125c28e83SPiotr Jasiukajtis /* 225c28e83SPiotr Jasiukajtis * CDDL HEADER START 325c28e83SPiotr Jasiukajtis * 425c28e83SPiotr Jasiukajtis * The contents of this file are subject to the terms of the 525c28e83SPiotr Jasiukajtis * Common Development and Distribution License (the "License"). 625c28e83SPiotr Jasiukajtis * You may not use this file except in compliance with the License. 725c28e83SPiotr Jasiukajtis * 825c28e83SPiotr Jasiukajtis * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 925c28e83SPiotr Jasiukajtis * or http://www.opensolaris.org/os/licensing. 1025c28e83SPiotr Jasiukajtis * See the License for the specific language governing permissions 1125c28e83SPiotr Jasiukajtis * and limitations under the License. 1225c28e83SPiotr Jasiukajtis * 1325c28e83SPiotr Jasiukajtis * When distributing Covered Code, include this CDDL HEADER in each 1425c28e83SPiotr Jasiukajtis * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 1525c28e83SPiotr Jasiukajtis * If applicable, add the following below this CDDL HEADER, with the 1625c28e83SPiotr Jasiukajtis * fields enclosed by brackets "[]" replaced with your own identifying 1725c28e83SPiotr Jasiukajtis * information: Portions Copyright [yyyy] [name of copyright owner] 1825c28e83SPiotr Jasiukajtis * 1925c28e83SPiotr Jasiukajtis * CDDL HEADER END 2025c28e83SPiotr Jasiukajtis */ 2125c28e83SPiotr Jasiukajtis 2225c28e83SPiotr Jasiukajtis /* 2325c28e83SPiotr Jasiukajtis * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 2425c28e83SPiotr Jasiukajtis */ 2525c28e83SPiotr Jasiukajtis /* 2625c28e83SPiotr Jasiukajtis * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 2725c28e83SPiotr Jasiukajtis * Use is subject to license terms. 2825c28e83SPiotr Jasiukajtis */ 2925c28e83SPiotr Jasiukajtis 30*ddc0e0b5SRichard Lowe #pragma weak __csqrt = csqrt 3125c28e83SPiotr Jasiukajtis 3225c28e83SPiotr Jasiukajtis /* INDENT OFF */ 3325c28e83SPiotr Jasiukajtis /* 3425c28e83SPiotr Jasiukajtis * dcomplex csqrt(dcomplex z); 3525c28e83SPiotr Jasiukajtis * 3625c28e83SPiotr Jasiukajtis * 2 2 2 3725c28e83SPiotr Jasiukajtis * Let w=r+i*s = sqrt(x+iy). Then (r + i s) = r - s + i 2sr = x + i y. 3825c28e83SPiotr Jasiukajtis * 3925c28e83SPiotr Jasiukajtis * Hence x = r*r-s*s, y = 2sr. 4025c28e83SPiotr Jasiukajtis * 4125c28e83SPiotr Jasiukajtis * Note that x*x+y*y = (s*s+r*r)**2. Thus, we have 4225c28e83SPiotr Jasiukajtis * ________ 4325c28e83SPiotr Jasiukajtis * 2 2 / 2 2 4425c28e83SPiotr Jasiukajtis * (1) r + s = \/ x + y , 4525c28e83SPiotr Jasiukajtis * 4625c28e83SPiotr Jasiukajtis * 2 2 4725c28e83SPiotr Jasiukajtis * (2) r - s = x 4825c28e83SPiotr Jasiukajtis * 4925c28e83SPiotr Jasiukajtis * (3) 2sr = y. 5025c28e83SPiotr Jasiukajtis * 5125c28e83SPiotr Jasiukajtis * Perform (1)-(2) and (1)+(2), we obtain 5225c28e83SPiotr Jasiukajtis * 5325c28e83SPiotr Jasiukajtis * 2 5425c28e83SPiotr Jasiukajtis * (4) 2 r = hypot(x,y)+x, 5525c28e83SPiotr Jasiukajtis * 5625c28e83SPiotr Jasiukajtis * 2 5725c28e83SPiotr Jasiukajtis * (5) 2*s = hypot(x,y)-x 5825c28e83SPiotr Jasiukajtis * ________ 5925c28e83SPiotr Jasiukajtis * / 2 2 6025c28e83SPiotr Jasiukajtis * where hypot(x,y) = \/ x + y . 6125c28e83SPiotr Jasiukajtis * 6225c28e83SPiotr Jasiukajtis * In order to avoid numerical cancellation, we use formula (4) for 6325c28e83SPiotr Jasiukajtis * positive x, and (5) for negative x. The other component is then 6425c28e83SPiotr Jasiukajtis * computed by formula (3). 6525c28e83SPiotr Jasiukajtis * 6625c28e83SPiotr Jasiukajtis * 6725c28e83SPiotr Jasiukajtis * ALGORITHM 6825c28e83SPiotr Jasiukajtis * ------------------ 6925c28e83SPiotr Jasiukajtis * 7025c28e83SPiotr Jasiukajtis * (assume x and y are of medium size, i.e., no over/underflow in squaring) 7125c28e83SPiotr Jasiukajtis * 7225c28e83SPiotr Jasiukajtis * If x >=0 then 7325c28e83SPiotr Jasiukajtis * ________ 7425c28e83SPiotr Jasiukajtis * / 2 2 7525c28e83SPiotr Jasiukajtis * 2 \/ x + y + x y 7625c28e83SPiotr Jasiukajtis * r = ---------------------, s = -------; (6) 7725c28e83SPiotr Jasiukajtis * 2 2 r 7825c28e83SPiotr Jasiukajtis * 7925c28e83SPiotr Jasiukajtis * (note that we choose sign(s) = sign(y) to force r >=0). 8025c28e83SPiotr Jasiukajtis * Otherwise, 8125c28e83SPiotr Jasiukajtis * ________ 8225c28e83SPiotr Jasiukajtis * / 2 2 8325c28e83SPiotr Jasiukajtis * 2 \/ x + y - x y 8425c28e83SPiotr Jasiukajtis * s = ---------------------, r = -------; (7) 8525c28e83SPiotr Jasiukajtis * 2 2 s 8625c28e83SPiotr Jasiukajtis * 8725c28e83SPiotr Jasiukajtis * EXCEPTION: 8825c28e83SPiotr Jasiukajtis * 8925c28e83SPiotr Jasiukajtis * One may use the polar coordinate of a complex number to justify the 9025c28e83SPiotr Jasiukajtis * following exception cases: 9125c28e83SPiotr Jasiukajtis * 9225c28e83SPiotr Jasiukajtis * EXCEPTION CASES (conform to ISO/IEC 9899:1999(E)): 9325c28e83SPiotr Jasiukajtis * csqrt(+-0+ i 0 ) = 0 + i 0 9425c28e83SPiotr Jasiukajtis * csqrt( x + i inf ) = inf + i inf for all x (including NaN) 9525c28e83SPiotr Jasiukajtis * csqrt( x + i NaN ) = NaN + i NaN with invalid for finite x 9625c28e83SPiotr Jasiukajtis * csqrt(-inf+ iy ) = 0 + i inf for finite positive-signed y 9725c28e83SPiotr Jasiukajtis * csqrt(+inf+ iy ) = inf + i 0 for finite positive-signed y 9825c28e83SPiotr Jasiukajtis * csqrt(-inf+ i NaN) = NaN +-i inf 9925c28e83SPiotr Jasiukajtis * csqrt(+inf+ i NaN) = inf + i NaN 10025c28e83SPiotr Jasiukajtis * csqrt(NaN + i y ) = NaN + i NaN for finite y 10125c28e83SPiotr Jasiukajtis * csqrt(NaN + i NaN) = NaN + i NaN 10225c28e83SPiotr Jasiukajtis */ 10325c28e83SPiotr Jasiukajtis /* INDENT ON */ 10425c28e83SPiotr Jasiukajtis 10525c28e83SPiotr Jasiukajtis #include "libm.h" /* fabs/sqrt */ 10625c28e83SPiotr Jasiukajtis #include "complex_wrapper.h" 10725c28e83SPiotr Jasiukajtis 10825c28e83SPiotr Jasiukajtis /* INDENT OFF */ 10925c28e83SPiotr Jasiukajtis static const double 11025c28e83SPiotr Jasiukajtis two300 = 2.03703597633448608627e+90, 11125c28e83SPiotr Jasiukajtis twom300 = 4.90909346529772655310e-91, 11225c28e83SPiotr Jasiukajtis two599 = 2.07475778444049647926e+180, 11325c28e83SPiotr Jasiukajtis twom601 = 1.20495993255144205887e-181, 11425c28e83SPiotr Jasiukajtis two = 2.0, 11525c28e83SPiotr Jasiukajtis zero = 0.0, 11625c28e83SPiotr Jasiukajtis half = 0.5; 11725c28e83SPiotr Jasiukajtis /* INDENT ON */ 11825c28e83SPiotr Jasiukajtis 11925c28e83SPiotr Jasiukajtis dcomplex 12025c28e83SPiotr Jasiukajtis csqrt(dcomplex z) { 12125c28e83SPiotr Jasiukajtis dcomplex ans; 12225c28e83SPiotr Jasiukajtis double x, y, t, ax, ay; 12325c28e83SPiotr Jasiukajtis int n, ix, iy, hx, hy, lx, ly; 12425c28e83SPiotr Jasiukajtis 12525c28e83SPiotr Jasiukajtis x = D_RE(z); 12625c28e83SPiotr Jasiukajtis y = D_IM(z); 12725c28e83SPiotr Jasiukajtis hx = HI_WORD(x); 12825c28e83SPiotr Jasiukajtis lx = LO_WORD(x); 12925c28e83SPiotr Jasiukajtis hy = HI_WORD(y); 13025c28e83SPiotr Jasiukajtis ly = LO_WORD(y); 13125c28e83SPiotr Jasiukajtis ix = hx & 0x7fffffff; 13225c28e83SPiotr Jasiukajtis iy = hy & 0x7fffffff; 13325c28e83SPiotr Jasiukajtis ay = fabs(y); 13425c28e83SPiotr Jasiukajtis ax = fabs(x); 13525c28e83SPiotr Jasiukajtis if (ix >= 0x7ff00000 || iy >= 0x7ff00000) { 13625c28e83SPiotr Jasiukajtis /* x or y is Inf or NaN */ 13725c28e83SPiotr Jasiukajtis if (ISINF(iy, ly)) 13825c28e83SPiotr Jasiukajtis D_IM(ans) = D_RE(ans) = ay; 13925c28e83SPiotr Jasiukajtis else if (ISINF(ix, lx)) { 14025c28e83SPiotr Jasiukajtis if (hx > 0) { 14125c28e83SPiotr Jasiukajtis D_RE(ans) = ax; 14225c28e83SPiotr Jasiukajtis D_IM(ans) = ay * zero; 14325c28e83SPiotr Jasiukajtis } else { 14425c28e83SPiotr Jasiukajtis D_RE(ans) = ay * zero; 14525c28e83SPiotr Jasiukajtis D_IM(ans) = ax; 14625c28e83SPiotr Jasiukajtis } 14725c28e83SPiotr Jasiukajtis } else 14825c28e83SPiotr Jasiukajtis D_IM(ans) = D_RE(ans) = ax + ay; 14925c28e83SPiotr Jasiukajtis } else if ((iy | ly) == 0) { /* y = 0 */ 15025c28e83SPiotr Jasiukajtis if (hx >= 0) { 15125c28e83SPiotr Jasiukajtis D_RE(ans) = sqrt(ax); 15225c28e83SPiotr Jasiukajtis D_IM(ans) = zero; 15325c28e83SPiotr Jasiukajtis } else { 15425c28e83SPiotr Jasiukajtis D_IM(ans) = sqrt(ax); 15525c28e83SPiotr Jasiukajtis D_RE(ans) = zero; 15625c28e83SPiotr Jasiukajtis } 15725c28e83SPiotr Jasiukajtis } else if (ix >= iy) { 15825c28e83SPiotr Jasiukajtis n = (ix - iy) >> 20; 15925c28e83SPiotr Jasiukajtis if (n >= 30) { /* x >> y or y=0 */ 16025c28e83SPiotr Jasiukajtis t = sqrt(ax); 16125c28e83SPiotr Jasiukajtis } else if (ix >= 0x5f300000) { /* x > 2**500 */ 16225c28e83SPiotr Jasiukajtis ax *= twom601; 16325c28e83SPiotr Jasiukajtis y *= twom601; 16425c28e83SPiotr Jasiukajtis t = two300 * sqrt(ax + sqrt(ax * ax + y * y)); 16525c28e83SPiotr Jasiukajtis } else if (iy < 0x20b00000) { /* y < 2**-500 */ 16625c28e83SPiotr Jasiukajtis ax *= two599; 16725c28e83SPiotr Jasiukajtis y *= two599; 16825c28e83SPiotr Jasiukajtis t = twom300 * sqrt(ax + sqrt(ax * ax + y * y)); 16925c28e83SPiotr Jasiukajtis } else 17025c28e83SPiotr Jasiukajtis t = sqrt(half * (ax + sqrt(ax * ax + ay * ay))); 17125c28e83SPiotr Jasiukajtis if (hx >= 0) { 17225c28e83SPiotr Jasiukajtis D_RE(ans) = t; 17325c28e83SPiotr Jasiukajtis D_IM(ans) = ay / (t + t); 17425c28e83SPiotr Jasiukajtis } else { 17525c28e83SPiotr Jasiukajtis D_IM(ans) = t; 17625c28e83SPiotr Jasiukajtis D_RE(ans) = ay / (t + t); 17725c28e83SPiotr Jasiukajtis } 17825c28e83SPiotr Jasiukajtis } else { 17925c28e83SPiotr Jasiukajtis n = (iy - ix) >> 20; 18025c28e83SPiotr Jasiukajtis if (n >= 30) { /* y >> x */ 18125c28e83SPiotr Jasiukajtis if (n >= 60) 18225c28e83SPiotr Jasiukajtis t = sqrt(half * ay); 18325c28e83SPiotr Jasiukajtis else if (iy >= 0x7fe00000) 18425c28e83SPiotr Jasiukajtis t = sqrt(half * ay + half * ax); 18525c28e83SPiotr Jasiukajtis else if (ix <= 0x00100000) 18625c28e83SPiotr Jasiukajtis t = half * sqrt(two * (ay + ax)); 18725c28e83SPiotr Jasiukajtis else 18825c28e83SPiotr Jasiukajtis t = sqrt(half * (ay + ax)); 18925c28e83SPiotr Jasiukajtis } else if (iy >= 0x5f300000) { /* y > 2**500 */ 19025c28e83SPiotr Jasiukajtis ax *= twom601; 19125c28e83SPiotr Jasiukajtis y *= twom601; 19225c28e83SPiotr Jasiukajtis t = two300 * sqrt(ax + sqrt(ax * ax + y * y)); 19325c28e83SPiotr Jasiukajtis } else if (ix < 0x20b00000) { /* x < 2**-500 */ 19425c28e83SPiotr Jasiukajtis ax *= two599; 19525c28e83SPiotr Jasiukajtis y *= two599; 19625c28e83SPiotr Jasiukajtis t = twom300 * sqrt(ax + sqrt(ax * ax + y * y)); 19725c28e83SPiotr Jasiukajtis } else 19825c28e83SPiotr Jasiukajtis t = sqrt(half * (ax + sqrt(ax * ax + ay * ay))); 19925c28e83SPiotr Jasiukajtis if (hx >= 0) { 20025c28e83SPiotr Jasiukajtis D_RE(ans) = t; 20125c28e83SPiotr Jasiukajtis D_IM(ans) = ay / (t + t); 20225c28e83SPiotr Jasiukajtis } else { 20325c28e83SPiotr Jasiukajtis D_IM(ans) = t; 20425c28e83SPiotr Jasiukajtis D_RE(ans) = ay / (t + t); 20525c28e83SPiotr Jasiukajtis } 20625c28e83SPiotr Jasiukajtis } 20725c28e83SPiotr Jasiukajtis if (hy < 0) 20825c28e83SPiotr Jasiukajtis D_IM(ans) = -D_IM(ans); 20925c28e83SPiotr Jasiukajtis return (ans); 21025c28e83SPiotr Jasiukajtis } 211