xref: /titanic_52/usr/src/lib/libproc/common/Psymtab.c (revision dc5982c9e1ebe3315aac975f1c4f1ad46c83c2d2)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #include <assert.h>
28 #include <stdio.h>
29 #include <stdlib.h>
30 #include <stddef.h>
31 #include <unistd.h>
32 #include <ctype.h>
33 #include <fcntl.h>
34 #include <string.h>
35 #include <strings.h>
36 #include <memory.h>
37 #include <errno.h>
38 #include <dirent.h>
39 #include <signal.h>
40 #include <limits.h>
41 #include <libgen.h>
42 #include <sys/types.h>
43 #include <sys/stat.h>
44 #include <sys/systeminfo.h>
45 #include <sys/sysmacros.h>
46 
47 #include "libproc.h"
48 #include "Pcontrol.h"
49 #include "Putil.h"
50 #include "Psymtab_machelf.h"
51 
52 static file_info_t *build_map_symtab(struct ps_prochandle *, map_info_t *);
53 static map_info_t *exec_map(struct ps_prochandle *);
54 static map_info_t *object_to_map(struct ps_prochandle *, Lmid_t, const char *);
55 static map_info_t *object_name_to_map(struct ps_prochandle *,
56 	Lmid_t, const char *);
57 static GElf_Sym *sym_by_name(sym_tbl_t *, const char *, GElf_Sym *, uint_t *);
58 static int read_ehdr32(struct ps_prochandle *, Elf32_Ehdr *, uint_t *,
59     uintptr_t);
60 #ifdef _LP64
61 static int read_ehdr64(struct ps_prochandle *, Elf64_Ehdr *, uint_t *,
62     uintptr_t);
63 #endif
64 
65 #define	DATA_TYPES	\
66 	((1 << STT_OBJECT) | (1 << STT_FUNC) | \
67 	(1 << STT_COMMON) | (1 << STT_TLS))
68 #define	IS_DATA_TYPE(tp)	(((1 << (tp)) & DATA_TYPES) != 0)
69 
70 #define	MA_RWX	(MA_READ | MA_WRITE | MA_EXEC)
71 
72 typedef enum {
73 	PRO_NATURAL,
74 	PRO_BYADDR,
75 	PRO_BYNAME
76 } pr_order_t;
77 
78 static int
79 addr_cmp(const void *aa, const void *bb)
80 {
81 	uintptr_t a = *((uintptr_t *)aa);
82 	uintptr_t b = *((uintptr_t *)bb);
83 
84 	if (a > b)
85 		return (1);
86 	if (a < b)
87 		return (-1);
88 	return (0);
89 }
90 
91 /*
92  * This function creates a list of addresses for a load object's sections.
93  * The list is in ascending address order and alternates start address
94  * then end address for each section we're interested in. The function
95  * returns a pointer to the list, which must be freed by the caller.
96  */
97 static uintptr_t *
98 get_saddrs(struct ps_prochandle *P, uintptr_t ehdr_start, uint_t *n)
99 {
100 	uintptr_t a, addr, *addrs, last = 0;
101 	uint_t i, naddrs = 0, unordered = 0;
102 
103 	if (P->status.pr_dmodel == PR_MODEL_ILP32) {
104 		Elf32_Ehdr ehdr;
105 		Elf32_Phdr phdr;
106 		uint_t phnum;
107 
108 		if (read_ehdr32(P, &ehdr, &phnum, ehdr_start) != 0)
109 			return (NULL);
110 
111 		addrs = malloc(sizeof (uintptr_t) * phnum * 2);
112 		a = ehdr_start + ehdr.e_phoff;
113 		for (i = 0; i < phnum; i++, a += ehdr.e_phentsize) {
114 			if (Pread(P, &phdr, sizeof (phdr), a) !=
115 			    sizeof (phdr)) {
116 				free(addrs);
117 				return (NULL);
118 			}
119 			if (phdr.p_type != PT_LOAD || phdr.p_memsz == 0)
120 				continue;
121 
122 			addr = phdr.p_vaddr;
123 			if (ehdr.e_type == ET_DYN)
124 				addr += ehdr_start;
125 			if (last > addr)
126 				unordered = 1;
127 			addrs[naddrs++] = addr;
128 			addrs[naddrs++] = last = addr + phdr.p_memsz - 1;
129 		}
130 #ifdef _LP64
131 	} else {
132 		Elf64_Ehdr ehdr;
133 		Elf64_Phdr phdr;
134 		uint_t phnum;
135 
136 		if (read_ehdr64(P, &ehdr, &phnum, ehdr_start) != 0)
137 			return (NULL);
138 
139 		addrs = malloc(sizeof (uintptr_t) * phnum * 2);
140 		a = ehdr_start + ehdr.e_phoff;
141 		for (i = 0; i < phnum; i++, a += ehdr.e_phentsize) {
142 			if (Pread(P, &phdr, sizeof (phdr), a) !=
143 			    sizeof (phdr)) {
144 				free(addrs);
145 				return (NULL);
146 			}
147 			if (phdr.p_type != PT_LOAD || phdr.p_memsz == 0)
148 				continue;
149 
150 			addr = phdr.p_vaddr;
151 			if (ehdr.e_type == ET_DYN)
152 				addr += ehdr_start;
153 			if (last > addr)
154 				unordered = 1;
155 			addrs[naddrs++] = addr;
156 			addrs[naddrs++] = last = addr + phdr.p_memsz - 1;
157 		}
158 #endif
159 	}
160 
161 	if (unordered)
162 		qsort(addrs, naddrs, sizeof (uintptr_t), addr_cmp);
163 
164 	*n = naddrs;
165 	return (addrs);
166 }
167 
168 /*
169  * Allocation function for a new file_info_t
170  */
171 file_info_t *
172 file_info_new(struct ps_prochandle *P, map_info_t *mptr)
173 {
174 	file_info_t *fptr;
175 	map_info_t *mp;
176 	uintptr_t mstart, mend, sstart, send;
177 	uint_t i;
178 
179 	if ((fptr = calloc(1, sizeof (file_info_t))) == NULL)
180 		return (NULL);
181 
182 	list_link(fptr, &P->file_head);
183 	(void) strcpy(fptr->file_pname, mptr->map_pmap.pr_mapname);
184 	mptr->map_file = fptr;
185 	fptr->file_ref = 1;
186 	fptr->file_fd = -1;
187 	P->num_files++;
188 
189 	/*
190 	 * To figure out which map_info_t instances correspond to the mappings
191 	 * for this load object we try to obtain the start and end address
192 	 * for each section of our in-memory ELF image. If successful, we
193 	 * walk down the list of addresses and the list of map_info_t
194 	 * instances in lock step to correctly find the mappings that
195 	 * correspond to this load object.
196 	 */
197 	if ((fptr->file_saddrs = get_saddrs(P, mptr->map_pmap.pr_vaddr,
198 	    &fptr->file_nsaddrs)) == NULL)
199 		return (fptr);
200 
201 	mp = P->mappings;
202 	i = 0;
203 	while (mp < P->mappings + P->map_count && i < fptr->file_nsaddrs) {
204 
205 		/* Calculate the start and end of the mapping and section */
206 		mstart = mp->map_pmap.pr_vaddr;
207 		mend = mp->map_pmap.pr_vaddr + mp->map_pmap.pr_size;
208 		sstart = fptr->file_saddrs[i];
209 		send = fptr->file_saddrs[i + 1];
210 
211 		if (mend <= sstart) {
212 			/* This mapping is below the current section */
213 			mp++;
214 		} else if (mstart >= send) {
215 			/* This mapping is above the current section */
216 			i += 2;
217 		} else {
218 			/* This mapping overlaps the current section */
219 			if (mp->map_file == NULL) {
220 				dprintf("file_info_new: associating "
221 				    "segment at %p\n",
222 				    (void *)mp->map_pmap.pr_vaddr);
223 				mp->map_file = fptr;
224 				fptr->file_ref++;
225 			} else {
226 				dprintf("file_info_new: segment at %p "
227 				    "already associated with %s\n",
228 				    (void *)mp->map_pmap.pr_vaddr,
229 				    (mp == mptr ? "this file" :
230 				    mp->map_file->file_pname));
231 			}
232 			mp++;
233 		}
234 	}
235 
236 	return (fptr);
237 }
238 
239 /*
240  * Deallocation function for a file_info_t
241  */
242 static void
243 file_info_free(struct ps_prochandle *P, file_info_t *fptr)
244 {
245 	if (--fptr->file_ref == 0) {
246 		list_unlink(fptr);
247 		if (fptr->file_symtab.sym_elf) {
248 			(void) elf_end(fptr->file_symtab.sym_elf);
249 			free(fptr->file_symtab.sym_elfmem);
250 		}
251 		if (fptr->file_symtab.sym_byname)
252 			free(fptr->file_symtab.sym_byname);
253 		if (fptr->file_symtab.sym_byaddr)
254 			free(fptr->file_symtab.sym_byaddr);
255 
256 		if (fptr->file_dynsym.sym_elf) {
257 			(void) elf_end(fptr->file_dynsym.sym_elf);
258 			free(fptr->file_dynsym.sym_elfmem);
259 		}
260 		if (fptr->file_dynsym.sym_byname)
261 			free(fptr->file_dynsym.sym_byname);
262 		if (fptr->file_dynsym.sym_byaddr)
263 			free(fptr->file_dynsym.sym_byaddr);
264 
265 		if (fptr->file_lo)
266 			free(fptr->file_lo);
267 		if (fptr->file_lname)
268 			free(fptr->file_lname);
269 		if (fptr->file_rname)
270 			free(fptr->file_rname);
271 		if (fptr->file_elf)
272 			(void) elf_end(fptr->file_elf);
273 		if (fptr->file_elfmem != NULL)
274 			free(fptr->file_elfmem);
275 		if (fptr->file_fd >= 0)
276 			(void) close(fptr->file_fd);
277 		if (fptr->file_ctfp) {
278 			ctf_close(fptr->file_ctfp);
279 			free(fptr->file_ctf_buf);
280 		}
281 		if (fptr->file_saddrs)
282 			free(fptr->file_saddrs);
283 		free(fptr);
284 		P->num_files--;
285 	}
286 }
287 
288 /*
289  * Deallocation function for a map_info_t
290  */
291 static void
292 map_info_free(struct ps_prochandle *P, map_info_t *mptr)
293 {
294 	file_info_t *fptr;
295 
296 	if ((fptr = mptr->map_file) != NULL) {
297 		if (fptr->file_map == mptr)
298 			fptr->file_map = NULL;
299 		file_info_free(P, fptr);
300 	}
301 	if (P->execname && mptr == P->map_exec) {
302 		free(P->execname);
303 		P->execname = NULL;
304 	}
305 	if (P->auxv && (mptr == P->map_exec || mptr == P->map_ldso)) {
306 		free(P->auxv);
307 		P->auxv = NULL;
308 		P->nauxv = 0;
309 	}
310 	if (mptr == P->map_exec)
311 		P->map_exec = NULL;
312 	if (mptr == P->map_ldso)
313 		P->map_ldso = NULL;
314 }
315 
316 /*
317  * Call-back function for librtld_db to iterate through all of its shared
318  * libraries.  We use this to get the load object names for the mappings.
319  */
320 static int
321 map_iter(const rd_loadobj_t *lop, void *cd)
322 {
323 	char buf[PATH_MAX];
324 	struct ps_prochandle *P = cd;
325 	map_info_t *mptr;
326 	file_info_t *fptr;
327 
328 	dprintf("encountered rd object at %p\n", (void *)lop->rl_base);
329 
330 	if ((mptr = Paddr2mptr(P, lop->rl_base)) == NULL) {
331 		dprintf("map_iter: base address doesn't match any mapping\n");
332 		return (1); /* Base address does not match any mapping */
333 	}
334 
335 	if ((fptr = mptr->map_file) == NULL &&
336 	    (fptr = file_info_new(P, mptr)) == NULL) {
337 		dprintf("map_iter: failed to allocate a new file_info_t\n");
338 		return (1); /* Failed to allocate a new file_info_t */
339 	}
340 
341 	if ((fptr->file_lo == NULL) &&
342 	    (fptr->file_lo = malloc(sizeof (rd_loadobj_t))) == NULL) {
343 		dprintf("map_iter: failed to allocate rd_loadobj_t\n");
344 		file_info_free(P, fptr);
345 		return (1); /* Failed to allocate rd_loadobj_t */
346 	}
347 
348 	fptr->file_map = mptr;
349 	*fptr->file_lo = *lop;
350 
351 	fptr->file_lo->rl_plt_base = fptr->file_plt_base;
352 	fptr->file_lo->rl_plt_size = fptr->file_plt_size;
353 
354 	if (fptr->file_lname) {
355 		free(fptr->file_lname);
356 		fptr->file_lname = NULL;
357 		fptr->file_lbase = NULL;
358 	}
359 	if (fptr->file_rname) {
360 		free(fptr->file_rname);
361 		fptr->file_rname = NULL;
362 		fptr->file_rbase = NULL;
363 	}
364 
365 	if (Pread_string(P, buf, sizeof (buf), lop->rl_nameaddr) > 0) {
366 		if ((fptr->file_lname = strdup(buf)) != NULL)
367 			fptr->file_lbase = basename(fptr->file_lname);
368 	} else {
369 		dprintf("map_iter: failed to read string at %p\n",
370 		    (void *)lop->rl_nameaddr);
371 	}
372 
373 	if ((Pfindmap(P, mptr, buf, sizeof (buf)) != NULL) &&
374 	    ((fptr->file_rname = strdup(buf)) != NULL))
375 		fptr->file_rbase = basename(fptr->file_rname);
376 
377 	dprintf("loaded rd object %s lmid %lx\n",
378 	    fptr->file_lname ? buf : "<NULL>", lop->rl_lmident);
379 	return (1);
380 }
381 
382 static void
383 map_set(struct ps_prochandle *P, map_info_t *mptr, const char *lname)
384 {
385 	file_info_t *fptr;
386 	char buf[PATH_MAX];
387 
388 	if ((fptr = mptr->map_file) == NULL &&
389 	    (fptr = file_info_new(P, mptr)) == NULL)
390 		return; /* Failed to allocate a new file_info_t */
391 
392 	fptr->file_map = mptr;
393 
394 	if ((fptr->file_lo == NULL) &&
395 	    (fptr->file_lo = malloc(sizeof (rd_loadobj_t))) == NULL) {
396 		file_info_free(P, fptr);
397 		return; /* Failed to allocate rd_loadobj_t */
398 	}
399 
400 	(void) memset(fptr->file_lo, 0, sizeof (rd_loadobj_t));
401 	fptr->file_lo->rl_base = mptr->map_pmap.pr_vaddr;
402 	fptr->file_lo->rl_bend =
403 	    mptr->map_pmap.pr_vaddr + mptr->map_pmap.pr_size;
404 
405 	fptr->file_lo->rl_plt_base = fptr->file_plt_base;
406 	fptr->file_lo->rl_plt_size = fptr->file_plt_size;
407 
408 	if ((fptr->file_lname == NULL) &&
409 	    (fptr->file_lname = strdup(lname)) != NULL)
410 		fptr->file_lbase = basename(fptr->file_lname);
411 
412 	if ((Pfindmap(P, mptr, buf, sizeof (buf)) != NULL) &&
413 	    ((fptr->file_rname = strdup(buf)) != NULL))
414 		fptr->file_rbase = basename(fptr->file_rname);
415 }
416 
417 static void
418 load_static_maps(struct ps_prochandle *P)
419 {
420 	map_info_t *mptr;
421 
422 	/*
423 	 * Construct the map for the a.out.
424 	 */
425 	if ((mptr = object_name_to_map(P, PR_LMID_EVERY, PR_OBJ_EXEC)) != NULL)
426 		map_set(P, mptr, "a.out");
427 
428 	/*
429 	 * If the dynamic linker exists for this process,
430 	 * construct the map for it.
431 	 */
432 	if (Pgetauxval(P, AT_BASE) != -1L &&
433 	    (mptr = object_name_to_map(P, PR_LMID_EVERY, PR_OBJ_LDSO)) != NULL)
434 		map_set(P, mptr, "ld.so.1");
435 }
436 
437 /*
438  * Go through all the address space mappings, validating or updating
439  * the information already gathered, or gathering new information.
440  *
441  * This function is only called when we suspect that the mappings have changed
442  * because this is the first time we're calling it or because of rtld activity.
443  */
444 void
445 Pupdate_maps(struct ps_prochandle *P)
446 {
447 	char mapfile[PATH_MAX];
448 	int mapfd;
449 	struct stat statb;
450 	prmap_t *Pmap = NULL;
451 	prmap_t *pmap;
452 	ssize_t nmap;
453 	int i;
454 	uint_t oldmapcount;
455 	map_info_t *newmap, *newp;
456 	map_info_t *mptr;
457 
458 	if (P->info_valid || P->state == PS_UNDEAD)
459 		return;
460 
461 	Preadauxvec(P);
462 
463 	(void) snprintf(mapfile, sizeof (mapfile), "%s/%d/map",
464 	    procfs_path, (int)P->pid);
465 	if ((mapfd = open(mapfile, O_RDONLY)) < 0 ||
466 	    fstat(mapfd, &statb) != 0 ||
467 	    statb.st_size < sizeof (prmap_t) ||
468 	    (Pmap = malloc(statb.st_size)) == NULL ||
469 	    (nmap = pread(mapfd, Pmap, statb.st_size, 0L)) <= 0 ||
470 	    (nmap /= sizeof (prmap_t)) == 0) {
471 		if (Pmap != NULL)
472 			free(Pmap);
473 		if (mapfd >= 0)
474 			(void) close(mapfd);
475 		Preset_maps(P);	/* utter failure; destroy tables */
476 		return;
477 	}
478 	(void) close(mapfd);
479 
480 	if ((newmap = calloc(1, nmap * sizeof (map_info_t))) == NULL)
481 		return;
482 
483 	/*
484 	 * We try to merge any file information we may have for existing
485 	 * mappings, to avoid having to rebuild the file info.
486 	 */
487 	mptr = P->mappings;
488 	pmap = Pmap;
489 	newp = newmap;
490 	oldmapcount = P->map_count;
491 	for (i = 0; i < nmap; i++, pmap++, newp++) {
492 
493 		if (oldmapcount == 0) {
494 			/*
495 			 * We've exhausted all the old mappings.  Every new
496 			 * mapping should be added.
497 			 */
498 			newp->map_pmap = *pmap;
499 
500 		} else if (pmap->pr_vaddr == mptr->map_pmap.pr_vaddr &&
501 		    pmap->pr_size == mptr->map_pmap.pr_size &&
502 		    pmap->pr_offset == mptr->map_pmap.pr_offset &&
503 		    (pmap->pr_mflags & ~(MA_BREAK | MA_STACK)) ==
504 		    (mptr->map_pmap.pr_mflags & ~(MA_BREAK | MA_STACK)) &&
505 		    pmap->pr_pagesize == mptr->map_pmap.pr_pagesize &&
506 		    pmap->pr_shmid == mptr->map_pmap.pr_shmid &&
507 		    strcmp(pmap->pr_mapname, mptr->map_pmap.pr_mapname) == 0) {
508 
509 			/*
510 			 * This mapping matches exactly.  Copy over the old
511 			 * mapping, taking care to get the latest flags.
512 			 * Make sure the associated file_info_t is updated
513 			 * appropriately.
514 			 */
515 			*newp = *mptr;
516 			if (P->map_exec == mptr)
517 				P->map_exec = newp;
518 			if (P->map_ldso == mptr)
519 				P->map_ldso = newp;
520 			newp->map_pmap.pr_mflags = pmap->pr_mflags;
521 			if (mptr->map_file != NULL &&
522 			    mptr->map_file->file_map == mptr)
523 				mptr->map_file->file_map = newp;
524 			oldmapcount--;
525 			mptr++;
526 
527 		} else if (pmap->pr_vaddr + pmap->pr_size >
528 		    mptr->map_pmap.pr_vaddr) {
529 
530 			/*
531 			 * The old mapping doesn't exist any more, remove it
532 			 * from the list.
533 			 */
534 			map_info_free(P, mptr);
535 			oldmapcount--;
536 			i--;
537 			newp--;
538 			pmap--;
539 			mptr++;
540 
541 		} else {
542 
543 			/*
544 			 * This is a new mapping, add it directly.
545 			 */
546 			newp->map_pmap = *pmap;
547 		}
548 	}
549 
550 	/*
551 	 * Free any old maps
552 	 */
553 	while (oldmapcount) {
554 		map_info_free(P, mptr);
555 		oldmapcount--;
556 		mptr++;
557 	}
558 
559 	free(Pmap);
560 	if (P->mappings != NULL)
561 		free(P->mappings);
562 	P->mappings = newmap;
563 	P->map_count = P->map_alloc = nmap;
564 	P->info_valid = 1;
565 
566 	/*
567 	 * Consult librtld_db to get the load object
568 	 * names for all of the shared libraries.
569 	 */
570 	if (P->rap != NULL)
571 		(void) rd_loadobj_iter(P->rap, map_iter, P);
572 }
573 
574 /*
575  * Update all of the mappings and rtld_db as if by Pupdate_maps(), and then
576  * forcibly cache all of the symbol tables associated with all object files.
577  */
578 void
579 Pupdate_syms(struct ps_prochandle *P)
580 {
581 	file_info_t *fptr;
582 	int i;
583 
584 	Pupdate_maps(P);
585 
586 	for (i = 0, fptr = list_next(&P->file_head); i < P->num_files;
587 	    i++, fptr = list_next(fptr)) {
588 		Pbuild_file_symtab(P, fptr);
589 		(void) Pbuild_file_ctf(P, fptr);
590 	}
591 }
592 
593 /*
594  * Return the librtld_db agent handle for the victim process.
595  * The handle will become invalid at the next successful exec() and the
596  * client (caller of proc_rd_agent()) must not use it beyond that point.
597  * If the process is already dead, we've already tried our best to
598  * create the agent during core file initialization.
599  */
600 rd_agent_t *
601 Prd_agent(struct ps_prochandle *P)
602 {
603 	if (P->rap == NULL && P->state != PS_DEAD && P->state != PS_IDLE) {
604 		Pupdate_maps(P);
605 		if (P->num_files == 0)
606 			load_static_maps(P);
607 		rd_log(_libproc_debug);
608 		if ((P->rap = rd_new(P)) != NULL)
609 			(void) rd_loadobj_iter(P->rap, map_iter, P);
610 	}
611 	return (P->rap);
612 }
613 
614 /*
615  * Return the prmap_t structure containing 'addr', but only if it
616  * is in the dynamic linker's link map and is the text section.
617  */
618 const prmap_t *
619 Paddr_to_text_map(struct ps_prochandle *P, uintptr_t addr)
620 {
621 	map_info_t *mptr;
622 
623 	if (!P->info_valid)
624 		Pupdate_maps(P);
625 
626 	if ((mptr = Paddr2mptr(P, addr)) != NULL) {
627 		file_info_t *fptr = build_map_symtab(P, mptr);
628 		const prmap_t *pmp = &mptr->map_pmap;
629 
630 		/*
631 		 * Assume that if rl_data_base is NULL, it means that no
632 		 * data section was found for this load object, and that
633 		 * a section must be text. Otherwise, a section will be
634 		 * text unless it ends above the start of the data
635 		 * section.
636 		 */
637 		if (fptr != NULL && fptr->file_lo != NULL &&
638 		    (fptr->file_lo->rl_data_base == NULL ||
639 		    pmp->pr_vaddr + pmp->pr_size <
640 		    fptr->file_lo->rl_data_base))
641 			return (pmp);
642 	}
643 
644 	return (NULL);
645 }
646 
647 /*
648  * Return the prmap_t structure containing 'addr' (no restrictions on
649  * the type of mapping).
650  */
651 const prmap_t *
652 Paddr_to_map(struct ps_prochandle *P, uintptr_t addr)
653 {
654 	map_info_t *mptr;
655 
656 	if (!P->info_valid)
657 		Pupdate_maps(P);
658 
659 	if ((mptr = Paddr2mptr(P, addr)) != NULL)
660 		return (&mptr->map_pmap);
661 
662 	return (NULL);
663 }
664 
665 /*
666  * Convert a full or partial load object name to the prmap_t for its
667  * corresponding primary text mapping.
668  */
669 const prmap_t *
670 Plmid_to_map(struct ps_prochandle *P, Lmid_t lmid, const char *name)
671 {
672 	map_info_t *mptr;
673 
674 	if (name == PR_OBJ_EVERY)
675 		return (NULL); /* A reasonable mistake */
676 
677 	if ((mptr = object_name_to_map(P, lmid, name)) != NULL)
678 		return (&mptr->map_pmap);
679 
680 	return (NULL);
681 }
682 
683 const prmap_t *
684 Pname_to_map(struct ps_prochandle *P, const char *name)
685 {
686 	return (Plmid_to_map(P, PR_LMID_EVERY, name));
687 }
688 
689 const rd_loadobj_t *
690 Paddr_to_loadobj(struct ps_prochandle *P, uintptr_t addr)
691 {
692 	map_info_t *mptr;
693 
694 	if (!P->info_valid)
695 		Pupdate_maps(P);
696 
697 	if ((mptr = Paddr2mptr(P, addr)) == NULL)
698 		return (NULL);
699 
700 	/*
701 	 * By building the symbol table, we implicitly bring the PLT
702 	 * information up to date in the load object.
703 	 */
704 	(void) build_map_symtab(P, mptr);
705 
706 	return (mptr->map_file->file_lo);
707 }
708 
709 const rd_loadobj_t *
710 Plmid_to_loadobj(struct ps_prochandle *P, Lmid_t lmid, const char *name)
711 {
712 	map_info_t *mptr;
713 
714 	if (name == PR_OBJ_EVERY)
715 		return (NULL);
716 
717 	if ((mptr = object_name_to_map(P, lmid, name)) == NULL)
718 		return (NULL);
719 
720 	/*
721 	 * By building the symbol table, we implicitly bring the PLT
722 	 * information up to date in the load object.
723 	 */
724 	(void) build_map_symtab(P, mptr);
725 
726 	return (mptr->map_file->file_lo);
727 }
728 
729 const rd_loadobj_t *
730 Pname_to_loadobj(struct ps_prochandle *P, const char *name)
731 {
732 	return (Plmid_to_loadobj(P, PR_LMID_EVERY, name));
733 }
734 
735 ctf_file_t *
736 Pbuild_file_ctf(struct ps_prochandle *P, file_info_t *fptr)
737 {
738 	ctf_sect_t ctdata, symtab, strtab;
739 	sym_tbl_t *symp;
740 	int err;
741 
742 	if (fptr->file_ctfp != NULL)
743 		return (fptr->file_ctfp);
744 
745 	Pbuild_file_symtab(P, fptr);
746 
747 	if (fptr->file_ctf_size == 0)
748 		return (NULL);
749 
750 	symp = fptr->file_ctf_dyn ? &fptr->file_dynsym : &fptr->file_symtab;
751 	if (symp->sym_data_pri == NULL)
752 		return (NULL);
753 
754 	/*
755 	 * The buffer may alread be allocated if this is a core file that
756 	 * contained CTF data for this file.
757 	 */
758 	if (fptr->file_ctf_buf == NULL) {
759 		fptr->file_ctf_buf = malloc(fptr->file_ctf_size);
760 		if (fptr->file_ctf_buf == NULL) {
761 			dprintf("failed to allocate ctf buffer\n");
762 			return (NULL);
763 		}
764 
765 		if (pread(fptr->file_fd, fptr->file_ctf_buf,
766 		    fptr->file_ctf_size, fptr->file_ctf_off) !=
767 		    fptr->file_ctf_size) {
768 			free(fptr->file_ctf_buf);
769 			fptr->file_ctf_buf = NULL;
770 			dprintf("failed to read ctf data\n");
771 			return (NULL);
772 		}
773 	}
774 
775 	ctdata.cts_name = ".SUNW_ctf";
776 	ctdata.cts_type = SHT_PROGBITS;
777 	ctdata.cts_flags = 0;
778 	ctdata.cts_data = fptr->file_ctf_buf;
779 	ctdata.cts_size = fptr->file_ctf_size;
780 	ctdata.cts_entsize = 1;
781 	ctdata.cts_offset = 0;
782 
783 	symtab.cts_name = fptr->file_ctf_dyn ? ".dynsym" : ".symtab";
784 	symtab.cts_type = symp->sym_hdr_pri.sh_type;
785 	symtab.cts_flags = symp->sym_hdr_pri.sh_flags;
786 	symtab.cts_data = symp->sym_data_pri->d_buf;
787 	symtab.cts_size = symp->sym_hdr_pri.sh_size;
788 	symtab.cts_entsize = symp->sym_hdr_pri.sh_entsize;
789 	symtab.cts_offset = symp->sym_hdr_pri.sh_offset;
790 
791 	strtab.cts_name = fptr->file_ctf_dyn ? ".dynstr" : ".strtab";
792 	strtab.cts_type = symp->sym_strhdr.sh_type;
793 	strtab.cts_flags = symp->sym_strhdr.sh_flags;
794 	strtab.cts_data = symp->sym_strs;
795 	strtab.cts_size = symp->sym_strhdr.sh_size;
796 	strtab.cts_entsize = symp->sym_strhdr.sh_entsize;
797 	strtab.cts_offset = symp->sym_strhdr.sh_offset;
798 
799 	fptr->file_ctfp = ctf_bufopen(&ctdata, &symtab, &strtab, &err);
800 	if (fptr->file_ctfp == NULL) {
801 		dprintf("ctf_bufopen() failed, error code %d\n", err);
802 		free(fptr->file_ctf_buf);
803 		fptr->file_ctf_buf = NULL;
804 		return (NULL);
805 	}
806 
807 	dprintf("loaded %lu bytes of CTF data for %s\n",
808 	    (ulong_t)fptr->file_ctf_size, fptr->file_pname);
809 
810 	return (fptr->file_ctfp);
811 }
812 
813 ctf_file_t *
814 Paddr_to_ctf(struct ps_prochandle *P, uintptr_t addr)
815 {
816 	map_info_t *mptr;
817 	file_info_t *fptr;
818 
819 	if (!P->info_valid)
820 		Pupdate_maps(P);
821 
822 	if ((mptr = Paddr2mptr(P, addr)) == NULL ||
823 	    (fptr = mptr->map_file) == NULL)
824 		return (NULL);
825 
826 	return (Pbuild_file_ctf(P, fptr));
827 }
828 
829 ctf_file_t *
830 Plmid_to_ctf(struct ps_prochandle *P, Lmid_t lmid, const char *name)
831 {
832 	map_info_t *mptr;
833 	file_info_t *fptr;
834 
835 	if (name == PR_OBJ_EVERY)
836 		return (NULL);
837 
838 	if ((mptr = object_name_to_map(P, lmid, name)) == NULL ||
839 	    (fptr = mptr->map_file) == NULL)
840 		return (NULL);
841 
842 	return (Pbuild_file_ctf(P, fptr));
843 }
844 
845 ctf_file_t *
846 Pname_to_ctf(struct ps_prochandle *P, const char *name)
847 {
848 	return (Plmid_to_ctf(P, PR_LMID_EVERY, name));
849 }
850 
851 /*
852  * If we're not a core file, re-read the /proc/<pid>/auxv file and store
853  * its contents in P->auxv.  In the case of a core file, we either
854  * initialized P->auxv in Pcore() from the NT_AUXV, or we don't have an
855  * auxv because the note was missing.
856  */
857 void
858 Preadauxvec(struct ps_prochandle *P)
859 {
860 	char auxfile[64];
861 	struct stat statb;
862 	ssize_t naux;
863 	int fd;
864 
865 	if (P->state == PS_DEAD)
866 		return; /* Already read during Pgrab_core() */
867 	if (P->state == PS_IDLE)
868 		return; /* No aux vec for Pgrab_file() */
869 
870 	if (P->auxv != NULL) {
871 		free(P->auxv);
872 		P->auxv = NULL;
873 		P->nauxv = 0;
874 	}
875 
876 	(void) snprintf(auxfile, sizeof (auxfile), "%s/%d/auxv",
877 	    procfs_path, (int)P->pid);
878 	if ((fd = open(auxfile, O_RDONLY)) < 0)
879 		return;
880 
881 	if (fstat(fd, &statb) == 0 &&
882 	    statb.st_size >= sizeof (auxv_t) &&
883 	    (P->auxv = malloc(statb.st_size + sizeof (auxv_t))) != NULL) {
884 		if ((naux = read(fd, P->auxv, statb.st_size)) < 0 ||
885 		    (naux /= sizeof (auxv_t)) < 1) {
886 			free(P->auxv);
887 			P->auxv = NULL;
888 		} else {
889 			P->auxv[naux].a_type = AT_NULL;
890 			P->auxv[naux].a_un.a_val = 0L;
891 			P->nauxv = (int)naux;
892 		}
893 	}
894 
895 	(void) close(fd);
896 }
897 
898 /*
899  * Return a requested element from the process's aux vector.
900  * Return -1 on failure (this is adequate for our purposes).
901  */
902 long
903 Pgetauxval(struct ps_prochandle *P, int type)
904 {
905 	auxv_t *auxv;
906 
907 	if (P->auxv == NULL)
908 		Preadauxvec(P);
909 
910 	if (P->auxv == NULL)
911 		return (-1);
912 
913 	for (auxv = P->auxv; auxv->a_type != AT_NULL; auxv++) {
914 		if (auxv->a_type == type)
915 			return (auxv->a_un.a_val);
916 	}
917 
918 	return (-1);
919 }
920 
921 /*
922  * Return a pointer to our internal copy of the process's aux vector.
923  * The caller should not hold on to this pointer across any libproc calls.
924  */
925 const auxv_t *
926 Pgetauxvec(struct ps_prochandle *P)
927 {
928 	static const auxv_t empty = { AT_NULL, 0L };
929 
930 	if (P->auxv == NULL)
931 		Preadauxvec(P);
932 
933 	if (P->auxv == NULL)
934 		return (&empty);
935 
936 	return (P->auxv);
937 }
938 
939 /*
940  * Return 1 if the given mapping corresponds to the given file_info_t's
941  * load object; return 0 otherwise.
942  */
943 static int
944 is_mapping_in_file(struct ps_prochandle *P, map_info_t *mptr, file_info_t *fptr)
945 {
946 	prmap_t *pmap = &mptr->map_pmap;
947 	rd_loadobj_t *lop = fptr->file_lo;
948 	uint_t i;
949 	uintptr_t mstart, mend, sstart, send;
950 
951 	/*
952 	 * We can get for free the start address of the text and data
953 	 * sections of the load object. Start by seeing if the mapping
954 	 * encloses either of these.
955 	 */
956 	if ((pmap->pr_vaddr <= lop->rl_base &&
957 	    lop->rl_base < pmap->pr_vaddr + pmap->pr_size) ||
958 	    (pmap->pr_vaddr <= lop->rl_data_base &&
959 	    lop->rl_data_base < pmap->pr_vaddr + pmap->pr_size))
960 		return (1);
961 
962 	/*
963 	 * It's still possible that this mapping correponds to the load
964 	 * object. Consider the example of a mapping whose start and end
965 	 * addresses correspond to those of the load object's text section.
966 	 * If the mapping splits, e.g. as a result of a segment demotion,
967 	 * then although both mappings are still backed by the same section,
968 	 * only one will be seen to enclose that section's start address.
969 	 * Thus, to be rigorous, we ask not whether this mapping encloses
970 	 * the start of a section, but whether there exists a section that
971 	 * overlaps this mapping.
972 	 *
973 	 * If we don't already have the section addresses, and we successfully
974 	 * get them, then we cache them in case we come here again.
975 	 */
976 	if (fptr->file_saddrs == NULL &&
977 	    (fptr->file_saddrs = get_saddrs(P,
978 	    fptr->file_map->map_pmap.pr_vaddr, &fptr->file_nsaddrs)) == NULL)
979 		return (0);
980 
981 	mstart = mptr->map_pmap.pr_vaddr;
982 	mend = mptr->map_pmap.pr_vaddr + mptr->map_pmap.pr_size;
983 	for (i = 0; i < fptr->file_nsaddrs; i += 2) {
984 		/* Does this section overlap the mapping? */
985 		sstart = fptr->file_saddrs[i];
986 		send = fptr->file_saddrs[i + 1];
987 		if (!(mend <= sstart || mstart >= send))
988 			return (1);
989 	}
990 
991 	return (0);
992 }
993 
994 /*
995  * Find or build the symbol table for the given mapping.
996  */
997 static file_info_t *
998 build_map_symtab(struct ps_prochandle *P, map_info_t *mptr)
999 {
1000 	prmap_t *pmap = &mptr->map_pmap;
1001 	file_info_t *fptr;
1002 	uint_t i;
1003 
1004 	if ((fptr = mptr->map_file) != NULL) {
1005 		Pbuild_file_symtab(P, fptr);
1006 		return (fptr);
1007 	}
1008 
1009 	if (pmap->pr_mapname[0] == '\0')
1010 		return (NULL);
1011 
1012 	/*
1013 	 * Attempt to find a matching file.
1014 	 * (A file can be mapped at several different addresses.)
1015 	 */
1016 	for (i = 0, fptr = list_next(&P->file_head); i < P->num_files;
1017 	    i++, fptr = list_next(fptr)) {
1018 		if (strcmp(fptr->file_pname, pmap->pr_mapname) == 0 &&
1019 		    fptr->file_lo && is_mapping_in_file(P, mptr, fptr)) {
1020 			mptr->map_file = fptr;
1021 			fptr->file_ref++;
1022 			Pbuild_file_symtab(P, fptr);
1023 			return (fptr);
1024 		}
1025 	}
1026 
1027 	/*
1028 	 * If we need to create a new file_info structure, iterate
1029 	 * through the load objects in order to attempt to connect
1030 	 * this new file with its primary text mapping.  We again
1031 	 * need to handle ld.so as a special case because we need
1032 	 * to be able to bootstrap librtld_db.
1033 	 */
1034 	if ((fptr = file_info_new(P, mptr)) == NULL)
1035 		return (NULL);
1036 
1037 	if (P->map_ldso != mptr) {
1038 		if (P->rap != NULL)
1039 			(void) rd_loadobj_iter(P->rap, map_iter, P);
1040 		else
1041 			(void) Prd_agent(P);
1042 	} else {
1043 		fptr->file_map = mptr;
1044 	}
1045 
1046 	/*
1047 	 * If librtld_db wasn't able to help us connect the file to a primary
1048 	 * text mapping, set file_map to the current mapping because we require
1049 	 * fptr->file_map to be set in Pbuild_file_symtab.  librtld_db may be
1050 	 * unaware of what's going on in the rare case that a legitimate ELF
1051 	 * file has been mmap(2)ed into the process address space *without*
1052 	 * the use of dlopen(3x).
1053 	 */
1054 	if (fptr->file_map == NULL)
1055 		fptr->file_map = mptr;
1056 
1057 	Pbuild_file_symtab(P, fptr);
1058 
1059 	return (fptr);
1060 }
1061 
1062 static int
1063 read_ehdr32(struct ps_prochandle *P, Elf32_Ehdr *ehdr, uint_t *phnum,
1064     uintptr_t addr)
1065 {
1066 	if (Pread(P, ehdr, sizeof (*ehdr), addr) != sizeof (*ehdr))
1067 		return (-1);
1068 
1069 	if (ehdr->e_ident[EI_MAG0] != ELFMAG0 ||
1070 	    ehdr->e_ident[EI_MAG1] != ELFMAG1 ||
1071 	    ehdr->e_ident[EI_MAG2] != ELFMAG2 ||
1072 	    ehdr->e_ident[EI_MAG3] != ELFMAG3 ||
1073 	    ehdr->e_ident[EI_CLASS] != ELFCLASS32 ||
1074 #ifdef _BIG_ENDIAN
1075 	    ehdr->e_ident[EI_DATA] != ELFDATA2MSB ||
1076 #else
1077 	    ehdr->e_ident[EI_DATA] != ELFDATA2LSB ||
1078 #endif
1079 	    ehdr->e_ident[EI_VERSION] != EV_CURRENT)
1080 		return (-1);
1081 
1082 	if ((*phnum = ehdr->e_phnum) == PN_XNUM) {
1083 		Elf32_Shdr shdr0;
1084 
1085 		if (ehdr->e_shoff == 0 || ehdr->e_shentsize < sizeof (shdr0) ||
1086 		    Pread(P, &shdr0, sizeof (shdr0), addr + ehdr->e_shoff) !=
1087 		    sizeof (shdr0))
1088 			return (-1);
1089 
1090 		if (shdr0.sh_info != 0)
1091 			*phnum = shdr0.sh_info;
1092 	}
1093 
1094 	return (0);
1095 }
1096 
1097 static int
1098 read_dynamic_phdr32(struct ps_prochandle *P, const Elf32_Ehdr *ehdr,
1099     uint_t phnum, Elf32_Phdr *phdr, uintptr_t addr)
1100 {
1101 	uint_t i;
1102 
1103 	for (i = 0; i < phnum; i++) {
1104 		uintptr_t a = addr + ehdr->e_phoff + i * ehdr->e_phentsize;
1105 		if (Pread(P, phdr, sizeof (*phdr), a) != sizeof (*phdr))
1106 			return (-1);
1107 
1108 		if (phdr->p_type == PT_DYNAMIC)
1109 			return (0);
1110 	}
1111 
1112 	return (-1);
1113 }
1114 
1115 #ifdef _LP64
1116 static int
1117 read_ehdr64(struct ps_prochandle *P, Elf64_Ehdr *ehdr, uint_t *phnum,
1118     uintptr_t addr)
1119 {
1120 	if (Pread(P, ehdr, sizeof (Elf64_Ehdr), addr) != sizeof (Elf64_Ehdr))
1121 		return (-1);
1122 
1123 	if (ehdr->e_ident[EI_MAG0] != ELFMAG0 ||
1124 	    ehdr->e_ident[EI_MAG1] != ELFMAG1 ||
1125 	    ehdr->e_ident[EI_MAG2] != ELFMAG2 ||
1126 	    ehdr->e_ident[EI_MAG3] != ELFMAG3 ||
1127 	    ehdr->e_ident[EI_CLASS] != ELFCLASS64 ||
1128 #ifdef _BIG_ENDIAN
1129 	    ehdr->e_ident[EI_DATA] != ELFDATA2MSB ||
1130 #else
1131 	    ehdr->e_ident[EI_DATA] != ELFDATA2LSB ||
1132 #endif
1133 	    ehdr->e_ident[EI_VERSION] != EV_CURRENT)
1134 		return (-1);
1135 
1136 	if ((*phnum = ehdr->e_phnum) == PN_XNUM) {
1137 		Elf64_Shdr shdr0;
1138 
1139 		if (ehdr->e_shoff == 0 || ehdr->e_shentsize < sizeof (shdr0) ||
1140 		    Pread(P, &shdr0, sizeof (shdr0), addr + ehdr->e_shoff) !=
1141 		    sizeof (shdr0))
1142 			return (-1);
1143 
1144 		if (shdr0.sh_info != 0)
1145 			*phnum = shdr0.sh_info;
1146 	}
1147 
1148 	return (0);
1149 }
1150 
1151 static int
1152 read_dynamic_phdr64(struct ps_prochandle *P, const Elf64_Ehdr *ehdr,
1153     uint_t phnum, Elf64_Phdr *phdr, uintptr_t addr)
1154 {
1155 	uint_t i;
1156 
1157 	for (i = 0; i < phnum; i++) {
1158 		uintptr_t a = addr + ehdr->e_phoff + i * ehdr->e_phentsize;
1159 		if (Pread(P, phdr, sizeof (*phdr), a) != sizeof (*phdr))
1160 			return (-1);
1161 
1162 		if (phdr->p_type == PT_DYNAMIC)
1163 			return (0);
1164 	}
1165 
1166 	return (-1);
1167 }
1168 #endif	/* _LP64 */
1169 
1170 /*
1171  * The text segment for each load object contains the elf header and
1172  * program headers. We can use this information to determine if the
1173  * file that corresponds to the load object is the same file that
1174  * was loaded into the process's address space. There can be a discrepency
1175  * if a file is recompiled after the process is started or if the target
1176  * represents a core file from a differently configured system -- two
1177  * common examples. The DT_CHECKSUM entry in the dynamic section
1178  * provides an easy method of comparison. It is important to note that
1179  * the dynamic section usually lives in the data segment, but the meta
1180  * data we use to find the dynamic section lives in the text segment so
1181  * if either of those segments is absent we can't proceed.
1182  *
1183  * We're looking through the elf file for several items: the symbol tables
1184  * (both dynsym and symtab), the procedure linkage table (PLT) base,
1185  * size, and relocation base, and the CTF information. Most of this can
1186  * be recovered from the loaded image of the file itself, the exceptions
1187  * being the symtab and CTF data.
1188  *
1189  * First we try to open the file that we think corresponds to the load
1190  * object, if the DT_CHECKSUM values match, we're all set, and can simply
1191  * recover all the information we need from the file. If the values of
1192  * DT_CHECKSUM don't match, or if we can't access the file for whatever
1193  * reasaon, we fake up a elf file to use in its stead. If we can't read
1194  * the elf data in the process's address space, we fall back to using
1195  * the file even though it may give inaccurate information.
1196  *
1197  * The elf file that we fake up has to consist of sections for the
1198  * dynsym, the PLT and the dynamic section. Note that in the case of a
1199  * core file, we'll get the CTF data in the file_info_t later on from
1200  * a section embedded the core file (if it's present).
1201  *
1202  * file_differs() conservatively looks for mismatched files, identifying
1203  * a match when there is any ambiguity (since that's the legacy behavior).
1204  */
1205 static int
1206 file_differs(struct ps_prochandle *P, Elf *elf, file_info_t *fptr)
1207 {
1208 	Elf_Scn *scn;
1209 	GElf_Shdr shdr;
1210 	GElf_Dyn dyn;
1211 	Elf_Data *data;
1212 	uint_t i, ndyn;
1213 	GElf_Xword cksum;
1214 	uintptr_t addr;
1215 
1216 	if (fptr->file_map == NULL)
1217 		return (0);
1218 
1219 	if ((Pcontent(P) & (CC_CONTENT_TEXT | CC_CONTENT_DATA)) !=
1220 	    (CC_CONTENT_TEXT | CC_CONTENT_DATA))
1221 		return (0);
1222 
1223 	/*
1224 	 * First, we find the checksum value in the elf file.
1225 	 */
1226 	scn = NULL;
1227 	while ((scn = elf_nextscn(elf, scn)) != NULL) {
1228 		if (gelf_getshdr(scn, &shdr) != NULL &&
1229 		    shdr.sh_type == SHT_DYNAMIC)
1230 			goto found_shdr;
1231 	}
1232 	return (0);
1233 
1234 found_shdr:
1235 	if ((data = elf_getdata(scn, NULL)) == NULL)
1236 		return (0);
1237 
1238 	if (P->status.pr_dmodel == PR_MODEL_ILP32)
1239 		ndyn = shdr.sh_size / sizeof (Elf32_Dyn);
1240 #ifdef _LP64
1241 	else if (P->status.pr_dmodel == PR_MODEL_LP64)
1242 		ndyn = shdr.sh_size / sizeof (Elf64_Dyn);
1243 #endif
1244 	else
1245 		return (0);
1246 
1247 	for (i = 0; i < ndyn; i++) {
1248 		if (gelf_getdyn(data, i, &dyn) != NULL &&
1249 		    dyn.d_tag == DT_CHECKSUM)
1250 			goto found_cksum;
1251 	}
1252 
1253 	/*
1254 	 * The in-memory ELF has no DT_CHECKSUM section, but we will report it
1255 	 * as matching the file anyhow.
1256 	 */
1257 	return (0);
1258 
1259 found_cksum:
1260 	cksum = dyn.d_un.d_val;
1261 	dprintf("elf cksum value is %llx\n", (u_longlong_t)cksum);
1262 
1263 	/*
1264 	 * Get the base of the text mapping that corresponds to this file.
1265 	 */
1266 	addr = fptr->file_map->map_pmap.pr_vaddr;
1267 
1268 	if (P->status.pr_dmodel == PR_MODEL_ILP32) {
1269 		Elf32_Ehdr ehdr;
1270 		Elf32_Phdr phdr;
1271 		Elf32_Dyn dync, *dynp;
1272 		uint_t phnum, i;
1273 
1274 		if (read_ehdr32(P, &ehdr, &phnum, addr) != 0 ||
1275 		    read_dynamic_phdr32(P, &ehdr, phnum, &phdr, addr) != 0)
1276 			return (0);
1277 
1278 		if (ehdr.e_type == ET_DYN)
1279 			phdr.p_vaddr += addr;
1280 		if ((dynp = malloc(phdr.p_filesz)) == NULL)
1281 			return (0);
1282 		dync.d_tag = DT_NULL;
1283 		if (Pread(P, dynp, phdr.p_filesz, phdr.p_vaddr) !=
1284 		    phdr.p_filesz) {
1285 			free(dynp);
1286 			return (0);
1287 		}
1288 
1289 		for (i = 0; i < phdr.p_filesz / sizeof (Elf32_Dyn); i++) {
1290 			if (dynp[i].d_tag == DT_CHECKSUM)
1291 				dync = dynp[i];
1292 		}
1293 
1294 		free(dynp);
1295 
1296 		if (dync.d_tag != DT_CHECKSUM)
1297 			return (0);
1298 
1299 		dprintf("image cksum value is %llx\n",
1300 		    (u_longlong_t)dync.d_un.d_val);
1301 		return (dync.d_un.d_val != cksum);
1302 #ifdef _LP64
1303 	} else if (P->status.pr_dmodel == PR_MODEL_LP64) {
1304 		Elf64_Ehdr ehdr;
1305 		Elf64_Phdr phdr;
1306 		Elf64_Dyn dync, *dynp;
1307 		uint_t phnum, i;
1308 
1309 		if (read_ehdr64(P, &ehdr, &phnum, addr) != 0 ||
1310 		    read_dynamic_phdr64(P, &ehdr, phnum, &phdr, addr) != 0)
1311 			return (0);
1312 
1313 		if (ehdr.e_type == ET_DYN)
1314 			phdr.p_vaddr += addr;
1315 		if ((dynp = malloc(phdr.p_filesz)) == NULL)
1316 			return (0);
1317 		dync.d_tag = DT_NULL;
1318 		if (Pread(P, dynp, phdr.p_filesz, phdr.p_vaddr) !=
1319 		    phdr.p_filesz) {
1320 			free(dynp);
1321 			return (0);
1322 		}
1323 
1324 		for (i = 0; i < phdr.p_filesz / sizeof (Elf64_Dyn); i++) {
1325 			if (dynp[i].d_tag == DT_CHECKSUM)
1326 				dync = dynp[i];
1327 		}
1328 
1329 		free(dynp);
1330 
1331 		if (dync.d_tag != DT_CHECKSUM)
1332 			return (0);
1333 
1334 		dprintf("image cksum value is %llx\n",
1335 		    (u_longlong_t)dync.d_un.d_val);
1336 		return (dync.d_un.d_val != cksum);
1337 #endif	/* _LP64 */
1338 	}
1339 
1340 	return (0);
1341 }
1342 
1343 /*
1344  * Read data from the specified process and construct an in memory
1345  * image of an ELF file that represents it well enough to let
1346  * us probe it for information.
1347  */
1348 static Elf *
1349 fake_elf(struct ps_prochandle *P, file_info_t *fptr)
1350 {
1351 	Elf *elf;
1352 	uintptr_t addr;
1353 	uint_t phnum;
1354 
1355 	if (fptr->file_map == NULL)
1356 		return (NULL);
1357 
1358 	if ((Pcontent(P) & (CC_CONTENT_TEXT | CC_CONTENT_DATA)) !=
1359 	    (CC_CONTENT_TEXT | CC_CONTENT_DATA))
1360 		return (NULL);
1361 
1362 	addr = fptr->file_map->map_pmap.pr_vaddr;
1363 
1364 	if (P->status.pr_dmodel == PR_MODEL_ILP32) {
1365 		Elf32_Ehdr ehdr;
1366 		Elf32_Phdr phdr;
1367 
1368 		if ((read_ehdr32(P, &ehdr, &phnum, addr) != 0) ||
1369 		    read_dynamic_phdr32(P, &ehdr, phnum, &phdr, addr) != 0)
1370 			return (NULL);
1371 
1372 		elf = fake_elf32(P, fptr, addr, &ehdr, phnum, &phdr);
1373 #ifdef _LP64
1374 	} else {
1375 		Elf64_Ehdr ehdr;
1376 		Elf64_Phdr phdr;
1377 
1378 		if (read_ehdr64(P, &ehdr, &phnum, addr) != 0 ||
1379 		    read_dynamic_phdr64(P, &ehdr, phnum, &phdr, addr) != 0)
1380 			return (NULL);
1381 
1382 		elf = fake_elf64(P, fptr, addr, &ehdr, phnum, &phdr);
1383 #endif
1384 	}
1385 
1386 	return (elf);
1387 }
1388 
1389 /*
1390  * We wouldn't need these if qsort(3C) took an argument for the callback...
1391  */
1392 static mutex_t sort_mtx = DEFAULTMUTEX;
1393 static char *sort_strs;
1394 static GElf_Sym *sort_syms;
1395 
1396 int
1397 byaddr_cmp_common(GElf_Sym *a, char *aname, GElf_Sym *b, char *bname)
1398 {
1399 	if (a->st_value < b->st_value)
1400 		return (-1);
1401 	if (a->st_value > b->st_value)
1402 		return (1);
1403 
1404 	/*
1405 	 * Prefer the function to the non-function.
1406 	 */
1407 	if (GELF_ST_TYPE(a->st_info) != GELF_ST_TYPE(b->st_info)) {
1408 		if (GELF_ST_TYPE(a->st_info) == STT_FUNC)
1409 			return (-1);
1410 		if (GELF_ST_TYPE(b->st_info) == STT_FUNC)
1411 			return (1);
1412 	}
1413 
1414 	/*
1415 	 * Prefer the weak or strong global symbol to the local symbol.
1416 	 */
1417 	if (GELF_ST_BIND(a->st_info) != GELF_ST_BIND(b->st_info)) {
1418 		if (GELF_ST_BIND(b->st_info) == STB_LOCAL)
1419 			return (-1);
1420 		if (GELF_ST_BIND(a->st_info) == STB_LOCAL)
1421 			return (1);
1422 	}
1423 
1424 	/*
1425 	 * Prefer the symbol that doesn't begin with a '$' since compilers and
1426 	 * other symbol generators often use it as a prefix.
1427 	 */
1428 	if (*bname == '$')
1429 		return (-1);
1430 	if (*aname == '$')
1431 		return (1);
1432 
1433 	/*
1434 	 * Prefer the name with fewer leading underscores in the name.
1435 	 */
1436 	while (*aname == '_' && *bname == '_') {
1437 		aname++;
1438 		bname++;
1439 	}
1440 
1441 	if (*bname == '_')
1442 		return (-1);
1443 	if (*aname == '_')
1444 		return (1);
1445 
1446 	/*
1447 	 * Prefer the symbol with the smaller size.
1448 	 */
1449 	if (a->st_size < b->st_size)
1450 		return (-1);
1451 	if (a->st_size > b->st_size)
1452 		return (1);
1453 
1454 	/*
1455 	 * All other factors being equal, fall back to lexicographic order.
1456 	 */
1457 	return (strcmp(aname, bname));
1458 }
1459 
1460 static int
1461 byaddr_cmp(const void *aa, const void *bb)
1462 {
1463 	GElf_Sym *a = &sort_syms[*(uint_t *)aa];
1464 	GElf_Sym *b = &sort_syms[*(uint_t *)bb];
1465 	char *aname = sort_strs + a->st_name;
1466 	char *bname = sort_strs + b->st_name;
1467 
1468 	return (byaddr_cmp_common(a, aname, b, bname));
1469 }
1470 
1471 static int
1472 byname_cmp(const void *aa, const void *bb)
1473 {
1474 	GElf_Sym *a = &sort_syms[*(uint_t *)aa];
1475 	GElf_Sym *b = &sort_syms[*(uint_t *)bb];
1476 	char *aname = sort_strs + a->st_name;
1477 	char *bname = sort_strs + b->st_name;
1478 
1479 	return (strcmp(aname, bname));
1480 }
1481 
1482 /*
1483  * Given a symbol index, look up the corresponding symbol from the
1484  * given symbol table.
1485  *
1486  * This function allows the caller to treat the symbol table as a single
1487  * logical entity even though there may be 2 actual ELF symbol tables
1488  * involved. See the comments in Pcontrol.h for details.
1489  */
1490 static GElf_Sym *
1491 symtab_getsym(sym_tbl_t *symtab, int ndx, GElf_Sym *dst)
1492 {
1493 	/* If index is in range of primary symtab, look it up there */
1494 	if (ndx >= symtab->sym_symn_aux) {
1495 		return (gelf_getsym(symtab->sym_data_pri,
1496 		    ndx - symtab->sym_symn_aux, dst));
1497 	}
1498 
1499 	/* Not in primary: Look it up in the auxiliary symtab */
1500 	return (gelf_getsym(symtab->sym_data_aux, ndx, dst));
1501 }
1502 
1503 void
1504 optimize_symtab(sym_tbl_t *symtab)
1505 {
1506 	GElf_Sym *symp, *syms;
1507 	uint_t i, *indexa, *indexb;
1508 	size_t symn, strsz, count;
1509 
1510 	if (symtab == NULL || symtab->sym_data_pri == NULL ||
1511 	    symtab->sym_byaddr != NULL)
1512 		return;
1513 
1514 	symn = symtab->sym_symn;
1515 	strsz = symtab->sym_strsz;
1516 
1517 	symp = syms = malloc(sizeof (GElf_Sym) * symn);
1518 	if (symp == NULL) {
1519 		dprintf("optimize_symtab: failed to malloc symbol array");
1520 		return;
1521 	}
1522 
1523 	/*
1524 	 * First record all the symbols into a table and count up the ones
1525 	 * that we're interested in. We mark symbols as invalid by setting
1526 	 * the st_name to an illegal value.
1527 	 */
1528 	for (i = 0, count = 0; i < symn; i++, symp++) {
1529 		if (symtab_getsym(symtab, i, symp) != NULL &&
1530 		    symp->st_name < strsz &&
1531 		    IS_DATA_TYPE(GELF_ST_TYPE(symp->st_info)))
1532 			count++;
1533 		else
1534 			symp->st_name = strsz;
1535 	}
1536 
1537 	/*
1538 	 * Allocate sufficient space for both tables and populate them
1539 	 * with the same symbols we just counted.
1540 	 */
1541 	symtab->sym_count = count;
1542 	indexa = symtab->sym_byaddr = calloc(sizeof (uint_t), count);
1543 	indexb = symtab->sym_byname = calloc(sizeof (uint_t), count);
1544 	if (indexa == NULL || indexb == NULL) {
1545 		dprintf(
1546 		    "optimize_symtab: failed to malloc symbol index arrays");
1547 		symtab->sym_count = 0;
1548 		if (indexa != NULL) {	/* First alloc succeeded. Free it */
1549 			free(indexa);
1550 			symtab->sym_byaddr = NULL;
1551 		}
1552 		free(syms);
1553 		return;
1554 	}
1555 	for (i = 0, symp = syms; i < symn; i++, symp++) {
1556 		if (symp->st_name < strsz)
1557 			*indexa++ = *indexb++ = i;
1558 	}
1559 
1560 	/*
1561 	 * Sort the two tables according to the appropriate criteria,
1562 	 * unless the user has overridden this behaviour.
1563 	 *
1564 	 * An example where we might not sort the tables is the relatively
1565 	 * unusual case of a process with very large symbol tables in which
1566 	 * we perform few lookups. In such a case the total time would be
1567 	 * dominated by the sort. It is difficult to determine a priori
1568 	 * how many lookups an arbitrary client will perform, and
1569 	 * hence whether the symbol tables should be sorted. We therefore
1570 	 * sort the tables by default, but provide the user with a
1571 	 * "chicken switch" in the form of the LIBPROC_NO_QSORT
1572 	 * environment variable.
1573 	 */
1574 	if (!_libproc_no_qsort) {
1575 		(void) mutex_lock(&sort_mtx);
1576 		sort_strs = symtab->sym_strs;
1577 		sort_syms = syms;
1578 
1579 		qsort(symtab->sym_byaddr, count, sizeof (uint_t), byaddr_cmp);
1580 		qsort(symtab->sym_byname, count, sizeof (uint_t), byname_cmp);
1581 
1582 		sort_strs = NULL;
1583 		sort_syms = NULL;
1584 		(void) mutex_unlock(&sort_mtx);
1585 	}
1586 
1587 	free(syms);
1588 }
1589 
1590 
1591 static Elf *
1592 build_fake_elf(struct ps_prochandle *P, file_info_t *fptr, GElf_Ehdr *ehdr,
1593 	size_t *nshdrs, Elf_Data **shdata)
1594 {
1595 	size_t shstrndx;
1596 	Elf_Scn *scn;
1597 	Elf *elf;
1598 
1599 	if ((elf = fake_elf(P, fptr)) == NULL ||
1600 	    elf_kind(elf) != ELF_K_ELF ||
1601 	    gelf_getehdr(elf, ehdr) == NULL ||
1602 	    elf_getshdrnum(elf, nshdrs) == -1 ||
1603 	    elf_getshdrstrndx(elf, &shstrndx) == -1 ||
1604 	    (scn = elf_getscn(elf, shstrndx)) == NULL ||
1605 	    (*shdata = elf_getdata(scn, NULL)) == NULL) {
1606 		if (elf != NULL)
1607 			(void) elf_end(elf);
1608 		dprintf("failed to fake up ELF file\n");
1609 		return (NULL);
1610 	}
1611 
1612 	return (elf);
1613 }
1614 
1615 /*
1616  * Build the symbol table for the given mapped file.
1617  */
1618 void
1619 Pbuild_file_symtab(struct ps_prochandle *P, file_info_t *fptr)
1620 {
1621 	char objectfile[PATH_MAX];
1622 	uint_t i;
1623 
1624 	GElf_Ehdr ehdr;
1625 	GElf_Sym s;
1626 
1627 	Elf_Data *shdata;
1628 	Elf_Scn *scn;
1629 	Elf *elf;
1630 	size_t nshdrs, shstrndx;
1631 
1632 	struct {
1633 		GElf_Shdr c_shdr;
1634 		Elf_Data *c_data;
1635 		const char *c_name;
1636 	} *cp, *cache = NULL, *dyn = NULL, *plt = NULL, *ctf = NULL;
1637 
1638 	if (fptr->file_init)
1639 		return;	/* We've already processed this file */
1640 
1641 	/*
1642 	 * Mark the file_info struct as having the symbol table initialized
1643 	 * even if we fail below.  We tried once; we don't try again.
1644 	 */
1645 	fptr->file_init = 1;
1646 
1647 	if (elf_version(EV_CURRENT) == EV_NONE) {
1648 		dprintf("libproc ELF version is more recent than libelf\n");
1649 		return;
1650 	}
1651 
1652 	if (P->state == PS_DEAD || P->state == PS_IDLE) {
1653 		char *name;
1654 		/*
1655 		 * If we're a not live, we can't open files from the /proc
1656 		 * object directory; we have only the mapping and file names
1657 		 * to guide us.  We prefer the file_lname, but need to handle
1658 		 * the case of it being NULL in order to bootstrap: we first
1659 		 * come here during rd_new() when the only information we have
1660 		 * is interpreter name associated with the AT_BASE mapping.
1661 		 *
1662 		 * Also, if the zone associated with the core file seems
1663 		 * to exists on this machine we'll try to open the object
1664 		 * file within the zone.
1665 		 */
1666 		if (fptr->file_rname != NULL)
1667 			name = fptr->file_rname;
1668 		else if (fptr->file_lname != NULL)
1669 			name = fptr->file_lname;
1670 		else
1671 			name = fptr->file_pname;
1672 		(void) strlcpy(objectfile, name, sizeof (objectfile));
1673 	} else {
1674 		(void) snprintf(objectfile, sizeof (objectfile),
1675 		    "%s/%d/object/%s",
1676 		    procfs_path, (int)P->pid, fptr->file_pname);
1677 	}
1678 
1679 	/*
1680 	 * Open the object file, create the elf file, and then get the elf
1681 	 * header and .shstrtab data buffer so we can process sections by
1682 	 * name. If anything goes wrong try to fake up an elf file from
1683 	 * the in-core elf image.
1684 	 */
1685 
1686 	if (_libproc_incore_elf) {
1687 		dprintf("Pbuild_file_symtab: using in-core data for: %s\n",
1688 		    fptr->file_pname);
1689 
1690 		if ((elf = build_fake_elf(P, fptr, &ehdr, &nshdrs, &shdata)) ==
1691 		    NULL)
1692 			return;
1693 
1694 	} else if ((fptr->file_fd = open(objectfile, O_RDONLY)) < 0) {
1695 		dprintf("Pbuild_file_symtab: failed to open %s: %s\n",
1696 		    objectfile, strerror(errno));
1697 
1698 		if ((elf = build_fake_elf(P, fptr, &ehdr, &nshdrs, &shdata)) ==
1699 		    NULL)
1700 			return;
1701 
1702 	} else if ((elf = elf_begin(fptr->file_fd, ELF_C_READ, NULL)) == NULL ||
1703 	    elf_kind(elf) != ELF_K_ELF ||
1704 	    gelf_getehdr(elf, &ehdr) == NULL ||
1705 	    elf_getshdrnum(elf, &nshdrs) == -1 ||
1706 	    elf_getshdrstrndx(elf, &shstrndx) == -1 ||
1707 	    (scn = elf_getscn(elf, shstrndx)) == NULL ||
1708 	    (shdata = elf_getdata(scn, NULL)) == NULL) {
1709 		int err = elf_errno();
1710 
1711 		dprintf("failed to process ELF file %s: %s\n",
1712 		    objectfile, (err == 0) ? "<null>" : elf_errmsg(err));
1713 		(void) elf_end(elf);
1714 
1715 		if ((elf = build_fake_elf(P, fptr, &ehdr, &nshdrs, &shdata)) ==
1716 		    NULL)
1717 			return;
1718 
1719 	} else if (file_differs(P, elf, fptr)) {
1720 		Elf *newelf;
1721 
1722 		/*
1723 		 * Before we get too excited about this elf file, we'll check
1724 		 * its checksum value against the value we have in memory. If
1725 		 * they don't agree, we try to fake up a new elf file and
1726 		 * proceed with that instead.
1727 		 */
1728 		dprintf("ELF file %s (%lx) doesn't match in-core image\n",
1729 		    fptr->file_pname,
1730 		    (ulong_t)fptr->file_map->map_pmap.pr_vaddr);
1731 
1732 		if ((newelf = build_fake_elf(P, fptr, &ehdr, &nshdrs, &shdata))
1733 		    != NULL) {
1734 			(void) elf_end(elf);
1735 			elf = newelf;
1736 			dprintf("switched to faked up ELF file\n");
1737 		}
1738 	}
1739 
1740 	if ((cache = malloc(nshdrs * sizeof (*cache))) == NULL) {
1741 		dprintf("failed to malloc section cache for %s\n", objectfile);
1742 		goto bad;
1743 	}
1744 
1745 	dprintf("processing ELF file %s\n", objectfile);
1746 	fptr->file_class = ehdr.e_ident[EI_CLASS];
1747 	fptr->file_etype = ehdr.e_type;
1748 	fptr->file_elf = elf;
1749 	fptr->file_shstrs = shdata->d_buf;
1750 	fptr->file_shstrsz = shdata->d_size;
1751 
1752 	/*
1753 	 * Iterate through each section, caching its section header, data
1754 	 * pointer, and name.  We use this for handling sh_link values below.
1755 	 */
1756 	for (cp = cache + 1, scn = NULL; scn = elf_nextscn(elf, scn); cp++) {
1757 		if (gelf_getshdr(scn, &cp->c_shdr) == NULL) {
1758 			dprintf("Pbuild_file_symtab: Failed to get section "
1759 			    "header\n");
1760 			goto bad; /* Failed to get section header */
1761 		}
1762 
1763 		if ((cp->c_data = elf_getdata(scn, NULL)) == NULL) {
1764 			dprintf("Pbuild_file_symtab: Failed to get section "
1765 			    "data\n");
1766 			goto bad; /* Failed to get section data */
1767 		}
1768 
1769 		if (cp->c_shdr.sh_name >= shdata->d_size) {
1770 			dprintf("Pbuild_file_symtab: corrupt section name");
1771 			goto bad; /* Corrupt section name */
1772 		}
1773 
1774 		cp->c_name = (const char *)shdata->d_buf + cp->c_shdr.sh_name;
1775 	}
1776 
1777 	/*
1778 	 * Now iterate through the section cache in order to locate info
1779 	 * for the .symtab, .dynsym, .SUNW_ldynsym, .dynamic, .plt,
1780 	 * and .SUNW_ctf sections:
1781 	 */
1782 	for (i = 1, cp = cache + 1; i < nshdrs; i++, cp++) {
1783 		GElf_Shdr *shp = &cp->c_shdr;
1784 
1785 		if (shp->sh_type == SHT_SYMTAB || shp->sh_type == SHT_DYNSYM) {
1786 			sym_tbl_t *symp = shp->sh_type == SHT_SYMTAB ?
1787 			    &fptr->file_symtab : &fptr->file_dynsym;
1788 			/*
1789 			 * It's possible that the we already got the symbol
1790 			 * table from the core file itself. Either the file
1791 			 * differs in which case our faked up elf file will
1792 			 * only contain the dynsym (not the symtab) or the
1793 			 * file matches in which case we'll just be replacing
1794 			 * the symbol table we pulled out of the core file
1795 			 * with an equivalent one. In either case, this
1796 			 * check isn't essential, but it's a good idea.
1797 			 */
1798 			if (symp->sym_data_pri == NULL) {
1799 				dprintf("Symbol table found for %s\n",
1800 				    objectfile);
1801 				symp->sym_data_pri = cp->c_data;
1802 				symp->sym_symn +=
1803 				    shp->sh_size / shp->sh_entsize;
1804 				symp->sym_strs =
1805 				    cache[shp->sh_link].c_data->d_buf;
1806 				symp->sym_strsz =
1807 				    cache[shp->sh_link].c_data->d_size;
1808 				symp->sym_hdr_pri = cp->c_shdr;
1809 				symp->sym_strhdr = cache[shp->sh_link].c_shdr;
1810 			} else {
1811 				dprintf("Symbol table already there for %s\n",
1812 				    objectfile);
1813 			}
1814 		} else if (shp->sh_type == SHT_SUNW_LDYNSYM) {
1815 			/* .SUNW_ldynsym section is auxiliary to .dynsym */
1816 			if (fptr->file_dynsym.sym_data_aux == NULL) {
1817 				dprintf(".SUNW_ldynsym symbol table"
1818 				    " found for %s\n", objectfile);
1819 				fptr->file_dynsym.sym_data_aux = cp->c_data;
1820 				fptr->file_dynsym.sym_symn_aux =
1821 				    shp->sh_size / shp->sh_entsize;
1822 				fptr->file_dynsym.sym_symn +=
1823 				    fptr->file_dynsym.sym_symn_aux;
1824 				fptr->file_dynsym.sym_hdr_aux = cp->c_shdr;
1825 			} else {
1826 				dprintf(".SUNW_ldynsym symbol table already"
1827 				    " there for %s\n", objectfile);
1828 			}
1829 		} else if (shp->sh_type == SHT_DYNAMIC) {
1830 			dyn = cp;
1831 		} else if (strcmp(cp->c_name, ".plt") == 0) {
1832 			plt = cp;
1833 		} else if (strcmp(cp->c_name, ".SUNW_ctf") == 0) {
1834 			/*
1835 			 * Skip over bogus CTF sections so they don't come back
1836 			 * to haunt us later.
1837 			 */
1838 			if (shp->sh_link == 0 ||
1839 			    shp->sh_link >= nshdrs ||
1840 			    (cache[shp->sh_link].c_shdr.sh_type != SHT_DYNSYM &&
1841 			    cache[shp->sh_link].c_shdr.sh_type != SHT_SYMTAB)) {
1842 				dprintf("Bad sh_link %d for "
1843 				    "CTF\n", shp->sh_link);
1844 				continue;
1845 			}
1846 			ctf = cp;
1847 		}
1848 	}
1849 
1850 	/*
1851 	 * At this point, we've found all the symbol tables we're ever going
1852 	 * to find: the ones in the loop above and possibly the symtab that
1853 	 * was included in the core file. Before we perform any lookups, we
1854 	 * create sorted versions to optimize for lookups.
1855 	 */
1856 	optimize_symtab(&fptr->file_symtab);
1857 	optimize_symtab(&fptr->file_dynsym);
1858 
1859 	/*
1860 	 * Fill in the base address of the text mapping for shared libraries.
1861 	 * This allows us to translate symbols before librtld_db is ready.
1862 	 */
1863 	if (fptr->file_etype == ET_DYN) {
1864 		fptr->file_dyn_base = fptr->file_map->map_pmap.pr_vaddr -
1865 		    fptr->file_map->map_pmap.pr_offset;
1866 		dprintf("setting file_dyn_base for %s to %lx\n",
1867 		    objectfile, (long)fptr->file_dyn_base);
1868 	}
1869 
1870 	/*
1871 	 * Record the CTF section information in the file info structure.
1872 	 */
1873 	if (ctf != NULL) {
1874 		fptr->file_ctf_off = ctf->c_shdr.sh_offset;
1875 		fptr->file_ctf_size = ctf->c_shdr.sh_size;
1876 		if (ctf->c_shdr.sh_link != 0 &&
1877 		    cache[ctf->c_shdr.sh_link].c_shdr.sh_type == SHT_DYNSYM)
1878 			fptr->file_ctf_dyn = 1;
1879 	}
1880 
1881 	if (fptr->file_lo == NULL)
1882 		goto done; /* Nothing else to do if no load object info */
1883 
1884 	/*
1885 	 * If the object is a shared library and we have a different rl_base
1886 	 * value, reset file_dyn_base according to librtld_db's information.
1887 	 */
1888 	if (fptr->file_etype == ET_DYN &&
1889 	    fptr->file_lo->rl_base != fptr->file_dyn_base) {
1890 		dprintf("resetting file_dyn_base for %s to %lx\n",
1891 		    objectfile, (long)fptr->file_lo->rl_base);
1892 		fptr->file_dyn_base = fptr->file_lo->rl_base;
1893 	}
1894 
1895 	/*
1896 	 * Fill in the PLT information for this file if a PLT symbol is found.
1897 	 */
1898 	if (sym_by_name(&fptr->file_dynsym, "_PROCEDURE_LINKAGE_TABLE_", &s,
1899 	    NULL) != NULL) {
1900 		fptr->file_plt_base = s.st_value + fptr->file_dyn_base;
1901 		fptr->file_plt_size = (plt != NULL) ? plt->c_shdr.sh_size : 0;
1902 
1903 		/*
1904 		 * Bring the load object up to date; it is the only way the
1905 		 * user has to access the PLT data. The PLT information in the
1906 		 * rd_loadobj_t is not set in the call to map_iter() (the
1907 		 * callback for rd_loadobj_iter) where we set file_lo.
1908 		 */
1909 		fptr->file_lo->rl_plt_base = fptr->file_plt_base;
1910 		fptr->file_lo->rl_plt_size = fptr->file_plt_size;
1911 
1912 		dprintf("PLT found at %p, size = %lu\n",
1913 		    (void *)fptr->file_plt_base, (ulong_t)fptr->file_plt_size);
1914 	}
1915 
1916 	/*
1917 	 * Fill in the PLT information.
1918 	 */
1919 	if (dyn != NULL) {
1920 		uintptr_t dynaddr = dyn->c_shdr.sh_addr + fptr->file_dyn_base;
1921 		size_t ndyn = dyn->c_shdr.sh_size / dyn->c_shdr.sh_entsize;
1922 		GElf_Dyn d;
1923 
1924 		for (i = 0; i < ndyn; i++) {
1925 			if (gelf_getdyn(dyn->c_data, i, &d) == NULL)
1926 				continue;
1927 
1928 			switch (d.d_tag) {
1929 			case DT_JMPREL:
1930 				dprintf("DT_JMPREL is %p\n",
1931 				    (void *)(uintptr_t)d.d_un.d_ptr);
1932 				fptr->file_jmp_rel =
1933 				    d.d_un.d_ptr + fptr->file_dyn_base;
1934 				break;
1935 			case DT_STRTAB:
1936 				dprintf("DT_STRTAB is %p\n",
1937 				    (void *)(uintptr_t)d.d_un.d_ptr);
1938 				break;
1939 			case DT_PLTGOT:
1940 				dprintf("DT_PLTGOT is %p\n",
1941 				    (void *)(uintptr_t)d.d_un.d_ptr);
1942 				break;
1943 			case DT_SUNW_SYMTAB:
1944 				dprintf("DT_SUNW_SYMTAB is %p\n",
1945 				    (void *)(uintptr_t)d.d_un.d_ptr);
1946 				break;
1947 			case DT_SYMTAB:
1948 				dprintf("DT_SYMTAB is %p\n",
1949 				    (void *)(uintptr_t)d.d_un.d_ptr);
1950 				break;
1951 			case DT_HASH:
1952 				dprintf("DT_HASH is %p\n",
1953 				    (void *)(uintptr_t)d.d_un.d_ptr);
1954 				break;
1955 			}
1956 		}
1957 
1958 		dprintf("_DYNAMIC found at %p, %lu entries, DT_JMPREL = %p\n",
1959 		    (void *)dynaddr, (ulong_t)ndyn, (void *)fptr->file_jmp_rel);
1960 	}
1961 
1962 done:
1963 	free(cache);
1964 	return;
1965 
1966 bad:
1967 	if (cache != NULL)
1968 		free(cache);
1969 
1970 	(void) elf_end(elf);
1971 	fptr->file_elf = NULL;
1972 	if (fptr->file_elfmem != NULL) {
1973 		free(fptr->file_elfmem);
1974 		fptr->file_elfmem = NULL;
1975 	}
1976 	(void) close(fptr->file_fd);
1977 	fptr->file_fd = -1;
1978 }
1979 
1980 /*
1981  * Given a process virtual address, return the map_info_t containing it.
1982  * If none found, return NULL.
1983  */
1984 map_info_t *
1985 Paddr2mptr(struct ps_prochandle *P, uintptr_t addr)
1986 {
1987 	int lo = 0;
1988 	int hi = P->map_count - 1;
1989 	int mid;
1990 	map_info_t *mp;
1991 
1992 	while (lo <= hi) {
1993 
1994 		mid = (lo + hi) / 2;
1995 		mp = &P->mappings[mid];
1996 
1997 		/* check that addr is in [vaddr, vaddr + size) */
1998 		if ((addr - mp->map_pmap.pr_vaddr) < mp->map_pmap.pr_size)
1999 			return (mp);
2000 
2001 		if (addr < mp->map_pmap.pr_vaddr)
2002 			hi = mid - 1;
2003 		else
2004 			lo = mid + 1;
2005 	}
2006 
2007 	return (NULL);
2008 }
2009 
2010 /*
2011  * Return the map_info_t for the executable file.
2012  * If not found, return NULL.
2013  */
2014 static map_info_t *
2015 exec_map(struct ps_prochandle *P)
2016 {
2017 	uint_t i;
2018 	map_info_t *mptr;
2019 	map_info_t *mold = NULL;
2020 	file_info_t *fptr;
2021 	uintptr_t base;
2022 
2023 	for (i = 0, mptr = P->mappings; i < P->map_count; i++, mptr++) {
2024 		if (mptr->map_pmap.pr_mapname[0] == '\0')
2025 			continue;
2026 		if (strcmp(mptr->map_pmap.pr_mapname, "a.out") == 0) {
2027 			if ((fptr = mptr->map_file) != NULL &&
2028 			    fptr->file_lo != NULL) {
2029 				base = fptr->file_lo->rl_base;
2030 				if (base >= mptr->map_pmap.pr_vaddr &&
2031 				    base < mptr->map_pmap.pr_vaddr +
2032 				    mptr->map_pmap.pr_size)	/* text space */
2033 					return (mptr);
2034 				mold = mptr;	/* must be the data */
2035 				continue;
2036 			}
2037 			/* This is a poor way to test for text space */
2038 			if (!(mptr->map_pmap.pr_mflags & MA_EXEC) ||
2039 			    (mptr->map_pmap.pr_mflags & MA_WRITE)) {
2040 				mold = mptr;
2041 				continue;
2042 			}
2043 			return (mptr);
2044 		}
2045 	}
2046 
2047 	return (mold);
2048 }
2049 
2050 /*
2051  * Given a shared object name, return the map_info_t for it.  If no matching
2052  * object is found, return NULL.  Normally, the link maps contain the full
2053  * object pathname, e.g. /usr/lib/libc.so.1.  We allow the object name to
2054  * take one of the following forms:
2055  *
2056  * 1. An exact match (i.e. a full pathname): "/usr/lib/libc.so.1"
2057  * 2. An exact basename match: "libc.so.1"
2058  * 3. An initial basename match up to a '.' suffix: "libc.so" or "libc"
2059  * 4. The literal string "a.out" is an alias for the executable mapping
2060  *
2061  * The third case is a convenience for callers and may not be necessary.
2062  *
2063  * As the exact same object name may be loaded on different link maps (see
2064  * dlmopen(3DL)), we also allow the caller to resolve the object name by
2065  * specifying a particular link map id.  If lmid is PR_LMID_EVERY, the
2066  * first matching name will be returned, regardless of the link map id.
2067  */
2068 static map_info_t *
2069 object_to_map(struct ps_prochandle *P, Lmid_t lmid, const char *objname)
2070 {
2071 	map_info_t *mp;
2072 	file_info_t *fp;
2073 	size_t objlen;
2074 	uint_t i;
2075 
2076 	/*
2077 	 * If we have no rtld_db, then always treat a request as one for all
2078 	 * link maps.
2079 	 */
2080 	if (P->rap == NULL)
2081 		lmid = PR_LMID_EVERY;
2082 
2083 	/*
2084 	 * First pass: look for exact matches of the entire pathname or
2085 	 * basename (cases 1 and 2 above):
2086 	 */
2087 	for (i = 0, mp = P->mappings; i < P->map_count; i++, mp++) {
2088 
2089 		if (mp->map_pmap.pr_mapname[0] == '\0' ||
2090 		    (fp = mp->map_file) == NULL ||
2091 		    ((fp->file_lname == NULL) && (fp->file_rname == NULL)))
2092 			continue;
2093 
2094 		if (lmid != PR_LMID_EVERY &&
2095 		    (fp->file_lo == NULL || lmid != fp->file_lo->rl_lmident))
2096 			continue;
2097 
2098 		/*
2099 		 * If we match, return the primary text mapping; otherwise
2100 		 * just return the mapping we matched.
2101 		 */
2102 		if ((fp->file_lbase && strcmp(fp->file_lbase, objname) == 0) ||
2103 		    (fp->file_rbase && strcmp(fp->file_rbase, objname) == 0) ||
2104 		    (fp->file_lname && strcmp(fp->file_lname, objname) == 0) ||
2105 		    (fp->file_rname && strcmp(fp->file_rname, objname) == 0))
2106 			return (fp->file_map ? fp->file_map : mp);
2107 	}
2108 
2109 	objlen = strlen(objname);
2110 
2111 	/*
2112 	 * Second pass: look for partial matches (case 3 above):
2113 	 */
2114 	for (i = 0, mp = P->mappings; i < P->map_count; i++, mp++) {
2115 
2116 		if (mp->map_pmap.pr_mapname[0] == '\0' ||
2117 		    (fp = mp->map_file) == NULL ||
2118 		    ((fp->file_lname == NULL) && (fp->file_rname == NULL)))
2119 			continue;
2120 
2121 		if (lmid != PR_LMID_EVERY &&
2122 		    (fp->file_lo == NULL || lmid != fp->file_lo->rl_lmident))
2123 			continue;
2124 
2125 		/*
2126 		 * If we match, return the primary text mapping; otherwise
2127 		 * just return the mapping we matched.
2128 		 */
2129 		if ((fp->file_lbase != NULL) &&
2130 		    (strncmp(fp->file_lbase, objname, objlen) == 0) &&
2131 		    (fp->file_lbase[objlen] == '.'))
2132 			return (fp->file_map ? fp->file_map : mp);
2133 		if ((fp->file_rbase != NULL) &&
2134 		    (strncmp(fp->file_rbase, objname, objlen) == 0) &&
2135 		    (fp->file_rbase[objlen] == '.'))
2136 			return (fp->file_map ? fp->file_map : mp);
2137 	}
2138 
2139 	/*
2140 	 * One last check: we allow "a.out" to always alias the executable,
2141 	 * assuming this name was not in use for something else.
2142 	 */
2143 	if ((lmid == PR_LMID_EVERY || lmid == LM_ID_BASE) &&
2144 	    (strcmp(objname, "a.out") == 0))
2145 		return (P->map_exec);
2146 
2147 	return (NULL);
2148 }
2149 
2150 static map_info_t *
2151 object_name_to_map(struct ps_prochandle *P, Lmid_t lmid, const char *name)
2152 {
2153 	map_info_t *mptr;
2154 
2155 	if (!P->info_valid)
2156 		Pupdate_maps(P);
2157 
2158 	if (P->map_exec == NULL && ((mptr = Paddr2mptr(P,
2159 	    Pgetauxval(P, AT_ENTRY))) != NULL || (mptr = exec_map(P)) != NULL))
2160 		P->map_exec = mptr;
2161 
2162 	if (P->map_ldso == NULL && (mptr = Paddr2mptr(P,
2163 	    Pgetauxval(P, AT_BASE))) != NULL)
2164 		P->map_ldso = mptr;
2165 
2166 	if (name == PR_OBJ_EXEC)
2167 		mptr = P->map_exec;
2168 	else if (name == PR_OBJ_LDSO)
2169 		mptr = P->map_ldso;
2170 	else if (Prd_agent(P) != NULL || P->state == PS_IDLE)
2171 		mptr = object_to_map(P, lmid, name);
2172 	else
2173 		mptr = NULL;
2174 
2175 	return (mptr);
2176 }
2177 
2178 /*
2179  * When two symbols are found by address, decide which one is to be preferred.
2180  */
2181 static GElf_Sym *
2182 sym_prefer(GElf_Sym *sym1, char *name1, GElf_Sym *sym2, char *name2)
2183 {
2184 	/*
2185 	 * Prefer the non-NULL symbol.
2186 	 */
2187 	if (sym1 == NULL)
2188 		return (sym2);
2189 	if (sym2 == NULL)
2190 		return (sym1);
2191 
2192 	/*
2193 	 * Defer to the sort ordering...
2194 	 */
2195 	return (byaddr_cmp_common(sym1, name1, sym2, name2) <= 0 ? sym1 : sym2);
2196 }
2197 
2198 /*
2199  * Use a binary search to do the work of sym_by_addr().
2200  */
2201 static GElf_Sym *
2202 sym_by_addr_binary(sym_tbl_t *symtab, GElf_Addr addr, GElf_Sym *symp,
2203     uint_t *idp)
2204 {
2205 	GElf_Sym sym, osym;
2206 	uint_t i, oid, *byaddr = symtab->sym_byaddr;
2207 	int min, max, mid, omid, found = 0;
2208 
2209 	if (symtab->sym_data_pri == NULL || symtab->sym_count == 0)
2210 		return (NULL);
2211 
2212 	min = 0;
2213 	max = symtab->sym_count - 1;
2214 	osym.st_value = 0;
2215 
2216 	/*
2217 	 * We can't return when we've found a match, we have to continue
2218 	 * searching for the closest matching symbol.
2219 	 */
2220 	while (min <= max) {
2221 		mid = (max + min) / 2;
2222 
2223 		i = byaddr[mid];
2224 		(void) symtab_getsym(symtab, i, &sym);
2225 
2226 		if (addr >= sym.st_value &&
2227 		    addr < sym.st_value + sym.st_size &&
2228 		    (!found || sym.st_value > osym.st_value)) {
2229 			osym = sym;
2230 			omid = mid;
2231 			oid = i;
2232 			found = 1;
2233 		}
2234 
2235 		if (addr < sym.st_value)
2236 			max = mid - 1;
2237 		else
2238 			min = mid + 1;
2239 	}
2240 
2241 	if (!found)
2242 		return (NULL);
2243 
2244 	/*
2245 	 * There may be many symbols with identical values so we walk
2246 	 * backward in the byaddr table to find the best match.
2247 	 */
2248 	do {
2249 		sym = osym;
2250 		i = oid;
2251 
2252 		if (omid == 0)
2253 			break;
2254 
2255 		oid = byaddr[--omid];
2256 		(void) symtab_getsym(symtab, oid, &osym);
2257 	} while (addr >= osym.st_value &&
2258 	    addr < sym.st_value + osym.st_size &&
2259 	    osym.st_value == sym.st_value);
2260 
2261 	*symp = sym;
2262 	if (idp != NULL)
2263 		*idp = i;
2264 	return (symp);
2265 }
2266 
2267 /*
2268  * Use a linear search to do the work of sym_by_addr().
2269  */
2270 static GElf_Sym *
2271 sym_by_addr_linear(sym_tbl_t *symtab, GElf_Addr addr, GElf_Sym *symbolp,
2272     uint_t *idp)
2273 {
2274 	size_t symn = symtab->sym_symn;
2275 	char *strs = symtab->sym_strs;
2276 	GElf_Sym sym, *symp = NULL;
2277 	GElf_Sym osym, *osymp = NULL;
2278 	int i, id;
2279 
2280 	if (symtab->sym_data_pri == NULL || symn == 0 || strs == NULL)
2281 		return (NULL);
2282 
2283 	for (i = 0; i < symn; i++) {
2284 		if ((symp = symtab_getsym(symtab, i, &sym)) != NULL) {
2285 			if (addr >= sym.st_value &&
2286 			    addr < sym.st_value + sym.st_size) {
2287 				if (osymp)
2288 					symp = sym_prefer(
2289 					    symp, strs + symp->st_name,
2290 					    osymp, strs + osymp->st_name);
2291 				if (symp != osymp) {
2292 					osym = sym;
2293 					osymp = &osym;
2294 					id = i;
2295 				}
2296 			}
2297 		}
2298 	}
2299 	if (osymp) {
2300 		*symbolp = osym;
2301 		if (idp)
2302 			*idp = id;
2303 		return (symbolp);
2304 	}
2305 	return (NULL);
2306 }
2307 
2308 /*
2309  * Look up a symbol by address in the specified symbol table.
2310  * Adjustment to 'addr' must already have been made for the
2311  * offset of the symbol if this is a dynamic library symbol table.
2312  *
2313  * Use a linear or a binary search depending on whether or not we
2314  * chose to sort the table in optimize_symtab().
2315  */
2316 static GElf_Sym *
2317 sym_by_addr(sym_tbl_t *symtab, GElf_Addr addr, GElf_Sym *symp, uint_t *idp)
2318 {
2319 	if (_libproc_no_qsort) {
2320 		return (sym_by_addr_linear(symtab, addr, symp, idp));
2321 	} else {
2322 		return (sym_by_addr_binary(symtab, addr, symp, idp));
2323 	}
2324 }
2325 
2326 /*
2327  * Use a binary search to do the work of sym_by_name().
2328  */
2329 static GElf_Sym *
2330 sym_by_name_binary(sym_tbl_t *symtab, const char *name, GElf_Sym *symp,
2331     uint_t *idp)
2332 {
2333 	char *strs = symtab->sym_strs;
2334 	uint_t i, *byname = symtab->sym_byname;
2335 	int min, mid, max, cmp;
2336 
2337 	if (symtab->sym_data_pri == NULL || strs == NULL ||
2338 	    symtab->sym_count == 0)
2339 		return (NULL);
2340 
2341 	min = 0;
2342 	max = symtab->sym_count - 1;
2343 
2344 	while (min <= max) {
2345 		mid = (max + min) / 2;
2346 
2347 		i = byname[mid];
2348 		(void) symtab_getsym(symtab, i, symp);
2349 
2350 		if ((cmp = strcmp(name, strs + symp->st_name)) == 0) {
2351 			if (idp != NULL)
2352 				*idp = i;
2353 			return (symp);
2354 		}
2355 
2356 		if (cmp < 0)
2357 			max = mid - 1;
2358 		else
2359 			min = mid + 1;
2360 	}
2361 
2362 	return (NULL);
2363 }
2364 
2365 /*
2366  * Use a linear search to do the work of sym_by_name().
2367  */
2368 static GElf_Sym *
2369 sym_by_name_linear(sym_tbl_t *symtab, const char *name, GElf_Sym *symp,
2370     uint_t *idp)
2371 {
2372 	size_t symn = symtab->sym_symn;
2373 	char *strs = symtab->sym_strs;
2374 	int i;
2375 
2376 	if (symtab->sym_data_pri == NULL || symn == 0 || strs == NULL)
2377 		return (NULL);
2378 
2379 	for (i = 0; i < symn; i++) {
2380 		if (symtab_getsym(symtab, i, symp) &&
2381 		    strcmp(name, strs + symp->st_name) == 0) {
2382 			if (idp)
2383 				*idp = i;
2384 			return (symp);
2385 		}
2386 	}
2387 
2388 	return (NULL);
2389 }
2390 
2391 /*
2392  * Look up a symbol by name in the specified symbol table.
2393  *
2394  * Use a linear or a binary search depending on whether or not we
2395  * chose to sort the table in optimize_symtab().
2396  */
2397 static GElf_Sym *
2398 sym_by_name(sym_tbl_t *symtab, const char *name, GElf_Sym *symp, uint_t *idp)
2399 {
2400 	if (_libproc_no_qsort) {
2401 		return (sym_by_name_linear(symtab, name, symp, idp));
2402 	} else {
2403 		return (sym_by_name_binary(symtab, name, symp, idp));
2404 	}
2405 }
2406 
2407 /*
2408  * Search the process symbol tables looking for a symbol whose
2409  * value to value+size contain the address specified by addr.
2410  * Return values are:
2411  *	sym_name_buffer containing the symbol name
2412  *	GElf_Sym symbol table entry
2413  *	prsyminfo_t ancillary symbol information
2414  * Returns 0 on success, -1 on failure.
2415  */
2416 static int
2417 i_Pxlookup_by_addr(
2418 	struct ps_prochandle *P,
2419 	int lmresolve,			/* use resolve linker object names */
2420 	uintptr_t addr,			/* process address being sought */
2421 	char *sym_name_buffer,		/* buffer for the symbol name */
2422 	size_t bufsize,			/* size of sym_name_buffer */
2423 	GElf_Sym *symbolp,		/* returned symbol table entry */
2424 	prsyminfo_t *sip)		/* returned symbol info */
2425 {
2426 	GElf_Sym	*symp;
2427 	char		*name;
2428 	GElf_Sym	sym1, *sym1p = NULL;
2429 	GElf_Sym	sym2, *sym2p = NULL;
2430 	char		*name1 = NULL;
2431 	char		*name2 = NULL;
2432 	uint_t		i1;
2433 	uint_t		i2;
2434 	map_info_t	*mptr;
2435 	file_info_t	*fptr;
2436 
2437 	(void) Prd_agent(P);
2438 
2439 	if ((mptr = Paddr2mptr(P, addr)) == NULL ||	/* no such address */
2440 	    (fptr = build_map_symtab(P, mptr)) == NULL || /* no mapped file */
2441 	    fptr->file_elf == NULL)			/* not an ELF file */
2442 		return (-1);
2443 
2444 	/*
2445 	 * Adjust the address by the load object base address in
2446 	 * case the address turns out to be in a shared library.
2447 	 */
2448 	addr -= fptr->file_dyn_base;
2449 
2450 	/*
2451 	 * Search both symbol tables, symtab first, then dynsym.
2452 	 */
2453 	if ((sym1p = sym_by_addr(&fptr->file_symtab, addr, &sym1, &i1)) != NULL)
2454 		name1 = fptr->file_symtab.sym_strs + sym1.st_name;
2455 	if ((sym2p = sym_by_addr(&fptr->file_dynsym, addr, &sym2, &i2)) != NULL)
2456 		name2 = fptr->file_dynsym.sym_strs + sym2.st_name;
2457 
2458 	if ((symp = sym_prefer(sym1p, name1, sym2p, name2)) == NULL)
2459 		return (-1);
2460 
2461 	name = (symp == sym1p) ? name1 : name2;
2462 	if (bufsize > 0) {
2463 		(void) strncpy(sym_name_buffer, name, bufsize);
2464 		sym_name_buffer[bufsize - 1] = '\0';
2465 	}
2466 
2467 	*symbolp = *symp;
2468 	if (sip != NULL) {
2469 		sip->prs_name = bufsize == 0 ? NULL : sym_name_buffer;
2470 		if (lmresolve && (fptr->file_rname != NULL))
2471 			sip->prs_object = fptr->file_rbase;
2472 		else
2473 			sip->prs_object = fptr->file_lbase;
2474 		sip->prs_id = (symp == sym1p) ? i1 : i2;
2475 		sip->prs_table = (symp == sym1p) ? PR_SYMTAB : PR_DYNSYM;
2476 		sip->prs_lmid = (fptr->file_lo == NULL) ? LM_ID_BASE :
2477 		    fptr->file_lo->rl_lmident;
2478 	}
2479 
2480 	if (GELF_ST_TYPE(symbolp->st_info) != STT_TLS)
2481 		symbolp->st_value += fptr->file_dyn_base;
2482 
2483 	return (0);
2484 }
2485 
2486 int
2487 Pxlookup_by_addr(struct ps_prochandle *P, uintptr_t addr, char *buf,
2488     size_t bufsize, GElf_Sym *symp, prsyminfo_t *sip)
2489 {
2490 	return (i_Pxlookup_by_addr(P, B_FALSE, addr, buf, bufsize, symp, sip));
2491 }
2492 
2493 int
2494 Pxlookup_by_addr_resolved(struct ps_prochandle *P, uintptr_t addr, char *buf,
2495     size_t bufsize, GElf_Sym *symp, prsyminfo_t *sip)
2496 {
2497 	return (i_Pxlookup_by_addr(P, B_TRUE, addr, buf, bufsize, symp, sip));
2498 }
2499 
2500 int
2501 Plookup_by_addr(struct ps_prochandle *P, uintptr_t addr, char *buf,
2502     size_t size, GElf_Sym *symp)
2503 {
2504 	return (i_Pxlookup_by_addr(P, B_FALSE, addr, buf, size, symp, NULL));
2505 }
2506 
2507 /*
2508  * Search the process symbol tables looking for a symbol whose name matches the
2509  * specified name and whose object and link map optionally match the specified
2510  * parameters.  On success, the function returns 0 and fills in the GElf_Sym
2511  * symbol table entry.  On failure, -1 is returned.
2512  */
2513 int
2514 Pxlookup_by_name(
2515 	struct ps_prochandle *P,
2516 	Lmid_t lmid,			/* link map to match, or -1 for any */
2517 	const char *oname,		/* load object name */
2518 	const char *sname,		/* symbol name */
2519 	GElf_Sym *symp,			/* returned symbol table entry */
2520 	prsyminfo_t *sip)		/* returned symbol info */
2521 {
2522 	map_info_t *mptr;
2523 	file_info_t *fptr;
2524 	int cnt;
2525 
2526 	GElf_Sym sym;
2527 	prsyminfo_t si;
2528 	int rv = -1;
2529 	uint_t id;
2530 
2531 	if (oname == PR_OBJ_EVERY) {
2532 		/* create all the file_info_t's for all the mappings */
2533 		(void) Prd_agent(P);
2534 		cnt = P->num_files;
2535 		fptr = list_next(&P->file_head);
2536 	} else {
2537 		cnt = 1;
2538 		if ((mptr = object_name_to_map(P, lmid, oname)) == NULL ||
2539 		    (fptr = build_map_symtab(P, mptr)) == NULL)
2540 			return (-1);
2541 	}
2542 
2543 	/*
2544 	 * Iterate through the loaded object files and look for the symbol
2545 	 * name in the .symtab and .dynsym of each.  If we encounter a match
2546 	 * with SHN_UNDEF, keep looking in hopes of finding a better match.
2547 	 * This means that a name such as "puts" will match the puts function
2548 	 * in libc instead of matching the puts PLT entry in the a.out file.
2549 	 */
2550 	for (; cnt > 0; cnt--, fptr = list_next(fptr)) {
2551 		Pbuild_file_symtab(P, fptr);
2552 
2553 		if (fptr->file_elf == NULL)
2554 			continue;
2555 
2556 		if (lmid != PR_LMID_EVERY && fptr->file_lo != NULL &&
2557 		    lmid != fptr->file_lo->rl_lmident)
2558 			continue;
2559 
2560 		if (fptr->file_symtab.sym_data_pri != NULL &&
2561 		    sym_by_name(&fptr->file_symtab, sname, symp, &id)) {
2562 			if (sip != NULL) {
2563 				sip->prs_id = id;
2564 				sip->prs_table = PR_SYMTAB;
2565 				sip->prs_object = oname;
2566 				sip->prs_name = sname;
2567 				sip->prs_lmid = fptr->file_lo == NULL ?
2568 				    LM_ID_BASE : fptr->file_lo->rl_lmident;
2569 			}
2570 		} else if (fptr->file_dynsym.sym_data_pri != NULL &&
2571 		    sym_by_name(&fptr->file_dynsym, sname, symp, &id)) {
2572 			if (sip != NULL) {
2573 				sip->prs_id = id;
2574 				sip->prs_table = PR_DYNSYM;
2575 				sip->prs_object = oname;
2576 				sip->prs_name = sname;
2577 				sip->prs_lmid = fptr->file_lo == NULL ?
2578 				    LM_ID_BASE : fptr->file_lo->rl_lmident;
2579 			}
2580 		} else {
2581 			continue;
2582 		}
2583 
2584 		if (GELF_ST_TYPE(symp->st_info) != STT_TLS)
2585 			symp->st_value += fptr->file_dyn_base;
2586 
2587 		if (symp->st_shndx != SHN_UNDEF)
2588 			return (0);
2589 
2590 		if (rv != 0) {
2591 			if (sip != NULL)
2592 				si = *sip;
2593 			sym = *symp;
2594 			rv = 0;
2595 		}
2596 	}
2597 
2598 	if (rv == 0) {
2599 		if (sip != NULL)
2600 			*sip = si;
2601 		*symp = sym;
2602 	}
2603 
2604 	return (rv);
2605 }
2606 
2607 /*
2608  * Search the process symbol tables looking for a symbol whose name matches the
2609  * specified name, but without any restriction on the link map id.
2610  */
2611 int
2612 Plookup_by_name(struct ps_prochandle *P, const char *object,
2613 	const char *symbol, GElf_Sym *symp)
2614 {
2615 	return (Pxlookup_by_name(P, PR_LMID_EVERY, object, symbol, symp, NULL));
2616 }
2617 
2618 /*
2619  * Iterate over the process's address space mappings.
2620  */
2621 static int
2622 i_Pmapping_iter(struct ps_prochandle *P, boolean_t lmresolve,
2623     proc_map_f *func, void *cd)
2624 {
2625 	map_info_t *mptr;
2626 	file_info_t *fptr;
2627 	char *object_name;
2628 	int rc = 0;
2629 	int i;
2630 
2631 	/* create all the file_info_t's for all the mappings */
2632 	(void) Prd_agent(P);
2633 
2634 	for (i = 0, mptr = P->mappings; i < P->map_count; i++, mptr++) {
2635 		if ((fptr = mptr->map_file) == NULL)
2636 			object_name = NULL;
2637 		else if (lmresolve && (fptr->file_rname != NULL))
2638 			object_name = fptr->file_rname;
2639 		else
2640 			object_name = fptr->file_lname;
2641 		if ((rc = func(cd, &mptr->map_pmap, object_name)) != 0)
2642 			return (rc);
2643 	}
2644 	return (0);
2645 }
2646 
2647 int
2648 Pmapping_iter(struct ps_prochandle *P, proc_map_f *func, void *cd)
2649 {
2650 	return (i_Pmapping_iter(P, B_FALSE, func, cd));
2651 }
2652 
2653 int
2654 Pmapping_iter_resolved(struct ps_prochandle *P, proc_map_f *func, void *cd)
2655 {
2656 	return (i_Pmapping_iter(P, B_TRUE, func, cd));
2657 }
2658 
2659 /*
2660  * Iterate over the process's mapped objects.
2661  */
2662 static int
2663 i_Pobject_iter(struct ps_prochandle *P, boolean_t lmresolve,
2664     proc_map_f *func, void *cd)
2665 {
2666 	map_info_t *mptr;
2667 	file_info_t *fptr;
2668 	uint_t cnt;
2669 	int rc = 0;
2670 
2671 	(void) Prd_agent(P); /* create file_info_t's for all the mappings */
2672 	Pupdate_maps(P);
2673 
2674 	for (cnt = P->num_files, fptr = list_next(&P->file_head);
2675 	    cnt; cnt--, fptr = list_next(fptr)) {
2676 		const char *lname;
2677 
2678 		if (lmresolve && (fptr->file_rname != NULL))
2679 			lname = fptr->file_rname;
2680 		else if (fptr->file_lname != NULL)
2681 			lname = fptr->file_lname;
2682 		else
2683 			lname = "";
2684 
2685 		if ((mptr = fptr->file_map) == NULL)
2686 			continue;
2687 
2688 		if ((rc = func(cd, &mptr->map_pmap, lname)) != 0)
2689 			return (rc);
2690 
2691 		if (!P->info_valid)
2692 			Pupdate_maps(P);
2693 	}
2694 	return (0);
2695 }
2696 
2697 int
2698 Pobject_iter(struct ps_prochandle *P, proc_map_f *func, void *cd)
2699 {
2700 	return (i_Pobject_iter(P, B_FALSE, func, cd));
2701 }
2702 
2703 int
2704 Pobject_iter_resolved(struct ps_prochandle *P, proc_map_f *func, void *cd)
2705 {
2706 	return (i_Pobject_iter(P, B_TRUE, func, cd));
2707 }
2708 
2709 static char *
2710 i_Pobjname(struct ps_prochandle *P, boolean_t lmresolve, uintptr_t addr,
2711 	char *buffer, size_t bufsize)
2712 {
2713 	map_info_t *mptr;
2714 	file_info_t *fptr;
2715 
2716 	/* create all the file_info_t's for all the mappings */
2717 	(void) Prd_agent(P);
2718 
2719 	if ((mptr = Paddr2mptr(P, addr)) == NULL)
2720 		return (NULL);
2721 
2722 	if (!lmresolve) {
2723 		if (((fptr = mptr->map_file) == NULL) ||
2724 		    (fptr->file_lname == NULL))
2725 			return (NULL);
2726 		(void) strlcpy(buffer, fptr->file_lname, bufsize);
2727 		return (buffer);
2728 	}
2729 
2730 	/* Check for a cached copy of the resolved path */
2731 	if (Pfindmap(P, mptr, buffer, bufsize) != NULL)
2732 		return (buffer);
2733 
2734 	return (NULL);
2735 }
2736 
2737 /*
2738  * Given a virtual address, return the name of the underlying
2739  * mapped object (file) as provided by the dynamic linker.
2740  * Return NULL if we can't find any name information for the object.
2741  */
2742 char *
2743 Pobjname(struct ps_prochandle *P, uintptr_t addr,
2744 	char *buffer, size_t bufsize)
2745 {
2746 	return (i_Pobjname(P, B_FALSE, addr, buffer, bufsize));
2747 }
2748 
2749 /*
2750  * Given a virtual address, try to return a filesystem path to the
2751  * underlying mapped object (file).  If we're in the global zone,
2752  * this path could resolve to an object in another zone.  If we're
2753  * unable return a valid filesystem path, we'll fall back to providing
2754  * the mapped object (file) name provided by the dynamic linker in
2755  * the target process (ie, the object reported by Pobjname()).
2756  */
2757 char *
2758 Pobjname_resolved(struct ps_prochandle *P, uintptr_t addr,
2759 	char *buffer, size_t bufsize)
2760 {
2761 	return (i_Pobjname(P, B_TRUE, addr, buffer, bufsize));
2762 }
2763 
2764 /*
2765  * Given a virtual address, return the link map id of the underlying mapped
2766  * object (file), as provided by the dynamic linker.  Return -1 on failure.
2767  */
2768 int
2769 Plmid(struct ps_prochandle *P, uintptr_t addr, Lmid_t *lmidp)
2770 {
2771 	map_info_t *mptr;
2772 	file_info_t *fptr;
2773 
2774 	/* create all the file_info_t's for all the mappings */
2775 	(void) Prd_agent(P);
2776 
2777 	if ((mptr = Paddr2mptr(P, addr)) != NULL &&
2778 	    (fptr = mptr->map_file) != NULL && fptr->file_lo != NULL) {
2779 		*lmidp = fptr->file_lo->rl_lmident;
2780 		return (0);
2781 	}
2782 
2783 	return (-1);
2784 }
2785 
2786 /*
2787  * Given an object name and optional lmid, iterate over the object's symbols.
2788  * If which == PR_SYMTAB, search the normal symbol table.
2789  * If which == PR_DYNSYM, search the dynamic symbol table.
2790  */
2791 static int
2792 Psymbol_iter_com(struct ps_prochandle *P, Lmid_t lmid, const char *object_name,
2793     int which, int mask, pr_order_t order, proc_xsym_f *func, void *cd)
2794 {
2795 #if STT_NUM != (STT_TLS + 1)
2796 #error "STT_NUM has grown. update Psymbol_iter_com()"
2797 #endif
2798 
2799 	GElf_Sym sym;
2800 	GElf_Shdr shdr;
2801 	map_info_t *mptr;
2802 	file_info_t *fptr;
2803 	sym_tbl_t *symtab;
2804 	size_t symn;
2805 	const char *strs;
2806 	size_t strsz;
2807 	prsyminfo_t si;
2808 	int rv;
2809 	uint_t *map, i, count, ndx;
2810 
2811 	if ((mptr = object_name_to_map(P, lmid, object_name)) == NULL)
2812 		return (-1);
2813 
2814 	if ((fptr = build_map_symtab(P, mptr)) == NULL || /* no mapped file */
2815 	    fptr->file_elf == NULL)			/* not an ELF file */
2816 		return (-1);
2817 
2818 	/*
2819 	 * Search the specified symbol table.
2820 	 */
2821 	switch (which) {
2822 	case PR_SYMTAB:
2823 		symtab = &fptr->file_symtab;
2824 		si.prs_table = PR_SYMTAB;
2825 		break;
2826 	case PR_DYNSYM:
2827 		symtab = &fptr->file_dynsym;
2828 		si.prs_table = PR_DYNSYM;
2829 		break;
2830 	default:
2831 		return (-1);
2832 	}
2833 
2834 	si.prs_object = object_name;
2835 	si.prs_lmid = fptr->file_lo == NULL ?
2836 	    LM_ID_BASE : fptr->file_lo->rl_lmident;
2837 
2838 	symn = symtab->sym_symn;
2839 	strs = symtab->sym_strs;
2840 	strsz = symtab->sym_strsz;
2841 
2842 	switch (order) {
2843 	case PRO_NATURAL:
2844 		map = NULL;
2845 		count = symn;
2846 		break;
2847 	case PRO_BYNAME:
2848 		map = symtab->sym_byname;
2849 		count = symtab->sym_count;
2850 		break;
2851 	case PRO_BYADDR:
2852 		map = symtab->sym_byaddr;
2853 		count = symtab->sym_count;
2854 		break;
2855 	default:
2856 		return (-1);
2857 	}
2858 
2859 	if (symtab->sym_data_pri == NULL || strs == NULL || count == 0)
2860 		return (-1);
2861 
2862 	rv = 0;
2863 
2864 	for (i = 0; i < count; i++) {
2865 		ndx = map == NULL ? i : map[i];
2866 		if (symtab_getsym(symtab, ndx, &sym) != NULL) {
2867 			uint_t s_bind, s_type, type;
2868 
2869 			if (sym.st_name >= strsz)	/* invalid st_name */
2870 				continue;
2871 
2872 			s_bind = GELF_ST_BIND(sym.st_info);
2873 			s_type = GELF_ST_TYPE(sym.st_info);
2874 
2875 			/*
2876 			 * In case you haven't already guessed, this relies on
2877 			 * the bitmask used in <libproc.h> for encoding symbol
2878 			 * type and binding matching the order of STB and STT
2879 			 * constants in <sys/elf.h>.  Changes to ELF must
2880 			 * maintain binary compatibility, so I think this is
2881 			 * reasonably fair game.
2882 			 */
2883 			if (s_bind < STB_NUM && s_type < STT_NUM) {
2884 				type = (1 << (s_type + 8)) | (1 << s_bind);
2885 				if ((type & ~mask) != 0)
2886 					continue;
2887 			} else
2888 				continue; /* Invalid type or binding */
2889 
2890 			if (GELF_ST_TYPE(sym.st_info) != STT_TLS)
2891 				sym.st_value += fptr->file_dyn_base;
2892 
2893 			si.prs_name = strs + sym.st_name;
2894 
2895 			/*
2896 			 * If symbol's type is STT_SECTION, then try to lookup
2897 			 * the name of the corresponding section.
2898 			 */
2899 			if (GELF_ST_TYPE(sym.st_info) == STT_SECTION &&
2900 			    fptr->file_shstrs != NULL &&
2901 			    gelf_getshdr(elf_getscn(fptr->file_elf,
2902 			    sym.st_shndx), &shdr) != NULL &&
2903 			    shdr.sh_name != 0 &&
2904 			    shdr.sh_name < fptr->file_shstrsz)
2905 				si.prs_name = fptr->file_shstrs + shdr.sh_name;
2906 
2907 			si.prs_id = ndx;
2908 			if ((rv = func(cd, &sym, si.prs_name, &si)) != 0)
2909 				break;
2910 		}
2911 	}
2912 
2913 	return (rv);
2914 }
2915 
2916 int
2917 Pxsymbol_iter(struct ps_prochandle *P, Lmid_t lmid, const char *object_name,
2918     int which, int mask, proc_xsym_f *func, void *cd)
2919 {
2920 	return (Psymbol_iter_com(P, lmid, object_name, which, mask,
2921 	    PRO_NATURAL, func, cd));
2922 }
2923 
2924 int
2925 Psymbol_iter_by_lmid(struct ps_prochandle *P, Lmid_t lmid,
2926     const char *object_name, int which, int mask, proc_sym_f *func, void *cd)
2927 {
2928 	return (Psymbol_iter_com(P, lmid, object_name, which, mask,
2929 	    PRO_NATURAL, (proc_xsym_f *)func, cd));
2930 }
2931 
2932 int
2933 Psymbol_iter(struct ps_prochandle *P,
2934     const char *object_name, int which, int mask, proc_sym_f *func, void *cd)
2935 {
2936 	return (Psymbol_iter_com(P, PR_LMID_EVERY, object_name, which, mask,
2937 	    PRO_NATURAL, (proc_xsym_f *)func, cd));
2938 }
2939 
2940 int
2941 Psymbol_iter_by_addr(struct ps_prochandle *P,
2942     const char *object_name, int which, int mask, proc_sym_f *func, void *cd)
2943 {
2944 	return (Psymbol_iter_com(P, PR_LMID_EVERY, object_name, which, mask,
2945 	    PRO_BYADDR, (proc_xsym_f *)func, cd));
2946 }
2947 
2948 int
2949 Psymbol_iter_by_name(struct ps_prochandle *P,
2950     const char *object_name, int which, int mask, proc_sym_f *func, void *cd)
2951 {
2952 	return (Psymbol_iter_com(P, PR_LMID_EVERY, object_name, which, mask,
2953 	    PRO_BYNAME, (proc_xsym_f *)func, cd));
2954 }
2955 
2956 /*
2957  * Get the platform string from the core file if we have it;
2958  * just perform the system call for the caller if this is a live process.
2959  */
2960 char *
2961 Pplatform(struct ps_prochandle *P, char *s, size_t n)
2962 {
2963 	if (P->state == PS_IDLE) {
2964 		errno = ENODATA;
2965 		return (NULL);
2966 	}
2967 
2968 	if (P->state == PS_DEAD) {
2969 		if (P->core->core_platform == NULL) {
2970 			errno = ENODATA;
2971 			return (NULL);
2972 		}
2973 		(void) strncpy(s, P->core->core_platform, n - 1);
2974 		s[n - 1] = '\0';
2975 
2976 	} else if (sysinfo(SI_PLATFORM, s, n) == -1)
2977 		return (NULL);
2978 
2979 	return (s);
2980 }
2981 
2982 /*
2983  * Get the uname(2) information from the core file if we have it;
2984  * just perform the system call for the caller if this is a live process.
2985  */
2986 int
2987 Puname(struct ps_prochandle *P, struct utsname *u)
2988 {
2989 	if (P->state == PS_IDLE) {
2990 		errno = ENODATA;
2991 		return (-1);
2992 	}
2993 
2994 	if (P->state == PS_DEAD) {
2995 		if (P->core->core_uts == NULL) {
2996 			errno = ENODATA;
2997 			return (-1);
2998 		}
2999 		(void) memcpy(u, P->core->core_uts, sizeof (struct utsname));
3000 		return (0);
3001 	}
3002 	return (uname(u));
3003 }
3004 
3005 /*
3006  * Called from Pcreate(), Pgrab(), and Pfgrab_core() to initialize
3007  * the symbol table heads in the new ps_prochandle.
3008  */
3009 void
3010 Pinitsym(struct ps_prochandle *P)
3011 {
3012 	P->num_files = 0;
3013 	list_link(&P->file_head, NULL);
3014 }
3015 
3016 /*
3017  * Called from Prelease() to destroy the symbol tables.
3018  * Must be called by the client after an exec() in the victim process.
3019  */
3020 void
3021 Preset_maps(struct ps_prochandle *P)
3022 {
3023 	int i;
3024 
3025 	if (P->rap != NULL) {
3026 		rd_delete(P->rap);
3027 		P->rap = NULL;
3028 	}
3029 
3030 	if (P->execname != NULL) {
3031 		free(P->execname);
3032 		P->execname = NULL;
3033 	}
3034 
3035 	if (P->auxv != NULL) {
3036 		free(P->auxv);
3037 		P->auxv = NULL;
3038 		P->nauxv = 0;
3039 	}
3040 
3041 	for (i = 0; i < P->map_count; i++)
3042 		map_info_free(P, &P->mappings[i]);
3043 
3044 	if (P->mappings != NULL) {
3045 		free(P->mappings);
3046 		P->mappings = NULL;
3047 	}
3048 	P->map_count = P->map_alloc = 0;
3049 
3050 	P->info_valid = 0;
3051 }
3052 
3053 typedef struct getenv_data {
3054 	char *buf;
3055 	size_t bufsize;
3056 	const char *search;
3057 	size_t searchlen;
3058 } getenv_data_t;
3059 
3060 /*ARGSUSED*/
3061 static int
3062 getenv_func(void *data, struct ps_prochandle *P, uintptr_t addr,
3063     const char *nameval)
3064 {
3065 	getenv_data_t *d = data;
3066 	size_t len;
3067 
3068 	if (nameval == NULL)
3069 		return (0);
3070 
3071 	if (d->searchlen < strlen(nameval) &&
3072 	    strncmp(nameval, d->search, d->searchlen) == 0 &&
3073 	    nameval[d->searchlen] == '=') {
3074 		len = MIN(strlen(nameval), d->bufsize - 1);
3075 		(void) strncpy(d->buf, nameval, len);
3076 		d->buf[len] = '\0';
3077 		return (1);
3078 	}
3079 
3080 	return (0);
3081 }
3082 
3083 char *
3084 Pgetenv(struct ps_prochandle *P, const char *name, char *buf, size_t buflen)
3085 {
3086 	getenv_data_t d;
3087 
3088 	d.buf = buf;
3089 	d.bufsize = buflen;
3090 	d.search = name;
3091 	d.searchlen = strlen(name);
3092 
3093 	if (Penv_iter(P, getenv_func, &d) == 1) {
3094 		char *equals = strchr(d.buf, '=');
3095 
3096 		if (equals != NULL) {
3097 			(void) memmove(d.buf, equals + 1,
3098 			    d.buf + buflen - equals - 1);
3099 			d.buf[d.buf + buflen - equals] = '\0';
3100 
3101 			return (buf);
3102 		}
3103 	}
3104 
3105 	return (NULL);
3106 }
3107 
3108 /* number of argument or environment pointers to read all at once */
3109 #define	NARG	100
3110 
3111 int
3112 Penv_iter(struct ps_prochandle *P, proc_env_f *func, void *data)
3113 {
3114 	const psinfo_t *psp;
3115 	uintptr_t envpoff;
3116 	GElf_Sym sym;
3117 	int ret;
3118 	char *buf, *nameval;
3119 	size_t buflen;
3120 
3121 	int nenv = NARG;
3122 	long envp[NARG];
3123 
3124 	/*
3125 	 * Attempt to find the "_environ" variable in the process.
3126 	 * Failing that, use the original value provided by Ppsinfo().
3127 	 */
3128 	if ((psp = Ppsinfo(P)) == NULL)
3129 		return (-1);
3130 
3131 	envpoff = psp->pr_envp; /* Default if no _environ found */
3132 
3133 	if (Plookup_by_name(P, PR_OBJ_EXEC, "_environ", &sym) == 0) {
3134 		if (P->status.pr_dmodel == PR_MODEL_NATIVE) {
3135 			if (Pread(P, &envpoff, sizeof (envpoff),
3136 			    sym.st_value) != sizeof (envpoff))
3137 				envpoff = psp->pr_envp;
3138 		} else if (P->status.pr_dmodel == PR_MODEL_ILP32) {
3139 			uint32_t envpoff32;
3140 
3141 			if (Pread(P, &envpoff32, sizeof (envpoff32),
3142 			    sym.st_value) != sizeof (envpoff32))
3143 				envpoff = psp->pr_envp;
3144 			else
3145 				envpoff = envpoff32;
3146 		}
3147 	}
3148 
3149 	buflen = 128;
3150 	buf = malloc(buflen);
3151 
3152 	ret = 0;
3153 	for (;;) {
3154 		uintptr_t envoff;
3155 
3156 		if (nenv == NARG) {
3157 			(void) memset(envp, 0, sizeof (envp));
3158 			if (P->status.pr_dmodel == PR_MODEL_NATIVE) {
3159 				if (Pread(P, envp,
3160 				    sizeof (envp), envpoff) <= 0) {
3161 					ret = -1;
3162 					break;
3163 				}
3164 			} else if (P->status.pr_dmodel == PR_MODEL_ILP32) {
3165 				uint32_t e32[NARG];
3166 				int i;
3167 
3168 				(void) memset(e32, 0, sizeof (e32));
3169 				if (Pread(P, e32, sizeof (e32), envpoff) <= 0) {
3170 					ret = -1;
3171 					break;
3172 				}
3173 				for (i = 0; i < NARG; i++)
3174 					envp[i] = e32[i];
3175 			}
3176 			nenv = 0;
3177 		}
3178 
3179 		if ((envoff = envp[nenv++]) == NULL)
3180 			break;
3181 
3182 		/*
3183 		 * Attempt to read the string from the process.
3184 		 */
3185 again:
3186 		ret = Pread_string(P, buf, buflen, envoff);
3187 
3188 		if (ret <= 0) {
3189 			nameval = NULL;
3190 		} else if (ret == buflen - 1) {
3191 			free(buf);
3192 			/*
3193 			 * Bail if we have a corrupted environment
3194 			 */
3195 			if (buflen >= ARG_MAX)
3196 				return (-1);
3197 			buflen *= 2;
3198 			buf = malloc(buflen);
3199 			goto again;
3200 		} else {
3201 			nameval = buf;
3202 		}
3203 
3204 		if ((ret = func(data, P, envoff, nameval)) != 0)
3205 			break;
3206 
3207 		envpoff += (P->status.pr_dmodel == PR_MODEL_LP64)? 8 : 4;
3208 	}
3209 
3210 	free(buf);
3211 
3212 	return (ret);
3213 }
3214