125c28e83SPiotr Jasiukajtis /* 225c28e83SPiotr Jasiukajtis * CDDL HEADER START 325c28e83SPiotr Jasiukajtis * 425c28e83SPiotr Jasiukajtis * The contents of this file are subject to the terms of the 525c28e83SPiotr Jasiukajtis * Common Development and Distribution License (the "License"). 625c28e83SPiotr Jasiukajtis * You may not use this file except in compliance with the License. 725c28e83SPiotr Jasiukajtis * 825c28e83SPiotr Jasiukajtis * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 925c28e83SPiotr Jasiukajtis * or http://www.opensolaris.org/os/licensing. 1025c28e83SPiotr Jasiukajtis * See the License for the specific language governing permissions 1125c28e83SPiotr Jasiukajtis * and limitations under the License. 1225c28e83SPiotr Jasiukajtis * 1325c28e83SPiotr Jasiukajtis * When distributing Covered Code, include this CDDL HEADER in each 1425c28e83SPiotr Jasiukajtis * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 1525c28e83SPiotr Jasiukajtis * If applicable, add the following below this CDDL HEADER, with the 1625c28e83SPiotr Jasiukajtis * fields enclosed by brackets "[]" replaced with your own identifying 1725c28e83SPiotr Jasiukajtis * information: Portions Copyright [yyyy] [name of copyright owner] 1825c28e83SPiotr Jasiukajtis * 1925c28e83SPiotr Jasiukajtis * CDDL HEADER END 2025c28e83SPiotr Jasiukajtis */ 2125c28e83SPiotr Jasiukajtis /* 2225c28e83SPiotr Jasiukajtis * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 2325c28e83SPiotr Jasiukajtis */ 2425c28e83SPiotr Jasiukajtis /* 2525c28e83SPiotr Jasiukajtis * Copyright 2005 Sun Microsystems, Inc. All rights reserved. 2625c28e83SPiotr Jasiukajtis * Use is subject to license terms. 2725c28e83SPiotr Jasiukajtis */ 2825c28e83SPiotr Jasiukajtis 29*ddc0e0b5SRichard Lowe #pragma weak __sincos = sincos 3025c28e83SPiotr Jasiukajtis 3125c28e83SPiotr Jasiukajtis /* INDENT OFF */ 3225c28e83SPiotr Jasiukajtis /* 3325c28e83SPiotr Jasiukajtis * sincos(x,s,c) 3425c28e83SPiotr Jasiukajtis * Accurate Table look-up algorithm by K.C. Ng, 2000. 3525c28e83SPiotr Jasiukajtis * 3625c28e83SPiotr Jasiukajtis * 1. Reduce x to x>0 by cos(-x)=cos(x), sin(-x)=-sin(x). 3725c28e83SPiotr Jasiukajtis * 2. For 0<= x < 8, let i = (64*x chopped)-10. Let d = x - a[i], where 3825c28e83SPiotr Jasiukajtis * a[i] is a double that is close to (i+10.5)/64 (and hence |d|< 10.5/64) 3925c28e83SPiotr Jasiukajtis * and such that sin(a[i]) and cos(a[i]) is close to a double (with error 4025c28e83SPiotr Jasiukajtis * less than 2**-8 ulp). Then 4125c28e83SPiotr Jasiukajtis * 4225c28e83SPiotr Jasiukajtis * cos(x) = cos(a[i]+d) = cos(a[i])cos(d) - sin(a[i])*sin(d) 4325c28e83SPiotr Jasiukajtis * = TBL_cos_a[i]*(1+QQ1*d^2+QQ2*d^4) - 4425c28e83SPiotr Jasiukajtis * TBL_sin_a[i]*(d+PP1*d^3+PP2*d^5) 4525c28e83SPiotr Jasiukajtis * = TBL_cos_a[i] + (TBL_cos_a[i]*d^2*(QQ1+QQ2*d^2) - 4625c28e83SPiotr Jasiukajtis * TBL_sin_a[i]*(d+PP1*d^3+PP2*d^5)) 4725c28e83SPiotr Jasiukajtis * 4825c28e83SPiotr Jasiukajtis * sin(x) = sin(a[i]+d) = sin(a[i])cos(d) + cos(a[i])*sin(d) 4925c28e83SPiotr Jasiukajtis * = TBL_sin_a[i]*(1+QQ1*d^2+QQ2*d^4) + 5025c28e83SPiotr Jasiukajtis * TBL_cos_a[i]*(d+PP1*d^3+PP2*d^5) 5125c28e83SPiotr Jasiukajtis * = TBL_sin_a[i] + (TBL_sin_a[i]*d^2*(QQ1+QQ2*d^2) + 5225c28e83SPiotr Jasiukajtis * TBL_cos_a[i]*(d+PP1*d^3+PP2*d^5)) 5325c28e83SPiotr Jasiukajtis * 5425c28e83SPiotr Jasiukajtis * Note: for x close to n*pi/2, special treatment is need for either 5525c28e83SPiotr Jasiukajtis * sin or cos: 5625c28e83SPiotr Jasiukajtis * i in [81, 100] ( pi/2 +-10.5/64 => tiny cos(x) = sin(pi/2-x) 5725c28e83SPiotr Jasiukajtis * i in [181,200] ( pi +-10.5/64 => tiny sin(x) = sin(pi-x) 5825c28e83SPiotr Jasiukajtis * i in [282,301] ( 3pi/2+-10.5/64 => tiny cos(x) = sin(x-3pi/2) 5925c28e83SPiotr Jasiukajtis * i in [382,401] ( 2pi +-10.5/64 => tiny sin(x) = sin(x-2pi) 6025c28e83SPiotr Jasiukajtis * i in [483,502] ( 5pi/2+-10.5/64 => tiny cos(x) = sin(5pi/2-x) 6125c28e83SPiotr Jasiukajtis * 6225c28e83SPiotr Jasiukajtis * 3. For x >= 8.0, use kernel function __rem_pio2 to perform argument 6325c28e83SPiotr Jasiukajtis * reduction and call __k_sincos_ to compute sin and cos. 6425c28e83SPiotr Jasiukajtis * 6525c28e83SPiotr Jasiukajtis * kernel function: 6625c28e83SPiotr Jasiukajtis * __rem_pio2 ... argument reduction routine 6725c28e83SPiotr Jasiukajtis * __k_sincos_ ... sine and cosine function on [-pi/4,pi/4] 6825c28e83SPiotr Jasiukajtis * 6925c28e83SPiotr Jasiukajtis * Method. 7025c28e83SPiotr Jasiukajtis * Let S and C denote the sin and cos respectively on [-PI/4, +PI/4]. 7125c28e83SPiotr Jasiukajtis * 1. Assume the argument x is reduced to y1+y2 = x-k*pi/2 in 7225c28e83SPiotr Jasiukajtis * [-pi/2 , +pi/2], and let n = k mod 4. 7325c28e83SPiotr Jasiukajtis * 2. Let S=S(y1+y2), C=C(y1+y2). Depending on n, we have 7425c28e83SPiotr Jasiukajtis * 7525c28e83SPiotr Jasiukajtis * n sin(x) cos(x) tan(x) 7625c28e83SPiotr Jasiukajtis * ---------------------------------------------------------- 7725c28e83SPiotr Jasiukajtis * 0 S C S/C 7825c28e83SPiotr Jasiukajtis * 1 C -S -C/S 7925c28e83SPiotr Jasiukajtis * 2 -S -C S/C 8025c28e83SPiotr Jasiukajtis * 3 -C S -C/S 8125c28e83SPiotr Jasiukajtis * ---------------------------------------------------------- 8225c28e83SPiotr Jasiukajtis * 8325c28e83SPiotr Jasiukajtis * Special cases: 8425c28e83SPiotr Jasiukajtis * Let trig be any of sin, cos, or tan. 8525c28e83SPiotr Jasiukajtis * trig(+-INF) is NaN, with signals; 8625c28e83SPiotr Jasiukajtis * trig(NaN) is that NaN; 8725c28e83SPiotr Jasiukajtis * 8825c28e83SPiotr Jasiukajtis * Accuracy: 8925c28e83SPiotr Jasiukajtis * TRIG(x) returns trig(x) nearly rounded (less than 1 ulp) 9025c28e83SPiotr Jasiukajtis */ 9125c28e83SPiotr Jasiukajtis 9225c28e83SPiotr Jasiukajtis #include "libm.h" 9325c28e83SPiotr Jasiukajtis 9425c28e83SPiotr Jasiukajtis static const double sc[] = { 9525c28e83SPiotr Jasiukajtis /* ONE = */ 1.0, 9625c28e83SPiotr Jasiukajtis /* NONE = */ -1.0, 9725c28e83SPiotr Jasiukajtis /* 9825c28e83SPiotr Jasiukajtis * |sin(x) - (x+pp1*x^3+pp2*x^5)| <= 2^-58.79 for |x| < 0.008 9925c28e83SPiotr Jasiukajtis */ 10025c28e83SPiotr Jasiukajtis /* PP1 = */ -0.166666666666316558867252052378889521480627858683055567, 10125c28e83SPiotr Jasiukajtis /* PP2 = */ .008333315652997472323564894248466758248475374977974017927, 10225c28e83SPiotr Jasiukajtis /* 10325c28e83SPiotr Jasiukajtis * |(sin(x) - (x+p1*x^3+...+p4*x^9)| 10425c28e83SPiotr Jasiukajtis * |------------------------------ | <= 2^-57.63 for |x| < 0.1953125 10525c28e83SPiotr Jasiukajtis * | x | 10625c28e83SPiotr Jasiukajtis */ 10725c28e83SPiotr Jasiukajtis /* P1 = */ -1.666666666666629669805215138920301589656e-0001, 10825c28e83SPiotr Jasiukajtis /* P2 = */ 8.333333332390951295683993455280336376663e-0003, 10925c28e83SPiotr Jasiukajtis /* P3 = */ -1.984126237997976692791551778230098403960e-0004, 11025c28e83SPiotr Jasiukajtis /* P4 = */ 2.753403624854277237649987622848330351110e-0006, 11125c28e83SPiotr Jasiukajtis /* 11225c28e83SPiotr Jasiukajtis * |cos(x) - (1+qq1*x^2+qq2*x^4)| <= 2^-55.99 for |x| <= 0.008 (0x3f80624d) 11325c28e83SPiotr Jasiukajtis */ 11425c28e83SPiotr Jasiukajtis /* QQ1 = */ -0.4999999999975492381842911981948418542742729, 11525c28e83SPiotr Jasiukajtis /* QQ2 = */ 0.041666542904352059294545209158357640398771740, 11625c28e83SPiotr Jasiukajtis /* Q1 = */ -0.5, 11725c28e83SPiotr Jasiukajtis /* Q2 = */ 4.166666666500350703680945520860748617445e-0002, 11825c28e83SPiotr Jasiukajtis /* Q3 = */ -1.388888596436972210694266290577848696006e-0003, 11925c28e83SPiotr Jasiukajtis /* Q4 = */ 2.478563078858589473679519517892953492192e-0005, 12025c28e83SPiotr Jasiukajtis /* PIO2_H = */ 1.570796326794896557999, 12125c28e83SPiotr Jasiukajtis /* PIO2_L = */ 6.123233995736765886130e-17, 12225c28e83SPiotr Jasiukajtis /* PIO2_L0 = */ 6.123233995727922165564e-17, 12325c28e83SPiotr Jasiukajtis /* PIO2_L1 = */ 8.843720566135701120255e-29, 12425c28e83SPiotr Jasiukajtis /* PI_H = */ 3.1415926535897931159979634685, 12525c28e83SPiotr Jasiukajtis /* PI_L = */ 1.22464679914735317722606593227425e-16, 12625c28e83SPiotr Jasiukajtis /* PI_L0 = */ 1.22464679914558443311283879205095e-16, 12725c28e83SPiotr Jasiukajtis /* PI_L1 = */ 1.768744113227140223300005233735517376e-28, 12825c28e83SPiotr Jasiukajtis /* PI3O2_H = */ 4.712388980384689673997, 12925c28e83SPiotr Jasiukajtis /* PI3O2_L = */ 1.836970198721029765839e-16, 13025c28e83SPiotr Jasiukajtis /* PI3O2_L0 = */ 1.836970198720396133587e-16, 13125c28e83SPiotr Jasiukajtis /* PI3O2_L1 = */ 6.336322524749201142226e-29, 13225c28e83SPiotr Jasiukajtis /* PI2_H = */ 6.2831853071795862319959269370, 13325c28e83SPiotr Jasiukajtis /* PI2_L = */ 2.44929359829470635445213186454850e-16, 13425c28e83SPiotr Jasiukajtis /* PI2_L0 = */ 2.44929359829116886622567758410190e-16, 13525c28e83SPiotr Jasiukajtis /* PI2_L1 = */ 3.537488226454280446600010467471034752e-28, 13625c28e83SPiotr Jasiukajtis /* PI5O2_H = */ 7.853981633974482789995, 13725c28e83SPiotr Jasiukajtis /* PI5O2_L = */ 3.061616997868382943065e-16, 13825c28e83SPiotr Jasiukajtis /* PI5O2_L0 = */ 3.061616997861941598865e-16, 13925c28e83SPiotr Jasiukajtis /* PI5O2_L1 = */ 6.441344200433640781982e-28, 14025c28e83SPiotr Jasiukajtis }; 14125c28e83SPiotr Jasiukajtis /* INDENT ON */ 14225c28e83SPiotr Jasiukajtis 14325c28e83SPiotr Jasiukajtis #define ONE sc[0] 14425c28e83SPiotr Jasiukajtis #define PP1 sc[2] 14525c28e83SPiotr Jasiukajtis #define PP2 sc[3] 14625c28e83SPiotr Jasiukajtis #define P1 sc[4] 14725c28e83SPiotr Jasiukajtis #define P2 sc[5] 14825c28e83SPiotr Jasiukajtis #define P3 sc[6] 14925c28e83SPiotr Jasiukajtis #define P4 sc[7] 15025c28e83SPiotr Jasiukajtis #define QQ1 sc[8] 15125c28e83SPiotr Jasiukajtis #define QQ2 sc[9] 15225c28e83SPiotr Jasiukajtis #define Q1 sc[10] 15325c28e83SPiotr Jasiukajtis #define Q2 sc[11] 15425c28e83SPiotr Jasiukajtis #define Q3 sc[12] 15525c28e83SPiotr Jasiukajtis #define Q4 sc[13] 15625c28e83SPiotr Jasiukajtis #define PIO2_H sc[14] 15725c28e83SPiotr Jasiukajtis #define PIO2_L sc[15] 15825c28e83SPiotr Jasiukajtis #define PIO2_L0 sc[16] 15925c28e83SPiotr Jasiukajtis #define PIO2_L1 sc[17] 16025c28e83SPiotr Jasiukajtis #define PI_H sc[18] 16125c28e83SPiotr Jasiukajtis #define PI_L sc[19] 16225c28e83SPiotr Jasiukajtis #define PI_L0 sc[20] 16325c28e83SPiotr Jasiukajtis #define PI_L1 sc[21] 16425c28e83SPiotr Jasiukajtis #define PI3O2_H sc[22] 16525c28e83SPiotr Jasiukajtis #define PI3O2_L sc[23] 16625c28e83SPiotr Jasiukajtis #define PI3O2_L0 sc[24] 16725c28e83SPiotr Jasiukajtis #define PI3O2_L1 sc[25] 16825c28e83SPiotr Jasiukajtis #define PI2_H sc[26] 16925c28e83SPiotr Jasiukajtis #define PI2_L sc[27] 17025c28e83SPiotr Jasiukajtis #define PI2_L0 sc[28] 17125c28e83SPiotr Jasiukajtis #define PI2_L1 sc[29] 17225c28e83SPiotr Jasiukajtis #define PI5O2_H sc[30] 17325c28e83SPiotr Jasiukajtis #define PI5O2_L sc[31] 17425c28e83SPiotr Jasiukajtis #define PI5O2_L0 sc[32] 17525c28e83SPiotr Jasiukajtis #define PI5O2_L1 sc[33] 17625c28e83SPiotr Jasiukajtis #define PoS(x, z) ((x * z) * (PP1 + z * PP2)) 17725c28e83SPiotr Jasiukajtis #define PoL(x, z) ((x * z) * ((P1 + z * P2) + (z * z) * (P3 + z * P4))) 17825c28e83SPiotr Jasiukajtis 17925c28e83SPiotr Jasiukajtis extern const double _TBL_sincos[], _TBL_sincosx[]; 18025c28e83SPiotr Jasiukajtis 18125c28e83SPiotr Jasiukajtis void 18225c28e83SPiotr Jasiukajtis sincos(double x, double *s, double *c) { 18325c28e83SPiotr Jasiukajtis double z, y[2], w, t, v, p, q; 18425c28e83SPiotr Jasiukajtis int i, j, n, hx, ix, lx; 18525c28e83SPiotr Jasiukajtis 18625c28e83SPiotr Jasiukajtis hx = ((int *)&x)[HIWORD]; 18725c28e83SPiotr Jasiukajtis lx = ((int *)&x)[LOWORD]; 18825c28e83SPiotr Jasiukajtis ix = hx & ~0x80000000; 18925c28e83SPiotr Jasiukajtis 19025c28e83SPiotr Jasiukajtis if (ix <= 0x3fc50000) { /* |x| < 10.5/64 = 0.164062500 */ 19125c28e83SPiotr Jasiukajtis if (ix < 0x3e400000) { /* |x| < 2**-27 */ 19225c28e83SPiotr Jasiukajtis if ((int)x == 0) 19325c28e83SPiotr Jasiukajtis *c = ONE; 19425c28e83SPiotr Jasiukajtis *s = x; 19525c28e83SPiotr Jasiukajtis } else { 19625c28e83SPiotr Jasiukajtis z = x * x; 19725c28e83SPiotr Jasiukajtis if (ix < 0x3f800000) { /* |x| < 0.008 */ 19825c28e83SPiotr Jasiukajtis q = z * (QQ1 + z * QQ2); 19925c28e83SPiotr Jasiukajtis p = PoS(x, z); 20025c28e83SPiotr Jasiukajtis } else { 20125c28e83SPiotr Jasiukajtis q = z * ((Q1 + z * Q2) + (z * z) * 20225c28e83SPiotr Jasiukajtis (Q3 + z * Q4)); 20325c28e83SPiotr Jasiukajtis p = PoL(x, z); 20425c28e83SPiotr Jasiukajtis } 20525c28e83SPiotr Jasiukajtis *c = ONE + q; 20625c28e83SPiotr Jasiukajtis *s = x + p; 20725c28e83SPiotr Jasiukajtis } 20825c28e83SPiotr Jasiukajtis return; 20925c28e83SPiotr Jasiukajtis } 21025c28e83SPiotr Jasiukajtis 21125c28e83SPiotr Jasiukajtis n = ix >> 20; 21225c28e83SPiotr Jasiukajtis i = (((ix >> 12) & 0xff) | 0x100) >> (0x401 - n); 21325c28e83SPiotr Jasiukajtis j = i - 10; 21425c28e83SPiotr Jasiukajtis if (n < 0x402) { /* |x| < 8 */ 21525c28e83SPiotr Jasiukajtis x = fabs(x); 21625c28e83SPiotr Jasiukajtis v = x - _TBL_sincosx[j]; 21725c28e83SPiotr Jasiukajtis t = v * v; 21825c28e83SPiotr Jasiukajtis w = _TBL_sincos[(j<<1)]; 21925c28e83SPiotr Jasiukajtis z = _TBL_sincos[(j<<1)+1]; 22025c28e83SPiotr Jasiukajtis p = v + PoS(v, t); 22125c28e83SPiotr Jasiukajtis q = t * (QQ1 + t * QQ2); 22225c28e83SPiotr Jasiukajtis if ((((j - 81) ^ (j - 101)) | 22325c28e83SPiotr Jasiukajtis ((j - 282) ^ (j - 302)) | 22425c28e83SPiotr Jasiukajtis ((j - 483) ^ (j - 503)) | 22525c28e83SPiotr Jasiukajtis ((j - 181) ^ (j - 201)) | 22625c28e83SPiotr Jasiukajtis ((j - 382) ^ (j - 402))) < 0) { 22725c28e83SPiotr Jasiukajtis if (j <= 101) { 22825c28e83SPiotr Jasiukajtis /* near pi/2, cos(x) = sin(pi/2-x) */ 22925c28e83SPiotr Jasiukajtis t = w * q + z * p; 23025c28e83SPiotr Jasiukajtis *s = (hx >= 0)? w + t : -w - t; 23125c28e83SPiotr Jasiukajtis p = PIO2_H - x; 23225c28e83SPiotr Jasiukajtis i = ix - 0x3ff921fb; 23325c28e83SPiotr Jasiukajtis x = p + PIO2_L; 23425c28e83SPiotr Jasiukajtis if ((i | ((lx - 0x54442D00) & 23525c28e83SPiotr Jasiukajtis 0xffffff00)) == 0) { 23625c28e83SPiotr Jasiukajtis /* very close to pi/2 */ 23725c28e83SPiotr Jasiukajtis x = p + PIO2_L0; 23825c28e83SPiotr Jasiukajtis *c = x + PIO2_L1; 23925c28e83SPiotr Jasiukajtis } else { 24025c28e83SPiotr Jasiukajtis z = x * x; 24125c28e83SPiotr Jasiukajtis if (((ix - 0x3ff92000) >> 12) == 0) { 24225c28e83SPiotr Jasiukajtis /* |pi/2-x|<2**-8 */ 24325c28e83SPiotr Jasiukajtis w = PIO2_L + PoS(x, z); 24425c28e83SPiotr Jasiukajtis } else { 24525c28e83SPiotr Jasiukajtis w = PIO2_L + PoL(x, z); 24625c28e83SPiotr Jasiukajtis } 24725c28e83SPiotr Jasiukajtis *c = p + w; 24825c28e83SPiotr Jasiukajtis } 24925c28e83SPiotr Jasiukajtis } else if (j <= 201) { 25025c28e83SPiotr Jasiukajtis /* near pi, sin(x) = sin(pi-x) */ 25125c28e83SPiotr Jasiukajtis *c = z - (w * p - z * q); 25225c28e83SPiotr Jasiukajtis p = PI_H - x; 25325c28e83SPiotr Jasiukajtis i = ix - 0x400921fb; 25425c28e83SPiotr Jasiukajtis x = p + PI_L; 25525c28e83SPiotr Jasiukajtis if ((i | ((lx - 0x54442D00) & 25625c28e83SPiotr Jasiukajtis 0xffffff00)) == 0) { 25725c28e83SPiotr Jasiukajtis /* very close to pi */ 25825c28e83SPiotr Jasiukajtis x = p + PI_L0; 25925c28e83SPiotr Jasiukajtis *s = (hx >= 0)? x + PI_L1 : 26025c28e83SPiotr Jasiukajtis -(x + PI_L1); 26125c28e83SPiotr Jasiukajtis } else { 26225c28e83SPiotr Jasiukajtis z = x * x; 26325c28e83SPiotr Jasiukajtis if (((ix - 0x40092000) >> 11) == 0) { 26425c28e83SPiotr Jasiukajtis /* |pi-x|<2**-8 */ 26525c28e83SPiotr Jasiukajtis w = PI_L + PoS(x, z); 26625c28e83SPiotr Jasiukajtis } else { 26725c28e83SPiotr Jasiukajtis w = PI_L + PoL(x, z); 26825c28e83SPiotr Jasiukajtis } 26925c28e83SPiotr Jasiukajtis *s = (hx >= 0)? p + w : -p - w; 27025c28e83SPiotr Jasiukajtis } 27125c28e83SPiotr Jasiukajtis } else if (j <= 302) { 27225c28e83SPiotr Jasiukajtis /* near 3/2pi, cos(x)=sin(x-3/2pi) */ 27325c28e83SPiotr Jasiukajtis t = w * q + z * p; 27425c28e83SPiotr Jasiukajtis *s = (hx >= 0)? w + t : -w - t; 27525c28e83SPiotr Jasiukajtis p = x - PI3O2_H; 27625c28e83SPiotr Jasiukajtis i = ix - 0x4012D97C; 27725c28e83SPiotr Jasiukajtis x = p - PI3O2_L; 27825c28e83SPiotr Jasiukajtis if ((i | ((lx - 0x7f332100) & 27925c28e83SPiotr Jasiukajtis 0xffffff00)) == 0) { 28025c28e83SPiotr Jasiukajtis /* very close to 3/2pi */ 28125c28e83SPiotr Jasiukajtis x = p - PI3O2_L0; 28225c28e83SPiotr Jasiukajtis *c = x - PI3O2_L1; 28325c28e83SPiotr Jasiukajtis } else { 28425c28e83SPiotr Jasiukajtis z = x * x; 28525c28e83SPiotr Jasiukajtis if (((ix - 0x4012D800) >> 9) == 0) { 28625c28e83SPiotr Jasiukajtis /* |3/2pi-x|<2**-8 */ 28725c28e83SPiotr Jasiukajtis w = PoS(x, z) - PI3O2_L; 28825c28e83SPiotr Jasiukajtis } else { 28925c28e83SPiotr Jasiukajtis w = PoL(x, z) - PI3O2_L; 29025c28e83SPiotr Jasiukajtis } 29125c28e83SPiotr Jasiukajtis *c = p + w; 29225c28e83SPiotr Jasiukajtis } 29325c28e83SPiotr Jasiukajtis } else if (j <= 402) { 29425c28e83SPiotr Jasiukajtis /* near 2pi, sin(x)=sin(x-2pi) */ 29525c28e83SPiotr Jasiukajtis *c = z - (w * p - z * q); 29625c28e83SPiotr Jasiukajtis p = x - PI2_H; 29725c28e83SPiotr Jasiukajtis i = ix - 0x401921fb; 29825c28e83SPiotr Jasiukajtis x = p - PI2_L; 29925c28e83SPiotr Jasiukajtis if ((i | ((lx - 0x54442D00) & 30025c28e83SPiotr Jasiukajtis 0xffffff00)) == 0) { 30125c28e83SPiotr Jasiukajtis /* very close to 2pi */ 30225c28e83SPiotr Jasiukajtis x = p - PI2_L0; 30325c28e83SPiotr Jasiukajtis *s = (hx >= 0)? x - PI2_L1 : 30425c28e83SPiotr Jasiukajtis -(x - PI2_L1); 30525c28e83SPiotr Jasiukajtis } else { 30625c28e83SPiotr Jasiukajtis z = x * x; 30725c28e83SPiotr Jasiukajtis if (((ix - 0x40192000) >> 10) == 0) { 30825c28e83SPiotr Jasiukajtis /* |x-2pi|<2**-8 */ 30925c28e83SPiotr Jasiukajtis w = PoS(x, z) - PI2_L; 31025c28e83SPiotr Jasiukajtis } else { 31125c28e83SPiotr Jasiukajtis w = PoL(x, z) - PI2_L; 31225c28e83SPiotr Jasiukajtis } 31325c28e83SPiotr Jasiukajtis *s = (hx >= 0)? p + w : -p - w; 31425c28e83SPiotr Jasiukajtis } 31525c28e83SPiotr Jasiukajtis } else { 31625c28e83SPiotr Jasiukajtis /* near 5pi/2, cos(x) = sin(5pi/2-x) */ 31725c28e83SPiotr Jasiukajtis t = w * q + z * p; 31825c28e83SPiotr Jasiukajtis *s = (hx >= 0)? w + t : -w - t; 31925c28e83SPiotr Jasiukajtis p = PI5O2_H - x; 32025c28e83SPiotr Jasiukajtis i = ix - 0x401F6A7A; 32125c28e83SPiotr Jasiukajtis x = p + PI5O2_L; 32225c28e83SPiotr Jasiukajtis if ((i | ((lx - 0x29553800) & 32325c28e83SPiotr Jasiukajtis 0xffffff00)) == 0) { 32425c28e83SPiotr Jasiukajtis /* very close to pi/2 */ 32525c28e83SPiotr Jasiukajtis x = p + PI5O2_L0; 32625c28e83SPiotr Jasiukajtis *c = x + PI5O2_L1; 32725c28e83SPiotr Jasiukajtis } else { 32825c28e83SPiotr Jasiukajtis z = x * x; 32925c28e83SPiotr Jasiukajtis if (((ix - 0x401F6A7A) >> 7) == 0) { 33025c28e83SPiotr Jasiukajtis /* |5pi/2-x|<2**-8 */ 33125c28e83SPiotr Jasiukajtis w = PI5O2_L + PoS(x, z); 33225c28e83SPiotr Jasiukajtis } else { 33325c28e83SPiotr Jasiukajtis w = PI5O2_L + PoL(x, z); 33425c28e83SPiotr Jasiukajtis } 33525c28e83SPiotr Jasiukajtis *c = p + w; 33625c28e83SPiotr Jasiukajtis } 33725c28e83SPiotr Jasiukajtis } 33825c28e83SPiotr Jasiukajtis } else { 33925c28e83SPiotr Jasiukajtis *c = z - (w * p - z * q); 34025c28e83SPiotr Jasiukajtis t = w * q + z * p; 34125c28e83SPiotr Jasiukajtis *s = (hx >= 0)? w + t : -w - t; 34225c28e83SPiotr Jasiukajtis } 34325c28e83SPiotr Jasiukajtis return; 34425c28e83SPiotr Jasiukajtis } 34525c28e83SPiotr Jasiukajtis 34625c28e83SPiotr Jasiukajtis if (ix >= 0x7ff00000) { 34725c28e83SPiotr Jasiukajtis *s = *c = x / x; 34825c28e83SPiotr Jasiukajtis return; 34925c28e83SPiotr Jasiukajtis } 35025c28e83SPiotr Jasiukajtis 35125c28e83SPiotr Jasiukajtis /* argument reduction needed */ 35225c28e83SPiotr Jasiukajtis n = __rem_pio2(x, y); 35325c28e83SPiotr Jasiukajtis switch (n & 3) { 35425c28e83SPiotr Jasiukajtis case 0: 35525c28e83SPiotr Jasiukajtis *s = __k_sincos(y[0], y[1], c); 35625c28e83SPiotr Jasiukajtis break; 35725c28e83SPiotr Jasiukajtis case 1: 35825c28e83SPiotr Jasiukajtis *c = -__k_sincos(y[0], y[1], s); 35925c28e83SPiotr Jasiukajtis break; 36025c28e83SPiotr Jasiukajtis case 2: 36125c28e83SPiotr Jasiukajtis *s = -__k_sincos(y[0], y[1], c); 36225c28e83SPiotr Jasiukajtis *c = -*c; 36325c28e83SPiotr Jasiukajtis break; 36425c28e83SPiotr Jasiukajtis default: 36525c28e83SPiotr Jasiukajtis *c = __k_sincos(y[0], y[1], s); 36625c28e83SPiotr Jasiukajtis *s = -*s; 36725c28e83SPiotr Jasiukajtis } 36825c28e83SPiotr Jasiukajtis } 369