xref: /titanic_52/usr/src/lib/libefi/common/rdwr_efi.c (revision 4f0dea16c412dcd8b2569402b08b2b58c0e0219b)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 #include <stdio.h>
29 #include <stdlib.h>
30 #include <errno.h>
31 #include <strings.h>
32 #include <unistd.h>
33 #include <uuid/uuid.h>
34 #include <libintl.h>
35 #include <sys/types.h>
36 #include <sys/dkio.h>
37 #include <sys/vtoc.h>
38 #include <sys/mhd.h>
39 #include <sys/param.h>
40 #include <sys/dktp/fdisk.h>
41 #include <sys/efi_partition.h>
42 #include <sys/byteorder.h>
43 #include <sys/ddi.h>
44 
45 static struct uuid_to_ptag {
46 	struct uuid	uuid;
47 } conversion_array[] = {
48 	{ EFI_UNUSED },
49 	{ EFI_BOOT },
50 	{ EFI_ROOT },
51 	{ EFI_SWAP },
52 	{ EFI_USR },
53 	{ EFI_BACKUP },
54 	{ 0 },			/* STAND is never used */
55 	{ EFI_VAR },
56 	{ EFI_HOME },
57 	{ EFI_ALTSCTR },
58 	{ 0 },			/* CACHE (cachefs) is never used */
59 	{ EFI_RESERVED },
60 	{ EFI_SYSTEM },
61 	{ EFI_LEGACY_MBR },
62 	{ EFI_RESV3 },
63 	{ EFI_RESV4 },
64 	{ EFI_MSFT_RESV },
65 	{ EFI_DELL_BASIC },
66 	{ EFI_DELL_RAID },
67 	{ EFI_DELL_SWAP },
68 	{ EFI_DELL_LVM },
69 	{ EFI_DELL_RESV }
70 };
71 
72 /*
73  * Default vtoc information for non-SVr4 partitions
74  */
75 struct dk_map2  default_vtoc_map[NDKMAP] = {
76 	{	V_ROOT,		0	},		/* a - 0 */
77 	{	V_SWAP,		V_UNMNT	},		/* b - 1 */
78 	{	V_BACKUP,	V_UNMNT	},		/* c - 2 */
79 	{	V_UNASSIGNED,	0	},		/* d - 3 */
80 	{	V_UNASSIGNED,	0	},		/* e - 4 */
81 	{	V_UNASSIGNED,	0	},		/* f - 5 */
82 	{	V_USR,		0	},		/* g - 6 */
83 	{	V_UNASSIGNED,	0	},		/* h - 7 */
84 
85 #if defined(_SUNOS_VTOC_16)
86 
87 #if defined(i386) || defined(__amd64)
88 	{	V_BOOT,		V_UNMNT	},		/* i - 8 */
89 	{	V_ALTSCTR,	0	},		/* j - 9 */
90 
91 #else
92 #error No VTOC format defined.
93 #endif			/* defined(i386) */
94 
95 	{	V_UNASSIGNED,	0	},		/* k - 10 */
96 	{	V_UNASSIGNED,	0	},		/* l - 11 */
97 	{	V_UNASSIGNED,	0	},		/* m - 12 */
98 	{	V_UNASSIGNED,	0	},		/* n - 13 */
99 	{	V_UNASSIGNED,	0	},		/* o - 14 */
100 	{	V_UNASSIGNED,	0	},		/* p - 15 */
101 #endif			/* defined(_SUNOS_VTOC_16) */
102 };
103 
104 /*
105  * This is the size of the reserved partition.
106  * Valid in case of EFI labels.
107  */
108 #define	EFI_MIN_RESV_SIZE	(16 * 1024)
109 
110 #ifdef DEBUG
111 int efi_debug = 1;
112 #else
113 int efi_debug = 0;
114 #endif
115 
116 extern unsigned int	efi_crc32(const unsigned char *, unsigned int);
117 static int		efi_read(int, struct dk_gpt *);
118 
119 static int
120 read_disk_info(int fd, diskaddr_t *capacity, uint_t *lbsize)
121 {
122 	struct dk_minfo		disk_info;
123 
124 	if ((ioctl(fd, DKIOCGMEDIAINFO, (caddr_t)&disk_info)) == -1)
125 		return (errno);
126 	*capacity = disk_info.dki_capacity;
127 	*lbsize = disk_info.dki_lbsize;
128 	return (0);
129 }
130 
131 /*
132  * the number of blocks the EFI label takes up (round up to nearest
133  * block)
134  */
135 #define	NBLOCKS(p, l)	(1 + ((((p) * (int)sizeof (efi_gpe_t))  + \
136 				((l) - 1)) / (l)))
137 /* number of partitions -- limited by what we can malloc */
138 #define	MAX_PARTS	((4294967295UL - sizeof (struct dk_gpt)) / \
139 			    sizeof (struct dk_part))
140 
141 int
142 efi_alloc_and_init(int fd, uint32_t nparts, struct dk_gpt **vtoc)
143 {
144 	diskaddr_t	capacity;
145 	uint_t		lbsize;
146 	uint_t		nblocks;
147 	size_t		length;
148 	struct dk_gpt	*vptr;
149 	struct uuid	uuid;
150 
151 	if (read_disk_info(fd, &capacity, &lbsize) != 0) {
152 		if (efi_debug)
153 			(void) fprintf(stderr,
154 			    "couldn't read disk information\n");
155 		return (-1);
156 	}
157 
158 	nblocks = NBLOCKS(nparts, lbsize);
159 	if ((nblocks * lbsize) < EFI_MIN_ARRAY_SIZE + lbsize) {
160 		/* 16K plus one block for the GPT */
161 		nblocks = EFI_MIN_ARRAY_SIZE / lbsize + 1;
162 	}
163 
164 	if (nparts > MAX_PARTS) {
165 		if (efi_debug) {
166 			(void) fprintf(stderr,
167 			"the maximum number of partitions supported is %lu\n",
168 			    MAX_PARTS);
169 		}
170 		return (-1);
171 	}
172 
173 	length = sizeof (struct dk_gpt) +
174 	    sizeof (struct dk_part) * (nparts - 1);
175 
176 	if ((*vtoc = calloc(length, 1)) == NULL)
177 		return (-1);
178 
179 	vptr = *vtoc;
180 
181 	vptr->efi_version = EFI_VERSION_CURRENT;
182 	vptr->efi_lbasize = lbsize;
183 	vptr->efi_nparts = nparts;
184 	/*
185 	 * add one block here for the PMBR; on disks with a 512 byte
186 	 * block size and 128 or fewer partitions, efi_first_u_lba
187 	 * should work out to "34"
188 	 */
189 	vptr->efi_first_u_lba = nblocks + 1;
190 	vptr->efi_last_lba = capacity - 1;
191 	vptr->efi_last_u_lba = vptr->efi_last_lba - nblocks;
192 	(void) uuid_generate((uchar_t *)&uuid);
193 	UUID_LE_CONVERT(vptr->efi_disk_uguid, uuid);
194 	return (0);
195 }
196 
197 /*
198  * Read EFI - return partition number upon success.
199  */
200 int
201 efi_alloc_and_read(int fd, struct dk_gpt **vtoc)
202 {
203 	int			rval;
204 	uint32_t		nparts;
205 	int			length;
206 
207 	/* figure out the number of entries that would fit into 16K */
208 	nparts = EFI_MIN_ARRAY_SIZE / sizeof (efi_gpe_t);
209 	length = (int) sizeof (struct dk_gpt) +
210 			    (int) sizeof (struct dk_part) * (nparts - 1);
211 	if ((*vtoc = calloc(length, 1)) == NULL)
212 		return (VT_ERROR);
213 
214 	(*vtoc)->efi_nparts = nparts;
215 	rval = efi_read(fd, *vtoc);
216 
217 	if ((rval == VT_EINVAL) && (*vtoc)->efi_nparts > nparts) {
218 		void *tmp;
219 		length = (int) sizeof (struct dk_gpt) +
220 				(int) sizeof (struct dk_part) *
221 				((*vtoc)->efi_nparts - 1);
222 		nparts = (*vtoc)->efi_nparts;
223 		if ((tmp = realloc(*vtoc, length)) == NULL) {
224 			free (*vtoc);
225 			*vtoc = NULL;
226 			return (VT_ERROR);
227 		} else {
228 			*vtoc = tmp;
229 			rval = efi_read(fd, *vtoc);
230 		}
231 	}
232 
233 	if (rval < 0) {
234 		if (efi_debug) {
235 			(void) fprintf(stderr,
236 			    "read of EFI table failed, rval=%d\n", rval);
237 		}
238 		free (*vtoc);
239 		*vtoc = NULL;
240 	}
241 
242 	return (rval);
243 }
244 
245 static int
246 efi_ioctl(int fd, int cmd, dk_efi_t *dk_ioc)
247 {
248 	void *data = dk_ioc->dki_data;
249 	int error;
250 
251 	dk_ioc->dki_data_64 = (uint64_t)(uintptr_t)data;
252 	error = ioctl(fd, cmd, (void *)dk_ioc);
253 	dk_ioc->dki_data = data;
254 
255 	return (error);
256 }
257 
258 static int
259 check_label(int fd, dk_efi_t *dk_ioc)
260 {
261 	efi_gpt_t		*efi;
262 	uint_t			crc;
263 
264 	if (efi_ioctl(fd, DKIOCGETEFI, dk_ioc) == -1) {
265 		switch (errno) {
266 		case EIO:
267 			return (VT_EIO);
268 		default:
269 			return (VT_ERROR);
270 		}
271 	}
272 	efi = dk_ioc->dki_data;
273 	if (efi->efi_gpt_Signature != LE_64(EFI_SIGNATURE)) {
274 		if (efi_debug)
275 			(void) fprintf(stderr,
276 			    "Bad EFI signature: 0x%llx != 0x%llx\n",
277 			    (long long)efi->efi_gpt_Signature,
278 			    (long long)LE_64(EFI_SIGNATURE));
279 		return (VT_EINVAL);
280 	}
281 
282 	/*
283 	 * check CRC of the header; the size of the header should
284 	 * never be larger than one block
285 	 */
286 	crc = efi->efi_gpt_HeaderCRC32;
287 	efi->efi_gpt_HeaderCRC32 = 0;
288 
289 	if (((len_t)LE_32(efi->efi_gpt_HeaderSize) > dk_ioc->dki_length) ||
290 	    crc != LE_32(efi_crc32((unsigned char *)efi,
291 	    LE_32(efi->efi_gpt_HeaderSize)))) {
292 		if (efi_debug)
293 			(void) fprintf(stderr,
294 				"Bad EFI CRC: 0x%x != 0x%x\n",
295 				crc,
296 				LE_32(efi_crc32((unsigned char *)efi,
297 				    sizeof (struct efi_gpt))));
298 		return (VT_EINVAL);
299 	}
300 
301 	return (0);
302 }
303 
304 static int
305 efi_read(int fd, struct dk_gpt *vtoc)
306 {
307 	int			i, j;
308 	int			label_len;
309 	int			rval = 0;
310 	int			md_flag = 0;
311 	struct dk_minfo		disk_info;
312 	dk_efi_t		dk_ioc;
313 	efi_gpt_t		*efi;
314 	efi_gpe_t		*efi_parts;
315 	struct dk_cinfo		dki_info;
316 	uint32_t		user_length;
317 
318 	/*
319 	 * get the partition number for this file descriptor.
320 	 */
321 	if (ioctl(fd, DKIOCINFO, (caddr_t)&dki_info) == -1) {
322 		if (efi_debug)
323 		    (void) fprintf(stderr, "DKIOCINFO errno 0x%x\n", errno);
324 		switch (errno) {
325 		case EIO:
326 			return (VT_EIO);
327 		case EINVAL:
328 			return (VT_EINVAL);
329 		default:
330 			return (VT_ERROR);
331 		}
332 	}
333 	if ((strncmp(dki_info.dki_cname, "pseudo", 7) == 0) &&
334 	    (strncmp(dki_info.dki_dname, "md", 3) == 0)) {
335 		md_flag++;
336 	}
337 	/* get the LBA size */
338 	if (ioctl(fd, DKIOCGMEDIAINFO, (caddr_t)&disk_info) == -1) {
339 		if (efi_debug) {
340 			(void) fprintf(stderr,
341 			    "assuming LBA 512 bytes %d\n",
342 			    errno);
343 		}
344 		disk_info.dki_lbsize = DEV_BSIZE;
345 	}
346 	if (disk_info.dki_lbsize == 0) {
347 		if (efi_debug) {
348 			(void) fprintf(stderr,
349 			    "efi_read: assuming LBA 512 bytes\n");
350 		}
351 		disk_info.dki_lbsize = DEV_BSIZE;
352 	}
353 	/*
354 	 * Read the EFI GPT to figure out how many partitions we need
355 	 * to deal with.
356 	 */
357 	dk_ioc.dki_lba = 1;
358 	if (NBLOCKS(vtoc->efi_nparts, disk_info.dki_lbsize) < 34) {
359 		label_len = EFI_MIN_ARRAY_SIZE + disk_info.dki_lbsize;
360 	} else {
361 		label_len = vtoc->efi_nparts * (int) sizeof (efi_gpe_t) +
362 				    disk_info.dki_lbsize;
363 		if (label_len % disk_info.dki_lbsize) {
364 			/* pad to physical sector size */
365 			label_len += disk_info.dki_lbsize;
366 			label_len &= ~(disk_info.dki_lbsize - 1);
367 		}
368 	}
369 
370 	if ((dk_ioc.dki_data = calloc(label_len, 1)) == NULL)
371 		return (VT_ERROR);
372 
373 	dk_ioc.dki_length = label_len;
374 	user_length = vtoc->efi_nparts;
375 	efi = dk_ioc.dki_data;
376 	if (md_flag) {
377 		if (efi_ioctl(fd, DKIOCGETEFI, &dk_ioc) == -1) {
378 			switch (errno) {
379 			case EIO:
380 				return (VT_EIO);
381 			default:
382 				return (VT_ERROR);
383 			}
384 		}
385 	} else if ((rval = check_label(fd, &dk_ioc)) == VT_EINVAL) {
386 		/* no valid label here; try the alternate */
387 		dk_ioc.dki_lba = disk_info.dki_capacity - 1;
388 		dk_ioc.dki_length = disk_info.dki_lbsize;
389 		rval = check_label(fd, &dk_ioc);
390 		if (rval != 0) {
391 			/*
392 			 * Refer to bug6342431. This is a workaround for
393 			 * legacy.
394 			 *
395 			 * In the past, the last sector of SCSI disk was
396 			 * invisible on x86 platform. At that time, backup
397 			 * label was saved on the next to the last sector.
398 			 * It is possible for users to move a disk from
399 			 * previous solaris system to present system.
400 			 */
401 			dk_ioc.dki_lba = disk_info.dki_capacity - 2;
402 			dk_ioc.dki_length = disk_info.dki_lbsize;
403 			rval = check_label(fd, &dk_ioc);
404 			if (efi_debug && (rval == 0)) {
405 				(void) fprintf(stderr,
406 				    "efi_read: primary label corrupt; "
407 				    "using legacy EFI backup label\n");
408 			}
409 		}
410 
411 		if (rval == 0) {
412 			if (efi_debug) {
413 				(void) fprintf(stderr,
414 				    "efi_read: primary label corrupt; "
415 				    "using backup\n");
416 			}
417 			dk_ioc.dki_lba = LE_64(efi->efi_gpt_PartitionEntryLBA);
418 			vtoc->efi_flags |= EFI_GPT_PRIMARY_CORRUPT;
419 			vtoc->efi_nparts =
420 			    LE_32(efi->efi_gpt_NumberOfPartitionEntries);
421 			/*
422 			 * partitions are between last usable LBA and
423 			 * backup partition header
424 			 */
425 			dk_ioc.dki_data++;
426 			dk_ioc.dki_length = disk_info.dki_capacity -
427 						    dk_ioc.dki_lba - 1;
428 			dk_ioc.dki_length *= disk_info.dki_lbsize;
429 			if (dk_ioc.dki_length > (len_t)label_len) {
430 				rval = VT_EINVAL;
431 			} else {
432 				rval = efi_ioctl(fd, DKIOCGETEFI, &dk_ioc);
433 			}
434 		}
435 	}
436 	if (rval < 0) {
437 		free(efi);
438 		return (rval);
439 	}
440 
441 	/* partitions start in the next block */
442 	/* LINTED -- always longlong aligned */
443 	efi_parts = (efi_gpe_t *)(((char *)efi) + disk_info.dki_lbsize);
444 
445 	/*
446 	 * Assemble this into a "dk_gpt" struct for easier
447 	 * digestibility by applications.
448 	 */
449 	vtoc->efi_version = LE_32(efi->efi_gpt_Revision);
450 	vtoc->efi_nparts = LE_32(efi->efi_gpt_NumberOfPartitionEntries);
451 	vtoc->efi_part_size = LE_32(efi->efi_gpt_SizeOfPartitionEntry);
452 	vtoc->efi_lbasize = disk_info.dki_lbsize;
453 	vtoc->efi_last_lba = disk_info.dki_capacity - 1;
454 	vtoc->efi_first_u_lba = LE_64(efi->efi_gpt_FirstUsableLBA);
455 	vtoc->efi_last_u_lba = LE_64(efi->efi_gpt_LastUsableLBA);
456 	UUID_LE_CONVERT(vtoc->efi_disk_uguid, efi->efi_gpt_DiskGUID);
457 
458 	/*
459 	 * If the array the user passed in is too small, set the length
460 	 * to what it needs to be and return
461 	 */
462 	if (user_length < vtoc->efi_nparts) {
463 		return (VT_EINVAL);
464 	}
465 
466 	for (i = 0; i < vtoc->efi_nparts; i++) {
467 
468 	    UUID_LE_CONVERT(vtoc->efi_parts[i].p_guid,
469 		efi_parts[i].efi_gpe_PartitionTypeGUID);
470 
471 	    for (j = 0;
472 		j < sizeof (conversion_array) / sizeof (struct uuid_to_ptag);
473 		j++) {
474 
475 		    if (bcmp(&vtoc->efi_parts[i].p_guid,
476 			&conversion_array[j].uuid,
477 			sizeof (struct uuid)) == 0) {
478 			    vtoc->efi_parts[i].p_tag = j;
479 			    break;
480 		    }
481 	    }
482 	    if (vtoc->efi_parts[i].p_tag == V_UNASSIGNED)
483 		    continue;
484 	    vtoc->efi_parts[i].p_flag =
485 		LE_16(efi_parts[i].efi_gpe_Attributes.PartitionAttrs);
486 	    vtoc->efi_parts[i].p_start =
487 		LE_64(efi_parts[i].efi_gpe_StartingLBA);
488 	    vtoc->efi_parts[i].p_size =
489 		LE_64(efi_parts[i].efi_gpe_EndingLBA) -
490 		    vtoc->efi_parts[i].p_start + 1;
491 	    for (j = 0; j < EFI_PART_NAME_LEN; j++) {
492 		vtoc->efi_parts[i].p_name[j] =
493 		    (uchar_t)LE_16(efi_parts[i].efi_gpe_PartitionName[j]);
494 	    }
495 
496 	    UUID_LE_CONVERT(vtoc->efi_parts[i].p_uguid,
497 		efi_parts[i].efi_gpe_UniquePartitionGUID);
498 	}
499 	free(efi);
500 
501 	return (dki_info.dki_partition);
502 }
503 
504 /* writes a "protective" MBR */
505 static int
506 write_pmbr(int fd, struct dk_gpt *vtoc)
507 {
508 	dk_efi_t	dk_ioc;
509 	struct mboot	mb;
510 	uchar_t		*cp;
511 	diskaddr_t	size_in_lba;
512 
513 	mb.signature = LE_16(MBB_MAGIC);
514 	bzero(&mb.parts, sizeof (mb.parts));
515 	cp = (uchar_t *)&mb.parts[0];
516 	/* bootable or not */
517 	*cp++ = 0;
518 	/* beginning CHS; 0xffffff if not representable */
519 	*cp++ = 0xff;
520 	*cp++ = 0xff;
521 	*cp++ = 0xff;
522 	/* OS type */
523 	*cp++ = EFI_PMBR;
524 	/* ending CHS; 0xffffff if not representable */
525 	*cp++ = 0xff;
526 	*cp++ = 0xff;
527 	*cp++ = 0xff;
528 	/* starting LBA: 1 (little endian format) by EFI definition */
529 	*cp++ = 0x01;
530 	*cp++ = 0x00;
531 	*cp++ = 0x00;
532 	*cp++ = 0x00;
533 	/* ending LBA: last block on the disk (little endian format) */
534 	size_in_lba = vtoc->efi_last_lba;
535 	if (size_in_lba < 0xffffffff) {
536 		*cp++ = (size_in_lba & 0x000000ff);
537 		*cp++ = (size_in_lba & 0x0000ff00) >> 8;
538 		*cp++ = (size_in_lba & 0x00ff0000) >> 16;
539 		*cp++ = (size_in_lba & 0xff000000) >> 24;
540 	} else {
541 		*cp++ = 0xff;
542 		*cp++ = 0xff;
543 		*cp++ = 0xff;
544 		*cp++ = 0xff;
545 	}
546 	/* LINTED -- always longlong aligned */
547 	dk_ioc.dki_data = (efi_gpt_t *)&mb;
548 	dk_ioc.dki_lba = 0;
549 	dk_ioc.dki_length = sizeof (mb);
550 	if (efi_ioctl(fd, DKIOCSETEFI, &dk_ioc) == -1) {
551 		switch (errno) {
552 		case EIO:
553 			return (VT_EIO);
554 		case EINVAL:
555 			return (VT_EINVAL);
556 		default:
557 			return (VT_ERROR);
558 		}
559 	}
560 	return (0);
561 }
562 
563 /* make sure the user specified something reasonable */
564 static int
565 check_input(struct dk_gpt *vtoc)
566 {
567 	int			resv_part = -1;
568 	int			i, j;
569 	diskaddr_t		istart, jstart, isize, jsize, endsect;
570 
571 	/*
572 	 * Sanity-check the input (make sure no partitions overlap)
573 	 */
574 	for (i = 0; i < vtoc->efi_nparts; i++) {
575 		/* It can't be unassigned and have an actual size */
576 		if ((vtoc->efi_parts[i].p_tag == V_UNASSIGNED) &&
577 		    (vtoc->efi_parts[i].p_size != 0)) {
578 			if (efi_debug) {
579 				(void) fprintf(stderr,
580 "partition %d is \"unassigned\" but has a size of %llu",
581 				    i,
582 				    vtoc->efi_parts[i].p_size);
583 			}
584 			return (VT_EINVAL);
585 		}
586 		if (vtoc->efi_parts[i].p_tag == V_UNASSIGNED) {
587 			continue;
588 		}
589 		if (vtoc->efi_parts[i].p_tag == V_RESERVED) {
590 			if (resv_part != -1) {
591 				if (efi_debug) {
592 				    (void) fprintf(stderr,
593 "found duplicate reserved partition at %d\n",
594 					i);
595 				}
596 				return (VT_EINVAL);
597 			}
598 			resv_part = i;
599 		}
600 		if ((vtoc->efi_parts[i].p_start < vtoc->efi_first_u_lba) ||
601 		    (vtoc->efi_parts[i].p_start > vtoc->efi_last_u_lba)) {
602 			if (efi_debug) {
603 				(void) fprintf(stderr,
604 				    "Partition %d starts at %llu.  ",
605 				    i,
606 				    vtoc->efi_parts[i].p_start);
607 				(void) fprintf(stderr,
608 				    "It must be between %llu and %llu.\n",
609 				    vtoc->efi_first_u_lba,
610 				    vtoc->efi_last_u_lba);
611 			}
612 			return (VT_EINVAL);
613 		}
614 		if ((vtoc->efi_parts[i].p_start +
615 		    vtoc->efi_parts[i].p_size <
616 		    vtoc->efi_first_u_lba) ||
617 		    (vtoc->efi_parts[i].p_start +
618 		    vtoc->efi_parts[i].p_size >
619 		    vtoc->efi_last_u_lba + 1)) {
620 			if (efi_debug) {
621 				(void) fprintf(stderr,
622 				    "Partition %d ends at %llu.  ",
623 				    i,
624 				    vtoc->efi_parts[i].p_start +
625 				    vtoc->efi_parts[i].p_size);
626 				(void) fprintf(stderr,
627 				    "It must be between %llu and %llu.\n",
628 				    vtoc->efi_first_u_lba,
629 				    vtoc->efi_last_u_lba);
630 			}
631 			return (VT_EINVAL);
632 		}
633 
634 		for (j = 0; j < vtoc->efi_nparts; j++) {
635 			isize = vtoc->efi_parts[i].p_size;
636 			jsize = vtoc->efi_parts[j].p_size;
637 			istart = vtoc->efi_parts[i].p_start;
638 			jstart = vtoc->efi_parts[j].p_start;
639 			if ((i != j) && (isize != 0) && (jsize != 0)) {
640 				endsect = jstart + jsize -1;
641 				if ((jstart <= istart) &&
642 				    (istart <= endsect)) {
643 					if (efi_debug) {
644 						(void) fprintf(stderr,
645 "Partition %d overlaps partition %d.",
646 						    i, j);
647 					    }
648 					    return (VT_EINVAL);
649 				}
650 			}
651 		}
652 	}
653 	/* just a warning for now */
654 	if ((resv_part == -1) && efi_debug) {
655 		(void) fprintf(stderr,
656 				"no reserved partition found\n");
657 	}
658 	return (0);
659 }
660 
661 /*
662  * write EFI label and backup label
663  */
664 int
665 efi_write(int fd, struct dk_gpt *vtoc)
666 {
667 	dk_efi_t		dk_ioc;
668 	efi_gpt_t		*efi;
669 	efi_gpe_t		*efi_parts;
670 	int			i, j;
671 	struct dk_cinfo		dki_info;
672 	int			md_flag = 0;
673 
674 	if (ioctl(fd, DKIOCINFO, (caddr_t)&dki_info) == -1) {
675 		if (efi_debug)
676 			(void) fprintf(stderr, "DKIOCINFO errno 0x%x\n", errno);
677 		switch (errno) {
678 		case EIO:
679 			return (VT_EIO);
680 		case EINVAL:
681 			return (VT_EINVAL);
682 		default:
683 			return (VT_ERROR);
684 		}
685 	}
686 
687 	/* check if we are dealing wih a metadevice */
688 	if ((strncmp(dki_info.dki_cname, "pseudo", 7) == 0) &&
689 	    (strncmp(dki_info.dki_dname, "md", 3) == 0)) {
690 		md_flag = 1;
691 	}
692 
693 	if (check_input(vtoc)) {
694 		/*
695 		 * not valid; if it's a metadevice just pass it down
696 		 * because SVM will do its own checking
697 		 */
698 		if (md_flag == 0) {
699 			return (VT_EINVAL);
700 		}
701 	}
702 
703 	dk_ioc.dki_lba = 1;
704 	if (NBLOCKS(vtoc->efi_nparts, vtoc->efi_lbasize) < 34) {
705 		dk_ioc.dki_length = EFI_MIN_ARRAY_SIZE + vtoc->efi_lbasize;
706 	} else {
707 		dk_ioc.dki_length = NBLOCKS(vtoc->efi_nparts,
708 				    vtoc->efi_lbasize) *
709 				    vtoc->efi_lbasize;
710 	}
711 
712 	if ((dk_ioc.dki_data = calloc(dk_ioc.dki_length, 1)) == NULL)
713 		return (VT_ERROR);
714 
715 	efi = dk_ioc.dki_data;
716 
717 	/* stuff user's input into EFI struct */
718 	efi->efi_gpt_Signature = LE_64(EFI_SIGNATURE);
719 	efi->efi_gpt_Revision = LE_32(vtoc->efi_version); /* 0x02000100 */
720 	efi->efi_gpt_HeaderSize = LE_32(sizeof (struct efi_gpt));
721 	efi->efi_gpt_Reserved1 = 0;
722 	efi->efi_gpt_MyLBA = LE_64(1ULL);
723 	efi->efi_gpt_AlternateLBA = LE_64(vtoc->efi_last_lba);
724 	efi->efi_gpt_FirstUsableLBA = LE_64(vtoc->efi_first_u_lba);
725 	efi->efi_gpt_LastUsableLBA = LE_64(vtoc->efi_last_u_lba);
726 	efi->efi_gpt_PartitionEntryLBA = LE_64(2ULL);
727 	efi->efi_gpt_NumberOfPartitionEntries = LE_32(vtoc->efi_nparts);
728 	efi->efi_gpt_SizeOfPartitionEntry = LE_32(sizeof (struct efi_gpe));
729 	UUID_LE_CONVERT(efi->efi_gpt_DiskGUID, vtoc->efi_disk_uguid);
730 
731 	/* LINTED -- always longlong aligned */
732 	efi_parts = (efi_gpe_t *)((char *)dk_ioc.dki_data + sizeof (efi_gpt_t));
733 
734 	for (i = 0; i < vtoc->efi_nparts; i++) {
735 	    for (j = 0;
736 		j < sizeof (conversion_array) / sizeof (struct uuid_to_ptag);
737 		j++) {
738 
739 		    if (vtoc->efi_parts[i].p_tag == j) {
740 			    UUID_LE_CONVERT(
741 				efi_parts[i].efi_gpe_PartitionTypeGUID,
742 				conversion_array[j].uuid);
743 		    }
744 	    }
745 	    efi_parts[i].efi_gpe_StartingLBA =
746 		LE_64(vtoc->efi_parts[i].p_start);
747 	    efi_parts[i].efi_gpe_EndingLBA =
748 		LE_64(vtoc->efi_parts[i].p_start +
749 		vtoc->efi_parts[i].p_size - 1);
750 	    efi_parts[i].efi_gpe_Attributes.PartitionAttrs =
751 		    LE_16(vtoc->efi_parts[i].p_flag);
752 	    for (j = 0; j < EFI_PART_NAME_LEN; j++) {
753 		    efi_parts[i].efi_gpe_PartitionName[j] =
754 			LE_16((ushort_t)vtoc->efi_parts[i].p_name[j]);
755 	    }
756 	    if ((vtoc->efi_parts[i].p_tag != V_UNASSIGNED) &&
757 		uuid_is_null((uchar_t *)&vtoc->efi_parts[i].p_uguid)) {
758 		    (void) uuid_generate((uchar_t *)
759 			&vtoc->efi_parts[i].p_uguid);
760 	    }
761 	    bcopy(&vtoc->efi_parts[i].p_uguid,
762 		&efi_parts[i].efi_gpe_UniquePartitionGUID,
763 		sizeof (uuid_t));
764 	}
765 	efi->efi_gpt_PartitionEntryArrayCRC32 =
766 	    LE_32(efi_crc32((unsigned char *)efi_parts,
767 	    vtoc->efi_nparts * (int)sizeof (struct efi_gpe)));
768 	efi->efi_gpt_HeaderCRC32 =
769 	    LE_32(efi_crc32((unsigned char *)efi, sizeof (struct efi_gpt)));
770 
771 	if (efi_ioctl(fd, DKIOCSETEFI, &dk_ioc) == -1) {
772 		free(dk_ioc.dki_data);
773 		switch (errno) {
774 		case EIO:
775 			return (VT_EIO);
776 		case EINVAL:
777 			return (VT_EINVAL);
778 		default:
779 			return (VT_ERROR);
780 		}
781 	}
782 	/* if it's a metadevice we're done */
783 	if (md_flag) {
784 		free(dk_ioc.dki_data);
785 		return (0);
786 	}
787 	/* write backup partition array */
788 	dk_ioc.dki_lba = vtoc->efi_last_u_lba + 1;
789 	dk_ioc.dki_length -= vtoc->efi_lbasize;
790 	dk_ioc.dki_data++;
791 	if (efi_ioctl(fd, DKIOCSETEFI, &dk_ioc) == -1) {
792 		/*
793 		 * we wrote the primary label okay, so don't fail
794 		 */
795 		if (efi_debug) {
796 			(void) fprintf(stderr,
797 			    "write of backup partitions to block %llu "
798 			    "failed, errno %d\n",
799 			    vtoc->efi_last_u_lba + 1,
800 			    errno);
801 		}
802 	}
803 	/*
804 	 * now swap MyLBA and AlternateLBA fields and write backup
805 	 * partition table header
806 	 */
807 	dk_ioc.dki_lba = vtoc->efi_last_lba;
808 	dk_ioc.dki_length = vtoc->efi_lbasize;
809 	dk_ioc.dki_data--;
810 	efi->efi_gpt_AlternateLBA = LE_64(1ULL);
811 	efi->efi_gpt_MyLBA = LE_64(vtoc->efi_last_lba);
812 	efi->efi_gpt_PartitionEntryLBA = LE_64(vtoc->efi_last_u_lba + 1);
813 	efi->efi_gpt_HeaderCRC32 = 0;
814 	efi->efi_gpt_HeaderCRC32 =
815 	    LE_32(efi_crc32((unsigned char *)dk_ioc.dki_data,
816 	    sizeof (struct efi_gpt)));
817 
818 	if (efi_ioctl(fd, DKIOCSETEFI, &dk_ioc) == -1) {
819 		if (efi_debug) {
820 			(void) fprintf(stderr,
821 			    "write of backup header to block %llu failed, "
822 			    "errno %d\n",
823 			    vtoc->efi_last_lba,
824 			    errno);
825 		}
826 	}
827 	/* write the PMBR */
828 	(void) write_pmbr(fd, vtoc);
829 	if (ioctl(fd, MHIOCREREGISTERDEVID) == -1) {
830 		if (efi_debug) {
831 		    (void) fprintf(stderr,
832 			    "MHIOCREREGISTERDEVID failed %d\n",
833 			    errno);
834 		}
835 	}
836 	free(dk_ioc.dki_data);
837 	return (0);
838 }
839 
840 void
841 efi_free(struct dk_gpt *ptr)
842 {
843 	free(ptr);
844 }
845 
846 /*
847  * Input: File descriptor
848  * Output: 1 if disk is >1TB OR has an EFI label, 0 otherwise.
849  */
850 int
851 efi_type(int fd)
852 {
853 	struct vtoc vtoc;
854 
855 	if (ioctl(fd, DKIOCGVTOC, &vtoc) == -1) {
856 		if (errno == ENOTSUP) {
857 			return (1);
858 		}
859 	}
860 	return (0);
861 }
862 
863 void
864 efi_err_check(struct dk_gpt *vtoc)
865 {
866 	int			resv_part = -1;
867 	int			i, j;
868 	diskaddr_t		istart, jstart, isize, jsize, endsect;
869 	int			overlap = 0;
870 
871 	/*
872 	 * make sure no partitions overlap
873 	 */
874 	for (i = 0; i < vtoc->efi_nparts; i++) {
875 		/* It can't be unassigned and have an actual size */
876 		if ((vtoc->efi_parts[i].p_tag == V_UNASSIGNED) &&
877 		    (vtoc->efi_parts[i].p_size != 0)) {
878 			(void) fprintf(stderr,
879 			    "partition %d is \"unassigned\" but has a size "
880 			    "of %llu\n", i, vtoc->efi_parts[i].p_size);
881 		}
882 		if (vtoc->efi_parts[i].p_tag == V_UNASSIGNED) {
883 			continue;
884 		}
885 		if (vtoc->efi_parts[i].p_tag == V_RESERVED) {
886 			if (resv_part != -1) {
887 				(void) fprintf(stderr,
888 				    "found duplicate reserved partition at "
889 				    "%d\n", i);
890 			}
891 			resv_part = i;
892 			if (vtoc->efi_parts[i].p_size != EFI_MIN_RESV_SIZE)
893 				(void) fprintf(stderr,
894 				    "Warning: reserved partition size must "
895 				    "be %d sectors\n", EFI_MIN_RESV_SIZE);
896 		}
897 		if ((vtoc->efi_parts[i].p_start < vtoc->efi_first_u_lba) ||
898 		    (vtoc->efi_parts[i].p_start > vtoc->efi_last_u_lba)) {
899 			(void) fprintf(stderr,
900 			    "Partition %d starts at %llu\n",
901 			    i,
902 			    vtoc->efi_parts[i].p_start);
903 			(void) fprintf(stderr,
904 			    "It must be between %llu and %llu.\n",
905 			    vtoc->efi_first_u_lba,
906 			    vtoc->efi_last_u_lba);
907 		}
908 		if ((vtoc->efi_parts[i].p_start +
909 		    vtoc->efi_parts[i].p_size <
910 		    vtoc->efi_first_u_lba) ||
911 		    (vtoc->efi_parts[i].p_start +
912 		    vtoc->efi_parts[i].p_size >
913 		    vtoc->efi_last_u_lba + 1)) {
914 			(void) fprintf(stderr,
915 			    "Partition %d ends at %llu\n",
916 			    i,
917 			    vtoc->efi_parts[i].p_start +
918 			    vtoc->efi_parts[i].p_size);
919 			(void) fprintf(stderr,
920 			    "It must be between %llu and %llu.\n",
921 			    vtoc->efi_first_u_lba,
922 			    vtoc->efi_last_u_lba);
923 		}
924 
925 		for (j = 0; j < vtoc->efi_nparts; j++) {
926 			isize = vtoc->efi_parts[i].p_size;
927 			jsize = vtoc->efi_parts[j].p_size;
928 			istart = vtoc->efi_parts[i].p_start;
929 			jstart = vtoc->efi_parts[j].p_start;
930 			if ((i != j) && (isize != 0) && (jsize != 0)) {
931 				endsect = jstart + jsize -1;
932 				if ((jstart <= istart) &&
933 				    (istart <= endsect)) {
934 					if (!overlap) {
935 					(void) fprintf(stderr,
936 					    "label error: EFI Labels do not "
937 					    "support overlapping partitions\n");
938 					}
939 					(void) fprintf(stderr,
940 					    "Partition %d overlaps partition "
941 					    "%d.\n", i, j);
942 					overlap = 1;
943 				}
944 			}
945 		}
946 	}
947 	/* make sure there is a reserved partition */
948 	if (resv_part == -1) {
949 		(void) fprintf(stderr,
950 			"no reserved partition found\n");
951 	}
952 }
953 
954 /*
955  * We need to get information necessary to construct a *new* efi
956  * label type
957  */
958 int
959 efi_auto_sense(int fd, struct dk_gpt **vtoc)
960 {
961 
962 	int	i;
963 
964 	/*
965 	 * Now build the default partition table
966 	 */
967 	if (efi_alloc_and_init(fd, EFI_NUMPAR, vtoc) != 0) {
968 		if (efi_debug) {
969 			(void) fprintf(stderr, "efi_alloc_and_init failed.\n");
970 		}
971 		return (-1);
972 	}
973 
974 	for (i = 0; i < min((*vtoc)->efi_nparts, V_NUMPAR); i++) {
975 		(*vtoc)->efi_parts[i].p_tag = default_vtoc_map[i].p_tag;
976 		(*vtoc)->efi_parts[i].p_flag = default_vtoc_map[i].p_flag;
977 		(*vtoc)->efi_parts[i].p_start = 0;
978 		(*vtoc)->efi_parts[i].p_size = 0;
979 	}
980 	/*
981 	 * Make constants first
982 	 * and variable partitions later
983 	 */
984 
985 	/* root partition - s0 128 MB */
986 	(*vtoc)->efi_parts[0].p_start = 34;
987 	(*vtoc)->efi_parts[0].p_size = 262144;
988 
989 	/* partition - s1  128 MB */
990 	(*vtoc)->efi_parts[1].p_start = 262178;
991 	(*vtoc)->efi_parts[1].p_size = 262144;
992 
993 	/* partition -s2 is NOT the Backup disk */
994 	(*vtoc)->efi_parts[2].p_tag = V_UNASSIGNED;
995 
996 	/* partition -s6 /usr partition - HOG */
997 	(*vtoc)->efi_parts[6].p_start = 524322;
998 	(*vtoc)->efi_parts[6].p_size = (*vtoc)->efi_last_u_lba - 524322
999 	    - (1024 * 16);
1000 
1001 	/* efi reserved partition - s9 16K */
1002 	(*vtoc)->efi_parts[8].p_start = (*vtoc)->efi_last_u_lba - (1024 * 16);
1003 	(*vtoc)->efi_parts[8].p_size = (1024 * 16);
1004 	(*vtoc)->efi_parts[8].p_tag = V_RESERVED;
1005 	return (0);
1006 }
1007