xref: /titanic_52/usr/src/lib/libm/common/Q/jnl.c (revision 25c28e83beb90e7c80452a7c818c5e6f73a07dc8)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
24  */
25 /*
26  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
27  * Use is subject to license terms.
28  */
29 
30 #if defined(ELFOBJ)
31 #pragma weak jnl = __jnl
32 #pragma weak ynl = __ynl
33 #endif
34 
35 /*
36  * floating point Bessel's function of the 1st and 2nd kind
37  * of order n: jn(n,x),yn(n,x);
38  *
39  * Special cases:
40  *	y0(0)=y1(0)=yn(n,0) = -inf with division by zero signal;
41  *	y0(-ve)=y1(-ve)=yn(n,-ve) are NaN with invalid signal.
42  * Note 2. About jn(n,x), yn(n,x)
43  *	For n=0, j0(x) is called,
44  *	for n=1, j1(x) is called,
45  *	for n<x, forward recursion us used starting
46  *	from values of j0(x) and j1(x).
47  *	for n>x, a continued fraction approximation to
48  *	j(n,x)/j(n-1,x) is evaluated and then backward
49  *	recursion is used starting from a supposed value
50  *	for j(n,x). The resulting value of j(0,x) is
51  *	compared with the actual value to correct the
52  *	supposed value of j(n,x).
53  *
54  *	yn(n,x) is similar in all respects, except
55  *	that forward recursion is used for all
56  *	values of n>1.
57  *
58  */
59 
60 #include "libm.h"
61 #include "longdouble.h"
62 #include <float.h>	/* LDBL_MAX */
63 
64 #define	GENERIC long double
65 
66 static const GENERIC
67 invsqrtpi = 5.641895835477562869480794515607725858441e-0001L,
68 two  = 2.0L,
69 zero = 0.0L,
70 one  = 1.0L;
71 
72 GENERIC
73 jnl(n, x) int n; GENERIC x; {
74 	int i, sgn;
75 	GENERIC a, b, temp, z, w;
76 
77 	/*
78 	 * J(-n,x) = (-1)^n * J(n, x), J(n, -x) = (-1)^n * J(n, x)
79 	 * Thus, J(-n,x) = J(n,-x)
80 	 */
81 	if (n < 0) {
82 		n = -n;
83 		x = -x;
84 	}
85 	if (n == 0)
86 		return (j0l(x));
87 	if (n == 1)
88 		return (j1l(x));
89 	if (x != x)
90 		return (x+x);
91 	if ((n&1) == 0)
92 		sgn = 0; 			/* even n */
93 	else
94 		sgn = signbitl(x);	/* old n  */
95 	x = fabsl(x);
96 	if (x == zero || !finitel(x)) b = zero;
97 	else if ((GENERIC)n <= x) {
98 					/*
99 					 * Safe to use
100 					 * J(n+1,x)=2n/x *J(n,x)-J(n-1,x)
101 					 */
102 	    if (x > 1.0e91L) {
103 				/*
104 				 * x >> n**2
105 				 *  Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
106 				 *   Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
107 				 *   Let s=sin(x), c=cos(x),
108 				 *	xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
109 				 *
110 				 *	   n	sin(xn)*sqt2	cos(xn)*sqt2
111 				 *	----------------------------------
112 				 *	   0	 s-c		 c+s
113 				 *	   1	-s-c 		-c+s
114 				 *	   2	-s+c		-c-s
115 				 *	   3	 s+c		 c-s
116 				 */
117 		switch (n&3) {
118 		    case 0: temp =  cosl(x)+sinl(x); break;
119 		    case 1: temp = -cosl(x)+sinl(x); break;
120 		    case 2: temp = -cosl(x)-sinl(x); break;
121 		    case 3: temp =  cosl(x)-sinl(x); break;
122 		}
123 		b = invsqrtpi*temp/sqrtl(x);
124 	    } else {
125 			a = j0l(x);
126 			b = j1l(x);
127 			for (i = 1; i < n; i++) {
128 		    temp = b;
129 		    b = b*((GENERIC)(i+i)/x) - a; /* avoid underflow */
130 		    a = temp;
131 			}
132 	    }
133 	} else {
134 	    if (x < 1e-17L) {	/* use J(n,x) = 1/n!*(x/2)^n */
135 		b = powl(0.5L*x, (GENERIC)n);
136 		if (b != zero) {
137 		    for (a = one, i = 1; i <= n; i++) a *= (GENERIC)i;
138 		    b = b/a;
139 		}
140 	    } else {
141 		/* use backward recurrence */
142 		/*
143 		 * 			x      x^2      x^2
144 		 *  J(n,x)/J(n-1,x) =  ----   ------   ------   .....
145 		 *			2n  - 2(n+1) - 2(n+2)
146 		 *
147 		 * 			1      1        1
148 		 *  (for large x)   =  ----  ------   ------   .....
149 		 *			2n   2(n+1)   2(n+2)
150 		 *			-- - ------ - ------ -
151 		 *			 x     x         x
152 		 *
153 		 * Let w = 2n/x and h=2/x, then the above quotient
154 		 * is equal to the continued fraction:
155 		 *		    1
156 		 *	= -----------------------
157 		 *		       1
158 		 *	   w - -----------------
159 		 *			  1
160 		 * 	        w+h - ---------
161 		 *		       w+2h - ...
162 		 *
163 		 * To determine how many terms needed, let
164 		 * Q(0) = w, Q(1) = w(w+h) - 1,
165 		 * Q(k) = (w+k*h)*Q(k-1) - Q(k-2),
166 		 * When Q(k) > 1e4	good for single
167 		 * When Q(k) > 1e9	good for double
168 		 * When Q(k) > 1e17	good for quaduple
169 		 */
170 	    /* determin k */
171 		GENERIC t, v;
172 		double q0, q1, h, tmp; int k, m;
173 		w  = (n+n)/(double)x; h = 2.0/(double)x;
174 		q0 = w;  z = w+h; q1 = w*z - 1.0; k = 1;
175 		while (q1 < 1.0e17) {
176 			k += 1; z += h;
177 			tmp = z*q1 - q0;
178 			q0 = q1;
179 			q1 = tmp;
180 		}
181 		m = n+n;
182 		for (t = zero, i = 2*(n+k); i >= m; i -= 2) t = one/(i/x-t);
183 		a = t;
184 		b = one;
185                 /*
186 		 * estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n)
187                  * hence, if n*(log(2n/x)) > ...
188                  *  single 8.8722839355e+01
189                  *  double 7.09782712893383973096e+02
190                  *  long double 1.1356523406294143949491931077970765006170e+04
191                  *  then recurrent value may overflow and the result is
192                  *  likely underflow to zero
193                  */
194 		tmp = n;
195 		v = two/x;
196 		tmp = tmp*logl(fabsl(v*tmp));
197 		if (tmp < 1.1356523406294143949491931077970765e+04L) {
198 				for (i = n-1; i > 0; i--) {
199 		        temp = b;
200 		        b = ((i+i)/x)*b - a;
201 		        a = temp;
202 	     	    }
203 		} else {
204 				for (i = n-1; i > 0; i--) {
205 		        temp = b;
206 		        b = ((i+i)/x)*b - a;
207 		        a = temp;
208 			if (b > 1e1000L) {
209                             a /= b;
210                             t /= b;
211                             b  = 1.0;
212                         }
213 	     	    }
214 		}
215 	    	b = (t*j0l(x)/b);
216 	    }
217 	}
218 	if (sgn == 1)
219 		return (-b);
220 	else
221 		return (b);
222 }
223 
224 GENERIC ynl(n, x)
225 int n; GENERIC x; {
226 	int i;
227 	int sign;
228 	GENERIC a, b, temp;
229 
230 	if (x != x)
231 		return (x+x);
232 	if (x <= zero) {
233 		if (x == zero)
234 			return (-one/zero);
235 		else
236 			return (zero/zero);
237 	}
238 	sign = 1;
239 	if (n < 0) {
240 		n = -n;
241 		if ((n&1) == 1) sign = -1;
242 	}
243 	if (n == 0)
244 		return (y0l(x));
245 	if (n == 1)
246 		return (sign*y1l(x));
247 	if (!finitel(x))
248 		return (zero);
249 
250 	if (x > 1.0e91L) {	/* x >> n**2
251 				    Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
252 				    Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
253 				    Let s = sin(x), c = cos(x),
254 					xn = x-(2n+1)*pi/4, sqt2 = sqrt(2), then
255 
256 					   n	sin(xn)*sqt2	cos(xn)*sqt2
257 					----------------------------------
258 					   0	 s-c		 c+s
259 					   1	-s-c 		-c+s
260 					   2	-s+c		-c-s
261 					   3	 s+c		 c-s
262 				 */
263 		switch (n&3) {
264 		    case 0: temp =  sinl(x)-cosl(x); break;
265 		    case 1: temp = -sinl(x)-cosl(x); break;
266 		    case 2: temp = -sinl(x)+cosl(x); break;
267 		    case 3: temp =  sinl(x)+cosl(x); break;
268 		}
269 		b = invsqrtpi*temp/sqrtl(x);
270 	} else {
271 		a = y0l(x);
272 		b = y1l(x);
273 		/*
274 		 * fix 1262058 and take care of non-default rounding
275 		 */
276 		for (i = 1; i < n; i++) {
277 			temp = b;
278 			b *= (GENERIC) (i + i) / x;
279 			if (b <= -LDBL_MAX)
280 				break;
281 			b -= a;
282 			a = temp;
283 		}
284 	}
285 	if (sign > 0)
286 		return (b);
287 	else
288 		return (-b);
289 }
290