xref: /titanic_52/usr/src/lib/libm/common/C/j0.c (revision 25c28e83beb90e7c80452a7c818c5e6f73a07dc8)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
24  */
25 /*
26  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
27  * Use is subject to license terms.
28  */
29 
30 /*
31  * Floating point Bessel's function of the first and second kinds
32  * of order zero: j0(x),y0(x);
33  *
34  * Special cases:
35  *	y0(0)=y1(0)=yn(n,0) = -inf with division by zero signal;
36  *	y0(-ve)=y1(-ve)=yn(n,-ve) are NaN with invalid signal.
37  */
38 
39 #pragma weak j0 = __j0
40 #pragma weak y0 = __y0
41 
42 #include "libm.h"
43 #include "libm_synonyms.h"
44 #include "libm_protos.h"
45 #include <math.h>
46 #include <values.h>
47 
48 #define	GENERIC double
49 static const GENERIC
50 zero    = 0.0,
51 small	= 1.0e-5,
52 tiny	= 1.0e-18,
53 one	= 1.0,
54 eight   = 8.0,
55 invsqrtpi = 5.641895835477562869480794515607725858441e-0001,
56 tpi	= 0.636619772367581343075535053490057448;
57 
58 static GENERIC pzero(GENERIC), qzero(GENERIC);
59 static const GENERIC r0[4] = {	/* [1.e-5, 1.28] */
60 	-2.500000000000003622131880894830476755537e-0001,
61 	1.095597547334830263234433855932375353303e-0002,
62 	-1.819734750463320921799187258987098087697e-0004,
63 	9.977001946806131657544212501069893930846e-0007,
64 };
65 static const GENERIC s0[4] = {	/* [1.e-5, 1.28] */
66 	1.0,
67 	1.867609810662950169966782360588199673741e-0002,
68 	1.590389206181565490878430827706972074208e-0004,
69 	6.520867386742583632375520147714499522721e-0007,
70 };
71 static const GENERIC r1[9] = {	/* [1.28,8] */
72 	9.999999999999999942156495584397047660949e-0001,
73 	-2.389887722731319130476839836908143731281e-0001,
74 	1.293359476138939027791270393439493640570e-0002,
75 	-2.770985642343140122168852400228563364082e-0004,
76 	2.905241575772067678086738389169625218912e-0006,
77 	-1.636846356264052597969042009265043251279e-0008,
78 	5.072306160724884775085431059052611737827e-0011,
79 	-8.187060730684066824228914775146536139112e-0014,
80 	5.422219326959949863954297860723723423842e-0017,
81 };
82 static const GENERIC s1[9] = {	/* [1.28,8] */
83 	1.0,
84 	1.101122772686807702762104741932076228349e-0002,
85 	6.140169310641649223411427764669143978228e-0005,
86 	2.292035877515152097976946119293215705250e-0007,
87 	6.356910426504644334558832036362219583789e-0010,
88 	1.366626326900219555045096999553948891401e-0012,
89 	2.280399586866739522891837985560481180088e-0015,
90 	2.801559820648939665270492520004836611187e-0018,
91 	2.073101088320349159764410261466350732968e-0021,
92 };
93 
94 GENERIC
95 j0(GENERIC x) {
96 	GENERIC z, s, c, ss, cc, r, u, v, ox;
97 	int i;
98 
99 	if (isnan(x))
100 		return (x*x);	/* + -> * for Cheetah */
101 	ox = x;
102 	x = fabs(x);
103 	if (x > 8.0) {
104 		if (!finite(x))
105 			return (zero);
106 		s = sin(x);
107 		c = cos(x);
108 	/*
109 	 * j0(x) = sqrt(2/(pi*x))*(p0(x)*cos(x0)-q0(x)*sin(x0))
110 	 * where x0 = x-pi/4
111 	 * 	Better formula:
112 	 *		cos(x0) = cos(x)cos(pi/4)+sin(x)sin(pi/4)
113 	 *			= 1/sqrt(2) * (cos(x) + sin(x))
114 	 *		sin(x0) = sin(x)cos(pi/4)-cos(x)sin(pi/4)
115 	 *			= 1/sqrt(2) * (sin(x) - cos(x))
116 	 * To avoid cancellation, use
117 	 *		sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
118 	 * to compute the worse one.
119 	 */
120 		if (x > 8.9e307) {	/* x+x may overflow */
121 			ss = s-c;
122 			cc = s+c;
123 		} else if (signbit(s) != signbit(c)) {
124 			ss = s - c;
125 			cc = -cos(x+x)/ss;
126 		} else {
127 			cc = s + c;
128 			ss = -cos(x+x)/cc;
129 		}
130 	/*
131 	 * j0(x) = 1/sqrt(pi) * (P(0,x)*cc - Q(0,x)*ss) / sqrt(x)
132 	 * y0(x) = 1/sqrt(pi) * (P(0,x)*ss + Q(0,x)*cc) / sqrt(x)
133 	 */
134 		if (x > 1.0e40) z = (invsqrtpi*cc)/sqrt(x);
135 		else {
136 		    u = pzero(x); v = qzero(x);
137 		    z = invsqrtpi*(u*cc-v*ss)/sqrt(x);
138 		}
139 	/* force to pass SVR4 even the result is wrong (sign) */
140 		if (x > X_TLOSS)
141 		    return (_SVID_libm_err(ox, z, 34));
142 		else
143 		    return (z);
144 	}
145 	if (x <= small) {
146 	    if (x <= tiny)
147 			return (one-x);
148 	    else
149 			return (one-x*x*0.25);
150 	}
151 	z = x*x;
152 	if (x <= 1.28) {
153 	    r =  r0[0]+z*(r0[1]+z*(r0[2]+z*r0[3]));
154 	    s =  s0[0]+z*(s0[1]+z*(s0[2]+z*s0[3]));
155 	    return (one + z*(r/s));
156 	} else {
157 	    for (r = r1[8], s = s1[8], i = 7; i >= 0; i--) {
158 		r = r*z + r1[i];
159 		s = s*z + s1[i];
160 	    }
161 	    return (r/s);
162 	}
163 }
164 
165 static const GENERIC u0[13] = {
166 	-7.380429510868722526754723020704317641941e-0002,
167 	1.772607102684869924301459663049874294814e-0001,
168 	-1.524370666542713828604078090970799356306e-0002,
169 	4.650819100693891757143771557629924591915e-0004,
170 	-7.125768872339528975036316108718239946022e-0006,
171 	6.411017001656104598327565004771515257146e-0008,
172 	-3.694275157433032553021246812379258781665e-0010,
173 	1.434364544206266624252820889648445263842e-0012,
174 	-3.852064731859936455895036286874139896861e-0015,
175 	7.182052899726138381739945881914874579696e-0018,
176 	-9.060556574619677567323741194079797987200e-0021,
177 	7.124435467408860515265552217131230511455e-0024,
178 	-2.709726774636397615328813121715432044771e-0027,
179 };
180 static const GENERIC v0[5] = {
181 	1.0,
182 	4.678678931512549002587702477349214886475e-0003,
183 	9.486828955529948534822800829497565178985e-0006,
184 	1.001495929158861646659010844136682454906e-0008,
185 	4.725338116256021660204443235685358593611e-0012,
186 };
187 
188 GENERIC
189 y0(GENERIC x) {
190 	GENERIC z, /* d, */ s, c, ss, cc, u, v;
191 	int i;
192 
193 	if (isnan(x))
194 		return (x*x);	/* + -> * for Cheetah */
195 	if (x <= zero) {
196 		if (x == zero)
197 		    /* d= -one/(x-x); */
198 		    return (_SVID_libm_err(x, x, 8));
199 		else
200 		    /* d = zero/(x-x); */
201 		    return (_SVID_libm_err(x, x, 9));
202 	}
203 	if (x > 8.0) {
204 		if (!finite(x))
205 			return (zero);
206 		s = sin(x);
207 		c = cos(x);
208 	/*
209 	 * j0(x) = sqrt(2/(pi*x))*(p0(x)*cos(x0)-q0(x)*sin(x0))
210 	 * where x0 = x-pi/4
211 	 * 	Better formula:
212 	 *		cos(x0) = cos(x)cos(pi/4)+sin(x)sin(pi/4)
213 	 *			= 1/sqrt(2) * (cos(x) + sin(x))
214 	 *		sin(x0) = sin(x)cos(pi/4)-cos(x)sin(pi/4)
215 	 *			= 1/sqrt(2) * (sin(x) - cos(x))
216 	 * To avoid cancellation, use
217 	 *		sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
218 	 * to compute the worse one.
219 	 */
220 		if (x > 8.9e307) {	/* x+x may overflow */
221 			ss = s-c;
222 			cc = s+c;
223 		} else if (signbit(s) != signbit(c)) {
224 			ss = s - c;
225 			cc = -cos(x+x)/ss;
226 		} else {
227 			cc = s + c;
228 			ss = -cos(x+x)/cc;
229 		}
230 	/*
231 	 * j0(x) = 1/sqrt(pi*x) * (P(0,x)*cc - Q(0,x)*ss)
232 	 * y0(x) = 1/sqrt(pi*x) * (P(0,x)*ss + Q(0,x)*cc)
233 	 */
234 		if (x > 1.0e40)
235 		    z = (invsqrtpi*ss)/sqrt(x);
236 		else
237 		    z =  invsqrtpi*(pzero(x)*ss+qzero(x)*cc)/sqrt(x);
238 		if (x > X_TLOSS)
239 		    return (_SVID_libm_err(x, z, 35));
240 		else
241 		    return (z);
242 
243 	}
244 	if (x <= tiny) {
245 	    return (u0[0] + tpi*log(x));
246 	}
247 	z = x*x;
248 	for (u = u0[12], i = 11; i >= 0; i--) u = u*z + u0[i];
249 	v = v0[0]+z*(v0[1]+z*(v0[2]+z*(v0[3]+z*v0[4])));
250 	return (u/v + tpi*(j0(x)*log(x)));
251 }
252 
253 static const GENERIC pr[7] = {	/* [8 -- inf]  pzero 6550 */
254 	.4861344183386052721391238447e5,
255 	.1377662549407112278133438945e6,
256 	.1222466364088289731869114004e6,
257 	.4107070084315176135583353374e5,
258 	.5026073801860637125889039915e4,
259 	.1783193659125479654541542419e3,
260 	.88010344055383421691677564e0,
261 };
262 static const GENERIC ps[7] = {	/* [8 -- inf] pzero 6550 */
263 	.4861344183386052721414037058e5,
264 	.1378196632630384670477582699e6,
265 	.1223967185341006542748936787e6,
266 	.4120150243795353639995862617e5,
267 	.5068271181053546392490184353e4,
268 	.1829817905472769960535671664e3,
269 	1.0,
270 };
271 static const GENERIC huge    = 1.0e10;
272 
273 static GENERIC
274 pzero(GENERIC x) {
275 	GENERIC s, r, t, z;
276 	int i;
277 	if (x > huge)
278 		return (one);
279 	t = eight/x; z = t*t;
280 	r = pr[5]+z*pr[6];
281 	s = ps[5]+z;
282 	for (i = 4; i >= 0; i--) {
283 	    r = r*z + pr[i];
284 	    s = s*z + ps[i];
285 	}
286 	return (r/s);
287 }
288 
289 static const GENERIC qr[7] = {	/* [8 -- inf]  qzero 6950 */
290 	-.1731210995701068539185611951e3,
291 	-.5522559165936166961235240613e3,
292 	-.5604935606637346590614529613e3,
293 	-.2200430300226009379477365011e3,
294 	-.323869355375648849771296746e2,
295 	-.14294979207907956223499258e1,
296 	-.834690374102384988158918e-2,
297 };
298 static const GENERIC qs[7] = {	/* [8 -- inf] qzero 6950 */
299 	.1107975037248683865326709645e5,
300 	.3544581680627082674651471873e5,
301 	.3619118937918394132179019059e5,
302 	.1439895563565398007471485822e5,
303 	.2190277023344363955930226234e4,
304 	.106695157020407986137501682e3,
305 	1.0,
306 };
307 
308 static GENERIC
309 qzero(GENERIC x) {
310 	GENERIC s, r, t, z;
311 	int i;
312 	if (x > huge)
313 		return (-0.125/x);
314 	t = eight/x; z = t*t;
315 	r = qr[5]+z*qr[6];
316 	s = qs[5]+z;
317 	for (i = 4; i >= 0; i--) {
318 	    r = r*z + qr[i];
319 	    s = s*z + qs[i];
320 	}
321 	return (t*(r/s));
322 }
323