xref: /titanic_52/usr/src/lib/libproc/common/Psymtab.c (revision 0a47c91c895e274dd0990009919e30e984364a8b)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2013, Joyent, Inc. All rights reserved.
25  */
26 
27 #include <assert.h>
28 #include <stdio.h>
29 #include <stdlib.h>
30 #include <stddef.h>
31 #include <unistd.h>
32 #include <ctype.h>
33 #include <fcntl.h>
34 #include <string.h>
35 #include <strings.h>
36 #include <memory.h>
37 #include <errno.h>
38 #include <dirent.h>
39 #include <signal.h>
40 #include <limits.h>
41 #include <libgen.h>
42 #include <sys/types.h>
43 #include <sys/stat.h>
44 #include <sys/systeminfo.h>
45 #include <sys/sysmacros.h>
46 
47 #include "libproc.h"
48 #include "Pcontrol.h"
49 #include "Putil.h"
50 #include "Psymtab_machelf.h"
51 
52 static file_info_t *build_map_symtab(struct ps_prochandle *, map_info_t *);
53 static map_info_t *exec_map(struct ps_prochandle *);
54 static map_info_t *object_to_map(struct ps_prochandle *, Lmid_t, const char *);
55 static map_info_t *object_name_to_map(struct ps_prochandle *,
56 	Lmid_t, const char *);
57 static GElf_Sym *sym_by_name(sym_tbl_t *, const char *, GElf_Sym *, uint_t *);
58 static int read_ehdr32(struct ps_prochandle *, Elf32_Ehdr *, uint_t *,
59     uintptr_t);
60 #ifdef _LP64
61 static int read_ehdr64(struct ps_prochandle *, Elf64_Ehdr *, uint_t *,
62     uintptr_t);
63 #endif
64 
65 #define	DATA_TYPES	\
66 	((1 << STT_OBJECT) | (1 << STT_FUNC) | \
67 	(1 << STT_COMMON) | (1 << STT_TLS))
68 #define	IS_DATA_TYPE(tp)	(((1 << (tp)) & DATA_TYPES) != 0)
69 
70 #define	MA_RWX	(MA_READ | MA_WRITE | MA_EXEC)
71 
72 typedef enum {
73 	PRO_NATURAL,
74 	PRO_BYADDR,
75 	PRO_BYNAME
76 } pr_order_t;
77 
78 static int
79 addr_cmp(const void *aa, const void *bb)
80 {
81 	uintptr_t a = *((uintptr_t *)aa);
82 	uintptr_t b = *((uintptr_t *)bb);
83 
84 	if (a > b)
85 		return (1);
86 	if (a < b)
87 		return (-1);
88 	return (0);
89 }
90 
91 /*
92  * This function creates a list of addresses for a load object's sections.
93  * The list is in ascending address order and alternates start address
94  * then end address for each section we're interested in. The function
95  * returns a pointer to the list, which must be freed by the caller.
96  */
97 static uintptr_t *
98 get_saddrs(struct ps_prochandle *P, uintptr_t ehdr_start, uint_t *n)
99 {
100 	uintptr_t a, addr, *addrs, last = 0;
101 	uint_t i, naddrs = 0, unordered = 0;
102 
103 	if (P->status.pr_dmodel == PR_MODEL_ILP32) {
104 		Elf32_Ehdr ehdr;
105 		Elf32_Phdr phdr;
106 		uint_t phnum;
107 
108 		if (read_ehdr32(P, &ehdr, &phnum, ehdr_start) != 0)
109 			return (NULL);
110 
111 		addrs = malloc(sizeof (uintptr_t) * phnum * 2);
112 		a = ehdr_start + ehdr.e_phoff;
113 		for (i = 0; i < phnum; i++, a += ehdr.e_phentsize) {
114 			if (Pread(P, &phdr, sizeof (phdr), a) !=
115 			    sizeof (phdr)) {
116 				free(addrs);
117 				return (NULL);
118 			}
119 			if (phdr.p_type != PT_LOAD || phdr.p_memsz == 0)
120 				continue;
121 
122 			addr = phdr.p_vaddr;
123 			if (ehdr.e_type == ET_DYN)
124 				addr += ehdr_start;
125 			if (last > addr)
126 				unordered = 1;
127 			addrs[naddrs++] = addr;
128 			addrs[naddrs++] = last = addr + phdr.p_memsz - 1;
129 		}
130 #ifdef _LP64
131 	} else {
132 		Elf64_Ehdr ehdr;
133 		Elf64_Phdr phdr;
134 		uint_t phnum;
135 
136 		if (read_ehdr64(P, &ehdr, &phnum, ehdr_start) != 0)
137 			return (NULL);
138 
139 		addrs = malloc(sizeof (uintptr_t) * phnum * 2);
140 		a = ehdr_start + ehdr.e_phoff;
141 		for (i = 0; i < phnum; i++, a += ehdr.e_phentsize) {
142 			if (Pread(P, &phdr, sizeof (phdr), a) !=
143 			    sizeof (phdr)) {
144 				free(addrs);
145 				return (NULL);
146 			}
147 			if (phdr.p_type != PT_LOAD || phdr.p_memsz == 0)
148 				continue;
149 
150 			addr = phdr.p_vaddr;
151 			if (ehdr.e_type == ET_DYN)
152 				addr += ehdr_start;
153 			if (last > addr)
154 				unordered = 1;
155 			addrs[naddrs++] = addr;
156 			addrs[naddrs++] = last = addr + phdr.p_memsz - 1;
157 		}
158 #endif
159 	}
160 
161 	if (unordered)
162 		qsort(addrs, naddrs, sizeof (uintptr_t), addr_cmp);
163 
164 	*n = naddrs;
165 	return (addrs);
166 }
167 
168 /*
169  * Allocation function for a new file_info_t
170  */
171 file_info_t *
172 file_info_new(struct ps_prochandle *P, map_info_t *mptr)
173 {
174 	file_info_t *fptr;
175 	map_info_t *mp;
176 	uintptr_t mstart, mend, sstart, send;
177 	uint_t i;
178 
179 	if ((fptr = calloc(1, sizeof (file_info_t))) == NULL)
180 		return (NULL);
181 
182 	list_link(fptr, &P->file_head);
183 	(void) strcpy(fptr->file_pname, mptr->map_pmap.pr_mapname);
184 	mptr->map_file = fptr;
185 	fptr->file_ref = 1;
186 	fptr->file_fd = -1;
187 	P->num_files++;
188 
189 	/*
190 	 * To figure out which map_info_t instances correspond to the mappings
191 	 * for this load object we try to obtain the start and end address
192 	 * for each section of our in-memory ELF image. If successful, we
193 	 * walk down the list of addresses and the list of map_info_t
194 	 * instances in lock step to correctly find the mappings that
195 	 * correspond to this load object.
196 	 */
197 	if ((fptr->file_saddrs = get_saddrs(P, mptr->map_pmap.pr_vaddr,
198 	    &fptr->file_nsaddrs)) == NULL)
199 		return (fptr);
200 
201 	mp = P->mappings;
202 	i = 0;
203 	while (mp < P->mappings + P->map_count && i < fptr->file_nsaddrs) {
204 
205 		/* Calculate the start and end of the mapping and section */
206 		mstart = mp->map_pmap.pr_vaddr;
207 		mend = mp->map_pmap.pr_vaddr + mp->map_pmap.pr_size;
208 		sstart = fptr->file_saddrs[i];
209 		send = fptr->file_saddrs[i + 1];
210 
211 		if (mend <= sstart) {
212 			/* This mapping is below the current section */
213 			mp++;
214 		} else if (mstart >= send) {
215 			/* This mapping is above the current section */
216 			i += 2;
217 		} else {
218 			/* This mapping overlaps the current section */
219 			if (mp->map_file == NULL) {
220 				dprintf("file_info_new: associating "
221 				    "segment at %p\n",
222 				    (void *)mp->map_pmap.pr_vaddr);
223 				mp->map_file = fptr;
224 				fptr->file_ref++;
225 			} else {
226 				dprintf("file_info_new: segment at %p "
227 				    "already associated with %s\n",
228 				    (void *)mp->map_pmap.pr_vaddr,
229 				    (mp == mptr ? "this file" :
230 				    mp->map_file->file_pname));
231 			}
232 			mp++;
233 		}
234 	}
235 
236 	return (fptr);
237 }
238 
239 /*
240  * Deallocation function for a file_info_t
241  */
242 static void
243 file_info_free(struct ps_prochandle *P, file_info_t *fptr)
244 {
245 	if (--fptr->file_ref == 0) {
246 		list_unlink(fptr);
247 		if (fptr->file_symtab.sym_elf) {
248 			(void) elf_end(fptr->file_symtab.sym_elf);
249 			free(fptr->file_symtab.sym_elfmem);
250 		}
251 		if (fptr->file_symtab.sym_byname)
252 			free(fptr->file_symtab.sym_byname);
253 		if (fptr->file_symtab.sym_byaddr)
254 			free(fptr->file_symtab.sym_byaddr);
255 
256 		if (fptr->file_dynsym.sym_elf) {
257 			(void) elf_end(fptr->file_dynsym.sym_elf);
258 			free(fptr->file_dynsym.sym_elfmem);
259 		}
260 		if (fptr->file_dynsym.sym_byname)
261 			free(fptr->file_dynsym.sym_byname);
262 		if (fptr->file_dynsym.sym_byaddr)
263 			free(fptr->file_dynsym.sym_byaddr);
264 
265 		if (fptr->file_lo)
266 			free(fptr->file_lo);
267 		if (fptr->file_lname)
268 			free(fptr->file_lname);
269 		if (fptr->file_rname)
270 			free(fptr->file_rname);
271 		if (fptr->file_elf)
272 			(void) elf_end(fptr->file_elf);
273 		if (fptr->file_elfmem != NULL)
274 			free(fptr->file_elfmem);
275 		if (fptr->file_fd >= 0)
276 			(void) close(fptr->file_fd);
277 		if (fptr->file_ctfp) {
278 			ctf_close(fptr->file_ctfp);
279 			free(fptr->file_ctf_buf);
280 		}
281 		if (fptr->file_saddrs)
282 			free(fptr->file_saddrs);
283 		free(fptr);
284 		P->num_files--;
285 	}
286 }
287 
288 /*
289  * Deallocation function for a map_info_t
290  */
291 static void
292 map_info_free(struct ps_prochandle *P, map_info_t *mptr)
293 {
294 	file_info_t *fptr;
295 
296 	if ((fptr = mptr->map_file) != NULL) {
297 		if (fptr->file_map == mptr)
298 			fptr->file_map = NULL;
299 		file_info_free(P, fptr);
300 	}
301 	if (P->execname && mptr == P->map_exec) {
302 		free(P->execname);
303 		P->execname = NULL;
304 	}
305 	if (P->auxv && (mptr == P->map_exec || mptr == P->map_ldso)) {
306 		free(P->auxv);
307 		P->auxv = NULL;
308 		P->nauxv = 0;
309 	}
310 	if (mptr == P->map_exec)
311 		P->map_exec = NULL;
312 	if (mptr == P->map_ldso)
313 		P->map_ldso = NULL;
314 }
315 
316 /*
317  * Call-back function for librtld_db to iterate through all of its shared
318  * libraries.  We use this to get the load object names for the mappings.
319  */
320 static int
321 map_iter(const rd_loadobj_t *lop, void *cd)
322 {
323 	char buf[PATH_MAX];
324 	struct ps_prochandle *P = cd;
325 	map_info_t *mptr;
326 	file_info_t *fptr;
327 
328 	dprintf("encountered rd object at %p\n", (void *)lop->rl_base);
329 
330 	if ((mptr = Paddr2mptr(P, lop->rl_base)) == NULL) {
331 		dprintf("map_iter: base address doesn't match any mapping\n");
332 		return (1); /* Base address does not match any mapping */
333 	}
334 
335 	if ((fptr = mptr->map_file) == NULL &&
336 	    (fptr = file_info_new(P, mptr)) == NULL) {
337 		dprintf("map_iter: failed to allocate a new file_info_t\n");
338 		return (1); /* Failed to allocate a new file_info_t */
339 	}
340 
341 	if ((fptr->file_lo == NULL) &&
342 	    (fptr->file_lo = malloc(sizeof (rd_loadobj_t))) == NULL) {
343 		dprintf("map_iter: failed to allocate rd_loadobj_t\n");
344 		file_info_free(P, fptr);
345 		return (1); /* Failed to allocate rd_loadobj_t */
346 	}
347 
348 	fptr->file_map = mptr;
349 	*fptr->file_lo = *lop;
350 
351 	fptr->file_lo->rl_plt_base = fptr->file_plt_base;
352 	fptr->file_lo->rl_plt_size = fptr->file_plt_size;
353 
354 	if (fptr->file_lname) {
355 		free(fptr->file_lname);
356 		fptr->file_lname = NULL;
357 		fptr->file_lbase = NULL;
358 	}
359 	if (fptr->file_rname) {
360 		free(fptr->file_rname);
361 		fptr->file_rname = NULL;
362 		fptr->file_rbase = NULL;
363 	}
364 
365 	if (Pread_string(P, buf, sizeof (buf), lop->rl_nameaddr) > 0) {
366 		if ((fptr->file_lname = strdup(buf)) != NULL)
367 			fptr->file_lbase = basename(fptr->file_lname);
368 	} else {
369 		dprintf("map_iter: failed to read string at %p\n",
370 		    (void *)lop->rl_nameaddr);
371 	}
372 
373 	if ((Pfindmap(P, mptr, buf, sizeof (buf)) != NULL) &&
374 	    ((fptr->file_rname = strdup(buf)) != NULL))
375 		fptr->file_rbase = basename(fptr->file_rname);
376 
377 	dprintf("loaded rd object %s lmid %lx\n",
378 	    fptr->file_lname ? buf : "<NULL>", lop->rl_lmident);
379 	return (1);
380 }
381 
382 static void
383 map_set(struct ps_prochandle *P, map_info_t *mptr, const char *lname)
384 {
385 	file_info_t *fptr;
386 	char buf[PATH_MAX];
387 
388 	if ((fptr = mptr->map_file) == NULL &&
389 	    (fptr = file_info_new(P, mptr)) == NULL)
390 		return; /* Failed to allocate a new file_info_t */
391 
392 	fptr->file_map = mptr;
393 
394 	if ((fptr->file_lo == NULL) &&
395 	    (fptr->file_lo = malloc(sizeof (rd_loadobj_t))) == NULL) {
396 		file_info_free(P, fptr);
397 		return; /* Failed to allocate rd_loadobj_t */
398 	}
399 
400 	(void) memset(fptr->file_lo, 0, sizeof (rd_loadobj_t));
401 	fptr->file_lo->rl_base = mptr->map_pmap.pr_vaddr;
402 	fptr->file_lo->rl_bend =
403 	    mptr->map_pmap.pr_vaddr + mptr->map_pmap.pr_size;
404 
405 	fptr->file_lo->rl_plt_base = fptr->file_plt_base;
406 	fptr->file_lo->rl_plt_size = fptr->file_plt_size;
407 
408 	if ((fptr->file_lname == NULL) &&
409 	    (fptr->file_lname = strdup(lname)) != NULL)
410 		fptr->file_lbase = basename(fptr->file_lname);
411 
412 	if ((Pfindmap(P, mptr, buf, sizeof (buf)) != NULL) &&
413 	    ((fptr->file_rname = strdup(buf)) != NULL))
414 		fptr->file_rbase = basename(fptr->file_rname);
415 }
416 
417 static void
418 load_static_maps(struct ps_prochandle *P)
419 {
420 	map_info_t *mptr;
421 
422 	/*
423 	 * Construct the map for the a.out.
424 	 */
425 	if ((mptr = object_name_to_map(P, PR_LMID_EVERY, PR_OBJ_EXEC)) != NULL)
426 		map_set(P, mptr, "a.out");
427 
428 	/*
429 	 * If the dynamic linker exists for this process,
430 	 * construct the map for it.
431 	 */
432 	if (Pgetauxval(P, AT_BASE) != -1L &&
433 	    (mptr = object_name_to_map(P, PR_LMID_EVERY, PR_OBJ_LDSO)) != NULL)
434 		map_set(P, mptr, "ld.so.1");
435 }
436 
437 /*
438  * Go through all the address space mappings, validating or updating
439  * the information already gathered, or gathering new information.
440  *
441  * This function is only called when we suspect that the mappings have changed
442  * because this is the first time we're calling it or because of rtld activity.
443  */
444 void
445 Pupdate_maps(struct ps_prochandle *P)
446 {
447 	char mapfile[PATH_MAX];
448 	int mapfd;
449 	struct stat statb;
450 	prmap_t *Pmap = NULL;
451 	prmap_t *pmap;
452 	ssize_t nmap;
453 	int i;
454 	uint_t oldmapcount;
455 	map_info_t *newmap, *newp;
456 	map_info_t *mptr;
457 
458 	if (P->info_valid || P->state == PS_UNDEAD)
459 		return;
460 
461 	Preadauxvec(P);
462 
463 	(void) snprintf(mapfile, sizeof (mapfile), "%s/%d/map",
464 	    procfs_path, (int)P->pid);
465 	if ((mapfd = open(mapfile, O_RDONLY)) < 0 ||
466 	    fstat(mapfd, &statb) != 0 ||
467 	    statb.st_size < sizeof (prmap_t) ||
468 	    (Pmap = malloc(statb.st_size)) == NULL ||
469 	    (nmap = pread(mapfd, Pmap, statb.st_size, 0L)) <= 0 ||
470 	    (nmap /= sizeof (prmap_t)) == 0) {
471 		if (Pmap != NULL)
472 			free(Pmap);
473 		if (mapfd >= 0)
474 			(void) close(mapfd);
475 		Preset_maps(P);	/* utter failure; destroy tables */
476 		return;
477 	}
478 	(void) close(mapfd);
479 
480 	if ((newmap = calloc(1, nmap * sizeof (map_info_t))) == NULL)
481 		return;
482 
483 	/*
484 	 * We try to merge any file information we may have for existing
485 	 * mappings, to avoid having to rebuild the file info.
486 	 */
487 	mptr = P->mappings;
488 	pmap = Pmap;
489 	newp = newmap;
490 	oldmapcount = P->map_count;
491 	for (i = 0; i < nmap; i++, pmap++, newp++) {
492 
493 		if (oldmapcount == 0) {
494 			/*
495 			 * We've exhausted all the old mappings.  Every new
496 			 * mapping should be added.
497 			 */
498 			newp->map_pmap = *pmap;
499 
500 		} else if (pmap->pr_vaddr == mptr->map_pmap.pr_vaddr &&
501 		    pmap->pr_size == mptr->map_pmap.pr_size &&
502 		    pmap->pr_offset == mptr->map_pmap.pr_offset &&
503 		    (pmap->pr_mflags & ~(MA_BREAK | MA_STACK)) ==
504 		    (mptr->map_pmap.pr_mflags & ~(MA_BREAK | MA_STACK)) &&
505 		    pmap->pr_pagesize == mptr->map_pmap.pr_pagesize &&
506 		    pmap->pr_shmid == mptr->map_pmap.pr_shmid &&
507 		    strcmp(pmap->pr_mapname, mptr->map_pmap.pr_mapname) == 0) {
508 
509 			/*
510 			 * This mapping matches exactly.  Copy over the old
511 			 * mapping, taking care to get the latest flags.
512 			 * Make sure the associated file_info_t is updated
513 			 * appropriately.
514 			 */
515 			*newp = *mptr;
516 			if (P->map_exec == mptr)
517 				P->map_exec = newp;
518 			if (P->map_ldso == mptr)
519 				P->map_ldso = newp;
520 			newp->map_pmap.pr_mflags = pmap->pr_mflags;
521 			if (mptr->map_file != NULL &&
522 			    mptr->map_file->file_map == mptr)
523 				mptr->map_file->file_map = newp;
524 			oldmapcount--;
525 			mptr++;
526 
527 		} else if (pmap->pr_vaddr + pmap->pr_size >
528 		    mptr->map_pmap.pr_vaddr) {
529 
530 			/*
531 			 * The old mapping doesn't exist any more, remove it
532 			 * from the list.
533 			 */
534 			map_info_free(P, mptr);
535 			oldmapcount--;
536 			i--;
537 			newp--;
538 			pmap--;
539 			mptr++;
540 
541 		} else {
542 
543 			/*
544 			 * This is a new mapping, add it directly.
545 			 */
546 			newp->map_pmap = *pmap;
547 		}
548 	}
549 
550 	/*
551 	 * Free any old maps
552 	 */
553 	while (oldmapcount) {
554 		map_info_free(P, mptr);
555 		oldmapcount--;
556 		mptr++;
557 	}
558 
559 	free(Pmap);
560 	if (P->mappings != NULL)
561 		free(P->mappings);
562 	P->mappings = newmap;
563 	P->map_count = P->map_alloc = nmap;
564 	P->info_valid = 1;
565 
566 	/*
567 	 * Consult librtld_db to get the load object
568 	 * names for all of the shared libraries.
569 	 */
570 	if (P->rap != NULL)
571 		(void) rd_loadobj_iter(P->rap, map_iter, P);
572 }
573 
574 /*
575  * Update all of the mappings and rtld_db as if by Pupdate_maps(), and then
576  * forcibly cache all of the symbol tables associated with all object files.
577  */
578 void
579 Pupdate_syms(struct ps_prochandle *P)
580 {
581 	file_info_t *fptr;
582 	int i;
583 
584 	Pupdate_maps(P);
585 
586 	for (i = 0, fptr = list_next(&P->file_head); i < P->num_files;
587 	    i++, fptr = list_next(fptr)) {
588 		Pbuild_file_symtab(P, fptr);
589 		(void) Pbuild_file_ctf(P, fptr);
590 	}
591 }
592 
593 /*
594  * Return the librtld_db agent handle for the victim process.
595  * The handle will become invalid at the next successful exec() and the
596  * client (caller of proc_rd_agent()) must not use it beyond that point.
597  * If the process is already dead, we've already tried our best to
598  * create the agent during core file initialization.
599  */
600 rd_agent_t *
601 Prd_agent(struct ps_prochandle *P)
602 {
603 	if (P->rap == NULL && P->state != PS_DEAD && P->state != PS_IDLE) {
604 		Pupdate_maps(P);
605 		if (P->num_files == 0)
606 			load_static_maps(P);
607 		rd_log(_libproc_debug);
608 		if ((P->rap = rd_new(P)) != NULL)
609 			(void) rd_loadobj_iter(P->rap, map_iter, P);
610 	}
611 	return (P->rap);
612 }
613 
614 /*
615  * Return the prmap_t structure containing 'addr', but only if it
616  * is in the dynamic linker's link map and is the text section.
617  */
618 const prmap_t *
619 Paddr_to_text_map(struct ps_prochandle *P, uintptr_t addr)
620 {
621 	map_info_t *mptr;
622 
623 	if (!P->info_valid)
624 		Pupdate_maps(P);
625 
626 	if ((mptr = Paddr2mptr(P, addr)) != NULL) {
627 		file_info_t *fptr = build_map_symtab(P, mptr);
628 		const prmap_t *pmp = &mptr->map_pmap;
629 
630 		/*
631 		 * Assume that if rl_data_base is NULL, it means that no
632 		 * data section was found for this load object, and that
633 		 * a section must be text. Otherwise, a section will be
634 		 * text unless it ends above the start of the data
635 		 * section.
636 		 */
637 		if (fptr != NULL && fptr->file_lo != NULL &&
638 		    (fptr->file_lo->rl_data_base == NULL ||
639 		    pmp->pr_vaddr + pmp->pr_size <=
640 		    fptr->file_lo->rl_data_base))
641 			return (pmp);
642 	}
643 
644 	return (NULL);
645 }
646 
647 /*
648  * Return the prmap_t structure containing 'addr' (no restrictions on
649  * the type of mapping).
650  */
651 const prmap_t *
652 Paddr_to_map(struct ps_prochandle *P, uintptr_t addr)
653 {
654 	map_info_t *mptr;
655 
656 	if (!P->info_valid)
657 		Pupdate_maps(P);
658 
659 	if ((mptr = Paddr2mptr(P, addr)) != NULL)
660 		return (&mptr->map_pmap);
661 
662 	return (NULL);
663 }
664 
665 /*
666  * Convert a full or partial load object name to the prmap_t for its
667  * corresponding primary text mapping.
668  */
669 const prmap_t *
670 Plmid_to_map(struct ps_prochandle *P, Lmid_t lmid, const char *name)
671 {
672 	map_info_t *mptr;
673 
674 	if (name == PR_OBJ_EVERY)
675 		return (NULL); /* A reasonable mistake */
676 
677 	if ((mptr = object_name_to_map(P, lmid, name)) != NULL)
678 		return (&mptr->map_pmap);
679 
680 	return (NULL);
681 }
682 
683 const prmap_t *
684 Pname_to_map(struct ps_prochandle *P, const char *name)
685 {
686 	return (Plmid_to_map(P, PR_LMID_EVERY, name));
687 }
688 
689 const rd_loadobj_t *
690 Paddr_to_loadobj(struct ps_prochandle *P, uintptr_t addr)
691 {
692 	map_info_t *mptr;
693 
694 	if (!P->info_valid)
695 		Pupdate_maps(P);
696 
697 	if ((mptr = Paddr2mptr(P, addr)) == NULL)
698 		return (NULL);
699 
700 	/*
701 	 * By building the symbol table, we implicitly bring the PLT
702 	 * information up to date in the load object.
703 	 */
704 	(void) build_map_symtab(P, mptr);
705 
706 	return (mptr->map_file->file_lo);
707 }
708 
709 const rd_loadobj_t *
710 Plmid_to_loadobj(struct ps_prochandle *P, Lmid_t lmid, const char *name)
711 {
712 	map_info_t *mptr;
713 
714 	if (name == PR_OBJ_EVERY)
715 		return (NULL);
716 
717 	if ((mptr = object_name_to_map(P, lmid, name)) == NULL)
718 		return (NULL);
719 
720 	/*
721 	 * By building the symbol table, we implicitly bring the PLT
722 	 * information up to date in the load object.
723 	 */
724 	(void) build_map_symtab(P, mptr);
725 
726 	return (mptr->map_file->file_lo);
727 }
728 
729 const rd_loadobj_t *
730 Pname_to_loadobj(struct ps_prochandle *P, const char *name)
731 {
732 	return (Plmid_to_loadobj(P, PR_LMID_EVERY, name));
733 }
734 
735 ctf_file_t *
736 Pbuild_file_ctf(struct ps_prochandle *P, file_info_t *fptr)
737 {
738 	ctf_sect_t ctdata, symtab, strtab;
739 	sym_tbl_t *symp;
740 	int err;
741 
742 	if (fptr->file_ctfp != NULL)
743 		return (fptr->file_ctfp);
744 
745 	Pbuild_file_symtab(P, fptr);
746 
747 	if (fptr->file_ctf_size == 0)
748 		return (NULL);
749 
750 	symp = fptr->file_ctf_dyn ? &fptr->file_dynsym : &fptr->file_symtab;
751 	if (symp->sym_data_pri == NULL)
752 		return (NULL);
753 
754 	/*
755 	 * The buffer may alread be allocated if this is a core file that
756 	 * contained CTF data for this file.
757 	 */
758 	if (fptr->file_ctf_buf == NULL) {
759 		fptr->file_ctf_buf = malloc(fptr->file_ctf_size);
760 		if (fptr->file_ctf_buf == NULL) {
761 			dprintf("failed to allocate ctf buffer\n");
762 			return (NULL);
763 		}
764 
765 		if (pread(fptr->file_fd, fptr->file_ctf_buf,
766 		    fptr->file_ctf_size, fptr->file_ctf_off) !=
767 		    fptr->file_ctf_size) {
768 			free(fptr->file_ctf_buf);
769 			fptr->file_ctf_buf = NULL;
770 			dprintf("failed to read ctf data\n");
771 			return (NULL);
772 		}
773 	}
774 
775 	ctdata.cts_name = ".SUNW_ctf";
776 	ctdata.cts_type = SHT_PROGBITS;
777 	ctdata.cts_flags = 0;
778 	ctdata.cts_data = fptr->file_ctf_buf;
779 	ctdata.cts_size = fptr->file_ctf_size;
780 	ctdata.cts_entsize = 1;
781 	ctdata.cts_offset = 0;
782 
783 	symtab.cts_name = fptr->file_ctf_dyn ? ".dynsym" : ".symtab";
784 	symtab.cts_type = symp->sym_hdr_pri.sh_type;
785 	symtab.cts_flags = symp->sym_hdr_pri.sh_flags;
786 	symtab.cts_data = symp->sym_data_pri->d_buf;
787 	symtab.cts_size = symp->sym_hdr_pri.sh_size;
788 	symtab.cts_entsize = symp->sym_hdr_pri.sh_entsize;
789 	symtab.cts_offset = symp->sym_hdr_pri.sh_offset;
790 
791 	strtab.cts_name = fptr->file_ctf_dyn ? ".dynstr" : ".strtab";
792 	strtab.cts_type = symp->sym_strhdr.sh_type;
793 	strtab.cts_flags = symp->sym_strhdr.sh_flags;
794 	strtab.cts_data = symp->sym_strs;
795 	strtab.cts_size = symp->sym_strhdr.sh_size;
796 	strtab.cts_entsize = symp->sym_strhdr.sh_entsize;
797 	strtab.cts_offset = symp->sym_strhdr.sh_offset;
798 
799 	fptr->file_ctfp = ctf_bufopen(&ctdata, &symtab, &strtab, &err);
800 	if (fptr->file_ctfp == NULL) {
801 		dprintf("ctf_bufopen() failed, error code %d\n", err);
802 		free(fptr->file_ctf_buf);
803 		fptr->file_ctf_buf = NULL;
804 		return (NULL);
805 	}
806 
807 	dprintf("loaded %lu bytes of CTF data for %s\n",
808 	    (ulong_t)fptr->file_ctf_size, fptr->file_pname);
809 
810 	return (fptr->file_ctfp);
811 }
812 
813 ctf_file_t *
814 Paddr_to_ctf(struct ps_prochandle *P, uintptr_t addr)
815 {
816 	map_info_t *mptr;
817 	file_info_t *fptr;
818 
819 	if (!P->info_valid)
820 		Pupdate_maps(P);
821 
822 	if ((mptr = Paddr2mptr(P, addr)) == NULL ||
823 	    (fptr = mptr->map_file) == NULL)
824 		return (NULL);
825 
826 	return (Pbuild_file_ctf(P, fptr));
827 }
828 
829 ctf_file_t *
830 Plmid_to_ctf(struct ps_prochandle *P, Lmid_t lmid, const char *name)
831 {
832 	map_info_t *mptr;
833 	file_info_t *fptr;
834 
835 	if (name == PR_OBJ_EVERY)
836 		return (NULL);
837 
838 	if ((mptr = object_name_to_map(P, lmid, name)) == NULL ||
839 	    (fptr = mptr->map_file) == NULL)
840 		return (NULL);
841 
842 	return (Pbuild_file_ctf(P, fptr));
843 }
844 
845 ctf_file_t *
846 Pname_to_ctf(struct ps_prochandle *P, const char *name)
847 {
848 	return (Plmid_to_ctf(P, PR_LMID_EVERY, name));
849 }
850 
851 /*
852  * If we're not a core file, re-read the /proc/<pid>/auxv file and store
853  * its contents in P->auxv.  In the case of a core file, we either
854  * initialized P->auxv in Pcore() from the NT_AUXV, or we don't have an
855  * auxv because the note was missing.
856  */
857 void
858 Preadauxvec(struct ps_prochandle *P)
859 {
860 	char auxfile[64];
861 	struct stat statb;
862 	ssize_t naux;
863 	int fd;
864 
865 	if (P->state == PS_DEAD)
866 		return; /* Already read during Pgrab_core() */
867 	if (P->state == PS_IDLE)
868 		return; /* No aux vec for Pgrab_file() */
869 
870 	if (P->auxv != NULL) {
871 		free(P->auxv);
872 		P->auxv = NULL;
873 		P->nauxv = 0;
874 	}
875 
876 	(void) snprintf(auxfile, sizeof (auxfile), "%s/%d/auxv",
877 	    procfs_path, (int)P->pid);
878 	if ((fd = open(auxfile, O_RDONLY)) < 0)
879 		return;
880 
881 	if (fstat(fd, &statb) == 0 &&
882 	    statb.st_size >= sizeof (auxv_t) &&
883 	    (P->auxv = malloc(statb.st_size + sizeof (auxv_t))) != NULL) {
884 		if ((naux = read(fd, P->auxv, statb.st_size)) < 0 ||
885 		    (naux /= sizeof (auxv_t)) < 1) {
886 			free(P->auxv);
887 			P->auxv = NULL;
888 		} else {
889 			P->auxv[naux].a_type = AT_NULL;
890 			P->auxv[naux].a_un.a_val = 0L;
891 			P->nauxv = (int)naux;
892 		}
893 	}
894 
895 	(void) close(fd);
896 }
897 
898 /*
899  * Return a requested element from the process's aux vector.
900  * Return -1 on failure (this is adequate for our purposes).
901  */
902 long
903 Pgetauxval(struct ps_prochandle *P, int type)
904 {
905 	auxv_t *auxv;
906 
907 	if (P->auxv == NULL)
908 		Preadauxvec(P);
909 
910 	if (P->auxv == NULL)
911 		return (-1);
912 
913 	for (auxv = P->auxv; auxv->a_type != AT_NULL; auxv++) {
914 		if (auxv->a_type == type)
915 			return (auxv->a_un.a_val);
916 	}
917 
918 	return (-1);
919 }
920 
921 /*
922  * Return a pointer to our internal copy of the process's aux vector.
923  * The caller should not hold on to this pointer across any libproc calls.
924  */
925 const auxv_t *
926 Pgetauxvec(struct ps_prochandle *P)
927 {
928 	static const auxv_t empty = { AT_NULL, 0L };
929 
930 	if (P->auxv == NULL)
931 		Preadauxvec(P);
932 
933 	if (P->auxv == NULL)
934 		return (&empty);
935 
936 	return (P->auxv);
937 }
938 
939 /*
940  * Return 1 if the given mapping corresponds to the given file_info_t's
941  * load object; return 0 otherwise.
942  */
943 static int
944 is_mapping_in_file(struct ps_prochandle *P, map_info_t *mptr, file_info_t *fptr)
945 {
946 	prmap_t *pmap = &mptr->map_pmap;
947 	rd_loadobj_t *lop = fptr->file_lo;
948 	uint_t i;
949 	uintptr_t mstart, mend, sstart, send;
950 
951 	/*
952 	 * We can get for free the start address of the text and data
953 	 * sections of the load object. Start by seeing if the mapping
954 	 * encloses either of these.
955 	 */
956 	if ((pmap->pr_vaddr <= lop->rl_base &&
957 	    lop->rl_base < pmap->pr_vaddr + pmap->pr_size) ||
958 	    (pmap->pr_vaddr <= lop->rl_data_base &&
959 	    lop->rl_data_base < pmap->pr_vaddr + pmap->pr_size))
960 		return (1);
961 
962 	/*
963 	 * It's still possible that this mapping correponds to the load
964 	 * object. Consider the example of a mapping whose start and end
965 	 * addresses correspond to those of the load object's text section.
966 	 * If the mapping splits, e.g. as a result of a segment demotion,
967 	 * then although both mappings are still backed by the same section,
968 	 * only one will be seen to enclose that section's start address.
969 	 * Thus, to be rigorous, we ask not whether this mapping encloses
970 	 * the start of a section, but whether there exists a section that
971 	 * overlaps this mapping.
972 	 *
973 	 * If we don't already have the section addresses, and we successfully
974 	 * get them, then we cache them in case we come here again.
975 	 */
976 	if (fptr->file_saddrs == NULL &&
977 	    (fptr->file_saddrs = get_saddrs(P,
978 	    fptr->file_map->map_pmap.pr_vaddr, &fptr->file_nsaddrs)) == NULL)
979 		return (0);
980 
981 	mstart = mptr->map_pmap.pr_vaddr;
982 	mend = mptr->map_pmap.pr_vaddr + mptr->map_pmap.pr_size;
983 	for (i = 0; i < fptr->file_nsaddrs; i += 2) {
984 		/* Does this section overlap the mapping? */
985 		sstart = fptr->file_saddrs[i];
986 		send = fptr->file_saddrs[i + 1];
987 		if (!(mend <= sstart || mstart >= send))
988 			return (1);
989 	}
990 
991 	return (0);
992 }
993 
994 /*
995  * Find or build the symbol table for the given mapping.
996  */
997 static file_info_t *
998 build_map_symtab(struct ps_prochandle *P, map_info_t *mptr)
999 {
1000 	prmap_t *pmap = &mptr->map_pmap;
1001 	file_info_t *fptr;
1002 	uint_t i;
1003 
1004 	if ((fptr = mptr->map_file) != NULL) {
1005 		Pbuild_file_symtab(P, fptr);
1006 		return (fptr);
1007 	}
1008 
1009 	if (pmap->pr_mapname[0] == '\0')
1010 		return (NULL);
1011 
1012 	/*
1013 	 * Attempt to find a matching file.
1014 	 * (A file can be mapped at several different addresses.)
1015 	 */
1016 	for (i = 0, fptr = list_next(&P->file_head); i < P->num_files;
1017 	    i++, fptr = list_next(fptr)) {
1018 		if (strcmp(fptr->file_pname, pmap->pr_mapname) == 0 &&
1019 		    fptr->file_lo && is_mapping_in_file(P, mptr, fptr)) {
1020 			mptr->map_file = fptr;
1021 			fptr->file_ref++;
1022 			Pbuild_file_symtab(P, fptr);
1023 			return (fptr);
1024 		}
1025 	}
1026 
1027 	/*
1028 	 * If we need to create a new file_info structure, iterate
1029 	 * through the load objects in order to attempt to connect
1030 	 * this new file with its primary text mapping.  We again
1031 	 * need to handle ld.so as a special case because we need
1032 	 * to be able to bootstrap librtld_db.
1033 	 */
1034 	if ((fptr = file_info_new(P, mptr)) == NULL)
1035 		return (NULL);
1036 
1037 	if (P->map_ldso != mptr) {
1038 		if (P->rap != NULL)
1039 			(void) rd_loadobj_iter(P->rap, map_iter, P);
1040 		else
1041 			(void) Prd_agent(P);
1042 	} else {
1043 		fptr->file_map = mptr;
1044 	}
1045 
1046 	/*
1047 	 * If librtld_db wasn't able to help us connect the file to a primary
1048 	 * text mapping, set file_map to the current mapping because we require
1049 	 * fptr->file_map to be set in Pbuild_file_symtab.  librtld_db may be
1050 	 * unaware of what's going on in the rare case that a legitimate ELF
1051 	 * file has been mmap(2)ed into the process address space *without*
1052 	 * the use of dlopen(3x).
1053 	 */
1054 	if (fptr->file_map == NULL)
1055 		fptr->file_map = mptr;
1056 
1057 	Pbuild_file_symtab(P, fptr);
1058 
1059 	return (fptr);
1060 }
1061 
1062 static int
1063 read_ehdr32(struct ps_prochandle *P, Elf32_Ehdr *ehdr, uint_t *phnum,
1064     uintptr_t addr)
1065 {
1066 	if (Pread(P, ehdr, sizeof (*ehdr), addr) != sizeof (*ehdr))
1067 		return (-1);
1068 
1069 	if (ehdr->e_ident[EI_MAG0] != ELFMAG0 ||
1070 	    ehdr->e_ident[EI_MAG1] != ELFMAG1 ||
1071 	    ehdr->e_ident[EI_MAG2] != ELFMAG2 ||
1072 	    ehdr->e_ident[EI_MAG3] != ELFMAG3 ||
1073 	    ehdr->e_ident[EI_CLASS] != ELFCLASS32 ||
1074 #ifdef _BIG_ENDIAN
1075 	    ehdr->e_ident[EI_DATA] != ELFDATA2MSB ||
1076 #else
1077 	    ehdr->e_ident[EI_DATA] != ELFDATA2LSB ||
1078 #endif
1079 	    ehdr->e_ident[EI_VERSION] != EV_CURRENT)
1080 		return (-1);
1081 
1082 	if ((*phnum = ehdr->e_phnum) == PN_XNUM) {
1083 		Elf32_Shdr shdr0;
1084 
1085 		if (ehdr->e_shoff == 0 || ehdr->e_shentsize < sizeof (shdr0) ||
1086 		    Pread(P, &shdr0, sizeof (shdr0), addr + ehdr->e_shoff) !=
1087 		    sizeof (shdr0))
1088 			return (-1);
1089 
1090 		if (shdr0.sh_info != 0)
1091 			*phnum = shdr0.sh_info;
1092 	}
1093 
1094 	return (0);
1095 }
1096 
1097 static int
1098 read_dynamic_phdr32(struct ps_prochandle *P, const Elf32_Ehdr *ehdr,
1099     uint_t phnum, Elf32_Phdr *phdr, uintptr_t addr)
1100 {
1101 	uint_t i;
1102 
1103 	for (i = 0; i < phnum; i++) {
1104 		uintptr_t a = addr + ehdr->e_phoff + i * ehdr->e_phentsize;
1105 		if (Pread(P, phdr, sizeof (*phdr), a) != sizeof (*phdr))
1106 			return (-1);
1107 
1108 		if (phdr->p_type == PT_DYNAMIC)
1109 			return (0);
1110 	}
1111 
1112 	return (-1);
1113 }
1114 
1115 #ifdef _LP64
1116 static int
1117 read_ehdr64(struct ps_prochandle *P, Elf64_Ehdr *ehdr, uint_t *phnum,
1118     uintptr_t addr)
1119 {
1120 	if (Pread(P, ehdr, sizeof (Elf64_Ehdr), addr) != sizeof (Elf64_Ehdr))
1121 		return (-1);
1122 
1123 	if (ehdr->e_ident[EI_MAG0] != ELFMAG0 ||
1124 	    ehdr->e_ident[EI_MAG1] != ELFMAG1 ||
1125 	    ehdr->e_ident[EI_MAG2] != ELFMAG2 ||
1126 	    ehdr->e_ident[EI_MAG3] != ELFMAG3 ||
1127 	    ehdr->e_ident[EI_CLASS] != ELFCLASS64 ||
1128 #ifdef _BIG_ENDIAN
1129 	    ehdr->e_ident[EI_DATA] != ELFDATA2MSB ||
1130 #else
1131 	    ehdr->e_ident[EI_DATA] != ELFDATA2LSB ||
1132 #endif
1133 	    ehdr->e_ident[EI_VERSION] != EV_CURRENT)
1134 		return (-1);
1135 
1136 	if ((*phnum = ehdr->e_phnum) == PN_XNUM) {
1137 		Elf64_Shdr shdr0;
1138 
1139 		if (ehdr->e_shoff == 0 || ehdr->e_shentsize < sizeof (shdr0) ||
1140 		    Pread(P, &shdr0, sizeof (shdr0), addr + ehdr->e_shoff) !=
1141 		    sizeof (shdr0))
1142 			return (-1);
1143 
1144 		if (shdr0.sh_info != 0)
1145 			*phnum = shdr0.sh_info;
1146 	}
1147 
1148 	return (0);
1149 }
1150 
1151 static int
1152 read_dynamic_phdr64(struct ps_prochandle *P, const Elf64_Ehdr *ehdr,
1153     uint_t phnum, Elf64_Phdr *phdr, uintptr_t addr)
1154 {
1155 	uint_t i;
1156 
1157 	for (i = 0; i < phnum; i++) {
1158 		uintptr_t a = addr + ehdr->e_phoff + i * ehdr->e_phentsize;
1159 		if (Pread(P, phdr, sizeof (*phdr), a) != sizeof (*phdr))
1160 			return (-1);
1161 
1162 		if (phdr->p_type == PT_DYNAMIC)
1163 			return (0);
1164 	}
1165 
1166 	return (-1);
1167 }
1168 #endif	/* _LP64 */
1169 
1170 /*
1171  * The text segment for each load object contains the elf header and
1172  * program headers. We can use this information to determine if the
1173  * file that corresponds to the load object is the same file that
1174  * was loaded into the process's address space. There can be a discrepency
1175  * if a file is recompiled after the process is started or if the target
1176  * represents a core file from a differently configured system -- two
1177  * common examples. The DT_CHECKSUM entry in the dynamic section
1178  * provides an easy method of comparison. It is important to note that
1179  * the dynamic section usually lives in the data segment, but the meta
1180  * data we use to find the dynamic section lives in the text segment so
1181  * if either of those segments is absent we can't proceed.
1182  *
1183  * We're looking through the elf file for several items: the symbol tables
1184  * (both dynsym and symtab), the procedure linkage table (PLT) base,
1185  * size, and relocation base, and the CTF information. Most of this can
1186  * be recovered from the loaded image of the file itself, the exceptions
1187  * being the symtab and CTF data.
1188  *
1189  * First we try to open the file that we think corresponds to the load
1190  * object, if the DT_CHECKSUM values match, we're all set, and can simply
1191  * recover all the information we need from the file. If the values of
1192  * DT_CHECKSUM don't match, or if we can't access the file for whatever
1193  * reasaon, we fake up a elf file to use in its stead. If we can't read
1194  * the elf data in the process's address space, we fall back to using
1195  * the file even though it may give inaccurate information.
1196  *
1197  * The elf file that we fake up has to consist of sections for the
1198  * dynsym, the PLT and the dynamic section. Note that in the case of a
1199  * core file, we'll get the CTF data in the file_info_t later on from
1200  * a section embedded the core file (if it's present).
1201  *
1202  * file_differs() conservatively looks for mismatched files, identifying
1203  * a match when there is any ambiguity (since that's the legacy behavior).
1204  */
1205 static int
1206 file_differs(struct ps_prochandle *P, Elf *elf, file_info_t *fptr)
1207 {
1208 	Elf_Scn *scn;
1209 	GElf_Shdr shdr;
1210 	GElf_Dyn dyn;
1211 	Elf_Data *data;
1212 	uint_t i, ndyn;
1213 	GElf_Xword cksum;
1214 	uintptr_t addr;
1215 
1216 	if (fptr->file_map == NULL)
1217 		return (0);
1218 
1219 	if ((Pcontent(P) & (CC_CONTENT_TEXT | CC_CONTENT_DATA)) !=
1220 	    (CC_CONTENT_TEXT | CC_CONTENT_DATA))
1221 		return (0);
1222 
1223 	/*
1224 	 * First, we find the checksum value in the elf file.
1225 	 */
1226 	scn = NULL;
1227 	while ((scn = elf_nextscn(elf, scn)) != NULL) {
1228 		if (gelf_getshdr(scn, &shdr) != NULL &&
1229 		    shdr.sh_type == SHT_DYNAMIC)
1230 			goto found_shdr;
1231 	}
1232 	return (0);
1233 
1234 found_shdr:
1235 	if ((data = elf_getdata(scn, NULL)) == NULL)
1236 		return (0);
1237 
1238 	if (P->status.pr_dmodel == PR_MODEL_ILP32)
1239 		ndyn = shdr.sh_size / sizeof (Elf32_Dyn);
1240 #ifdef _LP64
1241 	else if (P->status.pr_dmodel == PR_MODEL_LP64)
1242 		ndyn = shdr.sh_size / sizeof (Elf64_Dyn);
1243 #endif
1244 	else
1245 		return (0);
1246 
1247 	for (i = 0; i < ndyn; i++) {
1248 		if (gelf_getdyn(data, i, &dyn) != NULL &&
1249 		    dyn.d_tag == DT_CHECKSUM)
1250 			goto found_cksum;
1251 	}
1252 
1253 	/*
1254 	 * The in-memory ELF has no DT_CHECKSUM section, but we will report it
1255 	 * as matching the file anyhow.
1256 	 */
1257 	return (0);
1258 
1259 found_cksum:
1260 	cksum = dyn.d_un.d_val;
1261 	dprintf("elf cksum value is %llx\n", (u_longlong_t)cksum);
1262 
1263 	/*
1264 	 * Get the base of the text mapping that corresponds to this file.
1265 	 */
1266 	addr = fptr->file_map->map_pmap.pr_vaddr;
1267 
1268 	if (P->status.pr_dmodel == PR_MODEL_ILP32) {
1269 		Elf32_Ehdr ehdr;
1270 		Elf32_Phdr phdr;
1271 		Elf32_Dyn dync, *dynp;
1272 		uint_t phnum, i;
1273 
1274 		if (read_ehdr32(P, &ehdr, &phnum, addr) != 0 ||
1275 		    read_dynamic_phdr32(P, &ehdr, phnum, &phdr, addr) != 0)
1276 			return (0);
1277 
1278 		if (ehdr.e_type == ET_DYN)
1279 			phdr.p_vaddr += addr;
1280 		if ((dynp = malloc(phdr.p_filesz)) == NULL)
1281 			return (0);
1282 		dync.d_tag = DT_NULL;
1283 		if (Pread(P, dynp, phdr.p_filesz, phdr.p_vaddr) !=
1284 		    phdr.p_filesz) {
1285 			free(dynp);
1286 			return (0);
1287 		}
1288 
1289 		for (i = 0; i < phdr.p_filesz / sizeof (Elf32_Dyn); i++) {
1290 			if (dynp[i].d_tag == DT_CHECKSUM)
1291 				dync = dynp[i];
1292 		}
1293 
1294 		free(dynp);
1295 
1296 		if (dync.d_tag != DT_CHECKSUM)
1297 			return (0);
1298 
1299 		dprintf("image cksum value is %llx\n",
1300 		    (u_longlong_t)dync.d_un.d_val);
1301 		return (dync.d_un.d_val != cksum);
1302 #ifdef _LP64
1303 	} else if (P->status.pr_dmodel == PR_MODEL_LP64) {
1304 		Elf64_Ehdr ehdr;
1305 		Elf64_Phdr phdr;
1306 		Elf64_Dyn dync, *dynp;
1307 		uint_t phnum, i;
1308 
1309 		if (read_ehdr64(P, &ehdr, &phnum, addr) != 0 ||
1310 		    read_dynamic_phdr64(P, &ehdr, phnum, &phdr, addr) != 0)
1311 			return (0);
1312 
1313 		if (ehdr.e_type == ET_DYN)
1314 			phdr.p_vaddr += addr;
1315 		if ((dynp = malloc(phdr.p_filesz)) == NULL)
1316 			return (0);
1317 		dync.d_tag = DT_NULL;
1318 		if (Pread(P, dynp, phdr.p_filesz, phdr.p_vaddr) !=
1319 		    phdr.p_filesz) {
1320 			free(dynp);
1321 			return (0);
1322 		}
1323 
1324 		for (i = 0; i < phdr.p_filesz / sizeof (Elf64_Dyn); i++) {
1325 			if (dynp[i].d_tag == DT_CHECKSUM)
1326 				dync = dynp[i];
1327 		}
1328 
1329 		free(dynp);
1330 
1331 		if (dync.d_tag != DT_CHECKSUM)
1332 			return (0);
1333 
1334 		dprintf("image cksum value is %llx\n",
1335 		    (u_longlong_t)dync.d_un.d_val);
1336 		return (dync.d_un.d_val != cksum);
1337 #endif	/* _LP64 */
1338 	}
1339 
1340 	return (0);
1341 }
1342 
1343 /*
1344  * Read data from the specified process and construct an in memory
1345  * image of an ELF file that represents it well enough to let
1346  * us probe it for information.
1347  */
1348 static Elf *
1349 fake_elf(struct ps_prochandle *P, file_info_t *fptr)
1350 {
1351 	Elf *elf;
1352 	uintptr_t addr;
1353 	uint_t phnum;
1354 
1355 	if (fptr->file_map == NULL)
1356 		return (NULL);
1357 
1358 	if ((Pcontent(P) & (CC_CONTENT_TEXT | CC_CONTENT_DATA)) !=
1359 	    (CC_CONTENT_TEXT | CC_CONTENT_DATA))
1360 		return (NULL);
1361 
1362 	addr = fptr->file_map->map_pmap.pr_vaddr;
1363 
1364 	if (P->status.pr_dmodel == PR_MODEL_ILP32) {
1365 		Elf32_Ehdr ehdr;
1366 		Elf32_Phdr phdr;
1367 
1368 		if ((read_ehdr32(P, &ehdr, &phnum, addr) != 0) ||
1369 		    read_dynamic_phdr32(P, &ehdr, phnum, &phdr, addr) != 0)
1370 			return (NULL);
1371 
1372 		elf = fake_elf32(P, fptr, addr, &ehdr, phnum, &phdr);
1373 #ifdef _LP64
1374 	} else {
1375 		Elf64_Ehdr ehdr;
1376 		Elf64_Phdr phdr;
1377 
1378 		if (read_ehdr64(P, &ehdr, &phnum, addr) != 0 ||
1379 		    read_dynamic_phdr64(P, &ehdr, phnum, &phdr, addr) != 0)
1380 			return (NULL);
1381 
1382 		elf = fake_elf64(P, fptr, addr, &ehdr, phnum, &phdr);
1383 #endif
1384 	}
1385 
1386 	return (elf);
1387 }
1388 
1389 /*
1390  * We wouldn't need these if qsort(3C) took an argument for the callback...
1391  */
1392 static mutex_t sort_mtx = DEFAULTMUTEX;
1393 static char *sort_strs;
1394 static GElf_Sym *sort_syms;
1395 
1396 int
1397 byaddr_cmp_common(GElf_Sym *a, char *aname, GElf_Sym *b, char *bname)
1398 {
1399 	if (a->st_value < b->st_value)
1400 		return (-1);
1401 	if (a->st_value > b->st_value)
1402 		return (1);
1403 
1404 	/*
1405 	 * Prefer the function to the non-function.
1406 	 */
1407 	if (GELF_ST_TYPE(a->st_info) != GELF_ST_TYPE(b->st_info)) {
1408 		if (GELF_ST_TYPE(a->st_info) == STT_FUNC)
1409 			return (-1);
1410 		if (GELF_ST_TYPE(b->st_info) == STT_FUNC)
1411 			return (1);
1412 	}
1413 
1414 	/*
1415 	 * Prefer the weak or strong global symbol to the local symbol.
1416 	 */
1417 	if (GELF_ST_BIND(a->st_info) != GELF_ST_BIND(b->st_info)) {
1418 		if (GELF_ST_BIND(b->st_info) == STB_LOCAL)
1419 			return (-1);
1420 		if (GELF_ST_BIND(a->st_info) == STB_LOCAL)
1421 			return (1);
1422 	}
1423 
1424 	/*
1425 	 * Prefer the symbol that doesn't begin with a '$' since compilers and
1426 	 * other symbol generators often use it as a prefix.
1427 	 */
1428 	if (*bname == '$')
1429 		return (-1);
1430 	if (*aname == '$')
1431 		return (1);
1432 
1433 	/*
1434 	 * Prefer the name with fewer leading underscores in the name.
1435 	 */
1436 	while (*aname == '_' && *bname == '_') {
1437 		aname++;
1438 		bname++;
1439 	}
1440 
1441 	if (*bname == '_')
1442 		return (-1);
1443 	if (*aname == '_')
1444 		return (1);
1445 
1446 	/*
1447 	 * Prefer the symbol with the smaller size.
1448 	 */
1449 	if (a->st_size < b->st_size)
1450 		return (-1);
1451 	if (a->st_size > b->st_size)
1452 		return (1);
1453 
1454 	/*
1455 	 * All other factors being equal, fall back to lexicographic order.
1456 	 */
1457 	return (strcmp(aname, bname));
1458 }
1459 
1460 static int
1461 byaddr_cmp(const void *aa, const void *bb)
1462 {
1463 	GElf_Sym *a = &sort_syms[*(uint_t *)aa];
1464 	GElf_Sym *b = &sort_syms[*(uint_t *)bb];
1465 	char *aname = sort_strs + a->st_name;
1466 	char *bname = sort_strs + b->st_name;
1467 
1468 	return (byaddr_cmp_common(a, aname, b, bname));
1469 }
1470 
1471 static int
1472 byname_cmp(const void *aa, const void *bb)
1473 {
1474 	GElf_Sym *a = &sort_syms[*(uint_t *)aa];
1475 	GElf_Sym *b = &sort_syms[*(uint_t *)bb];
1476 	char *aname = sort_strs + a->st_name;
1477 	char *bname = sort_strs + b->st_name;
1478 
1479 	return (strcmp(aname, bname));
1480 }
1481 
1482 /*
1483  * Given a symbol index, look up the corresponding symbol from the
1484  * given symbol table.
1485  *
1486  * This function allows the caller to treat the symbol table as a single
1487  * logical entity even though there may be 2 actual ELF symbol tables
1488  * involved. See the comments in Pcontrol.h for details.
1489  */
1490 static GElf_Sym *
1491 symtab_getsym(sym_tbl_t *symtab, int ndx, GElf_Sym *dst)
1492 {
1493 	/* If index is in range of primary symtab, look it up there */
1494 	if (ndx >= symtab->sym_symn_aux) {
1495 		return (gelf_getsym(symtab->sym_data_pri,
1496 		    ndx - symtab->sym_symn_aux, dst));
1497 	}
1498 
1499 	/* Not in primary: Look it up in the auxiliary symtab */
1500 	return (gelf_getsym(symtab->sym_data_aux, ndx, dst));
1501 }
1502 
1503 void
1504 optimize_symtab(sym_tbl_t *symtab)
1505 {
1506 	GElf_Sym *symp, *syms;
1507 	uint_t i, *indexa, *indexb;
1508 	size_t symn, strsz, count;
1509 
1510 	if (symtab == NULL || symtab->sym_data_pri == NULL ||
1511 	    symtab->sym_byaddr != NULL)
1512 		return;
1513 
1514 	symn = symtab->sym_symn;
1515 	strsz = symtab->sym_strsz;
1516 
1517 	symp = syms = malloc(sizeof (GElf_Sym) * symn);
1518 	if (symp == NULL) {
1519 		dprintf("optimize_symtab: failed to malloc symbol array");
1520 		return;
1521 	}
1522 
1523 	/*
1524 	 * First record all the symbols into a table and count up the ones
1525 	 * that we're interested in. We mark symbols as invalid by setting
1526 	 * the st_name to an illegal value.
1527 	 */
1528 	for (i = 0, count = 0; i < symn; i++, symp++) {
1529 		if (symtab_getsym(symtab, i, symp) != NULL &&
1530 		    symp->st_name < strsz &&
1531 		    IS_DATA_TYPE(GELF_ST_TYPE(symp->st_info)))
1532 			count++;
1533 		else
1534 			symp->st_name = strsz;
1535 	}
1536 
1537 	/*
1538 	 * Allocate sufficient space for both tables and populate them
1539 	 * with the same symbols we just counted.
1540 	 */
1541 	symtab->sym_count = count;
1542 	indexa = symtab->sym_byaddr = calloc(sizeof (uint_t), count);
1543 	indexb = symtab->sym_byname = calloc(sizeof (uint_t), count);
1544 	if (indexa == NULL || indexb == NULL) {
1545 		dprintf(
1546 		    "optimize_symtab: failed to malloc symbol index arrays");
1547 		symtab->sym_count = 0;
1548 		if (indexa != NULL) {	/* First alloc succeeded. Free it */
1549 			free(indexa);
1550 			symtab->sym_byaddr = NULL;
1551 		}
1552 		free(syms);
1553 		return;
1554 	}
1555 	for (i = 0, symp = syms; i < symn; i++, symp++) {
1556 		if (symp->st_name < strsz)
1557 			*indexa++ = *indexb++ = i;
1558 	}
1559 
1560 	/*
1561 	 * Sort the two tables according to the appropriate criteria,
1562 	 * unless the user has overridden this behaviour.
1563 	 *
1564 	 * An example where we might not sort the tables is the relatively
1565 	 * unusual case of a process with very large symbol tables in which
1566 	 * we perform few lookups. In such a case the total time would be
1567 	 * dominated by the sort. It is difficult to determine a priori
1568 	 * how many lookups an arbitrary client will perform, and
1569 	 * hence whether the symbol tables should be sorted. We therefore
1570 	 * sort the tables by default, but provide the user with a
1571 	 * "chicken switch" in the form of the LIBPROC_NO_QSORT
1572 	 * environment variable.
1573 	 */
1574 	if (!_libproc_no_qsort) {
1575 		(void) mutex_lock(&sort_mtx);
1576 		sort_strs = symtab->sym_strs;
1577 		sort_syms = syms;
1578 
1579 		qsort(symtab->sym_byaddr, count, sizeof (uint_t), byaddr_cmp);
1580 		qsort(symtab->sym_byname, count, sizeof (uint_t), byname_cmp);
1581 
1582 		sort_strs = NULL;
1583 		sort_syms = NULL;
1584 		(void) mutex_unlock(&sort_mtx);
1585 	}
1586 
1587 	free(syms);
1588 }
1589 
1590 
1591 static Elf *
1592 build_fake_elf(struct ps_prochandle *P, file_info_t *fptr, GElf_Ehdr *ehdr,
1593 	size_t *nshdrs, Elf_Data **shdata)
1594 {
1595 	size_t shstrndx;
1596 	Elf_Scn *scn;
1597 	Elf *elf;
1598 
1599 	if ((elf = fake_elf(P, fptr)) == NULL ||
1600 	    elf_kind(elf) != ELF_K_ELF ||
1601 	    gelf_getehdr(elf, ehdr) == NULL ||
1602 	    elf_getshdrnum(elf, nshdrs) == -1 ||
1603 	    elf_getshdrstrndx(elf, &shstrndx) == -1 ||
1604 	    (scn = elf_getscn(elf, shstrndx)) == NULL ||
1605 	    (*shdata = elf_getdata(scn, NULL)) == NULL) {
1606 		if (elf != NULL)
1607 			(void) elf_end(elf);
1608 		dprintf("failed to fake up ELF file\n");
1609 		return (NULL);
1610 	}
1611 
1612 	return (elf);
1613 }
1614 
1615 /*
1616  * Build the symbol table for the given mapped file.
1617  */
1618 void
1619 Pbuild_file_symtab(struct ps_prochandle *P, file_info_t *fptr)
1620 {
1621 	char objectfile[PATH_MAX];
1622 	uint_t i;
1623 
1624 	GElf_Ehdr ehdr;
1625 	GElf_Sym s;
1626 
1627 	Elf_Data *shdata;
1628 	Elf_Scn *scn;
1629 	Elf *elf;
1630 	size_t nshdrs, shstrndx;
1631 
1632 	struct {
1633 		GElf_Shdr c_shdr;
1634 		Elf_Data *c_data;
1635 		const char *c_name;
1636 	} *cp, *cache = NULL, *dyn = NULL, *plt = NULL, *ctf = NULL;
1637 
1638 	if (fptr->file_init)
1639 		return;	/* We've already processed this file */
1640 
1641 	/*
1642 	 * Mark the file_info struct as having the symbol table initialized
1643 	 * even if we fail below.  We tried once; we don't try again.
1644 	 */
1645 	fptr->file_init = 1;
1646 
1647 	if (elf_version(EV_CURRENT) == EV_NONE) {
1648 		dprintf("libproc ELF version is more recent than libelf\n");
1649 		return;
1650 	}
1651 
1652 	if (P->state == PS_DEAD || P->state == PS_IDLE) {
1653 		char *name;
1654 		/*
1655 		 * If we're a not live, we can't open files from the /proc
1656 		 * object directory; we have only the mapping and file names
1657 		 * to guide us.  We prefer the file_lname, but need to handle
1658 		 * the case of it being NULL in order to bootstrap: we first
1659 		 * come here during rd_new() when the only information we have
1660 		 * is interpreter name associated with the AT_BASE mapping.
1661 		 *
1662 		 * Also, if the zone associated with the core file seems
1663 		 * to exists on this machine we'll try to open the object
1664 		 * file within the zone.
1665 		 */
1666 		if (fptr->file_rname != NULL)
1667 			name = fptr->file_rname;
1668 		else if (fptr->file_lname != NULL)
1669 			name = fptr->file_lname;
1670 		else
1671 			name = fptr->file_pname;
1672 		(void) strlcpy(objectfile, name, sizeof (objectfile));
1673 	} else {
1674 		(void) snprintf(objectfile, sizeof (objectfile),
1675 		    "%s/%d/object/%s",
1676 		    procfs_path, (int)P->pid, fptr->file_pname);
1677 	}
1678 
1679 	/*
1680 	 * Open the object file, create the elf file, and then get the elf
1681 	 * header and .shstrtab data buffer so we can process sections by
1682 	 * name. If anything goes wrong try to fake up an elf file from
1683 	 * the in-core elf image.
1684 	 */
1685 
1686 	if (_libproc_incore_elf) {
1687 		dprintf("Pbuild_file_symtab: using in-core data for: %s\n",
1688 		    fptr->file_pname);
1689 
1690 		if ((elf = build_fake_elf(P, fptr, &ehdr, &nshdrs, &shdata)) ==
1691 		    NULL)
1692 			return;
1693 
1694 	} else if ((fptr->file_fd = open(objectfile, O_RDONLY)) < 0) {
1695 		dprintf("Pbuild_file_symtab: failed to open %s: %s\n",
1696 		    objectfile, strerror(errno));
1697 
1698 		if ((elf = build_fake_elf(P, fptr, &ehdr, &nshdrs, &shdata)) ==
1699 		    NULL)
1700 			return;
1701 
1702 	} else if ((elf = elf_begin(fptr->file_fd, ELF_C_READ, NULL)) == NULL ||
1703 	    elf_kind(elf) != ELF_K_ELF ||
1704 	    gelf_getehdr(elf, &ehdr) == NULL ||
1705 	    elf_getshdrnum(elf, &nshdrs) == -1 ||
1706 	    elf_getshdrstrndx(elf, &shstrndx) == -1 ||
1707 	    (scn = elf_getscn(elf, shstrndx)) == NULL ||
1708 	    (shdata = elf_getdata(scn, NULL)) == NULL) {
1709 		int err = elf_errno();
1710 
1711 		dprintf("failed to process ELF file %s: %s\n",
1712 		    objectfile, (err == 0) ? "<null>" : elf_errmsg(err));
1713 		(void) elf_end(elf);
1714 
1715 		if ((elf = build_fake_elf(P, fptr, &ehdr, &nshdrs, &shdata)) ==
1716 		    NULL)
1717 			return;
1718 
1719 	} else if (file_differs(P, elf, fptr)) {
1720 		Elf *newelf;
1721 
1722 		/*
1723 		 * Before we get too excited about this elf file, we'll check
1724 		 * its checksum value against the value we have in memory. If
1725 		 * they don't agree, we try to fake up a new elf file and
1726 		 * proceed with that instead.
1727 		 */
1728 		dprintf("ELF file %s (%lx) doesn't match in-core image\n",
1729 		    fptr->file_pname,
1730 		    (ulong_t)fptr->file_map->map_pmap.pr_vaddr);
1731 
1732 		if ((newelf = build_fake_elf(P, fptr, &ehdr, &nshdrs, &shdata))
1733 		    != NULL) {
1734 			(void) elf_end(elf);
1735 			elf = newelf;
1736 			dprintf("switched to faked up ELF file\n");
1737 
1738 			/*
1739 			 * Check to see if the file that we just discovered
1740 			 * to be an imposter matches the execname that was
1741 			 * determined by Pfindexec().  If it does, we (clearly)
1742 			 * don't have the right binary, and we zero out
1743 			 * execname before anyone gets hurt.
1744 			 */
1745 			if (fptr->file_rname != NULL && P->execname != NULL &&
1746 			    strcmp(fptr->file_rname, P->execname) == 0) {
1747 				dprintf("file/in-core image mismatch was "
1748 				    "on P->execname; discarding\n");
1749 				free(P->execname);
1750 				P->execname = NULL;
1751 			}
1752 		}
1753 	}
1754 
1755 	if ((cache = malloc(nshdrs * sizeof (*cache))) == NULL) {
1756 		dprintf("failed to malloc section cache for %s\n", objectfile);
1757 		goto bad;
1758 	}
1759 
1760 	dprintf("processing ELF file %s\n", objectfile);
1761 	fptr->file_class = ehdr.e_ident[EI_CLASS];
1762 	fptr->file_etype = ehdr.e_type;
1763 	fptr->file_elf = elf;
1764 	fptr->file_shstrs = shdata->d_buf;
1765 	fptr->file_shstrsz = shdata->d_size;
1766 
1767 	/*
1768 	 * Iterate through each section, caching its section header, data
1769 	 * pointer, and name.  We use this for handling sh_link values below.
1770 	 */
1771 	for (cp = cache + 1, scn = NULL; scn = elf_nextscn(elf, scn); cp++) {
1772 		if (gelf_getshdr(scn, &cp->c_shdr) == NULL) {
1773 			dprintf("Pbuild_file_symtab: Failed to get section "
1774 			    "header\n");
1775 			goto bad; /* Failed to get section header */
1776 		}
1777 
1778 		if ((cp->c_data = elf_getdata(scn, NULL)) == NULL) {
1779 			dprintf("Pbuild_file_symtab: Failed to get section "
1780 			    "data\n");
1781 			goto bad; /* Failed to get section data */
1782 		}
1783 
1784 		if (cp->c_shdr.sh_name >= shdata->d_size) {
1785 			dprintf("Pbuild_file_symtab: corrupt section name");
1786 			goto bad; /* Corrupt section name */
1787 		}
1788 
1789 		cp->c_name = (const char *)shdata->d_buf + cp->c_shdr.sh_name;
1790 	}
1791 
1792 	/*
1793 	 * Now iterate through the section cache in order to locate info
1794 	 * for the .symtab, .dynsym, .SUNW_ldynsym, .dynamic, .plt,
1795 	 * and .SUNW_ctf sections:
1796 	 */
1797 	for (i = 1, cp = cache + 1; i < nshdrs; i++, cp++) {
1798 		GElf_Shdr *shp = &cp->c_shdr;
1799 
1800 		if (shp->sh_type == SHT_SYMTAB || shp->sh_type == SHT_DYNSYM) {
1801 			sym_tbl_t *symp = shp->sh_type == SHT_SYMTAB ?
1802 			    &fptr->file_symtab : &fptr->file_dynsym;
1803 			/*
1804 			 * It's possible that the we already got the symbol
1805 			 * table from the core file itself. Either the file
1806 			 * differs in which case our faked up elf file will
1807 			 * only contain the dynsym (not the symtab) or the
1808 			 * file matches in which case we'll just be replacing
1809 			 * the symbol table we pulled out of the core file
1810 			 * with an equivalent one. In either case, this
1811 			 * check isn't essential, but it's a good idea.
1812 			 */
1813 			if (symp->sym_data_pri == NULL) {
1814 				dprintf("Symbol table found for %s\n",
1815 				    objectfile);
1816 				symp->sym_data_pri = cp->c_data;
1817 				symp->sym_symn +=
1818 				    shp->sh_size / shp->sh_entsize;
1819 				symp->sym_strs =
1820 				    cache[shp->sh_link].c_data->d_buf;
1821 				symp->sym_strsz =
1822 				    cache[shp->sh_link].c_data->d_size;
1823 				symp->sym_hdr_pri = cp->c_shdr;
1824 				symp->sym_strhdr = cache[shp->sh_link].c_shdr;
1825 			} else {
1826 				dprintf("Symbol table already there for %s\n",
1827 				    objectfile);
1828 			}
1829 		} else if (shp->sh_type == SHT_SUNW_LDYNSYM) {
1830 			/* .SUNW_ldynsym section is auxiliary to .dynsym */
1831 			if (fptr->file_dynsym.sym_data_aux == NULL) {
1832 				dprintf(".SUNW_ldynsym symbol table"
1833 				    " found for %s\n", objectfile);
1834 				fptr->file_dynsym.sym_data_aux = cp->c_data;
1835 				fptr->file_dynsym.sym_symn_aux =
1836 				    shp->sh_size / shp->sh_entsize;
1837 				fptr->file_dynsym.sym_symn +=
1838 				    fptr->file_dynsym.sym_symn_aux;
1839 				fptr->file_dynsym.sym_hdr_aux = cp->c_shdr;
1840 			} else {
1841 				dprintf(".SUNW_ldynsym symbol table already"
1842 				    " there for %s\n", objectfile);
1843 			}
1844 		} else if (shp->sh_type == SHT_DYNAMIC) {
1845 			dyn = cp;
1846 		} else if (strcmp(cp->c_name, ".plt") == 0) {
1847 			plt = cp;
1848 		} else if (strcmp(cp->c_name, ".SUNW_ctf") == 0) {
1849 			/*
1850 			 * Skip over bogus CTF sections so they don't come back
1851 			 * to haunt us later.
1852 			 */
1853 			if (shp->sh_link == 0 ||
1854 			    shp->sh_link >= nshdrs ||
1855 			    (cache[shp->sh_link].c_shdr.sh_type != SHT_DYNSYM &&
1856 			    cache[shp->sh_link].c_shdr.sh_type != SHT_SYMTAB)) {
1857 				dprintf("Bad sh_link %d for "
1858 				    "CTF\n", shp->sh_link);
1859 				continue;
1860 			}
1861 			ctf = cp;
1862 		}
1863 	}
1864 
1865 	/*
1866 	 * At this point, we've found all the symbol tables we're ever going
1867 	 * to find: the ones in the loop above and possibly the symtab that
1868 	 * was included in the core file. Before we perform any lookups, we
1869 	 * create sorted versions to optimize for lookups.
1870 	 */
1871 	optimize_symtab(&fptr->file_symtab);
1872 	optimize_symtab(&fptr->file_dynsym);
1873 
1874 	/*
1875 	 * Fill in the base address of the text mapping for shared libraries.
1876 	 * This allows us to translate symbols before librtld_db is ready.
1877 	 */
1878 	if (fptr->file_etype == ET_DYN) {
1879 		fptr->file_dyn_base = fptr->file_map->map_pmap.pr_vaddr -
1880 		    fptr->file_map->map_pmap.pr_offset;
1881 		dprintf("setting file_dyn_base for %s to %lx\n",
1882 		    objectfile, (long)fptr->file_dyn_base);
1883 	}
1884 
1885 	/*
1886 	 * Record the CTF section information in the file info structure.
1887 	 */
1888 	if (ctf != NULL) {
1889 		fptr->file_ctf_off = ctf->c_shdr.sh_offset;
1890 		fptr->file_ctf_size = ctf->c_shdr.sh_size;
1891 		if (ctf->c_shdr.sh_link != 0 &&
1892 		    cache[ctf->c_shdr.sh_link].c_shdr.sh_type == SHT_DYNSYM)
1893 			fptr->file_ctf_dyn = 1;
1894 	}
1895 
1896 	if (fptr->file_lo == NULL)
1897 		goto done; /* Nothing else to do if no load object info */
1898 
1899 	/*
1900 	 * If the object is a shared library and we have a different rl_base
1901 	 * value, reset file_dyn_base according to librtld_db's information.
1902 	 */
1903 	if (fptr->file_etype == ET_DYN &&
1904 	    fptr->file_lo->rl_base != fptr->file_dyn_base) {
1905 		dprintf("resetting file_dyn_base for %s to %lx\n",
1906 		    objectfile, (long)fptr->file_lo->rl_base);
1907 		fptr->file_dyn_base = fptr->file_lo->rl_base;
1908 	}
1909 
1910 	/*
1911 	 * Fill in the PLT information for this file if a PLT symbol is found.
1912 	 */
1913 	if (sym_by_name(&fptr->file_dynsym, "_PROCEDURE_LINKAGE_TABLE_", &s,
1914 	    NULL) != NULL) {
1915 		fptr->file_plt_base = s.st_value + fptr->file_dyn_base;
1916 		fptr->file_plt_size = (plt != NULL) ? plt->c_shdr.sh_size : 0;
1917 
1918 		/*
1919 		 * Bring the load object up to date; it is the only way the
1920 		 * user has to access the PLT data. The PLT information in the
1921 		 * rd_loadobj_t is not set in the call to map_iter() (the
1922 		 * callback for rd_loadobj_iter) where we set file_lo.
1923 		 */
1924 		fptr->file_lo->rl_plt_base = fptr->file_plt_base;
1925 		fptr->file_lo->rl_plt_size = fptr->file_plt_size;
1926 
1927 		dprintf("PLT found at %p, size = %lu\n",
1928 		    (void *)fptr->file_plt_base, (ulong_t)fptr->file_plt_size);
1929 	}
1930 
1931 	/*
1932 	 * Fill in the PLT information.
1933 	 */
1934 	if (dyn != NULL) {
1935 		uintptr_t dynaddr = dyn->c_shdr.sh_addr + fptr->file_dyn_base;
1936 		size_t ndyn = dyn->c_shdr.sh_size / dyn->c_shdr.sh_entsize;
1937 		GElf_Dyn d;
1938 
1939 		for (i = 0; i < ndyn; i++) {
1940 			if (gelf_getdyn(dyn->c_data, i, &d) == NULL)
1941 				continue;
1942 
1943 			switch (d.d_tag) {
1944 			case DT_JMPREL:
1945 				dprintf("DT_JMPREL is %p\n",
1946 				    (void *)(uintptr_t)d.d_un.d_ptr);
1947 				fptr->file_jmp_rel =
1948 				    d.d_un.d_ptr + fptr->file_dyn_base;
1949 				break;
1950 			case DT_STRTAB:
1951 				dprintf("DT_STRTAB is %p\n",
1952 				    (void *)(uintptr_t)d.d_un.d_ptr);
1953 				break;
1954 			case DT_PLTGOT:
1955 				dprintf("DT_PLTGOT is %p\n",
1956 				    (void *)(uintptr_t)d.d_un.d_ptr);
1957 				break;
1958 			case DT_SUNW_SYMTAB:
1959 				dprintf("DT_SUNW_SYMTAB is %p\n",
1960 				    (void *)(uintptr_t)d.d_un.d_ptr);
1961 				break;
1962 			case DT_SYMTAB:
1963 				dprintf("DT_SYMTAB is %p\n",
1964 				    (void *)(uintptr_t)d.d_un.d_ptr);
1965 				break;
1966 			case DT_HASH:
1967 				dprintf("DT_HASH is %p\n",
1968 				    (void *)(uintptr_t)d.d_un.d_ptr);
1969 				break;
1970 			}
1971 		}
1972 
1973 		dprintf("_DYNAMIC found at %p, %lu entries, DT_JMPREL = %p\n",
1974 		    (void *)dynaddr, (ulong_t)ndyn, (void *)fptr->file_jmp_rel);
1975 	}
1976 
1977 done:
1978 	free(cache);
1979 	return;
1980 
1981 bad:
1982 	if (cache != NULL)
1983 		free(cache);
1984 
1985 	(void) elf_end(elf);
1986 	fptr->file_elf = NULL;
1987 	if (fptr->file_elfmem != NULL) {
1988 		free(fptr->file_elfmem);
1989 		fptr->file_elfmem = NULL;
1990 	}
1991 	(void) close(fptr->file_fd);
1992 	fptr->file_fd = -1;
1993 }
1994 
1995 /*
1996  * Given a process virtual address, return the map_info_t containing it.
1997  * If none found, return NULL.
1998  */
1999 map_info_t *
2000 Paddr2mptr(struct ps_prochandle *P, uintptr_t addr)
2001 {
2002 	int lo = 0;
2003 	int hi = P->map_count - 1;
2004 	int mid;
2005 	map_info_t *mp;
2006 
2007 	while (lo <= hi) {
2008 
2009 		mid = (lo + hi) / 2;
2010 		mp = &P->mappings[mid];
2011 
2012 		/* check that addr is in [vaddr, vaddr + size) */
2013 		if ((addr - mp->map_pmap.pr_vaddr) < mp->map_pmap.pr_size)
2014 			return (mp);
2015 
2016 		if (addr < mp->map_pmap.pr_vaddr)
2017 			hi = mid - 1;
2018 		else
2019 			lo = mid + 1;
2020 	}
2021 
2022 	return (NULL);
2023 }
2024 
2025 /*
2026  * Return the map_info_t for the executable file.
2027  * If not found, return NULL.
2028  */
2029 static map_info_t *
2030 exec_map(struct ps_prochandle *P)
2031 {
2032 	uint_t i;
2033 	map_info_t *mptr;
2034 	map_info_t *mold = NULL;
2035 	file_info_t *fptr;
2036 	uintptr_t base;
2037 
2038 	for (i = 0, mptr = P->mappings; i < P->map_count; i++, mptr++) {
2039 		if (mptr->map_pmap.pr_mapname[0] == '\0')
2040 			continue;
2041 		if (strcmp(mptr->map_pmap.pr_mapname, "a.out") == 0) {
2042 			if ((fptr = mptr->map_file) != NULL &&
2043 			    fptr->file_lo != NULL) {
2044 				base = fptr->file_lo->rl_base;
2045 				if (base >= mptr->map_pmap.pr_vaddr &&
2046 				    base < mptr->map_pmap.pr_vaddr +
2047 				    mptr->map_pmap.pr_size)	/* text space */
2048 					return (mptr);
2049 				mold = mptr;	/* must be the data */
2050 				continue;
2051 			}
2052 			/* This is a poor way to test for text space */
2053 			if (!(mptr->map_pmap.pr_mflags & MA_EXEC) ||
2054 			    (mptr->map_pmap.pr_mflags & MA_WRITE)) {
2055 				mold = mptr;
2056 				continue;
2057 			}
2058 			return (mptr);
2059 		}
2060 	}
2061 
2062 	return (mold);
2063 }
2064 
2065 /*
2066  * Given a shared object name, return the map_info_t for it.  If no matching
2067  * object is found, return NULL.  Normally, the link maps contain the full
2068  * object pathname, e.g. /usr/lib/libc.so.1.  We allow the object name to
2069  * take one of the following forms:
2070  *
2071  * 1. An exact match (i.e. a full pathname): "/usr/lib/libc.so.1"
2072  * 2. An exact basename match: "libc.so.1"
2073  * 3. An initial basename match up to a '.' suffix: "libc.so" or "libc"
2074  * 4. The literal string "a.out" is an alias for the executable mapping
2075  *
2076  * The third case is a convenience for callers and may not be necessary.
2077  *
2078  * As the exact same object name may be loaded on different link maps (see
2079  * dlmopen(3DL)), we also allow the caller to resolve the object name by
2080  * specifying a particular link map id.  If lmid is PR_LMID_EVERY, the
2081  * first matching name will be returned, regardless of the link map id.
2082  */
2083 static map_info_t *
2084 object_to_map(struct ps_prochandle *P, Lmid_t lmid, const char *objname)
2085 {
2086 	map_info_t *mp;
2087 	file_info_t *fp;
2088 	size_t objlen;
2089 	uint_t i;
2090 
2091 	/*
2092 	 * If we have no rtld_db, then always treat a request as one for all
2093 	 * link maps.
2094 	 */
2095 	if (P->rap == NULL)
2096 		lmid = PR_LMID_EVERY;
2097 
2098 	/*
2099 	 * First pass: look for exact matches of the entire pathname or
2100 	 * basename (cases 1 and 2 above):
2101 	 */
2102 	for (i = 0, mp = P->mappings; i < P->map_count; i++, mp++) {
2103 
2104 		if (mp->map_pmap.pr_mapname[0] == '\0' ||
2105 		    (fp = mp->map_file) == NULL ||
2106 		    ((fp->file_lname == NULL) && (fp->file_rname == NULL)))
2107 			continue;
2108 
2109 		if (lmid != PR_LMID_EVERY &&
2110 		    (fp->file_lo == NULL || lmid != fp->file_lo->rl_lmident))
2111 			continue;
2112 
2113 		/*
2114 		 * If we match, return the primary text mapping; otherwise
2115 		 * just return the mapping we matched.
2116 		 */
2117 		if ((fp->file_lbase && strcmp(fp->file_lbase, objname) == 0) ||
2118 		    (fp->file_rbase && strcmp(fp->file_rbase, objname) == 0) ||
2119 		    (fp->file_lname && strcmp(fp->file_lname, objname) == 0) ||
2120 		    (fp->file_rname && strcmp(fp->file_rname, objname) == 0))
2121 			return (fp->file_map ? fp->file_map : mp);
2122 	}
2123 
2124 	objlen = strlen(objname);
2125 
2126 	/*
2127 	 * Second pass: look for partial matches (case 3 above):
2128 	 */
2129 	for (i = 0, mp = P->mappings; i < P->map_count; i++, mp++) {
2130 
2131 		if (mp->map_pmap.pr_mapname[0] == '\0' ||
2132 		    (fp = mp->map_file) == NULL ||
2133 		    ((fp->file_lname == NULL) && (fp->file_rname == NULL)))
2134 			continue;
2135 
2136 		if (lmid != PR_LMID_EVERY &&
2137 		    (fp->file_lo == NULL || lmid != fp->file_lo->rl_lmident))
2138 			continue;
2139 
2140 		/*
2141 		 * If we match, return the primary text mapping; otherwise
2142 		 * just return the mapping we matched.
2143 		 */
2144 		if ((fp->file_lbase != NULL) &&
2145 		    (strncmp(fp->file_lbase, objname, objlen) == 0) &&
2146 		    (fp->file_lbase[objlen] == '.'))
2147 			return (fp->file_map ? fp->file_map : mp);
2148 		if ((fp->file_rbase != NULL) &&
2149 		    (strncmp(fp->file_rbase, objname, objlen) == 0) &&
2150 		    (fp->file_rbase[objlen] == '.'))
2151 			return (fp->file_map ? fp->file_map : mp);
2152 	}
2153 
2154 	/*
2155 	 * One last check: we allow "a.out" to always alias the executable,
2156 	 * assuming this name was not in use for something else.
2157 	 */
2158 	if ((lmid == PR_LMID_EVERY || lmid == LM_ID_BASE) &&
2159 	    (strcmp(objname, "a.out") == 0))
2160 		return (P->map_exec);
2161 
2162 	return (NULL);
2163 }
2164 
2165 static map_info_t *
2166 object_name_to_map(struct ps_prochandle *P, Lmid_t lmid, const char *name)
2167 {
2168 	map_info_t *mptr;
2169 
2170 	if (!P->info_valid)
2171 		Pupdate_maps(P);
2172 
2173 	if (P->map_exec == NULL && ((mptr = Paddr2mptr(P,
2174 	    Pgetauxval(P, AT_ENTRY))) != NULL || (mptr = exec_map(P)) != NULL))
2175 		P->map_exec = mptr;
2176 
2177 	if (P->map_ldso == NULL && (mptr = Paddr2mptr(P,
2178 	    Pgetauxval(P, AT_BASE))) != NULL)
2179 		P->map_ldso = mptr;
2180 
2181 	if (name == PR_OBJ_EXEC)
2182 		mptr = P->map_exec;
2183 	else if (name == PR_OBJ_LDSO)
2184 		mptr = P->map_ldso;
2185 	else if (Prd_agent(P) != NULL || P->state == PS_IDLE)
2186 		mptr = object_to_map(P, lmid, name);
2187 	else
2188 		mptr = NULL;
2189 
2190 	return (mptr);
2191 }
2192 
2193 /*
2194  * When two symbols are found by address, decide which one is to be preferred.
2195  */
2196 static GElf_Sym *
2197 sym_prefer(GElf_Sym *sym1, char *name1, GElf_Sym *sym2, char *name2)
2198 {
2199 	/*
2200 	 * Prefer the non-NULL symbol.
2201 	 */
2202 	if (sym1 == NULL)
2203 		return (sym2);
2204 	if (sym2 == NULL)
2205 		return (sym1);
2206 
2207 	/*
2208 	 * Defer to the sort ordering...
2209 	 */
2210 	return (byaddr_cmp_common(sym1, name1, sym2, name2) <= 0 ? sym1 : sym2);
2211 }
2212 
2213 /*
2214  * Use a binary search to do the work of sym_by_addr().
2215  */
2216 static GElf_Sym *
2217 sym_by_addr_binary(sym_tbl_t *symtab, GElf_Addr addr, GElf_Sym *symp,
2218     uint_t *idp)
2219 {
2220 	GElf_Sym sym, osym;
2221 	uint_t i, oid, *byaddr = symtab->sym_byaddr;
2222 	int min, max, mid, omid, found = 0;
2223 
2224 	if (symtab->sym_data_pri == NULL || symtab->sym_count == 0)
2225 		return (NULL);
2226 
2227 	min = 0;
2228 	max = symtab->sym_count - 1;
2229 	osym.st_value = 0;
2230 
2231 	/*
2232 	 * We can't return when we've found a match, we have to continue
2233 	 * searching for the closest matching symbol.
2234 	 */
2235 	while (min <= max) {
2236 		mid = (max + min) / 2;
2237 
2238 		i = byaddr[mid];
2239 		(void) symtab_getsym(symtab, i, &sym);
2240 
2241 		if (addr >= sym.st_value &&
2242 		    addr < sym.st_value + sym.st_size &&
2243 		    (!found || sym.st_value > osym.st_value)) {
2244 			osym = sym;
2245 			omid = mid;
2246 			oid = i;
2247 			found = 1;
2248 		}
2249 
2250 		if (addr < sym.st_value)
2251 			max = mid - 1;
2252 		else
2253 			min = mid + 1;
2254 	}
2255 
2256 	if (!found)
2257 		return (NULL);
2258 
2259 	/*
2260 	 * There may be many symbols with identical values so we walk
2261 	 * backward in the byaddr table to find the best match.
2262 	 */
2263 	do {
2264 		sym = osym;
2265 		i = oid;
2266 
2267 		if (omid == 0)
2268 			break;
2269 
2270 		oid = byaddr[--omid];
2271 		(void) symtab_getsym(symtab, oid, &osym);
2272 	} while (addr >= osym.st_value &&
2273 	    addr < sym.st_value + osym.st_size &&
2274 	    osym.st_value == sym.st_value);
2275 
2276 	*symp = sym;
2277 	if (idp != NULL)
2278 		*idp = i;
2279 	return (symp);
2280 }
2281 
2282 /*
2283  * Use a linear search to do the work of sym_by_addr().
2284  */
2285 static GElf_Sym *
2286 sym_by_addr_linear(sym_tbl_t *symtab, GElf_Addr addr, GElf_Sym *symbolp,
2287     uint_t *idp)
2288 {
2289 	size_t symn = symtab->sym_symn;
2290 	char *strs = symtab->sym_strs;
2291 	GElf_Sym sym, *symp = NULL;
2292 	GElf_Sym osym, *osymp = NULL;
2293 	int i, id;
2294 
2295 	if (symtab->sym_data_pri == NULL || symn == 0 || strs == NULL)
2296 		return (NULL);
2297 
2298 	for (i = 0; i < symn; i++) {
2299 		if ((symp = symtab_getsym(symtab, i, &sym)) != NULL) {
2300 			if (addr >= sym.st_value &&
2301 			    addr < sym.st_value + sym.st_size) {
2302 				if (osymp)
2303 					symp = sym_prefer(
2304 					    symp, strs + symp->st_name,
2305 					    osymp, strs + osymp->st_name);
2306 				if (symp != osymp) {
2307 					osym = sym;
2308 					osymp = &osym;
2309 					id = i;
2310 				}
2311 			}
2312 		}
2313 	}
2314 	if (osymp) {
2315 		*symbolp = osym;
2316 		if (idp)
2317 			*idp = id;
2318 		return (symbolp);
2319 	}
2320 	return (NULL);
2321 }
2322 
2323 /*
2324  * Look up a symbol by address in the specified symbol table.
2325  * Adjustment to 'addr' must already have been made for the
2326  * offset of the symbol if this is a dynamic library symbol table.
2327  *
2328  * Use a linear or a binary search depending on whether or not we
2329  * chose to sort the table in optimize_symtab().
2330  */
2331 static GElf_Sym *
2332 sym_by_addr(sym_tbl_t *symtab, GElf_Addr addr, GElf_Sym *symp, uint_t *idp)
2333 {
2334 	if (_libproc_no_qsort) {
2335 		return (sym_by_addr_linear(symtab, addr, symp, idp));
2336 	} else {
2337 		return (sym_by_addr_binary(symtab, addr, symp, idp));
2338 	}
2339 }
2340 
2341 /*
2342  * Use a binary search to do the work of sym_by_name().
2343  */
2344 static GElf_Sym *
2345 sym_by_name_binary(sym_tbl_t *symtab, const char *name, GElf_Sym *symp,
2346     uint_t *idp)
2347 {
2348 	char *strs = symtab->sym_strs;
2349 	uint_t i, *byname = symtab->sym_byname;
2350 	int min, mid, max, cmp;
2351 
2352 	if (symtab->sym_data_pri == NULL || strs == NULL ||
2353 	    symtab->sym_count == 0)
2354 		return (NULL);
2355 
2356 	min = 0;
2357 	max = symtab->sym_count - 1;
2358 
2359 	while (min <= max) {
2360 		mid = (max + min) / 2;
2361 
2362 		i = byname[mid];
2363 		(void) symtab_getsym(symtab, i, symp);
2364 
2365 		if ((cmp = strcmp(name, strs + symp->st_name)) == 0) {
2366 			if (idp != NULL)
2367 				*idp = i;
2368 			return (symp);
2369 		}
2370 
2371 		if (cmp < 0)
2372 			max = mid - 1;
2373 		else
2374 			min = mid + 1;
2375 	}
2376 
2377 	return (NULL);
2378 }
2379 
2380 /*
2381  * Use a linear search to do the work of sym_by_name().
2382  */
2383 static GElf_Sym *
2384 sym_by_name_linear(sym_tbl_t *symtab, const char *name, GElf_Sym *symp,
2385     uint_t *idp)
2386 {
2387 	size_t symn = symtab->sym_symn;
2388 	char *strs = symtab->sym_strs;
2389 	int i;
2390 
2391 	if (symtab->sym_data_pri == NULL || symn == 0 || strs == NULL)
2392 		return (NULL);
2393 
2394 	for (i = 0; i < symn; i++) {
2395 		if (symtab_getsym(symtab, i, symp) &&
2396 		    strcmp(name, strs + symp->st_name) == 0) {
2397 			if (idp)
2398 				*idp = i;
2399 			return (symp);
2400 		}
2401 	}
2402 
2403 	return (NULL);
2404 }
2405 
2406 /*
2407  * Look up a symbol by name in the specified symbol table.
2408  *
2409  * Use a linear or a binary search depending on whether or not we
2410  * chose to sort the table in optimize_symtab().
2411  */
2412 static GElf_Sym *
2413 sym_by_name(sym_tbl_t *symtab, const char *name, GElf_Sym *symp, uint_t *idp)
2414 {
2415 	if (_libproc_no_qsort) {
2416 		return (sym_by_name_linear(symtab, name, symp, idp));
2417 	} else {
2418 		return (sym_by_name_binary(symtab, name, symp, idp));
2419 	}
2420 }
2421 
2422 /*
2423  * Search the process symbol tables looking for a symbol whose
2424  * value to value+size contain the address specified by addr.
2425  * Return values are:
2426  *	sym_name_buffer containing the symbol name
2427  *	GElf_Sym symbol table entry
2428  *	prsyminfo_t ancillary symbol information
2429  * Returns 0 on success, -1 on failure.
2430  */
2431 static int
2432 i_Pxlookup_by_addr(
2433 	struct ps_prochandle *P,
2434 	int lmresolve,			/* use resolve linker object names */
2435 	uintptr_t addr,			/* process address being sought */
2436 	char *sym_name_buffer,		/* buffer for the symbol name */
2437 	size_t bufsize,			/* size of sym_name_buffer */
2438 	GElf_Sym *symbolp,		/* returned symbol table entry */
2439 	prsyminfo_t *sip)		/* returned symbol info */
2440 {
2441 	GElf_Sym	*symp;
2442 	char		*name;
2443 	GElf_Sym	sym1, *sym1p = NULL;
2444 	GElf_Sym	sym2, *sym2p = NULL;
2445 	char		*name1 = NULL;
2446 	char		*name2 = NULL;
2447 	uint_t		i1;
2448 	uint_t		i2;
2449 	map_info_t	*mptr;
2450 	file_info_t	*fptr;
2451 
2452 	(void) Prd_agent(P);
2453 
2454 	if ((mptr = Paddr2mptr(P, addr)) == NULL ||	/* no such address */
2455 	    (fptr = build_map_symtab(P, mptr)) == NULL || /* no mapped file */
2456 	    fptr->file_elf == NULL)			/* not an ELF file */
2457 		return (-1);
2458 
2459 	/*
2460 	 * Adjust the address by the load object base address in
2461 	 * case the address turns out to be in a shared library.
2462 	 */
2463 	addr -= fptr->file_dyn_base;
2464 
2465 	/*
2466 	 * Search both symbol tables, symtab first, then dynsym.
2467 	 */
2468 	if ((sym1p = sym_by_addr(&fptr->file_symtab, addr, &sym1, &i1)) != NULL)
2469 		name1 = fptr->file_symtab.sym_strs + sym1.st_name;
2470 	if ((sym2p = sym_by_addr(&fptr->file_dynsym, addr, &sym2, &i2)) != NULL)
2471 		name2 = fptr->file_dynsym.sym_strs + sym2.st_name;
2472 
2473 	if ((symp = sym_prefer(sym1p, name1, sym2p, name2)) == NULL)
2474 		return (-1);
2475 
2476 	name = (symp == sym1p) ? name1 : name2;
2477 	if (bufsize > 0) {
2478 		(void) strncpy(sym_name_buffer, name, bufsize);
2479 		sym_name_buffer[bufsize - 1] = '\0';
2480 	}
2481 
2482 	*symbolp = *symp;
2483 	if (sip != NULL) {
2484 		sip->prs_name = bufsize == 0 ? NULL : sym_name_buffer;
2485 		if (lmresolve && (fptr->file_rname != NULL))
2486 			sip->prs_object = fptr->file_rbase;
2487 		else
2488 			sip->prs_object = fptr->file_lbase;
2489 		sip->prs_id = (symp == sym1p) ? i1 : i2;
2490 		sip->prs_table = (symp == sym1p) ? PR_SYMTAB : PR_DYNSYM;
2491 		sip->prs_lmid = (fptr->file_lo == NULL) ? LM_ID_BASE :
2492 		    fptr->file_lo->rl_lmident;
2493 	}
2494 
2495 	if (GELF_ST_TYPE(symbolp->st_info) != STT_TLS)
2496 		symbolp->st_value += fptr->file_dyn_base;
2497 
2498 	return (0);
2499 }
2500 
2501 int
2502 Pxlookup_by_addr(struct ps_prochandle *P, uintptr_t addr, char *buf,
2503     size_t bufsize, GElf_Sym *symp, prsyminfo_t *sip)
2504 {
2505 	return (i_Pxlookup_by_addr(P, B_FALSE, addr, buf, bufsize, symp, sip));
2506 }
2507 
2508 int
2509 Pxlookup_by_addr_resolved(struct ps_prochandle *P, uintptr_t addr, char *buf,
2510     size_t bufsize, GElf_Sym *symp, prsyminfo_t *sip)
2511 {
2512 	return (i_Pxlookup_by_addr(P, B_TRUE, addr, buf, bufsize, symp, sip));
2513 }
2514 
2515 int
2516 Plookup_by_addr(struct ps_prochandle *P, uintptr_t addr, char *buf,
2517     size_t size, GElf_Sym *symp)
2518 {
2519 	return (i_Pxlookup_by_addr(P, B_FALSE, addr, buf, size, symp, NULL));
2520 }
2521 
2522 /*
2523  * Search the process symbol tables looking for a symbol whose name matches the
2524  * specified name and whose object and link map optionally match the specified
2525  * parameters.  On success, the function returns 0 and fills in the GElf_Sym
2526  * symbol table entry.  On failure, -1 is returned.
2527  */
2528 int
2529 Pxlookup_by_name(
2530 	struct ps_prochandle *P,
2531 	Lmid_t lmid,			/* link map to match, or -1 for any */
2532 	const char *oname,		/* load object name */
2533 	const char *sname,		/* symbol name */
2534 	GElf_Sym *symp,			/* returned symbol table entry */
2535 	prsyminfo_t *sip)		/* returned symbol info */
2536 {
2537 	map_info_t *mptr;
2538 	file_info_t *fptr;
2539 	int cnt;
2540 
2541 	GElf_Sym sym;
2542 	prsyminfo_t si;
2543 	int rv = -1;
2544 	uint_t id;
2545 
2546 	if (oname == PR_OBJ_EVERY) {
2547 		/* create all the file_info_t's for all the mappings */
2548 		(void) Prd_agent(P);
2549 		cnt = P->num_files;
2550 		fptr = list_next(&P->file_head);
2551 	} else {
2552 		cnt = 1;
2553 		if ((mptr = object_name_to_map(P, lmid, oname)) == NULL ||
2554 		    (fptr = build_map_symtab(P, mptr)) == NULL)
2555 			return (-1);
2556 	}
2557 
2558 	/*
2559 	 * Iterate through the loaded object files and look for the symbol
2560 	 * name in the .symtab and .dynsym of each.  If we encounter a match
2561 	 * with SHN_UNDEF, keep looking in hopes of finding a better match.
2562 	 * This means that a name such as "puts" will match the puts function
2563 	 * in libc instead of matching the puts PLT entry in the a.out file.
2564 	 */
2565 	for (; cnt > 0; cnt--, fptr = list_next(fptr)) {
2566 		Pbuild_file_symtab(P, fptr);
2567 
2568 		if (fptr->file_elf == NULL)
2569 			continue;
2570 
2571 		if (lmid != PR_LMID_EVERY && fptr->file_lo != NULL &&
2572 		    lmid != fptr->file_lo->rl_lmident)
2573 			continue;
2574 
2575 		if (fptr->file_symtab.sym_data_pri != NULL &&
2576 		    sym_by_name(&fptr->file_symtab, sname, symp, &id)) {
2577 			if (sip != NULL) {
2578 				sip->prs_id = id;
2579 				sip->prs_table = PR_SYMTAB;
2580 				sip->prs_object = oname;
2581 				sip->prs_name = sname;
2582 				sip->prs_lmid = fptr->file_lo == NULL ?
2583 				    LM_ID_BASE : fptr->file_lo->rl_lmident;
2584 			}
2585 		} else if (fptr->file_dynsym.sym_data_pri != NULL &&
2586 		    sym_by_name(&fptr->file_dynsym, sname, symp, &id)) {
2587 			if (sip != NULL) {
2588 				sip->prs_id = id;
2589 				sip->prs_table = PR_DYNSYM;
2590 				sip->prs_object = oname;
2591 				sip->prs_name = sname;
2592 				sip->prs_lmid = fptr->file_lo == NULL ?
2593 				    LM_ID_BASE : fptr->file_lo->rl_lmident;
2594 			}
2595 		} else {
2596 			continue;
2597 		}
2598 
2599 		if (GELF_ST_TYPE(symp->st_info) != STT_TLS)
2600 			symp->st_value += fptr->file_dyn_base;
2601 
2602 		if (symp->st_shndx != SHN_UNDEF)
2603 			return (0);
2604 
2605 		if (rv != 0) {
2606 			if (sip != NULL)
2607 				si = *sip;
2608 			sym = *symp;
2609 			rv = 0;
2610 		}
2611 	}
2612 
2613 	if (rv == 0) {
2614 		if (sip != NULL)
2615 			*sip = si;
2616 		*symp = sym;
2617 	}
2618 
2619 	return (rv);
2620 }
2621 
2622 /*
2623  * Search the process symbol tables looking for a symbol whose name matches the
2624  * specified name, but without any restriction on the link map id.
2625  */
2626 int
2627 Plookup_by_name(struct ps_prochandle *P, const char *object,
2628 	const char *symbol, GElf_Sym *symp)
2629 {
2630 	return (Pxlookup_by_name(P, PR_LMID_EVERY, object, symbol, symp, NULL));
2631 }
2632 
2633 /*
2634  * Iterate over the process's address space mappings.
2635  */
2636 static int
2637 i_Pmapping_iter(struct ps_prochandle *P, boolean_t lmresolve,
2638     proc_map_f *func, void *cd)
2639 {
2640 	map_info_t *mptr;
2641 	file_info_t *fptr;
2642 	char *object_name;
2643 	int rc = 0;
2644 	int i;
2645 
2646 	/* create all the file_info_t's for all the mappings */
2647 	(void) Prd_agent(P);
2648 
2649 	for (i = 0, mptr = P->mappings; i < P->map_count; i++, mptr++) {
2650 		if ((fptr = mptr->map_file) == NULL)
2651 			object_name = NULL;
2652 		else if (lmresolve && (fptr->file_rname != NULL))
2653 			object_name = fptr->file_rname;
2654 		else
2655 			object_name = fptr->file_lname;
2656 		if ((rc = func(cd, &mptr->map_pmap, object_name)) != 0)
2657 			return (rc);
2658 	}
2659 	return (0);
2660 }
2661 
2662 int
2663 Pmapping_iter(struct ps_prochandle *P, proc_map_f *func, void *cd)
2664 {
2665 	return (i_Pmapping_iter(P, B_FALSE, func, cd));
2666 }
2667 
2668 int
2669 Pmapping_iter_resolved(struct ps_prochandle *P, proc_map_f *func, void *cd)
2670 {
2671 	return (i_Pmapping_iter(P, B_TRUE, func, cd));
2672 }
2673 
2674 /*
2675  * Iterate over the process's mapped objects.
2676  */
2677 static int
2678 i_Pobject_iter(struct ps_prochandle *P, boolean_t lmresolve,
2679     proc_map_f *func, void *cd)
2680 {
2681 	map_info_t *mptr;
2682 	file_info_t *fptr;
2683 	uint_t cnt;
2684 	int rc = 0;
2685 
2686 	(void) Prd_agent(P); /* create file_info_t's for all the mappings */
2687 	Pupdate_maps(P);
2688 
2689 	for (cnt = P->num_files, fptr = list_next(&P->file_head);
2690 	    cnt; cnt--, fptr = list_next(fptr)) {
2691 		const char *lname;
2692 
2693 		if (lmresolve && (fptr->file_rname != NULL))
2694 			lname = fptr->file_rname;
2695 		else if (fptr->file_lname != NULL)
2696 			lname = fptr->file_lname;
2697 		else
2698 			lname = "";
2699 
2700 		if ((mptr = fptr->file_map) == NULL)
2701 			continue;
2702 
2703 		if ((rc = func(cd, &mptr->map_pmap, lname)) != 0)
2704 			return (rc);
2705 
2706 		if (!P->info_valid)
2707 			Pupdate_maps(P);
2708 	}
2709 	return (0);
2710 }
2711 
2712 int
2713 Pobject_iter(struct ps_prochandle *P, proc_map_f *func, void *cd)
2714 {
2715 	return (i_Pobject_iter(P, B_FALSE, func, cd));
2716 }
2717 
2718 int
2719 Pobject_iter_resolved(struct ps_prochandle *P, proc_map_f *func, void *cd)
2720 {
2721 	return (i_Pobject_iter(P, B_TRUE, func, cd));
2722 }
2723 
2724 static char *
2725 i_Pobjname(struct ps_prochandle *P, boolean_t lmresolve, uintptr_t addr,
2726 	char *buffer, size_t bufsize)
2727 {
2728 	map_info_t *mptr;
2729 	file_info_t *fptr;
2730 
2731 	/* create all the file_info_t's for all the mappings */
2732 	(void) Prd_agent(P);
2733 
2734 	if ((mptr = Paddr2mptr(P, addr)) == NULL)
2735 		return (NULL);
2736 
2737 	if (!lmresolve) {
2738 		if (((fptr = mptr->map_file) == NULL) ||
2739 		    (fptr->file_lname == NULL))
2740 			return (NULL);
2741 		(void) strlcpy(buffer, fptr->file_lname, bufsize);
2742 		return (buffer);
2743 	}
2744 
2745 	/* Check for a cached copy of the resolved path */
2746 	if (Pfindmap(P, mptr, buffer, bufsize) != NULL)
2747 		return (buffer);
2748 
2749 	return (NULL);
2750 }
2751 
2752 /*
2753  * Given a virtual address, return the name of the underlying
2754  * mapped object (file) as provided by the dynamic linker.
2755  * Return NULL if we can't find any name information for the object.
2756  */
2757 char *
2758 Pobjname(struct ps_prochandle *P, uintptr_t addr,
2759 	char *buffer, size_t bufsize)
2760 {
2761 	return (i_Pobjname(P, B_FALSE, addr, buffer, bufsize));
2762 }
2763 
2764 /*
2765  * Given a virtual address, try to return a filesystem path to the
2766  * underlying mapped object (file).  If we're in the global zone,
2767  * this path could resolve to an object in another zone.  If we're
2768  * unable return a valid filesystem path, we'll fall back to providing
2769  * the mapped object (file) name provided by the dynamic linker in
2770  * the target process (ie, the object reported by Pobjname()).
2771  */
2772 char *
2773 Pobjname_resolved(struct ps_prochandle *P, uintptr_t addr,
2774 	char *buffer, size_t bufsize)
2775 {
2776 	return (i_Pobjname(P, B_TRUE, addr, buffer, bufsize));
2777 }
2778 
2779 /*
2780  * Given a virtual address, return the link map id of the underlying mapped
2781  * object (file), as provided by the dynamic linker.  Return -1 on failure.
2782  */
2783 int
2784 Plmid(struct ps_prochandle *P, uintptr_t addr, Lmid_t *lmidp)
2785 {
2786 	map_info_t *mptr;
2787 	file_info_t *fptr;
2788 
2789 	/* create all the file_info_t's for all the mappings */
2790 	(void) Prd_agent(P);
2791 
2792 	if ((mptr = Paddr2mptr(P, addr)) != NULL &&
2793 	    (fptr = mptr->map_file) != NULL && fptr->file_lo != NULL) {
2794 		*lmidp = fptr->file_lo->rl_lmident;
2795 		return (0);
2796 	}
2797 
2798 	return (-1);
2799 }
2800 
2801 /*
2802  * Given an object name and optional lmid, iterate over the object's symbols.
2803  * If which == PR_SYMTAB, search the normal symbol table.
2804  * If which == PR_DYNSYM, search the dynamic symbol table.
2805  */
2806 static int
2807 Psymbol_iter_com(struct ps_prochandle *P, Lmid_t lmid, const char *object_name,
2808     int which, int mask, pr_order_t order, proc_xsym_f *func, void *cd)
2809 {
2810 #if STT_NUM != (STT_TLS + 1)
2811 #error "STT_NUM has grown. update Psymbol_iter_com()"
2812 #endif
2813 
2814 	GElf_Sym sym;
2815 	GElf_Shdr shdr;
2816 	map_info_t *mptr;
2817 	file_info_t *fptr;
2818 	sym_tbl_t *symtab;
2819 	size_t symn;
2820 	const char *strs;
2821 	size_t strsz;
2822 	prsyminfo_t si;
2823 	int rv;
2824 	uint_t *map, i, count, ndx;
2825 
2826 	if ((mptr = object_name_to_map(P, lmid, object_name)) == NULL)
2827 		return (-1);
2828 
2829 	if ((fptr = build_map_symtab(P, mptr)) == NULL || /* no mapped file */
2830 	    fptr->file_elf == NULL)			/* not an ELF file */
2831 		return (-1);
2832 
2833 	/*
2834 	 * Search the specified symbol table.
2835 	 */
2836 	switch (which) {
2837 	case PR_SYMTAB:
2838 		symtab = &fptr->file_symtab;
2839 		si.prs_table = PR_SYMTAB;
2840 		break;
2841 	case PR_DYNSYM:
2842 		symtab = &fptr->file_dynsym;
2843 		si.prs_table = PR_DYNSYM;
2844 		break;
2845 	default:
2846 		return (-1);
2847 	}
2848 
2849 	si.prs_object = object_name;
2850 	si.prs_lmid = fptr->file_lo == NULL ?
2851 	    LM_ID_BASE : fptr->file_lo->rl_lmident;
2852 
2853 	symn = symtab->sym_symn;
2854 	strs = symtab->sym_strs;
2855 	strsz = symtab->sym_strsz;
2856 
2857 	switch (order) {
2858 	case PRO_NATURAL:
2859 		map = NULL;
2860 		count = symn;
2861 		break;
2862 	case PRO_BYNAME:
2863 		map = symtab->sym_byname;
2864 		count = symtab->sym_count;
2865 		break;
2866 	case PRO_BYADDR:
2867 		map = symtab->sym_byaddr;
2868 		count = symtab->sym_count;
2869 		break;
2870 	default:
2871 		return (-1);
2872 	}
2873 
2874 	if (symtab->sym_data_pri == NULL || strs == NULL || count == 0)
2875 		return (-1);
2876 
2877 	rv = 0;
2878 
2879 	for (i = 0; i < count; i++) {
2880 		ndx = map == NULL ? i : map[i];
2881 		if (symtab_getsym(symtab, ndx, &sym) != NULL) {
2882 			uint_t s_bind, s_type, type;
2883 
2884 			if (sym.st_name >= strsz)	/* invalid st_name */
2885 				continue;
2886 
2887 			s_bind = GELF_ST_BIND(sym.st_info);
2888 			s_type = GELF_ST_TYPE(sym.st_info);
2889 
2890 			/*
2891 			 * In case you haven't already guessed, this relies on
2892 			 * the bitmask used in <libproc.h> for encoding symbol
2893 			 * type and binding matching the order of STB and STT
2894 			 * constants in <sys/elf.h>.  Changes to ELF must
2895 			 * maintain binary compatibility, so I think this is
2896 			 * reasonably fair game.
2897 			 */
2898 			if (s_bind < STB_NUM && s_type < STT_NUM) {
2899 				type = (1 << (s_type + 8)) | (1 << s_bind);
2900 				if ((type & ~mask) != 0)
2901 					continue;
2902 			} else
2903 				continue; /* Invalid type or binding */
2904 
2905 			if (GELF_ST_TYPE(sym.st_info) != STT_TLS)
2906 				sym.st_value += fptr->file_dyn_base;
2907 
2908 			si.prs_name = strs + sym.st_name;
2909 
2910 			/*
2911 			 * If symbol's type is STT_SECTION, then try to lookup
2912 			 * the name of the corresponding section.
2913 			 */
2914 			if (GELF_ST_TYPE(sym.st_info) == STT_SECTION &&
2915 			    fptr->file_shstrs != NULL &&
2916 			    gelf_getshdr(elf_getscn(fptr->file_elf,
2917 			    sym.st_shndx), &shdr) != NULL &&
2918 			    shdr.sh_name != 0 &&
2919 			    shdr.sh_name < fptr->file_shstrsz)
2920 				si.prs_name = fptr->file_shstrs + shdr.sh_name;
2921 
2922 			si.prs_id = ndx;
2923 			if ((rv = func(cd, &sym, si.prs_name, &si)) != 0)
2924 				break;
2925 		}
2926 	}
2927 
2928 	return (rv);
2929 }
2930 
2931 int
2932 Pxsymbol_iter(struct ps_prochandle *P, Lmid_t lmid, const char *object_name,
2933     int which, int mask, proc_xsym_f *func, void *cd)
2934 {
2935 	return (Psymbol_iter_com(P, lmid, object_name, which, mask,
2936 	    PRO_NATURAL, func, cd));
2937 }
2938 
2939 int
2940 Psymbol_iter_by_lmid(struct ps_prochandle *P, Lmid_t lmid,
2941     const char *object_name, int which, int mask, proc_sym_f *func, void *cd)
2942 {
2943 	return (Psymbol_iter_com(P, lmid, object_name, which, mask,
2944 	    PRO_NATURAL, (proc_xsym_f *)func, cd));
2945 }
2946 
2947 int
2948 Psymbol_iter(struct ps_prochandle *P,
2949     const char *object_name, int which, int mask, proc_sym_f *func, void *cd)
2950 {
2951 	return (Psymbol_iter_com(P, PR_LMID_EVERY, object_name, which, mask,
2952 	    PRO_NATURAL, (proc_xsym_f *)func, cd));
2953 }
2954 
2955 int
2956 Psymbol_iter_by_addr(struct ps_prochandle *P,
2957     const char *object_name, int which, int mask, proc_sym_f *func, void *cd)
2958 {
2959 	return (Psymbol_iter_com(P, PR_LMID_EVERY, object_name, which, mask,
2960 	    PRO_BYADDR, (proc_xsym_f *)func, cd));
2961 }
2962 
2963 int
2964 Psymbol_iter_by_name(struct ps_prochandle *P,
2965     const char *object_name, int which, int mask, proc_sym_f *func, void *cd)
2966 {
2967 	return (Psymbol_iter_com(P, PR_LMID_EVERY, object_name, which, mask,
2968 	    PRO_BYNAME, (proc_xsym_f *)func, cd));
2969 }
2970 
2971 /*
2972  * Get the platform string from the core file if we have it;
2973  * just perform the system call for the caller if this is a live process.
2974  */
2975 char *
2976 Pplatform(struct ps_prochandle *P, char *s, size_t n)
2977 {
2978 	if (P->state == PS_IDLE) {
2979 		errno = ENODATA;
2980 		return (NULL);
2981 	}
2982 
2983 	if (P->state == PS_DEAD) {
2984 		if (P->core->core_platform == NULL) {
2985 			errno = ENODATA;
2986 			return (NULL);
2987 		}
2988 		(void) strncpy(s, P->core->core_platform, n - 1);
2989 		s[n - 1] = '\0';
2990 
2991 	} else if (sysinfo(SI_PLATFORM, s, n) == -1)
2992 		return (NULL);
2993 
2994 	return (s);
2995 }
2996 
2997 /*
2998  * Get the uname(2) information from the core file if we have it;
2999  * just perform the system call for the caller if this is a live process.
3000  */
3001 int
3002 Puname(struct ps_prochandle *P, struct utsname *u)
3003 {
3004 	if (P->state == PS_IDLE) {
3005 		errno = ENODATA;
3006 		return (-1);
3007 	}
3008 
3009 	if (P->state == PS_DEAD) {
3010 		if (P->core->core_uts == NULL) {
3011 			errno = ENODATA;
3012 			return (-1);
3013 		}
3014 		(void) memcpy(u, P->core->core_uts, sizeof (struct utsname));
3015 		return (0);
3016 	}
3017 	return (uname(u));
3018 }
3019 
3020 /*
3021  * Called from Pcreate(), Pgrab(), and Pfgrab_core() to initialize
3022  * the symbol table heads in the new ps_prochandle.
3023  */
3024 void
3025 Pinitsym(struct ps_prochandle *P)
3026 {
3027 	P->num_files = 0;
3028 	list_link(&P->file_head, NULL);
3029 }
3030 
3031 /*
3032  * Called from Prelease() to destroy the symbol tables.
3033  * Must be called by the client after an exec() in the victim process.
3034  */
3035 void
3036 Preset_maps(struct ps_prochandle *P)
3037 {
3038 	int i;
3039 
3040 	if (P->rap != NULL) {
3041 		rd_delete(P->rap);
3042 		P->rap = NULL;
3043 	}
3044 
3045 	if (P->execname != NULL) {
3046 		free(P->execname);
3047 		P->execname = NULL;
3048 	}
3049 
3050 	if (P->auxv != NULL) {
3051 		free(P->auxv);
3052 		P->auxv = NULL;
3053 		P->nauxv = 0;
3054 	}
3055 
3056 	for (i = 0; i < P->map_count; i++)
3057 		map_info_free(P, &P->mappings[i]);
3058 
3059 	if (P->mappings != NULL) {
3060 		free(P->mappings);
3061 		P->mappings = NULL;
3062 	}
3063 	P->map_count = P->map_alloc = 0;
3064 
3065 	P->info_valid = 0;
3066 }
3067 
3068 typedef struct getenv_data {
3069 	char *buf;
3070 	size_t bufsize;
3071 	const char *search;
3072 	size_t searchlen;
3073 } getenv_data_t;
3074 
3075 /*ARGSUSED*/
3076 static int
3077 getenv_func(void *data, struct ps_prochandle *P, uintptr_t addr,
3078     const char *nameval)
3079 {
3080 	getenv_data_t *d = data;
3081 	size_t len;
3082 
3083 	if (nameval == NULL)
3084 		return (0);
3085 
3086 	if (d->searchlen < strlen(nameval) &&
3087 	    strncmp(nameval, d->search, d->searchlen) == 0 &&
3088 	    nameval[d->searchlen] == '=') {
3089 		len = MIN(strlen(nameval), d->bufsize - 1);
3090 		(void) strncpy(d->buf, nameval, len);
3091 		d->buf[len] = '\0';
3092 		return (1);
3093 	}
3094 
3095 	return (0);
3096 }
3097 
3098 char *
3099 Pgetenv(struct ps_prochandle *P, const char *name, char *buf, size_t buflen)
3100 {
3101 	getenv_data_t d;
3102 
3103 	d.buf = buf;
3104 	d.bufsize = buflen;
3105 	d.search = name;
3106 	d.searchlen = strlen(name);
3107 
3108 	if (Penv_iter(P, getenv_func, &d) == 1) {
3109 		char *equals = strchr(d.buf, '=');
3110 
3111 		if (equals != NULL) {
3112 			(void) memmove(d.buf, equals + 1,
3113 			    d.buf + buflen - equals - 1);
3114 			d.buf[d.buf + buflen - equals] = '\0';
3115 
3116 			return (buf);
3117 		}
3118 	}
3119 
3120 	return (NULL);
3121 }
3122 
3123 /* number of argument or environment pointers to read all at once */
3124 #define	NARG	100
3125 
3126 int
3127 Penv_iter(struct ps_prochandle *P, proc_env_f *func, void *data)
3128 {
3129 	const psinfo_t *psp;
3130 	uintptr_t envpoff;
3131 	GElf_Sym sym;
3132 	int ret;
3133 	char *buf, *nameval;
3134 	size_t buflen;
3135 
3136 	int nenv = NARG;
3137 	long envp[NARG];
3138 
3139 	/*
3140 	 * Attempt to find the "_environ" variable in the process.
3141 	 * Failing that, use the original value provided by Ppsinfo().
3142 	 */
3143 	if ((psp = Ppsinfo(P)) == NULL)
3144 		return (-1);
3145 
3146 	envpoff = psp->pr_envp; /* Default if no _environ found */
3147 
3148 	if (Plookup_by_name(P, PR_OBJ_EXEC, "_environ", &sym) == 0) {
3149 		if (P->status.pr_dmodel == PR_MODEL_NATIVE) {
3150 			if (Pread(P, &envpoff, sizeof (envpoff),
3151 			    sym.st_value) != sizeof (envpoff))
3152 				envpoff = psp->pr_envp;
3153 		} else if (P->status.pr_dmodel == PR_MODEL_ILP32) {
3154 			uint32_t envpoff32;
3155 
3156 			if (Pread(P, &envpoff32, sizeof (envpoff32),
3157 			    sym.st_value) != sizeof (envpoff32))
3158 				envpoff = psp->pr_envp;
3159 			else
3160 				envpoff = envpoff32;
3161 		}
3162 	}
3163 
3164 	buflen = 128;
3165 	buf = malloc(buflen);
3166 
3167 	ret = 0;
3168 	for (;;) {
3169 		uintptr_t envoff;
3170 
3171 		if (nenv == NARG) {
3172 			(void) memset(envp, 0, sizeof (envp));
3173 			if (P->status.pr_dmodel == PR_MODEL_NATIVE) {
3174 				if (Pread(P, envp,
3175 				    sizeof (envp), envpoff) <= 0) {
3176 					ret = -1;
3177 					break;
3178 				}
3179 			} else if (P->status.pr_dmodel == PR_MODEL_ILP32) {
3180 				uint32_t e32[NARG];
3181 				int i;
3182 
3183 				(void) memset(e32, 0, sizeof (e32));
3184 				if (Pread(P, e32, sizeof (e32), envpoff) <= 0) {
3185 					ret = -1;
3186 					break;
3187 				}
3188 				for (i = 0; i < NARG; i++)
3189 					envp[i] = e32[i];
3190 			}
3191 			nenv = 0;
3192 		}
3193 
3194 		if ((envoff = envp[nenv++]) == NULL)
3195 			break;
3196 
3197 		/*
3198 		 * Attempt to read the string from the process.
3199 		 */
3200 again:
3201 		ret = Pread_string(P, buf, buflen, envoff);
3202 
3203 		if (ret <= 0) {
3204 			nameval = NULL;
3205 		} else if (ret == buflen - 1) {
3206 			free(buf);
3207 			/*
3208 			 * Bail if we have a corrupted environment
3209 			 */
3210 			if (buflen >= ARG_MAX)
3211 				return (-1);
3212 			buflen *= 2;
3213 			buf = malloc(buflen);
3214 			goto again;
3215 		} else {
3216 			nameval = buf;
3217 		}
3218 
3219 		if ((ret = func(data, P, envoff, nameval)) != 0)
3220 			break;
3221 
3222 		envpoff += (P->status.pr_dmodel == PR_MODEL_LP64)? 8 : 4;
3223 	}
3224 
3225 	free(buf);
3226 
3227 	return (ret);
3228 }
3229