1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2010 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #include <stdio.h> 27 #include <stdlib.h> 28 #include <string.h> 29 #include <errno.h> 30 #include <fcntl.h> 31 #include <unistd.h> 32 #include <stropts.h> 33 #include <sys/sockio.h> 34 #include <sys/types.h> 35 #include <sys/stat.h> 36 #include <sys/socket.h> 37 #include <net/route.h> 38 #include <netinet/in.h> 39 #include <inet/ip.h> 40 #include <arpa/inet.h> 41 #include <libintl.h> 42 #include <libdlpi.h> 43 #include <libinetutil.h> 44 #include <libdladm.h> 45 #include <libdllink.h> 46 #include <libdliptun.h> 47 #include <strings.h> 48 #include <zone.h> 49 #include <ctype.h> 50 #include <limits.h> 51 #include <assert.h> 52 #include <netdb.h> 53 #include <pwd.h> 54 #include <auth_attr.h> 55 #include <secdb.h> 56 #include <nss_dbdefs.h> 57 #include "libipadm_impl.h" 58 59 /* error codes and text description */ 60 static struct ipadm_error_info { 61 ipadm_status_t error_code; 62 const char *error_desc; 63 } ipadm_errors[] = { 64 { IPADM_SUCCESS, "Operation succeeded" }, 65 { IPADM_FAILURE, "Operation failed" }, 66 { IPADM_EAUTH, "Insufficient user authorizations" }, 67 { IPADM_EPERM, "Permission denied" }, 68 { IPADM_NO_BUFS, "No buffer space available" }, 69 { IPADM_NO_MEMORY, "Insufficient memory" }, 70 { IPADM_BAD_ADDR, "Invalid address" }, 71 { IPADM_BAD_PROTOCOL, "Incorrect protocol family for operation" }, 72 { IPADM_DAD_FOUND, "Duplicate address detected" }, 73 { IPADM_EXISTS, "Already exists" }, 74 { IPADM_IF_EXISTS, "Interface already exists" }, 75 { IPADM_ADDROBJ_EXISTS, "Address object already exists" }, 76 { IPADM_ADDRCONF_EXISTS, "Addrconf already in progress" }, 77 { IPADM_ENXIO, "Interface does not exist" }, 78 { IPADM_GRP_NOTEMPTY, "IPMP group is not empty" }, 79 { IPADM_INVALID_ARG, "Invalid argument provided" }, 80 { IPADM_INVALID_NAME, "Invalid name" }, 81 { IPADM_DLPI_FAILURE, "Could not open DLPI link" }, 82 { IPADM_DLADM_FAILURE, "Datalink does not exist" }, 83 { IPADM_PROP_UNKNOWN, "Unknown property" }, 84 { IPADM_ERANGE, "Value is outside the allowed range" }, 85 { IPADM_ESRCH, "Value does not exist" }, 86 { IPADM_EOVERFLOW, "Number of values exceeds the allowed limit" }, 87 { IPADM_NOTFOUND, "Object not found" }, 88 { IPADM_IF_INUSE, "Interface already in use" }, 89 { IPADM_ADDR_INUSE, "Address already in use" }, 90 { IPADM_BAD_HOSTNAME, "Hostname maps to multiple IP addresses" }, 91 { IPADM_ADDR_NOTAVAIL, "Can't assign requested address" }, 92 { IPADM_ALL_ADDRS_NOT_ENABLED, "All addresses could not be enabled" }, 93 { IPADM_NDPD_NOT_RUNNING, "IPv6 autoconf daemon in.ndpd not running" }, 94 { IPADM_DHCP_START_ERROR, "Could not start dhcpagent" }, 95 { IPADM_DHCP_IPC_ERROR, "Could not communicate with dhcpagent" }, 96 { IPADM_DHCP_IPC_TIMEOUT, "Communication with dhcpagent timed out" }, 97 { IPADM_TEMPORARY_OBJ, "Persistent operation on temporary object" }, 98 { IPADM_IPC_ERROR, "Could not communicate with ipmgmtd" }, 99 { IPADM_NOTSUP, "Operation not supported" }, 100 { IPADM_OP_DISABLE_OBJ, "Operation not supported on disabled object" }, 101 { IPADM_EBADE, "Invalid data exchange with daemon" } 102 }; 103 104 #define IPADM_NUM_ERRORS (sizeof (ipadm_errors) / sizeof (*ipadm_errors)) 105 106 ipadm_status_t 107 ipadm_errno2status(int error) 108 { 109 switch (error) { 110 case 0: 111 return (IPADM_SUCCESS); 112 case ENXIO: 113 return (IPADM_ENXIO); 114 case ENOMEM: 115 return (IPADM_NO_MEMORY); 116 case ENOBUFS: 117 return (IPADM_NO_BUFS); 118 case EINVAL: 119 return (IPADM_INVALID_ARG); 120 case EBUSY: 121 return (IPADM_IF_INUSE); 122 case EEXIST: 123 return (IPADM_EXISTS); 124 case EADDRNOTAVAIL: 125 return (IPADM_ADDR_NOTAVAIL); 126 case EADDRINUSE: 127 return (IPADM_ADDR_INUSE); 128 case ENOENT: 129 return (IPADM_NOTFOUND); 130 case ERANGE: 131 return (IPADM_ERANGE); 132 case EPERM: 133 return (IPADM_EPERM); 134 case ENOTSUP: 135 case EOPNOTSUPP: 136 return (IPADM_NOTSUP); 137 case EBADF: 138 return (IPADM_IPC_ERROR); 139 case EBADE: 140 return (IPADM_EBADE); 141 case ESRCH: 142 return (IPADM_ESRCH); 143 case EOVERFLOW: 144 return (IPADM_EOVERFLOW); 145 default: 146 return (IPADM_FAILURE); 147 } 148 } 149 150 /* 151 * Returns a message string for the given libipadm error status. 152 */ 153 const char * 154 ipadm_status2str(ipadm_status_t status) 155 { 156 int i; 157 158 for (i = 0; i < IPADM_NUM_ERRORS; i++) { 159 if (status == ipadm_errors[i].error_code) 160 return (dgettext(TEXT_DOMAIN, 161 ipadm_errors[i].error_desc)); 162 } 163 164 return (dgettext(TEXT_DOMAIN, "<unknown error>")); 165 } 166 167 /* 168 * Opens a handle to libipadm. 169 * Possible values for flags: 170 * IPH_VRRP: Used by VRRP daemon to set the socket option SO_VRRP. 171 * IPH_LEGACY: This is used whenever an application needs to provide a 172 * logical interface name while creating or deleting 173 * interfaces and static addresses. 174 * IPH_INIT: Used by ipadm_init_prop(), to initialize protocol properties 175 * on reboot. 176 */ 177 ipadm_status_t 178 ipadm_open(ipadm_handle_t *handle, uint32_t flags) 179 { 180 ipadm_handle_t iph; 181 ipadm_status_t status = IPADM_SUCCESS; 182 zoneid_t zoneid; 183 ushort_t zflags; 184 int on = B_TRUE; 185 186 if (handle == NULL) 187 return (IPADM_INVALID_ARG); 188 *handle = NULL; 189 190 if (flags & ~(IPH_VRRP|IPH_LEGACY|IPH_INIT)) 191 return (IPADM_INVALID_ARG); 192 193 if ((iph = calloc(1, sizeof (struct ipadm_handle))) == NULL) 194 return (IPADM_NO_MEMORY); 195 iph->iph_sock = -1; 196 iph->iph_sock6 = -1; 197 iph->iph_door_fd = -1; 198 iph->iph_flags = flags; 199 (void) pthread_mutex_init(&iph->iph_lock, NULL); 200 201 if ((iph->iph_sock = socket(AF_INET, SOCK_DGRAM, 0)) < 0 || 202 (iph->iph_sock6 = socket(AF_INET6, SOCK_DGRAM, 0)) < 0) { 203 goto errnofail; 204 } 205 206 /* 207 * We open a handle to libdladm here, to facilitate some daemons (like 208 * nwamd) which opens handle to libipadm before devfsadmd installs the 209 * right device permissions into the kernel and requires "all" 210 * privileges to open DLD_CONTROL_DEV. 211 * 212 * In a non-global shared-ip zone there will be no DLD_CONTROL_DEV node 213 * and dladm_open() will fail. So, we avoid this by not calling 214 * dladm_open() for such zones. 215 */ 216 zoneid = getzoneid(); 217 if (zoneid != GLOBAL_ZONEID) { 218 if (zone_getattr(zoneid, ZONE_ATTR_FLAGS, &zflags, 219 sizeof (zflags)) < 0) { 220 goto errnofail; 221 } 222 } 223 if ((zoneid == GLOBAL_ZONEID) || (zflags & ZF_NET_EXCL)) { 224 if (dladm_open(&iph->iph_dlh) != DLADM_STATUS_OK) { 225 ipadm_close(iph); 226 return (IPADM_DLADM_FAILURE); 227 } 228 } else { 229 assert(zoneid != GLOBAL_ZONEID); 230 iph->iph_dlh = NULL; 231 } 232 if (flags & IPH_VRRP) { 233 if (setsockopt(iph->iph_sock6, SOL_SOCKET, SO_VRRP, &on, 234 sizeof (on)) < 0 || setsockopt(iph->iph_sock, SOL_SOCKET, 235 SO_VRRP, &on, sizeof (on)) < 0) { 236 goto errnofail; 237 } 238 } 239 *handle = iph; 240 return (status); 241 242 errnofail: 243 status = ipadm_errno2status(errno); 244 ipadm_close(iph); 245 return (status); 246 } 247 248 /* 249 * Closes and frees the libipadm handle. 250 */ 251 void 252 ipadm_close(ipadm_handle_t iph) 253 { 254 if (iph == NULL) 255 return; 256 if (iph->iph_sock != -1) 257 (void) close(iph->iph_sock); 258 if (iph->iph_sock6 != -1) 259 (void) close(iph->iph_sock6); 260 if (iph->iph_door_fd != -1) 261 (void) close(iph->iph_door_fd); 262 dladm_close(iph->iph_dlh); 263 (void) pthread_mutex_destroy(&iph->iph_lock); 264 free(iph); 265 } 266 267 /* 268 * Checks if the caller has the authorization to configure network 269 * interfaces. 270 */ 271 boolean_t 272 ipadm_check_auth(void) 273 { 274 struct passwd pwd; 275 char buf[NSS_BUFLEN_PASSWD]; 276 277 /* get the password entry for the given user ID */ 278 if (getpwuid_r(getuid(), &pwd, buf, sizeof (buf)) == NULL) 279 return (B_FALSE); 280 281 /* check for presence of given authorization */ 282 return (chkauthattr(NETWORK_INTERFACE_CONFIG_AUTH, pwd.pw_name) != 0); 283 } 284 285 /* 286 * Stores the index value of the interface in `ifname' for the address 287 * family `af' into the buffer pointed to by `index'. 288 */ 289 static ipadm_status_t 290 i_ipadm_get_index(ipadm_handle_t iph, const char *ifname, sa_family_t af, 291 int *index) 292 { 293 struct lifreq lifr; 294 int sock; 295 296 bzero(&lifr, sizeof (lifr)); 297 (void) strlcpy(lifr.lifr_name, ifname, sizeof (lifr.lifr_name)); 298 if (af == AF_INET) 299 sock = iph->iph_sock; 300 else 301 sock = iph->iph_sock6; 302 303 if (ioctl(sock, SIOCGLIFINDEX, (caddr_t)&lifr) < 0) 304 return (ipadm_errno2status(errno)); 305 *index = lifr.lifr_index; 306 307 return (IPADM_SUCCESS); 308 } 309 310 /* 311 * Maximum amount of time (in milliseconds) to wait for Duplicate Address 312 * Detection to complete in the kernel. 313 */ 314 #define DAD_WAIT_TIME 1000 315 316 /* 317 * Any time that flags are changed on an interface where either the new or the 318 * existing flags have IFF_UP set, we'll get a RTM_NEWADDR message to 319 * announce the new address added and its flag status. 320 * We wait here for that message and look for IFF_UP. 321 * If something's amiss with the kernel, though, we don't wait forever. 322 * (Note that IFF_DUPLICATE is a high-order bit, and we cannot see 323 * it in the routing socket messages.) 324 */ 325 static ipadm_status_t 326 i_ipadm_dad_wait(ipadm_handle_t handle, const char *lifname, sa_family_t af, 327 int rtsock) 328 { 329 struct pollfd fds[1]; 330 union { 331 struct if_msghdr ifm; 332 char buf[1024]; 333 } msg; 334 int index; 335 ipadm_status_t retv; 336 uint64_t flags; 337 hrtime_t starttime, now; 338 339 fds[0].fd = rtsock; 340 fds[0].events = POLLIN; 341 fds[0].revents = 0; 342 343 retv = i_ipadm_get_index(handle, lifname, af, &index); 344 if (retv != IPADM_SUCCESS) 345 return (retv); 346 347 starttime = gethrtime(); 348 for (;;) { 349 now = gethrtime(); 350 now = (now - starttime) / 1000000; 351 if (now >= DAD_WAIT_TIME) 352 break; 353 if (poll(fds, 1, DAD_WAIT_TIME - (int)now) <= 0) 354 break; 355 if (read(rtsock, &msg, sizeof (msg)) <= 0) 356 break; 357 if (msg.ifm.ifm_type != RTM_NEWADDR) 358 continue; 359 /* Note that ifm_index is just 16 bits */ 360 if (index == msg.ifm.ifm_index && (msg.ifm.ifm_flags & IFF_UP)) 361 return (IPADM_SUCCESS); 362 } 363 364 retv = i_ipadm_get_flags(handle, lifname, af, &flags); 365 if (retv != IPADM_SUCCESS) 366 return (retv); 367 if (flags & IFF_DUPLICATE) 368 return (IPADM_DAD_FOUND); 369 370 return (IPADM_SUCCESS); 371 } 372 373 /* 374 * Sets the flags `on_flags' and resets the flags `off_flags' for the logical 375 * interface in `lifname'. 376 * 377 * If the new flags value will transition the interface from "down" to "up" 378 * then duplicate address detection is performed by the kernel. This routine 379 * waits to get the outcome of that test. 380 */ 381 ipadm_status_t 382 i_ipadm_set_flags(ipadm_handle_t iph, const char *lifname, sa_family_t af, 383 uint64_t on_flags, uint64_t off_flags) 384 { 385 struct lifreq lifr; 386 uint64_t oflags; 387 ipadm_status_t ret; 388 int rtsock = -1; 389 int sock, err; 390 391 ret = i_ipadm_get_flags(iph, lifname, af, &oflags); 392 if (ret != IPADM_SUCCESS) 393 return (ret); 394 395 sock = (af == AF_INET ? iph->iph_sock : iph->iph_sock6); 396 397 /* 398 * Any time flags are changed on an interface that has IFF_UP set, 399 * we get a routing socket message. We care about the status, 400 * though, only when the new flags are marked "up." 401 */ 402 if (!(oflags & IFF_UP) && (on_flags & IFF_UP)) 403 rtsock = socket(PF_ROUTE, SOCK_RAW, af); 404 405 oflags |= on_flags; 406 oflags &= ~off_flags; 407 bzero(&lifr, sizeof (lifr)); 408 (void) strlcpy(lifr.lifr_name, lifname, sizeof (lifr.lifr_name)); 409 lifr.lifr_flags = oflags; 410 if (ioctl(sock, SIOCSLIFFLAGS, (caddr_t)&lifr) < 0) { 411 err = errno; 412 if (rtsock != -1) 413 (void) close(rtsock); 414 return (ipadm_errno2status(err)); 415 } 416 if (rtsock == -1) { 417 return (IPADM_SUCCESS); 418 } else { 419 /* Wait for DAD to complete. */ 420 ret = i_ipadm_dad_wait(iph, lifname, af, rtsock); 421 (void) close(rtsock); 422 return (ret); 423 } 424 } 425 426 /* 427 * Returns the flags value for the logical interface in `lifname' 428 * in the buffer pointed to by `flags'. 429 */ 430 ipadm_status_t 431 i_ipadm_get_flags(ipadm_handle_t iph, const char *lifname, sa_family_t af, 432 uint64_t *flags) 433 { 434 struct lifreq lifr; 435 int sock; 436 437 bzero(&lifr, sizeof (lifr)); 438 (void) strlcpy(lifr.lifr_name, lifname, sizeof (lifr.lifr_name)); 439 if (af == AF_INET) 440 sock = iph->iph_sock; 441 else 442 sock = iph->iph_sock6; 443 444 if (ioctl(sock, SIOCGLIFFLAGS, (caddr_t)&lifr) < 0) { 445 return (ipadm_errno2status(errno)); 446 } 447 *flags = lifr.lifr_flags; 448 449 return (IPADM_SUCCESS); 450 } 451 452 /* 453 * Determines whether or not an interface name represents a loopback 454 * interface, before the interface has been plumbed. 455 * It is assumed that the interface name in `ifname' is of correct format 456 * as verified by ifparse_ifspec(). 457 * 458 * Returns: B_TRUE if loopback, B_FALSE if not. 459 */ 460 boolean_t 461 i_ipadm_is_loopback(const char *ifname) 462 { 463 int len = strlen(LOOPBACK_IF); 464 465 return (strncmp(ifname, LOOPBACK_IF, len) == 0 && 466 (ifname[len] == '\0' || ifname[len] == IPADM_LOGICAL_SEP)); 467 } 468 469 /* 470 * Determines whether or not an interface name represents a vni 471 * interface, before the interface has been plumbed. 472 * It is assumed that the interface name in `ifname' is of correct format 473 * as verified by ifparse_ifspec(). 474 * 475 * Returns: B_TRUE if vni, B_FALSE if not. 476 */ 477 boolean_t 478 i_ipadm_is_vni(const char *ifname) 479 { 480 ifspec_t ifsp; 481 482 return (ifparse_ifspec(ifname, &ifsp) && 483 strcmp(ifsp.ifsp_devnm, "vni") == 0); 484 } 485 486 /* 487 * Returns B_TRUE if `ifname' is an IP interface on a 6to4 tunnel. 488 */ 489 boolean_t 490 i_ipadm_is_6to4(ipadm_handle_t iph, char *ifname) 491 { 492 dladm_status_t dlstatus; 493 datalink_class_t class; 494 iptun_params_t params; 495 datalink_id_t linkid; 496 497 if (iph->iph_dlh == NULL) { 498 assert(getzoneid() != GLOBAL_ZONEID); 499 return (B_FALSE); 500 } 501 dlstatus = dladm_name2info(iph->iph_dlh, ifname, &linkid, NULL, 502 &class, NULL); 503 if (dlstatus == DLADM_STATUS_OK && class == DATALINK_CLASS_IPTUN) { 504 params.iptun_param_linkid = linkid; 505 dlstatus = dladm_iptun_getparams(iph->iph_dlh, ¶ms, 506 DLADM_OPT_ACTIVE); 507 if (dlstatus == DLADM_STATUS_OK && 508 params.iptun_param_type == IPTUN_TYPE_6TO4) { 509 return (B_TRUE); 510 } 511 } 512 return (B_FALSE); 513 } 514 515 /* 516 * Returns B_TRUE if `ifname' represents an IPMP underlying interface. 517 */ 518 boolean_t 519 i_ipadm_is_under_ipmp(ipadm_handle_t iph, const char *ifname) 520 { 521 struct lifreq lifr; 522 523 (void) strlcpy(lifr.lifr_name, ifname, sizeof (lifr.lifr_name)); 524 if (ioctl(iph->iph_sock, SIOCGLIFGROUPNAME, (caddr_t)&lifr) < 0) { 525 if (ioctl(iph->iph_sock6, SIOCGLIFGROUPNAME, 526 (caddr_t)&lifr) < 0) { 527 return (B_FALSE); 528 } 529 } 530 return (lifr.lifr_groupname[0] != '\0'); 531 } 532 533 /* 534 * Returns B_TRUE if `ifname' represents an IPMP meta-interface. 535 */ 536 boolean_t 537 i_ipadm_is_ipmp(ipadm_handle_t iph, const char *ifname) 538 { 539 uint64_t flags; 540 541 if (i_ipadm_get_flags(iph, ifname, AF_INET, &flags) != IPADM_SUCCESS && 542 i_ipadm_get_flags(iph, ifname, AF_INET6, &flags) != IPADM_SUCCESS) 543 return (B_FALSE); 544 545 return ((flags & IFF_IPMP) != 0); 546 } 547 548 /* 549 * For a given interface name, ipadm_if_enabled() checks if v4 550 * or v6 or both IP interfaces exist in the active configuration. 551 */ 552 boolean_t 553 ipadm_if_enabled(ipadm_handle_t iph, const char *ifname, sa_family_t af) 554 { 555 struct lifreq lifr; 556 int s4 = iph->iph_sock; 557 int s6 = iph->iph_sock6; 558 559 bzero(&lifr, sizeof (lifr)); 560 (void) strlcpy(lifr.lifr_name, ifname, sizeof (lifr.lifr_name)); 561 switch (af) { 562 case AF_INET: 563 if (ioctl(s4, SIOCGLIFFLAGS, (caddr_t)&lifr) == 0) 564 return (B_TRUE); 565 break; 566 case AF_INET6: 567 if (ioctl(s6, SIOCGLIFFLAGS, (caddr_t)&lifr) == 0) 568 return (B_TRUE); 569 break; 570 case AF_UNSPEC: 571 if (ioctl(s4, SIOCGLIFFLAGS, (caddr_t)&lifr) == 0 || 572 ioctl(s6, SIOCGLIFFLAGS, (caddr_t)&lifr) == 0) { 573 return (B_TRUE); 574 } 575 } 576 return (B_FALSE); 577 } 578 579 /* 580 * Apply the interface property by retrieving information from nvl. 581 */ 582 static ipadm_status_t 583 i_ipadm_init_ifprop(ipadm_handle_t iph, nvlist_t *nvl) 584 { 585 nvpair_t *nvp; 586 char *name, *pname = NULL; 587 char *protostr = NULL, *ifname = NULL, *pval = NULL; 588 uint_t proto; 589 int err = 0; 590 591 for (nvp = nvlist_next_nvpair(nvl, NULL); nvp != NULL; 592 nvp = nvlist_next_nvpair(nvl, nvp)) { 593 name = nvpair_name(nvp); 594 if (strcmp(name, IPADM_NVP_IFNAME) == 0) { 595 if ((err = nvpair_value_string(nvp, &ifname)) != 0) 596 break; 597 } else if (strcmp(name, IPADM_NVP_PROTONAME) == 0) { 598 if ((err = nvpair_value_string(nvp, &protostr)) != 0) 599 break; 600 } else { 601 assert(!IPADM_PRIV_NVP(name)); 602 pname = name; 603 if ((err = nvpair_value_string(nvp, &pval)) != 0) 604 break; 605 } 606 } 607 if (err != 0) 608 return (ipadm_errno2status(err)); 609 proto = ipadm_str2proto(protostr); 610 return (ipadm_set_ifprop(iph, ifname, pname, pval, proto, 611 IPADM_OPT_ACTIVE)); 612 } 613 614 /* 615 * Instantiate the address object or set the address object property by 616 * retrieving the configuration from the nvlist `nvl'. 617 */ 618 ipadm_status_t 619 i_ipadm_init_addrobj(ipadm_handle_t iph, nvlist_t *nvl) 620 { 621 nvpair_t *nvp; 622 char *name; 623 char *aobjname = NULL, *pval = NULL, *ifname = NULL; 624 sa_family_t af = AF_UNSPEC; 625 ipadm_addr_type_t atype = IPADM_ADDR_NONE; 626 int err = 0; 627 ipadm_status_t status = IPADM_SUCCESS; 628 629 for (nvp = nvlist_next_nvpair(nvl, NULL); nvp != NULL; 630 nvp = nvlist_next_nvpair(nvl, nvp)) { 631 name = nvpair_name(nvp); 632 if (strcmp(name, IPADM_NVP_IFNAME) == 0) { 633 if ((err = nvpair_value_string(nvp, &ifname)) != 0) 634 break; 635 } else if (strcmp(name, IPADM_NVP_AOBJNAME) == 0) { 636 if ((err = nvpair_value_string(nvp, &aobjname)) != 0) 637 break; 638 } else if (i_ipadm_name2atype(name, &af, &atype)) { 639 break; 640 } else { 641 assert(!IPADM_PRIV_NVP(name)); 642 err = nvpair_value_string(nvp, &pval); 643 break; 644 } 645 } 646 if (err != 0) 647 return (ipadm_errno2status(err)); 648 649 switch (atype) { 650 case IPADM_ADDR_STATIC: 651 status = i_ipadm_enable_static(iph, ifname, nvl, af); 652 break; 653 case IPADM_ADDR_DHCP: 654 status = i_ipadm_enable_dhcp(iph, ifname, nvl); 655 if (status == IPADM_DHCP_IPC_TIMEOUT) 656 status = IPADM_SUCCESS; 657 break; 658 case IPADM_ADDR_IPV6_ADDRCONF: 659 status = i_ipadm_enable_addrconf(iph, ifname, nvl); 660 break; 661 case IPADM_ADDR_NONE: 662 status = ipadm_set_addrprop(iph, name, pval, aobjname, 663 IPADM_OPT_ACTIVE); 664 break; 665 } 666 667 return (status); 668 } 669 670 /* 671 * Instantiate the interface object by retrieving the configuration from 672 * `ifnvl'. The nvlist `ifnvl' contains all the persistent configuration 673 * (interface properties and address objects on that interface) for the 674 * given `ifname'. 675 */ 676 ipadm_status_t 677 i_ipadm_init_ifobj(ipadm_handle_t iph, const char *ifname, nvlist_t *ifnvl) 678 { 679 nvlist_t *nvl = NULL; 680 nvpair_t *nvp; 681 char *afstr; 682 ipadm_status_t status; 683 ipadm_status_t ret_status = IPADM_SUCCESS; 684 char newifname[LIFNAMSIZ]; 685 char *aobjstr; 686 687 (void) strlcpy(newifname, ifname, sizeof (newifname)); 688 /* 689 * First plumb the given interface and then apply all the persistent 690 * interface properties and then instantiate any persistent addresses 691 * objects on that interface. 692 */ 693 for (nvp = nvlist_next_nvpair(ifnvl, NULL); nvp != NULL; 694 nvp = nvlist_next_nvpair(ifnvl, nvp)) { 695 if (nvpair_value_nvlist(nvp, &nvl) != 0) 696 continue; 697 698 if (nvlist_lookup_string(nvl, IPADM_NVP_FAMILY, &afstr) == 0) { 699 status = i_ipadm_plumb_if(iph, newifname, atoi(afstr), 700 IPADM_OPT_ACTIVE); 701 /* 702 * If the interface is already plumbed, we should 703 * ignore this error because there might be address 704 * address objects on that interface that needs to 705 * be enabled again. 706 */ 707 if (status == IPADM_IF_EXISTS) 708 status = IPADM_SUCCESS; 709 } else if (nvlist_lookup_string(nvl, IPADM_NVP_AOBJNAME, 710 &aobjstr) == 0) { 711 /* 712 * For a static address, we need to search for 713 * the prefixlen in the nvlist `ifnvl'. 714 */ 715 if (nvlist_exists(nvl, IPADM_NVP_IPV4ADDR) || 716 nvlist_exists(nvl, IPADM_NVP_IPV6ADDR)) { 717 status = i_ipadm_merge_prefixlen_from_nvl(ifnvl, 718 nvl, aobjstr); 719 if (status != IPADM_SUCCESS) 720 continue; 721 } 722 status = i_ipadm_init_addrobj(iph, nvl); 723 /* 724 * If this address is in use on some other interface, 725 * we want to record an error to be returned as 726 * a soft error and continue processing the rest of 727 * the addresses. 728 */ 729 if (status == IPADM_ADDR_NOTAVAIL) { 730 ret_status = IPADM_ALL_ADDRS_NOT_ENABLED; 731 status = IPADM_SUCCESS; 732 } 733 } else { 734 assert(nvlist_exists(nvl, IPADM_NVP_PROTONAME)); 735 status = i_ipadm_init_ifprop(iph, nvl); 736 } 737 if (status != IPADM_SUCCESS) 738 return (status); 739 } 740 return (ret_status); 741 } 742 743 /* 744 * Retrieves the persistent configuration for the given interface(s) in `ifs' 745 * by contacting the daemon and dumps the information in `allifs'. 746 */ 747 ipadm_status_t 748 i_ipadm_init_ifs(ipadm_handle_t iph, const char *ifs, nvlist_t **allifs) 749 { 750 nvlist_t *nvl = NULL; 751 size_t nvlsize, bufsize; 752 ipmgmt_initif_arg_t *iargp; 753 char *buf = NULL, *nvlbuf = NULL; 754 ipmgmt_get_rval_t *rvalp = NULL; 755 int err; 756 ipadm_status_t status = IPADM_SUCCESS; 757 758 if ((err = ipadm_str2nvlist(ifs, &nvl, IPADM_NORVAL)) != 0) 759 return (ipadm_errno2status(err)); 760 761 err = nvlist_pack(nvl, &nvlbuf, &nvlsize, NV_ENCODE_NATIVE, 0); 762 if (err != 0) { 763 status = ipadm_errno2status(err); 764 goto done; 765 } 766 bufsize = sizeof (*iargp) + nvlsize; 767 if ((buf = malloc(bufsize)) == NULL) { 768 status = ipadm_errno2status(errno); 769 goto done; 770 } 771 772 /* populate the door_call argument structure */ 773 iargp = (void *)buf; 774 iargp->ia_cmd = IPMGMT_CMD_INITIF; 775 iargp->ia_flags = 0; 776 iargp->ia_family = AF_UNSPEC; 777 iargp->ia_nvlsize = nvlsize; 778 (void) bcopy(nvlbuf, buf + sizeof (*iargp), nvlsize); 779 780 if ((rvalp = malloc(sizeof (ipmgmt_get_rval_t))) == NULL) { 781 status = ipadm_errno2status(errno); 782 goto done; 783 } 784 if ((err = ipadm_door_call(iph, iargp, bufsize, (void **)&rvalp, 785 sizeof (*rvalp), B_TRUE)) != 0) { 786 status = ipadm_errno2status(err); 787 goto done; 788 } 789 nvlsize = rvalp->ir_nvlsize; 790 nvlbuf = (char *)rvalp + sizeof (ipmgmt_get_rval_t); 791 792 /* 793 * nvlbuf contains a list of nvlists, each of which represents 794 * configuration information for the given interface(s) 795 */ 796 err = nvlist_unpack(nvlbuf, nvlsize, allifs, NV_ENCODE_NATIVE); 797 if (err != 0) 798 status = ipadm_errno2status(err); 799 done: 800 nvlist_free(nvl); 801 free(buf); 802 free(nvlbuf); 803 free(rvalp); 804 return (status); 805 } 806 807 /* 808 * Returns B_FALSE if 809 * (1) `ifname' is NULL or has no string or has a string of invalid length 810 * (2) ifname is a logical interface and IPH_LEGACY is not set, or 811 */ 812 boolean_t 813 i_ipadm_validate_ifname(ipadm_handle_t iph, const char *ifname) 814 { 815 ifspec_t ifsp; 816 817 if (ifname == NULL || ifname[0] == '\0' || 818 !ifparse_ifspec(ifname, &ifsp)) 819 return (B_FALSE); 820 if (ifsp.ifsp_lunvalid) 821 return (ifsp.ifsp_lun > 0 && (iph->iph_flags & IPH_LEGACY)); 822 return (B_TRUE); 823 } 824 825 /* 826 * Wrapper for sending a non-transparent I_STR ioctl(). 827 * Returns: Result from ioctl(). 828 */ 829 int 830 i_ipadm_strioctl(int s, int cmd, char *buf, int buflen) 831 { 832 struct strioctl ioc; 833 834 (void) memset(&ioc, 0, sizeof (ioc)); 835 ioc.ic_cmd = cmd; 836 ioc.ic_timout = 0; 837 ioc.ic_len = buflen; 838 ioc.ic_dp = buf; 839 840 return (ioctl(s, I_STR, (char *)&ioc)); 841 } 842 843 /* 844 * Make a door call to the server and checks if the door call succeeded or not. 845 * `is_varsize' specifies that the data returned by ipmgmtd daemon is of 846 * variable size and door will allocate buffer using mmap(). In such cases 847 * we re-allocate the required memory,n assign it to `rbufp', copy the data to 848 * `rbufp' and then call munmap() (see below). 849 * 850 * It also checks to see if the server side procedure ran successfully by 851 * checking for ir_err. Therefore, for some callers who just care about the 852 * return status can set `rbufp' to NULL and set `rsize' to 0. 853 */ 854 int 855 ipadm_door_call(ipadm_handle_t iph, void *arg, size_t asize, void **rbufp, 856 size_t rsize, boolean_t is_varsize) 857 { 858 door_arg_t darg; 859 int err; 860 ipmgmt_retval_t rval, *rvalp; 861 862 if (rbufp == NULL) { 863 rvalp = &rval; 864 rbufp = (void **)&rvalp; 865 rsize = sizeof (rval); 866 } 867 868 darg.data_ptr = arg; 869 darg.data_size = asize; 870 darg.desc_ptr = NULL; 871 darg.desc_num = 0; 872 darg.rbuf = *rbufp; 873 darg.rsize = rsize; 874 875 (void) pthread_mutex_lock(&iph->iph_lock); 876 /* The door descriptor is opened if it isn't already */ 877 if (iph->iph_door_fd == -1) { 878 if ((iph->iph_door_fd = open(IPMGMT_DOOR, O_RDONLY)) < 0) { 879 err = errno; 880 (void) pthread_mutex_unlock(&iph->iph_lock); 881 return (err); 882 } 883 } 884 (void) pthread_mutex_unlock(&iph->iph_lock); 885 886 if (door_call(iph->iph_door_fd, &darg) == -1) 887 return (errno); 888 err = ((ipmgmt_retval_t *)(void *)(darg.rbuf))->ir_err; 889 if (darg.rbuf != *rbufp) { 890 /* 891 * if the caller is expecting the result to fit in specified 892 * buffer then return failure. 893 */ 894 if (!is_varsize) 895 err = EBADE; 896 /* 897 * The size of the buffer `*rbufp' was not big enough 898 * and the door itself allocated buffer, for us. We will 899 * hit this, on several occasion as for some cases 900 * we cannot predict the size of the return structure. 901 * Reallocate the buffer `*rbufp' and memcpy() the contents 902 * to new buffer. 903 */ 904 if (err == 0) { 905 void *newp; 906 907 /* allocated memory will be freed by the caller */ 908 if ((newp = realloc(*rbufp, darg.rsize)) == NULL) { 909 err = ENOMEM; 910 } else { 911 *rbufp = newp; 912 (void) memcpy(*rbufp, darg.rbuf, darg.rsize); 913 } 914 } 915 /* munmap() the door buffer */ 916 (void) munmap(darg.rbuf, darg.rsize); 917 } else { 918 if (darg.rsize != rsize) 919 err = EBADE; 920 } 921 return (err); 922 } 923