0. 738 * High order bit is 31 (or 63 in _LP64 kernel). 739 */ 740 int 741 highbit(ulong_t i) 742 { 743 register int h = 1; 744 745 if (i == 0) 746 return (0); 747 #ifdef _LP64 748 if (i & 0xffffffff00000000ul) { 749 h += 32; i >>= 32; 750 } 751 #endif 752 if (i & 0xffff0000) { 753 h += 16; i >>= 16; 754 } 755 if (i & 0xff00) { 756 h += 8; i >>= 8; 757 } 758 if (i & 0xf0) { 759 h += 4; i >>= 4; 760 } 761 if (i & 0xc) { 762 h += 2; i >>= 2; 763 } 764 if (i & 0x2) { 765 h += 1; 766 } 767 return (h); 768 } 769 770 static int random_fd = -1, urandom_fd = -1; 771 772 static int 773 random_get_bytes_common(uint8_t *ptr, size_t len, int fd) 774 { 775 size_t resid = len; 776 ssize_t bytes; 777 778 ASSERT(fd != -1); 779 780 while (resid != 0) { 781 bytes = read(fd, ptr, resid); 782 ASSERT3S(bytes, >=, 0); 783 ptr += bytes; 784 resid -= bytes; 785 } 786 787 return (0); 788 } 789 790 int 791 random_get_bytes(uint8_t *ptr, size_t len) 792 { 793 return (random_get_bytes_common(ptr, len, random_fd)); 794 } 795 796 int 797 random_get_pseudo_bytes(uint8_t *ptr, size_t len) 798 { 799 return (random_get_bytes_common(ptr, len, urandom_fd)); 800 } 801 802 int 803 ddi_strtoul(const char *hw_serial, char **nptr, int base, unsigned long *result) 804 { 805 char *end; 806 807 *result = strtoul(hw_serial, &end, base); 808 if (*result == 0) 809 return (errno); 810 return (0); 811 } 812 813 int 814 ddi_strtoull(const char *str, char **nptr, int base, u_longlong_t *result) 815 { 816 char *end; 817 818 *result = strtoull(str, &end, base); 819 if (*result == 0) 820 return (errno); 821 return (0); 822 } 823 824 /* ARGSUSED */ 825 cyclic_id_t 826 cyclic_add(cyc_handler_t *hdlr, cyc_time_t *when) 827 { 828 return (1); 829 } 830 831 /* ARGSUSED */ 832 void 833 cyclic_remove(cyclic_id_t id) 834 { 835 } 836 837 /* ARGSUSED */ 838 int 839 cyclic_reprogram(cyclic_id_t id, hrtime_t expiration) 840 { 841 return (1); 842 } 843 844 /* 845 * ========================================================================= 846 * kernel emulation setup & teardown 847 * ========================================================================= 848 */ 849 static int 850 umem_out_of_memory(void) 851 { 852 char errmsg[] = "out of memory -- generating core dump\n"; 853 854 write(fileno(stderr), errmsg, sizeof (errmsg)); 855 abort(); 856 return (0); 857 } 858 859 void 860 kernel_init(int mode) 861 { 862 umem_nofail_callback(umem_out_of_memory); 863 864 physmem = sysconf(_SC_PHYS_PAGES); 865 866 dprintf("physmem = %llu pages (%.2f GB)\n", physmem, 867 (double)physmem * sysconf(_SC_PAGE_SIZE) / (1ULL << 30)); 868 869 (void) snprintf(hw_serial, sizeof (hw_serial), "%ld", 870 (mode & FWRITE) ? gethostid() : 0); 871 872 VERIFY((random_fd = open("/dev/random", O_RDONLY)) != -1); 873 VERIFY((urandom_fd = open("/dev/urandom", O_RDONLY)) != -1); 874 875 system_taskq_init(); 876 877 mutex_init(&cpu_lock, NULL, MUTEX_DEFAULT, NULL); 878 879 spa_init(mode); 880 } 881 882 void 883 kernel_fini(void) 884 { 885 spa_fini(); 886 887 system_taskq_fini(); 888 889 close(random_fd); 890 close(urandom_fd); 891 892 random_fd = -1; 893 urandom_fd = -1; 894 } 895 896 int 897 z_uncompress(void *dst, size_t *dstlen, const void *src, size_t srclen) 898 { 899 int ret; 900 uLongf len = *dstlen; 901 902 if ((ret = uncompress(dst, &len, src, srclen)) == Z_OK) 903 *dstlen = (size_t)len; 904 905 return (ret); 906 } 907 908 int 909 z_compress_level(void *dst, size_t *dstlen, const void *src, size_t srclen, 910 int level) 911 { 912 int ret; 913 uLongf len = *dstlen; 914 915 if ((ret = compress2(dst, &len, src, srclen, level)) == Z_OK) 916 *dstlen = (size_t)len; 917 918 return (ret); 919 } 920 921 uid_t 922 crgetuid(cred_t *cr) 923 { 924 return (0); 925 } 926 927 uid_t 928 crgetruid(cred_t *cr) 929 { 930 return (0); 931 } 932 933 gid_t 934 crgetgid(cred_t *cr) 935 { 936 return (0); 937 } 938 939 int 940 crgetngroups(cred_t *cr) 941 { 942 return (0); 943 } 944 945 gid_t * 946 crgetgroups(cred_t *cr) 947 { 948 return (NULL); 949 } 950 951 int 952 zfs_secpolicy_snapshot_perms(const char *name, cred_t *cr) 953 { 954 return (0); 955 } 956 957 int 958 zfs_secpolicy_rename_perms(const char *from, const char *to, cred_t *cr) 959 { 960 return (0); 961 } 962 963 int 964 zfs_secpolicy_destroy_perms(const char *name, cred_t *cr) 965 { 966 return (0); 967 } 968 969 ksiddomain_t * 970 ksid_lookupdomain(const char *dom) 971 { 972 ksiddomain_t *kd; 973 974 kd = umem_zalloc(sizeof (ksiddomain_t), UMEM_NOFAIL); 975 kd->kd_name = spa_strdup(dom); 976 return (kd); 977 } 978 979 void 980 ksiddomain_rele(ksiddomain_t *ksid) 981 { 982 spa_strfree(ksid->kd_name); 983 umem_free(ksid, sizeof (ksiddomain_t)); 984 } 985 986 /* 987 * Do not change the length of the returned string; it must be freed 988 * with strfree(). 989 */ 990 char * 991 kmem_asprintf(const char *fmt, ...) 992 { 993 int size; 994 va_list adx; 995 char *buf; 996 997 va_start(adx, fmt); 998 size = vsnprintf(NULL, 0, fmt, adx) + 1; 999 va_end(adx); 1000 1001 buf = kmem_alloc(size, KM_SLEEP); 1002 1003 va_start(adx, fmt); 1004 size = vsnprintf(buf, size, fmt, adx); 1005 va_end(adx); 1006 1007 return (buf); 1008 } 1009 1010 /* ARGSUSED */ 1011 int 1012 zfs_onexit_fd_hold(int fd, minor_t *minorp) 1013 { 1014 *minorp = 0; 1015 return (0); 1016 } 1017 1018 /* ARGSUSED */ 1019 void 1020 zfs_onexit_fd_rele(int fd) 1021 { 1022 } 1023 1024 /* ARGSUSED */ 1025 int 1026 zfs_onexit_add_cb(minor_t minor, void (*func)(void *), void *data, 1027 uint64_t *action_handle) 1028 { 1029 return (0); 1030 } 1031 1032 /* ARGSUSED */ 1033 int 1034 zfs_onexit_del_cb(minor_t minor, uint64_t action_handle, boolean_t fire) 1035 { 1036 return (0); 1037 } 1038 1039 /* ARGSUSED */ 1040 int 1041 zfs_onexit_cb_data(minor_t minor, uint64_t action_handle, void **data) 1042 { 1043 return (0); 1044 } 1045 1046 void 1047 bioinit(buf_t *bp) 1048 { 1049 bzero(bp, sizeof (buf_t)); 1050 } 1051 1052 void 1053 biodone(buf_t *bp) 1054 { 1055 if (bp->b_iodone != NULL) { 1056 (*(bp->b_iodone))(bp); 1057 return; 1058 } 1059 ASSERT((bp->b_flags & B_DONE) == 0); 1060 bp->b_flags |= B_DONE; 1061 } 1062 1063 void 1064 bioerror(buf_t *bp, int error) 1065 { 1066 ASSERT(bp != NULL); 1067 ASSERT(error >= 0); 1068 1069 if (error != 0) { 1070 bp->b_flags |= B_ERROR; 1071 } else { 1072 bp->b_flags &= ~B_ERROR; 1073 } 1074 bp->b_error = error; 1075 } 1076 1077 1078 int 1079 geterror(struct buf *bp) 1080 { 1081 int error = 0; 1082 1083 if (bp->b_flags & B_ERROR) { 1084 error = bp->b_error; 1085 if (!error) 1086 error = EIO; 1087 } 1088 return (error); 1089 } 1090