125c28e83SPiotr Jasiukajtis /* 225c28e83SPiotr Jasiukajtis * CDDL HEADER START 325c28e83SPiotr Jasiukajtis * 425c28e83SPiotr Jasiukajtis * The contents of this file are subject to the terms of the 525c28e83SPiotr Jasiukajtis * Common Development and Distribution License (the "License"). 625c28e83SPiotr Jasiukajtis * You may not use this file except in compliance with the License. 725c28e83SPiotr Jasiukajtis * 825c28e83SPiotr Jasiukajtis * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 925c28e83SPiotr Jasiukajtis * or http://www.opensolaris.org/os/licensing. 1025c28e83SPiotr Jasiukajtis * See the License for the specific language governing permissions 1125c28e83SPiotr Jasiukajtis * and limitations under the License. 1225c28e83SPiotr Jasiukajtis * 1325c28e83SPiotr Jasiukajtis * When distributing Covered Code, include this CDDL HEADER in each 1425c28e83SPiotr Jasiukajtis * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 1525c28e83SPiotr Jasiukajtis * If applicable, add the following below this CDDL HEADER, with the 1625c28e83SPiotr Jasiukajtis * fields enclosed by brackets "[]" replaced with your own identifying 1725c28e83SPiotr Jasiukajtis * information: Portions Copyright [yyyy] [name of copyright owner] 1825c28e83SPiotr Jasiukajtis * 1925c28e83SPiotr Jasiukajtis * CDDL HEADER END 2025c28e83SPiotr Jasiukajtis */ 2125c28e83SPiotr Jasiukajtis 2225c28e83SPiotr Jasiukajtis /* 2325c28e83SPiotr Jasiukajtis * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 2425c28e83SPiotr Jasiukajtis */ 2525c28e83SPiotr Jasiukajtis /* 2625c28e83SPiotr Jasiukajtis * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 2725c28e83SPiotr Jasiukajtis * Use is subject to license terms. 2825c28e83SPiotr Jasiukajtis */ 2925c28e83SPiotr Jasiukajtis 30*ddc0e0b5SRichard Lowe #pragma weak __atan = atan 3125c28e83SPiotr Jasiukajtis 3225c28e83SPiotr Jasiukajtis /* INDENT OFF */ 3325c28e83SPiotr Jasiukajtis /* 3425c28e83SPiotr Jasiukajtis * atan(x) 3525c28e83SPiotr Jasiukajtis * Accurate Table look-up algorithm with polynomial approximation in 3625c28e83SPiotr Jasiukajtis * partially product form. 3725c28e83SPiotr Jasiukajtis * 3825c28e83SPiotr Jasiukajtis * -- K.C. Ng, October 17, 2004 3925c28e83SPiotr Jasiukajtis * 4025c28e83SPiotr Jasiukajtis * Algorithm 4125c28e83SPiotr Jasiukajtis * 4225c28e83SPiotr Jasiukajtis * (1). Purge off Inf and NaN and 0 4325c28e83SPiotr Jasiukajtis * (2). Reduce x to positive by atan(x) = -atan(-x). 4425c28e83SPiotr Jasiukajtis * (3). For x <= 1/8 and let z = x*x, return 4525c28e83SPiotr Jasiukajtis * (2.1) if x < 2^(-prec/2), atan(x) = x with inexact flag raised 4625c28e83SPiotr Jasiukajtis * (2.2) if x < 2^(-prec/4-1), atan(x) = x+(x/3)(x*x) 4725c28e83SPiotr Jasiukajtis * (2.3) if x < 2^(-prec/6-2), atan(x) = x+(z-5/3)(z*x/5) 4825c28e83SPiotr Jasiukajtis * (2.4) Otherwise 4925c28e83SPiotr Jasiukajtis * atan(x) = poly1(x) = x + A * B, 5025c28e83SPiotr Jasiukajtis * where 5125c28e83SPiotr Jasiukajtis * A = (p1*x*z) * (p2+z(p3+z)) 5225c28e83SPiotr Jasiukajtis * B = (p4+z)+z*z) * (p5+z(p6+z)) 5325c28e83SPiotr Jasiukajtis * Note: (i) domain of poly1 is [0, 1/8], (ii) remez relative 5425c28e83SPiotr Jasiukajtis * approximation error of poly1 is bounded by 5525c28e83SPiotr Jasiukajtis * |(atan(x)-poly1(x))/x| <= 2^-57.61 5625c28e83SPiotr Jasiukajtis * (4). For x >= 8 then 5725c28e83SPiotr Jasiukajtis * (3.1) if x >= 2^prec, atan(x) = atan(inf) - pio2lo 5825c28e83SPiotr Jasiukajtis * (3.2) if x >= 2^(prec/3), atan(x) = atan(inf) - 1/x 5925c28e83SPiotr Jasiukajtis * (3.3) if x <= 65, atan(x) = atan(inf) - poly1(1/x) 6025c28e83SPiotr Jasiukajtis * (3.4) otherwise atan(x) = atan(inf) - poly2(1/x) 6125c28e83SPiotr Jasiukajtis * where 6225c28e83SPiotr Jasiukajtis * poly2(r) = (q1*r) * (q2+z(q3+z)) * (q4+z), 6325c28e83SPiotr Jasiukajtis * its domain is [0, 0.0154]; and its remez absolute 6425c28e83SPiotr Jasiukajtis * approximation error is bounded by 6525c28e83SPiotr Jasiukajtis * |atan(x)-poly2(x)|<= 2^-59.45 6625c28e83SPiotr Jasiukajtis * 6725c28e83SPiotr Jasiukajtis * (5). Now x is in (0.125, 8). 6825c28e83SPiotr Jasiukajtis * Recall identity 6925c28e83SPiotr Jasiukajtis * atan(x) = atan(y) + atan((x-y)/(1+x*y)). 7025c28e83SPiotr Jasiukajtis * Let j = (ix - 0x3fc00000) >> 16, 0 <= j < 96, where ix is the high 7125c28e83SPiotr Jasiukajtis * part of x in IEEE double format. Then 7225c28e83SPiotr Jasiukajtis * atan(x) = atan(y[j]) + poly2((x-y[j])/(1+x*y[j])) 7325c28e83SPiotr Jasiukajtis * where y[j] are carefully chosen so that it matches x to around 4.5 7425c28e83SPiotr Jasiukajtis * bits and at the same time atan(y[j]) is very close to an IEEE double 7525c28e83SPiotr Jasiukajtis * floating point number. Calculation indicates that 7625c28e83SPiotr Jasiukajtis * max|(x-y[j])/(1+x*y[j])| < 0.0154 7725c28e83SPiotr Jasiukajtis * j,x 7825c28e83SPiotr Jasiukajtis * 7925c28e83SPiotr Jasiukajtis * Accuracy: Maximum error observed is bounded by 0.6 ulp after testing 8025c28e83SPiotr Jasiukajtis * more than 10 million random arguments 8125c28e83SPiotr Jasiukajtis */ 8225c28e83SPiotr Jasiukajtis /* INDENT ON */ 8325c28e83SPiotr Jasiukajtis 8425c28e83SPiotr Jasiukajtis #include "libm.h" 8525c28e83SPiotr Jasiukajtis #include "libm_protos.h" 8625c28e83SPiotr Jasiukajtis 8725c28e83SPiotr Jasiukajtis extern const double _TBL_atan[]; 8825c28e83SPiotr Jasiukajtis static const double g[] = { 8925c28e83SPiotr Jasiukajtis /* one = */ 1.0, 9025c28e83SPiotr Jasiukajtis /* p1 = */ 8.02176624254765935351230154992663301527500152588e-0002, 9125c28e83SPiotr Jasiukajtis /* p2 = */ 1.27223421700559402580665846471674740314483642578e+0000, 9225c28e83SPiotr Jasiukajtis /* p3 = */ -1.20606901800503640842521235754247754812240600586e+0000, 9325c28e83SPiotr Jasiukajtis /* p4 = */ -2.36088967922325565496066701598465442657470703125e+0000, 9425c28e83SPiotr Jasiukajtis /* p5 = */ 1.38345799501389166152875986881554126739501953125e+0000, 9525c28e83SPiotr Jasiukajtis /* p6 = */ 1.06742368078953453469637224770849570631980895996e+0000, 9625c28e83SPiotr Jasiukajtis /* q1 = */ -1.42796626333911796935538518482644576579332351685e-0001, 9725c28e83SPiotr Jasiukajtis /* q2 = */ 3.51427110447873227059810477159863497078605962912e+0000, 9825c28e83SPiotr Jasiukajtis /* q3 = */ 5.92129112708164262457444237952586263418197631836e-0001, 9925c28e83SPiotr Jasiukajtis /* q4 = */ -1.99272234785683144409063061175402253866195678711e+0000, 10025c28e83SPiotr Jasiukajtis /* pio2hi */ 1.570796326794896558e+00, 10125c28e83SPiotr Jasiukajtis /* pio2lo */ 6.123233995736765886e-17, 10225c28e83SPiotr Jasiukajtis /* t1 = */ -0.333333333333333333333333333333333, 10325c28e83SPiotr Jasiukajtis /* t2 = */ 0.2, 10425c28e83SPiotr Jasiukajtis /* t3 = */ -1.666666666666666666666666666666666, 10525c28e83SPiotr Jasiukajtis }; 10625c28e83SPiotr Jasiukajtis 10725c28e83SPiotr Jasiukajtis #define one g[0] 10825c28e83SPiotr Jasiukajtis #define p1 g[1] 10925c28e83SPiotr Jasiukajtis #define p2 g[2] 11025c28e83SPiotr Jasiukajtis #define p3 g[3] 11125c28e83SPiotr Jasiukajtis #define p4 g[4] 11225c28e83SPiotr Jasiukajtis #define p5 g[5] 11325c28e83SPiotr Jasiukajtis #define p6 g[6] 11425c28e83SPiotr Jasiukajtis #define q1 g[7] 11525c28e83SPiotr Jasiukajtis #define q2 g[8] 11625c28e83SPiotr Jasiukajtis #define q3 g[9] 11725c28e83SPiotr Jasiukajtis #define q4 g[10] 11825c28e83SPiotr Jasiukajtis #define pio2hi g[11] 11925c28e83SPiotr Jasiukajtis #define pio2lo g[12] 12025c28e83SPiotr Jasiukajtis #define t1 g[13] 12125c28e83SPiotr Jasiukajtis #define t2 g[14] 12225c28e83SPiotr Jasiukajtis #define t3 g[15] 12325c28e83SPiotr Jasiukajtis 12425c28e83SPiotr Jasiukajtis 12525c28e83SPiotr Jasiukajtis double 12625c28e83SPiotr Jasiukajtis atan(double x) { 12725c28e83SPiotr Jasiukajtis double y, z, r, p, s; 12825c28e83SPiotr Jasiukajtis int ix, lx, hx, j; 12925c28e83SPiotr Jasiukajtis 13025c28e83SPiotr Jasiukajtis hx = ((int *) &x)[HIWORD]; 13125c28e83SPiotr Jasiukajtis lx = ((int *) &x)[LOWORD]; 13225c28e83SPiotr Jasiukajtis ix = hx & ~0x80000000; 13325c28e83SPiotr Jasiukajtis j = ix >> 20; 13425c28e83SPiotr Jasiukajtis 13525c28e83SPiotr Jasiukajtis /* for |x| < 1/8 */ 13625c28e83SPiotr Jasiukajtis if (j < 0x3fc) { 13725c28e83SPiotr Jasiukajtis if (j < 0x3f5) { /* when |x| < 2**(-prec/6-2) */ 13825c28e83SPiotr Jasiukajtis if (j < 0x3e3) { /* if |x| < 2**(-prec/2-2) */ 13925c28e83SPiotr Jasiukajtis return ((int) x == 0 ? x : one); 14025c28e83SPiotr Jasiukajtis } 14125c28e83SPiotr Jasiukajtis if (j < 0x3f1) { /* if |x| < 2**(-prec/4-1) */ 14225c28e83SPiotr Jasiukajtis return (x + (x * t1) * (x * x)); 14325c28e83SPiotr Jasiukajtis } else { /* if |x| < 2**(-prec/6-2) */ 14425c28e83SPiotr Jasiukajtis z = x * x; 14525c28e83SPiotr Jasiukajtis s = t2 * x; 14625c28e83SPiotr Jasiukajtis return (x + (t3 + z) * (s * z)); 14725c28e83SPiotr Jasiukajtis } 14825c28e83SPiotr Jasiukajtis } 14925c28e83SPiotr Jasiukajtis z = x * x; s = p1 * x; 15025c28e83SPiotr Jasiukajtis return (x + ((s * z) * (p2 + z * (p3 + z))) * 15125c28e83SPiotr Jasiukajtis (((p4 + z) + z * z) * (p5 + z * (p6 + z)))); 15225c28e83SPiotr Jasiukajtis } 15325c28e83SPiotr Jasiukajtis 15425c28e83SPiotr Jasiukajtis /* for |x| >= 8.0 */ 15525c28e83SPiotr Jasiukajtis if (j >= 0x402) { 15625c28e83SPiotr Jasiukajtis if (j < 0x436) { 15725c28e83SPiotr Jasiukajtis r = one / x; 15825c28e83SPiotr Jasiukajtis if (hx >= 0) { 15925c28e83SPiotr Jasiukajtis y = pio2hi; p = pio2lo; 16025c28e83SPiotr Jasiukajtis } else { 16125c28e83SPiotr Jasiukajtis y = -pio2hi; p = -pio2lo; 16225c28e83SPiotr Jasiukajtis } 16325c28e83SPiotr Jasiukajtis if (ix < 0x40504000) { /* x < 65 */ 16425c28e83SPiotr Jasiukajtis z = r * r; 16525c28e83SPiotr Jasiukajtis s = p1 * r; 16625c28e83SPiotr Jasiukajtis return (y + ((p - r) - ((s * z) * 16725c28e83SPiotr Jasiukajtis (p2 + z * (p3 + z))) * 16825c28e83SPiotr Jasiukajtis (((p4 + z) + z * z) * 16925c28e83SPiotr Jasiukajtis (p5 + z * (p6 + z))))); 17025c28e83SPiotr Jasiukajtis } else if (j < 0x412) { 17125c28e83SPiotr Jasiukajtis z = r * r; 17225c28e83SPiotr Jasiukajtis return (y + (p - ((q1 * r) * (q4 + z)) * 17325c28e83SPiotr Jasiukajtis (q2 + z * (q3 + z)))); 17425c28e83SPiotr Jasiukajtis } else 17525c28e83SPiotr Jasiukajtis return (y + (p - r)); 17625c28e83SPiotr Jasiukajtis } else { 17725c28e83SPiotr Jasiukajtis if (j >= 0x7ff) /* x is inf or NaN */ 17825c28e83SPiotr Jasiukajtis if (((ix - 0x7ff00000) | lx) != 0) 17925c28e83SPiotr Jasiukajtis #if defined(FPADD_TRAPS_INCOMPLETE_ON_NAN) 18025c28e83SPiotr Jasiukajtis return (ix >= 0x7ff80000 ? x : x - x); 18125c28e83SPiotr Jasiukajtis /* assumes sparc-like QNaN */ 18225c28e83SPiotr Jasiukajtis #else 18325c28e83SPiotr Jasiukajtis return (x - x); 18425c28e83SPiotr Jasiukajtis #endif 18525c28e83SPiotr Jasiukajtis y = -pio2lo; 18625c28e83SPiotr Jasiukajtis return (hx >= 0 ? pio2hi - y : y - pio2hi); 18725c28e83SPiotr Jasiukajtis } 18825c28e83SPiotr Jasiukajtis } else { /* now x is between 1/8 and 8 */ 18925c28e83SPiotr Jasiukajtis double *w, w0, w1, s, z; 19025c28e83SPiotr Jasiukajtis w = (double *) _TBL_atan + (((ix - 0x3fc00000) >> 16) << 1); 19125c28e83SPiotr Jasiukajtis w0 = (hx >= 0)? w[0] : -w[0]; 19225c28e83SPiotr Jasiukajtis s = (x - w0) / (one + x * w0); 19325c28e83SPiotr Jasiukajtis w1 = (hx >= 0)? w[1] : -w[1]; 19425c28e83SPiotr Jasiukajtis z = s * s; 19525c28e83SPiotr Jasiukajtis return (((q1 * s) * (q4 + z)) * (q2 + z * (q3 + z)) + w1); 19625c28e83SPiotr Jasiukajtis } 19725c28e83SPiotr Jasiukajtis } 198