125c28e83SPiotr Jasiukajtis /* 225c28e83SPiotr Jasiukajtis * CDDL HEADER START 325c28e83SPiotr Jasiukajtis * 425c28e83SPiotr Jasiukajtis * The contents of this file are subject to the terms of the 525c28e83SPiotr Jasiukajtis * Common Development and Distribution License (the "License"). 625c28e83SPiotr Jasiukajtis * You may not use this file except in compliance with the License. 725c28e83SPiotr Jasiukajtis * 825c28e83SPiotr Jasiukajtis * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 925c28e83SPiotr Jasiukajtis * or http://www.opensolaris.org/os/licensing. 1025c28e83SPiotr Jasiukajtis * See the License for the specific language governing permissions 1125c28e83SPiotr Jasiukajtis * and limitations under the License. 1225c28e83SPiotr Jasiukajtis * 1325c28e83SPiotr Jasiukajtis * When distributing Covered Code, include this CDDL HEADER in each 1425c28e83SPiotr Jasiukajtis * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 1525c28e83SPiotr Jasiukajtis * If applicable, add the following below this CDDL HEADER, with the 1625c28e83SPiotr Jasiukajtis * fields enclosed by brackets "[]" replaced with your own identifying 1725c28e83SPiotr Jasiukajtis * information: Portions Copyright [yyyy] [name of copyright owner] 1825c28e83SPiotr Jasiukajtis * 1925c28e83SPiotr Jasiukajtis * CDDL HEADER END 2025c28e83SPiotr Jasiukajtis */ 2125c28e83SPiotr Jasiukajtis 2225c28e83SPiotr Jasiukajtis /* 2325c28e83SPiotr Jasiukajtis * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 2425c28e83SPiotr Jasiukajtis */ 2525c28e83SPiotr Jasiukajtis /* 2625c28e83SPiotr Jasiukajtis * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 2725c28e83SPiotr Jasiukajtis * Use is subject to license terms. 2825c28e83SPiotr Jasiukajtis */ 2925c28e83SPiotr Jasiukajtis 30*ddc0e0b5SRichard Lowe #pragma weak __expm1l = expm1l 31*ddc0e0b5SRichard Lowe 3225c28e83SPiotr Jasiukajtis #if !defined(__sparc) 3325c28e83SPiotr Jasiukajtis #error Unsupported architecture 3425c28e83SPiotr Jasiukajtis #endif 3525c28e83SPiotr Jasiukajtis 3625c28e83SPiotr Jasiukajtis /* 3725c28e83SPiotr Jasiukajtis * expm1l(x) 3825c28e83SPiotr Jasiukajtis * 3925c28e83SPiotr Jasiukajtis * Table driven method 4025c28e83SPiotr Jasiukajtis * Written by K.C. Ng, June 1995. 4125c28e83SPiotr Jasiukajtis * Algorithm : 4225c28e83SPiotr Jasiukajtis * 1. expm1(x) = x if x<2**-114 4325c28e83SPiotr Jasiukajtis * 2. if |x| <= 0.0625 = 1/16, use approximation 4425c28e83SPiotr Jasiukajtis * expm1(x) = x + x*P/(2-P) 4525c28e83SPiotr Jasiukajtis * where 4625c28e83SPiotr Jasiukajtis * P = x - z*(P1+z*(P2+z*(P3+z*(P4+z*(P5+z*P6+z*P7))))), z = x*x; 4725c28e83SPiotr Jasiukajtis * (this formula is derived from 4825c28e83SPiotr Jasiukajtis * 2-P+x = R = x*(exp(x)+1)/(exp(x)-1) ~ 2 + x*x/6 - x^4/360 + ...) 4925c28e83SPiotr Jasiukajtis * 5025c28e83SPiotr Jasiukajtis * P1 = 1.66666666666666666666666666666638500528074603030e-0001 5125c28e83SPiotr Jasiukajtis * P2 = -2.77777777777777777777777759668391122822266551158e-0003 5225c28e83SPiotr Jasiukajtis * P3 = 6.61375661375661375657437408890138814721051293054e-0005 5325c28e83SPiotr Jasiukajtis * P4 = -1.65343915343915303310185228411892601606669528828e-0006 5425c28e83SPiotr Jasiukajtis * P5 = 4.17535139755122945763580609663414647067443411178e-0008 5525c28e83SPiotr Jasiukajtis * P6 = -1.05683795988668526689182102605260986731620026832e-0009 5625c28e83SPiotr Jasiukajtis * P7 = 2.67544168821852702827123344217198187229611470514e-0011 5725c28e83SPiotr Jasiukajtis * 5825c28e83SPiotr Jasiukajtis * Accuracy: |R-x*(exp(x)+1)/(exp(x)-1)|<=2**-119.13 5925c28e83SPiotr Jasiukajtis * 6025c28e83SPiotr Jasiukajtis * 3. For 1/16 < |x| < 1.125, choose x(+-i) ~ +-(i+4.5)/64, i=0,..,67 6125c28e83SPiotr Jasiukajtis * since 6225c28e83SPiotr Jasiukajtis * exp(x) = exp(xi+(x-xi))= exp(xi)*exp((x-xi)) 6325c28e83SPiotr Jasiukajtis * we have 6425c28e83SPiotr Jasiukajtis * expm1(x) = expm1(xi)+(exp(xi))*(expm1(x-xi)) 6525c28e83SPiotr Jasiukajtis * where 6625c28e83SPiotr Jasiukajtis * |s=x-xi| <= 1/128 6725c28e83SPiotr Jasiukajtis * and 6825c28e83SPiotr Jasiukajtis * expm1(s)=2s/(2-R), R= s-s^2*(T1+s^2*(T2+s^2*(T3+s^2*(T4+s^2*T5)))) 6925c28e83SPiotr Jasiukajtis * 7025c28e83SPiotr Jasiukajtis * T1 = 1.666666666666666666666666666660876387437e-1L, 7125c28e83SPiotr Jasiukajtis * T2 = -2.777777777777777777777707812093173478756e-3L, 7225c28e83SPiotr Jasiukajtis * T3 = 6.613756613756613482074280932874221202424e-5L, 7325c28e83SPiotr Jasiukajtis * T4 = -1.653439153392139954169609822742235851120e-6L, 7425c28e83SPiotr Jasiukajtis * T5 = 4.175314851769539751387852116610973796053e-8L; 7525c28e83SPiotr Jasiukajtis * 7625c28e83SPiotr Jasiukajtis * 4. For |x| >= 1.125, return exp(x)-1. 7725c28e83SPiotr Jasiukajtis * (see algorithm for exp) 7825c28e83SPiotr Jasiukajtis * 7925c28e83SPiotr Jasiukajtis * Special cases: 8025c28e83SPiotr Jasiukajtis * expm1l(INF) is INF, expm1l(NaN) is NaN; 8125c28e83SPiotr Jasiukajtis * expm1l(-INF)= -1; 8225c28e83SPiotr Jasiukajtis * for finite argument, only expm1l(0)=0 is exact. 8325c28e83SPiotr Jasiukajtis * 8425c28e83SPiotr Jasiukajtis * Accuracy: 8525c28e83SPiotr Jasiukajtis * according to an error analysis, the error is always less than 8625c28e83SPiotr Jasiukajtis * 2 ulp (unit in the last place). 8725c28e83SPiotr Jasiukajtis * 8825c28e83SPiotr Jasiukajtis * Misc. info. 8925c28e83SPiotr Jasiukajtis * For 113 bit long double 9025c28e83SPiotr Jasiukajtis * if x > 1.135652340629414394949193107797076342845e+4 9125c28e83SPiotr Jasiukajtis * then expm1l(x) overflow; 9225c28e83SPiotr Jasiukajtis * 9325c28e83SPiotr Jasiukajtis * Constants: 9425c28e83SPiotr Jasiukajtis * Only decimal values are given. We assume that the compiler will convert 9525c28e83SPiotr Jasiukajtis * from decimal to binary accurately enough to produce the correct 9625c28e83SPiotr Jasiukajtis * hexadecimal values. 9725c28e83SPiotr Jasiukajtis */ 9825c28e83SPiotr Jasiukajtis 9925c28e83SPiotr Jasiukajtis #include "libm.h" 10025c28e83SPiotr Jasiukajtis 10125c28e83SPiotr Jasiukajtis extern const long double _TBL_expl_hi[], _TBL_expl_lo[]; 10225c28e83SPiotr Jasiukajtis extern const long double _TBL_expm1lx[], _TBL_expm1l[]; 10325c28e83SPiotr Jasiukajtis 10425c28e83SPiotr Jasiukajtis static const long double 10525c28e83SPiotr Jasiukajtis zero = +0.0L, 10625c28e83SPiotr Jasiukajtis one = +1.0L, 10725c28e83SPiotr Jasiukajtis two = +2.0L, 10825c28e83SPiotr Jasiukajtis ln2_64 = +1.083042469624914545964425189778400898568e-2L, 10925c28e83SPiotr Jasiukajtis ovflthreshold = +1.135652340629414394949193107797076342845e+4L, 11025c28e83SPiotr Jasiukajtis invln2_32 = +4.616624130844682903551758979206054839765e+1L, 11125c28e83SPiotr Jasiukajtis ln2_32hi = +2.166084939249829091928849858592451515688e-2L, 11225c28e83SPiotr Jasiukajtis ln2_32lo = +5.209643502595475652782654157501186731779e-27L, 11325c28e83SPiotr Jasiukajtis huge = +1.0e4000L, 11425c28e83SPiotr Jasiukajtis tiny = +1.0e-4000L, 11525c28e83SPiotr Jasiukajtis P1 = +1.66666666666666666666666666666638500528074603030e-0001L, 11625c28e83SPiotr Jasiukajtis P2 = -2.77777777777777777777777759668391122822266551158e-0003L, 11725c28e83SPiotr Jasiukajtis P3 = +6.61375661375661375657437408890138814721051293054e-0005L, 11825c28e83SPiotr Jasiukajtis P4 = -1.65343915343915303310185228411892601606669528828e-0006L, 11925c28e83SPiotr Jasiukajtis P5 = +4.17535139755122945763580609663414647067443411178e-0008L, 12025c28e83SPiotr Jasiukajtis P6 = -1.05683795988668526689182102605260986731620026832e-0009L, 12125c28e83SPiotr Jasiukajtis P7 = +2.67544168821852702827123344217198187229611470514e-0011L, 12225c28e83SPiotr Jasiukajtis /* rational approximation coeffs for [-(ln2)/64,(ln2)/64] */ 12325c28e83SPiotr Jasiukajtis T1 = +1.666666666666666666666666666660876387437e-1L, 12425c28e83SPiotr Jasiukajtis T2 = -2.777777777777777777777707812093173478756e-3L, 12525c28e83SPiotr Jasiukajtis T3 = +6.613756613756613482074280932874221202424e-5L, 12625c28e83SPiotr Jasiukajtis T4 = -1.653439153392139954169609822742235851120e-6L, 12725c28e83SPiotr Jasiukajtis T5 = +4.175314851769539751387852116610973796053e-8L; 12825c28e83SPiotr Jasiukajtis 12925c28e83SPiotr Jasiukajtis long double 13025c28e83SPiotr Jasiukajtis expm1l(long double x) { 13125c28e83SPiotr Jasiukajtis int hx, ix, j, k, m; 13225c28e83SPiotr Jasiukajtis long double t, r, s, w; 13325c28e83SPiotr Jasiukajtis 13425c28e83SPiotr Jasiukajtis hx = ((int *) &x)[HIXWORD]; 13525c28e83SPiotr Jasiukajtis ix = hx & ~0x80000000; 13625c28e83SPiotr Jasiukajtis if (ix >= 0x7fff0000) { 13725c28e83SPiotr Jasiukajtis if (x != x) 13825c28e83SPiotr Jasiukajtis return (x + x); /* NaN */ 13925c28e83SPiotr Jasiukajtis if (x < zero) 14025c28e83SPiotr Jasiukajtis return (-one); /* -inf */ 14125c28e83SPiotr Jasiukajtis return (x); /* +inf */ 14225c28e83SPiotr Jasiukajtis } 14325c28e83SPiotr Jasiukajtis if (ix < 0x3fff4000) { /* |x| < 1.25 */ 14425c28e83SPiotr Jasiukajtis if (ix < 0x3ffb0000) { /* |x| < 0.0625 */ 14525c28e83SPiotr Jasiukajtis if (ix < 0x3f8d0000) { 14625c28e83SPiotr Jasiukajtis if ((int) x == 0) 14725c28e83SPiotr Jasiukajtis return (x); /* |x|<2^-114 */ 14825c28e83SPiotr Jasiukajtis } 14925c28e83SPiotr Jasiukajtis t = x * x; 15025c28e83SPiotr Jasiukajtis r = (x - t * (P1 + t * (P2 + t * (P3 + t * (P4 + t * 15125c28e83SPiotr Jasiukajtis (P5 + t * (P6 + t * P7))))))); 15225c28e83SPiotr Jasiukajtis return (x + (x * r) / (two - r)); 15325c28e83SPiotr Jasiukajtis } 15425c28e83SPiotr Jasiukajtis /* compute i = [64*x] */ 15525c28e83SPiotr Jasiukajtis m = 0x4009 - (ix >> 16); 15625c28e83SPiotr Jasiukajtis j = ((ix & 0x0000ffff) | 0x10000) >> m; /* j=4,...,67 */ 15725c28e83SPiotr Jasiukajtis if (hx < 0) 15825c28e83SPiotr Jasiukajtis j += 82; /* negative */ 15925c28e83SPiotr Jasiukajtis s = x - _TBL_expm1lx[j]; 16025c28e83SPiotr Jasiukajtis t = s * s; 16125c28e83SPiotr Jasiukajtis r = s - t * (T1 + t * (T2 + t * (T3 + t * (T4 + t * T5)))); 16225c28e83SPiotr Jasiukajtis r = (s + s) / (two - r); 16325c28e83SPiotr Jasiukajtis w = _TBL_expm1l[j]; 16425c28e83SPiotr Jasiukajtis return (w + (w + one) * r); 16525c28e83SPiotr Jasiukajtis } 16625c28e83SPiotr Jasiukajtis if (hx > 0) { 16725c28e83SPiotr Jasiukajtis if (x > ovflthreshold) 16825c28e83SPiotr Jasiukajtis return (huge * huge); 16925c28e83SPiotr Jasiukajtis k = (int) (invln2_32 * (x + ln2_64)); 17025c28e83SPiotr Jasiukajtis } else { 17125c28e83SPiotr Jasiukajtis if (x < -80.0) 17225c28e83SPiotr Jasiukajtis return (tiny - x / x); 17325c28e83SPiotr Jasiukajtis k = (int) (invln2_32 * (x - ln2_64)); 17425c28e83SPiotr Jasiukajtis } 17525c28e83SPiotr Jasiukajtis j = k & 0x1f; 17625c28e83SPiotr Jasiukajtis m = k >> 5; 17725c28e83SPiotr Jasiukajtis t = (long double) k; 17825c28e83SPiotr Jasiukajtis x = (x - t * ln2_32hi) - t * ln2_32lo; 17925c28e83SPiotr Jasiukajtis t = x * x; 18025c28e83SPiotr Jasiukajtis r = (x - t * (T1 + t * (T2 + t * (T3 + t * (T4 + t * T5))))) - two; 18125c28e83SPiotr Jasiukajtis x = _TBL_expl_hi[j] - ((_TBL_expl_hi[j] * (x + x)) / r - 18225c28e83SPiotr Jasiukajtis _TBL_expl_lo[j]); 18325c28e83SPiotr Jasiukajtis return (scalbnl(x, m) - one); 18425c28e83SPiotr Jasiukajtis } 185