1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #include <assert.h> 28 #include <stdio.h> 29 #include <stdlib.h> 30 #include <stddef.h> 31 #include <unistd.h> 32 #include <ctype.h> 33 #include <fcntl.h> 34 #include <string.h> 35 #include <strings.h> 36 #include <memory.h> 37 #include <errno.h> 38 #include <dirent.h> 39 #include <signal.h> 40 #include <limits.h> 41 #include <libgen.h> 42 #include <sys/types.h> 43 #include <sys/stat.h> 44 #include <sys/systeminfo.h> 45 #include <sys/sysmacros.h> 46 47 #include "libproc.h" 48 #include "Pcontrol.h" 49 #include "Putil.h" 50 #include "Psymtab_machelf.h" 51 52 static file_info_t *build_map_symtab(struct ps_prochandle *, map_info_t *); 53 static map_info_t *exec_map(struct ps_prochandle *); 54 static map_info_t *object_to_map(struct ps_prochandle *, Lmid_t, const char *); 55 static map_info_t *object_name_to_map(struct ps_prochandle *, 56 Lmid_t, const char *); 57 static GElf_Sym *sym_by_name(sym_tbl_t *, const char *, GElf_Sym *, uint_t *); 58 static int read_ehdr32(struct ps_prochandle *, Elf32_Ehdr *, uint_t *, 59 uintptr_t); 60 #ifdef _LP64 61 static int read_ehdr64(struct ps_prochandle *, Elf64_Ehdr *, uint_t *, 62 uintptr_t); 63 #endif 64 65 #define DATA_TYPES \ 66 ((1 << STT_OBJECT) | (1 << STT_FUNC) | \ 67 (1 << STT_COMMON) | (1 << STT_TLS)) 68 #define IS_DATA_TYPE(tp) (((1 << (tp)) & DATA_TYPES) != 0) 69 70 #define MA_RWX (MA_READ | MA_WRITE | MA_EXEC) 71 72 typedef enum { 73 PRO_NATURAL, 74 PRO_BYADDR, 75 PRO_BYNAME 76 } pr_order_t; 77 78 static int 79 addr_cmp(const void *aa, const void *bb) 80 { 81 uintptr_t a = *((uintptr_t *)aa); 82 uintptr_t b = *((uintptr_t *)bb); 83 84 if (a > b) 85 return (1); 86 if (a < b) 87 return (-1); 88 return (0); 89 } 90 91 /* 92 * This function creates a list of addresses for a load object's sections. 93 * The list is in ascending address order and alternates start address 94 * then end address for each section we're interested in. The function 95 * returns a pointer to the list, which must be freed by the caller. 96 */ 97 static uintptr_t * 98 get_saddrs(struct ps_prochandle *P, uintptr_t ehdr_start, uint_t *n) 99 { 100 uintptr_t a, addr, *addrs, last = 0; 101 uint_t i, naddrs = 0, unordered = 0; 102 103 if (P->status.pr_dmodel == PR_MODEL_ILP32) { 104 Elf32_Ehdr ehdr; 105 Elf32_Phdr phdr; 106 uint_t phnum; 107 108 if (read_ehdr32(P, &ehdr, &phnum, ehdr_start) != 0) 109 return (NULL); 110 111 addrs = malloc(sizeof (uintptr_t) * phnum * 2); 112 a = ehdr_start + ehdr.e_phoff; 113 for (i = 0; i < phnum; i++, a += ehdr.e_phentsize) { 114 if (Pread(P, &phdr, sizeof (phdr), a) != 115 sizeof (phdr)) { 116 free(addrs); 117 return (NULL); 118 } 119 if (phdr.p_type != PT_LOAD || phdr.p_memsz == 0) 120 continue; 121 122 addr = phdr.p_vaddr; 123 if (ehdr.e_type == ET_DYN) 124 addr += ehdr_start; 125 if (last > addr) 126 unordered = 1; 127 addrs[naddrs++] = addr; 128 addrs[naddrs++] = last = addr + phdr.p_memsz - 1; 129 } 130 #ifdef _LP64 131 } else { 132 Elf64_Ehdr ehdr; 133 Elf64_Phdr phdr; 134 uint_t phnum; 135 136 if (read_ehdr64(P, &ehdr, &phnum, ehdr_start) != 0) 137 return (NULL); 138 139 addrs = malloc(sizeof (uintptr_t) * phnum * 2); 140 a = ehdr_start + ehdr.e_phoff; 141 for (i = 0; i < phnum; i++, a += ehdr.e_phentsize) { 142 if (Pread(P, &phdr, sizeof (phdr), a) != 143 sizeof (phdr)) { 144 free(addrs); 145 return (NULL); 146 } 147 if (phdr.p_type != PT_LOAD || phdr.p_memsz == 0) 148 continue; 149 150 addr = phdr.p_vaddr; 151 if (ehdr.e_type == ET_DYN) 152 addr += ehdr_start; 153 if (last > addr) 154 unordered = 1; 155 addrs[naddrs++] = addr; 156 addrs[naddrs++] = last = addr + phdr.p_memsz - 1; 157 } 158 #endif 159 } 160 161 if (unordered) 162 qsort(addrs, naddrs, sizeof (uintptr_t), addr_cmp); 163 164 *n = naddrs; 165 return (addrs); 166 } 167 168 /* 169 * Allocation function for a new file_info_t 170 */ 171 file_info_t * 172 file_info_new(struct ps_prochandle *P, map_info_t *mptr) 173 { 174 file_info_t *fptr; 175 map_info_t *mp; 176 uintptr_t mstart, mend, sstart, send; 177 uint_t i; 178 179 if ((fptr = calloc(1, sizeof (file_info_t))) == NULL) 180 return (NULL); 181 182 list_link(fptr, &P->file_head); 183 (void) strcpy(fptr->file_pname, mptr->map_pmap.pr_mapname); 184 mptr->map_file = fptr; 185 fptr->file_ref = 1; 186 fptr->file_fd = -1; 187 P->num_files++; 188 189 /* 190 * To figure out which map_info_t instances correspond to the mappings 191 * for this load object we try to obtain the start and end address 192 * for each section of our in-memory ELF image. If successful, we 193 * walk down the list of addresses and the list of map_info_t 194 * instances in lock step to correctly find the mappings that 195 * correspond to this load object. 196 */ 197 if ((fptr->file_saddrs = get_saddrs(P, mptr->map_pmap.pr_vaddr, 198 &fptr->file_nsaddrs)) == NULL) 199 return (fptr); 200 201 mp = P->mappings; 202 i = 0; 203 while (mp < P->mappings + P->map_count && i < fptr->file_nsaddrs) { 204 205 /* Calculate the start and end of the mapping and section */ 206 mstart = mp->map_pmap.pr_vaddr; 207 mend = mp->map_pmap.pr_vaddr + mp->map_pmap.pr_size; 208 sstart = fptr->file_saddrs[i]; 209 send = fptr->file_saddrs[i + 1]; 210 211 if (mend <= sstart) { 212 /* This mapping is below the current section */ 213 mp++; 214 } else if (mstart >= send) { 215 /* This mapping is above the current section */ 216 i += 2; 217 } else { 218 /* This mapping overlaps the current section */ 219 if (mp->map_file == NULL) { 220 dprintf("file_info_new: associating " 221 "segment at %p\n", 222 (void *)mp->map_pmap.pr_vaddr); 223 mp->map_file = fptr; 224 fptr->file_ref++; 225 } else { 226 dprintf("file_info_new: segment at %p " 227 "already associated with %s\n", 228 (void *)mp->map_pmap.pr_vaddr, 229 (mp == mptr ? "this file" : 230 mp->map_file->file_pname)); 231 } 232 mp++; 233 } 234 } 235 236 return (fptr); 237 } 238 239 /* 240 * Deallocation function for a file_info_t 241 */ 242 static void 243 file_info_free(struct ps_prochandle *P, file_info_t *fptr) 244 { 245 if (--fptr->file_ref == 0) { 246 list_unlink(fptr); 247 if (fptr->file_symtab.sym_elf) { 248 (void) elf_end(fptr->file_symtab.sym_elf); 249 free(fptr->file_symtab.sym_elfmem); 250 } 251 if (fptr->file_symtab.sym_byname) 252 free(fptr->file_symtab.sym_byname); 253 if (fptr->file_symtab.sym_byaddr) 254 free(fptr->file_symtab.sym_byaddr); 255 256 if (fptr->file_dynsym.sym_elf) { 257 (void) elf_end(fptr->file_dynsym.sym_elf); 258 free(fptr->file_dynsym.sym_elfmem); 259 } 260 if (fptr->file_dynsym.sym_byname) 261 free(fptr->file_dynsym.sym_byname); 262 if (fptr->file_dynsym.sym_byaddr) 263 free(fptr->file_dynsym.sym_byaddr); 264 265 if (fptr->file_lo) 266 free(fptr->file_lo); 267 if (fptr->file_lname) 268 free(fptr->file_lname); 269 if (fptr->file_rname) 270 free(fptr->file_rname); 271 if (fptr->file_elf) 272 (void) elf_end(fptr->file_elf); 273 if (fptr->file_elfmem != NULL) 274 free(fptr->file_elfmem); 275 if (fptr->file_fd >= 0) 276 (void) close(fptr->file_fd); 277 if (fptr->file_ctfp) { 278 ctf_close(fptr->file_ctfp); 279 free(fptr->file_ctf_buf); 280 } 281 if (fptr->file_saddrs) 282 free(fptr->file_saddrs); 283 free(fptr); 284 P->num_files--; 285 } 286 } 287 288 /* 289 * Deallocation function for a map_info_t 290 */ 291 static void 292 map_info_free(struct ps_prochandle *P, map_info_t *mptr) 293 { 294 file_info_t *fptr; 295 296 if ((fptr = mptr->map_file) != NULL) { 297 if (fptr->file_map == mptr) 298 fptr->file_map = NULL; 299 file_info_free(P, fptr); 300 } 301 if (P->execname && mptr == P->map_exec) { 302 free(P->execname); 303 P->execname = NULL; 304 } 305 if (P->auxv && (mptr == P->map_exec || mptr == P->map_ldso)) { 306 free(P->auxv); 307 P->auxv = NULL; 308 P->nauxv = 0; 309 } 310 if (mptr == P->map_exec) 311 P->map_exec = NULL; 312 if (mptr == P->map_ldso) 313 P->map_ldso = NULL; 314 } 315 316 /* 317 * Call-back function for librtld_db to iterate through all of its shared 318 * libraries. We use this to get the load object names for the mappings. 319 */ 320 static int 321 map_iter(const rd_loadobj_t *lop, void *cd) 322 { 323 char buf[PATH_MAX]; 324 struct ps_prochandle *P = cd; 325 map_info_t *mptr; 326 file_info_t *fptr; 327 328 dprintf("encountered rd object at %p\n", (void *)lop->rl_base); 329 330 if ((mptr = Paddr2mptr(P, lop->rl_base)) == NULL) { 331 dprintf("map_iter: base address doesn't match any mapping\n"); 332 return (1); /* Base address does not match any mapping */ 333 } 334 335 if ((fptr = mptr->map_file) == NULL && 336 (fptr = file_info_new(P, mptr)) == NULL) { 337 dprintf("map_iter: failed to allocate a new file_info_t\n"); 338 return (1); /* Failed to allocate a new file_info_t */ 339 } 340 341 if ((fptr->file_lo == NULL) && 342 (fptr->file_lo = malloc(sizeof (rd_loadobj_t))) == NULL) { 343 dprintf("map_iter: failed to allocate rd_loadobj_t\n"); 344 file_info_free(P, fptr); 345 return (1); /* Failed to allocate rd_loadobj_t */ 346 } 347 348 fptr->file_map = mptr; 349 *fptr->file_lo = *lop; 350 351 fptr->file_lo->rl_plt_base = fptr->file_plt_base; 352 fptr->file_lo->rl_plt_size = fptr->file_plt_size; 353 354 if (fptr->file_lname) { 355 free(fptr->file_lname); 356 fptr->file_lname = NULL; 357 fptr->file_lbase = NULL; 358 } 359 if (fptr->file_rname) { 360 free(fptr->file_rname); 361 fptr->file_rname = NULL; 362 fptr->file_rbase = NULL; 363 } 364 365 if (Pread_string(P, buf, sizeof (buf), lop->rl_nameaddr) > 0) { 366 if ((fptr->file_lname = strdup(buf)) != NULL) 367 fptr->file_lbase = basename(fptr->file_lname); 368 } else { 369 dprintf("map_iter: failed to read string at %p\n", 370 (void *)lop->rl_nameaddr); 371 } 372 373 if ((Pfindmap(P, mptr, buf, sizeof (buf)) != NULL) && 374 ((fptr->file_rname = strdup(buf)) != NULL)) 375 fptr->file_rbase = basename(fptr->file_rname); 376 377 dprintf("loaded rd object %s lmid %lx\n", 378 fptr->file_lname ? buf : "<NULL>", lop->rl_lmident); 379 return (1); 380 } 381 382 static void 383 map_set(struct ps_prochandle *P, map_info_t *mptr, const char *lname) 384 { 385 file_info_t *fptr; 386 387 if ((fptr = mptr->map_file) == NULL && 388 (fptr = file_info_new(P, mptr)) == NULL) 389 return; /* Failed to allocate a new file_info_t */ 390 391 fptr->file_map = mptr; 392 393 if ((fptr->file_lo == NULL) && 394 (fptr->file_lo = malloc(sizeof (rd_loadobj_t))) == NULL) { 395 file_info_free(P, fptr); 396 return; /* Failed to allocate rd_loadobj_t */ 397 } 398 399 (void) memset(fptr->file_lo, 0, sizeof (rd_loadobj_t)); 400 fptr->file_lo->rl_base = mptr->map_pmap.pr_vaddr; 401 fptr->file_lo->rl_bend = 402 mptr->map_pmap.pr_vaddr + mptr->map_pmap.pr_size; 403 404 fptr->file_lo->rl_plt_base = fptr->file_plt_base; 405 fptr->file_lo->rl_plt_size = fptr->file_plt_size; 406 407 if ((fptr->file_lname == NULL) && 408 (fptr->file_lname = strdup(lname)) != NULL) 409 fptr->file_lbase = basename(fptr->file_lname); 410 411 /* 412 * Don't bother to set file_rname/file_rbase since lname is really 413 * just a token name (either "a.out" or "ld.so.1") and not a real 414 * filesystem object path. 415 */ 416 } 417 418 static void 419 load_static_maps(struct ps_prochandle *P) 420 { 421 map_info_t *mptr; 422 423 /* 424 * Construct the map for the a.out. 425 */ 426 if ((mptr = object_name_to_map(P, PR_LMID_EVERY, PR_OBJ_EXEC)) != NULL) 427 map_set(P, mptr, "a.out"); 428 429 /* 430 * If the dynamic linker exists for this process, 431 * construct the map for it. 432 */ 433 if (Pgetauxval(P, AT_BASE) != -1L && 434 (mptr = object_name_to_map(P, PR_LMID_EVERY, PR_OBJ_LDSO)) != NULL) 435 map_set(P, mptr, "ld.so.1"); 436 } 437 438 /* 439 * Go through all the address space mappings, validating or updating 440 * the information already gathered, or gathering new information. 441 * 442 * This function is only called when we suspect that the mappings have changed 443 * because this is the first time we're calling it or because of rtld activity. 444 */ 445 void 446 Pupdate_maps(struct ps_prochandle *P) 447 { 448 char mapfile[PATH_MAX]; 449 int mapfd; 450 struct stat statb; 451 prmap_t *Pmap = NULL; 452 prmap_t *pmap; 453 ssize_t nmap; 454 int i; 455 uint_t oldmapcount; 456 map_info_t *newmap, *newp; 457 map_info_t *mptr; 458 459 if (P->info_valid || P->state == PS_UNDEAD) 460 return; 461 462 Preadauxvec(P); 463 464 (void) snprintf(mapfile, sizeof (mapfile), "%s/%d/map", 465 procfs_path, (int)P->pid); 466 if ((mapfd = open(mapfile, O_RDONLY)) < 0 || 467 fstat(mapfd, &statb) != 0 || 468 statb.st_size < sizeof (prmap_t) || 469 (Pmap = malloc(statb.st_size)) == NULL || 470 (nmap = pread(mapfd, Pmap, statb.st_size, 0L)) <= 0 || 471 (nmap /= sizeof (prmap_t)) == 0) { 472 if (Pmap != NULL) 473 free(Pmap); 474 if (mapfd >= 0) 475 (void) close(mapfd); 476 Preset_maps(P); /* utter failure; destroy tables */ 477 return; 478 } 479 (void) close(mapfd); 480 481 if ((newmap = calloc(1, nmap * sizeof (map_info_t))) == NULL) 482 return; 483 484 /* 485 * We try to merge any file information we may have for existing 486 * mappings, to avoid having to rebuild the file info. 487 */ 488 mptr = P->mappings; 489 pmap = Pmap; 490 newp = newmap; 491 oldmapcount = P->map_count; 492 for (i = 0; i < nmap; i++, pmap++, newp++) { 493 494 if (oldmapcount == 0) { 495 /* 496 * We've exhausted all the old mappings. Every new 497 * mapping should be added. 498 */ 499 newp->map_pmap = *pmap; 500 501 } else if (pmap->pr_vaddr == mptr->map_pmap.pr_vaddr && 502 pmap->pr_size == mptr->map_pmap.pr_size && 503 pmap->pr_offset == mptr->map_pmap.pr_offset && 504 (pmap->pr_mflags & ~(MA_BREAK | MA_STACK)) == 505 (mptr->map_pmap.pr_mflags & ~(MA_BREAK | MA_STACK)) && 506 pmap->pr_pagesize == mptr->map_pmap.pr_pagesize && 507 pmap->pr_shmid == mptr->map_pmap.pr_shmid && 508 strcmp(pmap->pr_mapname, mptr->map_pmap.pr_mapname) == 0) { 509 510 /* 511 * This mapping matches exactly. Copy over the old 512 * mapping, taking care to get the latest flags. 513 * Make sure the associated file_info_t is updated 514 * appropriately. 515 */ 516 *newp = *mptr; 517 if (P->map_exec == mptr) 518 P->map_exec = newp; 519 if (P->map_ldso == mptr) 520 P->map_ldso = newp; 521 newp->map_pmap.pr_mflags = pmap->pr_mflags; 522 if (mptr->map_file != NULL && 523 mptr->map_file->file_map == mptr) 524 mptr->map_file->file_map = newp; 525 oldmapcount--; 526 mptr++; 527 528 } else if (pmap->pr_vaddr + pmap->pr_size > 529 mptr->map_pmap.pr_vaddr) { 530 531 /* 532 * The old mapping doesn't exist any more, remove it 533 * from the list. 534 */ 535 map_info_free(P, mptr); 536 oldmapcount--; 537 i--; 538 newp--; 539 pmap--; 540 mptr++; 541 542 } else { 543 544 /* 545 * This is a new mapping, add it directly. 546 */ 547 newp->map_pmap = *pmap; 548 } 549 } 550 551 /* 552 * Free any old maps 553 */ 554 while (oldmapcount) { 555 map_info_free(P, mptr); 556 oldmapcount--; 557 mptr++; 558 } 559 560 free(Pmap); 561 if (P->mappings != NULL) 562 free(P->mappings); 563 P->mappings = newmap; 564 P->map_count = P->map_alloc = nmap; 565 P->info_valid = 1; 566 567 /* 568 * Consult librtld_db to get the load object 569 * names for all of the shared libraries. 570 */ 571 if (P->rap != NULL) 572 (void) rd_loadobj_iter(P->rap, map_iter, P); 573 } 574 575 /* 576 * Update all of the mappings and rtld_db as if by Pupdate_maps(), and then 577 * forcibly cache all of the symbol tables associated with all object files. 578 */ 579 void 580 Pupdate_syms(struct ps_prochandle *P) 581 { 582 file_info_t *fptr; 583 int i; 584 585 Pupdate_maps(P); 586 587 for (i = 0, fptr = list_next(&P->file_head); i < P->num_files; 588 i++, fptr = list_next(fptr)) { 589 Pbuild_file_symtab(P, fptr); 590 (void) Pbuild_file_ctf(P, fptr); 591 } 592 } 593 594 /* 595 * Return the librtld_db agent handle for the victim process. 596 * The handle will become invalid at the next successful exec() and the 597 * client (caller of proc_rd_agent()) must not use it beyond that point. 598 * If the process is already dead, we've already tried our best to 599 * create the agent during core file initialization. 600 */ 601 rd_agent_t * 602 Prd_agent(struct ps_prochandle *P) 603 { 604 if (P->rap == NULL && P->state != PS_DEAD && P->state != PS_IDLE) { 605 Pupdate_maps(P); 606 if (P->num_files == 0) 607 load_static_maps(P); 608 rd_log(_libproc_debug); 609 if ((P->rap = rd_new(P)) != NULL) 610 (void) rd_loadobj_iter(P->rap, map_iter, P); 611 } 612 return (P->rap); 613 } 614 615 /* 616 * Return the prmap_t structure containing 'addr', but only if it 617 * is in the dynamic linker's link map and is the text section. 618 */ 619 const prmap_t * 620 Paddr_to_text_map(struct ps_prochandle *P, uintptr_t addr) 621 { 622 map_info_t *mptr; 623 624 if (!P->info_valid) 625 Pupdate_maps(P); 626 627 if ((mptr = Paddr2mptr(P, addr)) != NULL) { 628 file_info_t *fptr = build_map_symtab(P, mptr); 629 const prmap_t *pmp = &mptr->map_pmap; 630 631 /* 632 * Assume that if rl_data_base is NULL, it means that no 633 * data section was found for this load object, and that 634 * a section must be text. Otherwise, a section will be 635 * text unless it ends above the start of the data 636 * section. 637 */ 638 if (fptr != NULL && fptr->file_lo != NULL && 639 (fptr->file_lo->rl_data_base == NULL || 640 pmp->pr_vaddr + pmp->pr_size < 641 fptr->file_lo->rl_data_base)) 642 return (pmp); 643 } 644 645 return (NULL); 646 } 647 648 /* 649 * Return the prmap_t structure containing 'addr' (no restrictions on 650 * the type of mapping). 651 */ 652 const prmap_t * 653 Paddr_to_map(struct ps_prochandle *P, uintptr_t addr) 654 { 655 map_info_t *mptr; 656 657 if (!P->info_valid) 658 Pupdate_maps(P); 659 660 if ((mptr = Paddr2mptr(P, addr)) != NULL) 661 return (&mptr->map_pmap); 662 663 return (NULL); 664 } 665 666 /* 667 * Convert a full or partial load object name to the prmap_t for its 668 * corresponding primary text mapping. 669 */ 670 const prmap_t * 671 Plmid_to_map(struct ps_prochandle *P, Lmid_t lmid, const char *name) 672 { 673 map_info_t *mptr; 674 675 if (name == PR_OBJ_EVERY) 676 return (NULL); /* A reasonable mistake */ 677 678 if ((mptr = object_name_to_map(P, lmid, name)) != NULL) 679 return (&mptr->map_pmap); 680 681 return (NULL); 682 } 683 684 const prmap_t * 685 Pname_to_map(struct ps_prochandle *P, const char *name) 686 { 687 return (Plmid_to_map(P, PR_LMID_EVERY, name)); 688 } 689 690 const rd_loadobj_t * 691 Paddr_to_loadobj(struct ps_prochandle *P, uintptr_t addr) 692 { 693 map_info_t *mptr; 694 695 if (!P->info_valid) 696 Pupdate_maps(P); 697 698 if ((mptr = Paddr2mptr(P, addr)) == NULL) 699 return (NULL); 700 701 /* 702 * By building the symbol table, we implicitly bring the PLT 703 * information up to date in the load object. 704 */ 705 (void) build_map_symtab(P, mptr); 706 707 return (mptr->map_file->file_lo); 708 } 709 710 const rd_loadobj_t * 711 Plmid_to_loadobj(struct ps_prochandle *P, Lmid_t lmid, const char *name) 712 { 713 map_info_t *mptr; 714 715 if (name == PR_OBJ_EVERY) 716 return (NULL); 717 718 if ((mptr = object_name_to_map(P, lmid, name)) == NULL) 719 return (NULL); 720 721 /* 722 * By building the symbol table, we implicitly bring the PLT 723 * information up to date in the load object. 724 */ 725 (void) build_map_symtab(P, mptr); 726 727 return (mptr->map_file->file_lo); 728 } 729 730 const rd_loadobj_t * 731 Pname_to_loadobj(struct ps_prochandle *P, const char *name) 732 { 733 return (Plmid_to_loadobj(P, PR_LMID_EVERY, name)); 734 } 735 736 ctf_file_t * 737 Pbuild_file_ctf(struct ps_prochandle *P, file_info_t *fptr) 738 { 739 ctf_sect_t ctdata, symtab, strtab; 740 sym_tbl_t *symp; 741 int err; 742 743 if (fptr->file_ctfp != NULL) 744 return (fptr->file_ctfp); 745 746 Pbuild_file_symtab(P, fptr); 747 748 if (fptr->file_ctf_size == 0) 749 return (NULL); 750 751 symp = fptr->file_ctf_dyn ? &fptr->file_dynsym : &fptr->file_symtab; 752 if (symp->sym_data_pri == NULL) 753 return (NULL); 754 755 /* 756 * The buffer may alread be allocated if this is a core file that 757 * contained CTF data for this file. 758 */ 759 if (fptr->file_ctf_buf == NULL) { 760 fptr->file_ctf_buf = malloc(fptr->file_ctf_size); 761 if (fptr->file_ctf_buf == NULL) { 762 dprintf("failed to allocate ctf buffer\n"); 763 return (NULL); 764 } 765 766 if (pread(fptr->file_fd, fptr->file_ctf_buf, 767 fptr->file_ctf_size, fptr->file_ctf_off) != 768 fptr->file_ctf_size) { 769 free(fptr->file_ctf_buf); 770 fptr->file_ctf_buf = NULL; 771 dprintf("failed to read ctf data\n"); 772 return (NULL); 773 } 774 } 775 776 ctdata.cts_name = ".SUNW_ctf"; 777 ctdata.cts_type = SHT_PROGBITS; 778 ctdata.cts_flags = 0; 779 ctdata.cts_data = fptr->file_ctf_buf; 780 ctdata.cts_size = fptr->file_ctf_size; 781 ctdata.cts_entsize = 1; 782 ctdata.cts_offset = 0; 783 784 symtab.cts_name = fptr->file_ctf_dyn ? ".dynsym" : ".symtab"; 785 symtab.cts_type = symp->sym_hdr_pri.sh_type; 786 symtab.cts_flags = symp->sym_hdr_pri.sh_flags; 787 symtab.cts_data = symp->sym_data_pri->d_buf; 788 symtab.cts_size = symp->sym_hdr_pri.sh_size; 789 symtab.cts_entsize = symp->sym_hdr_pri.sh_entsize; 790 symtab.cts_offset = symp->sym_hdr_pri.sh_offset; 791 792 strtab.cts_name = fptr->file_ctf_dyn ? ".dynstr" : ".strtab"; 793 strtab.cts_type = symp->sym_strhdr.sh_type; 794 strtab.cts_flags = symp->sym_strhdr.sh_flags; 795 strtab.cts_data = symp->sym_strs; 796 strtab.cts_size = symp->sym_strhdr.sh_size; 797 strtab.cts_entsize = symp->sym_strhdr.sh_entsize; 798 strtab.cts_offset = symp->sym_strhdr.sh_offset; 799 800 fptr->file_ctfp = ctf_bufopen(&ctdata, &symtab, &strtab, &err); 801 if (fptr->file_ctfp == NULL) { 802 free(fptr->file_ctf_buf); 803 fptr->file_ctf_buf = NULL; 804 return (NULL); 805 } 806 807 dprintf("loaded %lu bytes of CTF data for %s\n", 808 (ulong_t)fptr->file_ctf_size, fptr->file_pname); 809 810 return (fptr->file_ctfp); 811 } 812 813 ctf_file_t * 814 Paddr_to_ctf(struct ps_prochandle *P, uintptr_t addr) 815 { 816 map_info_t *mptr; 817 file_info_t *fptr; 818 819 if (!P->info_valid) 820 Pupdate_maps(P); 821 822 if ((mptr = Paddr2mptr(P, addr)) == NULL || 823 (fptr = mptr->map_file) == NULL) 824 return (NULL); 825 826 return (Pbuild_file_ctf(P, fptr)); 827 } 828 829 ctf_file_t * 830 Plmid_to_ctf(struct ps_prochandle *P, Lmid_t lmid, const char *name) 831 { 832 map_info_t *mptr; 833 file_info_t *fptr; 834 835 if (name == PR_OBJ_EVERY) 836 return (NULL); 837 838 if ((mptr = object_name_to_map(P, lmid, name)) == NULL || 839 (fptr = mptr->map_file) == NULL) 840 return (NULL); 841 842 return (Pbuild_file_ctf(P, fptr)); 843 } 844 845 ctf_file_t * 846 Pname_to_ctf(struct ps_prochandle *P, const char *name) 847 { 848 return (Plmid_to_ctf(P, PR_LMID_EVERY, name)); 849 } 850 851 /* 852 * If we're not a core file, re-read the /proc/<pid>/auxv file and store 853 * its contents in P->auxv. In the case of a core file, we either 854 * initialized P->auxv in Pcore() from the NT_AUXV, or we don't have an 855 * auxv because the note was missing. 856 */ 857 void 858 Preadauxvec(struct ps_prochandle *P) 859 { 860 char auxfile[64]; 861 struct stat statb; 862 ssize_t naux; 863 int fd; 864 865 if (P->state == PS_DEAD) 866 return; /* Already read during Pgrab_core() */ 867 if (P->state == PS_IDLE) 868 return; /* No aux vec for Pgrab_file() */ 869 870 if (P->auxv != NULL) { 871 free(P->auxv); 872 P->auxv = NULL; 873 P->nauxv = 0; 874 } 875 876 (void) snprintf(auxfile, sizeof (auxfile), "%s/%d/auxv", 877 procfs_path, (int)P->pid); 878 if ((fd = open(auxfile, O_RDONLY)) < 0) 879 return; 880 881 if (fstat(fd, &statb) == 0 && 882 statb.st_size >= sizeof (auxv_t) && 883 (P->auxv = malloc(statb.st_size + sizeof (auxv_t))) != NULL) { 884 if ((naux = read(fd, P->auxv, statb.st_size)) < 0 || 885 (naux /= sizeof (auxv_t)) < 1) { 886 free(P->auxv); 887 P->auxv = NULL; 888 } else { 889 P->auxv[naux].a_type = AT_NULL; 890 P->auxv[naux].a_un.a_val = 0L; 891 P->nauxv = (int)naux; 892 } 893 } 894 895 (void) close(fd); 896 } 897 898 /* 899 * Return a requested element from the process's aux vector. 900 * Return -1 on failure (this is adequate for our purposes). 901 */ 902 long 903 Pgetauxval(struct ps_prochandle *P, int type) 904 { 905 auxv_t *auxv; 906 907 if (P->auxv == NULL) 908 Preadauxvec(P); 909 910 if (P->auxv == NULL) 911 return (-1); 912 913 for (auxv = P->auxv; auxv->a_type != AT_NULL; auxv++) { 914 if (auxv->a_type == type) 915 return (auxv->a_un.a_val); 916 } 917 918 return (-1); 919 } 920 921 /* 922 * Return a pointer to our internal copy of the process's aux vector. 923 * The caller should not hold on to this pointer across any libproc calls. 924 */ 925 const auxv_t * 926 Pgetauxvec(struct ps_prochandle *P) 927 { 928 static const auxv_t empty = { AT_NULL, 0L }; 929 930 if (P->auxv == NULL) 931 Preadauxvec(P); 932 933 if (P->auxv == NULL) 934 return (&empty); 935 936 return (P->auxv); 937 } 938 939 /* 940 * Return 1 if the given mapping corresponds to the given file_info_t's 941 * load object; return 0 otherwise. 942 */ 943 static int 944 is_mapping_in_file(struct ps_prochandle *P, map_info_t *mptr, file_info_t *fptr) 945 { 946 prmap_t *pmap = &mptr->map_pmap; 947 rd_loadobj_t *lop = fptr->file_lo; 948 uint_t i; 949 uintptr_t mstart, mend, sstart, send; 950 951 /* 952 * We can get for free the start address of the text and data 953 * sections of the load object. Start by seeing if the mapping 954 * encloses either of these. 955 */ 956 if ((pmap->pr_vaddr <= lop->rl_base && 957 lop->rl_base < pmap->pr_vaddr + pmap->pr_size) || 958 (pmap->pr_vaddr <= lop->rl_data_base && 959 lop->rl_data_base < pmap->pr_vaddr + pmap->pr_size)) 960 return (1); 961 962 /* 963 * It's still possible that this mapping correponds to the load 964 * object. Consider the example of a mapping whose start and end 965 * addresses correspond to those of the load object's text section. 966 * If the mapping splits, e.g. as a result of a segment demotion, 967 * then although both mappings are still backed by the same section, 968 * only one will be seen to enclose that section's start address. 969 * Thus, to be rigorous, we ask not whether this mapping encloses 970 * the start of a section, but whether there exists a section that 971 * overlaps this mapping. 972 * 973 * If we don't already have the section addresses, and we successfully 974 * get them, then we cache them in case we come here again. 975 */ 976 if (fptr->file_saddrs == NULL && 977 (fptr->file_saddrs = get_saddrs(P, 978 fptr->file_map->map_pmap.pr_vaddr, &fptr->file_nsaddrs)) == NULL) 979 return (0); 980 981 mstart = mptr->map_pmap.pr_vaddr; 982 mend = mptr->map_pmap.pr_vaddr + mptr->map_pmap.pr_size; 983 for (i = 0; i < fptr->file_nsaddrs; i += 2) { 984 /* Does this section overlap the mapping? */ 985 sstart = fptr->file_saddrs[i]; 986 send = fptr->file_saddrs[i + 1]; 987 if (!(mend <= sstart || mstart >= send)) 988 return (1); 989 } 990 991 return (0); 992 } 993 994 /* 995 * Find or build the symbol table for the given mapping. 996 */ 997 static file_info_t * 998 build_map_symtab(struct ps_prochandle *P, map_info_t *mptr) 999 { 1000 prmap_t *pmap = &mptr->map_pmap; 1001 file_info_t *fptr; 1002 uint_t i; 1003 1004 if ((fptr = mptr->map_file) != NULL) { 1005 Pbuild_file_symtab(P, fptr); 1006 return (fptr); 1007 } 1008 1009 if (pmap->pr_mapname[0] == '\0') 1010 return (NULL); 1011 1012 /* 1013 * Attempt to find a matching file. 1014 * (A file can be mapped at several different addresses.) 1015 */ 1016 for (i = 0, fptr = list_next(&P->file_head); i < P->num_files; 1017 i++, fptr = list_next(fptr)) { 1018 if (strcmp(fptr->file_pname, pmap->pr_mapname) == 0 && 1019 fptr->file_lo && is_mapping_in_file(P, mptr, fptr)) { 1020 mptr->map_file = fptr; 1021 fptr->file_ref++; 1022 Pbuild_file_symtab(P, fptr); 1023 return (fptr); 1024 } 1025 } 1026 1027 /* 1028 * If we need to create a new file_info structure, iterate 1029 * through the load objects in order to attempt to connect 1030 * this new file with its primary text mapping. We again 1031 * need to handle ld.so as a special case because we need 1032 * to be able to bootstrap librtld_db. 1033 */ 1034 if ((fptr = file_info_new(P, mptr)) == NULL) 1035 return (NULL); 1036 1037 if (P->map_ldso != mptr) { 1038 if (P->rap != NULL) 1039 (void) rd_loadobj_iter(P->rap, map_iter, P); 1040 else 1041 (void) Prd_agent(P); 1042 } else { 1043 fptr->file_map = mptr; 1044 } 1045 1046 /* 1047 * If librtld_db wasn't able to help us connect the file to a primary 1048 * text mapping, set file_map to the current mapping because we require 1049 * fptr->file_map to be set in Pbuild_file_symtab. librtld_db may be 1050 * unaware of what's going on in the rare case that a legitimate ELF 1051 * file has been mmap(2)ed into the process address space *without* 1052 * the use of dlopen(3x). 1053 */ 1054 if (fptr->file_map == NULL) 1055 fptr->file_map = mptr; 1056 1057 Pbuild_file_symtab(P, fptr); 1058 1059 return (fptr); 1060 } 1061 1062 static int 1063 read_ehdr32(struct ps_prochandle *P, Elf32_Ehdr *ehdr, uint_t *phnum, 1064 uintptr_t addr) 1065 { 1066 if (Pread(P, ehdr, sizeof (*ehdr), addr) != sizeof (*ehdr)) 1067 return (-1); 1068 1069 if (ehdr->e_ident[EI_MAG0] != ELFMAG0 || 1070 ehdr->e_ident[EI_MAG1] != ELFMAG1 || 1071 ehdr->e_ident[EI_MAG2] != ELFMAG2 || 1072 ehdr->e_ident[EI_MAG3] != ELFMAG3 || 1073 ehdr->e_ident[EI_CLASS] != ELFCLASS32 || 1074 #ifdef _BIG_ENDIAN 1075 ehdr->e_ident[EI_DATA] != ELFDATA2MSB || 1076 #else 1077 ehdr->e_ident[EI_DATA] != ELFDATA2LSB || 1078 #endif 1079 ehdr->e_ident[EI_VERSION] != EV_CURRENT) 1080 return (-1); 1081 1082 if ((*phnum = ehdr->e_phnum) == PN_XNUM) { 1083 Elf32_Shdr shdr0; 1084 1085 if (ehdr->e_shoff == 0 || ehdr->e_shentsize < sizeof (shdr0) || 1086 Pread(P, &shdr0, sizeof (shdr0), addr + ehdr->e_shoff) != 1087 sizeof (shdr0)) 1088 return (-1); 1089 1090 if (shdr0.sh_info != 0) 1091 *phnum = shdr0.sh_info; 1092 } 1093 1094 return (0); 1095 } 1096 1097 static int 1098 read_dynamic_phdr32(struct ps_prochandle *P, const Elf32_Ehdr *ehdr, 1099 uint_t phnum, Elf32_Phdr *phdr, uintptr_t addr) 1100 { 1101 uint_t i; 1102 1103 for (i = 0; i < phnum; i++) { 1104 uintptr_t a = addr + ehdr->e_phoff + i * ehdr->e_phentsize; 1105 if (Pread(P, phdr, sizeof (*phdr), a) != sizeof (*phdr)) 1106 return (-1); 1107 1108 if (phdr->p_type == PT_DYNAMIC) 1109 return (0); 1110 } 1111 1112 return (-1); 1113 } 1114 1115 #ifdef _LP64 1116 static int 1117 read_ehdr64(struct ps_prochandle *P, Elf64_Ehdr *ehdr, uint_t *phnum, 1118 uintptr_t addr) 1119 { 1120 if (Pread(P, ehdr, sizeof (Elf64_Ehdr), addr) != sizeof (Elf64_Ehdr)) 1121 return (-1); 1122 1123 if (ehdr->e_ident[EI_MAG0] != ELFMAG0 || 1124 ehdr->e_ident[EI_MAG1] != ELFMAG1 || 1125 ehdr->e_ident[EI_MAG2] != ELFMAG2 || 1126 ehdr->e_ident[EI_MAG3] != ELFMAG3 || 1127 ehdr->e_ident[EI_CLASS] != ELFCLASS64 || 1128 #ifdef _BIG_ENDIAN 1129 ehdr->e_ident[EI_DATA] != ELFDATA2MSB || 1130 #else 1131 ehdr->e_ident[EI_DATA] != ELFDATA2LSB || 1132 #endif 1133 ehdr->e_ident[EI_VERSION] != EV_CURRENT) 1134 return (-1); 1135 1136 if ((*phnum = ehdr->e_phnum) == PN_XNUM) { 1137 Elf64_Shdr shdr0; 1138 1139 if (ehdr->e_shoff == 0 || ehdr->e_shentsize < sizeof (shdr0) || 1140 Pread(P, &shdr0, sizeof (shdr0), addr + ehdr->e_shoff) != 1141 sizeof (shdr0)) 1142 return (-1); 1143 1144 if (shdr0.sh_info != 0) 1145 *phnum = shdr0.sh_info; 1146 } 1147 1148 return (0); 1149 } 1150 1151 static int 1152 read_dynamic_phdr64(struct ps_prochandle *P, const Elf64_Ehdr *ehdr, 1153 uint_t phnum, Elf64_Phdr *phdr, uintptr_t addr) 1154 { 1155 uint_t i; 1156 1157 for (i = 0; i < phnum; i++) { 1158 uintptr_t a = addr + ehdr->e_phoff + i * ehdr->e_phentsize; 1159 if (Pread(P, phdr, sizeof (*phdr), a) != sizeof (*phdr)) 1160 return (-1); 1161 1162 if (phdr->p_type == PT_DYNAMIC) 1163 return (0); 1164 } 1165 1166 return (-1); 1167 } 1168 #endif /* _LP64 */ 1169 1170 /* 1171 * The text segment for each load object contains the elf header and 1172 * program headers. We can use this information to determine if the 1173 * file that corresponds to the load object is the same file that 1174 * was loaded into the process's address space. There can be a discrepency 1175 * if a file is recompiled after the process is started or if the target 1176 * represents a core file from a differently configured system -- two 1177 * common examples. The DT_CHECKSUM entry in the dynamic section 1178 * provides an easy method of comparison. It is important to note that 1179 * the dynamic section usually lives in the data segment, but the meta 1180 * data we use to find the dynamic section lives in the text segment so 1181 * if either of those segments is absent we can't proceed. 1182 * 1183 * We're looking through the elf file for several items: the symbol tables 1184 * (both dynsym and symtab), the procedure linkage table (PLT) base, 1185 * size, and relocation base, and the CTF information. Most of this can 1186 * be recovered from the loaded image of the file itself, the exceptions 1187 * being the symtab and CTF data. 1188 * 1189 * First we try to open the file that we think corresponds to the load 1190 * object, if the DT_CHECKSUM values match, we're all set, and can simply 1191 * recover all the information we need from the file. If the values of 1192 * DT_CHECKSUM don't match, or if we can't access the file for whatever 1193 * reasaon, we fake up a elf file to use in its stead. If we can't read 1194 * the elf data in the process's address space, we fall back to using 1195 * the file even though it may give inaccurate information. 1196 * 1197 * The elf file that we fake up has to consist of sections for the 1198 * dynsym, the PLT and the dynamic section. Note that in the case of a 1199 * core file, we'll get the CTF data in the file_info_t later on from 1200 * a section embedded the core file (if it's present). 1201 * 1202 * file_differs() conservatively looks for mismatched files, identifying 1203 * a match when there is any ambiguity (since that's the legacy behavior). 1204 */ 1205 static int 1206 file_differs(struct ps_prochandle *P, Elf *elf, file_info_t *fptr) 1207 { 1208 Elf_Scn *scn; 1209 GElf_Shdr shdr; 1210 GElf_Dyn dyn; 1211 Elf_Data *data; 1212 uint_t i, ndyn; 1213 GElf_Xword cksum; 1214 uintptr_t addr; 1215 1216 if (fptr->file_map == NULL) 1217 return (0); 1218 1219 if ((Pcontent(P) & (CC_CONTENT_TEXT | CC_CONTENT_DATA)) != 1220 (CC_CONTENT_TEXT | CC_CONTENT_DATA)) 1221 return (0); 1222 1223 /* 1224 * First, we find the checksum value in the elf file. 1225 */ 1226 scn = NULL; 1227 while ((scn = elf_nextscn(elf, scn)) != NULL) { 1228 if (gelf_getshdr(scn, &shdr) != NULL && 1229 shdr.sh_type == SHT_DYNAMIC) 1230 goto found_shdr; 1231 } 1232 return (0); 1233 1234 found_shdr: 1235 if ((data = elf_getdata(scn, NULL)) == NULL) 1236 return (0); 1237 1238 if (P->status.pr_dmodel == PR_MODEL_ILP32) 1239 ndyn = shdr.sh_size / sizeof (Elf32_Dyn); 1240 #ifdef _LP64 1241 else if (P->status.pr_dmodel == PR_MODEL_LP64) 1242 ndyn = shdr.sh_size / sizeof (Elf64_Dyn); 1243 #endif 1244 else 1245 return (0); 1246 1247 for (i = 0; i < ndyn; i++) { 1248 if (gelf_getdyn(data, i, &dyn) != NULL && 1249 dyn.d_tag == DT_CHECKSUM) 1250 goto found_cksum; 1251 } 1252 1253 /* 1254 * The in-memory ELF has no DT_CHECKSUM section, but we will report it 1255 * as matching the file anyhow. 1256 */ 1257 return (0); 1258 1259 found_cksum: 1260 cksum = dyn.d_un.d_val; 1261 dprintf("elf cksum value is %llx\n", (u_longlong_t)cksum); 1262 1263 /* 1264 * Get the base of the text mapping that corresponds to this file. 1265 */ 1266 addr = fptr->file_map->map_pmap.pr_vaddr; 1267 1268 if (P->status.pr_dmodel == PR_MODEL_ILP32) { 1269 Elf32_Ehdr ehdr; 1270 Elf32_Phdr phdr; 1271 Elf32_Dyn dync, *dynp; 1272 uint_t phnum, i; 1273 1274 if (read_ehdr32(P, &ehdr, &phnum, addr) != 0 || 1275 read_dynamic_phdr32(P, &ehdr, phnum, &phdr, addr) != 0) 1276 return (0); 1277 1278 if (ehdr.e_type == ET_DYN) 1279 phdr.p_vaddr += addr; 1280 if ((dynp = malloc(phdr.p_filesz)) == NULL) 1281 return (0); 1282 dync.d_tag = DT_NULL; 1283 if (Pread(P, dynp, phdr.p_filesz, phdr.p_vaddr) != 1284 phdr.p_filesz) { 1285 free(dynp); 1286 return (0); 1287 } 1288 1289 for (i = 0; i < phdr.p_filesz / sizeof (Elf32_Dyn); i++) { 1290 if (dynp[i].d_tag == DT_CHECKSUM) 1291 dync = dynp[i]; 1292 } 1293 1294 free(dynp); 1295 1296 if (dync.d_tag != DT_CHECKSUM) 1297 return (0); 1298 1299 dprintf("image cksum value is %llx\n", 1300 (u_longlong_t)dync.d_un.d_val); 1301 return (dync.d_un.d_val != cksum); 1302 #ifdef _LP64 1303 } else if (P->status.pr_dmodel == PR_MODEL_LP64) { 1304 Elf64_Ehdr ehdr; 1305 Elf64_Phdr phdr; 1306 Elf64_Dyn dync, *dynp; 1307 uint_t phnum, i; 1308 1309 if (read_ehdr64(P, &ehdr, &phnum, addr) != 0 || 1310 read_dynamic_phdr64(P, &ehdr, phnum, &phdr, addr) != 0) 1311 return (0); 1312 1313 if (ehdr.e_type == ET_DYN) 1314 phdr.p_vaddr += addr; 1315 if ((dynp = malloc(phdr.p_filesz)) == NULL) 1316 return (0); 1317 dync.d_tag = DT_NULL; 1318 if (Pread(P, dynp, phdr.p_filesz, phdr.p_vaddr) != 1319 phdr.p_filesz) { 1320 free(dynp); 1321 return (0); 1322 } 1323 1324 for (i = 0; i < phdr.p_filesz / sizeof (Elf64_Dyn); i++) { 1325 if (dynp[i].d_tag == DT_CHECKSUM) 1326 dync = dynp[i]; 1327 } 1328 1329 free(dynp); 1330 1331 if (dync.d_tag != DT_CHECKSUM) 1332 return (0); 1333 1334 dprintf("image cksum value is %llx\n", 1335 (u_longlong_t)dync.d_un.d_val); 1336 return (dync.d_un.d_val != cksum); 1337 #endif /* _LP64 */ 1338 } 1339 1340 return (0); 1341 } 1342 1343 /* 1344 * Read data from the specified process and construct an in memory 1345 * image of an ELF file that represents it well enough to let 1346 * us probe it for information. 1347 */ 1348 static Elf * 1349 fake_elf(struct ps_prochandle *P, file_info_t *fptr) 1350 { 1351 Elf *elf; 1352 uintptr_t addr; 1353 uint_t phnum; 1354 1355 if (fptr->file_map == NULL) 1356 return (NULL); 1357 1358 if ((Pcontent(P) & (CC_CONTENT_TEXT | CC_CONTENT_DATA)) != 1359 (CC_CONTENT_TEXT | CC_CONTENT_DATA)) 1360 return (NULL); 1361 1362 addr = fptr->file_map->map_pmap.pr_vaddr; 1363 1364 if (P->status.pr_dmodel == PR_MODEL_ILP32) { 1365 Elf32_Ehdr ehdr; 1366 Elf32_Phdr phdr; 1367 1368 if ((read_ehdr32(P, &ehdr, &phnum, addr) != 0) || 1369 read_dynamic_phdr32(P, &ehdr, phnum, &phdr, addr) != 0) 1370 return (NULL); 1371 1372 elf = fake_elf32(P, fptr, addr, &ehdr, phnum, &phdr); 1373 #ifdef _LP64 1374 } else { 1375 Elf64_Ehdr ehdr; 1376 Elf64_Phdr phdr; 1377 1378 if (read_ehdr64(P, &ehdr, &phnum, addr) != 0 || 1379 read_dynamic_phdr64(P, &ehdr, phnum, &phdr, addr) != 0) 1380 return (NULL); 1381 1382 elf = fake_elf64(P, fptr, addr, &ehdr, phnum, &phdr); 1383 #endif 1384 } 1385 1386 return (elf); 1387 } 1388 1389 /* 1390 * We wouldn't need these if qsort(3C) took an argument for the callback... 1391 */ 1392 static mutex_t sort_mtx = DEFAULTMUTEX; 1393 static char *sort_strs; 1394 static GElf_Sym *sort_syms; 1395 1396 int 1397 byaddr_cmp_common(GElf_Sym *a, char *aname, GElf_Sym *b, char *bname) 1398 { 1399 if (a->st_value < b->st_value) 1400 return (-1); 1401 if (a->st_value > b->st_value) 1402 return (1); 1403 1404 /* 1405 * Prefer the function to the non-function. 1406 */ 1407 if (GELF_ST_TYPE(a->st_info) != GELF_ST_TYPE(b->st_info)) { 1408 if (GELF_ST_TYPE(a->st_info) == STT_FUNC) 1409 return (-1); 1410 if (GELF_ST_TYPE(b->st_info) == STT_FUNC) 1411 return (1); 1412 } 1413 1414 /* 1415 * Prefer the weak or strong global symbol to the local symbol. 1416 */ 1417 if (GELF_ST_BIND(a->st_info) != GELF_ST_BIND(b->st_info)) { 1418 if (GELF_ST_BIND(b->st_info) == STB_LOCAL) 1419 return (-1); 1420 if (GELF_ST_BIND(a->st_info) == STB_LOCAL) 1421 return (1); 1422 } 1423 1424 /* 1425 * Prefer the symbol that doesn't begin with a '$' since compilers and 1426 * other symbol generators often use it as a prefix. 1427 */ 1428 if (*bname == '$') 1429 return (-1); 1430 if (*aname == '$') 1431 return (1); 1432 1433 /* 1434 * Prefer the name with fewer leading underscores in the name. 1435 */ 1436 while (*aname == '_' && *bname == '_') { 1437 aname++; 1438 bname++; 1439 } 1440 1441 if (*bname == '_') 1442 return (-1); 1443 if (*aname == '_') 1444 return (1); 1445 1446 /* 1447 * Prefer the symbol with the smaller size. 1448 */ 1449 if (a->st_size < b->st_size) 1450 return (-1); 1451 if (a->st_size > b->st_size) 1452 return (1); 1453 1454 /* 1455 * All other factors being equal, fall back to lexicographic order. 1456 */ 1457 return (strcmp(aname, bname)); 1458 } 1459 1460 static int 1461 byaddr_cmp(const void *aa, const void *bb) 1462 { 1463 GElf_Sym *a = &sort_syms[*(uint_t *)aa]; 1464 GElf_Sym *b = &sort_syms[*(uint_t *)bb]; 1465 char *aname = sort_strs + a->st_name; 1466 char *bname = sort_strs + b->st_name; 1467 1468 return (byaddr_cmp_common(a, aname, b, bname)); 1469 } 1470 1471 static int 1472 byname_cmp(const void *aa, const void *bb) 1473 { 1474 GElf_Sym *a = &sort_syms[*(uint_t *)aa]; 1475 GElf_Sym *b = &sort_syms[*(uint_t *)bb]; 1476 char *aname = sort_strs + a->st_name; 1477 char *bname = sort_strs + b->st_name; 1478 1479 return (strcmp(aname, bname)); 1480 } 1481 1482 /* 1483 * Given a symbol index, look up the corresponding symbol from the 1484 * given symbol table. 1485 * 1486 * This function allows the caller to treat the symbol table as a single 1487 * logical entity even though there may be 2 actual ELF symbol tables 1488 * involved. See the comments in Pcontrol.h for details. 1489 */ 1490 static GElf_Sym * 1491 symtab_getsym(sym_tbl_t *symtab, int ndx, GElf_Sym *dst) 1492 { 1493 /* If index is in range of primary symtab, look it up there */ 1494 if (ndx >= symtab->sym_symn_aux) { 1495 return (gelf_getsym(symtab->sym_data_pri, 1496 ndx - symtab->sym_symn_aux, dst)); 1497 } 1498 1499 /* Not in primary: Look it up in the auxiliary symtab */ 1500 return (gelf_getsym(symtab->sym_data_aux, ndx, dst)); 1501 } 1502 1503 void 1504 optimize_symtab(sym_tbl_t *symtab) 1505 { 1506 GElf_Sym *symp, *syms; 1507 uint_t i, *indexa, *indexb; 1508 size_t symn, strsz, count; 1509 1510 if (symtab == NULL || symtab->sym_data_pri == NULL || 1511 symtab->sym_byaddr != NULL) 1512 return; 1513 1514 symn = symtab->sym_symn; 1515 strsz = symtab->sym_strsz; 1516 1517 symp = syms = malloc(sizeof (GElf_Sym) * symn); 1518 if (symp == NULL) { 1519 dprintf("optimize_symtab: failed to malloc symbol array"); 1520 return; 1521 } 1522 1523 /* 1524 * First record all the symbols into a table and count up the ones 1525 * that we're interested in. We mark symbols as invalid by setting 1526 * the st_name to an illegal value. 1527 */ 1528 for (i = 0, count = 0; i < symn; i++, symp++) { 1529 if (symtab_getsym(symtab, i, symp) != NULL && 1530 symp->st_name < strsz && 1531 IS_DATA_TYPE(GELF_ST_TYPE(symp->st_info))) 1532 count++; 1533 else 1534 symp->st_name = strsz; 1535 } 1536 1537 /* 1538 * Allocate sufficient space for both tables and populate them 1539 * with the same symbols we just counted. 1540 */ 1541 symtab->sym_count = count; 1542 indexa = symtab->sym_byaddr = calloc(sizeof (uint_t), count); 1543 indexb = symtab->sym_byname = calloc(sizeof (uint_t), count); 1544 if (indexa == NULL || indexb == NULL) { 1545 dprintf( 1546 "optimize_symtab: failed to malloc symbol index arrays"); 1547 symtab->sym_count = 0; 1548 if (indexa != NULL) { /* First alloc succeeded. Free it */ 1549 free(indexa); 1550 symtab->sym_byaddr = NULL; 1551 } 1552 free(syms); 1553 return; 1554 } 1555 for (i = 0, symp = syms; i < symn; i++, symp++) { 1556 if (symp->st_name < strsz) 1557 *indexa++ = *indexb++ = i; 1558 } 1559 1560 /* 1561 * Sort the two tables according to the appropriate criteria, 1562 * unless the user has overridden this behaviour. 1563 * 1564 * An example where we might not sort the tables is the relatively 1565 * unusual case of a process with very large symbol tables in which 1566 * we perform few lookups. In such a case the total time would be 1567 * dominated by the sort. It is difficult to determine a priori 1568 * how many lookups an arbitrary client will perform, and 1569 * hence whether the symbol tables should be sorted. We therefore 1570 * sort the tables by default, but provide the user with a 1571 * "chicken switch" in the form of the LIBPROC_NO_QSORT 1572 * environment variable. 1573 */ 1574 if (!_libproc_no_qsort) { 1575 (void) mutex_lock(&sort_mtx); 1576 sort_strs = symtab->sym_strs; 1577 sort_syms = syms; 1578 1579 qsort(symtab->sym_byaddr, count, sizeof (uint_t), byaddr_cmp); 1580 qsort(symtab->sym_byname, count, sizeof (uint_t), byname_cmp); 1581 1582 sort_strs = NULL; 1583 sort_syms = NULL; 1584 (void) mutex_unlock(&sort_mtx); 1585 } 1586 1587 free(syms); 1588 } 1589 1590 /* 1591 * Build the symbol table for the given mapped file. 1592 */ 1593 void 1594 Pbuild_file_symtab(struct ps_prochandle *P, file_info_t *fptr) 1595 { 1596 char objectfile[PATH_MAX]; 1597 uint_t i; 1598 1599 GElf_Ehdr ehdr; 1600 GElf_Sym s; 1601 1602 Elf_Data *shdata; 1603 Elf_Scn *scn; 1604 Elf *elf; 1605 size_t nshdrs, shstrndx; 1606 1607 struct { 1608 GElf_Shdr c_shdr; 1609 Elf_Data *c_data; 1610 const char *c_name; 1611 } *cp, *cache = NULL, *dyn = NULL, *plt = NULL, *ctf = NULL; 1612 1613 if (fptr->file_init) 1614 return; /* We've already processed this file */ 1615 1616 /* 1617 * Mark the file_info struct as having the symbol table initialized 1618 * even if we fail below. We tried once; we don't try again. 1619 */ 1620 fptr->file_init = 1; 1621 1622 if (elf_version(EV_CURRENT) == EV_NONE) { 1623 dprintf("libproc ELF version is more recent than libelf\n"); 1624 return; 1625 } 1626 1627 if (P->state == PS_DEAD || P->state == PS_IDLE) { 1628 char *name; 1629 /* 1630 * If we're a not live, we can't open files from the /proc 1631 * object directory; we have only the mapping and file names 1632 * to guide us. We prefer the file_lname, but need to handle 1633 * the case of it being NULL in order to bootstrap: we first 1634 * come here during rd_new() when the only information we have 1635 * is interpreter name associated with the AT_BASE mapping. 1636 * 1637 * Also, if the zone associated with the core file seems 1638 * to exists on this machine we'll try to open the object 1639 * file within the zone. 1640 */ 1641 if (fptr->file_rname != NULL) 1642 name = fptr->file_rname; 1643 else if (fptr->file_lname != NULL) 1644 name = fptr->file_lname; 1645 else 1646 name = fptr->file_pname; 1647 (void) strlcpy(objectfile, name, sizeof (objectfile)); 1648 } else { 1649 (void) snprintf(objectfile, sizeof (objectfile), 1650 "%s/%d/object/%s", 1651 procfs_path, (int)P->pid, fptr->file_pname); 1652 } 1653 1654 /* 1655 * Open the object file, create the elf file, and then get the elf 1656 * header and .shstrtab data buffer so we can process sections by 1657 * name. If anything goes wrong try to fake up an elf file from 1658 * the in-core elf image. 1659 */ 1660 if ((fptr->file_fd = open(objectfile, O_RDONLY)) < 0) { 1661 dprintf("Pbuild_file_symtab: failed to open %s: %s\n", 1662 objectfile, strerror(errno)); 1663 1664 if ((elf = fake_elf(P, fptr)) == NULL || 1665 elf_kind(elf) != ELF_K_ELF || 1666 gelf_getehdr(elf, &ehdr) == NULL || 1667 elf_getshnum(elf, &nshdrs) == 0 || 1668 elf_getshstrndx(elf, &shstrndx) == 0 || 1669 (scn = elf_getscn(elf, shstrndx)) == NULL || 1670 (shdata = elf_getdata(scn, NULL)) == NULL) { 1671 dprintf("failed to fake up ELF file\n"); 1672 return; 1673 } 1674 1675 } else if ((elf = elf_begin(fptr->file_fd, ELF_C_READ, NULL)) == NULL || 1676 elf_kind(elf) != ELF_K_ELF || 1677 gelf_getehdr(elf, &ehdr) == NULL || 1678 elf_getshnum(elf, &nshdrs) == 0 || 1679 elf_getshstrndx(elf, &shstrndx) == 0 || 1680 (scn = elf_getscn(elf, shstrndx)) == NULL || 1681 (shdata = elf_getdata(scn, NULL)) == NULL) { 1682 int err = elf_errno(); 1683 1684 dprintf("failed to process ELF file %s: %s\n", 1685 objectfile, (err == 0) ? "<null>" : elf_errmsg(err)); 1686 1687 if ((elf = fake_elf(P, fptr)) == NULL || 1688 elf_kind(elf) != ELF_K_ELF || 1689 gelf_getehdr(elf, &ehdr) == NULL || 1690 elf_getshnum(elf, &nshdrs) == 0 || 1691 elf_getshstrndx(elf, &shstrndx) == 0 || 1692 (scn = elf_getscn(elf, shstrndx)) == NULL || 1693 (shdata = elf_getdata(scn, NULL)) == NULL) { 1694 dprintf("failed to fake up ELF file\n"); 1695 goto bad; 1696 } 1697 1698 } else if (file_differs(P, elf, fptr)) { 1699 Elf *newelf; 1700 1701 /* 1702 * Before we get too excited about this elf file, we'll check 1703 * its checksum value against the value we have in memory. If 1704 * they don't agree, we try to fake up a new elf file and 1705 * proceed with that instead. 1706 */ 1707 1708 dprintf("ELF file %s (%lx) doesn't match in-core image\n", 1709 fptr->file_pname, 1710 (ulong_t)fptr->file_map->map_pmap.pr_vaddr); 1711 1712 if ((newelf = fake_elf(P, fptr)) == NULL || 1713 elf_kind(newelf) != ELF_K_ELF || 1714 gelf_getehdr(newelf, &ehdr) == NULL || 1715 elf_getshnum(newelf, &nshdrs) == 0 || 1716 elf_getshstrndx(newelf, &shstrndx) == 0 || 1717 (scn = elf_getscn(newelf, shstrndx)) == NULL || 1718 (shdata = elf_getdata(scn, NULL)) == NULL) { 1719 dprintf("failed to fake up ELF file\n"); 1720 } else { 1721 (void) elf_end(elf); 1722 elf = newelf; 1723 1724 dprintf("switched to faked up ELF file\n"); 1725 } 1726 } 1727 1728 if ((cache = malloc(nshdrs * sizeof (*cache))) == NULL) { 1729 dprintf("failed to malloc section cache for %s\n", objectfile); 1730 goto bad; 1731 } 1732 1733 dprintf("processing ELF file %s\n", objectfile); 1734 fptr->file_class = ehdr.e_ident[EI_CLASS]; 1735 fptr->file_etype = ehdr.e_type; 1736 fptr->file_elf = elf; 1737 fptr->file_shstrs = shdata->d_buf; 1738 fptr->file_shstrsz = shdata->d_size; 1739 1740 /* 1741 * Iterate through each section, caching its section header, data 1742 * pointer, and name. We use this for handling sh_link values below. 1743 */ 1744 for (cp = cache + 1, scn = NULL; scn = elf_nextscn(elf, scn); cp++) { 1745 if (gelf_getshdr(scn, &cp->c_shdr) == NULL) { 1746 dprintf("Pbuild_file_symtab: Failed to get section " 1747 "header\n"); 1748 goto bad; /* Failed to get section header */ 1749 } 1750 1751 if ((cp->c_data = elf_getdata(scn, NULL)) == NULL) { 1752 dprintf("Pbuild_file_symtab: Failed to get section " 1753 "data\n"); 1754 goto bad; /* Failed to get section data */ 1755 } 1756 1757 if (cp->c_shdr.sh_name >= shdata->d_size) { 1758 dprintf("Pbuild_file_symtab: corrupt section name"); 1759 goto bad; /* Corrupt section name */ 1760 } 1761 1762 cp->c_name = (const char *)shdata->d_buf + cp->c_shdr.sh_name; 1763 } 1764 1765 /* 1766 * Now iterate through the section cache in order to locate info 1767 * for the .symtab, .dynsym, .SUNW_ldynsym, .dynamic, .plt, 1768 * and .SUNW_ctf sections: 1769 */ 1770 for (i = 1, cp = cache + 1; i < nshdrs; i++, cp++) { 1771 GElf_Shdr *shp = &cp->c_shdr; 1772 1773 if (shp->sh_type == SHT_SYMTAB || shp->sh_type == SHT_DYNSYM) { 1774 sym_tbl_t *symp = shp->sh_type == SHT_SYMTAB ? 1775 &fptr->file_symtab : &fptr->file_dynsym; 1776 /* 1777 * It's possible that the we already got the symbol 1778 * table from the core file itself. Either the file 1779 * differs in which case our faked up elf file will 1780 * only contain the dynsym (not the symtab) or the 1781 * file matches in which case we'll just be replacing 1782 * the symbol table we pulled out of the core file 1783 * with an equivalent one. In either case, this 1784 * check isn't essential, but it's a good idea. 1785 */ 1786 if (symp->sym_data_pri == NULL) { 1787 dprintf("Symbol table found for %s\n", 1788 objectfile); 1789 symp->sym_data_pri = cp->c_data; 1790 symp->sym_symn += 1791 shp->sh_size / shp->sh_entsize; 1792 symp->sym_strs = 1793 cache[shp->sh_link].c_data->d_buf; 1794 symp->sym_strsz = 1795 cache[shp->sh_link].c_data->d_size; 1796 symp->sym_hdr_pri = cp->c_shdr; 1797 symp->sym_strhdr = cache[shp->sh_link].c_shdr; 1798 } else { 1799 dprintf("Symbol table already there for %s\n", 1800 objectfile); 1801 } 1802 } else if (shp->sh_type == SHT_SUNW_LDYNSYM) { 1803 /* .SUNW_ldynsym section is auxiliary to .dynsym */ 1804 if (fptr->file_dynsym.sym_data_aux == NULL) { 1805 dprintf(".SUNW_ldynsym symbol table" 1806 " found for %s\n", objectfile); 1807 fptr->file_dynsym.sym_data_aux = cp->c_data; 1808 fptr->file_dynsym.sym_symn_aux = 1809 shp->sh_size / shp->sh_entsize; 1810 fptr->file_dynsym.sym_symn += 1811 fptr->file_dynsym.sym_symn_aux; 1812 fptr->file_dynsym.sym_hdr_aux = cp->c_shdr; 1813 } else { 1814 dprintf(".SUNW_ldynsym symbol table already" 1815 " there for %s\n", objectfile); 1816 } 1817 } else if (shp->sh_type == SHT_DYNAMIC) { 1818 dyn = cp; 1819 } else if (strcmp(cp->c_name, ".plt") == 0) { 1820 plt = cp; 1821 } else if (strcmp(cp->c_name, ".SUNW_ctf") == 0) { 1822 /* 1823 * Skip over bogus CTF sections so they don't come back 1824 * to haunt us later. 1825 */ 1826 if (shp->sh_link == 0 || 1827 shp->sh_link >= nshdrs || 1828 (cache[shp->sh_link].c_shdr.sh_type != SHT_DYNSYM && 1829 cache[shp->sh_link].c_shdr.sh_type != SHT_SYMTAB)) { 1830 dprintf("Bad sh_link %d for " 1831 "CTF\n", shp->sh_link); 1832 continue; 1833 } 1834 ctf = cp; 1835 } 1836 } 1837 1838 /* 1839 * At this point, we've found all the symbol tables we're ever going 1840 * to find: the ones in the loop above and possibly the symtab that 1841 * was included in the core file. Before we perform any lookups, we 1842 * create sorted versions to optimize for lookups. 1843 */ 1844 optimize_symtab(&fptr->file_symtab); 1845 optimize_symtab(&fptr->file_dynsym); 1846 1847 /* 1848 * Fill in the base address of the text mapping for shared libraries. 1849 * This allows us to translate symbols before librtld_db is ready. 1850 */ 1851 if (fptr->file_etype == ET_DYN) { 1852 fptr->file_dyn_base = fptr->file_map->map_pmap.pr_vaddr - 1853 fptr->file_map->map_pmap.pr_offset; 1854 dprintf("setting file_dyn_base for %s to %lx\n", 1855 objectfile, (long)fptr->file_dyn_base); 1856 } 1857 1858 /* 1859 * Record the CTF section information in the file info structure. 1860 */ 1861 if (ctf != NULL) { 1862 fptr->file_ctf_off = ctf->c_shdr.sh_offset; 1863 fptr->file_ctf_size = ctf->c_shdr.sh_size; 1864 if (ctf->c_shdr.sh_link != 0 && 1865 cache[ctf->c_shdr.sh_link].c_shdr.sh_type == SHT_DYNSYM) 1866 fptr->file_ctf_dyn = 1; 1867 } 1868 1869 if (fptr->file_lo == NULL) 1870 goto done; /* Nothing else to do if no load object info */ 1871 1872 /* 1873 * If the object is a shared library and we have a different rl_base 1874 * value, reset file_dyn_base according to librtld_db's information. 1875 */ 1876 if (fptr->file_etype == ET_DYN && 1877 fptr->file_lo->rl_base != fptr->file_dyn_base) { 1878 dprintf("resetting file_dyn_base for %s to %lx\n", 1879 objectfile, (long)fptr->file_lo->rl_base); 1880 fptr->file_dyn_base = fptr->file_lo->rl_base; 1881 } 1882 1883 /* 1884 * Fill in the PLT information for this file if a PLT symbol is found. 1885 */ 1886 if (sym_by_name(&fptr->file_dynsym, "_PROCEDURE_LINKAGE_TABLE_", &s, 1887 NULL) != NULL) { 1888 fptr->file_plt_base = s.st_value + fptr->file_dyn_base; 1889 fptr->file_plt_size = (plt != NULL) ? plt->c_shdr.sh_size : 0; 1890 1891 /* 1892 * Bring the load object up to date; it is the only way the 1893 * user has to access the PLT data. The PLT information in the 1894 * rd_loadobj_t is not set in the call to map_iter() (the 1895 * callback for rd_loadobj_iter) where we set file_lo. 1896 */ 1897 fptr->file_lo->rl_plt_base = fptr->file_plt_base; 1898 fptr->file_lo->rl_plt_size = fptr->file_plt_size; 1899 1900 dprintf("PLT found at %p, size = %lu\n", 1901 (void *)fptr->file_plt_base, (ulong_t)fptr->file_plt_size); 1902 } 1903 1904 /* 1905 * Fill in the PLT information. 1906 */ 1907 if (dyn != NULL) { 1908 uintptr_t dynaddr = dyn->c_shdr.sh_addr + fptr->file_dyn_base; 1909 size_t ndyn = dyn->c_shdr.sh_size / dyn->c_shdr.sh_entsize; 1910 GElf_Dyn d; 1911 1912 for (i = 0; i < ndyn; i++) { 1913 if (gelf_getdyn(dyn->c_data, i, &d) != NULL && 1914 d.d_tag == DT_JMPREL) { 1915 dprintf("DT_JMPREL is %p\n", 1916 (void *)(uintptr_t)d.d_un.d_ptr); 1917 fptr->file_jmp_rel = 1918 d.d_un.d_ptr + fptr->file_dyn_base; 1919 break; 1920 } 1921 } 1922 1923 dprintf("_DYNAMIC found at %p, %lu entries, DT_JMPREL = %p\n", 1924 (void *)dynaddr, (ulong_t)ndyn, (void *)fptr->file_jmp_rel); 1925 } 1926 1927 done: 1928 free(cache); 1929 return; 1930 1931 bad: 1932 if (cache != NULL) 1933 free(cache); 1934 1935 (void) elf_end(elf); 1936 fptr->file_elf = NULL; 1937 if (fptr->file_elfmem != NULL) { 1938 free(fptr->file_elfmem); 1939 fptr->file_elfmem = NULL; 1940 } 1941 (void) close(fptr->file_fd); 1942 fptr->file_fd = -1; 1943 } 1944 1945 /* 1946 * Given a process virtual address, return the map_info_t containing it. 1947 * If none found, return NULL. 1948 */ 1949 map_info_t * 1950 Paddr2mptr(struct ps_prochandle *P, uintptr_t addr) 1951 { 1952 int lo = 0; 1953 int hi = P->map_count - 1; 1954 int mid; 1955 map_info_t *mp; 1956 1957 while (lo <= hi) { 1958 1959 mid = (lo + hi) / 2; 1960 mp = &P->mappings[mid]; 1961 1962 /* check that addr is in [vaddr, vaddr + size) */ 1963 if ((addr - mp->map_pmap.pr_vaddr) < mp->map_pmap.pr_size) 1964 return (mp); 1965 1966 if (addr < mp->map_pmap.pr_vaddr) 1967 hi = mid - 1; 1968 else 1969 lo = mid + 1; 1970 } 1971 1972 return (NULL); 1973 } 1974 1975 /* 1976 * Return the map_info_t for the executable file. 1977 * If not found, return NULL. 1978 */ 1979 static map_info_t * 1980 exec_map(struct ps_prochandle *P) 1981 { 1982 uint_t i; 1983 map_info_t *mptr; 1984 map_info_t *mold = NULL; 1985 file_info_t *fptr; 1986 uintptr_t base; 1987 1988 for (i = 0, mptr = P->mappings; i < P->map_count; i++, mptr++) { 1989 if (mptr->map_pmap.pr_mapname[0] == '\0') 1990 continue; 1991 if (strcmp(mptr->map_pmap.pr_mapname, "a.out") == 0) { 1992 if ((fptr = mptr->map_file) != NULL && 1993 fptr->file_lo != NULL) { 1994 base = fptr->file_lo->rl_base; 1995 if (base >= mptr->map_pmap.pr_vaddr && 1996 base < mptr->map_pmap.pr_vaddr + 1997 mptr->map_pmap.pr_size) /* text space */ 1998 return (mptr); 1999 mold = mptr; /* must be the data */ 2000 continue; 2001 } 2002 /* This is a poor way to test for text space */ 2003 if (!(mptr->map_pmap.pr_mflags & MA_EXEC) || 2004 (mptr->map_pmap.pr_mflags & MA_WRITE)) { 2005 mold = mptr; 2006 continue; 2007 } 2008 return (mptr); 2009 } 2010 } 2011 2012 return (mold); 2013 } 2014 2015 /* 2016 * Given a shared object name, return the map_info_t for it. If no matching 2017 * object is found, return NULL. Normally, the link maps contain the full 2018 * object pathname, e.g. /usr/lib/libc.so.1. We allow the object name to 2019 * take one of the following forms: 2020 * 2021 * 1. An exact match (i.e. a full pathname): "/usr/lib/libc.so.1" 2022 * 2. An exact basename match: "libc.so.1" 2023 * 3. An initial basename match up to a '.' suffix: "libc.so" or "libc" 2024 * 4. The literal string "a.out" is an alias for the executable mapping 2025 * 2026 * The third case is a convenience for callers and may not be necessary. 2027 * 2028 * As the exact same object name may be loaded on different link maps (see 2029 * dlmopen(3DL)), we also allow the caller to resolve the object name by 2030 * specifying a particular link map id. If lmid is PR_LMID_EVERY, the 2031 * first matching name will be returned, regardless of the link map id. 2032 */ 2033 static map_info_t * 2034 object_to_map(struct ps_prochandle *P, Lmid_t lmid, const char *objname) 2035 { 2036 map_info_t *mp; 2037 file_info_t *fp; 2038 size_t objlen; 2039 uint_t i; 2040 2041 /* 2042 * If we have no rtld_db, then always treat a request as one for all 2043 * link maps. 2044 */ 2045 if (P->rap == NULL) 2046 lmid = PR_LMID_EVERY; 2047 2048 /* 2049 * First pass: look for exact matches of the entire pathname or 2050 * basename (cases 1 and 2 above): 2051 */ 2052 for (i = 0, mp = P->mappings; i < P->map_count; i++, mp++) { 2053 2054 if (mp->map_pmap.pr_mapname[0] == '\0' || 2055 (fp = mp->map_file) == NULL || 2056 ((fp->file_lname == NULL) && (fp->file_rname == NULL))) 2057 continue; 2058 2059 if (lmid != PR_LMID_EVERY && 2060 (fp->file_lo == NULL || lmid != fp->file_lo->rl_lmident)) 2061 continue; 2062 2063 /* 2064 * If we match, return the primary text mapping; otherwise 2065 * just return the mapping we matched. 2066 */ 2067 if ((fp->file_lbase && strcmp(fp->file_lbase, objname) == 0) || 2068 (fp->file_rbase && strcmp(fp->file_rbase, objname) == 0) || 2069 (fp->file_lname && strcmp(fp->file_lname, objname) == 0) || 2070 (fp->file_rname && strcmp(fp->file_rname, objname) == 0)) 2071 return (fp->file_map ? fp->file_map : mp); 2072 } 2073 2074 objlen = strlen(objname); 2075 2076 /* 2077 * Second pass: look for partial matches (case 3 above): 2078 */ 2079 for (i = 0, mp = P->mappings; i < P->map_count; i++, mp++) { 2080 2081 if (mp->map_pmap.pr_mapname[0] == '\0' || 2082 (fp = mp->map_file) == NULL || 2083 ((fp->file_lname == NULL) && (fp->file_rname == NULL))) 2084 continue; 2085 2086 if (lmid != PR_LMID_EVERY && 2087 (fp->file_lo == NULL || lmid != fp->file_lo->rl_lmident)) 2088 continue; 2089 2090 /* 2091 * If we match, return the primary text mapping; otherwise 2092 * just return the mapping we matched. 2093 */ 2094 if ((fp->file_lbase != NULL) && 2095 (strncmp(fp->file_lbase, objname, objlen) == 0) && 2096 (fp->file_lbase[objlen] == '.')) 2097 return (fp->file_map ? fp->file_map : mp); 2098 if ((fp->file_rbase != NULL) && 2099 (strncmp(fp->file_rbase, objname, objlen) == 0) && 2100 (fp->file_rbase[objlen] == '.')) 2101 return (fp->file_map ? fp->file_map : mp); 2102 } 2103 2104 /* 2105 * One last check: we allow "a.out" to always alias the executable, 2106 * assuming this name was not in use for something else. 2107 */ 2108 if ((lmid == PR_LMID_EVERY || lmid == LM_ID_BASE) && 2109 (strcmp(objname, "a.out") == 0)) 2110 return (P->map_exec); 2111 2112 return (NULL); 2113 } 2114 2115 static map_info_t * 2116 object_name_to_map(struct ps_prochandle *P, Lmid_t lmid, const char *name) 2117 { 2118 map_info_t *mptr; 2119 2120 if (!P->info_valid) 2121 Pupdate_maps(P); 2122 2123 if (P->map_exec == NULL && ((mptr = Paddr2mptr(P, 2124 Pgetauxval(P, AT_ENTRY))) != NULL || (mptr = exec_map(P)) != NULL)) 2125 P->map_exec = mptr; 2126 2127 if (P->map_ldso == NULL && (mptr = Paddr2mptr(P, 2128 Pgetauxval(P, AT_BASE))) != NULL) 2129 P->map_ldso = mptr; 2130 2131 if (name == PR_OBJ_EXEC) 2132 mptr = P->map_exec; 2133 else if (name == PR_OBJ_LDSO) 2134 mptr = P->map_ldso; 2135 else if (Prd_agent(P) != NULL || P->state == PS_IDLE) 2136 mptr = object_to_map(P, lmid, name); 2137 else 2138 mptr = NULL; 2139 2140 return (mptr); 2141 } 2142 2143 /* 2144 * When two symbols are found by address, decide which one is to be preferred. 2145 */ 2146 static GElf_Sym * 2147 sym_prefer(GElf_Sym *sym1, char *name1, GElf_Sym *sym2, char *name2) 2148 { 2149 /* 2150 * Prefer the non-NULL symbol. 2151 */ 2152 if (sym1 == NULL) 2153 return (sym2); 2154 if (sym2 == NULL) 2155 return (sym1); 2156 2157 /* 2158 * Defer to the sort ordering... 2159 */ 2160 return (byaddr_cmp_common(sym1, name1, sym2, name2) <= 0 ? sym1 : sym2); 2161 } 2162 2163 /* 2164 * Use a binary search to do the work of sym_by_addr(). 2165 */ 2166 static GElf_Sym * 2167 sym_by_addr_binary(sym_tbl_t *symtab, GElf_Addr addr, GElf_Sym *symp, 2168 uint_t *idp) 2169 { 2170 GElf_Sym sym, osym; 2171 uint_t i, oid, *byaddr = symtab->sym_byaddr; 2172 int min, max, mid, omid, found = 0; 2173 2174 if (symtab->sym_data_pri == NULL || symtab->sym_count == 0) 2175 return (NULL); 2176 2177 min = 0; 2178 max = symtab->sym_count - 1; 2179 osym.st_value = 0; 2180 2181 /* 2182 * We can't return when we've found a match, we have to continue 2183 * searching for the closest matching symbol. 2184 */ 2185 while (min <= max) { 2186 mid = (max + min) / 2; 2187 2188 i = byaddr[mid]; 2189 (void) symtab_getsym(symtab, i, &sym); 2190 2191 if (addr >= sym.st_value && 2192 addr < sym.st_value + sym.st_size && 2193 (!found || sym.st_value > osym.st_value)) { 2194 osym = sym; 2195 omid = mid; 2196 oid = i; 2197 found = 1; 2198 } 2199 2200 if (addr < sym.st_value) 2201 max = mid - 1; 2202 else 2203 min = mid + 1; 2204 } 2205 2206 if (!found) 2207 return (NULL); 2208 2209 /* 2210 * There may be many symbols with identical values so we walk 2211 * backward in the byaddr table to find the best match. 2212 */ 2213 do { 2214 sym = osym; 2215 i = oid; 2216 2217 if (omid == 0) 2218 break; 2219 2220 oid = byaddr[--omid]; 2221 (void) symtab_getsym(symtab, oid, &osym); 2222 } while (addr >= osym.st_value && 2223 addr < sym.st_value + osym.st_size && 2224 osym.st_value == sym.st_value); 2225 2226 *symp = sym; 2227 if (idp != NULL) 2228 *idp = i; 2229 return (symp); 2230 } 2231 2232 /* 2233 * Use a linear search to do the work of sym_by_addr(). 2234 */ 2235 static GElf_Sym * 2236 sym_by_addr_linear(sym_tbl_t *symtab, GElf_Addr addr, GElf_Sym *symbolp, 2237 uint_t *idp) 2238 { 2239 size_t symn = symtab->sym_symn; 2240 char *strs = symtab->sym_strs; 2241 GElf_Sym sym, *symp = NULL; 2242 GElf_Sym osym, *osymp = NULL; 2243 int i, id; 2244 2245 if (symtab->sym_data_pri == NULL || symn == 0 || strs == NULL) 2246 return (NULL); 2247 2248 for (i = 0; i < symn; i++) { 2249 if ((symp = symtab_getsym(symtab, i, &sym)) != NULL) { 2250 if (addr >= sym.st_value && 2251 addr < sym.st_value + sym.st_size) { 2252 if (osymp) 2253 symp = sym_prefer( 2254 symp, strs + symp->st_name, 2255 osymp, strs + osymp->st_name); 2256 if (symp != osymp) { 2257 osym = sym; 2258 osymp = &osym; 2259 id = i; 2260 } 2261 } 2262 } 2263 } 2264 if (osymp) { 2265 *symbolp = osym; 2266 if (idp) 2267 *idp = id; 2268 return (symbolp); 2269 } 2270 return (NULL); 2271 } 2272 2273 /* 2274 * Look up a symbol by address in the specified symbol table. 2275 * Adjustment to 'addr' must already have been made for the 2276 * offset of the symbol if this is a dynamic library symbol table. 2277 * 2278 * Use a linear or a binary search depending on whether or not we 2279 * chose to sort the table in optimize_symtab(). 2280 */ 2281 static GElf_Sym * 2282 sym_by_addr(sym_tbl_t *symtab, GElf_Addr addr, GElf_Sym *symp, uint_t *idp) 2283 { 2284 if (_libproc_no_qsort) { 2285 return (sym_by_addr_linear(symtab, addr, symp, idp)); 2286 } else { 2287 return (sym_by_addr_binary(symtab, addr, symp, idp)); 2288 } 2289 } 2290 2291 /* 2292 * Use a binary search to do the work of sym_by_name(). 2293 */ 2294 static GElf_Sym * 2295 sym_by_name_binary(sym_tbl_t *symtab, const char *name, GElf_Sym *symp, 2296 uint_t *idp) 2297 { 2298 char *strs = symtab->sym_strs; 2299 uint_t i, *byname = symtab->sym_byname; 2300 int min, mid, max, cmp; 2301 2302 if (symtab->sym_data_pri == NULL || strs == NULL || 2303 symtab->sym_count == 0) 2304 return (NULL); 2305 2306 min = 0; 2307 max = symtab->sym_count - 1; 2308 2309 while (min <= max) { 2310 mid = (max + min) / 2; 2311 2312 i = byname[mid]; 2313 (void) symtab_getsym(symtab, i, symp); 2314 2315 if ((cmp = strcmp(name, strs + symp->st_name)) == 0) { 2316 if (idp != NULL) 2317 *idp = i; 2318 return (symp); 2319 } 2320 2321 if (cmp < 0) 2322 max = mid - 1; 2323 else 2324 min = mid + 1; 2325 } 2326 2327 return (NULL); 2328 } 2329 2330 /* 2331 * Use a linear search to do the work of sym_by_name(). 2332 */ 2333 static GElf_Sym * 2334 sym_by_name_linear(sym_tbl_t *symtab, const char *name, GElf_Sym *symp, 2335 uint_t *idp) 2336 { 2337 size_t symn = symtab->sym_symn; 2338 char *strs = symtab->sym_strs; 2339 int i; 2340 2341 if (symtab->sym_data_pri == NULL || symn == 0 || strs == NULL) 2342 return (NULL); 2343 2344 for (i = 0; i < symn; i++) { 2345 if (symtab_getsym(symtab, i, symp) && 2346 strcmp(name, strs + symp->st_name) == 0) { 2347 if (idp) 2348 *idp = i; 2349 return (symp); 2350 } 2351 } 2352 2353 return (NULL); 2354 } 2355 2356 /* 2357 * Look up a symbol by name in the specified symbol table. 2358 * 2359 * Use a linear or a binary search depending on whether or not we 2360 * chose to sort the table in optimize_symtab(). 2361 */ 2362 static GElf_Sym * 2363 sym_by_name(sym_tbl_t *symtab, const char *name, GElf_Sym *symp, uint_t *idp) 2364 { 2365 if (_libproc_no_qsort) { 2366 return (sym_by_name_linear(symtab, name, symp, idp)); 2367 } else { 2368 return (sym_by_name_binary(symtab, name, symp, idp)); 2369 } 2370 } 2371 2372 /* 2373 * Search the process symbol tables looking for a symbol whose 2374 * value to value+size contain the address specified by addr. 2375 * Return values are: 2376 * sym_name_buffer containing the symbol name 2377 * GElf_Sym symbol table entry 2378 * prsyminfo_t ancillary symbol information 2379 * Returns 0 on success, -1 on failure. 2380 */ 2381 static int 2382 i_Pxlookup_by_addr( 2383 struct ps_prochandle *P, 2384 int lmresolve, /* use resolve linker object names */ 2385 uintptr_t addr, /* process address being sought */ 2386 char *sym_name_buffer, /* buffer for the symbol name */ 2387 size_t bufsize, /* size of sym_name_buffer */ 2388 GElf_Sym *symbolp, /* returned symbol table entry */ 2389 prsyminfo_t *sip) /* returned symbol info */ 2390 { 2391 GElf_Sym *symp; 2392 char *name; 2393 GElf_Sym sym1, *sym1p = NULL; 2394 GElf_Sym sym2, *sym2p = NULL; 2395 char *name1 = NULL; 2396 char *name2 = NULL; 2397 uint_t i1; 2398 uint_t i2; 2399 map_info_t *mptr; 2400 file_info_t *fptr; 2401 2402 (void) Prd_agent(P); 2403 2404 if ((mptr = Paddr2mptr(P, addr)) == NULL || /* no such address */ 2405 (fptr = build_map_symtab(P, mptr)) == NULL || /* no mapped file */ 2406 fptr->file_elf == NULL) /* not an ELF file */ 2407 return (-1); 2408 2409 /* 2410 * Adjust the address by the load object base address in 2411 * case the address turns out to be in a shared library. 2412 */ 2413 addr -= fptr->file_dyn_base; 2414 2415 /* 2416 * Search both symbol tables, symtab first, then dynsym. 2417 */ 2418 if ((sym1p = sym_by_addr(&fptr->file_symtab, addr, &sym1, &i1)) != NULL) 2419 name1 = fptr->file_symtab.sym_strs + sym1.st_name; 2420 if ((sym2p = sym_by_addr(&fptr->file_dynsym, addr, &sym2, &i2)) != NULL) 2421 name2 = fptr->file_dynsym.sym_strs + sym2.st_name; 2422 2423 if ((symp = sym_prefer(sym1p, name1, sym2p, name2)) == NULL) 2424 return (-1); 2425 2426 name = (symp == sym1p) ? name1 : name2; 2427 if (bufsize > 0) { 2428 (void) strncpy(sym_name_buffer, name, bufsize); 2429 sym_name_buffer[bufsize - 1] = '\0'; 2430 } 2431 2432 *symbolp = *symp; 2433 if (sip != NULL) { 2434 sip->prs_name = bufsize == 0 ? NULL : sym_name_buffer; 2435 if (lmresolve && (fptr->file_rname != NULL)) 2436 sip->prs_object = fptr->file_rbase; 2437 else 2438 sip->prs_object = fptr->file_lbase; 2439 sip->prs_id = (symp == sym1p) ? i1 : i2; 2440 sip->prs_table = (symp == sym1p) ? PR_SYMTAB : PR_DYNSYM; 2441 sip->prs_lmid = (fptr->file_lo == NULL) ? LM_ID_BASE : 2442 fptr->file_lo->rl_lmident; 2443 } 2444 2445 if (GELF_ST_TYPE(symbolp->st_info) != STT_TLS) 2446 symbolp->st_value += fptr->file_dyn_base; 2447 2448 return (0); 2449 } 2450 2451 int 2452 Pxlookup_by_addr(struct ps_prochandle *P, uintptr_t addr, char *buf, 2453 size_t bufsize, GElf_Sym *symp, prsyminfo_t *sip) 2454 { 2455 return (i_Pxlookup_by_addr(P, B_FALSE, addr, buf, bufsize, symp, sip)); 2456 } 2457 2458 int 2459 Pxlookup_by_addr_resolved(struct ps_prochandle *P, uintptr_t addr, char *buf, 2460 size_t bufsize, GElf_Sym *symp, prsyminfo_t *sip) 2461 { 2462 return (i_Pxlookup_by_addr(P, B_TRUE, addr, buf, bufsize, symp, sip)); 2463 } 2464 2465 int 2466 Plookup_by_addr(struct ps_prochandle *P, uintptr_t addr, char *buf, 2467 size_t size, GElf_Sym *symp) 2468 { 2469 return (i_Pxlookup_by_addr(P, B_FALSE, addr, buf, size, symp, NULL)); 2470 } 2471 2472 /* 2473 * Search the process symbol tables looking for a symbol whose name matches the 2474 * specified name and whose object and link map optionally match the specified 2475 * parameters. On success, the function returns 0 and fills in the GElf_Sym 2476 * symbol table entry. On failure, -1 is returned. 2477 */ 2478 int 2479 Pxlookup_by_name( 2480 struct ps_prochandle *P, 2481 Lmid_t lmid, /* link map to match, or -1 for any */ 2482 const char *oname, /* load object name */ 2483 const char *sname, /* symbol name */ 2484 GElf_Sym *symp, /* returned symbol table entry */ 2485 prsyminfo_t *sip) /* returned symbol info */ 2486 { 2487 map_info_t *mptr; 2488 file_info_t *fptr; 2489 int cnt; 2490 2491 GElf_Sym sym; 2492 prsyminfo_t si; 2493 int rv = -1; 2494 uint_t id; 2495 2496 if (oname == PR_OBJ_EVERY) { 2497 /* create all the file_info_t's for all the mappings */ 2498 (void) Prd_agent(P); 2499 cnt = P->num_files; 2500 fptr = list_next(&P->file_head); 2501 } else { 2502 cnt = 1; 2503 if ((mptr = object_name_to_map(P, lmid, oname)) == NULL || 2504 (fptr = build_map_symtab(P, mptr)) == NULL) 2505 return (-1); 2506 } 2507 2508 /* 2509 * Iterate through the loaded object files and look for the symbol 2510 * name in the .symtab and .dynsym of each. If we encounter a match 2511 * with SHN_UNDEF, keep looking in hopes of finding a better match. 2512 * This means that a name such as "puts" will match the puts function 2513 * in libc instead of matching the puts PLT entry in the a.out file. 2514 */ 2515 for (; cnt > 0; cnt--, fptr = list_next(fptr)) { 2516 Pbuild_file_symtab(P, fptr); 2517 2518 if (fptr->file_elf == NULL) 2519 continue; 2520 2521 if (lmid != PR_LMID_EVERY && fptr->file_lo != NULL && 2522 lmid != fptr->file_lo->rl_lmident) 2523 continue; 2524 2525 if (fptr->file_symtab.sym_data_pri != NULL && 2526 sym_by_name(&fptr->file_symtab, sname, symp, &id)) { 2527 if (sip != NULL) { 2528 sip->prs_id = id; 2529 sip->prs_table = PR_SYMTAB; 2530 sip->prs_object = oname; 2531 sip->prs_name = sname; 2532 sip->prs_lmid = fptr->file_lo == NULL ? 2533 LM_ID_BASE : fptr->file_lo->rl_lmident; 2534 } 2535 } else if (fptr->file_dynsym.sym_data_pri != NULL && 2536 sym_by_name(&fptr->file_dynsym, sname, symp, &id)) { 2537 if (sip != NULL) { 2538 sip->prs_id = id; 2539 sip->prs_table = PR_DYNSYM; 2540 sip->prs_object = oname; 2541 sip->prs_name = sname; 2542 sip->prs_lmid = fptr->file_lo == NULL ? 2543 LM_ID_BASE : fptr->file_lo->rl_lmident; 2544 } 2545 } else { 2546 continue; 2547 } 2548 2549 if (GELF_ST_TYPE(symp->st_info) != STT_TLS) 2550 symp->st_value += fptr->file_dyn_base; 2551 2552 if (symp->st_shndx != SHN_UNDEF) 2553 return (0); 2554 2555 if (rv != 0) { 2556 if (sip != NULL) 2557 si = *sip; 2558 sym = *symp; 2559 rv = 0; 2560 } 2561 } 2562 2563 if (rv == 0) { 2564 if (sip != NULL) 2565 *sip = si; 2566 *symp = sym; 2567 } 2568 2569 return (rv); 2570 } 2571 2572 /* 2573 * Search the process symbol tables looking for a symbol whose name matches the 2574 * specified name, but without any restriction on the link map id. 2575 */ 2576 int 2577 Plookup_by_name(struct ps_prochandle *P, const char *object, 2578 const char *symbol, GElf_Sym *symp) 2579 { 2580 return (Pxlookup_by_name(P, PR_LMID_EVERY, object, symbol, symp, NULL)); 2581 } 2582 2583 /* 2584 * Iterate over the process's address space mappings. 2585 */ 2586 static int 2587 i_Pmapping_iter(struct ps_prochandle *P, boolean_t lmresolve, 2588 proc_map_f *func, void *cd) 2589 { 2590 map_info_t *mptr; 2591 file_info_t *fptr; 2592 char *object_name; 2593 int rc = 0; 2594 int i; 2595 2596 /* create all the file_info_t's for all the mappings */ 2597 (void) Prd_agent(P); 2598 2599 for (i = 0, mptr = P->mappings; i < P->map_count; i++, mptr++) { 2600 if ((fptr = mptr->map_file) == NULL) 2601 object_name = NULL; 2602 else if (lmresolve && (fptr->file_rname != NULL)) 2603 object_name = fptr->file_rname; 2604 else 2605 object_name = fptr->file_lname; 2606 if ((rc = func(cd, &mptr->map_pmap, object_name)) != 0) 2607 return (rc); 2608 } 2609 return (0); 2610 } 2611 2612 int 2613 Pmapping_iter(struct ps_prochandle *P, proc_map_f *func, void *cd) 2614 { 2615 return (i_Pmapping_iter(P, B_FALSE, func, cd)); 2616 } 2617 2618 int 2619 Pmapping_iter_resolved(struct ps_prochandle *P, proc_map_f *func, void *cd) 2620 { 2621 return (i_Pmapping_iter(P, B_TRUE, func, cd)); 2622 } 2623 2624 /* 2625 * Iterate over the process's mapped objects. 2626 */ 2627 static int 2628 i_Pobject_iter(struct ps_prochandle *P, boolean_t lmresolve, 2629 proc_map_f *func, void *cd) 2630 { 2631 map_info_t *mptr; 2632 file_info_t *fptr; 2633 uint_t cnt; 2634 int rc = 0; 2635 2636 (void) Prd_agent(P); /* create file_info_t's for all the mappings */ 2637 Pupdate_maps(P); 2638 2639 for (cnt = P->num_files, fptr = list_next(&P->file_head); 2640 cnt; cnt--, fptr = list_next(fptr)) { 2641 const char *lname; 2642 2643 if (lmresolve && (fptr->file_rname != NULL)) 2644 lname = fptr->file_rname; 2645 else if (fptr->file_lname != NULL) 2646 lname = fptr->file_lname; 2647 else 2648 lname = ""; 2649 2650 if ((mptr = fptr->file_map) == NULL) 2651 continue; 2652 2653 if ((rc = func(cd, &mptr->map_pmap, lname)) != 0) 2654 return (rc); 2655 } 2656 return (0); 2657 } 2658 2659 int 2660 Pobject_iter(struct ps_prochandle *P, proc_map_f *func, void *cd) 2661 { 2662 return (i_Pobject_iter(P, B_FALSE, func, cd)); 2663 } 2664 2665 int 2666 Pobject_iter_resolved(struct ps_prochandle *P, proc_map_f *func, void *cd) 2667 { 2668 return (i_Pobject_iter(P, B_TRUE, func, cd)); 2669 } 2670 2671 static char * 2672 i_Pobjname(struct ps_prochandle *P, boolean_t lmresolve, uintptr_t addr, 2673 char *buffer, size_t bufsize) 2674 { 2675 map_info_t *mptr; 2676 file_info_t *fptr; 2677 2678 /* create all the file_info_t's for all the mappings */ 2679 (void) Prd_agent(P); 2680 2681 if ((mptr = Paddr2mptr(P, addr)) == NULL) 2682 return (NULL); 2683 2684 if (!lmresolve) { 2685 if (((fptr = mptr->map_file) == NULL) || 2686 (fptr->file_lname == NULL)) 2687 return (NULL); 2688 (void) strlcpy(buffer, fptr->file_lname, bufsize); 2689 return (buffer); 2690 } 2691 2692 /* Check for a cached copy of the resolved path */ 2693 if (Pfindmap(P, mptr, buffer, bufsize) != NULL) 2694 return (buffer); 2695 2696 return (NULL); 2697 } 2698 2699 /* 2700 * Given a virtual address, return the name of the underlying 2701 * mapped object (file) as provided by the dynamic linker. 2702 * Return NULL if we can't find any name information for the object. 2703 */ 2704 char * 2705 Pobjname(struct ps_prochandle *P, uintptr_t addr, 2706 char *buffer, size_t bufsize) 2707 { 2708 return (i_Pobjname(P, B_FALSE, addr, buffer, bufsize)); 2709 } 2710 2711 /* 2712 * Given a virtual address, try to return a filesystem path to the 2713 * underlying mapped object (file). If we're in the global zone, 2714 * this path could resolve to an object in another zone. If we're 2715 * unable return a valid filesystem path, we'll fall back to providing 2716 * the mapped object (file) name provided by the dynamic linker in 2717 * the target process (ie, the object reported by Pobjname()). 2718 */ 2719 char * 2720 Pobjname_resolved(struct ps_prochandle *P, uintptr_t addr, 2721 char *buffer, size_t bufsize) 2722 { 2723 return (i_Pobjname(P, B_TRUE, addr, buffer, bufsize)); 2724 } 2725 2726 /* 2727 * Given a virtual address, return the link map id of the underlying mapped 2728 * object (file), as provided by the dynamic linker. Return -1 on failure. 2729 */ 2730 int 2731 Plmid(struct ps_prochandle *P, uintptr_t addr, Lmid_t *lmidp) 2732 { 2733 map_info_t *mptr; 2734 file_info_t *fptr; 2735 2736 /* create all the file_info_t's for all the mappings */ 2737 (void) Prd_agent(P); 2738 2739 if ((mptr = Paddr2mptr(P, addr)) != NULL && 2740 (fptr = mptr->map_file) != NULL && fptr->file_lo != NULL) { 2741 *lmidp = fptr->file_lo->rl_lmident; 2742 return (0); 2743 } 2744 2745 return (-1); 2746 } 2747 2748 /* 2749 * Given an object name and optional lmid, iterate over the object's symbols. 2750 * If which == PR_SYMTAB, search the normal symbol table. 2751 * If which == PR_DYNSYM, search the dynamic symbol table. 2752 */ 2753 static int 2754 Psymbol_iter_com(struct ps_prochandle *P, Lmid_t lmid, const char *object_name, 2755 int which, int mask, pr_order_t order, proc_xsym_f *func, void *cd) 2756 { 2757 GElf_Sym sym; 2758 GElf_Shdr shdr; 2759 map_info_t *mptr; 2760 file_info_t *fptr; 2761 sym_tbl_t *symtab; 2762 size_t symn; 2763 const char *strs; 2764 size_t strsz; 2765 prsyminfo_t si; 2766 int rv; 2767 uint_t *map, i, count, ndx; 2768 2769 if ((mptr = object_name_to_map(P, lmid, object_name)) == NULL) 2770 return (-1); 2771 2772 if ((fptr = build_map_symtab(P, mptr)) == NULL || /* no mapped file */ 2773 fptr->file_elf == NULL) /* not an ELF file */ 2774 return (-1); 2775 2776 /* 2777 * Search the specified symbol table. 2778 */ 2779 switch (which) { 2780 case PR_SYMTAB: 2781 symtab = &fptr->file_symtab; 2782 si.prs_table = PR_SYMTAB; 2783 break; 2784 case PR_DYNSYM: 2785 symtab = &fptr->file_dynsym; 2786 si.prs_table = PR_DYNSYM; 2787 break; 2788 default: 2789 return (-1); 2790 } 2791 2792 si.prs_object = object_name; 2793 si.prs_lmid = fptr->file_lo == NULL ? 2794 LM_ID_BASE : fptr->file_lo->rl_lmident; 2795 2796 symn = symtab->sym_symn; 2797 strs = symtab->sym_strs; 2798 strsz = symtab->sym_strsz; 2799 2800 switch (order) { 2801 case PRO_NATURAL: 2802 map = NULL; 2803 count = symn; 2804 break; 2805 case PRO_BYNAME: 2806 map = symtab->sym_byname; 2807 count = symtab->sym_count; 2808 break; 2809 case PRO_BYADDR: 2810 map = symtab->sym_byaddr; 2811 count = symtab->sym_count; 2812 break; 2813 default: 2814 return (-1); 2815 } 2816 2817 if (symtab->sym_data_pri == NULL || strs == NULL || count == 0) 2818 return (-1); 2819 2820 rv = 0; 2821 2822 for (i = 0; i < count; i++) { 2823 ndx = map == NULL ? i : map[i]; 2824 if (symtab_getsym(symtab, ndx, &sym) != NULL) { 2825 uint_t s_bind, s_type, type; 2826 2827 if (sym.st_name >= strsz) /* invalid st_name */ 2828 continue; 2829 2830 s_bind = GELF_ST_BIND(sym.st_info); 2831 s_type = GELF_ST_TYPE(sym.st_info); 2832 2833 /* 2834 * In case you haven't already guessed, this relies on 2835 * the bitmask used in <libproc.h> for encoding symbol 2836 * type and binding matching the order of STB and STT 2837 * constants in <sys/elf.h>. ELF can't change without 2838 * breaking binary compatibility, so I think this is 2839 * reasonably fair game. 2840 */ 2841 if (s_bind < STB_NUM && s_type < STT_NUM) { 2842 type = (1 << (s_type + 8)) | (1 << s_bind); 2843 if ((type & ~mask) != 0) 2844 continue; 2845 } else 2846 continue; /* Invalid type or binding */ 2847 2848 if (GELF_ST_TYPE(sym.st_info) != STT_TLS) 2849 sym.st_value += fptr->file_dyn_base; 2850 2851 si.prs_name = strs + sym.st_name; 2852 2853 /* 2854 * If symbol's type is STT_SECTION, then try to lookup 2855 * the name of the corresponding section. 2856 */ 2857 if (GELF_ST_TYPE(sym.st_info) == STT_SECTION && 2858 fptr->file_shstrs != NULL && 2859 gelf_getshdr(elf_getscn(fptr->file_elf, 2860 sym.st_shndx), &shdr) != NULL && 2861 shdr.sh_name != 0 && 2862 shdr.sh_name < fptr->file_shstrsz) 2863 si.prs_name = fptr->file_shstrs + shdr.sh_name; 2864 2865 si.prs_id = ndx; 2866 if ((rv = func(cd, &sym, si.prs_name, &si)) != 0) 2867 break; 2868 } 2869 } 2870 2871 return (rv); 2872 } 2873 2874 int 2875 Pxsymbol_iter(struct ps_prochandle *P, Lmid_t lmid, const char *object_name, 2876 int which, int mask, proc_xsym_f *func, void *cd) 2877 { 2878 return (Psymbol_iter_com(P, lmid, object_name, which, mask, 2879 PRO_NATURAL, func, cd)); 2880 } 2881 2882 int 2883 Psymbol_iter_by_lmid(struct ps_prochandle *P, Lmid_t lmid, 2884 const char *object_name, int which, int mask, proc_sym_f *func, void *cd) 2885 { 2886 return (Psymbol_iter_com(P, lmid, object_name, which, mask, 2887 PRO_NATURAL, (proc_xsym_f *)func, cd)); 2888 } 2889 2890 int 2891 Psymbol_iter(struct ps_prochandle *P, 2892 const char *object_name, int which, int mask, proc_sym_f *func, void *cd) 2893 { 2894 return (Psymbol_iter_com(P, PR_LMID_EVERY, object_name, which, mask, 2895 PRO_NATURAL, (proc_xsym_f *)func, cd)); 2896 } 2897 2898 int 2899 Psymbol_iter_by_addr(struct ps_prochandle *P, 2900 const char *object_name, int which, int mask, proc_sym_f *func, void *cd) 2901 { 2902 return (Psymbol_iter_com(P, PR_LMID_EVERY, object_name, which, mask, 2903 PRO_BYADDR, (proc_xsym_f *)func, cd)); 2904 } 2905 2906 int 2907 Psymbol_iter_by_name(struct ps_prochandle *P, 2908 const char *object_name, int which, int mask, proc_sym_f *func, void *cd) 2909 { 2910 return (Psymbol_iter_com(P, PR_LMID_EVERY, object_name, which, mask, 2911 PRO_BYNAME, (proc_xsym_f *)func, cd)); 2912 } 2913 2914 /* 2915 * Get the platform string from the core file if we have it; 2916 * just perform the system call for the caller if this is a live process. 2917 */ 2918 char * 2919 Pplatform(struct ps_prochandle *P, char *s, size_t n) 2920 { 2921 if (P->state == PS_IDLE) { 2922 errno = ENODATA; 2923 return (NULL); 2924 } 2925 2926 if (P->state == PS_DEAD) { 2927 if (P->core->core_platform == NULL) { 2928 errno = ENODATA; 2929 return (NULL); 2930 } 2931 (void) strncpy(s, P->core->core_platform, n - 1); 2932 s[n - 1] = '\0'; 2933 2934 } else if (sysinfo(SI_PLATFORM, s, n) == -1) 2935 return (NULL); 2936 2937 return (s); 2938 } 2939 2940 /* 2941 * Get the uname(2) information from the core file if we have it; 2942 * just perform the system call for the caller if this is a live process. 2943 */ 2944 int 2945 Puname(struct ps_prochandle *P, struct utsname *u) 2946 { 2947 if (P->state == PS_IDLE) { 2948 errno = ENODATA; 2949 return (-1); 2950 } 2951 2952 if (P->state == PS_DEAD) { 2953 if (P->core->core_uts == NULL) { 2954 errno = ENODATA; 2955 return (-1); 2956 } 2957 (void) memcpy(u, P->core->core_uts, sizeof (struct utsname)); 2958 return (0); 2959 } 2960 return (uname(u)); 2961 } 2962 2963 /* 2964 * Called from Pcreate(), Pgrab(), and Pfgrab_core() to initialize 2965 * the symbol table heads in the new ps_prochandle. 2966 */ 2967 void 2968 Pinitsym(struct ps_prochandle *P) 2969 { 2970 P->num_files = 0; 2971 list_link(&P->file_head, NULL); 2972 } 2973 2974 /* 2975 * Called from Prelease() to destroy the symbol tables. 2976 * Must be called by the client after an exec() in the victim process. 2977 */ 2978 void 2979 Preset_maps(struct ps_prochandle *P) 2980 { 2981 int i; 2982 2983 if (P->rap != NULL) { 2984 rd_delete(P->rap); 2985 P->rap = NULL; 2986 } 2987 2988 if (P->execname != NULL) { 2989 free(P->execname); 2990 P->execname = NULL; 2991 } 2992 2993 if (P->auxv != NULL) { 2994 free(P->auxv); 2995 P->auxv = NULL; 2996 P->nauxv = 0; 2997 } 2998 2999 for (i = 0; i < P->map_count; i++) 3000 map_info_free(P, &P->mappings[i]); 3001 3002 if (P->mappings != NULL) { 3003 free(P->mappings); 3004 P->mappings = NULL; 3005 } 3006 P->map_count = P->map_alloc = 0; 3007 3008 P->info_valid = 0; 3009 } 3010 3011 typedef struct getenv_data { 3012 char *buf; 3013 size_t bufsize; 3014 const char *search; 3015 size_t searchlen; 3016 } getenv_data_t; 3017 3018 /*ARGSUSED*/ 3019 static int 3020 getenv_func(void *data, struct ps_prochandle *P, uintptr_t addr, 3021 const char *nameval) 3022 { 3023 getenv_data_t *d = data; 3024 size_t len; 3025 3026 if (nameval == NULL) 3027 return (0); 3028 3029 if (d->searchlen < strlen(nameval) && 3030 strncmp(nameval, d->search, d->searchlen) == 0 && 3031 nameval[d->searchlen] == '=') { 3032 len = MIN(strlen(nameval), d->bufsize - 1); 3033 (void) strncpy(d->buf, nameval, len); 3034 d->buf[len] = '\0'; 3035 return (1); 3036 } 3037 3038 return (0); 3039 } 3040 3041 char * 3042 Pgetenv(struct ps_prochandle *P, const char *name, char *buf, size_t buflen) 3043 { 3044 getenv_data_t d; 3045 3046 d.buf = buf; 3047 d.bufsize = buflen; 3048 d.search = name; 3049 d.searchlen = strlen(name); 3050 3051 if (Penv_iter(P, getenv_func, &d) == 1) { 3052 char *equals = strchr(d.buf, '='); 3053 3054 if (equals != NULL) { 3055 (void) memmove(d.buf, equals + 1, 3056 d.buf + buflen - equals - 1); 3057 d.buf[d.buf + buflen - equals] = '\0'; 3058 3059 return (buf); 3060 } 3061 } 3062 3063 return (NULL); 3064 } 3065 3066 /* number of argument or environment pointers to read all at once */ 3067 #define NARG 100 3068 3069 int 3070 Penv_iter(struct ps_prochandle *P, proc_env_f *func, void *data) 3071 { 3072 const psinfo_t *psp; 3073 uintptr_t envpoff; 3074 GElf_Sym sym; 3075 int ret; 3076 char *buf, *nameval; 3077 size_t buflen; 3078 3079 int nenv = NARG; 3080 long envp[NARG]; 3081 3082 /* 3083 * Attempt to find the "_environ" variable in the process. 3084 * Failing that, use the original value provided by Ppsinfo(). 3085 */ 3086 if ((psp = Ppsinfo(P)) == NULL) 3087 return (-1); 3088 3089 envpoff = psp->pr_envp; /* Default if no _environ found */ 3090 3091 if (Plookup_by_name(P, PR_OBJ_EXEC, "_environ", &sym) == 0) { 3092 if (P->status.pr_dmodel == PR_MODEL_NATIVE) { 3093 if (Pread(P, &envpoff, sizeof (envpoff), 3094 sym.st_value) != sizeof (envpoff)) 3095 envpoff = psp->pr_envp; 3096 } else if (P->status.pr_dmodel == PR_MODEL_ILP32) { 3097 uint32_t envpoff32; 3098 3099 if (Pread(P, &envpoff32, sizeof (envpoff32), 3100 sym.st_value) != sizeof (envpoff32)) 3101 envpoff = psp->pr_envp; 3102 else 3103 envpoff = envpoff32; 3104 } 3105 } 3106 3107 buflen = 128; 3108 buf = malloc(buflen); 3109 3110 ret = 0; 3111 for (;;) { 3112 uintptr_t envoff; 3113 3114 if (nenv == NARG) { 3115 (void) memset(envp, 0, sizeof (envp)); 3116 if (P->status.pr_dmodel == PR_MODEL_NATIVE) { 3117 if (Pread(P, envp, 3118 sizeof (envp), envpoff) <= 0) { 3119 ret = -1; 3120 break; 3121 } 3122 } else if (P->status.pr_dmodel == PR_MODEL_ILP32) { 3123 uint32_t e32[NARG]; 3124 int i; 3125 3126 (void) memset(e32, 0, sizeof (e32)); 3127 if (Pread(P, e32, sizeof (e32), envpoff) <= 0) { 3128 ret = -1; 3129 break; 3130 } 3131 for (i = 0; i < NARG; i++) 3132 envp[i] = e32[i]; 3133 } 3134 nenv = 0; 3135 } 3136 3137 if ((envoff = envp[nenv++]) == NULL) 3138 break; 3139 3140 /* 3141 * Attempt to read the string from the process. 3142 */ 3143 again: 3144 ret = Pread_string(P, buf, buflen, envoff); 3145 3146 if (ret <= 0) { 3147 nameval = NULL; 3148 } else if (ret == buflen - 1) { 3149 free(buf); 3150 /* 3151 * Bail if we have a corrupted environment 3152 */ 3153 if (buflen >= ARG_MAX) 3154 return (-1); 3155 buflen *= 2; 3156 buf = malloc(buflen); 3157 goto again; 3158 } else { 3159 nameval = buf; 3160 } 3161 3162 if ((ret = func(data, P, envoff, nameval)) != 0) 3163 break; 3164 3165 envpoff += (P->status.pr_dmodel == PR_MODEL_LP64)? 8 : 4; 3166 } 3167 3168 free(buf); 3169 3170 return (ret); 3171 } 3172