xref: /titanic_52/usr/src/lib/libmvec/common/__vrhypotf.c (revision 85e6b6747d07050e01ec91acef2453655821f9ab)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
24  */
25 /*
26  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
27  * Use is subject to license terms.
28  */
29 
30 #include <sys/isa_defs.h>
31 #include "libm_synonyms.h"
32 #include "libm_inlines.h"
33 
34 #ifdef _LITTLE_ENDIAN
35 #define HI(x)	*(1+(int*)x)
36 #define LO(x)	*(unsigned*)x
37 #else
38 #define HI(x)	*(int*)x
39 #define LO(x)	*(1+(unsigned*)x)
40 #endif
41 
42 #ifdef __RESTRICT
43 #define restrict _Restrict
44 #else
45 #define restrict
46 #endif
47 
48 /* float rhypotf(float x, float y)
49  *
50  * Method :
51  *	1. Special cases:
52  *		for x or y = Inf			=> 0;
53  *		for x or y = NaN			=> QNaN;
54  *		for x and y = 0				=> +Inf + divide-by-zero;
55  *	2. Computes d = x * x + y * y;
56  *	3. Computes reciprocal square root from:
57  *		d = m * 2**n
58  *	Where:
59  *		m = [0.5, 2),
60  *		n = ((exponent + 1) & ~1).
61  *	Then:
62  *		rsqrtf(d) = 1/sqrt( m * 2**n ) = (2 ** (-n/2)) * (1/sqrt(m))
63  *	4. Computes 1/sqrt(m) from:
64  *		1/sqrt(m) = (1/sqrt(m0)) * (1/sqrt(1 + (1/m0)*dm))
65  *	Where:
66  *		m = m0 + dm,
67  *		m0 = 0.5 * (1 + k/64) for m = [0.5,         0.5+127/256), k = [0, 63];
68  *		m0 = 1.0 * (0 + k/64) for m = [0.5+127/256, 1.0+127/128), k = [64, 127];
69  *	Then:
70  *		1/sqrt(m0), 1/m0 are looked up in a table,
71  *		1/sqrt(1 + (1/m0)*dm) is computed using approximation:
72  *			1/sqrt(1 + z) = ((a3 * z + a2) * z + a1) * z + a0
73  *			where z = [-1/64, 1/64].
74  *
75  * Accuracy:
76  *	The maximum relative error for the approximating
77  *	polynomial is 2**(-27.87).
78  *	Maximum error observed: less than 0.535 ulp after 3.000.000.000
79  *	results.
80  */
81 
82 #pragma align 32 (__vlibm_TBL_rhypotf)
83 
84 static const double __vlibm_TBL_rhypotf[] = {
85 /*
86  i = [0,63]
87  TBL[2*i+0] = 1.0 / (*(double*)&(0x3ff0000000000000LL + (i << 46)));
88  TBL[2*i+1] = (double)(0.5/sqrtl(2) / sqrtl(*(double*)&(0x3ff0000000000000LL + (i << 46))));
89  TBL[128+2*i+0] = 1.0 / (*(double*)&(0x3ff0000000000000LL + (i << 46)));
90  TBL[128+2*i+1] = (double)(0.25 / sqrtl(*(double*)&(0x3ff0000000000000LL + (i << 46))));
91 */
92  1.0000000000000000000e+00, 3.5355339059327378637e-01,
93  9.8461538461538467004e-01, 3.5082320772281166965e-01,
94  9.6969696969696972388e-01, 3.4815531191139570399e-01,
95  9.5522388059701490715e-01, 3.4554737023254405992e-01,
96  9.4117647058823528106e-01, 3.4299717028501769400e-01,
97  9.2753623188405798228e-01, 3.4050261230349943009e-01,
98  9.1428571428571425717e-01, 3.3806170189140660742e-01,
99  9.0140845070422537244e-01, 3.3567254331867563133e-01,
100  8.8888888888888883955e-01, 3.3333333333333331483e-01,
101  8.7671232876712323900e-01, 3.3104235544094717802e-01,
102  8.6486486486486491287e-01, 3.2879797461071458287e-01,
103  8.5333333333333338810e-01, 3.2659863237109043599e-01,
104  8.4210526315789469010e-01, 3.2444284226152508843e-01,
105  8.3116883116883122362e-01, 3.2232918561015211356e-01,
106  8.2051282051282048435e-01, 3.2025630761017426229e-01,
107  8.1012658227848100001e-01, 3.1822291367029204023e-01,
108  8.0000000000000004441e-01, 3.1622776601683794118e-01,
109  7.9012345679012341293e-01, 3.1426968052735443360e-01,
110  7.8048780487804880757e-01, 3.1234752377721214378e-01,
111  7.7108433734939763049e-01, 3.1046021028253312224e-01,
112  7.6190476190476186247e-01, 3.0860669992418382490e-01,
113  7.5294117647058822484e-01, 3.0678599553894819740e-01,
114  7.4418604651162789665e-01, 3.0499714066520933198e-01,
115  7.3563218390804596680e-01, 3.0323921743156134756e-01,
116  7.2727272727272729291e-01, 3.0151134457776362918e-01,
117  7.1910112359550559802e-01, 2.9981267559834456904e-01,
118  7.1111111111111113825e-01, 2.9814239699997197031e-01,
119  7.0329670329670335160e-01, 2.9649972666444046610e-01,
120  6.9565217391304345895e-01, 2.9488391230979427160e-01,
121  6.8817204301075274309e-01, 2.9329423004270660513e-01,
122  6.8085106382978721751e-01, 2.9172998299578911663e-01,
123  6.7368421052631577428e-01, 2.9019050004400465115e-01,
124  6.6666666666666662966e-01, 2.8867513459481286553e-01,
125  6.5979381443298967813e-01, 2.8718326344709527165e-01,
126  6.5306122448979586625e-01, 2.8571428571428569843e-01,
127  6.4646464646464651960e-01, 2.8426762180748055275e-01,
128  6.4000000000000001332e-01, 2.8284271247461900689e-01,
129  6.3366336633663367106e-01, 2.8143901789211672737e-01,
130  6.2745098039215685404e-01, 2.8005601680560193723e-01,
131  6.2135922330097081989e-01, 2.7869320571664707442e-01,
132  6.1538461538461541878e-01, 2.7735009811261457369e-01,
133  6.0952380952380957879e-01, 2.7602622373694168934e-01,
134  6.0377358490566035432e-01, 2.7472112789737807015e-01,
135  5.9813084112149528249e-01, 2.7343437080986532361e-01,
136  5.9259259259259255970e-01, 2.7216552697590867815e-01,
137  5.8715596330275232617e-01, 2.7091418459143856712e-01,
138  5.8181818181818178992e-01, 2.6967994498529684888e-01,
139  5.7657657657657657158e-01, 2.6846242208560971987e-01,
140  5.7142857142857139685e-01, 2.6726124191242439654e-01,
141  5.6637168141592919568e-01, 2.6607604209509572168e-01,
142  5.6140350877192979340e-01, 2.6490647141300877054e-01,
143  5.5652173913043478937e-01, 2.6375218935831479250e-01,
144  5.5172413793103447510e-01, 2.6261286571944508772e-01,
145  5.4700854700854706358e-01, 2.6148818018424535570e-01,
146  5.4237288135593220151e-01, 2.6037782196164771520e-01,
147  5.3781512605042014474e-01, 2.5928148942086576278e-01,
148  5.3333333333333332593e-01, 2.5819888974716115326e-01,
149  5.2892561983471075848e-01, 2.5712973861329002645e-01,
150  5.2459016393442625681e-01, 2.5607375986579195004e-01,
151  5.2032520325203257539e-01, 2.5503068522533534068e-01,
152  5.1612903225806450180e-01, 2.5400025400038100942e-01,
153  5.1200000000000001066e-01, 2.5298221281347033074e-01,
154  5.0793650793650790831e-01, 2.5197631533948483540e-01,
155  5.0393700787401574104e-01, 2.5098232205526344041e-01,
156  1.0000000000000000000e+00, 2.5000000000000000000e-01,
157  9.8461538461538467004e-01, 2.4806946917841690703e-01,
158  9.6969696969696972388e-01, 2.4618298195866547551e-01,
159  9.5522388059701490715e-01, 2.4433888871261044695e-01,
160  9.4117647058823528106e-01, 2.4253562503633296910e-01,
161  9.2753623188405798228e-01, 2.4077170617153839660e-01,
162  9.1428571428571425717e-01, 2.3904572186687872426e-01,
163  9.0140845070422537244e-01, 2.3735633163877067897e-01,
164  8.8888888888888883955e-01, 2.3570226039551583908e-01,
165  8.7671232876712323900e-01, 2.3408229439226113655e-01,
166  8.6486486486486491287e-01, 2.3249527748763856860e-01,
167  8.5333333333333338810e-01, 2.3094010767585029797e-01,
168  8.4210526315789469010e-01, 2.2941573387056177213e-01,
169  8.3116883116883122362e-01, 2.2792115291927589338e-01,
170  8.2051282051282048435e-01, 2.2645540682891915352e-01,
171  8.1012658227848100001e-01, 2.2501758018520479077e-01,
172  8.0000000000000004441e-01, 2.2360679774997896385e-01,
173  7.9012345679012341293e-01, 2.2222222222222220989e-01,
174  7.8048780487804880757e-01, 2.2086305214969309541e-01,
175  7.7108433734939763049e-01, 2.1952851997938069295e-01,
176  7.6190476190476186247e-01, 2.1821789023599238999e-01,
177  7.5294117647058822484e-01, 2.1693045781865616384e-01,
178  7.4418604651162789665e-01, 2.1566554640687682354e-01,
179  7.3563218390804596680e-01, 2.1442250696755896233e-01,
180  7.2727272727272729291e-01, 2.1320071635561044232e-01,
181  7.1910112359550559802e-01, 2.1199957600127200541e-01,
182  7.1111111111111113825e-01, 2.1081851067789195153e-01,
183  7.0329670329670335160e-01, 2.0965696734438366011e-01,
184  6.9565217391304345895e-01, 2.0851441405707477061e-01,
185  6.8817204301075274309e-01, 2.0739033894608505104e-01,
186  6.8085106382978721751e-01, 2.0628424925175867233e-01,
187  6.7368421052631577428e-01, 2.0519567041703082322e-01,
188  6.6666666666666662966e-01, 2.0412414523193150862e-01,
189  6.5979381443298967813e-01, 2.0306923302672380549e-01,
190  6.5306122448979586625e-01, 2.0203050891044216364e-01,
191  6.4646464646464651960e-01, 2.0100756305184241945e-01,
192  6.4000000000000001332e-01, 2.0000000000000001110e-01,
193  6.3366336633663367106e-01, 1.9900743804199783060e-01,
194  6.2745098039215685404e-01, 1.9802950859533485772e-01,
195  6.2135922330097081989e-01, 1.9706585563285863860e-01,
196  6.1538461538461541878e-01, 1.9611613513818404453e-01,
197  6.0952380952380957879e-01, 1.9518001458970662965e-01,
198  6.0377358490566035432e-01, 1.9425717247145282696e-01,
199  5.9813084112149528249e-01, 1.9334729780913270658e-01,
200  5.9259259259259255970e-01, 1.9245008972987526219e-01,
201  5.8715596330275232617e-01, 1.9156525704423027490e-01,
202  5.8181818181818178992e-01, 1.9069251784911847580e-01,
203  5.7657657657657657158e-01, 1.8983159915049979682e-01,
204  5.7142857142857139685e-01, 1.8898223650461362655e-01,
205  5.6637168141592919568e-01, 1.8814417367671945613e-01,
206  5.6140350877192979340e-01, 1.8731716231633879777e-01,
207  5.5652173913043478937e-01, 1.8650096164806276300e-01,
208  5.5172413793103447510e-01, 1.8569533817705186074e-01,
209  5.4700854700854706358e-01, 1.8490006540840969729e-01,
210  5.4237288135593220151e-01, 1.8411492357966466327e-01,
211  5.3781512605042014474e-01, 1.8333969940564226464e-01,
212  5.3333333333333332593e-01, 1.8257418583505535814e-01,
213  5.2892561983471075848e-01, 1.8181818181818182323e-01,
214  5.2459016393442625681e-01, 1.8107149208503706128e-01,
215  5.2032520325203257539e-01, 1.8033392693348646030e-01,
216  5.1612903225806450180e-01, 1.7960530202677491007e-01,
217  5.1200000000000001066e-01, 1.7888543819998317663e-01,
218  5.0793650793650790831e-01, 1.7817416127494958844e-01,
219  5.0393700787401574104e-01, 1.7747130188322274291e-01,
220 };
221 
222 #define	fabsf	__fabsf
223 
224 extern float fabsf(float);
225 
226 static const double
227 	A0 = 9.99999997962321453275e-01,
228 	A1 =-4.99999998166077580600e-01,
229 	A2 = 3.75066768969515586277e-01,
230 	A3 =-3.12560092408808548438e-01;
231 
232 static void
233 __vrhypotf_n(int n, float * restrict px, int stridex, float * restrict py,
234 	int stridey, float * restrict pz, int stridez);
235 
236 #pragma no_inline(__vrhypotf_n)
237 
238 #define RETURN(ret)						\
239 {								\
240 	*pz = (ret);						\
241 	pz += stridez;						\
242 	if (n_n == 0)						\
243 	{							\
244 		spx = px; spy = py; spz = pz;			\
245 		ay0 = *(int*)py;				\
246 		continue;					\
247 	}							\
248 	n--;							\
249 	break;							\
250 }
251 
252 
253 void
254 __vrhypotf(int n, float * restrict px, int stridex, float * restrict py,
255 	int stridey, float * restrict pz, int stridez)
256 {
257 	float		*spx, *spy, *spz;
258 	int		ax0, ay0, n_n;
259 	float		res, x0, y0;
260 
261 	while (n > 1)
262 	{
263 		n_n = 0;
264 		spx = px;
265 		spy = py;
266 		spz = pz;
267 		ax0 = *(int*)px;
268 		ay0 = *(int*)py;
269 		for (; n > 1 ; n--)
270 		{
271 			ax0 &= 0x7fffffff;
272 			ay0 &= 0x7fffffff;
273 
274 			px += stridex;
275 
276 			if (ax0 >= 0x7f800000 || ay0 >= 0x7f800000)	/* X or Y = NaN or Inf	*/
277 			{
278 				x0 = *(px - stridex);
279 				y0 = *py;
280 				res = fabsf(x0) + fabsf(y0);
281 				if (ax0 == 0x7f800000) res = 0.0f;
282 				else if (ay0 == 0x7f800000) res = 0.0f;
283 				ax0 = *(int*)px;
284 				py += stridey;
285 				RETURN (res)
286 			}
287 			ax0 = *(int*)px;
288 			py += stridey;
289 			if (ay0 == 0)		/* Y = 0	*/
290 			{
291 				int tx = *(int*)(px - stridex) & 0x7fffffff;
292 				if (tx == 0)	/* X = 0	*/
293 				{
294 					RETURN (1.0f / 0.0f)
295 				}
296 			}
297 			pz += stridez;
298 			n_n++;
299 			ay0 = *(int*)py;
300 		}
301 		if (n_n > 0)
302 			__vrhypotf_n(n_n, spx, stridex, spy, stridey, spz, stridez);
303 	}
304 	if (n > 0)
305 	{
306 		ax0 = *(int*)px;
307 		ay0 = *(int*)py;
308 		x0 = *px;
309 		y0 = *py;
310 
311 		ax0 &= 0x7fffffff;
312 		ay0 &= 0x7fffffff;
313 
314 		if (ax0 >= 0x7f800000 || ay0 >= 0x7f800000)	/* X or Y = NaN or Inf	*/
315 		{
316 			res = fabsf(x0) + fabsf(y0);
317 			if (ax0 == 0x7f800000) res = 0.0f;
318 			else if (ay0 == 0x7f800000) res = 0.0f;
319 			*pz = res;
320 		}
321 		else if (ax0 == 0 && ay0 == 0)	/* X and Y = 0	*/
322 		{
323 			*pz = 1.0f / 0.0f;
324 		}
325 		else
326 		{
327 			double		xx0, res0, hyp0, h_hi0 = 0, dbase0 = 0;
328 			int		ibase0, si0, hyp0h;
329 
330 			hyp0 = x0 * (double)x0 + y0 * (double)y0;
331 
332 			ibase0 = HI(&hyp0);
333 
334 			HI(&dbase0) = (0x60000000 - ((ibase0 & 0x7fe00000) >> 1));
335 
336 			hyp0h = (ibase0 & 0x000fffff) | 0x3ff00000;
337 			HI(&hyp0) = hyp0h;
338 			HI(&h_hi0) = hyp0h & 0x7fffc000;
339 
340 			ibase0 >>= 10;
341 			si0 = ibase0 & 0x7f0;
342 			xx0 = ((double*)((char*)__vlibm_TBL_rhypotf + si0))[0];
343 
344 			xx0 = (hyp0 - h_hi0) * xx0;
345 			res0 = ((double*)((char*)__vlibm_TBL_rhypotf + si0))[1];
346 			res0 *= (((A3 * xx0 + A2) * xx0 + A1) * xx0 + A0);
347 			res0 *= dbase0;
348 			*pz = res0;
349 		}
350 	}
351 }
352 
353 static void
354 __vrhypotf_n(int n, float * restrict px, int stridex, float * restrict py,
355 	int stridey, float * restrict pz, int stridez)
356 {
357 	double		xx0, res0, hyp0, h_hi0 = 0, dbase0 = 0;
358 	double		xx1, res1, hyp1, h_hi1 = 0, dbase1 = 0;
359 	double		xx2, res2, hyp2, h_hi2 = 0, dbase2 = 0;
360 	float		x0, y0;
361 	float		x1, y1;
362 	float		x2, y2;
363 	int		ibase0, si0, hyp0h;
364 	int		ibase1, si1, hyp1h;
365 	int		ibase2, si2, hyp2h;
366 
367 	for (; n > 2 ; n -= 3)
368 	{
369 		x0 = *px;
370 		px += stridex;
371 		x1 = *px;
372 		px += stridex;
373 		x2 = *px;
374 		px += stridex;
375 
376 		y0 = *py;
377 		py += stridey;
378 		y1 = *py;
379 		py += stridey;
380 		y2 = *py;
381 		py += stridey;
382 
383 		hyp0 = x0 * (double)x0 + y0 * (double)y0;
384 		hyp1 = x1 * (double)x1 + y1 * (double)y1;
385 		hyp2 = x2 * (double)x2 + y2 * (double)y2;
386 
387 		ibase0 = HI(&hyp0);
388 		ibase1 = HI(&hyp1);
389 		ibase2 = HI(&hyp2);
390 
391 		HI(&dbase0) = (0x60000000 - ((ibase0 & 0x7fe00000) >> 1));
392 		HI(&dbase1) = (0x60000000 - ((ibase1 & 0x7fe00000) >> 1));
393 		HI(&dbase2) = (0x60000000 - ((ibase2 & 0x7fe00000) >> 1));
394 
395 		hyp0h = (ibase0 & 0x000fffff) | 0x3ff00000;
396 		hyp1h = (ibase1 & 0x000fffff) | 0x3ff00000;
397 		hyp2h = (ibase2 & 0x000fffff) | 0x3ff00000;
398 		HI(&hyp0) = hyp0h;
399 		HI(&hyp1) = hyp1h;
400 		HI(&hyp2) = hyp2h;
401 		HI(&h_hi0) = hyp0h & 0x7fffc000;
402 		HI(&h_hi1) = hyp1h & 0x7fffc000;
403 		HI(&h_hi2) = hyp2h & 0x7fffc000;
404 
405 		ibase0 >>= 10;
406 		ibase1 >>= 10;
407 		ibase2 >>= 10;
408 		si0 = ibase0 & 0x7f0;
409 		si1 = ibase1 & 0x7f0;
410 		si2 = ibase2 & 0x7f0;
411 		xx0 = ((double*)((char*)__vlibm_TBL_rhypotf + si0))[0];
412 		xx1 = ((double*)((char*)__vlibm_TBL_rhypotf + si1))[0];
413 		xx2 = ((double*)((char*)__vlibm_TBL_rhypotf + si2))[0];
414 
415 		xx0 = (hyp0 - h_hi0) * xx0;
416 		xx1 = (hyp1 - h_hi1) * xx1;
417 		xx2 = (hyp2 - h_hi2) * xx2;
418 		res0 = ((double*)((char*)__vlibm_TBL_rhypotf + si0))[1];
419 		res1 = ((double*)((char*)__vlibm_TBL_rhypotf + si1))[1];
420 		res2 = ((double*)((char*)__vlibm_TBL_rhypotf + si2))[1];
421 		res0 *= (((A3 * xx0 + A2) * xx0 + A1) * xx0 + A0);
422 		res1 *= (((A3 * xx1 + A2) * xx1 + A1) * xx1 + A0);
423 		res2 *= (((A3 * xx2 + A2) * xx2 + A1) * xx2 + A0);
424 		res0 *= dbase0;
425 		res1 *= dbase1;
426 		res2 *= dbase2;
427 		*pz = res0;
428 		pz += stridez;
429 		*pz = res1;
430 		pz += stridez;
431 		*pz = res2;
432 		pz += stridez;
433 	}
434 
435 	for (; n > 0 ; n--)
436 	{
437 		x0 = *px;
438 		px += stridex;
439 
440 		y0 = *py;
441 		py += stridey;
442 
443 		hyp0 = x0 * (double)x0 + y0 * (double)y0;
444 
445 		ibase0 = HI(&hyp0);
446 
447 		HI(&dbase0) = (0x60000000 - ((ibase0 & 0x7fe00000) >> 1));
448 
449 		hyp0h = (ibase0 & 0x000fffff) | 0x3ff00000;
450 		HI(&hyp0) = hyp0h;
451 		HI(&h_hi0) = hyp0h & 0x7fffc000;
452 
453 		ibase0 >>= 10;
454 		si0 = ibase0 & 0x7f0;
455 		xx0 = ((double*)((char*)__vlibm_TBL_rhypotf + si0))[0];
456 
457 		xx0 = (hyp0 - h_hi0) * xx0;
458 		res0 = ((double*)((char*)__vlibm_TBL_rhypotf + si0))[1];
459 		res0 *= (((A3 * xx0 + A2) * xx0 + A1) * xx0 + A0);
460 		res0 *= dbase0;
461 		*pz = res0;
462 		pz += stridez;
463 	}
464 }
465 
466